developerVWorks

A guide to writing unobtrusive JavaScript and Ajax

Employ good programming practices when creating your web
applications

Skill Level: Intermediate

Joe Lennon (joe@joelennon.ie)
Lead Developer
Core International

02 Nov 2010

Unobtrusive JavaScript is the practice of separating the JavaScript, CSS, and HTML
elements in your web applications. By keeping your applications organized in this
way, it's easier to maintain them and to ensure that your applications behave
consistently across various platforms and web browsers. In this article, learn how to
employ techniques to reap the benefits of developing web applications in an
unobtrusive manner.

Introduction

When writing JavaScript and Asynchronous JavaScript + XML (Ajax) applications, it
Is all too easy to focus on the interactive features they have to offer, while forgetting
about the basic fundamentals of web application development. It is important to write
JavaScript and Ajax applications in an unobtrusive manner for a number of reasons.
First, doing so lets you keep the logic of the application separate from your content,
making it easier to maintain your applications going forward. Additionally, it lets you
ensure that your application behaves consistently across various platforms and web
browsers in its most basic form, resulting in you only needing to worry about this
issue when you add in the JavaScript and Ajax features. Most importantly, perhaps,
Is that developing web applications in this manner means that you are following the
idea of progressive enhancement, meaning that your application will support users
who are using browsers that do not support JavaScript or particular JavaScript
features (including Ajax). If you have been writing JavaScript applications in an

A guide to writing unobtrusive JavaScript and Ajax Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 1 of 15

mailto:joe@joelennon.ie
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

obtrusive manner up until now, this article will help you discover the best practices
that allow you to create web applications that work for everybody, while providing all
the bells and whistles to those users who can use them.

The term unobtrusive JavaScript has a relatively loose definition, but is generally
accepted as being the process of creating web pages and applications using a
collection of good programming practices. These include the following:

» Keeping separate the JavaScript, CSS, and HTML elements of your
application

» Using JavaScript to progressively enhance your application—don't use
JavaScript for core functions

* Maintaining your code structure in such a way that reduces repetition, is
better organized, and is easier to read and maintain.

» Adhering to web and accessibility standards

Not only is it good practice to develop this way, but it also ensures that your
application will work for a wide range of audiences using different web browsers and
devices, even those with limited capabilities. Applications built in this fashion are
also generally better organized and structured, perform faster, and are less prone to
bugs.

In this article, you'll see how the presentation, style, and behavior layers of your
application should be kept separate, with the goal of using no inline CSS or
JavaScript event handling. You will also see some examples of obtrusive JavaScript
code, and discover the attributes that they have that are considered to be poor
programming practice. You will then learn how to correct these issues, writing the
same code in an unobtrusive way, with guidelines on some best practices for this
style of development. Ajax applications, in particular, are dangerous grounds for
unobtrusive code. Just because your application has a rich Ajax interface does not
mean that you cannot add this code in a progressively enhancing manner. You will
learn how to approach Ajax functions in a way that will provide a fallback for users
who cannot take advantage of the fluidity your Ajax features have to offer. Finally,
you will see a detailed example of an application that provides dynamic Ajax loading
that still works even with JavaScript switched off.

Separating behavior from content

Before the advent of Ajax and Web 2.0, JavaScript was largely used for basic things
such as client-side form validation, rollover images, and showing/hiding content.
Because each of these features was enabled by a small amount of JavaScript code,
the general tendency was to create a couple of functions in a <scr i pt > block in the
<head> section of your HTML document, and then attach those functions to events

A guide to writing unobtrusive JavaScript and Ajax Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 2 of 15

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

using attributes on HTML elements such as oncl i ck, for example: <i nput
type="button" value="Cick Me!" onclick="buttonPressed();">.

JavaScript is not the only problem when it comes to separating the different parts of
your code. CSS styling is also often included inline. Consider the following example:
<i nput type="button" value="Cick Me!"

oncl i ck="buttonPressed();" styl e="background-col or: #999" />.

This style of coding usually starts off as an innocent effort to change the appearance
or behavior of an element. The problem is, the more code that is created in this way,
the more unmanageable it becomes, and the more difficult it becomes to develop in
an unobtrusive manner. Changing JavaScript and CSS code that is written inline is a
nightmare in large applications, as it may need to be changed in many, many
places—making it extremely easy to miss something in the process.

Instead of coding inline, you should keep all JavaScript and CSS code out of your
HTML mark-up. Instead, use reference attributes such as i d and cl ass to make it
easy for your JavaScript and CSS to find and identify these elements in the DOM. In
the case of the button, you could rewrite this as shown in Listing 1. This article uses
the Prototype JavaScript library in all examples; you can substitute this with your
favorite library or raw JavaScript should you so wish. See Resources for a link to an
article comparing several JavaSript frameworks.

Listing 1. Keeping your JavaScript and CSS code out of your HTML mark-up

// HTML code

<i nput type="button" value="dick Me!" id="ny_button" />
/1 JavaScript code

$("my_button").observe("click", buttonPressed);

/'l CSS code

#ny_button { background-col or: #999; }

Just as it's important not to mix CSS and JavaScript code in your HTML mark-up, it's
also important not to blend CSS code into your JavaScript. The butt onPr essed
function in Listing 1, for example, may result in the style of an element being
changed. Look at the example in Listing 2.

Listing 2. Example showing how the buttonPressed function could
inadvertently change the style of an element

function buttonPressed() {
$("my_div").setStyle({
backgroundCol or: "#FF6600",
fontSize: "12px"

})

A guide to writing unobtrusive JavaScript and Ajax Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 3 of 15

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

}

As you can see, this code directly manipulates styles, which is not good, as that job
should be left to CSS. Instead, you should use CSS to define the style properties for
a given class name, and then use JavaScript to apply that class to the relevant
object. So the code in Listing 2 could be improved, as shown in Listing 3.

Listing 3. Improving the code

/1 JavaScript code

function buttonPressed() {

var ny_div = $("ny_div");

i f(!'my_div.hasC assName("hi ghlight"))
) my_di v. addCl assNane(" hi ghl i ght");

/1 CSS code:
. highlight { background-col or: #FF6600; font-size: 12px; }

Separating your code in this manner will lead to a highly organized code structure,
making it far easier to diagnose and fix any problems that may arise. It is also
suggested that you place your JavaScript and CSS code into external files, rather
than including them in your HTML code (even if they just reside in the <head>
section). In the majority of cases, this will also help speed up your application, as
external files are cached the first time they are accessed, and don't need to be
downloaded again on the next page.

Although you can technically build JavaScript applications that employ progressive
enhancement while still using inline code, doing so will lead to messy code that is
difficult to maintain. Where possible, you should always strive to keep your
JavaScript, CSS, and HTML separated, for your own sake!

Obtrusive JavaScript in action

The best way to describe obtrusive JavaScript is to give an example. All too often
you will see links created in the following way: <a hr ef =" #"
id="ny_link">dick ne.

You might then find an event handler like the following in the JavaScript code:
$("ny_link").observe("click", validateAndSubmt);.

The val i dat eAndSubm t function would likely contain some validation rules, and
if these are passed, a form is submitted or some other action is performed. While
this might seem perfectly innocent, the link will not work at all if JavaScript is not
enabled. The browser will look for the URL #, which is, of course, an anchor to the

A guide to writing unobtrusive JavaScript and Ajax Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 4 of 15

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

same page as you are currently on, and stop.

Note: As a rule, client-side validation should not be relied upon, as JavaScript can
easily be switched off or circumvented, making it a very insecure and unreliable
means of validating forms and input. Instead, client-side validation should only be
used as a means of improving the user experience and lessening the number of
invalid forms sent to the server. You should always validate and cleanse the input on
the server side.

In this case, the client-side validation should only come into play if JavaScript is
enabled. Fixing this link might be as simple as creating the link as follows: Cick nme.

Now, in your JavaScript code, you can determine whether the link should be
followed (see Listing 4).

Listing 4. Determining whether the link should be followed

function val i dat eAndSubmi t () {
//validation |ogic here
if(valid) {
return true;
} else {
alert("Error!");
return fal se;

In Listing 4, if val i d is returned as false, an alert box will open, and the link will not
be followed, as the event handler has returned a false value.

Another common use of unobtrusive JavaScript is in quick jump drop-down lists. See
the example in Listing 5.

Listing 5. Quick jump drop-down lists

/!l HTM. code

<sel ect id="my_select">
<option val ue="">Sel ect...</option>
<option val ue="http://ww. googl e. coni >Googl e</ opt i on>
<option val ue="http://ww. yahoo. cont >Yahoo! </ opti on>
<option val ue="http://ww. bi ng. com'>Bi ng</ opti on>

</ sel ect >

/1 JavaScript code

functi on goToSearch(e) {
var el = Event.elenment(e);
if($F(el).length > 0)
wi ndow. | ocation = $F(el);

}

docurnent . observe("dom | oaded", function() {

A guide to writing unobtrusive JavaScript and Ajax Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 5 of 15

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

$("my_sel ect").observe("change", goToSearch);
1)

Again, in this example, if JavaScript is disabled, nothing will happen when you select
an item from the drop-down list. The problem here is that there is no standard HTML
fallback to navigate to one of the available pages. Let's rewrite this example, this
time using progressive enhancement to include the JavaScript functions (see Listing
6).

Listing 6. Progressive enhancement

// HTML code:

<form nanme="redi rect" nethod="get" action="redirect.php">
<sel ect nane="ny_sel ect" id="ny_select">
<option val ue="">Sel ect...</option>
<opti on val ue="http://ww. googl e. coni >Googl e</ opt i on>
<opti on val ue="http://ww. yahoo. cont >Yahoo! </ opti on>
<option val ue="http://ww. bi ng. comt'>Bi ng</ opti on>
</ sel ect >
<i nput type="submit" value="Go!" />
</forne

In this example, you use an HTML <f or n» element, which allows you to define a
server-side script that will take care of the redirection, should JavaScript not be
available. If JavaScript is switched off, when the user clicks the Go! button the form
will submit to redirect.php, passing the URL in the query string. The server can then
validate that a valid option was selected and redirect the output based on the input
received.

In this example, you could use JavaScript to progressively enhance this in two ways:

» Validate that the user has selected a search engine

« Perform the redirection without requiring another HTTP request to be sent
to the web server

Let's go ahead and implement these improvements using JavaScript (see Listing 7).

Listing 7. Implementing improvement using JavaScript

/1 JavaScript code

functi on goToSearch(e) {
Event . stop(e);

var my_select = $

F("ny_select");
if(ny_select.length > 0)
wi ndow. | ocati on = ny_sel ect;
el se
) al ert ("You nust select a search engine!");
A guide to writing unobtrusive JavaScript and Ajax Trademarks

© Copyright IBM Corporation 2010. All rights reserved. Page 6 of 15

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

docunent . observe("dom | oaded"”, function() {
docunent . redirect. observe("subnmt", goToSearch);

1)

Listing 7 stops the default action from running (it prevents the form from submitting
to the server) and then validates that a search engine has been selected. If it has, it
redirects the user to the selected URL. If it has not, it displays an alert box with an
error message.

You may notice that the example in Listing 6 added a Go! button, whereas the
original example worked on the onchange event of the <sel ect > element itself.
The problem here is that you cannot submit a form that only contains this element
without a submit button or JavaScript. If you were determined to have no Go! button,
you could use JavaScript to dynamically set the style of the button so that it is
hidden on browsers that have JavaScript enabled. That way, it is still present in
browsers that don't have JavaScript enabled, but it is hidden in browsers that do.
You could then attach the event handler to the onchange event of the <sel ect >
element and have the best of both worlds.

Writing unobtrusive code

In order to write code in an unobtrusive manner, you should start by developing a
solution that will work for the lowest common denominator—a browser that does not
support JavaScript. Most modern web browsers either have a built-in option to
disable JavaScript or have a plug-in available. Use this to see your site through the
eyes of a user who doesn't have the luxury of JavaScript available to them.

Start off by writing your HTML code without JavaScript, and write the HTML so that it
performs all the basic functions the page needs to provide. If you need to submit
input data, use a <f or n» tag with a real action attribute. If you need to link to other
items, use good old-fashioned hyperlinks; you won't have the ability to attach events
to unsuitable elements like <i ng> or <di v>. Build a working application in this way.
It doesn't have to be pretty or offer the greatest user experience ever known, but it
must work.

When you are satisfied that your application or web page works without any
JavaScript, while providing the basic requirements it sets out to fulfill, you can move
on to progressively enhancing the page using JavaScript. By developing your
application in this way, your page will have more semantic meaning, as it is more
likely to use HTML elements for their intended purpose. One of the other great
benefits of developing in this way is that features that you may have otherwise
crippled will still be enabled.

A good example of this is using form fields without a <f or n» tag, particularly when it
comes to Ajax applications. It is all too easy now to not bother including a <f or e

A guide to writing unobtrusive JavaScript and Ajax Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 7 of 15

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

element in your application, and use DOM methods like

docunent . get El enent Byl d to get the values you need to submit, and submit
them to the server using an XMLHt t pRequest . The problem with building
applications in this way is that default events are not taken into account, and the end
result is your application becomes less usable. For example, say you have a search
text box and a button that performs a search of your site using the

XM_Ht t pRequest described in this section, with no <f or n> element used in the
process. It would be fair to expect that when you press the Return key while typing
your query in the text box, that the form would be submitted and the search
performed. Unfortunately, this won't be the case, and you might find yourself running
off to figure out how to capture the keypress event to mimic this function. The irony
Is, if you had used the <f or n> element in the first place, pressing the Return key
would have actually worked. This is just one example of the many overlooked default
behaviors that HTML elements provide, that continue to be abused and misused by
developers every day.

Let's work through a simple example of writing a piece of code unobtrusively.
Imagine you have a thumbnail image, and you want to allow the user to click on the
thumbnail and show a larger version of the image in a lightbox (a kind of modal
pop-up window that appears, with the page faded into the background using a mask
overlay effect). Instead of just creating an <i ng> tag, attach an oncl i ck event to it
and call the lightbox to show the large image. Let's work through how this should be
done to cater to those users who are without JavaScript support.

The first thing to do is to plan out what it is you are trying to do. You want to click on
an image, and have a larger image appear, without leaving the page you are
currently on. OK, so you want to add fancy lightbox effects, but stripped down to the
basic requirements; this is essentially what you need to do. The HTML-only solution
is very straightforward (see Listing 8).

Listing 8. HTML-only solution

<i ng src="t hunb. | pg"
wi dt h="50" hei ght="50" alt="M/ Picture" />

Listing 8 contains the basic requirements met using nothing but plain old HTML. This
Is fine, but it's not pretty. For those with JavaScript, you want to make the large
image show up in a lightbox overlay in the current window, not in a new window. You
can do this as shown in Listing 9 (assuming your lightbox is launched by a function
openLi ght box, which accepts the large image URL as an argument):

Listing 9. shownLargimage() function

functi on showLargel mage(e) {
Event. stop(e);
var link = Event.elenent(e).up("a");

A guide to writing unobtrusive JavaScript and Ajax Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 8 of 15

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

openLi ght box(| i nk. href);

docunent . observe("dom | oaded”, function(e) {
$("my_t humb") . observe("click", showLargel mage);
1)

To take this even a step farther, you could have a gallery of thumbnails, and may
want to open a lightbox with the relevant large image for each thumbnail. This is also
straightforward. Rather than use IDs, you could use a class name or as is commonly
used in lightbox scripts, the r el attribute (see Listing 10).

Listing 10. Creating a gallery of thumbnails

// HTM. code

<ing src="thunbl.jpg"
wi dt h="50" hei ght="50" alt="Picture 1" />

<ing src="thunb2.jpg"
wi dt h="50" hei ght ="50" alt="Picture 2" />

<inmg src="t hunb3.j pg"
wi dt h="50" hei ght ="50" alt="Picture 3" />

/1 JavaScript code

functi on showLar gel mage(e) {
Event. stop(e);
var link = Event.elenment(e).up("a");
alert(link.href);

docunent . observe("dom | oaded”, function(e) {
$$("a[rel =li ghtbox]").each(function(thunmb) {
t hunb. observe("click", show_.argel mage);
1

1)

As you can see, the end result is some very clean, readable, and easy to maintain
code. You can attach events to multiple items without needing to use unnecessary

I d attributes or having to attach the handlers in an inline fashion. | am shuddering at
the idea of how this might be handled if you wrote it obtrusively. | can picture no <a>
tags, with nothing working in non-JavaScript browsers. | can see inline oncl i ck
handlers on the <i ng> elements, with the URL of the large image passed as an
argument directly in the mark-up itself. By taking a step back and trying to map out
what it is | was trying to achieve, | was able to provide a solution that is accessible,
adheres to standards, has semantic meaning, and provides neat lightbox functions
In a progressive manner.

Unobtrusive Ajax

The advent of Web 2.0 and Ajax applications has led to a new challenge for web

A guide to writing unobtrusive JavaScript and Ajax Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 9 of 15

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

developers when it comes to creating interactive web applications. The advantages
of using asynchronous HTTP requests to retrieve data are clear—applications that
take advantage of Ajax are more responsive, easier to use, and are edging ever
closer to being as usable as a traditional desktop application might be (some would
argue that well-designed web applications are even more usable and accessible
than traditional applications).

The problem with using Ajax requests is that it can very quickly blur your vision when
it comes to catering to those users who don't have the luxury of a JavaScript
application. Take a typical registration form, for example. There are many ways you
can Ajaxify this type of form. You could automatically check that a user name or
email address is not already in use, validate the form without refreshing the page, or
even submit the form and display a result dynamically.

Let's take a simple form that requests a user name and password, which sends an
asynchronous HTTP request to a server-side script, which then returns a response
of "ok" if the process was successful, and an error message if there was a validation
issue. The code form of the HTML form might look like Listing 11.

Listing 11. Simple form

<formid="register">
<l abel for="usernanme">User nane</| abel >
<i nput type="text" name="usernane" id="usernane" />
<l abel for="password">Password</| abel >
<i nput type="password" name="password" id="password" />
<i nput type="submit" val ue="Register" id="reg_button" />
</fornme

The first problem should be very evident. The form in Listing 11 has no method or
action attribute, which means that when you press the Register button, nothing will
happen. Just because you can easily use JavaScript to get the form by its i d
attribute and submit it using Ajax does not mean you should forget about the
standard method of submitting a form. Instead, you could write your server-side
script to look for a extra field in the form. If it's not available, you know that the
request is made through a regular form post, and you should serve back a full page.
If it's set to 1, you know the request was made using an asynchronous Ajax call, and
you should just send back a message with OK or an error. You would then set the
value of the field to 1 in your Ajax request, which, of course, won't be executed if the
browser does not have JavaScript support.

A revised form might look like Listing 12.

Listing 12. Revised form

<formid="register" nethod="post" action="regi ster.php">
<l abel for="username">User nane</| abel >
<i nput type="text" name="user nane" id="usernane" />

A guide to writing unobtrusive JavaScript and Ajax Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 10 of 15

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

<l abel for="password">Password</| abel >

<i nput type="password" name="password" id="password" />

<i nput type="submit" val ue="Register" id="reg_button" />
</forne

Now you can take this form and submit your Ajax request to the same server-side
script, which will easily be able to distinguish how it should send its response
(redirect back to register page with an error if the Ajax field doesn't exist, or just
output a simple message if the value is 1). The JavaScript code (with a little help
from the Prototype library) to perform this action might be as follows in Listing 13.

Listing 13. Using the form to submit your Ajax request to the server-side script

<script type="text/javascript">
function registerSuccess(transport) {
if(transport.responseText == "ok")
al ert (" Success!");
el se
al ert(transport.responseText);

}

function registerFailure(transport) {
alert(transport.status+ '+transport.statusText);

function submt Usi ngAj ax(e) {
Event . stop(e);
var options = {
paraneters: {
aj ax: "1"

onSupcess: regi ster Su_ccess,
onFai lure: registerFailure

$("register").request(options);

docurnent . observe("dom | oaded”, function() {
$("register").observe("submt", subm tUsingA ax);

</scribt>

In Listing 13, you add an event handler to the submi t event of the form. This
handler prevents the default event (submitting the form) from being fired, sets the
value of the extra aj ax argument to 1, and makes an aj ax Request using the
original form for the URL and data. The r egi st er Success function will be called if
a successful HTTP response code is received, or in the case of an error, the

regi st er Fai | ur e function will be called.

Another unobtrusive Ajax example

Another scenario where Ajax is particularly useful is in grouping large sets of data
into pages, usually referred to as pagination. If you have a set of search results, for
example, rather than show several hundred or more search results at a time, you'll

Trademarks

A guide to writing unobtrusive JavaScript and Ajax
Page 11 of 15

© Copyright IBM Corporation 2010. All rights reserved.

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

more likely show a smaller subset of this data, for example, 10 records, and give the
user the option to move forward and back between the pages. An example of this is
Google's search results. At the bottom of the page you get the option to navigate
between pages of the results.

Typically, the standard way of moving between pages is to pass a parameter to the
server-side script loading the data, telling it what page of the result set it should
output. The problem is, each time the user needs to move to a different page, you
must send a request back to the server, which would cause the page to reload with
the new set of data.

With Ajax, you can ensure that the user doesn't have to watch the entire page reload
when a new page of data is being fetched, but instead just replace part of the page
with the new set of data. Let's see an example of how this might work.

First and foremost, as always, you need to ensure that you cater to those users
without JavaScript. To do this, you need to ensure that your application works in a
traditional manner, with the page refreshing with a new set of data (see Listing 14).
Again, you'll use the concept of passing an aj ax flag to the server-side script to let it
know whether it is being called by a regular GET request or by an Ajax call.

Listing 14. Ensuring that the application works for users without JavaScript

/I HTM. code

<div id="results">

Result 1</1i>
Result 2</1i>

Result 10</1i>
</ ol >

<a cl ass="pagi ng" href="results. php?page=2">Next Page
<a cl ass="pagi ng" href="results. php?page=10">Last Page
</ di v>

The results.php server-side script would produce a page like the one in Listing 14 for
page 1, and clicking the links would bring you to the second page or the last page. If
you were not on page 1, you'd also see the Previous Page and First Page links, and
if you were on the last page you wouldn't see the Next page or Last Page links. You
could even show a list of pages to make it easy to jump to a particular page. So how
do you Ajaxify this paging section without breaking it for non-JavaScript browsers?
It's simple really, you just get a reference to all paging links, stopping the default
action from firing when they are clicked (the browsers replace the current page with
the page in the hr ef attribute of the link). You then get the value of the hr ef
attribute and use this as the URL for your Ajax request. Finally, you tag your aj ax
parameter so the server-side script will know that it's an Ajax request (see Listing
15).

A guide to writing unobtrusive JavaScript and Ajax Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 12 of 15

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

The server would then either return an entire page, or just the section you want to
replace with the requested set of data, depending on whether it was called using
Ajax or a regular GET request. Your function then replaces the contents of the

r esul t s div with the HTML returned by the server, containing the list of
results and the pagination links (which may change as you move from page to

page).
Listing 15. Ajaxifying the paging section

<script type="text/javascript">
function novePageSuccess(transport) {
$("results").innerHTM. = transport.responseText;
}

functi on novePage(e) {

Event . stop(e);
var el = Event.elenment(e);

var url = el.href;
var options = {

nmet hod: "get",

paraneters: {

aj ax: "1"

onSuccess: novePageSuccess

}
}

docurnent . observe("dom | oaded", function() {
$$(". pagi ng") . each(function(link) {
1 nk. observe("click", novePage);
). 1)

</scribt>

There you have it—another straightforward Ajax example. As I'm sure you can see,
it's relatively simple to work with Ajax in a way that progressively enhances your
application rather than making JavaScript a compulsory requirement. In addition, by
employing better coding practices, you'll actually find that working with Ajax in an
unobtrusive way is much easier and efficient than using a large amount of
JavaScript to do the same thing in a broken manner.

Conclusion

This article introduced you to the concept of unobtrusive JavaScript, progressive
enhancement, and the idea of designing your application without JavaScript first, but
then adding it to improve the user experience for those who benefit from it. It is by no
means an exhaustive resource on how to develop applications in an unobtrusive
manner. But if, like me, you have spent a lot of time developing web applications that
aren't necessarily working with JavaScript and Ajax unobtrusively, you might be
surprised by just how beneficial it is to embrace this web development philosophy.

A guide to writing unobtrusive JavaScript and Ajax Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 13 of 15

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

Resources

Learn

e "Ajax overhaul, Part 1: Retrofit existing sites with Ajax and jQuery"
(developerWorks, March 2008) shows how you can eliminate pop-up windows
and navigational dead-ends with simple modal windows.

* "Mastering Ajax, Part 2: Make asynchronous requests with JavaScript and Ajax"
(developerWorks, January 2006) explains how to use Ajax and the
XMLHttpRequest object to create a request/response model that never leaves
users waiting for a server to respond.

* "Where and when to use Ajax in your applications" (developerWorks, February
2008) describes how you can use Ajax to improve your websites while avoiding
bad user experiences.

* Unobtrusive Ajax by Jesse Skinner (from O'Reilly Media) is about making web
applications that work for everyone all the time, even if you have JavaScript
turned off.

» Behavioral Separation by Jeremy Keith looks at separating content, style, and
behavior in website design.

» Unobtrusify.com provides a clever demonstration of unobtrusive JavaScript in
action.

* Progressive Enhancement with JavaScript by Aaron Gustafson discusses how
to apply the progressive enhancement philosophy to client-side scripting.

» The seven rules of unobtrusive JavaScript were developed by Christian
Heilmann through years of teaching and implementing JavaScript in an
unobtrusive manner.

» Separating Behavior From Structure from Adobe labs provides background and
examples on unobtrusive JavaScript.

* Check out the Unobtrusive JavaScript website.

» "Improve the performance of Web 2.0 applications" (developerWorks,
December 2009) explores different browser-side cache mechanisms.

» "Create Ajax applications for the mobile web" (developerWorks, March 2010)
explains how to build cross-browser smartphone web applications using Ajax.

» "Ajax performance analysis" (developerWorks, April 2008) examines toolsets
that find and correct performance problems within your Ajax-enriched
application.

» "Compare JavaScript frameworks" (developerWorks, February 2010) provides
an overview of the frameworks that greatly enhance JavaScript development.

A guide to writing unobtrusive JavaScript and Ajax Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 14 of 15

http://www.ibm.com/developerworks/web/library/wa-aj-overhaul1/
http://www.ibm.com/developerworks/web/library/wa-ajaxintro2/
http://www.ibm.com/developerworks/web/library/wa-aj-when/
http://oreilly.com/catalog/9780596510244/
http://www.alistapart.com/articles/behavioralseparation
http://unobtrusify.com/
http://www.alistapart.com/articles/progressiveenhancementwithjavascript
http://icant.co.uk/articles/seven-rules-of-unobtrusive-javascript/
http://labs.adobe.com/technologies/spry/articles/best_practices/separating_behavior.html
http://www.onlinetools.org/articles/unobtrusivejavascript/
http://www.ibm.com/developerworks/web/library/wa-aj-cache/
http://www.ibm.com/developerworks/opensource/library/wa-aj-mobileajax/
http://www.ibm.com/developerworks/web/library/wa-aj-perform/
http://www.ibm.com/developerworks/web/library/wa-jsframeworks/
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

» The developerWorks Web Development zone specializes in articles covering
various web-based solutions.

» To listen to interesting interviews and discussions for software developers,
check out developerWorks podcasts.

» developerWorks technical events and webcasts: Stay current with
developerWorks technical events and webcasts.

Get products and technologies

* Prototype is a JavaScript Framework that aims to ease development of dynamic
web applications. The latest version is 1.6.

* Innovate your next development project with IBM trial software, available for
download or on DVD.

Discuss

» Create your My developerWorks profile today and set up a watchlist on
JavaScript or Ajax. Get connected and stay connected with My
developerWorks.

* Find other developerWorks members interested in web development.

» Share what you know: Join one of our developerWorks groups focused on web
topics.

* Roland Barcia talks about Web 2.0 and middleware in his blog.
* Follow developerWorks' members' shared bookmarks on web topics.
* Get answers quickly: Visit the Web 2.0 Apps forum.

» Get answers quickly: Visit the Ajax forum.

About the author

Joe Lennon
Joe Lennon is a 25-year-old mobile and Web application developer
"% from Cork, Ireland. Joe works for Core International, where he leads the
development of Core's mobile HR self service solutions. Joe is also a
- keen technical writer, having written many articles and tutorials for IBM
X developerWorks on topics such as DB2 pureXML, Flex, JavaScript,
Adobe AIR, .NET, PHP, Python and much more. Joe's first book,
Beginning CouchDB was published in late 2009 by Apress. In his spare
time, Joe enjoys travelling, reading and video games.

A guide to writing unobtrusive JavaScript and Ajax Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 15 of 15

http://www.ibm.com/developerworks/web/
http://www.ibm.com/developerworks/podcast/?S_TACT=105AGX44&S_CMP=ART
http://www-128.ibm.com/developerworks/offers/techbriefings/?S_TACT=105AGY06&S_CMP=art
http://www.prototypejs.org/
http://www.ibm.com/developerworks/downloads/
https://www.ibm.com/developerworks/mydeveloperworks/profiles/home.do?lang=en
https://www.ibm.com/developerworks/mydeveloperworks/homepage/help/doc/en/homepage_watchlistuse.html
http://www.ibm.com/developerworks/mydeveloperworks/#community
https://www.ibm.com/developerworks/mydeveloperworks/profiles/html/keywordSearch.do?keyword=web&lang=en
https://www.ibm.com/developerworks/mydeveloperworks/search/web/search
https://www.ibm.com/developerworks/mydeveloperworks/search/web/search
https://www.ibm.com/developerworks/mydeveloperworks/blogs/barcia/?lang=en
https://www.ibm.com/developerworks/mydeveloperworks/bookmarks/html?ps=50&search=web&searchType=mode&sortOrder=desc&lang=en
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=1182
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=965
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Introduction
	Separating behavior from content
	Obtrusive JavaScript in action
	Writing unobtrusive code
	Unobtrusive Ajax
	Another unobtrusive Ajax example
	Conclusion
	Resources
	About the author

