
IBM OmniFind Enterprise Edition

Text Analysis Integration

Version 8.5

SC18-9674-02

���

IBM OmniFind Enterprise Edition

Text Analysis Integration

Version 8.5

SC18-9674-02

���

Note

Before using this information and the product it supports, read the information in “Notices and trademarks” on page 107.

Edition Notice

This edition applies to version 8, release 5, modification 0 of IBM OmniFind Enterprise Edition (product number

5724-C74) and to all subsequent releases and modifications until otherwise indicated in new editions.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2004, 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

ibm.com and related resources v

How to send your comments v

Contacting IBM vi

Linguistic support for semantic search 1

Custom text analysis integration 3

Basic concepts used in text analysis processing . . . 4

Text analysis algorithms 5

Workflow for custom analysis integration 5

Using the enterprise search base annotators in UIMA 7

Using the common analysis structure to database

consumer in UIMA 9

Using the regular expression annotator in UIMA 11

Viewing base annotator and custom text analysis

results 11

Type system description 13

Changing from base analysis mode to advanced

analysis mode 14

Types and features defined for enterprise search 15

Specific types and features for enterprise search 19

Type system description sample 22

XML markup in analysis and search 25

Creating an XML elements to the common

analysis structure mapping file 27

The text analysis results 31

Feature paths 32

Built-in features 33

Filters 35

Index mapping for custom analysis results 36

Creating the common analysis structure to index

mapping file 37

Database mapping for selected analysis results . . 43

Storing analysis results in a database 43

Using load file sets 44

Creating the common analysis structure to

database mapping file 45

Container type mapping 49

Retrieving parts of a document that match a

semantic search query 53

Semantic search applications 55

Semantic search query term 55

Synonym support in search

applications 59

Creating an XML file for synonyms 59

Creating a synonym dictionary 60

Custom stop word dictionaries 63

Creating an XML file for stop words 63

Creating a stop word dictionary 64

Custom boost word dictionaries 67

Creating an XML file for boost words 68

Creating a boost word dictionary 69

Text analysis included in enterprise

search 71

Language identification 71

Linguistic support for nondictionary-based

segmentation 72

Tokenizing numerical characters as n-gram

tokens 73

Linguistic support for dictionary-based

segmentation 73

Word segmentation in Japanese 75

Orthographic variants in Japanese 75

Stop word removal 76

Character normalization 76

Regular expression annotator 79

Easy semantic search using the regular expression

annotator 79

Enabling easy semantic search using the regular

expression annotator 80

The rule set file 81

Defining regular expression rules 82

Customizing the regular expression annotator . . . 85

The annotator descriptor 86

Logging 89

Enterprise search documentation . . . 91

Accessibility features 93

Glossary of terms for enterprise search 95

Notices and trademarks 107

Notices 107

Trademarks 109

Index 111

© Copyright IBM Corp. 2004, 2008 iii

iv OmniFind Enterprise Edition: Text Analysis Integration

ibm.com and related resources

Product support and documentation are available from ibm.com®.

Support and assistance

Product support is available on the Web.

IBM® OmniFind™ Enterprise Edition

http://www.ibm.com/software/data/enterprise-search/omnifind-
enterprise/support.html

IBM OmniFind Discovery Edition

http://www.ibm.com/software/data/enterprise-search/omnifind-
discovery/support.html

IBM OmniFind Yahoo! Edition

http://www.ibm.com/software/data/enterprise-search/omnifind-yahoo/
support.html

Information center

You can view the product documentation in an Eclipse-based information center

with a Web browser. See the information center at http://publib.boulder.ibm.com/
infocenter/discover/v8r5m0/.

PDF publications

You can view the PDF files online using the Adobe® Acrobat Reader for your

operating system. If you do not have the Acrobat Reader installed, you can

download it from the Adobe Web site at http://www.adobe.com.

See the following PDF publications Web sites:

 Product Web site address

OmniFind Enterprise Edition,

Version 8.5

http://www.ibm.com/support/docview.wss?rs=63
&uid=swg27010938

OmniFind Discovery Edition,

Version 8.4

http://www.ibm.com/support/docview.wss?rs=3035
&uid=swg27008552

OmniFind Yahoo! Edition, Version

8.4

http://www.ibm.com/support/docview.wss?rs=3193
&uid=swg27008932

How to send your comments

Your feedback is important in helping to provide the most accurate and highest

quality information.

Send your comments by using the online reader comment form at

https://www14.software.ibm.com/webapp/iwm/web/signup.do?lang=en_US
&source=swg-rcf.

© Copyright IBM Corp. 2004, 2008 v

http://www.ibm.com/software/data/enterprise-search/omnifind-enterprise/support.html
http://www.ibm.com/software/data/enterprise-search/omnifind-enterprise/support.html
http://www.ibm.com/software/data/enterprise-search/omnifind-discovery/support.html
http://www.ibm.com/software/data/enterprise-search/omnifind-discovery/support.html
http://www.ibm.com/software/data/enterprise-search/omnifind-yahoo/support.html
http://www.ibm.com/software/data/enterprise-search/omnifind-yahoo/support.html
http://publib.boulder.ibm.com/infocenter/discover/v8r5m0/
http://publib.boulder.ibm.com/infocenter/discover/v8r5m0/
http://www.adobe.com
http://www.ibm.com/support/docview.wss?rs=63&uid=swg27010938
http://www.ibm.com/support/docview.wss?rs=63&uid=swg27010938
http://www.ibm.com/support/docview.wss?rs=3035&uid=swg27008552
http://www.ibm.com/support/docview.wss?rs=3035&uid=swg27008552
http://www.ibm.com/support/docview.wss?rs=3193&uid=swg27008932
http://www.ibm.com/support/docview.wss?rs=3193&uid=swg27008932
https://www14.software.ibm.com/webapp/iwm/web/signup.do?lang=en_US&source=swg-rcf
https://www14.software.ibm.com/webapp/iwm/web/signup.do?lang=en_US&source=swg-rcf

Contacting IBM

To contact IBM customer service in the United States or Canada, call

1-800-IBM-SERV (1-800-426-7378).

To learn about available service options, call one of the following numbers:

v In the United States: 1-888-426-4343

v In Canada: 1-800-465-9600

For more information about how to contact IBM, see the Contact IBM Web site at

http://www.ibm.com/contact/us/.

vi OmniFind Enterprise Edition: Text Analysis Integration

http://www.ibm.com/contact/us/

Linguistic support for semantic search

Enterprise search offers linguistic search support for text documents in most

Indo-European languages and Asian languages, including Japanese.

You can use the linguistic support to improve the quality of search results.

Linguistic processing is performed in two stages: when a document is processed to

be added into the index, and when a user enters a search query.

Enterprise search includes only granular or basic linguistic functionality that is

used to determine the language of an input document and to segment the

document input stream into words or tokens.

If you know that your searches will be restricted primarily to basic keyword

searches or native XML searches that uses the document structure, the linguistic

processing that is included in enterprise search adequately covers your needs.

Most information in text documents is unstructured, which makes it difficult to use

effectively because it is not easy to access the meaning of the information.

Searching for keywords is simple, but it is not always satisfactory if you want to

search beyond the mere words in the document, as is illustrated in the following

examples:

v In collaboration cases, information is not always explicitly marked, for example,

an address or a phone number in an e-mail. In fact, the term phone number might

not be used at all. Instead the e-mail might contain a phrase such as ″you can

reach me at 555-641-1805″. The user often does not know how the information

that he or she wants to search for is presented in the document, and would

ideally want to enter a query like ″Barbara phone number″ when looking for the

phone number of someone called Barbara. However, this query will not be

successful because the word phone number does not occur in the document.

v In competitive intelligence, documents mention competitors and the goods that

they supply or that the competitor’s Web site shifted over the past three months

from selling one product set to another. In this case, the user might enter a

query like ″Smith & Co. goods″ or ″Smith & Co. goods Nov. 2004 till Jan. 2005″.

In the first query, the term goods stands for a product or range of products, but

the query will not return the products supplied by Smith & Co. because it is

looking for the term goods. The same applies to the query that include a

particular time period. It is almost impossible to query a time period by using

keyword search.

v In customer relationship management, documents might mention automobile

brake problems in repair shops in the San Francisco area. The repair shop

reports describe situations such as ″shoe adjusted because of a hydraulic leak″.

The user querying for more detailed information might enter a query like ″brake

problem repair shops in north San Francisco″. However, this query might not

return any reports that talk about ″shoe adjusted because of a hydraulic leak″

because the terms brake problem or repair shops as such do not occur in the

reports. Moreover, these reports might mention only the street and district name

of the repair shop, not the full address including the city name San Francisco.

v In research, documents describe a particular drug widely marketed under

various trademarks and its relation to at least one disease that is mentioned in

© Copyright IBM Corp. 2004, 2008 1

the same paragraph. The casual user might enter a query using one of the

popular terms for the drug hoping for a more detailed account of the various

illnesses including symptoms. However, the query might not return satisfactory

documents because the popular term might not always be used in documents

and these documents often do not mention the word illness at all, only the name

of the illness itself.

In these examples, searching for what you need in the vast collections of

information sources that exist today presents new challenges that require

sophisticated analysis that surpasses the segmentation level and dictionary-based

analysis that is offered in enterprise search. Most of the information that is of

interest is not explicitly tagged or marked in any way in the original document.

Instead, the document content must be analyzed to recognize and find concepts of

interest, for example, named entities like persons, organizations, locations, facilities

and products, and the possible relations between these entities.

The information that you want to discover and extract in text documents is user

and domain specific. To help you to design and develop your own analysis

algorithms, IBM offers the IBM Unstructured Information Management

Architecture (UIMA), an architecture and software framework that helps you build

advanced analysis capabilities for finding information of interest in document

collections in enterprise search.

 Related concepts

 “Custom text analysis integration” on page 3

 “Basic concepts used in text analysis processing” on page 4

2 OmniFind Enterprise Edition: Text Analysis Integration

Custom text analysis integration

After you have built your custom analysis outside enterprise search using the

Unstructured Information Management Architecture (UIMA), you can integrate the

analysis logic in enterprise search using the enterprise search administration

console.

UIMA is an open platform that identifies components for each conceptually

distinct analysis function, and it ensures that these components can be easily

reused and combined.

Advanced linguistic analysis can include a combination of many different analysis

tasks. The analysis begins with language detection and segmentation, and

continues with part-of-speech recognition, followed by deep grammatical parsing.

The last tasks include identifying, for example, the relation between certain

chemical substances and the appearance of particular symptoms. Each step in the

analysis process depends on the results of the previous step.

The analysis logic for each step is contained in an annotator. Annotators combine to

form a processing chain that iterates over each document in the collection to

discover new information and store this information for downstream processing.

The annotators that are responsible for discovering and representing analysis

content in text documents are contained in an analysis engine, a central concept in

UIMA. An analysis engine might contain a single annotator or it might be a

composite of many engines, each in turn containing annotators.

UIMA only provides the basic building blocks for you to create, test, and deploy

your own analysis engines. It does not provide you with any linguistic analysis

functionality in the form of pre-configured analysis engines that you can deploy in

your UIMA environment. However, the linguistic processing that is applied in

enterprise search is available as a set of annotators that you can work with in

UIMA.

To work with UIMA, you must install the UIMA Software Development Kit. The

development kit is available on IBM developerWorks®. Visit the WebSphere®

Information Integrator zone for information at http://www.ibm.com/
developerworks/db2/zones/db2ii/. The UIMA Software Development Kit

(SDK) includes a Java™ implementation of the UIMA framework for the

implementation, description, composition and deployment of UIMA components.

The UIMA SDK also provides a set of tools and utilities for working with UIMA in

an Eclipse-based development environment (Eclipse plug-ins). For information

about Eclipse, see www.eclipse.org and the UIMA documentation for instructions

on how to install the UIMA Software Development Kit in the Eclipse Interactive

Development Environment.

 Related concepts

 “Linguistic support for semantic search” on page 1

© Copyright IBM Corp. 2004, 2008 3

http://www.ibm.com/developerworks/db2/zones/db2ii/
http://www.ibm.com/developerworks/db2/zones/db2ii/

Basic concepts used in text analysis processing

Basic concepts that are used in text analysis processing include annotators, analysis

results, feature structure, type, type system, annotation and common analysis

structure.

Annotators contain the logic that analyzes a document and discovers and records

descriptive data about the document as a whole (referred to as document meta

data) and parts in the document. This descriptive data is referred to as analysis

results. The analysis results annotate any contiguous substring (also referred to as

span) of the text document. Ideally, the analysis results correspond to the

information that you want to search for.

A feature structure is the underlying data structure that represents an analysis

result. A feature structure is an attribute-value structure. Each feature structure is

of a type and every type has a specified set of valid features or attributes

(properties), much like a Java class. Features have a range type that indicates the

type of value that the feature must have, such as String.

For example, the text span ″James Matthew Bloggs″ might be spanned by an

annotation of type Person with the features personName, age, nationality and

profession.

The type system defines the types of objects (feature structures) that may be

discovered in a document. The type system defines all possible feature structures

in terms of types and features (attributes), much like a class hierarchy in Java. You

can define any number of different types in a type system. A type system is

domain and application specific.

Most of the text analysis annotators produce their analysis results in the form of

annotations. Annotations are a special kind of feature structure that is designated

for linguistic analysis processing. An annotation spans or covers a piece of input

text and is defined in terms of its beginning and end positions in the input text.

For example, an annotator that recognizes monetary expressions creates for the text

″100.55 US Dollars″ an annotation of type monetaryExpression that covers the text

with the feature currencySymbol set to ″$″.

All annotators in UIMA model and store the data in feature structures.

All feature structures are represented in a central data structure called the common

analysis structure. All data exchange is handled by using the common analysis

structure.

The common analysis structure contains the following objects:

v The text document

v The type system description that indicates the types, subtypes, and their features

v Analysis results that describe the document or regions of the document

v An index repository that supports access to and iteration over the analysis

results
 Related concepts

 “Linguistic support for semantic search” on page 1

4 OmniFind Enterprise Edition: Text Analysis Integration

Text analysis algorithms

The UIMA Software Development Kit includes APIs and tools with which you can

create annotators (analysis algorithms including the type system description) and

embed these annotators in analysis engines.

The UIMA documentation includes a tutorial-style guide that helps you build these

components. The Software Development Kit includes utilities for testing and

viewing your results, and a small-scale semantic search engine for indexing your

analysis results. You can also perform more advanced semantic search against

information stored in the index.

As the UIMA Software Development Kit does not provide any pre-configured

annotators, and because any custom annotators that you develop by using UIMA

and then integrate in enterprise search builds upon the results of the enterprise

search base annotators, you can use the base annotator package to your UIMA

environment. Refer to the UIMA documentation on how to include language

detection and tokenization functionality before you run the custom text analysis

algorithms in your UIMA environment.

After you have developed and tested your analysis engines using the UIMA

Software Development Kit, you must create a PEAR (Processing Engine

ARchive) file to run your algorithms on a document collection in enterprise search.

This archive file includes all of the required resources for deploying your custom

analysis functionality as analysis engines in enterprise search. How to create an

archive is described in the UIMA documentation provided in the Software

Development Kit.

The archive that you create to upload to enterprise search must only contain your

custom analysis logic. It must not contain any of the enterprise search base

annotators even if your custom analysis logic builds on base annotator results

because the base annotators always run before any custom analysis in enterprise

search.

To learn how to configure and deploy a semantic search solution in enterprise

search, run the tutorial mentioned at http://www.ibm.com/developerworks/db2/
zones/db2ii/. The tutorial guides you through the steps involved in deploying

custom text analysis algorithms in enterprise search and shows you how to use the

analysis results in queries to improve search results.

 Related tasks

 “Using the enterprise search base annotators in UIMA” on page 7

Workflow for custom analysis integration

You create and test your custom text analysis algorithms using the UIMA Software

Development Kit, and then deploy and run them on document collections in

enterprise search.

To develop analysis algorithms and to integrate them in enterprise search:

1. Plan and design:

a. Determine what information you want to search for. What are the

documents that you want to retrieve? Which concepts and relationships are

needed for each particular search task? For example, product and employee

names might be needed to enhance general purpose searches on a

Custom text analysis integration 5

http://www.ibm.com/developerworks/db2/zones/db2ii/
http://www.ibm.com/developerworks/db2/zones/db2ii/

pharmaceutical company’s internal Web site, while people in the area of

research and development need to use variants of drug names and see

drug-cause-cure relationships.

b. Specify the kind of text analysis that you need to retrieve the information in

the documents that you want to search.

c. If your collection contains XML documents, decide whether you want to

exploit the XML markup in your solution. In enterprise search, you can use

XML markup in one of two ways:

v If you can use the XML markup in your custom analysis (for example,

your documents contain <summary> or <topic> elements that can be useful

in a summarization or categorization annotator), create a XML elements

to the common analysis structure mapping file.

v If you want to use the XML markup in your queries as it appears in the

document, you must enable native XML mapping.
d. Determine which text analysis result information that is stored in the

common analysis structure you want to be able to access using semantic

search. Create a common analysis structure to index mapping file.

e. Determine whether you want to store analysis results in a relational

database, for example, to discover trends and associations by using

reporting or data mining applications. Create a common analysis structure

to database mapping file.

f. Design the semantic search application. Determine the search user’s use of

the additional capabilities of semantic search. Design the user interface.
2. Develop: UIMA Software Development Kit activities

a. Define the individual analysis steps.

b. Describe the type system for your mappings and analysis algorithms.

c. Develop the analysis algorithms (annotators) for each analysis step and

embed the annotators in analysis engines using the UIMA Software

Development Kit. Build any custom analysis using the basic functionality

(language identification and tokenization) in the enterprise search base

annotators package.

d. After testing the analysis algorithms in UIMA, package the analysis

engine(s) as a PEAR (Processing Engine Archive) file. The archive must only

contain your analysis algorithms, and not the basic enterprise search

linguistic functionality.

When you design a text analysis solution, it might include several analysis

modules provided in more than one PEAR file. UIMA provides a means of

merging two or more PEAR files into a single PEAR file that you can

upload and run in enterprise search. The facility for merging PEAR files

ensures that there are no naming collisions, the input and output

capabilities are correctly merged, and that there is no parameter overriding

if merged parameters in annotator descriptors have the same names. See the

UIMA documentation for instructions on how to merge PEAR files.

3. Deploy: enterprise search activities

a. Upload the processing engine archive file (.pear) to enterprise search.

Provide a name for the text analysis component by which you can refer to it

in enterprise search.

b. Associate one or more document collections with your text analysis

component.

c. If applicable, for each collection, upload and select the XML element to the

common analysis structure mapping that you defined for your custom

analysis.

6 OmniFind Enterprise Edition: Text Analysis Integration

d. If applicable, for each collection, upload and select the common analysis

structure to database mapping that you defined for your custom analysis.

e. For each collection, upload and select the common analysis structure to

index mapping that you defined for semantic search.

f. If necessary, set up your custom semantic search application, for example,

deploy your browser-based search user interface into an application server.

g. Crawl, parse, and index the documents in your semantic search collection as

you would for a keyword-based collection.

 Related tasks

 “Using the enterprise search base annotators in UIMA”

Using the enterprise search base annotators in UIMA

You can use the annotators in the enterprise search base annotator package to

develop new annotators within the UIMA Software Development Kit (SDK) and to

map analysis results to JDBC tables.

The set of base annotators includes:

v Language ID annotator

Detects the language of a document. For the capabilities and configuration

parameters, refer to the descriptor file jlangid.xml.

v FROST dictionary lookup annotator

Provides tokenization and sentence detection, based on the IBM LanguageWare

dictionaries. For tokens, additional linguistic information, for example the base

form or lemma, is generated. For the capabilities and configuration parameters,

refer to the descriptor file jfrost.xml.

v White-space tokenizer

Can perform white-space based tokenization on all European language

documents, or other white-space separated scripts. In addition, the annotator is

able to perform n-gram tokenization on the following text scripts: Arabic, Han,

Hebrew, Hiragana, Katakana, Lao, Mongolian, Thai, YI, and Hangul. This list

includes all major Asian text scripts and means that the annotator supports

Japanese, Chinese, and Korean.

For the capabilities and configuration parameters, refer to the descriptor file

jtok.xml.

v Regular expression annotator

Detects entities or spans of information in a text document based on regular

expressions. You can customize the regular expression annotator to detect the

text entities that you need by defining your own rules. A sample regular

expression annotator that detects telephone numbers, URLs, and e-mail

addresses in text documents is included in the base annotator package.

v Common analysis structure to database consumer

The common analysis structure to database consumer populates a relational

database with specific text analysis results.

The enterprise search base annotator package is a zipped file that contains the base

text analysis annotators, the regular expression annotator and the common analysis

structure to database consumer. The Language ID annotator, the FROST dictionary

lookup annotator, and the White-space tokenizer are the base text analysis

annotators that always run before any custom text analysis when documents are

parsed in enterprise search.

Custom text analysis integration 7

Because the base text analysis annotators always run before any custom text

analysis in enterprise search, and because all custom text analysis is based on the

output of the base annotators, you can use these annotators to your UIMA

environment when you develop and test your custom annotators.

The regular expression annotator and the common analysis structure to database

consumer are additional options that you can select on the enterprise search

administration console when you configure your text processing options. You can

also use them in UIMA. For advanced customization of the regular expression

annotator, it is recommended that you use the supplied UIMA SDK tools to

customize the annotator.

To run any of these annotators in UIMA, you must have the UIMA Software

Development Kit (SDK) installed. It is available on the IBM developerWorks Web

site at http://www.ibm.com/developerworks/db2/zones/db2ii/.

To install the annotator package in your UIMA SDK installation:

1. Find the annotator package OF_base_annotators.zip in your enterprise search

(OmniFind Enterprise Edition) installation in the ES_INSTALL_ROOT/packages/
uima directory.

2. Copy the zipped file to the root directory of your UIMA SDK installation.

3. Extract the zipped file to add the enterprise search base annotator files to the

specified directory structure of your UIMA SDK installation. The file

tt_core_typesystem.xml will be overwritten. If you want to keep your old

version of this file, save it before you extract the zipped file.

4. To set the class path, open the setUIMAClasspath script in the bin directory

and add a line at the end of the script that starts the OFAnnotEnv script.

5. If you want to use any custom or enterprise search specific types in UIMA,

refer to the UIMA SDK documentation on how to define these.

After you install the base annotator package, you can find the annotator descriptor

files in the directory UIMA_SDK_INSTALL/docs/examples/descriptors/
analysis_engine. The file of_tokenization.xml lists the base text analysis annotators

(the Language ID annotator, the FROST dictionary lookup annotator, and the

White-space tokenizer) in the sequence that they are used within enterprise search.

The descriptor files contain the same configuration values that are used in

enterprise search. You can change values for debugging purposes in the UIMA

SDK. However, do not change these descriptor files in your enterprise search

system. Making changes to these files might cause system instability or

performance problems.

The enterprise search base annotator package contains only the dictionaries that

are required to process English documents. If you want to process other languages

in your development environment, follow these steps:

1. Find the enterprise search dictionaries in your enterprise search installation in

ES_INSTALL_ROOT/configurations/parserservice/jediidata/frost/resources.

2. Copy the contents of the directory to your local UIMA SDK installation in

UIMA_SDK_INSTALL/data/frost/resources .

To verify that the annotator package was successfully installed:

1. Open the Common Analysis Structure (CAS) Visual Debugger (CVD) in the

following directory: UIMA_SDK_INSTALL/bin/cvd[.bat/.sh].

2. Click Run → load TAE.

8 OmniFind Enterprise Edition: Text Analysis Integration

http://www.ibm.com/developerworks/db2/zones/db2ii/

3. Select the text analysis engine specifier file of_tokenization.xml in the

UIMA_SDK_INSTALL/docs/examples/descriptors/analysis_engine directory.

4. Load a sample document and run the text analysis engine. You will see

annotations of type uima.tt.TokenAnnotation in the CVD.

If you run any of the base text analysis annotators before your custom annotators

in your development environment, and your custom annotators use types that are

defined by the base text analysis, include a reference to the file tt_core_typesystem

in the type system section of your custom annotator specifier. The

tt_core_typesystem file is in the UIMA_SDK_INSTALL/docs/examples/descriptors/
analysis_engine directory. See the file jtok.xml in the analysis_engine directory

for an example of how to include references to descriptor files.

 Related tasks

 “Viewing base annotator and custom text analysis results” on page 11

 “Enabling easy semantic search using the regular expression annotator” on

page 80

Using the common analysis structure to database consumer

in UIMA

Before you can use the common analysis structure to database consumer in UIMA,

you must make changes to the consumer descriptor file and write the common

analysis structure to database mapping file.

Before you can run the common analysis structure to database consumer in your

UIMA environment, you must:

1. Open the XML descriptor file cas2jdbc.xml in UIMA_SDK_INSTALL/docs/
examples/descriptors/cas_consumer. To avoid XML syntax errors, use an XML

editor or XML authoring tool of your choice.

2. Modify the parameter mappingFile to include the absolute path where your

the common analysis structure to database mapping file is located, for example,

D:\temp\MyMapping.xml

3. Modify the parameter docMetadata_Type to specify the UIMA type from which

all meta data for the built-in features is retrieved, for example,

uima.tcas.DocumentAnnotation.

4. Modify the parameter docId_Feature to include the feature or feature path to

the meta data type from which a document’s numeric ID (of type integer) is

retrieved. This is required by all built-in features that require the ID, such as,

docId(), uniqueId(), objectId(), and fsId().

5. Do not set the parameter encryptionClass as it is used only in enterprise search

to allow the common analysis structure to database consumer to work with

encrypted mapping files.

6. Save the file.

7. Copy the EMF library files (common.jar, ecore.jar and ecore.xmi.jar) from the

lib directory of your enterprise search installation to the lib directory of your

UIMA installation. The cc_cas2jdbc.jar is already in the lib directory of your

UIMA installation.

8. Create the common analysis structure to database mapping file that defines

which text analysis results to store in a database. You can use the mapping file

sampleMapping.xml at UIMA_SDK_INSTALL/docs/examples/descriptors/
cas_consumer as a sample to create your own mapping file.

Use the XML schema file called CasToJDBCMapping.xsd at UIMA_SDK_INSTALL/
docs/examples/descriptors/cas_consumer to validate the common analysis

Custom text analysis integration 9

structure to database mapping file. For performance reasons, the common

analysis structure to database consumer does not validate the mapping file, you

must do this yourself.

How to run the consumer in UIMA is described in the UIMA documentation.

The following sample shows how the mandatory parameters must be defined in

the descriptor:

 ...

 <nameValuePair>

 <name>mappingFile</name>

 <value>

 <string>D:/temp/MyMapping.xml</string>

 </value>

 </nameValuePair>

<nameValuePair>

 <name>docMetadata_Type</name>

 <value>

 <string>uima.tcas.DocumentAnnotation</string>

 </value>

 </nameValuePair>

<nameValuePair>

 <name>docId_Feature</name>

 <value>

 <string>end</string>

 </value>

 </nameValuePair>

...

The table shows the configuration parameters in the order in which they appear in

the descriptor file and indicates which are mandatory:

 Table 1. The configuration parameters in the common analysis structure to database

consumer descriptor file

Parameter Description Mandatory

mappingFile The absolute path to the

common analysis structure to

database mapping file, for

example,

D:/temp/sample.xml. On

Windows® systems, use “/”

as the path separator.

true

encryptionClass Do not set this parameter, it

is only used in enterprise

search to allow the common

analysis structure to database

consumer to work with

encrypted mapping files.

false

docMetadata_Type The UIMA type from which

all meta data for build-in

features is retrieved.

true

10 OmniFind Enterprise Edition: Text Analysis Integration

Table 1. The configuration parameters in the common analysis structure to database

consumer descriptor file (continued)

Parameter Description Mandatory

docId_Feature The feature or feature path

on the meta data type from

which the document’s

numeric ID is retrieved. It

must be of type integer and

is needed for all built-in

features that require the ID,

such as uniqeId(),

objectId(), and fsId().

true

docUri_Feature The feature or feature path

on the meta data type from

which the document’s URI

is. It must be of type string.

false

IsCompleted_Feature The feature or feature path

on the meta data type that

flags whether the current

document is chunked across

several common analysis

structures.

false

chunkNumber_Feature The feature or feature path

on the meta data type that

denotes the subsequent

number of the current chunk.

false

Using the regular expression annotator in UIMA

Use the regular expression annotator to detect entities or units of information in a

text document. You can customize the annotator for your subject domain to meet

your search needs.

To run the sample regular expression annotator that detects telephone numbers,

URLs and e-mail addresses, or use the sample annotator as a basis to create your

own customized version of the regular expression annotator in your UIMA

environment, you need:

1. The regular expression annotator descriptor in the UIMA_SDK_INSTALL/docs/
examples/descriptors/analysis_engine directory.

2. The sample rule set and type system description in the UIMA_SDK_INSTALL/docs/
examples/regex directory.

3. An example text file that the sample rule set can be applied in the

UIMA_SDK_INSTALL/docs/data directory called of_sample_regex.txt.

How to run the annotator in UIMA is described in the UIMA documentation.

Viewing base annotator and custom text analysis results

To view the analysis results produced after parsing and by any annotators in

enterprise search, you must update the document collection properties to produce

a readable XML version of the analysis results that are stored in the common

analysis structure.

About this task

Custom text analysis integration 11

You use the XML serialization of the annotator analysis results stored in the

common analysis structure to:

v View the results after parsing, before the base annotators are processed.

v View the results after parsing and tokenization (running the enterprise search

base annotators). This can help you determine the input data structures to any

custom analysis that you want to develop and that will always run after the

base annotators.

v View and validate the results of a custom analysis run on a smaller document

collection in enterprise search for test purposes before deciding to run the

analysis on a complete collection.

The XML serialization produces two sets of results:

v The results after parsing. These include field mappings and document meta

data.

v The results after parsing and tokenization, and if selected, custom text analysis.

These include all produced tokens and annotations.

Procedure

To produce a readable XML version of the analysis results:

1. Open the file collection.properties in ES_NODE_ROOT/master_config/
<CollectionID>.parserdriver before you begin to parse the documents in your

collection.

2. To view the results after parsing, add the following line to the

collection.properties file: trevi.parser.dumpXCas=<your_dump_directory>

Your dump directory must already exist.

a. Select the type of output you want. The output always includes the type

system description used for the parsing results called

OmniFindParserTypeSystem.xml. Add one of the following lines:

v To view the output of the last 25 processed files, add

trevi.parser.maxXCasFileCount=25.

You can determine the number of files yourself although it is advisable

not to set this value too high.

Keep in mind that the file output buffer is constantly overwritten after

the maximum buffer size is reached. This also implies that the document

with the highest number need not be the last one processed.

The output includes the following files: OmniFindParserXCasDump1.xml

followed by OmniFindParserXCasDump2.xml, and so on until 25 files are

listed.

v To view the output of specific documents, add the document URI

trevi.parser.xCasURI.1=file://home/test/file1.txt.

You can add any number of documents, however, the documents must be

numbered in ascending order beginning at 1 with no gaps between any

numbers. For example, the second document would be

trevi.parser.xCasURI.2=file://home/test/file2.txt and the third one

trevi.parser.xCasURI.3=file://home/test/file3.txt

The output includes the following files:

OmniFindParserXCasDumpURI_1.xml,

OmniFindParserXCasDumpURI_2.xml, and so on for as many file names

as you listed
3. To view the results after tokenization, add the following line:

trevi.tokenizer.dumpXCas=<your_dump_directory>

12 OmniFind Enterprise Edition: Text Analysis Integration

Again, your dump directory must exist.

a. Select the type of output you want. The created output always also includes

the type system description used for the tokenization and text analysis

results called OmniFindTypeSystem.xml. Add one of the following lines:

v To view the output of the last 25 processed files, add

trevi.tokenizer.maxXCasFileCount=25.

You can determine the number of files yourself although it is advisable

not to set this value too high.

Keep in mind that the file output buffer is constantly overwritten after

the maximum buffer size is reached. This also implies that the document

with the highest number need not be the last one processed.

The output includes the following files: OmniFindXCasDump1.xml,

OmniFindXCasDump2.xml, and so on until 25 files are listed.

v To view the output of specific documents, add the document URI

trevi.tokenizer.xCasURI.1=file://home/test/file1.txt.

You can add any number of documents, however, the documents must be

numbered in ascending order beginning at 1 with no gaps between any

numbers. For example, the second document would be

trevi.tokenizer.xCasURI.2=file://home/test/file2.txt and the third

one trevi.tokenizer.xCasURI.3=file://home/test/file3.txt

The output includes the following files: OmniFindXCasDumpURI_1.xml,

OmniFindXCasDumpURI_2.xml, and so on for as many file names as you

listed.

In enterprise search, you can use the XCAS Annotation Viewer to view the content

of the XML files. Start the XCAS Annotation Viewer by running the

xcasAnnotationViewer script file located in the ES_INSTALL_ROOT/bin directory. You

are prompted for:

v Your dump directory where the results are placed after parsing or tokenization

v The descriptor file, either OmniFindParserTypeSystem.xml (for parser results) or

OmniFindTypeSystem.xml (for tokenization and analysis results), likewise in

your dump directory.

Selecting a document from the list displays the analysis results for the document.

Clicking on a highlighted annotation in the document displays the details of the

annotation.

Type system description

The type system defines the types of objects and their properties (or features) that

may be instantiated in a common analysis structure.

Each analysis engine has its own type system descriptions that describe the input

requirements and output types for the annotators in the analysis engine. Type

system descriptions are specific to the application domain.

The type systems include the definitions of types, their properties, and

single-inheritance hierarchy of types. A common analysis structure must conform

to a particular type system.

The types and features that are defined in the type system description must also be

used in all mapping files that are associated with the document analysis, including

Custom text analysis integration 13

the XML elements to the common analysis structure mapping file, the common

analysis structure to index mapping file, and the common analysis structure to

database mapping file.

The type system description of an annotator can be part of the annotator’s

descriptor, or it can be contained in a separate type system descriptor file.

Sometimes it is part of the descriptor of another annotator contained in the same

analysis engine.

When you have completed developing and testing your analysis engine in your

UIMA environment, the archive file (.pear file) that you create and upload to

enterprise search contains your analysis logic files as well as your type system

description.

The enterprise search base annotators use three type system descriptions; a core

type system description that is always included, and two others that you can

activate optionally to change document collection base analysis processing to

advanced analysis mode. Whether you need to include either one or both of the

extended type system descriptions depends on which additional text analysis

processing results you want to include during base analysis processing.

You can enable advanced analysis mode by including one or both of the extension

type systems. In advanced analysis mode, additional analysis features are made

available during base analysis processing and are saved to the common analysis

structure. For example, if you require more information about a token (more

feature information), such as all possible lemmas for the token, or if the lemma is a

stop word, or the lemma’s part of speech, or special features for morphological

processing, also for Japanese, you need to activate advanced analysis mode.

Changing from base analysis mode to advanced analysis

mode

To change the document collection processing that is carried out by the enterprise

search base annotators from base analysis mode to advanced analysis mode, you

must include the type system descriptions for advanced analysis mode.

Restrictions

There are two type system descriptions that you can select to activate advanced

analysis mode:

v The tt_extension_typesystem description, which includes more detailed lexical

typed feature information on lemmas.

v The dlt_extension_typesystem description, which includes additional

morphological features and special lexical types.

Procedure

To change the base collection processing to advanced analysis mode:

1. Open the file tt_core_typesystem.xml in the ES_NODE_ROOT/master_config/
CollectionID.parserdriver/specifiers directory. To avoid XML syntax errors,

use an XML editor or XML authoring tool of your choice.

2. Remove the comment tags surrounding the <import> element in the <imports>

section to include either one or both of the extension type system description

files.

14 OmniFind Enterprise Edition: Text Analysis Integration

<imports>

<!-- imports the tt_extension_typsystem for advanced analysis -->

<!-- <import location="tt_extension_typesystem.xml"/>-->

<!-- imports the dlt extension typesystem -->

<!-- <import location="dlt_extension_typesystem.xml"/> -->

</imports>

3. Open the two descriptor files jfrost.xml and jfrost_ngram.xml, and modify the

content of the <outputs> element to include the types (in a <type> element) and

features (in a <feature> element) listed in the <description> element in the

<capabilities> section that you want to include during analysis. Save your

changes.

4. Open the descriptor file jtok.xml and modify the content of the <outputs>

element to include the features (in a <feature> element) listed in the

<description> element in the <capabilities> section that you want to include

during analysis. Save your changes.

5. Open the descriptor file es_tok_no_stw.xml and here too, modify the content of

the <outputs> element to include the features (in a <feature> element) listed in

the <description> element in the <capabilities> section that you want to

include during analysis. Save your changes.

6. When you change to advanced analysis mode, you must parse your document

collection again.

 Related reference

 “Types and features defined for enterprise search”

Types and features defined for enterprise search

The type system defined for enterprise search covers document metadata handling

and basic linguistic analysis.

The types used in enterprise search are defined in three separate type system

description files, beginning with the type system description file that contains the

core types always required for all basic linguistic analysis and continuing with

type system descriptions that define advanced linguistic features that are normally

only required in advanced analysis mode.

Basic linguistic analysis in the form of document language recognition and

segmentation always takes place when a document is indexed, irrespective of

whether custom analysis is selected or not. During basic document analysis, the

tt_core_typesystem description is used and the following information is added to

the common analysis structure that you can use in subsequent custom analysis:

v Document metadata of type com.ibm.es.tt.DocumentMetaData.

v Document structure information such as sentence, and paragraph annotations of

type uima.tt.SentenceAnnotation, and uima.tt.ParagraphAnnotation.

v Lexical annotations such as tokens and compounds of type

uima.tt.TokenAnnotation.

The tt_core_typesystem description is adequate for most text analysis processing.

If you want to change collection processing to the advanced analysis mode, you

can include the following two type systems. The type systems primarily include

additional features that are not created during basic linguistic processing.

v tt_extension_typesystem that includes more token, lemma, paragraph and

sentence feature information

Custom text analysis integration 15

v dlt_core_typesystem that contains some of the IBM LanguageWare extended

annotation types, for example, URLs and addresses. It also include

morphological features that are not utilized frequently.

tt_core_typesystem

The following types and features are defined in the tt_core_typesystem

description:

uima.tcas.DocumentAnnotation

The document annotation contains document metadata and has the

following feature:

v categories with document categories added by a text categorizer. Each

added category is of the type com.tt.CategoryConfidencePair

v languageCandidates with the document languages automatically

detected during parsing. The languages are added to a list of type

com.tt.LanguageConfidencePair, with the most likely language listed

first

v id with the document ID, such as the URL

uima.tt.TTAnnotation

This is the root type for annotations defined in tt_core_typesystem. It

supertype is uima.tcase.Annotation. It has the following types:

uima.tt.DocStructureAnnotation

Annotations about the document structure. It has the following

subtypes:

uima.tt.SentenceAnnotation

Sentences

uima.tt.ParagraphAnnotation

Document paragraph

uima.tt.LexicalAnnotation

Lexical annotations such as tokens or multi-word expressions. It

has the following subtypes:

uima.tt.TokenLikeAnnotation

Single token annotations that can have the following

features:

v tokenProperties with the token properties

v lemma with the lemma or stem of the term

v normalizedCoveredText with the normalized

representation of the covered text

This annotation type has the following subtypes:

uima.tt.TokenAnnotation

Actual tokens to be distinguished from compound

parts.

uima.tt.CompPartAnnotation

The compound parts of a term.

uima.tt.CompoundAnnotation

The annotation of a compound token. The

compound token usually spans more than one

token annotation.

16 OmniFind Enterprise Edition: Text Analysis Integration

uima.tt.MultiTokenAnnotation

Lexical annotation consisting of more than one token. This

annotation type has the following subtypes:

uima.tt.StopwordAnnotation

Annotations of stop words. The stop words can

also be multi-term words.

uima.tt.SynonymAnnotation

The annotation of a term for which there are

synonyms. It has the feature synonyms that lists the

found synonyms for the term.

uima.tt.SpellCorrectionAnnotation

The annotation of a term for which there are spell

corrections. It has the feature correctionTerms that

lists likely corrections in a sorted order beginning

with the most probable corrections.

uima.tt.MultiWordAnnotation

The annotation of a multi-word term.

uima.CAS.TOP

The root of the type system. It has the following subtypes:

uima.tt.KeyStringEntry

The abstract type for String data structures. It includes the feature

key that contains the string key and the following subtype:

uima.tt.Lemma

Dictionary lemma entries.

uima.tt.CategoryConfidencePair

The confidence value for the found category. It has the following

features:

v categoryString with the name of the category

v categoryConfidence with the confidence value for the category

v mostSpecific with a flag indicating if this category is the most

specific for the document

v taxonomy with the name of the taxonomy the category is derived

from

uima.tt.LanguageConfidencePair

The confidence value for the found category. This type includes the

features languageConfidence, language, and languageID.

tt_extension_typesystem

The tt_extension_typesystem includes additional text analysis features for more

advanced processing.

uima.tt.TokenLikeAnnotation

This annotation type in the tt_extension_typesystem has the following

features:

v lemmaEntries lists all of the possible lemmas for the token. The list items

are of type uima.tt.Lemma

v tokenNumber

v stopwordToken

Custom text analysis integration 17

uima.tt.Lemma

This annotation of type uima.tt.KeyStringEntry has the following features:

v isStopword is true if the lemma is a stop word

v isDeterminer is true if the lemma is a determiner

v partOfSpeech. The following part-of-speech number description codes

exist:

– 0: unknown

– 1: pronoun

– 2: verb

– 3: noun

– 4: adjective

– 5: adverb

– 6: adposition

– 7: interjection

– 8: conjunction

uima.tt.DocStructureAnnotation

Annotations about the document structure. This has the following

subtypes:

uima.tt.SentenceAnnotation

Document sentence. It has the feature sentenceNumber.

uima.tt.ParagraphAnnotation

Document paragraph. It has the feature paragraphNumber.

dlt_extension_typesystem

The dlt_extension_typesystem includes additional features used by IBM

LanguageWare.

uima.tt.LexicalAnnotation

This annotation has the following subtypes:

uima.tt.TokenLikeAnnotation

In the dlt_extension_typesystem, this annotation has the following

features:

v synonymEntries

v frost_TokenType

v inflectedForms

v spellAid

v decomposition

com.ibm.dlt.uimatypes.FilePath

com.ibm.dlt.uimatypes.Email

com.ibm.dlt.uimatypes.Number

com.ibm.dlt.uimatypes.URL

com.ibm.dlt.uimatypes.Date

com.ibm.dlt.uimatypes.Time

com.ibm.dlt.uimatypes.Tel

com.ibm.dlt.uimatypes.Currency

18 OmniFind Enterprise Edition: Text Analysis Integration

com.ibm.dlt.uimatypes.Acronym

uima.tt.TokenLikeAnnotation

This annotation type in the dlt_extension_typesystem has the following

type:

com.ibm.dlt.uimatypes.MWU

This type is used by IBM LanguageWare to annotate multi-word

expressions.

uima.tt.KeyStringEntry

String annotations. This has the following subtypes:

uima.tt.Lemma

It has the following features:

v frost_Constraints with constraint flags

v frost_MorphBitMasks containing a morphological bit mask array

v frost_ExtendedPOS with extended part of speech information,

such as JPOS for Japanese and CPOS for Chinese

v frost_JKom containing Japanese morphological data

v frost_JPStart containing Japanese start analysis data

v morphID containing lemma properties

uima.tcas.Annotation

This has the following subtype:

com.ibm.dlt.uimatypes.Decomp_Analysis

Full structural analysis of a compound. This has the following

features:

v headComponentIndex with the head component of the compound

v route containing a list of tokens that comprise a single

decomposition route
 Related reference

 “Type system description sample” on page 22

Specific types and features for enterprise search

The types and features defined in the of_typesystem description cover specific

types for OmniFind Enterprise Edition. These types are used for document specific

metadata. They also describe the representation of fields and XML markup

information or HTML anchors.

The of_typesystem description is not defined is not defined in the UIMA Software

Development Kit (SDK). If you want to use any of those types when you write an

annotator in UIMA, you must define the types again in the type system

description of your analysis engine. For example, you might want to access

document security information or access the crawler type or document type.

The following types and features are defined in the of_typesystem description:

uima.tcas.DocumentAnnotation

The standard UIMA document annotation is extended by the following

feature:

esDocumentMetaData

Contains document metadata of the type

com.ibm.es.tt.DocumentMetaData.

Custom text analysis integration 19

com.ibm.es.tt.DocumentMetaData

The document metadata type has the following features. The features are

connected to the document annotation feature esDocumentMetaData.

crawlerId

The crawler name. The feature value is of type uima.cas.String.

dataSource

One of the following data source types. The feature value is of type

uima.cas.String.

v CM, for documents that are crawled by the DB2 Content

Manager crawler

v Database, for documents that are crawled by the JDBC database

crawler

v DB2, for documents that are crawled by the DB2 crawler

v DominoDoc, for documents that are crawled by the Domino

Document Manager crawler

v Exchange, for documents that are crawled by the Exchange

Server crawler

v NNTP, for documents that are crawled by the NNTP crawler

v Notes, for documents that are crawled by the Notes crawler

v QuickPlace, for documents that are crawled by the QuickPlace

crawler

v Seedlist, for documents that are crawled by the Seed list crawler

v UnixFS, for documents that are crawled by the UNIX file system

crawler

v VBR, for documents that are crawled by the Content Edition

crawler

v WCM, for documents that are crawled by the Web Content

Management crawler

v Web, for documents that are crawled by the Web crawler

v WinFS, for documents that are crawled by the Windows file

system crawler

v WP, for documents that are crawled by the WebSphere Portal

crawler

dataSourceName

The name of the crawler (data source). The feature value is of type

uima.cas.String.

docType

One of the following document types. The feature value is of type

uima.cas.String.

v text/html

v application/postscript

v application/pdf

v application/x-mspowerpoint

v application/msword

v application/x-msexcel

v application/rtf

v application/vnd.lotus-wordpro

v application/x-lotus-123

20 OmniFind Enterprise Edition: Text Analysis Integration

v application/vnd.lotus-freelance

v text/xml

v text/plain

v application/x-js-taro (Ichitaro)

securityTokens

The document security tokens. The feature value is of type

uima.cas.StringArray.

date The document date. The feature value is of type uima.cas.String.

baseUri

The base URI of the page. The feature value is of type

uima.cas.String.

metaDataFields

The feature value is of type uima.cas.FSArray. Each element in this

array is of type com.ibm.es.tt.MetaDataField.

redirectUrl

The redirected URL. The feature value is of type uima.cas.String.

mimeType

The MIME type or document type, for example, XML. The feature

value is of type uima.cas.String.

url The document URL. The feature value is of type uima.cas.String.

com.ibm.es.tt.CommonFieldParameters

Common field parameters include:

searchable

A flag indicating that the field is free-text searchable.

fieldSearchable

A flag indicating that the field is searchable as a field.

parametric

A flag indicating that the field is searchable with a parametric

query.

showInSearchResult

A flag indicating that the annotated data is included in the search

result details.

resolveConflict

A flag for resolving metadata conflicts between MetadataPreferred,

ContentPreferred, and Coexist. The feature value is of type

uima.cas.String.

name The name of the field. You can search for this field by using the

field name. The feature value is of type uima.cas.String.

sortable

A flag indicating that the field is string sortable.

exactMatch

A flag indicating that the search must be an exact match of the

query terms.

com.ibm.es.tt.ContentField

The content field annotation has the following feature:

Custom text analysis integration 21

parameters

The content field parameters are of type

com.ibm.es.tt.CommonFieldParameters.

com.ibm.es.tt.MetaDataField

The metadata field data is not part of the document content but is stored

in the ″text″ feature:

parameters

Metadata field parameters of type

com.ibm.es.tt.CommonFieldParameters.

text The metadata text is stored in this feature of type uima.cas.String.

com.ibm.es.tt.Anchor

The anchor annotation for anchor text in HTML documents. It has the

following feature:

uri The target URI of the anchor text. The feature value is of type

uima.cas.String.

com.ibm.es.tt.MarkupTag

The markup information annotations, for example, of an XML tag. The

markup information is stored in the following features:

name The name for the markup tag. The feature value is of type

uima.cas.String.

depth The nesting depth. The feature value is of type uima.cas.Integer.

attributeName

The name for the feature attribute. The feature value is of type

uima.cas.StringArray.

attributeValues

A string of values for the attribute. The feature value is of type

uima.cas.StringArray.

Type system description sample

The type system description describes the feature structures (the underlying data

structures that represent the analysis results) that are used in custom analysis.

The type system description must be part of the analysis engine archive (.pear file)

that is imported from your UIMA environment to enterprise search.

The following type system description sample describes police reports that contain

information on suspects, crime location, crime time, and date:

The same sample type system description is used in all of the text analysis topics

that discuss the different types of mappings that you can select with custom

analysis.

<?xml version="1.0" encoding="UTF-8"?>

<typeSystemDescription>

 <name>Police Reports Type System</name>

 <description>Type system description for

 police reports</description>

 <version>1.0</version>

 <types>

 <typeDescription>

 <name>com.ibm.omnifind.types.PoliceReport</name>

 <description>Annotates a police report</description>

 <supertypeName>uima.tcas.Annotation</supertypeName>

22 OmniFind Enterprise Edition: Text Analysis Integration

<features>

 <featureDescription>

 <name>time</name>

 <description>Time the crime was reported to have happened

 </description>

 <rangeTypeName>com.ibm.omnifind.types.Time</rangeTypeName>

 </featureDescription>

 <featureDescription>

 <name>date</name>

 <description>When the crime happened</description>

 <rangeTypeName>com.ibm.omnifind.types.Date</rangeTypeName>

 </featureDescription>

 <featureDescription>

 <name>location</name>

 <description>Where the crime took place</description>

 <rangeTypeName>com.ibm.omnifind.types.City</rangeTypeName>

 </featureDescription>

 <featureDescription>

 <name>knownSuspects</name>

 <description>Contains annotations of type Suspect</description>

 <rangeTypeName>uima.cas.FSArray</rangeTypeName>

 </featureDescription>

 <featureDescription>

 <name>crimeDescription</name>

 <description>Short description of the crime</description>

 <rangeTypeName>uima.cas.String</rangeTypeName>

 </featureDescription>

 </features>

 </typeDescription>

 <typeDescription>

 <name>com.ibm.omnifind.types.City</name>

 <description>The name of a city</description>

 <supertypeName>uima.tcas.Annotation</supertypeName>

 <features>

 <featureDescription>

 <name>cityName</name>

 <description>The name of the city</description>

 <rangeTypeName>uima.cas.String</rangeTypeName>

 </featureDescription>

 <featureDescription>

 <name>cityDistrict</name>

 <description>The name of the district</description>

 <rangeTypeName>uima.cas.String</rangeTypeName>

 </featureDescription>

 </features>

 </typeDescription>

 <typeDescription>

 <name>com.ibm.omnifind.types.Person</name>

 <description>A person annotation</description>

 <supertypeName>uima.tcas.Annotation</supertypeName>

 <features>

 <featureDescription>

 <name>role</name>

 <description>For example, suspect or witness</description>

 <rangeTypeName>uima.cas.String</rangeTypeName>

 </featureDescription>

 <featureDescription>

 <name>firstName</name>

 <description>The first name of the person</description>

 <rangeTypeName>uima.cas.String</rangeTypeName>

 </featureDescription>

 <featureDescription>

 <name>surName</name>

 <description>The surname of the person</description>

 <rangeTypeName>uima.cas.String</rangeTypeName>

 </featureDescription>

 <featureDescription>

Custom text analysis integration 23

<name>title</name>

 <description>For example, Mr. or Ms.</description>

 <rangeTypeName>uima.cas.String</rangeTypeName>

 </featureDescription>

 <featureDescription>

 <name>gender</name>

 <description>Male or female</description>

 <rangeTypeName>uima.cas.String</rangeTypeName>

 </featureDescription>

 </features>

 </typeDescription>

 <typeDescription>

 <name>com.ibm.omnifind.types.Suspect</name>

 <description>A found suspect</description>

 <supertypeName>com.ibm.omnifind.types.Person</supertypeName>

 <features>

 <featureDescription>

 <name>description</name>

 <description>Suspect description,

 for example, bearded with dark glasses</description>

 <rangeTypeName>uima.cas.String</rangeTypeName>

 </featureDescription>

 </features>

 </typeDescription>

 <typeDescription>

 <name>com.ibm.omnifind.types.Date</name>

 <description>A date</description>

 <supertypeName>uima.tcas.Annotation</supertypeName>

 <features>

 <featureDescription>

 <name>year</name>

 <description>The year, for example, 2005</description>

 <rangeTypeName>uima.cas.Integer</rangeTypeName>

 </featureDescription>

 <featureDescription>

 <name>month</name>

 <description>The month in digits, for example, 7</description>

 <rangeTypeName>uima.cas.Integer</rangeTypeName>

 </featureDescription>

 <featureDescription>

 <name>day</name>

 <description>The day in digits</description>

 <rangeTypeName>uima.cas.Integer</rangeTypeName>

 </featureDescription>

 <featureDescription>

 <name>dayOfWeek</name>

 <description>The day of the week, for example, Monday</description>

 <rangeTypeName>uima.cas.String</rangeTypeName>

 </featureDescription>

 <featureDescription>

 <name>quarter</name>

 <description>The quarter, for example, Q1-2005</description>

 <rangeTypeName>uima.cas.String</rangeTypeName>

 </featureDescription>

 <featureDescription>

 <name>englDate</name>

 <description>Date as mm/dd/yyyy</description>

 <rangeTypeName>uima.cas.String</rangeTypeName>

 </featureDescription>

 </features>

 </typeDescription>

 <typeDescription>

 <name>com.ibm.omnifind.types.Time</name>

 <description>A time</description>

 <supertypeName>uima.tcas.Annotation</supertypeName>

 <features>

 <featureDescription>

24 OmniFind Enterprise Edition: Text Analysis Integration

<name>hours</name>

 <description>Hours from 00-23</description>

 <rangeTypeName>uima.cas.Integer</rangeTypeName>

 </featureDescription>

 <featureDescription>

 <name>minutes</name>

 <description>Minutes in the hour</description>

 <rangeTypeName>uima.cas.Integer</rangeTypeName>

 </featureDescription>

 <featureDescription>

 <name>timeOfDay</name>

 <description>Time periods, such as morning, noon</description>

 <rangeTypeName>uima.cas.String</rangeTypeName>

 </featureDescription>

 </features>

 </typeDescription>

 </types>

</typeSystemDescription>

XML markup in analysis and search

You can map information in XML structures that are in a document directly to a

common analysis structure without writing a UIMA annotator.

If the documents in your collection are in XML, and you want to exploit the XML

markup during text analysis or semantic search, you have the following options:

Native XML search

 Use this option if you want to use all of the XML tags and attributes as

they appear in the document during semantic search. For example, if you

have billing documents that contain an <addressee> element, enabling

native XML search allows you to use this tag in a semantic search query to

search for a certain customer name within this element.

With this option, the XML structure of the document is represented in the

common analysis structure using the com.ibm.es.tt.MarkupTag type. For

each XML tag, an annotation of this type is created. This annotation

contains the name of the tag, its attributes and the attribute content. This

information is always indexed and is accessible to semantic search.

Native XML search does not require a mapping configuration file. You can

enable native XML search from the administration console for enterprise

search.

XML elements to the common analysis structure mapping

 Use this option in the following cases:

v The semantics of certain XML elements are precise and can be used in

further text analysis steps. These analysis steps can operate directly on

the annotations and features created from the XML structures, and are

shielded from the potentially different formats of the original

documents. For example, the element <addressee> in documents on

billings usually contains customer names. Using the XML elements to

the common analysis structure mapping, the content of this element can

be mapped directly to annotations of type Customer. An annotator can

then infer a Customer-located-at relationship, using the information

surrounding the Customer annotation.

Custom text analysis integration 25

v You want to limit the processing scope of a custom annotator to

specified areas in the XML input. For example, you might want to limit

the analysis to the content of the <technicianComment> tags only in an

annotator that detects car problems.

v You want to restrict both text analysis processing and subsequent search

to certain parts of the XML document, and filter out irrelevant or

non-textual content.

v You want to map XML tags that have different names to a common span

that is to be used in semantic search. For example, mapping

<mainHeading> or <doc> to title.

In these cases, you must create an XML elements to the common analysis

structure mapping file that defines which XML elements map which

feature structures. The feature structures that you define in the mapping

file are created when the documents are parsed, and are accessed by the

custom annotators.

You can use more than one XML elements to the common analysis structure

mapping file for a document collection. Which mapping file is used for which

XML document is determined by the <identifier> element. The <identifier>

element in the mapping file must match the root element in the XML document.

For example, if the root element of your document is doc, the value of the

<identifier> element in the mapping file must also be ″doc″.

If no match is found, the program will search for a mapping file with the

<identifier> element set to Default. If no default mapping is found, the textual

sections of the document (with no tag information) are mapped to the document

annotation in the common analysis structure.

If you want to extract information that is only contained in relevant parts of a

document, while ignoring irrelevant parts, simply specify which XML elements in

the documents contain relevant information. This is referred to as content

extraction. For example, you can extract the input specified in the title and body

elements, while ignoring the input in author, date, ID, and publisher.

Content extraction can improve analysis processing for the following types of XML

documents:

v Documents that contain large quantities of content that are not subject to

analysis, for example, binary attachments. Using content extraction reduces the

document size significantly, speeding up processing and avoiding analysis errors

that start from unsuitable data.

v Documents in which document text is interspersed with irrelevant text, for

example, documents that contain editorial information within <note> tags.

Ignoring this information leads to better results when analyzing the document

content.

Using native XML search and the content extraction options in the XML elements

to the common analysis structure mapping are mutually exclusive options, because

either all content or only specified content can be considered. If you specify

content extraction, native XML mapping is ignored. Without content extraction,

you can have both XML elements to common analysis structure mapping and

native XML search.

All the types and features that you use in your configuration file must be

described in the type system description of your custom analysis steps. You can

26 OmniFind Enterprise Edition: Text Analysis Integration

create a type system descriptor in your UIMA environment by using the

Component Descriptor Editor Eclipse plug-in. This plug-in allows you to create a

descriptor file without needing to know about the necessary XML syntax.

After you have built and tested the custom analysis, use the UIMA PEAR

(Processing Engine ARchive) generation wizard to create an archive that contains

the custom analysis files including the type system description. Then, you can

upload the custom analysis archive and your XML elements to the common

analysis structure mapping files into enterprise search by using the administration

console for enterprise search.

Creating an XML elements to the common analysis structure

mapping file

In an XML to the common analysis structure mapping file, you can employ the full

range of configuration options for mapping XML to UIMA data types.

About this task

The XML to the common analysis structure mapping file is shown in the following

example.

The sample police report has XML tags for the crime type, crime date, crime

location, reporting officer, the police precinct where the officer is employed, suspect

description, and abstract. This is followed by a body section. For example:

<report>

 <doc>

 <crimeType>Car theft</crimeType>

 <crimeDate>04/23/05 09:23 pm</crimeDate>

 <crimeLocation>27 Main Street, Brynston, Springfield, New Jersey</crimeLocation>

 <reportingOfficer rank="Lt">Jakob

 <lastName>Collins</lastName>

 </reportingOfficer>

 <policePrecinct>14th Precinct</policePrecinct>

 <suspectDescription>Male, dark haired, dark glasses,

 blue jeans with dark, probably black,

 jacket</suspectDescription>

 <abstract>A Mercedes CLK was stolen on 04/23/2005 from a parking

 lot in front of the Blue Lagoon restaurant on

 27 Main Street, Brynston.(serial number: 32 2761 50871)</abstract>

 <body>A Mercedes CLK was stolen on 04/23/2004 from a parking

 lot in front of the Blue Lagoon restaurant on 27 Main Street,

 Brynston.(serial number: 32 2761 50871)

It has a black color and wide Michelin tires.

Eyewitnesses in front of the restaurant saw two darkly dressed

males drive away in the car at high speed. The car was

found abandoned on Aliway Ave in Brooklyn. The fuel tank was empty.

The seats were badly stained and the back seat was vandalized.

Nothing was stolen out of the car....</body>

 </doc>

 

</report>

Based on the sample report, an XML to the common analysis structure mapping

file might have the following structure. The sample uses the type system that is

defined for the police report scenario.

Custom text analysis integration 27

<?xml version="1.0"?>

<xmlCasInitializerConfiguration

 xmlns="http://www.ibm.com/2005/uima/jedii_ci_xml">

 <identifier>Default</identifier>

 <description>Sample configuration</description>

 <contentElements>

 <element>/report/doc</element>

 </contentElements>

 <elementToTypeMappings>

 <elementToTypeMapping>

 <element>//doc//reportingOfficer</element>

 <type>com.ibm.omnifind.types.Person</type>

 <featureValueAssignment>

 <feature>role</feature>

 <basicValue default="Reporting officer">

 </basicValue>

 </featureValueAssignment>

 <featureValueAssignment>

 <feature>gender</feature>

 <basicValue default="male"

 useAttributeValue="sex"/>

 </featureValueAssignment>

 <featureValueAssignment>

 <feature>surName</feature>

 <values concatenate="true" delimiter=" ">

 <basicValue useAttributeValue="rank"

 default="Lt"/>

 <basicValue useElementContent="lastName"/>

 </values>

 </featureValueAssignment>

 </elementToTypeMapping>

 <elementToTypeMapping>

 <element>//doc</element>

 <type>com.ibm.omnifind.types.PoliceReport</type>

 <featureValueAssignment>

 <feature>crimeDescription</feature>

 <basicValue useElementContent="abstract"

 trim="true">

 </basicValue>

 </featureValueAssignment>

 </elementToTypeMapping>

 </elementToTypeMappings>

</xmlCasInitializerConfiguration>

Restrictions

The mapping file is split into two sections:

<contentElements> element

Use this element if you want specific content extraction. The sample

mapping file extracts the content in the <doc> section of a document and

ignores other sections in the document. In the XML police report, the

image might be large and not very useful for text processing. By specifying

<doc> as a content element and not <image>, the image is filtered out before

any text processing begins.

<elementToTypeMappings>

Use this element to specify which individual XML elements (specified in

an <elementToTypeMapping> element) in the document to map to which

feature structures in the common analysis structure.

28 OmniFind Enterprise Edition: Text Analysis Integration

If you use the content extraction option, the XML elements that are

specified in the <elementToTypeMappings> section must be contained within

the XML elements that are specified in the <contentElements> section.

Procedure

To create an XML to the common analysis structure mapping file:

1. Create an XML file. To avoid XML syntax errors, use an XML editor or XML

authoring tool to validate the XML. The XSD schema for the mapping file is

called XMLCasInitSchema.xsd and is contained in your enterprise search

installation at ES_INSTALL_ROOT/packages/uima/configuration_xsd/.

2. Include your mappings in an <xmlCasInitializerConfiguration

xmlns=″http://www.ibm.com/2005/uima/jedii_ci_xml″> element. The namespace

(specified in the xmlns attribute) must be exactly as shown.

3. Add a <contentElements> element if you want to extract specific content from

sections in the document and a <elementToTypeMappings> element that specifies

which individual XML elements in the document you want to map to which

feature structures in the common analysis area.

4. Add an <identifier> element and a <description> element. The identifier

determines which mapping to use for which XML document. The identifier

must contain the root element of the document, such as doc. If the identifier is

set to Default, the root element of the document is irrelevant and the mapping

is applied to any XML document.

5. Add a <contentElements> element if you want to extract information that is

contained only in relevant parts of a document. It has the following component

element:

v One or more <element> elements that contain the path of an XML element in

the document and follows XPath syntax, for example <element>/doc/
crimeType</element>.

6. Add an <elementToTypeMappings> element if you want to specify which XML

elements in the document to map to which feature structures in the common

analysis structure. It has the following component elements:

v One or more <elementToTypeMapping> elements. This element must have the

following nested elements:

– An <element> element that is used to specify the path of an XML element

and follows XPath syntax: A leading forward slash (/) means that a full

path is given. For example, abstract under the root element doc. Two

forward slashes (//) means any path subset. For example, birthDate must

occur within reportingOfficer, although other elements can occur

between these two.

– A <type> element, which specifies a type that is defined in the type

system description. It must be of type Annotation.

– Zero or more <featureValueAssignment> elements.
7. In a <featureValueAssignment> element, name a feature of type String in the

<feature> element and assign a value in the <basicValue> element. Multiple

<basicValue> elements can be added between a <values> element.

The <basicValue> element can have attributes. These include

useAttributeValue, useElementContent, default, and trim.

Use useAttributeValue if you want to use the value of an attribute as the value for

a feature. The following example

Custom text analysis integration 29

<elementToTypeMapping>

 <element>/doc//reportingOfficer</element>

 <type>com.ibm.omnifind.types.Person</type>

 <featureValueAssignment>

 <feature>role</feature>

 <basicValue default="Reporting officer"/>

 </featureValueAssignment>

 <featureValueAssignment>

 <feature>gender</feature>

 <basicValue default="male" useAttributeValue="sex"/>

 </featureValueAssignment>

 </elementToTypeMapping>

results in the following output:

v For each <reportingOfficer> XML tag that occurs somewhere within a <doc>

XML tag in the document, a feature structure of type

com.ibm.omnifind.types.Person is created.

v If the <reportingOfficer> tag contains an attribute sex, the feature gender of the

newly created feature structure is set to the value of the attribute.

Use the attribute useElementContent to add content as the value of a feature. For

example, in the following mapping snippet:

 <elementToTypeMapping>

 <element>//doc</element>

 <type>com.ibm.omnifind.types.PoliceReport</type>

 <featureValueAssignment>

 <feature>crimeDescription</feature>

 <basicValue useElementContent="abstract" trim="true"/>

 </featureValueAssignment>

 </elementToTypeMapping>

the text covered by the element <abstract> in <doc> becomes the value of the

feature structure crimeDescription. All leading and trailing blanks are removed.

More than one value can be specified between the <values> element for the

following cases:

v The feature to be set is of type StringArray.

v Many strings are concatenated to one string by using the delimiter attribute and

therefore map to a feature of type String. For example, the title Mr. is a constant,

the first name is the value of an attribute, and the last name is covered by an

XML element:

 <elementToTypeMapping>

 <element>//doc//reportingOfficer</element>

 <type>com.ibm.omnifind.types.Person</type>

 <featureValueAssignment>

 <feature>surName</feature>

 <values concatenate="true" delimiter=" ">

 <basicValue default="Mr."/>

 <basicValue useAttributeValue="rank"

 default="Lt."/>

 <basicValue useElementContent="lastName"/>

 </values>

 </featureValueAssignment>

 </elementToTypeMapping>

String feature values are extracted from the mapping file as is. The values retain

any leading or trailing blanks. However, names of types and features are trimmed

of any blanks. For example, <type> com.ibm.omnifind.types.Person </type>

becomes <type>com.ibm.omnifind.types.Person</type>.

30 OmniFind Enterprise Edition: Text Analysis Integration

Set conditions on attributes by using the <condition> element. For example, the

feature structure of type com.ibm.omnifind.types.Person is created only if

<suspectDescription> occurs in the document with attribute armed set to yes:

 <elementToTypeMapping>

 <element>//suspectDescription</element>

 <type>com.ibm.omnifind.types.Person</type>

 <condition attribute="armed" value="yes"/>

 </elementToTypeMapping>

Based on the sample police report and the defined mapping file, the following

feature structures are created:

com.ibm.omnifind.types.PoliceReport

v covered text: ″Car theft 04/23/05 09:23 pm 27 Main Street, Brynston,

Springfield, New Jersey Jakob Collins 14th Precinct Male, dark haired,

dark glasses, blue jeans with dark, probably black, jacket A Mercedes

CLK was ... Nothing was stolen out of the car.

v begin = 2

v end = 904

v knownSuspects = null

v crimeDescription = ″A Mercedes CLK was stolen on 04/23/2005 from a

parking lot in front of the Blue Lagoon restaurant on 27 Main Street,

Brynston.(serial number: 32 2761 50871)″

com.ibm.omnifind.types.Person

v covered text = ″Jakob Collins″

v begin = 112

v end = 127

v role = ″Reporting officer″

v firstName = null

v surName = ″Lt Collins″

v gender = ″male″

After you create the mapping file, you must upload it to enterprise search and

select the XML to the common analysis structure mapping file with your other

custom analysis selections by using the enterprise search administration console.

 Related reference

 “Type system description sample” on page 22

The text analysis results

All text analysis results are stored in the common analysis structure.

Annotators typically read from and write to the common analysis structure.

Common analysis structure consumers (CAS consumers) only read from the

common analysis structure. CAS consumers do the final processing on the analysis

results that are stored in the common analysis structure. Enterprise search contains

two CAS consumers:

v The consumer that indexes the contents of the common analysis structure in a

search engine. This consumer requires a common analysis structure to index

mapping file that you select with the custom text analysis on the enterprise

search administration console.

Custom text analysis integration 31

v The consumer that populates a relational database with specific analysis results.

This consumer also requires a common analysis structure to database mapping

file that you select with the custom text analysis options on the enterprise search

administration console.

If required, you can deploy custom CAS consumers in enterprise search. See the

UIMA documentation about how to write a consumer. To learn how to upload and

use your consumer in enterprise search, see the IBM UIMA developerWorks Web

site at http://www.ibm.com/developerworks/db2/zones/db2ii/.

 Related concepts

 “Index mapping for custom analysis results” on page 36

 “Database mapping for selected analysis results” on page 43

Feature paths

A feature path provides a way to access feature values in the common analysis

structures, similar to XPath statements that are used to access XML elements in an

XML document.

Feature paths are useful if you want to access a feature structure that combines

complex features, for example features that are array valued or point to another

feature structure. Using a feature path, you can associate the value of a feature

directly with a feature structure, and store this value in the semantic search index

or in a database.

For example, consider an annotator that identifies cars and their makes. It creates

annotations of type car that have an attribute make. However, make does not

contain the actual company (for example, Chevrolet) but contains a feature

structure of type Company, which itself has a string-valued attribute companyname. To

enable a semantic query that combines car names and company names, a feature

path make/companyname is used to attach the value of companyname to the car span

that is generated for the car annotation. This enables the query, ″Give me

documents that contain cars made by Chevrolet″, by using

’/car[@make=″Chevrolet″]’.

A feature path is a sequence of feature names (f1/.../fn) with the following

properties:

v The value of a feature path can be String, Integer, Float, or an array of one of

those types.

v All features within the path from f1 to fn-1 must have a complex type, that is, of

type uima.cas.TOP, uima.cas.FSArray, uima.cas.FSList, or of one of their

subtypes.

v The last feature fn in the path can include a complex type. Additionally, it can

include a (sub-)type of uima.cas.Float, uima.cas.Integer, uima.cas.String,

uima.cas.FloatArray, uima.cas.IntegerArray, uima.cas.StringArray,

uima.cas.FloatList, uima.cas.IntegerList, or uima.cas.StringList.

v Optionally, a feature can be typed. The fully qualified type name must be

prepended to the feature name, and be separated by a colon. For example,

f1/com.ibm.es.SomeType:f2/.../fn .

You can narrow the type scope of a particular feature. For example, consider a

feature additionalInfo of type uima.cas.TOP. If you know that the value of your

feature additionalInfo is actually of type EmployeeInfo which has the feature

salary, you can access this feature using additionalInfo/EmployeeInfo:salary.

32 OmniFind Enterprise Edition: Text Analysis Integration

http://www.ibm.com/developerworks/db2/zones/db2ii/

Note that in this example, the feature path additionalInfo/salary would result in

an error, as salary has not been defined for the type uima.cas.TOP.

Features that are array- or list-valued have the following additional properties:

v Use brackets ([<number>]) to select a certain element in the array or list. An

array starts at zero (0). For example, to select the first element in the companies

array, use companies[0]. The special marker [last] can be used to select the last

entry in an array, irrespective of its size, for example, companies[last].

v Use empty brackets ([]) to denote all elements. Only one empty bracket ([]) is

allowed in a feature path. For example, if there is an array of suspects, the

feature path knownSuspects[]/com.ibm.omnifind.types.Suspect:surName collects

all the last names of suspects into a String array.

v When a feature path that returns an array is used during indexing, the array

elements are concatenated (separated by white-spaces) and written to the index

as a single, multi-term attribute or field.

v The next element in the feature path must be typed. The type name is the type

of the elements within the array. For example, consider a feature structure of

type Info. This type has a feature named companies, whose range is an FSArray.

The elements of the array are of type Company. Company, in turn, has a feature

named profit. To obtain the profit of the third company, write (using fully

qualified type names) companies[2]/Company:profit.

Built-in features

Built-in features are predefined feature names with special semantics. They can be

used to access information that is not contained in the feature structure itself, for

example, the type of the feature structure or the covered text of an annotation.

They can be used in a feature path as the last, or sole element.

The following built-in features can be used in both mapping configuration files:

v fsId() returns the ID of the feature structure. The returned ID is an integer (32

bit). Use this built-in feature to access parts of a document that match the query

exactly.

v typeName() returns the common analysis structure object type as a string. The

type is the fully qualified type name including any namespace prefixes, for

example uima.tcas.Annotation. In a database context, typeName() is especially

useful if you store types and subtypes in the same column and want to know a

the real type of an annotation or feature structure. The following example stores

the person type, such as suspect or witness, in the role column.

<explicitMappingRule applyToSubTypes="false">

 <type>com.ibm.omnifind.types.Person</type>

 <table>sample.person</table>

 <featureMappings>

 <featureMapping>

 <feature>typeName()</feature>

 <column>role</column>

 </featureMapping>

 </featureMappings>

 </explicitMappingRule>

v coveredText() returns the text that is spanned by the common analysis object.

coveredText() is available only for annotations and their subtypes. Do not use

this built-in feature on feature structures that are not subsumed by the

annotation type. The following example stores the name of a suspect in the

suspectName column.

Custom text analysis integration 33

<implicitMappingRule applyToSubTypes="false">

 <type>com.ibm.omnifind.types.Suspect</type>

 <relation>sample.person</relation>

 <featureMappings>

 <featureMapping>

 <feature>coveredText()</feature>

 <column>suspectName</column>

 <length>128</length>

 </featureMapping>

 </featureMappings>

 </implicitMappingRule>

v [] returns a handle to the current container entry (array or list). The feature

implies an iteration, which means that an entry is made in the database table or

index for each element in the array or list. The following example is taken from

a common analysis structure to database mapping file in which the built-in

function [:index] is also permitted.

<implicitMappingRule applyToSubTypes="false">

 <type>uima.cas.FSArray</type>

 <table>sample.knownSuspects</table>

 <featureMappings>

 <featureMapping>

 <feature>uniqueId()</feature>

 <column>arrayId</column>

 </featureMapping>

 <featureMapping>

 <feature>[:index]</feature>

 <column>arrayIndex</column>

 </featureMapping>

 <featureMapping>

 <feature>[]/com.ibm.omnifind.types.Suspect:uniqueId()</feature>

 <column>suspectId</column>

 </featureMapping>

 </featureMappings>

 </implicitMappingRule>

The following built-in features can be used only in the common analysis structure

to database mapping file:

v uniqueId() returns the global unique ID of the feature structure. The returned

unique ID is a string of fixed length (27 characters) and is a concatenation of the

result of fsId(), docId(), docTimestamp(), and the number of the current chunk

because documents can be chunked into multiple common analysis structures in

enterprise search.

The returned string can include any characters between ″a-z″ and ″A-Z″, the

numbers ″0-9″, semicolon (″;″), and colon (″:″).

The result of uniqueId() can be used as the primary key for tables.

v objectId() returns the ID of the annotation or feature structure. objectId() is

similar to uniqueId(), only it does not contain the result of docTimestamp(). The

returned ID is unique only in a collection in which documents are parsed once.

If you require uniqueness across all documents and document versions, you

must use uniqueId().

The returned string of the built-in feature objectId() has a fixed length of 16

characters and can include any characters between ″a-z″ and ″A-Z″, the numbers

″0-9″, semicolon (″;″), and colon (″:″).

If uniqueId() or objectId() reference feature structures that are empty, the

default value defined in the database table definition is taken, no empty objects

of a referenced type are stored.

v docId() returns the document ID. The returned value is of type integer (32-bit).

The following example shows these built-in features:

34 OmniFind Enterprise Edition: Text Analysis Integration

<explicitMappingRule applyToSubTypes="true">

 <type>com.ibm.omnifind.types.PoliceReport</type>

 <table>sample.PoliceReport</table>

 <featureMappings>

 <featureMapping>

 <feature>uniqueId()</feature>

 <column>policeReportId</column>

 </featureMapping>

 <featureMapping>

 <feature>docId()</feature>

 <column>policeReportDocId</column>

 </featureMapping>

 </featureMappings>

 </explicitMappingRule>

v docUri() returns the document URI.

v docTimestamp() returns the time (in milliseconds) when the document was

processed. This built-in feature is useful for tracking document versions, for

example, if you want to know whether the document version that you are using

is the latest passed by the crawler.

<explicitMappingRule applyToSubTypes="false">

 <type>com.ibm.omnifind.types.PoliceReport</type>

 <relation>sample.PoliceReport</relation>

 <featureMappings>

 <featureMapping>

 <feature>uniqueId()</feature>

 <column>policeReportId</column>

 </featureMapping>

 <featureMapping>

 <feature>docTimestamp()</feature>

 <column>reportVersion</column>

 </featureMapping>

 </featureMappings>

 </explicitMappingRule>

v parentId() returns the fsId() of the feature structure that encloses a container

mapping. parentId() is valid only within the context of a container mapping.

v uniqueParentId() returns the uniqueId() of the annotation or feature structure

that is enclosed in a container mapping. This built-in feature is also valid only

within the context of a container mapping.

v [:index] returns the index of the current container entry (array or list).
 Related tasks

 “Retrieving parts of a document that match a semantic search query” on page

53

Filters

Filters are used to restrict mapping rules in the common analysis structure to index

mapping files and the common analysis structure to database mapping files. Only

if the filter is true are analysis results added to the index or to a JDBC table.

The <filter> element is optional and is used to restrict mappings only to features

that have a certain attribute value. This is useful if you want an attribute to act as

a switch for what to index or add to the database. For example, persons and

organizations might be recorded in an annotation of type EntityAnnotation. Its

feature called type is set to either person or organization. To extract only the

persons, and not the organizations, you can add the following filter to the

mapping rule:

 <filter syntax="FeatureValue">type = "person"</filter>

Each filter expression takes the form:

Custom text analysis integration 35

<FeaturePath> <Operator> <Literal>

where:

v FeaturePath is a feature path in the common analysis structure

v Operator is =, !=, <, <=, > or >=. Note that < (and only <) must be expressed as

<.

v Literal is an integer, floating point number (no exponent syntax is supported), or

string literal that is enclosed in double quotes, with embedded quotes and

backslashes escaped by a backslash.

<FeaturePath>, <Operator> and <Literal> must be separated by a blank space.

The following examples are valid filters:

v <filter syntax="FeatureValue"> foo = "hello world" </filter>

The feature foo contains the string hello world.

v <filter syntax="FeatureValue"> foo < 42 </filter>

The feature foo has an integer value smaller than 42.

v <filter syntax="FeatureValue"> make/company = "Chevrolet" </filter>

The feature path make/company where the feature make contains a feature

structure which has a feature company with the value Chevrolet.

v <filter syntax="FeatureValue"> bar7 >= 0.5 </filter>

The feature bar7 has a float value larger or equal to 0.5.

Index mapping for custom analysis results

After you run your custom analysis on a collection of documents, you can use the

search engine in enterprise search to build an index from the information that is

stored in the common analysis structure that is created by the custom analysis

algorithms.

Mapping your analysis results to fields, spans of text, and attributes in the

enterprise search index enables you to use this information in queries. Combining

custom analysis with enterprise search that is capable of indexing both words and

spans of text, enables semantic search.

Using the common analysis structure to index mapping file, you can determine

which analysis results in the common analysis structure that you want to index.

You can use different styles to map feature structures in the common analysis

structure to the enterprise search index.

Annotation

If you index feature structures in the common analysis structure by using

the annotation style, all annotations of the specified types are stored in the

index as searchable spans.

 For example, if a feature structure that spans a certain area of text is of

type person and is indexed by using the annotation style, the following

queries are possible:

 Table 2. Sample queries

Required information Possible query

Give me all documents that contain

at least one person name <person/>

36 OmniFind Enterprise Edition: Text Analysis Integration

Table 2. Sample queries (continued)

Required information Possible query

Give me all documents where boss

is contained within a person

annotation

<person>boss</person>

Give me all documents where Lang

is mentioned in the same sentence

as one of my competitors

<sentence><person>Lang</person>

<competitor/></sentence>

Attributes of feature structures are also indexed as part of the span. For

example, consider an annotator that detects cars and stores the car make as

a feature make of the car annotation. This enables the following type of

query: ″Give me documents that mention cars of the make Chevrolet″.

Field Use this style if you want to make the content of feature structures

accessible during search by using the field search capabilities in enterprise

search. In this way, the content of a feature structure can be displayed in

search results or used in parametric search.

 For example, if you map drug dosages to a parametric field, you can use

the following query: ″Give me all documents that talk about a certain drug

taken at a dosage above 100 milligrams.″

Breaking

Use this style if you want a particular feature structure to be interpreted as

a clear delimiter, for example, sections or paragraphs. Enterprise search

detects sentences and paragraphs by default. Use this style only if your

custom analysis detects additional structural elements in a document that

you want to have interpreted differently.

Analysis results can be used also to affect the document ranking in enterprise

search, even for simple keyword queries. This is done in two steps:

1. Map feature structures to searchable spans or fields, using the Annotation or

Field mapping style.

2. Define a boost class by using the enterprise search administration console and

map the span or field name to this boost class.

If the user enters a search term that is contained within the feature structure, the

document is ranked higher. For example, consider an annotator that detects person

and company names. By mapping these feature structures to spans (such as

″person″ and ″company″) and then mapping these spans to boost classes, the

search result for ″gap″ will rank documents higher that talk about the company

″Gap″ than those that merely contain the term ″gap″.

After you write the common analysis structure to index mapping file, you can

upload it to enterprise search by using the administration console.

Creating the common analysis structure to index mapping file

Using the common analysis structure to index mapping file, you can determine

which analysis results in the common analysis structure you want to index to

enable search.

About this task

Custom text analysis integration 37

The common analysis structure to index mapping file is in XML. The sample

common analysis structure to index mapping file is based on the type system

defined for the police report scenario.

<?xml version="1.0" encoding="UTF-8"?>

<indexBuildSpecification

xmlns="http://www.ibm.com/of/822/consumer/index/xml">

 <skipCondition>

 <type>com.ibm.uima.tt.DocumentAnnotation</type>

 <filter syntax="FeatureValue">toBeprocessed = 0</filter>

 </skipCondition>

 <indexBuildItem>

 <name>com.ibm.omnifind.types.Person</name>

 <indexRule>

 <style name="Annotation">

 <attributemappings>

 <mapping>

 <feature>role</feature>

 <indexName>role</indexName>

 </mapping>

 <mapping>

 <feature>title</feature>

 <indexName>title</indexName>

 </mapping>

 <mapping>

 <feature>gender</feature>

 <indexName>gender</indexName>

 </mapping>

 </attributemappings>

 </style>

 </indexRule>

 </indexBuildItem>

 <indexBuildItem>

 <name>com.ibm.omnifind.types.Suspect</name>

 <indexRule>

 <style name="Annotation"/>

 <style name="Field">

 <attribute name="parametric" value="false"/>

 <attribute name="fieldSearchable"

 value="true"/>

 <attribute name="returnable" value="true"/>

 </style>

 </indexRule>

 </indexBuildItem>

 <indexBuildItem>

 <name>com.ibm.omnifind.types.City</name>

 <indexRule>

 <style name="Annotation">

 <attributemappings>

 <mapping>

 <feature>cityDistrict</feature>

 <indexName>district</indexName>

 </mapping>

 </attributemappings>

 </style>

 </indexRule>

 </indexBuildItem>

 <indexBuildItem>

 <name>com.ibm.omnifind.types.Date</name>

 <indexRule>

 <style name="Field">

 <attribute name="fixedName" value="Date"/>

 <attribute name="fieldSearchable"

 value="true"/>

 <attribute name="returnable" value="true"/>

 </style>

38 OmniFind Enterprise Edition: Text Analysis Integration

<style name="Field">

 <attribute name="fixedName" value="hour"/>

 <attribute name="valueFeature" value="hour"/>

 <attribute name="parametric" value="true"/>

 </style>

 </indexRule>

 <filter syntax="FeatureValue">year="2005"</filter>

 </indexBuildItem>

 <indexBuildItem>

 <name>com.ibm.omnifind.types.PoliceReport</name>

 <indexRule>

 <style name="Annotation">

 <attribute name="fixedName"

 value="PoliceReport"/>

 <attributemappings>

 <mapping>

 <feature>crimeDescription</feature>

 <indexName>crimeDescription</indexName>

 </mapping>

 <mapping>

 <feature>time/coveredText()</feature>

 <indexName>time</indexName>

 </mapping>

 <mapping>

 <feature>date/englDate</feature>

 <indexName>date</indexName>

 </mapping>

 <mapping>

 <feature>location/coveredText()</feature>

 <indexName>location</indexName>

 </mapping>

 <mapping>

 <feature>knownSuspects[]/com.ibm.omnifind.types.Suspect:surName</feature>

 <indexName>suspectsLastNames</indexName>

 </mapping>

 </attributemappings>

 </style>

 </indexRule>

 </indexBuildItem>

</indexBuildSpecification>

Restrictions

The common analysis structure to index mapping file must contain all of the

analysis results that you want to be able to search in queries.

Procedure

To create the common analysis structure to index mapping file:

1. Create an XML file. To avoid XML syntax errors, use an XML editor or XML

authoring tool of your choice. The XSD schema for the mapping file is called

CasToIndexMapping.xsd and is contained in your enterprise search installation

at ES_INSTALL_ROOT/packages/uima/configuration_xsd/.

2. Include your mappings in a <indexBuildSpecification xmlns=″http://
www.ibm.com/of/822/consumer/index/xml″> element. The namespace (specified

in the xmlns attribute) must be exactly as shown.

3. Add a <skipCondition> element to prohibit certain documents from being

indexed, based on a certain feature value. This element is optional. In the

example, documents will not be indexed that contain a data structure of type

com.ibm.uima.tt.DocumentAnnotation with a feature named toBeProcessed set

to zero.

Custom text analysis integration 39

4. Add one or more <indexBuildItem> elements that contains the mapping of one

particular feature structure in the common analysis structure to a structure in

the index.

5. Save and validate the XML file.

The <indexBuildItem> element

The common analysis structure to index mapping file contains one or more

<indexBuildItem> elements. Each element describes the mapping of one particular

feature structure in the common analysis structure to a structure in the index (a

span or field).

The <name> element contains the feature structure type. There are two ways to

specify a type:

v The full type name. For example, com.ibm.omnifind.types.Suspect

v A wildcard. For example, com.ibm.omnifind.types.*. The wildcard character can

be added only at the end of the type specification.

Only use subtypes of uima.tcas.Annotation as index build items. If a feature

structure is a subtype uima.cas.TOP (and not of uima.tcas.Annotation), you can

access this feature structure using a feature path starting from an annotation.

If type A is a subtype of type B (in the sample, com.ibm.omnifind.types.Suspect as

a subtype to com.ibm.omnifind.types.Person), and there are <indexBuildItem>

elements Ia and Ib defined for both types, processing is as follows:

v Each index rule that is defined in Ib is applied to feature structures of type B

and feature structures of type A

v Each index rule that is defined in Ia is applied to feature structures of type A

only

In the example, the <indexBuildItem> element that is defined for

com.ibm.omnifind.types.Person annotations also applies to

com.ibm.omnifind.types.Suspect annotations. Two spans are created for a suspect

annotation: one named Person and the other Suspect.

The <filter> element is optional and is used to restrict the <indexBuildItem>

mapping only to feature structures that have a certain attribute value. This is

useful if you want an attribute to act as a switch for what to index. For example,

persons and organizations might be recorded in an annotation of type

EntityAnnotation. Its feature called type is set to either person or organization. To

extract only the persons, and not the organizations, you can add the following

filter:

 <filter syntax="FeatureValue">type = "person"</filter>

Moreover, you could choose to index persons and organizations under different

span names, for example, person and organization. To do this, define two

<indexBuildItem> elements of type EntityAnnotation and use two filters on the

type feature to trigger either the persons or the organizations.

The <indexRule> element

Each <indexBuildItem> element contains one <indexRule> element. Each

<indexRule> element contains all the information needed to map a feature structure

in the common analysis structure to the index as a field, an annotation, and a

breaking style. The annotation and field styles support a number of attributes. You

40 OmniFind Enterprise Edition: Text Analysis Integration

cannot use the term style, which is supported in the UIMA Software Development

Kit in enterprise search (Term style is skipped).

For the annotation and field styles, the following alternatives exist when you

specify the annotation or field name in the index:

v Use fixedName if you want each feature structure to be accessible in the index

under the same name. In the following example, each feature structure of type

com.ibm.omnifind.types.Person will be mapped to a span named ″Person″ in

the index.

<indexBuildItem>

 <name>com.ibm.omnifind.types.Person</name>

 <indexRule>

 <style name="Annotation">

 <attribute name="fixedName" value="Person" />

 </style>

 </indexRule>

</indexBuildItem>

This enables queries like ″Give me documents where Boss is contained as a

person name″. The query is expressed as follows by using XML fragments:

@xmlf2::’<Person>Boss</Person>’

v Use nameFeature if the annotation stores different entities that you want to be

able to access using different spans depending on the value of a certain feature

of the annotation. In the following example, com.ibm.tt.EntityAnnotation is

indexed as a person or organization span, depending on the value of the

feature named type. The feature can also be a feature path.

<indexBuildItem>

 <name>com.ibm.tt.EntityAnotation</name>

 <indexRule>

 <style name="Annotation">

 <attribute name="nameFeature" value="type" />

 </style>

 </indexRule>

</indexBuildItem>

This enables queries like ″Give me documents about the organization WHO″ (as

opposed to the English term ″who″). The query is expressed as follows in

limited XPath syntax: @xmlp::’/organization[ftcontains="WHO"]’

v If none of the above attributes is used, the short name of the annotation type in

the <indexBuildItem> element is used. This is the default. For example:

<indexBuildItem>

 <name>com.ibm.uima.tutorial.RoomNumber</name>

 <indexRule>

 <style name="Annotation" />

 <style name="Field" />

 </indexRule>

 </indexBuildItem>

This <indexBuildItem> element results in annotations and fields named

RoomNumber populated with the text covered by

com.ibm.uima.tutorial.RoomNumber.

The <style name="Annotation" /> element

Annotation in the <style> element specifies how you can access span information

in enterprise search. Besides allowing the use of the fixedName and nameFeature

attributes, this style also supports the <attributemappings> element. Within this

element, it is possible to map the value of a feature to an attribute of the resulting

span in the index, which you can subsequently use in a search expression.

Custom text analysis integration 41

Each mapping is done within a separate <mapping> element. The <feature>

element contains a feature path, and the <indexName> element contains the name of

the attribute that is used in the index to store the value of <feature>. For example,

<mapping>

 <feature>make/companyname</feature>

 <indexName>company</indexName>

</mapping>

This <mapping> element stores the value of the feature in the path

make/companyname directly in the index attribute company.

Mapping feature values to index attributes is especially useful if the type system

used during text analysis is complex, including many nested feature structures.

Using the <mapping> element, relevant attributes can be exposed, allowing you to

use them in queries without detailed knowledge of the original type system

structure.

The <style name="Field" /> element

Field in the <style> element specifies how you can access field information in

enterprise search. Besides the fixedName and nameFeature attributes, you can set

the following attributes.

parametric

If set to true, the field value can be searched using parametric search, for

example, #dosage:>100

fieldSearchable

If set to true, the field value can be used in search, for example,

make:Bayer

returnable

If set to true, the field and its values are returned in the search result

Field information is always content searchable, that is, field information is

accessible in normal keyword searches.

The optional attribute valueFeature defines which feature value to take as the field

value. If the feature structure is an annotation, and the attribute is not set, the

covered text of the annotation is used as the field value. In the example,

<indexBuildItem>

 <name>com.ibm.omnifind.types.Date</name>

 <indexRule>

 <style name="Field">

 <attribute name="fixedName" value="date"/>

 <attribute name="fieldSearchable"

 value="true"/>

 <attribute name="returnable" value="true"/>

 </style>

 <style name="Field">

 <attribute name="fixedName" value="hour"/>

 <attribute name="valueFeature" value="hour"/>

 <attribute name="parametric" value="true"/>

 </style>

 </indexRule>

 <filter syntax="FeatureValue">year="2005"</filter>

</indexBuildItem>

42 OmniFind Enterprise Edition: Text Analysis Integration

two fields are generated for com.ibm.omnifind.types.Date. One field named date

contains the covered text, for example, 5:15pm. Another field contains the value of

the attribute hour. Here you can query using ’hour::<17’.

The <style name="Breaking" /> element

The value Breaking in the <style> element does not include any further elements.

After you create the XML file, you must upload it to enterprise search and select

the common analysis structure to index mapping file with your other custom

analysis selections using the enterprise search administration console.

 Related concepts

 “Feature paths” on page 32
 Related reference

 “Filters” on page 35

 “Type system description sample” on page 22

Database mapping for selected analysis results

After you have analyzed your documents in enterprise search, you can store

selected text analysis results in a JDBC-capable database.

This version supports DB2 Universal Database™, Version 8.2.2

(com.ibm.db2.jcc.DB2Driver Version 2.3) or higher and Oracle 10g

(oracle.jdbc.driver.OracleDriver Version 1.0).

For DB2 Universal Database and Oracle, you can choose to insert the analysis

results directly into the database or to generate the equivalent database-specific

load files and the corresponding script that runs the load commands.

Mapping your analysis results to tables in a database enables you to use this

information in subsequent business intelligence processing steps or to directly

access the relevant parts of a document that match a semantic search query.

The common analysis structure to database mapping file contains database

connection configuration information and describes which custom analysis results

are to be stored in which tables and columns. The table and column names in your

mapping file must correspond to the tables and columns that are created in the

database.

After you have written the common analysis structure to database mapping file,

you can upload the file to enterprise search by using the administration console.

Storing analysis results in a database

To store selected analysis results in a JDBC capable database, you must write the

common analysis structure to database mapping file that defines which analysis

results to store in a database, and the necessary JDBC driver libraries must be in

the path that you defined in the mapping file.

To store analysis results in a JDBC capable database:

1. Decide which analysis results that you want to store in the database. Create a

database that contains the tables with all the necessary columns of the

appropriate data types.

Custom text analysis integration 43

2. In an XML editor, write the common analysis structure to database mapping

file with the database configuration data and the analysis results that you want

to store. To determine which analysis results to include in the mapping file, you

must know the underlying type system that is used when the documents are

processed.

3. Put the JDBC driver libraries in a directory on the indexer node where they can

be accessed by the enterprise search system.

4. Upload and select the mapping file by using the enterprise search

administration console.

Using load file sets

You can either store analysis results directly in a JDBC-capable database, or you

can configure processing to use load file sets and load the data into a database at a

later stage.

Using load file sets has the following advantages:

v In total, a set of load files can never be larger than the maximum file size

supported by the operating system

v You can start loading data into a database as soon as a load file set is full, and

do not have to stop and restart the document parser to avoid file access

conflictions

Switching from one load file set to the next one is done on a document level even

if the document is chunked across multiple common analysis structures. After a

document has been processed, and if a load file in the current load file set exceeds

the defined limit, a new load file set is used. This guarantees load file set

consistency. After the content of one load file set is loaded into the database, the

data model remains consistent because all entries in the master table contain the

matching entries in the database table.

The load files and script files are identified by the file extension .cur. When a load

file set is closed, the files are renamed to have the extension .dat. This indicates

that the files can be copied or moved to a database server while the document

parser is still running.

You can specify the size of a load file. When the load file size limit is reached, a

new load file set is started. You specify the load file size in the common analysis

structure to database mapping file in the <loadFile> XML element section. The

parameter loadFileSize is defined using the <loadFileSize> element and is

specified in megabytes with 10 <= loadFileSize <= 10240 (10MB <= loadFileSize <=

10GB). The <loadFileSize> element is optional. If no value is set, the default value

is 1024MB (1GB).

The single load files in a set are numbered using a ten digit number that identifies

which file belongs to which load file set. A load file set is closed when:

v A load file in the set exceeds the defined size limit

v Processing stopped because the parser stopped or an error occurred

If the parser is restarted, processing continues from where it stopped using a new

load file set.

Important: If you use Cas2Jdbc to generate load files, ensure that only one parser

thread is configured. Using multiple parser threads for a collection that is

configured to generate Cas2Jdbc load files can result in invalid load files. To

44 OmniFind Enterprise Edition: Text Analysis Integration

specify how many parser threads will be used, use the enterprise search

administration console to edit a collection. Select the Parse page, select the option

to configure parsing options, and then specify 1 for the number of parser threads.

Creating the common analysis structure to database mapping

file

To add analysis results to a database, you must create the common analysis

structure to database mapping file that contains the database connection

configuration information and a description of which custom text analysis results

are to be stored in which database tables and columns.

About this task

The common analysis structure to database mapping file is in XML. The following

sample is based on the type system that is defined for the police report scenario.

In the example, only the police reports and the cities that appear in these police

crime reports are added to the database. The example shows the use of built-in

features and the <constant> element mapping.

<?xml version="1.0" encoding="UTF-8"?>

<cas2JdbcConfiguration xmlns="http://www.ibm.com/uima/consumer/jdbc/100/xml">

 <databaseConnection>

 <connectionUrl>db2://myMachine:myPort/myDatabase</connectionUrl>

 <driver type="jdbc">com.ibm.db2.jcc.DB2Driver</driver>

 <driverLibraries>

 <driverLibrary>C:\db2\db2jcc.jar</driverLibrary>

 <driverLibrary>C:\db2\db2jcc_license_cu.jar</driverLibrary>

 <driverLibrary>C:\db2\db2jcc_license_cisuz.jar</driverLibrary>

 </driverLibraries>

 <authentication>

 <username>myUser</username>

 <password>myPassword</password>

 </authentication>

 <loadFile>

 <loadFileDirectory>/home/cas2jdbc/load/</loadFileDirectory>

 <loadFileSize>1048</loadFileSize>

 <loadScript>/home/cas2jdbc/load/load.sh</loadScript>

 </loadFile>

 </databaseConnection>

 <cas2JdbcMappingSpec>

 <skipCondition>

 <name>com.ibm.uima.tt.DocumentAnnotation</name>

 <filter syntax="FeatureValue">toBeProcessed=0</filter>

 </skipCondition>

 <cas2JdbcMappings>

 <explicitMappings>

 <explicitMappingRule applyToSubtypes="false">

 <type>com.ibm.omnifind.types.PoliceReport</type>

 <table>sample.policeReport</table>

 <featureMappings>

 <featureMapping>

 <feature>uniqueId()</feature>

 <column>policeReportId</column>

 </featureMapping>

 <featureMapping>

 <feature>location/uniqueId()</feature>

Custom text analysis integration 45

<column>crimeLocationId</column>

 </featureMapping>

 </featureMappings>

 <filter syntax="FeatureValue">location/coveredText()="Los Angeles"</filter>

 </explicitMappingRule>

 </explicitMappings>

 <implicitMappings>

 <implicitMappingRule applyToSubtypes="false">

 <type>com.ibm.omnifind.types.City</type>

 <table>sample.City</table>

 <featureMappings>

 <featureMapping>

 <feature>uniqueId()</feature>

 <column>crimeLocationId</column>

 </featureMapping>

 <featureMapping>

 <feature>coveredText()</feature>

 <column>cityName</column>

 <length>150</length>

 </featureMapping>

 <featureMapping>

 <constant>USA</constant>

 <column>country</column>

 </featureMapping>

 </featureMappings>

 </implicitMappingRule>

 </implicitMappings>

 </cas2JdbcMappings>

 </cas2JdbcMappingSpec>

</cas2JdbcConfiguration>

Procedure

To create the common analysis structure to database mapping file:

 1. Create an XML file. To avoid XML syntax errors, use an XML editor or XML

authoring tool of your choice. The XSD schema for the mapping file is called

CasToJDBCMapping.xsd and is contained in your enterprise search installation

at ES_INSTALL_ROOT/packages/uima/configuration_xsd/.

 2. Include your mappings in a <cas2JdbcConfiguration xmlns=″http://
www.ibm.com/uima/consumer/jdbc/100/xml″> element. The namespace

(specified in the xmlns attribute) must be exactly as shown.

 3. Add a <databaseConnection> element that contains all database connection

configuration information and a <cas2JdbcMappingSpec> element that describes

the mapping rules for the analysis results that are stored in the database or

load files.

 4. Add the following component elements to the <databaseConnection> element:

v Mandatory: A <connectionUrl> element. This element contains the database

connection URL. Depending on the JDBC driver implementation, you can

use local or remote access to the database.

v Mandatory: A <driver> element. This element contains the name of the

JDBC driver class, for example com.ibm.db2.jcc.DB2Driver for DB2®, or

oracle.jdbc.driver.OracleDriver for Oracle.

v Mandatory: A <driverLibraries> element. This element lists the driver

libraries. Each library is listed in a <driverLibrary> element. The libraries

are in your DB2 or Oracle installation directory. For DB2, the libraries are

c:\your_db2_dir\db2jcc.jar, c:\your_db2_dir\db2jcc_license_cu.jar and

46 OmniFind Enterprise Edition: Text Analysis Integration

c:\your_db2_dir\db2jcc_license_cisuz.jar. For Oracle, the library to

include is c:\your_oracle_dir\classes12.zip.

Ensure that the driver libraries are always at the same maintenance level as

the DB2 applet server.

v Mandatory: An <authentication> element. This element contains the user

name and password for the database.

v Optional: A <loadFile> element. This element contains the following

component elements:

– The load file directory in a <loadFileDirectory> element.

– Optional: The load file size in a <loadFileSize> element. The load file

size limits are 10 <= loadFileSize <= 10240 (10MB <= loadFileSize <=

10GB). If no value is defined, the default is 1024 MB (1GB).

– The load script name in a <loadScript> element.

If you do not specify a <loadFile> element, all data is stored directly in the

database by using JDBC.

You must also add all of the database configuration parameters when you

use database-specific load files and scripts.
 5. Add the following component elements to the <jdbcMappingSpec> element:

v Optional: A <skipCondition> element. If no skip condition is defined, all of

the documents are processed.

 <skipCondition>

 <name>com.ibm.uima.tt.DocumentAnnotation</name>

 <filter syntax="FeatureValue">toBeProcessed=0</filter>

 </skipCondition>

In the example, documents that contain an annotation of type

com.ibm.uima.tt.DocumentAnnotation with a feature named toBeProcessed

set to zero will not be considered.

v A <cas2JdbcMappings> element that shows which types and features are

mapped to which database tables and columns. The element contains an

explicit and an implicit mappings section.
 6. Add an <explicitMappings> element. This element is mandatory. It must have

one or more <explicitMappingRule> elements that define the explicit

mappings and can only be defined for annotation types and their subtypes. If

a mapping is defined in the explicit mappings section, all of the annotations

that match the mapping definition will be stored in the database.

 7. Optional: Add an <implicitMappings> element. This element supports all

feature structure types. If this element is present, it must contain at least one

<implicitMappingRule> element. Mappings that are defined in the implicit

mappings section are added to the database only if the matching annotation

types are referenced by another annotation that can match either an explicit or

an implicit mapping rule.

The purpose of implicit mapping is to enable you to store only analysis results

which appear in a particular context. For example, if the mapping for an

annotation of type com.ibm.omnifind.types.City is implicit, only cities that

are referenced by the com.ibm.omnifind.types.PoliceReport mapping

definition in the explicit mappings section are stored in the database. This

means that only cities mentioned in police reports are added to the database.

If there is an explicit mapping rule for the City annotation, all cities are added

to the database. In both cases, if a city is referenced by multiple police reports,

it is added to the database only once.

Custom text analysis integration 47

8. The <explicitMappingRule> and <implicitMappingRule> elements must

contain the attribute applyToSubtypes, which, if set to true, stores not only the

feature structure that is listed in the <type> element, but also all of the feature

structures derived from it. Add the following component elements to

<explicitMappingRule> and <implicitMappingRule> elements:

v A <type> element that contains the feature structure type.

v A <table> element that contains the database schema and table name. The

syntax follows the rule schema.table_name, or only table_name if no schema

is defined.

v A <featureMappings> element with one or more <featureMapping> elements

or one <containerMapping> element.

v Optional: An <filter> element that contains a condition that is evaluated

each time the mapping rule matches. If the condition evaluates to true, the

annotation or feature structure is stored in the database. In the example,

only police reports that deal with crimes committed in Los Angeles are

stored in the database.
 9. The <featureMapping> element component structure varies depending on

whether you are mapping a feature or a constant.

If you are mapping a feature or feature path, the component elements include:

v A <feature> element with the name of the feature. The feature must be

defined for the feature structure in the type element. You can also use a

feature path construct or any of the system defined built-in features.

v Optional: A <length> element with the length a string can have in the

specified database column. Longer strings are truncated.

v A <column> element with the name of the column in which the feature value

is to be stored. Database columns that are not used in any feature mappings

use a default value (usually null) that is configured in the database.

Make sure that the value of the feature element is stored in a column of the

appropriate type. The following table shows you which UIMA types match

which database types.

 Table 3. Mapping between UIMA types and corresponding database types

UIMA type or built-in

feature

Recommended DB2 data

type

Recommended Oracle data

type

Float REAL FLOAT

String VARCHAR VARCHAR2

Integer INTEGER INTEGER

uniqueId(), uniqueParentId() CHAR(27) CHAR(27)

objectId(), parentId() CHAR(16) CHAR(16)

docTimestamp() BIGINT LONG

fsId() INTEGER INTEGER

For a constant, the component feature mapping elements are as follows:

v A <constant> element that contains the value of a constant.

v A <column> element with the name of the column to which the constant

value is added.
10. The <containerMapping> element contains the mapping for a container type

feature (array or list). This element must be used only for container types. It

has the following component elements:

48 OmniFind Enterprise Edition: Text Analysis Integration

v A <feature> element with the name of the feature. You can also use a

feature path construct or any of the system defined built-in features.

v A <table> element that contains the database schema and table name. The

syntax follows the rule schema.table_name or only table_name if no schema

is defined.

v One or more <featureMapping> elements that contain the names of the

feature structures and the column names to which the features are added.
11. Save and validate the XML file by using the provided schema.

After you create the XML file, you must upload it to enterprise search and select

the common analysis structure to database mapping file with your other custom

analysis selections by using the enterprise search administration console.

 Related concepts

 “Feature paths” on page 32
 Related reference

 “Filters” on page 35

 “Built-in features” on page 33

 “Type system description sample” on page 22

Container type mapping

A container type is one of the built-in array or list types in the common analysis

structure. Container type mapping is a way of mapping array or list values to a

relational database.

There are two approaches for handling container types in the common analysis

structure to database mapping file. One method uses the defined built-in feature

constructs and a generic link table which contains arrays or lists that are values of

a feature mapping rule. As different arrays or lists are stored in the same link

table, the table says nothing about the relation of the stored information.

In the second method, the link table definition which is defined using a

<containerMapping> element explicitly denotes the relation between the specified

information you want to have.

An example of what a generic link table mapping could look like is as follows.

There is a n:m relation between police reports and suspect persons, meaning one

suspect person can be mentioned in more than one police report, and one police

report can mention more than one suspect.

The generic sample.fsarray table in the example is the link table between police

reports and suspect persons. If another mapping type exists besides

com.ibm.omnifind.types.PoliceReport that has a feature of type

com.ibm.omnifind.types.FSArray, it is also mapped to this table. You can still

query the table for the relation between a police report and a suspect correctly,

however you cannot conclude, by simply looking at the table, that it contains the

relation or link between police reports and possible suspects.

<cas2JdbcMappings>

 <explicitMappings>

 <explicitMappingRule applyToSubtypes="false">

 <type>com.ibm.omnifind.types.PoliceReport</type>

 <table>sample.policeReport</table>

 <featureMappings>

 <featureMapping>

 <feature>uniqueId()</feature>

Custom text analysis integration 49

<column>policeReportId</column>

 </featureMapping>

 <featureMapping>

 <feature>knownSuspects/uniqueId()</feature>

 <column>suspectArrayId</column>

 </featureMapping>

 <featureMapping>

 <feature>location/cityName</feature>

 <column>city</column>

 </featureMapping>

 </featureMappings>

 </explicitMappingRule>

 </explicitMappings>

 <implicitMappings>

 <implicitMappingRule applyToSubtypes="false">

 <type>com.ibm.omnifind.types.Suspect</type>

 <table>sample.suspect</table>

 <featureMappings>

 <featureMapping>

 <feature>uniqueId()</feature>

 <column>suspectID</column>

 </featureMapping>

 <featureMapping>

 <feature>surName</feature>

 <column>lastName</column>

 </featureMapping>

 <featureMapping>

 <feature>description</feature>

 <column>description</column>

 </featureMapping>

 </featureMappings>

 </implicitMappingRule>

 <implicitMappingRule applyToSubtypes="false">

 <type>uima.cas.FSArray</type>

 <table>sample.fsarray</table>

 <featureMappings>

 <featureMapping>

 <feature>uniqueId()</feature>

 <column>arrayId</column>

 </featureMapping>

 <featureMapping>

 <feature>[:index]</feature>

 <column>arrayIndex</column>

 </featureMapping>

 <featureMapping>

 <feature>[]/uniqueId()</feature>

 <column>suspectId</column>

 </featureMapping>

 </featureMappings>

 </implicitMappingRule>

 </implicitMappings>

</cas2JdbcMappings>

The following shows the database tables based on the generic mapping rules

above.

 Table 4. The sample.policeReport table

policeReportId suspectArrayId city

aaa...1 bbb...1 Springfield

aaa...2 bbb...2 Ladysmith

50 OmniFind Enterprise Edition: Text Analysis Integration

Table 5. The sample.fsarray table

arrayId arrayIndex suspectId

bbb...1 1 ccc...1

bbb...1 2 ccc...2

bbb...2 1 ccc...3

 Table 6. The sample.suspect table

suspectID lastname description

ccc...1 Brown Dark complexion

ccc...2 Smith Wears glasses

...

The example shows the mapping for feature structure arrays. You can apply this

type of mapping to StringArray, IntegerArray, and FloatArray too. If you include

mapping rules for these simple valued arrays, replace []/uniqueId() with [].

The same generic table approach can be used for feature structures lists as well as

simple typed lists (StringList, IntegerList and FloatList).

An easier way to handle relations is to use an explicit container mapping element

which defines the iteration over the elements contained in the arrays or lists.

An example of a mapping that denotes an explicit link table is as follows. Again,

there is a n:m relation between police reports and suspect persons. However, this

time, the sample.reports_suspects table is the link table between police reports

and suspect persons.

In this approach, you do not have to consider dealing with array IDs, or head and

tail entry mapping for list types. The link table contains one explicit relation.

<cas2JdbcMappings>

 <explicitMappings>

 <explicitMappingRule applyToSubtypes="false">

 <type>com.ibm.omnifind.types.PoliceReport</type>

 <table>sample.policeReport</table>

 <featureMappings>

 <featureMapping>

 <feature>uniqueId()</feature>

 <column>policeReportID</column>

 </featureMapping>

 <featureMapping>

 <feature>location/cityName</feature>

 <column>city</column>

 </featureMapping>

 <featureMapping>

 <feature>knownSuspects</feature>

 <containerMapping>

 <table>sample.reports_suspects</table>

 <featureMapping>

 <feature>com.ibm.omnifind.types.PoliceReport

 /objectId()</feature>

 <column>policeReportId</column>

 </featureMapping>

 <featureMapping>

 <feature>knownSuspects/[]/objectId()</feature>

 <column>suspectId</column>

 </featureMapping>

Custom text analysis integration 51

</containerMapping>

 </featureMapping>

 </featureMappings>

 </explicitMappingRule>

 </explicitMappings>

 <implicitMappings>

 <implicitMappingRule applyToSubtypes="false">

 <type>com.ibm.omnifind.types.Suspect</type>

 <table>sample.suspect</table>

 <featureMappings>

 <featureMapping>

 <feature>objectId()</feature>

 <column>suspectID</column>

 </featureMapping>

 <featureMapping>

 <feature>surName</feature>

 <column>lastName</column>

 </featureMapping>

 <featureMapping>

 <feature>description</feature>

 <column>description</column>

 </featureMapping>

 </featureMappings>

 </implicitMappingRule>

 </implicitMappings>

</cas2JdbcMappings>

A <containerMapping> element is used to define the iteration over elements

contained in the array. In the example, the sample.reports_suspects link table

contains a link to the policeReportId and the suspectId columns. Do not nest

<containerMapping> elements.

The following shows the database tables based on explicit link table mapping

rules.

 Table 7. The sample.policeReport table

policeReportId city

aaa...1 Springfield

aaa...2 Ladysmith

 Table 8. The sample.reports_suspect table

policeReportId suspectId

bbb...1 ccc...1

bbb...2 ccc...2

... ...

 Table 9. The sample.suspect table

suspectID lastname description

ccc...1 Brown Dark complexion

ccc...2 Smith Wears glasses

...

 Related reference

 “Built-in features” on page 33

52 OmniFind Enterprise Edition: Text Analysis Integration

Retrieving parts of a document that match a semantic search query

You can retrieve just the parts of a document that match the query exactly by

mapping the relevant feature structures to both the index and database, and

specifying the span in the semantic search query.

To access all instances of a specific annotation type in the search result, for

example, to obtain all persons, include a field style mapping for the annotation

type, and mark it as returnable in the common analysis structure to index mapping

file. For example:

<indexBuildItem>

 <name>com.ibm.omnifind.types.Person</name>

 <indexRule>

 <style name="Annotation"/>

 <style name="Field">

 <attribute name="returnable" value="true"/>

 </style>

 </indexRule>

</indexBuildItem>

In this example, annotations of type com.ibm.omnifind.types.Person are mapped

to a span named Person in the enterprise search index where they can be accessed

during semantic search. Moreover, the covered text of the annotations, for example,

the full person names, is stored as a returnable field. To retrieve these annotation

values, call getFields(″Person″) on each result object that is returned from the

search query (keyword or semantic). This method returns a String array with the

annotation values, in this case, the person names.

However, this approach returns all instances of a given annotation type and is not

suitable if you want to limit your result processing to documents that matched the

query exactly. For example, a document might mention five persons. However, in

the semantic search query ’<sentence><person/>IBM</sentence> the user is

interested only in the person who is mentioned in the same sentence that the term

IBM appears in. The user is not interested in the other persons.

To access and process feature structures that match the query exactly:

1. Map the relevant feature structure types to the enterprise search index by using

the annotation mapping style. For example:

<indexBuildItem>

 <name>com.ibm.omnifind.types.Person</name>

 <indexRule>

 <style name="Annotation"/>

 </indexRule>

</indexBuildItem>

2. Map the relevant feature structure types to JDBC tables. As part of the

mapping, you must include two columns for the document URI and for the

feature structure ID. Although you can map all feature structure types to the

same database table, you should map each type to a different table. For

example:

 <explicitMappingRule applyToSubtypes="false">

 <type>com.ibm.omnifind.types.Person</type>

 <table>sample.person</table>

 <featureMappings>

 <featureMapping>

 <feature>objectId()</feature>

 <column>primaryId</column>

 </featureMapping>

 <!-- Contains the covered text of the annotation-->

 <featureMapping>

Custom text analysis integration 53

<feature>coveredText()</feature>

 <column>personName</column>

 </featureMapping>

 <!-- Other mapping go in here-->

 <!-- To access the relevant person annotations in the query result-->

 <featureMapping>

 <feature>docUri()</feature>

 <column>docUri</column>

 </featureMapping>

 <featureMapping>

 <feature>fsId()</feature>

 <column>annotationId</column>

 </featureMapping>

 </featureMappings>

 </explicitMappingRule>

3. Crawl, parse, and index the documents.

4. Retrieve the IDs of instances that match the query. In the search and index API

(SIAPI), these instances are referred to as target elements. A target element

specifies the input span to be returned. It is defined as follows:

v In XML fragments, the target element is identified by a prepending number

sign (#). The number sign is only allowed once and can appear anywhere in

the XML fragment query. For example: $xmlf2::’<sentence><#person/>IBM</
sentence>’

v In XPath by default, the target element is the last field in the XPath

expression.

v Access these instances by using the method

Result.getProperty(″TargetElement″). The returned property is a string

concatenation of all occurrence IDs that are separated by spaces. Each

occurrence in the property can be translated into an integer value.
5. SIAPI does not return the feature structures themselves, only their occurrence

IDs. These IDs correspond to the fsId() value that is stored in the database

table. To retrieve these instances and their associated information, your

application must:

a. Select the right database table, depending on the span name of the target

element. In the example, the application contains a mapping from person to

the sample.Person table. This information is deduced from the common

analysis structure to index mapping file, which yields the span name, and

the common analysis structure to database mapping file, which yields the

table name.

b. For each result object in the search result:

1) Parse the string that is returned by Result.getProperty

(″TargetElement″) to find the occurrence IDs.

2) Issue a SELECT statement for the table by using the result URI

(accessible by using Result.getDocumentId()) as the value in the docUri

column and the occurrence IDs as the value in the annotationId column.

The column names depend on your mapping file. The column names

are taken from the previous example.

The returned rows contain the information that is stored for the feature

structure, for example, the covered text, or specific attributes of the feature

structure, such as ″last name″ or ″city of birth.″

Ensure that updates to your database are synchronized with the index updates in

enterprise search. If the database contains outdated information (for example,

because you used database load files and you did not update the database, but

you refreshed or reorganized the index), some occurrence IDs might not be found

54 OmniFind Enterprise Edition: Text Analysis Integration

in the database. Enterprise search keeps a record only of the last document version

in its index. Hence, the occurrence IDs are valid only for the last document.

If you store multiple versions of the same document in the same database table,

there might be multiple rows that match the same occurrence IDs, each for

different versions of the document. In this case, you must define a document

version column and populate it by using application logic or built-in features like

docTimestamp(). This way, you can filter the result to obtain only the latest

document version.

 Related concepts

 “Semantic search query term”
 Related tasks

 “Creating the common analysis structure to index mapping file” on page 37

 “Creating the common analysis structure to database mapping file” on page 45

Semantic search applications

Four types of document information are stored in the enterprise search index that

you can query in search applications by using the search and index API (SIAPI)

interface.

The four different types of information include:

v Text words that are found in a document, for example, a phrase such as computer

software.

v Span names, for example, an XML document that includes <author>James</
author>, yields the span <author>.

v Attribute names, for example, an XML document that includes <author

countryOfBirth=USA>James</author>, yields the attribute ″countryOfBirth″.

v Attribute values, for example, USA is the value of the attribute ″countryOfBirth.″

The SIAPI query language includes the semantic search query term. The term

specifies a twig pattern. A twig is a small tree with leaves. Each leaf represents the

four types of information (text words, span names, and so on). The internal nodes

of the tree specify how their occurrence in a document relates to one another.

There are five types of internal nodes that specify relationships:

v and

v or

v not

v in_the_span_of

v attribute_in_the_span_of

A document is said to satisfy a given semantic search term if it includes

occurrences of the leaves and the constraints specified by the internal nodes (the

defined relationships) are respected.

The semantic search query term helps retrieve better quality documents. You can

now not only search by using Boolean combinations of word and annotations, but

also retrieve documents where, for example, James appears in the span named

author, or where the terms ibm and search appear in the same sentence.

Semantic search query term

The semantic search query term is communicated as an opaque term.

Custom text analysis integration 55

There are two forms of syntax to express an opaque term in the search and index

API (SIAPI):

v XML fragments

v Limited XPath

The XML fragment query term looks like a well-balanced fragment of an XML

document. An XML fragment query term is prefixed by the opaque term sign

@xmlf2:: followed by the XML fragment expression enclosed between single

quotation marks (’...’).

However, limited XPath query terms are prefixed by @xmlxp:: followed by the

XPath query that are enclosed between single quotation marks (’...’).

As with general query terms in the search and index API (SIAPI) interface, each

term can have an appearance modifier:

Plus sign (+)

Term must appear.

Prefix =

Term must be an exact match.

Prefix tilde (~)

Consider synonyms of the query term.

Postfix tilde (~)

Consider words that have the same lemma as the query term.

Number sign (#)

Term is highlighted.

The following examples show XML fragment queries.

@xmlf2::’<City>Springfield</City>’

Finds documents that include the span (annotation) City containing the

string Springfield.

@xmlf2::’<Person gender=″female″/>’

Finds documents where a female person is annotated.

@xmlf2::’<Person><.or><@gender>female</@gender> <@title>Mrs</
@title><@title>Ms</@title></.or></Person>’

Finds documents that specify a person as a women either by gender or

title.

@xmlf2::’<Person gender=″male″ role=″suspect″/>

<PoliceReport><@crimeDescription><.or>robbery theft</.or>-accident

</@crimeDescription></PoliceReport> <City>Springfield<.or>

<@district>Brynston</@district><@district>Brooklyn</@district></.or></City>’

Finds documents that specify male persons who are considered as suspects

and a PoliceReport annotation that is attributed by the string robbery or

theft in attribute crimeDescription, but not the string accident. The

documents must also contain a city annotation that covers the text word

Springfield, an annotation that is attributed with the district Brynston or

Brooklyn.

The corresponding XPath queries have the following structure:

56 OmniFind Enterprise Edition: Text Analysis Integration

@xmlxp::’//City ftcontains (″Springfield″)’

Finds documents that include the span (annotation) City containing the

string Springfield.

@xmlxp::’//PoliceReport[City ftcontains(″Springfield″)]’

Finds documents that include the span (annotation) City in the span

PoliceReport containing the string Springfield.

@xmlxp::’//Person[@gender=″female″ or @title ftcontains(″Ms″) or @title

ftcontains(″Mrs″)]’

Finds documents where a female person is annotated. In the gender

attribute, the value must match exactly, whereas for the title attribute, Ms

and Mrs need not be an exact match of the attribute value.

Custom text analysis integration 57

58 OmniFind Enterprise Edition: Text Analysis Integration

Synonym support in search applications

You can expand the search results by searching for documents that contain

synonyms of the query terms.

Synonyms typically include multi word terms such as product names like

OmniFind Enterprise Edition. Multi word terms that are contained in the synonym

dictionary are correctly identified in user queries and do not have to appear within

quotes.

The Search and Index API (SIAPI) for enterprise search supports several ways for

users to search for synonyms of query terms:

v The SIAPI query syntax supports the tilde (~) operator for synonym expansion.

If the user prepends this operator to a query term, synonym expansion is

performed for the word. For example, the query ~WAS returns documents that

discuss WebSphere Application Server and any other synonyms that exist for

this abbreviation.

v Synonym expansion can be enabled using the SIAPI synonym expansion

interface from within a search application. Query terms can be automatically

expanded to include synonyms, or the search application might include options

that enable the user to specify whether synonyms of the query terms are to be

returned in the search results.

During automatic synonym expansion, synonym lookup is performed on all

query words. The search results include documents that contain either the query

terms or synonyms of the query terms. The SIAPI also supports the generation

of a list of synonym expansions for the submitted query.

v Synonym expansion in n-gram collections allows for phrase segmentation of the

query text. If an entire phrase appears in the synonym dictionary, then the

search succeeds. A phrase is extracted according to these delimiters:

Punctuation

The following characters are delimiters: - () + . ,

 Quotation marks are ignored and do not delimit phrases.

Change in alphabet

For example, for an n-gram collection, the query will be expanded to

include the synonyms of ABC in the following sample queries if ABC is in

the synonym dictionary:

ABC run DEF stand (where ABC and DEF are Japanese text)

ABC+DCF+GHI

Creating an XML file for synonyms

To expand queries in enterprise search to include synonyms of the query terms,

you must specify which words qualify as synonyms of each other in an XML file.

This XML file is used to build a binary dictionary file that you upload to enterprise

search and assign to appropriate collections.

About this task

© Copyright IBM Corp. 2004, 2008 59

The XML file that lists the synonyms must comply with a specific schema. This is

an example XML file for synonyms:

<?xml version="1.0" encoding="UTF-8"?>

<synonymgroups xmlns="http://www.ibm.com/of/822/synonym/xml">

 <synonymgroup>

 <synonym>Think Pad</synonym>

 <synonym>Notebook</synonym>

 <synonym>Notebooks</synonym>

 </synonymgroup>

 <synonymgroup>

 <synonym>WebSphere Application Server</synonym>

 <synonym>WAS</synonym>

 </synonymgroup>

</synonymgroups>

Restrictions

You must group words that are synonyms of each other (the <synonym> elements)

in a <synonymgroup> element. A synonym can include white-space characters, but it

cannot include punctuation characters, such as a comma (,) or vertical bar (|),

because these characters might interfere with the enterprise search query syntax.

You must enumerate all possible inflections of the terms that you add as

synonyms, such as the singular and plural forms of a word. You do not need to

enumerate normalizations of the term, such as the removal of accents or umlauts

(enterprise search handles normalization automatically), nor include upper and

lower case variants of the term. For example, if you want to include the term

météo as a synonym, you do not need to include the term METEO, too.

Procedure

To create a list of synonyms for enterprise search:

1. Create an XML file. To avoid XML syntax errors, use an XML editor or XML

authoring tool of your choice. The XSD schema for the XML file is called

synonyms.xsd and is contained in your enterprise search installation at

ES_INSTALL_ROOT/packages/uima/configuration_xsd/.

2. Add a <synonymgroup> element, then insert a <synonym> element for each word

that is to be treated as a synonym of other words in the synonym group.

Be sure to include your mappings in a <synonymgroups xmlns=″http://
www.ibm.com/of/822/synonym/xml″> element. The namespace (specified in the

xmlns attribute) needs to be exactly as shown.

3. Repeat the preceding step until you have specified all of the synonyms that

you want to use for searching documents in an enterprise search collection.

4. Save and exit the XML file.

After you create the XML file, you must convert it to a synonym dictionary so that

it can be added to the enterprise search system.

Creating a synonym dictionary

After you create or update a list of synonyms in an XML file, you must convert the

XML file to a binary synonym dictionary.

About this task

60 OmniFind Enterprise Edition: Text Analysis Integration

To create a synonym dictionary, use the command line tool called

essyndictbuilder, which is provided with OmniFind Enterprise Edition. The tool

is in the ES_INSTALL_ROOT/bin directory.

The input to the tool is the XML file that lists your synonyms, and the output from

the tool is a synonym dictionary. The dictionary must have the suffix .dic. For

example, c:\mydictionaries\products.dic.

The default location for both files is the directory where the script is invoked. If a

dictionary with the same name exists, the script produces an error.

The maximum size of a .dic in enterprise search is 8 MB.

Procedure

To create a synonym dictionary for enterprise search:

1. On the index server, log in as the enterprise search administrator. This user ID

was specified when OmniFind Enterprise Edition was installed.

2. Enter the following command, where XML_file is the fully qualified path to the

XML file that contains the list of synonyms and DIC_file is the fully qualified

path to the synonym dictionary.

AIX®, Linux®, or Solaris: essyndictbuilder.sh XML_file DIC_file

Windows: essyndictbuilder.bat XML_file DIC_file

After you create a synonym dictionary, use the enterprise search administration

console to add the dictionary to the enterprise search system and associate it with

one or more collections.

Only the generated .dic file is uploaded to the enterprise search system. Ensure

that the source XML file is kept in an access-controlled environment, and ensure

that you back up the file regularly. You need this XML file to update your

synonym dictionary.

Synonym support in search applications 61

62 OmniFind Enterprise Edition: Text Analysis Integration

Custom stop word dictionaries

You can define enterprise-specific vocabulary that is removed from a query to

increase search relevance.

There are two kinds of stop word support in enterprise search:

v Language-specific stop word recognition that removes all frequently used

common words like a and the from a multiple word query. The stop word

dictionary that exists for each language cannot be modified by users. This stop

word recognition is carried out automatically on all queries to improve search

relevance.

v User-defined or custom stop word recognition that removes enterprise-specific

vocabulary from queries. This stop word dictionary, which is defined by the

administrator, can contain only special vocabulary. The user-defined stop word

dictionary does not replace the enterprise search language-specific stop word

dictionaries that contain common words. User-defined stop word dictionaries are

language independent.

User-defined stop words typically include multiple word terms such as product

names like OmniFind Enterprise Edition. Multiple word terms that are contained in

the stop word dictionary are correctly identified in user queries and do not have to

appear between quotation marks.

Compound terms in Germanic languages are also correctly identified in queries. A

compound term is the combination of two or more words that is used as a single

word. Lexicalized compounds like Reisebüro (travel agency) are not considered to

be compounds.

Compound terms in a query are broken up into the individual terms that make up

the compound. If any of the individual terms that make up the compound are in

the stop word dictionary, the compound term is not removed from the query.

For example, the query term Versicherungspolice (insurance policy) returns

documents that contain the compound terms Lebensversicherungspolice (life

insurance policy) and Haftpflichtversicherungspolice (third party insurance policy).

Even if the word Police is listed in the stop word dictionary, the compound query

term Versicherungspolice is not removed from the query.

You must list the enterprise-specific vocabulary in an XML file that you must then

convert to a stop word dictionary so that it can be added to the enterprise search

system.

You can select which stop word dictionary to use in the enterprise search

administration console. You can select one stop word dictionary for each collection.

A stop word dictionary can be shared by several collections.

Creating an XML file for stop words

To remove enterprise-specific vocabulary from queries, you must specify which

words qualify as stop words in an XML file.

About this task

© Copyright IBM Corp. 2004, 2008 63

The XML file that lists the stop words must comply with a specific schema

specified in the XML document. This is an example of an XML file for stop words:

<?xml version="1.0" encoding="UTF-8"?>

<stopWords xmlns="http://www.ibm.com/of/83/stopwordbuilder/xml">

 <stopWord>OmniFind Edition</stopWord>

 <stopWord>WAS</stopWord>

 <stopWord>...</stopWord>

</stopWords>

Restrictions

A stop word can include white-space characters, but it cannot include punctuation

characters, such as a comma (,) or vertical bar (|), because these characters might

interfere with the enterprise search query syntax.

You do not need to enumerate normalizations of the term, such as the removal of

accents or umlauts (enterprise search handles normalization automatically). For

example, if you want to include the term météo as a stop word, you do not need

to include the term METEO, too.

Procedure

To create a list of stop words for enterprise search:

1. Create an XML file. To avoid XML syntax errors, use an XML editor or XML

authoring tool that can validate the XML. The XSD schema for the XML file is

called stopWords.xsd and is contained in your enterprise search installation at

ES_INSTALL_ROOT/packages/uima/configuration_xsd/.

2. Add a <stopWord> element for each word that is to be treated as a stop word.

Be sure to include your mappings in a <stopWords xmlns=″http://www.ibm.com/
of/83/stopwordbuilder/xml″> element. The namespace (specified in the xmlns

attribute) needs to be exactly as shown.

3. Repeat the preceding step until you have specified all of the stop words that

you want to be removed from queries when users search enterprise search

collections.

4. Save and exit the XML file.

After you create the XML file, you must convert it to a stop word dictionary so

that it can be added to the enterprise search system.

Creating a stop word dictionary

After you create or update a list of user-defined stop words in an XML file, you

must convert the XML file to a stop word dictionary.

About this task

To create a stop word dictionary, use the command line tool called

esstopworddictbuilder, which is provided with OmniFind Enterprise Edition. The

tool is in the ES_INSTALL_ROOT/bin directory.

The input to the tool is the XML file that lists the stop words, and the output from

the tool is a stop word dictionary. The dictionary must have the suffix .dic. For

example, c:\mydictionaries\productstopwords.dic.

64 OmniFind Enterprise Edition: Text Analysis Integration

The default location for both files is the directory where the script is invoked. If a

dictionary with the same name exists, the script produces an error.

The maximum size of a .dic in enterprise search is 8 MB.

Procedure

To create a stop word dictionary for enterprise search:

1. On the Index server, log in as the enterprise search administrator. This user ID

was specified when OmniFind Enterprise Edition was installed.

2. Enter the following command, where XML_file is the fully qualified path to the

XML file that contains the list of stop words and DIC_file is the fully qualified

path to the stop word dictionary.

AIX, Linux, or Solaris: esstopworddictbuilder.sh XML_file DIC_file

Windows: esstopworddictbuilder.bat XML_file DIC_file

After you create a stop word dictionary, use the enterprise search administration

console to add the dictionary to the enterprise search system and associate it with

one or more collections.

Only the generated .dic file is uploaded to the enterprise search system. Ensure

that the source XML file is kept in an access-controlled environment, and ensure

that you back up the file regularly. You need this XML file to update your stop

word dictionary.

Custom stop word dictionaries 65

66 OmniFind Enterprise Edition: Text Analysis Integration

Custom boost word dictionaries

You can define specific terms or multi-word terms that raise or lower the rank

value of the document in which the term appears.

Each term in the boost dictionary is associated with a boost factor that can range

from -10 to +10. The terms that you particularly want to see in your result

documents are allocated a higher boost factor, while those that you do not want to

have appear at all, or in combination with higher boosted terms, are given a lower

value. The values -1, 0, and 1 have no boost effect.

If a query term which is listed in the boost dictionary with a particular boost factor

appears in a retrieved document, the document rank value is either raised or

lowered depending on the boost value. The boost value assigned to a term is

relative as it also is affected by other factors. Thus if the term X is boosted by B1

and the term Y by B2, and B1 > B2, then boost(X) >= boost(Y).

A boost word typically includes multi-word terms such as product names like

OmniFind Enterprise Edition. Multi-word terms contained in the boost word

dictionary are correctly identified in user queries and do not have to appear within

quotes.

Boost word dictionaries are language independent.

Compound terms in Germanic languages are also correctly identified in queries. A

compound term is the combination of two or more words that is used as a single

word. Lexicalized compounds like Reisebüro (travel agency) are not considered to

be compounds.

Compound terms in a query are broken up into the individual terms that make up

the compound. If boost values exist of the individual terms of a compound, the

retrieved documents are ranked, although the value assigned is lower than it is if

the term appears on it own in the document (and not as part of a compound). This

broadens the search scope which is useful in cases in which only a few documents

are found that contain the full compound.

For example, the query term Versicherungspolice (insurance policy) will return

documents that contain the compound terms Lebensversicherungspolice (life

insurance policy) and Haftpflichtversicherungspolice (third party insurance policy). If

the word Police (policy) exists in the boost word dictionary, the document

containing the compound query term Versicherungspolice is assigned a boost

value.

You must list the terms with their boost value in an XML file which you must then

convert to a boost word dictionary so that it can be added to the enterprise search

system.

You can select which boost word dictionary to use on the enterprise search

administration console. One boost word dictionary can be selected for each

collection. A boost word dictionary can be shared by several collections.

© Copyright IBM Corp. 2004, 2008 67

Creating an XML file for boost words

To raise or lower the importance of certain result documents, you must specify

which words can influence document ranking in an XML file.

About this task

The XML file that lists the boost words must comply with a specific schema

specified in the XML file. This is an example of an XML file for boost words:

<?xml version="1.0" encoding="UTF-8"?>

<boostTerms xmlns="http://www.ibm.com/of/83/boostbuilder/xml">

 <!-- group boost terms by boost value-->

 <boostTermList boost="5">

 <!-- each term can specify the synonym expansion separately-->

 <term useVariants="true">OmniFind Edition</term>

 <term useVariants="false">Edition</term>

 <term>OmniFind</term>

 </boostTermList>

 <boostTermList boost="8">

 <term useVariants="true">WAS</term>

 <term>term9</term>

 </boostTermList>

</boostTerms>

Restrictions

You can group terms that share the same boost value in a <boostTermList>

element, but a boost value can occur multiple times, for example, if you want to

sort boost words alphabetically in the XML file.

A boost word can include white-space characters, but it cannot include punctuation

characters, such as a comma (,) or vertical bar (|), because these characters might

interfere with the enterprise search query syntax.

Boost terms can have variants, such as acronyms or abbreviations. You can

enumerate all variants in the boost word dictionary; however, if you plan to use a

synonym dictionary as well as a boost word dictionary, and have already added

terms and their variants to the synonym dictionary, you do not have to add these

variants to the boost word list as well. Instead, you can simply set the attribute

useVariants to true for the variant you add to the boost word dictionary. All

variants of this term listed in the synonym dictionary that occur in any of the

retrieved documents will influence the rank value assigned to these documents.

You do not need to enumerate normalizations of the term, such as the removal of

accents or umlauts (enterprise search handles normalization automatically). For

example, if you want to include the term météo as a boost word, you do not need

to include the term METEO, too.

Procedure

To create a list of boost words for enterprise search:

1. Create an XML file. To avoid XML syntax errors, use an XML editor or XML

authoring tool of your choice. The XSD schema for the XML file is called

boostTerms.xsd and is contained in your enterprise search installation at

ES_INSTALL_ROOT/packages/uima/configuration_xsd/.

68 OmniFind Enterprise Edition: Text Analysis Integration

2. Include your mappings in a <boostTerms xmlns=″http://www.ibm.com/of/83/
boostbuilder/xml″> element. The namespace (specified in the xmlns attribute)

needs to be exactly as shown.

3. Add a <boostTermList> element for grouping all terms that share the specified

boost value.

The boost values can range from -10 to 10. For example, <boostTermList

boost="-5"> or <boostTermList boost="5">.

The importance of documents that contain the specified terms will be raised or

lowered according to the specified boost value.

4. Add a <term> element for each term that uses the specified boost value.

If you want to include variants of a boost word that are listed in the synonym

dictionary, set the useVariants attribute in the <term> element to true. The

default is false. If no variants can be found in the synonym dictionary, no error

message is produced.

5. Repeat the preceding steps until you have specified all of the terms that are to

be used as boost words when users search enterprise search collections.

6. Save and exit the XML file.

After you create the XML file, you must convert it to a boost word dictionary so

that it can be added to the enterprise search system.

Creating a boost word dictionary

After you create or update a list of boost words in an XML file, you must convert

the XML file to a boost word dictionary.

About this task

To create a boost word dictionary, use the command line tool called

esboostworddictbuilder, which is supplied with OmniFind Enterprise Edition. The

tool is in the ES_INSTALL_ROOT/bin directory.

The input to the tool is the XML file that lists your boost words, and the output

from the tool is a boost word dictionary. The dictionary must have the suffix .dic.

For example, c:\mydictionaries\productboostwords.dic.

The default location for both files is the directory where the script is invoked. If a

dictionary with the same name exists, the script produces an error.

The maximum size of a .dic in enterprise search is 8MB.

Procedure

To create a boost word dictionary for enterprise search:

1. On the Index server, log in as the enterprise search administrator. This user ID

was specified when OmniFind Enterprise Edition was installed.

2. Enter the following command, where XML_file is the fully qualified path to the

XML file that contains the list of boost words and DIC_file is the fully

qualified path to the boost word dictionary. If you want to use a synonym

dictionary as well, add the fully qualified path to the synonym dictionary after

the boost dictionary name. Naming a synonym dictionary is optional.

UNIX®: esboostworddictbuilder.sh XML_file DIC_file SYNDIC_file

Windows: esboostworddictbuilder.bat XML_file DIC_file SYNDIC_file

Custom boost word dictionaries 69

After you create a boost word dictionary, use the enterprise search administration

console to add the dictionary to the enterprise search system and associate it with

one or more collections.

Only the generated .dic file is uploaded to the enterprise search system. Ensure

that the source XML file is kept in an access-controlled environment, with the

appropriate backup strategy in place. You need this XML file to update your boost

word dictionary.

 Related tasks

 “Creating a synonym dictionary” on page 60

70 OmniFind Enterprise Edition: Text Analysis Integration

Text analysis included in enterprise search

The text analysis included in enterprise search includes document language

detection and segmentation.

When a document is processed, enterprise search determines the language of that

document and breaks up the stream of input text into distinct units or tokens.

During a search, the user or an application, must select the query language

manually. The query string is segmented, analyzed, and searched in the index.

Both document and query string analysis can be split into:

v Basic nondictionary-based support. This includes white space and n-gram

segmentation. Basic nondictionary-based support also contains sentence

segmentation.

v Dictionary-based linguistic support. This includes word and sentence

segmentation and lemmatization.

Linguistic processing involves lexical analysis, which is the process of creating

alternative representations of the input text that associates all available

dictionary data to the tokens that are recognized in the input text. Search quality

is greatly enhanced by using advanced language processing.

Language identification

Before word and sentence segmentation, character normalization, or lemmatization

can occur, enterprise search must determine the language of the source document.

Enterprise search can automatically detect the following languages:

 Table 10. Supported languages for automatic language identification

Afrikaans Arabic Balinese

Basque Catalan Chinese (Traditional and

Simplified)

Czech Danish Dutch

English Finnish French

German Greek Hebrew

Icelandic Irish (Gaelic) Italian

Japanese Korean Malay

Norwegian (Bokmål) Polish Portuguese

Romanian Russian Spanish

Swedish Tagalog Thai

Turkish Vietnamese

The linguistic processes in enterprise search detect the language of a source

document during indexing, not during query processing.

In enterprise search, you can specify to detect the language of a document

automatically or select a language to use.

© Copyright IBM Corp. 2004, 2008 71

If you select automatic language detection and the parser cannot determine the

language of a document, the parser uses the language that you specify when you

create the crawler in the enterprise search administration console.

If you do not select automatic language detection, the language that you specify is

always used. You specify the document language by editing the crawler properties

on the enterprise search administration console. The default language is English.

Documents for which there are no language-specific dictionaries are processed by

using a basic language-independent technology such as white-space segmentation

and n-gram segmentation.

The enterprise search language detection technology is best suited for monolingual

documents. If a document is multilingual, an attempt is made to determine the

most dominant language that is used in the document. However, the analysis

results are not always satisfactory.

The language of a document can be used to restrict your search results to only

documents that are in a particular language. For example, if you search for

documents about Jacques Chirac in a multilingual document collection, you can

limit the search results to include only documents that are written in French.

Setting the language of your output documents is an advanced search option that

you can select on the enterprise search administration console.

 Related concepts

 “Linguistic support for nondictionary-based segmentation”

Linguistic support for nondictionary-based segmentation

For documents in languages that are not supported by the lexical analysis

technology, enterprise search provides basic support in the form of Unicode-based

white space and n-gram segmentation.

Unicode-based white space segmentation

This method of linguistic processing uses the white space (or blank space)

between words as a word delimiter.

N-gram segmentation

This method of linguistic processing treats overlapping sequences of n

characters as a single word. This simple method of segmentation is

sufficient for many retrieval tasks.

 These methods are independent of any language dictionary and do not include

sophisticated linguistic processing technology, such as base-form reduction.

N-gram segmentation is used for languages such as Thai that have no blank spaces

to use as delimiters. The same method applies to Hebrew and Arabic. Although

these two languages use white space delimiters, n-gram segmentation returns

better results than the basic form of Unicode-based white space segmentation does.

When you create your collection, you can also optionally select to tokenize Chinese

and Japanese documents using n-gram segmentation.

To remove any white space characters, for example new line or tab characters,

during n-gram segmentation, you must turn on parameter settings in the file called

72 OmniFind Enterprise Edition: Text Analysis Integration

collection.properties in ES_NODE_ROOT/master_config/<CollectionID>.parserdriver

before you begin to parse the documents. The parameters required to remove

white space characters include:

v removeCjNewLineChars: If set to true, this parameter removes any sequence of

new line and tab characters that occur between Chinese or Japanese characters.

The default is removeCjNewlineChars=false.

v removeCjNewLineCharsMode: If set to all, this parameter removes white space

characters irrespective of character context. For example, white space characters

are also removed in English text. If you want to work with this option, you must

add the parameter to the property file. Only removeCjNewlineCharsMode=all is

valid, all other values are ignored.
 Related concepts

 “Language identification” on page 71

Tokenizing numerical characters as n-gram tokens

To tokenize numerical characters in addition to double-byte characters as n-gram

tokens, you must change a parameter setting in the annotator descriptor file.

About this task

The default handling of numerical characters in the white space and n-gram

tokenizer is to treat all numerical characters as white space segmented tokens. To

tokenize numerical characters as n-gram tokens, you must change the n-gram

mode setting in the annotator descriptor file. You cannot change this setting by

using the enterprise search administration console.

Tip: Three modes for n-gram tokenization are available: normal, numeric, and full.

This procedure discusses how to enable numeric n-gram tokenization. For

information about how to configure support for full n-gram tokenization in

enterprise search collections, and to learn about how characters are handled in

collections that are configured for full n-gram support, see http://www.ibm.com/
support/docview.wss?rs=63&uid=swg27011088.

Procedure

The default n-gram mode setting is called normal, and treats numerical characters

and SBCS characters as characters segmented by white space. To enable numerical

n-gram mode:

1. Stop the parser for your collection.

2. Stop the runtime for your collection.

3. Open the annotator descriptor file called jtok.xml in the ES_NODE_ROOT/
master_config/collection_ID.parserdriver/specifiers directory, where

collection_ID is the ID that was specified for the collection (or that was

assigned by the system) when the collection was created.

4. Change the NgramMode parameter setting from normal to numeric.

5. Restart the parser for your collection.

6. Restart the runtime.

Linguistic support for dictionary-based segmentation

If the language of a document is correctly detected and language-specific

dictionaries are available, then appropriate linguistic processing is applied.

Text analysis included in enterprise search 73

http://www.ibm.com/support/docview.wss?rs=63&uid=swg27011088
http://www.ibm.com/support/docview.wss?rs=63&uid=swg27011088

Segmentation is the process by which input text is broken down into distinct

lexical units. This process includes some of the following linguistic processing

activities:

Word segmentation

Word segmentation is used for languages that do not use white spaces (or

delimiters) between words, such as Japanese and Chinese.

Lemmatization

Lemmatization is a form of linguistic processing that determines the

lemma for each word form that occurs in text. The lemma of a word

encompasses its base form plus inflected forms that share the same part of

speech. For example, the lemma for go encompasses go, goes, went, gone,

and going. Lemmas for nouns group singular and plural forms (such as calf

and calves). Lemmas for adjectives group comparative and superlative

forms (such as good, better, and best). Lemmas for pronouns group different

cases of the same pronoun (such as I, me, my, and mine).

 Lemmatization requires a dictionary for both indexing and searching.

Enterprise search indexes the lemmas and the inflected words and

lemmatizes all inflected words in a query. Lemmatization enhances search

quality by finding documents that contain variants of an inflected word in

the query. For example, documents that contain the word mice are found

when a query includes the word mouse.

Contraction splitting

Search quality is improved by identifying contractions and splitting them

into their component parts. For example:

wouldn’t is split into would + not

Horse’s is split into Horse + ’s

Clitic identification

Clitics are a special form of contractions, and search quality is improved by

determining their component parts. A clitic is an element that behaves like

an affix and a word. However, clitics are difficult to identify because they

are also part of word formation. Unlike other morphological (word

structure) phenomena, clitics occur in a syntactic structure and their

attachment to words is not part of the word formation rules. For example:

reparti-lo-emos has the components repartir + lo + emos

l’avenue has the components le + avenue

dell’arte has the components dello + arte.

Nonalphabetic character recognition

The linguistic processes recognize nonalphabetic characters. Depending on

the internal language-dependent logic, some nonalphabetic characters are

returned as separate lexical units of different types, and some are grouped.

 For example, apostrophes in the case of clitics are considered word parts,

and they are considered full stops (or periods) in the case of unknown

abbreviations. URLs, e-mail addresses and dates are split up into several

tokens.

Abbreviation recognition

The linguistic processes recognize abbreviations that are in the dictionary

as one lexical unit. If the abbreviation is not in the dictionary, then the

abbreviation is recognized as a lexical item, but the abbreviation will not

have any associated dictionary information.

74 OmniFind Enterprise Edition: Text Analysis Integration

Recognizing abbreviations correctly is vital for sentence recognition. For

example, the period at the end of an abbreviation is not necessarily the end

of a sentence.

End-of-sentence marker recognition

The linguistic processes correctly identify end-of-sentence markers for

sentence segmentation.

Dictionary-based linguistic support is available for the following languages:

 Table 11. Supported languages

Arabic Italian

Chinese (Simplified and Traditional) Japanese

Czech Korean

Danish Norwegian (Bokmål)

Dutch Polish

English Portuguese (National and Brazilian)

Finnish Russian

French (National and Canadian) Spanish

German (National and Swiss) Swedish

Greek

Word segmentation in Japanese

If the text document or the query string is recognized as being in Japanese,

enterprise search performs relevant word segmentation by using morphological

analysis technology that is optimized for the Japanese language.

An example of this optimization is word decomposition. Japanese uses a large

number of compound words. These words are decomposed into tokens of optimal

size to achieve better search results. Inflected words and prepositions are also

decomposed to improve search performance.

 Related concepts

 “Orthographic variants in Japanese”

Orthographic variants in Japanese

Japanese uses many orthographic variants. Katakana variants are the most

important because Katakana is often used to spell and pronounce foreign words.

Many Katakana variants are commonly used in Japanese.

Enterprise search uses a variant dictionary to map typical Katakana variants to

their base forms (similar to a lemma) so that all documents, including those with

orthographic variants of the Katakana word in the query string, are found.

Enterprise search also supports typical Okurigana variants, which are Kanji word

endings that are written in Hiragana.

 Related concepts

 “Word segmentation in Japanese”

Text analysis included in enterprise search 75

Stop word removal

In enterprise search, all stop words, for example, common words, such as a and

the, are removed from multiple word queries to increase search performance.

Stop word recognition in Japanese is based on grammatical information, for

example, enterprise search recognizes whether the word is a noun or a verb. For

the other languages, enterprise search uses special lists.

No stop words are removed during query processing if:

v All of the words in a query are stop words. If all the query terms are removed

during stop word processing, then the result set is empty. To ensure that search

results are returned, stop word removal is disabled when all of the query terms

are stop words. For example, if the word car is a stop word and you search for

car, then the search results contain documents that match the word car. If you

search for car buick, the search results contain only documents that match the

word buick.

v The word in a query is preceded by the plus sign (+).

v The word is part of an exact match.

v The word is inside a phrase, for example, ″I love my car″.
 Related concepts

 “Character normalization”

Character normalization

Character normalization is a process that can improve recall. Improving recall by

character normalization means that more documents are retrieved even if the

documents do not exactly match the query.

Enterprise search uses Unicode compatibility normalization that includes the

normalization of Asian half-width characters to full-width characters.

Enterprise search also removes Katakana middle dots, which are used as

compound word delimiters in Japanese.

Other forms of character normalization include:

Case normalization

For example, finding documents with USA when searching for usa.

Umlaut expansion

For example, finding documents that contain schoen when searching for

schön.

Accent removal

For example, finding documents that contain é when searching for e.

Other diacritics removal

For example, finding documents that contain ç when searching for c.

Ligature expansion

For example, finding documents that contain Æ when searching for ae.

All normalizations work both ways. You can find documents that contain usa when

you search for USA, documents that contain words with e when you search for é,

and so on. These normalizations can also be combined. For example, you can find

documents that contain météo when you search for METEO.

76 OmniFind Enterprise Edition: Text Analysis Integration

The normalizations are based on Unicode character properties and are not

language-dependent. For example, enterprise search supports diacritic removal for

Hebrew and ligature expansion for Arabic.

 Related concepts

 “Stop word removal” on page 76

Text analysis included in enterprise search 77

78 OmniFind Enterprise Edition: Text Analysis Integration

Regular expression annotator

The regular expression annotator enables you to perform custom text analysis

without the need to implement your own text analysis engine. Based on a set of

rules (regular expressions) that you can define yourself, the regular expression

annotator detects information structures in text documents and creates annotations

of the detected information in the common analysis structure.

The regular expression annotator detects entities or units of information in text

documents, for example, phone numbers, product codes, building and room

numbers, or addresses, based on regular expressions. If one of the regular

expressions matches parts of the document text, the regular expression annotator

creates the corresponding annotations that cover the matched piece of information.

These annotations are stored in the common analysis structure and can later be

searched by mapping these analysis results to the enterprise search index, using a

common analysis structure to index mapping file. Alternatively a common analysis

structure to database mapping file can be created to store the annotations in a

JDBC-capable database.

The set of rules (regular expressions) that you define are stored in an XML

configuration file (also referred to as the rule set file). The regular expression

annotator contains the analysis logic that processes these regular expressions. It

supports the regular expression syntax in Java 1.4.

The type system description of the regular expression annotator must define the

annotation types and features that are used and created by the regular expression

annotator. Depending on the complexity of the application area of the regular

expression annotator (for example, if more types are required than are defined in

the supplied regular expression annotator), additional input and output capabilities

must be defined in the regular expression annotator descriptor. The types used in

the descriptor must match the types in the type system description of the

annotator.

The regular expression annotator is included in enterprise search as a deployable

PEAR (Processing Engine ARchive) file that is configured with sample rules to

detect phone numbers, URLs, and e-mail addresses.

Easy semantic search using the regular expression annotator

Enterprise search includes the regular expression analysis engine pre-configured

with a set of rules that enables it to detect telephone numbers, URLs and e-mail

addresses in text documents.

You can use this sample configuration of the regular expression analysis engine to

enable enterprise search to find actual phone numbers in documents without

looking for the keyword phone number in documents. To query for the constructs

that are detected by the regular expression annotator, a sample common analysis

structure to index mapping file is also provided. Furthermore, a simple method is

demonstrated by which you can issue powerful semantic queries through simple

keywords. This method uses the enterprise search synonym support to

automatically expand simple keyword queries into semantic queries. A sample

synonym dictionary that illustrates this mechanism is provided. You can find all

© Copyright IBM Corp. 2004, 2008 79

the files that you need to use the regular expression annotator with the sample

configuration at ES_INSTALL_ROOT/packages/uima/regex.

For many application scenarios, it may be sufficient to only slightly modify the

regular expression rules that are provided with the sample configuration in order

to tailor the regular expression annotator to meet your needs.

However, to fully customize the annotator, the use of the UIMA SDK is

recommended. For this purpose, the regular expression annotator is also included

in the enterprise search base annotator package located at ES_INSTALL_ROOT/
packages/uima/.

 Related tasks

 “Enabling easy semantic search using the regular expression annotator”

 “Customizing the regular expression annotator” on page 85

 “Viewing base annotator and custom text analysis results” on page 11

Enabling easy semantic search using the regular expression annotator

To enable easy semantic search using synonyms, you must add the regular

expression annotator, the common analysis structure to index mapping file, and the

sample synonym dictionary to your enterprise search system and associate these

resources with your collection.

Thereafter, the regular expression annotator will process your documents during

the parsing phase, the indexer will add the custom analysis results to the index,

and the search service can utilize the provided semantic synonym dictionary to

search for the custom analysis results through simple keywords that are

automatically expanded into semantic queries.

Procedure

To enable easy semantic search:

1. Add the regular expression custom text analysis engine called of_regex.pear at

ES_INSTALL_ROOT/packages/uima/regex to the enterprise search system using

the enterprise search administration console.

2. Associate the regular expression text analysis engine with your collection.

3. Add the common analysis structure to index mapping file called

of_sample_regex_cas2index.xml in the directory ES_INSTALL_ROOT/packages/
uima/regex. This maps the custom analysis results (annotations) that the regular

expression annotator produces to searchable spans in the enterprise search

index. Then you can use XML fragment or XPath queries to search for these

spans.

4. Crawl, parse and index your collection. At this point, after indexing is finished,

you could enter an XML search query using an XML fragment expression, for

example, @xmlf2::’<#phonenumber>’, using the search application. However, the

purpose of enabling semantic search by synonyms, is to allow you to use

queries like Barbara phone number and have the system translate the query to

Barbara @xmlf2::’<#phonenumber>’.

5. Add the provided sample binary synonym dictionary called

of_sample_synonym_dic.dic in the directory ES_INSTALL_ROOT/packages/uima/
regex to the enterprise search system using the administration console. You can

make changes to the source XML sample dictionary, or use it as a basis to

create your own dictionary and then convert it to a new dictionary file by

80 OmniFind Enterprise Edition: Text Analysis Integration

using the essyndictbuilder tool. The XML sample synonym dictionary is called

of_sample_synonym_dic.xml, also at ES_INSTALL_ROOT/packages/uima/regex.

6. Associate the synonym dictionary with your collection and start (or restart) the

search service for your collection.

7. In the search application, select the option to automatically search for

synonyms by using semantic expansion. After you enable this option, the

search application rewrites your basic keyword queries to XML fragment

queries and includes expressions that find the searchable spans that identify

telephone numbers, e-mail addresses and URLs.

8. In the search application, enter a query requesting a telephone number, for

example, barbara telephone number. The query searches for documents that

contain the three keywords barbara, telephone, and number, as well as for

documents that contain the keyword barbara and spans of numbers and

characters in the documents that match the regular expressions defined for a

telephone number. The keywords and the telephone numbers that are found

are highlighted in the search results.

You can see which keywords translate into semantic queries in the supplied

sample synonym dictionary.

<?xml version="1.0" encoding="UTF-8"?>

<synonymgroups xmlns="http://www.ibm.com/of/822/synonym/xml">

 <synonymgroup>

 <synonym>telephone number</synonym>

 <synonym>phone number</synonym>

 <synonym>telephone nbr</synonym>

 <synonym>phone nbr</synonym>

 <synonym>@xmlf2::’<#phonenumber/>’</synonym>

 </synonymgroup>

 <synonymgroup>

 <synonym>facsimile number</synonym>

 <synonym>fax number</synonym>

 <synonym>facsimile nbr</synonym>

 <synonym>fax nbr</synonym>

 <synonym>@xmlf2::’<#phonenumber/>’</synonym>

 </synonymgroup>

 <synonymgroup>

 <synonym>e-mail address</synonym>

 <synonym>email address</synonym>

 <synonym>@xmlf2::’<#email/>’</synonym>

 </synonymgroup>

 <synonymgroup>

 <synonym>URL</synonym>

 <synonym>unified resource locator</synonym>

 <synonym>Web address</synonym>

 <synonym>@xmlf2::’<#url/>’</synonym>

 </synonymgroup>

</synonymgroups>

 Related concepts

 “Easy semantic search using the regular expression annotator” on page 79

The rule set file

In the regular expression annotator, the XML rule set file defines the rules, in the

form of regular expressions, which are used to parse the text document.

The rules specify, in sequential order, where in the document text, the annotator

must look for what, and then what action to take if a match is found.

Regular expression annotator 81

When the regular expression annotator is called, the XML rule set file that contains

the regular expression patterns is compiled and matched against parts of the

document text. If a match or a partial match is found, the annotation that is

associated with the specific rule is created and stored in the common analysis

structure.

The types used in the rules must be defined in the type system description of the

regular expression annotator.

The regular expression annotator processes one rule at a time, beginning with the

first rule in the XML rule set file. For each rule, the corresponding compiled

regular expression is matched against the annotations are created in an earlier step,

for example, annotations created by annotators that processed the document before

the regular expression annotator. The annotations that match the rules must be of

the same type as the input capability types specified in the regular expression

annotator descriptor.

If a match is found, the annotation type created in the rule that fires must also be

specified as a valid output capability type in the regular expression annotator

descriptor. The new annotations that are created by an earlier rule can be used as

input annotations for rules that fire later in the XML rule set.

 Related tasks

 “Defining regular expression rules”
 Related reference

 “The annotator descriptor” on page 86

 “Logging” on page 89

Defining regular expression rules

The rule set defines the regular expressions that are matched against text in the

document and the actions that the regular expression annotator must take if a

pattern matches.

About this task

The XML rule set file must follow the rule syntax outlined in the following

example. This is the rule set file for the sample regular expression annotator that

recognizes telephone numbers, URLs and e-mail addresses.

The top level element is a <ruleSet> element which consists of one or more <rule>

elements. Each <rule> element in turn defines a Java regular expression consisting

of an attribute regEx as well as the matchStrategy and matchType attributes. The

action is defined in the <createAnnotation> element which specifies the annotation

ID and annotation type.

<?xml version="1.0" encoding="UTF-8"?>

<ruleSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="ruleSet.xsd">

 <!-- Phone Number -->

 <!-- This rule matches different ways of writing telephone numbers,

 for example, 01234-12345, 01234 / 122-32, (001234)12345,

 +49 (0) 123412345, (123) 123 1234,

 1-800-IBM-4YOU -->

 <rule regEx="(?x)(\s|\b)(

0{1,2}[1-9]{1}[0-9]{1,5}\x20?[-/\\]\x20?[1-9]{1}([0-9]{1,8}-?)

 {1,3}[0-9]{1,}

|\(0[1-9]{1}[0-9]{1,3}\)\x20?[1-9]{1}[0-9]{2,8}

82 OmniFind Enterprise Edition: Text Analysis Integration

|\(00[1-9]{1}[0-9]{1,8}\)\x20?[1-9]{1}[0-9]{2,10}

|\((0\x20?[1-9]{1}[0-9]{1,3}|00\x20?[1-9]{1}[0-9]{1,8})\)\x20?[1-9]

 {1}[0-9] {1,3}(\x20[0-9]{2,4}){1,5}

|(0\x20?[1-9]{1}[0-9]{1,3}|00\x20?[1-9]{1}[0-9]{1,8})\x20?[/\\]\x20?

 [1-9]{1} [0-9]{1,3}(\x20[0-9]{2,4}){1,5}

|\(?\+[1-9]{1}[0-9]{0,3}\)?([-\x20]|\x20?\(0\))[-\x20]?[1-9]

 {1}[0-9]{1,10}

|\(?\+[1-9]{1}[0-9]{0,3}\)?([-\x20]|\x20?\(0\))[-\x20]?[1-9]

 {1}[0-9]{1,3}[-\x20]([0-9]{2,5}[-\x20]?){1,4}

|(1-)?[0-9]{3}-[0-9]{3}-[0-9]{4}

|\([1-9]{1}[0-9]{2}\)\x20[0-9]{3}[-\x20][0-9]{4}

|1-(800|888|877|866)-([A-Z0-9]{7}|[A-Z0-9]{3}-[A-Z0-9]

 {4}|[A-Z0-9]{4}-[A-Z0-9]{3})

)(?!(\d|\x20\d|-\d))(\s|\b)"

 matchStrategy="matchAll" matchType="uima.tcas.DocumentAnnotation">

 <createAnnotation id="phonenumber" type="com.ibm.es.uima.PhoneNumber">

 <begin group="0"/>

 <end group="0"/>

 </createAnnotation>

 </rule>

 <!-- potential Phone Number -->

 <!-- This rule matches numbers that resemble telephone numbers but could

 also be anything else. For example, 0123 1234 123,

 +123456789, 123 123 1234 -->

 <rule regEx="(?x)(\s|\b)(

 0[1-9]{1}[0-9]{1,3}\x20[1-9]{1}[0-9]*\x20?([0-9]{2,}\x20?)+

 |00\x20?[1-9]{1}[0-9]{0,3}\x20[1-9]{1}[0-9]{1,3}\x20?[1-9]

 {1}([0-9]{2,}\x20?)+

 |\+[1-9]{1}[0-9]{0,3}[1-9]{1}[0-9]{6,}

 |[1-9]{1}[0-9]{2}\x20[0-9]{3}\x20[0-9]{4}

)(?!(\d|\x20\d|-\d))(\s|\b)"

 matchStrategy="matchAll" matchType="uima.tcas.DocumentAnnotation">

 <createAnnotation id="potential_phonenumber"

 type="com.ibm.es.uima.PotentialPhoneNumber">

 <begin group="0"/>

 <end group="0"/>

 </createAnnotation>

 </rule>

 <!-- URL Annotation -->

 <!-- This rule matches URLs, for example, http://www.ibm.com -->

 <rule regEx="(?x)(\s|\b)(

 http://[\w\-]+([\.][\w\-]+)+([/][\w\~\(\)\-\?=%\u0026\#]*)*

 |www.[\w\-]+([\.][\w\-]+)+([/][\w\~\(\)\-\?=%\u0026\#]*)*

)(\s|\b)"

 matchStrategy="matchAll" matchType="uima.tcas.DocumentAnnotation">

 <createAnnotation id="url" type="com.ibm.es.uima.URL">

 <begin group="0"/>

 <end group="0"/>

 </createAnnotation>

 </rule>

 <!-- Email Annotation -->

 <!-- This rule matches e-mail addresses, for example, yourName@domain.com -->

 <rule regEx="(?x)(\s|\b)(

 [a-zA-Z0-9][\w\.-]*[a-zA-Z0-9]@[a-zA-Z0-9]([\.-]?\w)*\.[a-zA-Z]

 {2,3})(\s|\b)"

 matchStrategy="matchAll" matchType="uima.tcas.DocumentAnnotation">

 <createAnnotation id="email" type="com.ibm.es.uima.Email">

 <begin group="0"/>

 <end group="0"/>

 </createAnnotation>

 </rule>

</ruleSet>

Procedure

Regular expression annotator 83

To create the XML rule set for the regular expression annotator that defines your

custom regular expressions:

1. Create an XML file. To avoid XML syntax errors, use an XML editor or XML

authoring tool of your choice. The XSD schema for the XML rule set file is

called ruleSet.xsd, which you can find in your enterprise search installation in

the ES_INSTALL_ROOT/packages/uima/regex/ directory.

2. Include your mappings in a <ruleSet xmlns=″http://www.w3.org/2001/
XMLSchema-instance″ xsi:noNamespaceSchemaLocation=″ruleSet.xsd″> element.

The namespace is specified in the xmlns attribute, and must be exactly as

shown.

3. Add a <rule> element that contains a regEx attribute containing the regular

expression pattern, a matchStrategy attribute, and a matchType attribute.

The annotator fully supports the Java 1.4 regular expression syntax. For an

introduction to regular expressions and to view the full syntax, refer to the Java

documentation at http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/
Pattern.html.

matchStrategy specifies how to search, for example, if all matches must be

found in the document or if the text match must be an exact match. Three

different match strategies are available:

v matchFirst stops at the first text sequence that matches the regular pattern

v matchAll finds all text sequences in a document that match the regular

pattern

v matchComplete only matches text sequences that are an exactly match. For

example, if we had a pattern “foo”, only the term ″foo″ would be matched,

″foobar″ would not result in a match.

matchType determines the annotation type the rule is matched against. This

way, you can restrict your regular expression to match, for example, within an

existing token annotation. This avoids matching too much content within a

rule. Possible types are the allowed input annotation types to the annotator

(defined in the annotator descriptor), such as uima.tt.DocumentAnnotation,

uima.tt.ParagraphAnnotation, and user-defined types such as

foo.bar.MyAnnotation. Sometimes, the output type of one rule is used as the

input type of a subsequent rule. matchType allows you to restrict the search

scope of certain rules.

4. Add a <createAnnotation> element that defines the action that the regular

expression annotator is to take if a match is found.

Each createAnnotation element has two attributes:

v id uniquely identifies the annotation and is used to reference the annotation

v type specifies the type of annotation that is created
5. Add the following component elements that define the match position for the

<createAnnotation> element:

v Mandatory: <begin> specifies where the match begins. This element has two

attributes:

– Mandatory: group identifies the Java capturing group. It can be assigned a

value between 0 (complete text sequence match) and 9 (multiple capturing

groups)

– Optional: location indicates a position inside the match group (with

respect to the positioning of the parentheses), either start (left

parenthesis) or end (right parenthesis).
v Mandatory: <end> specifies where the match ends. This element has two

attributes:

84 OmniFind Enterprise Edition: Text Analysis Integration

http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html

– Mandatory: group identifies the capturing group. It can be assigned a

value between 0 (complete text sequence match) and 9 (subsequent and

ever smaller match groups)

– Optional: location indicates a position inside the match group (with

respect to the positioning of the parentheses), either start (left

parenthesis) or end (right parenthesis).
v Optional: <setFeature> creates a feature and assigns it to the annotation.

This element has two attributes:

– name is the name of the feature as you defined it in the type system

description

– type specifies the type of the feature value, either String, Integer, Float and

Reference. The type must be the same as the range type defined for the

feature in the annotator type system description.

Features of type Reference are used to create a link between two

annotations to model a semantic relation. The <setFeature> element

content must be set to the id of the <createAnnotation> element you want

to create a link to.

 Related concepts

 “The rule set file” on page 81

Customizing the regular expression annotator

You can customize the sample configuration of the regular expression annotator to

detect new entities (for example, product serial numbers) or adapt the regular

expression rules for existing entities (for example to detect company-specific phone

numbers) by making smaller changes to the sample rule set and type system files.

The modified rule set file and type system description must be added to the

regular expression processing engine archive file (the PEAR file). After you have

updated the PEAR file, you can add the customized regular expression text

analysis engine to the enterprise search system again.

For a more elaborate customization of the regular expression annotator, you are

strongly recommended to use the UIMA SDK tools. These tools help you to create

or update the type system description and descriptor files, to possibly combine the

annotator with others to form an aggregate analysis engine and to create a new

processing engine archive (PEAR file) that includes all the resources necessary to

use the annotator in enterprise search. For information about the tools that are

available to support you in these tasks, refer to the UIMA SDK documentation .

Procedure

To adapt the regular expression annotator by adding new rules and entities, or to

change existing rules, you can update the provided sample regular expression

annotator PEAR file as follows:

 1. Create a new directory called xml in your system.

 2. Copy the sample rule file of_sample_regex_rules.xml in the

ES_INSTALL_ROOT/packages/uima/regex/ directory to your xml directory and

modify the file to include your custom pattern matching rules. To avoid XML

syntax errors, use an XML editor or XML authoring tool of your choice.

 3. Copy the corresponding type system description file

of_sample_typesystem.xml from the directory ES_INSTALL_ROOT/packages/

Regular expression annotator 85

uima/regex/ to your xml directory and modify the file to include the

definitions for the types that your new rules require.

 4. If you only add a few new rules or change existing rules, you are not required

to change the annotator descriptor. If you plan to do other changes, or if you

use additional custom analysis steps, check if the annotator descriptor must be

modified.

 5. Use an archive utility of your choice to update a copy of the regular

expression annotator PEAR file to include your two updated files. For

example, copy the of_regex.pear file from ES_INSTALL_ROOT/packages/uima/
regex/ to the parent directory of the xml directory you created. Then use the

Java jar command line tool (for example, part of the IBM Java SDK) to issue

the following commands from that parent directory:

”jar -uf of_regex.pear -C xml/ of_sample_regex_rules.xml”

”jar -uf of_regex.pear -C xml/ of_sample_regex_typesystem.xml”

 6. Use the enterprise search administration console to add the regular expression

annotator as a custom text analysis engine to the enterprise search system and

associate it with a test document collection.

 7. Check the analysis results produced by the regular expression annotator by

updating the document collection properties to produce readable XML output

of the analysis results that are stored in the common analysis structure using

the XCAS dump feature.

 8. Process the test documents and use the XCAS Annotation Viewer to view the

content of the XML files.

 9. If you are satisfied with the annotations that are created by the annotator

based on your custom regular expressions, edit the document collection

properties again to disable the parser from producing readable XML output of

the analysis results. If further modifications to the rule set file are required,

you must repeat the steps that update the PEAR file.

10. Create the common analysis structure to index mapping file to index the

analysis results, or the common analysis structure to database mapping file if

you want to add the results to a database. You can use the provided sample

common analysis structure to index mapping file as a starting point to create

your common analysis structure to index mapping file.

11. Using the enterprise search administration console to add the mapping files

and associate them with your full document collection.

12. Search your annotations using XML fragment or XPath queries, or

alternatively using semantic expansion during synonym search.

 Related concepts

 “Easy semantic search using the regular expression annotator” on page 79
 Related tasks

 “Viewing base annotator and custom text analysis results” on page 11

The annotator descriptor

The regular expression annotator XML descriptor contains descriptive information

about the regular expression annotator that is needed to run the annotator.

If you are only using the regular expression annotator, and no additional custom

analysis steps, you are only required to change the descriptor if:

v You want to change the file name of the rule set file (in the

<externalResourceDependencies> element).

v You want to use more than one rule set file.

86 OmniFind Enterprise Edition: Text Analysis Integration

v You want to change the name of the type system description file.

If you are using additional custom analysis steps, you are required to change the

descriptor if:

v You want your custom analysis to use annotations created by the regular

expression annotator. In this case, you must update the output capabilities in the

annotator descriptor.

v You have defined regular expression rules that must match annotation types

created in earlier custom analysis steps. In this case, you must update the input

capabilities in the annotator descriptor.

Use the UIMA SDK tools to create or update the annotator descriptor and recreate

the processing engine archive (.pear file) that includes all of the resources required

to use the annotator in enterprise search. For information on the tools that are

available to support you in these tasks, see the UIMA SDK documentation at

http://www.alphaworks.ibm.com/tech/uima/.

Configuration parameters

The regular expression annotator only has one configuration parameter called

String2NumberImpl that must be set to the name of the class that implements the

com.ibm.uima.an_regex.String2Number interface. The regular expression annotator

must be supplied with an implementation of this class, otherwise an exception will

occur. If you want to customize the regular expression annotator to meet your

needs, you can provide your own implementation of the String2Number interface

by passing your class name in the XML descriptor file.

The String2Number interface declares two methods, toInt(String) and

toFloat(String), which transform a string representation of an integer or float

value to the corresponding integer or float value. These two methods are used to

transform a number that contains separator characters into a valid Java Integer or

Float value.

The default implementation of com.ibm.uima.an_regex.String2Number_impl

considers a period (.) as a decimal separator and a comma (,) as a thousands

separator. For example, if 1,999.00 is found in a text document, toInt converts it to

1999. toFloat returns 1999.00.

Sample

The configuration parameter section of the descriptor is as follows:

<configurationParameters>

 <configurationParameter>

 <name>String2NumberImpl</name>

 <description>Implementation of the

 com.ibm.uima.an_regex.String2Number interface</description>

 <type>String</type>

 <multiValued>false</multiValued>

 <mandatory>true</mandatory>

 </configurationParameter>

 <configurationParameterSettings>

 <nameValuePair>

 <name>String2NumberImpl</name>

 <value>

 <string>com.ibm.uima.an_regex.impl.String2Number_impl</string>

Regular expression annotator 87

http://www.alphaworks.ibm.com/tech/uima/

</value>

 </nameValuePair>

 </configurationParameterSettings>

</configurationParameters>

Capabilities

The input and output capabilities of the regular expression annotator and the

languages it supports are defined in the capabilities section of the annotator

descriptor.

The input capabilities (input types) in the descriptor file must comply with the

match types used in the rule set file. If the rules only use the

uima.tt.DocumentAnnotation type, you do not have to declare any input

capabilities because this type is always defined. All other types must be defined.

The annotation types created by the regular expression annotator are specified in

the output capabilities section. These types must match the output types declared

in the rule set file.

Because the regular expression annotator is language-independent, specify

x-unspecified, which stands for any language.

Type system description

The type system description section in the regular expression annotator XML

descriptor defines the type system used by the annotator. The types used in the

rule set XML file, and mentioned in the input and output capabilities sections in

the annotator descriptor must match the types defined in the type system

description.

Sample

The type system description section of the descriptor imports the type system

descriptor XML file:

<typeSystemDescription>

 <imports>

 <import location="./xml/of_sample_regex_typesystem.xml"/>

 </imports>

</typeSystemDescription>

External resources

The external resource section of the descriptor contains the files and classes

required by the annotator.

The regular expression annotator requires the rule set file. The rule set file is made

available to the regular expression annotator through the

com.ibm.uima.an_regex.FileResource interface, which is implemented by the class

com.ibm.uima.an_regex.impl.FileResource_impl. To pass your custom rules to the

regular expression annotator, you must provide the name of the rule set file in the

annotator descriptor and add the location of the file to your class path. The key

that the regular expression annotator uses to access the rule set file is named

RuleSetDefinition. Do not change this key, otherwise the regular expression

annotator will not find the rule set and the annotator will not be able to initialize.

88 OmniFind Enterprise Edition: Text Analysis Integration

Custom annotators that you deploy for enterprise search cannot use the UIMA

datapath setting to look up external resources. To look up external resources,

specify the path names to the resources in the class path for the custom annotator.

See the UIMA SDK documentation at http://www.alphaworks.ibm.com/tech/
uima/ for information about using the PEAR Generation Wizard to specify custom

annotator class path settings.

Sample

The external resource section of the descriptor is as follows:

<externalResourceDependencies>

 <externalResourceDependency>

 <key>RuleSetDefinition</key>

 <description>Rule set definition</description>

 <interfaceName>com.ibm.uima.an_regex.FileResource</interfaceName>

 <optional>false</optional>

 </externalResourceDependency>

</externalResourceDependencies>

<resourceManagerConfiguration>

 <externalResources>

 <externalResource>

 <name>of_samples_regex_rules</name>

 <description>Rule set definition file for room numbers</description>

 <fileResourceSpecifier>

 <fileUrl>file:of_samples_regex_rules.xml</fileUrl>

 </fileResourceSpecifier>

 <implementationName>

 com.ibm.uima.an_regex.impl.FileResource_impl</implementationName>

 </externalResource>

 </externalResources>

 <externalResourceBindings>

 <externalResourceBinding>

 <key>RuleSetDefinition</key>

 <resourceName>of_samples_regex_rules</resourceName>

 </externalResourceBinding>

 </externalResourceBindings>

</resourceManagerConfiguration>

 Related concepts

 “The rule set file” on page 81
 Related reference

 “Logging”

Logging

All log messages from the regular expression annotator are written to the current

collection’s log file.

The collection log files are located at ES_NODE_ROOT/logs/ and have names of the

form <collection_id>_<current_date>.log. You can view the log files using the

esviewlogs.sh/.bat scripts.

There are seven possible log levels:

v Error

v Warning

v Info

v Config

v Fine

v Finer

Regular expression annotator 89

http://www.alphaworks.ibm.com/tech/uima/
http://www.alphaworks.ibm.com/tech/uima/

v Finest

You cannot change the mapping for Error and Warning messages. By default, only

Info, Warning and Error messages are written to the log file. These are the

standard log levels used by enterprise search. The other log levels can be mapped

for more detailed information.

To receive log messages from the regular expression annotator, the log level must

be set at least to Config. At this level, the annotator logs configuration settings,

such as, the rule set file that is used and the implementation class name for the

com.ibm.uima.an_regex.String2Number interface.

If you set the log level to Finer for example, the annotator logs which annotations

could not be created. This can help you to determine why not all of the

annotations that you were expecting, were created. For example, there could be an

error in one of your regular expressions, or an optional capturing group might not

have matched any text in the document. Similarly, if you specify that a feature is to

be set to the text sequence that matches a capturing group, and there is no

matching text sequence, the feature is set to null.

For very detailed information, set the log level to Finest. At this level, the

annotator logs the current regular expression pattern, the part of the document text

that is currently being analyzed, and any annotations and features that were

created. Using very detailed logging, especially the log levels Finer and Finest, has

a negative impact on the overall performance of the annotator.

If you require detailed log level mapping, modify the configuration file called

tokenizer.properties at ES_NODE_ROOT/master_config/parserservice/ by

changing the configuration setting

trevi.tokenizer.jedii.InformationalLevelMapping=Info to

trevi.tokenizer.jedii.InformationalLevelMapping=Finest, for example.

To activate the log level changes, you must stop all parser processes using the

administration console. Then you must stop and then restart the parser service

session from the command line by calling:

>esadmin session parserservice stop

>esdamin session parserservice start

Thereafter, the parse can be started again and you should now have the new log

level. You must repeat these steps every time you change the log level.

 Related concepts

 “The rule set file” on page 81
 Related reference

 “The annotator descriptor” on page 86

90 OmniFind Enterprise Edition: Text Analysis Integration

Enterprise search documentation

You can read the OmniFind Enterprise Edition documentation in PDF or HTML

format.

The OmniFind Enterprise Edition installation program automatically installs the

information center, which includes HTML versions of the documentation for

enterprise search. For a multiple server installation, the information center is

installed on both search servers. If you do not install the information center, when

you click help, the information center opens on an IBM Web site.

To see installed versions of the PDF documents, go to ES_INSTALL_ROOT/docs/
locale/pdf. For example, to find documents in English, go to ES_INSTALL_ROOT/
docs/en_US/pdf.

To access the PDF versions of the documentation in all available languages, see the

OmniFind Enterprise Edition, Version 8.5 documentation site.

You can also access product downloads, fix packs, technotes, and the information

center from the OmniFind Enterprise Edition Support site.

The following table shows the available documentation, file names, and locations.

 Table 12. Documentation for enterprise search

Title File name Location

Information center http://publib.boulder.ibm.com/
infocenter/discover/v8r5/

Installation Guide for

Enterprise Search

iiysi.pdf ES_INSTALL_ROOT/docs/locale/pdf/

Quick Start Guide (This

document is also available in

hardcopy for English, French,

and Japanese.)

OmniFindEE850_qsg_

two-letter

locale.pdf

ES_INSTALL_ROOT/docs/locale/pdf/

Administering Enterprise

Search

iiysa.pdf ES_INSTALL_ROOT/docs/locale/pdf/

Programming Guide and API

Reference for Enterprise Search

iiysp.pdf ES_INSTALL_ROOT/docs/en_US/pdf/

Troubleshooting Guide and

Messages Reference

iiysm.pdf ES_INSTALL_ROOT/docs/locale/pdf/

Text Analysis Integration iiyst.pdf ES_INSTALL_ROOT/docs/locale/pdf/

© Copyright IBM Corp. 2004, 2008 91

http://www.ibm.com/support/docview.wss?rs=63&uid=swg27010938
http://www-306.ibm.com/software/data/enterprise-search/omnifind-enterprise/support.html
http://publib.boulder.ibm.com/infocenter/discover/v8r5/
http://publib.boulder.ibm.com/infocenter/discover/v8r5/

92 OmniFind Enterprise Edition: Text Analysis Integration

Accessibility features

Accessibility features help users who have a disability, such as restricted mobility

or limited vision, to use information technology products successfully.

IBM strives to provide products with usable access for everyone, regardless of age

or ability.

Accessibility features

The following list includes the major accessibility features in OmniFind Enterprise

Edition:

v Keyboard-only operation

v Interfaces that are commonly used by screen readers

The OmniFind Enterprise Edition Information Center, and its related publications,

are accessibility-enabled. The accessibility features of the information center are

described at http://publib.boulder.ibm.com/infocenter/discover/v8r5m0/topic/
com.ibm.classify.nav.doc/dochome/accessibility_info.htm.

Keyboard navigation

This product uses standard Microsoft® Windows navigation keys.

You can also use the following keyboard shortcuts to navigate and advance

through the OmniFind Enterprise Edition installation program.

 Table 13. Keyboard shortcuts for the installation program

Action Shortcut

Highlight a radio button Arrow key

Select a radio button Tab key

Highlight a push button Tab key

Select a push button Enter key

Go to the next or previous window or

cancel

Highlight a push button by pressing the Tab key

and press Enter

Make the active window inactive Ctrl + Alt + Esc

Interface information

The user interfaces for the administration console, sample search application, and

search application customizer are browser-based interfaces that you can view in

Microsoft Internet Explorer or Mozilla FireFox. See the online help for Internet

Explorer or FireFox for a list of keyboard shortcuts and other accessibility features

for your browser.

Related accessibility information

You can view the publications for OmniFind Enterprise Edition in Adobe Portable

Document Format (PDF) using the Adobe Acrobat Reader. The PDFs are provided

on a CD that is packaged with the product, or you can access them at

© Copyright IBM Corp. 2004, 2008 93

http://publib.boulder.ibm.com/infocenter/discover/v8r5m0/topic/com.ibm.classify.nav.doc/dochome/accessibility_info.htm
http://publib.boulder.ibm.com/infocenter/discover/v8r5m0/topic/com.ibm.classify.nav.doc/dochome/accessibility_info.htm

http://www.ibm.com/support/docview.wss?rs=63&uid=swg27010938.

IBM and accessibility

See the IBM Human Ability and Accessibility Center for more information about

the commitment that IBM has to accessibility.

94 OmniFind Enterprise Edition: Text Analysis Integration

http://www.ibm.com/support/docview.wss?rs=63&uid=swg27010938
http://www.ibm.com/able

Glossary of terms for enterprise search

This glossary defines terms that are used in the enterprise search interfaces and

documentation.

access control list (ACL)

In computer security, a list associated with an object that identifies all the

subjects that can access the object and their access rights.

administrative role

A classification of a user that prescribes access to a user.

analysis engine

See text analysis engine.

analysis results

The information that is produced by annotators. Analysis results are

written to a data structure called a common analysis structure. Analysis

results produced by the custom text analysis engines (annotators) can be

made available for search by inclusion in the enterprise search index.

annotation

Information about a span of text. For example, an annotation could

indicate that a span of text represents a company name. In the

Unstructured Information Management Architecture (UIMA), an annotation

is a special kind of feature structure.

annotator

A software component that performs specific linguistic analysis tasks and

produces and records annotations. An annotator is the analysis logic

component in an analysis engine.

Boolean search

A search in which one or more search terms are combined by using

operators such as AND, NOT, and OR.

boost class

An object that contains specifications that can influence the relative rank of

a document in the search results.

boost word

A word that can influence the relative rank of a document in the search

results. During query processing, the importance of a document that

contains a boost word might be raised or lowered, depending on a score

that is predefined for the word.

category tree

A hierarchy of categories.

certificate

In computer security, a digital document that binds a public key to the

identity of the certificate owner, thereby enabling the certificate owner to

be authenticated. A certificate is issued by a certificate authority and is

digitally signed by that authority.

certificate authority

A trusted third-party organization or company that issues the digital

© Copyright IBM Corp. 2004, 2008 95

certificates used to create digital signatures and public-private key pairs.

The certificate authority guarantees the identity of the individuals who are

granted the unique certificate.

character normalization

A process in which the variant forms of a character, such as capitalization

and diacritical marks, are reduced to a common form.

clitic A word that syntactically functions separately but is phonetically

connected to another word. A clitic can be written as connected or separate

from the word it is bound to. Common examples of clitics include the last

part of a contraction in English (wouldn’t or you’re).

collection

A set of data sources and options for crawling, parsing, indexing, and

searching those data sources.

common analysis structure (CAS)

A structure that stores the content and metadata of a document, and all

analysis results that are produced by a text analysis engine. All data

exchange during document analysis is handled by using the common

analysis structure.

common analysis structure consumer (CAS consumer)

A consumer that does the final processing on the analysis results that are

stored in the common analysis structure. For example, a consumer indexes

the contents of the common analysis structure in a search engine or it

populates a relational database with specific analysis results.

common communication layer (CCL)

The communication infrastructure that unites the various components

(controller, parser, crawler, index server) of OmniFind Enterprise Edition.

concept extraction

A text analysis function that identifies significant vocabulary items (such as

people, places, or products) in text documents and produces a list of those

items. See also theme extraction.

crawl space

A set of sources that match specified patterns (such as Uniform Resource

Locators (URLs), database names, file system paths, domain names, and IP

addresses) that a crawler reads from to retrieve items for indexing.

crawler

A software program that retrieves documents from data sources and

gathers information that can be used to create search indexes.

credential

Detailed information, acquired during authentication, that describes the

user, any group associations, and other security-related identity attributes.

Credentials can be used to perform a multitude of services, such as

authorization, auditing, and delegation. For example, the sign-on

information (user ID and password) for a user are credentials that allow

the user to access an account.

custom text analysis engine

A text analysis engine that is created by using the Unstructured

Information Management Architecture (UIMA) software development kit

(SDK) and can be added to the set of standard enterprise search text

analysis engines (also known as enterprise search base annotators). See also

text analysis engine.

96 OmniFind Enterprise Edition: Text Analysis Integration

data source

Any repository of data from which documents can be retrieved, such as

the Web, relational and nonrelational databases, and content management

systems.

data source type

A grouping of data sources according to the protocol that is used to access

the data.

data store

A data structure where documents are kept in their parsed form.

delta index build

In an enterprise search system, the process of adding new information to

an existing index. Contrast with main index build.

dequeue

To remove items from a queue.

diacritic

A mark indicating a change in the phonetic value of a character or a

combination of characters.

discoverer

A function of a crawler that determines which data sources are available

for the crawler to retrieve information from.

distinguished name

The name that uniquely identifies an entry in a directory. A distinguished

name consists of attribute:value pairs, separated by commas. Also, a set of

name-value pairs (such as CN=person’s name and C=country or region)

that uniquely identifies an entity in a digital certificate.

Document Object Model

A system in which a structured document, such as an XML file, is viewed

as a tree of objects that can be programmatically accessed and updated.

Domino® Document Manager cabinet

A Domino Document Manager database that is used to organize

documents. Cabinets hold Domino databases.

Domino Document Manager library

A Domino Document Manager database that is the entry point to Domino

Document Manager.

Domino Internet Inter-ORB Protocol (DIIOP)

A server task that runs on the server and works with the Domino Object

Request Broker to allow communication between Java applets that are

created with the Notes® Java classes and the Domino server. Browser users

and Domino servers use DIIOP to communicate and to exchange object

data.

dynamic ranking

A type of ranking in which the terms in the query are analyzed with

respect to the documents that are being searched to determine the rank of

results. See also text-based scoring. Contrast with static ranking.

dynamic summarization

A type of summarization in which the search terms are highlighted and the

search results contain phrases that best represent the concepts of the

document that the user is searching for. Contrast with static

summarization.

Glossary of terms for enterprise search 97

enqueue

To put a message or item in a queue.

enterprise search administrator

An administrative role that enables a user to administer the entire

enterprise search system.

enterprise search base annotators

A set of standard text analysis engines used in enterprise search for default

document analysis processing.

escape character

A character that suppresses or selects a special meaning for one or more

characters that follow.

external data source

A data source for federation that is not crawled, parsed, or indexed by

OmniFind Enterprise Edition. Searches of external data sources are

delegated to the query application programming interface of those data

sources.

feature path

A path that is used to access the value of a feature in a Unstructured

Information Management Architecture (UIMA) feature structure.

feature structure

The underlying data structure that represents the result of text analysis. A

feature structure is an attribute-value structure. Each feature structure is of

a type, and every type has a specified set of valid features or attributes,

much like a Java class.

federated search

A search capability that enables searches across multiple search services

and returns a consolidated list of search results.

federation

The process of combining naming systems so that the aggregate system can

process composite names that span the naming systems.

field An area into which a particular category of data or control information is

entered.

fielded search

A query that is restricted to a particular field.

free-form text

Unstructured text consisting of words or sentences.

free text search

A search in which the search term is expressed as free-form text.

full-text index

A data structure that references data items to enable a search to find

documents that contain the query terms.

fuzzy search

A search that returns words with spelling that is similar to that of the

search term.

hybrid search

A combined boolean search and free text search.

identity management

A set of enterprise search APIs that control access to secure data and

98 OmniFind Enterprise Edition: Text Analysis Integration

enable users to search a collection without being required to specify a user

ID and password for each repository in the collection.

index See full-text index.

index queue

A list of requests for main and delta index builds to be processed.

information extraction

A type of concept extraction that automatically recognizes significant

vocabulary items, such as names, terms, and expressions, in text

documents.

IP address

A unique address for a device or logical unit on a network that uses the IP

standard.

Java Database Connectivity (JDBC)

An industry standard for database-independent connectivity between the

Java platform and a wide range of databases. The JDBC interface provides

a call-level API for SQL-based database access.

JavaScript™

A Web scripting language that is used in browsers and Web servers.

JavaServer Pages (JSP)

A server scripting technology that enables Java code to be dynamically

embedded within Web pages (HTML files) and executed when the page is

served, in order to return dynamic content to a client.

Java virtual machine (JVM)

A software implementation of a processor that runs compiled Java code

(applets and applications).

Katakana

A character set that consists of symbols that are used in one of the two

common Japanese phonetic alphabets, which is used primarily to write

foreign words phonetically.

key database file

See key ring. key ring.

key ring

In computer security, a file that contains public keys, private keys, trusted

roots, and certificates. See also keystore file.

keystore file

A key ring that contains both public keys that are stored as signer

certificates and private keys that are stored in personal certificates.

language identification

In enterprise search, a search function that determines the language of a

document.

lemma

The base form of a word. Lemmas are significant in highly inflected

languages such as Czech.

lemmatization

A process that identifies the root form and different grammatical forms of

a word. For example, a search for mouse also finds documents that contain

the word mice, and a search for go also finds documents that contain

going, gone, or went.

Glossary of terms for enterprise search 99

lexical affinity

The relationship of search words in a document that are close to each other

in meaning. Lexical affinity is used to calculate the relevancy of a result.

library

A system object that serves as a directory to other objects. See also Domino

Document Manager library.

ligature

Two or more characters that are connected so they appear as one character.

For example, ff and ffi are characters that can be presented as ligatures.

Lightweight Directory Access Protocol (LDAP)

An open protocol that uses TCP/IP to provide access to directories that

support an X.500 model and that does not incur the resource requirements

of the more complex X.500 Directory Access Protocol (DAP). For example,

LDAP can be used to locate people, organizations, and other resources in

an Internet or intranet directory.

linguistic search

A search type that browses, retrieves, and indexes a document with terms

that are reduced to their base form (for example, so that mice is indexed as

mouse) or expanded with their base form (as with compound words).

link analysis

A method that is based on the analysis of hyperlinks between documents

and used to determine what pages in the collection are important to users.

local federator

In an enterprise search application, a client object created by the search and

index APIs that enables users to search a set of heterogeneous collections

and obtain a unified set of search results.

Lotus® QuickPlace® place

A Web venue that is provided by Lotus QuickPlace that enables

geographically dispersed participants to collaborate on projects and

communicate online in a structured and secure workspace.

Lotus QuickPlace room

A partitioned area of a Lotus QuickPlace place that is restricted to

authorized members who share a common interest and a need to work

collectively.

main index build

In enterprise search, the process of building the entire index. Contrast with

delta index build.

masking character

A character that is used to represent optional characters at the front,

middle, and end of a search term. Masking characters are normally used

for finding variations of a term in an index. See also wildcard character.

MIME type

An Internet standard for identifying the type of object that is being

transferred across the Internet.

monitor

An enterprise search user who has the authority to observe collection-level

processes.

100 OmniFind Enterprise Edition: Text Analysis Integration

newline character

A control character that causes the print or display position to move down

one line.

n-gram segmentation

A method of analysis that considers overlapping sequences of a given

number of characters as a single word rather than using blank space to

delimit words as in Unicode-based white space segmentation.

no-follow directive

A directive in a Web page that instruct robots (such as the Web crawler) to

not follow links found in that page.

no-index directive

A directive in a Web page that instruct robots (such as the Web crawler) to

not include the contents of that page in the index.

Notes remote procedure call (NRPC)

A communication mechanism of Lotus Notes® that is used for all

Notes-to-Notes communication.

operator

An enterprise search user who has the authority to observe, start, and stop

collection-level processes.

parametric search

A type of search that looks for objects that contain a numeric value or

attribute, such as dates, integers, or other numeric data types within a

specified range.

parser A program that interprets documents that are added to the enterprise

search data store. The parser extracts information from the documents and

prepares them for indexing, search, and retrieval.

parser driver

In enterprise search, a service that feeds the parser service with documents.

There is one parser driver for each collection. A collection’s parser driver

service corresponds to the collection’s parser in the enterprise search

administration console.

parser service

The enterprise search service that handles all document parsing and text

analysis processing across document collections. At least one parser service

is running at all times.

place A virtual location that is visible in the portal where individuals and groups

meet to collaborate. In a portal, each user has a personal place for private

work, and individuals and groups have access to a variety of shared

places, which can be either public places or restricted places. See also Lotus

QuickPlace place.

popular ranking

A type of ranking that raises a document’s existing ranking based on the

document’s popularity.

Portal Document Manager (PDM)

Allows users to have one central document repository for team

collaboration. Administrators have the ability to effectively manage their

documents and can control the way users interact with information.

processing engine archive

A .pear zip archive file that includes a Unstructured Information

Glossary of terms for enterprise search 101

Management Architecture (UIMA) analysis engine and all of the resources

required to use it for custom analysis in enterprise search.

proximity search

A text search that returns a result when two or more matching terms occur

within a certain distance from each other, such as in the same sentence or

paragraph.

proxy server

A server that acts as an intermediary for HTTP Web requests that are

hosted by an application or a Web server. A proxy server acts as a

surrogate for the content servers in the enterprise.

quick link

An association between a Uniform Resource Identifier (URI) and keywords

or phrases.

ranking

The assignment of an interger value to each document in the search results

from a query. The order of the documents in the search results is based on

the relevance to the query. A higher rank signifies a closer match. See also

dynamic ranking and static ranking.

raw data store

A data structure where crawled documents are stored before they are sent

to the parser. Crawlers write to the raw data store, and the parser reads

from the raw data store. When documents have been parsed, they are

removed from the raw data store. Not to be confused with data store.

regular expression annotator

A software component that detects entities or units of information in a text

document, such as product numbers, based on regular expressions that

describe the exact patterns that are searched in the document text. If one of

the regular expressions matches parts of the document text, the regular

expression annotator creates the corresponding annotations that cover the

match or part of it. These annotated expressions are then stored, either in

the enterprise search index using an index mapping file, or a JDBC-capable

database using a database mapping file.

remote federator

A server federator that federates a set of searchable objects.

Robots Exclusion Protocol

A protocol that allows Web site administrators to indicate to visiting robots

which parts of their site should not be visited by the robot.

room A program that allows users to create documents for others to read,

respond to comments from others, and review project status and deadlines.

Users can also chat with others who are in the same room. See also Lotus

QuickPlace room.

rule-based category

Categories that are created by rules that specify which documents are

associated with which categories. For example, you can define rules to

associate documents that contain or exclude certain words, or that match a

Uniform Resource Identifier (URI) pattern, with specific categories.

search application

In enterprise search, a program that processes queries, searches the index,

returns the search results, and retrieves the source documents.

102 OmniFind Enterprise Edition: Text Analysis Integration

search cache

A buffer that holds the data and results of previous search requests.

search engine

A program that accepts a search request and returns a list of documents to

the user.

search index files

The set of files in which an index is stored in the search engine.

search results

A list of documents that match the search request.

Secure Sockets Layer (SSL)

A security protocol that provides communication privacy. With SSL,

client/server applications can communicate in a way that is designed to

prevent eavesdropping, tampering, and message forgery.

security token

Information about identity and security that is used to authorize access to

documents in a collection. Different data source types support different

types of security tokens. Examples include user roles, user IDs, group IDs,

and other information that can be used to control access to content.

seed list page

In WebSphere Portal, an XML page that contains links to the pages that are

available on a portal. Crawlers use the seed list to identify the documents

to crawl. The seed list page also contains metadata that is stored with the

crawled documents in the enterprise search index.

start Uniform Resource Locator (URL)

The starting point for a crawl.

segmentation

The division of text into distinct lexical units. Nondictionary-based

processing includes white space and n-gram segmentation, while

dictionary-based support includes word, sentence, and paragraph

segmentation, and lemmatization.

semantic search

A type of keyword search that incorporates linguistic and contextual

analysis. See also text analysis.

servlet

A Java program that runs on a Web server and extends the server’s

functionality by generating dynamic content in response to Web client

requests. Servlets are commonly used to connect databases to the Web.

shingle

A string of consecutive tokens (words) that are taken from a sentence. For

example, from ″This is a very short sentence.″, the 3-word shingles (or

trigrams) are:

This is a

is a very

a very short

very short sentence

 Shingles can be used in statistical linguistics. For example, if two different

texts have a lot of common shingles, the texts are probably related

somehow.

Glossary of terms for enterprise search 103

soft error page

A type of Web page that provides information about why the requested

Web page cannot be returned. For example, instead of returning a simple

status code, the HTTP server can return a page that explains the status

code in detail.

static ranking

A type of ranking in which factors about the documents that are being

ranked, such as date, the number of links that point to the document, and

so on, augment the rank. Contrast with dynamic ranking.

static summarization

A type of summarization in which the search results contain a specified,

stored summary from the document. Contrast with dynamic

summarization.

stemming

See word stemming.

stop word

A word that is commonly used, such as the, an, or and, that is ignored by a

search application.

stop word removal

The process of removing stop words from the query to ignore common

words and return more relevant results.

summarization

The process of including non-redundant sentences in search results to

briefly describe the content of a document. See also dynamic

summarization and static summarization.

synonym dictionary

A dictionary that enables users to search for synonyms of their query terms

when they search a collection.

taxonomy

A classification of objects into groups based on similarities. In enterprise

search, a taxonomy organizes data into categories and subcategories. See

also category tree.

text analysis

The process of extracting semantics and other information from text to

enhance the retrievability of data in a collection. See also semantic search.

text analysis engine

A software component that is responsible for finding and representing

context and semantic content in text.

text-based scoring

The process of assigning an integer value to a document that signifies the

relevance of the document with respect to the terms in a query. A higher

integer value signifies a closer match to the query. See also dynamic

ranking.

text segmentation

See segmentation.

theme extraction

A type of concept extraction that automatically recognizes significant

vocabulary items in text documents to extract the theme or topic of a

document. See also concept extraction.

104 OmniFind Enterprise Edition: Text Analysis Integration

token The basic textual units that are indexed by enterprise search. Tokens can be

the words in a language or other units of text that are appropriate for

indexing.

tokenization

The process of parsing input into tokens.

tokenizer

A text segmentation program that scans text and determines if and when a

series of characters can be recognized as a token.

trailing character

A character that holds the last position in a word.

type system

The type system defines the types of objects (feature structures) that may

be discovered by a text analysis engine in a document. The type system

defines all possible feature structures in terms of types and features. You

can define any number of different types in a type system. A type system

is domain and application specific.

Unicode-based white space segmentation

A method of tokenization that uses Unicode character properties to

distinguish between token and separator characters.

Uniform Resource Identifier (URI)

A compact string of characters that identifies an abstract or physical

resource.

Uniform Resource Locator (URL)

The unique address of an information resource that is accessible in a

network such as the Internet. The URL includes the abbreviated name of

the protocol used to access the information resource and the information

used by the protocol to locate the information resource.

Unstructured Information Management Architecture (UIMA)

An IBM architecture that defines a framework for implementing systems

for the analysis of unstructured data.

user agent

An application that browses the Web and leaves information about itself at

the sites that it visits. In enterprise search, the Web crawler is a user agent.

Web crawler

A type of crawler that explores the Web by retrieving a Web document and

following the links within that document.

weighted term search

A query in which certain terms are given more importance.

wildcard character

A character that is used to represent optional characters at the front,

middle, or end of a search term.

word stemming

A process of linguistic normalization in which the variant forms of a word

are reduced to a common form. For example, words like connections,

connective, and connected are reduced to connect.

XML Path Language (XPath)

A language that is designed to uniquely identify or address parts of source

XML data, for use with XML-related technologies, such as XSLT, XQuery,

and XML parsers. XPath is a World Wide Web Consortium standard.

Glossary of terms for enterprise search 105

106 OmniFind Enterprise Edition: Text Analysis Integration

Notices and trademarks

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive Armonk, NY

10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome,

Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law: INTERNATIONAL

BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR

PURPOSE. Some states do not allow disclaimer of express or implied warranties in

certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2004, 2008 107

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject

to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

108 OmniFind Enterprise Edition: Text Analysis Integration

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

Portions of this product are:

v Oracle® Outside In Content Access, Copyright © 1992, 2008, Oracle. All rights

reserved.

v IBM XSLT Processor Licensed Materials - Property of IBM © Copyright IBM

Corp., 1999-2008. All Rights Reserved.

Trademarks

See http://www.ibm.com/legal/copytrade.shtml for information about IBM

trademarks.

The following terms are trademarks or registered trademarks of other companies:

Adobe, Acrobat, Portable Document Format (PDF), PostScript, and all Adobe-based

trademarks are either registered trademarks or trademarks of Adobe Systems

Incorporated in the United States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,

Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or

registered trademarks of Intel Corporation or its subsidiaries in the United States

and other countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, or service names may be trademarks or service marks of

others.

Notices and trademarks 109

http://www.ibm.com/legal/copytrade.shtml

110 OmniFind Enterprise Edition: Text Analysis Integration

Index

A
accessibility features for this product 93

accessing custom analysis results
built-in features 33

definition of a feature path 32

filters 35

accessing text analysis results
definition of a CAS consumer 31

B
boost word dictionaries

creating a DIC file 69

creating an XML file 68

search application support 67

C
character normalization 76

clitics 74

custom analysis
approaches for indexing custom

analysis results 36

approaches for using XML markup in

analysis and search 25

changing from base to advanced

analysis mode 14

mapping analysis results in a JDBC

capable database 43, 45, 49

text analysis algorithms 5

type system description 13

type system description sample 22

workflow 5

D
DIC files

boost words 69

synonyms 60

user-defined stop words 64

dictionary-based analysis 74

dictionary-based segmentation 74

documentation
finding 91

HTML 91

PDF 91

E
easy semantic search

using the regular expression

annotator 79

esboostworddictbuilder.bat script 69

esboostworddictbuilder.sh script 69

esstopworddictbuilder.bat script 64

esstopworddictbuilder.sh script 64

essyndictbuilder.bat script 60

essyndictbuilder.sh script 60

H
HTML documentation for enterprise

search 91

I
indexing custom analysis results

creating the common analysis

structure to index mapping file 37

description 36

L
language detection 71

lemmas 74

lemmatization 74

linguistic support
character normalization 76

clitics 74

description 1

dictionary-based segmentation 74

language detection 71

lemmas 74

lemmatization 74

n-gram segmentation 72

n-gram segmentation of numerical

characters 73

nondictionary-based segmentation 72

Okurigana variants 75

orthographic variants in Japanese 75

semantic search 55

stop word removal 76

supported languages 74

system included support 71

system-defined types and features 15

Unicode normalization 76

Unicode-based white space

segmentation 72

word segmentation in Japanese 75

M
mapping analysis results in a JDBC

capable database
description 43

steps 43

mapping custom analysis results in a

JDBC capable database
container type mapping 49

container types 49

the common analysis structure to

database mapping file 45

using load file sets 44

mapping XML document structures to

UIMA types
creating the XML elements to common

analysis structure mapping file 27

description 25

N
n-gram segmentation

description 72

full 73

normal 73

numeric 73

nondictionary-based analysis 72

nondictionary-based segmentation 72

O
Okurigana variants 75

orthographic variants in Japanese 75

P
PDF documentation for enterprise

search 91

R
regular expression annotator

annotator descriptor 86

customizing 85

defining regular expression rules 82

description 79

easy semantic search 79

enabling easy semantic search 80

logging 89

XML rule set description 81

S
scripts

esboostworddictbuilder 69

esstopworddictbuilder 64

essyndictbuilder 60

search applications
boost word support 67

stop word support 63

synonym support 59

Search servers
boost word XML files 68

creating boost word dictionaries 69

creating stop word dictionaries 64

creating synonym dictionaries 60

stop word XML files 63

synonym XML files 59

segmentation
dictionary-based 74

nondictionary-based 72

Unicode-based white space 72

semantic search
description 55

retrieving parts of a document that

match a query 53

semantic search query 56

stop word dictionaries
creating a DIC file 64

© Copyright IBM Corp. 2004, 2008 111

stop word dictionaries (continued)
creating an XML file 63

search application support 63

stop word removal 76

stop words 76

supported languages
dictionary-based linguistic

processing 74

language detection 71

synonym dictionaries
creating a DIC file 60

creating an XML file 59

search application support 59

U
UIMA

basic concepts 4

custom text analysis support 3

description 3

installing the base enterprise search

annotators 7

running the base enterprise search

annotators 7

using the common analysis structure

to database consumer 9

using the regular expression

annotator 11

viewing base annotator and custom

text analysis results 11

Unicode normalization 76

Unicode-based white space

segmentation 72

W
word segmentation, Japanese 75

112 OmniFind Enterprise Edition: Text Analysis Integration

���

SC18-9674-02

	Contents
	ibm.com and related resources
	How to send your comments
	Contacting IBM

	Linguistic support for semantic search
	Custom text analysis integration
	Basic concepts used in text analysis processing
	Text analysis algorithms
	Workflow for custom analysis integration
	Using the enterprise search base annotators in UIMA
	Using the common analysis structure to database consumer in UIMA
	Using the regular expression annotator in UIMA

	Viewing base annotator and custom text analysis results
	Type system description
	Changing from base analysis mode to advanced analysis mode
	Types and features defined for enterprise search
	Specific types and features for enterprise search
	Type system description sample

	XML markup in analysis and search
	Creating an XML elements to the common analysis structure mapping file

	The text analysis results
	Feature paths
	Built-in features
	Filters

	Index mapping for custom analysis results
	Creating the common analysis structure to index mapping file

	Database mapping for selected analysis results
	Storing analysis results in a database
	Using load file sets
	Creating the common analysis structure to database mapping file
	Container type mapping

	Retrieving parts of a document that match a semantic search query
	Semantic search applications
	Semantic search query term

	Synonym support in search applications
	Creating an XML file for synonyms
	Creating a synonym dictionary

	Custom stop word dictionaries
	Creating an XML file for stop words
	Creating a stop word dictionary

	Custom boost word dictionaries
	Creating an XML file for boost words
	Creating a boost word dictionary

	Text analysis included in enterprise search
	Language identification
	Linguistic support for nondictionary-based segmentation
	Tokenizing numerical characters as n-gram tokens

	Linguistic support for dictionary-based segmentation
	Word segmentation in Japanese
	Orthographic variants in Japanese

	Stop word removal
	Character normalization

	Regular expression annotator
	Easy semantic search using the regular expression annotator
	Enabling easy semantic search using the regular expression annotator
	The rule set file
	Defining regular expression rules
	Customizing the regular expression annotator
	The annotator descriptor
	Logging

	Enterprise search documentation
	Accessibility features
	Glossary of terms for enterprise search
	Notices and trademarks
	Notices
	Trademarks

	Index

