
Open source C/C++ unit testing tools, Part 1: Get
to know the Boost unit test framework
Skill Level: Intermediate

Arpan Sen (arpansen@gmail.com)
Independent author

08 Dec 2009

It's a no-brainer: Every software product needs a regression suite. Traditionally, unit
testing frameworks have been developed by testing teams on an ad hoc basis. Not
only does this make maintenance of the test suite tough, things like monitoring
program execution for time/memory performance become non-portable across
operating systems. Taking such considerations into account, this series introduces
you to the choices available for creating sophisticated regression frameworks using
open source software. This article, part 1 in the series, explains the Boost unit testing
framework for C/C++-based products.

What is unit testing?

It's quite likely that a complex piece of C/C++ code will have bugs, and trying to test
for them after the code's written is akin to finding a needle in a haystack. A more
prudent approach is to test individual pieces of code as they are written by adding
small (unit) tests that specifically target certain areas—for example, some
computationally intensive C function or some C++ class claiming to model a certain
data structure, like a queue. A regression suite built with this philosophy will then
have a collection of unit tests and a test driver program that runs the tests and
reports the results.

Generating a test for a specific function or class

For a complex piece of code like a text editor, an external tester cannot generate
tests targeting specific routines—the tester won't have much idea about internal
code organization. Where Boost comes in so handy is in white box testing: As a

Get to know the Boost unit test framework Trademarks
© Copyright IBM Corporation 2009 Page 1 of 16

mailto:arpansen@gmail.com
http://www.ibm.com/developerworks/views/aix/libraryview.jsp?search_by=c+test+tools
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

developer, you code the tests that do the semantic checks for your classes and
functions. This process is of paramount importance, because future maintainers of
your code are bound to tamper with the original logic at some point, and the unit
tests will fail the moment something breaks. By using white box tests, it's often
easier to see what's going wrong without having to use a debugger.

Consider the simple string class in Listing 1. This class is not robust, and you would
use Boost to test it.

Listing 1. An uninspiring string class

#ifndef _MYSTRING
#define _MYSTRING

class mystring {
char* buffer;
int length;
public:

void setbuffer(char* s) { buffer = s; length =
strlen(s); }

char& operator[] (const int index) { return
buffer[index]; }

int size() { return length; }
};

#endif

Some of the typical string-related checks would validate whether an empty string has
0 length, accessing out-of-index results in an error message or exception, and so on.
Listing 2 shows some of the tests worth creating for any string implementation. To
run the sources in Listing 2, you simply compile it with g++ (or any other
standards-compliant C++ compiler). Notice that no separate main function is needed,
nor does the code use any link library: The unit_test.hpp header that's part of the
Boost installation contains all the necessary definitions.

Listing 2. Unit tests for the string class

#define BOOST_TEST_MODULE stringtest
#include <boost/test/included/unit_test.hpp>
#include "./str.h"

BOOST_AUTO_TEST_SUITE (stringtest) // name of the test
suite is stringtest

BOOST_AUTO_TEST_CASE (test1)
{
mystring s;
BOOST_CHECK(s.size() == 0);

}

BOOST_AUTO_TEST_CASE (test2)
{
mystring s;
s.setbuffer("hello world");
BOOST_REQUIRE_EQUAL ('h', s[0]); // basic test

}

developerWorks® ibm.com/developerWorks

Get to know the Boost unit test framework Trademarks
© Copyright IBM Corporation 2009 Page 2 of 16

list1
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

BOOST_AUTO_TEST_SUITE_END()

The BOOST_AUTO_TEST_SUITE and BOOST_AUTO_TEST_SUITE_END macros
indicate the start and end of the test suite, respectively. Individual tests reside
between these macros, and in that sense their semantics are like C++ namespaces.
Each individual unit test is defined using the BOOST_AUTO_TEST_CASE macro.
Listing 3 shows the output from the code in Listing 2.d

Listing 3. Output from the code in Listing 2

[arpan@tintin] ./a.out
Running 2 test cases...
test.cpp(10): error in "test1": check s.size() == 0 failed

*** 1 failure detected in test suite "stringtest"

Let's take a detailed look at the creation of the unit tests from the previous listings.
The basic idea is to test individual class features using Boost-provided macros.
BOOST_CHECK and BOOST_REQUIRE_EQUAL are some of the predefined macros
(also known as test tools) that Boost provides to validate code output.

Boost test tools

Boost has a whole host of test tools, which are basically macros used to validate
expressions. The three main categories of test tools are BOOST_WARN,
BOOST_CHECK, and BOOST_REQUIRE. The difference between BOOST_CHECK and
BOOST_REQUIRE is that in the former case, testing continues even if the assertion
has failed, while in the latter case, it is deemed a critical error and testing stops.
Listing 4 uses a trivial C++ snippet to drive home the difference between these tool
categories.

Listing 4. Using the three variants of the Boost testing tools

#define BOOST_TEST_MODULE enumtest
#include <boost/test/included/unit_test.hpp>

BOOST_AUTO_TEST_SUITE (enum-test)

BOOST_AUTO_TEST_CASE (test1)
{
typedef enum {red = 8, blue, green = 1, yellow, black }

color;
color c = green;
BOOST_WARN(sizeof(green) > sizeof(char));
BOOST_CHECK(c == 2);
BOOST_REQUIRE(yellow > red);
BOOST_CHECK(black != 4);

}

ibm.com/developerWorks developerWorks®

Get to know the Boost unit test framework Trademarks
© Copyright IBM Corporation 2009 Page 3 of 16

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

BOOST_AUTO_TEST_SUITE_END()

The first BOOST_CHECK fails, and so does the first BOOST_REQUIRE. However, the
second BOOST_CHECK is not reached, because the code exits when the
BOOST_REQUIRE fails. Listing 5 shows the output of the Listing 4 code.

Listing 5. Understanding the difference between BOOST_REQUIRE and
BOOST_CHECK

[arpan@tintin] ./a.out
Running 1 test case...
e2.cpp(11): error in "test1": check c == 2 failed
e2.cpp(12): fatal error in "test1": critical check yellow
> red failed

*** 2 failures detected in test suite "enumtest"

On similar lines, if you need to check some individual functions or class methods for
corner cases, the easiest thing would be to create a new test and call that routine
with arguments and expected values. Listing 6 provides an example.

Listing 6. Using a Boost test to check for function and class methods

BOOST_AUTO_TEST(functionTest1)
{
BOOST_REQUIRE(myfunc1(99, ‘A’, 6.2) == 12);
myClass o1(“hello world!\n”);
BOOST_REQUIRE(o1.memoryNeeded() < 16);

}

Pattern matching

It is common to test the output generated from some function against a "golden log."
BOOST_CHECK comes in handy here, too, and you also need to use the Boost
library's output_test_stream class. The output_test_stream is initialized
with the golden log file (run.log in the example below). The output from the C/C++
function is fed onto this output_test_stream object, and then the
match_pattern routine of this object is called. Listing 7 provides the details.

Listing 7. Pattern matching against a golden log file

#define BOOST_TEST_MODULE example
#include <boost/test/included/unit_test.hpp>
#include <boost/test/output_test_stream.hpp>
using boost::test_tools::output_test_stream;

BOOST_AUTO_TEST_SUITE (test)

BOOST_AUTO_TEST_CASE(test)
{

output_test_stream output("run.log", true);

developerWorks® ibm.com/developerWorks

Get to know the Boost unit test framework Trademarks
© Copyright IBM Corporation 2009 Page 4 of 16

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

output << predefined_user_func();
BOOST_CHECK(output.match_pattern());

}

BOOST_AUTO_TEST_SUITE_END()

Floating point comparison

One of the trickiest checks in regression setups is doing floating point comparisons.
Looking at the code in Listing 8, all seems to have gone well—at least on the face of
it.

Listing 8. Floating point comparison that does not work

#define BOOST_TEST_MODULE floatingTest
#include <boost/test/included/unit_test.hpp>
#include <cmath>

BOOST_AUTO_TEST_SUITE (test)

BOOST_AUTO_TEST_CASE(test)
{
float f1 = 567.0102;
float result = sqrt(f1); // this could be my_sqrt;

faster implementation
// for some specific

DSP like hardware
BOOST_CHECK(f1 == result * result);

}

BOOST_AUTO_TEST_SUITE_END()

On running this test, the BOOST_CHECK macro fails despite the fact that you're using
the sqrt function provided as part of the standard library. So what is going wrong?
The issue with floating point comparisons is that of precisions—f1 and
result*result start differing from a couple of places after the decimal point. To
fix this situation, Boost test utilities provide the BOOST_WARN_CLOSE_FRACTION,
BOOST_CHECK_CLOSE_FRACTION, and BOOST_REQUIRE_CLOSE_FRACTION
macros. To use any of these three macros, you must include the predefined Boost
header floating_point_comparison.hpp. The syntax for all three macros is the same,
so this article discusses only the check variant (see Listing 9).

Listing 9. Syntax for the BOOST_CHECK_CLOSE_FRACTION macro

BOOST_CHECK_CLOSE_FRACTION (left-value, right-value,
tolerance-limit);

Instead of using BOOST_CHECK in Listing 9, try BOOST_CHECK_CLOSE_FRACTION
with a tolerance limit of 0.0001. Listing 10 shows how the code now looks.

Listing 10. Floating point comparison that works

ibm.com/developerWorks developerWorks®

Get to know the Boost unit test framework Trademarks
© Copyright IBM Corporation 2009 Page 5 of 16

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

#define BOOST_TEST_MODULE floatingTest
#include <boost/test/included/unit_test.hpp>
#include <boost/test/floating_point_comparison.hpp>
#include <cmath>

BOOST_AUTO_TEST_SUITE (test)

BOOST_AUTO_TEST_CASE(test)
{
float f1 = 567.01012;
float result = sqrt(f1); // this could be my_sqrt;

faster implementation
// for some specific

DSP like hardware
BOOST_CHECK_CLOSE_FRACTION (f1, result * result,

0.0001);
}

BOOST_AUTO_TEST_SUITE_END()

This code runs just fine. Now, replace the tolerance limit in Listing 10 with
0.0000001. Listing 11 shows the output.

Listing 11. An example where the comparison failed because of an
unacceptable tolerance limit

[arpan@tintin] ./a.out
Running 1 test case...
sq.cpp(18): error in "test": difference between
f1{567.010132} and

result * result{567.010193} exceeds 1e-07

*** 1 failure detected in test suite "floatingTest"

Another common (and vicious) problem that keeps repeating itself in production
software is the comparison of variables of type double and float. A nice feature
of BOOST_CHECK_CLOSE_FRACTION is that it does not let you make such
comparisons. The left and right values in the macro must be of the same
type—float or double. In Listing 12, if f1 were a double and result a float, you
would see an error during compilation.

Listing 12. Error: the types of left and right arguments to
BOOST_CHECK_CLOSE_FRACTION differ

[arpan@tintin] g++ sq.cpp -I/u/c/lib/boost
/u/c/lib/boost/boost/test/test_tools.hpp:

In function
`bool

boost::test_tools::tt_detail::check_frwd(Pred,
const boost::unit_test::lazy_ostream&,

boost::test_tools::const_string, size_t,
boost::test_tools::tt_detail::tool_level,
boost::test_tools::tt_detail::check_type,
const Arg0&, const char*,
const Arg1&, const char*, const Arg2&, const char*)

developerWorks® ibm.com/developerWorks

Get to know the Boost unit test framework Trademarks
© Copyright IBM Corporation 2009 Page 6 of 16

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

[with Pred = boost::test_tools::check_is_close_t, Arg0
= double,

Arg1 = float, Arg2 =
boost::test_tools::fraction_tolerance_t<double>]':
sq.cpp:18: instantiated from here
/u/c/lib/boost/boost/test/test_tools.hpp:523: error: no
match for call to
`(boost::test_tools::check_is_close_t) (const double&,
const float&,

const
boost::test_tools::fraction_tolerance_t<double>&)'

Custom predicate support

Boost test tools validate Boolean conditions. You can augment the test tools to
support more complicated checks—say, to determine whether the contents of two
lists are the same or whether a certain condition is valid on all elements of a vector.
You can also extend the BOOST_CHECK macro to perform custom predicate support.
Let's perform a custom check on the contents of a list generated from user-defined C
function: Check whether the result has all elements greater than 1. The custom
check function needs to return the type
boost::test_tools::predicate_result. Listing 13 shows the details.

Listing 13. Validating complex predicates using Boost test tools

#define BOOST_TEST_MODULE example
#include <boost/test/included/unit_test.hpp>

boost::test_tools::predicate_result
validate_list(std::list<int>& L1)
{
std::list<int>::iterator it1 = L1.begin();
for (; it1 != L1.end(); ++it1)
{

if (*it1 <= 1) return false;
}

return true;
}

BOOST_AUTO_TEST_SUITE (test)

BOOST_AUTO_TEST_CASE(test)
{

std::list<int>& list1 = user_defined_func();
BOOST_CHECK(validate_list(list1));

}

BOOST_AUTO_TEST_SUITE_END()

The predicate_result object has an implicit constructor that accepts a Boolean
value, which explains why the code works fine even though the expected and actual
return types of validate_list differ.

There is yet another way by which you could test complex predicates with Boost: the
BOOST_CHECK_PREDICATE macro. The good part about using this macro is that it
does not use the predicate_result. On the flip side, though, the syntax is a bit

ibm.com/developerWorks developerWorks®

Get to know the Boost unit test framework Trademarks
© Copyright IBM Corporation 2009 Page 7 of 16

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

rough. The user needs to pass the function name and the argument(s) to the
BOOST_CHECK_PREDICATE macro. Listing 14 has the same functionality as Listing
13 except for the use of different macros. Notice that the return type of
validate_result is now Boolean.

Listing 14. The BOOST_CHECK_PREDICATE macro

#define BOOST_TEST_MODULE example
#include <boost/test/included/unit_test.hpp>

bool validate_list(std::list<int>& L1)
{
std::list<int>::iterator it1 = L1.begin();
for (; it1 != L1.end(); ++it1)
{

if (*it1 <= 1) return false;
}

return true;
}

BOOST_AUTO_TEST_SUITE (test)

BOOST_AUTO_TEST_CASE(test)
{

std::list<int>& list1 = user_defined_func();
BOOST_CHECK_PREDICATE(validate_list, list1);

}

BOOST_AUTO_TEST_SUITE_END()

Having multiple test suites in a file

It is possible to include multiple test suites into a single file. Each test suite must
have a pair of BOOST_AUTO_TEST_SUITE... BOOST_AUTO_TEST_SUITE_END
macros defined inside the file. Listing 15 shows two different test suites defined
inside the same file. When running the regressions, run the executable with the
predefined –log_level=test_suite option. As you can see from Listing 16, the
output generated using this option is much more verbose and amenable to quick
debugging.

Listing 15. Using multiple test suites in a single file

#define BOOST_TEST_MODULE Regression
#include <boost/test/included/unit_test.hpp>

typedef struct {
int c;
char d;
double e;
bool f;

} Node;

typedef union {
int c;
char d;

developerWorks® ibm.com/developerWorks

Get to know the Boost unit test framework Trademarks
© Copyright IBM Corporation 2009 Page 8 of 16

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

double e;
bool f;

} Node2;

BOOST_AUTO_TEST_SUITE(Structure)

BOOST_AUTO_TEST_CASE(Test1)
{

Node n;
BOOST_CHECK(sizeof(n) < 12);

}

BOOST_AUTO_TEST_SUITE_END()

BOOST_AUTO_TEST_SUITE(Union)

BOOST_AUTO_TEST_CASE(Test1)
{

Node2 n;
BOOST_CHECK(sizeof(n) == sizeof(double));

}

BOOST_AUTO_TEST_SUITE_END()

Here's the output from the code in Listing 15:

Listing 16. Running multiple test suites with the –log_level option

[arpan@tintin] ./a.out --log_level=test_suite
Running 2 test cases...
Entering test suite "Regression"
Entering test suite "Structure"
Entering test case "Test1"
m2.cpp(23): error in "Test1": check sizeof(n) < 12 failed
Leaving test case "Test1"
Leaving test suite "Structure"
Entering test suite "Union"
Entering test case "Test1"
Leaving test case "Test1"
Leaving test suite "Union"
Leaving test suite "Regression"

*** 1 failure detected in test suite "Regression"

Understanding test suite organization

So far, this article has discussed Boost test utilities with test suites that have no
hierarchy. Now, let's try to make a test suite using Boost that tests a software
product the way an external tool user typically sees it done. Within the test
framework itself, there typically will be multiple suites, each checking certain product
features. For example, regression framework of a word processor should have
suites that check for font support, different file formats, and so on. Each individual
test suite will have multiple unit tests. Listing 17 provides an example of a test
framework. Note that the entry point to the code must be the routine (aptly) named
init_unit_test_suite.

ibm.com/developerWorks developerWorks®

Get to know the Boost unit test framework Trademarks
© Copyright IBM Corporation 2009 Page 9 of 16

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Listing 17. Creating a master test suite for running regressions

#define BOOST_TEST_MODULE MasterTestSuite
#include <boost/test/included/unit_test.hpp>
using boost::unit_test;

test_suite*
init_unit_test_suite(int argc, char* argv[])
{

test_suite* ts1 = BOOST_TEST_SUITE("test_suite1");
ts1->add(BOOST_TEST_CASE(&test_case1));
ts1->add(BOOST_TEST_CASE(&test_case2));

test_suite* ts2 = BOOST_TEST_SUITE("test_suite2");
ts2->add(BOOST_TEST_CASE(&test_case3));
ts2->add(BOOST_TEST_CASE(&test_case4));

framework::master_test_suite().add(ts1);
framework::master_test_suite().add(ts2);

return 0;
}

Each test suite (for example, ts1 in Listing 17) is created by using the macro
BOOST_TEST_SUITE. The macro expects a string that is the name of the test suite.
All the test suites are eventually added to the master test suite using the add
method. Likewise, you create each test using the macro BOOST_TEST_CASE and
add each test to the test suite, again using the add method. You can also add unit
tests to the master test suite, although it is not a recommended practice. The
master_test_suite method is defined as part of the
boost::unit_test::framework namespace: It implements a singleton
internally. The code in Listing 18, which comes from the Boost sources itself,
explains how it works.

Listing 18. Understanding the master_test_suite method

master_test_suite_t&
master_test_suite()
{

if(!s_frk_impl().m_master_test_suite)
s_frk_impl().m_master_test_suite = new

master_test_suite_t;

return *s_frk_impl().m_master_test_suite;
}

The unit tests that are created using the BOOST_TEST_CASE macros accept function
pointers as their input arguments. So in Listing 17, test_case1, test_case2, and
so on, are void functions that the user is free to code the way he or she prefers.
Note, however, that the Boost test setup uses a fair bit of memory on the heap;
every call to BOOST_TEST_SUITE boils down to a new
boost::unit_test::test_suite(<test suite name>).

developerWorks® ibm.com/developerWorks

Get to know the Boost unit test framework Trademarks
© Copyright IBM Corporation 2009 Page 10 of 16

17
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Fixtures

Conceptually, a test fixture is meant to set up an environment before a test is
executed and clean up when the test is complete. Listing 19 provides a simple
example.

Listing 19. A basic Boost fixture

#define BOOST_TEST_MODULE example
#include <boost/test/included/unit_test.hpp>
#include <iostream>

struct F {
F() : i(0) { std::cout << "setup" << std::endl; }
~F() { std::cout << "teardown" << std::endl;

}

int i;
};

BOOST_AUTO_TEST_SUITE(test)

BOOST_FIXTURE_TEST_CASE(test_case1, F)
{

BOOST_CHECK(i == 1);
++i;

}

BOOST_AUTO_TEST_SUITE_END()

Listing 20 shows the output.

Listing 20. Output from boost fixture usage

[arpan@tintin] ./a.out
Running 1 test case...
setup
fix.cpp(16): error in "test_case1": check i == 1 failed
teardown

*** 1 failure detected in test suite "example"

Instead of using the BOOST_AUTO_TEST_CASE macro, this code uses
BOOST_FIXTURE_TEST_CASE, which takes in an additional argument. The
constructor and destructor methods of this object do the necessary setup and
cleanup. A sneak peek into the boost header unit_test_suite.hpp confirms this (see
Listing 21).

Listing 21. Boost fixture definition from header unit_test_suite.hpp

#define BOOST_FIXTURE_TEST_CASE(test_name, F) \
struct test_name : public F { void test_method(); };

ibm.com/developerWorks developerWorks®

Get to know the Boost unit test framework Trademarks
© Copyright IBM Corporation 2009 Page 11 of 16

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

\
\
static void BOOST_AUTO_TC_INVOKER(test_name)() \
{
\

test_name t;
\

t.test_method();
\
}
\
\
struct BOOST_AUTO_TC_UNIQUE_ID(test_name) {}; \
\
BOOST_AUTO_TU_REGISTRAR(test_name)(
\

boost::unit_test::make_test_case(
\

&BOOST_AUTO_TC_INVOKER(test_name), #test_name),
\

boost::unit_test::ut_detail::auto_tc_exp_fail<
\

BOOST_AUTO_TC_UNIQUE_ID(test_name
)>::instance()->value()); \
\
void test_name::test_method()
\

Internally, Boost is publicly deriving a class from the struct F (see Listing 19),
then creating an object out of that class. As per the rules of public inheritance in
C++, all protected and public variables of the struct class are directly accessible in
the function that follows. Note that in Listing 19, the variable i being modified is one
that belongs to the internal object t of type F (see Listing 20). It is quite okay to have
a regression suite in which only couple of tests need some sort of explicit
initialization and therefore use the fixture feature. Listing 22 has a test suite in which
only one out of three tests is using fixture.

Listing 22. Boost test suite with a mix of fixture and non-fixture tests

#define BOOST_TEST_MODULE example
#include <boost/test/included/unit_test.hpp>
#include <iostream>

struct F {
F() : i(0) { std::cout << "setup" << std::endl; }
~F() { std::cout << "teardown" << std::endl;

}

int i;
};

BOOST_AUTO_TEST_SUITE(test)

BOOST_FIXTURE_TEST_CASE(test_case1, F)
{

BOOST_CHECK(i == 1);
++i;

}

BOOST_AUTO_TEST_CASE(test_case2)
{

developerWorks® ibm.com/developerWorks

Get to know the Boost unit test framework Trademarks
© Copyright IBM Corporation 2009 Page 12 of 16

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

BOOST_REQUIRE(2 > 1);
}

BOOST_AUTO_TEST_CASE(test_case3)
{

int i = 1;
BOOST_CHECK_EQUAL(i, 1);
++i;

}

BOOST_AUTO_TEST_SUITE_END()

Listing 22 has fixtures that are defined and used on an individual test case. Boost
also lets the user define and use global fixtures with the macro
BOOST_GLOBAL_FIXTURE (<Fixture Name>). You can define any number of
global fixtures, which allows splitting up of initialization code. Listing 23 uses a global
fixture.

Listing 23. Using global fixtures for initializing regression

#define BOOST_TEST_MODULE example
#include <boost/test/included/unit_test.hpp>
#include <iostream>

struct F {
F() { std::cout << "setup" << std::endl; }
~F() { std::cout << "teardown" << std::endl; }

};

BOOST_AUTO_TEST_SUITE(test)
BOOST_GLOBAL_FIXTURE(F);
BOOST_AUTO_TEST_CASE(test_case1)
{

BOOST_CHECK(true);
}
BOOST_AUTO_TEST_SUITE_END()

For multiple fixtures, the setup and tear-down occurs in the order you declare them.
In Listing 24, the constructor of F is called before F2; likewise for the destructor.

Listing 24. Using multiple global fixtures in regression

#define BOOST_TEST_MODULE example
#include <boost/test/included/unit_test.hpp>
#include <iostream>

struct F {
F() { std::cout << "setup" << std::endl; }
~F() { std::cout << "teardown" << std::endl; }

};

struct F2 {
F2() { std::cout << "setup 2" << std::endl;

}
~F2() { std::cout << "teardown 2" <<

std::endl; }
};

ibm.com/developerWorks developerWorks®

Get to know the Boost unit test framework Trademarks
© Copyright IBM Corporation 2009 Page 13 of 16

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

BOOST_AUTO_TEST_SUITE(test)
BOOST_GLOBAL_FIXTURE(F);
BOOST_GLOBAL_FIXTURE(F2);

BOOST_AUTO_TEST_CASE(test_case1)
{

BOOST_CHECK(true);
}
BOOST_AUTO_TEST_SUITE_END()

Note that you cannot use global fixtures as objects in individual tests. Nor can you
directly access their public/protected non-static methods or variables inside a test.

Conclusion

That's it. This article has introduced you to one of the most powerful open source
regression frameworks: Boost. You learned about the basic Boost checks, pattern
matching, floating point comparison, custom checks, test suite organization—both
manual and automatic—and fixtures. Be sure to look into the Boost documentation
for further information. Further articles in this series will introduce other open source
regression frameworks, like cppUnit.

developerWorks® ibm.com/developerWorks

Get to know the Boost unit test framework Trademarks
© Copyright IBM Corporation 2009 Page 14 of 16

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• Boost documentation: Check out this comprehensive guide to Boost test tools
documentation.

• Boost policies and protocols: Be sure to check out this guide to the Boost test
policies and protocols.

• Boost mailing list: Find a wealth of information, including fixes to common
problems during installation and test.

• AIX and UNIX developerWorks zone: The AIX and UNIX zone provides a
wealth of information relating to all aspects of AIX systems administration and
expanding your UNIX skills.

• New to AIX and UNIX? Visit the New to AIX and UNIX page to learn more.

• developerWorks technical events and Webcasts: Stay current with the latest
technology.

• Technology bookstore: Browse the technology bookstore for books on this and
other technical topics.

Get products and technologies

• Boost Test: Download the Boost framework.

• IBM product evaluation versions: Get your hands on application development
tools and middleware products from DB2®, Lotus®, Rational®, Tivoli®, and
WebSphere®.

• Evaluate XL C/C++ for AIX

Discuss

• developerWorks blogs: Check out our blogs and get involved in the
developerWorks community.

• Follow developerWorks on Twitter.

• Get involved in the My developerWorks community.

• Participate in the AIX and UNIX® forums:

• AIX Forum

• AIX Forum for developers

• Cluster Systems Management

• Performance Tools Forum

ibm.com/developerWorks developerWorks®

Get to know the Boost unit test framework Trademarks
© Copyright IBM Corporation 2009 Page 15 of 16

http://www.boost.org/doc/libs/1_40_0/libs/test/doc/html/index.html
http://beta.boost.org/development/test.html
http://lists.boost.org
http://www-128.ibm.com/developerworks/aix/
http://www-128.ibm.com/developerworks/aix/newto/
http://www.ibm.com/developerworks/offers/techbriefings/
http://www.ibm.com/developerworks/apps/SendTo?bookstore=safari
http://beta.boost.org
http://www.ibm.com/developerworks/downloads/?S_TACT=105AGX01&S_CMP=ART
http://www.ibm.com/developerworks/downloads/r/xlcplusaix/
http://www.ibm.com/developerworks/blogs/
http://www.ibm.com/developerworks/community
http://twitter.com/developerworks
https://www.ibm.com/developerworks/mydeveloperworks
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=747
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=905
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=907
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=749
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

• Virtualization Forum

• More AIX and UNIX Forums

About the author

Arpan Sen
Arpan Sen is a lead engineer working on the development of software
in the electronic design automation industry. He has worked on several
flavors of UNIX, including Solaris, SunOS, HP-UX, and IRIX as well as
Linux and Microsoft Windows for several years. He takes a keen
interest in software performance-optimization techniques, graph theory,
and parallel computing. Arpan holds a post-graduate degree in software
systems. You can reach him at arpansen@gmail.com.

developerWorks® ibm.com/developerWorks

Get to know the Boost unit test framework Trademarks
© Copyright IBM Corporation 2009 Page 16 of 16

http://www.ibm.com/developerworks/forums/forum.jspa?forumID=748
http://www.ibm.com/developerworks/forums/dw_auforums.jspa
mailto:arpansen@gmail.com
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	What is unit testing?
	Generating a test for a specific function or class
	Boost test tools
	Having multiple test suites in a file
	Understanding test suite organization
	Fixtures
	Conclusion
	Resources
	About the author

