
IBM OmniFind Enterprise Edition

Programming Guide and API Reference for Enterprise Search

Version 8.5

SC18-9284-04

���

IBM OmniFind Enterprise Edition

Programming Guide and API Reference for Enterprise Search

Version 8.5

SC18-9284-04

���

Note

Before using this information and the product it supports, read the information in “Notices and trademarks” on page 103.

Edition Notice

This edition applies to version 8, release 5, modification 0 of IBM OmniFind Enterprise Edition (product number

5724-C74) and to all subsequent releases and modifications until otherwise indicated in new editions.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2004, 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

ibm.com and related resources v

How to send your comments v

Contacting IBM vi

Application development 1

Enterprise search API overview 1

Installing the client toolkit 2

Javadoc documentation 3

Search and index APIs 3

Search applications 7

Controlling query behavior 11

Query syntax 19

Java classes for showing top results 36

Search and index API federators 37

Retrieving targeted XML elements 38

Fetching search results 39

Application security 40

Document-level security 41

Administration applications 44

Registering application IDs 45

Unregistering application IDs 46

Creating an instance of an application ID . . . 46

Creating or destroying collections 47

Adding documents to a collection 49

Building indexes 50

Enabling indexes for search 51

Web services for enterprise search 51

Crawler plug-ins 52

Crawler plug-ins for non-Web sources 53

Web crawler plug-ins 55

Sample code 61

The enterprise search sample application 61

Sample search applications 66

Compiling the sample search applications . . . 67

Simple and advanced sample search applications 68

Browse and navigation sample application . . . 69

Retrieve all search results sample application . . 69

Fetch document content sample application . . 70

Federated search sample application 71

Sample administration applications 72

Compiling the sample administration

applications 82

Sample plug-in application for non-Web crawlers . . 83

Sample code for Web services 86

WSDL for Web services 86

XML schema associated with the WSDL file . . 91

Sample client proxy application for Web services 95

Detailed Web service client application 97

Enterprise search documentation . . . 99

Accessibility features 101

Notices and trademarks 103

Notices 103

Trademarks 105

Index 107

© Copyright IBM Corp. 2004, 2008 iii

iv OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

ibm.com and related resources

Product support and documentation are available from ibm.com®.

Support and assistance

Product support is available on the Web.

IBM® OmniFind™ Enterprise Edition

http://www.ibm.com/software/data/enterprise-search/omnifind-
enterprise/support.html

IBM OmniFind Discovery Edition

http://www.ibm.com/software/data/enterprise-search/omnifind-
discovery/support.html

IBM OmniFind Yahoo! Edition

http://www.ibm.com/software/data/enterprise-search/omnifind-yahoo/
support.html

Information center

You can view the product documentation in an Eclipse-based information center

with a Web browser. See the information center at http://publib.boulder.ibm.com/
infocenter/discover/v8r5m0/.

PDF publications

You can view the PDF files online using the Adobe® Acrobat Reader for your

operating system. If you do not have the Acrobat Reader installed, you can

download it from the Adobe Web site at http://www.adobe.com.

See the following PDF publications Web sites:

 Product Web site address

OmniFind Enterprise Edition,

Version 8.5

http://www.ibm.com/support/docview.wss?rs=63
&uid=swg27010938

OmniFind Discovery Edition,

Version 8.4

http://www.ibm.com/support/docview.wss?rs=3035
&uid=swg27008552

OmniFind Yahoo! Edition, Version

8.4

http://www.ibm.com/support/docview.wss?rs=3193
&uid=swg27008932

How to send your comments

Your feedback is important in helping to provide the most accurate and highest

quality information.

Send your comments by using the online reader comment form at

https://www14.software.ibm.com/webapp/iwm/web/signup.do?lang=en_US
&source=swg-rcf.

© Copyright IBM Corp. 2004, 2008 v

http://www.ibm.com/software/data/enterprise-search/omnifind-enterprise/support.html
http://www.ibm.com/software/data/enterprise-search/omnifind-enterprise/support.html
http://www.ibm.com/software/data/enterprise-search/omnifind-discovery/support.html
http://www.ibm.com/software/data/enterprise-search/omnifind-discovery/support.html
http://www.ibm.com/software/data/enterprise-search/omnifind-yahoo/support.html
http://www.ibm.com/software/data/enterprise-search/omnifind-yahoo/support.html
http://publib.boulder.ibm.com/infocenter/discover/v8r5m0/
http://publib.boulder.ibm.com/infocenter/discover/v8r5m0/
http://www.adobe.com
http://www.ibm.com/support/docview.wss?rs=63&uid=swg27010938
http://www.ibm.com/support/docview.wss?rs=63&uid=swg27010938
http://www.ibm.com/support/docview.wss?rs=3035&uid=swg27008552
http://www.ibm.com/support/docview.wss?rs=3035&uid=swg27008552
http://www.ibm.com/support/docview.wss?rs=3193&uid=swg27008932
http://www.ibm.com/support/docview.wss?rs=3193&uid=swg27008932
https://www14.software.ibm.com/webapp/iwm/web/signup.do?lang=en_US&source=swg-rcf
https://www14.software.ibm.com/webapp/iwm/web/signup.do?lang=en_US&source=swg-rcf

Contacting IBM

To contact IBM customer service in the United States or Canada, call

1-800-IBM-SERV (1-800-426-7378).

To learn about available service options, call one of the following numbers:

v In the United States: 1-888-426-4343

v In Canada: 1-800-465-9600

For more information about how to contact IBM, see the Contact IBM Web site at

http://www.ibm.com/contact/us/.

vi OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

http://www.ibm.com/contact/us/

Application development

Enterprise search API overview

IBM OmniFind Enterprise Edition provides several sets of Java™ application

programming interfaces (APIs) for enterprise search so that you can create search

and administration applications, modify crawled documents, or set up an identity

management component to enforce document-level security.

IBM search and index APIs

Use the search and index application programming interfaces to create custom

search applications. The enterprise search implementation of the search and index

API (SIAPI) allows the search server to be accessed remotely. The search server

stores the collection data for the enterprise search system. With these APIs, you can

create applications that submit search requests, process and fetch search results, or

browse taxonomy trees.

You can also use the search and index APIs to create applications to administer

collections and enable indexes to be searched. With the administration APIs, you

can administer collections from team rooms or portlets. You can also migrate

indexing products to administer collections and indexes.

Enterprise search requires IBM WebSphere® Application Server, which you can

install or which can be installed automatically by the OmniFind Enterprise Edition

installation program. To ensure that your custom applications stay current with

changes made to WebSphere Application Server, or to apply fixes for problems that

might occur in WebSphere Application Server, periodically check the following

Web site for information about interim fixes and cumulative fix packs for

WebSphere Application Server: Recommended Fixes for WebSphere Application

Server (http://www.ibm.com/support/docview.wss?uid=swg27004980).

Sample search application (ESSearchApplication)

You can use the sample search application that is provided with OmniFind

Enterprise Edition as a base from which to develop your custom search

applications. This sample application shows you how to do basic search and

retrieval tasks with enterprise search collections, such as selecting collections for

search, querying those collections, and configuring the display of search results.

Important: If you customize the sample search application, which is named

ESSearchApplication, you must rename it to ensure that your changes are not

overwritten when you install a fix pack or upgrade to a new version of OmniFind

Enterprise Edition.

Crawler plug-in APIs

To modify documents after they are crawled, but before they are parsed and

indexed for search, you can use the crawler plug-in APIs to add, change, or delete

information in the document or the document metadata. You can also indicate that

the document is to be ignored (skipped) and not indexed.

The crawler plug-in APIs are not part of the search and index APIs (SIAPI).

© Copyright IBM Corp. 2004, 2008 1

http://www.ibm.com/support/docview.wss?uid=swg27004980
http://www.ibm.com/support/docview.wss?uid=swg27004980

Identity management component APIs

Access to sensitive information that is contained in multiple repositories is

typically controlled and enforced by the managing software. You identify yourself

to the host system with a user ID and password. After the system authenticates

your user ID and password, the managing software controls which documents you

are allowed to see based on your access rights. Unless the enterprise has

implemented a single sign-on policy, you must have several different user IDs and

passwords for each repository.

OmniFind Enterprise Edition provides an identity management component that

enables users to search multiple repositories with a single query and see only the

documents that they are allowed to see. You can build this component into your

applications so that users can sign on with only one user ID and password when

searching secure collections.

See the Javadoc documentation for details about the APIs that can be used to

create your own identity management component or customize the existing

solution.

Installing the client toolkit

To build enterprise search applications, you must install the client toolkit (the

es.siapi.toolkit.jar archive file).

About this task

The toolkit contains the required Java packages, sample applications, build scripts,

and Javadoc documentation to build search applications and administration

applications. The toolkit does not contain APIs for the identity management

component.

The toolkit distributes the following sample applications:

v Search samples show how to use the search and index APIs to search collections,

search categories, and retrieve search results.

v Administration samples show how to use the search and index APIs to create an

application ID, create or destroy a collection, enable or disable a collection for

indexing, enable or disable a collection for searching, add or remove documents,

or build an index.

v Web service samples show how to use the Web service client proxy. The client

proxy can be used to access the Web service that is hosted by the ESSearchServer

application to process search requests.

Procedure

To install the client toolkit:

1. Find the client toolkit JAR file for your operating system or contact the search

administrator to obtain the file. For a multiple server installation, the

es.siapi.toolkit.jar archive file is on both search servers.

v AIX®, Linux®, and Solaris: ES_INSTALL_ROOT/lib/es.siapi.toolkit.jar

v Windows®: ES_INSTALL_ROOT\lib\es.siapi.toolkit.jar

2. Extract the JAR file by running the following command:

jar -xvf es.siapi.toolkit.jar

2 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

3. Edit the es.cfg configuration file. This file is in the ES_INSTALL_ROOT\lib\
es.siapi.toolkit.jar archive file. Add the following two lines at the end of

the file:

v es_server_hostname=fully qualified host name of the enterprise search

index server

This field is mandatory and specifies the index server host name, for

example, omnifind.server.ibm.com.

If you do not want to change the es.cfg file, the es_server_hostname

parameter can be passed as a system argument to your Java application, for

example: -Des_server_hostname=omnifind.server.ibm.com.

v .logFileName=absolute path of a log file

This field is optional and registers the trace information in a specific log file,

for example, c:\temp\siapi.log. This field can be used to enhance the trace

information from the APIs. The accepted values are INFO and ALL. The

default value is INFO.

By default a file called siapi.log is created in the directory where the

custom applications are invoked.

The configuration file required by the APIs to access the enterprise search

server. Pass the absolute path of the configuration file as a system argument to

the Java executable files.

Javadoc documentation

Javadoc documentation is available for the search and index APIs (for both search

and administration applications), crawler plug-ins, and the identity management

component.

The Javadoc documentation is installed in these default locations:

 Javadoc documentation Installation directory

Search and index APIs ES_INSTALL_ROOT/docs/api/siapi

Fetch API ES_INSTALL_ROOT/docs/api/fetch

Non-Web crawler plug-ins ES_INSTALL_ROOT/docs/api/crawler

Web crawler plug-ins ES_INSTALL_ROOT/docs/api/wc

Identity management APIs ES_INSTALL_ROOT/docs/api/imc

 Related concepts

 “Search and index APIs”

 “Administration applications” on page 44
 Related reference

 “Search applications” on page 7

Search and index APIs

The IBM search and index API is a programming interface that enables you to

search, browse, and administer collections and taxonomies.

The search and index API is a factory based interface that allows for different

implementations of the search engine. By using search and index APIs, your search

application can use different search engines that are provided by IBM without

changing your search and index API application. For example, if you create a

search and index API application in WebSphere Portal that uses the portal search

Application development 3

engine, you can use the OmniFind Enterprise Edition enterprise search engine

without the need to change your search application.

The search and index APIs support the following types of search and

administration tasks:

v Search application tasks:

– Searching indexes

– Customizing the information that is returned in search results sets

– Searching and browsing taxonomies

– Searching over several collections as if they were one collection (search

federation)

– Viewing results with URIs that you can click and viewing scoring information

(ranking)

– Searching and retrieving documents from a broad range of enterprise data

sources, such asWebSphere Information Integrator Content Edition

repositories and Lotus Notes® databases
v Administration application tasks:

– Administering user application IDs

– Creating or destroying collections

– Enabling or disabling collections for search and indexing

– Building and reorganizing collections

– Adding documents to a collection or removing documents from collections

The following figures show the relationships among the search and index APIs.

4 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

Java Interface

Obtains

AdminService

createCollection ()

destroyCollection ()

getSearchableCollectionIDs ()

getIndexableCollectionIDs ()

isEnabledForSearch ()

isEnabledForIndexing ()

enableCollectionForSearch ()

enableCollectionForIndexing ()

disableCollectionForSearch ()

disableCollectionForIndexing ()

Java Interface

AdminFactory

getAdminService ()

Figure 1. Administration APIs

Application development 5

Java Interface

Java Interface

Java Interface

IndexService

IndexFactory

Obtains

Obtains

Index

getStatistics ()

setProperty ()

reorganize ()

build ()

removeDocument ()

addOrReplaceDocument ()

addDocument ()

getProperty ()

getDocStatistics ()

getProperties ()

getDefaultLanguage ()

setDefaultLanguage ()

getIndexID ()

getCollectionInfo ()
getAvailableIndexes ()

getIndexService ()

createField ()

getIndex ()

createDocument ()

createCategory ()

createField ()

Figure 2. Index APIs

6 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

Related concepts

 “Administration applications” on page 44

 “Javadoc documentation” on page 3

Search applications

Search applications can access enterprise search collections, issue queries, and

process query results.

See the Javadoc documentation for examples of the search and index APIs.

To create a search application with the search and index APIs, follow these general

steps:

1. Instantiate an implementation of a SearchFactory object.

The SearchFactory can then be used to obtain a SearchService object.

2. Use the SearchFactory object to obtain a SearchService object.

The SearchService object is configured with the connection information that is

necessary to communicate with the search engine. With the SearchService

Java Interface

Java Interface

Java InterfaceSearchFactory

SearchService

Obtains

Obtains

Searchable

search ()

count ()

setSpellCorrectionEnabled ()

isSpellCorrectionEnabled ()

getSpellCorrections ()

setSynonymExpansionEnabled ()

isSynonymExpansionEnabled ()

getSynonymExpansions ()

getAvailableAttributeValues ()

getDefaultLanguage ()

getAvailableFields ()

setProperty ()

getProperties ()

getProperty ()

getCollectionInfo ()

getSearchService ()

createApplicationInfo ()

getAvailableSearchables ()

createQuery ()

getSearchable ()

createLocalFederator ()

getAvailableFederators ()

getFederator ()

Figure 3. Search APIs

Application development 7

object, you can access searchable collections. Configure the SearchService

object with the host name, port, and, if WebSphere global security is enabled, a

valid WebSphere user name and password for the search server. Configuration

parameters are set in a java.util.Properties object. The parameters are then

passed to the getSearchService factory method that generates the

SearchService object.

Enterprise search applications support Secure Sockets Layer (SSL) version 3.

However, applications that use SSL must include a reference to an existing

keystore. WebSphere Application Server provides a utility called iKeyman.exe in

the Java Runtime Environment bin directory that can be used for working with

keystores.

With SSL, you can establish a security-enabled Web site on the Internet or on

your private intranet. A browser that does not support HTTP over SSL cannot

request URLs that use HTTPS.

When you request a search and index API service, such as SearchService

searchService = factory.getSearchService(Properties);, you can use any of

the following properties for a service object. The property names are case

sensitive.

 Table 1. Property values for service API objects

Property name Expected value

protocol HTTP or HTTPS for SSL. The default is HTTP. If the protocol is

HTTPS, the host name must be fully qualified and the port

must be the SSL port. The default port is 443.

trustStore The fully qualified path to the keystore. If the operating system

is Windows, the backslashes must be escaped with a double

backslash, for example, c:\\temp\\WASWebContainer.jks.

Restriction: If the protocol is HTTPS, the trustStore value

must not be empty. An exception is thrown if the trustStore

property is null.

trustPassword The password to access the keystore.

Restriction: If the protocol is HTTPS, then the trustPassword

value must not be empty. An exception is thrown if the

trustPassword property is null.

proxyHost The host name of the proxy server.

proxyPort The port number for the proxy server.

proxyUser If the proxy server requires HTTP basic authentication, this is

the user name for that login request.

proxyPassword The password for the user that is specified by the proxyUser

parameter.

3. Obtain a Searchable object.

After you obtain a SearchService object, you can use it to obtain one or more

Searchable objects. Each search and index API searchable object is associated

with one enterprise search collection. You can also use the SearchService object

to obtain a federator object. A federator object is a special kind of Searchable

object that enables you to submit a single query across multiple Searchable

objects (collections) at the same time.

When you request a Searchable object, you need to identify your application

by using an application ID. Contact your enterprise search administrator for the

appropriate application ID.

4. Issue queries.

8 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

The search application passes search queries to the search runtime on the

search server.

After the Searchable object is obtained, you issue a query to that Searchable

object. To issue a query to the Searchable object:

a. Create a Query object.

b. Customize the Query object.

c. Submit the Query object to the Searchable object.

d. Get the query results, which are specified in a ResultSet object.
5. Process query results.

Process queries with the ResultSet interface object and the Result interface

object. The search and index APIs have a variety of methods for interacting

with the ResultSet interface and individual Result interface objects.

The search and index APIs are a factory-based Java API. All of the objects that are

used in the search application are created by calling search and index API

object-factory methods or are returned by calling methods of factory-generated

objects. You can easily switch between search and index API implementations by

loading different factories.

The search and index API implementation in OmniFind Enterprise Edition is

provided by the com.ibm.es.api.search.RemoteSearchFactory class.

Use the following search and index API packages to create a search application:

com.ibm.siapi

Root package

com.ibm.siapi.browse

Contains taxonomy browsing interfaces

com.ibm.siapi.common

Common SIAPI interfaces

com.ibm.siapi.search

Interfaces for searching collections

Obtaining a SearchFactory object

To create a search and index API search application, obtain the implementation of

the SearchFactory object as in the following example:

SearchFactory factory =

SiapiSearchImpl.createSearchFactory

 ("com.ibm.es.api.search.RemoteSearchFactory");

Obtaining a SearchService object

Use the SearchFactory object to obtain a SearchService object. With the

SearchService object, you can access searchable collections.

Configure the SearchService object with the host name, port, and, if WebSphere

global security is enabled, a valid WebSphere user name and password for the

search server.

Application development 9

Configuration parameters are set in a java.util.Properties object. The parameters

are then passed to the getSearchService factory method that generates the

SearchService object. The following example shows how to obtain a SearchService

object:

Properties configuration = new Properties();

configuration.setProperty("hostname", "es.mycompany.com");

configuration.setProperty("port", "80");

config.setProperty("username", "websphereUser");

config.setProperty("password", "webspherePassword");

SearchService searchService =

 factory.getSearchService(config);

Obtaining a Searchable object

Use the SearchService object to obtain a Searchable object. A Searchable object is

associated with a searchable collection. With a Searchable object, you can issue

queries and get information about the associated collection. Each enterprise search

collection has an ID.

When you request a Searchable object, you need to identify your application by

using an application ID. Contact your enterprise search administrator for the

appropriate application ID.

The following example shows how to obtain a Searchable object:

ApplicationInfo appInfo = factory.createApplicationInfo

("my_application_id","my_password");

Searchable searchable =

 searchService.getSearchable(appInfo, "some_collection_id");

Call the getAvailableSearchables method to obtain all of the Searchable objects

that are available for your application.

Searchable[] searchables =

 searchService.getAvailableSearchables(appInfo);

Issuing queries

After the Searchable object is obtained, you issue a query to that Searchable

object. To issue a query to the Searchable object:

1. Create a Query object.

2. Customize the Query object.

3. Submit the Query object to the Searchable object.

4. Get the query results, which are specified in a ResultSet object.

The following example shows how to issue a query:

String queryString = "big apple";

Query query = factory.createQuery(queryString);

query.setRequestedResultRange(0, 10);

ResultSet resultSet = searchable.search(query);

Processing query results

With the ResultSet interface and Result interface, you can process query results,

as in the following example:

10 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

Result[] results = resultSet.getResults();

for (int i = 0 ; i < results.length ; i++) {

 System.out.println

("Result " + i + ": " + results[i].getDocumentID()

 + " - " + results[i].getTitle());

}

 Related concepts

 “Administration applications” on page 44

 “Javadoc documentation” on page 3

Controlling query behavior

With the methods and properties that belong to the Query interface, you can

control many aspects of query behavior, including how the query is processed,

how results are returned, and what metadata is returned with each result.

See the Javadoc documentation for more details about each method and property.

 Related concepts

 “Query syntax” on page 19
 Related reference

 “Query syntax structure” on page 31

 “Detailed Web service client application” on page 97

Creating secure searches with access control list constraints

You can set the access control list constraints for a query for secure searches by

using the setACLConstraints(java.lang.String aclConstraints) method.

The setACLConstraints(java.lang.String aclConstraints) method supports the

following XML query string:

@SecurityContext::’<XML query string>

Setting query properties

You can control query processing by using the setProperty method.

The setProperty method for query object has the following format:

query.setProperty("String name", "String value");

You can set the following query properties:

v HighlightingMode: Enables query terms to be highlighted in several areas of the

search result details. Values are:

– DefaultHighlighting: Highlights query terms in the summary only. This is the

default if your search application does not set the HighlightingMode property.

– ExtendedHighlighting: Extends the highlighting of query terms to other areas

of the search result, for example, title, URL, and other fields.
v FuzzyNGramSearch: Fuzzy search enables a non-strict search in n-gram

collections to be performed. This property is Boolean and its values are:

– false: A strict search will be performed. This is the default if your search

application does not set the FuzzyNGramSearch property.

– true: Fuzzy search will be performed.
v ProximityWindowSize: When two query terms fall in a window of this size, the

document score is boosted by a proximity boost. The value of this property is an

unsigned integer. The default value is 5.

Application development 11

v AllowStopwordRemoval: Determines whether stop words are removed during

query parsing. If this property is not set, the engine removes or does not remove

stop words according to the policy of the search engine. This property is Boolean

and its values are:

– false: Stop words are not removed during query parsing.

– true: Stop words are removed during query parsing.
v NearDuplicateDetection: Specifies whether documents that are nearly identical

are to be suppressed when search results are displayed. The default value is No.

– Yes: Enables documents with similar titles and summaries to be suppressed

when a user views search results. For nearly duplicate document analysis to

be performed, an enterprise search administrator must ensure that the

config.properties file for the search application specifies the property

preferences.nearDuplicateDetection=Yes.

– No: Search results are not filtered to suppress documents that have similar

titles and summaries to documents that are already displayed in the search

results.

Exposing ranking information

You can add the ExposeRankInfo property to the query object in the search

application.

When the search application associates with the Query object the Boolean property

ExposeRankInfo with a value of true, enterprise search returns ranking information

as properties that are associated with the ResultSet object.

The following properties are associated with the ResultSet object, and they are

accessible through the ResultSet.getProperty(property-name) object:

v TextScoreWeightInFinalScore property: This value, which is also known as a, is

the coefficient of the text score in the final document score. The final score of the

document is represented as a*(text score) + (1-a)*(static score).

v BoostsVector property: This value is a string of 16 decimal integers separated by

spaces. These are the boost values of the 16 boost classes to which fields and

token attributes of the document are associated by the search administrator. The

16 values match the boost classes in the following order: Content class A, ...,

Content class H, Metadata class A, ..., Metadata class H

v QueryWordBoosts property: This value is a string made of query words. Each

word is followed by its boost and the boost value is a decimal integer. The

words and the integers are separated by spaces. The boosts for the query words

are determined by dictionaries.

The following properties are associated with the Result object, and they are

accessible through the Result.getProperty(property-name) object:

v TermHitsPerBoostClass property: This property has 16 decimal integer values

that are separated by spaces. The i-th integer specifies the number of query

term occurrences in the document as tokens of the token attribute that is

associated to boost class i. The 16 values match the boost classes in the

following order: Content class A, ..., Content class H, Metadata class A, ...,

Metadata class H

v StaticScore property: This property, whose value is an integer, is a string that

represents the static score of the document.

v NormalizedStaticScore property: This property, whose value is a double

precision number (Double), represents the normalized static score (to a number

from 0 to 1) .

12 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

v TextScore property: This property, whose value is a double precision number

(Double), represents the text score of the document.

v KeywordCount property: This property, whose value is a decimal integer,

represents the number of words in the document.

v UniqueKeywordCount property: This property, whose value is a decimal integer,

represents the number of unique (distinct) words in the document.

Enabling fuzzy searches

A fuzzy search query searches for character sequences that are not only the same

but similar to the query term. All possible n-grams are treated as search terms, and

the query returns documents including specified n-grams. However, it does not

always mean that the documents have character sequences that are similar to the

query term.

In this example, the capital letters ABC and the at sign (@) refer to n-gram

characters. For example, if the query term is ABCDE, a typical n-gram fuzzy search

returns a document that includes character sequence such as

@@AB@@@BC@@@@@@CD@@@@@DE because this document has all the n-grams

that are generated from the specified query. However, for some languages, this

query result is not preferable because it often means completely different meanings

if those n-grams are far apart.

To improve fuzzy search results, you can control the level of ambiguity in the

query by specifying the FuzzyNGramAmbiguity property and optionally the

FuzzyNGramAmbiguityCondition property.

The FuzzyNGramAmbiguity property returns documents with the most (not

necessarily all) n-grams that are more closely related such as @@ABC@DE@@@ by

using an ambiguity calculation that is based on each query term.

FuzzyNGramSearch property

Fuzzy search performs a non-strict search in n-gram collections. This property is

Boolean:

v false: A strict search is performed. This is the default if your search application

does not set the FuzzyNGramSearch property.

v true: Fuzzy search is performed.

FuzzyNGramAmbiguity property

This property is activated only if the FuzzyNgramSearch property is set to true.

These properties are configured by the Query.setProperty method.

The ambiguity must be greater than 0.0 and less than or equal to 1.0. If the

ambiguity is set to 1.0, it is equivalent to an exact match. The lower the number

that the ambiguity is set to, the more it allows ambiguity determines whether each

document has similar character sequences to the search term. Thus, the search

query retrieves more documents.

Ambiguity is similar to the ratio of characters appearing in the same position and

the same order to the search query.

v Format: ambiguity

v Ambiguity: float value, 0.0< ambiguity <= 1.0, to specify ambiguity

Application development 13

This property is used to set the ambiguity that is applied to all search terms of the

query except for the terms that are specified by the FuzzyNGramAmbiguityCondition

property. The higher the ambiguity is, the more similar the returned document will

be. In other words, the document includes character sequences closer to the

original search term if the higher ambiguity is specified.

FuzzyNGramAmbiguityCondition property

Optional: Activated only if the FuzzyNgramSearch property is set to true. These

properties are configured by the Query.setProperty method.

v Format: term1=ambiguity1[,term2=ambiguity2]...[,termn=ambiguityn]

v Term: character string, to specify the term which overrides the ambiguity. (Note

that Term does not include operands such as +, -, ~, but it does include field

names such as tablename)

v Ambiguity: float value, 0.0< ambiguity <= 1.0, to specify ambiguity of the Term

This property is an optional property to specify ambiguity to each term. When a

term includes a comma (,), it must be two commas (,,) to escape the delimiter. This

rule does not apply to the equal sign (=) because the last equal sign before each

comma is treated as the term end.

In the following example, enterprise search searches for all terms except for

tablename: DATA_TBL with ambiguity 0.8, and search for tablename: DATA_TBL

with ambiguity 1.0 (exact):

q.setProperty(“FuzzyNGramAmbiguity”, “0.8”);

q.setProperty(“FuzzyNGramAmbiguityCondition”,

 ”tablename:DATA_TBL=1.0”);

Specifying query languages

You can use the setQueryLanguage(java.lang.String lang) method to specify a

language other than the collection default language on the search server.

Use Unicode identifiers for languages to set a specific language. For example, for

English, the query language parameter is en. For Chinese, use zh-CN for simplified

Chinese and zh-TW for traditional Chinese.

Setting linguistic modes

Use the setLinguisticMode(int mode) method to specify how you want the search

engine to match query terms.

The setLinguisticMode(int mode) method sets the linguistic mode for a query. You

can set one of the following modes:

v LINGUISTIC_MODE_ENGINE_DEFINED: Unmodified terms are matched

according to the engine’s best-effort policy. This is the default mode.

v LINGUISTIC_MODE_EXACT_MATCH: Unmodified terms are matched as

entered without undergoing linguistic processing.

v LINGUISTIC_MODE_BASEFORM_MATCH: Unmodified terms are matched by

their base form after undergoing linguistic processing. For example, the query

term jumping matches documents that contain jump, jumped, jumps, and so on.

v LINGUISTIC_MODE_EXACT_AND_BASEFORM: Unmodified terms are

matched by their base form and their exact form after undergoing linguistic

processing. For example, the query term jumping matches documents that

contain jump, jumped, jumps, and so on. The difference from the

LINGUISTIC_MODE_BASEFORM_MATCH mode is that although linguistic

base form matching relies on the query language that matches the identified

14 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

languages of the result documents, the

LINGUISTIC_MODE_EXACT_AND_BASEFORM mode assures that documents

that contain the exact form jumping are returned regardless of their identified

language.

Returning metadata fields

You can use the setReturnedFields(String[] fieldNames) method to control

which metadata fields are returned in the Result object.

By default, enterprise search does not return any metadata fields, so you must use

this method to return metadata fields.

Returning ranking information in queries

When the search application associates with the Query object the Boolean property

ExposeRankInfo with a value of true, enterprise search returns ranking information

as properties that are associated with the ResultSet object. You can add the

ExposeRankInfo property to the query object in the search application.

The following three properties are associated with the ResultSet object, and they

are accessible through the ResultSet.getProperty(property-name) object:

v TextScoreWeightInFinalScore property: This value, which is also known as a, is

the coefficient of the text score in the final document score. The final score of the

document is represented as a*(text score) + (1-a)*(static score).

v BoostsVector property: This value is a string of 16 decimal integers separated by

spaces. These are the boost values of the 16 boost classes to which fields and

token attributes of the document are associated by the search administrator. The

16 values match the boost classes in the following order: Content class A, ...,

Content class H, Metadata class A, ..., Metadata class H

v QueryWordBoosts property: This value is a string made of query words. Each

word is followed by its boost and the boost value is a decimal integer. The

words and the integers are separated by spaces. The boosts for the query words

are determined by dictionaries.

The following properties are associated with the Result object, and they are

accessible through the Result.getProperty(property-name) object:

v TermHitsPerBoostClass property: This property has 16 decimal integer values

that are separated by spaces. The i-th integer specifies the number of query

terms occurrences in the document as tokens of the token attribute that is

associated to boost class i. The 16 values match the boost classes in the

following order: Content class A, ..., Content class H, Metadata class A, ...,

Metadata class H

v StaticScore property: This property, whose value is an integer, is a string that

represents the static score of the document.

v NormalizedStaticScore property: This property, whose value is a double

precision number (Double), represents the normalized static score (to a number

from 0 to 1) .

v TextScore property: This property, whose value is a double precision number

(Double), represents the text score of the document.

v KeywordCount property: This property, whose value is a decimal integer,

represents the number of words in the document.

v UniqueKeywordCount property: This property, whose value is a decimal integer,

represents the number of unique (distinct) words in the document.

Application development 15

Enabling predefined result attribute values

You can use the setReturnedAttribute(int attributeType, boolean isReturned)

method to enable or disable any of the predefined result attribute values that are

returned with each Result object.

By default, enterprise search returns all the predefined result attribute values

except for the metadata fields attribute RETURN_RESULT_FIELDS.

The following values are valid for the attributeType object:

v RETURN_RESULT_TITLE: The Result.getTitle object returns null if the

isReturned object is set to false.

v RETURN_RESULT_DESCRIPTION: The Result.getDescription object returns

null if the isReturned object is set to false.

v RETURN_RESULT_FIELDS: The Result.getFields object and the

Result.getFields(String) object return null if the isReturned object is set to

false.

v RETURN_RESULT_CATEGORIES: The Result.getCategories object returns null

if the isReturned object is set to false.

v RETURN_RESULT_TYPE: The Result.getDocumentType object returns null if the

isReturned object is set to false.

v RETURN_RESULT_SOURCE: The Result.getDocumentSource object returns null

if the isReturned object is set to false.

v RETURN_RESULT_LANGUAGE: The Result.getLanguage object returns null if

the isReturned object is set to false.

v RETURN_RESULT_DATE: The Result.getDate object returns null if the

isReturned object is set to false.

v RETURN_RESULT_SCORE: The Result.getScore object returns 0.0 if the

isReturned object is set to false.

v RETURN_RESULT_URI: The Result.getDocumentURI object returns null if the

isReturned object is set to false.

Specifying the range of results

You can use the setRequestedResultRange(int fromResult, int numberOfResult)

method to specify the range of returned results.

The fromResult value controls which ranked document your result set starts from.

For example, a value of 0 means that you are requesting the first document in the

query results.

The numberOfResults value controls how many results to return in the current

page of results. The maximum is 500.

Setting category details

You can specify the required category detail level for query results by using the

setResultCategoriesDetailLevel(int detailLevel) method.

The setResultCategoriesDetailLevel(int detailLevel) method is used if the

categories attribute RETURN_RESULT_CATEGORIES is enabled. The default value is

RESULT_CATEGORIES_ALL.

v RESULT_CATEGORIES_ALL: Each result category is returned with its complete path

(starting at the root path) information.

v RESULT_CATEGORIES_NO_PATH_TO_ROOT: Each result category is returned without

the full path information; that is, ResultCategory.getPathFromRoot() will return

16 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

null. Use the setReturnedAttribute(RETURN_RESULT_CATEGORIES, false) attribute

to stop the retrieval of result categories completely.

Enabling site collapse

You can use the setSiteCollapsingEnabled(boolean value) method to specify

whether the top results contain more than two results from the same Web site or

data source.

For example, if a particular query returned 100 results from http://www.ibm.com

and site collapsing was enabled, the ResultSet object contains only two of those

results in the top results. The other results from that site appear only after results

from other sites are listed.

To retrieve more results from that same site, use the samegroupas:result URL query

syntax or re-issue the same query with the site http://www.ibm.com added to the

query string. See “Query syntax” on page 19 for more information.

Sorting by relevance, date, numeric fields, or text fields

You can use the setSortKey method to specify a sort key to help you sort results.

Any field that is defined for the collection and declared as ″sortable″ (for text

fields) or ″parametric″ (for numeric fields) can be named in the call to the

setSortKey method. Textual keys are sorted lexicographically and numeric keys are

sorted arithmetically.

The collating sequence (the order of characters in the alphabet for the purpose of

sorting) is by default the one that is used by the search server. You can specify a

different sequence by providing a locale name as a second argument to the

setSortKey method. For example, the method setSortKey("title", "de_AT") sorts

results by the value of their title field by using the alphabetic order that is common

in German as used in Austria. Use the standard five character locale format xx_XX.

For example, the locale for American English is en_US. The locale for Japanese is

ja_JP.

Sorting order (ascending or descending) is specified by a call to the method

setSortOrder. Two constants, SORT_ORDER_DESCENDING and

SORT_ORDER_ASCENDING are defined in com.ibm.siapi.search.BaseQuery and

can be used as arguments to the method. For example, the following method

causes sorting to be done in ascending order.

setSortOrder(com.ibm.siapi.search.BaseQuery.SORT_ORDER_ASCENDING)

The default sort order is descending: The first results to be output are those at the

top of the order. For example, the most relevant results appear at the top if they

are sorted by relevance, the most recent results appear at the top if they are sorted

by date, and so on.

Results whose sort key value is missing, undefined, or unavailable are sorted to

the end of the results list regardless of their sort order.

Several reserved field names can be used as an argument to the setSortKey

method to indicate sort by relevance, date, or no sort. These predefined values are

defined in com.ibm.siapi.search.BaseQuery:

SORT_KEY_NONE

Specifies that results are not to be sorted.

Application development 17

SORT_KEY_DATE

Sorts results by date.

SORT_KEY_RELEVANCE

Sorts results by relevance. This is the default value.

Typically, when the collection is scanned for results, only a pool of the most

relevant results is retained. If sorting is indicated, it applies only to the results in

the pool, that is, the most relevant to the query. The maximum and default pool

size is 500. It can be set to any smaller value by calling the setSortPoolSize

method and specifying pool size. If the pool size is larger than 500, you receive an

exception.

However, the search administrator can set up the system with a larger maximum

or default pool.

If you want to sort all possible results (not only the most relevant), call the

setSortPoolSize method with the value SORT_ALL_RESULTS, which is defined in

com.ibm.siapi.search.BaseQuery. After calling this method, the system retains a

pool of results that supersede all others in the collection when they are sorted by

the values of the indicated field. Pool size is ignored if no sort or sort by date is

requested.

The following restrictions apply to sorting:

v In sortable fields (text fields that can be used as sort keys) only the first 256

characters of the field are typically used when comparing two results for sorting.

Documents whose sort key values identical up to the 256th position cannot be

distinguished when they are sorted, and they might appear in the result stream

in any order. The search administrator can change this value up to a maximum

of 2000 characters.

v Unlike other text, sortable fields are used as is with no tokenization,

normalization, or stop word removal.

v Sorting is incompatible with streaming: when the engine is used in streaming

mode, results are output in the order in which they are encountered in the

collection without any sorting.

v In a collection, if you define a field as numeric for some documents and textual

for other documents, specifying that field as a sort key uses only the numeric

values for sorting. Documents with a textual value in the field appear at the end

of the result list with documents that do not define the field.

To indicate the results from a query should be sorted by a field, use the following

methods:

BaseQuery.setSortKey(<field_name>) or BaseQuery.setSortKey

(<field_name><locale>)

BaseQuery.setSortOrder({SORT_ORDER_ASCENDING | SORT_ORDER_DESCENDING})

BaseQuery.setSortPoolSize({<int> | SORT_ALL_RESULTS})

Setting the sort order for results

You can use the setSortOrder(int sortOrder) method to specify a sort order.

Specify the sort order as SORT_ORDER_ASCENDING or

SORT_ORDER_DESCENDING.

The sort order is ignored if the sort key is SORT_KEY_RELEVANCE or

SORT_KEY_NONE.

18 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

Specifying the number of relevant results

You can control how many of the top relevant results will be sorted and returned

in the result set by using the setSortPoolSize(int sortPoolSize) method.

Values for the number or returned results range from 1 to 500. The default sort

pool size is 500. Any other values cause the search server to throw a

SiapiException object.

The sort pool size is ignored if the sortKey is SORT_KEY_RELEVANCE or

SORT_KEY_NONE.

To sort all possible results (not only the most relevant), call the setSortPoolSize

method with the value SORT_ALL_RESULTS, which is defined in

com.ibm.siapi.search.BaseQuery. After such a call, the system retains a pool of

results that supersede all others in the collection when they are sorted by the

values of the indicated field. The pool size is ignored if no sort or sort by date is

requested.

Enabling spelling correction

You can specify whether suggested spelling corrections are to be provided with the

search results,

Use setSpellCorrectionEnabled(boolean enable) method to specify that spelling

corrections for terms in the query are to be included in the search results. Spelling

correction is disabled by default.

Setting query expansion

You can set the synonym expansion mode for a query by using the

setSynonymExpansionMode (int mode) method.

You can use one of the following modes:

v SYNONYM_EXPANSION_OFF: Pass this constant to the

setSynonymExpansionMode method to prevent synonyms from being expanded

even if the query contains the synonym operator.

v SYNONYM_EXPANSION_MANUAL: Pass this constant to the

setSynonymExpansionMode method to expand synonyms only for the query

terms that are affected by the synonym operator.

v SYNONYM_EXPANSION_AUTOMATIC: Pass this constant to the

setSynonymExpansionMode method to do a best effort to expand all applicable

query terms.

Determining query evaluation times and query timeouts

You can use ResultSet methods to see how much time it takes to evaluate queries

and whether a query timeout occurred.

The ResultSet.getQueryEvaluationTime method returns the amount of time, in

milliseconds, that it takes to evaluate queries.

The ResultSet.isEvaluationTruncated method can show whether a query timed

out before it was completely processed.

Query syntax

You can refine search results by using specific characters in a query.

Application development 19

Simple query syntax characters

The following list describes the characters that you can use in search applications

to refine query results.

Free style query syntax

Free style query syntax is used to describe queries that do not have an

explicit interpretation and for which there is no default behavior defined.

Beginning with OmniFind Enterprise Edition, Version 8.4, the default

implementation for this type of query is to return documents only if they

match all terms in the free style query.

 Query: computer software

Result: This query returns documents that include the term computer and

the term software, or something else depending on the semantics of the

implementation.

~ (Prefix)

Precede a term with a tilde sign (~) to indicate that a match occurs

anytime a document contains the word or one of its synonyms.

 Query: ~fort

Result: This query finds documents that include the term fort or one of its

synonyms (such as garrison and stronghold).

~ (Postfix)

Follow a term with a tilde sign (~) to indicate that a match occurs anytime

a document contains a term that has the same linguistic base form as the

query term (also known as a lemma or stem).

 Query: apples~

Result: This query finds documents that include the term apples or apple

because apple is the base form of apples.

+ Precede a term with a plus sign (+) to indicate that a document must

contain the term for a match to occur.

 Query: +computer +software

Result: This query returns documents that include the term computer and

the term software.

Beginning with OmniFind Enterprise Edition, Version 8.4, the plus sign is

not needed because documents are included in the search results only if

they match all terms in a free style query.

− Precede a term with a minus sign (-) to indicate that the term must be

absent from a document for a match to occur.

 Query: computer -hardware

Result: This query returns documents that include the term computer and

not the term hardware.

= Precede a term with the equal sign (=) to indicate that the document must

contain an exact match of the term for a match to occur. (Lemmatization is

disabled.)

 Query: =apples

Result: This query returns documents if and only if they include the plural

term apples.

20 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

^ In versions of OmniFind Enterprise Edition that precede Version 8.4, you

can use the circumflex sign (^) to indicate that a document must contain

the term and at least one more term that is not preceded by a circumflex.

Beginning with OmniFind Enterprise Edition, Version 8.4, the circumflex

sign is not needed because documents are included in the search results

only if they match all terms in a free style query.

 Query: cats dogs ^$language::en ^$doctype::html

Result: This query returns HTML documents in English that contain the

terms cats and dogs.

*

 Place a wildcard character (*) anywhere in, before, or after a term or a field

to indicate that the document can contain any word that matches any of

the possible combinations. A term with a wildcard character is interpreted

as equivalent to an OR of all its applicable expansions. Wildcard support

applies the following rules:

v The set of expansions contain the maximal configured number of

expansions. If there are more expansions in the index than the maximal

number, those expansions are ignored. If some expansions of the

wildcard term were ignored, the query result will indicate that.

v The set of expansions contains all terms in the index that can be

obtained by replacing the wildcard characters with arbitrary sequences

of characters.

v If wildcard character support is restricted to a set of fields, the set will

contain only terms that appear in one of those fields. A term needs to

appear in only one of the fields in at least one document in the index.

v If the term is a fielded term, wildcard character can appear only after

the field specifier. If wildcard support is restricted to a set of fields, the

field name of the wildcard term must be one of these fields. Otherwise,

the term will have no expansions.

v If the wildcard term is not supported by the wildcard option that the

collection is configured to use, the set of expansions is empty. However,

the search runtime makes a best effort to return results for the query:

– If wildcard characters are not supported by the collection, a wildcard

term is interpreted as the same term without a wildcard character. For

example, the query to*y returns all results for toy, but not for tony.

– If only trailing wildcard characters are supported but the wildcard

term contains a wildcard character in the middle, it is interpreted as

the same term without the characters after the first wildcard character.

For example, the query to*y returns all results that are returned by

the query to*.
v Wildcard characters are supported only for plain text terms. Wildcard

characters are not supported for XML element names, attribute names,

or attribute values.

v A term that consists solely of a wildcard is not supported.

v Wildcard characters are supported within phrases.

v If the number of expansions for a wildcard term exceed the configured

maximum number of expansions, the expansions that exceed that

maximum are ignored by the query evaluation. In that case, the

ResultSet object indicates that as follows:

Application development 21

– The ResultSet object’s method isEvaluationTruncated() returns true.

This does not uniquely identify the situation, because it will also

return true if the evaluation was terminated early due to a timeout.

– A special property to the ResultSet object is set to true and is

extractable by the ResultSet.getProperty(″WildCardTruncation″)

object, which returns true. In case of truncation due to a timeout, the

isEvaluationTruncated() object returns true, and the

ResultSet.getProperty(″TimeOutTruncation″) object returns true.

Query: app*

Result: This query finds documents that include the terms apple, apples,

application, and so on because these words begin with app.

Query: DB2 info*

Result: This query finds all documents that contain DB2 followed by a

word that begins with info.

Query: title:tech*

Result: This query finds the term technology if it appears in the field title.

Remember: To specify queries with wildcard characters, you must enable

wildcard support when you configure search options for the collection in

the enterprise search administration console.

″ ″

 Use double quotation marks (″) to indicate that a document must contain

the exact phrase within the double quotation marks for a match to occur.

Words inside phrases are never lemmatized.

You can also add wildcard characters (*) within phrases. The wildcard

character (*) must be next to a letter or word. Standalone wildcard

characters are not supported. Wildcard character support must be enabled

in the enterprise search administration console.

Query: "computer software programming"

Result: This query finds documents that include the exact phrase computer

software programming.

Phrases are designated as required by default. Hence the two queries

building "new york" and building +"new york" are equivalent. Phrases

can also be forbidden (-) and required but insufficient (^).

Query: "app* pea*"

Result: This query finds documents that include the terms apples pears,

appears peaceful, appreciate peas, and so on because these words begin with

app and pea. This query does not find documents with apples and pears or

other such combinations. A standalone wildcard character (*) within a

phrase is ignored, and the query "apples * pears" yields the same results

as apples pears.

A query such as "apples * pears" does not match apples and pears or apples

or pears, but it does match apples pears.

Restriction: Using double quotation marks for URL or e-mail address

strings does not return appropriate results. To search for URL or e-mail

strings such as www.ibm.com or somebody@mycompany.com, do not enclose the

string in double quotation marks.

22 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

() Use parentheses () to indicate that a document must contain one or more

of the terms within the parentheses for a match to occur.

 Do not use plus signs (+), minus signs (-), or circumflex (^) within the

parentheses.

Use OR or a vertical bar (|) to separate the terms in parentheses.

Query: +computer (hardware OR software)

Query: +computer (hardware | software)

Result: Both of these queries find documents that include the term

computer and at least one of the terms hardware or software.

An OR of terms can be either required (+), or required but insufficient (^),

but not forbidden (-). This does not restrict the power of the query

language: -(dogs OR cats) can be expressed by -dogs -cats.

An OR of terms is designated as required (+) by default. Therefore, the

previous queries are equivalent to +computer +(hardware | software).

Nested OR statements are not supported.

site:text

If you search a collection that contains Web content, use the site keyword

to search a specific domain. For example, you can return all pages from a

particular Web site.

 Do not include the prefix http:// in a site query.

Query: +laptop site:www.ibm.com

Result: This query finds all documents on the www.ibm.com domain that

contain the word laptop.

url:text

If you search a collection that contains Web content, use the url keyword

to find documents that contain specific words anywhere in the URL.

 Query: url:support

Result: This query finds documents that have a URL that contains the

value support, such as http://www.ibm.com/support/fr/.

link:text

If you search a collection that contains Web content, use the link keyword

to find documents that contain at least one hypertext link to a specific Web

page.

 Query: link:http://www.ibm.com/us

Result: This query finds all documents that include one or more links to

the page http://www.ibm.com/us .

field:text

If the documents in a collection include fields (or columns), and the

collection administrator made those fields searchable by field name, you

can query specific fields in the collection.

 Query: lastname:smith div:software

Result: This query returns all documents about employees with the last

name Smith (lastname:smith) who work for the Software division

(div:software).

Application development 23

docid:documentid

Use the docid keyword to find documents that have a specific URI (or

document ID). Typically, there is at most one document in a collection that

matches a specific URI.

 Query: (docid:http://www.ibm.com/solutions/us/ OR

docid:http://www.ibm.com/products/us/)

Result: This query finds all documents with the URI http://www.ibm.com/
solutions/us/ or the URI http://www.ibm.com/products/us/.

samegroupas:URI

 By default, enterprise search treats the URLs with the same host name as if

they belong to the same group, and treats the news articles from the same

thread as if they belong to the same group. For URIs from all other data

sources, each URI forms its own group. However, with enterprise search,

you can organize URIs that match specific prefixes into groups. For

example, you can configure the following group definition:

http://mycompany.server1.com/hr/ hr

http://mycompany.server2.com/hr/ hr

http://mycompany.server3.com/hr/ hr

http://mycompany.server1.com/finance/ finance

file:///myfileserver1.com/db2/sales/ sale

file:///myfileserver1.com/websphere/sales/ sale

file:///myfileserver2.com/db2/sales/ sale

file:///myfileserver2.com/websphere/sales/ sale

In this example, all the URIs with the prefix http://
mycompany.server1.com/hr/ or http://mycompany.server2.com/hr/ or

http://mycompany.server3.com/hr/ belong to one group: hr. All URIs

with the prefix http://mycompany.server1.com/finance/ belong to another

group: finance. And all the URIs with prefix file:///myfileserver1.com/
db2/sales/ or file:///myfileserver1.com/websphere/sales/ or

file:///myfileserver2.com/db2/sales/ or file:///myfileserver2.com/
websphere/sales/ belong to yet another group: sale. If

file:///myfileserver2.com/websphere/sales/mypath/mydoc.txt is a URI in

the collection, a query with the following search term will restrict the

search to the URIs in the sale group:

samegroupas:file:///myfileserver2.com/websphere/sales/mypath/mydoc.txt

All results for this query will have one of the following prefixes:

file:///myfileserver1.com/db2/sales/

file:///myfileserver1.com/websphere/sales/

file:///myfileserver2.com/db2/sales/

file:///myfileserver2.com/websphere/sales/

Query: samegroupas:http://www.ibm.com/solutions/us/

Result: This query finds all documents with URIs, in this case URLs, that

belong to the same group as http://www.ibm.com/solutions/us/.

taxonomy_ID::category_ID

If you search a collection that contains categories that are created for

enterprise search, you can search for documents that belong to a specific

category in a specific taxonomy.

 To find the category ID, go to the following directory:

ES_NODE_ROOT/col_xyz.parserdriver/CategoryTree.xml. The file

CategoryTree.xml contains the category IDs.

24 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

Taxonomy IDs

rulebased

Use this taxonomy ID to search for documents that belong to a

category that uses document content rules or document URI rules

to categorize documents. For information about configuring

rule-based categories, see the administration information for

enterprise search.

 Query: rulebased::c1

Result: This query returns documents that belong to a rule-based

category ID named c1.

A taxonomy_ID::category_ID query term matches any documents that

belong to the specified category_ID or any of its subcategories. This can be

explicitly stated by preceding the taxonomy_ID with a tilda sign (~).

If you want the query to return documents that belong to the specified

category but not return documents that belong to its subcategories, precede

the taxonomy_ID::category_ID term with an equal sign (=), for example:

=rulebased::c1.

scopes::scope_name

 Use the scope name to search for documents that belong to a

scope, which is a range of URIs in the index. For information about

configuring scopes, see the administration information for

enterprise search.

Query: scopes::research ″computer science″

Result: This query returns documents that belong to a scope

named research that contain the phrase computer science.

$source::source_type

Use the $source keyword to find documents that come from a specific data

source type. Source queries are useful in collections that contain documents

from multiple sources.

 To obtain a list of the available source types for a collection, call the

getAvailableAttributeValues(Searchable ATTRIBUTE_SOURCE) method of

that collection’s Searchable object.

Query: $source::DB2 "computer science"

Result: This query finds documents that were added to a collection by the

DB2 crawler that contain the phrase computer science.

$language::language_id

Use the $language keyword to find documents that were written in a

specific language.

 To obtain a list of the available language IDs for a collection, call the

getAvailableAttributeValues(Searchable.ATTRIBUTE_LANGUAGE) method

of that collection’s Searchable object.

Query: $language::en "computer science"

Result: This query finds documents in English that contain the phrase

computer science.

$doctype::document_type

Use the $doctype keyword to find documents that have a specific

document format or MIME type.

Application development 25

To obtain a list of the available document types for a collection, call the

getAvailableAttributeValues(Searchable.ATTRIBUTE_DOCTYPE) method of

that collection’s Searchable object.

Query: $doctype::application/pdf "computer science"

Result: This query finds Portable Document Format (PDF) documents that

contain the phrase computer science.

#field::=value

Use parametric constraint syntax to find documents that have a numeric

field with a value equal to the specified number.

 Query: #price::=1700 laptop

Result: This query finds documents that contain the term laptop and a

price field with a value equal to 1700.

#field::>value

Use parametric constraint syntax to find documents that have a numeric

field with a value greater than the specified number.

 Query: #price::>1700 laptop

Result: This query finds documents that contain the term laptop and a

price field with a value greater than 1700.

#field::<value

Use parametric constraint syntax to find documents that have a numeric

field with a value less than the specified number.

 Query: #price::<1700 laptop

Result: This query finds documents that contain the term laptop and a

price field with a value less than 1700.

#field::>=value

Use parametric constraint syntax to find documents that have a numeric

field with a value greater than or equal to the specified number.

 Query: #price::>=1700 laptop

Result: This query finds documents that contain the term laptop and a

price field with a value greater than or equal to 1700.

#field::<=value

Use parametric constraint syntax to find documents that have a numeric

field with a value less than or equal to the specified number.

 Query: #price::<=1700 laptop

Result: This query finds documents that contain the term laptop and a

price field with a value less than or equal to 1700.

#field::>value1<value2

Use parametric constraint syntax to find documents that have a numeric

field with a value that falls between a range of specified numbers.

 Query: #price::>1700<3900 laptop

Result: This query finds documents that contain the term laptop and a

price field with a value greater than 1700 and less than 3900.

26 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

#field::>=value1<=value2

Use parametric constraint syntax to find documents that have a numeric

field with a value that matches or falls between a range of specified

numbers.

 Query: #price::>=1700<=3900 laptop

Result: This query finds documents that contain the term laptop and a

price field with a value greater than or equal to 1700 and less than or

equal to 3900.

#field::>value1<=value2

Use parametric constraint syntax to find documents that have a numeric

field with a value that matches the criteria in the specified range of

numbers.

 Query: #price::>1700<=3900 laptop

Result: This query finds documents that contain the term laptop and a

price field with a value greater than 1700 and less than or equal to 3900.

#field::>=value1<value2

Use parametric constraint syntax to find documents that have a numeric

field with a value that matches the criteria in the specified range of

numbers.

 Query: #price::>=1700<3900 laptop

Result: This query finds documents that contain the term laptop and a

price field with a value greater than or equal to 1700 and less than 3900.

field_name:=my_content
field_name:=“multiple words”

A complete match query for a field returns documents that exactly match

only the words after the equal sign. These queries do not return documents

unless my_content or ″multiple words″ is the only content for the field. The

content that is specified in the query can be a single word or a phrase.

 With complete match support enabled, you can query the entire content of

a field, receive only documents that contain the exact and complete content

of that field and avoid receiving documents that have extraneous content.

You can enforce lemmatization or synonyms by using the ~ (tilde) sign

before or after a word. You can also use a wildcard character in a complete

match query.

For each field in the collection, the search administrator must enable

support for complete match.

Query: author:=Luther

Result: This query returns documents with an author field with the exact

content Luther. A document with an author field with the value such as

Martin Luther King or any other word or phrase is not returned.

Query: author:="Martin Luther"

Result: This query returns documents with an author field with the exact

content Martin Luther. A document with an author field with the value

Martin Luther King is not returned.

Query: author:="Mar* Luther"

Application development 27

Result: This query with the wildcard character returns documents with the

author field such as Mark Luther, Martin Luther, Marvolo Luther, and so

on.

ACL constraints: (security_tokens)

For security, you cannot specify access control constraints in the query

string. Use the setACLConstraints(String aclConstraints) method of the

Query interface to specify access control constraints for the query. You can

specify parentheses, plus signs (+), minus signs (-),circumflexes (^), and an

XML security context string in the ACL constraints string

(@SecurityContext::’securityContext’). For information about the

securityContext string syntax, see the Javadoc documentation that

describes the setACLContstraints method. The symbols have the same

meaning as described in the previous syntax descriptions.

 ACL constraints string in setACLConstraints method: (michelle_c |

dev_group)

ACL constraints string in setACLConstraints method: michelle_c

@SecurityContext::’securityContext’

Query: thinkpad

Result: This query finds documents that include the term thinkpad and the

security tokens michelle_c or dev_group in the first case, and michelle_c

and the specified security context constraints in the second case.

Query syntax characters for opaque terms

With enterprise search, you can also create query syntax for two types of opaque

terms. With opaque terms, you can allow parts of the query to be expressed in

other languages, such as XML Fragment and XPath. XML Fragment and XPath are

two types of XML query languages. XML Fragment can also be used to query

UIMA structures. The sign for an opaque term is expressed with @xmlf2:: (XML

fragment) or @xmlxp:: (XPath query). The XML fragment or the XPath query is

enclosed in single quotation marks (’ ’).

The expression xmlf2 is used for XML fragments, and xmlxp is used for XPath

terms. An opaque term has the following syntax: @syntax_name::’value’. The

expression starts with the @ sign, followed by the syntax name (xmlf2 or xmlxp),

two colons (::), and a value that is enclosed in single quotation marks (’ ’). The

value parameter is sometimes preceded by -, +, or ^. If you need to use a single

quotation mark in the value section of the expression, escape the single quotation

by using a backslash (\), for example, \’.

For negative terms, use a minus sign (−) before the @ symbol, for example,

-@xmlf2::’<person>michelle</person>’. However, enterprise search does not

accept negative unique query terms. The query -@xmlf2::’<person>michelle</
person>’ does not return results. To get results, use one positive term in the query,

for example, documentation -@xmlf2::’<person>michelle</person>’.

@xmlf2::’<tag1> text1 </tag1>’

Use the @xmlf2:: prefix and enclose the query in single quotation marks to

indicate a fragment query as a new search and index API opaque term.

 Query: @xmlf2::’<title>"Data Structures"</title>’

Result: This query finds documents that contain the phrase Data Structures

within the span of an indexed annotation called title.

28 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

@xmlf2::<tag1><.depth value=″$number″><tag2> ... </tag2></.depth></tag1>
@xmlf2::<tag1><.depth value=’$number’><tag2> ... </tag2></.depth></tag1>

 The first query uses double quotation marks. The second query uses single

quotation marks. However, each query returns the same results. This query

syntax looks for occurrences of tag2 exactly $number levels under tag1.

$number is a positive integer. You can use single quotation marks (’ ’) or

double quotation marks (″ ″) around the numerical value. This query

syntax is not applicable to Unstructured Information Management

Architecture (UIMA).

Query: (This query should appear on one line.)

@xmlf2::’<author>Albert Camus<.depth value=’1’>

<publisher>Carey Press</publisher></.depth></author>’

Result: This query finds documents of the publisher one level under the

author. A document with the following XML elements

<author>Albert Camus

 <ISBN>002-12345</ISBN>

 <country>USA

 <publisher>Carey Press</publisher>

 </country>

</author>

will not be returned with the example query because the publisher

(<publisher>) element occurs two levels under the author (<author>)

element.

@xmlf2::’<tag1><@tag1> ... </@tag1></tag1>’

You can distinguish between elements and attributes. Attributes are written

either explicitly within the element or as subelements with a leading @

sign. The @ sign enables you to distinguish between elements and

attributes that might have the same name.

 You can define words and phrases within attributes, which is the same as

the normal terms of the query. However, you can write expressions only of

words and phrases, not of tags. These words or phrases support the same

features as the normal terms of the query.

Query: @xmlf2::’<author country="USA"></author>’

Query: @xmlf2::’<author><@country>USA</@country></author>’

Result: This query finds documents where the author originates from the

USA.

Query:

@xmlf2::’<author><@country>USA</@country>

<firstName>Michelle</firstName>

<lastName>Ropelatto</lastName></author>’

Result: This query finds documents where the author name is Michelle

Ropelatto and is from the USA.

@xmlf2::’+text1 ... +text2 -text3 ... -text4 text5’

Use a plus sign (+) or a minus sign (-) as prefixes to words or phrases

(always between quotation marks (″ ″)). At each query level, whether for

the text or the tag name, ″+″ means that the terms must appear; ″-″ means

that the terms should not appear and others are optional and contribute

only to ranking. If no ″+″ terms exist, then at least one of the optional

terms must appear. The data under elements creates a new nested query

level.

Application development 29

Query: @xmlf2::’+"Graph Theory" -network’

Result: This query finds documents that contain the phrase Graph Theory,

and do not contain the term network.

Query:

@xmlf2::’<book><author>hemingway</author> -<title>old man</title></book>

Result: This query finds documents that contain a book by Hemingway

but not the book The Old Man and the Sea.

@xmlf2::’<tag1> <.or> ... </.or> <.and> ... </.and> </tag1>’

Use Boolean syntax for AND (<.and>) and OR (<.or>) expressions in a

query.

 Query: @xmlf2::’<book><.or><author>Sylvia Plath</author><title>XML

-Microsoft</title></.or></book>’

Result: This query finds documents that specify a book whose author is

Sylvia Plath or where the title of the book includes the word XML but not

Microsoft®.

@xmlf2::’<annotation1+annotation2> ... </annotation1+annotation2>’

You can express the concatenation of consecutive annotations in a fragment

query by using the plus sign (+) between the start and end tags of the

element. The consecutive annotations must overlap by at least one word

(they must intersect). The concatenation of two or more overlapping

annotations is a new virtual annotation that spans the sum of the text

spanned by the annotations.

 Query: @xmlf2::’<Report+HoldsDuring> +Pakistan +March

+Reuters</Report+HoldsDuring>’

Result: This query finds documents from Reuters about events in Pakistan

in March that are contained in the concatenated annotation formed by the

“Report” and “HoldsDuring” annotations.

@xmlf2::’<annotation1*annotation2> ... </annotation1*annotation2>’

You can express the intersection of annotations in a fragment query using

the asterisk sign (*) between the start and end tags of an element. The

intersection of two or more overlapping annotations is a new virtual

annotation that spans just the text that is covered by the intersection of the

overlapping annotations.

 Query: @xmlf2::’<Inhibits* Activates>Aspirin</Inhibits*Activates>’

Result: This query finds documents in which Aspirin occurs in both the

’Inhibits’ and ’Activates’ annotations.

@xmlxp::’/tag1/@tag1’

You can distinguish between elements (XML start and end tags) and

attributes. Attributes are written explicitly with a leading @ sign. The @

sign enables you to distinguish between elements and attributes that might

have the same name. Concatenations and intersections are applicable only

to UIMA documents, and not to pure XML documents, where spands do

not cross over by definition.

 Query: @xmlxp::’/author[@country="USA"]’

Result: This query finds documents in which USA is included in the

character string that is the value of the attribute country that is associated

with author.

30 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

@xmlxp::’/tag1[tag2 or tag3 and tag4]’

Use full Boolean to express AND and OR scope in an XPath query.

 Query: @xmlxp::’book[author ftcontains("Jose Perez") or title

ftcontains("XML -Microsoft")]’

Result: This query finds documents that specify a book whose author is

Jose Perez or where the title of the book includes the word XML, but not

Microsoft.

@xmlxp::’tag1//tag2/tag3’

You can distinguish between descendent nodes (//) and child nodes (/).

 Query: @xmlxp::’/books//book/name’

Result: This query finds documents that specify a book element as a

descendant of a books element and that specify a name element as a direct

child of the book.

@xmlxp::’tag1/.../tagn’

Use the @xmlxp:: prefix and enclose the query in single quotation marks to

indicate an XPath query as an search and index API opaque term.

 Query: @xmlxp::’books[booktitle ftcontains("Data Structures")]’

Result: This query finds documents that contain the phrase ″Data

Structures″ within the span of an indexed annotation called ″title.″

@xmlf2::’=<tag_name> content </tag_name>’

Use the syntax @xmlf2::’= to issue complete match queries in native XML

collections. Complete match queries return documents that have a tag

named <tag_name> with some content. The content specified in the query

can be a single word or a phrase. You can enforce lemmatization or

synonyms by using the ~ (tilde) sign before or after a word. You can also

use a wildcard character in a complete match query.

 XPath queries are not supported for the complete match capability.

Query: @xmlf2::’=<author>Martin Luther</author>’

Result: This query returns documents with an author element with the

exact content Martin Luther. A document with author element with the

value Martin Luther King is not returned.
 Related reference

 “Controlling query behavior” on page 11

Query syntax structure

A search and index API query is a list of space-separated query terms that follow a

specific structure.

A query has the following structure:

<space>*{Query_term <space>+}* Query_term

Query terms can be one of the following types:

v Word

v Phrase

v AttributeConstraint

v CategoryConstraint

v RangeConstraint

v OrTerm

Application development 31

v OpaqueTerm

Appearance modifiers

Appearance modifiers control whether a query term is:

v Mandatory: it must appear within result documents.

v Forbidden: it must not appear within result documents.

v Mandatory but insufficient: documents that contain only insufficient terms do

not qualify as search results.

The semantics correspond to the BaseQueryTerm object’s constants of the search

and index API: Appearance_Modifier = { + | −| ^ }

v + denotes a mandatory term

v − denotes a forbidden term

v ^ denotes a mandatory term that is not sufficient for a document to qualify as a

search result

OR terms cannot be denoted as forbidden: OR_Appearance_Modifier = { + | ^ }

Match type modifiers

Prematch type modifiers appear just before the word that they modify:

PreMatch_Type = { = | ~ }

v = denotes that the word should be matched as is, that is, it should not be

stemmed or lemmatized, and that the search should not be expanded to include

synonyms of the word

v ~ denotes that the search should be expanded to include synonyms of the word

Postmatch modifiers appear directly after the word that they modify:

PostMatch_Type = { * | ~ }

v * matches words having the indicated prefix

v ~ matches words that share the same base form, for example, stem or lemma

with this word

By default, words that are explicitly modified by an appearance modifier but not

by a match type use exact-match (“as is”) semantics.

Fielded search notation

A fielded search notation, or field name (token), is immediately followed by a

colon, that is, no space between the field name and the colon: Field = field_name:

OR terms

An OR term is comprised of a sequence of ORable terms, separated by spaces and

an OR-SIGN, enclosed within parentheses. All query term types except “OrTerm”

and “OpaqueTerm” qualify as ORable terms. Parentheses surround the OR

expression, in which terms are separated from each other by three mandatory

sequences:

v One or more spaces

v Either a vertical bar ‘|’ or the upper case word ‘OR’ (both notations are allowed)

v One or more spaces

32 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

Semantically, at least one of the OR-ed terms must appear in documents that

qualify as search results.

ORable_term = Query_term \ { OrTerm, OpaqueTerm }

OR-SIGN = | | OR

ORable_query = <space> * { ORable_term <space> + OR-SIGN <space> +}*

ORable_term

OrTerm = OR_Appearance_Modifier? (ORable_query)

If no OR_Appearance_Modifier is given, a + is implicitly assumed. The individual

terms of the ORable_query cannot have appearance modifiers of their own.

Words and phrases

Word = PreMatch_Type? Appearance_Modifier? Field? value |

Appearance_Modifier? Field? value PostMatch?

v A word (or fielded word), possibly with a single match type indicator (at the

beginning or the end), and possibly with an appearance modifier

v If neither a match type indicator nor prefix indicator are given, it is

implementation dependent which form is searched

v If no appearance modifier is given, it is implementation dependent whether the

results must contain the term

v The value can contain the wildcard symbol ‘*’ anywhere; however, at least one

non-wildcard character must exist in the value.

The following phrase should be expressed on one line:

Phrase = Appearance_Modifier? Field?"

<space>*{value<space>+}* value <space>*"

v A non-empty sequence of space-separated values inside quotation marks. The

field and appearance modifier are both optional.

v If no appearance modifier is given, a + is implicitly assumed.

v Each value inside the phrase is searched as is, that is, with exact-match

semantics.

Attribute, category, and range constraints

Attribute_Name: { language | source | doctype }

AttributeConstraint = $Attribute_Name::value

The $ sign is followed by an attribute name, which followed by two colons and a

value. If no Appearance_Modifier is given, a + is implicitly assumed.

The following category constraint should be expressed on one line:

CategoryConstraint =

PreMatch_Type?Appearance_Modifier?taxonomy_id::category_id

A taxonomy ID is followed by two colons and a category ID:

v Match_Type = restricts the documents to be members of the given category,

while ~ means that documents can also belong to descendents (subcategories) of

the given category.

v If no Match_Type is given, ~ is implicitly assumed.

v If no Appearance_Modifier is given, a + is implicitly assumed.

Application development 33

The parametric field must be greater than (or equal to in the second case) the

double value:

Grelation = > double_value | >= double_value

The parametric field must be less than (or equal to, in the second case) the double

value:

Lrelation = < double_value | <= double_value

The # character is followed by the field name, two colons, and at least one relation

(or =). The Appearance_Modifier can be either + or ^ (- is not allowed). If no

Appearance_Modifier is given, a + is implicitly assumed:

RangeConstraint = Appearance_Modifier?# field :: Grelation Lrelation? |

 Appearance_Modifier?# field :: Grelation? Lrelation |

 Appearance_Modifier?# field :: =double_value

Opaque terms

An @ sign is followed by some syntax name, two colons, and a value enclosed in

single quotation marks. The opaque term can be preceded by an appearance

modifier. If a single quote is needed in the value part, it should be escaped by \,

as in \’:

OpaqueTerm = Appearance_Modifier?@ syntax_name :: ’ value ’

For the semantics of opaque terms, the search and index APIs:

v Do not attempt to parse the value inside the single quotation marks; rather, that

string will be passed as-is to a parser that corresponds to the syntax_name.

v Does not define which external query languages should be supported by

implementations.

v Does not define how many opaque terms can exist inside a query, and how they

interact with the rest of the terms. All this is implementation defined. It is

assumed that in most cases, a query either consists solely of an opaque term, or

does not contain such terms at all.

Tokens, field names, and values in queries

Tokens, field names, and values have the following rules:

v Any sequence of characters without any of the special characters is a token.

v The characters = (″ have only special meaning if they are preceded by a space

or at the beginning of the query string. Thus, these characters can exist inside

tokens, but they cannot exist at the beginning of a token.

v An exception to the previous rule is that a ’(’ can begin a token inside an

OrTerm because those cannot be nested and so ’(’ has no special meaning there.

v The characters + - ^ have special meaning only if they are preceded by a space,

by one of = ~ (, or at the beginning of the query string.

v The colon has meaning only as a separator between a field/constraint-type and

a value. The colon is considered a regular character in all other cases.

v The character) has special meaning only inside an OrTerm, but outside of a

phrase inside the OrTerm. There, it will terminate the OrTerm. In all other cases,

it is considered a regular character.

v The character * has special meaning only for values; that is, wildcard characters

are not applied to field names.

v The sequences <,<=,>,>= have special meaning only within a range constraint.

34 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

v All special characters except ″ are considered regular characters inside a phrase:

they lose their special functions inside phrases. The ″ ends the phrase. This rule

trumps all previous rules.

v Wildcard characters are allowed inside phrases

As a general, if one of the special characters has no meaning in a certain setting, it

will be considered as part of the token/value.

The behavior of the query parser is undefined for nonconforming strings. In some

cases, the parser implicitly overcomes problems, such as ending phrases that are

not terminated, and in some cases it does not overcome such problems.

ACL expression syntax

The syntax of ACL expressions is a subset of the full query syntax. Basically, it

consists of words, OR expressions over several words, and opaque terms.

ACL_Expression = <space>* {ACL_term<space>+}* ACL_term

ACL_term = { ACL_Value |

 ACL_OrTerm |

 Security_OpaqueTerm }

ACL_Value = Appearance_Modifier? value

v A value, possibly with an appearance modifier

v If no appearance modifier is given, ^ is assumed.

The ACL_OrTerm should be expressed on one line:

ACL_OrTerm = {+|^}? (<space>*{value <space>+

OR-SIGN<space>+}* value <space>*)

The sequence of values is separated by spaces and an OR-SIGN and enclosed

inside parentheses. The OrTerm optionally has an appearance modifier, either + or

^ (- is not allowed) If no Appearance_Modifier is given, ^ is implicitly assumed.

The individual values inside the OrTerm cannot have appearance modifiers of their

own.

Security opaque terms

Security_OpaqueTerm = Appearance_Modifier?@ syntax_name :: ’ value ’

An @ sign is followed by some syntax name, two colons, and a value enclosed in

single quotation marks. The opaque term can be preceded by an appearance

modifier. If a single quotation mark is needed in the value, it should be escaped by

\, as in \’.

The semantic disclaimers that were specified with respect to opaque terms in query

strings apply here.

The behavior of the ACL expression parser is undefined for nonconforming strings.

In some cases, the parser implicitly overcomes problems, such as ending OR-terms

that are not terminated, and in some cases it does not overcome such problems.

By default, all terms are assumed to be required but insufficient, as if qualified by

‘^’. Although you can qualify an ACL_term by a +, it does not seem to match the

use of ACLs as filters.

Application development 35

The expressiveness of this syntax is broader than simple document-level security.

First, it allows forbidden tokens, for example, “do not return documents that are

viewable with this ACL”. Second, the ability to include several OrTerms allows this

syntax to support multiple-level security:

(server_ACL1 | server_ACL2) (group_ACL1 | group_ACL2)

(user_ACL1 | user_ACL2)

 Related reference

 “Controlling query behavior” on page 11

Java classes for showing top results

You can create a custom Java class to show the top search results, including results

from non-enterprise search sources, in any HTML format.

The product includes two sample Java classes that are available as part of the

ESSearchApplication sample code after you install the product:

v The DynamicMostRecentDocuments class analyzes the current set of search results

according to the frequency with which the analyzed values occur and shows the

top search results as an unordered list that is sorted by date. Only the document

titles and dates are shown.

v The DogearSearchResults class analyzes results and provides users with a list of

bookmarks from Lotus® Connections Dogear.

You can create Java classes for many other purposes. Examples of some of the

ways that you might use the capability include:

v Display results from Del.icio.us for the same query. Del.icio.us is a service that is

similar to Dogear that allows users to bookmark Web pages and share

bookmarks with others.

v Display results from Google for the same query.

v Display a generic company message, a message about planned system

maintenance, or a welcome page.

v Display an activities list for the logged on user.

When you create a Java class for analyzing the top results, you must update the

configuration file for the search application to specify options for how the results

are to be displayed. How you specify these options depends on how you deploy

the search application:

v If your search application runs as a stand-alone application, you can configure

top result options by using the Search Application Customizer or by editing the

config.properties file for the search application.

v If your search application runs as a portlet within WebSphere Portal, you must

edit the properties and configure the Portlet instance with the WebSphere Portal

administration interface. You cannot use the Search Application Customizer to

configure options for top result analysis.
 Related tasks

Analyzing top results

Editing the sample search application properties
 Related reference

Search application properties

36 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

http://publib.boulder.ibm.com/infocenter/discover/v8r5m0/index.jsp?topic=/com.ibm.discovery.es.ad.doc/administering/iiysatopresults.htm
http://publib.boulder.ibm.com/infocenter/discover/v8r5m0/index.jsp?topic=/com.ibm.discovery.es.ad.doc/administering/iiysatdemocf.htm
http://publib.boulder.ibm.com/infocenter/discover/v8r5m0/index.jsp?topic=/com.ibm.discovery.es.ad.doc/administering/iiysademocf.htm

Search and index API federators

Use a federator to issue a federated search request across a set of heterogeneous

searchable collections and get a unified document result set.

Search federators are intermediary components that exist between the requestors of

service and the agents that perform that service. They are coordinate resources to

manage the multitude of searches that are generated from a single request.

Enterprise search provides the following types of search and index API federators:

v Local federator

v Remote federator

Search federators are search and index API searchable objects. Multiple-level

federation is allowed, but too many levels of federation will decrease search

performance.

The local and remote federators can federate over collections that are created with

OmniFind Enterprise Edition or collections that are created with another product.

You can federate over collections that are not created with OmniFind Enterprise

Edition if those collections use lightweight directory access protocol (LDAP) or

Java database connectivity (JDBC).

To create an LDAP or JDBC searchable object, the application creates an

AdminService object by passing a fully qualified LDAP or JDBC AdminService

object class path. The createCollection method is used to create an LDAP or

JDBC collection. The LDAP or JDBC configuration information is passed through a

XML configuration file. After LDAP or JDBC collections are created, you can

retrieve the searchable objects through the Service interface and use those

searchable objects directly or through local or remote federators.

Local federator

A local federator federates from the client over a set of searchable objects.

A local federator is created by using the createLocalFederator method from the

SIAPI SearchFactory class. The set of searchable collections on which the query is

to be run is specified when the federator is created. A subset of searchable objects

can also be specified during search calls.

Before you can create a local federator, you must create or retrieve searchable

objects by using a search and index API SearchFactory. The searchable object that is

passed to the local federator must be ready for search without any additional

information. The local federator uses the searchable object to issue a federated

search request. To complete this request, the local federator environment must have

all the necessary software components for using various searchable objects.

The following code sample shows how to create a LocalFederator object and issue

a search request:

Searchable[] finalSearchables;

// create searchables

// create a query and set query options

Query query = searchFactory.createQuery(queryString);

query.setRequestedResultRange(0, 100),

query.setQueryLanguage("en_US");

query.setSpellCorrectionEnabled(true);

Application development 37

query.setPredefinedResultsEnabled(true);

// create the local federator and call search

LocalFederator federator =

 factory.createLocalFederator(finalSearchables);

ResultSet rs = federator.search(query);

Remote federator

A remote federator federates from a server over a set of searchable objects.

A remote federator is run on the server and consumes server resources. A remote

federator requires an extra step in which input collection IDs are mapped to the

matching searchable object.

The remote federator is created by using the search and index API AdminService

interface. During the construction of the RemoteFederator, the set of collection IDs

must be passed. The collection IDs are mapped to SIAPI searchable objects

internally by the RemoteFederator. The remote federator environment does not

require any searchable related software components other than a small proxy that

enables the remote federator to be accessible.

Each search application will have its own federator, so the federator ID is the same

value as the ApplicationInfo ID value.

The following code sample shows how to create a RemotelFederator object and

issue a search request:

// get collection IDs

String[] collectionIDs;

// create a query object

Query query = searchFactory.createQuery(queryString);

query.setRequestedResultRange(0, 100),

query.setQueryLanguage("en_US");

query.setSpellCorrectionEnabled(true);

query.setPredefinedResultsEnabled(true);

// create a remote federator

RemoteFederator federator = getFederator(appinfo, appinfo.getID());

// search

ResultSet rs = federator.search(query);

Retrieving targeted XML elements

You can specify that a returned document must be accompanied by a result field.

In the opaque term that specifies the semantic search, you can prepend a pound or

hash sign (#) to one XML element (or annotation) in the xmlf2 query term. This

result field enumerates all the occurrences of an Unstructured Information

Management Architecture (UIMA) annotation that is designated in the XML query

term. These enumerated annotation occurrences are within the returned document,

and each of them makes a part of an occurrence of the whole XML query term in

the document.

The XML element is designated as the targeted XML element whose occurrences

are to be enumerated. When the semantic search is expressed by XPath, then by

definition of XPath, the deepest element that is not inside the bracketed phrase [..]

and not inside a predicate is the target element.

38 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

For example, the query <book language=en> <#author> </#author> </book>, or the

equivalent query <book language=en> <#author/> </book>, returns documents that

include at least one occurrence of the annotation book that has the attribute

language=en and includes within its span an occurrence of the annotation author.

The query also returns the enumeration of all the occurrences of the tag <author>

that appear within the occurrence of the tag <book> that has the attribute

language=en.

Each occurrence is enumerated by its unique ID. The UIMA annotators assign a

unique ID to each annotation that they generate. XML elements that are part of the

raw document rather than annotations that are generated by UIMA annotators do

not have unique IDs, and they are not enumerated in that result field. If the

summary field of the retrieved document includes text that is covered in the

document by an enumerated occurrence, that text is highlighted.

The following occurrences of the tag <author> in the retrieved document will not

be enumerated:

v An occurrence of the tag <author> within the span of the tag <journal>

v An occurrence of the tag <author> within the span of the tag <book> that has the

attribute language=ge

v An occurrence of the tag <author> within the span of the tag <book> that does

not have the attribute language

v An occurrence of the tag <author> that is part of an XML document, that is the

tag <author> is part of the raw document rather than a generated annotation

The search application can access the enumeration of the occurrences of the target

element through the TargetElement property of the Result object, for example,

Result.getProperty(″TargetElement″). The returned value of that property is a

string of integers that are separated by spaces. Each integer is an ID of a single

occurrence of the target element.

The actual target elements that correspond to these integer values cannot be

retrieved by the API. If an application must access those elements, it must create

its own mapping table during parsing. For example, you can create a common

analysis for relational database mapping.

Fetching search results

The fetch API enables you to obtain the content of documents returned in the

search results.

The fetch API enables users to view content by clicking documents in the search

results. This API is especially useful for data sources that do not return a clickable

URI, such as documents from DB2, DB2 Content Manager, and file system sources.

The fetch API uses client libraries that are installed when OmniFind Enterprise

Edition is installed. In a multiple server installation, the libraries are installed on

the crawler server. No additional application development work is required to take

advantage of this API because the API is provided with the esapi.jar file.

To fetch certain types of documents, an enterprise search administrator must

specify the ″document content″ option when the crawler is configured. The

following discussion summarizes the requirements for the various crawler types:

Application development 39

DB2 crawler

A document content field (column) must be specified when the crawler is

configured to crawl a DB2 database.

Content Edition and DB2 Content Manager crawlers

A document content field must be specified when a crawler is configured

to crawl these types of data sources. Data sources that contain only

metadata are not supported.

UNIX file system and Windows file system crawlers

The fetch API can retrieve the content of file system documents with no

special configuration by an enterprise search administrator.

All other crawlers

For other types of crawlers, a clickable URI is returned by using the

getDocumentURI method. The fetch API is not used to retrieve these types

of documents.

The fetch API supports security at the search server level (through WebSphere

global security), collection level (through application IDs), and at the document

level (through indexed access controls and current user validation). The security

policy relies on the security settings in the search application. If the search

application returns a document in the list of search results, the fetch API will

retrieve the document content when the user clicks the document.

A sample program, FetchSearchExample, is provided in the ES_INSTALL_ROOT/
samples/siapi directory. Javadoc documentation is provided in the

ES_INSTALL_ROOT/docs/api/fetch directory.

Application security

The search and index APIs communicate remotely through HTTP to the

ESSearchServer enterprise application that is installed on each WebSphere

Application Server search server when OmniFind Enterprise Edition installed.

You must enable WebSphere Application Server global security to secure remote

communications. When the application issues remote search and index API

requests that must be secure, you must set the user name and password on the

Service classes with a valid user name that is stored in the enterprise user registry

that is used by WebSphere for authentication. Any requests that do not contain

valid user names and passwords are rejected. You can add user names and

passwords in the WebSphere administrative console.

In an enterprise search application, the Properties object is passed in the call to the

getSearchService method or getBrowseService method. The Properties object

specifies property names called username and password for WebSphere.

Enterprise search supports HTTP basic authentication. Enterprise search also

supports HTTPS secure socket layer (SSL) version 3 proxy servers and proxy

servers that require a user name and password for basic authentication.

Applications and collections must have IDs. For applications that need to access

specific collections, the collection ID must be associated with the application ID.

You can grant access for applications to access specific collections in the enterprise

search administration console.

40 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

Document-level security

To support prefiltering and post-filtering of search results, the search request must

provide a user’s security context by using the setACLConstraints method on the

Query object.

The user’s security context is provided as an XML string as part of an opaque

query term, for example:

Query q = factory.createQuery("IBM"); q.setACLConstraints

("@SecurityContext::’<User’s Security Context XML string>’"

You can create the user’s security context XML string in two ways:

v By using the identity management API to programmatically create the XML

string

Use this method if you are building applications with OmniFind Enterprise

Edition, version 8.4 or later.

v By using Java String classes to create the XML string

Use this method only if you cannot build applications with the identity

management API.

Identity management for single sign-on security

You can use the identity management APIs of enterprise search to create a single

sign-on system that manages the multiple identities of users and to automatically

generate the security context strings of users. IDs can be reused on subsequent

searches without users logging on multiple times.

How the enterprise search identity management component works

With the identity management Java APIs, you can create an application to manage

the security credentials of your users. The following graphic shows how users log

in to a system such as WebSphere Portal and authenticate with the registry.

Application development 41

When users attempt to access enterprise search, the identity management

component repeats the process of authenticating those users.

Sample code and Java APIs

You can access a sample Java program, the source code for the

ESSearchApplication application, and Javadoc documentation for the identity

management in the following locations:

IdentityManagementExample.java

A standalone sample program that is available in the ES_INSTALL_ROOT/
samples/siapi directory. You can build this code by running the ANT

command.

ESSearchApplication

The source code for the J2EE Apache Struts-based Web application that is

installed by enterprise search. The source code is available in the

ES_INSTALL_ROOT/samples/ESSearchApplication directory. You can build

this code by running the ANT command.

Javadoc documentation

Provides descriptions of the available APIs to build identity management

into your search applications. The Javadoc documentation is in the

ES_INSTALL_ROOT/docs/api/imc directory.

WebSphere Portal
authenticates the user

1. User logs into
WebSphere Portal

User ID

User's security
context string

1. User updates
his or her profile

1. User searches

Enterprise search
identity management

Enterprise search
runtime component

Enterprise search
collections

Enterprise search
user profile

Enterprise user
registry

Figure 4. How users log in to WebSphere Portal or other systems

42 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

Running the sample application

To run the Java sample program, make sure that you have the following JAR files

in your class path:

v esapi.jar

v siapi.jar

v es.security.jar

v es.oss.jar

To run the sample program, enter the following command on a single command

line.

Windows

java –classpath $ES_INSTALL_ROOT\lib\esapi.jar;$ES_INSTALL_ROOT\lib\
siapi.jar;$ES_INSTALL_ROOT\lib\es.security.jar;.

IdentityManagementExample

AIX, Linux, or Solaris

java –classpath $ES_INSTALL_ROOT/lib/esapi.jar:$ES_INSTALL_ROOT/lib/
siapi.jar:$ES_INSTALL_ROOT/lib/es.security.jar:.

IdentityManagementExample

Application compatibility with previous versions of enterprise search

The identity management APIs were made available with OmniFind Enterprise

Edition, Version 8.4, and they are not compatible with previous product versions.

Client applications that were created with version 8.3 or earlier, including the

ESSearchApplication and ESSearchPortlet, must migrate to the identity

management APIs to continue using the security features of enterprise search.

Creating the user’s security context XML String with the identity

management API

The identity management API provides several Java classes that can be used to

create the USC XML string programmatically.

To create the USC XML string for a particular user, you should first instantiate a

SecurityContext object. The SecurityContext object contains a user name, an array

of Identity objects, and optionally a Single Sign-On (SSO) token. The user name

that is assigned to the SecurityContext is typically the value that the user specified

to log in to your application.

After you create a SecurityContext object, you create an array of Identity objects.

Each Identity object contains a user name and a password, a String array of

group tokens, a source type, and a domain identifier. If the SecurityContext object

contains an SSO token, then the user name is required but the password is

optional. For example:

SecurityContext context = new SecurityContext();

context.setUserID("uid=wpsadmin,o=default organization");

Identity[] identities = new Identity[1];

identities[0] = new Identity();

identities[0].setDomain("portalserver.ibm.com:9081");

identities[0].setType("wp");

identities[0].setUsername("uid=wpsadmin,o=default organization");

String[] groups = new String[3];

groups[0] = "uid=wpsadmin,o=default organization";

groups[1] = "all authenticated portal users";

Application development 43

groups[2] = "wpsadmins";

identities[0].setGroups(groups);

identities[0].setProperties(new Properties());

context.setIdentities(identities);

After you create the context, you can easily set the ACL constraints in the query by

calling the context.serialize(true) method. The Boolean parameter indicates that

the XML string values should be Base64 encoding to ensure proper transmission to

the search server. For example:

q.setACLConstraints("@SecurityContext::’" + context.serialize

(true) + "’");

Creating the user’s security context XML String with the Java

String classes

For applications that were written before OmniFind Enterprise Edition, version 8.4,

the only way to create the user’s security context XML string was to manipulate

the XML as a Java String.

This method is no longer recommended, but it is still supported. However, the

format has some important additions: some values must use Base64 encoding

before they are transmitted as part of the query request to the search server. If you

choose not to use the identity management API to create the XML string, ensure

that you adhere to the following XML format:

<identities id="REQUIRED">

 <ssoToken>NOT REQUIRED</ssoToken>

 <nativeTokens>

 <nativeToken>REQUIRED</nativeToken>

 <nativeToken>REQUIRED</nativeToken>

 <nativeTokens>

<identity id="REQUIRED">

 <username>REQUIRED</username>

 <password encrypt="yes">NOT REQUIRED</password>

 <type>NOT REQUIRED</type>

 <groups>

 <group id="REQUIRED"/>

 <group id="REQUIRED"/>

 </groups>

 <properties>

 <property name="NOT REQUIRED">REQUIRED</property>

 <property name="NOT REQUIRED">REQUIRED</property>

 </properties>

 </identity>

 . . .

 </identities>

Administration applications

A search and index API administration application sends queries to the index

server to administer collections.

The public search and index API can interface with internal enterprise search APIs.

A search and index API administration application can do the following tasks:

v Register an application ID

v Create an instance of an application ID

v Administer collections

– Create or destroy collections

– Add or remove documents to or from a collection

44 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

v Refresh or reorganize indexes

v Enable or disable collections for indexing or for searching

v Unregister an application ID

The administration application retrieves an index object from the service class. The

application uses the administration package of the search and index API to create

or destroy collections and to enable or disable collections for indexing or searching.

The administration application then uses the index package of the search and

index APIs to obtain one or more index objects on which you can perform

operations such as add or remove documents and build or reorganize the index

with the added documents.

After you build indexes and enable them for search, search applications can search

your indexes.

Use the com.ibm.siapi.admin package to create or destroy collections and to enable

or disable collections for indexing and searching.

Use the com.ibm.siapi.index package to add or remove documents to or from a

collection and to refresh or reorganize indexes.

 Related concepts

 “Search and index APIs” on page 3

 “Javadoc documentation” on page 3
 Related reference

 “Search applications” on page 7

Registering application IDs

Register application IDs on the enterprise search server before you create an

instance of the application ID.

An application instance that is created with the administrator user ID and

password must be passed to the AdminService API, which registers an application

ID on the server.

To register an application ID:

1. Create the application on the enterprise search server.

2. Create the clientAppInfo instance.

3. Register the application on the server. The registration API requires enterprise

search administrator credentials (user name and password). If these credentials

cannot be shared, then the enterprise search administrator must register the

requested application IDs.

If the credentials for the enterprise search administrator are not shareable, then

the enterprise search administrator should use the SIAPI APIs to register the

Application ID. Using the enterprise search administration console to create

application IDs is not suitable for the implementation of the SIAPI

Administration APIs.

import com.ibm.es.siapi.client.IAdminConstants;

import com.ibm.siapi.SiapiException;

import com.ibm.siapi.admin.AdminFactory;

import com.ibm.siapi.admin.AdminService;

import com.ibm.siapi.admin.SiapiAdminImpl;

import com.ibm.siapi.common.ApplicationInfo;

/**

Application development 45

* RegisterApplicationID provides sample code to create a

* unique search application ID required to create

* collection, add documents , build a

* index and search the collections.

* This sample has to be invoked to register a valid ID.

*/

public class RegsiterApplicationID {

public static void main(String[] args) {

try {

AdminFactory factory = SiapiAdminImpl.createAdminFactory(IAdminConstants.ADMIN_FACTORY_IMPL);

if(factory != null){

// name of the client application ID

String appID = "SIAPI-App";

// specify "dummy" password

ApplicationInfo appInfo = factory.createApplicationInfo(appID, "dummy");

AdminService service = factory.getAdminService(null);

if(service != null){

System.out.println("Register application ID="+ appID);

// The Omnifind adminstrator credentials

// Please contant your administrator to get the credentials

// If the credentials are not shareable, the administrator

// should implement the registration application and create

// requested IDs.

ApplicationInfo adminInfo = factory.createApplicationInfo("esadmin", "search");

// privileges are not supported

int privilege = -1;

// register application instance

service.registerApplication(adminInfo, appInfo, privilege);

}

// change password

System.out.println("Change password for appID=" + appID);

appInfo.setPassword("search");

System.out.println("New password was successfully set.");

}

} catch (SiapiException e) {

e.printStackTrace();

System.out.println(e.getLocalizedMessage());

}

}

}

Unregistering application IDs

To unregister an application ID, you destroy the application information on the

enterprise search server.

To unregister an application ID:

Destroy the application information (clientAppInfo object).

// to unregister an application, destroy the application

// information on the server

service.unregisterApplication(clientAppInfo, clientAppInfo.getId())

Creating an instance of an application ID

Each client application must be identified by an application ID. You create an

application ID with the AdminFactory factory.

46 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

You must first register application IDs on the enterprise search server. After you

register the application ID, you can retrieve an instance of the application ID.

For authentication, a password must be associated with the user application ID.

However, different client applications can use the same enterprise search

application ID. The enterprise search application ID specifies only which

collections the application has access to. You can have two different applications

(for example, finance and personnel applications) that are granted access to the

same set of collections as defined and controlled by the enterprise search

application ID.

Contact the search administrator to get the collection ID.

To create an application ID:

Use the AdminFactory factory to create an application ID. The application ID can be

associated with a collection ID so that associated collection can be administered.

import com.ibm.es.siapi.client.IAdminConstants;

import com.ibm.siapi.SiapiException;

import com.ibm.siapi.admin.AdminFactory;

import com.ibm.siapi.admin.SiapiAdminImpl;

import com.ibm.siapi.common.ApplicationInfo;

AdminFactory factory = SiapiAdminImpl.createAdminFactory

(“com.ibm.es.siapi.admin.AdminFactoryImpl“);

if(factory != null){

 String appID = "SIAPI-App";

 String appPw = "password";

 ApplicationInfo appInfo = factory.createApplicationInfo(appID,appPw);

 if(appInfo != null){

 System.out.println("Application ID called " + appInfo.getId() + "

 was created successfully.");

 } else {

 System.out.println("Application ID called " + appInfo.getId() + "

 was not created!!");

 }

}

. . .

Remember to associate the application ID with the collection ID in the enterprise

search administration console.

Creating or destroying collections

A collection is created with an initial application ID. Only this application ID is

authorized to delete the specified collection. The collection can be associated with

other application IDs by using the addCollectionToApplication method.

To create or destroy a collection, you must first call the AdminService class as

shown in the following example. This example shows the AdminService class

creating a collection:

class AdminService {

 void createCollection(ApplicationInfo appInfo,

 java.lang.String collectionID,

 java.lang.String collectionLabel,

 int optimizationMode,

 java.lang.String defaultLanguage,

 java.util.Properties config)

Application development 47

A set of optional properties can also be passed to the collection with the

java.util.Properties instance. To create a collection with the ApplicationInfo

object, you must create the AdminService object first. The following sample shows

all the optional properties:

 AdminFactory factory = SiapiAdminImpl.createAdminFactory

 (IAdminConstants.ADMIN_FACTORY_IMPL);

 if(factory != null){

 AdminService service = factory.getAdminService(null);

 if(service != null){

 ApplicationInfoImpl appInfo = new ApplicationInfoImpl();

 appInfo.setId("SIAPI-App");

 appInfo.setPassword("search");

 Properties config = new Properties();

 config.setProperty(IAdminConstants.KEY_INDEX_LOCATION,

 "/home/esadmin/siapidata");

 config.setProperty(IAdminConstants.KEY_ENABLE_COLLECTION_NGRAM,

 "true");

 config.setProperty(IAdminConstants.KEY_ENABLE_COLLECTION_SECURITY,

 "true");

 config.setProperty(IAdminConstants.KEY_MAX_DOCS_IN_INDEX, "10000");

 // if collection ID can be set to “”, system generates a

 // unique id

 String colID = "col_123";

 String colLabel = "SIAPI Client";

 // if language is “”, a default language of “en” is associated

 String colLangauge = "en";

 // identified the ranking model for the collection.

 // DATE_BASED, LINK_BASED and NO_STATIC_RANK are the supported models

 int optimizationMode = IAdminConstants.DATE_BASED;

 adminService.createCollection(appInfo,

 colID,

 colLabel,

 optimizationMode,

 colLangauge,

 config);

 }

 }

....

For the config.setProperty method, specify the location of the index.

After you create the collection and enable it for indexing, you can add documents.

After you add the documents, you can refresh or reorganize the index and make

the documents ready for search. The indexRef.build API refreshes the index and

the indexRef.reorganize API reorganizes, or merges, available refreshed indexes

into a main index. The index can later be enabled for search.

The following sample shows you how to destroy a collection. By destroying the

collection, you also delete all the indexed documents on the disk.

class AdminService {

 void destroyCollection(ApplicationInfo appInfo,

 java.lang.String collectionID);

...

AdminService service = factory.getAdminService(null);

if(service != null){

 ApplicationInfoImpl appInfo = new ApplicationInfoImpl();

 appInfo.setId("SIAPI-App");

 appInfo.setPassword("search");

 String colID = "col_123";

48 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

adminService.destroyCollection(appInfo, colID);

}

 }

. . .

Adding documents to a collection

Use the IndexFactory object to add documents to a collection.

To add documents to a collection:

1. Enable the collection for indexing by using the

adminService.isEnabledForIndexing method as in the following example:

. . .

boolean enabled = adminService.isEnabledForIndexing(appInfo, colID);

 if(!enabled){

 // enable for indexing

 System.out.println("Enabling collection for indexing");

 adminService.enableCollectionForIndexing(appInfo, colID, null);

 }

. . .

To add documents to a collection, you must enable the collection for indexing.

This function starts the parser driver that is associated with the collection.

2. Create documents from a data source. With the following APIs, you can add

documents as:

v A byte array of the content

v A character array of the content

v A String of the content

The following example shows how to create documents:

class IndexFactory{

 // Create a raw document by its byte array content.

 Document createDocument(java.lang.String documentID, byte[] content,

 java.lang.String documentType, java.lang.String documentSource);

 // Create a raw document by its char array content.

 Document createDocument(java.lang.String documentID, char[] content,

 java.lang.String documentType, java.lang.String documentSource) ;

 // Create a raw document by its string content.

 Document createDocument(java.lang.String documentID,

 java.lang.String content, java.lang.String documentType,

 java.lang.String documentSource) ;

...

IndexFactory indexFactory = SiapiIndexImpl.createIndexFactory

("com.ibm.es.siapi.index.IndexFactoryImpl");

. . .

String documentContent = readDocumentFromDB2

(“docid:db2://sample//EmployeePicture”);

Document document = indexFactory.createDocument

(“docid:db2://sample//EmployeePicture”,

documentContent, “DB2 type”, “Sample”);

3. Add the document to the collection by using one of the following APIs:

class Index{

 // Add raw document to index

 void addDocument(Document doc);

 // Add raw document with meta data to the index

 void addDocument(Document doc, java.util.HashMap fieldMapping);

Application development 49

IndexService indexService = indexFactory.getIndexService(null);

Index indexRef = indexService.getIndex(appInfo, collectionID);

// add raw document

indexRef.addDocument(document);

4. Optional: Add the metadata of a document to the index. Metadata is a list of

fields in a document that can be configured in the index as part of the query

term. You can use any of the following APIs to create fields with different

constructors:

class IndexFactory{

 Field createField(java.lang.String fieldName, boolean value);

 Field createField(java.lang.String fieldName, byte[] value);

 Field createField(java.lang.String fieldName, java.util.Date value);

 Field createField(java.lang.String fieldName, double value);

 Field createField(java.lang.String fieldName, int value);

 Field createField(java.lang.String fieldName, java.lang.String text);

// create a searchable/parametric/returnable field

Field myField = indexFactory.createField(“empid”, “00140”);

myField.setFieldSearchable(true);

myField.setParametric(true);

myField.setReturnable (true);

// create a searchable and returnable field

Field myField2 = indexFactory.createField(“Format”, “image/gif”);

myField2.setFieldSearchable(true);

myField2.setParametric(false);

myField2.setReturnable (true);

HashMap fieldMapping= new HashMap();

fieldMapping.put (myField.getID(), myField);

fieldMapping.put (myField2.getID(),myField2);

// add raw document with meta data

indexRef.addDocument(document, fieldMapping);

Building indexes

After you add or remove documents from an index, you need to rebuild the index.

When you build an index for the first time, you must build a main index. After

you build the first index, you update that index regularly by building delta

indexes that contain information about new, changed, and deleted documents. To

improve performance and space allocation of the index, you must regularly rebuild

the main index. Building the main index means that you merge the smaller delta

indexes with the larger main index. Building a main index requires more time and

resources than building a delta index.

Use the following APIs build the index:

Class Index {

 // Causes the index to reflect all pending index operations

 // in the index data structures or storage, so that

 // added documents can be searched, and deleted

 // documents cannot be searched.

 void build();

 // Instructs the index to reorganize its persistent storage,

 // usually to remove unused space, and so on.

 void reorganize();

indexRef.build(); or indexRef.reorganize()

50 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

You can set a fragmentation count property that tells the search and index API

code when indexes should be updated.

The value 2 in the following property setting means the main index will be built

after two delta indexes are built:

indexes.index.setProperty

(IAdminConstants.BUILD_FRAGMENTATION_COUNT, 2)

See the index build sample for more examples.

After the collection is built, it can be made available for search by using the

administration package.

Enabling indexes for search

After an index is populated with documents, it can be enabled for search so that

search applications can search the indexed documents.

Use the following APIs to enable the index for search:

class AdminService {

 // Make a collection available for search.

 void enableCollectionForSearch(ApplicationInfo appInfo,

 java.lang.String collectionID,

 java.util.Properties config) ;

 // Make a collection unavailable for search.

 void disableCollectionForSearch(ApplicationInfo appInfo,

 java.lang.String collectionID,

 java.util.Properties config) ;

adminService. enableCollectionForSearch(appInfo, collectionID, null);

Web services for enterprise search

Web services are available to support federated search capability so that you can

search enterprise search collections.

Restrictions

v The Web services client proxy supports WebSphere Application Server, version

6.0 and version 6.1 only. If your enterprise search system uses an older version

of WebSphere Application Server, you cannot use the Web services.

v The Web services interface does not support single sign-on security capabilities

for enterprise search.

v For URI sources such as DB2 databases or file systems, the ability to documents

from search results is not supported.

Toolkit for application development

A compiled Java client proxy is bundled in an application development toolkit so

that you can develop customized applications.

The Web services client is integrated in the enterprise search ESSearchServer.ear

application. The Web services and the ESSearchServer application share common

copies of search factories.

The JAR file es.siapi.toolkit.jar contains the necessary Java packages, samples,

and Javadoc documentation to help you develop custom applications for

Application development 51

administration and search. The JAR package includes the following items that you

need to create a Web services client proxy:

v Compiled Java client proxy (also included in the JAR package)

v Default configuration file to specify endpoints

v Javadoc documentation

A compiled version of the proxy is provided and most of the common search

options, such as the number of results to return, language, collections, application

ID, have default values that you can overwrite. This WSDL code can be provided

to any compliant IDE to generate a copy of client proxy.

Enterprise search provides a Java version of the client proxy to invoke the Web

service. However, you can access the WSDL to generate client proxies in other

languages, such as PHP, C++, or C#.

Use the following URL to access the WSDL file:

http://your_search_server/ESSearchServer/wsdl/com/

ibm/es/ws6/server/search/ofsearch.wsdl

Use the following URL as the end point for the Web service:

http://your_search_server/ESSearchServer/services/ofsearchBinding

For a multiple server installation, the Web services are hosted on all of the

configured search servers. This is done to scale the availability of search services.

Crawler plug-ins

Crawler plug-ins are Java application programming interfaces (APIs) that you can

use to change content or metadata in crawled documents. There are two types of

crawler plug-ins: one for non-Web sources and one for Web sources.

Crawler plug-ins for non-Web sources

You can apply business and security rules to enforce document-level security and

add, update, or delete the crawled metadata and document content that is

associated with documents in an enterprise search index. The crawler plug-in APIs

can be used for any of the crawlers other than Web sources.

Crawler plug-ins for Web sources

You can add fields to the HTTP request header that is sent to the origin server to

request a document. You can also view the content, security tokens, and metadata

of a document after the document is downloaded. You can add to, delete from, or

replace any of these fields, or stop the document from being parsed.

Web crawler plug-ins support two kinds of filtering: prefetch and postparse. You

can specify only a single Java class to be the Web crawler plug-in, but because the

prefetch and postparse plug-in behaviors are defined in two separate Java

interfaces and because Java classes can implement any number of interfaces, the

Web crawler plug-in class can implement either or both behaviors.

The Web crawler plug-in has two specific plug-in types:

Prefetch plug-in

A prefetch plug-in is called before the crawler downloads a document.

52 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

Your plug-in is given the document URL, the fetch method, the HTTP

version, and the HTTP request header. Your plug-in can use these elements

to decide whether to modify the request header (for example, to add

cookies) or even to cancel the download.

Postparse plug-in

The postparse plug-in is called after any download attempt. The download

does not need to produce content or parses the content. The plug-in is

given the document URL, the metadata that is extracted by the crawler

from various sources, and the document’s content. The plug-in can

determine whether to alter any of these items in the document and

whether to save the content of the document before it is parsed.

Javadoc documentation for crawler plug-ins

For detailed information about each plug-in API, see the Javadoc documentation in

the following directory: ES_INSTALL_ROOT/docs/api/.

 Related tasks

 “Creating a prefetch plug-in for the Web crawler” on page 55

 “Creating a postparse plug-in for the Web crawler” on page 58
 Related reference

 “Sample plug-in application for non-Web crawlers” on page 83

Crawler plug-ins for non-Web sources

Data source crawler plug-ins are Java applications that can change the content or

metadata of crawled documents.

You can configure a data source crawler plug-in for the following enterprise search

crawlers:

v Content Edition

v DB2 Content Manager

v DB2

v Domino Document Manager

v Exchange Server

v NNTP

v Notes

v QuickPlace

v UNIX file system

v Web Content Management

v WebSphere Portal

v Windows file system

To modify Web documents, use the Web crawler plug-in.

With the crawler plug-in for data source crawlers, you can add, change, or delete

crawled content or metadata.

When you specify the Java class as the new crawler plug-in, the crawler calls the

class for each document that it crawls.

Application development 53

For each document, the crawler passes to your Java classes the document identifier,

the security tokens, the metadata, and the content that was specified by an

administrator. Your Java class can return a new or modified set of security,

metadata, and content.

If you created a crawler plug-in for a crawler with an earlier version of enterprise

search, you can use the crawler plug-in as is. However, you cannot use version 8.4

of the crawler plug-in with older versions of a crawler plug-in. The APIs are

different. If you want to add, change, or delete crawled content, use version 8.4 of

the crawler plug-in.

Creating a crawler plug-in for non-Web data sources

You can create a Java class to programmatically update the value of security

tokens, metadata, and the document content of data sources other than Web.

About this task

When the crawler is started, the plug-in process is forked. An

AbstractCrawlerPlugin object is instantiated with the default constructor and the

init, isMetadataUsed, and isContentUsed methods are called once. When the

crawler is stopped, the term method is called and the object is destroyed.

Procedure

To create a Java class for use as a crawler plug-in with content-related functions:

1. Inherit com.ibm.es.crawler.plugin.AbstractCrawlerPlugin and implement the

following methods:

init()

isMetadataUsed()

isContentUsed()

term()

updateDocument()

The AbstractCrawlerPlugin class is an abstract class. The init method and the

term method are implemented to do nothing. The isMetadataUsed method and

isContentUsed method are implemented to return false by default. The

updateDocument method is an abstract method, so you must implement it.

For name resolution, use one of the following JAR files:

v AIX, Linux, or Solaris: ES_INSTALL_ROOT/lib/dscrawler.jar

v Windows: ES_INSTALL_ROOT\lib\dscrawler.jar

2. Compile the implemented code and create a JAR file for it. Add the file

dscrawler.jar to the class path when you compile.

3. In the enterprise search administration console, edit the appropriate collection.

Select the Crawl page and edit the crawler properties for the crawler that will

use your plug-in. Specify the fully qualified class name of the implemented

Java class. Also specify the fully qualified class path for the JAR file and the

directory where all files that are required by the Java class are located.

Restriction: In the administration console, the value of the plug-in class path

file is ignored for the security token plug-in. If you use the security token

plug-in that was provided in an earlier version of enterprise search, the plug-in

needs to copy all libraries (JAR files) that it requires.

4. On the Crawl page, click Monitor. Then, click Stop and Start to restart the

session for the crawler that you edited. Click Details and start a full crawl.

If the crawler stops when it is loading the plug-in, view the log file and verify that:

54 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

v The class name and class path that you specified in the crawler properties page

are correct.

v All necessary libraries are specified for the plug-in class path.

v The crawler plug-in does not throw a CrawlerPluginException error.

Web crawler plug-ins

The Web crawler plug-in provides two types of plug-ins: a prefetch plug-in and a

postparse plug-in.

With the prefetch plug-in, you can use Java APIs to add fields to the HTTP request

header that is sent to the origin server to request a document.

With the postparse plug-in, you can use Java APIs to view the content, security

tokens, and metadata of a document before the document is parsed and tokenized.

You can add to, delete from, or replace any of these fields, or stop the document

from being sent to the parser.

If your plug-in requires Java classes or non-Java libraries or other files besides the

plug-in, you must write the plug-in to handle that requirement. For example, your

plug-in can invoke a class loader to bring in more Java classes and can also load

libraries, make network connections, make database connections, or do anything

else that it needs.

Plug-ins run as part of the crawler JVM process. Exceptions and errors will be

caught, but crawler performance is affected by plug-in execution. You should write

plug-ins to do the minimum amount of processing and catch all anticipated

exceptions. Plug-in code must be multithread-safe. If you have 200 concurrent

downloads, you might have 200 concurrent calls to your plug-in.

Using a plug-in to crawl secure WebSphere Portal sites

If application security is enabled in WebSphere Application Server and you want to

crawl secure WebSphere Portal sites with the Web crawler, you must create a

crawler plug-in to handle the form-based authentication requests. For a discussion

about form-based authentication and a sample program that you can adapt for

your custom Web crawler plug-in, see http://www.ibm.com/developerworks/
db2/library/techarticle/dm-0707nishitani.

The plug-in is required if you use the Web crawler to crawl any sites through

WebSphere Portal, including Workplace Web Content Management™ sites and

Lotus Quickr™ sites.

Creating a prefetch plug-in for the Web crawler

To create a prefetch plug-in, you write a Java class that implements the interface

com.ibm.es.wc.pi.PrefetchPlugin.

To create a prefetch plug-in:

1. Inherit the com.ibm.es.wc.pi.PrefetchPlugin interface and implement the

following methods:

public class MyPrefetchPlugin implements com.ibm.es.wc.pi.PrefetchPlugin {

 public MyPrefetchPlugin() { ... }

 public boolean init() { ... }

 public boolean processDocument(PrefetchPluginArg[] args) { ... }

 public boolean release() { ... }

 }

Application development 55

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0707nishitani
http://www.ibm.com/developerworks/db2/library/techarticle/dm-0707nishitani

The init method is called once when the plug-in is instantiated. If you specify

that you have a plug-in class, the crawler loads that class when the crawler is

stared and creates a single instance of the class. Your plug-in class must have a

no-argument constructor. The crawler creates only one instance of the class.

After creating the instance of the class, the crawler calls the init method before

the first use. This method does the required setup tasks that cannot be done

until an instance of the class is in memory.

If the plug-in is not supposed to be used or other errors occur, the init method

can return false, and the crawler removes this instance from the list of prefetch

plug-ins. If the init method returns true, the plug-in is ready to use. The init

method cannot throw an exception.

The processDocument method is called on the single plug-in instance for every

document that will be downloaded. The crawler uses from one to several

hundred download threads, which run asynchronously, so this method can be

called from multiple threads concurrently.

The release method is called once when the crawler stops to allow the plug-in

object to release any system resources or flush any queued objects. This method

cannot throw exceptions. A true result means success. A false result is logged.

For name resolution, use one of the following files:

v AIX, Linux, or Solaris: ES_INSTALL_ROOT/lib/URLFetcher.jar

v Windows: ES_INSTALL_ROOT\lib\URLFetcher.jar

2. Compile the implemented code and make a JAR file for it. Add the

URLFetcher.jar file to the classpath when you compile.

3. In the enterprise search administration console, follow these steps:

a. Edit the appropriate collection.

b. Select the Crawl page and edit the crawler properties for the crawler that

will use the custom Java class.

c. In the enterprise search administration console, specify the following items:

v The fully qualified class name of the implemented Java class

v The classpath for the plug-in, including all needed JAR files.
d. Stop and restart the session for the crawler that you edited. Then, start a

full crawl.

If an error occurs and the Web crawler stops while it is loading the plug-in, view

the log file and verify that:

v The class name and classpath that you specified on the crawler properties page

is correct.

v All necessary JAR files were specified for plug-in classpath.

v The crawler plug-in does not throw CrawlerPluginException or any other

unexpected exception, and no fatal errors occur in the plug-in.

You must write this method to be multithread-safe, which you can do by wrapping

its entire contents in a synchronized block, but that permits only one thread to

execute the method at a time, which causes the crawler to become single-threaded

during plug-in operation, creating a performance bottleneck.

A better way to make the method multithread-safe is by using local (stack)

variables for all states, which minimizes the amount of global data and

synchronizes only during access to objects that are shared between threads. This

method cannot throw an exception. It can return true to indicate successful

processing of a document or false to indicate a problem. A false return value is

logged with the URL by the crawler.

56 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

Prefetch plug-in example

You can use a prefetch plug-in to add a cookie to the HTTP request header before

the document is downloaded.

package com.mycompany.ofpi;

// OmniFind plug-ins

 public class MyPrefetchPlugin implements com.ibm.es.wc.pi.PrefetchPlugin {

 public MyPrefetchPlugin() { }

 public boolean init() { return true; }

 public boolean release() { return true; }

 public boolean processDocument(PrefetchPluginArg[] args) {

 PrefetchPluginArg1 arg = (PrefetchPluginArg1)args[0];

 if (arg.getURL().startsWith("http://special.mysite.com/")) {

 String httpHeader = arg.getHTTPHeader();

 httpHeader = httpHeader.substring

 (0, orgHeaders.lastIndexOf(CRLF));

 httpHeader = httpHeader + "Cookie: Special=values" + CRLF;

 httpHeader = httpHeader + CRLF;

 }

 return true;

 }

 static final String CRLF = "\r\n";

 }

This example shows:

v The first element ([0]) in the argument array that is passed to your plug-in is an

object of type PrefetchPluginArg1, which is an interface that extends the

interface PrefetchPluginArg. This is the only argument and the only argument

type that is passed to the prefetch plug-in. You can safely cast to it. To be

completely safe, you can enclose the cast in a try/catch block and look for a

ClassCastException object or do an ″instanceof″ test first.

v After you have the argument, you can call any method in the

PrefetchPluginArg1 interface. The getURL method returns the URL (in String

form) of a document that the crawler downloads. You can use this URL to

decide if the document requires additional information in the request header,

such as a cookie.

v The getHTTPHeader method returns a String that contains the all of the content of

the HTTP request header that the crawler sends so that the crawler can

download the document. The plug-in can inspect and modify this header if

necessary. For example, a single cookie can be added to the header or any other

information if it is valid for an HTTP request header. You can also remove any

of this information. If you modify the header, you must conform to HTTP

protocol requirements. For example, every line must end with a CRLF sequence,

and the header must use ISO-8859-1 encoding.

v The processDocument method is called once for every document that the crawler

downloads. If the processDocument method returns false, its results are ignored.

If it returns true, the crawler checks what it did. To stop the download, the

Prefetch plug-in calls the setFetch(false) method.
 Related concepts

 “Crawler plug-ins” on page 52

Deploying a prefetch plug-in

To identify your plug-in class to the crawler, put the class in a JAR file and enter

the name of the plug-in class and the location of the JAR file in the crawler

window in the enterprise search administration console. You must enter the fully

qualified name of the plug-in class, and the absolute path name of the JAR file.

Application development 57

To deploy a prefetch plug-in in enterprise search:

1. Compile the JAVA file and create a JAR file for it. The JAR can also contain

supporting classes and resources, so you might name it ofplugins.jar.

2. Copy this JAR file to the computer that runs the Web crawler in your

enterprise search installation. Enter the absolute path for the JAR file in the

administration console on the crawler window when you enable plug-in.

3. In the enterprise search administration console, specify the following items:

v The fully qualified class name of the implemented Java class, for example,

com.mycompany.ofpi.MyPrefetchPlugin

v The qualified class path for the JAR file

Ensure that the information that you enter is correct. Enterprise search does not

check that the JAR file exists.

When the crawler is started and finds a plug-in JAR file and class name, the

crawler loads the JAR and instantiates the class by using the no-argument

constructor. The crawler then initializes the instance by calling the init method.

If that method returns true, the plug-in is added to the list of prefetch plug-ins.

After you run the crawler, the return value is logged in the collection log file as

informational message. To see information messages, choose All messages as Type

of information to log.

Creating a postparse plug-in for the Web crawler

With the postparse plug-in, you view the content, security tokens, and metadata of

a document after the document is downloaded so that you can add to, delete from,

or replace any of these fields, or stop the document from being sent to the parser.

To create a postparse plug-in, you write a Java class that implements the interface

com.ibm.es.wc.pi.PostparsePlugin, for example:

public class MyPostparsePlugin implements

com.ibm.es.wc.pi.PostparsePlugin {

 public MyPostparsePlugin () { ... }

 public boolean init() { ... }

 public boolean processDocument(PostparsePluginArg[] args) { ... }

 public boolean release() { ... }

}

The plug-in class can implement both interfaces, but it needs only one init

method and one release method. If the class does both prefetch and postparse

processing, you need to initialize and release resources for both tasks. Both the

init method and the release method are called once.

The processDocument method is called on the single plug-in instance for every URL

for which a download was attempted. Not all downloads return content. The

HTTP return codes, such as 200, 302, or 404, can be used by your plug-in to

determine what to do when called. If content was obtained and if the content was

suitable for HTML parsing, the content is put through the parser, and the results of

parsing are available when your plug-in is called.

Postparse plug-in examples

The following example shows how to add security ACLs to the metadata that the

crawler sends with documents that are downloaded from a particular site. You can

use a postparse plug-in to add those ACLs just before the crawler writes the

document to the parser’s input buffer:

58 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

package com.mycompany.ofpi; // OmniFind plug-ins

import com.ibm.es.wc.pi.*;

 public class MyPostparsePlugin implements PostparsePlugin {

 public MyPostparsePlugin() { }

 public boolean init() { return true; }

 public boolean release() { return true; }

 public boolean processDocument(PostparsePluginArg[] args) {

 try {

 PostparsePluginArg1 arg = (PostparsePluginArg1)args[0];

 if (arg.getURL().startsWith("http://mysite.com/users/")) {

 // Extract user name from URL; look up appropriate tokens.

 String acls = // Create a comma-separated list of the

 // additional ones.

 arg.addSecurityACLs(acls);

 }

 return true;

 } catch (Exception e) {

 return false; // disregard returned results

 }

 }

 }

You can also use a postparse plug-in to add a new metadata field to your crawled

documents. For example, if some of your documents contain a keyword, you might

want to add a metadata field called ″MyUserSpecificMetadata″ to the search record

that contains a string that you need to look up at when the crawler is running with

various ″searchability″ attributes. The following example shows how to add a

metadata field:

package com.mycompany.ofpi; // OmniFind plug-ins

import com.ibm.es.wc.pi.*; // Plug-in API

public class MyPostparsePlugin implements PostparsePlugin {

 public MyPostparsePlugin() { }

 public boolean init() { return true; }

 public boolean release() { return true; }

 public boolean processDocument(PostparsePluginArg[] args) {

 try {

 PostparsePluginArg1 arg = (PostparsePluginArg1)args[0];

 if (arg.getContent() != null && arg.getContent().length > 0) {

 String content = new String(arg.getContent(), arg.getEncoding());

 if (content != null && content.indexOf(keyword) > 0) {

 final String userdata = null; // look up string by keyword.

 FieldMetadata mf = new FieldMetadata(

 "MyUserSpecificMetadata" // field name

 userdata, // field value

 false, // searchable?

 true, // field-searchable?

 false, // parametric-searchable?

 true, // can be extracted by search?

 "MetadataPreferred", // metadata value rather

 // than content

 false); // show in summary?

 addMetadataField(mf); // Add it to the list.

 return true; // Use results.

 }

 }

 return false; // ignore results

 } catch (Exception e) {

Application development 59

return false; // disregard returned results

 }

 }

}

The document content is available from the plug-in argument (arg.getContent).

The encoding that the crawler found is available. With the content and encoding,

you can create a String. You can then look for some keyword (content.indexOf(...)),

associate new data with it (userdata = ...), and insert that new data as the content

of the new field.

To define a new metadata field, create an instance of the FieldMetadata object and

set its field values.

 Related concepts

 “Crawler plug-ins” on page 52

60 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

Sample code

The enterprise search sample application

The sample search application, ESSearchApplication, is a working sample of a

browser-based user interface built around SIAPI that fully demonstrates the

advanced search capabilities provided by OmniFind Enterprise Edition.

You can run the sample search application in two environments: as an Enterprise

Application Resource (EAR) file in a standard WebSphere Application Server

environment and as a JSR-168 compliant portlet in a WebSphere Portal Server

environment.

Important: If you customize the sample search application, you must rename it to

ensure that your changes are not overwritten when you install a fix pack or

upgrade to a new version of OmniFind Enterprise Edition.

Overview

The sample application comprises two separate packages that contain two

individual applications. The search servlet application EAR file name is

ESSearchApplication.ear and the search portlet application file name is

ESSearchPortlet.war. The ESSearchApplication.ear file contains a Web

Application Resource (WAR) file named ESSearchApplication.war, which contains

the stand-alone search application.

The sample code for the search applications is provided in the

ES_INSTALL_ROOT/samples/ESSearchApplication directory.

The search application is built by using a number of modern Web technologies and

frameworks that include but are not limited to the ones that are listed here. You

must be familiar with these technologies before you customize the source code for

the applications.

v Apache Struts 1.1

v WebSphere Portal Struts Portlet Framework

v Java Servlet Specification Level 2.3

v Java Server Pages (JSP)

v JavaScript™

v Asynchronous JavaScript and XML (AJAX)

v Cascading Style Sheets (CSS)

Struts and the Struts Portlet Framework

Apache Struts is a popular open source project for implementing Web applications

that use a Model-View-Controller (MVC) design pattern. The Model consists of the

business logic or database layer, the View represents the page design, and the

Controller represents the code that is used to control the navigation through the

application. By separating these three aspects of the design of a Web application,

the Struts framework allows for extensibility and maintainability. The reasons for

the popularity of the Struts framework in a standard servlet environment also

apply to developing portlet applications.

© Copyright IBM Corp. 2004, 2008 61

The Struts Portlet Framework allows developers to build portlet applications for

use in the WebSphere Portal environment by using the Struts framework. With the

exception of a few special considerations, the packaging and structure of a Struts

portlet application is very similar to that of a standard Struts servlet application.

Due to these similarities, a single code base can be used to create both a sample

search servlet application and a sample search portlet application.

Java classes

The Java classes that make up the sample search application are shared across all

three of the Web application samples that are provided for enterprise search. The

source code for these classes is included with the product in the

ES_INSTALL_ROOT/samples/ESSearchApplication/JavaSource directory. The classes

are divided into the following packages under the com.ibm.es.searchui base

package:

actions

This package contains all of the Struts Action implementation classes that

support the actions that the user can take within the search application

view. The Action class names map to the pages that are available to the

user within the application. Additionally, there are a few specialized

classes:

v AuthAction: This class implements the javax.servlet.http.HttpServlet

interface. This class is used only within the sample search servlet

application when WebSphere security is enabled on the search server. Its

specific purpose is to intercept the user name and password that is

entered on the login form by the user. This user name and password

pair is then stored in the HttpSession as a Base64-encoded value that is

used by the SIAPI for communicating to the search server.

v InitAction: This class implements the org.apache.struts.action.PlugIn

interface. This class is used only within the sample search servlet

application to perform some initialization tasks before loading the actual

Struts ActionServlet class.

v BaseAction: This class extends the org.apache.struts.action.Action class.

This BaseAction class is a superclass to all of the other Struts action

classes in the com.ibm.es.searchui.actions package. This class provides

many common methods that are shared across the action classes, such as

those required to process a user’s query request, common logging, and

other such common tasks.

charts and charts.servlet

This package provides the valueObjects and servlet classes for the Top

Results analysis charts.

fetch This package provides clickable URL support for documents that are

crawled by crawlers that are not directly URL-addressable, such as the

Windows file system or Content Edition crawlers. When a user clicks such

a URL, the request is forwarded to this servlet, which in turn writes the

file contents directly to the servlet’s output stream.

filters This package contains classes that implement the Java Servlet Filter

interface. The package consists of a single class that is used to set the

request character encoding to UTF-8 encoding. This encoding allows the

search application pages to display multiple languages within the same

view.

62 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

helpers

This package contains classes that encapsulate several functions, including

the SIAPI methods, identity management API methods, and the objects

that are used by the category tree.

resources

This package contains the translated resource bundles for the application.

All of the predefined strings displayed on the application screens are

contained in these bundles.

tags This package contains all of the custom Java Tag Library classes used by

the application’s JSP pages. These tag libraries provide custom functions

such as formatting clickable document URIs, manipulating document titles,

converting SIAPI date field values to readable string representations, and

many other such functions.

valueObjects

This package contains value objects (beans) that are used by the

application to pass information between the Action classes and the View

(JSP pages).

Web content

The directory structure for the Web applications is very similar. Many of the JSP

pages and other Web application support files are shared. The source code for

these files is included with the product in the ES_INSTALL_ROOT/samples/
ESSearchApplication/WebContent directory. The following information describes

the content and layout of the directory structure, starting from the root directory:

root The root directory is the directory named after the Web application. This

directory contains all of the JSP pages for the given application and other

subdirectories. For example, the root directory for the search portlet

application is named ESSearchPortlet.war. When working with the source

code, the root directory is the WebContent folder.

css This directory contains all of the cascading style sheet (CSS) files that are

used by the various Web applications. The majority of the style sheets used

within the search servlet application are provided by WebSphere Portal so

that the appearance and behavior of the servlet application matches the

portlet application.

images

This directory contains all of the GIF files that are used by the Web

applications.

layouts

This directory contains all of the Struts Tiles layout JSP pages. These JSP

files determine how the view of the application is structured in different

instances. For example, different layouts are defined for the servlet

application and the portlet application.

META-INF

This directory contains the files that are included in the META-INF

directory of the ESSearchApplication.ear file. These files include the

enterprise application deployment descriptor and the WebSphere policy

file.

scripts This directory contains various JavaScript files that are used to provide

some of the advanced interactivity within the search applications. Some of

these functions include the calendar pop-ups, the search result tooltip

Sample code 63

preview, the AJAX functionality for the top results analysis charts, the

AJAX functionality for the search application customizer, the AJAX

functionality for the search result paging, and some helper functions.

WEB-INF

This directory is a required directory in any Web application. This

directory contains the struts-config.xml definition file, the Web

application deployment descriptor, the config.properties file that is used

to control the search servlet application settings, and the portlet

deployment descriptor that contains the definitions of the portlet

application.

WEB-INF/conf

This directory contains the Struts Tiles definition file (tiles-def.xml).

WEB-INF/portal

This directory contains the Web deployment descriptor (web.xml), Struts

configuration definition (struts-config.xml), and portlet deployment

descriptor (portlet.xml) for the portlet application.

WEB-INF/tld

This directory contains all of the tag library definition (tld) files for the

applications. The tag library definition files include the standard Struts tld

files and the custom enterprise search tld file.

WEB-INF/was

This directory contains the Web deployment descriptor (web.xml) and

Struts configuration definition (struts-config.xml) for the servlet

application.

Search portlet application

Despite the fact that the majority of the JSP and Java source is shared between the

servlet application and the portlet application, several differences are worth noting:

Layout

The portlet application has a unique layout that does not include the

banner, the search tabs, the topmost toolbar, or integrated links to the

product information center. These changes are required to allow the portlet

application to integrate more naturally with the overall portal theme and

layout.

CSS The portlet application does not include the WEB-INF/css directory. Instead,

it relies on the WebSphere Portal Server theme to define the current CSS

files in use.

Configuration parameters

The portlet application does not use the config.properties file and it does

not support the search application customizer. The portlet’s configuration

is controlled through the WebSphere Portal Administration Portlet

configuration interface.

Namespace

Several key JavaScript functions require direct access to the current HTML

form by name. In these cases, the JSR-168 portlet:namespace tag library

must be used to ensure that the form name is properly scoped.

Action and Render phases

The portlet application has multiple Action class implementation classes

for the Action phase and Render phases of the portlet life cycle. This

distinction between phases in the WebSphere Portal Server framework

64 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

requires the IStrutsPrepareRender interface. See the following

developerWorks® article for more information: http://www-128.ibm.com/
developerworks/websphere/techjournal/0504_pixley/0504_pixley.html

Logging and debugging

The search applications all share a common way of logging trace and error

information. The logging and tracing infrastructure for the applications is built by

using the Java Logger classes provided in the core J2SE 1.4 Java Runtime

Environment. The BaseAction Java class defines a root logger for the

com.ibm.es.searchui package. This root logger is initialized with the logging.level

property when the search application is initialized.

The default logging level is set to SEVERE, which means that the applications, as

provided, log only Java Exceptions. You can enable more detailed information to

be logged by changing the logging.level property to INFO, FINE, FINER, FINEST,

or ALL. For the servlet application, you can change the logging.level property by

using the search application customizer or by changing the ES_INSTALL_ROOT/
ESSearchApplication.ear/ESSearchApplication.war/WEB-INF/config.properties

file. For the portlet application, you can change the logging.level property by using

the WebSphere Portal Administration and changing the Portlet parameter value.

The various levels of logging add information and add overhead to the

applications. Some examples of the types of information logged include:

v The query string and any security constraints

v The processing of the identity management component, including such things as

the user name that is entered by the user, the source type, and any data returned

from the identity management APIs

v The values of the HTTP headers and request parameters and any cookies that

are included with the request

v The user name of the current user, if WebSphere security is enabled

In the case of the servlet application, the logging information is written to the

ES_NODE_ROOT/logs/ESSearchApplication.0.log file. For the portlet application, the

logging information is written to the WebSphere Portal Server SystemErr.log file.

Compiling the applications

The sample code for all three of the sample applications can be compiled from the

command line by using a single build process. To build the applications, you must

install and configure the following tools:

Apache ANT

ANT is a standard, open source tool for building source code by using an

XML descriptor file. For more information about how to install and

configure Apache ANT, see http://ant.apache.org.

IBM Java Development Kit 1.4.2

The IBM Java Development Kit 1.4.2 is the IBM implementation of the Java

Development Kit. For more information about how to install and configure

the IBM JDK, see http://www.ibm.com/developerworks/java.

The ANT XML descriptor file (build.xml) is in the ES_INSTALL_ROOT/samples/
ESSearchApplication directory. This single ANT build definition file contains

instructions on how to build all of the sample applications in a single build

process. When the build is done, the message BUILD SUCCESSFUL is displayed

Sample code 65

http://www-128.ibm.com/developerworks/websphere/techjournal/0504_pixley/0504_pixley.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0504_pixley/0504_pixley.html
http://ant.apache.org
http://www.ibm.com/developerworks/java

on the console. The output of the build is located in the ES_INSTALL_ROOT/samples/
ESSearchApplication/bin subdirectory and consists of the following files:

ESSeachApplication.ear

Contains both the ESSearchApplication.war servlet application and the

GDSSearchApplication.war servlet application.

ESSearchPortlet.war

Contains the search portlet application. This file can be deployed onto a

WebSphere Portal Server by using the WebSphere Portal administration

interface.

To compile the sample search applications:

1. From the command line, change to the ES_INSTALL_ROOT/samples/
ESSearchApplication directory.

2. Enter the command ant. This command automatically invokes the ANT build

process and uses the build.xml file.

Rational Application Developer

Typically, many development organizations work with the source code in a

graphical user interface such as the Eclipse framework. Enterprise search includes

support for working with the servlet application within the Rational® Application

Developer version 7.0 product.

The product includes two Project Interchange ZIP files that you can import into a

Rational Application Developer environment. These files are located in the

ES_INSTALL_ROOT/samples/ESSearchApplication/rad subdirectory:

v ESSearchApplication.zip, which is for a stand-alone search application

v ESSearchPortlet.zip, which is for a search application that runs as a portlet in

WebSphere Portal

To import the servlet application Project Interchange file in to your Rational

Application Developer environment:

1. Open the Rational Application Developer tool.

2. Click File → File.

3. Select Other → Project Interchange and click Next.

4. Click Browse next to the From ZIP file list and browse to the

ES_INSTALL_ROOT/samples/ESSearchApplication/rad subdirectory.

5. Select the ZIP file that you want to use and click Open.

6. Click Select All to select both the EAR and WAR projects and then click Finish.

Sample search applications

The search and index API includes several sample applications that show you how

to create simple or advanced search applications.

The sample search applications are available after you install OmniFind Enterprise

Edition:

v The sample code is available in the ES_INSTALL_ROOT/samples/siapi directory.

v The Javadoc documentation is available in the ES_INSTALL_ROOT/docs/api/siapi

directory.

The following sample applications demonstrate how to do various search tasks:

66 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

Simple and advanced search

The SearchExample class provides a simple example of the minimum

requirements that are needed to submit a search to the search server. The

AdvancedSearchExample class is an example that demonstrates some of the

advanced query settings and result processing options.

Streaming queries

The StreamingSearchExample class gives a simple example of how to

submit and process a streaming query against the search server. Streaming

in this case is used to return all results from a particular collection. The

results are returned unsorted and only the document ID and the score are

provided.

Browse and navigate

The BrowseExample class provides an example of accessing a collection’s

taxonomy tree and displaying some of the basic navigation properties.

Retrieve all search results

This sample application (code snippet) shows how to set a query to return

unsorted results and loop over the query results.

Federated search

The FederatedSearchExample class provides a simple example of the

minimum tasks that are required to submit a federated search to the search

server.

Fetch search result documents

The FetchSearchExample class provides an example of how to submit a

fetch request to retrieve the content search result documents.

Secured search

The SecuredSearchExample class gives a simple example of how to submit

a search to the search server when document level security is enabled for

the collection. This example takes a user name and looks up the user’s

credentials in the identity management credential store, then it passes that

information on the SIAPI Query.setACLConstraints method.

Identity management

The IdentityManagementExample class provides a working sample program

that demonstrates how to use the Identity Management API. For a more

complete, user interface-based example, see the ESSearchApplication

sample code in the ES_INSTALL_ROOT/samples/ESSearchApplication

directory.
 Related tasks

 “Installing the client toolkit” on page 2

Compiling the sample search applications

The ESSearchApplication sample code and search and index API code must be

compiled with the IBM Software Development Kit (SDK) for Java 1.4.2, Service

Release 5 (SR5).

Restrictions

Before you can build Java applications for enterprise search, you must install and

configure Apache ANT, a Java-based build tool. For information about how to

install and configure Apache ANT, see http://ant.apache.org/.

Sample code 67

http://ant.apache.org/

The ESSearchApplication application in the ES_INSTALL_ROOT/samples directory

must run in a JRE Version 1.4 environment. WebSphere Application Server and

WebSphere Portal both provide the JRE Version 1.4.

Procedure

To compile and run a sample search application:

1. From the command line, change to one of the following directories:

For the sample search applications

 ES_INSTALL_ROOT/samples/siapi. The default installation paths are:

v AIX: /usr/IBM/es/samples/siapi

v Linux and Solaris: /opt/IBM/es/samples/siapi

v Windows: C:\Program Files\IBM\es\samples\siapi

For the ESSearchApplication application

 ES_INSTALL_ROOT/samples/ESSearchApplication. The default installation

paths are:

v AIX: /usr/IBM/es/samples/ESSearchApplication

v Linux and Solaris: /opt/IBM/es/samples/ESSearchApplication

v Windows: C:\Program Files\IBM\es\samples\ESSearchApplication

Each of these directories includes a build.xml file that ANT uses to build the

file.

2. Run the ANT script:

ant

You see the following message after the Java source code compiles:

BUILD SUCCESSFUL

Total time: xx seconds

3. Run the application by specifying the following commands, where search_app

is the search application that you want to compile:

AIX, Linux, and Solaris

java -classpath ES_INSTALL_ROOT/lib/esapi.jar:ES_INSTALL_ROOT/lib/siapi.jar:.

search_app

Windows

java -classpath "ES_INSTALL_ROOT\lib\esapi.jar;ES_INSTALL_ROOT\lib\siapi.jar;."

search_app

 Related tasks

 “Compiling the sample administration applications” on page 82

Simple and advanced sample search applications

The SearchExample class provides a simple example of the minimum number of

required tasks that the application does to submit a search query to the search

server. The AdvancedSearchExample class shows the same tasks as the simple

example, but it prints the full ResultSet object instead of only a few values

The simple sample application demonstrates how to:

v Access the service

v Specify a collection

v Specify an application

v Submit a query

68 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

v Process the returned results

The advanced sample application does the same tasks as the simple sample except

that it processes the returned results differently than the simple sample.

The simple sample application (SearchExample.java) and the advanced sample

application (AdvancedSearchExample.java) are in the following default directories:

v AIX, Linux, and Solaris: /opt/IBM/es/samples/siapi

v Windows: C:\Program Files\IBM\es\samples\siapi

Browse and navigation sample application

The BrowseExample class provides a sample application that accesses a collection’s

taxonomy tree and displays some basic navigation properties.

This sample demonstrates how to:

v Obtain the browse factory

v Obtain a browse service

v Obtain a browser reference

v Get and display the root category

v Get the root’s first child category

v Display the child category and its path from root

The sample BrowseExample.java application is in the following directories:

v AIX, Linux, and Solaris: /opt/IBM/es/samples/siapi

v Windows: C:\Program Files\IBM\es\samples\siapi

Retrieve all search results sample application

This sample code shows how to set a query to return unsorted results and loop

over the query results. You can obtain only a maximum of 500 sorted results for

your queries. However, you can obtain all unsorted results.

The following sample code shows you how to:

v Obtain a SearchFactory and a Searchable object

v Create a new Query object

v Set the query to return unsorted results

v Run the search

Obtain a SearchFactory and a Searchable object

Obtain a SearchFactory and a Searchable object as explained in “Simple and

advanced sample search applications” on page 68 sample.

SearchFactory factory;

Searchable searchable;

... // obtain a SearchFactory and Searchable object

Create a new Query object

Query q = factory.createQuery("big apple");

Sample code 69

Set the query to return unsorted results

q.setSortKey(Query.SORT_KEY_NONE);

Run the search

Run the query in a loop to obtain one page of results at a time. The maximum

result page size that is allowed in enterprise search is 100.

When you receive the results pages, you need to interpret the

getAvailableNumberOfResults method and getEstimatedNumberOfResults method

differently from the way that you interpret them for sorted query results:

v The getEstimatedNumberOfResults method always returns 0 because enterprise

search does not provide a number-of-results estimate for unsorted results.

v The getAvailableNumberOfResults method returns one of two values: 0 if this is

the last result page, and 1 if more results exist.

v You can use the length of the array that is returned by the getResults method to

find out how many results are within this result page.
int fromResult = 0;

int pageSize = 100;

boolean moreResults = true;

// loop over query results, pageSize results at a time

while (moreResults) {

 // set the result range for the next page of results

 q.setRequestedResultRange(fromResult, pageSize);

 // execute the search

 ResultSet resultPage = s.search(q);

 // loop over the results from the ResultSet

 Result[] results = resultPage.getResults();

 for (int i=0;i<results.length;i++) {

... // process result

 }

 // check if there are more available results

 moreResults = (resultPage.getAvailableNumberOfResults() == 1);

 // modify the range for getting the next page of results

 fromResult += pageSize;

}

Fetch document content sample application

This sample code shows how to fetch the content of documents that cannot be

viewed by clicking a clickable URI in the search results.

For a complete example, see the sample program, FetchSearchExample, in the

ES_INSTALL_ROOT/samples/siapi directory.

The fetch API provides the com.ibm.es.fetch package in the esapi.jar file and

the following interfaces:

v com.ibm.es.fetch.Document

v com.ibm.es.fetch.Fetcher

v com.ibm.es.fetch.FetchRequest

v com.ibm.es.fetch.FetchService

70 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

v com.ibm.es.fetch.FetchServiceFactory

You can use these classes the same way that you use other SIAPI classes.

Fetching a document

First, create the factory object. Using this factory class, create the FetchService

object and FetchRequest object. The Fetcher class can be created through the

FetchService object. You can then get the Document object by calling the fetch

method of the Fetcher object. Finally, you can get the binary data by calling the

getBytes method of the Document object.

// obtain the Fetch Service Factory factory implementation

Class cls = Class.forName("com.ibm.es.api.fetch.RemoteFetchFactory");

FetchServiceFactory factory = (FetchServiceFactory) cls.newInstance();

// create a valid Application ID that will be used

// by the Search Node to authorize this access to the collection

ApplicationInfo applicationInfo = factory.createApplicationInfo(applicationName);

// obtain the Fetch Service implementation

FetchService fetchService = factory.getFetchService(config);

// create a new Fetch Request object using the specified uri string

FetchRequest fetchRequest = factory.createFetchRequest(uri, null);

// obtain a Fetcher object to the specified collection ID

Fetcher fetcher = fetchService.getFetcher(applicationInfo, collectionId);

// execute the search by calling the Fetcher’s fetch method.

// A Document object will be returned

Document doc = fetcher.fetch(fetchRequest);

// dump the binary content of the document

byte[] buf = doc.getBytes();

Enforcing document security

You can set ACL constraints to the FetchRequest object. If its value is set, ACL

constraints will be delivered to the search server, and the search server will verify

the user’s authority to access the document by checking the ACL constraints.

String aclConstraints = (String) parameters.get("SecurityContext");

aclConstraints = "@SecurityContext::’" + aclConstraints + "’";

FetchRequest fetchRequest = factory.createFetchRequest(uri, aclConstraints);

The ACL constraints value is a String value that must conform to the SIAPI format.

Federated search sample application

The FederatedSearchExample class provides a simple example of the minimum

tasks that are required to submit a federated search to the search server.

The FederatedSearchExample application shows how to:

v Obtain a RemoteFederator object with a federator ID. This ID is the same as the

ApplicationInfo object ID.

v Create a new query object.

v Set the result range.

v Run the search by calling the RemoteFederator object’s default search method.

The FederatedSearchExample.java file is in the following directories:

v AIX, Linux, and Solaris: /opt/IBM/es/samples/siapi

v Windows: C:\Program Files\IBM\es\samples\siapi

Sample code 71

Sample administration applications

With the sample administration applications, you can create an application ID,

create or destroy a collection, enable or disable a collection for indexing, enable or

disable a collection for searching, add or remove documents, or build an index.

The sample administration applications are available after you install the client

toolkit (the es.siapi.toolkit.jar archive file):

v The sample code is available in the ES_INSTALL_ROOT/samples/siapiAdmin

directory.

v The Javadoc documentation is available in the ES_INSTALL_ROOT/docs/api/siapi

directory.

Sample: create an application ID

You must register an application ID before you create an application ID. See

“Registering application IDs” on page 45 for a sample application.

import com.ibm.es.siapi.client.IAdminConstants;

import com.ibm.siapi.SiapiException;

import com.ibm.siapi.admin.AdminFactory;

import com.ibm.siapi.admin.SiapiAdminImpl;

import com.ibm.siapi.common.ApplicationInfo;

/**

 * Creates a application ID on the omnifind server.

 * An authenticated application ID is required to

 * administer Omnifind server.

 *

 */

public class CreateApplicationID {

public static void main(String[] args) {

try {

 // instiantiate the admin factory

AdminFactory factory = SiapiAdminImpl.createAdminFactory

("com.ibm.es.siapi.admin.AdminFactoryImpl");

if(factory != null){

String appID = "SIAPI-App";

String appPw = "password";

ApplicationInfo appInfo = factory.createApplicationInfo(appID,appPw);

if(appInfo != null){

System.out.println("Application ID called " +

appInfo.getId() + " was created successfully.");

} else {

System.out.println("Application ID called " +

appInfo.getId() + " was not created!!");

}

// change the password

appInfo.setPassword("search");

System.out.println("New password was successfully set.");

}

} catch (SiapiException e) {

e.printStackTrace();

System.out.println(e.getMessage());

}

}

}

72 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

Sample: create a collection

import java.util.Properties;

import com.ibm.es.siapi.client.IAdminConstants;

import com.ibm.es.siapi.common.ApplicationInfoImpl;

import com.ibm.siapi.SiapiException;

import com.ibm.siapi.admin.AdminFactory;

import com.ibm.siapi.admin.AdminService;

import com.ibm.siapi.admin.SiapiAdminImpl;

import com.ibm.siapi.common.ApplicationInfo;

/**

 * Creates a sample collection on the omnifind server

 * and associates the collection

 * to a already created application ID.

 *

 * @see CreateApplicationID

 */

public class CreateCollection {

public static void main(String[] args) {

 try {

 AdminFactory factory =

SiapiAdminImpl.createAdminFactory

("com.ibm.es.siapi.admin.AdminFactoryImpl");

 if (factory != null) {

 AdminService service = factory.getAdminService(null);

 if (service != null) {

 // get handle to a created application ID

 ApplicationInfo appInfo = factory.createApplicationInfo

 ("SIAPI-App","password");

 Properties config = new Properties();

 // specify custom data directory

 config.setProperty(IAdminConstants.KEY_INDEX_LOCATION,

 "/home/esadmin/siapidata");

 // specify optional n-gram option

 config.setProperty(IAdminConstants.KEY_ENABLE_COLLECTION_NGRAM,

 "true");

 // specify optional security option

 config.setProperty

 (IAdminConstants.KEY_ENABLE_COLLECTION_SECURITY, "true");

 // specify optional max index in the collection

 config.setProperty(IAdminConstants.KEY_MAX_DOCS_IN_INDEX, "10000");

 String colID = "col_123";

 String colLabel = "SIAPI Collection";

 String colLangauge = "en";

 service.createCollection(appInfo,

 colID,

 colLabel,

 0,

 colLangauge,

 config);

 }

 }

 } catch (SiapiException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

}

}

Sample code 73

Sample: destroy a collection

import com.ibm.es.siapi.client.IAdminConstants;

import com.ibm.siapi.SiapiException;

import com.ibm.siapi.admin.AdminFactory;

import com.ibm.siapi.admin.AdminService;

import com.ibm.siapi.admin.SiapiAdminImpl;

import com.ibm.siapi.common.ApplicationInfo;

/**

 * Deletes the sample collection created by CreateCollection.

 *

 * @see CreateCollection

 */

public class DestroyCollection {

public static void main(String[] args) {

 try {

 AdminFactory factory =

SiapiAdminImpl.createAdminFactory("com.ibm.es.siapi.admin.AdminFactoryImpl");

if (factory != null) {

 ApplicationInfo appInfo = factory.createApplicationInfo

 ("SIAPI-App","password");

 AdminService service = factory.getAdminService(null);

 if (service != null) {

 // collection ID is required to destroy the collection

 String colID = "col_123";

 service.destroyCollection(appInfo, colID);

 }

 }

 } catch (SiapiException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

}

}

Sample: enable a collection for indexing

import com.ibm.es.siapi.client.IAdminConstants;

import com.ibm.siapi.SiapiException;

import com.ibm.siapi.admin.AdminFactory;

import com.ibm.siapi.admin.AdminService;

import com.ibm.siapi.admin.SiapiAdminImpl;

import com.ibm.siapi.common.ApplicationInfo;

/**

 * Enables a collection for indexing.

 * The parser driver and the data listener sessions

 * are checked and started.

 *

*/

public class EnableCollectionForIndexing {

public static void listIndexableCollectionIDs

(AdminService service, ApplicationInfo appInfo)

throws SiapiException{

 String [] indexables = service.getIndexableCollectionIDs(appInfo);

 if (indexables != null && indexables.length > 0) {

 System.out.println("Following are indexable collection ids:");

 for (int i=0; i<indexables.length; ++i) {

 System.out.println(indexables[i]);

 }

 }

}

 public static void main(String[] args) {

 try {

74 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

AdminFactory factory = SiapiAdminImpl.createAdminFactory

 (IAdminConstants.ADMIN_FACTORY_IMPL);

 if (factory != null) {

 ApplicationInfo appInfo = factory.createApplicationInfo

 ("SIAPI-App","password");

 AdminService service = factory.getAdminService(null);

 if (service != null) {

 String colID = "col_123";

 listIndexableCollectionIDs(service, appInfo);

 boolean enabled = service.isEnabledForIndexing(appInfo, colID);

 if (!enabled) {

 // enable for indexing

 System.out.println("Enabling collection for indexing");

 service.enableCollectionForIndexing(appInfo, colID, null);

 }

 //check if enabled for indexing

 enabled = service.isEnabledForIndexing(appInfo, colID);

 if (enabled) {

 System.out.println("Collection is enabled for indexing");

 } else {

 System.out.println("Collection is not enabled for indexing");

 }

 listIndexableCollectionIDs(service, appInfo);

 }

 }

 } catch (SiapiException e) {

 e.printStackTrace();

 }

 }

}

Sample: disable a collection for indexing

import com.ibm.es.siapi.client.IAdminConstants;

import com.ibm.siapi.SiapiException;

import com.ibm.siapi.admin.AdminFactory;

import com.ibm.siapi.admin.AdminService;

import com.ibm.siapi.admin.SiapiAdminImpl;

import com.ibm.siapi.common.ApplicationInfo;

/**

 * Disables a collection for indexing.

 *

 */

public class DisableCollectionForindexing {

 public static void main(String[] args) {

 try {

 AdminFactory factory = SiapiAdminImpl.createAdminFactory

(IAdminConstants.ADMIN_FACTORY_IMPL);

 if (factory != null) {

 ApplicationInfo appInfo = factory.createApplicationInfo

 ("SIAPI-App","password");

 AdminService service = factory.getAdminService(null);

 if (service != null) {

 String colID = "col_123";

 boolean enabled = service.isEnabledForIndexing(appInfo, colID);

 if (enabled) {

 // enable for indexing

 System.out.println("Disabling collection for indexing");

 service.disableCollectionForIndexing(appInfo, colID, null);

 }

 //check if collection is disabled for indexing

 enabled = service.isEnabledForIndexing(appInfo, colID);

 if (enabled) {

Sample code 75

System.out.println("Collection is enabled for indexing");

 } else {

 System.out.println("Collection is not enabled for indexing");

 }

 }

 }

 } catch (SiapiException e) {

 e.printStackTrace();

 }

 }

}

Sample: enable a collection for search

import com.ibm.es.siapi.client.IAdminConstants;

import com.ibm.siapi.SiapiException;

import com.ibm.siapi.admin.AdminFactory;

import com.ibm.siapi.admin.AdminService;

import com.ibm.siapi.admin.SiapiAdminImpl;

import com.ibm.siapi.common.ApplicationInfo;

/**

 * Enables a collection for searching.

 * The search runtimes for the specified collection are started

 *

 */

public class EnableCollectionForSearch {

 public static void listSearchableCollectionIDs

(AdminService service, ApplicationInfo appInfo) throws SiapiException{

 String [] searchables = service.getSearchableCollectionIDs(appInfo);

 if (searchables != null && searchables.length > 0) {

 System.out.println("Following are searchable collection ids:");

 for (int i=0; i<searchables.length; ++i) {

 System.out.println(searchables[i]);

 }

 }

 }

 public static void main(String[] args) {

 try {

 AdminFactory factory = SiapiAdminImpl.createAdminFactory

(IAdminConstants.ADMIN_FACTORY_IMPL);

 if (factory != null) {

 ApplicationInfo appInfo = factory.createApplicationInfo

 ("SIAPI-App","password");

 AdminService service = factory.getAdminService(null);

 if (service != null) {

 String colID = "col_123";

 listSearchableCollectionIDs(service, appInfo);

 boolean enabled = service.isEnabledForSearch(appInfo, colID, null);

 if (!enabled) {

 // enable for searching

 System.out.println("Enabling collection for searching");

 service.enableCollectionForSearch(appInfo, colID, null);

 }

 //check if enabled for searching

 enabled = service.isEnabledForSearch(appInfo, colID, null);

 if (enabled) {

 System.out.println("Collection is enabled for searching");

 } else {

 System.out.println("Collection is not enabled for searching");

 }

 listSearchableCollectionIDs(service, appInfo);

 }

76 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

}

 } catch (SiapiException e) {

 e.printStackTrace();

 }

 }

}

Sample: disable a collection for search

import com.ibm.es.siapi.client.IAdminConstants;

import com.ibm.siapi.SiapiException;

import com.ibm.siapi.admin.AdminFactory;

import com.ibm.siapi.admin.AdminService;

import com.ibm.siapi.admin.SiapiAdminImpl;

import com.ibm.siapi.common.ApplicationInfo;

/**

 *

 * Disables a collection for search.

 * The search runtimes for the specified collection

 * are stopped.

 */

public class DisableCollectionForSearch {

 public static void main(String[] args) {

 try {

 AdminFactory factory = SiapiAdminImpl.createAdminFactory

 (IAdminConstants.ADMIN_FACTORY_IMPL);

 if (factory != null) {

 ApplicationInfo appInfo = factory.createApplicationInfo

 ("SIAPI-App","password");

 AdminService service = factory.getAdminService(null);

 if (service != null) {

 String colID = "col_123";

 boolean enabled = service.isEnabledForSearch

 (appInfo, colID, null);

 if (enabled) {

 // disable for searching

 System.out.println("Disabling collection for indexing");

 service.disableCollectionForSearch(appInfo, colID, null);

 }

 //check if enabled for searching

 enabled = service.isEnabledForSearch(appInfo, colID, null);

 if (enabled) {

 System.out.println("Collection is enabled for searching");

 } else {

 System.out.println("Collection is not enabled for searching");

 }

 }

 }

 } catch (SiapiException e) {

 e.printStackTrace();

 }

 }

}

Sample: add documents to an index

import java.util.Date;

import com.ibm.es.siapi.client.IAdminConstants;

import com.ibm.siapi.SiapiException;

import com.ibm.siapi.admin.AdminFactory;

import com.ibm.siapi.admin.AdminService;

import com.ibm.siapi.admin.SiapiAdminImpl;

import com.ibm.siapi.common.ApplicationInfo;

Sample code 77

import com.ibm.siapi.index.Document;

import com.ibm.siapi.index.Field;

import com.ibm.siapi.index.Index;

import com.ibm.siapi.index.IndexFactory;

import com.ibm.siapi.index.IndexService;

import com.ibm.siapi.index.IndexStats;

import com.ibm.siapi.index.SiapiIndexImpl;

/**

 * Add documents to a index.

 *

 * Type comment

 */

public class AddDocumentsAndFields {

 public static void main(String[] args) {

 try {

 IndexFactory iFactory = SiapiIndexImpl.createIndexFactory

(IAdminConstants.INDEX_FACTORY_IMPL);

 AdminFactory aFactory = SiapiAdminImpl.createAdminFactory

(IAdminConstants.ADMIN_FACTORY_IMPL);

 if (iFactory != null) {

 ApplicationInfo appInfo = iFactory.createApplicationInfo

 ("SIAPI-App","password");

 if (aFactory != null) {

 // enable collection for indexing

 AdminService aService = aFactory.getAdminService(null);

 if (aService != null) {

 aService.enableCollectionForIndexing(appInfo, "col_123", null);

 }

 if (!aService.isEnabledForIndexing(appInfo, "col_123")) {

 System.out.println("Sorry, can’t add document to the index.

 The parser driver can not be started");

 System.exit(0);

 }

 }

 IndexService service = iFactory.getIndexService(null);

 if (service != null) {

 Index index = service.getIndex(appInfo, "col_123");

 if (index == null) {

 System.out.println("Index instance could not be

 instantiated.. return now!!");

 System.exit(0);

 }

 for (int i=0;i<3; ++i) {

 Document doc = iFactory.createDocument("docid" + i,

 "My document id="+i,

 "custom" + i,

 "custom" + i);

 doc.setDate(new Date());

 doc.setLanguage("en");

 doc.setRawContentFormat("text/plain");

 // set security tokens

 /*

 String[] nativeACL = new String [1];

 if(i == 0){

 nativeACL[0] = "<NativeACL><Groups><Group>Admins

 </Group><Group>Staff</Group></Groups></NativeACL";

 } else if (i== 1){

 nativeACL[0] = "Admin,staff";

78 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

} else {

 nativeACL[0] = "";

 }

 doc.setACL(nativeACL);

 */

 // create fields

 Field field1 = iFactory.createField("Title", "Mr. Srinivas");

 field1.setContentSearchable(true);

 field1.setFieldSearchable(true);

 field1.setParametric(false);

 field1.setReturnable(true);

 field1.setConflictResolutionPolicy

 (Field.CONFLICT_FIELD_OVERRIDES);

 Field field2 = iFactory.createField("Address",

 "200 Gibralter Drive, USA");

 field2.setContentSearchable(true);

 field2.setFieldSearchable(true);

 field2.setParametric(false);

 field2.setReturnable(true);

 field2.setConflictResolutionPolicy

 (Field.CONFLICT_CONTENT_OVERRIDES);

 Field field3 = iFactory.createField("Street number", 200);

 field3.setContentSearchable(true);

 field3.setFieldSearchable(true);

 field3.setParametric(true);

 field3.setReturnable(true);

 field3.setConflictResolutionPolicy(Field.CONFLICT_COEXIST);

 doc.addField(field1);

 doc.addField(field2);

 doc.addField(field3);

 // add document to the index

 index.addDocument(doc);

 }

 // get statistics of documents in the store

 IndexStats stats = index.getStatistics();

 if (stats != null && stats.getNumPendingUpdates() > 0) {

 // build main index

 index.reorganize();

 }

 }

 }

Sample: remove documents from an index

import com.ibm.es.siapi.client.IAdminConstants;

import com.ibm.siapi.SiapiException;

import com.ibm.siapi.common.ApplicationInfo;

import com.ibm.siapi.index.Index;

import com.ibm.siapi.index.IndexFactory;

import com.ibm.siapi.index.IndexService;

import com.ibm.siapi.index.IndexStats;

import com.ibm.siapi.index.SiapiIndexImpl;

/**

 * Remove specified documents from the index.

 *

 * Type comment

 */

public class RemoveDocument {

Sample code 79

public static void main(String[] args) {

 try {

 IndexFactory factory =

SiapiIndexImpl.createIndexFactory(IAdminConstants.INDEX_FACTORY_IMPL);

 if (factory != null) {

 ApplicationInfo appInfo =

 factory.createApplicationInfo("SIAPI-App","password");

 IndexService service = factory.getIndexService(null);

 if (service != null) {

 Index index = service.getIndex(appInfo, "col_123");

 if (index == null) {

 System.out.println("Index instance could not be

 instantiated.. return now!!");

 System.exit(0);

 }

 index.removeDocument("docid0");

 }

 }

 } catch (SiapiException e) {

 e.printStackTrace();

 System.out.println(e.getLocalizedMessage());

 }

 }

}

Sample: build an index

import com.ibm.es.siapi.client.IAdminConstants;

import com.ibm.siapi.SiapiException;

import com.ibm.siapi.common.ApplicationInfo;

import com.ibm.siapi.index.Index;

import com.ibm.siapi.index.IndexFactory;

import com.ibm.siapi.index.IndexService;

import com.ibm.siapi.index.IndexStats;

import com.ibm.siapi.index.SiapiIndexImpl;

/**

 * Build index with documents.

 * The

 * Type comment

 */

public class BuildIndex {

 public static void main(String[] args) {

 try {

 IndexFactory factory =

SiapiIndexImpl.createIndexFactory(IAdminConstants.INDEX_FACTORY_IMPL);

 if (factory != null) {

 ApplicationInfo appInfo =

 factory.createApplicationInfo("SIAPI-App","password");

 IndexService service = factory.getIndexService(null);

 if (service != null) {

 Index index = service.getIndex(appInfo, "col_123");

 if (index == null) {

 System.out.println("Index instance could not be

 instantiated.. return now!!");

 System.exit(0);

 }

 // set fragmentation count to 2

 // after every 2 delta build, the index

 // will be reorganized

 index.setProperty

 (IAdminConstants.BUILD_FRAGMENTATION_COUNT, "2");

80 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

// get statistics of documents in the store

 IndexStats stats = index.getStatistics();

 if (stats != null && stats.getNumPendingUpdates() > 0) {

 // build index

 index.build();

 }

 }

 }

 } catch (SiapiException e) {

 e.printStackTrace();

 System.out.println(e.getLocalizedMessage());

 }

 }

}

Sample: revisiting URLs

import com.ibm.es.siapi.client.IAdminConstants;

import com.ibm.siapi.SiapiException;

import com.ibm.siapi.admin.AdminFactory;

import com.ibm.siapi.admin.AdminService;

import com.ibm.siapi.admin.SiapiAdminImpl;

import com.ibm.siapi.common.ApplicationInfo;

/**

* PerformAdminCommand provides sample code to revisit a specified URL.

* Before runningthis sample, a Web crawler has to be associated with the

* specified collection. Use Admin GUI to create the web crawler. Also

* contact your administrator to learn about the collection ID that

* is associated to the web crawler.

*/

public class PerformAdminCommand {

public static void main(String[] args) {

String appName ;

String appPwd ;

String colID

if(args.length < 3){

System.out.println("Missing arguments");

System.out.println("Usage: java PerformAdminCommand <appName>

<appPassword> <collection ID>>");

System.exit(1);

}

try {

appName = args[0];

appPwd = args[1];

colID = args[2];

AdminFactory factory = SiapiAdminImpl.createAdminFactory

(IAdminConstants.ADMIN_F

ACTORY_IMPL);

if(factory != null){

ApplicationInfo appInfo = factory.createApplicationInfo

(appName, appPwd);

AdminService service = factory.getAdminService(null);

if(service != null){

// Isolate multiple URLs with a space

String command =

"revisitURLs http://www.ibm.com/us http://www.ibm.com/products/

*";

String status = service.performAdminCommand(appInfo, colID, command, null);

System.out.println ("status on the command = " + status);

Sample code 81

}

}

} catch (SiapiException e) {

e.printStackTrace();

System.out.println(e.getLocalizedMessage());

}

}

}

 Related tasks

 “Installing the client toolkit” on page 2

Compiling the sample administration applications

The sample administration applications must be compiled with the IBM Software

Development Kit (SDK) for Java 1.4.2, Service Release 5 (SR5).

Restrictions

Before you can build Java applications for enterprise search, you must install and

configure Apache ANT, a Java-based build tool. For information about how to

install and configure Apache ANT, see http://ant.apache.org/.

About this task

The following steps assume that you installed the client toolkit (the

es.siapi.toolkit.jar archive file) and that you have the required JDK and ANT

compiler.

Procedure

To compile and run a sample administration application:

1. From the command line, change to the ES_INSTALL_ROOT/samples/siapiAdmin

directory. The default installation paths are:

v AIX: /usr/IBM/es/samples/siapiAdmin

v Linux and Solaris: /opt/IBM/es/samples/siapiAdmin

v Windows: C:\Program Files\IBM\es\samples\siapiAdmin

The directory includes a build.xml file that ANT uses to build the file.

2. Run the ANT script:

ant

You see the following message after the Java source code compiles:

BUILD SUCCESSFUL

Total time: xx seconds

3. Edit the runSample script (runSample.sh or runSample.bat) and ensure that the

class path and the path to the enterprise search es.cfg file are correct.

4. Run the application by specifying the following command on one line, where

admin_app is the administration application that you want to compile:

AIX, Linux, and Solaris

runSample.sh admin_app

Windows

runSample.bat admin_app

 Related tasks

 “Installing the client toolkit” on page 2

 “Compiling the sample search applications” on page 67

82 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

http://ant.apache.org/

Sample plug-in application for non-Web crawlers

The sample crawler plug-in application shows how you can change security token

values, metadata, and the content of crawled documents.

package sample;

import java.io.BufferedWriter;

import java.io.OutputStream;

import java.io.IOException;

import java.io.OutputStreamWriter;

import java.util.ArrayList;

import java.util.List;

import com.ibm.es.crawler.plugin.AbstractCrawlerPlugin;

import com.ibm.es.crawler.plugin.Content;

import com.ibm.es.crawler.plugin.CrawledData;

import com.ibm.es.crawler.plugin.CrawlerPluginException;

import com.ibm.es.crawler.plugin.FieldMetadata;

/**

 * The <code>MyCrawlerPlugin</code> is a sample crawler plugin module.

 */

public class MyCrawlerPlugin extends AbstractCrawlerPlugin {

 /**

 * Default constructor.

 */

 public MyCrawlerPlugin() {

 super();

 }

 /**

 * Initialize this object.

 *

 * This sample program has nothing in this method.

 *

 * @see com.ibm.es.crawler.plugin.AbstractCrawlerPlugin#init()

 */

 public void init() throws CrawlerPluginException {

 /*

 * [Tips]

 * If your crawler plugin module requires something to do for

 * initialization, add the code here.

 * [Example]

 * Get JDBC connection for your local system.

 * connection = DriverManager.getConnection("jdbc::db2::xxxx);

 */

 }

 /**

 * Returns the boolean value for metadata usage.

 *

 * This sample program returns <code>true</code>.

 *

 * @see com.ibm.es.crawler.plugin.AbstractCrawlerPlugin#isMetadataUsed()

 */

 public boolean isMetadataUsed() {

 /*

 * [Tips]

 * If your crawler plugin module updates both metadata and security

 * tokens, returns ture.

 * If your cralwer plugin module updates security tokens only,

Sample code 83

* returns false.

 * [Example]

 * Close JDBC connection for your local system.

 * connection.close();

 */

 return true;

 }

 /**

 * Terminate this object.

 *

 * This sample program has nothing in this method.

 *

 * @see com.ibm.es.crawler.plugin.AbstractCrawlerPlugin#term()

 */

 public void term() throws CrawlerPluginException {

 /*

 * [Tips]

 * If your crawler plugin module requires something to do

 * for termination, add the code here.

 */

 return;

 }

 /**

 * Update crawled data.

 *

 * This sample program updates the security tokens.

 *

 * @see com.ibm.es.crawler.plugin.AbstractCrawlerPlugin#updateDocument

 (com.ibm.es.crawler.plugin.CrawledData)

 */

 public CrawledData updateDocument(CrawledData crawledData)

 throws CrawlerPluginException {

 // Get uri string, security tokens, and field metadata

 String url = crawledData.getURI();

 String securityTokens = crawledData.getSecurityTokens();

 List metadataList = crawledData.getMetadataList();

 if (metadataList == null) {

 metadataList = new ArrayList();

 }

 /*

 * [Tips]

 * If your crawler plugin module rejects some crawled data,

 * add the check code here and returns null.

 */

 // This sample always returns updated document.

 if (false) {

 return null;

 }

 /*

 * [Tips]

 * If your crawler plugin module updates the security tokens,

 * add the code here.

 */

 // update security token (for sample)

 String newToken = "SampleToken";

 String newSecurityTokens = securityTokens + "," + newToken;

 crawledData.setSecurityTokes(newSecurityTokens);

 /*

84 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

* [Tips]

 * If your crawler plugin module updates metadata,

 * add the code here.

 */

 // update metadata (for sample)

 FieldMetadata newFieldMetaData = new FieldMetadata("copyright", "IBM");

 metadataList.add(newFieldMetaData);

 crawledData.setMetadataList(metadataList);

 /*

 * Set language.

 */

 crawledData.setLanguage("en");

 crawledData.setLanguageAutoDetection(true);

 /*

 * Update Content. since 8.3

 */

 Content content = crawledData.getOriginalContent();

 java.io.InputStream in = null;

 try{

 // if the original crawled content is null, create the new content.

 if(content == null){

 crawledData.createNewContent();

 content = crawledData.createNewContent();

 } else {

 // if the original crawled content exists, get InputStream

 // object to access it.

 in = content.getInputStream();

 // read the content

 in.close();

 }

 }catch(IOException ioe){

 throw new CrawlerPluginException(ioe);

 }

 // set information against the content.

 content.setCodepage("UTF-8");

 content.setCodepageAutoDetection(true);

 content.setMimeType("text/plain");

// Overwrite the content.

 try{

 OutputStream outputStream = content.getOutputStream();

 // write content to OutputStream

 String newText = "The new content of plain text ";

 BufferedWriter br = new BufferedWriter(new OutputStreamWriter

 (outputStream, "UTF-8"));

 br.write(newText);

 br.flush();

 br.close();

 }catch(IOException ioe){

 throw new CrawlerPluginException(ioe);

 }

 // Submit change for the content.

 crawledData.submitContent(content);

 return crawledData;

Sample code 85

}

 /* (non-Javadoc)

 * @see com.ibm.es.crawler.plugin.AbstractCrawlerPlugin#isContentUsed()

 */

 public boolean isContentUsed() {

 return true;

 }

}

 Related concepts

 “Crawler plug-ins for non-Web sources” on page 53
 Related tasks

 “Creating a crawler plug-in for non-Web data sources” on page 54

Sample code for Web services

Sample code is provided for a Web Services Definition Language (WSDL) file, an

XML schema (XSD) file, a sample client proxy application for Web services, and a

detailed sample client application that demonstrates how to control query

behavior.

A sample Web service application is available after you install the client toolkit (the

es.siapi.toolkit.jar archive file). See the ES_INSTALL_ROOT/samples/siapiAdmin/
webservices directory.

 Related concepts

 “Web services for enterprise search” on page 51

WSDL for Web services

The Web Services Definition Language (WSDL) file exposes several Web service

search functions.

Search functions

SearchResponse search(SearchRequest request)

This function performs a federated search. The search terms, application ID,

search options, and so on, can be specified in the search request instance. The

federated search can be overridden by specifying a particular collection ID.

CollectionInfo[] getAvailableCollections(ApplicationInfo appInfo)

This function returns an array of searchable collections. Each instance of

collection information consists of an ID and a label. The ID can be specified in

the search request instance to do collection-specific searches.

FieldInfo[] getAvailableFields(ApplicationInfo appInfo)

This function returns a list of federated fields. The FieldInfo instance contains

the names and properties of fields defined across all of the collections. The

field name and properties can be used for performing fielded queries.

String[] getAvailableDocumentSources(ApplicationInfo appInfo)

This function returns an array of document types configured for crawling. The

document type can be used to invoke searches per document type.

String[] getAvailableAttributeValues(int attributeType)

This function returns an array of attributes that match the specified attribute

type. The accepted integer values are:

v Document language type is -1

86 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

v Document source type is -2

v Document type is -3

SpellCorrection[] getSpellCorrections(String queryTerm)

This function returns an array of spelling corrections for a specified search

term. The spelling corrections are federated across all of the configured

collections.

SynonymExpansion[] getSynonymExpansions(String queryTerm)

This function returns an array of synonyms for a specified search term. The

synonym expansions are federated across all of the configured collections.

WSDL file for enterprise search

The following WSDL file and the associated XML schema define the preceding

search functions. You can access the WSDL file for enterprise search at the

following URL:

http://your_search_server/ESSearchServer/wsdl/com/ibm/es/ws6/

server/search/ofsearch.wsdl

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions

 xmlns:ns="http://www.ibm.com/of/types"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:tns="http://www.ibm.com/of/search"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 name="ofsearch" targetNamespace="http://www.ibm.com/of/search">

 <wsdl:import location="ofTypes.xsd" namespace="http://www.ibm.com/of/types">

 </wsdl:import>

 <wsdl:types>

 </wsdl:types>

 <wsdl:message name="searchResponse">

 <wsdl:part element="ns:SearchResponse" name="searchResponse"/>

 </wsdl:message>

 <wsdl:message name="searchRequest">

 <wsdl:part element="ns:SearchRequest" name="searchRequest"/>

 </wsdl:message>

 <wsdl:message name="siapiException">

 <wsdl:part element="ns:SiapiException" name="siapiException">

 </wsdl:part>

 </wsdl:message>

 <wsdl:message name="collectionInfo">

 <wsdl:part element="ns:Collections" name="collectionInfo">

 </wsdl:part>

 </wsdl:message>

 <wsdl:message name="availableFields">

 <wsdl:part element="ns:AvailableFields" name="availableFields">

 </wsdl:part>

 </wsdl:message>

 <wsdl:message name="applicationInfo1">

 <wsdl:part name="applicationInfo1" type="ns:ApplicationInfo">

 </wsdl:part>

 </wsdl:message>

 <wsdl:message name="documentSources">

 <wsdl:part name="documentSources" type="ns:DocumentSourceArray">

 </wsdl:part>

 </wsdl:message>

 <wsdl:message name="applicationInfo2">

 <wsdl:part name="applicationInfo2" type="ns:ApplicationInfo">

 </wsdl:part>

 </wsdl:message>

 <wsdl:message name="applicationInfo3">

 <wsdl:part name="applicationInfo3" type="ns:ApplicationInfo"/>

 </wsdl:message>

Sample code 87

<wsdl:message name="synonymExpansions">

 <wsdl:part name="synonymExpansions" type="ns:SynonymExpansionArray">

 </wsdl:part>

 </wsdl:message>

 <wsdl:message name="synonymExpansionTerm">

 <wsdl:part name="synonymExpansionTerm" type="xsd:string">

 </wsdl:part>

 </wsdl:message>

 <wsdl:message name="spellCorrections">

 <wsdl:part name="spellCorrections" type="ns:SpellCorrectionArray">

 </wsdl:part>

 </wsdl:message>

 <wsdl:message name="spellCorrectionTerm">

 <wsdl:part name="spellCorrectionTerm" type="xsd:string">

 </wsdl:part>

 </wsdl:message>

 <wsdl:message name="attributeValues">

 <wsdl:part name="attributeValues" type="ns:DocumentAttributeArray">

 </wsdl:part>

 </wsdl:message>

 <wsdl:message name="attributeType">

 <wsdl:part name="attributeType" type="xsd:int"/>

 </wsdl:message>

 <wsdl:portType name="ofsearch">

 <wsdl:operation name="search">

 <wsdl:documentation>

 This function should be used to execute federated

 searches. Searches could also be limited to particular

 collections.

 </wsdl:documentation>

 <wsdl:input message="tns:searchRequest"/>

 <wsdl:output message="tns:searchResponse"/>

 <wsdl:fault message="tns:siapiException" name="siapiException">

 </wsdl:fault>

 </wsdl:operation>

 <wsdl:operation name="getAvailableCollections">

 <wsdl:documentation>

 This function returns an array of collection information

 instances for a specified application ID. The collection

 information consists of the collection title and

 internal id. The internal ID could be used to execute

 searches for specific collections.

 </wsdl:documentation>

 <wsdl:input message="tns:applicationInfo2"/>

 <wsdl:output message="tns:collectionInfo"/>

 <wsdl:fault message="tns:siapiException" name="siapiException">

 </wsdl:fault>

 </wsdl:operation>

 <wsdl:operation name="getAvailableFields">

 <wsdl:documentation>

 This function returns an array of fields configured

 across all the collections for a specified application

 ID. The field information could be used to execute

 fielded queries.

 </wsdl:documentation>

 <wsdl:input message="tns:applicationInfo1"/>

 <wsdl:output message="tns:availableFields"/>

 <wsdl:fault message="tns:siapiException" name="siapiException">

 </wsdl:fault>

 </wsdl:operation>

 <wsdl:operation name="getAvailableDocumentSources">

 <wsdl:documentation>

 This function returns an array of source types

 configured across all collections for a specified

 application ID. The source types could be used to

 understand the unstructured content in the collection.

 This information could also used to execute searches

88 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

based on source types.

 </wsdl:documentation>

 <wsdl:input message="tns:applicationInfo3"/>

 <wsdl:output message="tns:documentSources"/>

 <wsdl:fault message="tns:siapiException" name="siapiException">

 </wsdl:fault>

 </wsdl:operation>

 <wsdl:operation name="getSynonymExpansions">

 <wsdl:documentation>

 This function returns an array of synonyms for a

 specified search term. The synonym expansions will be

 federated across all the configured collections.

 </wsdl:documentation>

 <wsdl:input message="tns:synonymExpansionTerm"/>

 <wsdl:output message="tns:synonymExpansions"/>

 <wsdl:fault message="tns:siapiException" name="siapiException">

 </wsdl:fault>

 </wsdl:operation>

 <wsdl:operation name="getSpellCorrections">

 <wsdl:documentation>

 This function returns an array of spell corrections for

 a specified search term. The spell corrections will be

 federated across all the configured collections.

 </wsdl:documentation>

 <wsdl:input message="tns:spellCorrectionTerm"/>

 <wsdl:output message="tns:spellCorrections"/>

 <wsdl:fault message="tns:siapiException" name="siapiException">

 </wsdl:fault>

 </wsdl:operation>

 <wsdl:operation name="getAvailableAttributeValues">

 <wsdl:documentation>

 This function returns a array of attributes that matches

 the specifed type. Following are the list of accepted

 integer values: Document language type is -1 Document

 source type is -2 Document type is -3

 </wsdl:documentation>

 <wsdl:input message="tns:attributeType"/>

 <wsdl:output message="tns:attributeValues"/>

 <wsdl:fault message="tns:siapiException" name="siapiException">

 </wsdl:fault>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="ofsearchBinding" type="tns:ofsearch">

 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="search">

 <soap:operation soapAction="http://www.ibm.com/of/search/search"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 <wsdl:fault name="siapiException">

 <soap:fault name="siapiException" use="literal"/>

 </wsdl:fault>

 </wsdl:operation>

 <wsdl:operation name="getAvailableCollections">

 <soap:operation soapAction="http://www.ibm.com/of/search/getAvailableCollections"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 <wsdl:fault name="siapiException">

 <soap:fault name="siapiException" use="literal"/>

 </wsdl:fault>

Sample code 89

</wsdl:operation>

 <wsdl:operation name="getAvailableFields">

 <soap:operation soapAction="http://www.ibm.com/of/search/getAvailableFields"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 <wsdl:fault name="siapiException">

 <soap:fault name="siapiException" use="literal"/>

 </wsdl:fault>

 </wsdl:operation>

 <wsdl:operation name="getAvailableDocumentSources">

 <soap:operation soapAction="http://www.ibm.com/of/search/getAvailableDocumentSources"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 <wsdl:fault name="siapiException">

 <soap:fault name="siapiException" use="literal"/>

 </wsdl:fault>

 </wsdl:operation>

 <wsdl:operation name="getSynonymExpansions">

 <soap:operation soapAction="http://www.ibm.com/of/search/getSynonymExpansions"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 <wsdl:fault name="siapiException">

 <soap:fault name="siapiException" use="literal"/>

 </wsdl:fault>

 </wsdl:operation>

 <wsdl:operation name="getSpellCorrections">

 <soap:operation soapAction="http://www.ibm.com/of/search/getSpellCorrections"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 <wsdl:fault name="siapiException">

 <soap:fault name="siapiException" use="literal"/>

 </wsdl:fault>

 </wsdl:operation>

 <wsdl:operation name="getAvailableAttributeValues">

 <soap:operation soapAction="http://www.ibm.com/of/search/getAvailableAttributeValues"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 <wsdl:fault name="siapiException">

 <soap:fault name="siapiException" use="literal"/>

 </wsdl:fault>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="ofsearch">

 <wsdl:port binding="tns:ofsearchBinding" name="ofsearchBinding">

90 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

<soap:address location="http://localhost:9081/ESSearchServer/services/ofsearchBinding"/>

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

XML schema associated with the WSDL file

The XML schema (XSD file) identifies the required data types.

XSD file for enterprise search

The following XSD file is associated with the WSDL file for enterprise search. You

can access the XML schema at the following URL:

http://your_search_server/ESSearchServer/wsdl/

com/ibm/es/ws6/server/search/ofTypes.xsd

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema

 xmlns:ns="http://www.ibm.com/of/types"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified"

 targetNamespace="http://www.ibm.com/of/types">

 <xsd:complexType name="ApplicationInfo">

 <xsd:sequence>

 <xsd:element name="ID" type="xsd:string"/>

 <xsd:element name="password" nillable="true" type="xsd:string"/>

 <xsd:element name="token" nillable="true" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="Property">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element name="value" nillable="true" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="ReturnedField">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="NameValuePair">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element name="value" nillable="true" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="Result">

 <xsd:sequence>

 <xsd:element name="date" nillable="true" type="xsd:date"/>

 <xsd:element name="collectionID" nillable="true" type="xsd:string"/>

 <xsd:element name="description" nillable="true" type="xsd:string"/>

 <xsd:element name="documentID" nillable="true" type="xsd:string"/>

 <xsd:element name="documentSource" nillable="true" type="xsd:string"/>

 <xsd:element name="documentURI" nillable="true" type="xsd:string"/>

 <xsd:element name="language" nillable="true" type="xsd:string"/>

 <xsd:element name="title" nillable="true" type="xsd:string"/>

 <xsd:element name="firstOfASite" type="xsd:boolean"/>

 <xsd:element name="score" type="xsd:double"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="categories"

 type="ns:ResultCategory"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="fields"

Sample code 91

type="ns:NameValuePair"/>

 <xsd:element name="documentType" type="xsd:string"/>

 <xsd:element name="author" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="CategoryInfo">

 <xsd:sequence>

 <xsd:element name="ID" type="xsd:string"/>

 <xsd:element name="label" nillable="true" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="ResultCategory">

 <xsd:sequence>

 <xsd:element name="confidence" type="xsd:double"/>

 <xsd:element name="taxonomyID" nillable="true" type="xsd:string"/>

 <xsd:element name="info" nillable="true" type="ns:CategoryInfo"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="pathFromRoot"

 type="ns:CategoryInfo"/>

 </xsd:sequence>

 </xsd:complexType>

 <!-- Global elements -->

 <xsd:element name="SearchRequest">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="applicationInfo" type="ns:ApplicationInfo"/>

 <xsd:element name="collectionIDs">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="item"

 type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="queryLanguage" nillable="true" type="xsd:string"/>

 <xsd:element name="queryText" type="xsd:string"/>

 <xsd:element name="aclConstraints" nillable="true" type="xsd:string"/>

 <xsd:element name="linguisticMode" type="xsd:int"/>

 <xsd:element name="predefinedResultsEnabled" type="xsd:boolean"/>

 <xsd:element name="queryID" nillable="true" type="xsd:string"/>

 <xsd:element name="firstRequestedResult" type="xsd:int"/>

 <xsd:element name="numRequestedResults" type="xsd:int"/>

 <xsd:element name="resultCategoriesDetailLevel" type="xsd:int"/>

 <xsd:element name="sortKey" nillable="true" type="xsd:string"/>

 <xsd:element name="sortOrder" type="xsd:int"/>

 <xsd:element name="sortPoolSize" type="xsd:int"/>

 <xsd:element name="synonymExpansionMode" type="xsd:int"/>

 <xsd:element name="spellCorrectionEnabled" type="xsd:boolean"/>

 <xsd:element name="siteCollapsingEnabled" type="xsd:boolean"/>

 <xsd:element name="returnedFields">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="item"

 type="ns:ReturnedField"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="properties">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="item"

 type="ns:Property"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

92 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

<xsd:element name="sortKeyByLocale">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="key" type="xsd:string">

 </xsd:element>

 <xsd:element name="locale" type="ns:Locale">

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="returnAttribute">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="attributes"

 type="ns:PredefinedAttribute">

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="clientLocale" type="ns:Locale"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="SearchResponse">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="availableNumberOfResults" type="xsd:int"/>

 <xsd:element name="estimatedNumberOfResults" type="xsd:int"/>

 <xsd:element name="queryEvaluationTime" type="xsd:long"/>

 <xsd:element name="hasUnconstrainedResults" type="xsd:int"/>

 <xsd:element name="evaluationTruncated" type="xsd:boolean"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="predefinedResults"

 type="ns:Result"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="results"

 type="ns:Result"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="properties"

 type="ns:Property"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="spellCorrections"

 type="ns:SpellCorrection"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="synonymExpansions"

 type="ns:SynonymExpansion"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="messages"

 type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="SiapiException">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="errorCode" type="xsd:string"/>

 <xsd:element name="message" type="xsd:string"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="messages"

 type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:complexType name="SpellCorrection">

 <xsd:sequence>

 <xsd:element name="querySubstring" type="xsd:string"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="suggestions"

 type="xsd:string">

 </xsd:element>

 </xsd:sequence>

Sample code 93

</xsd:complexType>

 <xsd:complexType name="SynonymExpansion">

 <xsd:sequence>

 <xsd:element name="querySubstring" type="xsd:string"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="suggestions"

 type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="Locale">

 <xsd:sequence>

 <xsd:element name="language" type="xsd:string"/>

 <xsd:element name="country" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="PredefinedAttribute">

 <xsd:sequence>

 <xsd:element name="attribute" type="xsd:int"/>

 <xsd:element name="returned" type="xsd:boolean"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="FieldInfo">

 <xsd:sequence>

 <xsd:element name="iD" type="xsd:string"/>

 <xsd:element name="type" type="xsd:int"/>

 <xsd:element name="contentSearchable" type="xsd:boolean"/>

 <xsd:element name="exactMatchSupported" type="xsd:boolean"/>

 <xsd:element name="fieldSearchable" type="xsd:boolean"/>

 <xsd:element name="parametric" type="xsd:boolean"/>

 <xsd:element name="returnable" type="xsd:boolean"/>

 <xsd:element name="sortable" type="xsd:boolean"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="CollectionInfo">

 <xsd:sequence>

 <xsd:element name="iD" type="xsd:string"/>

 <xsd:element name="label" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="Collections" type="ns:CollectionArray">

 </xsd:element>

 <xsd:complexType name="CollectionArray">

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="collectionInfos"

 type="ns:CollectionInfo"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="AvailableFields">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="fields"

 type="ns:FieldInfo"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="DocumentSources" type="ns:DocumentSourceArray"/>

 <xsd:complexType name="Documentsource">

 <xsd:sequence>

94 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

<xsd:element name="source" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="DocumentSourceArray">

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="documentSources"

 type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="DocumentAttributeArray">

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="documentAttributes"

 type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="SpellCorrectionArray">

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="spCorrection"

 type="ns:SpellCorrection"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="SynonymExpansionArray">

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="synExpansion"

 type="ns:SynonymExpansion"/>

 </xsd:sequence>

 </xsd:complexType>

</xsd:schema>

Sample client proxy application for Web services

With the sample Web services application, you can search enterprise search

collections remotely.

The sample client proxy application is available after you install the client toolkit

(the es.siapi.toolkit.jar archive file).

Sample endpoints.properties file

Before you invoke the sample code that is provided in the client toolkit (the

es.siapi.toolkit.jar archive file), you must edit a configuration file,

endpoints.properties, to specify information about the search server to use for

enterprise search. Shown below is the portion of the endpoints.properties file

where you identify the search server. This file is bundled with the

es.siapi.toolkit.jar file.

Configuration file that contains the host names

and URIs to resolve the Web service endpoint

omnifind search nodes

SearchServer=yoursearchserver\:80

Accessible WSDL

Modify the localhost below to one of the search servers

One can use this WSDL to develop custom client proxies.

WSDL=http\://your_search_server/ESSearchServer/wsdl/com/ibm/es/ws6/server/search/ofsearch.wsdl

URI of the webservice end point

The search servers defined above will be pre-pended to

Sample code 95

the URI below to create a fully qualified path to the

web service end point.

EndPointURI=/ESSearchServer/services/ofsearchBinding

Sample client proxy application

The following sample code is based on the client proxy that is provided in the

toolkit. Pass the endpoints.properties file as the argument to this sample.

import com.ibm.es.ws6.client.OmniFindSearchable;

import com.ibm.es.ws6.client.types.NameValuePair;

import com.ibm.es.ws6.client.types.Result;

import com.ibm.es.ws6.client.types.SearchRequest;

import com.ibm.es.ws6.client.types.SearchResponse;

public class WebServiceClient {

 public static void main(String[] args) {

 try {

 if(args.length==0){

 System.out.println

 ("Usage: java WebServiceClient<absolute path for

 endpoints.properties>");

 System.out.println(" - Specify absolute path for

 endpoints.properties.");

 System.exit(1);

 }

 WebServiceClient mySample = new WebServiceClient();

 mySample.search(args[0]);

 } catch (Exception e) {

 e.printStackTrace();

 System.err.println

 ("Search failed!! with following error ***

 " + e.getLocalizedMessage() + " *** ");

 }

 }

 /* (non-Java-doc)

 * @see java.lang.Object#Object()

 */

 public WebServiceClient() {

 super();

 }

 public void search(String endPointsProperties) throws Exception{

 OmniFindSearchable searchble = new OmniFindSearchable

 (endPointsProperties);

 // the default values are set in the constructor

 SearchRequest request = new SearchRequest();

 // if the collection IDs are not specified, then all collections

 // for the specified application will be searched.

 request.setCollectionIds(null);

 // You can also specify collection IDs that might interest you

 // request.setCollectionIds(new String[] {"col_34567"});

 // search query

 request.setQueryText("IBM");

 request.setFromResult(0);

 request.setNumberOfResult(10);

 // invoke the search

 SearchResponse response = searchble.search(request);

 if (response != null){

 System.out.println

96 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

("Number of results found = " + response.getAvailableNumberOfResults());

 System.out.println

 ("Query evaluation time=" + response.getGetQueryEvaluationTime() + "ms");

 System.out.println(" *** ");

 Result[] results = response.getResults();

 if(results != null && results.length>0){

 for(int i=0;i<results.length; ++i){

 System.out.println

 ("results[" + i +"].getDocumentId=" + results[i].getDocumentId());

 System.out.println

 ("results[" + i +"].getDescription=" + results[i].getDescription());

 System.out.println

 ("results[" + i +"].getDocumentSource=" +

 results[i].getDocumentSource());

 System.out.println

 ("results[" + i +"].getScore=" + results[i].getScore());

 System.out.println

 ("results[" + i +"].getTitle=" + results[i].getTitle());

 // iterate through fields

 NameValuePair pairs[] = results[i].getFields();

 if(pairs != null && pairs.length>0){

 for(int j=0; j<pairs.length; ++j){

 System.out.println

 ("results[" +i+"].field["+j+"].name=" + pairs[j].getName());

 System.out.println

 ("results[" +i+"].field["+j+"].value=" + pairs[j].getValue());

 }

 }

 System.out.println(" *** ");

 }

 }

 }

 }

}

 Related tasks

 “Installing the client toolkit” on page 2

Detailed Web service client application

The WebServiceDetailClient.java application is a detailed sample Web service

client application for enterprise search.

The detailed sample Web service application is available in the

ES_INSTALL_ROOT/samples/siapiAdmin/webservices directory after you install the

client toolkit (the es.siapi.toolkit.jar archive file). The sample application

includes usage comments that tell you how you can use Web services to control

query behavior.

This sample application illustrates the following query properties:

v Specifying query languages

v Setting linguistic modes

v Returning metadata fields

v Enabling predefined result attribute values

v Specifying result ranges

v Setting result details

v Enabling site collapse

v Sorting results by relevance, date, numeric fields, or text fields

v Sorting the order of results (such as ascending or descending)

Sample code 97

v Sorting the number of relevant results

v Enabling spelling correction

v Enabling query expansion
 Related tasks

 “Installing the client toolkit” on page 2

98 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

Enterprise search documentation

You can read the OmniFind Enterprise Edition documentation in PDF or HTML

format.

The OmniFind Enterprise Edition installation program automatically installs the

information center, which includes HTML versions of the documentation for

enterprise search. For a multiple server installation, the information center is

installed on both search servers. If you do not install the information center, when

you click help, the information center opens on an IBM Web site.

To see installed versions of the PDF documents, go to ES_INSTALL_ROOT/docs/
locale/pdf. For example, to find documents in English, go to ES_INSTALL_ROOT/
docs/en_US/pdf.

To access the PDF versions of the documentation in all available languages, see the

OmniFind Enterprise Edition, Version 8.5 documentation site.

You can also access product downloads, fix packs, technotes, and the information

center from the OmniFind Enterprise Edition Support site.

The following table shows the available documentation, file names, and locations.

 Table 2. Documentation for enterprise search

Title File name Location

Information center http://publib.boulder.ibm.com/
infocenter/discover/v8r5/

Installation Guide for

Enterprise Search

iiysi.pdf ES_INSTALL_ROOT/docs/locale/pdf/

Quick Start Guide (This

document is also available in

hardcopy for English, French,

and Japanese.)

OmniFindEE850_qsg_

two-letter

locale.pdf

ES_INSTALL_ROOT/docs/locale/pdf/

Administering Enterprise

Search

iiysa.pdf ES_INSTALL_ROOT/docs/locale/pdf/

Programming Guide and API

Reference for Enterprise Search

iiysp.pdf ES_INSTALL_ROOT/docs/en_US/pdf/

Troubleshooting Guide and

Messages Reference

iiysm.pdf ES_INSTALL_ROOT/docs/locale/pdf/

Text Analysis Integration iiyst.pdf ES_INSTALL_ROOT/docs/locale/pdf/

© Copyright IBM Corp. 2004, 2008 99

http://www.ibm.com/support/docview.wss?rs=63&uid=swg27010938
http://www-306.ibm.com/software/data/enterprise-search/omnifind-enterprise/support.html
http://publib.boulder.ibm.com/infocenter/discover/v8r5/
http://publib.boulder.ibm.com/infocenter/discover/v8r5/

100 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

Accessibility features

Accessibility features help users who have a disability, such as restricted mobility

or limited vision, to use information technology products successfully.

IBM strives to provide products with usable access for everyone, regardless of age

or ability.

Accessibility features

The following list includes the major accessibility features in OmniFind Enterprise

Edition:

v Keyboard-only operation

v Interfaces that are commonly used by screen readers

The OmniFind Enterprise Edition Information Center, and its related publications,

are accessibility-enabled. The accessibility features of the information center are

described at http://publib.boulder.ibm.com/infocenter/discover/v8r5m0/topic/
com.ibm.classify.nav.doc/dochome/accessibility_info.htm.

Keyboard navigation

This product uses standard Microsoft Windows navigation keys.

You can also use the following keyboard shortcuts to navigate and advance

through the OmniFind Enterprise Edition installation program.

 Table 3. Keyboard shortcuts for the installation program

Action Shortcut

Highlight a radio button Arrow key

Select a radio button Tab key

Highlight a push button Tab key

Select a push button Enter key

Go to the next or previous window or

cancel

Highlight a push button by pressing the Tab key

and press Enter

Make the active window inactive Ctrl + Alt + Esc

Interface information

The user interfaces for the administration console, sample search application, and

search application customizer are browser-based interfaces that you can view in

Microsoft Internet Explorer or Mozilla FireFox. See the online help for Internet

Explorer or FireFox for a list of keyboard shortcuts and other accessibility features

for your browser.

Related accessibility information

You can view the publications for OmniFind Enterprise Edition in Adobe Portable

Document Format (PDF) using the Adobe Acrobat Reader. The PDFs are provided

on a CD that is packaged with the product, or you can access them at

© Copyright IBM Corp. 2004, 2008 101

http://publib.boulder.ibm.com/infocenter/discover/v8r5m0/topic/com.ibm.classify.nav.doc/dochome/accessibility_info.htm
http://publib.boulder.ibm.com/infocenter/discover/v8r5m0/topic/com.ibm.classify.nav.doc/dochome/accessibility_info.htm

http://www.ibm.com/support/docview.wss?rs=63&uid=swg27010938.

IBM and accessibility

See the IBM Human Ability and Accessibility Center for more information about

the commitment that IBM has to accessibility.

102 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

http://www.ibm.com/support/docview.wss?rs=63&uid=swg27010938
http://www.ibm.com/able

Notices and trademarks

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive Armonk, NY

10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome,

Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law: INTERNATIONAL

BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR

PURPOSE. Some states do not allow disclaimer of express or implied warranties in

certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2004, 2008 103

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject

to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

104 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

Portions of this product are:

v Oracle® Outside In Content Access, Copyright © 1992, 2008, Oracle. All rights

reserved.

v IBM XSLT Processor Licensed Materials - Property of IBM © Copyright IBM

Corp., 1999-2008. All Rights Reserved.

Trademarks

See http://www.ibm.com/legal/copytrade.shtml for information about IBM

trademarks.

The following terms are trademarks or registered trademarks of other companies:

Adobe, Acrobat, Portable Document Format (PDF), PostScript, and all Adobe-based

trademarks are either registered trademarks or trademarks of Adobe Systems

Incorporated in the United States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,

Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or

registered trademarks of Intel Corporation or its subsidiaries in the United States

and other countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, or service names may be trademarks or service marks of

others.

Notices and trademarks 105

http://www.ibm.com/legal/copytrade.shtml

106 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

Index

A
accessibility features for this

product 101

ACLs 41

AdminFactory factory 47

administration applications
adding documents 49

adding metadata 49

building indexes 50

compiling 82

creating application IDs 47

creating collections 47

destroying collections 47

disabling indexes for search 51

enabling indexes for search 51

overview 3

registering application IDs 45

sample 72

security 40

unregistering application IDs 46

AdminService class 47

AdvancedSearchExample class 68

ANT script 67, 82

APIs
crawler plug-ins 1, 52

identity management 1, 41, 43

Javadoc documentation 3

overview 1

search and index 1, 3

application IDs
creating 44, 47

registering 45

unregistering 46

application security 40

B
Base64 encoding 41, 43, 44

BrowseExample class 69

C
classes, API

AdvancedSearchExample 68

BrowseExample 69

FederatedSearchExample 71

SearchExample 68

client toolkit
administration applications 72

installation 2

search applications 66

Web service applications 95, 97

collections
adding documents 44, 49

adding metadata 49

creating 44, 47

destroying 44, 47

disabling for search 44

enabling for search 44

removing documents 44

com.ibm.es.wc.pi.PostparsePlugin

interface 58

com.ibm.es.wc.pi.PrefetchPlugin

interface 55

com.ibm.siapi.admin package 44

com.ibm.siapi.index package 44

compiling
sample administration

applications 82

sample search applications 67

config.setProperty method 47

crawler plug-ins
data source crawlers 53

Javadoc documentation 3, 52

non-Web sources 53

overview 52

Web sources 55

crawler plug-ins, non-Web 53

changing document content 54

changing metadata 54

creating 54

overview 52

crawler plug-ins, Web
overview 52, 55

postparse 58

prefetch 55

D
delta indexes 50

document-level security
identity management 41

Java string classes 41

SIAPI 41

documentation
finding 99

HTML 99

PDF 99

E
endpoints.properties file 95

enterprise search APIs 1

es.siapi.toolkit.jar file
administration applications 72

installation 2

search applications 66

Web service applications 95, 97

ESSearchApplication sample application
compiling 61

debugging 61

description 61

Java classes 61

logging 61

Rational Application Developer 61

Search portlet application 61

Struts 61

Struts Portlet Framework 61

Web content 61

F
FederatedSearchExample class 71

federators 37

JDBC federator 37

LDAP federator 37

local federator 37

remote federator 38

fetch API 39

fetching search results 39

free style query syntax 20

H
HTML documentation for enterprise

search 99

I
identity management

document-level security 43

sign-on security 41

XML string 43

identity management APIs
Javadoc documentation 3, 41

sample application 41

XML definition 41

indexes
building 44, 50

delta 50

enabling for search 51

main 50

J
Java source code

administration applications 82

search applications 67

Javadoc documentation
crawler plug-ins 3, 52

identity management APIs 3, 41

installation locations 3

search and index APIs 3

JDBC federator 37

L
LDAP federator 37

local federator 37

M
main indexes 50

O
ofsearch.wsdl file 86

ofTypes.xsd file 91

opaque terms query syntax 20

© Copyright IBM Corp. 2004, 2008 107

P
packages

com.ibm.siapi.admin 44

com.ibm.siapi.index 44

PDF documentation for enterprise

search 99

plug-in APIs
non-Web sources 53

Web sources 55

postparse plug-in
creating 58

sample plug-in 58

prefetch plug-in
creating 55

deploying 58

sample plug-in 55

Q
query behavior

controlling 11

query results
returning 11

query syntax
free style 20

opaque terms 20

R
remote federator 38

running
sample administration

applications 82

sample search applications 67

S
sample administration applications

compiling 82

description 72

running 82

sample applications
administration 72, 82

search 66, 67

Web services, client proxy 95

Web services, detailed 97

sample search applications
advanced 68

browse and navigate 69

compiling 67, 68

description 66

federated search 71

fetch document content 70

minimum required 68

retrieve all search results 69

running 67

search and index API
administration applications 44

federators 37

issuing queries 7

Javadoc documentation 3

obtaining a search service 7

obtaining a searchable object 7

obtaining an implementation 7

overview 3

search and index API (continued)
processing query results 7

sample administration

applications 72

sample search applications 66

search application structure 7

top result analysis 36

search applications
compiling 67

overview 3

sample 66

security 40

top result analysis 36

search federators 37

JDBC federator 37

LDAP federator 37

local federator 37

remote federator 38

search functions for Web services 86

SearchExample class 68

security
APIs 40

document-level 43, 44

identity management 41

Java string classes 41

user’s security context 43, 44

XML string 43, 44

semantic search 38

SIAPI, see search and index API 7

single sign-on 41

T
top result analysis 36

U
UIMA annotations 38

user’s security context
document-level security 44

Java string classes 44

XML string 44

W
Web crawler plug-in (postparse)

creating 58

sample plug-in 58

Web crawler plug-in (prefetch)
creating 55

deploying 58

sample plug-in 55

Web services
detailed sample client application 97

endpoints.properties file 95

sample client proxy application 95

search functions 86

WDSL files 86

WebServiceDetailClient.java

application 97

XML schemas 91

XSD files 91

WebServiceDetailClient.java

application 97

WSDL file for Web services 86

X
XML elements

retrieval 38

semantic search 38

XML schema for Web services 91

XSD file for Web services 91

108 OmniFind Enterprise Edition: Programming Guide and API Reference for Enterprise Search

���

SC18-9284-04

	Contents
	ibm.com and related resources
	How to send your comments
	Contacting IBM

	Application development
	Enterprise search API overview
	Installing the client toolkit
	Javadoc documentation

	Search and index APIs
	Search applications
	Controlling query behavior
	Creating secure searches with access control list constraints
	Setting query properties
	Exposing ranking information
	Enabling fuzzy searches
	Specifying query languages
	Setting linguistic modes
	Returning metadata fields
	Returning ranking information in queries
	Enabling predefined result attribute values
	Specifying the range of results
	Setting category details
	Enabling site collapse
	Sorting by relevance, date, numeric fields, or text fields
	Setting the sort order for results
	Specifying the number of relevant results
	Enabling spelling correction
	Setting query expansion
	Determining query evaluation times and query timeouts

	Query syntax
	Query syntax structure

	Java classes for showing top results
	Search and index API federators
	Local federator
	Remote federator

	Retrieving targeted XML elements
	Fetching search results

	Application security
	Document-level security
	Identity management for single sign-on security
	Creating the user's security context XML String with the identity management API
	Creating the user's security context XML String with the Java String classes

	Administration applications
	Registering application IDs
	Unregistering application IDs
	Creating an instance of an application ID
	Creating or destroying collections
	Adding documents to a collection
	Building indexes
	Enabling indexes for search

	Web services for enterprise search
	Crawler plug-ins
	Crawler plug-ins for non-Web sources
	Creating a crawler plug-in for non-Web data sources

	Web crawler plug-ins
	Creating a prefetch plug-in for the Web crawler
	Deploying a prefetch plug-in
	Creating a postparse plug-in for the Web crawler

	Sample code
	The enterprise search sample application
	Sample search applications
	Compiling the sample search applications
	Simple and advanced sample search applications
	Browse and navigation sample application
	Retrieve all search results sample application
	Fetch document content sample application
	Federated search sample application

	Sample administration applications
	Compiling the sample administration applications

	Sample plug-in application for non-Web crawlers
	Sample code for Web services
	WSDL for Web services
	XML schema associated with the WSDL file
	Sample client proxy application for Web services
	Detailed Web service client application

	Enterprise search documentation
	Accessibility features
	Notices and trademarks
	Notices
	Trademarks

	Index

