

Unstructured Information
Management Architecture (UIMA)

SDK User's Guide and Reference

2

July 2006

This edition applies to the IBM Unstructured Information Management Architecture (UIMA) SDK
Version 1.4.2 and to all subsequent release and modifications until otherwise indicated in new
editions.

© Copyright International Business Machines Corporation 2004, 2006. All rights reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Contents 3

Acknowledgements.. 1-11

Chapter 1 UIMA SDK Overview ... 1-15

Chapter 2 UIMA Conceptual Overview ... 2-23

Chapter 3 UIMA SDK Setup for Eclipse.. 3-43

Chapter 4 Annotator and Analysis Engine Developer’s Guide.. 4-51

Chapter 5 Collection Processing Engine Developer's Guide .. 5-101

Chapter 6 Application Developer’s Guide.. 6-131

Chapter 7 Developing Applications using Multiple Subjects of Analysis 7-158

Chapter 8 XMI and EMF Interoperability .. 8-173

Chapter 9 Component Descriptor Editor User’s Guide .. 9-179

Chapter 10 Collection Processing Engine Configurator User's Guide 10-215

Chapter 11 PEAR Packager User's Guide .. 11-219

Chapter 12 PEAR Installer User's Guide .. 12-225

Chapter 13 PEAR Merger User's Guide .. 13-227

Chapter 14 Document Analyzer User's Guide.. 14-231

Chapter 15 CAS Visual Debugger ... 15-237

Chapter 16 JCasGen User Guide .. 16-239

Chapter 17 XCAS Annotation Viewer.. 17-243

Chapter 18 UIMA FAQs... 18-247

Chapter 19 Glossary of Key Terms and Concepts .. 19-253

Chapter 20 Component Descriptor Reference... 20-259

Chapter 21 Collection Processing Engine Descriptor Reference.. 21-293

Chapter 22 JavaDocs.. 22-315

Chapter 23 CAS Reference .. 23-317

Chapter 24 JCas Reference ... 24-335

Chapter 25 Semantic Search Engine Reference.. 25-345

Chapter 26 PEAR Reference.. 26-347

Contents 4

Chapter 27 XMI CAS Serialization Reference... 27-357

Contents 5

Acknowledgements.. 1-11

Chapter 1 UIMA SDK Overview ... 1-15
1.1 UIMA SDK Documentation Overview .. 1-15
1.2 Using the Documentation to get started with the UIMA SDK .. 1-17
1.3 UIMA SDK Release Notes... 1-19
1.3.1 General... 1-19
1.3.2 Programming Language Support... 1-19
1.3.3 Multi-Modal Support ... 1-20
1.4 Summary of UIMA SDK Capabilities ... 1-20

Chapter 2 UIMA Conceptual Overview ... 2-23
2.1 UIMA Introduction .. 2-23
2.2 The Architecture, the Framework and the SDK... 2-25
2.3 Analysis Basics.. 2-25
2.3.1 Analysis Engines, Annotators and Analysis Results.. 2-26
2.3.2 Representing Analysis Results in the CAS.. 2-28
2.3.3 Interacting with the CAS and External Resources... 2-30
2.3.4 Component Descriptors ... 2-31
2.4 Aggregate Analysis Engines.. 2-32
2.5 Application Building and Collection Processing... 2-34
2.5.1 Using the framework from an Application .. 2-34
2.5.2 Graduating to Collection Processing.. 2-35
2.6 Exploiting Analysis Results.. 2-38
2.6.1 Semantic Search.. 2-38
2.6.2 Databases .. 2-39
2.7 Multimodal Processing in UIMA... 2-39
2.8 Next Step ... 2-41

Chapter 3 UIMA SDK Setup for Eclipse.. 3-43
3.1 Installation.. 3-43
3.1.1 Install Eclipse ... 3-43
3.1.2 Install EMF ... 3-43
3.1.3 Install the UIMA SDK ... 3-45
3.1.4 Install the UIMA Eclipse Plugins .. 3-45
3.1.5 Start Eclipse ... 3-45
3.2 Setting up Eclipse to view Example Code ... 3-46
3.3 Running external tools from Eclipse .. 3-46

Chapter 4 Annotator and Analysis Engine Developer’s Guide.. 4-51
4.1 Getting Started... 4-53
4.1.1 Defining Types ... 4-53
4.1.2 Generating Java Source Files for CAS Types ... 4-55
4.1.3 Developing Your Annotator Code .. 4-57
4.1.4 Creating the XML Descriptor.. 4-60
4.1.5 Testing Your Annotator .. 4-63
4.2 Configuration and Logging... 4-65
4.2.1 Configuration Parameters .. 4-65
4.2.2 Logging... 4-69
4.3 Building Aggregate Analysis Engines.. 4-72
4.3.1 Combining Annotators.. 4-72
4.3.2 Aggregate Engines can also contain CAS Consumers ... 4-76
4.3.3 Reading the Results of Previous Annotators ... 4-76
4.4 Other examples ... 4-79

Contents 6

4.5 Additional Topics ... 4-79
4.5.1 Contract for Annotator methods called by the Framework .. 4-79
4.5.2 Reporting errors from Annotators .. 4-80
4.5.3 Throwing Exceptions from Annotators ... 4-80
4.5.4 Accessing External Resource Files ... 4-83
4.5.5 Result Specification Setting ... 4-91
4.5.6 Class path setup when using JCas.. 4-92
4.5.7 Using the Shell Scripts ... 4-93
4.6 Common Pitfalls... 4-94
4.7 Viewing FeatureStructures in the Eclipse debugger ... 4-94
4.8 Introduction to Analysis Engine Descriptor XML Syntax ... 4-95
4.8.1 Header and Annotator Class Identification .. 4-95
4.8.2 Simple Metadata Attributes.. 4-96
4.8.3 Type System Definition .. 4-96
4.8.4 Capabilities... 4-96
4.8.5 Configuration Parameters (Optional) ... 4-97
4.8.6 Configuration Parameter Settings.. 4-98
4.8.7 Aggregate Analysis Engine Descriptor .. 4-98

Chapter 5 Collection Processing Engine Developer's Guide .. 5-101
5.1 CPE Concepts ... 5-102
5.2 The CPE Configurator and the XCAS viewer .. 5-103
5.2.1 Using the CPE Configurator... 5-103
5.2.2 Running the CPE Configurator from Eclipse.. 5-108
5.3 Running a CPE from Your Own Java Application ... 5-109
5.3.1 Using Listeners .. 5-109
5.4 Developing Collection Processing Components.. 5-109
5.4.1 Developing Collection Readers.. 5-110
5.4.2 Developing CAS Initializers.. 5-116
5.4.3 Developing CAS Consumers ... 5-119
5.5 Deploying a CPE ... 5-122
5.5.1 Deploying Managed CAS Processors.. 5-124
5.5.2 Deploying Non-managed CAS Processors.. 5-125
5.5.3 Deploying Integrated CAS Processors .. 5-127
5.6 Collection Processing Examples ... 5-128

Chapter 6 Application Developer’s Guide.. 6-131
6.1 The UIMAFramework Class... 6-131
6.2 Using Analysis Engines ... 6-132
6.2.1 Instantiating an Analysis Engine .. 6-132
6.2.2 Analyzing Text Documents .. 6-133
6.2.3 Analyzing Non-Text Artifacts.. 6-134
6.2.4 Accessing Analysis Results using the JCas .. 6-134
6.2.5 Accessing Analysis Results using the CAS ... 6-135
6.2.6 Multi-threaded Applications.. 6-135
6.2.7 Using Multiple Analysis Engines (and creating shared CASes) .. 6-137
6.2.8 Saving CASes to file systems .. 6-138
6.3 Using Collection Processing Engines.. 6-138
6.3.1 Running a CPE from a Descriptor.. 6-139
6.3.2 Configuring a CPE Descriptor Programmatically... 6-139
6.4 Setting Configuration Parameters ... 6-141
6.5 Integrating Text Analysis and Search.. 6-142
6.5.1 Indexing.. 6-143
6.5.2 Semantic Search Query Tool ... 6-146
6.6 Working with Analysis Engine and CAS Consumer Services ... 6-147
6.6.1 How to Deploy a UIMA Component as a SOAP Web Service... 6-148

Contents 7

6.6.2 How to Deploy a UIMA Component as a Vinci Service ... 6-150
6.6.3 How to Call a UIMA Service... 6-151
6.6.4 Restrictions on remotely deployed services... 6-153
6.6.5 The Vinci Naming Service (VNS)... 6-153
6.7 Increasing performance using parallelism... 6-156

Chapter 7 Developing Applications using Multiple Subjects of Analysis 7-158
7.1 Basic Sofa Concepts and Methods ... 7-159
7.1.1 Multiple names for the same Sofa ... 7-160
7.1.2 Instantiating Sofa Feature Structures .. 7-160
7.1.3 Setting Sofa Data ... 7-160
7.1.4 Accessing Sofa Features and Sofa Data... 7-161
7.1.5 Declaring Sofas in Component Descriptors ... 7-162
7.2 Sofas and TCAS Views ... 7-162
7.2.1 CAS versus TCAS View... 7-162
7.2.2 Each Sofa has its own Index Repository ... 7-163
7.2.3 Non Text TCAS .. 7-163
7.2.4 Getting a JCas ... 7-164
7.2.5 Do UIMA Components Receive a CAS or a TCAS?.. 7-164
7.2.6 The Default Text Sofa .. 7-164
7.3 Sofa Name Mapping .. 7-165
7.3.1 mapToSofaID() method.. 7-165
7.3.2 Name Mapping in an Aggregate Descriptor... 7-165
7.3.3 Name Mapping in a CPE Descriptor .. 7-166
7.3.4 Specifying the Sofa for a Sofa-unaware TCAS processor... 7-167
7.3.5 Name Mapping in a UIMA Application ... 7-168
7.3.6 Name Mapping in a Remote Service ... 7-168
7.4 Sofa Impact on XCAS Format ... 7-168
7.5 Sofa Sample Application.. 7-169
7.6 Sofa API summary... 7-171

Chapter 8 XMI and EMF Interoperability .. 8-173
8.1 Overview.. 8-173
8.2 Converting an Ecore Model to or from a UIMA Type System ... 8-174
8.3 Using XMI CAS Serialization ... 8-174

Chapter 9 Component Descriptor Editor User’s Guide .. 9-179
9.1 Launching the Component Descriptor Editor... 9-179
9.2 Creating a New AE Descriptor... 9-179
9.3 Pages within the Editor .. 9-182
9.3.1 Adjusting the display of pages ... 9-182
9.4 Overview Page .. 9-182
9.5 Aggregate Page... 9-183
9.6 Parameters Definition Page... 9-188
9.6.2 Parameter declarations for Aggregates ... 9-191
9.7 Parameter Settings Page... 9-192
9.8 Type System Page .. 9-193
9.9 Capabilities Page... 9-198
9.9.1 Sofa name mappings ... 9-200
9.10 Indexes Page ... 9-202
9.11 Resources Page... 9-205
9.11.1 Binding ... 9-208
9.11.2 Resources with Aggregates ... 9-208
9.12 Source Page .. 9-208
9.12.1 Source formating – indentation .. 9-209
9.13 Creating a Self-Contained Type System.. 9-209

Contents 8

9.14 Creating Other Descriptor Components... 9-211

Chapter 10 Collection Processing Engine Configurator User's Guide 10-215
10.1 Limitations of the CPE Configurator... 10-215
10.2 Starting the CPE Configurator ... 10-215
10.3 Selecting Component Descriptors ... 10-216
10.4 Running a Collection Processing Engine... 10-217
10.5 The File Menu .. 10-217
10.6 The Help Menu... 10-218

Chapter 11 PEAR Packager User's Guide .. 11-219
11.1 Using the PEAR Eclipse Plugin ... 11-219
11.1.1 Add UIMA Nature to your project ... 11-219
11.1.2 Use the PEAR Generation Wizard... 11-221

Chapter 12 PEAR Installer User's Guide .. 12-225

Chapter 13 PEAR Merger User's Guide .. 13-227
13.1 Details of the merging process .. 13-227
13.2 Testing and Modifying the resulting PEAR .. 13-228
13.3 Restrictions and Limitations ... 13-228

Chapter 14 Document Analyzer User's Guide.. 14-231
14.1 Starting the Document Analyzer .. 14-231
14.2 Running a TAE... 14-232
14.3 Viewing the Analysis Results ... 14-233
14.4 Configuring the Annotation Viewer .. 14-234
14.5 Interactive Mode... 14-235
14.6 View Mode ... 14-236

Chapter 15 CAS Visual Debugger ... 15-237

Chapter 16 JCasGen User Guide .. 16-239

Chapter 17 XCAS Annotation Viewer.. 17-243

Chapter 18 UIMA FAQs... 18-247

Chapter 19 Glossary of Key Terms and Concepts .. 19-253

Chapter 20 Component Descriptor Reference... 20-259
20.1 Notation.. 20-259
20.2 Imports ... 20-260
20.3 Type System Descriptors ... 20-262
20.4 Analysis Engine Descriptors .. 20-265
20.4.1 Primitive Analysis Engine Descriptors ... 20-265
20.4.2 Aggregate Analysis Engine Descriptors... 20-281
20.5 Collection Processing Component Descriptors.. 20-286
20.5.1 Collection Reader Descriptors ... 20-286
20.5.2 CAS Initializer Descriptors ... 20-288
20.5.3 CAS Consumer Descriptors... 20-289
20.6 Service Client Descriptors.. 20-290

Chapter 21 Collection Processing Engine Descriptor Reference.. 21-293
21.1 CPE Overview.. 21-293

Contents 9

21.2 Notation.. 21-294
21.3 Imports ... 21-295
21.4 CPE Descriptor .. 21-296
21.4.1 Collection Reader... 21-296
21.4.2 CAS Processors... 21-297
21.4.3 CPE Operational Parameters .. 21-308
21.4.4 Resource Manager Configuration .. 21-312
21.4.5 Example CPE Descriptor ... 21-313

Chapter 22 JavaDocs.. 22-315

Chapter 23 CAS Reference .. 23-317
23.1.1 JavaDocs ... 23-317
23.1.2 CAS Overview.. 23-317
23.2 Built-in CAS Types ... 23-320
23.3 Accessing the type system... 23-322
23.3.1 TypeSystemPrinter example.. 23-322
23.3.2 Using the CAS APIs to create and modify feature structures.. 23-325
23.4 Creating feature structures... 23-327
23.5 Accessing or modifying features of feature structures... 23-327
23.6 Indexes and Iterators ... 23-328
23.6.1 Iterators .. 23-328
23.6.2 Special iterators for Annotation types .. 23-328
23.6.3 Constraints and Filtered iterators... 23-329
23.7 The CAS APIs – a guide to the JavaDocs ... 23-331
23.7.1 APIs in the CAS package... 23-331

Chapter 24 JCas Reference ... 24-335
24.1 Name Spaces... 24-336
24.2 XML source description tags.. 24-336
24.3 Mapping built-in CAS types to Java types ... 24-337
24.4 Augmenting the generated Java Code .. 24-337
24.4.1 Keeping hand-coded augmentations when regenerating .. 24-337
24.4.2 Additional Constructors .. 24-338
24.4.3 Modifying generated items... 24-339
24.5 Merging types from different type system specifications ... 24-339
24.5.1 Aggregate AEs and CPEs as sources of types ... 24-339
24.6 Using JCas within an Annotator... 24-340
24.6.1 Creating new instances using the Java "new" operator... 24-340
24.6.2 Getters and Setters .. 24-340
24.6.3 Obtaining references to Indexes .. 24-341
24.6.4 Adding (and removing) instances to (from) indexes .. 24-341
24.6.5 Using Iterators.. 24-342
24.6.6 Class Loaders in UIMA .. 24-342
24.6.7 Issues around DocumentAnnotation.. 24-343
24.6.8 Issues accessing JCas objects outside of UIMA Engine Components 24-344
24.7 Setting up Classpath for JCas ... 24-344

Chapter 25 Semantic Search Engine Reference.. 25-345

Chapter 26 PEAR Reference.. 26-347
26.1 Packaging a UIMA component .. 26-347
26.1.1 Creating the PEAR structure.. 26-347
26.1.2 Populating the PEAR structure .. 26-348
26.1.3 Creating the installation descriptor... 26-349
26.1.4 Packaging the PEAR structure into one file ... 26-356

Contents 10

26.1.5 Installing a PEAR file.. 26-356

Chapter 27 XMI CAS Serialization Reference... 27-357
27.1 XMI Tag.. 27-357
27.2 Feature Structures ... 27-357
27.3 Primitive Features .. 27-358
27.4 Reference Features ... 27-359
27.5 Array and List Features.. 27-359
27.5.1 Arrays and Lists as Multi-Valued Properties.. 27-360
27.5.2 Arrays and Lists as First-Class Objects ... 27-360
27.6 Null Array/List Elements... 27-361
27.7 Subjects of Analysis (Sofas) and Views... 27-362
27.8 Linking an XMI Document to its Ecore Type System... 27-362

1-11

Acknowledgements

The UIMA SDK Documentation was prepared as part of a collaborative effort
between IBM Research and IBM Software Group. We would like to acknowledge the
following people for their contributions to the UIMA SDK documentation. They are
listed here in alphabetical order.

Eric Brown co-authored the UIMA collection processing developer guide and
reference documentation. Eric manages the "UIM Systems" group at T.J. Watson
Research Center. His team develops UIMA metadata tooling and advanced
knowledge gathering frameworks using UIMA.

Jerry Cwiklik co-authored the UIMA collection processing developer’s guide and
reference documents. He is the lead developer of the UIMA collection processing
manager.

Yurdaer Doganata, together with Marshall Schor, formatted and assembled the SDK
documentation set. Yurdaer is the manager of "Information Management solutions"
at IBM’s T.J. Watson Research Center. His team is focused on UIMA component
discovery and reuse and is responsible for UIMA development tooling.

Gabriele Dreckschmidt formatted and assembled parts of the documentation set.
She is a member of the information development team within IBM Software Group.

Youssef Drissi authored the PEAR Packager documentation. He is UIMA software
engineer focused on UIMA development tooling.

Edward Epstein reviewed various developer and reference documents. Eddie
manages the "UIMA Frameworks" group at IBM at the T.J. Watson Research Center.
His team is dedicated to the core UIMA framework including the analysis engine
and collection processing architecture.

David Ferrucci authored the SDK Overview, the UIMA Conceptual Overview, and
the FAQs. He is UIMA’s lead architect and the Senior Manager of the "Semantic
Analysis and Integration" department at the IBM T.J. Watson Research Center. His
department is primarily focused on development of advanced middleware and
technologies for processing unstructured information, including UIMA.

Thilo Goetz authored the CAS Visual Debugger Guide and co-authored the CAS
Reference. Thilo is a software engineer in IBM Software Group and the lead
developer of UIMA’s common analysis system. He is focused on the productization
of UIMA and its integration with search-related products.

 1-12

Thomas Hampp reviewed the overall documentation. Thomas leads the UIMA
product development work within IBM's Software Group.

Lev Kozakov authored the PEAR Installer documentation. He is a Research Staff
Member at IBM’s T.J. Watson Research center focused on UIMA tooling and
metadata representation.

Adam Lally authored the Annotator and Analysis Engine Developers Guide, the
Application Developer's Guide, the CPE Configurator Guide, the Document
Analyzer User's Guide, the XCAS Annotation Viewer's Guide, and the Eclipse setup
instructions. He co-authored the Component Descriptor Reference and CPE
Developer’s Guide. Adam is the lead developer of the UIMA framework.

Jonathan Lenchner authored the Component Descriptor Editor Guide. He is
software engineer at IBM’s T.J. Watson research center and, among several key
roles, he is the lead developer of UIMA Component Descriptor Editor.

Yosi Mass adapted documentation written for the Semantic Search Engine for the
UIMA SDK. He is a Researcher at IBM's Haifa research center, and is the lead
developer of UIMA's advanced semantic search capability.

Marshall Schor authored the JCas and JCasGen documentation and co-authored the
CAS Reference. He reviewed and edited all of the UIMA SDK documentation.
Marshall is the UIMA SDK development manager at the IBM T.J. Watson Research
Center. He chairs the UIMA Architecture Board and is also the Program Manager of
IBM’s Institute for Search and Text Analysis (ISTA).

Part I 13

Part I: UIMA Overview and
Setup

SDK Overview 1-15

Chapter 1 UIMA SDK Overview

IBM’s Unstructured Information Management Architecture (UIMA) is an
architecture and software framework for creating, discovering, composing and
deploying a broad range of multi-modal analysis capabilities and integrating them
with search technologies.

The UIMA framework provides a run-time environment in which developers can
plug in and run their UIMA component implementations and with which they can
build and deploy UIM applications. The framework is not specific to any IDE or
platform.

The UIMA Software Development Kit (SDK) includes an all-Java implementation of
the UIMA framework for the development, description, composition and
deployment of UIMA components and applications. It also provides the developer
with an Eclipse-based (www.eclipse.org) development environment that includes a
set of tools and utilities for using UIMA.

This chapter is the intended starting point for readers that are new to the UIMA
SDK. It includes this introduction and the following sections:

• Section 1.1 "UIMA SDK Documentation Overview" provides a list of the
chapters included in the UIMA SDK documentation with a brief summary of
each.

• Section 1.2 "Using the Documentation to get started with the UIMA SDK"
describes a recommended path through the documentation to help get the
reader up and running with UIMA,

• Section 1.3 "UIMA SDK Release Notes" are release notes for this version of the
UIMA SDK.

• Finally, Section 1.4 "Summary of UIMA SDK Capabilities" includes an
inventory of software capabilities provided in the UIMA SDK.

1.1 UIMA SDK Documentation Overview

Chapter Description

Overviews
UIMA SDK Overview (This Chapter) Lists the documents provided in the UIMA SDK

documentation set.

Provides a recommended path through the
documentation for getting started using UIMA.

http://www.eclipse.org/

SDK Overview 1-16

Includes release notes.

Provides a brief high-level description of the
different software modules included in the
UIMA SDK.

UIMA Conceptual Overview Provides a broad conceptual overview of the
UIMA component architecture making
contextual references to the other documents in
the UIMA SDK documentation set that provide
more detail.

Setting up
UIMA Eclipse Tooling Installation and Setup Provides step-by-step instructions for installing

the UIMA SDK in the Eclipse Interactive
Development Environment.

Developer's Guides
Annotator and AE Developer's Guide Tutorial-style guide for building UIMA

annotators and analysis engines. This chapter
introduces the developer to creating type
systems and using UIMA’s common data
structure, the CAS or Common Analysis
Structure. It demonstrates how to use built in
tools to specify and create basic UIMA analysis
components.

CPE Developer's Guide Tutorial-style guide for building UIMA
collection processing engines. These manage the
analysis of collections of documents from source
to sink.

Application Developer's Guide Tutorial-style guide for using UIMA SDK to
create, run and manage UIMA components from
your application. Includes integration with
semantic search engine and description of a
simple GUI provided for submitting and
running Semantic Search queries that can exploit
UIMA analysis. Also describes APIs for saving
and restoring the contents of a CAS using an
XML format called XCAS.

Developing Applications using Multiple Subjects
of Analysis (Sofas)

A single CAS maybe associated with multiple
subjects of analysis (Sofas). These are useful for
representing and analyzing different formats or
translations of the same document. For multi-
modal analysis, Sofas are good for different
modal representations of the same stream (e.g.,
audio and close-captions).This chapter provides
the developer details on how to use multiple
Sofas in an application.

Tool User Guides
Component Descriptor Editor Describes the features of the Component

Descriptor Editor Tool. This tool provides a GUI
for specifying the details of UIMA component
descriptors, including those for Analysis Engines

SDK Overview 1-17

(primitive and aggregate), Collection Readers,
CAS Consumers and Type Systems.

CPE Configurator Describes the User Interfaces and features of the
CPE Configurator tool. This tool allows the user
to select and configure the components of a
Collection Processing Engine and then to run the
engine.

PEAR Packager Describes how to use the PEAR Packager utility.
This utility enables developers to produce an
archive file for an analysis engine that includes
all required resources for installing that analysis
engine in another UIMA environment.

PEAR Installer Describes how to use the PEAR Installer utility.
This utility installs and verifies an analysis
engine from an archive file (PEAR) with all its
resources in the right place so it is ready to run.

Document Analyzer Describes the features of a tool for applying a
UIMA analysis engine to a set of documents and
viewing the results.

CAS Visual Debugger Describes the features of a tool for viewing the
detailed structure and contents of a CAS. Good
for debugging.

JCasGen Describes how to run the JCasGen utility, which
automatically builds Java classes that correspond
to a particular CAS Type System.

XCAS Viewer Describes how to run the supplied viewer for
XCASes, used in the examples.

References
UIMA FAQs Frequently Asked Questions about general

UIMA concepts. (Not a programming resource.)
Glossary Main UIMA concepts and their basic definitions.
Component Descriptor Reference Provides detailed XML format for all the UIMA

component descriptors, except the CPE (see next)
CPE Descriptor Reference Provides detailed XML format for the Collection

Processing Engine descriptor.
JavaDocs JavaDocs detailing the UIMA SDK programming

interfaces
CAS Reference Provides detailed description of the principal

CAS interface.
JCas Reference Provides details on the JCas, a native Java

interface to the CAS.
Semantic Search Engine Reference Describes how to write applications that query a

semantic search engine index built using the
UIMA SDK.

PEAR Reference Provides detailed description of the deployable
archive format for UIMA components.

1.2 Using the Documentation to get started with the UIMA SDK

SDK Overview 1-18

1. Explore this chapter to get an overview of the different documents that are
included with the SDK.

2. Read Chapter 2 UIMA Conceptual Overview to get a broad view of the basic
UIMA concepts and philosophy with reference to the other documents
included in the SDK which provide greater detail.

3. For more general information on the UIMA architecture and how it has been
used, refer to the IBM Systems Journal special issue on Unstructured
Information Management, on line at
http://www.research.ibm.com/journal/sj43-3.html or to the external UIMA
website where key publications are listed
http://www.research.ibm.com/UIMA/pubs.htm.

4. Set up the UIMA SDK in your Eclipse environment. To do this, follow the
instructions in Chapter 3 UIMA SDK Setup for Eclipse.

5. Develop sample UIMA annotators, run them and explore the results. Read
 Chapter 4 Annotator and Analysis Engine Developer’s Guide and follow it like
a tutorial to learn how to develop your first UIMA annotator and set up and
run your first UIMA analysis engines.

• As part of this you will use a few tools including

− The UIMA Component Descriptor Editor, described in more detail in
 Chapter 9 Component Descriptor Editor User’s Guide and

− The Document Analyzer, described in more detail in Chapter 14
Document Analyzer User's Guide.

• While following along in Chapter 4 Annotator and Analysis Engine
Developer’s Guide reference documents that may help are:

− Chapter 20 for understanding the analysis engine descriptors

− Chapter 24 JCas Reference for understanding the JCas

6. Learn how to create, run and manage a UIMA analysis engine as part of an
application. Connect your analysis engine to the provided semantic search
engine to learn how a complete analysis and search application may be built
with the UIMA SDK. Chapter 6 Application Developer’s Guide will guide you
through this process.

• As part of this you will use the document analyzer (described in more detail
in Chapter 14 Document Analyzer User's Guide) and semantic search GUI
tools (described in section 6.5.2 Semantic Search Query Tool.

7. Pat yourself on the back. Congratulations! If you reached this step successfully,
then you have an appreciation for the UIMA analysis engine architecture. You
would have built a few sample annotators, deployed UIMA analysis engines to
analyze a few documents, searched over the results using the built-in semantic
search engine and viewed the results through a built-in viewer – all as part of a
simple but complete application.

http://www.research.ibm.com/journal/sj43-3.html
http://www.research.ibm.com/UIMA/pubs.htm

SDK Overview 1-19

8. Develop and run a Collection Processing Engine (CPE) to analyze and gather
the results of an entire collection of documents. Chapter 5 Collection
Processing Engine Developer's Guide will guide you through this process.

• As part of this you will use the CPE Configurator tool. For details see Chapter
10 Collection Processing Engine Configurator User's Guide.

• You will also learn about CPE Descriptors. The detailed format for these may
be found in Chapter 21 Collection Processing Engine Descriptor Reference.

9. Learn how to package up an analysis engine for easy installation into another
UIMA environment. Chapter 11 PEAR Packager and Chapter 12 PEAR
Installer will teach you how to create UIMA analysis engine archives so that
you can easily share your components with a broader community.

1.3 UIMA SDK Release Notes

1.3.1 General

The UIMA SDK supports the development, discovery, composition and deployment
of multi-modal analytics for the analysis of unstructured information and its
integration with search technologies.

It includes APIs and tools for creating analysis components. Examples of analysis
components include tokenizers, summarizers, categorizers, parsers, named-entity
detectors etc.

The UIMA SDK also includes a semantic search engine for indexing the results of
analysis and for using this semantic index to perform more advanced search.

1.3.2 Programming Language Support

UIMA supports the development and integration of analysis algorithms developed
in different programming languages.

This release of the SDK is principally focussed on Java development. It also
includes facilities for C++ Enablement for UIMA Components which allow UIMA
components to be written in C++ and have access to a C++ version of the CAS.
When used in this manner, the Java UIMA framework can incorporate analytic
functions written in C++. Optional files included with the UIMA SDK describe this
functionality and provide example code. See the Quick Start manual for more
information on this.

SDK Overview 1-20

1.3.3 Multi-Modal Support

The UIMA architecture supports the development, discovery, composition and
deployment of multi-modal analytics, including text, audio and video. Chapter 7
Developing Applications using Multiple Subjects of Analysis on page 7-158 discuss
this is more detail.

1.4 Summary of UIMA SDK Capabilities

Module Description
UIMA Framework Core A framework integrating core functions for creating,

deploying, running and managing UIMA components,
including analysis engines and Collection Processing Engines
in collocated and/or distributed configurations.

The framework includes an implementation of core
components for transport layer adaptation, CAS
management, workflow management based on declarative
specifications, resource management, configuration
management, logging, and other functions.

Externalized Framework
Plug-ins

Note that interfaces of these components are
available to the developer but different
implementations are possible in different
implementations of the UIMA framework.

CAS and TCAS classes These classes provide the developer with typed access to the
Common Analysis Structure (CAS), including type system
schema, elements, subjects of analysis and indices. The TCAS
class is a specialization of the CAS for supporting multiple
subjects of analysis (Sofas). The Sofa mechanism supports the
independent or simultaneous analysis of multiple views of
the same documents, supporting multi-lingual and multi-
modal analysis.

JCas Provides Java-based UIMA Analysis components with native
Java object access to CAS types. It is built on the CAS classes.

Collection Processing Management
(CPM)

Core functions for running UIMA collection processing
engines in collocated and/or distributed configurations. The
CPM provides scalability across parallel processing pipelines,
check-pointing, performance monitoring and recoverability.

Resource Manager Provides UIMA components with run-time access to external
resources handling capabilities such as resource naming,
sharing, and caching.

Configuration Manager Provides UIMA components with run-time access to their
configuration parameter settings.

Logger Provides access to a common logging facility.

SDK Overview 1-21

Tools and Utilities
JCasGen Utility for generating a Java object model for CAS types from

a UIMA XML type system definition.

Saving and Restoring CAS contents APIs in the core framework support saving and restoring the
contents of a CAS to streams using an XML format for the
CAS named XCAS.

PEAR packager for Eclipse Tool for building a UIMA component archive to facilitate
porting, registering, installing and testing components.

PEAR Installer Tool for installing and verifying a UIMA component archive
in a UIMA installation.

Component Descriptor Editor Eclipse Plug-in for specifying and configuring component
descriptors for UIMA analysis engines as well as other UIMA
component types including Collection Readers and CAS
Consumers.

CPE Configurator Graphical tool for configuring Collection Processing Engines
and applying them to collections of documents.

Java Annotation viewer Viewer for exploring annotations and related CAS data.

CAS Visual Debugger Provides developer with detailed visual view of the contents
of a CAS.

Document Analyzer Graphical tool for applying analysis engines to sets of
documents and viewing results.

Example Analysis
Components

Semantic Search CAS Indexer CAS Consumer that uses the semantic search engine indexer
to build an index from a stream of CASes. Requires the
semantic search engine (included).

Database Writer CAS Consumer that writes the content of selected CAS types
into a relational database, using JDBC. This code is in the
doc/examples/src/com/ibm/uima/examples/
cpe/PersonTitleDBWriterCasConsumer

Annotators Set of simple annotators meant for pedagogical purposes.
Includes: Date/time, Room-number, Regular expression and
Meeting-finder annotator.

File System Collection Reader Simple Collection Reader for pulling documents from the file
system and initializing CASes.

XML CAS Initializer Simple CAS Initializer that loads the CAS with text.

Search Components

SDK Overview 1-22

Semantic Search Engine Search Engine that supports searching over results of analysis
including annotations and nested annotations using the "XML
Fragment" query language.

Components not currently
available in this release of
the UIMA SDK.

If interested in these extensions please contact
the UIMA team at IBM. T.J. Watson Research
Center via www.ibm.com/research/uima

C++ and other programming language
Interoperability

Includes C++ CAS and supports the creation of UIMA
compliant C++ components that can be deployed in the UIMA
run-time through a built-in JNI adapter. This includes high-
speed binary serialization.

Includes support for creating service-based UIMA engines
outside of SDK. This is ideal for wrapping existing code
written in different languages.

Semantic search and Analysis
Workbench (SAW)

Graphical User Interface for applying analysis to build search
indices and DBs and query interfaces for searching/exploring
analysis results. Uses the semantic search engine and the
EKDB (see below).

Extracted Knowledge Database
(EKDB)

Database schema and APIs for creating and populating a
relational database with analysis results including entity and
relation annotations. Includes a CAS Consumer that
populates the database. Semantic Analysis Workbench
provides a front-end to this database and to the Semantic
Search Engine’s query processor.

Table 1: UIMA SDK Capabilities

Conceptual Overview 2-23

Chapter 2 UIMA Conceptual Overview

UIMA is an open, industrial-strength, scaleable and extensible platform for creating,
integrating and deploying unstructured information management solutions from
powerful text or multi-modal analysis and search components.

IBM is making the UIMA SDK available as free software to provide a common
foundation for industry and academia to collaborate and accelerate the world-wide
development of technologies critical for discovering vital knowledge present in the
fastest growing sources of information today.

This chapter presents an introduction to many essential UIMA concepts. It is meant
to provide a broad overview to give the reader a quick sense of UIMA’s basic
architectural philosophy and the UIMA SDK’s capabilities.

This chapter provides a general orientation to UIMA and makes liberal reference to
the other chapters in the UIMA SDK documentation set, where the reader may find
detailed treatments of key concepts and development practices. It may be useful to
refer to Chapter 19 Glossary of Key Terms and Concepts, to become familiar with
the terminology in this overview.

2.1 UIMA Introduction

Unstructured information represents the largest, most current and fastest growing

Analytics bridge the
Unstructured & Structured worlds

Unstructured
Information UIMA

High-Value
Most Current Content
BUT ...

Buried in Huge Volumes
Lots of Noise, Implicit Semantics
Inefficient Search

Explicit Structure
Explicit Semantics
Efficient Search
Focused Content

Text, Chat,
Email, Audio,

Video

Indices

DBs

KBs

Identify Semantic Entities, Induce Structure
Chats, Phone Calls, Transfers
People, Places, Org, Events
Times, Topics, Opinions, Relationships
Threats, Plots, etc.

Structured
Information

Figure 1: UIMA helps you build the bridge between the unstructured and
structured worlds

Conceptual Overview 2-24

source of information available to businesses and governments. The web is just the
tip of the iceberg. Consider the mounds of information hosted in the enterprise and
around the world and across different media including text, voice and video. The
high-value content in these vast collections of unstructured information is,
unfortunately, buried in lots of noise. Searching for what you need or doing
sophisticated data mining over unstructured information sources presents new
challenges.

An unstructured information management (UIM) application may be generally
characterized as a software system that analyzes large volumes of unstructured
information (text, audio, video, images, etc.) to discover, organize and deliver
relevant knowledge to the client or application end-user. An example is an
application that processes millions of medical abstracts to discover critical drug
interactions. Another example is an application that processes tens of millions of
documents to discover key evidence indicating probable competitive threats.

First and foremost, the unstructured data must be analyzed to interpret, detect and
locate concepts of interest that are not explicitly tagged or annotated in the original
artifact, for example, named entities like persons, organizations, locations, facilities,
products etc. More challenging analytics may detect things like opinions,
complaints, threats or facts. And then there are relations, for example, located in,
finances, supports, purchases, repairs etc. The lists of concepts important for
applications to detect and find in unstructured resources are large and often domain
specific. Specialized component analytics must be combined and integrated to do
the job.

The result of analysis must, in turn, be put in structured forms so that powerful data
mining and search technologies like search engines, database engines or OLAP (On-
Line Analytical Processing, or Data Mining) engines may be leveraged to efficiently
find the concepts you need, when you need them.

In analyzing unstructured content, UIM applications make use of a variety of
analysis technologies including:

• Statistical and rule-based Natural Language Processing (NLP)

• Information Retrieval (IR)

• Machine learning

• Ontologies

• Automated reasoning and

• Knowledge Sources (e.g., CYC, WordNet, FrameNet, etc.)

These technologies are developed independently by highly specialized scientists
and engineers using different techniques, interfaces and platforms.

Conceptual Overview 2-25

The bridge from the unstructured world to the structured world is built through the
composition and deployment of these analysis capabilities. This integration is often
a costly challenge.

IBM’s Unstructured Information Management Architecture (UIMA) is an
architecture and software framework that helps you build that bridge. It supports
creating, discovering, composing and deploying a broad range of analysis
capabilities and linking them to structured information services.

IBM’s UIMA allows development teams to match the right skills with the right parts
of a solution and helps enable rapid integration across technologies and platforms
using a variety of different deployment options. These ranging from tightly-coupled
deployments for high-performance, single-machine, embedded solutions to parallel
and fully distributed deployments for highly flexible and scaleable solutions.

2.2 The Architecture, the Framework and the SDK

UIMA is a software architecture which specifies component interfaces, data
representations, design patterns and development roles for creating, describing,
discovering, composing and deploying multi-modal analysis capabilities.

The UIMA framework provides a run-time environment in which developers can
plug in their UIMA component implementations and with which they can build and
deploy UIM applications. The framework is not specific to any IDE or platform.

The UIMA Software Development Kit (SDK) includes an all-Java implementation of
the UIMA framework for the implementation, description, composition and
deployment of UIMA components and applications. It also provides the developer
with an Eclipse-based (www.eclipse.org) development environment that includes a
set of tools and utilities for using UIMA.

2.3 Analysis Basics

Key UIMA Concepts Introduced in this Section: Analysis Engine, Document,
Annotator, Annotator Developer, Type, Type System, Feature, Annotation, CAS,
Sofa, JCas, UIMA Context.

http://www.eclipse.org/

Conceptual Overview 2-26

2.3.1 Analysis Engines, Annotators and Analysis Results

UIMA is an architecture in which basic building blocks called Analysis Engines
(AEs) are composed to analyze a document and infer and record descriptive
attributes about the document as a whole, and/or about regions therein. This
descriptive information, produced by AEs is referred to generally as analysis
results. Analysis results typically represent meta-data about the document content.
One way to think about AEs is as software agents that automatically discover and
record meta-data about original content.

UIMA supports the analysis of different modalities including text, audio and video.
The majority of examples we provide are for text. We use the term document,
therefore, to generally refer to any unit of content that an AE may process, whether
it is a text document or a segment of audio, for example. See the section on page 2-38
for more information on multimodal processing in UIMA.

Analysis results include different statements about the content of a document. For
example, the following is an assertion about the topic of a document:

(1) The Topic of document D102 is "CEOs and Golf".

Analysis results may include statements describing regions more granular than the
entire document. We use the term span to refer to a sequence of characters in a text
document. Consider that a document with the identifier D102 contains a span,

Fred Center is the CEO of Center Micros. He is a graduate of State University and excels at golf.

Person: P1
(Annotation)

Organization: O1
(Annotation)

Person: P2
(Annotation)

Fred Center
(Entity)

Center Micros
(Entity)

Person: P3
(Annotation)

Key

Annotations

Entities

Text Document: D102

Image Document

101 … 141…
Figure 2: Illustration of objects that might be represented in the UIMA Common Analysis
Structure (CAS)

Conceptual Overview 2-27

"Fred Centers" starting at character position 101. An AE that can detect persons in
text may represent the following statement as an analysis result:

(2) The span from position 101 to 112 in document D102 denotes a Person

In both statements 1 and 2 above there is a special pre-defined term or what we call
in UIMA a Type. They are Topic and Person respectively. UIMA types characterize
the kinds of results that an AE may create – more on types later.

Other analysis results may relate two statements. For example, an AE might record
in its results that two spans are both referring to the same person:

(3) The Person denoted by span 101 to 112 and the Person denoted by span
141 to 143 in document D102 refer to the same Entity.

The above statements are some examples of the kinds of results that AEs may record
to describe the content of the documents they analyze. These are not meant to
indicate the form or syntax with which these results are captured in UIMA – more
on that later in this overview.

The UIMA framework treats Analysis engines as pluggable, composible,
discoverable, managed objects. At the heart of AEs are the analysis algorithms that
do all the work to analyze documents and record analysis results.

UIMA provides a basic component type intended to house the core analysis
algorithms running inside AEs. Instances of this component are called Annotators.
The analysis algorithm developer’s primary concern therefore is the development of
annotators. The UIMA framework provides the necessary methods for taking
annotators and creating analysis engines.

In UIMA the person who codes analysis algorithms takes on the role of the
Annotator Developer. Chapter 4 Annotator and Analysis Engine Developer’s Guide
will take the reader through the details involved in creating UIMA annotators and
analysis engines.

At the most primitive level an AE wraps an annotator adding the necessary APIs
and infrastructure for the composition and deployment of annotators within the
UIMA framework. The simplest AE contains exactly one annotator at its core.
Complex AEs may contain a collection of other AEs each potentially containing
within them other AEs.

Conceptual Overview 2-28

2.3.2 Representing Analysis Results in the CAS

How annotators represent and share their results is an important part of the UIMA
architecture. UIMA defines a Common Analysis Structure (CAS) precisely for these
purposes.

The CAS is an object-based data structure that allows the representation of objects,
properties and values. Object types may be related to each other in a single-
inheritance hierarchy. The CAS logically (if not physically) contains the document
being analyzed. Analysis developers share and record their analysis results in terms
of an object model within the CAS.1

The UIMA framework includes an implementation and interfaces to the CAS. For a
more detailed description of the CAS and its interfaces see Chapter 23 CAS
Reference.

A CAS that logically contains statement 2 (repeated here for your convenience)

(2) The span from position 101 to 112 in document D102 denotes a Person

would include objects of the Person type. For each person found in the body of a
document, the AE would create a Person object in the CAS and link it to the span of
text where the person was mentioned in the document.

While the CAS is a general purpose representational structure, UIMA defines a few
basic types and affords the developer the ability to extend these to define an
arbitrarily rich Type System. You can think of a type system as an object schema for
the CAS.

A type system defines the various types of objects that may be discovered in
documents and recorded by AEs.

As suggested above, Person may be defined as a type. Types have properties or
features. So for example, Age and Occupation may be defined as features of the
Person type.

Other types might be Organization, Company, Bank, Facility, Money, Size, Price, Phone
Number, Phone Call, Relation, Network Packet, Product, Noun Phrase, Verb, Color, Parse
Node, Feature Weight Array etc.

1 We have plans to extend the representational capabilities of the CAS and align its semantics
with the semantics of the OMG’s Essential Meta-Object Facility (EMOF) and with the semantics
of the Eclipse Modeling Framework’s (http://www.eclipse.org/emf/) Ecore semantics and XMI-
based representation.

Conceptual Overview 2-29

There are no limits to the different types that may be defined in a type system. A
type system is domain and application specific.

Types in a UIMA type system may be organized into a taxonomy. For example,
Company may be defined as a subtype of Organization. NounPhrase may be a subtype
of a ParseNode.

The Annotation Type

A general and common type used in artifact analysis and from which additional
types are often derived is the annotation type.

The annotation type is used to annotate or label regions of an artifact. Common
artifacts are text documents, but they can be other things, such as audio streams. The
annotation type for text includes two features, namely begin and end. Values of
these features represent offsets in the artifact and delimit a span. Any particular
annotation object identifies the span it annotates with the begin and end features.

The key idea here is that the annotation type is used to identify and label or
“annotate" a specific region of an artifact.

Consider that the Person type is defined as a subtype of annotation. An annotator,
for example, can create a Person annotation to record the discovery of a mention of a
person between position 141 and 143 in document D102. The annotator can create
another person annotation to record the detection of a mention of a person in the
span between positions 101 and 112.

Not Just Annotations

While the annotation type is a useful type for annotating regions of a document,
annotations are not the only kind of types in a CAS. A CAS is a general
representation scheme and may store arbitrary data structures to represent the
analysis of documents.

As an example, consider statement 3 above (repeated here for your convenience).

(3) The Person denoted by span 101 to 112 and the Person denoted by span
141 to 143 in document D102 refer to the same Entity.

This statement mentions two person annotations in the CAS; the first, call it P1
delimiting the span from 101 to 112 and the other, call it P2, delimiting the span
from 141 to 143. Statement 3 asserts explicitly that these two spans refer to the same
entity. This means that while there are two expressions in the text represented by
the annotations P1 and P2, each refers to one and the same person.

Conceptual Overview 2-30

The Entity type may be introduced into a type system to capture this kind of
information. The Entity type is not an annotation. It is intended to represent an
object in the domain which may be referred to by different expressions (or
mentions) occurring multiple times within a document (or across documents within
a collection of documents). The Entity type has a feature named occurrences. This
feature is used to point to all the annotations believed to label mentions of the same
entity.

Consider that the spans annotated by P1 and P2 were "Fred Center" and "He"
respectively. The annotator might create a new Entity object called FredCenter. To
represent the relationship in statement 3 above, the annotator may link FredCenter
to both P1 and P2 by making them values of its occurrences feature.

Figure 2 also illustrates that an entity may be linked to annotations referring to
regions of image documents as well. To do this the annotation type would have to
be extended with the appropriate features to point to regions of an image.

Multiple Views within a CAS

UIMA supports the simultaneous analysis of multiple views of a document. This
support comes in handy for processing multiple modalities, for example, the audio
and the closed captioned views of a single speech stream.

AEs analyze one or more views of a document. We refer to a single view, generally,
as a subject of analysis (Sofa). The CAS therefore may contain one or more Sofas
plus the descriptive objects that represent the analysis results for each.

Another common example of using Sofas is for different translations of a document.
Each translation may be represented with a different Sofa in a single CAS. Each Sofa
may be described by a different set of analysis results. For more details on Sofas see
 Chapter 7 on page 7-158.

2.3.3 Interacting with the CAS and External Resources

The two main interfaces that a UIMA component developer interacts with are the
CAS and the UIMA Context.

UIMA provides an efficient implementation of the CAS with multiple programming
interfaces. Through these interfaces, the annotator developer interacts with the
document and reads and writes analysis results. The CAS interfaces provide a suite
of access methods that allow the developer to obtain indexed iterators to the
different objects in the CAS. See Chapter 23 CAS Reference. While many objects
may exist in a CAS, the annotator developer can obtain a specialized iterator to all
Person objects, for example.

Conceptual Overview 2-31

For Java annotator developers, UIMA provides the JCas. This interface provides the
Java developer with a natural interface to CAS objects. Each type declared in the
type system appears as a Java Class. So the UIMA framework would render the
Person type as a Person class in Java. As the analysis algorithm detects mentions of
persons in the documents, it can create Person objects in the CAS. For more details
on how to interact with the CAS refer to Chapter 24 JCas Reference.

The component developer in addition to interacting with the CAS can access
external resources through the framework’s resource manager interface called the
UIMA Context. This interface, among other things, can ensure that different
annotators working together in an aggregate flow may share the same instance of an
external file, for example. For details on using the UIMA Context see Chapter 4
Annotator and Analysis Engine Developer’s Guide.

2.3.4 Component Descriptors

UIMA defines a small set of core components. Annotators and AEs are two of the
basic building blocks specified by the architecture. Developers implement them to
build and compose analysis capabilities and ultimately applications.

There are others components in addition to these, which we will learn about later,
but for every component specified in UIMA there are two parts required for its
implementation:

1. the declarative part and
2. the code part.

The declarative part contains metadata describing the component, its identity,
structure and behavior and is called the Component Descriptor. Component
descriptors are represented in XML. The code part implements the algorithm. The
code part may be a program in Java.

As a developer using the UIMA SDK, to implement a UIMA component it is always
the case that you will provide two things: the code part and the Component
Descriptor. Note that when you are composing an engine, the code may be already
provided in reusable subcomponents. In these cases you may not be developing
new code but rather composing an aggregate engine by pointing to other
components where the code has been included.

Component descriptors are represented in XML and aid in component discovery,
reuse, composition and development tooling. The UIMA SDK provides tools for
easily creating and maintaining the component descriptors that relieve the
developer from editing XML directly. This tool is described briefly in Chapter 4
Annotator and Analysis Engine Developer’s Guide, and more thoroughly in Chapter
9 Component Descriptor Editor User’s Guide.

Conceptual Overview 2-32

Component descriptors contain standard metadata including the component’s
name, author, version, and a pointer to the class that implements the component.

In addition to these standard fields, a component descriptor identifies the type
system the component uses and the types it requires in an input CAS and the types
it plans to produce in an output CAS.

For example, an AE that detects person types may require as input a CAS that
includes a tokenization and deep parse of the document. The descriptor refers to a
type system to make the component’s input requirements and output types explicit.
In effect, the descriptor includes a declarative description of the component’s
behavior and can be used to aid in component discovery and composition based on
desired results. UIMA analysis engines provide an interface for accessing the
component metadata represented in their descriptors. For more details on the
structure of UIMA component descriptors refer to Chapter 20 Component Descriptor
Reference.

2.4 Aggregate Analysis Engines

Key UIMA Concepts Introduced in this Section: Aggregate Analysis Engine,
Delegate Analysis Engine, Tightly and Loosely Coupled, Flow Specification,
Analysis Engine Assembler

A simple or primitive UIMA Analysis Engine (AE) contains a single annotator. AEs,
however, may be defined to contain other AEs organized in a workflow. These more
complex analysis engines are called Aggregate Analysis Engines.

Annotators tend to perform fairly granular functions, for example language
detection, tokenization or part of speech detection.

Advanced analysis, however may involve an orchestration of many of these
primitive functions. An AE that performs named entity detection, for example, may
include a pipeline of annotators starting with language detection feeding
tokenization, then part-of-speech detection, then deep grammatical parsing and
then finally named-entity detection. Each step in the pipeline is required by the

Aggregate Analysis Engine: MyNamedEnitityDetector

Language
Identifier

Tokenizer Part of Speech
Annotator

CAS Annotations
-Tokens
-Parts of Speech
-Names
-Organizations
-Places
-Persons

Shallow Parser Named Entity
Annotator

Figure 3: Sample Aggregate Analysis Engine

Conceptual Overview 2-33

subsequent analysis. For example, the final named-entity annotator can only do its
analysis if the previous deep grammatical parse was recorded in the CAS.

Aggregate AEs are built to encapsulate potentially complex internal structure and
insulate it from users of the AE. In our example, the aggregate analysis engine
developer simply acquires the internal components, defines the necessary flow
between them and publishes the resulting AE. Consider the simple example
illustrated in Figure 3 where "MyNamed-EntityDetector" is composed of a linear
flow of more primitive analysis engines.

Users of this AE need not have to know how it is constructed internally but only its
name and its published input requirements and output types. These must be
declared in the aggregate AE descriptor. Aggregate AE’s descriptors declare the
components they contain and a flow specification. The flow specification defines the
order in which the internal component AEs should be run. The internal AEs
specified in an aggregate are also called the delegate analysis engines.

We refer to the development role associated with building an aggregate from
delegate AEs as the Analysis Engine Assembler.

The UIMA framework, given an aggregate analysis engine descriptor, will run all
delegate AEs, ensuring that each one gets access to the CAS in the sequence
produced by the flow specification. The UIMA framework is equipped to handle
different deployments where the delegate engines, for example, are tightly-coupled
(running in the same process) or loosely-coupled (running in separate processes or
even on different machines). The framework supports a number of remote
protocols for loose coupling deployments of aggregate analysis engines, including
SOAP (which stands for Simple Object Access Protocol, a standard Web Services
communications protocol).

The UIMA framework facilitates the deployment of AEs as remote services by using
an adapter layer that automatically creates the necessary infrastructure in response
to a declaration in the component’s descriptor. For more details on creating
aggregate analysis engines refer to Chapter 20 Component Descriptor Reference. The
component descriptor editor tool assists in the specification of aggregate AEs from a
repository of available engines. For more details on this tool refer to Chapter 9
Component Descriptor Editor User’s Guide.

The UIMA framework implementation currently supports a linear flow between
components with conditional branching based on the language of the document.
The workflow engine is a pluggable part of the framework, however, and can be
easily updated to support more complex flow specifications. Furthermore, the
application developer is free to create multiple AEs and provide their own logic to
combine the AEs in arbitrarily complex flows. For more details on this the reader
may refer to Chapter 6 Application Developer’s Guide.

Conceptual Overview 2-34

2.5 Application Building and Collection Processing

Key UIMA Concepts Introduced in this Section: Process Method, Collection
Processing Architecture, Collection Reader, CAS Consumer, CAS Initializer,
Collection Processing Engine, Collection Processing Manager.

2.5.1 Using the framework from an Application

As mentioned above, the basic AE interface may be thought of as simply CAS
in/CAS out.

The application is responsible for interacting with the UIMA framework to
instantiate an AE, create or acquire an input CAS, initialize the input CAS with a
document and then pass it to the AE through the process method. This interaction
with the framework is illustrated in Figure 4.

The UIMA AE Factory takes the declarative information from the Component
Descriptor and the class files implementing the annotator, and instantiates the AE
instance, setting up the CAS and the UIMA Context.

The AE, possibly calling many delegate AEs internally, performs the overall analysis
and its process method returns the CAS containing new analysis results.

APPLICATION

UIMA

A
E

F
A
C
T
O
R
Y

Component
Descriptor

Annotator Class
(e.g. Tokenizer)

Annotator Class
(e.g. Tokenizer)

CAS

Controller

Primitive Analysis Engine

process(CAS, Result Spec.)

process(CAS, Result Spec.)

reads/writes analysis data

getMetaData()

UIMA
Context

A
P
P
L
I
C
A
T
I
O
N

Developer

UIMA Framework

Legend

Figure 4: Using UIMA Framework to create and interact with an Analysis Engine

Conceptual Overview 2-35

The application then decides what to do with the returned CAS. There are many
possibilities. For instance the application could: display the results, store the CAS to
disk for post processing, extract and index analysis results as part of a search or
database application etc.

The UIMA framework provides methods to support the application developer in
creating and managing CASes and instantiating, running and managing AEs.
Details may be found in Chapter 6 Application Developer’s Guide.

2.5.2 Graduating to Collection Processing

Many UIM applications analyze entire collections of documents. They connect to
different document sources and do different things with the results. But in the
typical case, the application must generally follow these logical steps:

1. Connect to a physical source

2. Acquire a document from the source

3. Initialize a CAS with the document to be analyzed

4. Input the CAS to a selected analysis engine

5. Process the resulting CAS

6. Go back to 2 until the collection is processed

7. Do any final processing required after all the documents in the collection have
been analyzed

UIMA supports UIM application development for this general type of processing
through its Collection Processing Architecture.

Collection Processing Engine

CAS Consumer

Aggregate Analysis Engine

CAS Consumer

CAS Consumer

Ontologies

Indices

DBs

Knowledge
Bases

Collection
ReaderText, Chat,

Email, Audio,
Video

Text, Chat,
Email, Audio,

Video

Analysis Engine

Annotator

Analysis Engine

Annotator
CAS CASCAS

Figure 5: High-Level UIMA Component Architecture from Source to Sink

Conceptual Overview 2-36

As part of the collection processing architecture UIMA introduces two primary
components in addition to the annotator and analysis engine. These are the
Collection Reader and the CAS Consumer. The complete flow from source,
through document analysis, and to CAS Consumers supported by UIMA is
illustrated in Figure 5.

The Collection Reader’s job is to connect to and iterate through a source collection,
acquiring documents and initializing CASes for analysis.

Since the structure, access and iteration methods for physical document sources
vary independently from the format of stored documents, UIMA defines another
type of component called a CAS Intializer. The CAS Initializer’s job is specific to a
document format and specialized logic for mapping that format to a CAS. In the
simplest case a CAS Intializer may take the document provided by the containing
Collection Reader and insert it as a subject of analysis (or Sofa) in the CAS. A more
advanced scenario is one where the CAS Intializer may be implemented to handle
documents that conform to a certain XML schema and map some subset of the XML
tags to CAS types and then insert the de-tagged document content as the subject of
analysis. Collection Readers may reuse plug-in CAS Initializers for different
document formats.

CAS Consumers, as the name suggests, function at the end of the flow. Their job is
to do the final CAS processing. A CAS Consumer may be implemented, for
example, to index CAS contents in a search engine, extract elements of interest and
populate a relational database or serialize and store analysis results to disk for
subsequent and further analysis.

A Semantic Search engine is included in the UIMA SDK which will allow the
developer to experiment with indexing analysis results and querying for documents
based on all the annotations in the CAS. See the section on integrating text analysis
and search in Chapter 6 Application Developer’s Guide.

A UIMA Collection Processing Engine (CPE) is an aggregate component that
specifies a "source to sink" flow from a Collection Reader though a set of analysis
engines and then to a set of CAS Consumers.

CPEs are specified by XML files called CPE Descriptors. These are declarative
specifications that point to their contained components (Collection Readers, analysis
engines and CAS Consumers) and indicate a flow among them. The flow
specification allows for filtering capabilities to, for example, skip over AEs based on
CAS contents. Details about the format of CPE Descriptors may be found in Chapter
21 Collection Processing Engine Descriptor Reference.

Conceptual Overview 2-37

The UIMA framework includes a Collection Processing Manager (CPM). The CPM
is capable of reading a CPE descriptor, and deploying and running the specified
CPE. Figure 6 illustrates the role of the CPM in the UIMA Framework.

Key features of the CPM are failure recovery, CAS management and scale-out.

Collections may be large and take considerable time to analyze. A configurable
behavior of the CPM is to log faults on single document failures while continuing to
process the collection. This behavior is commonly used because analysis
components often tend to be the weakest link -- in practice they may choke on
strangely formatted content.

This deployment option requires that the CPM run in a separate process or a
machine distinct from the CPE components. A CPE may be configured to run with
a variety of deployment options that control the features provided by the CPM. For
details see Chapter 21 Collection Processing Engine Descriptor Reference.

The UIMA SDK also provides a tool called the CPE Configurator. This tool provides
the developer with a user interface that simplifies the process of connecting up all
the components in a CPE and running the result. For details on using the CPE
Configurator see Chapter 10 Collection Processing Engine Configurator User's
Guide. This tool currently does not provide access to the full set of CPE deployment
options supported by the CPM. Anything but the default would have to be

Collection Processing Engine

CPE
Components

UIMA

C
P
E

F
A
C
T
O
R
Y

Collection Processing Manager
• Distributed Workflow Management
• CAS Management, Batching
• Statistics Collection
• Error Handling
• Resource Pooling
• Failure Recovery

CPE
Descriptor

CPE
Descriptor

Collection
Reader

Analysis
EnginesAnalysis

Engines
Analysis
Engines

Analysis
EnginesAnalysis

Engines
CAS

Consumers
A
P
P
L
I
C
A
T
I
O
N

APPLICATION

Source
Structured

Results
Developer

UIMA Framework

Legend

Figure 6: Collection Processing Manager in UIMA Framework

Conceptual Overview 2-38

configured by editing the CPE descriptor directly. For details on how to create and
run CPEs refer to Chapter 5 Collection Processing Engine Developer's Guide.

2.6 Exploiting Analysis Results

Key UIMA Concepts Introduced in this Section: Semantic Search, XML Fragment
Queries.

2.6.1 Semantic Search

In a simple UIMA Collection Processing Engine (CPE), a Collection Reader reads
documents from the file system and initializes CASs with their content. These are
then fed to an AE that annotates tokens and sentences, the CASs, now enriched with
token and sentence information, are passed to a CAS Consumer that populates a
search engine index.

The search engine query processor can then use the token index to provide basic
key-word search. For example, given a query “center" the search engine would
return all the documents that contained the word “center".

Semantic Search is a search paradigm that can exploit the more powerful analytics
pluggable in a UIMA CPE.

Consider that we plugged a named-entity recognizer into the CPE described above.
Assume this analysis engine is capable of detecting in documents and annotating in
the CAS mentions of persons and organizations.

Complementing the name-entity recognizer we add a CAS Consumer that extracts
in addition to token and sentence annotations, the person and organizations added
to the CASs by the name-entity detector. It then feeds these into the semantic search
engine’s index.

The semantic search engine that comes with the UIMA SDK, for example, can
exploit this addition information from the CAS to support more powerful queries.
For example, imagine a user is looking for documents that mention an organization
with “center" it is name but is not sure of the full or precise name of the
organization. A key-word search on “center" would likely produce way too many
documents because “center" is a common and ambiguous term. The SDK’s semantic
search engine supports a query language called XML Fragments. This query
language is designed to exploit the CAS annotations entered in its index. The XML
Fragment query, for example,

<organization> center </organization>

Conceptual Overview 2-39

will produce first only documents that contain “center" where it appears as part of a
mention annotated as an organization by the name-entity recognizer. This will likely
be a much shorter list of documents more precisely matching the user’s interest.

Consider taking this one step further. We add a relationship recognizer that
annotates mentions of the CEO-of relationship. We configure the CAS Consumer so
that it sends these new relationship annotations to the semantic search index as well.
With these additional analysis results in the index we can submit queries like

<ceo_of>
 <person> center </person>
 <organization> center </organization>
<ceo_of>

This query will precisely target documents that contain a mention of an
organization with “center" as part of its name where that organization is mentioned
as part of a CEO-of relationship annotated by the relationship recognizer.

For more details about using UIMA and Semantic Search see the section on
integrating text analysis and search in Chapter 6 Application Developer’s Guide.

2.6.2 Databases

Search engine indices are not the only place to deposit analysis results for use by
applications. Another classic example is populating databases. While many
approaches are possible with varying degrees of flexibly and performance all are
highly dependent on application specifics. We included a simple sample CAS
Consumer that provides the basics for getting your analysis result into a relational
database. It extracts annotations from a CAS and writes them to a relational
database, using the open source Cloudscape / Apache Derby database.

2.7 Multimodal Processing in UIMA

In previous sections we've seen how the CAS is initialized with an initial artifact
that will be subsequently analyzed by Analysis engines and CAS Consumers. The
first Analysis engine may make some assertions about the artifact, for example, in
the form of annotations. Subsequent Analysis engines will make further assertions
about both the artifact and previous analysis results, and finally one or more CAS
Consumers will extract information from these CASs for structured information

Conceptual Overview 2-40

storage.

Consider a processing pipeline, illustrated in Figure 7, that starts with an audio
recording of a conversation, transcribes the audio into text, and then extracts
information from the text transcript. Analysis Engines at the start of the pipeline are
analyzing an audio subject of analysis, and later analysis engines are analyzing a
text subject of analysis. The CAS Consumer will likely want to build a search index
from concepts found in the text to the original audio segment covered by the
concept.

What becomes clear from this relatively simple scenario is that the CAS must be
capable of simultaneously holding multiple subjects of analysis. Some analysis
engine will analyze only one subject of analysis, some will analyze one and create
another, and some will need to access multiple subjects of analysis at the same time.

The support in UIMA for multiple subjects of analysis is called Sofa support; Sofa is
an acronym which is derived from Subject of Analysis. In UIMA a Sofa may be
associated with a specialization of the CAS called the TCAS. Multiple TCASes
represent different "views" into a common underlying CAS, one for each different
subject of analysis.

Analysis results can "belong" to a specific TCAS or they can be independent of any
specific TCAS. UIMA components may be Sofa-aware, able to create and access
multiple SOFA at the same time, or Sofa-unaware, simply receiving the TCAS view
of the CAS corresponding to a single Sofa. In this case the developer need not know
about Sofas at all.

Multiple Sofa capability brings benefits to text-only processing as well. An input
document can be transformed from one format to another. Examples of this include
transforming text from HTML to plain text or from one natural language to another.

Named-Entity
Detection

in text

Transcribe
Audio

into Text

Collection
Indexing
of audio
and text

Search
Index

Segment
Audio

Audio Sofa

lattice

Audio Sofa

Text Sofa

entities

Text Sofa

Audio Sofa

lattice

Figure 7: Multiple Sofas in support of multi-modal analysis of an audio Stream. Some
engines work on the audio “view", some on the text “view" and some on both.

Conceptual Overview 2-41

 Chapter 7 on page 7-158 provides more details on creating Sofa-aware components
and creating aggregates and collection processing engines which include
specifications on connecting Sofas from one component to Sofas in another.

2.8 Next Step

This chapter presented a high-level overview of UIMA concepts. Along the way, it
pointed to other documents in the UIMA SDK documentation set where the reader
can find details on how to apply the related concepts in building applications with
the UIMA SDK.

At this point the reader may return to the documentation guide in Chapter 1 on
page 1-15 to learn how they might proceed in getting started using UIMA.

For a more detailed overview of the UIMA architecture, framework and
development roles we refer the reader to the following paper:

D. Ferrucci and A. Lally, "Building an example application using the Unstructured
Information Management Architecture," IBM Systems Journal 43, No. 3, 455-475
(2004).

This paper can be found on line at http://www.research.ibm.com/journal/sj43-3.html

http://www.research.ibm.com/journal/sj43-3.html

SDK Installation and Setup 3-43

Chapter 3 UIMA SDK Setup for Eclipse

This chapter describes how to set up the UIMA SDK to work with Eclipse. Eclipse
(http://www.eclipse.org) is a popular open-source Integrated Development
Environment for many things, including Java. The UIMA SDK does not require that
you use Eclipse. However, we recommend that you do use Eclipse because some
useful UIMA SDK tools run as plug-ins to the Eclipse platform and because the
UIMA SDK examples are provided in a form that's easy to import into your Eclipse
environment.

If you are not planning on using the UIMA SDK with Eclipse, you may skip this
chapter and read Chapter 4 Annotator and Analysis Engine Developer’s Guide next.

This chapter provides instructions for

• installing Eclipse,
• installing the UIMA SDK's Eclipse plugins into your Eclipse environment, and
• importing the example UIMA code into an Eclipse project.

The UIMA Eclipse plugins are designed to be used with Eclipse version 3.

3.1 Installation

3.1.1 Install Eclipse
• Go to http://download.eclipse.org/downloads
• We recommend using the latest release level (not an "Integration level').

Navigate to the Eclipse Release version you want and download the archive for
your platform.

• Unzip the archive to install Eclipse somewhere, e.g., c:\
• Eclipse has a bit of a learning curve. If you plan to make significant use of

Eclipse, check out the tutorial under the help menu. It is well worth the effort.

3.1.2 Install EMF

EMF stands for Eclipse Modeling Framework. It is an add-on to Eclipse, and is used
by the UIMA Eclipse tooling. Use the built-in facilities in Eclipse to find and install
new features.

Activate the software feature finding by using the menu: help >> Software Updates
>> Find and Install. Select "Search for new features to install", push "Next". Specify
the update site where EMF is found as a site to search, making sure the "Ignore
features not applicable to this environment" box is checked, and push "Finish". You

http://www.eclipse.org/
http://download.eclipse.org/downloads

SDK Installation and Setup 3-44

can find out where this site is by going to http://www.eclipse.org and browsing for
EMF. In early 2006, the EMF update site was
http://download.eclipse.org/tools/emf/updates. If your computer is on an internet
connection which uses a proxy server, you can configure Eclipse to know about that.
Put your proxy settings into Ecluse using the Eclipse preferences by accessing the
menus: Window => Preferences... => Install/Update, and Enable HTTP proxy
connection under the Proxy Settings with the information about your proxy.

This will launch a search for updates to Eclipse; it may show a list of update site
mirrors – click OK. When it finishes, it shows a list of possible updates in an
expandable tree. Expand the tree nodes to find EMF SDK. The specific level may
vary from the level shown below as newer versions are released.

http://www.eclipse.org/
http://download.eclipse.org/tools/emf/updates

SDK Installation and Setup 3-45

Click "Next". Then pick Eclipse Modeling Framework (EMF), and push "Next",
accept any licensing agreements, etc., until it finishes the installation. It may say it's
an "unsigned feature"; proceed by clicking "Install". If it recommends restarting,
you may do that.

This will install EMF, without any extras. (If you want the whole EMF system,
including source and documentation, you can pick the "EMF SDK" and the
"Examples for Eclipse Modeling Framework".)

3.1.3 Install the UIMA SDK

If you haven't already done so, please download and install the UIMA SDK from
http://www.alphaworks.ibm.com/tech/uima.

3.1.4 Install the UIMA Eclipse Plugins

In the directory %UIMA_HOME%/eclipsePlugin, you will find a zip file. (The
environment variable %UIMA_HOME% is where you installed the UIMA SDK.)
Unzip it into your %ECLIPSE_HOME%/eclipse/plugins directory.
%ECLIPSE_HOME% is where you installed Eclipse.

3.1.5 Start Eclipse

If you have Eclipse running, restart it (shut it down, and start it again) using the
clean option. Start Eclipse by running the command eclipse -clean (see
explanation in the next section) in the directory where you installed Eclipse. You
may want to set up a desktop shortcut at this point for Eclipse. Eclipse has a bit of a
learning curve. If you plan to make significant use of Eclipse, check out the tutorial
under the help menu. It is well worth the effort. There are also books you can get
that describe Eclipse and its use.

The first time Eclipse starts up it will take a bit longer as it completes its installation.
A "welcome" page will come up. After you are through reading the welcome
information, click on the arrow in the upper right of the main panel to exit the
welcome page and get to the main Eclipse screens.

Special startup parameter for Eclipse 3: -clean

If you have modified the plugin structure (by copying or unzipping files directly in
the file system) in Eclipse 3.x after you started it for the first time, please include the
"-clean" parameter in the startup arguments to Eclipse, one time (after any plugin
modifications were done). This is needed because Eclipse 3.x may not notice the
changes you made, otherwise. This parameter forces Eclipse to reexamine all of its
plugins at startup and recompute any cached information about them.

http://www.alphaworks.ibm.com/tech/uima

SDK Installation and Setup 3-46

3.2 Setting up Eclipse to view Example Code

Later chapters refer to example code. You can create a special project in Eclipse to
hold the examples. Here's how:

• In Eclipse, if the Java perspective is not already open, switch to it by going to
Window Open Perspective Java.

• Set up a class path variable named UIMA_HOME, whose value is the directory
where you installed the UIMA SDK., This is done as follows:

• Go to Window Preferences Java Build Path Classpath Variables.

• Click "New"

• Enter UIMA_HOME (all capitals, exactly as written) in the "Name" field.

• Enter your installation directory (e.g. c:/Program Files/IBM/uima) in the
"Path" field

• Click "OK" in the "New Variable Entry" dialog

• Click "OK" in the "Preferences" dialog

• If it asks you if you want to do a full build, click "Yes"
• Select the File -> Import menu option
• Select "Existing Project into Workspace" and click the "Next" button.
• Click "Browse" and browse to the %UIMA_HOME%\docs\examples directory
• Click "Finish." This will create a new project called "uima_examples" in your

Eclipse workspace. There should be no compilation errors.

To verify that you have set up the project correctly, check that there are no error
messages in the "Tasks" or "Problems" view.

3.3 Running external tools from Eclipse

You can run outside of Eclipse using the shell scripts in the UIMA SDK's bin
directory. In addition, many tools can be run from inside Eclipse; examples are the
Document Analyzer, CPE Configurator, CAS Visual Debugger, Semantic Search,
and JCasGen. The uima_examples project provides Eclipse launch configurations
that make this easy to do.

To run these tools from Eclipse:

• If the Java perspective is not already open, switch to it by going to Window
Open Perspective Java.

• Go to Run Run...

SDK Installation and Setup 3-47

• In the window that appears, select "UIMA CPE GUI", "UIMA CAS Visual
Debugger", "UIMA JCasGen", "UIMA Document Analyzer", or "UIMA Semantic
Search" from the list of run configurations on the left. (If you don't see, these,
please select the uima_examples project and do a Menu -> File -> Refresh).

• Press the "Run" button. The tools should start. Close the tools by clicking the
"X" in the upper right corner on the GUI.

For instructions on using the Document Analyzer and CPE Configurator, see
 Chapter 14 Document Analyzer User's Guide, and Chapter 10 . For instructions on
using the CAS Visual Debugger and JCasGen, see Chapter 15 CAS Visual Debugger,
and Chapter 16 JCasGen User Guide.

Part II 49

Part II: Developer's Guides

Annotator and Analysis Engine Developer's Guide 4-51

Chapter 4 Annotator and Analysis Engine Developer’s
Guide

This chapter describes how to develop UIMA type systems, Annotators and Analysis
Engines using the UIMA SDK. It is helpful to read the UIMA Conceptual Overview
chapter for a review on these concepts.

An Analysis Engine (AE) is a program that analyzes artifacts (e.g. documents) and
infers information from them. A TAE is a specialization of an Analysis Engine that
analyzes a particular artifact, which is often, for example, a text document (but
could be, in general, audio streams, etc.).

In the UIMA SDK, Analysis Engines are constructed from building blocks called
Annotators. An annotator is a component that contains analysis logic. Annotators
analyze an artifact (for example, a text document) and create additional data
(metadata) about that artifact. It is a goal of UIMA that annotators need not be
concerned with anything other than their analysis logic – for example the details of
their deployment or their interaction with other annotators.

An Analysis Engine (AE) may contain a single annotator (this is referred to as a
Primitive AE), or it may be a composition of others and therefore contain multiple
annotators (this is referred to as an Aggregate AE). Primitive and aggregate AEs
implement the same interface and can be used interchangeably by applications.

Annotators produce their analysis results in the form of typed Feature Structures,
which are simply data structures that have a type and a set of (attribute, value)
pairs. An annotation is a particular type of Feature Structure that is attached to a
region of the artifact being analyzed (a span of text in a document, for example).

For example, an annotator may produce an Annotation over the span of text
President Bush, where the type of the Annotation is Person and the attribute
fullName has the value George W. Bush, and its position in the artifact is character
position 12 through character position 26.

It is also possible for annotators to record information associated with the entire
document rather than a particular span (these are considered Feature Structures but
not Annotations).

All feature structures, including annotations, are represented in the UIMA Common
Analysis Structure (CAS). The CAS is the central data structure through which all
UIMA components communicate. Included with the UIMA SDK is an easy-to-use,
native Java interface to the CAS called the JCas. The JCas represents each feature
structure as a Java object; the example feature structure from the previous

Annotator and Analysis Engine Developer's Guide 4-52

paragraph would be an instance of a Java class Person with getFullName() and
setFullName() methods. Though the examples in this guide all use the JCas, it is
also possible to directly access the underlying CAS system; for more information see
 Chapter 23 CAS Reference.

The remainder of this chapter will refer to the analysis of text documents and the
creation of annotations that are attached to spans of text in those documents. Keep
in mind that the CAS can represent arbitrary types of feature structures, and feature
structures can refer to other feature structures. For example, you can use the CAS to
represent a parse tree for a document. Also, the artifact that you are analyzing need
not be a text document.

This guide is organized as follows:

Getting Started is a tutorial with step-by-step instructions for how to develop and
test a simple UIMA annotator.

Configuration and Logging discusses how to make your UIMA annotator
configurable, and how it can write messages to the UIMA log file.

Building Aggregate Analysis Engines describes how annotators can be combined
into aggregate analysis engines. It also describes how one annotator can make use
of the analysis results produced by an annotator that has run previously.

Other examples

The UIMA SDK include several other examples you may find interesting, including

• SimpleTokenAndSentenceAnnotator – a simple tokenizer and sentence
annotator.

• PersonTitleDBWriterCasConsumer – a sample CAS Consumer which populates
a relational database with some annotations. It uses JDBC and in this example,
hooks up with the Open Source Apache Derby database.

Additional Topics describes additional features of the UIMA SDK that may help you
in building your own annotators and analysis engines.

Common Pitfalls contains some useful guidelines to help you ensure that your
annotators will work correctly in any UIMA application.

This guide does not discuss how to build UIMA Applications, which are programs
that use Analysis Engines, along with other components, e.g. a search engine,
document store, and user interface, to deliver a complete package of functionality to
an end-user. For information on application development, see Chapter 6 Application
Developer’s Guide.

Annotator and Analysis Engine Developer's Guide 4-53

4.1 Getting Started

This section is a step-by-step tutorial that will get you started developing UIMA
annotators. All of the files referred to by the examples in this chapter are in the
docs/examples directory of the UIMA SDK. This directory is designed to be
imported into your Eclipse workspace; see section 3.2 Setting up Eclipse to view
Example Code for instructions on how to do this. Also you may wish to refer to the
UIMA SDK JavaDocs located in the docs/api directory.

Note: In Eclipse 3.1, if you highlight a UIMA class or method defined in the
UIMA SDK JavaDocs, you can conveniently have Eclipse open the
corresponding JavaDoc for that class or method in a browser, by pressing Shift +
F2.

The example annotator that we are going to walk through will detect room numbers
for rooms at the IBM T.J. Watson Research Center (where the UIMA SDK
originated). There are two Watson buildings: Yorktown and Hawthorne, and each
has its own pattern for room numbers. Here are some examples, together with their
corresponding regular expression patterns:

Yorktown: 20-001, 31-206, 04-123 (Pattern: ##-[0-2]##)

Hawthorne: GN-K35, 1S-L07, 4N-B21 (Pattern: [G1-4][NS]-[A-Z]##)

There are several steps to develop and test a simple UIMA annotator.

1. Define the CAS types that the annotator will use.
2. Generate the Java classes for these types.
3. Write the actual annotator Java code.
4. Create the Analysis Engine descriptor.
5. Test the annotator.

These steps are discussed in the next sections.

4.1.1 Defining Types

The first step in developing an annotator is to define the CAS Feature Structure
types that it creates. This is done in an XML file called a Type System Descriptor.
UIMA defines some basic built-in CAS types such as TOP, Integer, Float, String,
IntegerArray, FloatArray, StringArray, FSArray, and Annotation. TOP is the root of
the type system, analogous to Object in Java. FSArray is an array of Feature
Structures (i.e. an array of instances of TOP).

UIMA includes an Eclipse plug-in that will help you edit Type System Descriptors,
so if you are using Eclipse you will not need to worry about the details of the XML

Annotator and Analysis Engine Developer's Guide 4-54

syntax. See Chapter 3 UIMA SDK Setup for Eclipse for instructions on setting up
Eclipse and installing the plugin.

The Type System Descriptor for our annotator is located in the file
descriptors/tutorial/ex1/TutorialTypeSystem.xml. (This and all other examples are
located in the docs/examples directory of the UIMA SDK, which can be imported
into an Eclipse project for your convenience, as described in 3.2 Setting up Eclipse to
view Example Code.)

In Eclipse, expand the uima_examples project in the Package Explorer view, and
browse to the file descriptors/tutorial/ex1/TutorialTypeSystem.xml. Right-click on
the file in the navigator and select Open With -> Component Descriptor Editor.
Once the editor opens, click on the "Type System" tab at the bottom of the editor
window. You should see a view such as the following:

Our annotator will need only one type – com.ibm.uima.tutorial.RoomNumber. (We use
the same namespace conventions as are used for Java classes.) Just as in Java, types
have supertypes. The supertype is listed in the second column of the left table. In
this case our RoomNumber annotation extends from the built-in type
uima.tcas.Annotation.

Descriptions can be included with types and features. In this example, there is a
description associated with the building feature. To see it, hover the mouse over the
feature.

Annotator and Analysis Engine Developer's Guide 4-55

The bottom tab labeled "Source" will show you the XML source file associated with
this descriptor.

The built-in Annotation type declares two fields (called Features in CAS
terminology) – begin and end. These features store the character offsets of the span
of text to which the annotation refers. Our RoomNumber type will inherit these
features from com.tcas.Annotation, its supertype; they are not visible in this view
because inherited features are not shown. One additional feature, building, is
declared. It takes a String as its value. Instead of String, we could have declared the
range-type of our feature to be any other CAS type (defined or built-in).

If you are not using Eclipse, if you need to edit the type system, do so using any
XML or text editor, directly. The following is the actual XML representation of the
Type System displayed above in the editor:

<?xml version="1.0" encoding="UTF-8" ?>
<typeSystemDescription
xmlns="http://uima.watson.ibm.com/resourceSpecifier">
 <name>TutorialTypeSystem</name>
 <description>Type System Definition for the tutorial examples - as of
Exercise 1</description>
 <vendor>IBM</vendor>
 <version>1.0</version>
 <types>
 <typeDescription>
 <name>com.ibm.uima.tutorial.RoomNumber</name>
 <description></description>
 <supertypeName>uima.tcas.Annotation</supertypeName>
 <features>
 <featureDescription>
 <name>building</name>
 <description>Building containing this room</description>
 <rangeTypeName>uima.cas.String</rangeTypeName>
 </featureDescription>
 </features>
 </typeDescription>
</types>
</typeSystemDescription>

4.1.2 Generating Java Source Files for CAS Types

When you save a descriptor that you have modified, the Component Descriptor
Editor will automatically generate Java classes corresponding to the types that are
defined in that descriptor (unless this has been disabled), using a utility called
JCasGen. These Java classes will have the same name (including package) as the
CAS types, and will have get and set methods for each of the features that you have
defined.

Annotator and Analysis Engine Developer's Guide 4-56

This feature is enabled/disabled using the UIMA menu pulldown (or the Eclipse
Preferences – UIMA). If automatic running of JCasGen is not happening, please
make sure the option is checked:

The Java class for the example com.ibm.uima.tutorial.RoomNumber type can be
found in src/com/ibm/uima/tutorial/RoomNumber.java. You will see how to use these
generated classes in the next section.

If you are not using the Component Descriptor Editor, you will need to generate
these Java classes by using the JCasGen tool. JCasGen reads a Type System
Descriptor XML file and generates the corresponding Java classes that you can then
use in your annotator code. To launch JCasGen, simply execute the jcasgen shell
script located in the bin directory of the UIMA SDK. This should launch a GUI that
looks something like this:

Use the "Browse" buttons to select your input file (TutorialTypeSystem.xml) and
output directory (the root of the source tree into which you want the generated files
placed). Then click the "Go" button. Assuming no errors in the Type System
Descriptor, new Java source files should be generated under the specified output
directory.

There are some additional options to choose from when running JCasGen; please
refer to the Chapter 16 JCasGen User Guide, for details.

Annotator and Analysis Engine Developer's Guide 4-57

4.1.3 Developing Your Annotator Code

Annotator implementations all implement a standard interface, having several
methods, the most important of which are:

• initialize,
• process, and
• destroy.

initialize is called by the framework once when it first creates the annotator.
process is called once per item being processed. destroy may be called by the
application when it is done. There is a default implementation of this interface for
annotators using the JCas, called JTextAnnotator_ImplBase, which has
implementations of all required methods except for the process method.

Our annotator class extends the JTextAnnotator_ImplBase; most annotators that use
the JCas will extend from this class, so they only have to implement the process
method. Even though this class name has the word "Text" in it, it is not restricted to
handling just text; see Chapter 7 Developing Applications using Multiple Subjects
of Analysis on page 7-158.

Annotators are not required to extend from the JTextAnnotator_ImplBase class; they
may instead directly implement the JTextAnnotator interface, and provide all
method implementations themselves. This allows you to have your annotator
inherit from some other superclass if necessary. If you would like to do this, see the
JavaDocs for JTextAnnotator for descriptions of the methods you must implement.

Annotator classes need to be public and have public, 0-argument constructors, so
that they can be instantiated by the framework2.

The class definition for our RoomNumberAnnotator implements the process
method, and is shown here. You can find the source for this in the
uima_examples/src/com/ibm/uima/tutorial/ex1/RoomNumberAnnotator.java. Note: In
Eclipse, in the "Package Explorer" view, this will appear by default in the project
uima_examples, in the folder src, in the package com.ibm.uima.tutorial.ex1. In
Eclipse, open the RoomNumberAnnotator.java in the uima_examples project, under
the src directory.

package com.ibm.uima.tutorial.ex1;

import java.util.regex.Matcher;

2 Although Java classes in which you do not define any constructor will, by default, have a 0-
argument constructor that doesn't do anything, a class in which you have defined at least one
constructor does not get a default 0-argument constructor.

Annotator and Analysis Engine Developer's Guide 4-58

import java.util.regex.Pattern;

import com.ibm.uima.analysis_engine.ResultSpecification;
import
com.ibm.uima.analysis_engine.annotator.AnnotatorConfigurationException;
import com.ibm.uima.analysis_engine.annotator.AnnotatorContext;
import
com.ibm.uima.analysis_engine.annotator.AnnotatorInitializationException;
import com.ibm.uima.analysis_engine.annotator.AnnotatorProcessException;
import com.ibm.uima.analysis_engine.annotator.JTextAnnotator_ImplBase;
import com.ibm.uima.jcas.impl.JCas;
import com.ibm.uima.tutorial.RoomNumber;

/**
 * Example annotator that detects room numbers using Java 1.4 regular
 * expressions.
 */
public class RoomNumberAnnotator extends JTextAnnotator_ImplBase
{
 private Pattern mYorktownPattern =
 Pattern.compile("\\b[0-4]\\d-[0-2]\\d\\d\\b");
 private Pattern mHawthornePattern =
 Pattern.compile("\\b[G1-4][NS]-[A-Z]\\d\\d\\b");;

 /**
 * @see JTextAnnotator#process(JCas,ResultSpecification)
 */
 public void process(JCas aJCas, ResultSpecification aResultSpec)
 throws AnnotatorProcessException
 {
 // Discussed Later
 }
}

The two Java class fields, mYorktownPattern and mHawthornePattern, hold regular
expressions that will be used in the process method. Note that these two fields are
part of the Java implementation of the annotator code, and not a part of the CAS
type system. We are using the regular expression facility that is built into Java 1.4. It
is not critical that you know the details of how this works, but if you are curious the
details can be found in the Java API docs for the java.util.regex package.

The only method that we are required to implement is process. This method is
typically called once for each document that is being analyzed. This method takes
two arguments. The JCas holds the document to be analyzed and all of the analysis
results. We'll ignore the ResultSpecification for now; its use is not required.

 /**
 * @see JTextAnnotator#process(JCas,ResultSpecification)
 */
 public void process(JCas aJCas, ResultSpecification aResultSpec)
 throws AnnotatorProcessException
 {
 //get document text

Annotator and Analysis Engine Developer's Guide 4-59

 String docText = aJCas.getDocumentText();
 //search for Yorktown room numbers
 Matcher matcher = mYorktownPattern.matcher(docText);
 int pos = 0;
 while (matcher.find(pos))
 {
 //found one - creation annotation
 RoomNumber annotation = new RoomNumber(aJCas);
 annotation.setBegin(matcher.start());
 annotation.setEnd(matcher.end());
 annotation.setBuilding("Yorktown");
 annotation.addToIndexes();
 pos = matcher.end();
 }
 //search for Hawthorne room numbers
 matcher = mHawthornePattern.matcher(docText);
 pos = 0;
 while (matcher.find(pos))
 {
 //found one - creation annotation
 RoomNumber annotation = new RoomNumber(aJCas);
 annotation.setBegin(matcher.start());
 annotation.setEnd(matcher.end());
 annotation.setBuilding("Hawthorne");
 annotation.addToIndexes();
 pos = matcher.end();
 }
 }

The Matcher class is part of the java.util.regex package and is used to find the room
numbers in the document text. When we find one, recording the annotation is as
simple as creating a new Java object and calling some set methods:

 RoomNumber annotation = new RoomNumber(aJCas);
 annotation.setBegin(matcher.start());
 annotation.setEnd(matcher.end());
 annotation.setBuilding("Yorktown");

This RoomNumber class was generated from the type system description by the
Component Descriptor Editor or the JCasGen tool, as discussed in the previous
section.

Finally, we call annotation.addToIndexes() to add the new annotation to the indexes
maintained in the CAS. By default, the CAS implementation used for analysis of
text documents keeps an index of all annotations in their order from beginning to
end of the document. Subsequent annotators or applications use the indexes to
iterate over the annotations. It is also possible to define your own custom indexes in
the CAS (see Chapter 23 CAS Reference for details).

Note: If you don't add the instance to the indexes, it cannot be retrieved by
down-stream annotators, using the indexes.

Annotator and Analysis Engine Developer's Guide 4-60

We're almost ready to test the RoomNumberAnnotator. There is just one more step
remaining.

4.1.4 Creating the XML Descriptor

The UIMA architecture requires that descriptive information about an annotator be
represented in an XML file and provided along with the annotator class file(s) to the
UIMA framework at run time. This XML file is called an Analysis Engine Descriptor.
The descriptor includes:

• Name, description, version, and vendor

• The annotator’s inputs and outputs, defined in terms of the types in a Type
System Descriptor

• Declaration of the configuration parameters that the annotator accepts

The Component Descriptor Editor plugin, which we previously used to edit the Type
System descriptor, can also be used to edit Analysis Engine Descriptors.

A descriptor for our RoomNumberAnnotator is provided with the UIMA
distribution under the name descriptors/tutorial/ex1/RoomNumberAnnotator.xml.
To edit it in Eclipse, right-click on that file in the navigator and select Open With
Component Descriptor Editor.

Eclipse tip: You can double click on the tab at the top of the Component
Descriptor Editor's window identifying the currently selected editor, and the
window will "Maximize". Double click it again to restore the original size.

If you are not using Eclipse, you will need to edit Analysis Engine descriptors
manually. See Introduction to Analysis Engine Descriptor XML Syntax on page 4-
95 for an introduction to the Analysis Engine descriptor XML syntax. The
remainder of this section assumes you are using the Component Descriptor Editor
plug-in to edit the Analysis Engine descriptor.

The Component Descriptor Editor consists of several tabbed pages; we will only
need to use a few of them here. For more information on using this editor, see
 Chapter 9 Component Descriptor Editor User’s Guide.

The initial page of the Component Descriptor Editor is the Overview page, which
appears as follows

Annotator and Analysis Engine Developer's Guide 4-61

This presents an overview of the RoomNumberAnnotator Analysis Engine (AE).
The left side of the page shows that this descriptor is for a Primitive AE (meaning it
consists of a single annotator), and that the annotator code is developed in Java.
Also, it specifies the Java class that implements our logic (the code which was
discussed in the previous section). Finally, on the right side of the page are listed
some descriptive attributes of our annotator.

The other two pages that need to be filled out are the Type System page and the
Capabilities page. You can switch to these pages using the tabs at the bottom of the
Component Descriptor Editor. In the tutorial, these are already filled out for you.

The RoomNumberAnnotator will be using the TutorialTypeSystem we looked at in
Section 4.1.1 Defining Types. To specify this, we add this type system to the
Analysis Engine's list of Imported Type Systems, using the Type System page's right
side panel, as shown here:

Annotator and Analysis Engine Developer's Guide 4-62

On the Capabilities page, we define our annotator's inputs and outputs, in terms of
the types in the type system. The Capabilities page is shown below:

Capabilities come in sets; here we're just using one set. The
RoomNumberAnnotator is very simple. It requires no input types, as it operates
directly on the document text -- which is supplied as a part of the CAS initialization
(and which is always assumed to be present). It produces only one output type

Annotator and Analysis Engine Developer's Guide 4-63

(RoomNumber), and it sets the value of the building feature on that type. This is all
represented on the Capabilities page.

The Capabilities page has two other parts for specifying languages and Sofas. The
languages section allows you to specify which languages your Analysis Engine
supports. The RoomNumberAnnotator happens to be language-independent, so we
can leave this blank. The Sofas section allows you to specify the names of additional
subjects of analysis. This capability and the Sofa Mappings at the bottom are
advanced topics, described in Chapter 7 Developing Applications using Multiple
Subjects of Analysis on page 7-158

This is all of the information we need to provide for a simple annotator. If you want
to peek at the XML that this tool saves you from having to write, click on the
"Source" tab at the bottom to view the generated XML.

4.1.5 Testing Your Annotator

Having developed an annotator, we need a way to try it out on some example
documents. The UIMA SDK includes a tool called the Document Analyzer that will
allow us to do this. To run the Document Analyzer, execute the documentAnalyzer
shell script that is in the bin directory of your UIMA SDK installation, or, if you are
using the example Eclipse project, execute the "UIMA Document Analyzer" run
configuration supplied with that project. (To do this, click on the menu bar Run >
Run ... > and under Java Applications in the left box, click on UIMA Document
Analyzer.)

You should see a screen that looks like this:

Annotator and Analysis Engine Developer's Guide 4-64

There are six options on this screen:

1. Directory containing documents to analyze

2. Directory where analysis results will be written

3. The XML descriptor for the Analysis Engine (TAE) you want to run

4. (Optional) an XML tag, within the input documents, that contains the text to be
analyzed. For example, the value TEXT would cause the TAE to only analyze
the portion of the document enclosed within <TEXT>...</TEXT> tags.

5. Language of the document

6. Character encoding

Use the Browse button next to the 3rd item to set the "Location of TAE XML
Descriptor" field to the descriptor we've just been discussing –
uima/docs/examples/descriptors/tutorial/ex1/RoomNumberAnnotator.xml. Set the
other fields to the values shown in the screen shot above (which should be the
default values if this is the first time you've run the Document Analyzer). Then click
the "Run" button to start processing.

When processing completes, an "Analysis Results" window should appear.

Make sure "Java Viewer" is selected as the Results Display Format, and double-click
on the document UIMASummerSchool2003.txt to view the annotations that were
discovered. The view should look something like this:

Annotator and Analysis Engine Developer's Guide 4-65

You can click the mouse on one of the highlighted annotations to see a list of all its
features in the frame on the right.

Note: The legend will only show those types which have at least one instance in
the CAS, and are declared as outputs in the capabilities section of the descriptor
(see Creating the XML Descriptor on page 4-60).

You can use the DocumentAnalyzer to test any UIMA annotator – just make sure
that the annotator's classes are in the class path.

4.2 Configuration and Logging

4.2.1 Configuration Parameters

The example RoomNumberAnnotator from the previous section used hardcoded
regular expressions and location names, which is obviously not very flexible. For
example, there is actually a third Watson building – Hawthorne II – whose room
numbers are not detected by our annotator. Rather than add a new hardcoded
regular expression, a better solution is to use configuration parameters.

UIMA allows annotators to declare configuration parameters in their descriptors.
The descriptor also specifies default values for the parameters, though these can be
overridden at runtime.

Annotator and Analysis Engine Developer's Guide 4-66

Declaring Parameters in the Descriptor

The example descriptor descriptors/tutorial/ex2/RoomNumberAnnotator.xml is the
same as the descriptor from the previous section except that information has been
filled in for the Parameters and Parameter Settings pages of the Component
Descriptor Editor.

First, in Eclipse, open example 2's RoomNumberAnnotator in the Component
Descriptor Editor, and then go to the Parameters page (click on the parameters tab at
the bottom of the window), which is shown below:

Two parameters – Patterns and Locations -- have been declared. In this screen shot,
the mouse (not shown) is hovering over Patterns to show its description in the small
popup window. Every parameter has the following information associated with it:

• name – the name by which the annotator code refers to the parameter

• description – a natural language description of the intent of the parameter

• type – the data type of the parameter's value – must be one of String, Integer,
Float, or Boolean.

• multiValued – true if the parameter can take multiple-values (an array), false if
the parameter takes only a single value. Shown above as Multi.

• mandatory – true if a value must be provided for the parameter. Shown above
as Req (for required).

Annotator and Analysis Engine Developer's Guide 4-67

Both of our parameters are mandatory and accept an array of Strings as their value.

Next, default values are assigned to the parameters on the Parameter Settings page:

Here the "Patterns" parameter is selected, and the right pane shows the list of values
for this parameter, in this case the regular expressions that match rooms in each of
the IBM T.J. Watson Research Center buildings. Notice the third pattern is new, for
matching the style of room numbers in the third building, which has room numbers
such as J2-A11.

Accessing Parameter Values from the Annotator Code

The class com.ibm.uima.tutorial.ex2.RoomNumberAnnotator has overridden the
initialize method. The initialize method is called by the UIMA framework when the
annotator is instantiated, so it is a good place to read configuration parameter
values. The default initialize method does nothing with configuration parameters,
so you have to override it. To see the code in Eclipse, switch to the src folder, and
open com.ibm.uima.tutorial.ex2. Here is the method body:

 /**
 * @see BaseAnnotator#initialize(AnnotatorContext)
 */
 public void initialize(AnnotatorContext aContext)
 throws AnnotatorInitializationException,
AnnotatorConfigurationException
 {
 // invoke the standard initialization

Annotator and Analysis Engine Developer's Guide 4-68

 // This saves the value of aContext in a field and makes
 // it available via the getContext() method of the superclass
 super.initialize(aContext);
 try
 {
 //Get config. parameter values
 String[] patternStrings =
 (String[])aContext.getConfigParameterValue("Patterns");
 mLocations =
 (String[])aContext.getConfigParameterValue("Locations");

 //compile regular expressions

 mPatterns = new Pattern[patternStrings.length];
 for (int i = 0; i < patternStrings.length; i++)
 {
 mPatterns[i] = Pattern.compile(patternStrings[i]);
 }
 }

 catch(AnnotatorContextException e)
 {
 throw new AnnotatorInitializationException(e);
 }
 }

The first two lines inside the try block are where the configuration parameter values
are retrieved. Configuration parameter values are accessed through the
AnnotatorContext. As you will see in subsequent sections of this chapter, the
AnnotatorContext is the annotator's access point for all of the facilities provided by
the UIMA framework – for example logging and external resource access.

The AnnotatorContext.getConfigParameterValue method takes the name of the
parameter as an argument; this must match one of the parameters declared in the
descriptor. The return value of this method is Object, so it is up to the annotator to
cast it to the appropriate type, String[] in this case.

If there is a problem retrieving the parameter values, the AnnotatorContext could
throw an AnnotatorContextException. Generally annotators would just catch this
exception and rethrow it as an AnnotatorInitializationException, which is what our
example annotator does.

To see the configuration parameters working, run the Document Analyzer
application and select the descriptor docs/examples/descriptors/tutorial/
ex2/RoomNumberAnnotator.xml. In the example document WatsonConferenceRooms.txt,
you should see some examples of Hawthorne II room numbers that would not have
been detected by the ex1 version of RoomNumberAnnotator.

Annotator and Analysis Engine Developer's Guide 4-69

Supporting Reconfiguration

If you take a look at the JavaDocs (located in the docs/api directory) for
com.ibm.uima.analysis_engine.Annotator.BaseAnnotator (which our annotator
implements indirectly through JTextAnnotator_ImplBase), you will see that there is
a reconfigure() method, which is called by the containing application through the
UIMA framework, if the configuration parameter values are changed.

The JTextAnnotator_ImplBase class provides a default implementation that just calls
the annotator's destroy method followed by its initialize method. This works fine
for our annotator. The only situation in which you might want to override the
default reconfigure() is if your annotator has very expensive initialization logic, and
you don't want to reinitialize everything if just one configuration parameter has
changed. In that case, you can provide a more intelligent implementation of
reconfigure() for your annotator.

Configuration Parameter Groups

For annotators with many sets of configuration parameters, UIMA supports
organizing them into groups. It is possible to define a parameter with the same
name in multiple groups; one common use for this is for annotators that can process
documents in several languages and which want to have different parameter
settings for the different languages.

The syntax for defining parameter groups in your descriptor is fairly
straightforward – see Chapter 20 for details. Values of parameters defined within
groups are accessed through the two-argument version of
AnnotatorContext.getConfigParameterValue, which takes both the group name and
the parameter name as its arguments.

4.2.2 Logging

The UIMA SDK provides a logging facility, which is very similar to the
java.util.logging.Logger class that was introduced in Java 1.4.

In the Java architecture, each logger instance is associated with a name. By
convention, this name is often the fully qualified class name of the component
issuing the logging call. The name can be referenced in a configuration file when
specifying which kinds of log messages to actually log, and where they should go.

The UIMA framework supports this convention using the AnnotatorContext object.
If you access a logger instance using getContext().getLogger() within an Annotator,
the logger name will be the fully qualified name of the Annotator implementation
class.

Annotator and Analysis Engine Developer's Guide 4-70

Here is an example from the process method of
com.ibm.uima.tutorial.ex2.RoomNumberAnnotator:

 getContext().getLogger().log(Level.FINEST,"Found: " + annotation);

The first argument to the log method is the level of the log output. Here, a value of
FINEST indicates that this is a highly-detailed tracing message. While useful for
debugging, it is likely that real applications will not output log messages at this
level, in order to improve their performance. Other defined levels, from lowest to
highest importance, are FINER, FINE, CONFIG, INFO, WARNING, and SEVERE.

If no logging configuration file is provided (see next section), the Java Virtual
Machine defaults would be used, which typically set the level to INFO and higher
messages, and direct output to the console.

If you specify the standard UIMA SDK Logger.properties, the output will be
directed to a file named uima.log, in the current working directory (often the
"project" directory when running from Eclipse, for instance).

Eclipse Note: The uima.log file, if written into the Eclipse workspace in the
project uima_examples, for example, may not appear in the Eclipse package
explorer view until you right-click the uima_examples project with the mouse,
and select "Refresh". This operation refreshes the Eclipse display to conform to
what may have changed on the file system.

Specifying the Logging Configuration

The standard UIMA logger uses the underlying Java 1.4 logging mechanism. You
can use the APIs that come with that to configure the logging. In addition, the Java
1.4 logging initialization look for a Java System Property named
java.util.logging.config.file and if found, will use the value of this property as
the name of a standard "properties" file, for setting the logging level. Please refer to
the Java 1.4. documentation for more information on the format and use of this file.

Two sample logging specification property files can be found in the UIMA_HOME
directory: Logger.properties, and FileConsoleLogger.properties. These specify the
same logging, except the first logs just to a file, while the second logs both to a file
and to the console. You can edit these files, or create additional ones, as described
below, to change the logging behavior.

When running your own Java application, you can specify the location of the
logging configuration file on your Java command line by setting the Java system
property java.util.logging.config.file to be the logging configuration filename.
This file specification can be either absolute or relative to the working directory. For
example:

Annotator and Analysis Engine Developer's Guide 4-71

java "-Djava.util.logging.config.file=c:/Program
Files/IBM/uima/Logger.properties"

Note: In a shell script, you can use environment variables such as
UIMA_HOME if convenient.

Setting Logging Levels

Within the logging control file, the default global logging level specifies which kinds
of events are logged across all loggers. For any given facility this global level can be
overridden by a facility specific level. Multiple handlers are supported. This allows
messages to be directed to a log file, as well as to a "console". Note that the
ConsoleHandler also has a separate level setting to limit messages printed to the
console. For example:

.level= INFO

The properties file can change where the log is written, as well.

Facility specific properties allow different logging for each class, as well. For
example, to set the com.xyz.foo logger to only log SEVERE messages:

com.xyz.foo.level = SEVERE

If you have a sample annotator in the package com.ibm.uima.SampleAnnotator you
can set the log level by specifying:

com.ibm.uima.SampleAnnotator.level = ALL

There are other logging controls; for a full discussion, please read the contents of the
Logger.properties file and the Java specification for logging in Java 1.4.

Format of logging output

The logging output is formatted by handlers specified in the properties file for
configuring logging, described above. The default formatter that comes with the
UIMA SDK formats logging output as follows:

Timestamp - threadID: sourceInfo: Message level: message

 Here's an example:

 7/12/04 2:15:35 PM - 10: com.ibm.uima.util.TestClass.main(62): INFO: You are
not logged in!

Annotator and Analysis Engine Developer's Guide 4-72

Meaning of the logging severity levels

These levels are defined by the Java logging framework, which was incorporated
into Java as of the 1.4 release level. The levels are defined in the JavaDocs for
java.util.logging.Level, and include both logging and tracing levels:

• OFF is a special level that can be used to turn off logging.
• ALL indicates that all messages should be logged.
• CONFIG is a message level for configuration messages. These would typically

occur once (during configuration) in methods like initialize().
• INFO is a message level for informational messages, for example, connected to

server IP: 192.168.120.12
• WARNING is a message level indicating a potential problem.
• SEVERE is a message level indicating a serious failure.

Tracing levels, typically used for debugging:

• FINE is a message level providing tracing information, typically at a collection
level (messages occurring once per collection).

• FINER indicates a fairly detailed tracing message, typically at a document level
(once per document).

• FINEST indicates a highly detailed tracing message.

Using the logger outside of an annotator

An application using UIMA may want to log its messages using the same logging
framework. This can be done by getting a reference to the UIMA logger, as follows:

Logger logger = UIMAFramework.getLogger(TestClass.class);

The optional class argument allows filtering by class (if the log handler supports
this). If not specified, the name of the returned logger instance is "com.ibm.uima".

4.3 Building Aggregate Analysis Engines

4.3.1 Combining Annotators

The UIMA SDK makes it very easy to combine any sequence of Analysis Engines to
form an Aggregate Analysis Engine. This is done through an XML descriptor; no Java
code is required!

If you go to the docs/examples/descriptors/tutorial/ex3 folder (in Eclipse, it's in
your uima_examples project, under the descriptors/tutorial/ex3 folder), you will
find a descriptor for a TutorialDateTime annotator. This annotator detects dates and
times (and also sentences and words). To see what this annotator can do, try it out
using the Document Analyzer. If you are curious as to how this annotator works,

Annotator and Analysis Engine Developer's Guide 4-73

the source code is included, but it is not necessary to understand the code at this
time.

We are going to combine the TutorialDateTime annotator with the
RoomNumberAnnotator to create an aggregate Analysis Engine. This is illustrated
in Figure 8.

The descriptor that does this is named RoomNumberAndDateTime.xml, which you can
open in the Component Descriptor Editor plug-in. This is in the uima_examples
project in the folder descriptors/tutorial/ex3.

The "Aggregate" page of the Component Descriptor Editor is used to define which
components make up the aggregate. A screen shot is shown below. (If you are not
using Eclipse, see Section 4.8 Introduction to Analysis Engine Descriptor XML
Syntax for the actual XML syntax for Aggregate Analysis Engine Descriptors.)

RoomNumberAndDateTime

TutorialDateTime RoomNumberAnnotator

TutorialDateTime

RoomNumberAnnotator

Date, Time,
RoomNumber

Date, Time

RoomNumber

Figure 8: Combining Annotators to form and Aggregate Analysis Engine

Annotator and Analysis Engine Developer's Guide 4-74

On the left side of the screen is the list of component engines that make up the
aggregate – in this case, the TutorialDateTime annotator and the
RoomNumberAnnotator. To add a component, you can click the "Add" button and
browse to its descriptor. You can also click the "Find AE" button and search for an
Analysis Engine in your Eclipse workspace.

Note: The "AddRemote" button is used for adding components which run
remotely (for example, on another machine using a remote networking
connection). This capability is described in section 6.6.3 How to Call a UIMA
Service on page 6-151.

The order of the components in the left pane does not imply an order of execution.
The order of execution, or "flow" is determined in the "Component Engine Flow"
section on the right. UIMA supports different types of algorithms (possibly
dynamic) for determining the flow. Here we pick the simplest: FixedFlow. We have
chosen to have the RoomNumberAnnotator execute first, although in this case it
doesn't really matter, since the RoomNumber and DateTime annotators do not have
any dependencies on one another.

If you look at the "Type System" page of the Component Descriptor Editor, you will
see that it displays the type system but is not editable. The Type System of an
Aggregate Analysis Engine is automatically computed by merging the Type
Systems of each of its components.

The Capabilities page is where you explicitly declare the aggregate Analysis
Engine's inputs and outputs. Sofas and Languages are described later.

Annotator and Analysis Engine Developer's Guide 4-75

Note that it is not automatically assumed that all outputs of each component
Analysis Engine (AE) are passed through as outputs of the aggregate AE. In this
case, for example, we have decided to suppress the Word and Sentence annotations
that are produced by the TutorialDateTime annotator.

You can run this AE using the Document Analyzer in the same way that you run
any other AE. Just select the docs/examples/descriptors/tutorial/ex3/
RoomNumberAndDateTime.xml descriptor and click the Run button. You should see that
RoomNumbers, Dates, and Times are all shown but that Words and Sentences are
not:

Annotator and Analysis Engine Developer's Guide 4-76

4.3.2 Aggregate Engines can also contain CAS Consumers

In addition to aggregating Analysis Engines, Aggregates can also contain CAS
Consumers (see Developing CAS Consumers on page 5-119), or even a mixture of
these components. The UIMA Examples has an example of an Aggregate which
contains both an analysis engine and a CAS consumer, in
docs/examples/descriptors/MixedAggregate.xml.

4.3.3 Reading the Results of Previous Annotators

So far, we have been looking at annotators that look directly at the document text.
However, annotators can also use the results of other annotators. One useful thing
we can do at this point is look for the co-occurrence of a Date, a RoomNumber, and
two Times – and annotate that as a Meeting.

The JCas maintains indexes of annotations, and from an index you can obtain an
iterator that allows you to step through all annotations of a particular type. Here's
some example code that would iterate over all of the TimeAnnot annotations in the
JCas:

Annotator and Analysis Engine Developer's Guide 4-77

JFSIndexRepository indexes = aJCas.getJFSIndexRepository();
FSIndex timeIndex = indexes.getAnnotationIndex(TimeAnnot.type);
Iterator timeIter = timeIndex.iterator();
while (timeIter.hasNext())
{
 TimeAnnot time = (TimeAnnot)timeIter.next();

 //do something
}

Now that we've explained the basics, let's take a look at the process method for
com.ibm.uima.tutorial.ex4.MeetingAnnotator. Since we're looking for a combination
of a RoomNumber, a Date, and two Times, there are four nested iterators. (There's
surely a better algorithm for doing this, but to keep things simple we're just going to
look at every combination of the four items.)

For each combination of the four annotations, we compute the span of text that
includes all of them, and then we check to see if that span is smaller than a
"window" size, a configuration parameter. There are also some checks to make sure
that we don't annotate the same span of text multiple times. If all the checks pass,
we create a Meeting annotation over the whole span. There's really nothing to it!

The XML descriptor, located in
docs/examples/descriptors/tutorial/ex4/MeetingAnnotator.xml, is also very
straightforward. An important difference from previous descriptors is that this is
the first annotator we've discussed that has input requirements. This can be seen
on the "Capabilities" page of the Component Descriptor Editor:

Annotator and Analysis Engine Developer's Guide 4-78

If we were to run the MeetingAnnotator on its own, it wouldn't detect anything
because it wouldn't have any input annotations to work with. The required input
annotations can be produced by the RoomNumber and DateTime annotators. So,
we create an aggregate Analysis Engine containing these two annotators, followed
by the Meeting annotator. This aggregate is illustrated in Figure 9. The descriptor
for this is in docs/examples/descriptors/tutorial/ex4/MeetingDetectorTAE.xml. Give
it a try in the Document Analyzer.

MeetingDetectorTAE

TutorialDateTime RoomNumberAnnotator

Date, Time,
RoomNumber

MeetingAnnotator
(Requires: Date, Time
and RoomNumber)

Meeting

Date, Time

Figure 9: An Aggregate Analysis Engine where an internal component uses output from
previous engines.

Annotator and Analysis Engine Developer's Guide 4-79

4.4 Other examples

The UIMA SDK include several other examples you may find interesting, including

• SimpleTokenAndSentenceAnnotator – a simple tokenizer and sentence
annotator.

• PersonTitleDBWriterCasConsumer – a sample CAS Consumer which populates
a relational database with some annotations. It uses JDBC and in this example,
hooks up with the Open Source Apache Derby database.

4.5 Additional Topics

4.5.1 Contract for Annotator methods called by the
Framework

Every instance of an Annotator is associated with one and only one thread. An
instance never has to worry about running some method on one thread, and then
asynchronously being called using another thread. This approach simplifies the
design of annotators – they do not have to be designed to support multi-threading.
When multiple threading is wanted, for performance, multiple instances of the
Annotator are created, each one running on just one thread.

The following table defines the methods called by the framework, when they are
called, and the requirements annotator implementations must follow.

Method When Called by Framework Requirements
initialize Called once, when instance is created. Should read configuration

parameter information and set up
for processing CASes

typeSystemInit Called before Process whenever the type system in
the CAS being passed in differs from what was
previously passed in a Process call (and called for
the first CAS passed in, too). The Type System being
passed to an annotator only changes for the case of
remote annotators that are active as servers,
receiving possibly different type systems to operate
on.

Typically, users of JCas do not
implement any method for this.
An annotator can use this call to
read the CAS type system and
setup any instance variables that
make accessing the types and
features convenient.

process Called once for each CAS. Called by the application
if not using Collection Processing Manager (CPM);
the application calls the process method on the
analysis engine, which is then delegated by the
framework to all the annotators in the engine. For
Collection Processing application, the CPM calls the
process method. If the application creates and
manages your own Collection Processing Engine via
API calls (see JavaDocs), the application calls this on
the Collection Processing Engine, and it is delegated
by the framework to the components.

Process the CAS, adding and/or
modifying elements in it

Annotator and Analysis Engine Developer's Guide 4-80

destroy This method is called by the Collection Processing
Manager framework when the collection processing
completes. It can also be called by an application on
the Engine object, in which case it is propagated to
all contained annotators.

An annotator should release all
resources, close files, close
database connections, etc., and
return to a state where another
initialize call could be received to
restart. Typically, after a destroy
call, no further calls will be made
to an annotator instance.

reconfigure This method is never called by the framework,
unless an application calls it on the Engine object – in
which case it the framework propagates it to all
annotators contained in the Engine.
Its purpose is to signal that the configuration
parameters have changed.

A default implementation of this
calls destroy, followed by
initialize. This is the only case
where initialize would be called
more than once. Users should
implement whatever logic is
needed to return the annotator to
an initialized state, including re-
reading the configuration
parameter data.

4.5.2 Reporting errors from Annotators

There are two broad classes of errors that can occur: recoverable an unrecoverable.
Because Annotators are often expected to process very large numbers of artifacts
(for example, text documents), they should be written to recover where possible.

For example, if an upstream annotator created some input for an annotator which is
invalid, the annotator may want to log this event, ignore the bad input and
continue. It may include a notification of this event in the CAS, for further
downstream annotators to consider. Or, it may throw an exception (see next
section) – but in this case, it cannot do any further processing on that document.

Note: The choice of what to do can be made configurable, using the
configuration parameters.

4.5.3 Throwing Exceptions from Annotators

Let's say an invalid regular expression was passed as a parameter to the
RoomNumberAnnotator. Because this is an error related to the overall
configuration, and not something we could expect to ignore, we should throw an
appropriate exception, and most Java programmers would expect to do so like this:

throw new AnnotatorConfigurationException("The regular expression " + x + "
is not valid.");

UIMA, however, does not do it this way. All UIMA exceptions are internationalized,
meaning that they support translation into other languages. This is accomplished
by eliminating hardcoded message strings and instead using external message

Annotator and Analysis Engine Developer's Guide 4-81

digests. Message digests are files containing (key, value) pairs. The key is used in
the Java code instead of the actual message string. This allows the message string to
be easily translated later by modifying the message digest file, not the Java code.
Also, message strings in the digest can contain parameters that are filled in when the
exception is thrown. The format of the message digest file is described in the
JavaDocs for the Java class java.util.PropertyResourceBundler and in the load
method of java.util.Properties.

The first thing an annotator developer must choose is what Exception class to use.
There are three to choose from:

1. AnnotatorConfigurationException should be thrown from the annotator's
initialize() method if invalid configuration parameter values have been
specified.

2. AnnotatorInitializationException should be thrown from the annotator's
initialize() method if initialization fails for some other reason.

3. AnnotatorProcessException should be thrown from the annotator's process()
method if the processing of a particular document fails for any reason.

Generally you will not need to define your own custom exception classes, but if you
do they must extend one of these three classes, which are the only types of
Exceptions that the annotator interface permits annotators to throw.

All of the UIMA Exception classes share common Constructor varieties. There are
four possible arguments:

1. The name of the message digest to use (optional – if not specified the default
UIMA message digest is used).

2. The key string used to select the message in the message digest.

3. An object array containing the parameters to include in the message.
Messages can have substitutable parts. When the message is given, the
string representation of the objects passed are substituted into the message.
The object array is often created using the syntax new Object[]{x, y}.

4. Another exception which is the "cause" of the exception you are throwing.
This feature is commonly used when you catch another exception and
rethrow it. (optional)

If you look at source file (folder: src in Eclipse)
com.ibm.uima.tutorial.ex5.RoomNumberAnnotator, you will see the following code:

Try
{

Annotator and Analysis Engine Developer's Guide 4-82

 mPatterns[i] = Pattern.compile(patternStrings[i]);
}
catch(PatternSyntaxException e)
{
 throw new AnnotatorConfigurationException(
 MESSAGE_DIGEST, "regex_syntax_error",
 new Object[]{patternStrings[i]}, e);
}

where the MESSAGE_DIGEST constant has the value
"com.ibm.uima.tutorial.ex5.RoomNumberAnnotator_Messages".

Message digests are specified using a dotted name, just like Java classes. This file,
with the .properties extension, must be present in the class path. In Eclipse, you
find this file under the src folder, in the package com.ibm.uima.tutorial.ex5, with the
name RoomNumberAnnotator_Messages.properties. Outside of Eclipse, you can
find this in the uima_examples.jar with the name
com/ibm/uima/tutorial/ex5/RoomNumberAnnotator_Messages.properties. If you look
in this file you will see the line:

regex_syntax_error = {0} is not a valid regular expression.

which is the error message for the example exception we showed above. The
placeholder {0} will be filled by the toString() value of the argument passed to the
exception constructor – in this case, the regular expression pattern that didn't
compile. If there were additional arguments, their locations in the message would
be indicated as {1}, {2}, and so on.

If a message digest is not specified in the call to the exception constructor, the
default is UIMAException.STANDARD_MESSAGE_CATALOG (whose value is
"com.ibm.uima.UIMAException_Messages" in the current release but may change). This
message digest is located in the uima_core.jar file at
com/ibm/uima/UIMAException_messages.properties – you can take a look to see if any
of these exception messages are useful to use.

To try out the regex_syntax_error exception, just use the Document Analyzer to run
docs/examples/descriptors/tutorial/ex5/RoomNumberAnnotator.xml, which happens
to have an invalid regular expression in its configuration parameter settings.

To summarize, here are the steps to take if you want to define your own exception
message:

1. Create a file with the .properties extension, where you declare message keys
and their associated messages, using the same syntax as shown above for the
regex_syntax_error exception. The properties file syntax is more completely
described in the JavaDocs for the load method of the java.util.Properties
class.

http://java.sun.com/j2se/1.4.1/docs/api/java/util/Properties.html#load(java.io.InputStream)

Annotator and Analysis Engine Developer's Guide 4-83

2. Put your properties file somewhere in your class path (it can be in your
annotator’s .jar file).

3. Define a String constant (called MESSAGE_DIGEST for example) in your
annotator code whose value is the dotted name of this properties file. For
example, if your properties file is inside your jar file at the location
org/myorg/myannotator/Messages.properties, then this String constant should
have the value org.myorg.myannotator.Messages. Do not include the
.properties extension. In Java Internationalization terminology, this is called
the Resource Bundle name. For more information see the JavaDocs for the
PropertyResourceBundle class.

4. In your annotator code, throw an exception like this:

throw new AnnotatorConfigurationException(MESSAGE_DIGEST,
"your_message_name",new Object[]{param1,param2,...});

You may also wish to look at the JavaDocs for the UIMAException class.

For more information on Java's internationalization features, see the Java
Internationalization Guide at
http://java.sun.com/j2se/1.4/docs/guide/intl/index.html.

4.5.4 Accessing External Resource Files

Sometimes you may want an annotator to read from an external file – for example, a
long list of keys and values that you are going to build into a HashMap. You could,
of course, just introduce a configuration parameter that holds the absolute path to
this resource file, and build the HashMap in your annotator's initialize method.
However, this is not the best solution for three reasons:

1. Including an absolute path in your descriptor makes your annotator difficult
for others to use. Each user will need to edit this descriptor and set the
absolute path to a value appropriate for his or her installation.

2. You cannot share the HashMap between multiple annotators. Also, in some
deployment scenarios there may be more than one instance of your annotator,
and you would like to have the option for them to use the same HashMap
instance.

3. Your annotator would become dependent on a particular data representation –
the word list would have to come from a file on the local disk and it would
have to be in a particular format. It would be better if this were decoupled.

A better way to access external resource is through the ResourceManager
component. In this section we are going to show an example of how to use the
Resource Manager.

http://java.sun.com/j2se/1.4.1/docs/api/java/util/PropertyResourceBundle.html
http://java.sun.com/j2se/1.4/docs/guide/intl/index.html

Annotator and Analysis Engine Developer's Guide 4-84

This example annotator will annotate UIMA acronyms (e.g. UIMA, TAE, CAS, JCas)
and store the acronym's expanded form as a feature of the annotation. The
acronyms and their expanded forms are stored in an external file.

First, look at the docs/examples/descriptors/tutorial/ex6/
UimaAcronymAnnotator.xml descriptor.

The values of the rows in the two tables are longer than can be easily shown. You
can click the small button at the top right to shift the layout from two side-by-side
tables, to a vertically stacked layout. You can also click the small twisty on the
"Imports for External Resources and Bindings" to collapse this section, because it's
not used. Then the same screen will appear like this:

Annotator and Analysis Engine Developer's Guide 4-85

The top window has a scroll bar allowing you to see the rest of the line.

Declaring Resource Dependencies

The bottom window is where an annotator declares an external resource
dependency. The XML for this is as follows:

<externalResourceDependency>
 <key>AcronymTable</key>
 <description>Table of acronyms and their expanded
 forms.</description>
 <interfaceName> com.ibm.uima.tutorial.ex6.StringMapResource
 </interfaceName>
</externalResourceDependency>

The <key> value (AcronymTable) is the name by which the annotator identifies this
resource. The key must be unique for all resources that this annotator accesses, but
the same key could be used by different annotators to mean different things. The
interface name (com.ibm.uima.tutorial.ex6.StringMapResource) is the Java interface
through which the annotator accesses the data. Specifying an interface name is
optional. If you do not specify an interface name, annotators will get direct access to
the data file.

Accessing the Resource from the AnnotatorContext

 If you look at the com.ibm.uima.tutorial.ex6.UimaAcronymAnnotator source, you will
see that the annotator accesses this resource from the AnnotatorContext by calling:

Annotator and Analysis Engine Developer's Guide 4-86

StringMapResource mMap =
 (StringMapResource)getContext().getResourceObject("AcronymTable");

The object returned from the getResourceObject method will implement the interface
declared in the <interfaceName> section of the descriptor, StringMapResource in this
case. The annotator code does not need to know the location of the data nor the Java
class that is being used to read the data and implement the StringMapResource
interface.

Note that if we did not specify a Java interface in our descriptor, our annotator
could directly access the resource data as follows:

InputStream stream = getContext().getResourceAsStream("AcronymTable");

If necessary, the annotator could also determine the location of the resource file, by
calling:

URL url = getContext().getResourceURL("AcronymTable");

These last two options are only available in the case where the descriptor does not
declare a Java interface.

Declaring Resources and Bindings

Refer back to the top window in the Resources page of the Component Descriptor
Editor. This is where we specify the location of the resource data, and the Java class
used to read the data. For the example, this corresponds to the following section of
the descriptor:

<resourceManagerConfiguration>
 <externalResources>
 <externalResource>
 <name>UimaAcronymTableFile</name>
 <description>
 A table containing UIMA acronyms and their expanded forms.
 </description>
 <fileResourceSpecifier>
 <fileUrl>file:com/ibm/uima/tutorial/ex6/uimaAcronyms.txt
 </fileUrl>
 </fileResourceSpecifier>
 <implementationName>
 com.ibm.uima.tutorial.ex6.StringMapResource_impl
 </implementationName>
 </externalResource>
 </externalResources>

 <externalResourceBindings>
 <externalResourceBinding>
 <key>AcronymTable</key>
 <resourceName>UimaAcronymTableFile</resourceName>
 </externalResourceBinding>

Annotator and Analysis Engine Developer's Guide 4-87

 </externalResourceBindings>
</resourceManagerConfiguration>

The first section of this XML declares an externalResource, the UimaAcronymTableFile.
With this, the fileUrl element specifies the path to the data file. This can be an
absolute URL (e.g. one that starts with file:/ or file:///, or file://my.host.org/), but that
is not recommended because it makes installation of your component more difficult,
as noted earlier. Better is a relative URL, which will be looked up within the
classpath (and/or datapath), as used in this example. In this case, the file
com/ibm/uima/tutorial/ex6/uimaAcronyms.txt is located in uima_examples.jar, which
is in the classpath. If you look in this file you will see the definitions of several
UIMA acronyms.

The second section of the XML declares an externalResourceBinding, which
connects the key AcronymTable, declared in the annotator’s external resource
dependency, to the actual resource name UimaAcronymTableFile. This is rather trivial
in this case; for more on bindings see the example UimaMeetingDetectorTAE.xml
below. There is no global repository for external resources; it is up to the user to
define each resource needed by a particular set of annotators.

In the Component Descriptor Editor, bindings are indicated below the external
resource. To create a new binding, you select an external resource (which must have
previously been defined), and an external resource dependency, and then click the
Bind button, which only enables if you have selected two things to bind together.

When the Analysis Engine is initialized, it creates a single instance of
StringMapResource_impl and loads it with the contents of the data file. The
UimaAcronymAnnotator then accesses the data through the StringMapResource
interface. This single instance could be shared among multiple annotators, as will
be explained later.

Note that all resource implementation classes (e.g. StringMapResource_impl in the
provided example) need to be public and have public, 0-argument constructors, so
that they can be instantiated by the framework. (Although Java classes in which
you do not define any constructor will, by default, have a 0-argument constructor
that doesn't do anything, a class in which you have defined at least one constructor
does not get a default 0-argument constructor.)

This annotator is illustrated in Figure 10. To see it in action, just run it using the
Document Analyzer. When it finishes, open up the UIMA_Seminars document in
the processed results window, (double-click it), and then left-click on one of the

Annotator and Analysis Engine Developer's Guide 4-88

highlighted terms, to see the expandedForm feature's value.

By designing our annotator in this way, we have gained some flexibility. We can
freely replace the StringMapResource_impl class with any other implementation
that implements the simple StringMapResource interface. (For example, for very
large resources we might not be able to have the entire map in memory.) We have
also made our external resource dependencies explicit in the descriptor, which will
help others to deploy our annotator.

Sharing Resources between Annotators

Another advantage of the Resource Manager is that it allows our data to be shared
between annotators. To demonstrate this we have developed another annotator that
will use the same acronym table. The UimaMeetingAnnotator will iterate over
Meeting annotations discovered by the Meeting Detector we previously developed
and attempt to determine whether the topic of the meeting is related to UIMA. It
will do this by looking for occurrences of UIMA acronyms in close proximity to the
meeting annotation. We could implement this by using the
UimaAcronymAnnotator, of course, but for the sake of this example we will have
the UimaMeetingAnnotator access the acronym map directly.

The Java code for the UimaMeetingAnnotator in example 6 creates a new type,
UimaMeeting, if it finds a meeting with 50 characters of the UIMA acronym.

We combine three analysis engines, the UimaAcronymAnnotator to annotate UIMA
acronyms, the MeetingDectector from example 4 to find meetings and finally the

UimaAcronymAnnotator
(Resource: “AcronymTable”)

UimaAcronyms.txt

External Resource Binding:
UimaAcronymTableFile

UimaAcronym

Figure 10: External Resource Binding

Annotator and Analysis Engine Developer's Guide 4-89

UimaMeetingAnnotator to annotate just meetings about UIMA. Together these are
assembled to form the new aggregate analysis engine, UimaMeetingDectector. This
aggregate and the sharing of a common resource are illustrated in Figure 11.

The important thing to notice is in the UimaMeetingDetectorTAE.xml aggregate
descriptor. It includes both the UimaMeetingAnnotator and the
UimaAcronymAnnotator, and contains a single declaration of the
UimaAcronymTableFile resource. (The actual example has the order of the first two
annotators reversed versus the above picture, which is OK since they do not depend
on one another).

It also binds the resources as follows:

UIMAMeetingDetectorTAE

MeetingDetectorTAE UimaMeetingAnnotator
(Requires: Meeting)
(Resource: “UimaTermTable”

UimaAcronym,
UimaMeeting

UimaAcronymAnnotator
(Resource: “AcronymTable”)

UimaAcronyms.txt

External Resource Binding:
UimaAcronymTableFile

External Resource Binding:
UimaAcronymTableFile

UimaAcronym, MeetingUimaAcronym

Figure 11: Component engines of an aggregate share a common resource

Annotator and Analysis Engine Developer's Guide 4-90

<externalResourceBindings>
 <externalResourceBinding>
 <key>UimaAcronymAnnotator/AcronymTable</key>
 <resourceName>UimaAcronymTableFile</resourceName>
 </externalResourceBinding>

 <externalResourceBinding>
 <key>UimaMeetingAnnotator/UimaTermTable</key>
 <resourceName>UimaAcronymTableFile</resourceName>
 </externalResourceBinding>
</externalResourceBindings>

This binds the resource dependencies of both the UimaAcronymAnnotator (which
uses the name AcronymTable) and UimaMeetingAnnotator (which uses
UimaTermTable) to the single declared resource named UimaAcronymFile.
Therefore they will share the same instance. Resource bindings in the aggregate
descriptor override any resource declarations in individual annotator descriptors.

If we wanted to have the annotators use different acronym tables, we could easily
do that. We would simply have to change the resourceName elements in the

Annotator and Analysis Engine Developer's Guide 4-91

bindings so that they referred to two different resources. The Resource Manager
gives us the flexibility to make this decision at deployment time, without changing
any Java code.

4.5.5 Result Specification Setting

The Result Specification is a parameter passed to all annotators, as the second
argument in the process(...) call. It is a list of output types and / or type:feature
specifications, which are expected to be "output" from the annotator. Annotators
may use this to optimize their operations, when possible, for those cases where only
particular outputs are wanted. The interface to the Result Specification object (see
the JavaDocs) allows querying both types and particular features of types.

Sometimes you can specify the Result Specification; othertimes, you cannot (for
instance, inside a Collection Processing Engine, you cannot). When you cannot
specify it, or choose not to specify it (for example, using the form of the process(...)
call on an Analysis Engine that doesn't include the Result Specification), a "Default"
Result Specification is used.

Default Result Specification

The default Result Specification is taken from the Engine's output Capability
Specification. Remember that a Capability Specification has both inputs and
outputs, can specify types and / or features, and there can be more than one
Capability Set. If there is more than one set, the logical union of these sets is used.
The default Result Specification is exactly what's included in the output Capability
Specification.

Passing Result Specifications to Annotators

If you are not using aggregation or collection processing, but instead are
instantiating your own primitive analysis engines and calling their process methods,
you can pass whatever Result Specification is appropriate in your call to
process(CAS, ResultSpecification). For primitive engines, whatever you pass in is
passed along as the value of the 2nd argument in the annotator's process() method.
If you use the form of the call without the Result Specification, the default Result
Specification is created and passed, as above.

Aggregates

For aggregate engines, the value passed to the primitive annotator code depends on
the kind of flow.

Annotator and Analysis Engine Developer's Guide 4-92

Fixed Flow

For FixedFlow, any ResultSpecification passed into the aggregate is ignored, and
instead, each primitive annotator is passed a result spec that corresponds to the
union of its output capability specifications at the primitive descriptor level. If no
output capability specification is given, the annotator will still be called, but the
result specification will be empty.

CapabilityLanguageFlow

For CapabilityLanguageFlow, each annotator is passed a ResultSpecification that is
the intersection of the primitive annotator's output Capability Specification with the
ResultSpecification passed to the aggregate. If this intersection is null (the annotator
does not produce any type or feature included in the ResultSpecification), the
annotator will not be called at all.

Therefore, if using the CapabilityLanguageFlow, if you want to supply a custom
ResultSpecification for the aggregate it must include any intermediate types that
need to be produced internally in the flow, or else things will not work properly.

Special rule for skipping Analysis Engines

When using the CapabilityLanguageFlow, an annotator will be also be skipped if all
of its outputs are in the output capability of some annotator(s) that has (have)
executed previously in the flow. The concept here is that if all of an annotator's
output types have already been produced, that annotator will not be called.

For an Aggregate, each annotator is passed a Result Specification that is the
intersection of the set of types mentioned in its output with the Result Specification
passed to the aggregate. If this intersection is null (the annotator does not produce
any type included in the ResultSpecification), the annotator will not be called at all.

Therefore, if using the CapabilityLanguageFlow, if you want to supply a custom
ResultSpecification for the aggregate it must include any intermediate types that
need to be produced, or else things will not work properly.

Collection Processing Engines

The Default Result Specification is always used for all components of a Collection
Processing Engine.

4.5.6 Class path setup when using JCas

JCas provides Java classes that correspond to each CAS type in an application.
These classes are generated by the JCasGen utility (which can be automatically
invoked from the Component Descriptor Editor).

Annotator and Analysis Engine Developer's Guide 4-93

The Java source classes generated by the JCasGen utility are typically compiled and
packaged into a JAR file. This JAR file must be present in the classpath of the UIMA
application.

More details on issues around setting up this class path, including deployment
issues where class loaders are being used to isolate multiple UIMA applications
inside a single running Java Virtual Machine, please see Class Loaders in UIMA on
page 24-342.

4.5.7 Using the Shell Scripts

The SDK includes a /bin subdirectory containing shell scripts, for Windows (.bat
files) and Linux (.sh files). Many of these scripts invoke sample Java programs
which require a class path. The UIMA required files and directories on the class
path are set up using the shell script: setUimaClassPath.

If you need to include files on the class path, the scripts are set up to add anything
you specify in the environment variable UIMA_CLASSPATH to the classpath. So,
for example, if you are running the document analyzer, and wanted it to find a Java
class file named (on Windows) c:\a\b\c\myProject\myJarFile.jar, you could first
issue a set command to set the UIMA_CLASSPATH to this file, followed by the
documentAnalyzer script:

set UIMA_CLASSPATH=c:\a\b\c\myProject\myJarFile.jar
documentAnalyzer

Other environment variables are used by the shell scripts, as follows:

UIMA_HOME Path where the UIMA SDK was installed. Set
automatically if installing via the InstallShield installer.

JAVA_HOME (Optional) Path to a Java Runtime Environment. If not
set, the Java JRE that is shipped with the UIMA SDK
(InstallShield versions) is used.

UIMA_DATAPATH (Optional) if specified, a path specification to use as the
default DataPath (see section 20.2)

ECLIPSE_HOME (Optional) Needs to be set to the root of your Eclipse
installation when using shell scripts that invoke Eclipse
(e.g. jcasgen_merge)

Annotator and Analysis Engine Developer's Guide 4-94

4.6 Common Pitfalls

Here are some things to avoid doing in your annotator code:

Retaining references to JCas objects between calls to process()

The JCas will be cleared between calls to your annotator's process() method. All of
the analysis results related to the previous document will be deleted to make way
for analysis of a new document. Therefore, you should never save a reference to a
JCas Feature Structure object (i.e. an instance of a class created using JCasGen) and
attempt to reuse it in a future invocation of the process() method. If you do so, the
results will be undefined.

Careless use of static data

Always keep in mind that an application that uses your annotator may create
multiple instances of your annotator class. A multithreaded application may
attempt to use two instances of your annotator to process two different documents
simultaneously. This will generally not cause any problems as long as your
annotator instances do not share static data.

In general, you should not use static variables other than static final constants of
primitive data types (String, int, float, etc). Other types of static variables may allow
one annotator instance to set a value that affects another annotator instance, which
can lead to unexpected effects. Also, static references to classes that aren't thread-
safe are likely to cause errors in multithreaded applications.

4.7 Viewing FeatureStructures in the Eclipse debugger

Eclipse (as of version 3.1 or later) has a new feature for viewing Java Logical
Structures. When enabled, it will permit you to see a view of FeatureStructure
objects which show all of the features. For example, here is a view of a
FeatureStructure for the RoomNumber annotation, from the tutorial example 1:

Annotator and Analysis Engine Developer's Guide 4-95

The "annotation" object in Java shows as a 2 element object, not very convenient for
seeing the features. But if you turn on the Java Logical Structure mode by pushing
this button:

the features of the FeatureStructure instance will be shown:

4.8 Introduction to Analysis Engine Descriptor XML Syntax

This section is an introduction to the syntax used for Analysis Engine Descriptors.
Most users do not need to understand these details; they can use the Component
Descriptor Editor Eclipse plugin to edit Analysis Engine Descriptors rather than
editing the XML directly.

This section walks through the actual XML descriptor for the
RoomNumberAnnotator example introduced in section 4.1 . The discussion is
divided into several logical sections of the descriptor.

The full specification for Analysis Engine Descriptors is defined in Chapter 20
Component Descriptor Reference.

4.8.1 Header and Annotator Class Identification
<?xml version="1.0" encoding="UTF-8" ?>
<!-- Descriptor for the example RoomNumberAnnotator. -->
<taeDescription xmlns="http://uima.watson.ibm.com/resourceSpecifier">
 <frameworkImplementation>com.ibm.uima.java</frameworkImplementation>
 <primitive>true</primitive>
 <annotatorImplementationName>
 com.ibm.uima.tutorial.ex1.RoomNumberAnnotator
 </annotatorImplementationName>

Annotator and Analysis Engine Developer's Guide 4-96

The document begins with a standard XML header and a comment. The root
element of the document is named <taeDescription>, and must specify the XML
namespace http://uima.watson.ibm.com/resourceSpecifier.

The first subelement, <frameworkImplementation>, must contain the value
com.ibm.uima.java. The second subelement, <primitive>, contains the Boolean value
true, indicating that this XML document describes a Primitive Analysis Engine. A
Primitive Analysis Engine is comprised of a single annotator. It is also possible to
construct XML descriptors for non-primitive or Aggregate Analysis Engines; this is
covered later.

The next element, <annotatorImplementationName>, contains the fully-qualified class
name of our annotator class. This is how the UIMA framework determines which
annotator class to instantiate.

4.8.2 Simple Metadata Attributes
<analysisEngineMetaData>
 <name>Room Number Annotator</name>
 <description>An example annotator that searches for room numbers in
 the IBM Watson research buildings.</description>
 <version>1.0</version>
 <vendor>IBM</vendor>

Here are shown four simple metadata fields – name, description, version, and
vendor. Providing values for these fields is optional, but recommended.

4.8.3 Type System Definition
<typeSystemDescription>
 <imports>
 <import location="TutorialTypeSystem.xml"/>
 </imports>
</typeSystemDescription>

This section of the XML descriptor defines which types the annotator works with.
The recommended way to do this is to import the type system definition from a
separate file, as shown here. The location specified here should be a relative path,
and it will be resolved relative to the location of the aggregate descriptor. It is also
possible to define types directly in the Analysis Engine descriptor, but these types
will not be easily shareable by others.

4.8.4 Capabilities
<capabilities>
 <capability>
 <inputs />

Annotator and Analysis Engine Developer's Guide 4-97

 <outputs>
 <type>com.ibm.uima.tutorial.RoomNumber</type>
 <feature>com.ibm.uima.tutorial.RoomNumber:building</feature>
 </outputs>
 </capability>
</capabilities>

The last section of the descriptor describes the Capabilities of the annotator – the
Types/Features it consumes (input) and the Types/Features that it produces
(output). These must be the names of types and features that exist in the ANALYSIS
ENGINE descriptor’s type system definition.

Our annotator outputs only one Type, RoomNumber and one feature,
RoomNumber:building. The fully-qualified names (including namespace) are
needed.

The building feature is listed separately here, but clearly specifying every feature for
a complex type would be cumbersome. Therefore, a shortcut syntax exists. The
<outputs> section above could be replaced with the equivalent section:

<outputs>
 <type allAnnotatorFeatures ="true"> com.ibm.uima.tutorial.RoomNumber
 </type>
</outputs>

4.8.5 Configuration Parameters (Optional)

Configuration Parameter Declarations
<configurationParameters>
 <configurationParameter>
 <name>Patterns</name>
 <description>List of room number regular expression patterns.
 </description>
 <type>String</type>
 <multiValued>true</multiValued>
 <mandatory>true</mandatory>
 </configurationParameter>
 <configurationParameter>
 <name>Locations</name>
 <description>List of locations corresponding to the room number
 expressions specified by the Patterns parameter.
 </description>
 <type>String</type>
 <multiValued>true</multiValued>
 <mandatory>true</mandatory>
 </configurationParameter>
</configurationParameters>

Annotator and Analysis Engine Developer's Guide 4-98

The <configurationParameters> element contains the definitions of the configuration
parameters that our annotator accepts. We have declared two parameters. For each
configuration parameter, the following are specified:

• name – the name that the annotator code uses to refer to the parameter

• description – a natural language description of the intent of the parameter

• type – the data type of the parameter's value – must be one of String, Integer,
Float, or Boolean.

• multiValued – true if the parameter can take multiple-values (an array), false if
the parameter takes only a single value.

• mandatory – true if a value must be provided for the parameter

Both of our parameters are mandatory and accept an array of Strings as their value.

4.8.6 Configuration Parameter Settings
<configurationParameterSettings>
 <nameValuePair>
 <name>Patterns</name>
 <value>
 <array>
 <string>\b[0-4]\d-[0-2]\d\d\b</string>
 <string>\b[G1-4][NS]-[A-Z]\d\d\b</string>
 <string>\bJ[12]-[A-Z]\d\d\b</string>
 </array>
 </value>
 </nameValuePair>
 <nameValuePair>
 <name>Locations</name>
 <value>
 <array>
 <string>Watson - Yorktown</string>
 <string>Watson - Hawthorne I</string>
 <string>Watson - Hawthorne II</string>
 </array>
 </value>
 </nameValuePair>
</configurationParameterSettings>

4.8.7 Aggregate Analysis Engine Descriptor
<?xml version="1.0" encoding="UTF-8" ?>
<taeDescription xmlns="http://uima.watson.ibm.com/resourceSpecifier">
 <frameworkImplementation>com.ibm.uima.java</frameworkImplementation>
 <primitive>false</primitive>

 <delegateAnalysisEngineSpecifiers>
 <delegateAnalysisEngine key="RoomNumber">
 <import location="../ex2/RoomNumberAnnotator.xml" />
 </delegateAnalysisEngine>

Annotator and Analysis Engine Developer's Guide 4-99

 <delegateAnalysisEngine key="DateTime">
 <import location="TutorialDateTime.xml" />
 </delegateAnalysisEngine>
 </delegateAnalysisEngineSpecifiers>

The first difference between this descriptor and an individual annotator's descriptor
is that the <primitive> element contains the value false. This indicates that this
Analysis Engine (AE) is an aggregate AE rather than a primitive AE.

Then, instead of a single annotator class name, we have a list of
delegateAnalysisEngineSpecifiers. Each specifies one of the components that
constitute our Aggregate . We refer to each component by the relative path from
this XML descriptor to the component AE's XML descriptor.

This list of component AEs does not imply a fixed ordering. Ordering is done by
another section of the descriptor:

 <analysisEngineMetaData>
 <name>Aggregate TAE - Room Number and DateTime Annotators</name>
 <description>Detects Room Numbers, Dates, and Times</description>
 <flowConstraints>
 <fixedFlow>
 <node>RoomNumber</node>
 <node>DateTime</node>
 </fixedFlow>
 </flowConstraints>

Currently, a fixedFlow is required, and we must specify the exact ordering in which
the AEs will be executed. In this case, it doesn't really matter, since the
RoomNumber and DateTime annotators do not have any dependencies on one
another.

Finally, the descriptor has a capabilities section, which has exactly the same syntax
as a primitive AE's capabilities section:

<capabilities>
 <capability>
 <inputs />
 <outputs>
 <type allAnnotatorFeatures="true">com.ibm.uima.tutorial.RoomNumber
 </type>
 <type allAnnotatorFeatures="true">com.ibm.uima.tutorial.DateAnnot
 </type>
 <type allAnnotatorFeatures="true">com.ibm.uima.tutorial.TimeAnnot
 </type>
 </outputs>
 <languagesSupported>
 <language>en</language>
 </languagesSupported>
 </capability>
</capabilities>

Collection Processing Engine Developer's Guide 5-101

Chapter 5 Collection Processing Engine Developer's
Guide

The UIMA Analysis Engine interface provides support for developing and
integrating algorithms that analyze unstructured data. Analysis Engines are
designed to operate on a per-document basis. Their interface handles one CAS at a
time. UIMA provides additional support for applying analysis engines to collections
of unstructured data with its Collection Processing Architecture. The Collection
Processing Architecture defines additional components for reading raw data
formats from data collections, preparing the data for processing by Analysis
Engines, executing the analysis, extracting analysis results, and deploying the
overall flow in a variety of local and distributed configurations.

The functionality defined in the Collection Processing Architecture is implemented
by a Collection Processing Engine (CPE). A CPE includes an Analysis Engine and
adds a Collection Reader, a CAS Initializer, and CAS Consumers. The part of the UIMA
Framework that supports CPEs is called the Collection Processing Manager, or
CPM.

A Collection Reader provides the interface to the raw input data and knows how to
iterate over the data collection. Collection Readers are discussed in Section 5.4.1 .
The CAS Initializer prepares an individual data item for analysis and loads it into
the CAS. CAS Initializers are discussed in Section 5.4.2 . A CAS Consumer extracts
analysis results from the CAS and may also perform collection level processing, or
analysis over a collection of CASes. CAS Consumers are discussed in Section 5.4.3 .

Analysis Engines and CAS Consumers are both instances of CAS Processors. A CPM
may contain multiple CAS Processors. An Analysis Engine may be a Primitive or an
Aggregate (composed of other Analysis Engines). Aggregates may contain Cas
Consumers. While Collection Readers and CAS Initializers always run in the same
JVM as the CPM, a CAS Processor may be deployed in a variety of local and
distributed modes, providing a number of options for scalability and robustness.
The different deployment options are covered in detail in Section 5.5 .

Each of the components in a CPE has an interface specified by the UIMA Collection
Processing Architecture and is described by a declarative XML descriptor file.
Similarly, the CPE itself has a well defined component interface and is described by
a declarative XML descriptor file.

A user creates a CPE by assembling the components mentioned above. The UIMA
SDK provides a graphical tool, called the CPE Configurator, for assisting in the
assembly of CPEs. Use of this tool is summarized in Section 5.2 , and more details
can be found in Chapter 10 Collection Processing Engine Configurator User's Guide.

Collection Processing Engine Developer's Guide 5-102

Alternatively, a CPE can be assembled by writing an XML CPE descriptor. Details
on the CPE descriptor, including its syntax and content, can be found in the Chapter
21 Collection Processing Engine Descriptor Reference. The individual components
have associated XML descriptors, each of which can be created and / or edited using
the Component Description Editor.

A CPE is executed by a UIMA infrastructure component called the Collection
Processing Manager (CPM). The CPM provides a number of services and
deployment options that cover instantiation and execution of CPEs, error recovery,
and local and distributed deployment of the CPE components.

5.1 CPE Concepts

Figure 12 illustrates the data flow that occurs between the different types of
components that make up a CPE.

Figure 12 CPE Components

The components of a CPE are:

• Collection Reader – interfaces to a collection of data items (e.g., documents) to be
analyzed. Collection Readers return CASes that contain the documents to
analyze, possibly along with additional metadata.

• Analysis Engine – takes a CAS, analyzes its contents, and produces an enriched
CAS. Analysis Engines can be recursively composed of other Analysis Engines
(called an Aggregate Analysis Engine). Aggregates may also contain CAS
Consumers.

Collections
& Meta data

Collection
Reader

CAS
Initializer

Analysis
Engine

(adds to CAS)

IndexerGlossary
ExtractorGlossary

Entity
(e.g. Document)

Entity + CAS

Entity + CAS

CAS Consumer
(builds aggregate
data structure)

CPM
•Manages Processing
•Monitors Status
•Collects Statistics

CAS Consumer
(builds aggregate
data structure)

CAS Consumer
(builds aggregate
data structure)

(Kinds of CAS Consumers)

Search
Engine
Index

Collection Processing Engine Developer's Guide 5-103

• CAS Consumer – consume the enriched CAS that was produced by the sequence
of Analysis Engines before it, and produce an application-specific data structure,
such as a search engine index or database.

A fourth type of component, the CAS Initializer, may be used by a Collection Reader
to populate a CAS from a document. An example of a CAS Initializer is an HTML
parser that de-tags an HTML document and also inserts paragraph annotations
(determined from <P> tags in the original HTML) into the CAS. The Collection
Processing Manager orchestrates the data flow within a CPE, monitors status,
optionally manages the life-cycle of internal components and collects statistics.

CASes are not saved in a persistent way by the framework. If you want to save
CASes, then you have to save each CAS as it comes through (for example) using a
CAS Consumer you write to do this, in whatever format you like. The UIMA SDK
supplies an example CAS Consumer to save CASes to files, in the externalized
XCAS format (an XML version of the CAS). It also supplies an example CAS
Consumer to extract information from CASes and store the results into a relational
Database, using Java's JDBC APIs.

5.2 The CPE Configurator and the XCAS viewer

5.2.1 Using the CPE Configurator

A CPE can be assembled by writing an XML CPE descriptor. Details on the CPE
descriptor, including its syntax and content, can be found in Chapter 21 Collection
Processing Engine Descriptor Reference. Rather than edit raw XML, you may
develop a CPE Descriptor using the CPE Configurator tool. The CPE Configurator
tool is described briefly in this section, and in more detail in Chapter 10 Collection
Processing Engine Configurator User's Guide.

The CPE Configurator tool can be run from Eclipse (see Running the CPE
Configurator from Eclipse on page 5-108), or using the cpeGui shell script
(cpeGui.bat on Windows, cpeGui.sh on Unix), which is located in the bin directory of
the UIMA SDK installation. Executing this batch file will display the window
shown here:

Collection Processing Engine Developer's Guide 5-104

The window is divided into 4 sections, one each for the Collection Reader, CAS
Initializer, Analysis Engines, and CAS Consumers. In each section, you select the
component(s) you want to include in the CPE by browsing to their XML descriptors.
The configuration parameters present in the XML descriptors will then be displayed
in the GUI; these can be modified to override the values present in the descriptor.
For example, the screen shot below shows the CPE Configurator after the following
components have been chosen:

Collection Reader: %UIMA_HOME%\docs\examples\descriptors\collection_reader\
FileSystemCollectionReader.xml

Analysis Engine:
%UIMA_HOME%\docs\examples\descriptors\analysis_engine\NamesAndPersonTitles_
TAE.xml

CAS Consumer:
%UIMA_HOME%\docs\examples\descriptors\cas_consumer\XCasWriterCasConsumer.xm
l

Collection Processing Engine Developer's Guide 5-105

For the File System Collection Reader, ensure that the Input Directory is set to
%UIMA_HOME%\docs\examples\data. The other parameters may be left blank. For the
XCAS Writer CAS Consumer, ensure that the Output Directory is set to
%UIMA_HOME%\docs\examples\data\processed.

After selecting each of the components and providing configuration settings, click
the play (forward arrow) button at the bottom of the screen to begin processing. A
progress bar should be displayed in the lower left corner. (Note that the progress
bar will not begin to move until all components have completed their initialization,
which may take several seconds.) Once processing has begun, the pause and stop
buttons become enabled.

If an error occurs, you will be informed by an error dialog. If processing completes
successfully, you will be presented with a performance report.

Using the File menu, you can select Save CPE Descriptor to create an .xml descriptor
file that defines the CPE you have constructed. Later, you can use Open CPE
Descriptor to restore the CPE Configurator to the saved state. Also, CPE descriptors
can be used to run a CPE from a Java program – see section 5.3 . CPE Descriptors

Collection Processing Engine Developer's Guide 5-106

allow specifying operational parameters, such as error handling options, that are not
currently available for configuration through the CPE Configurator. For more
information on manually creating a CPE Descriptor, see the Chapter 21 Collection
Processing Engine Descriptor Reference.

Note that CPE descriptors identify which components comprise the CPE, but they do
not capture the individual configuration settings for these components. That
information is kept in the individual component descriptors. If you have made
changes to these settings in the CPE Configurator tool and wish to save the settings
back to the original descriptor files, use the File Save Component Configuration
action.

The CPE configured above runs a simple name and title annotator on the sample
data provided with the UIMA SDK and stores the results using the XCAS Writer
CAS Consumer. To view the results, start the XCAS Annotation Viewer by running
the xcasAnnotationViewer batch file (xcasAnnotationViewer.bat on Windows,
xcasAnnotationViewer.sh on Unix), which is located in the bin directory of the UIMA
SDK installation. Executing this batch file will display the window shown here:

Ensure that the Input Directory is the same as the Output Directory specified for the
XCAS Writer CAS Consumer in the CPE configured above (e.g.,
%UIMA_HOME%\docs\examples\data\processed) and that the TAE Descriptor File is set to
the Analysis Engine used in the CPE configured above (e.g.,
%UIMA_HOME%\docs\examples\descriptors\analysis_engine\NamesAndPersonTitles_TAE.
xml).

Click the View button to display the Analyzed Documents window:

Collection Processing Engine Developer's Guide 5-107

Double click on any document in the list to view the analyzed document. Double
clicking the first document, IBM_LifeSciences.txt, will bring up the following
window:

This window shows the analysis results for the document. Clicking on any
highlighted annotation causes the details for that annotation to be displayed in the

Collection Processing Engine Developer's Guide 5-108

right-hand pane. Here the annotation spanning "John M. Thompson" has been
clicked.

Congratulations! You have successfully configured a CPE, saved its descriptor, run
the CPE, and viewed the analysis results.

5.2.2 Running the CPE Configurator from Eclipse

If you have followed the instructions in Chapter 3 UIMA SDK Setup for Eclipse and
imported the example Eclipse project, then you should already have a Run
configuration for the CPE Configurator tool (called UIMA CPE GUI) configured to run
in the example project. Simply run that configuration to start the CPE Configurator.

If you haven’t followed the Eclipse setup instructions and wish to run the CPE
Configurator tool from Eclipse, you will need to do the following. As installed, this
Eclipse launch configuration is associated with the "uima_examples" project. If
you've not already done so, you may wish to import that project into your Eclipse
workspace. It's located in %UIMA_HOME%/docs/examples. Doing this will supply
the Eclipse launcher with all the class files it needs to run the CPE configurator. If
you don't do this, please manually add the JAR files for UIMA to the launch
configuration.

Also, you need to add any projects or JAR files for any UIMA components you will
be running to the launch class path.

Note: A simpler alternative may be to change the CPE launch configuration to
be based on your project. If you do that, it will pick up all the files in your
project's class path, which you should set up to include all the UIMA framework
files. An easy way to do this is to specify in your project's properties' build-path
that the uima_examples project is on the build path.

Next, in the Eclipse menu select Run Run..., which brings up the Run configuration
screen.

1. In the Main tab, set the main class to
com.ibm.uima.reference_impl.application.cpm.CpmFrame

2. In the arguments tab, add the following to the VM arguments
-Xms128M -Xmx256M -Duima.home="C:\Program Files\IBM\uima" (or wherever
you installed the UIMA SDK)

Click the Run button to launch the CPE Configurator, and use it as previously
described in this section.

Collection Processing Engine Developer's Guide 5-109

5.3 Running a CPE from Your Own Java Application

The simplest way to run a CPE from a Java application is to first create a CPE
descriptor as described in the previous section. Then the CPE can be instantiated
and run using the following code:

//parse CPE descriptor in file specified on command line
CpeDescription cpeDesc = UIMAFramework.getXMLParser().
parseCpeDescription(new XMLInputSource(args[0]));

//instantiate CPE
mCPE = UIMAFramework.produceCollectionProcessingEngine(cpeDesc);

//Create and register a Status Callback Listener
mCPE.addStatusCallbackListener(new StatusCallbackListenerImpl());

//Start Processing
mCPE.process();

This will start the CPE running in a separate thread.

5.3.1 Using Listeners

Updates of the CPM's progress, including any errors that occur, are sent to the
callback handler that is registered by the call to addStatusCallbackListener, above.
The callback handler is a class that implements the CPM's StatusCallbackListener
interface. It responds to events by printing messages to the console. The source
code is fairly straightforward and is not included in this chapter – see the
com.ibm.uima.examples.cpe.SimpleRunCPE.java in the %UIMA_HOME%\docs\examples\src
directory for the complete code.

If you need more control over the information in the CPE descriptor, you can
manually configure it via its API. See the JavaDocs for package
com.ibm.uima.collection for more details.

5.4 Developing Collection Processing Components

This section is an introduction to the process of developing Collection Readers, CAS
Initializers, and CAS Consumers. The code snippets refer to the classes that can be
found in %UIMA_HOME%\docs\examples\src example project.

In the following sections, classes you write to represent components need to be
public and have public, 0-argument constructors, so that they can be instantiated by
the framework. (Although Java classes in which you do not define any constructor
will, by default, have a 0-argument constructor that doesn't do anything, a class in
which you have defined at least one constructor does not get a default 0-argument
constructor.)

Collection Processing Engine Developer's Guide 5-110

5.4.1 Developing Collection Readers

A Collection Reader is responsible for obtaining documents from the collection and
returning each document as a CAS. Like all UIMA components, a Collection Reader
consists of two parts – the code and an XML descriptor.

A simple example of a Collection Reader is the "File System Collection Reader,"
which simply reads documents from files in a specified directory. The Java code is in
the class com.ibm.uima.examples.cpe.FileSystemCollectionReader and the XML
descriptor is
%UIMA_HOME%\docs\examples\descriptors\collection_reader\FileSystemCollectionRea
der.xml.

Java Class

The Java class for a Collection Reader must implement the
com.ibm.uima.collection.CollectionReader interface. You may build your Collection
Reader from scratch and implement this interface, or you may extend the
convenience base class com.ibm.uima.collection.CollectionReader_ImplBase.

The convenience base class provides default implementations for many of the
methods defined in the CollectionReader interface, and provides abstract definitions
for those methods that you are required to implement in your new Collection
Reader. Note that if you extend this base class, you do not need to declare that your
new Collection Reader implements the CollectionReader interface.

Eclipse tip – if you are using Eclipse, you can quickly create the boiler plate code
and stubs for all of the required methods by clicking File New Class to bring
up the "New Java Class" dialogue, specifying
com.ibm.uima.collection.CollectionReader_ImplBase as the Superclass, and checking
"Inherited abstract methods" in the section "Which method stubs would you like to
create?", e.g.,

Collection Processing Engine Developer's Guide 5-111

For the rest of this section we will assume that your new Collection Reader extends
the CollectionReader_ImplBase class, and we will show examples from the
com.ibm.uima.examples.cpe.FileSystemCollectionReader. If you must inherit from a
different super class, you must ensure that your Collection Reader implements the
CollectionReader interface – see the JavaDocs for CollectionReader for more details.

Required Methods

The following abstract methods must be implemented:

initialize()

The initialize() method is called by the framework when the Collection Reader is
first created. CollectionReader_ImplBase actually provides a default implementation
of this method (i.e., it is not abstract), so you are not strictly required to implement
this method. However, a typical Collection Reader will implement this method to
obtain parameter values and perform various initialization steps.

In this method, the Collection Reader class can access the values of its configuration
parameters and perform other initialization logic. The example File System
Collection Reader reads its configuration parameters and then builds a list of files in
the specified input directory, as follows:

Collection Processing Engine Developer's Guide 5-112

public void initialize() throws ResourceInitializationException
{
 File directory = new File(
 (String)getConfigParameterValue(PARAM_INPUTDIR));
 mEncoding = (String)getConfigParameterValue(PARAM_ENCODING);
 mDocumentTextXmlTagName = (String)getConfigParameterValue(PARAM_XMLTAG);
 mLanguage = (String)getConfigParameterValue(PARAM_LANGUAGE);
 mCurrentIndex = 0;
 //get list of files (not subdirectories) in the specified directory
 mFiles = new ArrayList();
 File[] files = directory.listFiles();
 for (int i = 0; i < files.length; i++)
 {
 if (!files[i].isDirectory())
 {
 mFiles.add(files[i]);
 }
 }
}

Note: This is the zero-argument version of the initialize method. There is also a
method on the Collection Reader interface called initialize(ResourceSpecifier,
Map) but it is not recommended that you override this method in your code.
That method performs internal initialization steps and then calls the zero-
argument initialize().

hasNext()

The hasNext() method returns whether or not there are any documents remaining to
be read from the collection. The File System Collection Reader's hasNext() method
is very simple. It just checks if there are any more files left to be read:

public boolean hasNext()
{
 return mCurrentIndex < mFiles.size();
}

getNext(CAS)

The getNext() method reads the next document from the collection and populates a
CAS. In the simple case, this amounts to reading the file and calling the CAS's
setDocumentText method. The example File System Collection Reader is slightly
more complex. It first checks for a CAS Initializer. If the CPE includes a CAS
Initializer, the CAS Initializer is used to read the document, and initialize() the
CAS. If the CPE does not include a CAS Initializer, the File System Collection
Reader reads the document and sets the document text in the CAS.

The File System Collection Reader also stores additional metadata about the
document in the CAS. In particular, it sets the document's language in the special
built-in feature structure uima.tcas.DocumentAnnotation (see Chapter 23 CAS
Reference for details about this built-in type) and creates an instance of

Collection Processing Engine Developer's Guide 5-113

com.ibm.uima.examples.SourceDocumentInformation, which stores information about
the document’s source location. This information may be useful to downstream
components such as CAS Consumers. Note that the type system descriptor for this
type can be found in com.ibm.uima.examples.SourceDocumentInformation.xml.

The getNext() method for the File System Collection Reader looks like this:

public void getNext(CAS aCAS) throws IOException, CollectionException
{
 JCas jcas;
 try
 {
 jcas = aCAS.getJCas();
 }
 catch (CASException e)
 {
 throw new CollectionException(e);
 }

 //open input stream to file
 File file = (File)mFiles.get(mCurrentIndex++);
 FileInputStream fis = new FileInputStream(file);
 try
 {
 //if there's a CAS Initializer, call it

 if (getCasInitializer() != null)

 {
 getCasInitializer().initializeCas(fis, aCAS);
 }

 else //No CAS Initializer, so read file and set document
 //text here
 {
 byte[] contents = new byte[(int)file.length()];
 fis.read(contents);
 String text;
 if (mEncoding != null)
 {
 text = new String(contents, mEncoding);
 }
 else
 {
 text = new String(contents);
 }
 //put document in CAS (assume TCAS)
 jcas.setDocumentText(text);
 }
 }
 finally
 {
 if (fis != null)
 fis.close();
 }

Collection Processing Engine Developer's Guide 5-114

 //set language if it was explicitly specified as a
 //configuration parameter
 if (mLanguage != null)
 {
 ((DocumentAnnotation)jcas.getDocumentAnnotationFs())
 .setLanguage(mLanguage);
 }

 //Also store file location information in CAS metadata.
 //This information is critical
 //if CAS Consumers will need to know where the
 //original document contents are located.

 //For example, the Semantic Search CAS Indexer writes this
 //information into the search index that it creates, which allows
 //applications that use the search index to
 //locate the documents that satisfy their semantic queries.

 SourceDocumentInformation srcDocInfo =
 new SourceDocumentInformation(jcas);
 srcDocInfo.setUri(file.getAbsoluteFile().toURL().toString());
 srcDocInfo.setOffsetInSource(0);
 srcDocInfo.setDocumentSize((int)file.length());
 srcDocInfo.addToIndexes();
}

The Collection Reader can create additional annotations in the CAS at this point, in
the same way that annotators create annotations. However, if you are doing
complex initialization of the CAS, it may be better to use a CAS Initializer as
described in Section 5.4.2 .

getProgress()

The Collection Reader is responsible for returning progress information; that is, how
much of the collection has been read thus far and how much remains to be read.
The framework defines progress very generally; the Collection Reader simply
returns an array of Progress objects, where each object contains three fields – the
amount already completed, the total amount (if known), and a unit (e.g. entities
(documents), bytes, or files). The method returns an array so that the Collection
Reader can report progress in multiple different units, if that information is
available. The File System Collection Reader's getProgress() method looks like this:

public Progress[] getProgress()
{
 return new Progress[]{
 new ProgressImpl(mCurrentIndex,mFiles.size(),Progress.ENTITIES)};
}

Collection Processing Engine Developer's Guide 5-115

In this particular example, the total number of files in the collection is known, but
the total size of the collection is not known. As such, a ProgressImpl object for
Progress.ENTITIES is returned, but a ProgressImpl object for Progress.BYTES is not.

close()

The close method is called when the Collection Reader is no longer needed. The
Collection Reader should then release any resources it may be holding. The
FileSystemCollectionReader does not hold resources and so has an empty
implementation of this method:

public void close() throws IOException { }

Optional Methods

The following methods may be implemented:

reconfigure()

This method is called if the Collection Reader's configuration parameters change.

typeSystemInit()

If you are only setting the document text in the CAS, or if you are using the JCas
(recommended, as in the current example), you do not have to implement this
method. If you are directly using the CAS API, this method is used in the same way
as it is used for an annotator – see Chapter 4 Annotator and Analysis Engine
Developer’s Guide for more information.

XML Descriptor

You can use the Component Description Editor to create and / or edit the File
System Collection Reader's descriptor. Here is its descriptor (abbreviated somewhat
to fit on a page), which is very similar to an Analysis Engine descriptor:

<collectionReaderDescription
xmlns="http://uima.watson.ibm.com/resourceSpecifier">
 <frameworkImplementation>com.ibm.uima.java</frameworkImplementation>
 <implementationName>
 com.ibm.uima.util.FileSystemCollectionReader
 </implementationName>
 <processingResourceMetaData>
 <name>File System Collection Reader</name>
 <description>Reads text files from the filesystem</description>
 <version>1.0</version>
 <vendor>IBM</vendor>
 <configurationParameters>
 <configurationParameter>
 <name>InputDirectory</name>
 <description>Directory containing input files</description>

Collection Processing Engine Developer's Guide 5-116

 <type>String</type>
 <multiValued>false</multiValued>
 <mandatory>true</mandatory>
 </configurationParameter>

 <!-- Other Configuration Parameters Omitted -->
 </configurationParameters>

 <configurationParameterSettings>
 <nameValuePair>
 <name>InputDirectory</name>
 <value>
 <string>C:\program files\uima\data</string>
 </value>
 </nameValuePair>
 </configurationParameterSettings>

 <!-- Type System of CASes returned by this Collection Reader -->

 <typeSystemDescription>
 <imports>
 <import
name="com.ibm.uima.examples.SourceDocumentInformation"/>
 </imports>
 </typeSystemDescription>

 <capabilities>
 <capability>
 <inputs/>
 <outputs>
 <type allAnnotatorFeatures="true">
 com.ibm.uima.examples.SourceDocumentInformation
 </type>
 </outputs>
 </capability>
 </capabilities>
 </processingResourceMetaData>
</collectionReaderDescription>

5.4.2 Developing CAS Initializers

Although Collection Readers can directly write to the CAS, it is best that they do so
only for simple cases. If the task of populating the CAS from a raw document is
complex and might be reusable with other data collections, then it is worthwhile to
encapsulate it in a separate CAS Initializer component.

An example where the use of a CAS Initializer is ideal is a scenario where the
documents in the collection contain inline HTML or XML markup. Since Analysis
Engines often ingest plain-text documents with stand-off annotations, it is necessary
to translate the inline HTML or XML markup into this form. For example, an HTML
document with inline <p> and <h1> tags could be translated into a CAS with a plain-
text document and stand-off Paragraph and Heading annotations. Since this HTML
parsing logic could be used regardless of the source of the HTML documents (e.g. a

Collection Processing Engine Developer's Guide 5-117

file system, a web connection, or a relational database), it would be ideal to
implement this using a CAS Initializer that could be plugged-in to multiple
Collection Readers.

A CAS Initializer Java class must implement the interface
com.ibm.uima.collection.CasInitializer, and will also generally extend from the
convenience base class com.ibm.uima.collection.CasInitializer_ImplBase. A CAS
Initializer also must have an XML descriptor, which has the exact same form as a
Collection Reader Descriptor except that the outer tag is
<casInitializerDescription>.

CAS Initializers have optional initialize(), reconfigure(), and typeSystemInit()
methods, which perform the same functions as they do for Collection Readers. The
only required method for a CAS Initializer is initializeCas(Object, CAS). This
method takes the raw document (for example, an InputStream object from which the
document can be read) and a CAS, and populates the CAS from the document.

An example CAS Initializer is implemented by the class com.ibm.uima.examples.cpe.
SimpleXmlCasInitializer. The SimpleXmlCasInitializer shows how a CAS Initializer
can invoke an XML Parser on the raw document. In this very simple example the
only thing extracted from the XML document is the text to be processed. You can
configure the SimpleXmlCasInitializer with the name of an XML tag that contains
the text; it will then filter out the rest of the document.

Here is the implementation of the initializeCas() method for this example:

public void initializeCas(Object aObj, CAS aCAS)
 throws CollectionException, IOException
{
 //build SAX InputSource object from InputStream supplied
 //by the CollectionReader
 InputSource inputSource;
 if (aObj instanceof InputStream)
 {
 inputSource = new InputSource((InputStream)aObj);
 }
 else
 {
 throw new CollectionException(
 CollectionException.INCORRECT_INPUT_TO_CAS_INITIALIZER,
 new Object[]{InputStream.class.getName(),
 Obj.getClass().getName()});
 }
 //create SAX ContentHandler that populates CAS
 SaxHandler handler = new SaxHandler(aCAS);
 //parse
 try
 {
 SAXParser parser = mParserFactory.newSAXParser();

Collection Processing Engine Developer's Guide 5-118

 XMLReader reader = parser.getXMLReader();
 reader.setContentHandler(handler);
 reader.parse(inputSource);
 }
 catch (Exception e)
 {
 throw new CollectionException(e);
 }
}

The SaxHandler class referenced here is an inner class that does the actual work of
extracting the text from the specified XML element. For the full implementation, see
the example code under docs/examples.

To try out the CAS Initializer, use the CPE Configurator GUI as described in section
 10.3 . However, in addition to selecting a Collection Reader, Analysis Engine, and
CAS Consumer as described in that section, also select a CAS Initializer by using the
"Browse" button on the CAS Initializer panel. Browse to the
%UIMA_HOME%/docs/examples/descriptors/cas_initializer directory and select the
SimpleXmlCasInitializer.xml descriptor file. Then, set the "Xml Tag Containing
Text" parameter to the value TEXT. The CPE Configurator should then look like
this:

Collection Processing Engine Developer's Guide 5-119

The SimpleXmlCasInitializer only works with XML documents, so you will need to
change the "Input Directory" parameter of the Collection Reader by clicking the
"Browse" button and selecting the %UIMA_HOME%/docs/examples/data/xml directory.
Then click the play button. Once processing has completed, you can use the XCAS
Annotation Viewer, as described in Chapter 17 , to view the results. Notice that only
the contents of the <TEXT> elements in the original source documents appear in the
analysis results.

It is important to note that CAS Initializers will only work with Collection Readers
that are designed to use them. The Collection Reader needs to call its
getCasInitializer() method to see if a CAS Initializer has been supplied, and call
the CAS Initializer's initializeCas() method, rather than setting up the CAS itself.
Our File System Collection Reader example from section 5.4.1 optionally uses a CAS
Initializer as follows:

//if there is a CAS Initializer, call it
if (getCasInitializer() != null)
{
 getCasInitializer().initializeCas(fis, aCAS);
}
else //No CAS Initializer, so read file and set document text ourselves
{
 ...
}

When you write your own Collection Reader, in the description element of your
Collection Reader's descriptor you should document whether your Collection
Reader supports (or requires) a CAS Initializer, so that users will know how to
configure their CPE properly.

5.4.3 Developing CAS Consumers

A CAS Consumer receives each CAS after it has been analyzed by the Analysis
Engine. CAS Consumers typically do not update the CAS; they typically extract
data from the CAS and persist selected information to aggregate data structures
such as search engine indexes or databases.

A CAS Consumer Java class must implement the interface
com.ibm.uima.collection.CasConsumer, and will also generally extend from the
convenience base class com.ibm.uima.collection.CasConsumer_ImplBase. A CAS
Consumer also must have an XML descriptor, which has the exact same form as a
Collection Reader Descriptor except that the outer tag is <casConsumerDescription>.

CAS Consumers have optional initialize(), reconfigure(), and typeSystemInit()
methods, which perform the same functions as they do for Collection Readers and
CAS Initializers. The only required method for a CAS Consumer is processCas(CAS),

Collection Processing Engine Developer's Guide 5-120

which is where the CAS Consumer does the bulk of its work (i.e., consume the
CAS).

The CasConsumer interface additionally defines batch and collection level processing
methods. The CAS Consumer can implement the batchProcessComplete() method to
perform processing that should occur at the end of each batch of CASes. Similarly,
the CAS Consumer can implement the collectionProcessComplete() method to
perform any collection level processing at the end of the collection.

A very simple example of a CAS Consumer, which writes an XML representation of
the CAS to a file, is the XCAS Writer CAS Consumer. The Java code is in the class
com.ibm.uima.examples.cpe.XCasWriterCasConsumer and the descriptor is in
%UIMA_HOME%\docs\examples\descriptors\cas_consumer\XCasWriterCasConsumer.xml.

Required Methods

When extending the convenience class
com.ibm.uima.collection.CasConsumer_ImplBase, the following abstract methods
must be implemented:

initialize()

The initialize() method is called by the framework when the CAS Consumer is
first created. CasConsumer_ImplBase actually provides a default implementation of
this method (i.e., it is not abstract), so you are not strictly required to implement this
method. However, a typical CAS Consumer will implement this method to obtain
parameter values and perform various initialization steps.

In this method, the CAS Consumer can access the values of its configuration
parameters and perform other initialization logic. The example XCAS Writer CAS
Consumer reads its configuration parameters and sets up the output directory:

public void initialize() throws ResourceInitializationException
{
 mDocNum = 0;
 mOutputDir = new File((String)getConfigParameterValue(PARAM_OUTPUTDIR));
 if (!mOutputDir.exists()) {
 mOutputDir.mkdirs();
 }
}

processCas()

The processCas() method is where the CAS Consumer does most of its work. In our
example, the XCAS Writer CAS Consumer obtains an iterator over the document
metadata in the CAS (in the SourceDocumentInformation feature structure, which is
created by the File System Collection Reader) and extracts the URI for the current

Collection Processing Engine Developer's Guide 5-121

document. From this the output filename is constructed in the output directory and
a subroutine (writeXCas) is called to generate the output file. The writeXCas
subroutine uses the XCASSerializer class provided with the UIMA SDK to serialize
the CAS to the output file (see the example source code for details).

public void processCas(CAS aCAS) throws ResourceProcessException
{
 JCas jcas;
 try {
 jcas = aCAS.getJCas();
 }
 catch (CASException e) {
 throw new ResourceProcessException(e);
 }

 // retrieve the filename of the input file from the CAS

 FSIterator it = jcas.getJFSIndexRepository().
 getAnnotationIndex(
 SourceDocumentInformation.type).iterator();
 File outFile = null;
 if (it.hasNext()) {
 SourceDocumentInformation fileLoc =
 (SourceDocumentInformation)it.next();
 File inFile;
 try {
 inFile = new File(new URL(fileLoc.getUIR()).getPath());
 outFile = new File(mOutputDir, inFile.getName());
 } catch (MalformedURLException e1) {
 // invalid URL, use default processing below
 }
 }
 if (null == outFile) {
 outFile = new File(mOutputDir, "doc"+ mDocNum++);
 }
 // serialize XCAS and write to output file
 try {
 writeXCas(jcas.getCas(), outFile);
 }
 catch (IOException e) {
 throw new ResourceProcessException(e);
 }
 catch (SAXException e) {
 throw new ResourceProcessException(e);
 }
}

Optional Methods

The following methods are optional in a CAS Consumer, though they are often
used.

Collection Processing Engine Developer's Guide 5-122

batchProcessComplete()

The framework calls the batchProcessComplete() method at the end of each batch of
CASes. This gives the CAS Consumer an opportunity to perform any batch level
processing. Our simple XCAS Writer CAS Consumer does not perform any batch
level processing, so this method is empty. Batch size is set in the Collection
Processing Engine descriptor.

collectionProcessComplete()

The framework calls the collectionProcessComplete() method at the end of the
collection (i.e., when all objects in the collection have been processed). At this point
in time, no CAS is passed in as a parameter. This gives the CAS Consumer an
opportunity to perform collection processing over the entire set of objects in the
collection. Our simple XCAS Writer CAS Consumer does not perform any
collection level processing, so this method is empty.

5.5 Deploying a CPE

The CPM provides a number of service and deployment options that cover
instantiation and execution of CPEs, error recovery, and local and distributed
deployment of the CPE components. The behavior of the CPM (and
correspondingly, the CPE) is controlled by various options and parameters set in the
CPE descriptor. The current version of the CPE Configurator tool, however,
supports only default error handling and deployment options. To change these
options, you must manually edit the CPE descriptor – a potentially error prone task.

Eventually the CPE Configurator tool will support configuring these options and a
detailed tutorial for these settings will be provided. In the meantime, we provide
only a high-level, conceptual overview of these advanced features in the rest of this
chapter, and refer the advanced user to Chapter 21 Collection Processing Engine
Descriptor Reference for details on setting these options in the CPE Descriptor.

Figure 13 shows a logical view of how an application uses the UIMA framework to
instantiate a CPE from a CPE descriptor. The CPE descriptor identifies the CPE
components (referencing their corresponding descriptors) and specifies the various
options for configuring the CPM and deploying the CPE components.

Collection Processing Engine Developer's Guide 5-123

Collection Processing Engine

CPE
Components

UIMA

C
P
E

F
A
C
T
O
R
Y

Collection Processing Manager
• Distributed Workflow Management
• CAS Management, Batching
• Statistics Collection
• Error Handling
• Resource Pooling
• Failure Recovery

CPE Interface: start, restart, stop, end of batch
get stats, get error reports

CPE
Descriptor
CPE
Descriptor

Collection
Reader

Analysis
Engines

Analysis
EnginesAnalysis

Engines

Analysis
Engines

Analysis
EnginesCAS

Consumers

A
P
P
L
I
C
A
T
I
O
N

APPLICATION

Source
Structured

Results

Developer

UIMA Framework

Legend
Developer

UIMA Framework

Legend

Figure 13 CPE instantiation

There are three deployment modes for CAS Processors (Analysis Engines and CAS
Consumers) in a CPE:

1. Integrated (runs in the same Java instance as the CPM)

2. Managed (runs in a separate process on the same machine), and

3. Non-managed (runs in a separate process, perhaps on a different machine).

An integrated CAS Processor runs in the same JVM as the CPE. A managed CAS
Processor runs in a separate process from the CPE, but still on the same computer.
The CPE controls startup, shutdown, and recovery of a managed CAS Processor. A
non-managed CAS Processor runs as a service and may be on the same computer as
the CPE or on a remote computer. A non-managed CAS Processor service is started
and managed independently from the CPE.

For both managed and non-managed CAS Processors, the CAS must be transmitted
between separate processes and possibly between separate computers. This is
accomplished using Vinci, a communication protocol used by the CPM that ships
with the UIMA SDK. Vinci handles service naming and location and data transport
(see 6.6.2 How to Deploy a UIMA Component as a Vinci Service for more
information). Service naming and location are provided by a Vinci Naming Service,
or VNS. For managed CAS Processors, the CPE uses its own internal VNS. For non-
managed CAS Processors, a separate VNS must be running.

Collection Processing Engine Developer's Guide 5-124

Note: The UIMA SDK also supports using unmanaged remote services via the
web-standard SOAP communications protocol (see How to Deploy a UIMA
Component as a SOAP Web Service on page 6-148). This approach is based on a
proxy implementation, where the proxy is essentially running in an integrated
mode. To use this approach with the CPM, use the Integrated mode, with the
component being an Aggregate which, in turn, connects to a remote service.

The CPE Configurator tool currently only supports constructing CPEs that deploy
CAS Processors in integrated mode. To deploy CAS Processors in any other mode,
the CPE descriptor must be edited by hand (better tooling support is being worked
on). Details on the CPE descriptor and the required settings for various CAS
Processor deployment modes can be found in Chapter 21 Collection Processing
Engine Descriptor Reference. In the following sections we merely summarize the
various CAS Processor deployment options.

5.5.1 Deploying Managed CAS Processors

Managed CAS Processor deployment is shown in Figure 14. A managed CAS
Processor is deployed by the CPE as a Vinci service. The CPE manages the lifecycle
of the CAS Processor including service launch, restart on failures, and service
shutdown. A managed CAS Processor runs on the same machine as the CPE, but in
a separate process. This provides the necessary fault isolation for the CPE to protect
it from non-robust CAS Processors. A fatal failure of a managed CAS Processor
does not threaten the stability of the CPE.

Figure 14 CPE with managed CAS Processors

The CPE communicates with managed CAS Processors using the Vinci
communication protocol. A CAS Processor is launched as a Vinci service and its
process() method is invoked remotely via a Vinci command. The CPE uses its own

Computer

CAS

JVM
CPM

VNS CAS
Processor

CAS
Processor

CAS
Processor

CAS
Processor

CAS
Processor

CAS
Processor

manage

Vinci service interface

register

Collection Processing Engine Developer's Guide 5-125

internal VNS to support managed CAS processors. The VNS, by default, listens on
port 9005. If this port is not available, the VNS will increment its listen port until it
finds one that is available. All managed CAS Processors are internally configured to
"talk" to the CPE managed VNS. This internal VNS is transparent to the end user
launching the CPE.

To deploy a managed CAS Processor, the CPE deployer must change the CPE
descriptor. The following is a section from the CPE descriptor that shows an
example configuration specifying a managed CAS Processor.

<casProcessor deployment="local" name="Meeting Detector TAE">
 <descriptor>
 <include href="deploy/vinci/Deploy_MeetingDetectorTAE.xml"/>
 </descriptor>
 <runInSeparateProcess>
 <exec dir="." executable="java">
 <env key="CLASSPATH"
value="src;C:/Program Files/IBM/uima/lib/uima_core.jar;C:/Program
Files/IBM/uima/lib/uima_cpe.jar;C:/Program
Files/IBM/uima/lib/uima_examples.jar;C:/Program
Files/IBM/uima/lib/uima_adapter_vinci.jar;C:/Program
Files/IBM/uima/lib/uima_jcas_builtin_types.jar;C:/Program
Files/IBM/uima/lib/vinci/jVinci.jar;C:/Program
Files/IBM/uima/lib/xml.jar"/>
 <arg>-DLOG=C:/Temp/service.log</arg>
 <arg>com.ibm.uima.reference_impl.collection.
 service.vinci.VinciCasObjectProcessorService_impl</arg>
 <arg>${descriptor}</arg>
 </exec>
 </runInSeparateProcess>
 <deploymentParameters/>
 <filter/>
 <errorHandling>
 <errorRateThreshold action="terminate" value="1/100"/>
 <maxConsecutiveRestarts action="terminate" value="3"/>
 <timeout max="100000"/>
 </errorHandling>
 <checkpoint batch="10000"/>
</casProcessor>

See Chapter 21 Collection Processing Engine Descriptor Reference on page 21-293
for details and required settings.

5.5.2 Deploying Non-managed CAS Processors

Non-managed CAS Processor deployment is shown in Figure 15. In non-managed
mode, the CPE supports connectivity to CAS Processors running on local or remote
computers using Vinci. Non-managed processors are different from managed
processors in two aspects:

1. Non-managed processors are neither started nor stopped by the CPE.

Collection Processing Engine Developer's Guide 5-126

2. Non-managed processors use an independent VNS, also neither started nor
stopped by the CPE.

Figure 15 CPE with non-managed CAS Processors

While non-managed CAS Processors provide the same level of fault isolation and
robustness as managed CAS Processors, error recovery support for non-managed
CAS Processors is much more limited. In particular, the CPE cannot restart a non-
managed CAS Processor after an error.

Non-managed CAS Processors also require a separate Vinci Naming Service
running on the network. This VNS must be manually started and monitored by the
end user or application. Instructions for running a VNS can be found in section 6.6.5
Starting VNS, on page 6-154.

To deploy a non-managed CAS Processor, the CPE deployer must change the CPE
descriptor. The following is a section from the CPE descriptor that shows an
example configuration for the non-managed CAS Processor.

<casProcessor deployment="remote" name="Meeting Detector TAE">
 <descriptor>
 <include href=
"descriptors/vinciService/MeetingDetectorVinciService.xml"/>
 </descriptor>
 <deploymentParameters/>
 <filter/>
 <errorHandling>
 <errorRateThreshold action="terminate" value="1/100"/>

Computer

Computer

VNS

Computer

VNS

Computer

CAS
Processor

Computer

CAS
Processor

Computer

CAS
Processor

Computer

CAS
Processor

Computer

CAS
Processor

Computer

CAS
Processor

Computer

CAS
Processor

CAS

JVM

CPM

JVM

CPM

Vinci service
interface

CAS
Processor

CAS
Processor

register

register

Collection Processing Engine Developer's Guide 5-127

 <maxConsecutiveRestarts action="terminate" value="3"/>
 <timeout max="100000"/>
 </errorHandling>
 <checkpoint batch="10000"/>
</casProcessor>

See Chapter 21 Collection Processing Engine Descriptor Reference on page 21-293
for details and required settings.

5.5.3 Deploying Integrated CAS Processors

Integrated CAS Processors are shown in Figure 16. Here the CAS Processors run in
the same JVM as the CPE, just like the Collection Reader and CAS Initializer. This
deployment method results in minimal CAS communication and transport
overhead as the CAS is shared in the same process space of the JVM. However, a
CPE running with all integrated CAS Processors is limited in scalability by the
capability of the single computer on which the CPE is running. There is also a
stability risk associated with integrated processors because a poorly written CAS
Processor can cause the JVM, and hence the entire CPE, to abort.

Figure 16 CPE with integrated CAS Processor

The following is a section from a CPE descriptor that shows an example
configuration for the integrated CAS Processor.

<casProcessor deployment="integrated" name="Meeting Detector TAE">
 <descriptor>
 <include href="descriptors/tutorial/ex4/MeetingDetectorTAE.xml"/>
 </descriptor>
 <deploymentParameters/>

Computer

JVM

CPM CAS
ProcessorCAS

ProcessorCAS
Processor

CAS

Collection Processing Engine Developer's Guide 5-128

 <filter/>
 <errorHandling>
 <errorRateThreshold action="terminate" value="100/1000"/>
 <maxConsecutiveRestarts action="terminate" value="30"/>
 <timeout max="100000"/>
 </errorHandling>
 <checkpoint batch="10000"/>
</casProcessor>

See Chapter 21 Collection Processing Engine Descriptor Reference on page 21-293
for details and required settings.

5.6 Collection Processing Examples

The UIMA SDK includes a set of examples illustrating the three modes of
deployment, integrated, managed, and non-managed. These are in the
/docs/examples/descriptors/collection_processing_engine directory. There are
three CPE descriptors that run an example annotator (the Meeting Finder) in these
modes.

To run either the integrated or managed examples, use the runCPE script in the /bin
directory of the UIMA installation, passing the appropriate CPE descriptor as an
argument.

Note: The runCPE script must be run from the %UIMA_HOME%\docs\examples
directory, because it uses relative path names that are resolved relative to this
working directory. For instance,

runCPE descriptors\collection_processing_engine\MeetingFinderCPE_Integrated.xml

If you installed the examples into Eclipse, you can run directly from Eclipse by
creating a run configuration. To do this, highlight the SimpleRunCPE.java source
file in the examples src/com/ibm/uima/examples/cpe directory, and then

1. pick the menu Run -> Run... Select

2. click "Java Application" and press "New"

3. click on the Arguments panel, and insert a path to the appropriate CPE
descriptor in the "Program Arguments" box by typing, for instance:
descriptors/collection_processing_engine/MeetingFinderCPE_Integrated.xml

4. Then press "Run"

To run the non-managed example, there are some additional steps.

1. Start a VNS service by running the startVNS script in the /bin directory.

Collection Processing Engine Developer's Guide 5-129

2. Deploy the Meeting Detector Analysis Engine as a Vinci service, by running the
startVinceService script in the /bin directory, and passing it the location of the
descriptor to deploy, in this case
%UIMA_HOME%/docs/examples/deploy/vinci/Deploy_MeetingDetectorTAE.xml

3. Now, run the runCPE script, passing it the CPE for the non-managed version
(%UIMA_HOME%/docs/examples/descriptors/collection_processing_engine/Meeting
FinderCPE_NonManaged.xml).

This assumes that the Vinci Naming Service, the runCPE application, and the
MeetingDetectorTAE service are all running on the same machine. Most of the scripts
that need information about VNS will look for values to use in environment
variables VNS_HOST and VNS_PORT; these default to "localhost" and "9000". You
may set these to appropriate values before running the scripts, as needed.

Alternatively, you can edit the scripts and/or the XML files top specify alternatives
for the VNS_HOST and VNS_PORT. For instance, if the runCPE application is
running on a different machine from the Vinci Naming Service, you can edit the
MeetingFinderCPE_NonManaged.xml and change the vnsHost parameter:

<parameter name="vnsHost" value="localhost" type="string"/>

to specify the VNS host instead of "localhost". Another example: if the
MeetingDetectorTAE service is deployed on a different machine from the Vinci
Naming Service, you can edit the the startVinciService script and specify where to
find the Vinci Naming Service: -DVNS_HOST=<your VNS hostname>.

Application Developer's Guide 6-131

Chapter 6 Application Developer’s Guide

This chapter describes how to develop an application using the Unstructured
Information Management Architecture (UIMA). The term application describes a
program that provides end-user functionality. A UIMA application incorporates
one or more UIMA components such as Analysis Engines, Collection Processing
Engines, a Search Engine, and/or a Document Store and adds application-specific
logic and user interfaces.

6.1 The UIMAFramework Class

An application developer's starting point for accessing UIMA framework
functionality is the com.ibm.uima.UIMAFramework class. The following is a short
introduction to some important methods on this class. Several of these methods are
used in examples in the rest of this chapter. For more details, see the JavaDocs (in
the docs/api directory of the UIMA SDK).

• UIMAFramework.getXMLParser(): Returns an instance of the UIMA XML
Parser class, which then can be used to parse the various types of UIMA
component descriptors. Examples of this can be found in the remainder of this
chapter.

• UIMAFramework.produceXXX(ResourceSpecifier): There are various produce
methods that are used to create different types of UIMA components from their
descriptors. The argument type, ResourceSpecifier, is the base interface that
subsumes all types of component descriptors in UIMA. You can get a
ResourceSpecifier from the XMLParser. Examples of produce methods are:
− produceAnalysisEngine
− produceCasConsumer
− produceCasInitializer
− produceCollectionProcessingEngine
− produceCollectionReader
− produceTAE

There are other variations of each of these methods that take additional,
optional arguments. See the JavaDocs for details.

• UIMAFramework.getLogger(<optional-logger-name>): Gets a reference to the
UIMA Logger, to which you can write log messages. If no logger name is
passed, the name of the returned logger instance is "com.ibm.uima".

• UIMAFramework.getVersionString(): Gets the number of the UIMA version
you are using.

Application Developer's Guide 6-132

• UIMAFramework.newDefaultResourceManager(): Gets an instance of the
UIMA ResourceManager. The key method on ResourceManager is setDataPath,
which allows you to specify the location where UIMA components will go to
look for their external resource files. Once you've obtained and initialized a
ResourceManager, you can pass it to any of the produceXXX methods.

6.2 Using Analysis Engines

This section describes how to add analysis capability to your application by using
Analysis Engines developed using the UIMA SDK. An Analysis Engine (AE) is a
component that analyzes artifacts (e.g. documents) and infers information about
them. A TAE is a specialization of an Analysis Engine that analyzes artifacts, such
as a text document. The examples in this chapter primarily discuss TAEs, as this has
been the most common use of the SDK.

TAE formerly was an acronym for Text Analysis Engine. Today, the TAE can be
used for text, but also for other kinds of artifacts to be analyzed. Some of the XML
elements for TAEs are still tagged with the textAnalysisEngine name, but you
should think of this now as more generally applying to the analysis of arbitrary
artifacts. This is more fully described in Chapter 7 Developing Applications using
Multiple Subjects of Analysis on page 7-158.

An Analysis Engine consists of two parts - Java classes (typically packaged as one or
more JAR files) and AE descriptors (one or more XML files). You must put the Java
classes in your application’s class path, but thereafter you will not need to directly
interact with them. The UIMA framework insulates you from this by providing
standard AnalysisEngine and TextAnalysisEngine interfaces.

The AE descriptor XML files contain the configuration settings for the Analysis
Engine as well as a description of the AE’s input and output requirements. You
may need to edit these files in order to configure the AE appropriately for your
application - the supplier of the AE may have provided documentation (or
comments in the XML descriptor itself) about how to do this.

6.2.1 Instantiating an Analysis Engine

The following code shows how to instantiate a TAE from its XML descriptor:

{
 //get Resource Specifier from XML file or PEAR
 XMLInputSource in = new XMLInputSource("MyDescriptor.xml");
 ResourceSpecifier specifier =
 UIMAFramework.getXMLParser().parseResourceSpecifier(in);

Application Developer's Guide 6-133

 //create TAE here
 TextAnalysisEngine tae =
 UIMAFramework.produceTAE(specifier);
}

Creating a generic Analysis Engine (which may process something other than text
documents) is similar: just replace TextAnalysisEngine with AnalysisEngine and
produceTAE with produceAnalysisEngine.

The first two lines parse the XML descriptor (for AEs with multiple descriptor files,
one of them is the "main" descriptor - the AE documentation should indicate which
it is). The result of the parse is a ResourceSpecifier object. The third line of code
invokes a static factory method UIMAFramework.produceTAE, which takes the specifier
and instantiates a TextAnalysisEngine object.

There is one caveat to using this approach - the Analysis Engine instance that you
create will not support multiple threads running through it concurrently. If you
need to support this, see section 6.2.6 .

6.2.2 Analyzing Text Documents

There are two ways to use the TAE interface to analyze documents. You can either
use the JCas interface, which is described in detail by Chapter 24 JCas Reference or
you can directly use the TCAS interface, which is described in detail in Chapter 23
CAS Reference. Besides text documents, other kinds of artifacts can also be analyzed;
see Chapter 7 Developing Applications using Multiple Subjects of Analysis on page
7-158 for more information.

The basic structure of your application will look similar in both cases:

Using the JCas

{
 //create a JCas
 JCas jcas = tae.newJCas();

 //analyze a document
 jcas.setDocumentText(doc1text);
 tae.process(jcas);
 doSomethingWithResults(jcas);
 jcas.reset();

 //analyze another document
 jcas.setDocumentText(doc2text);
 tae.process(jcas);
 doSomethingWithResults(jcas);
 jcas.reset();
 ...
 //done

Application Developer's Guide 6-134

 tae.destroy();
}

Using the TCAS

{
 //create a TCAS
 TCAS tcas = tae.newTCAS();

 //analyze a document
 tcas.setDocumentText(doc1text);
 tae.process(tcas);
 doSomethingWithResults(tcas);
 tcas.reset();

 //analyze another document
 tcas.setDocumentText(doc2text);
 tae.process(tcas);
 doSomethingWithResults(tcas);
 tcas.reset();
 ...
 //done
 tae.destroy();
}

First, you create the TCAS or JCas that you will use. Then, you repeat the following
four steps for each document:

• Put the document text into the TCAS or JCas.

• Call the TAE's process method, passing the TCAS or JCas as an argument

• Do something with the results that the TAE has added to the TCAS or JCas

• Call the TCAS's or JCas's reset() method to prepare for another analysis

6.2.3 Analyzing Non-Text Artifacts

Analyzing non-text artifacts is similar to analyzing text documents. The main
difference is that instead of using the setDocumentText method, you need to use the
Sofa APIs to create an artifact plus (perhaps multiple) views of it – each view
corresponding to a particular TCAS. See the section Sofas and TCAS Views on page
7-162 for details.

6.2.4 Accessing Analysis Results using the JCas

See:

• Chapter 4.1.3 Developing Your Annotator Code

• Chapter 24 JCas Reference

• The source code for com.ibm.uima.examples.AnnotationFilter, which is in
docs\examples\src.

Application Developer's Guide 6-135

• The JavaDocs for com.ibm.uima.jcas.impl.JCas.

6.2.5 Accessing Analysis Results using the CAS

See:

• Chapter 23 CAS Reference

• The source code for com.ibm.uima.examples.PrintAnnotations, which is in
docs\examples\src.

• The JavaDocs for the com.ibm.uima.cas and com.ibm.uima.cas.text packages.

6.2.6 Multi-threaded Applications

The simplest way to use an AE in a multi-threaded environment is to use the Java
synchronized keyword to ensure that only one thread is using an AE at any given
time. For example:

public class MyApplication
{
 private AnalysisEngine mAnalysisEngine;
 private CAS mTCAS;

 public MyApplication()
 {
 //get Resource Specifier from XML file or PEAR
 XMLInputSource in = new XMLInputSource("MyDescriptor.xml");
 ResourceSpecifier specifier =
 UIMAFramework.getXMLParser().parseResourceSpecifier(in);

 //create Analysis Engine here
 mAnalysisEngine = UIMAFramework.produceAnalysisEngine(specifier);
 mTCAS = mAnalysisEngine.newTCAS();
 }

 // Assume some other part of your multi-threaded application could
 // call "analyzeDocument" on different threads, asynchronusly

 public synchronized void analyzeDocument(String aDoc)
 {
 //analyze a document
 mTCAS.setDocumentText(aDoc);
 mTAE.process();
 doSomethingWithResults(mTCAS);
 mTCAS.reset();
 }
 ...
}

Without the synchronized keyword, this application would not be thread-safe. If
multiple threads called the analyzeDocument method simultaneously, they would
both use the same CAS and clobber each others' results. The synchronized keyword

Application Developer's Guide 6-136

ensures that no more than one thread is executing this method at any given time.
For more information on thread synchronization in Java, see
http://java.sun.com/docs/books/tutorial/essential/threads/multithreaded.html.

The synchronized keyword ensures thread-safety, but does not allow you to process
more than one document at a time. If you need to process multiple documents
simultaneously (for example, to make use of a multiprocessor machine), you’ll need
to use more than one CAS instance.

Because CAS instances use memory and can take some time to construct, you don't
want to create a new CAS instance for each request. Instead, you should use a
feature of the UIMA SDK called the TCAS Pool. The TCAS pool class is
com.ibm.uima.util.TCasPool. (Note: there are also CasPool and JCasPool classes.
Use the CasPool when you have multiple Sofas; the JCasPool is a convenience for
the common case of a single Sofas with JCas.)

A TCAS Pool contains some number of TCAS instances (you specify how many
when you create the pool). When a thread wants to use a TCAS, it checks out an
instance from the pool. When the thread is done using the TCAS, it must release the
TCAS instance back into the pool. If all instances are checked out, additional
threads will block and wait for an instance to become available. Here is some
example code:

public class MyApplication
{
 private TCasPool mTCasPool;
 public MyApplication()
 {
 //get Resource Specifier from XML file or PEAR
 XMLInputSource in = new XMLInputSource("MyDescriptor.xml");
 ResourceSpecifier specifier =
 UIMAFramework.getXMLParser().parseResourceSpecifier(in);

 //create multithreadable TAE that will
 //accept 3 simultaneous requests
 mTAE = UIMAFramework.produceTAE(specifier,3);

 //create CAS pool with 3 CAS instances
 mTCasPool = new TCasPool(mTAE,3);
 }

 public void analyzeDocument(String aDoc)
 {
 //check out a CAS instance (argument 0 means no timeout)
 TCAS tcas = mTCasPool.getTCas(0);
 try
 {
 //analyze a document
 tcas.setDocumentText(aDoc);
 mTAE.process(tcas);

http://java.sun.com/docs/books/tutorial/essential/threads/multithreaded.html

Application Developer's Guide 6-137

 doSomethingWithResults(tcas);
 }
 finally
 {
 //MAKE SURE we release the CAS instance
 mTCasPool.releaseTCas(tcas);
 }
 }
 ...
}

There is not much more code required here than in the previous example. First,
there is one additional parameter to the TextAnalysisEngine producer, specifying
the number of annotator instances to create3. Then, instead of creating a single
TCAS in the constructor, we now create a TCasPool containing 3 instances. In the
analyze method, we check out a CAS, use it, and then release it.

Note: Frequently, the two numbers (number of CASes, and the number of
TAEs) will be the same. It would not make sense to have the number of CASes
less than the number of TAEs – the extra TAE instances would always block
waiting for a CAS from the pool. It could make sense to have additional CASes,
though – if you had other multi-threaded processes that were using the CASes,
other than the TAEs.

Note the use of the try...finally block. This is very important, as it ensures that the
TCAS we have checked out will be released back into the pool, even if the analysis
code throws an exception. You should always use try...finally when using the TCAS
pool; if you do not, you risk exhausting the pool and causing deadlock.

The parameter 0 passed to the TCasPool.getTCas() method is a timeout value. If this
is set to a positive integer, it is the maximum number of milliseconds that the thread
will wait for an instance to become available in the pool. If this time elapses, the
getTCas method will return null, and the application can do something intelligent,
like ask the user to try again later. A value of 0 will cause the thread to wait forever.

6.2.7 Using Multiple Analysis Engines (and creating shared
CASes)

In most cases, the easiest way to use multiple Analysis Engines from within an
application is to combine them into an aggregate AE. For instructions, see section
 4.3 Building Aggregate Analysis Engines. Be sure that you understand this method
before deciding to use the more advanced feature described in this section.

3 Both the UIMA Collection Processing Manager framework and the remote deployment services
framekwork have implementations which use CAS pools in this manner, and thereby relieve the
annotator developer of the necessity to make their annotators thread-safe.

Application Developer's Guide 6-138

If you decide that your application does need to instantiate multiple AEs and have
those AEs share a single CAS, then you will no longer be able to use the
AnalysisEngine.newCAS()method (or the newTCAS() or newJCas() variants) to create
your CAS. This is because these methods create a CAS with a data model specific to
a single AE and which therefore cannot be shared by other AEs. Instead, you create
a CAS as follows:

Suppose you have two analysis engines, and one CAS Consumer, and you want to
create one type system from the merge of all of their type specifications. Then you
can do the following:

AnalysisEngineDescription aeDesc1 =
 UIMAFramework.getXMLParser().parseAnalysisEngineDescription(...);

AnalysisEngineDescription aeDesc2 =
 UIMAFramework.getXMLParser().parseAnalysisEngineDescription(...);

CasConsumerDescription ccDesc =
 UIMAFramework.getXMLParser().parseCasConsumerDescription(...);

List list = new ArrayList();

list.add(aeDesc1);
list.add(aeDesc2);
list.add(ccDesc);

CAS cas = CasCreationUtils.createCas(list); // (OR)

TCAS tcas = CasCreationUtils.createTCas(list); // (OR)

JCas jcas = CasCreationUtils.createTCas(list).getJCas();

The CasCreationUtils class takes care of the work of merging the AEs' type systems
and producing a CAS for the combined type system. If the type systems are not
compatible, an exception will be thrown.

6.2.8 Saving CASes to file systems

The UIMA framework provides APIs to save and restore the contents of a CAS to
streams. The CASes are stored in an XML format (called XCAS). To save an XCAS
representation of a CAS, use the method XCASSerializer.serialize; see the JavaDocs
for details. XCASes can be read back in, using the XCASDeserializer.deserialize
method. These methods deserialize into a pre-existing CAS, which you must create
ahead of time, pre set up with the proper type system. See the JavaDocs for details.

6.3 Using Collection Processing Engines

A Collection Processing Engine (CPE) processes collections of artifacts (documents)
through the combination of the following components: a Collection Reader, an
optional CAS Initializer, Analysis Engines, and CAS Consumers. Collection
Processing Engines and their components are described in Chapter 5 Collection
Processing Engine Developer's Guide.

Application Developer's Guide 6-139

Like Analysis Engines, CPEs consist of a set of Java classes and a set of descriptors.
You need to make sure the Java classes are in your classpath, but otherwise you only
deal with descriptors.

6.3.1 Running a CPE from a Descriptor

Section 5.3 Running a CPE from Your Own Java Application on page 5-109
describes how to use the APIs to read a CPE descriptor and run it from an
application.

6.3.2 Configuring a CPE Descriptor Programmatically

For the finest level of control over the CPE descriptor settings, the CPE offers
programmatic access to the descriptor via an API. With this API, a developer can
create a complete descriptor and then save the result to a file. This also can be used
to read in a descriptor (using XMLParser.parseCpeDescription as shown in the
previous section), modify it, and write it back out again. The CPE Descriptor API
allows a developer to redefine default behavior related to error handling for each
component, turn-on check-pointing, change performance characteristics of the CPE,
and plug-in a custom timer.

Below is some example code that illustrates how this works. See the JavaDocs for
package com.ibm.uima.collection.metadata for more details.

//Creates descriptor with default settings
CpeDescription cpe = CpeDescriptorFactory.produceDescriptor();

//Add CollectionReader
cpe.addCollectionReader([descriptor]);

//Add CasInitializer
cpe.addCasInitializer(<cas initializer descriptor>);

// Provide the number of CASes the CPE will use

cpe.setCasPoolsSize(2);

// Define and add Analysis Engine
CpeIntegratedCasProcessor personTitleProcessor =
 CpeDescriptorFactory.produceCasProcessor ("Person");

// Provide descriptor for the Analysis Engine
personTitleProcessor.setDescriptor([descriptor]);

//Continue, despite errors and skip bad Cas
personTitleProcessor.setActionOnMaxError("terminate");

//Increase amount of time in ms the CPE waits for response
//from this Analysis Engine
personTitleProcessor.setTimeout(100000);

//Add Analysis Engine to the descriptor
cpe.addCasProcessor(personTitleProcessor);

Application Developer's Guide 6-140

// Define and add CAS Consumer
CpeIntegratedCasProcessor consumerProcessor =
CpeDescriptorFactory.produceCasProcessor("Printer");
consumerProcessor.setDescriptor([descriptor]);

//Define batch size
consumerProcessor.setBatchSize(100);

//Terminate CPE on max errors
personTitleProcessor.setActionOnMaxError("terminate");

//Add CAS Consumer to the descriptor
cpe.addCasProcessor(consumerProcessor);

// Add Checkpoint file and define checkpoint frequency (ms)
cpe.setCheckpoint("[path]/checkpoint.dat", 3000);

// Plug in custom timer class used for timing events
cpe.setTimer("com.ibm.uima.reference_impl.util.JavaTimer");

// Define number of documents to process
cpe.setNumToProcess(1000);

// Dump the descriptor to the System.out
((CpeDescriptionImpl)cpe).toXML(System.out);

The CPE descriptor for the above configuration looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<cpeDescription>
 <collectionReader>
 <collectionIterator>
 <descriptor>
 <include href="[descriptor]"/>
 </descriptor>
 <configurationParameterSettings>...</configurationParameterSettings>
 </collectionIterator>

 <casInitializer>
 <descriptor>
 <include href="[descriptor]"/>
 </descriptor>
 <configurationParameterSettings>...</configurationParameterSettings>
 </casInitializer>
 </collectionReader>

 <casProcessors casPoolSize="3"
 processingUnitThreadCount="1">

 <casProcessor deployment="integrated" name="Person">
 <descriptor>
 <include href="[descriptor]"/>
 </descriptor>
 <deploymentParameters/>
 <filter/>
 <errorHandling>
 <errorRateThreshold action="terminate"

Application Developer's Guide 6-141

 value="100/1000"/>
 <maxConsecutiveRestarts action="terminate"
 value="30"/>
 <timeout max="100000"/>
 </errorHandling>
 <checkpoint batch="1" time="10000"/>
 </casProcessor>

 <casProcessor deployment="integrated" name="Printer">
 <descriptor>
 <include href="[descriptor]"/>
 </descriptor>
 <deploymentParameters/>
 <filter/>
 <errorHandling>
 <errorRateThreshold action="terminate"
 value="100/1000"/>
 <maxConsecutiveRestarts action="terminate"
 value="30"/>
 <timeout max="100000"/>
 </errorHandling>
 <checkpoint batch="100"/>
 </casProcessor>
 </casProcessors>

 <cpeConfig>
 <numToProcess>1000</numToProcess>
 <deployAs>immediate</deployAs>
 <checkpoint file="[path]/checkpoint.dat" time="3000"/>
 <timerImpl>
 com.ibm.uima.reference_impl.util.JavaTimer</timerImpl>
 </cpeConfig>
</cpeDescription>

6.4 Setting Configuration Parameters

Configuration parameters can be set using APIs as well as configured using the
XML descriptor metadata specification (see Configuration Parameters on page 4-
65).

There are two different places you can set the parameters via the APIs.

• After reading the XML descriptor for a component, but before you produce the
component itself, and

• After the component has been produced.

Setting the parameters before you produce the component is done using the
ConfigurationParameterSettings object. You get an instance of this for a particular
component by accessing that component description's metadata. For instance, if you
produced a component description by using
UIMAFramework.getXMLParser().parse... method, you can use that component
description's getMetaData() method to get the metadata, and then the metadata's

Application Developer's Guide 6-142

getConfigurationParameterSettings method to get the
ConfigurationParameterSettings object. Using that object, you can set individual
parameters using the setParameterValue method. Here's an example, for a CAS
Consumer component:

// Create a description object by reading the XML for the descriptor

CasConsumerDescription casConsumerDesc =
UIMAFramework.getXMLParser().parseCasConsumerDescription(new
XMLInputSource("descriptors/cas_consumer/InlineXmlCasConsumer.xml"));

// get the settings from the metadata
ConfigurationParameterSettings consumerParamSettings
=casConsumerDesc.getMetaData().getConfigurationParameterSettings();

// Set a parameter value
consumerParamSettings.setParameterValue(InlineXmlCasConsumer.PARAM_OUTPUTDIR,
outputDir.getAbsolutePath());

Then you might produce this component using:

CasConsumer component = UIMAFramework.produceCasConsumer(casConsumerDesc);

A side effect of producing a component is calling the component's "initialize"
method, allowing it to read its configuration parameters. If you want to change
parameters after this, use

component.setConfigParameterValue("<parameter-name>", "<parameter-value>");

and then signal the component to re-read its configuration by calling the
component's reconfigure method:

component.reconfigure();

Although these examples are for a CAS Consumer component, the parameter APIs
also work for other kinds of components.

6.5 Integrating Text Analysis and Search

The UIMA SDK includes a search engine that you can use to build a search index
that includes the results of the analysis done by your TAE. This combination of
TAEs with a search engine capable of indexing both words and annotations over
spans of text enables what UIMA refers to as semantic search.

Semantic search is a search where the semantic intent of the query is specified using
one or more entity or relation specifiers. For example, one could specify that they

Application Developer's Guide 6-143

are looking for a person (named) "Bush." Such a query would then not return
results about the kind of bushes that grow in your garden.

6.5.1 Indexing

To build a semantic search index using the UIMA SDK, you run a Collection
Processing Engine that includes your TAE along with a CAS Consumer called the
Semantic Search CAS Indexer, which is provided with the UIMA SDK. Your TAE
must include an annotator that produces Tokens and Sentence annotations, along
with any "semantic" annotations, because the Indexer requires this. The Semantic
Search CAS Indexer's descriptor is located at:
docs/examples/descriptors/cas_consumer/SemanticSearchCasIndexer.xml.

Configuring the Semantic Search CAS Indexer

Since there are several ways you might want to build a search index from the
information in the CAS produced by your TAE, you need to supply the Semantic
Search CAS Indexer with configuration information in the form of an Index Build
Specification file. An example of an Indexing specification tailored to the TAE from
the tutorial in the Chapter 4 Annotator and Analysis Engine Developer’s Guide is
located in docs/examples/descriptors/tutorial/search/MeetingIndexBuildSpec.xml.
It looks like this:

<indexBuildSpecification>
 <indexBuildItem>
 <name>com.ibm.uima.tutorial.WordAnnot</name>
 <indexRule>
 <style name="Term"/>
 </indexRule>
 </indexBuildItem>

 <indexBuildItem>
 <name>com.ibm.uima.tutorial.SentenceAnnot</name>
 <indexRule>
 <style name="Breaking"/>
 </indexRule>
 </indexBuildItem>

 <indexBuildItem>
 <name>com.ibm.uima.tutorial.Meeting</name>
 <indexRule>
 <style name="Annotation"/>
 </indexRule>
 </indexBuildItem>

 <indexBuildItem>
 <name>com.ibm.uima.tutorial.RoomNumber</name>
 <indexRule>
 <style name="Annotation"/>
 </indexRule>
 </indexBuildItem>

Application Developer's Guide 6-144

 <indexBuildItem>
 <name>com.ibm.uima.tutorial.DateAnnot</name>
 <indexRule>
 <style name="Annotation"/>
 </indexRule>
 </indexBuildItem>

 <indexBuildItem>
 <name>com.ibm.uima.tutorial.TimeAnnot</name>
 <indexRule>
 <style name="Annotation"/>
 </indexRule>
 </indexBuildItem>
</indexBuildSpecification>

 The index build specification is a series of index build items, each of which
identifies a CAS annotation type (a subtype of uima.tcas.Annotation – see Chapter 23
CAS Reference) and a style.

The first item in this example specifies that the annotation type
com.ibm.uima.tutorial.WordAnnot should be indexed with the "Term" style. This
means that each span of text annotated by a WordAnnot will be considered a single
token for standard text search purposes.

The second item in this example specifies that the annotation type
com.ibm.uima.tutorial.SentenceAnnot should be indexed with the "Breaking" style.
This means that each span of text annotated by a SentenceAnnot will be considered
a single sentence, which can affect that search engine's algorithm for matching
queries. The semantic search engine always requires tokens and sentences in order
to index a document.

Note: Requirements for Term and Breaking rules: The Semantic Search indexer
supplied with the UIMA SDK requires that the items to be indexed as words be
designated using the Term rule. Furthermore, due to a limitation of this
indexer, the number of terms allowed in-between break boundaries must be
less than 256.

The remaining items all use the "Annotation" style. This indicates that each
annotation of the specified types will be stored in the index as a searchable span,
with a name equal to the annotation name (without the namespace).

 At the end of the batch or collection, the Semantic Search CAS Indexer builds the
index. This index can be queried with simple tokens or with xml tags

Example : A query on the word "UIMA" will retrieve all documents that have the
occurrence of the word. But a query of the type <Meeting>UIMA</Meeting> will
retrieve only those documents that contain a Meeting annotation (produced by our
MeetingDetector TAE, for example), where that Meeting annotation contains the

Application Developer's Guide 6-145

word "UIMA". More information on the syntax of these kinds of queries, called
XML Fragments, can be found in Chapter 25 Semantic Search Engine Reference on
page 25-345.

For more information on the Index Build Specification format, see the UIMA
JavaDocs for class com.ibm.uima.search.IndexBuildSpecification. Accessing the
JavaDocs is described on page 22-315.

Building and Running a CPE including the Semantic Search CAS
Indexer

The following steps illustrate how to build and run a CPE that uses the UIMA
Meeting Detector TAE and the Simple Token and Sentence Annotator, discussed in
the Chapter 4 Annotator and Analysis Engine Developer’s Guide along with the
Semantic Search CAS Indexer, to build an index that allows you to query for
documents based not only on textual content but also on whether they contain
mentions of Meetings detected by the TAE.

Run the CPE Configurator tool by executing the cpeGuit shell script in the bin
directory of the UIMA SDK. (For instructions on using this tool, see the Chapter 10
Collection Processing Engine Configurator User's Guide.)

In the CPE Configurator tool, select the following components by browsing to their
descriptors:

• Collection Reader: %UIMA_HOME%/docs/examples/descriptors/collectionReader/
FileSystemCollectionReader.xml

• Analysis Engine: include both of these; one produces tokens/sentences, required
by the indexer in all cases and the other produces the meeting annotations of
interest.
%UIMA_HOME%/docs/examples/descriptors/tutorial/ex6/UIMAMeetingDetector.xml
and
%UIMA_HOME%/docs/examples/descriptors/analysis_engine/
SimpleTokenAndSentenceAnnotator.xml

• Two CAS Consumers:

 %UIMA_HOME%/docs/examples/descriptors/casConsumer/
SemanticSearchCasIndexer.xml

 %UIMA_HOME%/docs/examples/descriptors/casConsumer/
XCasWriterCasConsumer.xml

Set up parameters :

• Set the File System Collection Reader's "Input Directory" parameter to point to
the %UIMA_HOME%/docs/examples/data directory.

• Set the Semantic Search CAS Indexer's "Indexing Specification Descriptor"
parameter to point to %UIMA_HOME%/docs/examples/descriptors/tutorial/search/
MeetingIndexBuildSpec.xml

Application Developer's Guide 6-146

• Set the Semantic Search CAS Indexer's "Index Dir" parameter to whatever
directory into which you want the indexer to write its index files.
WARNING: The Indexer erases old versions of the files it creates in this
directory.

• Set the XCAS Writer CAS Consumer's "Output Directory" parameter to
whatever directory into which you want to store the XCAS files containing the
results of your analysis for each document.

Click on the Run Button. Once the run completes, a statistics dialog should appear,
in which you can see how much time was spent in each of the components involved
in the run.

6.5.2 Semantic Search Query Tool

The UIMA SDK contains a simple tool for running queries against a semantic search
index. After building an index as described in the previous section, you can launch
this tool by running the shell script: semanticSearch, found in the /bin subdirectory
of the UIMA install, at the command prompt. If you are using Eclipse, and have
installed the UIMA examples, there will be a Run configuration you can use to
conveniently launch this, called UIMA Semantic Search. This will display the
following screen:

Configure the first three fields on this screen as follows:

• Set the "Index Directory" to the directory where you built your index. This is the
same value that you supplied for the "Index Dir" parameter of the Semantic
Search CAS Indexer in the CPE Configurator.

Application Developer's Guide 6-147

• Set the "XCAS Directory" to the directory where you stored the XCAS files
containing the results of your analysis. This is the same value that you supplied
for the "Output Directory" parameter of XCAS Writer CAS Consumer in the
CPE Configurator.

• Set the "Type System Descriptor" to the location of the descriptor that describes
your type system. For this example, this will be %UIMA_HOME%/docs/examples/
descriptors/tutorial/ex4/TutorialTypeSystem.xml

Now, in the "XML Fragments" field, you can type in single words or xml queries
where the xml tags correspond to the labels in the index build specification file (e.g.
<Meeting>UIMA</Meeting>). XML Fragments are described in Chapter 25 25-345.

After you enter a query and click the "Search" button, a list of hits will appear.
Select one of the documents and click "View Analysis" to view the document in the
UIMA Annotation Viewer.

The source code for the Semantic Search query program is in
docs/examples/src/com/ibm/uima/examples/search/SemanticSearchGUI.java. A simple
command-line query program is also provided in
docs/examples/src/com/ibm/uima/examples/search/SemanticSearch.java. Using these
as a model, you can build a query interface from your own application. For details
on the Semantic Search Engine query language and interface, see Chapter 25
Semantic Search Engine Reference.

6.6 Working with Analysis Engine and CAS Consumer Services

The UIMA SDK allows you to easily take any Analysis Engine or CAS Consumer
and deploy it as a service. That Analysis Engine or CAS Consumer can then be
called from a remote machine.

The UIMA SDK provides support for two communications protocols

• SOAP, the standard Web Services protocol
• Vinci, an IBM-developed, lightweight version of SOAP

The UIMA framework can make use of these services in two different ways:

1. An Analysis Engine can create a proxy to a remote service; this proxy acts like a
local component, but connects to the remote. The proxy has limited error
handling and retry capabilities. Both Vinci and SOAP are supported.

• A Collection Processing Engine can specify non-Integrated mode (see Deploying
a CPE on page 5-122). The CPE provides more extensive error recovery
capabilities. This mode only supports the Vinci communications protocol

Application Developer's Guide 6-148

6.6.1 How to Deploy a UIMA Component as a SOAP Web
Service

To deploy a UIMA component as a SOAP Web Service, you need to first install the
following software components:

• Apache Tomcat 5.0 or 5.5 (http://jakarta.apache.org/tomcat/)
• Apache Axis 1.1 or 1.3 (http://ws.apache.org/axis/)

Later versions of these components will likely also work, but have not been tested.

Next, you need to do the following three setup steps:

• Set the CATALINA_HOME environment variable set to the location where
Tomcat is installed.

• Copy all of the JAR files from %UIMA_HOME%/lib to the
%CATALINA_HOME%/webapps/axis/WEB-INF/lib in your installation.

• Copy your JAR files for the UIMA components that you wish to
%CATALINA_HOME%/webapps/axis/WEB-INF/lib in your installation.

Note: IMPORTANT: any time you add JAR files to TomCat (for instance, in the
above 2 steps), you must shutdown and restart TomCat before it "notices" this.
So now, please shutdown and restart TomCat.

Note: All the Java classes for the UIMA Examples are packaged in the
uima_examples.jar file which is included in the %UIMA_HOME%/lib folder.

• In addition, if an annotator needs to locate resource files in the classpath, those
resources must be available in the Axis classpath, so copy these also to
%CATALINA_HOME%/webapps/axis/WEB-INF/classes.

As an example, if you are deploying the GovernmentTitleRecognizer (found in
docs/examples/descriptors/analysis_engine/
GovernmentOfficialRecognizer_RegEx_TAE) as a SOAP service, you need to copy
the file docs/examples/resources/GovernmentTitlePatterns.dat into .../WEB-
INF/classes.

Test your installation of Tomcat and Axis by starting Tomcat and going to
http://localhost:8080/axis/happyaxis.jsp in your browser. Check to be sure that
this reports that all of the required Axis libraries are present. One common missing
file may be activation.jar, which you can get from java.sun.com.

After completing these setup instructions, you can deploy Analysis Engines or CAS
Consumers as SOAP web services by using the deploytool utility, with is located in
the /bin directory of the UIMA SDK. deploytool is a command line program utility
that takes as an argument a web services deployment descriptors (WSDD file);
example WSDD files are provided in the docs\examples\deploy\soap directory of the

http://jakarta.apache.org/tomcat/
http://ws.apache.org/axis/

Application Developer's Guide 6-149

UIMA SDK. Deployment Descriptors have been provided for deploying and
undeploying some of the example Analysis Engines that come with the SDK.

As an example, the WSDD file for deploying the example Person Title annotator
looks like this (important parts are in bold italics):

<deployment name="PersonTitleAnnotator"
 xmlns="http://xml.apache.org/axis/wsdd/"
 xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">

 <service name="urn:PersonTitleAnnotator" provider="java:RPC">

 <parameter name="scope" value="Request"/>

 <parameter name="className"
value="com.ibm.uima.reference_impl.analysis_engine.service.soap.AxisAnalysi
sEngineService_impl"/>

 <parameter name="allowedMethods" value="getMetaData process"/>
 <parameter name="allowedRoles" value="*"/>
 <parameter name="resourceSpecifierPath" value="c:/Program Files/IBM/
uima/docs/examples/descriptors/analysis_engine/PersonTitleAnnotator.xml"/>

 <parameter name="numInstances" value="3"/>
 <parameter name="timeoutPeriod" value="30000"/>

 <!-- Type Mappings omitted from this document; you will not need to
edit them. -->

 <typeMapping .../>
 <typeMapping .../>
 <typeMapping .../>

 </service>

</deployment>

To modify this WSDD file to deploy your own Analysis Engine or CAS Consumer,
just replace the areas indicated in bold italics (deployment name, service name, and
resource specifier path) with values appropriate for your component.

The timeoutPeriod parameter only is used when there are multiple clients accessing
the service. When a new request comes in, if the service is busy with other requests
(all instances are busy, in the case where it has multiple instances), it waits for one to
become available - and this parameter specifies the maximum time for that wait. If
it takes longer than this, the service wrapper will throw an exception back to the
client and abort the processing for this document on the service.

To deploy the Person Title annotator service, issue the following command:

C:\Program Files\IBM\uima>bin\deploytool
docs\examples\deploy\soap\Deploy_PersonTitleAnnotator.wsdd

Test if the deployment was successful by starting up a browser, pointing it to your
TomCat installation's "axis" webpage (e.g., http://localhost:8080/axis) and clicking on

http://localhost:8080/axis

Application Developer's Guide 6-150

the List link. This should bring up a page which shows the deployed services,
where you should see the service you just deployed.

The other components can be deployed by replacing
Deploy_PersonTitleAnnotator.wsdd with one of the other Deploy descriptors in the
deploy directory. The deploytool utility can also undeploy services when passed
one of the Undeploy descriptors.

Note: The deploytool shell script assumes that the web services are to be installed at
http://localhost:8080/axis. If this is not the case, you will need to update the shell
script appropriately.

Once you have deployed your component as a web service, you may call it from a
remote machine. See "How to Call a UIMA Service," below, for instructions.

6.6.2 How to Deploy a UIMA Component as a Vinci Service

There are no software prerequisites for deploying a Vinci service. The necessary
libraries are part of the UIMA SDK. However, before you can use Vinci services you
need to deploy the Vinci Naming Service (VNS), as described in section 6.6.5 .

To deploy a service, you have to insure any components you want to include can be
found on the class path. One way to do this is to set the environment variable
UIMA_CLASSPATH to the set of class paths you need for any included
components. Then run the startVinciService shell script, which is located in the
UIMA SDK bin directory, and pass it the path to a Vinci service deployment
descriptor, for example:

C:\UIMA>bin\startVinciService
docs\examples\deploy\vinci\Deploy_PersonTitleAnnotator.xml

This example deployment descriptor looks like:

<deployment name="Vinci Person Title Annotator Service">

 <service name="uima.annotator.PersonTitleAnnotator" provider="vinci">

 <parameter name="serializerClassName"
value="com.ibm.uima.reference_impl.analysis_engine.service.vinci.VinciXCASS
erializer_NoDocText"/>

 <parameter name="resourceSpecifierPath" value="c:/Program
Files/IBM/uima/docs/examples/descriptors/analysis_engine/PersonTitleAnnotat
or.xml"/>

 <parameter name="numInstances" value="1"/>

 <parameter name="timeoutPeriod" value="30000"/>

 <parameter name="serverSocketTimeout" value="120000"/>

 </service>

Application Developer's Guide 6-151

</deployment>

To modify this deployment descriptor to deploy your own Analysis Engine or CAS
Consumer, just replace the areas indicated in bold italics (deployment name, service
name, and resource specifier path) with values appropriate for your component.

The timeoutPeriod parameter only is used when there are multiple clients accessing
the service. When a new request comes in, if the service is busy with other requests
(all instances are busy, in the case where it has multiple instances), it waits for one to
become available - and this parameter specifies the maximum time for that wait. If
it takes longer than this, the service wrapper will throw an exception back to the
client and abort the processing for this document on the service.

The serverSocketTimout parameter specifies the number of milliseconds (default = 5
minutes) that the service will wait between requests to process something. After
this amount of time, the server will presume the client may have gone away - and it
"cleans up", releasing any resources it is holding. The next call to process on the
service will result in a cycle which will cause the client to re-establish its connection
with the service (some additional overhead).

The startVinciService script takes two additional optional parameters. The first
one overrides the value of the VNS_HOST environment variable, allowing you to
specify the name server to use. The second parameter if specified needs to be a
unique (on this server) non-negative number, specifying the instance of this service.
When used, this number allows multiple instances of the same named service to be
started on one server; they will all register with the Vinci name service and be made
available to client requests.

Once you have deployed your component as a web service, you may call it from a
remote machine. See "How to Call a UIMA Service," below, for instructions.

6.6.3 How to Call a UIMA Service

Once an Analysis Engine or CAS Consumer has been deployed as a service, it can be
used from any UIMA application, in the exact same way that a local Analysis
Engine or CAS Consumer is used. For example, you can call an Analysis Engine
service from the Document Analyzer or use the CPE Configurator to build a CPE
that includes Analysis Engine and CAS Consumer services.

To do this, you use a service client descriptor in place of the usual Analysis Engine or
CAS Consumer Descriptor. A service client descriptor is a simple XML file that
indicates the location of the remote service and a few parameters. Example service
client descriptors are provided in the UIMA SDK under the directories
examples/docs/descriptors/soapService and

Application Developer's Guide 6-152

examples/docs/descriptors/vinciService. The contents of these descriptors are
explained below.

Also, before you can call a SOAP service, you need to have the necessary Axis JAR
files in your classpath. If you use any of the scripts in the /bin directory of the
UIMA installation to launch your application, such as documentAnalyzer, these
JARs are added to the classpath, automatically, using the CATALINA_HOME
environment variable. The required files are the following (all part of the Apache
Axis download):

• activation.jar
• axis.jar
• commons-discovery.jar
• commons-logging.jar
• jaxrpc.jar
• saaj.jar.

SOAP Service Client Descriptor

The descriptor used to call the PersonTitleAnnotator SOAP service from the
example above is:

<uriSpecifier xmlns="http://uima.watson.ibm.com/resourceSpecifier">
 <resourceType>AnalysisEngine</resourceType>
 <uri>http://localhost:8080/axis/services/urn:PersonTitleAnnotator</uri>
 <protocol>SOAP</protocol>
</uriSpecifier>

The <resourceType> element must contain either AnalysisEngine or CasConsumer.
This specifies what type of component you expect to be at the specified service
address.

The <uri> element describes which service to call. It specifies the host (localhost, in
this example) and the service name (urn:PersonTitleAnnotator), which must match
the name specified in the deployment descriptor used to deploy the service.

Vinci Service Client Descriptor

To call a Vinci service, a similar descriptor is used:

<uriSpecifier xmlns="http://uima.watson.ibm.com/resourceSpecifier">
 <resourceType>AnalysisEngine</resourceType>
 <uri>uima.annot.PersonTitleAnnotator</uri>
 <protocol>Vinci</protocol>
 <parameters>
 <parameter name="VNS_HOST" value="some.internet.ip.name-or-address"/>
 <parameter name="VNS_PORT" value="9000"/>

Application Developer's Guide 6-153

 </parameters>
</uriSpecifier>

Note that Vinci uses a centralized naming server, so the host where the service is
deployed does not need to be specified. Only a name
(uima.annot.PersonTitleAnnotator) is given, which must match the name specified
in the deployment descriptor used to deploy the service.

The host and/or port where your Vinci Naming Service (VNS) server is running can
be specified by the optional <parameter> elements. If not specified, the value is
taken from the specification given your Java command line (if present) using
-DVNS_HOST=<host> and -DVNS_PORT=<port> system arguments. If not specified on the
Java command line, defaults are used: localhost for the VNS_HOST, and 9000 for the
VNS_PORT. See the next section for details on setting up a VNS server.

6.6.4 Restrictions on remotely deployed services

Remotely deployed services are started on remote machines, using UIMA
component descriptors on those remote machines. These descriptors supply any
configuration and resource parameters for the service (configuration parameters are
not transmitted from the calling instance to the remote one). Likewise, the remote
descriptors supply the type system specification for the remote annotators that will
be run (the type system of the calling instance is not transmitted to the remote one).

The remote service wrapper, when it receives a CAS from the caller, instantiates it
for the remote service, making instances of all types which the remote service
specifies. Other instances in the incoming CAS for types which the remote service
has no type specification for are kept aside, and when the remote service returns the
CAS back to the caller, these type instances are re-merged back into the CAS being
transmitted back to the caller. Because of this design, a remote service which
doesn't declare a type system won't receive any type instances.

Note: This behavior may change in future releases, to one where configuration
parameters and / or type systems are transmitted to remote services.

6.6.5 The Vinci Naming Service (VNS)

Vinci consists of components for building network-accessible services, clients for
accessing those services, and an infrastructure for locating and managing services.
The primary infrastructure component is the Vinci directory, known as VNS (for
Vinci Naming Service).

On startup, Vinci services locate the VNS and provide it with information that is
used by VNS during service discovery. Vinci service provides the name of the host
machine on which it runs, and the name of the service. The VNS internally creates a
binding for the service name and returns the port number on which the Vinci

Application Developer's Guide 6-154

service will wait for client requests. This VNS stores its bindings in a filesystem in a
file called vns.services.

In Vinci, services are identified by their service name. If there is more than one
physical service with the same service name, then Vinci assumes they are equivalent
and will route queries to them randomly, provided that they are all running on
different hosts. You should therefore use a unique service name if you don't want to
conflict with other services listed in whatever VNS you have configured jVinci to
use.

Starting VNS

To run the VNS use the startVNS script found in the /bin directory of the UIMA
installation.

Note: VNS runs on port 9000 by default so please make sure this port is
available. If you see the following exception:

java.net.BindException: Address already in use: JVM_Bind

it indicates that another process is running on port 9000. In this case, add the
parameter -p <port> to the startVNS command, using <port> to specify an
alternative port to use.

When started, the VNS produces output similar to the following:

[10/6/04 3:44 PM | main] WARNING: Config file doesn't exist, creating a new
empty config file!
[10/6/04 3:44 PM | main] Loading config file : .\vns.services
[10/6/04 3:44 PM | main] Loading workspaces file : .\vns.workspaces
[10/6/04 3:44 PM | main] ====================================
(WARNING) Unexpected exception:
java.io.FileNotFoundException: .\vns.workspaces (The system cannot find
the file specified)
 at java.io.FileInputStream.open(Native Method)
 at java.io.FileInputStream.<init>(Unknown Source)
 at java.io.FileInputStream.<init>(Unknown Source)
 at java.io.FileReader.<init>(Unknown Source)
 at
com.ibm.vinci.transport.vns.service.VNS.loadWorkspaces(VNS.java:339)
at com.ibm.vinci.transport.vns.service.VNS.startServing(VNS.java:237)
 at com.ibm.vinci.transport.vns.service.VNS.main(VNS.java:179)
[10/6/04 3:44 PM | main] WARNING: failed to load workspace.
[10/6/04 3:44 PM | main] VNS Workspace : null
[10/6/04 3:44 PM | main] Loading counter file : .\vns.counter
[10/6/04 3:44 PM | main] Could not load the counter file : .\vns.counter
[10/6/04 3:44 PM | main] Starting backup thread, using files
.\vns.services.bak
and .\vns.services
[10/6/04 3:44 PM | main] Serving on port : 9000
[10/6/04 3:44 PM | Thread-0] Backup thread started

Application Developer's Guide 6-155

[10/6/04 3:44 PM | Thread-0] Saving to config file : .\vns.services.bak
>>>>>>>>>>>>> VNS is up and running! <<<<<<<<<<<<<<<<<
>>>>>>>>>>>>> Type 'quit' and hit ENTER to terminate VNS <<<<<<<<<<<<<
[10/6/04 3:44 PM | Thread-0] Config save required 10 millis.
[10/6/04 3:44 PM | Thread-0] Saving to config file : .\vns.services
[10/6/04 3:44 PM | Thread-0] Config save required 10 millis.
[10/6/04 3:44 PM | Thread-0] Saving counter file : .\vns.counter

Note: Disregard the java.io.FileNotFoundException: .\vns.workspaces (The system
cannot find the file specified). It is just a complaint not a serious problem. VNS
Workspace is a feature of the VNS that is not critical. The important information
to note is [10/6/04 3:44 PM | main] Serving on port : 9000

which states the actual port where VNS will listen for incoming requests. All Vinci
services and all clients connecting to services must provide the VNS port on the
command line IF the port is not a default. Again the default port is 9000. Please see
section Launching Vinci Services below for details about the command line and
parameters.

VNS Files

The VNS maintains two external files

vns.services

vns.counter

These files are generated by the VNS in the same directory where the VNS is
launched from. Since these files may contain old information it is best to remove
them before starting the VNS. This step ensures that the VNS has always the newest
information and will not attempt to connect to a service that has been shutdown.

Launching Vinci Services

When launching Vinci service, you must indicate which VNS the service will
connect to. To define Vinci’s default VNS you must provide the following JVM
parameters:

java -DVNS_HOST=localhost -DVNS_PORT=9000 ...

The above setting is for the VNS running on the same machine as the service. Of
course one can deploy the VNS on a different machine and the JVM parameter will
need to be changed to this:

java -DVNS_HOST=<host> -DVNS_PORT=9000 ...

where ‘<host>‘ is a machine name or its IP where the VNS is running.

Note: VNS runs on port 9000 by default. When you see the following exception:

Application Developer's Guide 6-156

(WARNING) Unexpected exception:

com.ibm.vinci.transport.ServiceDownException: VNS inaccessible:
java.net.Connect

Exception: Connection refused: connect

then, perhaps the VNS is not running OR the VNS is running but its port has been
changed. To correct the latter, change the command line by providing the correct
port

-DVINCI_PORT=<port>

To get the right port check the VNS output for something similar to the following

[10/6/04 3:44 PM | main] Serving on port : 9000

It is printed by the VNS on startup.

6.7 Increasing performance using parallelism

There are several ways to exploit parallelism to increase performance in the UIMA
Framework. These range from running with additional threads within one Java
virtual machine on one host (which might be a multi-processor or hyper-threaded
host) to deploying analysis engines on a set of remote machines.

The Collection Processing facility in UIMA provides the ability to scale the pipe-line
of analysis engines. This scale-out runs multiple threads within the Java virtual
machine running the CPM, one for each pipe in the pipe-line. To activate it, in the
<casProcessors> descriptor element, set the attribute processingUnitThreadCount,
which specifies the number of replicated processing pipelines, to a value greater
than 1, and insure that the size of the CAS pool is equal to or greater than this
number (the attribute of <casProcessors> to set is casPoolSize). For more details on
these settings, see CAS Processors on page 21-297.

For deployments that incorporate remote analysis engines in the Collection Manager
pipe-line, running on multiple remote hosts, scale-out is supported which uses the
Vinci naming service. If multiple instances of a service with the same name, but
running on different hosts, are registered with the Vinci Name Server, it will assign
these instances to incoming requests.

There are two modes supported: a "random" assignment, and a "exclusive" one. The
"random" mode distributes load using an algorithm that selects a service instance at
random. The UIMA framework supports this only for the case where all of the
instances are running on unique hosts; the framework does not support starting 2 or
more instances on the same host.

Application Developer's Guide 6-157

The exclusive mode dedicates a particular remote instance to each Collection
Manager pip-line instance. This mode is enabled by adding a configuration
parameter in the <casProcessor> section of the CPE descriptor:

<deploymentParameters>
 <parameter name="service-access" value="exclusive" />
</deploymentParameters>

If this is not specified, the "random" mode is used.

In addition, remote UIMA engine services can be started with a parameter that
specifies the number of instances the service should support (see the <parameter
name="numInstances"> xml element in remote deployment descriptor on page 6-147.
Specifying more than one causes the service wrapper for the analysis engine to use
multi-threading (within the single Java Virtual Machine – which can take advantage
of multi-processor and hyper-threaded architectures).

Note: When using Vinci in "exclusive" mode (see service access under
<deploymentParameters> Element on page 21-303), only one thread is used. To
achieve multi-processing on a server in this case, use multiple instances of the
service, instead of multiple threads (see How to Deploy a UIMA Component as
a Vinci Service on page 6-150).

Developing Applications using Multiple Subjects of Analysis 7-158

Chapter 7 Developing Applications using Multiple
Subjects of Analysis

This chapter describes how to develop a UIMA application that makes use of
multiple subjects of analysis in the same processing pipeline. Multiple Subject of
Analysis (Sofa) capability can simplify text applications that need different versions
of the text at different stages. Multiple Sofa capability is also a key to enabling
multimodal applications where the initial artifact is transformed from one modality
to another, or where the artifact itself is multimodal such as the audio, video and
closed-captioned text associated with an MPEG object. Each Sofa can be analyzed
independently with the standard UIMA programming model, or analyzed together
with other Sofas utilizing the Sofa programming model extensions.

A basic multi-Sofa application design issue for UIMA CAS processing components
is whether they should be Sofa-aware or Sofa-unaware. Sofa-aware components
create new Sofas and/or will access multiple Sofas during processing. Components
which analyze data from a single, previously created Sofa can be standard (Sofa-
unaware) processing components. The application designer must arrange that Sofas
created and output by one component are appropriately connected as input Sofas
for dependent components.

A key goal of the Sofa support is to recognize that most analytic components are (by
design) Sofa-unaware, and to not place any burden on these components related to
Sofas. The Sofa support is designed to enable these Sofa unaware components to be
used in complex, multi-Sofa application scenarios.

This chapter is organized into the following subsections:

• 7.1 Basic Sofa Concepts and Methods describes how to create Sofas, declare
them in component descriptors and how to create and access Sofa data.

• 7.2 Sofas and TCAS Views explains the difference between CAS and TCAS, the
special relationship between a Sofa and its TCAS, and the delivery of one or
more Sofas to UIMA processing components via CAS and TCAS objects.

• 7.3 Sofa Name Mapping shows how to connect output Sofas from one
component to input Sofas in other, dependent components.

• 7.4 Sofa Impact on XCAS Format describes how Sofas impact the XCAS format.
• 7.5 Sofa Sample Application describes an application using multiple text Sofas.

Developing Applications using Multiple Subjects of Analysis 7-159

7.1 Basic Sofa Concepts and Methods

Unstructured information must often be transformed from its original
representation in order to achieve the desired analysis. For example, web page
content is often converted into a different character representation and the HTML
formatted content converted into plain text before deeper analysis. In typical UIMA
applications the plain text result of these conversions would be stored in a Java
string called the “TCAS document" and sent through the processing pipeline. In
order to support more complex processing scenarios supporting multimodal content
UIMA formalizes the distinction between the original unstructured artifact and the
various forms the artifact may take during analysis, enabling all to coexist in the
CAS.

A Sofa is a generalization of the TCAS document and shares some of the same
characteristics: a Sofa is immutable over the course of processing; analysis results for
a Sofa are stored in the Sofa’s TCAS using TCAS or JCas methods; such analysis
results can “belong" to a specific Sofa, i.e. an annotation points to a subset of the
Sofa.

The main differences between a Sofa and the original TCAS document are that there can be
multiple Sofas contained in a CAS -- and therefore many TCAS documents in the same
CAS, and a Sofa can be arbitrary binary data.

Each Sofa is represented in the CAS using the built-in CAS type: uima.cas.Sofa.
Features of the Sofa type include

• SofaID: Every Sofa in a CAS must have a unique SofaID. SofaIDs are the
primary handle for access.

• Mime type: This string feature can be used to describe the type of the data
represented by a Sofa.

• Sofa Data: The Sofa data itself. This data can be resident in the CAS or it can be
a reference to data outside the CAS.

Although Sofa type instances are implemented as standard feature structures,
generic CAS APIs can not be used to create Sofas or set their features. Specially designed
methods for creating Sofa instances and accessing Sofa instance features must be
used to assure proper Sofa bookkeeping operations.

The rest of this section documents Sofa access methods available to Sofa-aware
components.

Developing Applications using Multiple Subjects of Analysis 7-160

7.1.1 Multiple names for the same Sofa

Each independently-developed component can specify it works with one or more
Sofas. Each component identifies these Sofas using a name string. An assembler
assembling multiple components together can specify mappings for these names, so
that differently named Sofas in different components can actually refer to the same
Sofa. See Sofa Name Mapping on page 7-165 for more information about this.

Most user APIs that work with a particular Sofa need the unique SofaId as an
argument. A component gets that SofaId using:

SofaID sofaID = getUimaContext().mapToSofaID("detagContent");

This maps the component's name for the Sofa to the unique SofaID for that Sofa in
the application. The getUimaContext() method is a method on all Resource objects
(including Analysis Engines). Within an annotator, however, use the
AnnotatorContext object, which is is equlivalent to the UimaContext object returned by
the getUimaContext(). The AnnotatorContext object is passed in as an argument to the
annotator's initialize() method, and can be retrieved using the getContext() method
on the annotator's instance object.

7.1.2 Instantiating Sofa Feature Structures

When a UIMA application starts up, it typically reads an XML descriptor and
instantiates Analysis Engines or Collection Processing Engines, and creates one or
more CAS instances to use in processing. For backwards compatibility, UIMA can
create a default "text" Sofa. New applications will create a "base CAS" (see CAS
versus TCAS View on page 7-162 for a definition of “base CAS"). Sofas are then
created as they are needed by the application or by individual UIMA components in
the processing pipeline. For example, to create one Sofa feature structure
corresponding to the component Sofa named “detagContent", setting its mime type
to “text", you use:

SofaID sofaID = getUimaContext().mapToSofaID("detagContent");
SofaFS aSofaFS = aCAS.createSofa(sofaID, "text");

Once a Sofa feature structure is created, it can be accessed from the CAS using the
sofaID:

SofaFS aSofaFS = aCAS.getSofa(sofaID);

7.1.3 Setting Sofa Data

Sofa data (the thing being analyzed) can be contained locally within the CAS itself
or it can be remote from the CAS. Data that is held inside the CAS is further
differentiated as a Java string or as binary data. To set local Sofa data in the SofaFS
created above, use this method:

Developing Applications using Multiple Subjects of Analysis 7-161

aSofaFS.setLocalSofaData(theData);

where “theData" can be one of:

• a Java string, or
• a previously created CAS array type feature structure

For backwards compatibility local Sofa string data can still be set using the TCAS
setDocumentText() method. See below for more on this in the section Sofas and
TCAS Views.

If the data is remote from the CAS, use:

aSofaFS.setRemoteSofaURI(theData);

where "theData"is a string conforming to the standard URI format.

7.1.4 Accessing Sofa Features and Sofa Data

Given a reference to a SofaFS object, aSofaFS, the mime type is retrieved using:

String mimeType = aSofaFS.getSofaMime();

Local Sofa data is accessed in one of three ways. If the data is a Java string, use:

String document = aSofaFS.getLocalStringData();

If it is an array of integers or floats, use:

FeatureStructure arrayFS = aSofaFS.getLocalFSData();

If it is a URI, you can retrieve the URI string using:

String uri = aSofaFS.getSofaURI();

Java offers built-in support for several URI schemes including “FILE:", "HTTP:",
"FTP:"and has an extensible mechanism, URLStreamHandlerFactory, for customizing
access to an arbitrary URI. See more details at
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URLStreamHandlerFactory.html.

Any of these three kinds of Sofa data may be accessed by getting an InputStream
using:

InputStream is = aSofaFS.getSofaDataStream();

Annotators written to access Sofa data as a stream will work for all three kinds of
Sofa data, including remote data accessed via the URI.

http://java.sun.com/j2se/1.4.2/docs/api/java/net/URLStreamHandlerFactory.html

Developing Applications using Multiple Subjects of Analysis 7-162

7.1.5 Declaring Sofas in Component Descriptors

Each Sofa-aware component that creates a Sofa or expects to find a previously
created Sofa must declare the Sofa name in the capabilities section. For the example
above:

<capabilities>
 <capability>
 <inputs/>
 <outputs/>
 <inputSofas/>
 <outputSofas>
 <sofaName>detagContent</sofaName>
 </outputSofas>
 </capability>
</capabilities>

Details on this specification are found reference chapter section on Capabilities on
page 20-276. The Component Descriptor Editor supports Sofa declarations on the
Capabilities Page (page 9-198).

7.2 Sofas and TCAS Views

A CAS (see Chapter 23 CAS Reference on page 23-317) is the part of UIMA
concerned with creating and handling the data that annotators manipulate. The
TCAS class extends a CAS with additional access methods for annotation types and
a Java string known as the TCAS document. Earlier UIMA platforms made little
distinction between CAS and TCAS objects and these names were used
interchangeably. In fact, all applications simply created TCAS objects because the
only subject of analysis ever used was the TCAS document.

In order to both support multiple subjects of analysis and maintain compatibility
with all pre-existing UIMA components, the relationship between CAS and TCAS
was changed.

7.2.1 CAS versus TCAS View

Instead of the TCAS being a type of CAS which is independent of other TCAS
objects, a TCAS object is now a “view" of a CAS tied to a particular Sofa in the CAS. A
CAS can have as many TCAS views as it has Sofas. The CAS is sometimes referred
to as the “base CAS" for all views.

TCAS views can be created dynamically as needed.

When local Sofa data (see Setting Sofa Data on page 7-160) is set to a Java string it
automatically becomes the TCAS document for the TCAS view tied to that Sofa. The
TCAS DocumentAnnotation features such as language still need to be set as usual.

Developing Applications using Multiple Subjects of Analysis 7-163

Instantiate a TCAS view of a Sofa in a Sofa-aware component off a base CAS named
aCAS with:

TCAS aTCAS = aCAS.getTCAS(aSofaFS);

A TCAS view has the same properties as the TCAS in previous UIMA versions.
Although derived from CAS it is very lightweight as most of its CAS structures are
simply references to those in the base CAS. Unique for each TCAS view is the Sofa it
is tied to and its Index Repository object.

Note: Feature Structures subsumed by uima.tcas.Annotation cannot be created
off of the base CAS; these can only be created within a TCAS view.

A TCAS is a subtype of a CAS. The CAS object contains all the views; different
views can be materialized from any other view.

If you have a TCAS object, say aTCAS, you can access its associated SofaFS using:

SofaFS aSofaFS = aTCAS.getSofa();

You can also iterate over all the Sofas, by obtaining an FSIterator over all the Sofa
Feature Structures:

FSIterator sofaIterator = aCAS.getSofaIterator();

7.2.2 Each Sofa has its own Index Repository

Index repositories hold indexes, which in turn, hold references to Feature Structure
instances in the CAS. Each TCAS view has a separate copy of the indexes; when
you use an particular index, you always get it from a particular repository belonging
to one particular view.

There is an additional Index Repository object used for the base CAS. The base
Index Repository is used to index Sofa feature structures, and can be used by
applications to reference feature structures that describe the original artifact
independently of any particular view, feature structures that relate multiple Sofas to
each other, etc.

7.2.3 Non Text TCAS

Historically the “T" in TCAS stood for text. Now a TCAS view is tied to a Sofa
feature structure whose Sofa data may be a feature structure array of binary data or
it may be remote from the CAS. When Sofa data is not a Java String the TCAS
document will be null. Although annotation type feature structures can be created
off such TCAS, the annotation method getCoveredText() will return null for these
annotations.

Developing Applications using Multiple Subjects of Analysis 7-164

7.2.4 Getting a JCas

As before, the following method gives a JCas object interface for both CAS and
TCAS objects:

JCas aJCas = aCAS_or_TCAS.getJCas();

A JCas object view for a particular Sofa can be obtained with

JCas aJCas = aCAS.getJCas(aSofaFS);

If a JCas exists for this CAS or TCAS, it is returned; otherwise a JCas is created for
this CAS or TCAS and returned.

7.2.5 Do UIMA Components Receive a CAS or a TCAS?

UIMA components here include annotators, Collection Readers and CAS
Consumers.

The process() method exposed by an annotator will receive a TCAS if its class
implements “TextAnnotator"; it will receive a CAS if it implements
“GenericAnnotator". This corresponds to the process method definitions of
TextAnnotator and GenericAnnotator classes.

Annotators that implement “JTextAnnotator" will receive a JCas, associated with an
underlying TCAS.

Unlike annotators, however, Collection Readers and CAS Consumers have no such
differentiation and only expose CAS interfaces.

For backward compatibility with Sofa-unaware Collection Readers, a default Sofa is
created under the covers and its TCAS view delivered to the getNext() method. A
Collection Reader becomes Sofa-aware and receives a base CAS by adding an
output Sofa to the capabilities section of its descriptor. See Declaring Sofas in
Component Descriptors on page 7-162 for explicit details.

The situation is similar with CAS Consumers, which receive a base CAS in the
process() method only if one or more input Sofas are declared in its capabilities,
otherwise a TCAS is received.

7.2.6 The Default Text Sofa

For backwards compatibility with TCAS components, there is a default text Sofa
which can be created using:

TCAS aTCAS = aCAS.getTCAS(); // no Sofa argument - means default text Sofa

Developing Applications using Multiple Subjects of Analysis 7-165

This creates or gets (if it is already created) a TCAS which has the "default text Sofa".
The default text Sofa is determined by Sofa mapping -- see Specifying the Sofa for a
Sofa-unaware TCAS processor on page 7-167.

7.3 Sofa Name Mapping

Sofa Name mapping is the mechanism which enables CAS component developers to
choose locally meaningful Sofa names in their source code and let aggregate and
collection processing engine developers connect output Sofas created in one
component to input Sofas required in another.

7.3.1 mapToSofaID() method

Sofa mapping establishes a full mapping tree from the primitive component
declaration of a Sofa up through zero or more aggregate descriptors and finally to
the CPE descriptor. The mapping tree is then used in the method:

SofaID sofaID = getUimaContext().mapToSofaID("localName");

This method maps the local component name to the highest level defined mapping
for that Sofa. The highest level mapping would usually be in the CPE descriptor, but
could be in an aggregate descriptor or even specified in the “additional parameter"
option of the UIMAFramework method used to produce the component.

If no mapping is defined for a Sofa, mapToSofaID returns a SofaID set to the input string.

The name returned by mapToSofaID is the actual name used for the Sofa in the CAS.
All Sofas in a CAS must have unique names. This can be accomplished by mapping
all declared Sofas as described in the following sections, or by inspection. The
framework will throw an exception if createSofa() is called with a Sofa name that is
already in use.

7.3.2 Name Mapping in an Aggregate Descriptor

For all components of an Aggregate, the mapping specifies a map between
component Sofa names, and names at the aggregate level.

Here's an example. Assume two Sofa-aware annotators to be assembled into an
aggregate which takes audio segments consisting of spoken English and produces a
German text translation.

The first aggregate node takes an audio segment as input Sofa and produces a text
transcript as output Sofa. Such an annotator may support many languages, but be
configured to process only one at a time, in this case English. To standardize the

Developing Applications using Multiple Subjects of Analysis 7-166

inputs and outputs independent of the chosen language, the annotator designer
might choose Sofa names to be “AudioInput" and “TranscribedText".

The second annotator is a mono-language translator designed to translate text from
English to German. The developer might choose the input and output Sofa names to
be “EnglishDocument" and “GermanDocument", respectively.

In order to hook these two annotators together, the following section would be
added to the top level of the aggregate descriptor:

<sofaMappings>
 <sofaMapping>
 <componentKey>SpeechToText</componentKey>
 <componentSofaName>AudioInput</componentSofaName>
 <aggregateSofaName>SegementedAudio</aggregateSofaName>
 </sofaMapping>
 <sofaMapping>
 <componentKey>SpeechToText</componentKey>
 <componentSofaName>TranscribedText</componentSofaName>
 <aggregateSofaName>EnglishAudioTranscript</aggregateSofaName>
 </sofaMapping>
 <sofaMapping>
 <componentKey>EnglishToGermanTranslator</componentKey>
 <componentSofaName>EnglishDocument</componentSofaName>
 <aggregateSofaName>EnglishAudioTranscript</aggregateSofaName>
 </sofaMapping>
 <sofaMapping>
 <componentKey>EnglishToGermanTranslator</componentKey>
 <componentSofaName>GermanDocument</componentSofaName>
 <aggregateSofaName>GermanTranslation</aggregateSofaName>
 </sofaMapping>
</sofaMappings>

The Component Descriptor Editor supports Sofa name mapping in aggregates and
simplifies the task. See Sofa name mappings on page 9-200 for details.

7.3.3 Name Mapping in a CPE Descriptor

The CPE descriptor aggregates together a Collection Reader (with an optional Cas
Initializer), and CAS Processors (some of which can be CAS Consumers). Sofa
mappings can be added to the <collectionIterator>, the <casInitializer> and the
<casProcessor> CPE descriptor elements. Unlike the Sofa maps for Aggregates, the
maps for the CPE descriptor are distributed among the XML markup for each of the
parts (collectionIterator, casInitializer, casProcessor. Because of this, they do not use
the <componentKey> element. Finally, rather than sub-elements for the parts, the
XML markup for these uses attributes. See <sofaNameMappings> Element on page
21-301.

Developing Applications using Multiple Subjects of Analysis 7-167

Here's an example. Let’s use the aggregate from the previous section in a collection
processing engine. Here we will add a Collection Reader that outputs audio
segments in an output Sofa named “nextSegment". We’ll add a CAS Consumer in
the next section, Specifying the Sofa for a Sofa-unaware TCAS processor.

For Collection Reader components, the Sofa mapping section is added to the
<casInitializer> section:

<collectionReader>
 <collectionIterator>
 <descriptor>
 . . .
 </descriptor>
 <configurationParameterSettings>...</configurationParameterSettings>
 </collectionIterator>
 <casInitializer>
 <descriptor>
 . . .
 </descriptor>
 <configurationParameterSettings>...</configurationParameterSettings>
 <sofaNameMappings>
 <sofaNameMapping componentSofaName="nextSegment"
 cpeSofaName="SegementedAudio"/>
 </sofaNameMappings>
 </casInitializer>
<collectionReader>

At this point the CAS Processor section for the aggregate does not need any Sofa
mapping because the aggregate input Sofa has the same name, "SegementedAudio",
as is being produced by the Collection Reader.

7.3.4 Specifying the Sofa for a Sofa-unaware TCAS
processor

Let’s now assume that the CAS Consumer to be used in our CPE is a Sofa-unaware
component that expects the analysis results associated with the input TCAS, and
that we want it to use the results from the translated German text Sofa. The
following mapping added to the CAS Processor section for the CPE will instruct the
CPE to instantiate a TCAS from the German text Sofa and pass it to the CAS
Consumer:

<casProcessor>
 . . .
 <sofaNameMappings>
 <sofaNameMapping cpeSofaName="GermanTranslation"/>
 <sofaNameMappings>
</casProcessor>

Developing Applications using Multiple Subjects of Analysis 7-168

In this situation the CPE has determined that this CAS Consumer should get a TCAS
view because the component descriptor did not declare any input Sofa. Under the
covers the CPE obtains the TCAS using the following code:

TCAS aTCAS = aCAS.getTCAS(); // no Sofa arg means get default text Sofa

The single element mapping syntax above simply overrides the name of the default
text Sofa.

7.3.5 Name Mapping in a UIMA Application

Applications which instantiate UIMA components directly using the
UIMAFramework methods can also create a top level Sofa mapping using the
“additional parameters" capability.

input = new XMLInputSource("test.xml");
desc = UIMAFramework.getXMLParser()
 .parseAnalysisEngineDescription(input);
HashMap additionalParams = new HashMap();
//setup sofa name mappings using the api
HashMap sofamappings = new HashMap();
sofamappings.put("localName1","globalName1");
sofamappings.put("localName2","globalName2");
additionalParams.put(
 Resource.PARAM_SOFA_MAPPINGS, sofamappings);

//instantiate AE
anAnnotator = UIMAFramework
 .produceAnalysisEngine(desc,additionalParams);

7.3.6 Name Mapping in a Remote Service

Currently no configuration information is passed from a UIMA client to a remote
service. Therefore the Sofa names expected by the service will those defined in the
service capabilities. For services connected using SOAP transports (see Service
Client Descriptors on page 20-290) it is a constraint on the CPE client application to
make sure that the highest level Sofa names used by the CPE correspond to the
names expected by the service.

Services using Vinci transports can still use Sofa mapping in the CPE descriptor. For
this case the Sofa name is converted from the CPE name to the service capability
name and back again during client XCAS serialization and deserialization.

7.4 Sofa Impact on XCAS Format

Applications using entirely Sofa-unaware components will use a CAS containing a
single text Sofa with the default name. A CAS with this property is called a
backwards-compatible-CAS and is serialized with no changes from UIMA v1.0.

Developing Applications using Multiple Subjects of Analysis 7-169

A CAS containing other Sofa names output each Sofa in standard feature structure
format.

7.5 Sofa Sample Application

The UIMA SDK contains a simple Sofa example application which demonstrates
many Sofa specific concepts and methods. The source code for the application driver
is in docs/examples/src/com/ibm/uima/examples/SofaExampleApplication.java and
the Sofa-aware annotator is given in SofaExampleAnnotator.java in the same
directory.

This sample application demonstrates a language translator annotator which
expects an input text Sofa with the English document and creates an output text Sofa
containing a German translation. Some of the key Sofa concepts illustrated here
include:

• Access of multiple Sofas via TCAS views.
• Unique feature structure index space for each TCAS.
• Feature structures containing cross references between annotations in different

Sofas.
• The strong affinity of annotations with a specific Sofa.

Annotator Descriptor

The annotator descriptor in
docs/examples/descriptors/analysis_engine/SofaExampleAnnotator.xml declares an
input Sofa with SofaID="EnglishDocument" and an output Sofa named
“GermanDocument". A custom type “CrossAnnotation" is also defined:

<typeDescription>
 <name>sofa.test.CrossAnnotation</name>
 <description/>
 <supertypeName>uima.tcas.Annotation</supertypeName>
 <features>
 <featureDescription>
 <name>otherAnnotation</name>
 <description/>
 <rangeTypeName>uima.tcas.Annotation</rangeTypeName>
 </featureDescription>
 </features>
</typeDescription>

The CrossAnnotation type is derived from uima.tcas.Annotation and includes one
new feature: a reference to another annotation.

Application Setup

Developing Applications using Multiple Subjects of Analysis 7-170

The application driver instantiates an analysis engine, seAnnotator, from the
annotator descriptor, obtains a new base CAS using that engine’s CAS definition,
and creates the expected input Sofa using:

CAS cas = seAnnotator.newCAS();
SofaFS ls = cas.createSofa(seAnnotator.getUimaContext()
 .mapToSofaID("EnglishDocument"), "text");

Since seAnnotator is a primitive component, and no Sofa mapping has been defined,
the SofaID will be “EnglishDocument". Local Sofa data is set using:

ls.setLocalSofaData("this beer is good");

At this point the CAS contains all necessary inputs for the translation annotator and
its process method is called.

Annotator Processing

Annotator processing consists of parsing the English document into individual
words, doing word-by-word translation and concatenating the translations into a
German translation. Analysis metadata on the English Sofa will be an annotation for
each English word. Analysis metadata on the German Sofa will be a
CrossAnnotation for each German word, where the otherAnnotation feature will be
a reference to the associated English annotation.

Code of interest includes two TCAS views:

// get English text Sofa and open TCAS view
engTcas = aCas.getTCAS(aCas.getSofa(getContext()
 .mapToSofaID("EnglishDocument")));

// Create the output German text Sofa and open TCAS view
germTcas = aCas.getTCAS(aCas.createSofa(getContext()
 .mapToSofaID("GermanDocument"), "text"));

the indexing of annotations with the appropriate view:

engTcas.getIndexRepository().addFS(engAnnot);
. . .
germTcas.getIndexRepository().addFS(germAnnot);

and the combining of metadata belonging to different Sofas in the same feature
structure:

// add link to English text
germAnnot.setFeatureValue(other, engAnnot);

Back in the Application, accessing the results of analysis

Developing Applications using Multiple Subjects of Analysis 7-171

Analysis results for each Sofa are dumped independently by iterating over all
annotations for each associated TCAS. For the English Sofa:

//get annotation iterator for this TCAS
FSIndex anIndex = eTcas.getAnnotationIndex();
FSIterator anIter = anIndex.iterator();
while (anIter.isValid()) {
 AnnotationFS annot = (AnnotationFS) anIter.get();
 System.out.println(" " + annot.getType().getName()
 + ": " + annot.getCoveredText());
 anIter.moveToNext();
}

Iterating over all German annotations looks the same, except for the following:

if (annot.getType() == cross) {
 AnnotationFS crossAnnot =
 (AnnotationFS) annot.getFeatureValue(other);
 System.out.println(" other annotation feature: "
 + crossAnnot.getCoveredText());
}

Of particular interest here is the built-in Annotation type method getCoveredText().
This method uses the “begin" and “end" features of the annotation to create a
substring from the TCAS document. This means that annotations must have an
additional feature which points to a particular text Sofa.

The example program output is:

---Printing all annotations for English Sofa---
uima.tcas.DocumentAnnotation: this beer is good
uima.tcas.Annotation: this
uima.tcas.Annotation: beer
uima.tcas.Annotation: is
uima.tcas.Annotation: good

---Printing all annotations for German Sofa---
uima.tcas.DocumentAnnotation: das bier ist gut
sofa.test.CrossAnnotation: das
 other annotation feature: this
sofa.test.CrossAnnotation: bier
 other annotation feature: beer
sofa.test.CrossAnnotation: ist
 other annotation feature: is
sofa.test.CrossAnnotation: gut
 other annotation feature: good

7.6 Sofa API summary

The recommended way to get a TCAS view for a particular Sofa in a Sofa-unaware
component is to specify the Sofa to use by Sofa-mapping in the XML descriptors,

Developing Applications using Multiple Subjects of Analysis 7-172

and simply receive it as a parameter in the process call. The component in this case
is completely unaware of Sofas.

Otherwise, for Sofa-aware components or applications, the following methods are
used:

Getting the SofaID from the name of a Sofa, or all SofaIDs, for a component:

SofaID sofaID = aContextObject.mapToSofaID("sofa-name-in-this-component");
SofaID[] sofaIDs = aContextObject.getSofaMappings();

Creating a Sofa Feature Structure (holds references to the subject of analysis):

SofaFS sofaFS = aCAS.createSofa(sofaID, mimeType_string);

Getting existing Sofa Feature Structure(s) from a CAS:

SofaFS sofaFS = aCAS.getSofa(sofaID);
FSIterator sofaIterator = aCAS.getSofaIterator();

Getting existing Sofa Feature Structure(s) associated with a particular TCAS or JCas:

SofaFS sofaFS = aTCAS.getSofa();
SofaFS sofaFS = aJCas.getSofa();

Creating an existing TCAS or JCas view associated with a particular sofaFS from an
existing CAS (or if the TCAS/JCas is already created, getting it):

TCAS aTCAS = aCAS.getTCAS(sofaFS);
JCas aJCas = aCAS.getJCas(sofaFS);

The recommended way to get TCAS views for a particular Sofa in an application is
to use:

XMLInputSource in = new XMLInputSource("MyDescriptor.xml");
ResourceSpecifier specifier =
 UIMAFramework.getXMLParser().parseResourceSpecifier(in);
AnalysisEngine ae = UIMAFramework.produceAE(aSpecifier);

CAS aCAS = ae.newCAS();
SofaID sofaID = ae.getUimaContext().mapToSofaID("sofa-name-in-component");
SofaFS sofaFS = aCAS.createSofa(sofaID, mimeType_string);

TCAS aTCAS = aCAS.getTCAS(sofaFS); // or
JCas aJCas = aCAS.getJCas(sofaFS);

XMI and EMF Interoperability 8-173

Chapter 8 XMI and EMF Interoperability

8.1 Overview

In traditional object-oriented terms, a UIMA Type System is a class model and a
UIMA CAS is an object graph. There are established standards in this area –
specifically, UML is an OMG standard for class models and XMI (XML Metadata
Interchange) is an OMG standard for the XML representation of object graphs.

Furthermore, the Eclipse Modeling Framework (EMF) is an open-source framework
for model-based application development, and it is based on UML and XMI. In
EMF, you define class models using a metamodel called Ecore, which is similar to
UML. EMF provides tools for converting a UML model to Ecore. EMF can then
generate Java classes from your model, and supports persistence of those classes in
the XMI format.

The UIMA SDK now provides tools for interoperability with XMI and EMF. These
tools allow conversions of UIMA Type Systems to and from Ecore models, as well as
conversions of UIMA CASes to and from XMI format. This provides a number of
advantages, including:

You can define a model using a UML Editor, such as Rational Rose or EclipseUML,
and then automatically convert it to a UIMA Type System.

You can take an existing UIMA application, convert its type system to Ecore, and
save the CASes it produces to XMI. This data is now in a form where it can easily be
ingested by an EMF-based application.

More generally, we are adopting the well-documented, open standard XMI as the
standard way to represent UIMA-compliant analysis results (replacing the UIMA-
specific XCAS format). This use of an open standard enables other applications to
more easily produce or consume these UIMA analysis results.

For more information on XMI, see Grose et al. Mastering XMI. Java Programming
with XMI, XML, and UML. John Wiley & Sons, Inc. 2002.

For more information on EMF, see Budinsky et al. Eclipse Modeling Framework 2.0.
Addison-Wesley. 2006.

For details of how the UIMA CAS is represented in XMI format, see the XMI CAS
Serialization Reference on 27-357.

8-174

XMI and EMF Interoperability 8-174

8.2 Converting an Ecore Model to or from a UIMA Type System

The UIMA SDK provides the following two classes:

Ecore2UimaTypeSystem: converts from an .ecore model developed using EMF to a
UIMA-compliant TypeSystem descriptor. This is a Java class that can be run as a
standalone program or invoked from another Java application. To run as a
standalone program, execute:

java com.ibm.uima.ecore.Ecore2UimaTypeSystem <ecore file> <output file>

The input .ecore file will be converted to a UIMA TypeSystem descriptor and
written to the specified output file. You can then use the resulting TypeSystem
descriptor in your UIMA application.

UimaTypeSystem2Ecore: converts from a UIMA TypeSystem descriptor to an .ecore
model. This is a Java class that can be run as a standalone program or invoked from
another Java application. To run as a standalone program, execute:

java com.ibm.uima.ecore.UimaTypeSystem2Ecore
 <TypeSystem descriptor> <output file>

The input UIMA TypeSystem descriptor will be converted to an Ecore model file
and written to the specified output file. You can then use the resulting Ecore model
in EMF applications. The converted type system will include any <import...>ed
TypeSystems; the fact that they were imported is currently not preserved.

To run either of these converters, your classpath will need to include the UIMA jar
files as well as the following jar files from the EMF distribution: common.jar,
ecore.jar, and ecore.xmi.jar.

Also, note that the uima_core.jar file contains the Ecore model file uima.ecore, which
defines the built-in UIMA types. You may need to use this file from your EMF
applications.

8.3 Using XMI CAS Serialization

The UIMA SDK provides XMI support through the following two classes:

XmiCasSerializer: can be run from within a UIMA application to write out a CAS to
the standard XMI format. The XMI that is generated will be compliant with the
Ecore model generated by UimaTypeSystem2Ecore. An EMF application could use this
Ecore model to ingest and process the XMI produced by the XmiCasSerializer.

XMI and EMF Interoperability 8-175

XmiCasDeserializer: can be run from within a UIMA application to read in an XMI
document and populate a CAS. The XMI must conform to the Ecore model
generated by UimaTypeSystem2Ecore.

Also, the uima_examples Eclipse project contains some example code that shows
how to use the serializer and deserializer:

com.ibm.uima.examples.xmi.XmiWriterCasConsumer: This is a CAS Consumer that
writes each CAS to an output file in XMI format. It is analogous to the XCasWriter
CAS Consumer that has existed in prior UIMA versions, except that it uses the XMI
serialization format.

com.ibm.uima.examples.xmi.XmiCollectionReader: This is a Collection Reader that
reads a directory of XMI files and deserializes each of them into a CAS. For
example, this would allow you to build a Collection Processing Engine that reads
XMI files, which could contain some previous analysis results, and then do further
analysis.

Finally, in under the folder uima_examples/ecore_src is the class
com.ibm.uima.examples.xmi.XmiEcoreCasConsumer, which writes each CAS to XMI
format and also saves the Type System as an Ecore file. Since this uses the
UimaTypeSystem2Ecore converter, to compile it you must add to your classpath the
EMF jars common.jar, ecore.jar, and ecore.xmi.jar – see ecore_src/readme.txt for
instructions.

Part III – Tool User's Manuals 177

Part III: Tool User's Manuals

Component Descriptor Editor User's Guide 9-179

Chapter 9 Component Descriptor Editor User’s Guide

The Component Descriptor Editor is an Eclipse plug-in that provides a forms-based
interface for creating and editing several kinds of UIMA descriptors.

9.1 Launching the Component Descriptor Editor

Here's how to launch this tool on a descriptor contained in the examples. This
presumes you have installed the examples as described in the SDK Installation and
Setup chapter.

• Expand the uima_examples project in the Eclipse Navigator or Package Explorer
view

• Within this project, browse to the file
descriptors/tutorial/ex1/RoomNumberAnnotator.xml.

• Right-click on this file and select Open With Component Descriptor Editor.
(If this option is not present, check to make sure you installed the plug-ins as
described on page 3-45, Install the UIMA Eclipse Plugins, above).

• This should open a graphical editor and display the contents of the
RoomNumberAnnotator descriptor.

9.2 Creating a New AE Descriptor

A new AE descriptor file may be created by selecting the File->New->Other... menu.
This brings up the following dialog:

9-180

Component Descriptor Editor User's Guide 9-180

If the user then selects UIMA and Analysis Engine Descriptor File, and clicks the
Next > button, the following dialog is displayed. We will cover creating other kinds
of components later in the documentation.

Component Descriptor Editor User's Guide 9-181

After entering the appropriate parent folder and file name, and clicking Finish, an
initial AE descriptor file is created with the given name, and the descriptor is
opened up within the Component Descriptor Editor.

At this point, the display inside the Component Descriptor Editor is the same
whether one started by creating a new AE descriptor, as in the preceding paragraph,
or one merely opened a previously created AE descriptor from, say, the Package
Explorer view. We show a previously created AE in the figure below:

To see all the information shown in the main editor pane with less scrolling, double
click the title tab to toggle between the "full screen" and normal views.

It is possible to set the Component Descriptor Editor as the default editor for all .xml
files by going to Window->Preferences, and then selecting File Associations on the
left, and *.xml on the right, and finally by clicking on Component Descriptor Editor,
the Default button and then OK. If AE and Type System descriptors are not the
primary .xml files you work with within the Eclipse environment, we recommend
not setting the Component Descriptor Editor as your default editor for all .xml files.
To open an .xml file using the Component Descriptor Editor, if the Component
Descriptor Editor is not set as your default editor, right click on the file in the
Package Explorer, or other navigational view, and select Open With-> Component

9-182

Component Descriptor Editor User's Guide 9-182

Descriptor Editor. This choice is remembered by Eclipse for subsequent open
operations.

9.3 Pages within the Editor

The Component Descriptor Editor follows a standard Eclipse paradigm for these
kinds of editors. There are several pages in the editor; each one can be selected, one
at a time, by clicking on the bottom tabs. The last page contains the actual XML
source file being edited, and is displayed as plain text.

The same set of tabs appear at the bottom of each page in the Component Descriptor
Editor. The Component Descriptor Editor uses this "multi-page editor" paradigm to
give the user a view of conceptually distinct portions of the Descriptor metadata in
separate pages. At any point in time the user may click on the Source tab to view the
actual XML source. The Component Descriptor Editor is, in a way, just a fancy GUI
for editing the XML. The tabs provide quick access to the following pages:
Overview, Aggregate, Parameters, Parameter Settings, Type System, Capabilities,
Indexes, Resources, and Source. We discuss each of these pages in turn.

9.3.1 Adjusting the display of pages

Most pages in the editor have a "sash" bar. This is a light gray bar which separates
sub-sections of the page. This bar can be dragged with the mouse to adjust how the
display area is split between the two sash panes. On some pages, you can also
change the orientation of the Sash so it splits vertically, instead of horizontally.

All of the sections on a page have subtitles, with an indicator to the left which you
can click to collapse or expand that particular section. Collapsing sections can
sometimes be useful to free up screen area for other sections.

9.4 Overview Page

Normally, the first page displayed in the Component Descriptor Editor is the
Overview page (the name of the page is shown in the GUI panel at the top left). If
there is an error reading and parsing the source, the Source page is shown instead,
giving you the opportunity to correct the problem. For many components, the
Overview page contains three sections: Implementation Details, Runtime
Information and overall Identification Information.

Implementation Details

In the Implementation Details section you specify the Implementation Language
and Engine Type. There are two kinds of Engines: Aggregate, and non-Aggregate
(also called Primitive). An Aggregate engine is one which is composed of additional

Component Descriptor Editor User's Guide 9-183

component engines and contains no code, itself. Several of the pages in the
Component Descriptor Editor have different formats, depending on the engine type.

Runtime Information

Runtime information is only applicable for primitive engines and is disabled for
aggregates. This is where you specify the .class name of the annotator
implementation, if you are doing a Java implementation. This documentation
always assumes you are doing a Java implementation. Most Analysis Engines will
specify that they update the CAS, and that they can be replicated when deployed for
performance. If a particular Analysis Engine must see every CAS (for instance, if it
is counting the number of CASes), then uncheck the "multiple deployment allowed"
box. If the Analysis Engine doesn't update the CAS, uncheck the "updates the CAS"
box. (Most CAS Consumers do not update the CAS).

Overall Identification Information

The Name should be a human-readable name that describes this component. The
Version, Vendor, and Description fields are optional, and are arbitrary strings.

9.5 Aggregate Page

For primitive Analysis Engines or Collection Processing components, the Aggregate
page is not used. For aggregate engines, the page looks like this:

On the left we see a list of component engines, and on the right the flow order. If
you hover the mouse over an item in the list of component engines, that engine's
description meta data will be shown. If you right-click on one of these items, you

9-184

Component Descriptor Editor User's Guide 9-184

get an option to open that delegate descriptor in another editor instance. Any
changes you make, however, won't be seen until you close and reopen the editor on
the importing file.

Engines can be added to the list on the left by clicking the Add button at the bottom
of the Component Engine section. This brings up the following dialog:

This is a rather complex dialog, but the basic idea is that it enables you to select
multiple descriptors from various levels of your workspace. As you select
descriptors, highlight the appropriate directory on the left, and select, or multi-select
descriptors on the right. To select all descriptors in a particular directory, you may
place a checkmark next to the directory on the left. It is also possible to add
descriptors that are not part of your Eclipse workspace by clicking the Browse file
system... button. It is only possible to add one descriptor at a time when picking
from outside of the Eclipse workspace.

You can specify that the import should be by Name (the name is looked up using
both the Project's class path, and DataPath), or by location. If it is by name, it may

Component Descriptor Editor User's Guide 9-185

contain part of the path within the name. For instance, if the file name picked is
c:/project/subproject/src/com/company/prod/xyz.xml, and the class path includes
c:/project/subproject/src, the name in the descriptor will be
"com.company.prod.xyz". If it is by location, the file reference is converted to a
relative reference if possible, in the descriptor.

The final selection at the bottom tells whether or not the selected engine(s) should
automatically be added to the end of the flow section (the right section on the
Aggregate page). The OK button does not become activated until at least one
descriptor file is selected.

To remove an analysis engine from the component engine list simply select an
engine and click the Remove button, or press the delete key. If the engine is already
in the flow list you will be warned that deletion will also delete the specified engine
from this list.

Adding components more than once

Components may be added to the left panel more than once. Each of these
components will be given a key which is unique. A typical reason this might be
done is to use a component in a flow several times, but have each use be associated
with different configuration parameters (different configuration parameters can be
associated with each instance).

Adding or Removing components in a flow

The button in-between the Component Engines and the Flow List, labeled >>, adds
a chosen engine to the flow list and the button labeled << removes an engine from
the flow list. To add an engine to the flow list you must first select an engine from
the left hand list, and then press the >> button. Engines may appear any number of
times in the flow list. To remove an engine from the flow list, select an engine from
the right hand list and press the << button.

Adding remote Analysis Engines

There are two ways to add remote engines: add an existing descriptor, which
specifies a remote engine (just as if you were adding a non-remote engine) or use the
Add Remote button which will create a remote descriptor, save it, and then import
it, all in one operation. The Add Remote button enables you to easily specify the
information needed to create a Service Client descriptor for a remote AE - one that
runs on a different computer connected over the network. The Service Client
descriptor is described on page 20-290. The Add Remote button creates this
descriptor, saves it as a file in the workspace, and imports it into the aggregate.

9-186

Component Descriptor Editor User's Guide 9-186

Of course, if you already have a Service Client descriptor, you can add it to the set of
delegates, just like adding other kinds of analysis engines.

After clicking on Add Remote, the following dialog is displayed:

To define a remote service you specify the Service Type, URI and Key. You can also
specify a Timeout in milliseconds. Just like when one adds an engine from the file
system, you have the option of adding the engine to the end of the flow. The
Component Descriptor Editor currently only supports Vinci and SOAP services
using this dialog.

Remote engines are added to the descriptor using the <import ... > syntax. The
information you specify here is saved in the Eclipse project as a file, using a
generated name, <key-name>.xml, where <key-name> is the name you listed as the
Key. Because of this, the key-name must be a valid file name. If you want a
different name, you can change the path information in the dialog box.

Component Descriptor Editor User's Guide 9-187

Connecting to Remote Services

If you are using the Vinci protocol, it requires that you specify the location of the
Vinci Name Server (an IP address and a Port number). You specify these, globally,
for your Eclipse workspace, using the Eclipse menu item: Window -> Preferences... -
> UIMA Preferences. If the remote service is available, additional operations
become possible. For instance, hovering the mouse over the remote descriptor will
show the description metadata from the remote service.

Finding Analysis Engines by searching

The next button that appears between the component engine list and the flow list is
the Find AE button. When this button is pressed the following dialog is displayed,
which allows one to search for AEs by name, by input or output types, or by a
combination of these criteria. This function searches the existing Eclipse workspace
for matching *.xml descriptor source files; it does not look inside Jar files.

The search automatically adds a "match any characters" - style (*) wildcard at the
beginning and end of anything entered. Thus, if person is specified for an output
type, a "*person*" search is performed. Such a search would match such things as
"my.namespace.person" and "person.governmentOfficial." One can search in all
projects or one particular project. The search does an implicit and on all fields which
are left non-blank.

Component Engine Flow

The UIMA SDK currently supports two kinds of sequencing flows: Fixed, and
CapabilityLanguageFlow (see Capability Language Flow on page 20-283). Both of

9-188

Component Descriptor Editor User's Guide 9-188

these flows require specification of a linear flow sequence. The Component Engine
Flow section allows specification of these items.

The pull-down labeled Flow Kind picks between the two flow models. The Up and
Down buttons to the right in the Flow section are activated when an engine in the
flow is selected. The Up button moves the selected engine up one place in the
execution order, and down moves the selected engine down one place in the
execution order. It is worth repeating that engines can appear multiple times in the
flow (or not at all).

9.6 Parameters Definition Page

There are two pages for parameters: the first one is where parameters are defined,
and the second one is where the parameter settings are configured. The first page is
the Parameter Definition page and has two alternatives, depending on whether or
not the descriptor is an Aggregate or not. We start with a description of parameter
definitions for Primitive engines. Here is an example:

The first checkbox at the top simplifies things if you are not using Parameter Groups
(see the following section for a discussion of groups). In this case, leave the check
box unchecked. The main area shows a list of parameter definitions. Each
parameter has a name, which must be unique for this Analysis Engine. The other
three attributes specify whether the parameter can have a single or multiple values

Component Descriptor Editor User's Guide 9-189

(an array of values), whether it is Optional or Mandatory, and what the value type it
can hold (String, Integer, Float, and Boolean).

In addition to using the buttons on the right to edit this information, you can
double-click a parameter to edit it, or remove (delete) a selected parameter by
pressing the delete key. Use the Add button to add a new parameter to the list.

Parameters have an additional description field, which you can specify when you
add or edit a parameter. To see the value of the description, hover the mouse over
the item, as shown in the picture below:

Using groups

The group concept for parameters arose from the observation that sets of parameters
were sometimes associated with different configuration needs. As an example, you
might have an Analysis Engine which needed different configuration based on the
language of a document.

To use groups, you check the "Use Parameter Groups" box. When you do this, you
get the ability to add groups, and to define parameters within these groups. You
also get a capability to define "Common" parameters, which are parameters which
are defined for all groups. Here is a screen shot showing some parameter groups in
use:

9-190

Component Descriptor Editor User's Guide 9-190

You can see the "<Common>" parameters as well as two different sets of groups.

The Default Group is an optional specification of what Group to use if the parameter
is not available for the group requested.

The Search strategy specifies what to do when a parameter is not available for the
group requested. It can have the values of None, language_fallback, or
default_fallback. These are more fully described in the section Configuration
Parameter Declaration on page 20-267.

Groups are added using the Add Group button. Once added, they can be edited or
removed, using the buttons to the right, or the standard gestures for editing
(double-clicking the item) and removing (pressing the delete key after an item is
selected). Removing a group removes all the parameter definitions in the group. If
you try and remove the "<Common>" group, it just removes the parameters in the
group.

Each entry for a group in the table specifies one or more group names. For example,
the highlighted entry above, specifies two groups: "myNewGroup2" and "mg3". The
parameter definition underneath is considered to be in both groups.

Component Descriptor Editor User's Guide 9-191

9.6.2 Parameter declarations for Aggregates

Aggregates declare parameters which always must override a parameter setting for
a component Analysis Engine, making up the aggregate. They do this using the
version of this page which is shown when the descriptor is an Aggregate; here's an
example:

There is an additional panel shown (on the right) which lists all of the component
Analysis Engines by their key names, and shows for each of them their defined
parameters. To add a new override for one or more of these parameters to the
aggregate, select the component parameter you wish to override and push the
Create Override button (or, you can just double-click the component parameter).
This will automatically add a parameter of the same name (by default – you can
change the name if you like) to the aggregate, putting it into the same group(s) (if
groups are being used in the component – this is required), and setting the
properties of the parameter to match those of the component (this is required).

Note: If the name of the parameter being added already is in use in the
aggregate, and the parameters are not compatible, a new parameter name is
generated by suffixing the name with a number. If the parameters are
compatible, the selected component parameter is added to the existing
aggregate parameter, as an additional override. If you don't want this behavior,
but want to have a new name generated in this case, push the Create non-shared
Override button instead, or hold down the "shift" key when double clicking the
component parameter.

9-192

Component Descriptor Editor User's Guide 9-192

Note: The required / optional setting in the aggregate parameter is set to match
that of the parameter being overridden. You may want to make an optional
delegate parameter required. You can do this by changing that value manually
in the source editor view.

In the above example, the user has just double-clicked the "TypeNames" parameter
in the "NameRecognizer" component. This added that parameter to this aggregate
under the "<Not in any group>" section – since it wasn't part of a group.

Once you have added a parameter definition to the aggregate, you can use the
buttons on the right side of the left panel to add additional overrides or remove
parameters or their overrides. You can also remove groups; removing a group is
like removing all the parameter definitions in the group.

In addition to adding one parameter at a time from a component, you can also add
all the parameters for a group within a component, or all the parameters in the
component, by selecting those items.

If you double-click (or push Create Override) the "<Common>" group or a
parameter in the <Common> group in a component, a special group is created in the
Aggregate consisting of all of the groups in that component, and the overriding
parameter (or parameters) are added to that. This is done because each component
can have different groups belonging to the Common group notion; the Common
group for a component is just shorthand for all the groups in that component.

The Aggregate's specification of the default group and search strategy override any
specifications contained in the components.

9.7 Parameter Settings Page

The Parameter Settings page is rather straightforward; it is where the user defines
parameter settings for their engines. An example of such a page is given below:

Component Descriptor Editor User's Guide 9-193

For single valued attributes, the user simply types the default value into the Value
box on the right hand side. For multi-valued parameters the user should use the
Add, Edit and Remove buttons to manage the list of multiple parameter values.

Values within groups are shown with each group separately displayed, to allow
configuring different values for each group.

Values are checked for validity. For Boolean values in a list, use the words true or
false.

Note: If you specify a value in a single-valued parameter, and then delete all the
characters in the value, the CDE will treat this as if you wanted to not specify
any setting for this parameter. In order to specify a 0 length string setting for a
String-valued parameter, you will have to manually edit the XML using the
"Source" tab.

For array valued parameters, if you remove all of the entries for a particular
array parameter setting, the XML will reflect a 0-length array. To change this to
an unspecified parameter setting, you will have to manually edit the XML using
the "Source" tab.

9.8 Type System Page

This page declares the type system used by the annotator. For aggregates it is
derived by merging the type systems of all constituent AEs. The types used by the
AE constitute the language in which the inputs and outputs are described in the

9-194

Component Descriptor Editor User's Guide 9-194

Capabilities page and also affect the choice of indexes on the Indexes page. The
Type System page looks like the following:

Before discussing this page in detail, it is important to note that there are two
settings that affect the operation of this page. These are accessed by selecting the
UIMA->Settings (or by going to the Eclipse Window -> Preferences -> UIMA
Preferences) and checking or unchecking one of the following: "Auto generate .java
files when defining types" and "Display fully qualified type names."

When the Auto generate option is checked and the development language for the
AE is Java, any time a change is made to a type and the change is saved, the
corresponding .java files are generated using the JCasGen tool. The results are
stored in the primary source directory defined for the project. The primary source
directory is that listed first when you right click on your project and select
Properties->Java Build Path, click on the Source tab and look in the list box under
the text that reads: "Source folder on build path." If no source folders are defined,
you will get a warning that you have no source folders defined and JCasGen will
not be run. (For information on JCasGen see Chapter 16 JCasGen User Guide.)
When JCasGen is run, you can monitor the progress of the generation by observing
the status on the Eclipse status line (normally at the bottom of the Eclipse window).
JCasGen runs on the fully-merged type system, consisting of the type specification
plus any imported type system, plus (for aggregates) the merged type systems of all
the components in an aggregate.

Component Descriptor Editor User's Guide 9-195

Note: In addition to running automatically, you can manually run JCasGen on
the fully merged type system by clicking the JCasGen button, or by selecting
Run JCasGen from the UIMA pulldown menu:

When "Display fully qualified type names" is left unchecked, the namespace of types
is not displayed, i.e. if a fully qualified type name is my.namespace.person, only the
abbreviated type name person will be displayed. In the Type page diagram shown
above, "Display fully qualified type names" is in fact unchecked.

To add, edit, or remove types the buttons on the top left section are used. When
adding or editing types, fully qualified type names should of course be used,
regardless of whether the "Display fully qualified type names" is unchecked.
Removing or editing a type will have a cascading effect in that the type removal/edit
will effect inputs, outputs, indexes and type priorities in the natural way.

When a type is added, this dialog is shown:

Type names should be specified using a namespace. The namespace is like a Java
package name, and serves to insure type names are unique. It also serves as the

9-196

Component Descriptor Editor User's Guide 9-196

package name for the generated JCas classes. The namespace name is the set of
names up to the last period in the string.

The supertype must be picked from an existing type. The entry field for the
supertype supports Eclipse-style content assist. To use it, put the cursor in the
supertype field, and type a letter or two of the supertype name (lower case is fine),
either starting with the name space, or just with the type name (without the name
space), and hold down the Control key and then press the spacebar. When you do
this, you can see a list of suitable matching types. You can then type more letters to
narrow down your choices, or pick the right entry with the mouse.

To see the available types and pick one, press the Browse button. This will show the
available types, and as you type letters for the type name (in lower case –
capitalization is ignored), the available types that match are narrowed. When
you've typed enough to specify the type you want, press Enter. Or you can use the
list of matching type names and pick the one you want with the mouse.

Once you've added the type, you can add features to it by highlighting the type, and
pressing the Add button.

If the type being defined is a subtype of uima.cas.String, the Add button allows you
to add allowed values for the string, instead of adding features.

To edit a type or feature, you can double click the entry, or highlight the entry and
press the Edit button. To delete a type or feature, you highlight the entry to be
deleted, and click the delete button or push the delete key.

It is also possible to import type systems for inclusion in your descriptor. To do this,
use the Type Import panel's Add... button. This allows you to import a type system
descriptor.

When importing by name, the name is resolved using the class path for the Eclipse
project containing the descriptor file being edited, or by looking up this name in the
UIMA DataPath. The DataPath can be set by pushing the Set DataPath button. It
will be remembered for this Eclipse project, as a project Property, so you only have
to set it once (per project). The value of the DataPath setting is written just like a
class path, and can include directories or JAR files, just as is true for class paths.

The following dialog allows you to pick one or more files from the Eclipse
workspace, or one file (at a time) from the file system:

Component Descriptor Editor User's Guide 9-197

This is essentially the same dialog as was used to add component engines to an
aggregate. This dialog supports multi-selection – all selected items will be
imported. To import from a type system descriptor that is not part of your Eclipse
workspace, click the Browse the file system.... button.

Imported types are validated, and if OK, they are added to the list in the Imported
Type Systems section of the Type System page. Any types they define are merged
with the existing type system.

Imported types and features which are only defined in imports are shown in the
Type System section, but in a grayed-out font; these type cannot be edited here. To
change them, open up the imported type system descriptor, and change them there.

If you hover the mouse over an import specification, it will show more information
about the import. If you right-click, it will bring up a context menu that allows
opening the imported file in the Editor, if the imported file is part of the Eclipse
workspace. Changes you make, however, won't be seen until you close and reopen
the editor on the importing file.

9-198

Component Descriptor Editor User's Guide 9-198

It is not possible to define types for an aggregate analysis engine. In this case the
type system is computed from the component AEs. The Type System information is
shown in a grayed-out font.

9.9 Capabilities Page

Capabilities come in "sets". You can have multiple sets of capabilities; each one
specifies languages supported, plus inputs and outputs of the Analysis Engine. The
idea behind having multiple sets is the concept that different inputs can result in
different outputs. Many Analysis Engines, though, will probably define just one set
of capabilities. A sample Capabilities page is given below:

When defining the capabilities of a primitive analysis engine, input and output
types can be any type defined in the type system. When defining the capabilities of
an aggregate the inputs must be a subset of the union of the inputs in the constituent
analysis engines and the outputs must be a subset of the union of the outputs of the
constituent analysis engines.

To add a type, first select something in the set you wish to add the type to, and press
Add Type. The following dialog appears presenting the user with a list of types
which are candidates for additional inputs:

Component Descriptor Editor User's Guide 9-199

Follow the instructions to mark the types as input and / or output (a type can be
both). By default, the <all features> flag is set to true. If you want to specify a subset
of features of a type, read on.

When types have features, you can specify what features are input and / or output.
A type doesn't have to be an output to have an output feature. For example, an
Analysis Engine might be passed as input a type Token, and it adds (outputs) a
feature to the existing Token types. If no new Token instances were created, it
would not be an output Type, but it would have features which are output.

To specify features as input and / or output (they can be both), select a type, and
press Add. The following dialog box appears:

To mark a feature as being input and / or output, click the mouse in the input and /
or output column for the feature. If you select <all features>, it unmarks any
individual feature you selected, since <all features> subsumes all the features.

The Languages part of the capability is where you specify what languages are
supported by the Analysis Engine. Supported languages should be listed using

9-200

Component Descriptor Editor User's Guide 9-200

either a two letter ISO-639 language code, or an ISO-639 language code followed by
a two-letter ISO-3166 country code. Add a language by selecting Languages and
pressing the Add button. The dialog for adding languages is given below.

The Sofa part of the capability is optional; it allows defining Sofa names that this
component uses, and whether they are input (meaning they are created outside of
this component, and passed into it), or output (meaning that they are created by this
component). Note that a Sofa can be either input or output, but can't be both.

To add a Sofa name, press the Add Sofa button, and this dialog appears:

9.9.1 Sofa name mappings

Sofa names, once created, are used in Sofa Mappings. These are optional mappings,
done in an aggregate, that specify which Sofas are the same ones but with different
names. The Sofa Mappings section is minimized unless you are editing an
Aggregate descriptor, and have one or more Sofa names defined for the aggregate.
In that case, the Sofa Mappings section will look like this:

Component Descriptor Editor User's Guide 9-201

Here the aggregate has defined two input Sofas, named "MyInputSofa", and
"AnotherSofa". Any named sofas in the aggregate's capabilities will appear in the
Sofa Mapping section, listed either under Inputs or Outputs. Each name in the
Mappings has 0 or more delegate's sofa names mapped to it. A delegate may have
multiple Sofas, as in this example, where the GovernmentOfficialRecognizer
delegate has Sofas named "so1" and "so2".

Delegate components may not be "Sofa aware". In this case, they have one implicit,
default Sofa, and to map to it you use the form shown for the "NameRecognizer" –
you map to the delegate's key name in the aggregate, without specifying a Sofa
name.

To add a new mapping, select the Aggregate Sofa name you wish to add the
mapping for, and press the Add button. This brings up a window like this, showing

9-202

Component Descriptor Editor User's Guide 9-202

all available delegates and their Sofas; select one or more (use the normal multi-
select methods) of these and press OK to add them.

To edit an existing mapping, select the mapping and press Edit. This will show the
existing mapping with all mapped items "selected", and other available items
unselected. Change the items selected to match what you want, deselecting some,
and perhaps selecting others, and press OK.

9.10 Indexes Page

The Indexes page is where the user declares what indexes and type priority lists are
used by the analysis engine. Indexes are used to determine the order in which
Feature Structures of a particular type are fetched, using an iterator in the UIMA
API. An unpopulated Indexes page is displayed below:

Component Descriptor Editor User's Guide 9-203

Both indexes and type priority lists can have imports. These imports work just like
the type system imports, described above.

The built-in Annotation Index is always present for TAEs. It is based on the type
uima.tcas.Annotation and has keys begin (Ascending), end (Descending) and
TYPE_PRIORITY. There are no built-in type priorities, so this last sort item does not
play a role in the index unless type priorities are specified.

Type priority may be combined with other keys. Type priorities are defined in the
Priority Lists section, using one or more priority list. A given priority list gives an
ordering among a group of types. Types that appear higher in the priority list are
given higher priority, in other words, they sort first when TYPE_PRIORITY is
specified as the index key. Subtypes of these types are also sorted, unless such a sort
is overridden by other specific type priority specifications. To get the ordering used
among all the types, all of the type priority lists are merged. This gives a partial
ordering among the types. Ties are resolved in an unspecified fashion. The

9-204

Component Descriptor Editor User's Guide 9-204

Component Descriptor Editor checks for incompatible orderings, and informs the
user if they exist, so they can be corrected.

To create a new index, use the Add Index button in the top left section. This brings
up this dialog:

Each index needs a globally unique index name. Every index indexes one CAS type
(and its subtypes). The entry field for this has content assist (start typing the type
name and press Control – Spacebar to get help, or press the Browse button to pick a
type).

Indexes can be sorted, in which case you need to specify one or more keys to sort on.
Sort keys are selected from features whose range type is Integer, Float, or String.
Some elements will be disabled if they are not relevant. For instance, if the index
kind is "bag", you cannot provide sort keys. The order of sort keys can be adjusted
using the up and down buttons, if necessary.

A set index will contain no duplicates of the same type, where a duplicate is defined
by the indexing comparator. That is, if you commit two feature structures of the
same type that are equal with respect to the indexing comparator, only the first one
will be entered into the index. Note that you can still have duplicates with respect
to the indexing order, if they are of a different type. A set index is not guaranteed to
be sorted. If no keys are specified for a set index, then all instances are considered
by default to be equal, so only the first instance (for a particular type or subtype of

Component Descriptor Editor User's Guide 9-205

the type being indexed) is indexed. On the other hand, "bag" indicates that all
annotation instances are indexed, including duplicates.

The Priority Lists section of the Indexes page is used to specify Priority Lists of
types. Priority Lists are unnamed ordered sets of type names. Add a new priority
list by clicking the Add Set button. Add a type to an existing priority list by first
selecting the set, and then clicking Add. You can use the up and down buttons to
adjust the order as necessary; these buttons move the selected item up or down.

Although it is possible to import self-contained index and type priority files, the
creation of such files is not yet supported by the Component Descriptor Editor. If
you create these files using another editor, they can be imported using the
corresponding Import panels, shown on the right. Imports are specified in the same
manner as they are for Type System imports.

9.11 Resources Page

The resources page describes resource dependencies (for primitive Analysis
Engines) and external Resource specification and their bindings to the resource
dependencies.

Only primitive Analysis Engines define resource dependencies. Primitive and
Aggregate Analysis Engines can define external resources and connect them (bind
them) to resource dependencies.

When an Aggregate is providing an external resource to be bound to a dependency,
the binding is specified using a possibly multi-level path, starting at the Aggregate,
and specify which component (by its key name), and then if that component is, in
turn, an Aggregate, which component (again by its key name), and so on until you
reach a primitive. The sequence of key names is made into the binding specification
by joining the parts with a "/" character. All of this is done for you by the
Component Descriptor Editor.

Any external resource provided by an Aggregate will override any binding
provided by any lower level component for the same resource dependency.

There are two views of the Resources page, depending on whether the Analysis
Engine is an Aggregate or Primitive. Here's the view for a Primitive:

9-206

Component Descriptor Editor User's Guide 9-206

To declare a resource dependency, click the Add button in the right hand panel.
This puts up the dialog:

Component Descriptor Editor User's Guide 9-207

The Key must be unique within the descriptor declaring it. The Interface, if present,
is the name of a Java interface the Analysis Engine uses to access the resource.

Declare actual External resource on the left side of the page. Clicking "Add" brings
up this dialog:

9-208

Component Descriptor Editor User's Guide 9-208

The Name must be unique within this Analysis Engine. The URL identifies a file
resource. If both the URL and URL suffix are used, the file resource is formed by
combining the first URL part with the language-identifier, followed by the URL
suffix; see Resource Manager Configuration on page 20-279. URLs may be written
as "relative" URLs; in this case they are resolved by looking them up relative to the
classpath and/or datapath. A relative URL has the path part starting without an
intial "/"; for example: file:my/directory/file. An absolute URL starts with file:/ or
file:/// or file://some.network.address/. For more information about URLs, please
read the javaDoc information for the Java class "URL".

The Implementation is optional, and if given, must be a Java class that implements
the interface specified in any Resource Dependencies this resource is bound to.

9.11.1 Binding

Once you have an external resource definition, and a Resource Dependency, you can
bind them together. To do this, you select the two things (an external resource
definition, and a Resource Dependency) that you want to bind together, and click
Bind.

9.11.2 Resources with Aggregates

When editing an Aggregate Descriptor, the Resource definitions panel will show all
the resources at the primitive level, with paths down through the components
(multiple levels, if needed) to get to the primitives. The Aggregate can define
external resources, and bind them to one or more uses by the primitives.

9.12 Source Page

The Source page is a text view of the xml content of the Analysis Engine or Type
System being configured. An example of this page is displayed below:

Component Descriptor Editor User's Guide 9-209

Changes made in the GUI are immediately reflected in the xml source, and changes
made in the xml source are immediately reflected back in the GUI. The thought
here is that the GUI view and the Source view are just two ways of looking at the
same data. When the data is in an unsaved state the file name is prefaced with an
asterisk in the currently selected file tab in the editor pane inside Eclipse (as in the
example above).

You may accidentally create invalid descriptors or XML by editing directly in the
Source view. If you do this, when you try and save or when you switch to a
different view, the error will be detected and reported. In the case of saving, the file
will be saved, even if it is in an error state.

9.12.1 Source formating – indentation

The XML is indented using an indentation amount saved as a global UIMA
preference. To change this preference, use the Eclipse menu item: Windows ->
Preferences -> UIMA Preferences.

9.13 Creating a Self-Contained Type System

It is also possible to use the Component Descriptor Editor to create or edit self-
contained type systems. To create a self-contained type system, select the menu
item File->New->Other and then select Type System Descriptor File. From the next
page of the selection wizard specify a Parent Folder and File name and click Finish.

9-210

Component Descriptor Editor User's Guide 9-210

This will take you to a stripped down interface for editing a type system file which
contains just three pages: an overview page, a type system page, and a source page.
The overview page is a bit more Spartan than in the case of an AE. It looks like the
following:

Component Descriptor Editor User's Guide 9-211

Just like an AE has an associated name, version, vendor and description, the same is
true of a self-contained type system. The Type System page is identical to that in an
AE descriptor file, as is the Source page. It is worthy of note that a self-contained
type system can import type systems just like the type system associated with an
AE.

9.14 Creating Other Descriptor Components

The new wizard can create two other kinds of components: Collection Processing
Management (CPM) components, and importable parts (besides Type Systems,
described above, there is some limited editing support for Indexes, Type Priorities,
and Resource Manager Configuration imports).

The CPM components supported by this editor include the Collection Reader, Cas
Initializer, and CasConsumer descriptors. Each of these is basically treated just like
a primitive AE descriptor, with small changes to accommodate the different
semantics. For instance, a CasConsumer can't declare in its capabilities section that
it outputs types or features.

The importable part support is limited because much of the power of this editor
comes from extensive checking that requires additional information, other than
what is available in just the importable part. For instance, although you can create
an Indexes import, the facility for adding new indexes doesn't work, because it
needs the type information, which is not present in this part when it is edited alone.
However, you can use the source editor, and some kinds of editing (which can be
done in isolation) are supported, such as removing an index, or reordering them.

9-212

Component Descriptor Editor User's Guide 9-212

Likewise, the Resource Manager Configuration editing capability can't add any
bindings because these require information outside of this descriptor (the Resource
Dependencies).

Component Descriptor Editor User's Guide 9-213

CPE Configurator User's Guide 10-215

Chapter 10 Collection Processing Engine Configurator
User's Guide

A Collection Processing Engine (CPE) processes collections of artifacts (documents)
through the combination of the following components: a Collection Reader, an
optional CAS Initializer, Analysis Engines, and CAS Consumers.

The Collection Processing Engine Configurator(CPE Configurator) is a graphical tool that
allows you to assemble and run CPEs.

For an introduction to Collection Processing Engine concepts, including developing
the components that make up a CPE, read Chapter 5 Collection Processing Engine
Developer's Guide. This chapter is a user's guide for using the CPE Configurator
tool, and does not describe UIMA's Collection Processing Architecture itself.

10.1 Limitations of the CPE Configurator

The CPE Configurator only supports basic CPE configurations.

It only supports "Integrated" deployments (although it will connect to remotes if
particular CAS Processors are specified with remote service descriptors). It doesn't
support configuration of the error handling. It doesn't support Sofa Mappings; it
assumes all Sofa-unaware components are operating with a default text Sofa. Sofa-
aware components will not have their names mapped. It sets up a fixed-sized CAS
Pool.

For running arbitrary CPE descriptors, or running with other than the default
configuration supplied by the CPE Configurator, you can write your own
application, or use the runCPE script, which invokes an example application,
SimpleRunCPE.

10.2 Starting the CPE Configurator

The CPE Configurator tool can be run using the cpeGui shell script, which is located
in the bin directory of the UIMA SDK. If you've installed the example Eclipse
project (see Chapter 3 UIMA SDK Setup for Eclipse), you can also run it using the
"UIMA CPE GUI" run configuration provided in that project.

Note that if you are planning to build a CPE using components other than the
examples included in the UIMA SDK, you will first need to update your
CLASSPATH environment variable to include the classes needed by these
components.

CPE Configurator User's Guide 10-216

When you first start the CPE Configurator, you will see the main window shown
here:

10.3 Selecting Component Descriptors

The CPE Configurator's main window is divided into 4 sections: one for each of the
types of components that constitute a CPE: CollectionReader, CAS Initializer,
Analysis Engines, and CasConsumers. Each CPE has exactly one CollectionReader,
an optional CAS Initializer, and at least one each of Analysis Engines and CAS
Consumers.

In each section of the CPE Configurator, you can select the component(s) you want
to use by browsing to (or typing the location of) their XML descriptors. You must
select a Collection Reader, at least one Analysis Engine, and at least one CAS
Consumer. You may or may not need to select a CAS Initializer; this depends on the
particular Collection Reader that you are using.

When you select a descriptor, the configuration parameters that are defined in that
descriptor will then be displayed in the GUI; these can be modified to override the
values present in the descriptor.

CPE Configurator User's Guide 10-217

For example, the screen shot below shows the CPE Configurator after the following
components have been chosen:

docs/examples/descriptors/collectionReader/ FileSystemCollectionReader.xml
docs/examples/descriptors/analysis_engine/NamesAndPersonTitles_TAE.xml
docs/examples/descriptors/cas_consumer/XCasWriterCasConsumer.xml

10.4 Running a Collection Processing Engine

After selecting each of the components and providing configuration settings, click
the play (forward arrow) button at the bottom of the screen to begin processing. A
progress bar should be displayed in the lower left corner. (Note that the progress
bar will not begin to move until all components have completed their initialization,
which may take several seconds.) Once processing has begun, the pause and stop
buttons become enabled.

If an error occurs, you will be informed by an error dialog. If processing completes
successfully, you will be presented with a performance report.

10.5 The File Menu

The CPE Configurator's File Menu has six options:

CPE Configurator User's Guide 10-218

• Open CPE Descriptor

• Save CPE Descriptor

• Refresh Descriptors from File System

• Clear All

• Exit

Open CPE Descriptor will allow you to select a CPE Descriptor file from disk, and
will read in that CPE Descriptor and configure the GUI appropriately.

Save CPE Descriptor will create a CPE Descriptor file that defines the CPE you have
constructed. This CPE Descriptor will identify the components that constitute the
CPE, as well as the configuration settings you have specified for each of these
components. Later, you can use "Open CPE Descriptor" to restore the CPE
Configurator to the state. Also, CPE Descriptors can be used to easily run a CPE
from a Java program – see Chapter 6 Application Developer’s Guide.

CPE Descriptors also allow specifying operational parameters, such as error
handling options that are not currently available for configuration through the CPE
Configurator. For more information on manually creating a CPE Descriptor, see
 Chapter 21 Collection Processing Engine Descriptor Reference.

Refresh Descriptors from File System will reload all descriptors from disk. This is
useful if you have made a change to the descriptor outside of the CPE Configurator,
and want to refresh the display.

Clear All will reset the CPE Configurator to its initial state, with no components
selected.

Exit will close the CPE Configurator. If you have unsaved changes, you will be
prompted as to whether you would like to save them to a CPE Descriptor file. If
you do not save them, they will be lost.

When you restart the CPE Configurator, it will automatically reload the last CPE
descriptor file that you were working with.

10.6 The Help Menu

The CPE Configurator's Help menu provides "About" information and some very
simple instructions on how to use the tool.

PEAR Packager User's Guide 11-219

Chapter 11 PEAR Packager User's Guide

A PEAR (Processing Engine ARchive) file is a standard package for UIMA
(Unstructured Information Management Architecture) components. The PEAR
package can be used for distribution and reuse by other components or applications.
It also allows applications and tools to manage UIMA components automatically for
verification, deployment, invocation, testing, etc. Please refer to the PEAR Reference
chapter for more information about the internal structure of a PEAR file.

This chapter describes how to use the PEAR Eclipse Plugin to create PEAR files for
standard UIMA components. This plugin is installed if you followed the directions
in Chapter 3 UIMA SDK Setup for Eclipse on page 3-43.

11.1 Using the PEAR Eclipse Plugin

Using the PEAR Eclipse Plugin involves the following two steps:

• Add the UIMA nature to your project
• Create a PEAR file using the PEAR generation wizard

11.1.1 Add UIMA Nature to your project

First, create a project for your UIMA component:

• Create a Java project, which would contain all the files and folders needed for
your UIMA component.

• Create a source folder called "src" in your project, and make it the only source
folder, by clicking on "Properties" in your project’s context menu (right-click),
then select "Java Build Path", then add the "src" folder to the source folders list,
and remove any other folder from the list.

• Specify an output folder for your project called bin, by clicking on "Properties"
in your project’s context menu (right-click), then select "Java Build Path", and
specify "your_project_name/bin" as the default output folder.

Then, add the UIMA nature to your project by clicking on "Add UIMA Nature" in
the context menu (right-click) of your project. Click "Yes" on the "Adding UIMA
custom Nature" dialog box. Click "OK" on the confirmation dialog box.

PEAR Packager User's Guide 11-220

 Figure 17. Adding the UIMA Nature

Adding the UIMA nature to your project creates the PEAR structure in your project.
The PEAR structure is a structured tree of folders and files, including the following
elements:

• Required Elements:
− The metadata folder which contains the PEAR installation descriptor and

properties files.
− The installation descriptor (metadata/install.xml)

• Optional Elements:
− The desc folder to contain descriptor files of analysis engines, component

analysis engines (all levels), and other component (Collection Readers, CAS
Consumers, etc).

− The src folder to contain the source code
− The bin folder to contain executables, scripts, class files, dlls, shared libraries,

etc.
− The lib folder to contain jar files.

PEAR Packager User's Guide 11-221

− The doc folder containing documentation materials, preferably accessible
through an index.html.

− The data folder to contain data files (e.g. for testing).
− The conf folder to contain configuration files.
− The resources folder to contain other resources and dependencies.
− Other user-defined folders or files are allowed, but should be avoided.

For more information about the PEAR structure, please refer to the "Processing
Engine Archive" section.

Figure 18. The PEAR Structure

11.1.2 Use the PEAR Generation Wizard

Before using the PEAR Generation Wizard, make sure you add all the files needed
to run your component including descriptors, jars, external libraries, resources, and
component analysis engines (in the case of an aggregate analysis engine), etc. It’s
recommended to generate a jar file from your code as an alternative to building the
project and making sure the output folder (bin) contains the required class files.

Then, click on "Generate PEAR file" from the context menu (right-click) of your
project, to open the PEAR Generation wizard, and follow the instructions on the
wizard to generate the PEAR file.

PEAR Packager User's Guide 11-222

The Component Information page

The first page of the PEAR generation wizard is the component information page.
Specify in this page a component ID for your PEAR and select the main Analysis
Engine descriptor. The descriptor must be specified using a pathname relative to the
project’s root (e.g. "desc/MyTAE.xml). The component id is a string that uniquely
identifies the component. It should use the JAVA naming convention (e.g.
com.ibm.uima.mycomponent).

Optionally, you can include specific Collection Iterator, CAS Initializer, or CAS
Consumers. In this case, specify the corresponding descriptors in this page.

Figure 19. The component Information page

The Installation Environment page

The installation environment page is used to specify the following:

• Preferred operating system
• Required JDK version, if applicable.
• Required Environment variable, such as CLASSPATH

PEAR Packager User's Guide 11-223

Path names should be specified using macros (see below), instead of hard-coded
absolute paths that might work locally, but probably won’t if the PEAR is deployed
in a different machine and environment.

Macros are variables such as $main_root, used to represent a string such as the full
path of a certain directory.

These macros should be defined in the PEAR.properties file using the local values.
The tools and applications that use and deploy PEAR files should replace these
macros (in the files included in the conf and desc folders) with the corresponding
values in the local environment as part of the deployment process.

Currently, there are two types of macros:

• $main_root , which represents the local absolute path of the main component
root directory after deployment.

• $component_id$root, which represents the local absolute path to the root
directory of the component which has component_id as component ID. This
component could be, for instance, a delegate component.

Figure 20. The Installation Environment Page

PEAR Packager User's Guide 11-224

The PEAR file content page

The last page of the wizard is the "PEAR file Export" page, which allows the user to
select the files to include in the PEAR file. The metadata folder and all its content is
mandatory. Make sure you include all the files needed to run your component
including descriptors, jars, external libraries, resources, and component analysis
engines (in the case of an aggregate analysis engine), etc. It’s recommended to
generate a jar file from your code as an alternative to building the project and
making sure the output folder (bin) contains the required class files.

Note: If you are relying on the class files generated in the output folder (usually
called bin) to run your code, then make sure the project is built properly, and all the
required class files are generated without errors. In this case make sure your output
folder (e.g. $main_root/bin) is in the classpath (see the "Installation Environment"
page.

Figure 21. The PEAR File Export Page

PEAR Installer 12-225

Chapter 12 PEAR Installer User's Guide

PEAR (Processing Engine ARchive) is a new standard for packaging UIMA
compliant components. This standard defines several service elements that should
be included in the archive package to enable automated installation of the
encapsulated UIMA component. The major PEAR service element is an XML
Installation Descriptor that specifies installation platform, component attributes,
custom installation procedures and environment variables.

The installation of a UIMA compliant component includes 2 steps: (1) installation of
the component code and resources in a local file system, and (2) verification of the
serviceability of the installed component. Installation of the component code and
resources involves extracting component files from the archive (PEAR) package in a
designated directory and localizing file references in component descriptors and
other configuration files. Verification of the component serviceability is
accomplished with the help of standard UIMA mechanisms for instantiating
analysis engines.

 PEAR Installer 12-226

PEAR Installer is a simple GUI based Java application that helps installing UIMA
compliant components (analysis engines) from PEAR packages in a local file system.
To install a desired UIMA component the user needs to select the appropriate PEAR
file in a local file system and specify the installation directory (optional). During the
component installation the user can read messages printed by the installation
program in the message area of the application window. If the installation fails,
appropriate error message is printed to help identifying and fixing the problem.

After the desired UIMA component is successfully installed, the PEAR Installer
allows testing this component in the CAS Visual Debugger (CVD) application,
which is provided with the UIMA package. The CVD application will load your
UIMA component using its XML descriptor file. If the component is loaded
successfully, you'll be able to run it either with sample documents provided in the
<UIMA_HOME>/docs/examples/data directory, or with any other sample documents. See
CASVisualDebugger.pdf in the docs directory for more information about the CVD
application. Running your component in the CVD application helps to make sure
the component will run in other UIMA applications. If the CVD application fails to
load or run your component, or throws an exception, you can find more information
about the problem in the uima.log file in the current working directory. The log file
can be viewed with the CVD.

PEAR Installer creates the setenv.txt file in the <component_root>/metadata directory.
This file contains environment variables required to run your component in any
UIMA application. For instance, if you want to run your component in the
Collection Processing Engine Configurator GUI application, you need to add the
environment variables settings from the component's setenv.txt file to the
cpeGui.bat (cpeGui.sh) script file in the <UIMA_HOME>/bin directory.

PEAR Merger 13-227

Chapter 13 PEAR Merger User's Guide

The PEAR Merger utility takes two or more PEAR files and merges their contents,
creating a new PEAR which has, in turn, a new Aggregate analysis engine whose
delegates are the components from the original files being merged. It does this by
(1) copying the contents of the input components into the output component,
placing each component into a separate subdirectory, (2) generating a UIMA
descriptor for the output Aggregate text analysis engine and (3) creating an output
PEAR file that encapsulates the output Aggregate.

The merge logic is quite simple, and is intended to work for simple cases. More
complex merging needs to be done by hand. Please see the Restrictions and
Limitations section, below.

This is a command-line utility; there are shell scripts (.bat for Windows, and .sh for
Unix) to run it.

runPearMerger 1st_input_pear_file ... nth_input_pear_file
 -n output_analysis_engine_name [-f output_pear_file]

The first group of parameters are the input PEAR files. No duplicates are allowed
here. The -n parameter is the name of the generated Aggregate Analysis Engine.
The optional -f parameter specifies the name of the output file. If it is omitted, the
output is written to output_tae_name.pear in the current working directory.

During the running of this tool, work files are written to a temporary directory
created in the user's home directory.

13.1 Details of the merging process

The PEARs are merged using the following steps:

1. A temporary working directory, is created for the output aggregate component.

2. Each input PEAR file is extracted into a separate 'input_component_name'
folder under the working directory.

3. The extracted files are processed to adjust the '$main_root' macros. This
operation differs from the PEAR installation operation, because it does not
replace the macros with absolute paths.

4. The output PEAR directory structure, 'metadata' and 'desc' folders under the
working directory, are created.

PEAR Merger 13-228

5. The UIMA TAE descriptor for the output aggregate component is built in the
'desc' folder. This aggregate descriptor refers to the input delegate components,
specifying 'fixed flow' based on the original order of the input components in
the command line. The aggregate descriptor's 'capabilities' and 'operational
properties' sections are built based on the input components' specifications.

6. A new PEAR installation descriptor is created in the 'metadata' folder,
referencing the new output aggregate descriptor built in the previous step.

7. The content of the temporary output working directory is zipped to created the
output PEAR, and then the temporary working directory is deleted.

The PEAR merger utility logs all the operations both to standard console output and
to a log file, pm.log, which is created in the current working directory.

13.2 Testing and Modifying the resulting PEAR

The output PEAR file can be installed and tested using the PEAR Installer. The
output aggregate component can also be tested by using the CVD or DocAnalyzer
tools.

The PEAR Installer creates Eclipse project files (.classpath and .project) in the root
directory of the installer PEAR, so the installed component can be imported into the
Eclipse IDE as an external project. Once the component is in the Eclipse IDE,
developers may use the Component Descriptor Editor and the PEAR Packager to
modify the output aggregate descriptor and re-package the component.

13.3 Restrictions and Limitations

The PEAR Merger utility only does basic merging operations, and is limited as
follows. You can overcome these by editing the resulting PEAR file or the resulting
Aggregate Descriptor.

1. The Merge operation specifies Fixed Flow sequencing for the Aggregate.

2. The merged aggregate does not define any parameters, so the delegate
parameters cannot be overridden.

3. No External Resource definitions are generated for the aggregate.

4. No Sofa Mappings are generated for the aggregate.

5. Name collisions are not checked for. Possible name collisions could occur in the
fully-qualified class names of the implementing Java classes, the names of JAR
files, the names of descriptor files, and the names of resource bindings or
resource file paths.

PEAR Merger 13-229

6. The input and output capabilities are generated based on merging the
capabilities from the components (removing duplicates). Capability sets are
ignored - only the first of the set is used in this process, and only one set is
created for the generated Aggregate. There is no support for merging Sofa
specifications.

7. No Indexes or Type Priorities are created for the generated Aggregate. No
checking is done to see if the Indexes or Type Priorities of the components
conflict or are inconsistent.

8. You can only merge Analysis Engines and CAS Consumers.

9. Although PEAR file installation descriptors that are being merged can have
specific XML elements describing Collection Reader and CAS Consumer
descriptors, these elements are ignored during the merge, in the sense that the
installation descriptor that is created by the merge does not set these elements.
The merge process does not use these elements; the output PEAR's new
aggregate only references the merged components' main PEAR descriptor
element, as identified by the PEAR element:
<SUBMITTED_COMPONENT>
 <DESC>the_component.xml</DESC>...
</SUBMITTED_COMPONENT>.

Document Analyzer User's Guide 14-231

Chapter 14 Document Analyzer User's Guide

The Document Analyzer is a tool provided by the UIMA SDK for testing annotators
and TAEs. It reads text files from your disk, processes them using a TAE, and
allows you to view the results. The Document Analyzer is designed to work with
text files and cannot be used with Analysis Engines that process other types of data.

For an introduction to developing annotators and Analysis Engines, read Chapter 4
Annotator and Analysis Engine Developer’s Guide. This chapter is a user's guide
for using the Document Analyzer tool, and does not describe the process of
developing annotators and Analysis Engines.

14.1 Starting the Document Analyzer

To run the Document Analyzer, execute the documentAnalyzer script that is in the bin
directory of your UIMA SDK installation, or, if you are using the example Eclipse
project, execute the "UIMA Document Analyzer" run configuration supplied with
that project.

Note that if you're planning to run an Analysis Engine other than one of the
examples included in the UIMA SDK, you'll first need to update your CLASSPATH
environment variable to include the classes needed by that Analysis Engine.

When you first run the Document Analyzer, you should see a screen that looks like
this:

Document Analyzer User's Guide 14-232

14.2 Running a TAE

To run a TAE, you must first configure the six fields on the main screen of the
Document Analyzer.

Input Directory: Browse to or type the path of a directory containing text files that
you want to analyze. Some sample documents are provided in the UIMA SDK
under the docs/examples/data directory.

Output Directory: Browse to or type the path of a directory where you want output
to be written. (As we'll see later, you won't normally need to look directly at these
files, but the Document Analyzer needs to know where to write them.) The files
written to this directory will be an XML representation of the analyzed documents.
If this directory doesn't exist, it will be created. If you leave this field blank, your
TAE will be run but no output will be generated.

Location of TAE XML Descriptor: Browse to or type the path of the descriptor for
the TAE that you want to run. There are some example descriptors provided in the
UIMA SDK under the docs/examples/descriptors/analysis_engine and
docs/examples/descriptors/tutorial directories.

XML Tag containing Text: This is an optional feature. If you enter a value here, it
specifies the name of an XML tag, expected to be found within the input documents,
that contains the text to be analyzed. For example, the value TEXT would cause the
TAE to only analyze the portion of the document enclosed within <TEXT>...</TEXT>
tags.

Language: Specify the language in which the documents are written. Some
Analysis Engines, but not all, require that this be set correctly in order to do their
analysis. You can select a value from the drop-down list or type your own. The
value entered here must be an ISO language identifier, the list of which can be
found here: http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt

Character Encoding: The character encoding of the input files. The default, UTF-8,
also works fine for ASCII text files. If you have a different encoding, enter it here.
For more information on character sets and their names, see the JavaDocs for
java.nio.charset.Charset.

Once you've filled in the appropriate values, press the "Run" button.

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt

Document Analyzer User's Guide 14-233

If an error occurs, a dialog will appear with the error message. (A stack trace will
also be printed to the console, which may help you if the error was generated by
your own annotator code.) Otherwise, an "Analysis Results" window will appear.

14.3 Viewing the Analysis Results

After a successful analysis, the "Analysis Results" window will appear.

The "Results Display Format" options at the bottom of this window show the
different ways you can view your analysis – the Java Viewer, Java Viewer (JV) with
User Colors, HTML, and XML. The default, Java Viewer, is recommended.

Once you have selected your desired Results Display Format, you can double-click
on one of the files in the list to view the analysis done on that file.

For the Java viewer, the results display looks like this (for the TAE descriptor
docs/examples/descriptors/tutorial/ex4/MeetingDetectorTAE.xml):

Document Analyzer User's Guide 14-234

You can click the mouse on one of the highlighted annotations to see a list of all its
features in the frame on the right.

If there are multiple annotation types in the view, you can control which ones are
selected by using the checkboxes in the legend, the Select All button, or the Deselect
All button.

14.4 Configuring the Annotation Viewer

The "JV User Colors" and the HTML viewer allow you to specify exactly which
colors are used to display each of your annotation types. For the Java Viewer, you
can also specify which types should be initially selected, and you can hide types
entirely.

To configure the viewer, click the "Edit Style Map" button on the "Analysis Results"
dialog. You should see a dialog that looks like this:

Document Analyzer User's Guide 14-235

To change the color assigned to a type, simply click on the colored cell in the
"Background" column for the type you wish to edit. This will display a dialog that
allows you to choose the color. For the HTML viewer only, you can also change the
foreground color.

If you would like the type to be initially checked (selected) in the legend when the
viewer is first launched, check the box in the "Checked" column. If you would like
the type to never be shown in the viewer, click the box in the "Hidden" column.
These settings only affect the Java Viewer, not the HTML view.

When you are done editing, click the "Save" button. This will save your choices to a
file in the same directory as your TAE descriptor. From now on, when you view
analysis results produced by this TAE using the "JV User Colors" or "HTML"
options, the viewer will be configured as you have specified.

14.5 Interactive Mode

Interactive Mode allows you to analyze text that you type or cut-and-paste into the
tool, rather than requiring that the documents be stored as files.

In the main Document Analyzer window, you can invoke Interactive Mode by
clicking the "Interactive" button instead of the "Run" button. This will display a
dialog that looks like this:

Document Analyzer User's Guide 14-236

You can type or cut-and-paste your text into this window, then choose your Results
Display Format and click the "Analyze" button. Your TAE will be run on the text
that you supplied and the results will be displayed as usual.

14.6 View Mode

If you have previously run a TAE and saved its analysis results, you can use the
Document Analyzer's View mode to view those results, without re-running your
analysis. To do this, on the main Document Analyzer window simply select the
location of your analyzed documents in the "Output Directory" dialog and click the
"View" button. You can then view your analysis results as described in Section 14.3
Viewing the Analysis Results.

CAS Visual Debugger 15-237

Chapter 15 CAS Visual Debugger

The documentation for this component is found in a separate file in the docs/
directory, called CASVisualDebugger.pdf.

JCasGen User Guide 16-239

Chapter 16 JCasGen User Guide

JCasGen reads a descriptor for an application, creates the merged type system
specification by merging all the type system information from all the components
referred to in the descriptor, and then uses this merged type system to create Java
source files for classes that enable JCas access to the CAS. Java classes are not
produced for the built-in types, except for the uima.tcas.DocumentAnnotation built-in
type, which is the only built-in type that can be extended by users by adding
features to it.

There are several versions of JCasGen. The basic version reads an XML descriptor
which contains a type system descriptor, and generates the corresponding Java
Class Models for those types. Variants exist for the Eclipse environment that allow
merging the newly generated Java source code with previously augmented versions;
see page 24-337 for a discussion of how the Java Class Models can be augmented by
adding additional methods and fields.

Input to JCasGen needs to be mostly self-contained. In particular, any types that are
defined to depend on user-defined supertypes must have that supertype defined, if
the supertype is uima.tcas.Annotation or a subtype of it. Any features referencing
ranges which are subtypes of uima.cas.String must have those subtypes included. If
this is not followed, a warning message is given stating that the resulting generation
may be inaccurate.

JCasGen is typically invoked using a shell script. These scripts can take 0, 1, or 2
arguments. The first argument is the location of the file containing the input XML
descriptor. The second argument specifies where the generated Java source code
should go. If it isn’t given, JCasGen generates its output into a subfolder called JCas
(or sometimes JCasNew – see below), of the first argument’s path.

If no arguments are given to JCasGen, then it launches a GUI to interact with the
user and ask for the same input. The GUI will remember the arguments you
previously used. Here’s what it looks like:

JCasGen User Guide 16-240

When running with automatic merging of the generated Java source with
previously augmented versions, the output location is where the merge function
obtains the source for the merge operation.

As is customary for Java, the generated class source files are placed in the
appropriate subdirectory structure according to Java conventions that correspond to
the package (name space) name.

The Java classes must be compiled and the resulting class files included in the class
path of your application; you make these classes available for other annotator
writers using your types, perhaps packaged as an xxx.jar file. If the xxx.jar file is
made to contain only the Java Class Models for the CAS types, it can be reused by
any users of these types.

Running stand-alone without Eclipse

There is no capability to automatically merge the generated Java source with
previous versions, unless running with Eclipse. If run without Eclipse, no automatic
merging of the generated Java source is done with any previous versions. In this
case, the output is put in a folder called "JCasNew" unless overridden by specifying
a second argument.

The distribution includes a shell script/bat file to run the stand-alone version, called
jcasgen.

JCasGen User Guide 16-241

Running stand-alone with Eclipse

If you have Eclipse and EMF (EMF = Eclipse Modeling Framework; both of these are
available from http://www.eclipse.org) installed (version 2.1 or later) JCasGen can
merge the Java code it generates with previous versions, picking up changes you
might have inserted by hand. The output (and source of the merge input) is in a
folder "JCas" under the same path as the input XML file, unless overridden by
specifying a second argument.

You must install the UIMA plug-ins into Eclipse to enable this function.

The distribution includes a shell script/bat file to run the stand-alone with Eclipse
version, called jcasgen_merge. This works by starting Eclipse in "headless" mode
(no GUI) and invoking JCasGen within Eclipse. You will need to set the
ECLIPSE_HOME environment variable or modify the jcasgen_merge shell script to
specify where to find Eclipse. The version of Eclipse needed is 2.1 or higher, with
the EMF plug-in and the UIMA runtime plug-in installed. A temporary workspace
is used; the name/location of this is customizable in the shell script.

Log and error messages are written to the UIMA log. This file is called uima.log,
and is located in the default working directory, which if not overridden, is the
startup directory of Eclipse.

Running within Eclipse

There are two ways to run JCasGen within Eclipse, with this release. The first way
is to configure an Eclipse external tools launcher, and use it to run the stand-alone
shell scripts, with the arguments filled in. Here’s a picture of a typical launcher
configuration screen (you get here by navigating from the top menu: Run
External Tools External tools...).

http://www.eclipse.org/

JCasGen User Guide 16-242

The second way to run within Eclipse is to use the Analysis Engine Configurator
tool Chapter 7. The UIMA Component Descriptor Editor User’s Guide. This tool can be
configured to automatically launch JCasGen whenever the descriptor is modified.
In this release, this operation completely regenerates the files, even if just a small
thing changed. So you probably don’t want to enable this all the time. The
configurator tool has an option to enable/disable this function.

XCAS Annotation Viewer

17-243

Chapter 17 XCAS Annotation Viewer

The XCAS Annotation Viewer is a tool for viewing analysis results that have been
saved to your disk as XCAS files. XCAS is the XML representation of the CAS. In
the UIMA SDK, XCAS files can be generated by:

• Running the Document Analyzer (see Chapter 14 Document Analyzer User's
Guide), which saves XCAS files to the specified output directory.

• Running a Collection Processing Engine that includes the XCAS Writer CAS
Consumer
(docs/examples/descriptors/cas_consumer/XCasWriterCasConsumer.xml).

• Explicitly creating XCAS files from your own application using the
com.ibm.uima.cas.impl.XCasSerializer class. The best way to learn how to do
this is to look at the example code for the XCAS Writer CAS Consumer, located
in docs/examples/src/com/ibm/uima/examples/cpe/XCasWriterCasConsumer.java.

Note: The XCAS Annotation Viewer is not aware of Sofas, and only shows
annotations for a default text Sofa.

You can run the XCAS Annotation Viewer by executing the xcasAnnotationViewer
shell script located in the bin directory of the UIMA SDK. This will open the
following window:

Select an input directory (which must contain XCAS files), and the descriptor for the
TAE that produced the Analysis (which is needed to get the type system for the
analysis). Then press the "View" button.

This will bring up a dialog where you can select a viewing format and double-click
on a document to view it. This dialog is the same as the one that is described in
Chapter 14.3 Viewing the Analysis Results.

Part IV 245

Part IV: Reference

Part IV 246

UIMA FAQs 18-247

Chapter 18 UIMA FAQs

What is UIMA? UIMA stands for Unstructured Information Management
Architecture. It is component software architecture for the development, discovery,
composition and deployment of multi-modal analytics for the analysis of
unstructured information and its integration with search and knowledge
management technologies.

UIMA processing occurs through a series of modules called analysis engines. The
result of analysis is an assignment of semantics to the elements of unstructured data,
for example, the indication that the phrase "Washington" refers to a person’s name
or that it refers to a place.

UIMA supports the rendering of these results in conventional structures, for
example, relational databases or search engine indices, where the content of the
original unstructured information may be efficiently accessed according to its
inferred semantics.

UIMA is specifically designed to support the developer in creating, integrating, and
deploying components across platforms and among disperse teams working to
develop unstructured information management applications.

What's the difference between UIMA and the UIMA SDK? UIMA is an
architecture which specifies component interfaces, design patterns, data
representations and development roles.

The UIMA Software Development Kit (SDK) is a software system which includes a
run-time framework, APIs and tools for implementing, composing, packaging and
deploying UIMA components. It comes with a semantic search engine for indexing
and querying over the results of analysis.

The UIMA run-time framework allows developers to plug-in their components and
applications and run them on different platforms and according to different
deployment options that range from tightly-coupled (running in the same process
space) to loosely-coupled (distributed across different processes or machines for
greater scale, flexibility and recoverability).

What is an Annotation? An annotation is a label, typically represented as string of
characters, associated with a region of a document. The region may be the whole
document.

An example is the label "Person" associated with the span of text "George
Washington". We say that "Person" annotates "George Washington" in the sentence

UIMA FAQs 18-248

"George Washington was the first president of the United States". The association of
the label "Person" with a particular span of text is an annotation. Another example
may have an annotation represent a topic, like “American Presidents" and be used
to label an entire document.

Annotations are not limited to text. A label may annotate a region of an image or a
segment of audio. The same concepts apply.

What is the CAS? The CAS stands for Common Analysis Structure. It provides
cooperating UIMA components with a common representation and mechanism for
shared access to the artifact being analyzed (e.g., a document, audio file, video
stream etc.) and the current analysis results.

What does the CAS contain? The CAS is a data structure for which UIMA provides
multiple interfaces. It contains and provides the analysis algorithm or application
developer with access to

• the subject of analysis (the artifact being analyzed, like the document),
• the analysis results or metadata(e.g., annotations, parse trees, relations, entities

etc.)
• indices to the analysis results and
• the type system (a schema for the analysis results)

Does the CAS only contain Annotations? No. The CAS contains the artifact being
analyzed plus the analysis results. Analysis results are those statements recorded by
analysis engines in the CAS. The most common form of analysis result is the
addition of an annotation. But an analysis engine may write any structure that
conforms to the CAS’s type system into the CAS. These may not be annotations but
may be other things, for example links between annotations and properties of
objects associated with annotations.

Is the CAS just XML? No, in fact there are many possible representations of the
CAS. If all of the analysis engines are running in the same process, an efficient, in-
memory data object is used. If a CAS must be sent to an analysis engine on a remote
machine, it can be done via an XML or a binary serialization of the CAS.

The UIMA framework provides serialization and de-serialization methods for a
particular XML representation of the CAS named the XCAS. There are plans in the
works to support an XMI representation of the CAS as well.

What is a Type System? Think of a type system as a schema or class model for the
CAS. It defines the types of objects and their properties (or features) that may be
instantiated in a CAS. A specific CAS conforms to a particular type system. UIMA
components declare their input and output with respect to a type system.

UIMA FAQs 18-249

Type Systems include the definitions of types, their properties, range types (these
can restrict the value of properties to other types) and single-inheritance hierarchy
of types.

What is a Sofa? Sofa stands for “Subject of Analysis". A CAS is associated with a
single artifact being analysed by a collection of UIMA analysis engines. But a single
artifact may have multiple independent views, each of which may be analyzed
separately by a different set of analysis engines. For example, given a document it
may have different translations, each of which are associated with the original
document but each potentially analyzed by different engines. A CAS may have
multiple Sofas each containing a different view of the original artifact. This feature is
ideal for multi-modal analysis, where for example, one view of a video stream may
be the video frames and the other the close-captions. In UIMA each view would get
its own Sofa.

What's the difference between an Annotator and an Analysis Engine? In the
terminology of UIMA, an annotator is simply some code that analyzes documents
and outputs annotations on the content of the documents. The UIMA framework
takes the annotator, together with metadata describing such things as the input
requirements and outputs types of the annotator, and produces an analysis engine.

Analysis Engines contain the framework-provided infrastructure that allows them
to be easily combined with other analysis engines in different flows and according
to different deployment options (collocated or as web services, for example).

Are UIMA analysis engines web services? They can be deployed as such.
Deploying an analysis engine as a web service is one of the deployment options
supported by the UIMA framework.

How do you scale a UIMA application? The UIMA framework allows components
such as analysis engines and CAS Consumers to be easily deployed as services or in
other containers and managed by systems middleware designed to scale. UIMA
applications tend to naturally scale-out across documents allowing many
documents to be analyzed in parallel.

A component in the UIMA framework called the CPM (Collection Processing
Manager) has a host of features and configuration settings for scaling an application
to increase its throughput and recoverability.

What does it mean to embed UIMA in systems middleware? An example of an
embedding would be the deployment of a UIMA analysis engine as an Enterprise
Java Bean inside an application server such as IBM WebSphere. Such an embedding
allows the deployer to take advantage of the features and tools provided by
WebSphere for achieving scalability, service management, recoverability etc.

UIMA FAQs 18-250

UIMA is independent of any particular systems middleware, so analysis engines
could be deployed on other application servers as well.

Do Analysis Engines have to be "stateless"? Technically, No. But Analysis Engines
developers are encouraged not to maintain state between documents that would
prevent their engine from working as advertised if switched into a different flow or
onto a different document collection.

UIMA defines another type of component, the CAS Consumer, which is intended to
maintain state across documents and is typically associated with some resource like
a database or search engine that aggregates analysis results across an entire
collection.

Is engine meta-data compatible with web services and UDDI? All UIMA
component implementations are associated with Component Descriptors which
represents metadata describing various properties about the component to support
discovery, reuse, validation, automatic composition and development tooling. In
principle, UIMA component descriptors are compatible with web services and
UDDI. However, the UIMA framework currently uses its own XML representation
for component metadata. It would not be difficult to convert between UIMA’s XML
representation and the WSDL and UDDI standards.

How is the CPM different from a CPE? The UIMA framework includes a Collection
Processing Manager or CPM for managing the execution of a workflow of UIMA
components orchestrated to analyze a large collection of documents. The UIMA
developer does not implement or describe a CPM. It is a built-in part of the
framework. It is a piece of infrastructure code that handles CAS transport, instance
management, batching, check-pointing, statistics collection and failure recovery in
the execution of a collection processing workflow.

A Collection Processing Engine (CPE) is component that the UIMA developer
creates by specifying a CPE descriptor. A CPE descriptor points to a series of UIMA
components including a Collection Reader, CAS Initializer, Analysis Engine(s) and
CAS Consumers. These components organized in a work flow define a collection
analysis job or CPE. A CPE acquires documents from a source collection, initializes
CASs with document content, performs document analysis and then produces
collection level results (e.g., search engine index, database etc). The CPM is the
execution engine for a CPE.

What is Semantic Search and what is its relationship to UIMA? Semantic Search
refers to a document search paradigm that allows users to search based not just on
the keywords contained in the documents, but also on the semantics associated with
the text by analysis engines. UIMA applications perform analysis on text documents
and generate semantics in the form of annotations on regions of text. For example, a
UIMA analysis engine may discover the text “First Financial Bank" to refer to an

UIMA FAQs 18-251

organization and annotated it as such. With traditional keyword search, the query
“first" will return all documents that contain that word. “First" is a frequent and
ambiguous term – it occurs a lot and can mean different things in different places. If
the user is looking for organizations that contain that word “first" in their names,
s/he will likely have to sift through lots of documents containing the word “first"
used in different ways. Semantic Search exploits the results of analysis to allow
more precise queries. For example, the semantic search query <organization> first
</organization> will rank first documents that contain the word “first" as part of the
name of an organization. The UIMA SDK documentation demonstrates how UIMA
applications can be built using semantic search. It provides details about the XML
Fragment Query language. This is the particular query language used by the
semantic search engine that comes with the SDK.

Is an XML Fragment Query valid XML? Not necessarily. The XML Fragment
Query syntax is used to formulate queries interpreted by the semantic search engine
that ships with the UIMA SDK. This query language relies on basic XML syntax as
an intuitive way to describe hierarchical patterns of annotations that may occur in a
CAS. The language deviates from valid XML in order to support queries over
“overlapping" or “cross-over" annotations and other features that affect the
interpretation of the query by the query processor. For example, it admits notations
in the query to indicate whether a keyword or an annotation is optional or required
to match a document.

Does UIMA support modalities other than text? The UIMA architecture supports
the development, discovery, composition and deployment of multi-modal analytics
including text, audio and video. Applications that process text, speech and video
have been developed using UIMA. This release of the SDK, however, does not
include examples of these multi-modal applications.

It does however include documentation and programming examples for using the
key feature required for building multi-modal applications. UIMA supports
multiple subjects of analysis or Sofas. These allow multiple views of a single artifact
to be associated with a CAS. For example, if an artifact is a video stream, one Sofa
could be associated with the video frames and another with the closed-captions text.
UIMA’s multiple Sofa feature is included and described in this release of the SDK.

How does UIMA compare to other similar work? A number of different
frameworks for NLP have preceded UIMA. Two of them were developed at IBM
Research and represent UIMA’s early roots. For details please refer to the UIMA
article that appears in the IBM Systems Journal Vol. 43, No. 3
(http://www.research.ibm.com/journal/sj/433/ferrucci.html).

UIMA has advanced that state of the art along a number of dimensions including:
support for distributed deployments in different middleware environments, easy
framework embedding in different software product platforms (key for commercial

http://www.research.ibm.com/journal/sj/433/ferrucci.html

UIMA FAQs 18-252

applications), broader architectural converge with its collection processing
architecture, support for multiple-modalities, support for efficient integration across
programming languages, support for a modern software engineering discipline
calling out different roles in the use of UIMA to develop applications, the extensive
use of descriptive component metadata to support development tooling, component
discovery and composition. (Please note that not all of these features are available in
this release of the SDK.)

How does UIMA relate to IBM Products? UIMA analysis engines and annotators
are already used within several IBM products, including, IBM's new enterprise
search offering, WebSphere Information Integrator OmniFind Edition
(http://www.ibm.com/software/data/integration/search.html), and IBM's WebSphere
Portal Server offering. All new analysis technology deployed into IBM products is
based on the UIMA architecture.

Is UIMA Open Source? Yes. The UIMA SDK is freely available on the IBM
alphaWorks site (http://www.alphaworks.ibm.com/tech/uima) and the source code
for the UIMA framework is available on SourceForge (http://uima-
framework.sourceforge.net).

What Java level and OS are required for the UIMA SDK? The UIMA SDK requires
a Java 1.4 level; it will not run on a 1.3 (or earlier levels). It has been tested with IBM
Java SDK v1.4.2, which is included as part of the UIMA SDK. It has been tested on
Windows 2000, Windows XP and Linux Intel 32bit platforms. Other platforms and
JDK implementations, including Java 1.5, may work, but have not been significantly
tested.

Can I build my UIM application on top of UIMA? Yes. The UIMA SDK license
does not restrict its usage to specific scenarios, and we are of course very interested
in your feedback to help us making UIMA the right platform for building UIMA
applications. UIMA is officially supported inside IBM's WebSphere Information
Integration Omnifind Edition product
(http://www.ibm.com/developerworks/db2/zones/db2ii or
http://www.ibm.com/software/data/integration/db2ii/editions_womnifind.html).
The UIMA SDK on IBM's alphaWorks is supported on a "best can do" basis. If you
are interested in a more formal support agreement, or would like to include UIMA
in a commercial solution, beyond using the officially supported product, please
contact IBM for additional options.

http://www.alphaworks.ibm.com/tech/uima
http://uima-framework.sourceforge.net/
http://uima-framework.sourceforge.net/
http://www.ibm.com/developerworks/db2/zones/db2ii
http://www-306.ibm.com/software/data/integration/db2ii/editions_womnifind.html

Glossary 19-253

Chapter 19 Glossary of Key Terms and Concepts

Analysis Engine: A program that analyzes artifacts (e.g. documents) and infers
information about them, and which implements the UIMA Analysis Engine
interface Specification. It does not matter how the program is built, with what
framework or whether or not it contains component ("sub") Analysis Engines.

Annotation: The association of a label with a region of text (or other type of
artifact). For example, the label "Person" associated with a region of text "John Doe"
constitutes an annotation. We say "Person" annotates the span of text from X to Y
containing exactly "John Doe". An annotation is represented as a special type in a
UIMA type system. It is the type used to record the labeling of regions of a subject of
analysis.

Annotator: A software component that implements the UIMA annotator interface.
Annotators are implemented to produce and record annotations over regions of an
artifact (e.g., text document, audio, and video).

Aggregate Analysis Engine: An Analysis Engine that is implemented by
configuring a collection of component Analysis Engines.

CAS: The UIMA Common Analysis Structure is the primary data structure which
UIMA analysis components use to represent and share analysis results. It contains:

• The artifact. This is the object being analyzed such as a text document or audio
or video stream. The CAS projects one or more views of the artifact. Each view
is referred to as a Subject of Analysis.

• A type system description – indicating the types, subtypes, and their features.

• Analysis metadata – "standoff" annotations describing the artifact or a region of
the artifact

• An index repository to support efficient access to and iteration over the results
of analysis.

UIMA’s primary interface to this structure is provided by a class called the Common
Analysis System. We use "CAS" to refer to both the structure and system. Where the
common analysis structure is used through a different interface, the particular
implementation of the structure is indicated, For example, the JCas is a native Java
object representation of the contents of the common analysis structure.

CAS Consumer: A component that receives each CAS in the collection after it
has been processed by an Analysis Engine. The CAS Consumer may then perform
collection-level analysis and construct an application-specific, aggregate data
structure.

Glossary 19-254

CAS Initializer: A component that populates a CAS from a raw document. For
example, if the document is HTML, a CAS Initializer might store a detagged version
of the document in the CAS and also create inline annotations derived from the tags.
For example <p> tags might be translated into inline Paragraph annotations in the
CAS.

CAS Processor: A component that takes a CAS as input and returns a CAS as
output. There are two types of CAS Processors: Analysis Engines and CAS
Consumers.

CDE: The Component Descriptor Editor . This is the Eclipse tool that lets you
conveniently edit the UIMA descriptors, described in Chapter 9 Component
Descriptor Editor User’s Guide on page 9-179.

Collection Processing Engine (CPE): Performs Collection Processing
through the combination of a Collection Reader, an optional CAS Initializer, an
Analysis Engine, and one or more CAS Consumers. The Collection Processing
Manager (CPM) manages the execution of the engine.

Collection Processing Manager (CPM): A module in the framework that
manages the execution of collection processing, routing CASs from the Collection
Reader to an Analysis Engine and then to the CAS Consumers. The CPM provides
feedback such as performance statistics and error reporting and may implement
other features such as parallelization.

Collection Reader: A component that reads documents from some source, for
example a file system or database. Each document is returned as a CAS that may
then be processed by Analysis Engines. If the task of populating a CAS from the
document is complex, a Collection Reader may choose to use a CAS Initializer for
this purpose.

Fact Search: A search that given fact pattern, returns facts extracted from a
collection of documents by a set of analysis engines that match the fact pattern.

Feature: A data member or attribute of a type. Each feature itself has an
associated type. In the database analogy where types are tables, features are
columns.

Hybrid Analysis Engine: An Aggregate Analysis Engine where more than one
of its component Analysis Engines are deployed the same address space and one or
more are deployed remotely (part tightly and part loosely-coupled).

Index: Data in the CAS can only be retrieved using Indexes. Indexes are
analogous to the indexes that are specified on tables of a database. Indexes belong

Glossary 19-255

to Index Repositories; there is one Repository for the base CAS as well as additional
ones for each TCAS view of the CAS. Indexes are specified to retrieve instances of
some CAS Type (including its subtypes), and can be sorted in a user-definable way.
For example, all types derived from the UIMA built-in type uima.tcas.annotation
contain begin and end features, which mark the begin and end offsets in the text
where this annotation occurs. One may then specify that types should be retrieved
sequentially by begin (ascending) and end (descending). In this case, iterating over
the annotations, one first obtains annotations that come sequentially first in the text,
while favoring shorter annotations, in the case where two annotations start at the
same offset.

JCas: A Java object interface to the contents of the CAS, where each type in the
CAS is represented as a Java class, each feature a property and each instance of a
type a Java object.

Keyword Search: The standard search method where one supplies words (or
"keywords") and candidate documents are returned.

Knowledge Base: A collection of data that may be interpreted as a set of facts
and rules considered true in a possible world.

Loosely-Coupled Analysis Engine: An Aggregate Analysis Engine where no
two of its component Analysis Engines run in the same address space but where
each is remote with respect to the others that make up the aggregate. Ideal for using
remote Analysis Engine services that are not locally available, or for quickly
assembling and testing functionality in cross-language, cross-platform distributed
environments. Also better enables distributed scaleable implementations where
quick recoverability may have a greater impact on overall throughput than analysis
speed.

Ontology: The part of a knowledge base that defines the semantics of the data
axiomatically.

PEAR: An archive file that packages up a UIMA component its code, descriptor
files and other resources required to install and run it in another environment. You
can generate PEAR files using utilities that come with the UIMA SDK.

Primitive Analysis Engine: An Analysis Engine that is composed of a single
Annotator but NO component (or "sub") Analysis Engines inside of it.

Semantic Search: A search where the semantic intent of the query is specified
using one or more entity or relation specifiers. For example, one could specify that
they are looking for a person (named) "Bush." Such a query would then not return
results about the kind of bushes that grow in your garden but rather just persons
named bush.

Glossary 19-256

Structured Information: Items stored in structured resources such as search
engine indices, databases or knowledge bases. The canonical example of structured
information is the database table. Each element of information in the database is
associated with a precisely defined schema where each table column heading
indicates its precise semantics, defining exactly how the information should be
interpreted by a computer program or end-user.

Subject of Analysis (Sofa): An piece of data (e.g., text document, image, audio
segment, or video segment), intended for analysis by UIMA analysis components. It
is made available to UIMA analysis components through a TCAS, which is a
particular view of a CAS associated with a particular Subject of Analysis. There can
be multiple Sofas contained within one CAS, each representing a different view of
the original artificat – for example, an audio file could be the original artifact, and
correspond to one Sofa, and another could be the output of a voice-recognition
component, where the Sofa would be the corresponding text. document. Sofas
maybe analyzed independently or simultaneously.

TAE: A specialization of Analysis Engine for processing artifacts where annotations
over those artifacts are being produced. See Sofa.

TCAS: a particular view of the CAS corresponding to one particular Sofa. The
TCAS has all the methods of a CAS and additional methods related to its Sofa
(subject of analysis). It also provides access to an index repository holding instances
of Feature Structures associated with this Sofa.

Tightly-Coupled Analysis Engine: An Aggregate Analysis Engine where all
of its component Analysis Engines run in the same address space.

Type: An object used to store the results of analysis. Types are defined using
inheritance, so some types may be defined purely for the sake of defining other
types, and are in this sense "abstract types." Types usually contain features, which
are attributes or properties of the type. A type is roughly equivalent to a class in an
object oriented programming language, or a table in a database. Types may be
indexed for fast retrieval.

Type System: A collection of related types. Each Analysis Engine or CAS
Consumer has its own type system. Type systems are often shared across Analysis
Engines. A type system is roughly analogous to a set of related classes in object
oriented programming, or a set of related tables in a database. The type system /
type / feature terminology comes from computational linguistics.

Unstructured Information: The canonical example of unstructured information
is the natural language text document. The intended meaning of a document's
content is only implicit and its precise interpretation by a computer program
requires some degree of analysis to explicate the document's semantics. Other

Glossary 19-257

examples include audio, video and images. Unstructured information is contrasted
with structured information. The canonical example of structured information is the
database table. Each element of information in the database is associated with a
precisely defined schema where each table column heading indicates its precise
semantics, defining exactly how the information elements should be interpreted by
a computer program or end-user.

UIMA: Unstructured Information Management Architecture: a software
architecture which specifies component interfaces, design patterns and development
roles for creating, describing, discovering, composing and deploying multi-modal
analysis capabilities.

UIMA Framework: A Java-based implementation of the UIMA architecture. It
provides a run-time environment in which developers can plug in and run their
UIMA component implementations and with which they can build and deploy UIM
applications. The framework is not specific to any IDE or platform. The original
design for the framework was largely inspired by the original TAF and Talent
systems developed in IBM Watson Research labs and IBM Software Group.

UIMA Software Development Kit (SDK): includes an all-Java
implementation of the UIMA framework for the implementation, description,
composition and deployment of UIMA components and applications. It also
provides the developer with an Eclipse-based (www.eclipse.org) development
environment that includes a set of tools and utilities for using UIMA.

XCAS: An XML representation of the CAS. The XCAS can be used for saving and
restoring CASs to and from streams. The UIMA SDK provides serialization and de-
serialization methods for the XCAS format.

http://www.eclipse.org/

Component Descriptor Reference 20-259

Chapter 20 Component Descriptor Reference

This chapter is the reference guide for the UIMA SDK's Component Descriptor XML
schema. A Component Descriptor (also sometimes called a Resource Specifier in the
code) is an XML file that either (a) completely describes a component, including all
information needed to construct the component and interact with it, or (b) specifies
how to connect to and interact with an existing component that has been published
as a remote service. Component (also called Resource) is a general term for modules
produced by UIMA developers and used by UIMA applications. The types of
Components are: Analysis Engines, Collection Readers, CAS Initializers, CAS
Consumers, and Collection Processing Engines. However, Collection Processing
Engine Descriptors are significantly different in format and are covered in a separate
chapter, UIMA Collection Processing Engine Descriptor Reference.

Section 20.1 describes the notation used in this chapter.

Section 20.2 describes the UIMA SDK’s import syntax, used to allow XML
descriptors to import information from other XML files, to allow sharing of
information between several XML descriptors.

Section 20.4 describes the XML format for Analysis Engine Descriptors. These are
descriptors that completely describe Analysis Engines, including all information
needed to construct and interact with them.

Section 20.5 describes the XML format for Collection Processing Component
Descriptors. This includes Collection Iterator, CAS Initializer, and CAS Consumer
Descriptors.

Section 20.6 describes the XML format for Service Client Descriptors, which specify
how to connect to and interact with resources deployed as remote services.

20.1 Notation

This chapter uses an informal notation to specify the syntax of Component
Descriptors. The formal syntax is defined by an XML schema definition, which is
contained in two files – resourceSpecifierSchema.xsd and TaeSpecifierSchema.xsd,
both of which are in the uima_core.jar file.

The notation used in this chapter is:

• An ellipsis (...) inside an element body indicates that the substructure of that
element has been omitted (to be described in another section of this chapter). An
example of this would be:

Component Descriptor Reference 20-260

<analysisEngineMetaData>

...

</analysisEngineMetaData>

• An ellipsis immediately after an element indicates that the element type may be
may be repeated arbitrarily many times. For example:

<parameter>[String]</parameter>
<parameter>[String]</parameter>
...

indicates that there may be arbitrarily many parameter elements in this context.

• Bracketed expressions (e.g. [String]) indicate the type of value that may be used
at that location.

• A vertical bar, as in true|false, indicates alternatives. This can be applied to
literal values, bracketed type names, and elements.

• Which elements are optional and which are required is specified in prose, not in
the syntax definition.

20.2 Imports

The UIMA SDK defines a particular syntax for XML descriptors to import
information from other XML files. When one of the following appears in an XML
descriptor:

<import location="[URL]" /> or

<import name="[Name]" />

it indicates that information from a separate XML file is being imported. Note that
imports are allowed only in certain places in the descriptor. In the remainder of this
chapter, it will be indicated at which points imports are allowed.

If an import specifies a location attribute, the value of that attribute specifies the
URL at which the XML file to import will be found. This can be a relative URL,
which will be resolved relative to the descriptor containing the import element, or an
absolute URL. Relative URLs can be written without a protocol/scheme (e.g., "file:"),
and without a host machine name. In this case the relative URL might look
something like com/ibm/myproj/MyTypeSystem.xml.

An absolute URL is written with one of the following prefixes, followed by a path
such as com/ibm/myproj/MyTypeSystem.xml:

• file:/ << has no network address
• file:/// << has an empty network address
• file://some.network.address/

Component Descriptor Reference 20-261

For more information about URLs, please read the javadoc information for the Java
class "URL".

If an import specifies a name attribute, the value of that attribute should take the
form of a Java-style dotted name (e.g. com.ibm.myproj.MyTypeSystem). An .xml file
with this name will be searched for in the classpath or datapath (described below).
As in Java, the dots in the name will be converted to file path separators. So an
import specifying the example name in this paragraph will result in a search for
com/ibm/myproj/MyTypeSystem.xml in the classpath or datapath.

The datapath works similarly to the classpath but can be set programmatically
through the resource manager API. Application developers can specify a datapath
during initialization, using the following code:

ResourceManager resMgr = UIMAFramework.newDefaultResouceManager();

resMgr.setDataPath(yourPathString);

TextAnalysisEngine tae = UIMAFramework.produceTAE(desc, resMgr, null);

The default datapath for the entire JVM can be set via the uima.datapath Java system
property, but this feature should only be used for standalone applications that don't
need to run in the same JVM as other code that may need a different datapath.

The UIMA SDK also supports XInclude, a W3C candidate recommendation, to
include XML files within other XML files. However, it is recommended that the
import syntax be used instead, as it is more flexible and better supports tool
developers.

Note: UIMA tools for editing XML descriptors do not support the use of
xi:include because they cannot correctly determine what parts of a descriptor
are updatable, and what parts are included from other files. They do support
the use of <import>.

To use XInclude, you first must include the XInclude namespace in your document’s
root element, e.g.:

<taeDescription xmlns="http://uima.watson.ibm.com/resourceSpecifier"
xmlns:xi="http://www.w3.org/2001/XInclude">

Then, you can include a file using the syntax <xi:include href="[URL]"/>

where [URL] can be any relative or absolute URL referring to another XML
document. The referred-to document must be a valid XML document, meaning that
it must consist of exactly one root element and must define all of the namespace
prefixes that it uses. The default namespace (generally
http://uima.watson.ibm.com/resourceSpecifier) will be inherited from the parent
document. When UIMA parses the XML document, it will automatically replace

Component Descriptor Reference 20-262

the <xi:include> element with the entire XML document referred to by the href.
For more information on XInclude see http://www.w3.org/TR/xinclude/.

20.3 Type System Descriptors

A Type System Descriptor is used to define the types and features that can be
represented in the CAS. A Type System Descriptor can be imported into an
Analysis Engine or Collection Processing Component Descriptor.

The basic structure of a Type System Descriptor is as follows:

<typeSystemDescription
xmlns="http://uima.watson.ibm.com/resourceSpecifier">

 <name> [String] </name>
 <description>[String]</description>
 <version>[String]</version>
 <vendor>[String]</vendor>

 <imports>
 <import ...>
 ...
 </imports>

 <types>
 <typeDescription>
 ...
 </typeDescription>

 ...

 </types>

</typeSystemDescription>

All of the subelements are optional.

Imports

The imports section allows this descriptor to import types from other type system
descriptors. The import syntax is described in section 20.1 of this chapter. A type
system may import any number of other type systems and then define additional
types which refer to imported types. Circular imports are allowed.

Types

The types element contains zero or more typeDescription elements. Each
typeDescription has the form:

<typeDescription>
 <name>[TypeName]</name>
 <description>[String]</description>
 <supertypeName>[TypeName]</supertypeName>
 <features>

http://www.w3.org/TR/xinclude/

Component Descriptor Reference 20-263

 ...
 </features>
</typeDescription>

The name element contains the name of the type. A [TypeName] is a dot-separated
list of names, where each name consists of a letter followed by any number of
letters, digits, or underscores. TypeNames are case sensitive. Letter and digit are as
defined by Java; therefore, any Unicode letter or digit may be used (subject to the
character encoding defined by the descriptor file's XML header). The name
following the final dot is considered to be the "short name" of the type; the
preceding portion is the namespace (analogous to the package.class syntax used in
Java). Namespaces beginning with uima are reserved and should not be used.
Examples of valid type names are:

• test.TokenAnnotation
• org.myorg.tae.TokenAnnotation
• com.my_company.proj123.TokenAnnotation

These would all be considered distinct types since they have different namespaces.
Best practice here is to follow the normal Java naming conventions of having
namespaces be all lowercase, with the short type names having an initial capital, but
this is not mandated, so ABC.mYtyPE is an allowed type name. While type names
without namespaces (e.g. TokenAnnotation alone) are allowed, the JCas does not
support them and so their use is strongly discouraged.

The description element contains a textual description of the type. The
superTypeName element contains the name of the type from which it inherits (this can
be set to the name of another user-defined type, or it may be set to any built-in type
which may be subclassed, such as "uima.tcas.Annotation" for a new annotation type
or "uima.cas.TOP" for a new type that is not an annotation). All three of these
elements are required.

Features

The features element of a typeDescription is required only if the type we are
specifying introduces new features. If the features element is present, it contains
zero or more featureDescription elements, each of which has the form:

<featureDescription>
 <name>[Name]</name>
 <description>[String]</description>
 <rangeTypeName>[Name]</rangeTypeName>
 <elementType>[Name]</elementType>
 <multipleReferencesAllowed>true|false</multipleReferencesAllowed>
</featureDescription>

A feature’s name follows the same rules as a type short name – a letter followed by
any number of letters, digits, or underscores. Feature names are case sensitive.

Component Descriptor Reference 20-264

The feature’s rangeTypeName specifies the type of value that the feature can take. This
may be the name of any type defined in your type system, or one of the predefined
types. All of the predefined types have names that are prefixed with uima.cas or
uima.tcas, for example:

uima.cas.TOP
uima.cas.Sofa
uima.cas.String
uima.cas.Integer
uima.cas.Float
uima.cas.FSArray
uima.cas.StringArray
uima.cas.IntegerArray
uima.cas.FloatArray
uima.cas.FSList
uima.cas.StringList
uima.cas.IntegerList
uima.cas.FloatList
uima.tcas.Annotation.

For a complete list of predefined types, see the CAS API documentation.

The elementType of a feature is optional, and applies only when the rangeTypeName is
uima.cas.FSArray or uima.cas.FSList The elementType specifies what type of value
can be assigned as an element of the array or list. This must be the name of a non-
primitive type. If omitted, it defaults to uima.cas.TOP, meaning that any
FeatureStructure can be assigned as an element the array or list. Note: depending
on the CAS Interface that you use in your code, this constraint may or may not be
enforced.

The multipleReferencesAllowed feature is optional, and applies only when the
rangeTypeName is an array or list type (it applies to arrays and lists of primitive as
well as non-primitive types). Setting this to false (the default) indicates that this
feature has exclusive ownership of the array or list, so changes to the array or list are
localized. Setting this to true indicates that the array or list may be shared, so
changes to it may affect other objects in the CAS. Note: there is currently no
guarantee that the framework will enforce this restriction. However, this setting
may affect how the CAS is serialized.

String Subtypes

There is one other special type that you can declare – a subset of the String type that
specifies a restricted set of allowed values. This is useful for features that can have
only certain String values, such as parts of speech. Here is an example of how to
declare such a type:

<typeDescription>
 <name>PartOfSpeech</name>
 <description>A part of speech.</description>

Component Descriptor Reference 20-265

 <supertypeName>uima.cas.String</supertypeName>
 <allowedValues>
 <value>
 <string>NN</string>
 <description>Noun, singular or mass.</description>
 </value>
 <value>
 <string>NNS</string>
 <description>Noun, plural.</description>
 </value>
 <value>
 <string>VB</string>
 <description>Verb, base form.</description>
 </value>

 ...

 </allowedValues>
</typeDescription>

20.4 Analysis Engine Descriptors

Analysis Engine (AE) descriptors completely describe Analysis Engines. There are
two basic types of Analysis Engines – Primitive and Aggregate. A Primitive Analysis
Engine is a container for a single annotator, where as an Aggregate Analysis Engine is
composed of a collection of other Analysis Engines. (For more information on this
and other terminology, see Chapter 2 UIMA Conceptual Overview)

Both Primitive and Aggregate Analysis Engines have descriptors, and the two types
of descriptors have some similarities and some differences. Primitive Analysis
Engine descriptors are discussed first, in Section 20.4.1 . Section 20.4.2 then
describes how Aggregate Analysis Engine descriptors are different.

Analysis Engines can analyze any type of data. A common case is the analysis of
particular Subjects, including things like text documents, in which case a
specialization of Analysis Engine called a TAE is used. TAE descriptors are almost
exactly identical to general Analysis Engine descriptors, but include information
relating to the subject of analysis.

20.4.1 Primitive Analysis Engine Descriptors

Basic Structure
<?xml version="1.0" encoding="UTF-8" ?>
<taeDescription xmlns="http://uima.watson.ibm.com/resourceSpecifier">
 <frameworkImplementation>com.ibm.uima.java</frameworkImplementation>

 <primitive>true</primitive>
 <annotatorImplementationName> [String] </annotatorImplementationName>

Component Descriptor Reference 20-266

 <analysisEngineMetaData>
 ...
 </analysisEngineMetaData>

 <externalResourceDependencies>
 ...
 </externalResourceDependencies>

 <resourceManagerConfiguration>
 ...
 </resourceManagerConfiguration>

</taeDescription>

The document begins with a standard XML header. This example is for a TAE
descriptor, for which the root element is named <taeDescription>. For a general
Analysis Engine descriptor, use analysisEngineDescription, as the name of the root
element instead.

Within the root element we declare that we are using the XML namespace
http://uima.watson.ibm.com/resourceSpecifier. It is required that this namespace
be used; otherwise, the descriptor will not be able to be validated for errors.

 The first subelement, <frameworkImplementation>, currently must have the value
com.ibm.uima.java, or com.ibm.uima.cpp. In future versions, there may be other
framework implementations, or perhaps implementations produced by other
vendors.

The second subelement, <primitive>, contains the Boolean value true, indicating
that this XML document describes a Primitive Analysis Engine.

The next subelement, <annotatorImplementationName> is how the UIMA framework
determines which annotator class to use. This should contain a fully-qualified Java
class name for Java implementations, or the name of a .dll or .so file for C++
implementations.

The <analysisEngineMetaData> object contains descriptive information about the
analysis engine and what it does. It is described in the section Analysis Engine
Metadata.

The <externalResourceDependencies> and <resourceManagerConfiguration> elements
declare the external resource files that the analysis engine relies upon. They are
optional and are described in the section External Resource Dependencies and
Resource Manager Configuration.

Analysis Engine Metadata
<analysisEngineMetaData>
 <name> [String] </name>
 <description>[String]</description>

Component Descriptor Reference 20-267

 <version>[String]</version>
 <vendor>[String]</vendor>

 <configurationParameters> ... </configurationParameters>

 <configurationParameterSettings>
 ...
 </configurationParameterSettings>

 <typeSystemDescription> ... </typeSystemDescription>

 <typePriorities> ... </typePriorities>

 <fsIndexes> ... </fsIndexes>

 <capabilities> ... </capabilities>

 <operationalProperties> ... </operationalProperties>

</analysisEngineMetaData>

The analysisEngineMetaData element contains four simple string fields – name,
description, version, and vendor. Only the name field is required, but providing
values for the other fields is recommended. The name field is just a descriptive name
meant to be read by users; it does not need to be unique across all Analysis Engines.

The other sub-elements – configurationParameters, configurationParameterSettings,
typeSystemDescription, typePriorities, fsIndexes, capabilities and
operationalProperties are described in the following sections. The only one of these
that is required is capabilities; the others are all technically optional but generally
necessary for an analysis engine of any complexity.

Configuration Parameter Declaration

Configuration Parameters are made available to annotator implementations and
applications by the following interfaces: AnnotatorContext (passed as an argument to
the initialize() method of an annotator), ConfigurableResource (every Analysis
Engine implements this interface), and the UimaContext (you can get this from any
resource, including Analysis Engines, using the method getUimaContext()).

Use AnnotatorContext within annotators and UimaContext outside of annotators
(for instance, in CasConsumers, or the containing application) to access
configuration parameters.

Configuration parameters are set from the corresponding elements in the XML
descriptor for the application. If you need to programmatically change parameter
settings within an application, you can use methods in ConfigurableResource; if you
do this, you need to call reconfigure() afterwards to have the UIMA framework
notify all the contained analysis components that the parameter configuration has
changed (the analysis engine's reinitialize() methods will be called). Note that in the
current implementation, only integrated deployment components have
configuration parameters passed to them; remote components obtain their

Component Descriptor Reference 20-268

parameters from their remote startup environment. This will likely change in the
future.

There are two ways to specify the <configurationParameters> section – as a list of
configuration parameters or a list of groups. A list of parameters, which are not part
of any group, looks like this:

<configurationParameters>
 <configurationParameter>
 <name>[String]</name>
 <description>[String]</description>
 <type>String|Integer|Float|Boolean</type>
 <multiValued>true|false</multiValued>
 <mandatory>true|false</mandatory>
 <overrides>
 <parameter>[String]</parameter>
 <parameter>[String]</parameter>
 ...
 </overrides>
 </configurationParameter>
 <configurationParameter>
 ...
 </configurationParameter>
 ...
</configurationParameters>

For each configuration parameter, the following are specified:

• name – the name by which the annotator code refers to the parameter. All
parameters declared in an analysis engine descriptor must have distinct names.
(required). The name is composed of normal Java identifier characters.

• description – a natural language description of the intent of the parameter
(optional)

• type – the data type of the parameter's value – must be one of String, Integer,
Float, or Boolean (required).

• multiValued – true if the parameter can take multiple-values (an array), false if
the parameter takes only a single value (optional, defaults to false).

• mandatory – true if a value must be provided for the parameter (optional,
defaults to false).

• overrides – this is used only in aggregate Analysis Engines, but is included here
for completeness. See Configuration Parameter Overrides for a discussion of
configuration parameter overriding in aggregate Analysis Engines. (optional)

A list of groups looks like this:

<configurationParameters defaultGroup="[String]"
 searchStrategy="none|default_fallback|language_fallback" >

Component Descriptor Reference 20-269

 <commonParameters>
 [zero or more parameters]
 </commonParameters>

 <configurationGroup names="name1 name2 name3 ...">
 [zero or more parameters]
 </configurationGroup>

 <configurationGroup names="name4 name5 ...">
 [zero or more parameters]
 </configurationGroup>

 ...

</configurationParameters>

Both the <commonParameters> and <configurationGroup> elements contain zero or
more <configurationParameter> elements, with the same syntax described above.

The <commonParameters> element declares parameters that exist in all groups. Each
<configurationGroup> element has a names attribute, which contains a list of group
names separated by whitespace (space or tab characters). Names consist of any
number of non-whitespace characters; however the Component Description Editor
tool restricts this to be normal Java identifiers, including the period (.) and the dash
(-). One configuration group will be created for each name, and all of the groups
will contain the same set of parameters.

The defaultGroup attribute specifies the name of the group to be used in the case
where an annotator does a lookup for a configuration parameter without specifying
a group name. It may also be used as a fallback if the annotator specifies a group
that does not exist – see below.

The searchStrategy attribute determines the action to be taken when the context is
queried for the value of a parameter belonging to a particular configuration group,
if that group does not exist or does not contain a value for the requested parameter.
There are currently three possible values:

• none – there is no fallback; return null if there is no value in the exact group
specified by the user.

• default_fallback – if there is no value found in the specified group, look in the
default group (as defined by the default attribute)

• language_fallback – this setting allows for a specific use of configuration
parameter groups where the groups names correspond to ISO language and
country codes (for an example, see below). The fallback sequence is:
<lang>_<country>_<region> -> <lang>_<country> -> <lang> -> <default>.

Example
<configurationParameters defaultGroup="en"
 searchStrategy="language_fallback">

Component Descriptor Reference 20-270

 <commonParameters>
 <configurationParameter>
 <name>DictionaryFile</name>
 <description>Location of dictionary for this
 language</description>
 <type>String</type>
 <multiValued>false</multiValued>
 <mandatory>false</mandatory>
 </configurationParameter>
 </commonParameters>

 <configurationGroup names="en de en-US"/>

 <configurationGroup names="zh">
 <configurationParameter>
 <name>DBC_Strategy</name>
 <description>Strategy for dealing with double-byte
 characters.</description>
 <type>String</type>
 <multiValued>false</multiValued>
 <mandatory>false</mandatory>
 </configurationParameter>
 </configurationGroup>

</configurationParameters>

In this example, we are declaring a DictionaryFile parameter that can have a
different value for each of the languages that our TAE supports – English (general),
German, U.S. English, and Chinese. For Chinese only, we also declare a
DBC_Strategy parameter.

We are using the language_fallback search strategy, so if an annotator requests the
dictionary file for the en-GB (British English) group, we will fall back to the more
general en group.

Since we have defined en as the default group, this value will be returned if the
context is queried for the DictionaryFile parameter without specifying any group
name, or if a nonexistent group name is specified.

Configuration Parameter Settings

If no configuration groups were declared, the <configurationParameterSettings>
element looks like this:

<configurationParameterSettings>
 <nameValuePair>
 <name>[String]</name>
 <value>
 <string>[String]</string> |
 <integer>[Integer]</integer> |
 <float>[Float]</float> |

Component Descriptor Reference 20-271

 <boolean>true|false</boolean> |
 <array> ... </array>
 </value>
 </nameValuePair>

 <nameValuePair>
 ...
 </nameValuePair>

 ...
</configurationParameterSettings>

There are zero or more nameValuePair elements. Each nameValuePair contains a name
(which refers to one of the configuration parameters) and a value for that parameter.

The value element contains an element that matches the type of the parameter. For
single-valued parameters, this is either <string>, <integer>, <float>, or <boolean>.
For multi-valued parameters, this is an <array> element, which then contains zero or
more instances of the appropriate type of primitive value, e.g.:

<array><string>One</string><string>Two</string></array>

If configuration groups were declared, then the <configurationParameterSettings>
element looks like this:

<configurationParameterSettings>

 <settingsForGroup name="[String]">
 [one or more <nameValuePair> elements]
 </settingsForGroup>

 <settingsForGroup name="[String]">
 [one or more <nameValuePair> elements]
 </settingsForGroup>

...

</configurationParameterSettings>

where each <settingsForGroup> element has a name that matches one of the
configuration groups declared under the <configurationParameters> element and
contains the parameter settings for that group.

Example

Here are the settings that correspond to the parameter declarations in the previous
example:

<configurationParameterSettings>

 <settingsForGroup name="en">
 <nameValuePair>
 <name>DictionaryFile</name>
 <value><string>resources\English\dictionary.dat></string></value>

Component Descriptor Reference 20-272

 </nameValuePair>
 </settingsForGroup>

 <settingsForGroup name="en-US">
 <nameValuePair>
 <name>DictionaryFile</name>
 <value><string>resources\English_US\dictionary.dat</string></value>
 </nameValuePair>
 </settingsForGroup>

 <settingsForGroup name="de">
 <nameValuePair>
 <name>DictionaryFile</name>
 <value><string>resources\Deutsch\dictionary.dat</string></value>
 </nameValuePair>
 </settingsForGroup>

 <settingsForGroup name="zh">
 <nameValuePair>
 <name>DictionaryFile</name>
 <value><string>resources\Chinese\dictionary.dat</string></value>
 </nameValuePair>

 <nameValuePair>
 <name>DBC_Strategy</name>
 <value><string>default</string></value>
 </nameValuePair>

 </settingsForGroup>

</configurationParameterSettings>

Type System Definition
<typeSystemDescription>

 <name> [String] </name>
 <description>[String]</description>
 <version>[String]</version>
 <vendor>[String]</vendor>

 <imports>
 <import ...>
 ...
 </imports>

 <types>
 <typeDescription>
 ...
 </typeDescription>

 ...

 </types>

</typeSystemDescription>

A typeSystemDescription element defines a type system for an Analysis Engine. The
syntax for the element is described in section 20.3 of this chapter.

Component Descriptor Reference 20-273

The recommended usage is to import an external type system, using the import
syntax described in section 20.1 of this chapter. For example:

<typeSystemDescription>
 <imports>
 <import location="MySharedTypeSystem.xml">
 </imports>
</typeSystemDescription>

This allows several AEs to share a single type system definition. The file
MySharedTypeSystem.xml would then contain the full type system information,
including the name, description, vendor, version, and types.

Type Priority Definition
<typePriorities>
 <name> [String] </name>
 <description>[String]</description>
 <version>[String]</version>
 <vendor>[String]</vendor>

 <imports>
 <import ...>
 ...
 </imports>

 <priorityLists>
 <priorityList>
 <type>[TypeName]</type>
 <type>[TypeName]</type>
 ...
 </priorityList>

 ...

 </priorityLists>
</typePriorities>

The <typePriorities> element contains zero or more <priorityList> elements; each
<priorityList> contains zero or more types. Like a type system, a type priorities
definition may also declare a name, description, version, and vendor, and may
import other type priorities. The import syntax is described in section 20.1 of this
chapter.

Type priority is used when iterating over feature structures in the CAS. For
example, if the CAS contains a Sentence annotation and a Paragraph annotation with
the same span of text (i.e. a one-sentence paragraph), which annotation should be
returned first by an iterator? Probably the Paragraph, since it is conceptually
"bigger," but the framework does not know that and must be explicitly told that the
Paragraph annotation has priority over the Sentence annotation, like this:

<typePriorities>
 <priorityList>
 <type>org.myorg.Paragraph</type>

Component Descriptor Reference 20-274

 <type>org.myorg.Sentence</type>
 </priorityList>
</typePriorities>

All of the <priorityList> elements defined in the descriptor (and in all component
descriptors of an aggregate analysis engine descriptor) are merged to produce a
single priority list.

Subtypes of types specified here are also ordered, unless overridden by another
user-specified type ordering. For example, if you specify type A comes before type
B, then subtypes of A will come before subtypes of B, unless there is an overriding
specification which declares some subtype of B comes before some subtype of A.

If there are inconsistencies between the priority list (type A declared before type B in
one priority list, and type B declared before type A in another), the framework will
throw an exception.

User defined indexes may declare if they wish to use the type priority or not; see the
next section.

Index Definition
<fsIndexCollection>

 <name>[String]</name>
 <description>[String]</description>
 <version>[String]</version>
 <vendor>[String]</vendor>

 <imports>
 <import ...>
 ...
 </imports>

 <fsIndexDescription>
 ...
 </fsIndexDescription>

 <fsIndexDescription>
 ...
 </fsIndexDescription>

 ...

</fsIndexCollection>

The fsIndexCollection element declares Feature Structure Indexes, which define an
index that holds feature structures of a given type. Information in the CAS is
always accessed through an index. There is a built-in default annotation index
declared which can be used to access instances of type Annotation (or its subtypes),
but if there is a need for a specialized index it must be declared in this element. See
 Chapter 23 CAS Reference for details on FS indexes.

Component Descriptor Reference 20-275

Like type systems and type priorities, an fsIndexCollection can declare a name,
description, vendor, and version, and may import other fsIndexCollections. The
import syntax is described in section 20.1 of this chapter.

An fsIndexCollection may also define zero or more fsIndexDescription elements,
each of which defines a single index. Each fsIndexDescription has the form:

<fsIndexDescription>

 <label>[String]</label>
 <typeName>[TypeName]</typeName>
 <kind>sorted|bag|set</kind>

 <keys>

 <fsIndexKey>
 <featureName>[Name]</featureName>
 <comparator>standard|reverse</comparator>
 </fsIndexKey>

 <fsIndexKey>
 <typePriority/>
 </fsIndexKey>

 ...

 </keys>
</fsIndexDescription>

The label element defines the name by which applications and annotators refer to
this index. The typeName element contains the name of the type that will be
contained in this index. This must match one of the type names defined in the
<typeSystemDescription>.

There are three possible values for the <kind> of index. Sorted indexes enforce an
ordering of feature structures, and may contain duplicates. Bag indexes do not
enforce ordering, and also may contain duplicates. Set indexes do not enforce
ordering and may not contain duplicates. If the <kind>element is omitted, it will
default to sorted, which is the most common type of index.

An index may define one or more keys. These keys determine the sort order of the
feature structures within a sorted index, and determine equality for set indexes. Bag
indexes do not use keys. Keys are ordered by precedence – the first key is
evaluated first, and subsequent keys are evaluated only if necessary.

Each key is represented by an fsIndexKey element. Most fsIndexKeys contains a
featureName and a comparator. The featureName must match the name of one of the
features for the type specified in the <typeName> element for this index. The
comparator defines how the features will be compared – a value of standard means
that features will be compared using the standard comparison for their data type
(e.g. for numerical types, smaller values precede larger values, and for string types,
Unicode string comparison is performed). A value of reverse means that features

Component Descriptor Reference 20-276

will be compared using the reverse of the standard comparison (e.g. for numerical
types, larger values precede smaller values, etc.). For Set indexes, the comparator
direction is ignored – the keys are only used for the equality testing.

Each key used in comparisons must refer to a feature whose range type is String,
Float, or Integer.

There is a second type of a key, one which contains only the <typePriority/>. When
this key is used, it indicates that Feature Structures will be compared using the type
priorities declared in the <typePriorities> section of the descriptor.

Capabilities
<capabilities>
 <capability>

 <inputs>
 <type allAnnotatorFeatures="true|false">[TypeName]</type>
 ...
 <feature>[TypeName]:[Name]</feature>
 ...
 </inputs>

 <outputs>
 <type allAnnotatorFeatures="true|false">[TypeName]</type>
 ...
 <feature>[TypeName]:[Name]</feature>
 ...
 </output>

 <languagesSupported>
 <language>[ISO Language ID]</language>
 ...
 </languagesSupported>

 <inputSofas>
 <sofaName>[name]</sofaName>
 ...
 </inputSofas>

 <outputSofas>
 <sofaName>[name]</sofaName>
 ...
 </outputSofas>
 </capability>

 <capability>
 ...
 </capability>

 ...

</capabilities>

Component Descriptor Reference 20-277

The capabilities definition is used by the UIMA Framework in several ways,
including setting up the Results Specification for process calls, routing control for
aggregates based on language, and as part of the Sofa mapping function.

The capabilities element contains one or more capability elements. Because you
can therefore declare multiple capability sets, you can use this to model component
behavior that for a given set of inputs, produces a particular set of outputs.

Each capability contains inputs, outputs, languagesSupported, inputSofas, and
outputSofas. Inputs and outputs element are required (though they may be empty);
<languagesSupported>, <inputSofas>, and <outputSofas> are optional and is used
only used for TAEs.

Both inputs and outputs may contain a mixture of type and feature elements.

<type...> elements contain the name of one of the types defined in the type system
or one of the built in types. Declaring a type as an input means that this component
expects instances of this type to be in the CAS when it receives it to process.
Declaring a type as an output means that this component creates new instances of
this type in the CAS.

There is an optional attribute allAnnotatorFeatures, which defaults to false if
omitted. The Component Descriptor Editor tool defaults this to true when a new
type is added to the list of inputs and/or outputs. When this attribute is true, it
specifies that all of the type’s features are also declared as input or output.
Otherwise, the features that are required as inputs or populated as outputs must be
explicitly specified in feature elements.

<feature...> elements contain the "fully-qualified" feature name, which is the type
name followed by a colon, followed by the feature name, e.g.
org.myorg.tae.TokenAnnotation:lemma. <feature...> elements in the <inputs> section
must also have a corresponding type declared as an input. In output sections, this is
not required. If the type is not specified as an output, but a feature for that type is,
this means that existing instances of the type have the values of the specified
features updated. Any type mentioned in a <feature> element must be either
specified as an input or an output or both.

language elements contain one of the ISO language identifiers, such as en for
English, or en-US for the United States dialect of English.

The list of language codes can be found here:

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt

and the country codes here:

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt

Component Descriptor Reference 20-278

http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

<inputSofas> and <outputSofas> declare sofa names used by this component. All
Sofa names must be unique within a particular capability set. A Sofa name must be
an input or an output, and cannot be both. It is an error to have a Sofa name
declared as an input in one capability set, and also have it declared as an output in
another capability set.

A <sofaName> is written as a simple Java-style identifier, without any periods in the
name.

OperationalProperties

Components can specify specific operational properties that can be useful in
deployment. The following are available:

<operationalProperties>
 <modifiesCas> true|false </modifiesCas>
 <multipleDeploymentAllowed> true|false </multipleDeploymentAllowed>
</operationalProperties>

ModifiesCas, if false, indicates that this component does not modify the CAS. If it is
not specified, the default value is true except for CAS Consumer components.

Note: If you wrap one or more CAS Consumers inside an aggregate as the only
components, you must explicitly specify in the aggregate the ModifiesCas
property as false (assuming the CAS Consumer components take the default
here); otherwise the framework will complain about inconsistent settings for
these.

multipleDeploymentAllowed, if true, allows the component to be deployed multiple
times to increase performance throught scale-out techniques. If it is not specified,
the default value is true, except for CAS Consumer and Collection Reader
components.

External Resource Dependencies
<externalResourceDependencies>
 <externalResourceDependency>
 <key>[String]</key>
 <description>[String] </description>
 <interfaceName>[String]</interfaceName>
 <optional>true|false</optional>
 </externalResourceDependency>

 <externalResourceDependency>
 ...
 </externalResourceDependency>

 ...

http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

Component Descriptor Reference 20-279

</externalResourceDependencies>

A primitive annotator may declare zero or more <externalResourceDependency>
elements. Each dependency has the following elements:

• key – the string by which the annotator code will attempt to access the resource.
Must be unique within this annotator.

• description – a textual description of the dependency

• interfaceName – the fully-qualified name of the Java interface through which the
annotator will access the data. This is optional. If not specified, the annotator
can only get an InputStream to the data.

• optional – whether the resource is optional. If false, an exception will be thrown
if no resource is assigned to satisfy this dependency. Defaults to false.

Resource Manager Configuration
<resourceManagerConfiguration>

 <name>[String]</name>
 <description>[String]</description>
 <version>[String]</version>
 <vendor>[String]</vendor>

 <imports>
 <import ...>
 ...
 </imports>

 <externalResources>

 <externalResource>
 <name>[String]</name>
 <description>[String]</description>
 <fileResourceSpecifier>
 <fileUrl>[URL]</fileUrl>
 </fileResourceSpecifier>
 <implementationName>[String]</implementationName>
 </externalResource>
 ...
 </externalResources>

 <externalResourceBindings>
 <externalResourceBinding>
 <key>[String]</key>
 <resourceName>[String]</resourceName>
 </externalResourceBinding>
 ...
 </externalResourceBindings>

</resourceManagerConfiguration>

This element declares external resources and binds them to annotators’ external
resource dependencies.

Component Descriptor Reference 20-280

The resourceManagerConfiguration element may optionally contain an import, which
allows resource definitions to be stored in a separate (shareable) file. See section 20.2
for details.

The externalResources element contains zero or more externalResource elements,
each of which consists of:

• name – the name of the resource. This name is referred to in the bindings (see
below). Resource names need to be unique within any Aggregate Analysis
Engine or Collection Processing Engine, so the Java-like
org.myorg.mycomponent.MyResource syntax is recommended.

• description – English description of the resource

• resource specifier – Declares the location of the resource. There are different
possibilities for how this is done (see below).

• implementationName – The fully-qualified name of the Java class that will be
instantiated from the resource data. This is optional; if not specified, the
resource will be accessible as an input stream to the raw data. If specified, the
Java class must implement the interfaceName that is specified in the External
Resource Dependency to which it is bound.

One possibility for the resource specifier is a <fileResourceSpecifier>, as shown
above. This simply declares a URL to the resource data. This support is built on the
Java class URL and its method URL.openStream(); it supports the protocols "file",
"http" and "jar" (for referring to files in jars) by default, and you can plug in handlers
for other protocols. The URL has to start with file: (or some other protocol). It is
relative to either the classpath or the "data path". The data path works like the
classpath but can be set programmatically via ResourceManager.setDataPath().
Setting the Java System property uima.datapath also works.

file:com/ibm.d.txt is a relative path; relative paths for resources are resolved using
the classpath and / or the datapath. For the file protocol, URLs starting with file:/ or
file:/// are absolute. Note that file://com/ibm/d.txt is NOT an absolute path
starting with com. The '//' indicates that what follows is a host name. Therefore if
you try to use this URL it will complain that it can't connect to the host "com"

Another option is a <fileLanguageResourceSpecifier>, which is intended to support
resources, such as dictionaries, that depend on the language of the document being
processed. Instead of a single URL, a prefix and suffix are specified, like this:

<fileLanguageResourceSpecifier>
 <fileUrlPrefix>file:FileLanguageResource_implTest_data_</fileUrlPrefix>
 <fileUrlSuffix>.dat</fileUrlSuffix>
</fileLanguageResourceSpecifier>

Component Descriptor Reference 20-281

The URL of the actual resource is then formed by concatenating the prefix, the
language of the document (as an ISO language code, e.g. en or en-US – see
Capabilities for more information), and the suffix.

The externalResourceBindings element declares which resources are bound to which
dependencies. Each externalResourceBinding consists of:

• key – identifies the dependency. For a binding declared in a primitive analysis
engine descriptor, this must match the value of the key element of one of the
externalResourceDependency elements. Bindings may also be specified in
aggregate analysis engine descriptors, in which case a compound key is used –
see section External Resource Bindings.

• resourceName – the name of the resource satisfying the dependency. This must
match the value of the name element of one of the externalResource declarations.

A given resource dependency may only be bound to one external resource; one
external resource may be bound to many dependencies – to allow resource sharing.

Environment Variable References

In several places throughout the descriptor, it is possible to reference environment
variables. In Java, these are actually references to Java system properties. To
reference system environment variables from a Java analysis engine you must pass
the environment variables into the Java virtual machine by using the -D option on
the java command line.

The syntax for environment variable references is
<envVarRef>[VariableName]</envVarRef>, where [VariableName] is any valid Java
system property name. Environment variable references are valid in the following
places:

• The value of a configuration parameter (String-valued parameters only)
• The <annotatorImplementationName> element of a primitive TAE descriptor
• The <name> element within <analysisEngineMetaData>
• Within a <fileResourceSpecifier> or <fileLanguageResourceSpecifier>

For example, if the value of a configuration parameter were specified as:
<string><envVarRef>TEMP_DIR</envVarRef>/temp.dat</string>, and the value of the
TEMP_DIR Java System property were c:/temp, then the configuration parameter's
value would evaluate to c:/temp/temp.dat.

20.4.2 Aggregate Analysis Engine Descriptors

Aggregate Analysis Engines do not contain an annotator, but instead contain one or
more component (also called delegate) analysis engines.

Component Descriptor Reference 20-282

Aggregate Analysis Engine Descriptors maintain most of the same structure as
Primitive Analysis Engine Descriptors. The differences are:

• An Aggregate Analysis Engine Descriptor contains the element
<primitive>false</primitive> rather than <primitive>true</primitive>.

• An Aggregate Analysis Engine Descriptor must not include a
<annotatorImplementationName> element.

• In place of the <annotatorImplementationName>, an Aggregate Analysis Engine
Descriptor must have a <delegateAnalysisEngineSpecifiers> element. See
Delegate Analysis Engine Specifiers.

• Under the analysisEngineMetaData element, an Aggregate Analysis Engine
Descriptor requires an additional element -- <flowConstraints>. See
FlowConstraints.

• An aggregate Analysis Engine Descriptors must not contain a
<typeSystemDescription> element. The Type System of the Aggregate Analysis
Engine is derived by merging the Type System of the Analysis Engines that the
aggregate contains.

• Within aggregate Analysis Engine Descriptors, <configurationParameter>
elements may define <overrides>. See Configuration Parameter Overrides.

• External Resource Bindings can bind resources to dependencies declared by any
delegate AE within the aggregate. See External Resource Bindings.

• An additional optional element, <sofaMappings>, may be included.

Delegate Analysis Engine Specifiers
<delegateAnalysisEngineSpecifiers>

 <delegateAnalysisEngine key="[String]">

 <taeDescription>...</taeDescription> |
 <import .../>

 </delegateAnalysisEngine>

 <delegateAnalysisEngine key="[String]">

 ...

 </delegateAnalysisEngine>

 ...

</delegateAnalysisEngineSpecifiers>

The delegateAnalysisEngineSpecifiers element contains one or more
delegateAnalysisEngine elements. Each of these must have a unique key, and must
contain either:

• A complete analysisEngineDescription or taeDescription element describing the
delegate analysis engine OR

Component Descriptor Reference 20-283

• An import element giving the name or location of the XML descriptor for the
delegate analysis engine (see section 20.1).

The latter is the much more common usage.

FlowConstraints

The order in which delegate Analysis Engines are called within the aggregate
Analysis Engine is specified using the <flowConstraints> element, which must occur
immediately following the configurationParameterSettings element.

There are two options for flow constraints -- <fixedFlow> or
<capabilityLanguageFlow>. Each is discussed in a separate section below.

Fixed Flow
<flowConstraints>

 <fixedFlow>
 <node>[String]</node>
 <node>[String]</node>
 ...
 </fixedFlow>

</flowConstraints>

The flowConstraints element must be included immediately following the
configurationParameterSettings element.

Currently the flowConstraints element must contain a fixedFlow element.
Eventually, other types of flow constraints may be possible.

The fixedFlow element contains one or more node elements, each of which contains
an identifier which must match the key of a delegate analysis engine specified in the
delegateAnalysisEngineSpecifiers element.

Capability Language Flow
<flowConstraints>
 <capabilityLanguageFlow>
 <node>[String]</node>
 <node>[String]</node>
 ...
 </capabilityLanguageFlow>
</flowConstraints>

If you use <capabilityLanguageFlow>, the delegate Analysis Engines named by the
<node> elements are called in the given order, except that a delegate Analysis Engine
is skipped if any of the following are true (according to that Analysis Engine's
declared output capabilities):

Component Descriptor Reference 20-284

• It cannot produce any of the aggregate Analysis Engine's output capabilities for
the language of the current document.

• All of the output capabilities have already been produced by an earlier Analysis
Engine in the flow.

For example, if two annotators produce org.myorg.TokenAnnotation feature
structures for the same language, these feature structures will only be produced by
the first annotator in the list.

Configuration Parameter Overrides

In an aggregate Analysis Engine Descriptor, each <configurationParameter> element
should contain an <overrides> element, with the following syntax:

<overrides>

 <parameter>
 [delegateAnalysisEngineKey]/[parameterName]
 </parameter>

 <parameter>
 [delegateAnalysisEngineKey]/[parameterName]
 </parameter>
 ...

</overrides>

Since aggregate Analysis Engines have no code associated with them, the only way
in which their configuration parameters can affect their processing is by overriding
the parameter values of one or more delegate analysis engines. The <overrides>
element determines which parameters, in which delegate Analysis Engines, are
overridden by this configuration parameter.

For example, consider an aggregate Analysis Engine Descriptor that contains
delegate Analysis Engines with keys annotator1 and annotator2 (as declared in the
<delegateAnalysisEngine> element – see Delegate Analysis Engine Specifiers) and
also declares a configuration parameter as follows:

<configurationParameter>
 <name>AggregateParam</name>
 <type>String</type>
 <overrides>
 <parameter>annotator1/param1</parameter>
 <parameter>annotator2/param2</parameter>
 </overrides>
</configurationParameter>

The value of the AggregateParam parameter (whether assigned in the aggregate
descriptor or at runtime by an application) will override the value of parameter
param1 in annotator1 and also override the value of parameter param2 in annotator2.
No other parameters will be affected.

Component Descriptor Reference 20-285

For historical reasons only, if an aggregate Analysis Engine descriptor declares a
configuration parameter with no explicit overrides, that parameter will override any
parameters having the same name within any delegate analysis engine. This usage
is strongly discouraged. The UIMA SDK currently supports this usage but logs a
warning message to the log file. This support may be dropped in future versions.

External Resource Bindings

Aggregate analysis engine descriptors can declare resource bindings that bind
resources to dependencies declared in any of the delegate analysis engines (or their
subcomponents, recursively) within that aggregate. This allows resource sharing.
Any binding at this level overrides (supersedes) any binding specified by a
contained component or their subcomponents, recursively.

For example, consider an aggregate Analysis Engine Descriptor that contains
delegate Analysis Engines with keys annotator1 and annotator2 (as declared in the
<delegateAnalysisEngine> element – see Delegate Analysis Engine Specifiers), where
annotator1 declares a resource dependency with key myResource and annotator2
declares a resource dependency with key someResource.

Within that aggregate Analysis Engine Descriptor, the following
resourceManagerConfiguration would bind both of those dependencies to a single
external resource file.

<resourceManagerConfiguration>

 <externalResources>
 <externalResource>
 <name>ExampleResource</name>
 <fileResourceSpecifier>
 <fileUrl>file:MyResourceFile.dat</fileUrl>
 </fileResourceSpecifier>
 </externalResource>
 </externalResources>

 <externalResourceBindings>
 <externalResourceBinding>
 <key>annotator1/myResource</key>
 <resourceName>ExampleResource</resourceName>
 </externalResourceBinding>
 <externalResourceBinding>
 <key>annotator2/someResource</key>
 <resourceName>ExampleResource</resourceName>
 </externalResourceBinding>
 </externalResourceBindings>

</resourceManagerConfiguration>

The syntax for the externalResources declaration is exactly the same as described
previously. In the resource bindings note the use of the compound keys, e.g.
annotator1/myResource. This identifies the resource dependency key myResource

Component Descriptor Reference 20-286

within the annotator with key annotator1. Compound resource dependencies can be
multiple levels deep to handle nested aggregate analysis engines.

Sofa Mappings

Sofa mappings are specified between Sofa names declared in this aggregate
descriptor as part of the <capability> section, and the Sofa names declared in the
delegate components. For purposes of the mapping, all the declarations of Sofas in
any of the capability sets contained within the <capabilities> element are
considered together.

<sofaMappings>
 <sofaMapping>
 <componentKey>[keyName]</componentKey>
 <componentSofaName>[sofaName]</componentSofaName>
 <aggregateSofaName>[sofaName]</aggregateSofaName>
 </sofaMapping>
 ...
</sofaMappings>

The <componentSofaName> may be omitted in the case where the component is not
aware of Sofas. In this case, the UIMA framework will arrange for the specified
<aggregateSofaName> to be the one visible to the delegate component.

The <componentKey> is the key name for the component as specified in the list of
delegate components for this aggregate.

The sofaNames used must be declared as input or output sofas in some capability
set.

20.5 Collection Processing Component Descriptors

There are three types of Collection Processing Components – Collection Readers,
CAS Initializers, and CAS Consumers. Each type of component has a corresponding
descriptor. The structure of these descriptors is very similar to that of primitive
Analysis Engine Descriptors.

20.5.1 Collection Reader Descriptors

The basic structure of a Collection Reader descriptor is as follows:

<?xml version="1.0" encoding="UTF-8" ?>

<collectionReaderDescription
 xmlns="http://uima.watson.ibm.com/resourceSpecifier">

 <frameworkImplementation>com.ibm.uima.java</frameworkImplementation>
 <implementationName>[ClassName]</implementationName>

Component Descriptor Reference 20-287

 <processingResourceMetaData>
 ...
 </processingResourceMetaData>

 <externalResourceDependencies>
 ...
 </externalResourceDependencies>

 <resourceManagerConfiguration>

 ...

 </resourceManagerConfiguration>

</collectionReaderDescription>

The frameworkImplementation element must always be set to the value
com.ibm.uima.java.

The implementationName element contains the fully-qualified class name of the
Collection Reader implementation. This must name a class that implements the
CollectionReader interface.

The processingResourceMetaData element contains essentially the same information
as a Primitive Analysis Engine Descriptor's' analysisEngineMetaData element:

<processingResourceMetaData>

 <name> [String] </name>
 <description>[String]</description>
 <version>[String]</version>
 <vendor>[String]</vendor>

 <configurationParameters>
 ...
 </configurationParameters>

 <configurationParameterSettings>
 ...
 </configurationParameterSettings>

 <typeSystemDescription>
 ...
 </typeSystemDescription>

 <typePriorities>
 ...
 </typePriorities>

 <fsIndexes>
 ...
 </fsIndexes>

 <capabilities>
 ...
 </capabilities>

</processingResourceMetaData>

Component Descriptor Reference 20-288

The contents of these elements are the same as that described in 20-266 Analysis
Engine Metadata, with the exception that the capabilities section should not declare
any inputs (because the Collection Reader is always the first component to receive
the CAS).

The externalResourceDependencies and resourceManagerConfiguration elements are
exactly the same as in the Primitive Analysis Engine Descriptors (see 20-278
External Resource Dependencies and 20-279 Resource Manager Configuration).

20.5.2 CAS Initializer Descriptors

The basic structure of a CAS Initializer Descriptor is as follows:

<?xml version="1.0" encoding="UTF-8" ?>

<casInitializerDescription
 xmlns="http://uima.watson.ibm.com/resourceSpecifier">

 <frameworkImplementation>com.ibm.uima.java</frameworkImplementation>
 <implementationName>[ClassName] </implementationName>

 <processingResourceMetaData>
 ...
 </processingResourceMetaData>

 <externalResourceDependencies>
 ...
 </externalResourceDependencies>

 <resourceManagerConfiguration>
 ...
 </resourceManagerConfiguration>

</casInitializerDescription>

The frameworkImplementation element must always be set to the value
com.ibm.uima.java.

The implementationName element contains the fully-qualified class name of the CAS
Initializer implementation. This must name a class that implements the
CasInitializer interface.

The processingResourceMetaData element contains essentially the same information
as a Primitive Analysis Engine Descriptor's' analysisEngineMetaData element, as
described in Section 20-266 Analysis Engine Metadata, with the exception of some
changes to the capabilities section. A CAS Initializer's capabilities element looks like
this:

<capabilities>

 <capability>
 <outputs>
 <type allAnnotatorFeatures="true|false">[String]</type>

Component Descriptor Reference 20-289

 <type>[TypeName]</type>
 ...
 <feature>[TypeName]:[Name]</feature>
 ...
 </outputs>

 <outputSofas>
 <sofaName>[name]</sofaName>
 ...
 </outputSofas>

 <mimeTypesSupported>
 <mimeType>[MIME Type]</mimeType>
 ...
 </mimeTypesSupported>
 </capability>

 <capability>
 ...
 </capability>

 ...

</capabilities>

The differences between a CAS Initializer's capabilities declaration and a TAE's
capabilities declaration are that the CAS Initializer does not declare any input CAS
types and features or input Sofas (because it is always the first to operate on a CAS),
it doesn't have a language specifier, and that the CAS Initializer may declare a set of
MIME types that it supports for its input documents. Examples include: text/plain,
text/html, and application/pdf. For a list of MIME types see
http://www.iana.org/assignments/media-types/. This information is currently only
for users' information, the framework does not use it for anything. This may change
in future versions.

The externalResourceDependencies and resourceManagerConfiguration elements are
exactly the same as in the Primitive Analysis Engine Descriptors (see 20-278
External Resource Dependencies and 20-279 Resource Manager Configuration).

20.5.3 CAS Consumer Descriptors

The basic structure of a CAS Consumer Descriptor is as follows:

<?xml version="1.0" encoding="UTF-8" ?>

<casConsumerDescription
 xmlns="http://uima.watson.ibm.com/resourceSpecifier">

 <frameworkImplementation>com.ibm.uima.java</frameworkImplementation>

 <implementationName>[ClassName] </implementationName>

 <processingResourceMetaData>
 ...
 </processingResourceMetaData>

http://www.iana.org/assignments/media-types/

Component Descriptor Reference 20-290

 <externalResourceDependencies>
 ...
 </externalResourceDependencies>

 <resourceManagerConfiguration>
 ...
 </resourceManagerConfiguration>

</casConsumerDescription>

The frameworkImplementation element must always be set to the value
com.ibm.uima.java.

The implementationName element must contain the fully-qualified class name of the
CAS Consumer implementation. This must name a class that implements the
CasConsumer interface.

The processingResourceMetaData element contains essentially the same information
as a Primitive Analysis Engine Descriptor's analysisEngineMetaData element,
described in Section 20-266 Analysis Engine Metadata, except that the CAS
Consumer Descriptor's capabilities element should not declare outputs or
outputSofas (since CAS Consumers do not modify the CAS).

The externalResourceDependencies and resourceManagerConfiguration elements are
exactly the same as in Primitive Analysis Engine Descriptors (see 20-278 External
Resource Dependencies and 20-279 Resource Manager Configuration).

20.6 Service Client Descriptors

Service Client Descriptors specify only a location of a remote service. They are
therefore much simpler in structure. In the UIMA SDK, a Service Client Descriptor
that refers to a valid Analysis Engine or CAS Consumer service can be used in place
of the actual Analysis Engine or CAS Consumer Descriptor. The UIMA SDK will
handle the details of calling the remote service. (For details on deploying an Analysis
Engine or CAS Consumer as a service, see Chapter 21 Collection Processing Engine
Descriptor Reference).

The UIMA SDK is extensible to support different types of remote services. In future
versions, there may be different variations of service client descriptors that cater to
different types of services. For now, the only type of service client descriptor is the
uriSpecifier, which supports the SOAP and Vinci protocols.

<?xml version="1.0" encoding="UTF-8" ?>
<uriSpecifier xmlns="http://uima.watson.ibm.com/resourceSpecifier">
 <resourceType>AnalysisEngine | CasConsumer </resourceType>
 <uri>[URI]</uri>
 <protocol>SOAP | SOAPwithAttachments | Vinci</protocol>
 <timeout>[Integer]</timeout>

Component Descriptor Reference 20-291

 <parameters>
 <parameter name="VNS_HOST" value="some.internet.ip.name-or-address">
 <parameter name="VNS_PORT" value="9000">
 </parameters>
</uriSpecifier>

The resourceType element is required for new descriptors, but is currently allowed
to be omitted for backward compatibility. It specifies the type of component
(Analysis Engine or CAS Consumer) that is implemented by the service endpoint
described by this descriptor.

The uri element contains the URI for the web service. (Note that in the case of Vinci,
this will be the service name, which is looked up in the Vinci Naming Service.)

The protocol element may be set to SOAP, SOAPwithAttachments, or Vinci; other
protocols may be added later. These specify the particular data transport format
that will be used.

The timeout element is optional. If present, it specifies the number of milliseconds
to wait for a request to be processed before an exception is thrown. A value of zero
or less will wait forever. If no timeout is specified, a default value (currently 60
seconds) will be used.

The parameter element is optional. If present, it specifies the Vinci naming service
host and/or port number. If not present, the value used for these comes from
parameters passed on the Java command line using the -DVNS_HOST=<host> and/or
-DVNS_PORT=<port> system arguments. If not present, and a system argument is also
not present, the values for these default to localhost for the VNS_HOST and 9000 for
the VNS_PORT.

For details on how to deploy and call Analysis Engine and CAS Consumer services,
see Section 6.6 Working with Analysis Engine and CAS Consumer Services.

Collection Processing Engine Descriptor Reference 21-293

Chapter 21 Collection Processing Engine Descriptor
Reference

A UIMA Collection Processing Engine (CPE) is a combination of UIMA components
assembled to analyze a collection of artifacts. A CPE is an instantiation of the UIMA
Collection Processing Architecture, which defines the collection processing
components, interfaces, and APIs. A CPE is executed by a UIMA framework
component called the Collection Processing Manager (CPM), which provides a number
of services for deploying CPEs, running CPEs, and handling errors.

A CPE can be assembled programmatically within a Java application, or it can be
assembled declaratively via a CPE configuration specification, called a CPE
Descriptor. This chapter describes the format of the CPE Descriptor.

Details about the CPE, including its function, sub-components, APIs, and related
tools, can be found in Chapter 5 Collection Processing Engine Developer's Guide.
Here we briefly summarize the CPE to define terms and provide context for the later
sections that describe the CPE Descriptor.

21.1 CPE Overview

Collection

CAS Initializer

CollectionReader ArtifactProducer B1 B2 B3

AE1 AE2 AE3

AE1 AE2 AE3

AE1 AE2 AE3

B1 B2 B3 CC1 CC2

Store Index

Content(Text)

CAS
Work Queue

Processing Pipelines

CAS ConsumersOutput Queue

Figure 22 - CPE Runtime Overview

An illustration of the CPE runtime is shown in Figure 22. Some of the CPE
components, such as the queues and processing pipelines, are internal to the CPE, but
their behavior and deployment may be configured using the CPE Descriptor. Other

Collection Processing Engine Descriptor Reference 21-294

CPE components, such as the Collection Reader and CAS Processors, are defined and
configured externally from the CPE and then plugged in to the CPE to create the
overall engine. The parts of a CPE are:

Collection Reader –understands the native data collection format and iterates over
the collection producing subjects of analysis

CAS Initializer –initializes a CAS with a subject of analysis

Artifact Producer – asynchronously pulls CASes from the Collection Reader, creates
batches of CASes and puts them into the work queue

Work Queue – shared queue containing batches of CASes queued by the Artifact
Producer for analysis by Analysis Engines

B1-Bn – individual batches containing 1 or more CASes

AE1-AEn – Analysis Engines arranged by a CPE descriptor

Processing Pipelines – each pipeline runs in a separate thread and contains a
replicated set of the Analysis Engines running in the defined sequence

Output Queue – holds batches of CASes with analysis results intended for CAS
Consumers

CAS Consumers –perform collection level analysis over the CASes and extract
analysis results, e.g., creating indexes or databases

21.2 Notation

CPE Descriptors are XML files. This chapter uses an informal notation to specify the
syntax of CPE Descriptors.

The notation used in this chapter is:

• An ellipsis (...) inside an element body indicates that the substructure of that
element has been omitted (to be described in another section of this chapter). An
example of this would be:

<collectionReader>

...

</collectionReader>

Collection Processing Engine Descriptor Reference 21-295

• An ellipsis immediately after an element indicates that the element type may be
repeated arbitrarily many times. For example:

<parameter>[String]</parameter>

<parameter>[String]</parameter>

...

indicates that there may be arbitrarily many parameter elements in this context.

• An ellipsis inside an element means details of the attributes associated with that
element are defined later, e.g.:

<casProcessor ...>

• Bracketed expressions (e.g. [String]) indicate the type of value that may be used
at that location.

• A vertical bar, as in true|false, indicates alternatives. This can be applied to
literal values, bracketed type names, and elements.

Which elements are optional and which are required is specified in prose, not in the
syntax definition.

21.3 Imports

A CPE Descriptor uses the following notation to reference descriptors for other
components that are incorporated into the defined CPE:

<descriptor>
 <include href="[File]"/>
</descriptor>

The [File] attribute is a filename for the descriptor of the incorporated component.
A fully qualified filename may be provided, or the filename may relative to a
directory specified using the CPM_HOME variable, e.g.,

<descriptor>
 <include href="${CPM_HOME}/desc_dir/descriptor.xml"/>
</descriptor>

In this case, the value for the CPM_HOME variable must be provided to the CPE by
specifying it on the Java command line, e.g.,

java -DCPM_HOME="C:/Program Files/IBM/uima/cpm" ...

Note that this mechanism for referencing other component descriptor files is
different from and in no way related to either of the two import mechanisms
described in Chapter 20

Collection Processing Engine Descriptor Reference 21-296

21.4 CPE Descriptor

A CPE Descriptor consists of information describing the following four main
elements.

1. The Collection Reader, which is responsible for gathering artifacts and
initializing the Common Analysis Structure (CAS) used to support processing
in the UIMA collection processing engine.

2. The CAS Processors responsible for analyzing individual artifacts, analyzing
across artifacts, and extracting analysis results. CAS Processors include
Analysis Engines and CAS Consumers.

3. Operational parameters of the Collection Processing Manager (CPM), such as
checkpoint frequency and deployment mode.

4. Resource Manager Configuration (optional).

The CPE Descriptor has the following high level skeleton:

<?xml version="1.0" encoding="UTF-8"?>
<cpeDescription>
 <collectionReader>
...
 </collectionReader>
 <casProcessors>
...
 </casProcessors>
 <cpeConfig>
...
 </cpeConfig>
 <resourceManagerConfiguration>
...
 </resourceManagerConfiguration>
</cpeDescription>

Details of each of the four main elements are described in the sections that follow.

21.4.1 Collection Reader

The <collectionReader> section identifies the Collection Reader and optional CAS
Initializer that are to be used in the CPE. The Collection Reader is responsible for
retrieval of artifacts from a collection outside of the CPE, and the optional CAS
Initializer is responsible for initializing the CAS with the artifact.

A Collection Reader may initialize the CAS itself, in which case it does not require a
CAS Initializer. This should be clearly specified in the documentation for the
Collection Reader. Specifying a CAS Initializer for a Collection Reader that does not
make use of a CAS Initializer will not cause an error, but the specified CAS
Initializer will not be used.

Collection Processing Engine Descriptor Reference 21-297

The complete structure of the <collectionReader> section is:

<collectionReader>
 <collectionIterator>
 <descriptor>
 <include href="[File]"/>
 </descriptor>
 <configurationParameterSettings>...</configurationParameterSettings>
 <sofaNameMappings>...</sofaNameMappings>
 </collectionIterator>
 <casInitializer>
 <descriptor>
 <include href="[File]"/>
 </descriptor>
 <configurationParameterSettings>...</configurationParameterSettings>
 <sofaNameMappings>...</sofaNameMappings>
 </casInitializer>
</collectionReader>

The <collectionIterator> identifies the descriptor for the Collection Reader, and the
<casInitializer> identifies the descriptor for the CAS Initializer. The format and
details of the Collection Reader and CAS Initializer descriptors are described in
 Chapter 20 . The <configurationParameterSettings> and the <sofaNameMappings>
elements are described in the next section.

Error handling for Collection Readers

The CPM will abort if the Collection Reader throws a large number of consecutive
exceptions (default = 100). This default can by changed by using the Java
initialization parameter -DMaxCRErrorThreshold xxx.

21.4.2 CAS Processors

The <casProcessors> section identifies the components that perform the analysis on
the input data, including CAS analysis (Analysis Engines) and analysis results
extraction (CAS Consumers). The CAS Consumers may also perform collection
level analysis, where the analysis is performed (or aggregated) over multiple CASes.
The basic structure of the CAS Processors section is:

<casProcessors dropCasOnException="true|false" casPoolSize="[Number]"
processingUnitThreadCount="[Number]">
 <casProcessor ...>
 ...
 </casProcessor>
 <casProcessor ...>
 ...
 </casProcessor>
 ...
</casProcessors>

Collection Processing Engine Descriptor Reference 21-298

The <casProcessors> section has two mandatory attributes and one optional
attribute that configure the characteristics of the CAS Processor flow in the CPE.
The first mandatory attribute is a casPoolSize, which defines the fixed number of
CAS instances that the CPM will create and use during processing. All CAS
instances are maintained in a CAS Pool with a check-in and check-out access. Each
CAS is checked-out from the CAS Pool by the Collection Reader and initialized with
an initial subject of analysis. The CAS is checked-in into the CAS Pool when it is
completely processed, at the end of the processing chain. A larger CAS Pool size will
result in more memory being used by the CPM. CAS objects can be large and care
should be taken to determine the optimum size of the CAS Pool, weighing memory
tradeoffs with performance.

The second mandatory <casProcessors> attribute is processingUnitThreadCount,
which specifies the number of replicated Processing Pipelines. Each Processing
Pipeline runs in its own thread. The CPM takes CASes from the work queue and
submits each CAS to one of the Processing Pipelines for analysis. A Processing
Pipeline contains one or more Analysis Engines invoked in a given sequence. If
more than one Processing Pipeline is specified, the CPM replicates instances of each
Analysis Engine defined in the CPE descriptor. Each Processing Pipeline thread
runs independently, consuming CASes from work queue and depositing CASes
with analysis results onto the output queue. On multiprocessor machines, multiple
Processing Pipelines can run in parallel, improving overall throughput of the CPM.

Note: The number of Processing Pipelines should be equal to or greater than
CAS Pool size.

Note: Elements in the pipeline (each represented by a <casProcessor> element)
may indicate that they do not permit multiple deployment in their Analysis
Engine descriptor. If so, even though multiple pipelines are being used, all
CASes passing through the pipelines will be routed through one instance of
these marked Engines.

The final, optional, <casProcessors> attribute is dropCasOnException. It defines a
policy that determines what happens with the CAS when an exception happens
during processing. If the value of this attribute is set to true and an exception
happens, the CPM will notify all registered listeners of the exception (see Using
Listeners on page 5-109), clear the CAS and check the CAS back into the CAS Pool
so that it can be re-used. The presumption is that an exception may leave the CAS in
an inconsistent state and therefore that CAS should not be allowed to move through
the processing chain. When this attribute is omitted the CPM’s default is the same as
specifying dropCasOnException="false".

Specifying an Individual CAS Processor

The CAS Processors that make up the Processing Pipeline and the CAS Consumer
pipeline are specified with the <casProcessor> entity, which appears within the

Collection Processing Engine Descriptor Reference 21-299

<casProcessors> entity. It may appear multiple times, once for each CAS Processor
specified for this CPE.

The order of the <casProcessor> entities with the <casProcessors> section specifies
the order in which the CAS Processors will run. Although CAS Consumers are
usually put at the end of the pipeline, they need not be. Also, Aggregate Analysis
Engines may include CAS Consumers.

The overall format of the <casProcessor> entity is:

<casProcessor deployment="local|remote|integrated" name="[String]" >
 <descriptor>
 <include href=[File]/>
 </descriptor>
 <configurationParameterSettings>...</configurationParameterSettings>
 <sofaNameMappings>...</sofaNameMappings>
 <runInSeparateProcess>...</runInSeparateProcess>
 <deploymentParameters>...</deploymentParameters>
 <filter/>
 <errorHandling>...</errorHandling>
 <checkpoint batch="Number"/>
</casProcessor>

The <casProcessor> element has two mandatory attributes, deployment and name. The
mandatory name attribute specifies a unique string identifying the CAS Processor.

The mandatory deployment attribute specifies the CAS Processor deployment mode.
Currently, three deployment options are supported:

• integrated – indicates integrated deployment of the CAS Processor. The CPM
deploys and collocates the CAS Processor in the same process space as the CPM.
This type of deployment is recommended to increase the performance of the
CPE. However, it is NOT recommended to deploy annotators containing JNI
this way. Such CAS Processors may cause a fatal exception and force the JVM to
exit without cleanup (bringing down the CPM). Any UIMA SDK compliant
pure Java CAS Processors may be safely deployed this way.

• remote – indicates non-managed deployment of the CAS Processor. The CAS
Processor descriptor referenced in the <descriptor> element must be a Vinci
Service Client Descriptor, which identifies a remotely deployed CAS Processor
service (see Section 6.6 Working with Analysis Engine and CAS Consumer
Services). The CPM assumes that the CAS Processor is already running as a
remote service and will connect to it using the URI provided in the client service
descriptor. The lifecycle of a remotely deployed CAS Processor is not managed
by the CPM, so appropriate infrastructure should be in place to start/restart such
CAS Processors when necessary. This deployment provides fault isolation and
is implementation (i.e., programming language) neutral.

Collection Processing Engine Descriptor Reference 21-300

• local – indicates managed deployment of the CAS Processor. The CAS Processor
descriptor referenced in the <descriptor> element must be a Vinci Service
Deployment Descriptor, which configures a CAS Processor for deployment as a
Vinci service (see Section 6.6 Working with Analysis Engine and CAS Consumer
Services). The CPM deploys the CAS Processor in a separate process and
manages the life cycle (start/stop) of the CAS Processor. Communication
between the CPM and the CAS Processor is done with Vinci. When the CPM
completes processing, the process containing the CAS Processor is terminated.
This deployment mode insulates the CPM from the CAS Processor, creating a
more robust deployment at the cost of a small communication overhead. On
multiprocessor machines, the separate processes may run concurrently and
improve overall throughput.

A number of elements may appear within the <casProcessor> element.

<descriptor> Element

The <descriptor> element is mandatory. It identifies the descriptor for the
referenced CAS Processor using the syntax described in Section 20.2 above.

• For remote CAS Processors, the referenced descriptor must be a Vinci Service
Client Descriptor, which identifies a remotely deployed CAS Processor service.

• For local CAS Processors, the referenced descriptor must be a Vinci Service
Deployment Descriptor.

• For integrated CAS Processors, the referenced descriptor must be an Analysis
Engine Descriptor (primitive or aggregate).

See Section 6.6 Working with Analysis Engine and CAS Consumer Services for
more information on creating these descriptors and deploying services.

<configurationParameterSettings> Element

This element provides a way to override the contained Analysis Engine's
parameters settings. Any entry specified here must already be defined; values
specified replace the corresponding values for each parameter. For Cas Processors,
this mechanism is only available when they are deployed in "integrated" mode.
For Collection Readers and Initializers, it always is available.

The content of this element is identical to the component descriptor for specifying
parameters (in the case where no parameter groups are specified), except that the
names for the primitive types have a "_p" suffixed to them: string_p, integer_p,
float_p. Here is an example:

<configurationParameterSettings>
 <nameValuePair>
 <name>CivilianTitles</name>

Collection Processing Engine Descriptor Reference 21-301

 <value>
 <array>
 <string_p>Mr.</string_p>
 <string_p>Ms.</string_p>
 <string_p>Mrs.</string_p>
 <string_p>Dr.</string_p>
 </array>
 </value>
 </nameValuePair>
 ...
</configurationParameterSettings>

<sofaNameMappings> Element

This optional element provides a mapping from defined Sofa names in the
component, or the default Sofa name (if the component does not declare any Sofa
names). The form of this element is:

<sofaNameMappings>
 <sofaNameMapping cpeSofaName="a_CPE_name"
 componentSofaName="a_component_Name"/>
 ...
</sofaNameMappings>

There can be any number of <sofaNameMapping> elements contained in the
<sofaNameMappings> element. The componentSofaName attribute is optional; leave it
out to specify a mapping for the default text sofa - that is, for components which are
not aware of Sofas.

<runInSeparateProcess> Element

The <runInSeparateProcess> element is mandatory for local CAS Processors, but
should not appear for remote or integrated CAS Processors. It enables the CPM to
create external processes using the provided runtime environment. Applications
launched this way communicate with the CPM using the Vinci protocol and
connectivity is enabled by a local instance of the VNS that the CPM manages. Since
communication is based on Vinci, the application need not be implemented in Java.
Any language for which Vinci provides support may be used to create an
application, and the CPM will seamlessly communicate with it. The overall
structure of this element is:

<runInSeparateProcess>
 <exec dir="[String]" executable="[String]">
 <env key="[String]" value ="[String]"/>
 ...
 <arg>[String]</arg>
 ...
 </exec>
</runInSeparateProcess>

Collection Processing Engine Descriptor Reference 21-302

The <exec> element provides information about how to execute the referenced CAS
Processor. Two attributes are defined for the <exec> element. The dir attribute is
currently not used – it is reserved for future functionality. The executable attribute
specifies the actual Vinci service executable that will be run by the CPM, e.g., java, a
batch script, an application (.exe), etc. The executable must be specified with a fully
qualified path, or be found in the PATH of the CPM.

The <exec> element has two elements within it that define parameters used to
construct the command line for executing the CAS Processor. These elements must
be listed in the order in which they should be defined for the CAS Processor.

The optional <env> element is used to set an environment variable. The variable key
will be set to value. For example,

<env key="CLASSPATH" value ="C:\Java\lib"/>

will set the environment variable CLASSPATH to the value C:\Java\lib. The <env>
element may be repeated to set multiple environment variables. All of the key/value
pairs will be added to the environment by the CPM prior to launching the
executable.

Note: The CPM actually adds ALL system environment variables when it launches the
program. It queries the Operating System for its current system variables and one by one
adds them to the program's process configuration.

The <arg> element is used to specify arbitrary string arguments that will appear on
the command line when the CPM runs the command specified in the executable
attribute.

For example, the following would be used to invoke the UIMA Java implementation
of the Vinci service wrapper on a Java CAS Processor:

<runInSeparateProcess>
 <exec executable="java">
 <arg>-DVNS_HOST=localhost</arg>
 <arg>-DVNS_PORT=9099</arg>
 <arg>com.ibm.uima.reference_impl.analysis_engine.service.
vinci.VinciAnalysisEngineService_impl</arg>
 <arg>C:\uima\desc\deployCasProcessor.xml</arg>
 </exec>
<runInSeparateProcess>

This will cause the CPM to run the following command line when starting the CAS
Processor:

java -DVNS_HOST=localhost -DVNS_PORT=9099
com.ibm.uima.reference_impl.analysis_engine.service.vinci.VinciAnalysisEngi
neService_impl C:\uima\desc\deployCasProcessor.xml

Collection Processing Engine Descriptor Reference 21-303

The first argument specifies that the Vinci Naming Service is running on the
localhost. The second argument specifies that the Vinci Naming Service port
number is 9099. The third argument identifies the UIMA implementation of the
Vinci service wrapper. This class contains the main method that will execute. That
main method in turn takes a single argument – the filename for the CAS Processor
service deployment descriptor. Thus the last argument identifies the Vinci service
deployment descriptor file for the CAS Processor. Since this is the same descriptor
file specified earlier in the <descriptor> element, the string ${descriptor} can be
used to refer to the descriptor, e.g.:

<arg>${descriptor}</arg>

The CPM will expand this out to the service deployment descriptor file referenced
in the <descriptor> element.

<deploymentParameters> Element

The <deploymentParameters> element defines a number of deployment parameters
that control how the CPM will interact with the CAS Processor. This element has
the following overall form:

<deploymentParameters>
 <parameter name="[String]" value="..." type="string|integer" />
 ...
</deploymentParameters>

The name attribute identifies the parameter, the value attribute specifies the value
that will be assigned to the parameter, and the type attribute indicates the type of
the parameter, either string or integer. The available parameters include:

• vnsHost – (Deprecated) string parameter specifying the VNS host, e.g., localhost
for local CAS Processors, host name or IP address of VNS host for remote CAS
Processors. This parameter is deprecated; use the parameter specification
instead inside the Vinci Service Client Descriptor, if needed. It is ignored for
integrated and local deployments. If present, for remote deployments, it
specifies the VNS Host to use, unless that is specified in the Vinci Service Client
Descriptor.

• vnsPort – (Deprecated) integer parameter specifying the VNS port number.
This parameter is deprecated; use the parameter specification instead inside the
Vinci Service Client Descriptor, if needed. It is ignored for integrated and local
deployments. If present, for remote deployments, it specifies the VNS Port
number to use, unless that is specified in the Vinci Service Client Descriptor.

Collection Processing Engine Descriptor Reference 21-304

• service-access – string parameter whose value must be "exclusive", if present.
This parameter is only effective for remote deployments. It modifies the Vinci
service connections to be preallocated and dedicated, one service instance per
pipe-line. It is only relevant for non-Integrated deployement modes. If there are
fewer services instances that are available (and alive – responding to a "ping"
request) than there are pipelines, the number of pipelines (the number of
concurrent threads) is reduced to match the number of available instances. If
not specified, the VNS is queried each time a service is needed, and a "random"
instance is assigned from the pool of available instances. If a services dies
during processing, the CPM will use its normal error handling procedures to
attempt to reconnect. The number of attempts is specified in the CPE descriptor
for each Cas Processor using the <maxConsecutiveRestarts value="10"
action="kill-pipeline" waitTimeBetweenRetries="50" /> xml element. The
"value" attribute is the number of reconnection tries; the "action" says what to do
if the retries exceed the limit. The "kill-pipeline" action stops the pipeline that
was associated with the failing service (other pipelines will continue to work).
The CAS in process within a killed pipeline will be dropped. These events are
communicated to the application using the normal event listener mechanism.
The waitTimeBetweenRetries says how many milliseconds to wait inbetween
attempts to reconnect.

For example, the following parameters might be used with a CAS Processor
deployed in local mode:

<deploymentParameters>
 <parameter name="service-access" value="exclusive" type="string"/>
</deploymentParameters>

<filter> Element

The <filter> element is a required element but currently should be left empty. This
element is reserved for future use.

<errorHandling> Element

The mandatory <errorHandling> element defines error and restart policies for the
CAS Processor. Each CAS Processor may define different actions in the event of
errors and restarts. The CPM monitors and logs errant behaviors and attempts to
recover the component based on the policies specified in this element.

There are two kinds of faults.

1. One kind only occurs with non-integrated CAS Processors – this fault is either a
timeout attempting to launch or connect to the non-integrated component, or
some other kind of connection related exception (for instance, the network
connection might timeout or get reset).

Collection Processing Engine Descriptor Reference 21-305

2. The other kind happens when the CAS Processor component (an Annotator, for
example) throws any kind of exception. This kind may occur with any kind of
deployment, integrated or not.

The <errorHandling> has specifications for each of these kinds of faults. The format
of this element is:

<errorHandling>
 <maxConsecutiveRestarts action="continue|disable|terminate"
 value="[Number]"/>
 <errorRateThreshold action="continue|disable|terminate" value="[Rate]"/>
 <timeout max="[Number]"/>
</errorHandling>

The mandatory <maxConsecutiveRestarts> element applies only to faults of the first
kind, and therefore, only applies to non-integrated deployments. If such a fault
occurs, a retry is attempted, up to value="[Number]" of times. This retry resets the
connection (if one was made) and attempts to reconnect and perhaps re-launch (see
below for details). The original CAS (not a partially updated one) is sent to the CAS
Processor as part of the retry, once the deployed component has been successfully
restarted or reconnected to.

The action attribute specifies the action to take when the threshold specified by the
value="[Number]" is exceeded. The possible actions are:

• continue – skip any further processing for this CAS by this CAS Processor, and
pass the CAS to the next CAS Processor in the Pipeline.

Note: The "restart" action is done, because it is needed for the next CAS.

Note: If the dropCasOnException="true", the CPM will NOT pass the CAS to the
next CAS Processor in the chain. Instead, the CPM will abort processing of this
CAS, release the CAS back to the CAS Pool and will process the next CAS in the
queue.

Note: The counter counting the restarts toward the threshold is only reset after
a CAS is successfully processed.

• disable – the current CAS is handled just as in the continue case, but in addition,
the CAS Processor is marked so that its process() method will not be called again
(i.e., it will be "skipped" for future CASes)

• terminate – the CPM will terminate all processing and exit

The definition of an error for the <maxConsecutiveRestarts> element differs slightly
for each of the three CAS Processor deployment modes:

local
Local CAS Processors experience two general error types:

• launch errors – errors associated with launching a process
• processing errors – errors associated with sending Vinci

commands to the process
A launch error is defined by a failure of the process to successfully

Collection Processing Engine Descriptor Reference 21-306

register with the local VNS within a default time window. The
current timeout is 15 minutes. Multiple local CAS Processors are
launched sequentially, with a subsequent processor launched
immediately after its previous processor successfully registers with
the VNS.
A processing error is detected if a connection to the CAS Processor
is lost or if the processing time exceeds a specified timeout value.
For local CAS Processors, the <maxConsecutiveRestarts> element
specifies the number of consecutive attempts made to launch the
CAS Processor at CPM startup or after the CPM has lost a
connection to the CAS Processor.

remote
For remote CAS Processors, the <maxConsecutiveRestarts>
element applies to errors from sending Vinci commands. An error
is detected if a connection to the CAS Processor is lost, or if the
processing time exceeds the timeout value specified in the
<timeout> element (see below).

integrated
Although mandatory, the <maxConsecutiveRestarts> element is
NOT used for integrated CAS Processors, because Integrated CAS
Processors are not re-instantiated/restarted on exceptions. This
setting is ignored by the CPM for Integrated CAS Processors but it
is required. Future version of the CPM will make this element
mandatory for remote and local CAS Processors only.

The mandatory <errorRateThreshold> element is used for all faults – both those
above, and exceptions thrown by the CAS Processor itself. It specifies the number of
retries for exceptions thrown by the CAS Processor itself, a maximum error rate, and
the corresponding action to take when this rate is exceeded. The value attribute
specifies the error rate in terms of errors per sample size in the form “N/M", where N
is the number of errors and M is the sample size, defined in terms of the number of
documents.

The first number is used also to indicate the maximum number of retries. If this
number is less than the <maxConsecutiveRestarts value="[Number]">, it will
override, reducing the number of "restarts" attempted. A retry is done only if the
dropCasOnException is false. If it is set to true, no retry occurs, but the error is
counted.

When the number of counted errors exceeds the sample size, an action specified by
the action attribute is taken. The possible actions and their meaning are the same as
described above for the <maxConsecutiveRestarts> element:

continue

disable

terminate

Collection Processing Engine Descriptor Reference 21-307

The dropCasOnException="true" attribute of the <casProcessors> element modifies the
action taken for continue and disable, in the same manner as above. For example:

<errorRateThreshold value="3/1000" action="disable" />

specifies that each error thrown by the CAS Processor itself will be retried up to 3
times (if dropCasOnException is false) and the CAS Processor will be disabled if the
error rate exceeds 3 errors in 1000 documents.

If a document causes an error and the error rate threshold for the CAS Processor is
not exceeded, the CPM increments the CAS Processor’s error count and retries
processing that document (if dropCasOnException is false). The retry means that the
CPM calls the CAS Processor’s process() method again, passing in as an argument
the same CAS that previously caused an exception.

Note: The CPM does not attempt to rollback any partial changes that may have
been applied to the CAS in the previous process() call.

Errors are accumulated across documents. For example, assume the error rate
threshold is 3/1000. The same document may fail three times before finally
succeeding on the fourth try, but the error count is now 3. If one more error occurs
within the current sample of 1000 documents, the error rate threshold will be
exceeded and the specified action will be taken. If no more errors occur within the
current sample, the error counter is reset to 0 for the next sample of 1000 documents.

The <timeout> element is a mandatory element. Although mandatory for all CAS
Processors, this element is only relevant for local and remote CAS Processors. For
integrated CAS Processors, this element is ignored. In the current CPM
implementation the integrated CAS Processor process() method is not subject to
timeouts.

The max attribute specifies the maximum amount of time in milliseconds the CPM
will wait for a process() method to complete When exceeded, the CPM will generate
an exception and will treat this as an error subject to the threshold defined in the
<errorRateThreshold> element above, including doing retries.

Retry action taken on a timeout

The action taken depends on whether the CAS Processor is local (managed) or
remote (unmanaged). Local CAS Processors (which are services) are killed and
restarted, and a new connection to them is established. For remote CAS Processors,
the connection to them is dropped, and a new connection is reestablished (which
may actually connect to a different instance of the remote services, if it has multiple
instances).

Collection Processing Engine Descriptor Reference 21-308

<checkpoint> Element

The <checkpoint> element is an optional element used to improve the performance
of CAS Consumers. It has a single attribute, batch, which specifies the number of
CASes in a batch, e.g.:

<checkpoint batch="1000">

sets the batch size to 1000 CASes. The batch size is the interval used to mark a point
in processing requiring special handling. The CAS Processor's
batchProcessComplete() method will be called by the CPM when this mark is
reached so that the processor can take appropriate action. This mark could be used
as a mechanism to buffer up results in CAS Consumers and perform time-
consuming operations, such as check-pointing, that should not be done on a per-
document basis.

21.4.3 CPE Operational Parameters

The parameters for configuring the overall CPE and CPM are specified in the
<cpeConfig> section. The overall format of this section is:

<cpeConfig>
 <startAt>[NumberOrID]</startAt>
 <numToProcess>[Number]</numToProcess>
 <outputQueue dequeueTimeout="[Number]" queueClass="[ClassName]" />

 <checkpoint file="[File]" time="[Number]" batch="[Number]"/>
 <timerImpl>[ClassName]</timerImpl>
 <deployAs>vinciService|interactive|immediate|single-threaded
 </deployAs>
</cpeConfig>

This section of the CPE descriptor allows for defining the starting entity, the number
of entities to process, a checkpoint file and frequency, a pluggable timer, an optional
output queue implementation, and finally a mode of operation. The mode of
operation determines how the CPM interacts with users and other systems.

The <startAt> element is an optional argument. It defines the starting entity in the
collection at which the CPM should start processing.

The implementation in the CPM passes the this argument to the Collection Reader
as the value of the parameter "startNumber". The CPM does not do anything else
with this parameter; in particular, the CPM has no ability to skip to a specific
document - that function, if available, is only provided by a particular Collection
Reader implementation.

If the <startAt> element is used, the Collection Reader descriptor must define a
single-valued configuration parameter with the name startNumber. It can declare

Collection Processing Engine Descriptor Reference 21-309

this value to be of any type; the value passed in this XML element must be
convertible to that type.

A typical use is to declare this to be an integer type, and to pass the sequential
document number where processing should start. An alternative implementation
might take a specific document ID; the collection reader could search through its
collection until it reaches this ID and then start there.

This parameter will only make sense if the particular collection reader is
implemented to use the startNumber configuration parameter.

The <numToProcess> element is an optional element. It specifies the total number of
entities to process. Use -1 to indicate ALL. If not defined, the number of entities to
process will be taken from the Collection Reader configuration. If present, this
value overrides the Collection Reader configuration.

The <outputQueue> element is an optional element. It enables plugging in a custom
implementation for the Output Queue. When omitted, the CPM will use a default
output queue that is based on First-in First-out (FIFO) model.

The UIMA SDK provides a second implementation for the Output Queue that can
be plugged in to the CPM, named "com.ibm.uima.reference_impl.
collection.cpm.engine.SequencedQueue".

This implementation supports handling very large documents that are split into
"chunks"; it provides a delivery mechanism that insures the sequential order of the
chunks using information carried in the CAS metadata. This metadata, which is
required for this implementation to work correctly, must be added as an instance of
a Feature Structure of type com.ibm.es.tt.DocumentMetaData and referred to by an
additional feature named esDocumentMetaData in the special instance of
uima.tcas.DocumentAnnotation that is associated with the TCAS. This is usually done
by the Collection Reader; the instance contains the following features:

1. sequenceNumber – [Number] the sequential number of a chunk, starting at 1.
If not a chunk (i.e. complete document), the value should be 0.

2. documentId – [Number] current document id. Chunks belonging to the same
document have identical document id.

3. isCompleted – [Number] 1 if the chunk is the last in a sequence, 0 otherwise.

4. url – [String] document url

5. throttleID – [String] special attribute currently used by OmniFind

This implementation of a sequenced queue supports proper sequencing of CASes in
CPM deployments that use document chunking. Chunking is a technique of
splitting large documents into pieces to reduce overall memory consumption.

Collection Processing Engine Descriptor Reference 21-310

Chunking does not depend on the number of CASes in the CAS Pool. It works
equally well with one or more CASes in the CAS Pool. Each chunk is packaged in a
separate CAS and placed in the Work Queue. If the CAS Pool is depleted, the
CollectionReader thread is suspended until a CAS is released back to the pool by the
processing threads. A document may be split into 1, 2, 3 or more chunks that are
analyzed independently. In order to reconstruct the document correctly, the CAS
Consumer can depend on receiving the chunks in the same sequential order that the
chunks were "produced", when this sequenced queue implementation is used. To
plug in this sequenced queue to the CPM use the following specification:

<outputQueue dequeueTimeout="100000"
queueClass="com.ibm.uima.reference_impl.collection.cpm.engine.SequencedQueue"/>

where the mandatory queueClass attribute defines the name of the class and the
second mandatory attribute, dequeueTimeout specifies the maximum number of
milliseconds to wait for the expected chunk.

Note: The value for this timeout must be carefully determined to avoid
excessive occurrences of timeouts. Typically, the size of a chunk and the type of
analysis being done are the most important factors when deciding on the value
for the timeout. The larger the chunk and the more complicated analysis, the
more time it takes for the chunk to go from source to sink.

If the chunk doesn’t arrive in the configured time window, the entire document is
presumed to be invalid and the CAS is dropped from further processing. This
action occurs regardless of any other error action specification. The
SequencedQueue invalidate the document, adding the offending document’s
metadata to a local cache of invalid documents.

If the time out occurs, the CPM notifies all registered listeners (see Using Listeners
on page 5-109) by calling entityProcessComplete(). As part of this call, the
SequencedQueue will pass null instead of a CAS as the first argument, and a special
exception – CPMChunkTimeoutException. The reason for passing null as the first
argument is because the time out occurs due to the fact that the chunk has not been
received in the configured timeout window, so there is no CAS available when the
timeout event occurs.

The CPMChunkTimeoutException object exposes an API that allows the listener to
retrieve the offending document id as well as the other metadata attributes as
defined above. These attributes are part of each chunk’s metadata and are added by
the Collection Reader.

Each chunk that SequencedQueue works on is subjected to a test to determine if the
chunk belongs to an invalid document. This test checks the chunk’s metadata
against the data in the local cache. If there is a match, the chunk is dropped. This

Collection Processing Engine Descriptor Reference 21-311

check is only performed for chunks and complete documents are not subject to this
check.

If there is an exception during the processing of a chunk, the CPM sends a
notification to all registered listeners. The notification includes the CAS and an
exception. When the listener notification is completed, the CPM also sends separate
notifications, containing the CAS, to the Artifact Producer and the SequencedQueue.
The intent is to stop adding new chunks to the Work Queue that belong to an
"invalid" document and also to deal with chunks that are en-route, being processed
by the processing threads.

In response to the notification, the Artifact Producer will drop and release back to
the CAS Pool all CASes that belong to an "invalid" document. Currently, there is no
support in the CollectionReader’s API to tell it to stop generating chunks. The
CollectionReader keeps producing the chunks but the Artifact Producer
immediately drops/releases them to the CAS Pool. Before the CAS is released back
to the CAS Pool, the Artifact Producer sends notification to all registered listeners.
This notification includes the CAS and an exception – SkipCasException.

In response to the notification of an exception involving a chunk, the
SequencedQueue retrieves from the CAS the metadata and adds it to its local cache
of "invalid" documents. All chunks de-queued from the OutputQueue and
belonging to "invalid" documents will be dropped and released back to the CAS
Pool. Before dropping the CAS, the CPM sends notification to all registered
listeners. The notification includes the CAS and SkipCasException.

The <checkpoint> element is an optional element. It specifies a CPE checkpoint file,
checkpoint frequency, and strategy for checkpoints (time or count based). At
checkpoint time, the CPM saves status information and statistics to the checkpoint
file. The checkpoint file is specified in the file attribute, which has the same form as
the href attribute of the <include> element described in Section 20.2 . The time
attribute indicates that a checkpoint should be taken every [Number] seconds, and
the batch attribute indicates that a checkpoint should be taken every [Number]
batches.

The <timerImpl> element is optional. It is used to identify a custom timer plug-in
class to generate time stamps during the CPM execution. The value of the element
is a Java class name.

The <deployAs> element indicates the type of CPM deployment. Valid contents for
this element include:

1. vinciService – Vinci service exposing APIs for stop, pause, resume, and
getStats

2. interactive – provide command line menus (start, stop, pause, resume)

Collection Processing Engine Descriptor Reference 21-312

3. immediate – run the CPM without menus or a service API
4. single-threaded – run the CPM in a single threaded mode. In this mode, the

Collection Reader, the Processing Pipeline, and the CAS Consumer Pipeline
are all running in one thread without the work queue and the output queue.

21.4.4 Resource Manager Configuration

External resource bindings for the CPE may optionally be specified in an element:

<resourceManagerConfiguration href="..."/>

For an introduction to external resources, refer to sections 4.5.4 , on page 4-83.

In the resourceManagerConfiguration element, the value of the href attribute refers to
another file that contains definitions and bindings for the external resources used by
the CPE. The format of this file is the same as the XML snippet on page 20-285. For
example, in a CPE containing an aggregate analysis engine with two annotators, and
a CAS Consumer, the following resource manager configuration file would bind
external resource dependencies in all three components to the same physical
resource:

<resourceManagerConfiguration>

 <!-- Declare Resource -->

 <externalResources>
 <externalResource>
 <name>ExampleResource</name>
 <fileResourceSpecifier>
 <fileUrl>file:MyResourceFile.dat</fileUrl>
 </fileResourceSpecifier>
 </externalResource>
 </externalResources>

 <!-- Bind component resource dependencies to ExampleResource -->

 <externalResourceBindings>
 <externalResourceBinding>
 <key>MyAE/annotator1/myResourceKey</key>
 <resourceName>ExampleResource</resourceName>
 </externalResourceBinding>

 <externalResourceBinding>
 <key>MyAE/annotator2/someResourceKey</key>
 <resourceName>ExampleResource</resourceName>
 </externalResourceBinding>

 <externalResourceBinding>
 <key>MyCasConsumer/otherResourceKey</key>
 <resourceName>ExampleResource</resourceName>
 </externalResourceBinding>

 </externalResourceBindings>

</resourceManagerConfiguration>

Collection Processing Engine Descriptor Reference 21-313

In this example, MyAE and MyCasConsumer are the names of the Analysis Engine and
CAS Consumer, as specified by the name attributes of the CPE's <casProcessor>
elements. annotator1 and annotator2 are the annotator keys specified within the
Aggregate AE Descriptor, and myResourceKey, someResourceKey, and otherResourceKey
are the keys of the resource dependencies declared in the individual annotator and
CAS Consumer descriptors.

21.4.5 Example CPE Descriptor

<?xml version="1.0" encoding="UTF-8"?>
<cpeDescription>
 <collectionReader>
 <collectionIterator>
 <descriptor>
 <include href="C:\Program
Files\IBM\uima\docs\examples\descriptors\collection_reader\XMLFileCollectio
nReader.xml"/>
 </descriptor>
 </collectionIterator>
 <casInitializer>
 <descriptor>
 <include href="C:\Program
Files\IBM\uima\docs\examples\descriptors\cas_initializer\XMLCasInitializer.
xml"/>
 </descriptor>
 </casInitializer>
 </collectionReader>
 <casProcessors dropCasOnException="true" casPoolSize="1"
processingUnitThreadCount="1">
 <casProcessor deployment="integrated" name="Aggregate TAE - Name
Recognizer and Person Title Annotator">
 <descriptor>
 <include href="C:\Program
Files\IBM\uima\docs\examples\descriptors\analysis_engine\NamesAndPersonTitl
es_TAE.xml"/>
 </descriptor>
 <deploymentParameters/>
 <filter/>
 <errorHandling>
 <errorRateThreshold action="terminate" value="100/1000"/>
 <maxConsecutiveRestarts action="terminate" value="30"/>
 <timeout max="100000"/>
 </errorHandling>
 <checkpoint batch="1"/>
 </casProcessor>
 <casProcessor deployment="integrated" name="Annotation Printer">
 <descriptor>
 <include href="C:\Program
Files\IBM\uima\docs\examples\descriptors\cas_consumer\AnnotationPrinter.xml
"/>
 </descriptor>

Collection Processing Engine Descriptor Reference 21-314

 <deploymentParameters/>
 <filter/>
 <errorHandling>
 <errorRateThreshold action="terminate" value="100/1000"/>
 <maxConsecutiveRestarts action="terminate" value="30"/>
 <timeout max="100000"/>
 </errorHandling>
 <checkpoint batch="1"/>
 </casProcessor>
 </casProcessors>
 <cpeConfig>
 <numToProcess>1</numToProcess>
 <deployAs>immediate</deployAs>
 <checkpoint file="" time="3000"/>
 <timerImpl/>
 </cpeConfig>
</cpeDescription>

JavaDocs 22-315

Chapter 22 JavaDocs

The details of all the public APIs for UIMA are contained in the API JavaDocs. These are
located in the docs/api directory; the top level to open in your browser is called index.html.

In recent releases, Eclipse supports the ability to attach the JavaDocs to your project. To use
this facility, open a project which is referring to the UIMA APIs in its class path, and open the
project properties.

Once you do this, Eclipse can show you JavaDocs for UIMA APIs as you work. To see the
JavaDoc for a UIMA API, highlight the API class or method and press shift-F2, or use the menu
Navigate -> OpenExternalJavaDoc. This will open the JavaDoc for the selected item in a
browser.

CAS Reference 23-317

Chapter 23 CAS Reference

The CAS (Common Analysis System) is the part of the Unstructured Information
Management Architecture (UIMA) that is concerned with creating and handling the
data that annotators manipulate.

Java users typically use the JCas (Java interface to the CAS) when manipulating
objects in the CAS. This chapter describes an alternative interface to the CAS which
allows discovery and specification of types and features at run time. It is
recommended for use when the using code cannot know ahead of time the type
system it will be dealing with.

The CAS is a general-purpose data container, and can be used for many kinds of
data. There is a special instantiation of the CAS, the TCAS, that is considered to be a
"view" of the CAS. There can be multiple TCASes for one CAS, corresponding to
multiple subjects of analysis (Sofas) – see Sofas and TCAS Views on page 7-162. The
TCAS provides a small number of extensions to the CAS to simplify common
analysis tasks associated with having a subject of analysis and annotations. In this
chapter, we will usually not make the distinction between the two, unless the
distinction is critical for correct API usage.

23.1.1 JavaDocs

The subdirectory docs/api contains the documentation details of all the classes,
methods, and constants for the APIs discussed here. Please refer to this for details
on the methods, classes and constants, specifically in the packages
com.ibm.uima.cas.*.

23.1.2 CAS Overview

There are three main parts to the CAS: the type system, data creation and
manipulation, and indexing. We will start with a brief description of these
components.

The type system

The type system specifies what kind of data you will be able to manipulate in your
annotators. The type system defines two kinds of entities, types and features.
Types are arranged in an inheritance tree and define the kinds of entities (objects)
you can manipulate in the CAS. Features optionally specify slots within a type. The
correspondence to Java is to equate a CAS Type to a Java Class, and the CAS
Features to fields within the type. A critical difference is that CAS types have no
methods; they are just data structures with named slots (features). These slots can

CAS Reference 23-318

have as values primitive things like integers, floating point numbers, and strings,
and they also can hold references to other instances of objects in the CAS. We call
instances of the data structures declared by the type system "feature structures" (not
to be confused with "features"). Feature structures are similar to the many variants
of record structures found in computer science.4.

Each CAS Type defines a supertype; it is a subtype of that supertype. This means
that any features that the supertype defines are features of the subtype; in other
words, it inherits its supertype’s features. Only single inheritance is supported; a
type’s feature set is the union of all of the features in its supertype hierarchy. There
is a built-in type called uima.cas.TOP; this is the top, root node of the inheritance
tree. It defines no features.

The values that can be stored in features are either built-in primitive values or
references to other feature structures. The primitive values are integers, floats, and
strings; the official names of these are uima.cas.Integer, uima.cas.Float, and
uima.cas.String. The integers correspond to Java "int" (32 bit) values; the floats to
Java float (single precision) values, and the strings to Java string values (Unicode
strings). The CAS also defines other basic built-in types for arrays of these, plus
arrays of references to other objects, called uima.cas.IntegerArray,
uima.cas.FloatArray, uima.cas.StringArray, and uima.cas.FSArray.

The TCAS extension of the CAS defines a built-in type called uima.tcas.Annotation
which inherits from uima.cas.TOP. There are two features defined by this type,
called begin and end, both of which are integer valued.

Types and features are defined in XML descriptors. At runtime, annotators are
passed an instance of a CAS, TCAS or JCas, depending on the kind of annotator it is,
and other factors. See Do UIMA Components Receive a CAS or a TCAS? On page 7-
164 for more details. You can use this object to access all of the metadata about the
defined type system in use, as well as information about the CAS indexes.

Creating, accessing and manipulating data

Using the non JCas runtime APIs to access the CAS is a two step process. In step
one you query the CAS’s type system to obtain type and feature objects
corresponding to the types and features. This has to be done once for each CAS
type system. Then you use these retrieved type and feature objects in calls to the
CAS APIs to create feature structures, set and get feature values from particular
feature structures, and add and removed feature structures from indexes.

4 The name “feature structure" comes from terminology used in linguistics.

CAS Reference 23-319

Creating and using indexes

Instances of feature structures can be added to CAS indexes. These indexes provide
the only way for other annotators to locate existing data in the CAS. The only way
for an annotator to use data that another annotator has created is to get feature
structures the first annotator created, out of the CAS using an index. If you want the
data you create to be visible to other annotators, you must index it.

Indexes are named; they are used to index one specific CAS type (including its
subtypes). To access an index, you minimally need to know its name. The CAS
provides an index repository which you can query for indexes. Once you have a
handle to an index, you can get information about the feature structures in the
index, the size of the index, as well as an iterator over the feature structures.

Indexes are defined in the XML descriptor metadata for the application. The
indexes are grouped into repositories. Each view of the CAS (corresponding to each
TCAS) has a separate repository, containing all the indexes. When you obtain an
index, it is always from a particular TCAS view (or the base CAS). When you index
an item, it is always added to all indexes where it belongs, within just one
repository. You can specify different repositories to use; a given instance may be
indexed in more than one repository.

Iterators allow you to enumerate the feature structures in an index. The iterators are
a subclass of the normal Java Iterator class; they add methods to allow both forward
and backward traversal, and you can set the iterator to arbitrary points in the index.

Indexes are created by specifying them in the annotator's or aggregate’s resource
descriptor. An index specification includes its name, the CAS type being indexed,
the kind of index it is, and an (optional) ordering relation on the feature structures
to be indexed. Feature structures need to be explicitly added to the index repository
by a method call. Feature structures that are not indexed will not be visible to other
annotators, (unless they are located via being referenced by some other feature of
another feature structure, which is indexed).

The TCAS extension defines a standard, built-in annotation index, called
AnnotationIndex, which indexes the uima.tcas.Annotation type. All feature
structures of type uima.tcas.Annotation or its subtypes are automatically indexed
with this built-in index.

The ordering relation used by this index is to first order by the value of the "begin"
features (in ascending order) and then by the value of the "end" feature (in
descending order). This ordering insures that longer annotations starting at the
same spot come before shorter ones. For Subjects of Analysis other than Text, this
may not be an appropriate index.

CAS Reference 23-320

23.2 Built-in CAS Types

The CAS has two kinds of built-in types – primitive and non-primitive. The
primitive types are:

uima.cas.Float
uima.cas.Integer
uima.cas.String

The uima.cas.String type can be sub-typed to create sets of allowed values; see
 Chapter 20 These types can be used to specify the range of a feature. They act like
Strings, but have additional checking to insure the setting of values into them
conforms to one of the allowed values. Note that these sub-types cannot be used as
a supertype for another type definition; only uima.cas.String can be sub-typed.

The non-primitive types exist in a type hierarchy; the top of the hierarchy is the type

uima.cas.TOP

All other non-primitive types inherit from some supertype.

There are 4 built-in array types. These arrays have a size specified when they are
created; the size is fixed at creation time; they are named:

uima.cas.FloatArray
uima.cas.IntegerArray
uima.cas.StringArray
uima.cas.FSArray

The uima.cas.FSArray type is an array whose elements are arbitrary other feature
structures (instances of non-primitive types).

There are 2 built-in types associated with the artifact being analyzed:

uima.tcas.Annotation
uima.tcas.DocumentAnnotation

The Annotation type defines 2 features, taking uima.cas.Integer values, called begin
and end. The begin feature typically identifies the start of a span of text the
annotation covers; the end feature identifies the end. The values refer to character
offsets; the starting index is 0. An annotation of the word "CAS" in a text "CAS
Reference" would have a start index of 0, and an end index of 3; the difference
between end and start is the length of the span the annotation refers to.

Annotations are always with respect to some Sofa (Subject of Analysis – see 7.2 7-
162).

Note: Artifacts which are not text strings may have a different interpretation of
the meaning of begin and end.

CAS Reference 23-321

The DocumentAnnotation type has one special instance, created when a TCAS is
generated. It is a subtype of the annotation type, and the built-in definition defines
one feature, language, which is a string indicating the language of the document in
the TCAS. The value of this language feature is used by the system to control flow
among annotators, allowing the flow to skip over annotators that don't process
particular languages. Users may extend this type by adding additional features to
it, using the XML Descriptor element for defining a type.

Each TCAS view of a CAS has a different associated instance of the
DocumentAnnotation type.

The instance of this type can be accessed in two ways: using the
getDocumentationAnnotation method on a TCAS object, or using the
getDocumentationAnnotationFs method on a JCas object. There is a deprecated JCas
method with the same method name as the method used with the TCAS object (i.e.,
without the trailing "Fs"), but it is not safe to use in an environment where class
loaders are being used. The getDocumentationAnnotationFs method returns an item
of type TOP, which you need to cast to DocumentAnnotation. The JCas model for this is
the Java type DocumentAnnotation in the package com.ibm.uima.jcas.tcas.

There are also built-in types supporting lists, in the style of Lisp. Their use is not
recommended, however, as this is not a particularly efficient representation. The
implementation is type specific; there are different list building objects for each of
the primitive types, plus one for general feature structures. Here are the type
names:

uima.cas.FloatList
uima.cas.IntegerList
uima.cas.StringList
uima.cas.FSList

uima.cas.EmptyFloatList
uima.cas.EmptyIntegerList
uima.cas.EmptyStringList
uima.cas.EmptyFSList

uima.cas.NonEmptyFloatList
uima.cas.NonEmptyIntegerList
uima.cas.NonEmptyStringList
uima.cas.NonEmptyFSList

For each primitive type, there is a base type, for instance, uima.cas.FloatList. For
each of these, there are two subtypes, corresponding to a non-empty element, and a
marker that serves to indicate the end of the list, or an empty list. The non-empty
types define two features – head and tail. The head feature holds the particular
value for that part of the list. The tail refers to the next list object (either a non-
empty one or the empty version to indicate the end of the list).

CAS Reference 23-322

There are no other built-in types. Users are free to define their own type systems,
building upon these types.

23.3 Accessing the type system

When using the JCas, the type system declaration is converted to Java class
definitions; these allow strongly typed references to the CAS data objects. When
you are designing an application which can’t use this approach, perhaps because it
is a general tool that is built to handle unknown (at compile-time) type systems, you
use the CAS (not JCas) APIs, described here.

These APIs presume as a starting point a reference to an existing CAS, or a CAS’s
type system. This CAS reference can be something returned by utilities that create
new CASes, or is a parameter passed to an annotator’s process method. The CAS’s
type system can be obtained by calling the getTypeSystem method on the CAS
object.

Non-JCas annotators implement an additional method, typeSystemInit, which is
called by the UIMA framework before the annotator’s process method. This
method, implemented by the annotator writer, is passed a reference to the CAS’s
type system metadata. The method typically uses the type system APIs to obtain
type and feature objects corresponding to all the types and features the annotator
will be using in its process method. This initialization step should not be done
during an annotator’s initialize method since the type system can change after the
initialize method is called; it should not be done during the process method, since
this is presumably work that is identical for each incoming document, and so should
be performed only when the type system changes (which will be a rare event). The
UIMA framework guarantees it will call the typeSystemInit method of an annotator
whenever the type system changes, before calling the annotator’s process method.

The initialization done by typeSystemInit is done by the UIMA framework when
you use the JCas APIs; you only need to provide a typeSystemInit method, as
described here, when you are not using the JCas approach.

23.3.1 TypeSystemPrinter example

Here is a code fragment that, given a CAS Type System, will print a list of all types.

 // Get all type names from the type system
 // and print them to stdout.
 private void listTypes1(TypeSystem ts) {
 // Get an iterator over types
 Iterator typeIterator = ts.getTypeIterator();
 Type t;
 System.out.println("Types in the type system:");
 while (typeIterator.hasNext()) {
 // Retrieve a type...

CAS Reference 23-323

 t = (Type) typeIterator.next();
 // ...and print its name.
 System.out.println(t.getName());
 }
 System.out.println();
 }

This method is passed the type system as a parameter. (The type system is passed
as a parameter to your annotator's typeSystemInit method by the UIMA framework,
or you can obtain it from a CAS reference using the method getTypeSystem.) From
the type system, we can get an iterator over all known types. If you run this against
a CAS created with no additional user-defined types, we should see something like
this on the console:

Types in the type system:

uima.cas.TOP
uima.cas.Integer
uima.cas.Float
uima.cas.String
uima.cas.ArrayBase
uima.cas.FSArray
uima.cas.IntegerArray
uima.cas.FloatArray
uima.cas.StringArray
uima.cas.ListBase
uima.cas.IntegerList
uima.cas.EmptyIntegerList
uima.cas.NonEmptyIntegerList
uima.cas.FloatList
uima.cas.EmptyFloatList
uima.cas.NonEmptyFloatList
uima.cas.StringList
uima.cas.EmptyStringList
uima.cas.NonEmptyStringList
uima.tcas.Annotation

Here we only see the built-in types; more would show up if the type system had
user-defined types. Note that some of these types are not directly creatable – they
are types used by the framework in the type hierarchy (e.g. uima.cas.ArrayBase).

CAS type names include a name-space prefix. The components of a type name are
separated by the dot (.). A type name component must start with a Unicode letter,
followed by an arbitrary sequence of letters, digits and the underscore (_). By
convention, the last component of a type name starts with an uppercase letter, the
rest start with a lowercase letter.

Listing the type names is mildly useful, but it would be even better if we could see
the inheritance relation between the types. The following code prints the
inheritance tree in indented format.

CAS Reference 23-324

 private static final int INDENT = 2;
 private void listTypes2(TypeSystem ts) {
 // Get the root of the inheritance tree.
 Type top = ts.getTopType();
 // Recursively print the tree.
 printInheritanceTree(ts,top, 0);
 }

private void printInheritanceTree(TypeSystem ts, Type type, int level) {
 indent(level); // Print indentation.
 System.out.println(type.getName());
 // Get a vector of the immediate subtypes.
 Vector subTypes =
 ts.getDirectlySubsumedTypes(type);
 ++level; // Increase the indentation level.
 for (int i = 0; i < subTypes.size(); i++) {
 // Print the subtypes.
 printInheritanceTree(ts, (Type) subTypes.get(i), level);
 }
 }
 // A simple, inefficient indenter
 private void indent(int level) {
 int spaces = level * INDENT;
 for (int i = 0; i < spaces; i++) {
 System.out.print(" ");
 }
 }

This example shows that you can traverse the type hierarchy by starting at the top
with TypeSystem.getTopType and by retrieving subtypes with
TypeSystem.getDirectlySubsumedTypes.

The JavaDocs also have APIs that allow you to access the features, as well as what
the allowed value type is for that feature. Here is sample code which prints out all
the features of all the types, together with the allowed value types (the feature
"range"). Each feature has a "domain" which is the type where it is defined, as well
as a "range".

 private void listFeatures2(TypeSystem ts) {
 Iterator featureIterator = ts.getFeatures();
 Feature f;
 System.out.println("Features in the type system:");
 while (featureIterator.hasNext()) {
 f = (Feature) featureIterator.next();
 System.out.println(
 f.getShortName() + ": " +
 f.getDomain() + " -> " + f.getRange());
 }
 System.out.println();
 }

CAS Reference 23-325

We can ask a feature object for its domain (the type it is defined on) and its range
(the type of the value of the feature). The terminology derives from the fact that
features can be viewed as functions on subspaces of the object space.

23.3.2 Using the CAS APIs to create and modify feature
structures

Assume a type system declaration that defines two types: Entity and Person. Entity
has no features defined within it but inherits from uima.tcas.Annotation – so it has
the begin and end features. Person is, in turn, a subtype of Entity, and adds
firstName and lastName features. CAS type systems are declaratively specified
using XML; the format of this XML is described in Chapter 20 .

<!-- Type System Definition -->
<typeSystemDescription>
 <types>
 <typeDescription>
 <name>com.xyz.proj.Entity</name>
 <description />
 <supertypeName>uima.tcas.Annotation</supertypeName>
 </typeDescription>
 <typeDescription>
 <name>Person</name>
 <description />
 <supertypeName>com.xyz.proj.Entity </supertypeName>
 <features>
 <featureDescription>
 <name>firstName</name>
 <description />
 <rangeTypeName>uima.cas.String</rangeTypeName>
 </featureDescription>
 <featureDescription>
 <name>lastName</name>
 <description />
 <rangeTypeName>uima.cas.String</rangeTypeName>
 </featureDescription>
 </features>
 </typeDescription>
 </types>

</typeSystemDescription>

To use these types in annotator code, the CAS APIs require "handles" which are
references to the specific type and feature objects corresponding to each type and
feature (note that these are not required when using the JCas APIs to the CAS).
These are setup by CAS TypeSystem API calls that are passed the official external
names of the types and features. The CAS APIs provide string constants for the
official names of all the built-in types and features that you might use.

 /** Entity type name constant. */
 public static final String ENTITY_TYPE_NAME = "com.xyz.proj.Entity";

CAS Reference 23-326

 /** Person type name constant. */
 public static final String PERSON_TYPE_NAME = "com. xyz.proj.Person";

 /** First name feature name constant. */
 public static final String FIRST_NAME_FEAT_NAME = "firstName";

 /** Last name feature name constant. */
 public static final String LAST_NAME_FEAT_NAME = "lastName";

We define type and feature member variables; these will hold the values of the type
and feature objects needed by the CAS APIs.

 // Type system object variables
 private Type entityType;
 private Type personType;
 private Feature firstNameFeature;
 private Feature lastNameFeature;
 private Type stringType;

The type system does not consider it to be an error if we ask for something that is
not known, it simply returns null; therefore the code checks for this.

// Get a type object corresponding to a name.
// If it doesn't exist, throw an exception.
private Type initType(String typeName)
 throws AnnotatorInitializationException {
 Type type = ts.getType(typeName);
 if (type == null) {
 throw new AnnotatorInitializationException(
 AnnotatorInitializationException.TYPE_NOT_FOUND,
 new Object[] { this.getClass().getName(), typeName });
 }
 return type;
}
We add similar code for retrieving feature objects.
// Get a feature object from a name and a type object.
// If it doesn't exist, throw an exception.
private Feature initFeature(String featName, Type type)
 throws AnnotatorInitializationException {
 Feature feat = type.getFeatureByBaseName(featName);
 if (feat == null) {
 throw new AnnotatorInitializationException(
 AnnotatorInitializationException.FEATURE_NOT_FOUND,
 new Object[] { this.getClass().getName(), featName });
 }
 return feat;
}

Using these two functions, code for initializing the type system described above
would be:

 public void typeSystemInit(TypeSystem aTypeSystem)
 throws AnnotatorConfigurationException,
 AnnotatorInitializationException
 {

CAS Reference 23-327

 this.typeSystem = aTypeSystem;
 // Set type system member variables.
 this.entityType = initType(ENTITY_TYPE_NAME);
 this.personType = initType(PERSON_TYPE_NAME);
 this.firstNameFeature =
 initFeature(FIRST_NAME_FEAT_NAME, personType);
 this.lastNameFeature =
 initFeature(LAST_NAME_FEAT_NAME, personType);
 this.stringType = initType(CAS.TYPE_NAME_STRING);
 }

Note that we initialize the string type by using a type name constant from the CAS.

23.4 Creating feature structures

To create feature structures in JCas, we use the Java "new" operator. In the CAS, we
use one of several different API methods on the CAS object, depending on which of
the 5 basic kinds of feature structures we are creating (a plain feature structure, or
an instance of the built-in StringArray, FloatArray, IntegerArray, or FSArray).

If a TCAS is provided, it has a method to create an instance of a
uima.tcas.Annotation, setting the begin and end values.

Once a feature structure is created, it needs to be added to the CAS indexes (unless it
will be accessed via some reference from another accessible feature structure). The
API to add a feature structure to the CAS indexes is found by starting with the CAS
object, getting a reference to the index repository, and then calling the index
repository’s addFS method. (There is also a removeFS method to remove a feature
structure from the index). Assuming aCAS holds a reference to a CAS, and token
holds a reference to a newly created feature structure, here’s the code to add that
feature structure to all the relevant CAS indexes:

 // Add the token to the index repository.
 aCAS.getIndexRepository().addFS(token);

23.5 Accessing or modifying features of feature structures

Values of individual features for a feature structure can be set or referenced, using a
set of methods that depend on the type of value that feature is declared to have.
There are methods getIntValue, getFloatValue, getStringValue, and getFeatureValue
(which means to get a value which in turn is a reference to a feature structure).
There are corresponding "setter" methods, as well. These are methods on the feature
structure object, and take as arguments the feature object retrieved earlier in the
typeSystemInit method.

Using the previous example, with the type system initialized with type personType
and feature lastNameFeature, here’s a sample code fragment that gets and sets that
feature:

CAS Reference 23-328

// Assume aPerson is a variable holding an object of type Person
// get the lastNameFeature value from the feature structure
String lastName = aPerson.getStringValue(lastNameFeature);
// set the lastNameFeature value
aPerson.setStringValue(lastNameFeature, newStringValueForLastName);

The getters and setters for each of the primitive types are defined in the JavaDocs as
methods of the FeatureStructure interface.

23.6 Indexes and Iterators

Each CAS can have many indexes associated with it. Each index is represented by
an instance of the type com.ibm.uima.cas.FSIndex. You use the object
com.ibm.uima.cas.FSIndexRepository, accessible via a method on the basic CAS
object, to retrieve instances of the index object. There are methods that let you select
the index by name, or by name and type. Since each index is already associated
with a type, the passing of an additional type parameter is valid only if the type
passed in is the same type or a subtype of the one declared in the index specification
for this index. If you pass in a subtype, the returned FSIndex object refers to an
index that will return only items belonging to that subtype (or subtypes of that
subtype).

The returned FSIndex objects are used, in turn, to create iterators. The iterators
created can be used like common Java iterators, to sequentially retrieve items
indexed. If the index represents a sorted index, the items are returned in a sorted
order, where the sort order is specified in the XML index definition. This XML is
part of the Component Descriptor, see Chapter 20 .

Feature structures should not be added to or removed from indexes while iterating
over them; results are undefined if this is done.

23.6.1 Iterators

Iterators are objects of class com.ibm.uima.cas.FSIterator. This class implements the
normal Java iterator methods, plus additional ones that allow moving both forwards
and backwards.

23.6.2 Special iterators for Annotation types

The built-in index over the uima.tcas.Annotation type named "AnnotationIndex" has
additional capabilities. To use them, you first get a reference to this built-in index
using either the getAnnotationIndex method on a TCAS object, or by asking the
FSIndexRepository object for an index having the particular name
"AnnotationIndex". You then must cast the returned FSIndex object to
AnnotationIndex. Here’s an example showing the cast:

CAS Reference 23-329

AnnotationIndex idx = (AnnotationIndex) aTCAS.getAnnotationIndex();

This object can be used to produce several additional kinds of iterators. It can
produce unambiguous iterators; these skip over elements until it finds one where
the start position of the next annotation is equal to or greater than the end position
of the previously returned annotation.

It can also produce several kinds of subiterators; these are iterators whose
annotations fall within the span of another annotation. This kind of iterator can also
have the unambiguous property, if desired. It also can be "strict" or not; strict means
that the returned annotation lies completely within the span of the controlling
annotation. Non-strict only implies that the beginning of the returned annotation
falls within the span of the controlling annotation.

There is also a method which produces an AnnotationTree object, which contains
nodes representing the results of doing a strict, unambiguous subiterator over the
span of some controlling annotation. For more details, please refer to the JavaDocs
for the com.ibm.uima.cas.text package.

23.6.3 Constraints and Filtered iterators

There is a set of API calls that build constraint objects. These objects can be used
directly to test if a particular feature structure matches (satisfies) the constraint, or
they can be passed to the createFilteredIterator method to create an iterator that
skips over instances which fail to satisfy the constraint.

It is possible to specify a feature value located by following a chain of references
starting from the feature structure being tested. Here's a scenario to explore this
concept. Let's suppose you have the following type system (namespaces are
omitted for clarity):

Token, having a feature PartOfSpeech which holds a reference to another type
(POS)

POS (a type with many subtypes, each representing a different part of speech)

Noun (a subtype of POS)

ProperName (a subtype of Noun), having a feature Class
which holds an integer value encoding some information
about the proper noun.

If you want to filter Token instances, such that only those tokens get through which
are proper names of class 3 (for example), you would need a test that started with a
Token instance, followed its PartOfSpeech reference to another instance (the

CAS Reference 23-330

ProperName instance) and then tested the Class feature of that instance for a value
equal to 3.

To support this, the filtering approach has components that specify tests, and
components that specify "paths". The tests that can be done include testing
references to type instances to see if they are instances of some type or its subtypes;
this is done with a FSTypeConstraint constraint. Other tests check for equality or,
for numeric values, ranges.

Each test may be combined with a path – to get to the value to test. Tests that start
from a feature structure instance can be combined with and and or connectors. The
JavaDocs for these are in the package com.ibm.uima.cas in the classes that end in
Constraint, plus the classes ConstraintFactory, FeaturePath and CAS. Here's an
example; assume the variable cas holds a reference to a CAS instance.

// Start by getting the constraint factory from the CAS.

ConstraintFactory cf = cas.getConstraintFactory();

// To specify a path to an item to test, you start by
// creating an empty path.

FeaturePath path = cas.createFeaturePath();

// Add POS feature to path, creating one-element path.

path.addFeature(posFeat);

// You can extend the chain arbitrarily by adding additional
// features.

// Create a new type constraint.

// Type constraints will check that structures
// they match against have a type at least as specific
// as the type specified in the constraint.

FSTypeConstraint nounConstraint = cf.createTypeConstraint();

// Set the type (by default it is TOP).
// This succeeds if the type being tested by this constraint
// is nounType or a subtype of nounType.

nounConstraint.add(nounType);

// Embed the noun constraint under the pos path.
// This means, associate the test with the path, so it tests the
// proper value.

// The result is a test which will
// match a feature structure that has a posFeat defined
// which has a value which is an instance of a nounType or
// one of its subtypes.

CAS Reference 23-331

FSMatchConstraint embeddedNoun = cf.embedConstraint(path, nounConstraint);

// Create a type constraint for token (or a subtype of it)

FSTypeConstraint tokenConstraint = cf.createTypeConstraint();

// Set the type.

tokenConstraint.add(tokenType);

// Create the final constraint by conjoining the two constraints.

FSMatchConstraint nounTokenCons = cf.and(nounConstraint, tokenConstraint);

// Create a filtered iterator from some annotation iterator.

FSIterator it = cas.createFilteredIterator(annotIt, nounTokenCons);

23.7 The CAS APIs – a guide to the JavaDocs

The CAS APIs are organized into 3 Java packages: cas, cas.impl, and cas.text. Most
of the APIs described here are in the cas package. The cas.impl package contains
classes used in serializing and deserializing (reading and writing to external strings)
the XCAS form of the CAS (XCAS is an XML serialization of the CAS). The XCAS
form is used for transporting the CAS among local and remote annotators, or for
storing the CAS in permanent storage. The cas.text contains the APIs that extend the
CAS to support artifact (including "text") analysis.

23.7.1 APIs in the CAS package

The main objects implementing the APIs discussed here are shown in the diagram
below. The hierarchy represents that there is a way to get from an upper object to
an instance of the lower object, usually by using a method on the upper object; this

CAS Reference 23-332

is not an inheritance hierarchy.

The main Interface is the CAS interface. This has most of the functionality of the
CAS, except for the type system metadata access, and the indexing access. JCas and
CAS are alternative representations and API approaches to the CAS; each has a
method to get the other. You can mix JCas and CAS APIs in your application as
needed. To use the JCas APIs, you have to create the Java classes that correspond to
the CAS types, and include them in the Java class path of the application. If you
have a CAS or TCAS object, you can get a JCas object by using the getJCas() method
call on the CAS object; likewise, you can get the CAS (which could be a TCAS) object
from a JCas by using the getCAS() method call on the JCas object. There is also a
low level CAS interface that is not part of the official API, and is intended for
internal use only – it is not documented here.

The type system metadata APIs are found in the TypeSystem interface. The objects
defining each type and feature are defined by the interfaces Type and Feature. The
Type interface has methods to see what types subsume other types, to iterate over
the types available, and to extract information about the types, including what
features it has. The Feature interface has methods that get what type it belongs to,
its name, and its range (the kind of values it can hold).

The FSIndexRepository gives you access to methods to get instances of indexes. The
FSIndex and AnnotationIndex objects give you methods to create instances of
iterators.

CAS

TypeSystem FSIndexRepository

Type Feature FSIndex,
AnnotationIndex

FSIterator

FeatureStructure

CAS Reference 23-333

Iterators and the CAS methods that create new feature structures return
FeatureStructure objects. These objects can be used to set and get the values of
defined features within them.

JCas Reference 24-335

Chapter 24 JCas Reference

The CAS is a system for sharing data among annotators, consisting of data
structures (definable at run time), indexes over these data, metadata describing
these, and a high performance serialization/deserialization mechanism. JCas is a
Java approach to accessing CAS data, based on using generated, specific Java classes
for each CAS type.

Annotators process one CAS per call to their process method. During processing,
annotators can retrieve feature structures from the passed in CAS, add new ones,
modify existing ones, and use and update CAS indexes. Of course, an annotator can
also use plain Java Objects in addition; but the data in the CAS is what is shared
among annotators within an application.

All the facilities present in the APIs for the CAS are available when using the JCas
APIs; indeed, you can use the getCas() method to get the corresponding CAS (which
could be a TCAS) object from a JCas (and vice-versa). The JCas APIs often have
helper methods that make using this interface more convenient for Java developers,
however.

The data in the CAS are typed objects having fields. JCas uses a set of generated
Java classes (each corresponding to a particular CAS type) with "getter" and "setter"
methods for the features, plus a constructor so new instances can be made. The Java
classes don’t actually store the data in the class instance; instead, the getters and
setters forward to the underlying CAS data representation. Because of this,
applications which use the JCas interface can share data with annotators using plain
CAS (i.e., not using the JCas approach). Users can modify the JCas generated Java
classes by adding fields to them; this allows arbitrary non-CAS data to also be
represented within the JCas objects, as well; however, the non-CAS data stored in
the JCas object instances cannot be shared with annotators using the plain CAS.

Data in the CAS initially has no corresponding JCas type instances; these are created
as needed at the first reference. This means, if your annotator is passed a large CAS
having millions of CAS feature structures, but you only reference a few of them, and
no previously created Java JCas object instances were created by upstream
annotators, the only Java objects that will be created will be those that correspond to
the CAS feature structures that you reference.

The JCas class Java source files are generated from XML type system descriptions.
The JCasGen utility does the work of generating the corresponding Java Class
Model for the CAS types. There are a variety of ways JCasGen can be run; these are
described later. You include the generated classes with your UIMA component, and
you can publish these classes for others who might want to use your type system.

JCas Reference 24-336

The specification of the type system in XML can be written using a conventional text
editor, an XML editor, or using the Eclipse plug-in that supports editing UIMA
descriptors.

Changes to the type system are done by changing the XML and regenerating the
corresponding Java Class Models. Of course, once you’ve published your type
system for others to use, you should be careful that any changes you make don’t
adversely impact the users. Additional features can be added to existing types
without breaking other code.

A separate Java class is generated for each type; this type implements the CAS
FeatureStructure interface, as well as having the special getters and setters for the
included features. In the current implementation, an additional helper class per
type is also generated. The generated Java classes have methods (getters and
setters) for the fields as defined in the XML type specification. Descriptor
comments are reflected in the generated Java code as Java-doc style comments.

Type names used in the CAS correspond to the generated Java classes directly. If
the CAS name is com.myCompany.myProject.ExampleClass, the generated Java
class is in the package com.myCompany.myProject, and the class is ExampleClass.

24.1 Name Spaces

Full Type names consist of a "namespace" prefix dotted with a simple name.
Namespaces are used like packages to avoid collisions between types that are
defined by different people at different times. The namespace is used as the Java
package name for generated Java files. An exception to this rule is the built-in types
starting with uima.cas and uima.tcas; these names are mapped to Java packages
named com.ibm.uima.jcas.cas and com.ibm.uima.jcas.tcas.

24.2 XML source description tags

Each XML type specification can have <description ... > tags. The description for a
type will be copied into the generated Java code, as a JavaDoc style comment for the
class. When writing these descriptions in the XML type specification file, you might
want to use html tags, as allowed in JavaDocs.

If you use the Component Description Editor, you can write the html tags normally,
for instance, "<h1>My Title</h1>. The Component Descriptor Editor will take care of
coverting the actual descriptor source so that it has the leading "<" character written
as "<", to avoid confusing the XML type specification. For example, <p> would be
written in the source of the descriptor as <p>. Any characters used in the JavaDoc
comment must of course be from the character set allowed by the XML type
specification. These specifications often start with the line <?xml version="1.0"
encoding="UTF-8" ?>, which means you can use any of the UTF-8 characters.

JCas Reference 24-337

24.3 Mapping built-in CAS types to Java types

The built-in primitive CAS types map to Java types as follows:

uima.cas.Integer >> int
uima.cas.Float >> float
uima.cas.String >> String

24.4 Augmenting the generated Java Code

The Java Class Models generated for each type can be augmented by the user.
Typical augmentations include adding additional (non-CAS) fields and methods,
and import statements that might be needed to support these. Commonly added
methods include additional constructors (having different parameter signatures),
and implementations of toString().

To augment the code, just edit the generated Java source code for the class named
the same as the CAS type. Here’s an example of an additional method you might
add; the various getter methods are retrieving values from the instance:

public String toString() { // for debugging
 return "XsgParse "
 + getslotName() + ": "
 + getheadWord().getCoveredText()
 + " seqNo: " + getseqNo()
 + ", cAddr: " + id
 + ", size left mods: " + getlMods().size()
 + ", size right mods: " + getrMods().size();
}

24.4.1 Keeping hand-coded augmentations when
regenerating

If the type system specification changes, you have to re-run the JCasGen generator.
This will produce updated Java for the Class Models that capture the changed
specification. If you have previously augmented the source for these Java Class
Models, your changes must be merged with the newly (re)generated Java source
code for the Class Models. This can be done by hand, or you can run the version of
JCasGen that is integrated with Eclipse, since the merging depends on Eclipse’s
EMF plug-in. You can obtain Eclipse and the needed EMF plug-in from
http://www.eclipse.org.

If you run the generator version that works outside of Eclipse, it will not merge Java
source changes you may have previously made; if you want them retained, you’ll
have to do the merging by hand.

The Java source merging will keep additional constructors, additional fields, and
any changes you may have made to the readObject method (see below). Merging

http://www.eclipse.org/

JCas Reference 24-338

will not delete classes in the target corresponding to deleted CAS types, which no
longer are in the source – you should delete these by hand.

24.4.2 Additional Constructors

Any additional constructors that you add must include the JCas argument. The first
line of your constructor is required to be

this(jcas); // run the standard constructor

where jcas is the passed in JCas reference. If the type you're defining extends
uima.tcas.Annotation, JCasGen will automatically add a constructor which takes 2
additional parameters – the begin and end Java int values, and set the
uima.tcas.Annotation begin and end fields.

Here’s an example: If you’re defining a type MyType which has a feature parent,
you might make an additional constructor which has an additional argument of
parent:

MyType(JCas jcas, MyType parent) {
 this(jcas); // run the standard constructor
 setParent(parent); // set the parent field from the parameter
 }

Using readObject

Fields defined by augmenting the Java Class Model to include additional fields
represent data that exist for this class in Java, in a local JVM (Java Virtual Machine),
but do not exist in the CAS when it is passed to other environments (for example,
passing to a remote annotator).

A problem can arise when new instances are created, perhaps by the underlying
system when it iterates over an index, which is: how to insure that any additional
non-CAS fields are properly initialized. To allow for arbitrary initialization at
instance creation time, an initialization method in the Java Class Model, called
readObject is used. The generated default for this method is to do nothing, but it is
one of the methods that you can modify – to do whatever initialization might be
needed. It is called with 0 parameters, during the constructor for the object, after the
basic object fields have been set up. It can refer to fields in the CAS using the getters
and setters, and other fields in the Java object instance being initialized.

A pre-existing CAS feature structure could exist if a CAS was being passed to this
annotator; in this case the JCas system calls the readObject method when creating
the corresponding Java instance for the first time for the CAS feature structure. This
can happen at two points: when a new object is being returned from an iterator over
a CAS index, or a getter method is getting a field for the first time whose value is a
feature structure.

JCas Reference 24-339

24.4.3 Modifying generated items

The following modifications, if made in generated items, will be preserved when
regenerating.

The public/private etc. flags associated with methods (getters and setters). You can
change the default ("public") if needed.

"final" or "abstract" can be added to the type itself, with the usual semantics.

24.5 Merging types from different type system specifications

24.5.1 Aggregate AEs and CPEs as sources of types

When running aggregate AEs (Analysis Engines), or a set of AEs in a collection
processing engine, a merged type system is built. (Note: this "merge" is merging
types, not to be confused with merging Java source code, discussed above). This
merged type system has all the types of every component used in the application. It
is possible that there may be multiple definitions of the same CAS type, each of
which might have different features defined; the merged type result is created by
accumulating all the defined features for a particular type into that type’s type
definition.

If no type merging is needed, then each type system can have its own Java Class
Models generated individually, perhaps at an earlier time, and the resulting class
files (or .jar files containing these class files) can be put in the class path to enable
JCas.

JCasGen support for type merging

If type merging is needed, the input to the JCasGen generation process, rather than
being a simple type system or a primitive AE specification, is instead, an aggregate
AE specification or a CPE (Collection processing engine) specification, which
specifies a set of type systems that need to be combined. The generation process
will merge the type systems, and the generated output will reflect the merged types.
This generated Java source code can be, in turn, merged with hand-done changes to
previously generated versions for this aggregate or CPE, as described above. To do
this Java source merge, the source for the (hand-modified) generated JCas types
must be put into the file system where the generated output will go.

Directions for running JCasGen can be found in Chapter 16 JCasGen User Guide.

JCas Reference 24-340

24.6 Using JCas within an Annotator

To use JCas within an annotator, you must include the generated Java classes output
from JCasGen in the class path.

An annotator written using JCas is built by defining a class for the annotator that
implements JTextAnnotator. The process method for this annotator is written

public void process(JCas jcas, ResultSpecification aResultSpec)
 throws AnnotatorProcessException {
 ... // body of annotator goes here
}

The process method is passed the JCas instance to use as the first parameter.

The JCas reference is used throughout the annotator to refer to the particular JCas
instance being worked on. In pooled or multi-threaded implementations, there will
be a separate JCas for each thread being (simultaneously) worked on.

You can do several kinds of operations using the JCas APIs: create new feature
structures (instances of CAS types) (using the new operator), access existing feature
structures passed to your annotator in the JCas (for example, by using the next
method of an iterator over the feature structures), get and set the fields of a
particular instance of a feature structure, and add and remove feature structure
instances from the CAS indexes. To support iteration, there are also functions to get
and use indexes and iterators over the instances in a JCas.

24.6.1 Creating new instances using the Java "new"
operator

The new operator creates new instances of JCas types. It takes at least one
parameter, the JCas instance in which the type is to be created. For example, if there
was a type Meeting defined, you can create a new instance of it using:

Meeting m = new Meeting(jcas);

Other variations of constructors can be added in custom code; the single parameter
version is the one automatically generated by JCasGen. For types that are subtypes
of Annotation, JCasGen also generates an additional constructor with additional
"begin" and "end" arguments.

24.6.2 Getters and Setters

If the CAS type Meeting had fields location and time, you could get or set these by
using getter or setter methods. These methods have names formed by splicing

JCas Reference 24-341

together the word "get" or "set" followed by the field name, with the first letter of the
field name capitalized. For instance

getLocation()

The getter forms take no parameters and return the value of the field; the setter
forms take one parameter, the value to set into the field, and return void.

There are built-in CAS types for arrays of integers, strings, floats, and feature
structures. For fields whose values are these types of arrays, there is an alternate
form of getters and setters that take an additional parameter, written as the first
parameter, which is the index in the array of an item to get or set.

24.6.3 Obtaining references to Indexes

The only way to access instances (not otherwise referenced from other instances)
passed in to your annotator in its JCas is to use an iterator over some index. Indexes
in the CAS are specified in the annotator descriptor. Indexes have a name; text
annotators have a built-in, standard index over all annotations.

To get an index, first get the JFSIndexRepository from the JCas using the method
jcas.getJFSIndexRepository(). Here are the calls to get indexes:

JFSIndexRepository ir = jcas.getJFSIndexRepository();

ir.getIndex(name-of-index) // get the index by its name, a string
ir.getIndex(name-of-index, Foo.type) // filtered by specific type

ir.getAnnotationIndex() // get AnnotationIndex
ir.getAnnotationIndex(Foo.type) // filtered by specific type

Filtering types have to be a subtype of the type specified for this index in its index
specification. They can be written as either Foo.type or if you have an instance of
Foo, you can write

fooInstance.jcasType.casType.

Foo is (of course) an example of the name of the type.

24.6.4 Adding (and removing) instances to (from) indexes

CAS indexes are maintained automatically by the CAS. But you must add any
instances of feature structures you want the index to find, to the indexes by using
the call:

myInstance.addToIndexes();

JCas Reference 24-342

Do this after setting all features in the instance which could be used in indexing, for
example, in determining the sorting order. After indexing, do not change the values
of these particular features because the indexes will not be updated. If you need to
change the values, you must first remove the instance from the CAS indexes, change
the values, and then add the instance back. To remove an instance from the indexes,
use the method:

myInstance.removeFromIndexes();

Note: It's OK to change feature values which are not used in determining sort
ordering (or set membership), without removing and re-adding back to the
index.

24.6.5 Using Iterators

Once you have an index obtained from the JCas, you can get an iterator from the
index; here is an example:

FSIndexRepository ir = jcas.getFSIndexRepository();
FSIndex myIndex = ir.getIndex("myIndexName");
FSIterator myIterator = myIndex.iterator();

JFSIndexRepository ir = jcas.getJFSIndexRepository();
FSIndex myIndex = ir.getIndex("myIndexName", Foo.type); // filtered
FSIterator myIterator = myIndex.iterator();

Iterators work like normal Java iterators, but are augmented to support additional
capabilities. Iterators are described in the CAS Reference, Section 23.6 Indexes and
Iterators.

24.6.6 Class Loaders in UIMA

The basic concept of a UIMA application includes assembling engines into a flow.
The applications made up of these Engines are run within the UIMA Framework,
either by the Collection Processing Manager, or by using more basic UIMA
Framework APIs.

The UIMA Framework exists within a JVM (Java Virtual Machine). A JVM has the
capability to load multiple applications, in a way where each one is isolated from
the others, by using a separate class loader for each application. For instance, one
set of UIMA Framework Classes could be shared by multiple sets of application -
specific classes.

Use of Class Loaders is optional

The UIMA framework will use a specific ClassLoader, based on how
ResourceManager instances are used. Specific ClassLoaders are only created if you
specify an ExtensionClassPath as part of the ResourceManager. If you do not need

JCas Reference 24-343

to support multiple applications within one UIMA framework within a JVM, don't
specify an ExtensionClassPath; in this case, the classloader used will be the one used
to load the UIMA framework - usually the overall application class loader.

Of course, you should not run multiple UIMA applications together, in this way, if
they have different class definitions for the same class name. This includes the JCas
"cover" classes. This case might arise, for instance, if both applications extended
uima.tcas.DocumentAnnotation in differing, incompatible ways. Each application
would need its own definition of this class, but only one could be loaded (unless
you specify ExtensionClassPath in the ResourceManager which will cause the
UIMA application to load its private versions of its classes, from its classpath).

24.6.7 Issues around DocumentAnnotation

The built-in type, uima.tcas.DocumentAnnotion, is frequently extended by
applications. The JCas provides a method, getDocumentAnnotation(), to get the
special instance of this type which associated with each TCAS. Currently this
method returns an instance of the JCas cover class for this. Because there can be
multiple definitions of this class, this method is deprecated. It will continue to work,
as long as the ExtensionClassPath is not being used. If it is being used, the user will
see some pretty strange errors, something like

ClassCast Exception: Cannot cast "uima.tcas.DocumentAnnotation" to
"uima.tcas.DocumentAnnotation"

What's really going on is that the JCas method for this loads a version of the
DocumentAnnotation class from the UIMA Framework loader, while the Application
trying to use it loads a different version of the DocumentAnnotation class from its
ExtensionClassLoader.

If only one definition of DocumentAnnotation will be used for the complete set of
UIMA applications being run in the JVM, then you can replace the definition of
DocumentAnnotation in the Jar that the UIMA Framework loader is using with your
definition, and not have this definition findable in the ExtensionClassPath.

This approach is enabled by putting all the extendable, built-in classes for UIMA
into a separate JAR file.

The method getDocumentAnnotationFs() replaces the deprecated
getDocumentAnnotation(). It has the same function, except its return type is TOP,
which means your code will have to "cast" it to your particular loaded version of
DocumentAnnotation.

 /* deprecated */
DocumentAnnotation docAnn = aJcas.getDocumentAnnotation();

JCas Reference 24-344

 /* new way */
DocumentAnnotation docAnn =
(DocumentAnnotation)aJcas.getDocumentAnnotationFs();

24.6.8 Issues accessing JCas objects outside of UIMA
Engine Components

If you are using the ExtensionClassPaths, the JCas cover classes are loaded under a
class loader created by the ResourceManager. If you reference the same JCas classes
outside of any UIMA component, for instance, in top level application code, the JCas
classes used by that top level application code must be loaded under the same class
loader, in order to avoid class cast exceptions. Currently, there is no supported way
to do this if you are using ExtensionClassPaths.

The workaround is to do all the JCas processing inside a UIMA component (no
processing using JCas outside of the UIMA pipeline), or to put the JCas classes only
in the main classpath for the UIMA Framework, and insure they are not findable in
the ExtensionClassPaths. This latter approach of course limits you to one set of JCas
class definitions per UIMA framework.

24.7 Setting up Classpath for JCas

The JCas Java classes generated by JCasGen are typically compiled and put into a
JAR file, which, in turn, is put into the application's class path.

This JAR file must be generated from the application's merged type system. This is
most conveniently done by opening the top level descriptor used by the application
in the Component Descriptor Editor tool, and pressing the Run-JCasGen button on
the Type System Definition page.

Semantic Search Query API 25-345

Chapter 25 Semantic Search Engine Reference

The documentation describing how Semantic Search and how to write queries using the
XML Fragments language can be found in the docs/ directory: SIAPI.pdf . The complete
specification of the standard Search and Indexing API is in the docs/ directory:
Programming_Guide_and_API_Reference_for_OmniFind.pdf.

PEAR Reference 26-347

Chapter 26 PEAR Reference

A PEAR (Processing Engine ARchive) file is a standard package for UIMA
(Unstructured Information Management Architecture) components. This chapter
describes the PEAR 1.0 structure and specification.

The PEAR package can be used for distribution and reuse by other components or
applications. It also allows applications and tools to manage UIMA components
automatically for verification, deployment, invocation, testing, etc.

Currently, the PEAR Eclipse Plugin is available as a tool to create PEAR files for
standard UIMA components. Please refer to Chapter 11 PEAR Packager User's
Guide for more information about this tool.

26.1 Packaging a UIMA component

For the purpose of describing the process of creating a PEAR file and its internal
structure, this section describes the steps used to package a UIMA component as a
valid PEAR file. The PEAR packaging process consists of the following steps:

• Creating the PEAR structure

• Populating the PEAR structure

• Creating the installation descriptor

• Packaging the PEAR structure into one file

26.1.1 Creating the PEAR structure

The first step in the PEAR creation process is to create a PEAR structure. The PEAR
structure is a structured tree of folders and files, including the following elements:

• Required Elements:
− The metadata folder which contains the PEAR installation descriptor and

properties files.
− The installation descriptor (metadata/install.xml)
− A UIMA analysis engine descriptor and its required code, delegates (if any),

and resources

• Optional Elements:
− The desc folder to contain descriptor files of analysis engines, delegates

analysis engines (all levels), and other components (Collection Readers, CAS
Consumers, etc).

− The src folder to contain the source code

PEAR Reference 26-348

− The bin folder to contain executables, scripts, class files, dlls, shared libraries,
etc.

− The lib folder to contain jar files.
− The doc folder containing documentation materials, preferably accessible

through an index.html.
− The data folder to contain data files (e.g. for testing).
− The conf folder to contain configuration files.
− The resources folder to contain other resources and dependencies.
− Other user-defined folders or files are allowed, but should be avoided.

 Figure 18. The PEAR Structure

26.1.2 Populating the PEAR structure

After creating the PEAR structure, the component’s descriptor files, code files,
resources files, and any other files and folders are copied into the corresponding
folders of the PEAR structure. The developer should make sure that the code would
work with this layout of files and folders, and that there are no broken links.
Although it is strongly discouraged, the optional elements of the PEAR structure
can be replaced by other user defined files and folder, if required for the component
to work properly.

PEAR Reference 26-349

Note: The PEAR structure must be self-contained. For example, this means that
the component must run properly independently from the PEAR root folder
location. If the developer needs to use an absolute path in configuration or
descriptor files, then he/she should put these files in the "conf" or "desc" and
replace the path of the PEAR root folder with the string "$main_root". The tools
that deploy and use PEAR files should localize the files in the "conf" and "desc"
folders by replacing the string "$main_root" with the local absolute path of the
PEAR root folder. The "$main_root" macro can also be used in the Installation
descriptor (install.xml)

Currently there are three types of component packages depending on their
deployment:

Standard type

A component package with the standard type must be a valid Analysis Engine, and
all the required files to deploy it locally must be included in the PEAR package.

Service type

A component package with the service type must be deployable locally as a
supported UIMA service (e.g. Vinci). In this case, all the required files to deploy it
locally must be included in the PEAR package.

Network Type

A component package with the network type is not deployed locally but rather in
the "remote" environment. It’s accessed as a network AE (e.g. Vinci Service). The
component owner has the responsibility to start the service and make sure it’s up
and running before it’s used by others (like a webmaster that makes sure the web
site is up and running). In this case, the PEAR package does not have to contain files
required for deployment, but must contain the network AE descriptor (see 4.1.4
Creating the XML Descriptor) and the <DESC> tag in the installation descriptor
must point to the network TAE descriptor. For more information about Network
Analysis Engines, please refer to Section 6.6 Working with Analysis Engine and CAS
Consumer Services.

26.1.3 Creating the installation descriptor

The installation descriptor is an xml file called install.xml under the metadata folder
of the PEAR structure. It’s also called InsD. The InsD XML file should be created in
the UTF-8 file encoding. The InsD should contain the following sections:

• <OS>: This section is used to specify supported operating systems

PEAR Reference 26-350

• <TOOLKITS>: This section is used to specify toolkits, such as JDK, needed by
the component.

• <SUBMITTED_COMPONENT>: This is the most important section in the InsD.
It’s used to specify required information about the component. See section 2.3.2
for detailed information about this section.

• <INSTALLATION>: This section is explained in section 26.1.5 .

Documented template for the installation descriptor:

The following is "documented template" for the content of the installation descriptor
install.xml:

<? xml version="1.0" encoding="UTF-8"?>
<!-- Installation Descriptor Template -->
<COMPONENT_INSTALLATION_DESCRIPTOR>
 <!-- Specifications of OS names, including version, etc. -->
 <OS>
 <NAME>OS_Name_1</NAME>
 <NAME>OS_Name_2</NAME>
 </OS>
 <!-- Specifications of required standard toolkits -->
 <TOOLKITS>
 <JDK_VERSION>JDK_Version</JDK_VERSION>
 </TOOLKITS>

 <!-- There are 2 types of variables that are used in the InsD:
 a) $main_root , which will be substituted with the real path to the
 main component root directory after installing the
 main (submitted) component
 b) $component_id$root, which will be substituted with the real path
 to the root directory of a given delegate component after
 installing the given delegate component -->

 <!-- Specification of submitted component (TAE) -->
 <!-- Note: submitted_component_id is assigned by developer; -->
 <!-- XML descriptor file name is set by developer. -->
 <!-- Important: ID element should be the first in the -->
 <!-- SUBMITTED_COMPONENT section. -->
 <!-- Submitted component may include optional specification -->
 <!-- of Collection Reader that can be used for testing the -->
 <!-- submitted component. -->
 <!-- Submitted component may include optional specification -->
 <!-- of CAS Consumer that can be used for testing the -->
 <!-- submitted component. -->

 <SUBMITTED_COMPONENT>
 <ID>submitted_component_id</ID>
 <NAME>Submitted component name</NAME>
 <DESC>$main_root/desc/ComponentDescriptor.xml</DESC>

 <!-- deployment options: -->
 <!-- a) 'standard' is deploying AE locally -->
 <!-- b) 'service' is deploying AE locally as a service, -->
 <!-- using specified command (script) -->

PEAR Reference 26-351

 <!-- c) 'network' is deploying a pure network AE, which -->
 <!-- is running somewhere on the network -->

 <DEPLOYMENT>standard | service | network</DEPLOYMENT>

 <!-- Specifications for 'service' deployment option only -->
 <SERVICE_COMMAND>$main_root/bin/startService.bat</SERVICE_COMMAND>
 <SERVICE_WORKING_DIR>$main_root</SERVICE_WORKING_DIR>
 <SERVICE_COMMAND_ARGS>

 <ARGUMENT>
 <VALUE>1st_parameter_value</VALUE>
 <COMMENTS>1st parameter description</COMMENTS>
 </ARGUMENT>

 <ARGUMENT>
 <VALUE>2nd_parameter_value</VALUE>
 <COMMENTS>2nd parameter description</COMMENTS>
 </ARGUMENT>

 </SERVICE_COMMAND_ARGS>

 <!-- Specifications for 'network' deployment option only -->

 <NETWORK_PARAMETERS>
 <VNS_SPECS VNS_HOST="vns_host_IP" VNS_PORT="vns_port_No" />
 </NETWORK_PARAMETERS>

 <!-- General specifications -->

 <COMMENTS>Main component description</COMMENTS>

 <COLLECTION_READER>
 <COLLECTION_ITERATOR_DESC>
 $main_root/desc/CollIterDescriptor.xml
 </COLLECTION_ITERATOR_DESC>

 <CAS_INITIALIZER_DESC>
 $main_root/desc/CASInitializerDescriptor.xml
 </CAS_INITIALIZER_DESC>
 </COLLECTION_READER>

 <CAS_CONSUMER>
 <DESC>$main_root/desc/CASConsumerDescriptor.xml</DESC>
 </CAS_CONSUMER>

 </SUBMITTED_COMPONENT>
 <!-- Specifications of the component installation process -->
 <INSTALLATION>
 <!-- List of delegate components that should be installed together -->
 <!-- with the main submitted component (for aggregate components) -->
 <!-- Important: ID element should be the first in each -->

 <!-- DELEGATE_COMPONENT section. -->
 <DELEGATE_COMPONENT>
 <ID>first_delegate_component_id</ID>
 <NAME>Name of first required separate component</NAME>
 </DELEGATE_COMPONENT>

 <DELEGATE_COMPONENT>
 <ID>second_delegate_component_id</ID>
 <NAME>Name of second required separate component</NAME>
 </DELEGATE_COMPONENT>

PEAR Reference 26-352

 <!-- Specifications of local path names that should be replaced -->
 <!-- with real path names after the main component as well as -->
 <!-- all required delegate (library) components are installed. -->
 <!-- <FILE> and <REPLACE_WITH> values may use the $main_root or -->
 <!-- one of the $component_id$root variables. -->
 <!-- Important: ACTION element should be the first in each -->
 <!-- PROCESS section. -->

 <PROCESS>
 <ACTION>find_and_replace_path</ACTION>
 <PARAMETERS>
 <FILE>$main_root/desc/ComponentDescriptor.xml</FILE>
 <FIND_STRING>../resources/dict/</FIND_STRING>
 <REPLACE_WITH>$main_root/resources/dict/</REPLACE_WITH>
 <COMMENTS>Specify actual dictionary location in XML component
 descriptor
 </COMMENTS>
 </PARAMETERS>
 </PROCESS>

 <PROCESS>
 <ACTION>find_and_replace_path</ACTION>
 <PARAMETERS>
 <FILE>$main_root/desc/DelegateComponentDescriptor.xml</FILE>
 <FIND_STRING>
local_root_directory_for_1st_delegate_component/resources/dict/
 </FIND_STRING>
 <REPLACE_WITH>
 $first_delegate_component_id$root/resources/dict/
 </REPLACE_WITH>
 <COMMENTS>
 Specify actual dictionary location in the descriptor of the 1st

 delegate component
 </COMMENTS>
 </PARAMETERS>
 </PROCESS>

 <!-- Specifications of environment variables that should be set prior
 to running the main component and all other reused components.
 <VAR_VALUE> values may use the $main_root or one of the
 $component_id$root variables. -->

 <PROCESS>
 <ACTION>set_env_variable</ACTION>
 <PARAMETERS>
 <VAR_NAME>env_variable_name</VAR_NAME>
 <VAR_VALUE>env_variable_value</VAR_VALUE>
 <COMMENTS>Set environment variable value</COMMENTS>
 </PARAMETERS>
 </PROCESS>

 </INSTALLATION>
</COMPONENT_INSTALLATION_DESCRIPTOR>

PEAR Reference 26-353

The SUBMITTED_COMPONENT section

The SUBMITTED_COMPONENT section of the installation descriptor (install.xml)
is the most important. It's used to specify required information about the UIMA
component. Before explaining the details, let's clarify the concept of component ID
and "macros" used in the installation descriptor. The component ID element should
be the first element in the SUBMITTED_COMPONENT section.

The component id is a string that uniquely identifies the component. It should use
the JAVA naming convention (e.g. ibm.uima.mycomponent).

Macros are variables such as $main_root, used to represent a string such as the full
path of a certain directory.

These macros should be defined in the PEAR.properties file using the local values.
The tools and applications that use and deploy PEAR files should replace these
macros with the corresponding values in the local environment as part of the
deployment process in the files included in the conf and desc folders.

Currently, there are two types of macros:

• $main_root, which represents the local absolute path of the main component
root directory after deployment.

• $component_id$root, which represents the local absolute path to the root
directory of the component which has component_id as component ID. This
component could be, for instance, a delegate component.

For example, if some part of a descriptor needed to have a path to the data
subdirectory of the PEAR, you would write $main_root/data. If your PEAR refers to
a delegate component having the ID "my.comp.Dictionary", and you need to specify a
path to one of this component's subdirectories, say resource/dict, you would write
$my.comp.Dictionary$root/resources/dict.

The ID, NAME, and DESC tags

These tags are used to specify the component ID, Name, and descriptor path using
the corresponding tags as follows:

<SUBMITTED_COMPONENT>

 <ID>submitted_component_id</ID>

 <NAME>Submitted component name</NAME>

 <DESC>$main_root/desc/ComponentDescriptor.xml</DESC>

PEAR Reference 26-354

Tags related to deployment types

As mentioned before, there are currently three types of PEAR packages, depending
on the following deployment types:

Standard type

A component package with the standard type must be a valid UIMA Analysis
Engine, and all the required files to deploy it must be included in the PEAR
package. This deployment type should be specified as follows:

<DEPLOYMENT>standard</DEPLOYMENT>

Service type

A component package with the service type must be deployable locally as a
supported UIMA service (e.g. Vinci). The installation descriptor must include the
path for the executable or script to start the service including its arguments, and the
working directory from where to launch it, following this template:

<DEPLOYMENT>service</DEPLOYMENT>

<SERVICE_COMMAND>$main_root/bin/startService.bat</SERVICE_COMMAND>

<SERVICE_WORKING_DIR>$main_root</SERVICE_WORKING_DIR>

<SERVICE_COMMAND_ARGS>

<ARGUMENT>

<VALUE>1st_parameter_value</VALUE>

<COMMENTS>1st parameter description</COMMENTS>

</ARGUMENT>

<ARGUMENT>

<VALUE>2nd_parameter_value</VALUE>

<COMMENTS>2nd parameter description</COMMENTS>

</ARGUMENT>

</SERVICE_COMMAND_ARGS>

Network Type

A component package with the network type is not deployed locally, but rather in a
"remote" environment. It’s accessed as a network AE (e.g. Vinci Service). In this case,
the PEAR package does not have to contain files required for deployment, but must
contain the network AE descriptor. The <DESC> tag in the installation descriptor
(See section 2.3.2.1) must point to the network AE descriptor. Here is a template in
the case of Vinci services:

<DEPLOYMENT>network</DEPLOYMENT>

PEAR Reference 26-355

<NETWORK_PARAMETERS>

<VNS_SPECS VNS_HOST="vns_host_IP" VNS_PORT="vns_port_No" />

</NETWORK_PARAMETERS>

The Collection Reader and CAS Consumer tags

These sections of the installation descriptor are used by any specific Collection
Reader or CAS Consumer to be used with the packaged analysis engine. See the
template in section 2.3.1.

The INSTALLATION section

The <INSTALLATION> section specifies the external dependencies of the
component and the operations that should be performed during the PEAR package
installation.

The component dependencies are specified in the <DELEGATE_COMPONENT>
sub-sections, as shown in the installation descriptor template above.

Important: The ID element should be the first element in each
<DELEGATE_COMPONENT> sub-section.

The <INSTALLATION> section may specify the following operations:

• Setting environment variables that are required to run the installed component.

Note: Note that you can use "macros", like $main_root or $component_id$root
in the VAR_VALUE element of the <PARAMETERS> sub-section.

• Finding and replacing string expressions in files.

Note: Note that you can use the "macros" in the FILE and REPLACE_WITH
elements of the <PARAMETERS> sub-section.

Important: the ACTION element always should be the 1st element in each
<PROCESS> sub-section.

By default, the PEAR Installer will try to process every file in the desc and conf
directories of the PEAR package in order to find the "macros" and replace them with
actual path expressions. In addition to this, the installer will process the files
specified in the <INSTALLATION> section.

Important: all XML files which are going to be processed should be created using
UTF-8 or UTF-16 file encoding. All other text files which are going to be processed
should be created using the ASCII file encoding.

PEAR Reference 26-356

26.1.4 Packaging the PEAR structure into one file

The last step of the PEAR process is to simply zip the content of the PEAR root
folder (not including the root folder itself). The PEAR file must have a ".pear"
extension.

26.1.5 Installing a PEAR file

For information about the installation of a PEAR file and the PEAR Installer tool,
please refer to the "PEAR Installer" Chapter.

XMI CAS Serialization Reference 27-357

Chapter 27 XMI CAS Serialization Reference

This is the specification for the mapping of the UIMA CAS into the XMI (XML
Metadata Interchange5) format. XMI is an OMG standard for expressing object
graphs in XML. The UIMA SDK provides support for XMI through the classes
com.ibm.uima.cas.impl.XmiCasSerializer and
com.ibm.uima.cas.impl.XmiCasDeserializer.

27.1 XMI Tag

The outermost tag is <XMI> and must include a version number and XML
namespace attribute:

<xmi:XMI xmi:version="2.0" xmlns:xmi=http://www.omg.org/XMI>
 <!-- CAS Contents here -->
</xmi:XMI>

XML namespaces6 are used throughout. The "xmi" namespace prefix is used to
identify elements and attributes that are defined by the XMI specification. The XMI
document will also define one namespace prefix for each CAS namespace, as
described in the next section.

27.2 Feature Structures

UIMA Feature Structures are mapped to XML elements. The name of the element is
formed from the CAS type name, making use of XML namespaces as follows.

The CAS type namespace is converted to an XML namespace URI by the following
rule: replace all dots with slashes, prepend http:///, and append .ecore.

This mapping was chosen because it is the default mapping used by the Eclipse
Modeling Framework (EMF)7 to create namespace URIs from Java package names.
The use of the http scheme is a common convention, and does not imply any HTTP
communication. The .ecore suffix is due to the fact that the recommended type
system definition for a namespace is an ECore model, see XMI and EMF
Interoperability on page 8-173.

Consider the CAS type name "org.myproj.Foo". The CAS namespace ("org.myorg.")
is converted to the XML namespace URI is http:///org/myproj.ecore.

5 For details on XMI see Grose et al. Mastering XMI. Java Programming with XMI, XML, and UML.
John Wiley & Sons, Inc. 2002.
6 http://www.w3.org/TR/xml-names11/
7 For details on EMF and Ecore see Budinsky et al. Eclipse Modeling Framework 2.0. Addison-
Wesley. 2006.

http://www.omg.org/XMI

27-358

XMI CAS Serialization Reference 27-358

The XML element name is then formed by concatenating the XML namespace prefix
(which is an arbitrary token, but typically we use the last component of the CAS
namespace) with the type name (excluding the namespace).

So the example "org.myproj.Foo" FeatureStructure is written to XMI as:

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:myproj="http:///org/myproj.ecore">
 ...
 <myproj:Foo xmi:id="1"/>
 ...
</xmi:XMI>

The xmi:id attribute is only required if this object will be referred to from elsewhere
in the XMI document. If provided, the xmi:id must be unique for each feature.

All namespace prefixes (e.g. "myproj") in this example must be bound to URIs using
the "xmlns..." attribute, as defined by the XML namespaces specification.

27.3 Primitive Features

CAS features of primitive types (currently String, Integer, or Float, but others are
possible) can be mapped either to XML attributes or XML elements. For example, a
CAS FeatureStructure of type org.myproj.Foo, with features:

begin = 14
end = 19
myFeature = "bar"

could be mapped to:

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
 xmlns:myproj="http:///org/myproj.ecore">
 ...
 <myproj:Foo xmi:id="1" begin="14" end="19" myFeature="bar"/>
 ...
</xmi:XMI>

or equivalently:

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI
 xmlns:myproj="http:///org/myproj.ecore">
 ...
 <myproj:Foo xmi:id="1">
 <begin>14</begin>
 <end>19</end>
 <myFeature>bar</myFeature>
 </myproj:Foo>
 ...
</xmi:XMI>

http://www.omg.org/XMI
http://www.omg.org/XMI
http://www.omg.org/XMI

XMI CAS Serialization Reference 27-359

The attribute serialization is preferred for compactness, but either representation is
allowable. Mixing the two styles is allowed; some features can be represented as
attributes and others as elements.

27.4 Reference Features

CAS features that are references to other feature structures (excluding arrays and
lists, which are handled separately) are serialized as ID references.

If we add to the previous CAS example a feature structure of type org.myproj.Baz,
with feature "myFoo" that is a reference to the Foo object, the serialization would be:

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
 xmlns:myproj="http:///org/myproj.ecore">
 ...
 <myproj:Foo xmi:id="1" begin="14" end="19" myFeature="bar"/>
 <myproj:Baz xmi:id="2" myFoo="1"/>
 ...
</xmi:XMI>

As with primitive-valued features, it is permitted to use an element rather than an
attribute. However, the syntax is slightly different:

<myproj:Baz xmi:id="2">
 <myFoo href="#1"/>
<myproj.Baz>

Note that in the attribute representation, a reference feature is indistinguishable
from an integer-valued feature, so the meaning cannot be determined without prior
knowledge of the type system. The element representation is unambiguous.

27.5 Array and List Features

For a CAS feature whose range type is one of the CAS array or list types (currently
uima.cas.IntegerArray, uima.cas.FloatArray, uima.cas.StringArray,
uima.cas.FSArray, uima.cas.IntegerList, uima.cas.FloatList, uima.cas.StringList, and
uima.cas.FSList), the XMI serialization depends on the setting of the
"multipleReferencesAllowed" attribute for that feature in the UIMA Type System
Description (see Features on page 20-263.

An array or list with multipleReferencesAllowed = false (the default) is serialized as
a "multi-valued" property in XMI. An array or list with multipleReferencesAllowed
= true is serialized as a first-class object. Details are described below.

http://www.omg.org/XMI

27-360

XMI CAS Serialization Reference 27-360

27.5.1 Arrays and Lists as Multi-Valued Properties

In XMI, a multi-valued property is the most natural XMI representation for most
cases. Consider the example where the FeatureStructure of type org.myproj.Baz has
a feature myIntArray whose value is the integer array {2,4,6}. This can be mapped
to:

<myproj:Baz xmi:id="3" myIntArray="2 4 6"/>

or equivalently:

<myproj:Baz xmi:id="3">
 <myIntArray>2</myIntArray>
 <myIntArray>4</myIntArray>
 <myIntArray>6</myIntArray>
</myproj:Baz>

Note that String arrays whose elements contain embedded spaces MUST use the
latter mapping.

FSArray or FSList features are serialized in a similar way. For example an FSArray
feature that contains references to the elements with xmi:id's "13" and "42" could be
serialized as:

<myproj:Baz xmi:id="3" myFsArray="13 42"/>

or:

<myproj:Baz xmi:id="3">
 <myFsArray href="#13"/>
 <myFsArray href="#42"/>
</myproj:Baz>

27.5.2 Arrays and Lists as First-Class Objects

The multi-valued-property representation described in the previous section does not
allow multiple references to an array or list object. Therefore, it cannot be used for
features that are defined to allow multiple references (i.e. features for which
multipleReferencesAllowed = true in the Type System Description).

When multipleReferencesAllowed is set to true, array and list features are serialized
as references, and the array or list objects are serialized as separate objects in the
XMI. Consider again the example where the FeatureStructure of type
org.myproj.Baz has a feature myIntArray whose value is the integer array {2,4,6}. If
myIntArray is defined with multipleReferencesAllowed=true, the serialization will
be as follows:

<myproj:Baz xmi:id="3" myIntArray="4"/>

or:

XMI CAS Serialization Reference 27-361

<myproj:Baz xmi:id="3">
 <myIntArray href="#4"/>
</myproj:Baz>

with the array object serialized as:

<cas:IntegerArray xmi:id="4" elements="2 4 6"/>

or:

<cas:IntegerArray xmi:id="4">
 <elements>2</elements>
 <elements>4</elements>
 <elements>6</elements>
</cas:IntegerArray>

Note that in this case, the XML element name is formed from the CAS type name
(e.g. "uima.cas.IntegerArray") in the same way as for other FeatureStructures. The
elements of the array are serialized either as a space-separated attribute named
"elements" or as a series of child elements named "elements".

List nodes are just standard FeatureStructures with "head" and "tail" features, and
are serialized using the normal FeatureStructure serialization. For example, an
IntegerList with the values 2, 4, and 6 would be serialized as the four objects:

<cas:NonEmptyIntegerList xmi:id="10" head="2" tail="11"/>
<cas:NonEmptyIntegerList xmi:id="11" head="4" tail="12"/>
<cas:NonEmptyIntegerList xmi:id="12" head="6" tail="13"/>
<cas:EmptyIntegerList xmi:id"13"/>

This representation of arrays allows multiple references to an array of list. It also
allows a feature with range type TOP to refer to an array or list. However, it is a
very unnatural representation in XMI and does not support interoperability with
other XMI-based systems, so we instead recommend using the multi-valued-
property representation described in the previous section whenever it is possible.

27.6 Null Array/List Elements

In UIMA, an element of an FSArray or FSList may be null. In XMI, multi-valued
properties do not permit null values. As a workaround for this, we will use a
dummy instance of the special type cas:NULL, which has xmi:id 0. For example, in
the following example the "myFsArray" feature refers to an FSArray whose second
element is null:

<cas:NULL xmi:id="0"/>
<myproj:Baz xmi:id="3">
 <myFsArray href="#13"/>
 <myFsArray href="#0"/>
 <myFsArray href="#42"/>
</myproj:Baz>

27-362

XMI CAS Serialization Reference 27-362

27.7 Subjects of Analysis (Sofas) and Views

A UIMA CAS contain one or more subjects of analysis (Sofas). These are serialized
no differently from any other feature structure. For example:

<?xml version="1.0" encoding="ASCII"?>
<xmi:XMI xmi:version="2.0" xmlns:xmi=http://www.omg.org/XMI
 xmlns:cas="http:///uima/cas.ecore">
 <cas:Sofa xmi:id="1" sofaNum="1"
 text="the quick brown fox jumps over the lazy dog."/>
</xmi:XMI>

Each Sofa defines a separate View. Feature Structures in the CAS can be members
of one or more views. (A Feature Structure that is a member of a view is indexed in
its IndexRepository, but that is an implementation detail.)

In the XMI serialization, views will be represented as first-class objects. Each View
has an (optional) "sofa" feature, which references a sofa, and multi-valued reference
to the members of the View. For example:

<cas:View sofa="1" members="3 7 21 39 61"/>

Here the integers 3, 7, 21, 39, and 61 refer to the xmi:id fields of the objects that are
members of this view.

If the sofa feature is omitted, then this is interpreted as the "base" view, whose
members pertain to the artifact as a whole rather than any individual Sofa.

27.8 Linking an XMI Document to its Ecore Type System

If the CAS Type System has been saved to an Ecore file (which is the subject of a
different spec), it is possible to store a link from an XMI document to that Ecore type
system. This is done using an xsi:schemaLocation attribute on the root XMI
element.

The xsi:schemaLocation attribute is a space-separated list that represents a mapping
from namespace URI (e.g. http:///org/myproj.ecore) to the physical URI of the .ecore
file containing the type system for that namespace. For example:

xsi:schemaLocation=
"http:///org/myproj.ecore file:/c:/typesystems/myproj.ecore"

would indicate that the definition for the org.myproj CAS types is contained in the
file c:/typesystems/myproj.ecore. You can specify a different mapping for each of
your CAS namespaces, using a space separated list. For details see Budinsky et al.
Eclipse Modeling Framework.

http://www.omg.org/XMI
http:///org/myproj.ecore

Notices and Trademarks 363

Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user’s
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES
CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Deutschland Informationssysteme GmbH
Department 0790
Pascalstrasse 100
70569 Stuttgart
Germany

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

Notices and Trademarks 364

by IBM under terms of the IBM Customer Agreement or any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates
programming techniques on various operating platforms. You may copy, modify, and distribute these
sample programs in any form without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©
Copyright IBM Corp. _enter the year or years_. All rights reserved.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States, other countries, or both.

IBM

The following terms are trademarks or registered trademarks of other companies:

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Eclipse is a trademark of Eclipse Foundation, Inc.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

	Acknowledgements
	UIMA SDK Overview
	UIMA SDK Documentation Overview
	Using the Documentation to get started with the UIMA SDK
	UIMA SDK Release Notes
	General
	Programming Language Support
	Multi-Modal Support

	Summary of UIMA SDK Capabilities

	UIMA Conceptual Overview
	UIMA Introduction
	The Architecture, the Framework and the SDK
	Analysis Basics
	Analysis Engines, Annotators and Analysis Results
	Representing Analysis Results in the CAS
	The Annotation Type
	Not Just Annotations
	Multiple Views within a CAS

	Interacting with the CAS and External Resources
	Component Descriptors

	Aggregate Analysis Engines
	Application Building and Collection Processing
	Using the framework from an Application
	Graduating to Collection Processing

	Exploiting Analysis Results
	Semantic Search
	Databases

	Multimodal Processing in UIMA
	Next Step

	UIMA SDK Setup for Eclipse
	Installation
	Install Eclipse
	Install EMF
	Install the UIMA SDK
	Install the UIMA Eclipse Plugins
	Start Eclipse
	Special startup parameter for Eclipse 3: -clean

	Setting up Eclipse to view Example Code
	Running external tools from Eclipse

	Annotator and Analysis Engine Developer’s Guide
	Getting Started
	Defining Types
	Generating Java Source Files for CAS Types
	Developing Your Annotator Code
	Creating the XML Descriptor
	Testing Your Annotator

	Configuration and Logging
	Configuration Parameters
	Declaring Parameters in the Descriptor
	Accessing Parameter Values from the Annotator Code
	Supporting Reconfiguration
	Configuration Parameter Groups

	Logging
	Specifying the Logging Configuration
	Setting Logging Levels
	Format of logging output
	Meaning of the logging severity levels
	Using the logger outside of an annotator

	Building Aggregate Analysis Engines
	Combining Annotators
	Aggregate Engines can also contain CAS Consumers
	Reading the Results of Previous Annotators

	Other examples
	Additional Topics
	Contract for Annotator methods called by the Framework
	Reporting errors from Annotators
	Throwing Exceptions from Annotators
	Accessing External Resource Files
	Declaring Resource Dependencies
	Accessing the Resource from the AnnotatorContext
	Declaring Resources and Bindings
	Sharing Resources between Annotators

	Result Specification Setting
	Default Result Specification
	Passing Result Specifications to Annotators
	Aggregates
	Fixed Flow
	CapabilityLanguageFlow
	Special rule for skipping Analysis Engines
	Collection Processing Engines

	Class path setup when using JCas
	Using the Shell Scripts

	Common Pitfalls
	Viewing FeatureStructures in the Eclipse debugger
	Introduction to Analysis Engine Descriptor XML Syntax
	Header and Annotator Class Identification
	Simple Metadata Attributes
	Type System Definition
	Capabilities
	Configuration Parameters (Optional)
	Configuration Parameter Declarations

	Configuration Parameter Settings
	Aggregate Analysis Engine Descriptor

	Collection Processing Engine Developer's Guide
	CPE Concepts
	The CPE Configurator and the XCAS viewer
	Using the CPE Configurator
	Running the CPE Configurator from Eclipse

	Running a CPE from Your Own Java Application
	Using Listeners

	Developing Collection Processing Components
	Developing Collection Readers
	Java Class
	Required Methods
	initialize()
	hasNext()
	getNext(CAS)
	getProgress()
	close()
	Optional Methods
	reconfigure()
	typeSystemInit()
	XML Descriptor

	Developing CAS Initializers
	Developing CAS Consumers
	Required Methods
	initialize()
	processCas()
	Optional Methods
	batchProcessComplete()
	collectionProcessComplete()

	Deploying a CPE
	Deploying Managed CAS Processors
	Deploying Non-managed CAS Processors
	Deploying Integrated CAS Processors

	Collection Processing Examples

	Application Developer’s Guide
	The UIMAFramework Class
	Using Analysis Engines
	Instantiating an Analysis Engine
	Analyzing Text Documents
	Analyzing Non-Text Artifacts
	Accessing Analysis Results using the JCas
	Accessing Analysis Results using the CAS
	Multi-threaded Applications
	Using Multiple Analysis Engines (and creating shared CASes)
	Saving CASes to file systems

	Using Collection Processing Engines
	Running a CPE from a Descriptor
	Configuring a CPE Descriptor Programmatically

	Setting Configuration Parameters
	Integrating Text Analysis and Search
	Indexing
	Configuring the Semantic Search CAS Indexer
	Building and Running a CPE including the Semantic Search CAS

	Semantic Search Query Tool

	Working with Analysis Engine and CAS Consumer Services
	How to Deploy a UIMA Component as a SOAP Web Service
	How to Deploy a UIMA Component as a Vinci Service
	How to Call a UIMA Service
	SOAP Service Client Descriptor
	Vinci Service Client Descriptor

	Restrictions on remotely deployed services
	The Vinci Naming Service (VNS)
	Starting VNS
	VNS Files
	Launching Vinci Services

	Increasing performance using parallelism

	Developing Applications using Multiple Subjects of Analysis
	Basic Sofa Concepts and Methods
	Multiple names for the same Sofa
	Instantiating Sofa Feature Structures
	Setting Sofa Data
	Accessing Sofa Features and Sofa Data
	Declaring Sofas in Component Descriptors

	Sofas and TCAS Views
	CAS versus TCAS View
	Each Sofa has its own Index Repository
	Non Text TCAS
	Getting a JCas
	Do UIMA Components Receive a CAS or a TCAS?
	The Default Text Sofa

	Sofa Name Mapping
	mapToSofaID() method
	Name Mapping in an Aggregate Descriptor
	Name Mapping in a CPE Descriptor
	Specifying the Sofa for a Sofa-unaware TCAS processor
	Name Mapping in a UIMA Application
	Name Mapping in a Remote Service

	Sofa Impact on XCAS Format
	Sofa Sample Application
	Sofa API summary

	XMI and EMF Interoperability
	Overview
	Converting an Ecore Model to or from a UIMA Type System
	Using XMI CAS Serialization

	Component Descriptor Editor User’s Guide
	Launching the Component Descriptor Editor
	Creating a New AE Descriptor
	Pages within the Editor
	Adjusting the display of pages

	Overview Page
	Implementation Details
	Runtime Information
	Overall Identification Information

	Aggregate Page
	Adding components more than once
	Adding or Removing components in a flow
	Adding remote Analysis Engines
	Connecting to Remote Services
	Finding Analysis Engines by searching
	Component Engine Flow

	Parameters Definition Page
	Using groups
	Parameter declarations for Aggregates

	Parameter Settings Page
	Type System Page
	Capabilities Page
	Sofa name mappings

	Indexes Page
	Resources Page
	Binding
	Resources with Aggregates

	Source Page
	Source formating – indentation

	Creating a Self-Contained Type System
	Creating Other Descriptor Components

	Collection Processing Engine Configurator User's Guide
	Limitations of the CPE Configurator
	Starting the CPE Configurator
	Selecting Component Descriptors
	Running a Collection Processing Engine
	The File Menu
	The Help Menu

	PEAR Packager User's Guide
	Using the PEAR Eclipse Plugin
	Add UIMA Nature to your project
	Use the PEAR Generation Wizard
	The Component Information page
	The Installation Environment page
	The PEAR file content page

	PEAR Installer User's Guide
	PEAR Merger User's Guide
	Details of the merging process
	Testing and Modifying the resulting PEAR
	Restrictions and Limitations

	Document Analyzer User's Guide
	Starting the Document Analyzer
	Running a TAE
	Viewing the Analysis Results
	Configuring the Annotation Viewer
	Interactive Mode
	View Mode

	CAS Visual Debugger
	JCasGen User Guide
	Running stand-alone without Eclipse
	Running stand-alone with Eclipse
	Running within Eclipse

	XCAS Annotation Viewer
	UIMA FAQs
	Glossary of Key Terms and Concepts
	Component Descriptor Reference
	Notation
	Imports
	Type System Descriptors
	Imports
	Types
	Features
	String Subtypes

	Analysis Engine Descriptors
	Primitive Analysis Engine Descriptors
	Basic Structure
	Analysis Engine Metadata
	Configuration Parameter Declaration
	Example
	Configuration Parameter Settings
	Example
	Type System Definition
	Type Priority Definition
	Index Definition
	Capabilities
	OperationalProperties
	External Resource Dependencies
	Resource Manager Configuration
	Environment Variable References

	Aggregate Analysis Engine Descriptors
	Delegate Analysis Engine Specifiers
	FlowConstraints
	Fixed Flow
	Capability Language Flow
	Configuration Parameter Overrides
	External Resource Bindings
	Sofa Mappings

	Collection Processing Component Descriptors
	Collection Reader Descriptors
	CAS Initializer Descriptors
	CAS Consumer Descriptors

	Service Client Descriptors

	Collection Processing Engine Descriptor Reference
	CPE Overview
	Notation
	Imports
	CPE Descriptor
	Collection Reader
	Error handling for Collection Readers

	CAS Processors
	Specifying an Individual CAS Processor
	<descriptor> Element
	<configurationParameterSettings> Element
	<sofaNameMappings> Element
	<runInSeparateProcess> Element
	<deploymentParameters> Element
	<filter> Element
	<errorHandling> Element
	Retry action taken on a timeout
	<checkpoint> Element

	CPE Operational Parameters
	Resource Manager Configuration
	Example CPE Descriptor

	JavaDocs
	CAS Reference
	JavaDocs
	CAS Overview
	The type system
	Creating, accessing and manipulating data
	Creating and using indexes

	Built-in CAS Types
	Accessing the type system
	TypeSystemPrinter example
	Using the CAS APIs to create and modify feature structures

	Creating feature structures
	Accessing or modifying features of feature structures
	Indexes and Iterators
	Iterators
	Special iterators for Annotation types
	Constraints and Filtered iterators

	The CAS APIs – a guide to the JavaDocs
	APIs in the CAS package

	JCas Reference
	Name Spaces
	XML source description tags
	Mapping built-in CAS types to Java types
	Augmenting the generated Java Code
	Keeping hand-coded augmentations when regenerating
	Additional Constructors
	Using readObject

	Modifying generated items

	Merging types from different type system specifications
	Aggregate AEs and CPEs as sources of types
	JCasGen support for type merging

	Using JCas within an Annotator
	Creating new instances using the Java "new" operator
	Getters and Setters
	Obtaining references to Indexes
	Adding (and removing) instances to (from) indexes
	Using Iterators
	Class Loaders in UIMA
	Use of Class Loaders is optional

	Issues around DocumentAnnotation
	Issues accessing JCas objects outside of UIMA Engine Compone

	Setting up Classpath for JCas

	Semantic Search Engine Reference
	PEAR Reference
	Packaging a UIMA component
	Creating the PEAR structure
	Populating the PEAR structure
	Standard type
	Service type
	Network Type

	Creating the installation descriptor
	Documented template for the installation descriptor:
	The SUBMITTED_COMPONENT section
	The ID, NAME, and DESC tags
	Tags related to deployment types
	The Collection Reader and CAS Consumer tags
	The INSTALLATION section

	Packaging the PEAR structure into one file
	Installing a PEAR file

	XMI CAS Serialization Reference
	XMI Tag
	Feature Structures
	Primitive Features
	Reference Features
	Array and List Features
	Arrays and Lists as Multi-Valued Properties
	Arrays and Lists as First-Class Objects

	Null Array/List Elements
	Subjects of Analysis (Sofas) and Views
	Linking an XMI Document to its Ecore Type System

