
DB2 for z/OS Best Practices
DB2 10 Migration Planning and Very Early Experiences
Part 1

John J. Campbell
Distinguished Engineer
DB2 for z/OS Development
db2zinfo@us.ibm.com

© 2011 IBM Corporation

Transcript of webcast

Slide 1 (00:00)

Hello, this is John Campbell here, a Distinguished Engineer
in DB2 for z/OS development. Welcome to another Web lec-
ture, in this series on DB2 for z/OS Best Practices.

This particular web lecture is about DB2 10 for z/OS migra-
tion planning and very early experiences. And my main ob-
jective of this web lecture here is to help you migrate to DB2
Version 10 as fast as possible, but most importantly also as
safely as possible.

Now let’s turn to slide 2.

Slide 2 (00:30)

Slide 2 is a disclaimer on trademarks that are actually used
within this particular presentation.

Now, let’s turn to slide 3.

Slide 3 (00:38)

So, what are the objectives of this web lecture?

First of all I want to share lessons learned with other cus-
tomers: the surprises and pitfalls that people have run into;
provide some hints and tips; address some myths that may
have grown up around Version 10; provide additional plan-
ning information; but also provide usage guidelines and posi-
tioning for new enhancements that were available in Version
10, and some new enhancements that have come into Ver-
sion 10 after general availability was announced.

Now let’s turn to slide 4.

Slide 4 (01:12)

I want to make a few comments on slide 4 [slide 5] about the
beta program for DB2 Version 10. The actual beta was an-
nounced in February 2010, and we shipped the beta, or
started the beta on March the twelfth 2010. It was the largest
beta program ever, and it was the strongest ever customer
demand to participate in the program.

There were primarily two main reasons for that. One was the
rumours got out about the price/performance improvements,
which are most welcome in Version 10, and also because
we’ve also solved the scalability issue related to DBM1 31-
bit storage.

So, there was very strong customer demand to get into the
program. Eventually, we settled on 24 worldwide customers
across many industries, some migrating from 9 to 10, others
migrating from 8 to 10, in the core program. And then in
third-quarter 2010, we extended the beta to other customers.
So, all-in-all here, there were 73 parties in the vendor pro-
gram as well.

So what were the customer focus areas?

Regression testing, and this is pretty much important here,
because… Basically, what you want to try and do in any
situation is to make or allow the given customer to have a
very good day-one experience.

So, one of the things that we wanted to encourage among
the customers was to test like you do in production, in the
order you do in production. So, for example, the idea was for
them to create a performance baseline on Version 9, then
migrate into Version 10 CM mode, and test without the re-
bind, and create a new performance profile, then to rebind in
conversion mode and repeat the exercise again, and finally
migrate to new-function mode, and repeat the exercise once
more.

Another focus area was obviously to validate the out-of-the-
box performance improvements, and to explore some of the
additional performance opportunities, and also to focus on
other scalability improvements and general new function.

Now, let’s turn to slide 6.

Slide 6 (03:16)

What I’d like to do here on slide 6 is just to give some gen-
eral highlights, and we’ll drill down into more detail later.

When I talk here about “good results” or “mixed results,” then
what I’m talking about is the status as at the program, after
the beta program had finished, and after the product has
gone general availability.

One of the big success stories in Version 10 is the virtual
storage constraint relief, related to the DBM1 address space
31-bit virtual storage. We did have some issues during the
program, but by the end of the program we were providing
some relief without the rebind. And once the customers ac-
tually rebind their plans and packages under Version 10 CM
mode, then we have very very generous virtual storage con-
straint relief.

So, while this is important from a scalability viewpoint, it also
opens up opportunities for further price/performance im-
provements that I’ll talk about later.

The second one was INSERT performance. What we
wanted to do in Version 10 was provide some general per-
formance improvements for insert across all the table space
types, including partitioned, segmented, and UTS. But we
also had a goal to improve the performance of universal ta-
ble space, both PBG and PBR, so that performance was
equal or better than the classic partitioned table space.

The good news is that we have provided insert performance
improvements across each of the table space types, and in
many cases now the performance of UTS is equal or better
than partitioned.

But there are some cases, which I’ll talk about later, where
insert performance for UTS is still not as good as classic ta-
ble space types.

There was a lot of interest in hash data access as an alter-
native to clustered index access, to access rows in your DB2
tables. Now the good news is that it works well. However,
the sweet spot in terms of use case was a lot smaller than
what we expected. And I’ll comment later that maybe you
have to have at least three levels or more in your index in
order to start benefitting from hash access.

There’s also a quite long list of improvements that will help
the performance of complex queries.

In Version 10, we provide support for inline LOBs. And I am
going to talk here about this term “SLOBs” and what I mean
is it’s just short here for “short large objects.” So prior to ver-
sion 10 here, when you have a LOB data column, then the
LOB data column is stored in an auxiliary table space. And in
order to access the LOB column value, you have to navigate
from the base table row over to the auxiliary table space via
an index.

Now there are many types of LOB applications where the
LOBs are in fact SLOBs, short large objects. Or it might be
the case the 70, 80, or 90 percent of the LOB column values
are very short in length. So, in version 10, you have the op-
portunity to store a certain portion of the LOB data in the
base table row, and then once you’ve gone beyond that
value, then the rest of the LOB is stored in the auxiliary table
space.

And clearly there is an opportunity here, that if the LOBs are
short in size, and you can inline all of the LOB column value

in the base table row, you can generate some pretty signifi-
cant performance improvements. And so, inline LOBs have
proven to be very beneficial to several customers’ use
cases.

As part of the release, we were trying to focus on issues and
problems that were related to scalability. So, once we had
addressed the DBM1 31-bit storage, we were also looking
around for other areas of contention.

So, there’s been a number of changes made to, first of all,
improving latch contention management, but also removing
some of the latches, and also holding those latches for a
shorter periods of time, or some cases, have more granular-
ity in the latch.

From my own personal viewpoint, I view the Version 10 pro-
gram basically a significant improvement over what we had
in Version 9 and Version 8. Why?

First of all in terms of the qualities of the problems found,
and also the issues found as well. There were a number of
issues that we found, that if it had escaped into the field after
GA, or it had been discovered after GA for version 10, they
would have caused quite a few problems.

And the last thing was, as the program developed, we saw
improved reliability and confidence amongst the customers
in terms of being able to successfully run their workload and
achieve good performance results.

Now let’s turn on to slide 7.

Slide 7 (07:45)

Now I want to talk about mixed results. “Mixed results”
means good, but also some bad.

If you look at OLTP performance, we had an aggressive goal
for OLTP performance in this release to deliver a 5 to 10
percent, for most cases, reduced CPU. And in many cases
customers ran measurements where able to achieve 5 to 10
percent. In a few cases, people were able to over-perform as
well. But there were some cases, a few cases, where people
had very very simple SQL, where the cost of a transaction
meant that the performance improvements in the SQL got
amortized away.

So these are situations where you’ve got very skinny trans-
actions, and very skinny packages, and the cost of package
allocation outweigh the optimizations that we’ve made in
SQL processing performance.

Another area of mixed results was in the area of single-
thread bind and rebind. But in conversion mode, and also in
new function mode, there is degradation in the CPU and
elapsed time for bind and rebind performance. There are
several reasons behind that I’ll go into a lot of detail later on.

Part of it is to do with catalog restructure. Part of it is as well
is that plan stability is on by default, and the default value is
extended. And also DB2 has single-path code for a given re-
lease, and even in conversion mode, ahead of the catalog
tables in ENFM, which improve concurrent bind and rebind
performance. Because we have a single code path, then ba-
sically, we’re following a similar access path compared to
what we had in Version 8 and Version 9.

Later on, I will talk about the very good results that we
achieved in terms of concurrency when it came to both bind
and rebind performance.

So, general message here is CPU elapsed time here for bind
and rebind is degraded in all modes of Version 10, but once
you actually get post the ENFM process, after the catalog
restructure, then we’ve achieved pretty good results when it
comes to concurrent bind and rebind performance.

So, recommendation is, having got to that particular stage
here, is to change your procedures so that you do binds and
rebinds in parallel concurrently to reduce the overall time
that the application has to be downs to do all of the bind and
rebind activity.

Another mixed result was in the area of DDL concurrency.
Again, we hoped to benefit from the catalog restructure. And
in some cases there is some benefit in terms of improved
DDL concurrency, but in other cases there are no particular
improvements coming from the catalog restructure. Part of
the reason for that is that many of you customers have mul-
tiple DDL within a single commit scope, and they are actually
going after different database descriptors and in different or-
ders. And therefore, there is still potential for deadlock.

When it comes to access path lockdown, when we shipped
DB2 Version 10 at GA, we actually disabled this particular
piece of functions called APREUSE and APCOMPARE. And
basically, this was aimed at a very conservative customer
who basically wants to generate a new SQL runtime with
BIND REPLACE and REBIND, but at the same time wanted
to keep the same access path.

Now, because of some problems here with the underlying in-
frastructure, related to OPTHINTS, then APREUSE and AP-
COMPARE where disabled at GA. But I’m pleased to say,
and you’ll see this in more detail later on in this presentation
here, that APREUSE and APCOMPARE have now been re-
enabled and have been available through APARs delivered
through the service stream.

Now let’s turn to slide 8.

Slide 8 (11:18)

So, continuing on the theme of highlights here. Basically if
you look at the feedback across the experience, and feed-
back across the customers in the program, most of that ex-
perience was fairly positive. The majority of the customers
who participated in the program are going to start their mi-
gration to Version 10 in 2011. Some of them it may as much
as 9, 12, 15 months to complete the migration to V10 CM
across the many DB2 subsystems they’ve got on their land-
scape.

From a personal viewpoint, I see incremental improvement
in the achievement over Version 8 and Version 9 programs.

When you look across all the customers, there’s probably
not a single voice or message coming trough across the
board. I think you also need to appreciate that when cus-
tomers are in an early support program, they’re having to put
in a tremendous amount of effort, and to sustained effort
over a 6-month period, and react to and fit in with business
and technical priorities. And in an environment, most of our

customers, people and hardware resources are constrained,
as is their time.

And I’m particularly grateful for all the customers that worked
weekends, at night, and in their own private time, in order to
get the projects complete.

There’s a significant variation in terms of the customer com-
mitment and achievement. A subset of customers did a very
good job in regression and new function testing, and good
give back. Other customers basically provided limited qualifi-
cation about what they where going to do, and also limited
qualification about what they where actually able to achieve.

By the end of the Version 10 QPP/beta program, none of the
customers where in true business production. And for those
of you who are familiar with IMS, you need to appreciate the
difference here between a QPP and a beta, versus an early
support program. A product like IMS runs an early support
program, where all the development and testing is complete
by the start of the program. Whereas, when you have a
QPP/beta program, as run by DB2, we continue to develop
and test in parallel with the program at the customers.

Now, let’s turn on to slide 9.

Slide 9 (13:18)

One of the main things about DB2 Version 10 is that there
are many opportunities for price/performance improvements.
In other words, “cost reduction.” It’s a major theme of the re-
lease, and it’s most welcome to all our customers.

However, there’s a lot of speculation about what the im-
provements are, sometimes expressed in a very general
sense. Some of my customers are actually intimidated by the
marketing noise about those improvements to performance.
The expectations of the CIO may have been set to high. For
some of the workloads they’ve evaluated they may not be
seeing the improvements in CPU or elapsed time they ex-
pected. And they are concerned that they are not able to see
that.

Conversely, some customers have seen very big improve-
ments, or big improvements, for certain workloads. So, the
performance improvements you see are very much work-
load-dependent. And for any customer both n the beta pro-
gram, and also after general availability, one needs to be
careful because some small workloads may skew expecta-
tions on the savings, either in a very positive, or also in a
very negative way. Some of the measurements and quotes
that you hear quoted are insanely positive and should be ig-
nored.

But a key question for all of us here is basically, how do you
extrapolate and estimate for a production mixed workload?

And this is a very difficult thing to do. We’ve never been able
to do it before with other releases of DB2, and these sort of
modelling techniques, with analytical models, really do not
deliver the accuracy and the confidence that you’d expect, or
you would want, in trying to project forward. And really a se-
rious benchmarking effort is required in order to have a good
handle on what the CPU improvements would be for your to-
tal production mixed workload.

Now let’s turn on to slide 10.

Slide 10 (15:10)

So on slide 10, I’m going to talk here about performance and
scalability. And one of the key messages that I’d like you to
take a way from this presentation is the need to plan on ad-
ditional real memory, and to monitor the real memory usage
afterword, and to tune based on available real memory on a
system.

General estimate here is to plan on a general 10 to 30 per-
cent increase in real memory. It’s simply a very rough cut
first estimate on the amount of real memory required. For
those customers running very small systems with tiny buffer
pools, the increase in real memory may be as high as 30
percent. On the other hand those with very large systems
with very large DB2 buffer pools, then the increase may tend
toward the lower end of this range, maybe 10 percent.

Many traditional OLTP workloads have seen a 5 to 10 per-
cent reduction as soon as conversion mode in Version 10.
Some have seen more. Some have seen less. But there are
two particular prerequisites in order to be able to maximize
the CPU reduction benefits for these OLTP workloads.

First of all, rebinding the packages to generate a new SQL
run time, and the second thing is to use the new 1-megabyte
real storage page frame sizes. Now, the prerequisite to using
1-megabyte real storage frames, is first of all your buffer
pools have to be defined as PGFIX=YES, and the second
thing is you have to be running on a configuration here,
where you’ve actually carved out enough memory to support
1-megabyte real storage frames. The 1-megabyte real stor-
age frames are available on the z10 and the z196, and in or-

der to get the most benefit here, you wan to have your long
term page fix buffer pools 100 percent backed by these 1-
megabyte real storage frames.

But there were some exceptions where customers didn’t see
the 5 percent CPU saving for OLTP, and like I said earlier,
this is related to very light transactions with skinny packages
and a few simple SQL. And the bottom line here is that
package allocation cost overrode the benefit from the SQL
optimizations that we made.

APAR PM31614 helps solve part of this here, by improving,
or reducing, the package allocation overhead. Another way
of compensating for this, is to make more use of persistent
threads with RELEASE(DEALLOCATE).

Now, what do I mean by persistent threads here? I mean
things like a CICS protected entry thread or an IMS wait-for-
input or pseudo-WFI regions.

Now let’s turn on to slide 11.

Slide 11 (17:40)

What I have on the next few slides here, is to basically iden-
tify where these performance improvements are actually in-
troduced. For example, on this particular chart here, no re-
bind is required for the following list of performance im-
provements, and I will highlight just a few of them, one of
which is index list prefetch. What we tried to do in this re-
lease is to reduce the requirement to reorganize indexes.

So, one of the things we do now, is we utilize in the list pre-
fetch technology that we introduced for data pages back in
Version 2 release 2, and we’re now using it to access index
leaf pages. We use the information in the non-leaf pages,
and then use list prefetch to prefetch the index leaf pages,
and therefore better tolerate disorganized indexes.

INSERT index I/O parallelism: if you’ve got three or more in-
dexes now, on a table, and we’re doing insert processing,
we will overlap the reads of the data from the indexes there
to reduce the overall elapsed time.

We’ve also introduced a thing called high-performance
DBATs, a new type of DBAT which provides thread reuse for
distributed threads. And also enables us to honor RE-
LEASE(DEALLOCATE).

Now, let’s turn on to slide 12.

Slide 12 (19:02)

Now we have some performance improvements here, which
require a rebind first. And one of those is if you’re going to
switch to using RELEASE(DEALLOCATE), and basically
achieve the benefit when using persistent threads and RE-
LEASE(DEALLOCATE) to improve performance.

If you want early evaluation of residual predicates, it also re-
quires a rebind.

There are a number of improvements in the area of IN-list
processing, with a new access method. We also have a

thing called SQL pagination, again which is a new access
method.

One of the things that became very useful during the early
support program was the use of index include columns. You
may have a situation today where you have one index on
let’s say columns A and B for uniqueness, and then you an-
other index on A, B, X, Y, and Z columns, and that extra in-
dex is to improve performance.

What you can now do in this version of DB2 is have a unique
index with include columns. So, therefore you can say, “I
want to have unique index on columns A and B, but also in-
clude columns X, Y, and Z.” And this single index can be
used to still enforce uniqueness constraint, but also can be
used for performance. So, this means that we can we can
reduce the number of indexes, which obviously is DASD
savings, but also more importantly than that, this is one less
index to be maintained during insert and delete processing.

Now, one point that I’ll go into in a lot more detail later, is
about executing RUNSTATS before rebind. Certainly, if you
are a customer who is coming from Version 8, directly to
Version 10, it is very important to collect the improved index
statistics before you actually do the rebind of static SQL. So,
this is referring to an improvement that we made in Version
9, where we changed the calculation, or the algorithm, for
cluster ratio, and also introduced a new statistic called the
data repeat factor.

So, strong recommendation here is to collect these new sta-
tistics in Version 10 before you actually do the rebind of
static SQL.

Now, if you’re coming from Version 9 to Version 10, and

you’re not already using KEYCARD as a default option on
your RUNSTATS, then again, the recommendation is to run
RUNSTATS with KEYCARD before you actually rebind un-
der Version 10.

I’d like to point out now that KEYCARD is implicitly on in
Version 10 RUNSTATS, and in fact it does not even matter
whether you specify the KEYCARD on the RUNSTATS con-
trol statements. You’ll always run the RUNSTATS in Version
10 and collect the KEYCARD statistics.

Now let’s turn to slide 13.

Slide 13 (21:40)

Now, I want to go into a bit more detail here now, about high
performance DBATs. This is a new type of distributed
thread. And in order to benefit from high performance
DBATs, you must set the systems parameter or ZPARM
CMTSTAT=INACTIVE so that threads can be pooled and
reused.

The key to the door is that one or more packages on the
connection need to be bound with RE-
LEASE(DEALLOCATE). And the second prerequisite is that
you must have issued a MODIFY command to DDF to basi-
cally honor the BNDOPT option that was specified on the
package.

So, to repeat myself there, the two keys to the door here are
to have one or more packages bound with RE-
LEASE(DEALLOCATE), and to have done the MODIFY to
DDF with the command on this chart here where you specify

PKGREL(BNDOPT), so that way DB2 DDF will honor the
bind option.

So, let’s now drill down into some detail. When a DBAT can
be pooled is at the end of a client’s unit of work. Now, what’s
different about a high performance DBAT, is that the data-
base access for the DBAT and the client connection will re-
main active together. We still cut the accounting record and
end the enclave at the end of the unit of work. But basically
the DBAT and the client connection stay together.

Without a high performance DBAT, then what happens is the
client connection is parked and the DBAT is pooled, or put
back in the pool, for use by another connection. So the key
point is with a high performance DBAT, the DBAT and the
client connection remain active together.

Also after the high performance DBAT has been reused 200
times, the high performance DBAT is purged and the client
connection will again go fully inactive as before. All the inter-
actions with the client will still be the same, in that if the cli-
ent is part of a sysplex workload balancing setup, it will still
receive indications that the connection can be multiplexed
across many different client connections.

The idle thread timeout parameter IDTHTOIN will not apply if
the high performance DBAT is waiting for the next client unit
of work. If the High performance DBAT has not received any
new work for the period of time defined by POOLINAC, then
again, the DBAT will be purged, and the connection will go
inactive.

If the number or percentage of the high performance DBATs
exceeds 50 percent of the MAXDBAT threshold then the
DBATs will be pooled at commit and the and the package

resources copied or allocated as if they where RE-
LEASE(DEALLOCATE). So, basically up to 50 percent of
your DBAT threshold can be allocated as high performance
DBATs.

One important feature of the new DB2 support for high per-
formance DBATs is that these DBATs can be purged to al-
low DDL, bind, and utilities to break in. And this is achieved
again with the MODIFY DDF command. You can actually
switch from, basically PKGREL(BINDOPT) over to
PKGREL(COMMIT). When you say MODIFY DDF
PKGREL(COMMIT), this forces all the packages to start
executing with COMMIT, and thereby allow the DDL, and the
bind, and the utilities too break in.

So, the sequence of events here would be to do, under nor-
mal operation to be running with MODIFY DDF
PKGREL(BINDOPT) but before doing the DDL, the bind et-
cetera, you’d switch to COMMIT, then run your DDL, bind, or
utilities, and when that’s finish switch back to
PKGREL(BINDOPT).

Now let’s turn to slide 14.

Slide 14 (25:19)

I want to make a few comments about customer measure-
ments before I show some results with you. First of all, cus-
tomer measurements are not always consistent and repeat-
able. And part of the reason for that is that in real customer
environments, you’re not able to run with dedicated re-
sources: dedicated CPU, dedicated storage, dedicated
DASD. So, it’s very important in the customer environment to

run the measurements several times to make sure you have
some level of consistency or repeatability, and to make sure
the results you’re not achieving are wild.

In many cases in customer environments, you see a wide
variation in terms of measurement noise, especially in terms
of elapsed time.

Many cases, customers are only running a subset of the
production workload, and a key question is whether that
workload is representative of the total mixed workload that
the customer runs.

Sometimes use of synthetic workload is used to study spe-
cific enhancements, and this can lead to very optimistic or
pessimistic results. In some cases we don’t trust some of the
very large numbers on CPU reduction, and especially some
of the elapsed time savings.

So, general recommendation to all the customers that listen
to this web lecture here, is that customers should not spend
the CPU savings until they’ve actually seen them in produc-
tion first.

Now let’s turn to slide 15.

Slide 15 (26:38)

On slide 15 here, are some examples of some performance
improvements that customers were able to see during the
beta program. If we look at the first three rows here, these
were customers who ran CICS online transaction workloads
and saw performance improvements in line with our aggres-

sive objective of 5 to 10 percent improvement. In the first
case here, the customer saw 7 percent CPU reduction in
Version 10 CM mode after rebind. And they saw an addi-
tional 6 percent after this define the buffer pools as long-term
page fixed and used the 1-megabyte page frames.

Now notice carefully what I said there. This customer previ-
ously was not using long-term page fix buffer pools. Long-
term page fix buffer pools was introduced back in Version 8
in order to help reduce CPU regression with Version 8. So,
when I say the customer got a 6 percent performance im-
provement over and above the 7 percent, it was from the
combination of using long-term page fix, which was intro-
duced in Version 8, plus using the 1-megabyte real page
frames that came along in Version 10.

Another customer saw 10 percent CPU reduction after mi-
gration to Version 10 from Version 9. And a third customer
saw 5 percent.

However, we did see a few cases where customers saw 5 to
10 percent CPU degradation, and as repeated earlier, this is
where we have very simple SQL with very skinny packages.

Customers using high performance DBATs, some of them,
saw fairly good reduction in CPU and also in elapsed time.
Customers with heavy concurrent insert in data sharing have
seen some very generous improvements.

Now let’s turn to slide 16.

Slide 16 (28:25)

On slide 16 are some very special cases, or some niche im-
provements in Version 10.

The first one here is multi-row insert, OK? And this is a par-
ticular workload, a synthetic workload, that the customer built
and used previously under Version 8 and Version 9, to do
what is called “log record sequence number contention.” Go-
ing back to Version 8, previously, every log record on a
member of a data sharing group, had to have a unique log
record sequence number. And bascially, the clock only
moved forward every 16 microseconds because the LRSN is
the higher six bytes of the store clock.

So, we made some improvements in Version 9, to reduce
the number of times we had to spin, and to hold the log latch
for a shorter period of time, and in some case not to hold the
latch at all. But there are some further improvements in Ver-
sion 10.

And what you can see, even after the version 9 improve-
ments, this customer was able to see a 33 percent CPU re-
duction compared to Version 9, and a four-times improve-
ment compared to Version 8. But be careful here, this is a
particular niche case here, and a particular workload that
was used to magnify a particular problem, and to study it.

Another customer did a special case study where they had
multiple indexes on a table, and they did and insert-intensive
workload, and they saw the benefit of the parallel index up-
date, the parallel read. Other customers saw big improve-
ments from inline LOBs and include indexes.

So, I won’t read the number out here, but you can see that
these are particular niche workloads here, but there are
some particularly good number achieved. And the real ques-

tion is how much does these mean in the overall sense? And
you do need to be careful, because these sort of improve-
ments are only going to apply to a small part of your work-
load.

Now let’s turn to slide 17

Slide 17 (30:15)

I now want to drill down here about the 1-megabyte real
storage page frames that are available on the z10 and z196
processor. I get a lot of questions coming in about this par-
ticular area through previous webcasts and presentations at
conferences. So, what’s the objective of us using the 1-
megabyte real storage page frames?

The benefit here is to reduce CPU through less TLB misses:
translation look-aside buffer misses. This is where virtual
address get translated in to real storage addresses. So, this
is very different from long-term page fix. Long-term page fix
was introduced in Version 8, and what long-term page fix on
the buffer pools tries to do is to avoid the repetitive cost of
page fix and page free around per-page when you have to
an I/O. But one thing here is, if you want to use the 1 mega-
byte real switch page frames, your buffer pools must be de-
fined as PGFIX=YES, long-term page fix.

But, there are different objectives here. As I said, the long-
term page fix benefit is directly related to I/O-intensity, so if
you have no I/Os going on, there’s no benefit from long-term
page fix, and if you have lots of I/Os going on, then you have
the potential to get some pretty good benefit from long-term

page fix. Whereas, the use of the 1-megabyte real storage
page frames is basically trying to reduce TLB misses.

Now, if I look around my social circle, many customers so far
have been reluctant to use PGFIX=YES that came in with
Version 8, because they are concerned about the amount of
real storage. Why could that be?

Well, they may be running to close to the edge of the amount
of real storage, but once that they do understand the benefit
of long term page fix, either themselves, or because of pres-
sure from the z/OS systems programmers, they’re not pre-
pared to commit to using long-term page fix.

So, you may have to reconsider whether or not you want to
use long-term page fix under Version 10, to also be able to
get the benefit of the 1-megabyte real storage page frames.

And if you are concerned about the amount of real memory,
then what you might consider doing is actually reducing the
size of the buffer pool in order to generate some relief on the
amount of real memory and to make some available in order
to use the 1-megabyte real storage page frames.

Note: long-term page fix of buffer pools is a long-term deci-
sion. When you make the switch to go PGFIX=YES or
PGFIX=NO the actual change goes pending, and the buffer
pools need to go through reallocation in order to change the
attribute. And whilst in some cases you could achieve this by
setting the VPSIZE to 0 and then increasing it back to its
former value, in most cases people will have to re-cycle DB2
in order to change the attribute.

A lot of customers are concerned about the cost of real stor-
age on their System z systems. One thing I’d like to adver-

tise here, is a reduction in the cost of real storage on the
z196 processor. I understand there is a 75 percent cost re-
duction, and it’s roughly about 1.5K per gig versus about 6K
per gig that you used to have on the earlier releases.

Now let’s turn to slide 18.

Slide 18 (33:38)

I’m now going to give some more information here about the
1-megabyte real storage page frames. And the principle
here, is that the systems programmer must partition their
real storage between the existing type of 4K frames and the
1-meg’ frames. So how is this done?

It’s basically done at IPL time. There’s a parameter called
LFAREA in the IESYSnn parmlib member, which specifies
what percentage of the real memory should be configured as
1-megabyte frames. So it’s LFAREA percentage that deter-
mines the amount of storage that is reserved for the 1-meg’
frames, and to repeat myself here, this is only changeable
via an IPL.

So, another common question that comes in is, “how much
1-megabyte page frames do I need?” And the answer is, add
up the some of all your buffer pools that are defined as long-
term page fix, and maybe another 10 to 20 percent on top of
that for some growth and tuning.

One thing that I would say is that we did identify a number of
critical problems during the Version 10 QPP beta program
related to the z/OS support for 1-megabyte real storage
page frames. So make sure that you have the critical z/OS

corrective and preventive service applied before you start
using the 1-megabyte page frames.

What we’ve observed across customers in terms of benefit
unique to the 1-megabyte real storage page frames is basi-
cally between 0 and 6 percent.

Some of the customers have a requirement for us to have a
new parameter to separate the use of PGFIX=YES from the
use of the 1-megabyte page size. And we plan to address
this in a future release of DB2.

Now let’s turn to slide 19.

Slide 19 (35:31)

Now, I’d like to switch gears on this topic of performance and
scalability and talk about the virtual storage constraint relief
below the bar in the DBM1 address space.

This virtual storage constraint relief, which his much needed,
is available as soon as conversion mode. And to maximize
the benefit, you need to rebind the static SQL packages to
get some maximum benefit. The result that we’ve achieved
with many programs during the QPP/beta program has been
very significant, and there is a high degree of confidence that
the problem has been solved.

Now we can now support up to 20,000 active threads, but
let’s talk about it from a real-world perspective. There are
many customers today in my social circle, and they support
about maybe 500 threads per DB2 subsystem or DB2 mem-
ber of a data sharing group. And I’m quite confident now in

Version 10 that we can scale maybe up to 2 and a half thou-
sand, 3,000 threads, quite comfortably and that will make a
huge difference in terms of the impact on our customers.

So, what are the limiting factors on vertical scalability in a
post-V10 environment, in terms of the number of threads
and the thread storage foot print?

Well, the number one thing is that amount of real storage
provisioned. And that’s a key factor now in terms of how
much is provisioned that a customer needs to monitor it and
tune and capacity-plan from the right amount of real storage.
Secondary consideration is the amount of ESQA and ECSA
31-bit storage on the LPAR, and finally active log write.

Now let’s turn to slide 20.

Slide 20 (37:10)

On slide 20 here, is an example of a problem that we found
during the QPP/beta program, and which we fixed before GA
for Version 10. So, I earlier said on one of my earlier slides,
that I wanted customers to test in the order and the way they
would do things in a real production environment.

So, this graph here is taken from one of the customers, who
I worked very closely with during the program. And basically
there are three columns here: one related to Version 9, Ver-
sion 10 CM without the rebind, and then Version 10 CM with
the rebind. And what it’s showing here is the thread foot print
below the 2-gigabyte bar in each of these modes.

So, we’re looking at the Version 9 column here, the thread
storage below the bar is between 3 and 3-and-a-half mega-
bytes. And it’s basically made up of the EDM pool and also
the agent local user, plus some allowance here for EDM pool
fragmentation. Now what this shows here in the second col-
umn is the result of Version 10 conversion mode, without the
rebind. And what you can now see is that the thread storage
foot print has gone up to between 3-and-a-half and 4 meg’.
And this is a very unhealthy situation, because most cus-
tomers, when they migrate to a new release, will not rebind
all their plans and packages straight-away. So, therefore this
is a regression on the virtual storage utilization below the
bar, and this could’ve killed many customers.

And the third column shows what happens after the rebind in
Version 10 CM. And what you can now see is the thread
storage footprint is much much smaller, and you can see the
very generous virtual storage constraint relief.

So, repeat that again, the chart here in the middle column
which shows these bad results from Version 10 CM was dur-
ing the program before general availability.

Now let’s look after the solution.

Slide 22 (39:12)

So again now on this chart here we have our three columns
on a different scale. Now we have a workload here that in
Version 9 we’re using about 2 to 2-and-a-half meg’ per
thread, and then you can see Version 10 CM mode without
the rebind, and without the fix, and you can see that thread
storage footprint is between 2-and-a-half and 4 meg’. But

now look at what happens after the fix. If you look at that
third column there, effectively columns 3 and 4 here, you can
now see Version 10 CM mode without the rebind but with the
fix on, and you can see that we deliver some virtual storage
constraint relief even without the rebind in Version 10 CM
mode.

But if you do want to maximize the benefit in terms of virtual
storage constraint relief, then the recommendation is to re-
bind your static SQL packages in CM mode.

Now let’s turn to slide 22.

Slide 22 (40:04)

This picture here just really shows you the trends and sum-
marizes the trends over the versions, starting with Version 8
going all the way through to Version 8, Version 9, and Ver-
sion 10.

You can see back in Version 7 here that we provided some
virtual storage constraint relief, by basically using data space
buffer pools.

Then in Version [8] we moved the buffer pools above the
bar, castout buffers, compression dictionaries, global dy-
namic statement cache, and so on.

And then in Version 9, what we did was move some DDF
control blocks above the bar. We moved 100 percent of the
skeleton cursor tables and package tables up there, and also
portions of the CTs and PTs.

But finally you can see here in Version 10, that not only did
we keep the things that were there before above the bar,
what we’ve now done is moved a huge portion of the SQL
run time above the bar, and that has provided us very gen-
erous relief.

So, now in Version 10, theoretically it’s possible to go up to
20,000 active threads. But in most cases, it’s probably going
to be a few thousands, compared to a few hundreds that we
were limited to in Version 8 and Version 9.

Now let’s turn to slide 23.

Slide 23 (41:11)

So, on one hand here, the virtual storage constraint relief
achieved now can provide very generous scalability im-
provement, it also provides opportunities for improved
price/performance. Many customers in my social circle had
been on one I called the “JC diet plan,” where previously in
order to generate storage constraint relief, they had to basi-
cally give up CPU cycles. So, for example, customers
stopped used RELEASE(DEALLOCATE) and maybe
stopped using persistent threads like using CICS protected
entry threads.

Well, now, assuming you have enough real memory, one
can reverse the equation, and actually trade additional real
memory, in order to reduce CPU.

Now when I talk about additional real storage here, I’m talk-
ing about additional real storage requirement over and
above the 10 to 30 percent that I already mentioned.

So, anyway, let’s take some examples here of how this can
be achieved. If you’ve got the real memory, what could you
do to use this real memory and reduce your transaction
cost? Well, in the area of CICS for example you could make
more use of protected entry threads. In the case of IMS,
make more use of, basically, wait-for-input regions, and
pseudo-WFI regions.

Now, the benefit from using thread reuse and using these
protected threads, or persistent threads, this avoids the re-
petitive cost of creating and terminating a thread.

And this probably, you know, is relatively small, but it is an
improvement. But it becomes the key to the door of using
RELEASE(DEALLOCATE). If you’re not using persistent
threads, then having a bind parameter of COMMIT or DEAL-
LOCATE makes no difference whatsoever. It is only when
RELEASE(DEALLOCATE) is used in combination with per-
sistent threads, that the opportunity opens up, and therefore
avoid the repetitive cost, not just of creating and terminating
the thread, but of also allocating and freeing of storage, of
acquiring parent locks, and so on.

The second opportunity now, is related to DDF. Now for the
first time in Version 10, we have this concept of high per-
formance DBATs, and we start respecting the release pa-
rameter RELEASE(DEALLOCATE).

One thing I would like to say here is, “Be wary here of a one-
size-fits-all strategy.” Because if you decide to use RE-
LEASE(DEALLOCATE) in all of your packages, this could
very seriously drive up your real storage requirement, and
also drive up a huge portion of your DBAT requirement, and
therefore run into the MAXDBAT threshold.

So, what I would suggest you do here, is just like what
you’ve done previously in the CICS and the IMS environ-
ment, that you focus the use of high performance DBATs on
basically the high-volume transactions.

So, I can use an example here based on SQLJ and JDBC.
What you probably want to do is take your packages and
bind them twice. First of all bind them into the first collection
with RELEASE(COMMIT) and then into the second collec-
tion with RELEAE(DEALLOCATE). And so from an applica-
tion perspective, you want the applications which are high
performance, and where you want to benefit from the high
performance DBATs with RELEASE(DEALLOCATE), you
want them to connect to a data source which points to the
collection which uses RELEASE(DEALLOCATE) and what
you want the other applications to continue using RE-
LEASE(COMMIT), and the way that works is they commit, or
connect I should say, to the alternative data source that
points to the collection where the packages were bound with
RELEASE(COMMIT).

So, when it comes to the default JDBC and ODBC pack-
ages, this is what you want to do. You want to bind them into
two separate collections and let the applications connect to
the appropriate collection. Or should I say, “the appropriate
data source that points to the specific connection.”

Now let’s turn to slide 24.

Slide 24 (45:07)

Now, one thing I want to make very clear here is more use of
persistent threads with RELEASE(DEALLOCATE) is a trade
off with bind, rebind, and DDL concurrency. One of the ad-
vantages of the old world of giving up on persisted threads,
and not using RELEASE(DEALLOCATE) was it made it a lot
easier to break in to do binds and rebinds and do things like
DDL, adding new indexes. So, there will be a trade off with
using more persistent threads with RE-
LEASE(DEALLOCATE).

A common question I get is customers say they cannot find
the cost of the thread create and terminate, or the benefit of
actually avoiding it. An important point here is the cost of
thread create and terminate is outside the DB2 accounting
interval. So, both the cost of thread create and terminate, or
the savings by avoiding it, are not apparent when you look
into the DB2 accounting record.

So, basically you need to look in the CICS accounting re-
cord. CICS uses the L8 TCB, to access DB2, irrespective of
whether the application is thread-safe or not. So, the cost of
thread create and terminate is clocked against the L8 TCB,
and you can find that in the CICS SMF type 110 record.

Note: prior to OTE, this cost of thread create and terminate
was not captured even in the CICS 110 record, and it was
basically un-captured CPU.

Now, one you use RELEASE(DEALLOCATE) in conjunction
with the persistent thread, then the benefit of using RE-
LEASE(DEALLOCATE) will actually show up in the DB2 ac-
counting record.

So, to repeat myself here, if you decide to use more persis-
tent threads with CICS, and you decide to use RE-

LEASE(DEALLOCATE), then the benefit of RE-
LEASE(DEALLOCATE) on the persistent threads will show
up in the DB2 accounting record. But the cost, or the avoid-
ance, of the thread create and terminate will show up in the
CICS accounting record.

Please do be aware however, that when you do use RE-
LEAESE(DEALLOCATE) some locks will be held beyond the
commit scope and held until thread termination. So, for ex-
ample a mass-delete lock where you’ve got an SQL DE-
LETE without a WHERE clause, or a gross-level lock ac-
quired on behalf of an SQL LOCK TABLE request.

Note: this is no longer a problem for gross-level lock ac-
quired by lock escalation.

So, basically when you have transactions where you want to
use persistent threads with RELEASE(DEALLOCATE) you
need to avoid mass-deletes, and you also need to avoid use
of the SQL LOCK TABLE request.

Now, let’s turn to slide 25.

Slide 25 (47:40)

On slide 25 here, is an example of what we were able to do
with our IRWW. So, we have an IMS version of the IRWW
workload that we tried in data sharing. And what you see
here, on this graph here, is various measurements we’ve
made. So, the base measurement here is based on DB2
Version 9 new function mode, with a rebind where you are
already using plan management, or rather the EXTENDED
version of PLANMGMT. The next measurement point was to

go from Version 9 NFM to Version 10 CM mode, without the
rebind. The third point, was basically to have Version 10 CM
mode with a rebind, and then finally we go for NFM, and the
very last point is then combine that with RE-
LEASE(DEALLOCATE).

So, what you can see on the graph here, is that in Version
10 CM mode, without the rebind, there was seen a 1.3 per-
cent reduction in CPU relative to Version 9. It’s a pretty small
improvement. But then, when you do the rebind in CM mode,
we can see a 4.8 percent CPU reduction. When we repeat
the exercise in NFM and rebind there, then there’s a very
tiny improvement there beyond the 4.8. We’ve now got a 5.1
percent CPU reduction. But the next big step up in terms of
reduced CPU comes with rebinding with RE-
LEASE(DEALLOCATE).

So, measurement points 2 and 3 on this chart here were
done with RELEASE(COMMIT). So we had thread reuse
with RELEASE(COMMIT), but the last measurement in point
4 is when we combine RELEASE(DEALLOCATE) with the
thread reuse, and then we get the second step up, in terms
of CPU reduction.

So, this is just an example with the IBM Relational Ware-
housing Workload, and results will vary in your installation.

Now, let’s turn to slide 26.

Slide 26 (49:39)

Now other potential benefits here, as a result of the virtual
storage constraint relief, is the potential to reduce the num-

ber of DB2 subsystems. Today many customers have multi-
ple DB2 members running on the same LPAR. And what I
am talking about here is multiple members of the same data
sharing group. And the reason why this was done was they
needed additional members to handle the workload, be-
cause of the previous virtual storage constraint. So now they
have the ability now to actually collapse the number of sys-
tems, and therefore reduce the total number of DB2 subsys-
tems, and specifically the number of DB2 members running
on a single LPAR.

And this may result further in the ability to reduce the num-
ber of LPARs. One of my customers who today is running a
12-way data sharing group in a post Version 10 environment
are planning to reduce the size of that data sharing group
down to 5 members. And they will be able to get savings
from reducing the number of members, but also will be able
to reduce the number of LPARs.

When you do increase the amount of workload going
through an individual DB2 member, you need to consider the
potential here for the increase in the logging rate per DB2
member. And if you decide to reduce the number of LPARs,
you need to consider the increase in the SMF data volume
per LPAR.

So, there are some things that can help you. So, one of the
things that we’ve provided in DB2 Version 10 is the DB2
compression of the SMF data, to reduce the SMF data vol-
ume. And we’ve had some pretty good experience here at
the lab here by using this DB2 compression of the SMF data,
and we’ve seen about a 70 to 80 percent reduction in the
SMF data volume related to the DB2 accounting records.
And the CPU cost of doing this is fairly tiny, at about ap-
proximately 1 percent.

Now, you may want to consider the use of accounting rollup
in Version 10 for DDF and also RRS work. Now, I’m not a
big fan of accounting rollup prior to Version 10 because it
compromises performance problem determination and prob-
lem source identification, because when you have account-
ing rollup, you lose information on the outlying transactions.

Now what you may decide to do now in Version 10, because
you’ve actually got the SMF compression, maybe it would be
better to turn on SMF compression and give up on the ac-
counting rollup. In that way you still get reduction in the SMF
data volume, but you don’t lose the outlying transactions.

I’d also like to point out, that even if you are using account-
ing rollup, there are some significant improvements in pack-
age level accounting in Version 10 as well.

Another thing to say about real storage is that if you start in-
creasing the size of an individual DB2 subsystem in terms of
the workload going through it, you need to consider the in-
creased storage for DUMPSRV, and you need to re-evaluate
your MAXSPACE setting as well.

Now, there’s potential here that people may say that be-
cause of these sorts of savings in being able to reduce the
number of members in a data sharing group that they may
decide to either give up on data sharing, or reduce the num-
ber of members, and actually compromise the availability.

I’d just like to point out here that data sharing is a major
technology here to support the avoidance of planned out-
ages. And it’s a key technology to avoid humongous single
points of failure. So, there’s still continued value in using
data sharing going forward. And, as before, we recommend

a minimum of 4-way data sharing assuming you have a two-
box or 2-processor configuration. The idea of having a 4-way
configuration is that you can have 2 LPARs per processor
and a DB2 on each of those LPARs, and that’s where the 4-
way comes from.

And the idea here of having 4-way is that if you lose an
LPAR or lose a DB2 member, the surviving DB2 members
on the LPARs can take over 100 percent of the CPU capac-
ity.

Now let’s turn to slide 27.

Slide 27 (53:39)

Another common question that comes in from customers is
about the 3 large areas that are allocated at IPL time for 64-
bit storage. So, one thing to indicate or discuss about this is
that these larger areas that are allocated here… We’re not
really allocating these areas. What we’re actually doing is
reserving the virtual storage.

So, we have the common storage area which is the z/OS de-
fault, is now 6 gigabytes. And when you have the common
area, this is a bit like ECSA, and it’s addressable by all au-
thorized programs running on the LPAR. We in DB2 use it
for IFC for the accounting. The private area is 1 terabyte.
And in that private area, mainly the DB2 buffer pools, but
also things like XML and LOB data are huge users of the
area with things like RTS blocks, trace buffers, and so on.

We also have the shared private area of 128 gigabytes. A
shared private area is addressable by all the authorized

processes which have registered their interest to z/OS using
the unique object token created when the memory object
was created. And DB2 Version 9 introduced this 64-bit
shared private storage, but in Version 10 almost all of the
DB2 storage is now 64-bit shared private.

So, to repeat again, don’t be scared by these very large
numbers. All simply DB2 is doing is reserving virtual storage.
It does not mean that it is being used. So these areas do not
have to be backed by real storage. That storage is not even
being allocated from a virtual storage perspective. We’re just
simply reserving a range.

In some respects this is a bit of a lazy design, but it does
make it a lot easier from a design perspective, in terms of
not having to cater to serialization when trying to extend. So
it’s very much a high performance design.

So, these storage areas only need to be backed by real
storage when they are allocated within the large reference
area.

Now let’s turn to slide 28.

Slide 28 (55:41)

A major theme about this presentation is about the need to
carefully plan, provision, and monitor real storage consump-
tion. So, first of all, let me talk about, or share with you,
about a parameter called SPRMRSMX. I call this the “real
storage kill switch.”

This was available prior to DB2 Version 10, and it was only
used by a small number of customers who were running
multiple DB2 subsystems from the same or different groups
on an LPAR, and basically it was a safety switch. It was an
idea that if you had a runaway DB2 subsystem that was allo-
cating more and more storage, and particularly consume all
the real storage, and consume all the aux storage, you then
take the LPAR down.

So the idea of this real storage kill switch was basically to
provide a safety device. And the idea was you’d have a
rough estimate as to the normal working set size of a DB2
subsystem, multiplied by 2, and then you set the ZPARM.
And what would happen is when this value for SPRMRSMX
was reached, then that DB2 subsystem would be cancelled,
cancelled out. And this is way of protecting the overall avail-
ability of the LPAR and other subsystems and DB2 subsys-
tems that are running on there.

With the advent of Version 10, customers using the real
storage kill switch will need to re-evaluate that value and fac-
tor in the amount of storage being used in 64-bit shared and
64-bit common storage.

Now, with the advent of Version 10, DB2 is making much
more use of 64-bit storage, and there are some problems
that needed to be solved. One is that you needed the ability
to monitor real and auxiliary storage usage for 64-bit stor-
age.

Now, in version 9 this wasn’t a big issue because the use of
64-bit shared was fairly limited. But now, Version 10 makes
extensive use of 64-bit shared. Also, the buckets we re-
ported previously for real and aux usage were LPAR level
instrumentation buckets. If you had more than one DB2 sub-

system running on the LPAR, these numbers were actually
inaccurate, and you were not able to isolate down and find
out how much real and auxiliary storage was being used by
the individual DB2 subsystems. And the only way to get a re-
liable number was to have one DB2 subsystem per LPAR.

And then there was also a lack of monitoring for what is
called an ENF 55 condition. This is when more than 50 per-
cent of the auxiliary storage is usage.

So, as I said, these are some of the problems or challenges
introduced with DB2 Version 10, and the question is, “what
are we going to do about it?”

Well, if you now turn to slide 29…

Slide 29 (58:30)

I want to advertise a new function APAR PM24723 that’s
come out for DB2 Version 10, after GA. And this is very im-
portant, OK? It addresses the monitoring issue, and it also
provides a new extension to IFCID 225 for storage monitor-
ing. The prerequisite for the monitoring piece is the MVS
APAR OA35885. This MVS APAR provides a new callable
service to real storage manager that is used by DB2, for ex-
ample, to provide real and auxiliary storage use for an ad-
dressing range for any shared object.

Secondly, with this APAR, the hidden ZPARM for the real
storage kill switch has now become opaque. It is called RE-
ALSTORAGE_MAX.

But another major thing that was introduced with this APAR
was a thing called DISCARD mode. And it’s controlled by a
new ZPARM called REALSTORAGE_MANAGEMENT. And
this controls when DB2 will discard or free storage frames
back to z/OS real storage manager. There are three values
for this ZPARM: ON, OFF, and AUTO. And AUTO being the
default, and strongly recommended.

When you have REALSTORAGE_MANAGEMENT set to
ON, then DB2 will discard unused frames back to real stor-
age manager all the time. So it will discard stack, thread
storage and… Basically what it’s trying to do is keep the
storage footprint small.

On the other hand, if you turn it to OFF, then you basically
turn off discard processing. However, when things do get
really out of hand, then we’ll still go into discard mode proc-
essing.

Now what then happens with AUTO, which is the default, is
that basically this discard mode processing will occur when
heavy paging occurs and is imminent, and we try to reduce
the frame count to avoid system paging. So, it’s a bit like a
thermostat on your central heating system or air-conditioning
system. It’ll cut in when there’s a problem, and then when
the condition is relieved, it will turn off discard mode process-
ing. With AUTO, which is the default, DB2 monitors paging
rates, switches between ON and OFF, and decides when to
discard frames based on reaching 80 percent of the real
storage kill switch, 50 percent of aux used, and when we
have a condition in z/OS called AVQLOW “average q low.”
This is a count of the available real storage frames.

When actually the discard mode processing is operational,
there are some new messages: DSNV516I and 517I, when
the paging rates cause DB2 to free real frames.

So, strong recommendation for true business production use
is to apply the APAR PM24723 and the prerequisite MVS
APAR OA35885.

Now let’s turn to slide 30.

Slide 30 (1:01:29)

I now want to switch tacks onto high INSERT performance.

As I said as part of my introductory comments, one of the
things that we’re trying to do here is provide performance
improvements for universal table space, and we want the
INSERT performance for UTS to be equal or better com-
pared to classic partitioned.

And significant changes have occurred in DB2 version 10.
First of all, universal table space now supports MEMBER
CLUSTER, and there is the ability to turn it both on and off.
There have also been some changes to the space search
algorithm, so it’s now somewhat similar to classic partitioned.
So the goal was for UTS to be equal or better than classic
partitioned. In absolute terms, we’re not there yet, but there
have been significant improvements, and we’re much closer.

Now, how close we are, or how good we are, is very work-
load dependent. Some workloads are definitely better, a few
of them are actually worse. INSERT performance in general
is still a trade off between space reuse versus throughput

and reduced contention. So, the one are area we are still a
bit weak on is when you have UTS PBR/PBG with row-level
locking and sequential insert. And I’ll be talking through
some charts here, which will illustrate the benefits, and also
illustrate this weak point as well.

Now let’s turn to slide 31.

Slide 31 (1:02:50)

Now, let’s talk about some general INSERT performance
improvements across all the table space types.

The first one is reduced LRSN spin for inserts to the same
page. This works very well when you use multi-row insert,
and also when you have simple insert within a loop in a data
sharing environment. So, now we no longer have to have a
unique LRSN for each of these log records.

There’s also an optimization for pocket sequential. Some-
times this is referred to as “spot sequential,” and the change
here is that index manager now picks the candidate RID dur-
ing sequential insert, to be the next lowest key RID value.
Previously, it was the next highest key RID value. The end
result of this is a high chance to find space and avoid a
space search.

And the third improvement is parallel index I/O. It works very
well when activated for random key inserts. It occurs when
you have three or more indexes, and to compensate for the
potential increased CPU cost of having parallel index I/O,
then all prefetch and deferred writes are now eligible for zIIP
offload. So, this is a compensation feature.

Now, let’s turn to slide 32.

Slide 32 (1:04:02)

So, what I want to do here is talk you through some insert
measurements that we’ve done at the DB2 lab. These are
based on two-way data sharing. They are based on a data-
base schema where we have three tables, with a total six in-
dexes (4 unique, 2 non-unique, 2 secondary indexes) and
we test various table space types: partitioned, segmented,
UTS PBR/PBG.

And basically the workload issues SQL INSERTs. These IN-
SERTS may have 5, 9, or 46 columns of various column
data types. For interest purposes the application is imple-
mented in Java, and we have two general types of the work-
load. We have sequential insert into empty tables, we have
up to 240 concurrent threads and we use multi-row insert
with a row-set size of 100. And the other type of test we
have is random inserts into populated tables, where we have
single-row inserts and have up to 200 concurrent threads.

Now let’s turn on to slide 33.

Slide 33 (1:05:03)

Now what we have on this slide 33 here is a set of meas-
urements related to range-defined table spaces. So what
we’re doing here is comparing like with like. We’re compar-

ing classic partitioned table spaces with UTS PBR with or
without MEMBER CLUSTER.

Now, the top half of the chart here covers random inserts,
and the second half, or bottom half, of the chart covers se-
quential inserts. So let’s just look at the top half of the chart
here about random inserts. On the left-hand side is the
throughput. On the right-hand side is the CPU time. The col-
umns in red are showing page-level locking, and the col-
umns in blue are showing row-level locking.

So, if you now look on that top left-hand side here, the
throughput: on the Y-axis we have rows per second, and on
the X-axis we have PTS with and without MEMBER CLUS-
TER, and we have PBR with and without MEMBER CLUS-
TER. And what you can see here now is that PBR competes
very favourably now with PTS. In terms of throughput here,
they are very much the same. And there is also not a big gap
between page and row-level locking, OK? And there doesn’t
seem to be a lot of big difference here between with and
without using MEMBER CLUSTER.

When we go to the right-hand size of that chart here, and we
look at CPU time, again now you can see that the CPU time
is very much same for PBR with and without MEMBER
CLUSTER versus PTS.

So the top half of this chart here for random inserts is ex-
tremely positive and not a lot of difference between page-
and row-level locking.

Now let’s come to the bottom half of the chart. So again, let’s
look at throughput. We can see here now if we look at page-
level locking to start with now, that in terms of throughput
here PBR now, with or without MEMBER CLUSTER com-

petes very favourably with page-level locking with PTS.
However, when you use row-level locking with PBR, and
without using MEMBER CLUSTER, then there is a very sig-
nificant difference with row-level locking between using
MEMBER CLUSTER and not using MEMBER CLUSTER.
When we are able to use MEMBER CLUSTER with row-
level locking on PBR then the throughput is significantly in-
creased.

If you look on the bottom right hand side of the chart for se-
quential inserts, we see CPU time. And what you can see
here with sequential inserts is the CPU time per commit is
significantly lower here with page-level locking versus row-
level locking. And this is not a surprise when using… the key
difference between page-level locking and row-level locking
is when you have sequential INSERTs, UPDATEs, and DE-
LETEs.

Now let’s turn to slide 34.

Slide 34 (1:07:57)

On slide 34 we have a similar sort of chart, but what’s differ-
ent about this chart is non-range-defined table space. Again
trying to compare like with like. So what we’re doing here is
comparing segmented table spaces where we don’t have
MEMBER CLUSTER and don’t have MEMBER CLUSTER in
Version 10 versus PBG.

And PBG in Version 10 now supports MEMBER CLUSTER.
So, the top half of the chart is related to random inserts and
the bottom half of the chart is related to sequential inserts.

So let’s talk about the top half of the chart first, related to
random inserts. So, top left-hand side talks about through-
put. And if you now look at the throughput with page-level
locking, you see the highest throughput is now achieved with
PBG with and without MEMBER CLUSTER, and the very
best result is PBG with MEMBER CLUSTER. If we use row-
level locking, then the best result is with PBG and MEMBER
CLUSTER.

If we look at the CPU time, OK? Then the best result is
achieved here now in this case with UTS PBG. And in fact
with row-level locking it comes down still further. So again, a
good set of results here for random inserts.

Now let’s look at the bottom half of the chart and look at se-
quential inserts. So first of all let’s look at throughput in the
bottom left-hand side. And now we can see that the level of
throughput is much better, or simply better with PBG. It’s
equal or better than what we had with segmented.

Now however, when you look at row-level locking, then basi-
cally the results with row-level locking are poor with both
segmented and also PBG without member cluster. Once you
actually use row-level locking with MEMBER CLUSTER on
PBG then you get pretty good results on sequential inserts.

On the bottom right-hand side we see the CPU time for se-
quential inserts. And obviously, the lower the number the
better. And you can see in terms of CPU time the best re-
sults here are used with page-level locking.

So, this completes part 1 of this web lecture on DB2 Version
10 migration planning and very early experiences. Thank
you for listening to this web lecture.

(1:10:14)

