
Release 6.0 Service Pack 2
October 2009

Reference

Progress®
DataDirect Connect® Series
for ODBC

© 2009 Progress Software Corporation. All rights reserved. Printed in the U.S.A.

DataDirect, DataDirect Connect, DataDirect Connect64, DataDirect Spy, DataDirect Test, DataDirect XML Converters,
DataDirect XQuery, OpenAccess, SequeLink, Stylus Studio, and SupportLink are trademarks or registered trademarks
of Progress Software Corporation or one of its subsidiaries or affiliates in the United States and other countries. Java
and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. MySQL and MySQL Enterprise are registered trademarks of MySQL AB in the
United States, the European Union and other countries.

Other company or product names mentioned herein may be trademarks or registered trademarks of their respective
companies.

DataDirect products for the Microsoft SQL Server database:

These products contain a licensed implementation of the Microsoft TDS Protocol.

DataDirect Connect for ODBC, DataDirect Connect64 for ODBC, and DataDirect SequeLink include:

ICU Copyright © 1995-2003 International Business Machines Corporation and others. All rights reserved. Permission
is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, provided that the above copyright notice(s) and this permission notice appear in all
copies of the Software and that both the above copyright notice(s) and this permission notice appear in supporting
documentation.

Software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http:/www.openssl.org/). Copyright ©
1998-2006 The OpenSSL Project. All rights reserved. And Copyright © 1995-1998 Eric Young (eay@cryptsoft.com). All
rights reserved.

DataDirect SequeLink includes:

Portions created by Eric Young are Copyright © 1995-1998 Eric Young (eay@cryptsoft.com). All Rights Reserved.
OpenLDAP, Copyright © 1999-2003 The OpenLDAP Foundation, Redwood City, California, US. All rights reserved.

DataDirect OpenAccess SDK client for ODBC, DataDirect OpenAccess SDK client for ADO, DataDirect Open Access
SDK client for JDBC, and DataDirect OpenAccess SDK server include: DataDirect SequeLink.

No part of this publication, with the exception of the software product user documentation contained in electronic
format, may be copied, photocopied, reproduced, transmitted, transcribed, or reduced to any electronic medium or
machine-readable form without prior written consent of DataDirect Technologies.

Licensees may duplicate the software product user documentation contained on a CD-ROM or DVD, but only to the
extent necessary to support the users authorized access to the software under the license agreement. Any
reproduction of the documentation, regardless of whether the documentation is reproduced in whole or in part,
must be accompanied by this copyright statement in its entirety, without modification.

3

Table of Contents

Preface . 7

Using this Book . 7

Conventions Used in This Book. 9
Typographical Conventions. 9
Environment-Specific Information 10

About the Product Documentation . 11
HTML Version. 11
PDF Version . 13

Contacting Technical Support . 14

1 Code Page Values . 17

IBM to IANA Code Page Values . 21

Teradata Code Page Values. 24

2 ODBC API and Scalar Functions 25

API Functions . 25

Scalar Functions . 28
String Functions . 28
Numeric Functions . 31
Date and Time Functions. 33
System Functions . 35

3 Threading . 37
DataDirect Connect Series for ODBC Reference

4 Table of Contents
4 Internationalization, Localization, and Unicode . . . 39

Internationalization and Localization. 39

Unicode Character Encoding . 43
Background. 43
Unicode Support in Databases. 45
Unicode Support in ODBC . 46

Unicode and Non-Unicode ODBC Drivers 47
Function Calls . 47
Data. 52
Default Unicode Mapping . 54

The Driver Manager and Unicode Encoding on UNIX
and Linux . 56

5 Designing ODBC Applications for Performance
Optimization . 59

Using Catalog Functions . 60
Minimizing the Use of Catalog Functions. 61
Avoiding Search Patterns . 61
Using a Dummy Query to Determine Table
Characteristics . 63

Retrieving Data. 64
Retrieving Long Data . 64
Reducing the Size of Data Retrieved. 65
Using Bound Columns . 66
Using SQLExtendedFetch Instead of SQLFetch 67
Choosing the Right Data Type . 69

Selecting ODBC Functions . 69
Using SQLPrepare/SQLExecute and SQLExecDirect. 69
Using Arrays of Parameters . 70
Using the Cursor Library . 72
DataDirect Connect Series for ODBC Reference

Table of Contents 5
Managing Connections and Updates . 73
Managing Connections . 73
Managing Commits in Transactions 74
Choosing the Right Transaction Model 75
Using Positioned Updates and Deletes. 75
Using SQLSpecialColumns . 76

6 Using Indexes. 79

Introduction . 79

Improving Row Selection Performance 81

Indexing Multiple Fields . 81

Deciding Which Indexes to Create . 83

Improving Join Performance. 85

7 Locking and Isolation Levels. 87

Locking . 87

Isolation Levels. 88

Locking Modes and Levels . 91

8 SSL Encryption Cipher Suites 93

9 DataDirect Bulk Load. 97

DataDirect Bulk Load Functions . 97

Utility Functions. 98
GetBulkDiagRec and GetBulkDiagRecW 98

Export, Validate, and Load Functions. 102
ExportTableToFile and ExportTableToFileW. 102
ValidateTableFromFile and ValidateTableFromFileW 106
LoadTableFromFile and LoadTableFromFileW 110

DataDirect Bulk Load Statement Attributes 115
SQL_BULK_EXPORT_PARAMS . 116
SQL_BULK_EXPORT . 117
DataDirect Connect Series for ODBC Reference

6 Table of Contents
10 SQL for Flat-File Drivers . 119

Select Statement. 120
Select Clause . 120
From Clause . 122
Where Clause . 123
Group By Clause . 123
Having Clause . 124
Union Operator . 124
Order By Clause . 125
For Update Clause . 126
SQL Expressions . 126

Create and Drop Table Statements . 138
Create Table . 138
Drop Table. 139

Insert Statement . 140

Update Statement . 142

Delete Statement . 143

Reserved Keywords . 144

11 WorkAround Options . 145

Glossary . 151

Index . 157
DataDirect Connect Series for ODBC Reference

7

Preface

This book is your reference to Progress® DataDirect Connect®
Series for ODBC from DataDirect Technologies, which includes the
following products:

■ DataDirect Connect® for ODBC

■ DataDirect Connect64® for ODBC

■ DataDirect Connect XE (Extended Edition) for ODBC

■ DataDirect Connect64 XE for ODBC

Using this Book
The content of this book assumes that you are familiar with your
operating system and its commands. It contains the following
information:

■ Chapter 1 “Code Page Values” on page 17 provides valid
values for the IANAAppCodePage connection option. This
option is valid only for drivers that run on UNIX and Linux.

■ Chapter 2 “ODBC API and Scalar Functions” on page 25 lists
the ODBC API functions that each driver supports. Any
exceptions are listed in the appropriate driver chapter in the
DataDirect Connect Series for ODBC User’s Guide, under the
section "ODBC Conformance Level." This chapter also lists
ODBC scalar functions.

■ Chapter 3 “Threading” on page 37 discusses how ODBC
ensures thread safety.

■ Chapter 4 “Internationalization, Localization, and
Unicode” on page 39 discusses internationalization issues
concerning the use of ODBC drivers.
DataDirect Connect Series for ODBC Reference

8 Preface
■ Chapter 5 “Designing ODBC Applications for Performance
Optimization” on page 59 provides guidelines for designing
performance-oriented ODBC applications.

■ Chapter 6 “Using Indexes” on page 79 provides general
guidelines on how to improve performance when querying a
database system.

■ Chapter 7 “Locking and Isolation Levels” on page 87 provides
a general discussion of isolation levels and locking.

■ Chapter 8 “SSL Encryption Cipher Suites” on page 93 provides
the SSL encryption cipher suites supported by the DataDirect
Connect Series for ODBC drivers.

■ Chapter 9 “DataDirect Bulk Load” on page 97 provides
information about the functions and statement attributes
associated with DataDirect Bulk Load.

■ Chapter 10 “SQL for Flat-File Drivers” on page 119 explains
the SQL statements that you can use with Btrieve, dBASE,
Paradox, and text files.

In addition, “Glossary” on page 151 helps you with terminology
referenced in this book.

NOTE: This book refers the reader to Web pages using URLs for
more information about specific topics, including Web URLs not
maintained by DataDirect Technologies. Because it is the nature
of Web content to change frequently, DataDirect Technologies
can guarantee only that the URLs referenced in this book were
correct at the time of publishing.
DataDirect Connect Series for ODBC Reference

Conventions Used in This Book 9
Conventions Used in This Book
The following sections describe the typography and other conventions used in this
book.

Typographical Conventions

This book uses the following typographical conventions:

Convention Explanation

italics Introduces new terms with which you may not
be familiar, and is used occasionally for
emphasis.

bold Emphasizes important information. Also
indicates button, menu, and icon names on
which you can act. For example, click Next.

UPPERCASE Indicates keys or key combinations that you can
use. For example, press the ENTER key.

Also used for SQL reserved words.

monospace Indicates syntax examples, values that you
specify, or results that you receive.

monospaced
italics

Indicates names that are placeholders for values
that you specify. For example, filename.

forward slash / Separates menus and their associated
commands. For example, Select File / Copy
means that you should select Copy from the File
menu.

The slash also separates directory levels when
specifying locations under UNIX.

vertical rule | Indicates an "OR" separator used to delineate
items.
DataDirect Connect Series for ODBC Reference

10 Preface
Environment-Specific Information

The drivers are supported in the Windows, UNIX, and Linux
environments. When the information provided is not applicable
to all supported environments, the following symbols are used to
identify that information:

The Windows symbol signifies text that is applicable only to
Windows.

The UNIX symbol signifies text that is applicable only to UNIX and
Linux.

brackets [] Indicates optional items. For example, in the
following statement: SELECT [DISTINCT],
DISTINCT is an optional keyword.

Also indicates sections of the Windows Registry.

braces { } Indicates that you must select one item. For
example, {yes | no} means that you must specify
either yes or no.

ellipsis . . . Indicates that the immediately preceding item
can be repeated any number of times in
succession. An ellipsis following a closing
bracket indicates that all information in that
unit can be repeated.

Convention Explanation
DataDirect Connect Series for ODBC Reference

About the Product Documentation 11
About the Product Documentation
The product library consists of the following books:

■ DataDirect Connect Series for ODBC Installation Guide details
requirements and procedures for installing the product.

■ DataDirect Connect Series for ODBC User’s Guide provides
information about configuring and using the product.

■ DataDirect Connect Series for ODBC Reference provides
detailed reference information about the product.

■ DataDirect Connect Series for ODBC Troubleshooting Guide
provides information about error messages and
troubleshooting procedures for the product.

HTML Version

This library, except for the installation guide, is placed on your
system as HTML-based online help during a normal installation
of the product. It is located in the help subdirectory of the
product installation directory. To use online help, you must have
one of the following Internet browsers installed.

■ Internet Explorer 5.x, 6.x, and 7.x
■ Mozilla Firefox 1.x, 2.x, and 3.x
■ Netscape 4x, 7.x and 8.x
■ Safari 1.x, 2.x, and 3x
■ Opera 7.54u2, 8.x, and 9x

On Windows, you can access the entire Help system by selecting
the help icon that appears in the DataDirect program group.

On all platforms, you can access the entire Help system by
opening the following file from within your browser:

install_dir/help/help.htm
DataDirect Connect Series for ODBC Reference

12 Preface
where install_dir is the path to the product installation
directory.

Or, from a command-line environment, at a command prompt,
enter:

browser_exe install_dir/help/help.htm

where browser_exe is the name of your browser executable and
install_dir is the path to the product installation directory.

After the browser opens, the left pane displays the Table of
Contents, Index, and Search tabs for the entire documentation
library. When you have opened the main screen of the Help
system in your browser, you can bookmark it in the browser for
quick access later.

NOTE: Security features set in your browser can prevent the Help
system from launching. A security warning message is displayed.
Often, the warning message provides instructions for unblocking
the Help system for the current session. To allow the Help system
to launch without encountering a security warning message, the
security settings in your browser can be modified. Check with
your system administrator before disabling any security features.

Help is also available from the setup dialog box for each driver.
When you click Help, your browser opens to the correct topic
without opening the help Table of Contents. A grey toolbar
appears at the top of the browser window.
DataDirect Connect Series for ODBC Reference

About the Product Documentation 13
This tool bar contains previous and next navigation buttons. If,
after viewing the help topic, you want to see the entire library,
click:

on the left side of the toolbar, which opens the left pane and
displays the Table of Contents, Index, and Search tabs.

PDF Version

DataDirect product documentation is also provided in PDF
format, which allows you to view it, perform text searches, or
print it. You can view the PDF documentation using Adobe
Reader. The PDF documentation is available on the product DVD
and also on the DataDirect Technologies Web site:

http://www.datadirect.com/techres/odbcproddoc/index.ssp

You can download the entire library as a compressed file. When
you uncompress the file, it appears in the correct directory
structure.

If you want to copy the documentation library from the product
DVD, you must maintain the same directory structure that is on
the DVD.

■ To copy all product books, copy the entire \books directory to
your local or network drive.

■ To copy a specific set of books, copy that book set’s directory
structure (beneath the \books directory) to your local or
network drive. For example, in the case of:

\books\odbc

you would copy the entire \odbc directory.
DataDirect Connect Series for ODBC Reference

http://www.datadirect.com/techres/odbcproddoc/index.ssp

14 Preface
NOTE: Maintaining the correct directory structure allows
cross-book text searches and cross-references. If you download or
copy the books individually outside of their normal directory
structure, their cross-book search indexes and hyperlinked
cross-references to other books will not work. You can view a
book individually, but it will not open other books to which it has
cross-references.

To help you navigate through the library, a file named books.pdf
is provided. This file lists each online book provided for the
product. We recommend that you open this file first and, from
this file, open the book you want to view.

Contacting Technical Support
DataDirect Technologies offers a variety of options to meet your
technical support needs. Please visit our Web site for more details
and for contact information:

http://support.datadirect.com

The DataDirect Technologies Web site provides the latest support
information through our global service network. The
SupportLink program provides access to support contact details,
tools, patches, and valuable information, including a list of FAQs
for each product. In addition, you can search our Knowledgebase
for technical bulletins and other information.

To obtain technical support for an evaluation copy of the
product, go to:

http://www.datadirect.com/support/eval_help/index.ssp

or contact your sales representative.
DataDirect Connect Series for ODBC Reference

http://support.datadirect.com
http://www.datadirect.com/support/eval_help/index.ssp

Contacting Technical Support 15
When you contact us for assistance, please provide the following
information:

■ The serial number that corresponds to the product for which
you are seeking support, or a case number if you have been
provided one for your issue. If you do not have a SupportLink
contract, the SupportLink representative assisting you will
connect you with our Sales team.

■ Your name, phone number, email address, and organization.
For a first-time call, you may be asked for full customer
information, including location.

■ The DataDirect product and the version that you are using.

■ The type and version of the operating system where you
have installed your DataDirect product.

■ Any database, database version, third-party software, or
other environment information required to understand the
problem.

■ A brief description of the problem, including, but not limited
to, any error messages you have received, what steps you
followed prior to the initial occurrence of the problem, any
trace logs capturing the issue, and so on. Depending on the
complexity of the problem, you may be asked to submit an
example or reproducible application so that the issue can be
recreated.

■ A description of what you have attempted to resolve the
issue. If you have researched your issue on Web search
engines, our Knowledgebase, or have tested additional
configurations, applications, or other vendor products, you
will want to carefully note everything you have already
attempted.

■ A simple assessment of how the severity of the issue is
impacting your organization.
DataDirect Connect Series for ODBC Reference

16 Preface
DataDirect Connect Series for ODBC Reference

17
1 Code Page Values

Table 1-1 lists supported code page values, along with a
description, for the IANAAppCodePage connection option. Refer
to the individual driver chapters in the DataDirect Connect Series
for ODBC User’s Guide for information about this attribute.

To determine the correct numeric value (the MIBenum value) for
the IANAAppCodePage connection string attribute, perform the
following steps:

1 Determine the code page of your database.

2 Determine the MIBenum value that corresponds to your
database code page. To do this, go to:

http://www.iana.org/assignments/character-sets

On this web page, search for the name of your database code
page. This name will be listed as an alias or the name of a
character set, and will have a MIBenum value associated
with it.

3 Check Table 1-1 to make sure that the MIBenum value you
looked up on the IANA Web page is supported by the
DataDirect Connect Series for ODBC. If the value is not listed,
contact SupportLink to request support for that value.

Table 1-1. IANAAppCodePage Values

Value (MIBenum) Description

3 US_ASCII

4 ISO_8859_1

5 ISO_8859_2

6 ISO_8859_3
DataDirect Connect Series for ODBC Reference

http://www.iana.org/assignments/character-sets

18 Chapter 1 Code Page Values
7 ISO_8859_4

8 ISO_8859_5

9 ISO_8859_6

10 ISO_8859_7

11 ISO_8859_8

12 ISO_8859_9

16 JIS_Encoding

17 Shift_JIS

18 EUC_JP

30 ISO_646_IRV

36 KS_C_5601

37 ISO_2022_KR

38 EUC_KR

39 ISO_2022_JP

40 ISO_2022_JP_2

57 GB_2312_80

104 ISO_2022_CN

105 ISO_2022_CN_EXT

109 ISO_8859_13

110 ISO_8859_14

111 ISO_8859_15

113 GBK

2004 HP_ROMAN8

2009 IBM850

2010 IBM852

2011 IBM437

2013 IBM862

2024 WINDOWS-31J

Table 1-1. IANAAppCodePage Values (cont.)

Value (MIBenum) Description
DataDirect Connect Series for ODBC Reference

19
2025 GB2312

2026 Big5

2027 MACINTOSH

2028 IBM037

2029 IBM038

2030 IBM273

2033 IBM277

2034 IBM278

2035 IBM280

2037 IBM284

2038 IBM285

2039 IBM290

2040 IBM297

2041 IBM420

2043 IBM424

2044 IBM500

2045 IBM851

2046 IBM855

2047 IBM857

2048 IBM860

2049 IBM861

2050 IBM863

2051 IBM864

2052 IBM865

2053 IBM868

2054 IBM869

2055 IBM870

2056 IBM871

Table 1-1. IANAAppCodePage Values (cont.)

Value (MIBenum) Description
DataDirect Connect Series for ODBC Reference

20 Chapter 1 Code Page Values
2062 IBM918

2063 IBM1026

2084 KOI8_R

2085 HZ_GB_2312

2086 IBM866

2087 IBM775

2089 IBM00858

2091 IBM01140

2092 IBM01141

2093 IBM01142

2094 IBM01143

2095 IBM01144

2096 IBM01145

2097 IBM01146

2098 IBM01147

2099 IBM01148

2100 IBM01149

2102 IBM1047

2250 WINDOWS_1250

2251 WINDOWS_1251

2252 WINDOWS_1252

2253 WINDOWS_1253

2254 WINDOWS_1254

2255 WINDOWS_1255

2256 WINDOWS_1256

2257 WINDOWS_1257

2258 WINDOWS_1258

2259 TIS_620

Table 1-1. IANAAppCodePage Values (cont.)

Value (MIBenum) Description
DataDirect Connect Series for ODBC Reference

IBM to IANA Code Page Values 21
IBM to IANA Code Page Values
Table 1-2 lists the most commonly used IBM code pages and their
IANA code page equivalents. These IANA values are valid for the
Character Set for CCSID 65535 connection option in the DB2
Wire Protocol driver. Refer to Chapter 5 “The DB2 Wire Protocol
Driver” on page 173 in the DataDirect Connect Series for ODBC
User’s Guide.

20000009391 IBM-939

20000009431 IBM-943_P14A-2000

20000043961 IBM-4396

20000050261 IBM-5026

20000050351 IBM-5035

1. These values are assigned by DataDirect Technologies and do not appear in
http://www.iana.org/assignments/character-sets.

Table 1-1. IANAAppCodePage Values (cont.)

Value (MIBenum) Description

Table 1-2. IBM to IANA Code Page Values

IBM Number Value (MIBenum) IANA Name

37 2028 IBM037

38 2029 IBM038

290 2039 IBM290

300 20000009391 IBM-939

3012 20000009431 IBM-943_P14A-2000

3013 2024 WINDOWS-31J
DataDirect Connect Series for ODBC Reference

22 Chapter 1 Code Page Values
500 2044 IBM500

857 2047 IBM857

860 2048 IBM860

861 2049 IBM861

897 17 Shift_JIS

913 6 ISO_8859-3

914 7 ISO_8859-4

932 17 Shift_JIS

939 20000009391 IBM-939

9432 20000009431 IBM-943_P14A-2000

9433 2024 WINDOWS-31J

950 2026 Big5

1200 1015 UTF-16

1208 106 UTF-8

12502 5 ISO_8859-2

12503 2250 WINDOWS-1250

12512 8 ISO_8859-5

12513 2251 WINDOWS-1251

12522 4 ISO_8859-1

12523 2252 WINDOWS-1252

12532 10 ISO_8859-7

12533 2253 WINDOWS-1253

12542 12 ISO_8859-9

12543 2254 WINDOWS-1254

12552 11 ISO_8859-8

Table 1-2. IBM to IANA Code Page Values (cont.)

IBM Number Value (MIBenum) IANA Name
DataDirect Connect Series for ODBC Reference

IBM to IANA Code Page Values 23
12553 2255 WINDOWS-1255

12562 9 ISO_8859-6

12563 2256 WINDOWS-1256

1257 2257 WINDOWS-1257

1258 2258 WINDOWS-1258

4396 20000043961 IBM-4396

5026 20000050261 IBM-5026

5035 20000050351 IBM-5035

5297 1015 UTF-16

5304 106 UTF-8

13488 1013 UTF-16BE

1. These values are assigned by DataDirect Technologies and do not appear in
http://www.iana.org/assignments/character-sets.

2. If your application runs on a UNIX or Linux platform, use this value.
3. If your application runs on a Windows platform, use this value.

Table 1-2. IBM to IANA Code Page Values (cont.)

IBM Number Value (MIBenum) IANA Name
DataDirect Connect Series for ODBC Reference

24 Chapter 1 Code Page Values
Teradata Code Page Values
Table 1-3 lists code pages that are valid only for the Driver for the
Teradata database. These values do not appear in
http://www.iana.org/assignments/character-sets and are assigned
by DataDirect Technologies. Refer to Chapter 15 “The Driver for
the Teradata Database” on page 791 in the DataDirect Connect
Series for ODBC User’s Guide

Table 1-3. Teradata Code Page Values

Value (MIBenum) Description

2000005039 ebcdic

2000005040 ebcdic037_0e

2000005041 ebcdic273_0e

2000005042 ebcdic277_0e

2000005043 hangulebcdic933_1ii

2000005044 hangulksc5601_2r4

2000005045 kanjiebcdic5026_0i

2000005046 kanjiebcdic5035_0i

2000005047 kanjieuc_0u

2000005048 kanjisjis_0s

2000005049 katakanaebcdic

2000005050 latin1252_0a

2000005051 latin1_0a

2000005052 latin9_0a

2000005053 schebcdic935_2ij

2000005054 schgb2312_1t0

2000005055 tchbig5_1r0

2000005056 tchebcdic937_3i
DataDirect Connect Series for ODBC Reference

25
2 ODBC API and Scalar Functions

This chapter lists the ODBC API functions that the DataDirect
Connect Series for ODBC drivers support. In addition, it lists the
scalar functions that you use in SQL statements. This chapter
includes the following topics:

■ “API Functions” on page 25
■ “Scalar Functions” on page 28

API Functions
The DataDirect Connect Series for ODBC drivers are Level 1
compliant, that is, they support all ODBC Core and Level 1
functions. They also support a limited set of Level 2 functions.
The drivers support the functions listed in Table 2-1 on page 26
and Table 2-2 on page 27. Any additions to these supported
functions or differences in the support of specific functions are
listed in the "ODBC Conformance Level" section in the individual
driver chapters in the DataDirect Connect Series for ODBC User’s
Guide.
DataDirect Connect Series for ODBC Reference

26 Chapter 2 ODBC API and Scalar Functions
Table 2-1. Function Conformance for 2.x ODBC Applications

Core Functions Level 1 Functions Level 2 Functions

SQLAllocConnect

SQLAllocEnv

SQLAllocStmt

SQLBindCol

SQLBindParameter

SQLCancel

SQLColAttributes

SQLConnect

SQLDescribeCol

SQLDisconnect

SQLDrivers

SQLError

SQLExecDirect

SQLExecute

SQLFetch

SQLFreeConnect

SQLFreeEnv

SQLFreeStmt

SQLGetCursorName

SQLNumResultCols

SQLPrepare

SQLRowCount

SQLSetCursorName

SQLTransact

SQLColumns

SQLDriverConnect

SQLGetConnectOption

SQLGetData

SQLGetFunctions

SQLGetInfo

SQLGetStmtOption

SQLGetTypeInfo

SQLParamData

SQLPutData

SQLSetConnectOption

SQLSetStmtOption

SQLSpecialColumns

SQLStatistics

SQLTables

SQLBrowseConnect

SQLDataSources

SQLDescribeParam

SQLExtendedFetch (forward scrolling
only)

SQLMoreResults

SQLNativeSql

SQLNumParams

SQLParamOptions

SQLSetScrollOptions
DataDirect Connect Series for ODBC Reference

API Functions 27
Table 2-2. Function Conformance for 3.x ODBC Applications

SQLAllocHandle

SQLBindCol

SQLBindParameter

SQLBrowseConnect

SQLBulkOperations

SQLCancel

SQLCloseCursor

SQLColAttribute

SQLColumns

SQLConnect

SQLCopyDesc

SQLDataSources

SQLDescribeCol

SQLDisconnect

SQLDriverConnect

SQLDrivers

SQLEndTran

SQLError

SQLExecDirect

SQLExecute

SQLExtendedFetch

SQLFetch

SQLFetchScroll (forward scrolling only)

SQLFreeHandle

SQLFreeStmt

SQLGetConnectAttr

SQLGetCursorName

SQLGetData

SQLGetDescField

SQLGetDescRec

SQLGetDiagField

SQLGetDiagRec

SQLGetEnvAttr

SQLGetFunctions

SQLGetInfo

SQLGetStmtAttr

SQLGetTypeInfo

SQLMoreResults

SQLNativeSql

SQLNumParens

SQLNumResultCols

SQLParamData

SQLPrepare

SQLPutData

SQLRowCount

SQLSetConnectAttr

SQLSetCursorName

SQLSetDescField

SQLSetDescRec

SQLSetEnvAttr

SQLSetStmtAttr

SQLSpecialColumns

SQLStatistics

SQLTables

SQLTransact
DataDirect Connect Series for ODBC Reference

28 Chapter 2 ODBC API and Scalar Functions
Scalar Functions
This section lists the scalar functions that ODBC supports. Your
database system may not support all these functions. Refer to the
documentation for your database system to find out which
functions are supported. Also, depending on the driver that you
are using, all the scalar functions may not be supported. To check
which scalar functions are supported by a driver, use the
SQLGetInfo ODBC function.

You can use these scalar functions in SQL statements using the
following syntax:

{fn scalar-function}

where scalar-function is one of the functions listed in Table 2-3
through Table 2-6. For example:

SELECT {fn UCASE(NAME)} FROM EMP

String Functions

Table 2-3 on page 29 lists the string functions that ODBC
supports.

The string functions listed accept the following arguments:

■ string_exp can be the name of a column, a string literal, or
the result of another scalar function, where the underlying
data type is SQL_CHAR, SQL_VARCHAR, or
SQL_LONGVARCHAR.

■ start, length, and count can be the result of another scalar
function or a literal numeric value, where the underlying data
type is SQL_TINYINT, SQL_SMALLINT, or SQL_INTEGER.
DataDirect Connect Series for ODBC Reference

Scalar Functions 29
The string functions are one-based; that is, the first character in
the string is character 1.

Character string literals must be surrounded in single quotation
marks.

Table 2-3. Scalar String Functions

Function Returns

ASCII(string_exp) ASCII code value of the leftmost character of string_exp
as an integer.

BIT_LENGTH(string_exp)
[ODBC 3.0 only]

The length in bits of the string expression.

CHAR(code) The character with the ASCII code value specified by code.
code should be between 0 and 255; otherwise, the return
value is data-source dependent.

CHAR_LENGTH(string_exp)
[ODBC 3.0 only]

The length in characters of the string expression, if the
string expression is of a character data type; otherwise,
the length in bytes of the string expression (the smallest
integer not less than the number of bits divided by 8).
(This function is the same as the CHARACTER_LENGTH
function.)

CHARACTER_
LENGTH(string_exp)
[ODBC 3.0 only]

The length in characters of the string expression, if the
string expression is of a character data type; otherwise,
the length in bytes of the string expression (the smallest
integer not less than the number of bits divided by 8).
(This function is the same as the CHAR_LENGTH function.)

CONCAT(string_exp1,
string_exp2)

The string resulting from concatenating string_exp2 and
string_exp1. The string is system dependent.

DIFFERENCE(string_exp1,
string_exp2)

An integer value that indicates the difference between
the values returned by the SOUNDEX function for
string_exp1 and string_exp2.

INSERT(string_exp1, start,
length, string_exp2)

A string where length characters have been deleted from
string_exp1 beginning at start and where string_exp2
has been inserted into string_exp beginning at start.

LCASE(string_exp) Uppercase characters in string_exp converted to
lowercase.

LEFT(string_exp,count) The count of characters of string_exp.
DataDirect Connect Series for ODBC Reference

30 Chapter 2 ODBC API and Scalar Functions
LENGTH(string_exp) The number of characters in string_exp, excluding
trailing blanks and the string termination character.

LOCATE(string_exp1,
string_exp2[,start])

The starting position of the first occurrence of
string_exp1 within string_exp2. If start is not
specified, the search begins with the first character
position in string_exp2. If start is specified, the search
begins with the character position indicated by the value
of start. The first character position in string_exp2 is
indicated by the value 1. If string_exp1 is not found, 0 is
returned.

LTRIM(string_exp) The characters of string_exp with leading blanks
removed.

OCTET_LENGTH(string_exp)
[ODBC 3.0 only]

The length in bytes of the string expression. The result is
the smallest integer not less than the number of bits
divided by 8.

POSITION(character_exp IN
character_exp)
[ODBC 3.0 only]

The position of the first character expression in the second
character expression. The result is an exact numeric with
an implementation-defined precision and a scale of 0.

REPEAT(string_exp, count) A string composed of string_exp repeated count times.

REPLACE(string_exp1,
string_exp2, string_exp3)

Replaces all occurrences of string_exp2 in string_exp1
with string_exp3.

RIGHT(string_exp, count) The rightmost count of characters in string_exp.

RTRIM(string_exp) The characters of string_exp with trailing blanks
removed.

SOUNDEX(string_exp) A data source dependent string representing the sound of
the words in string_exp.

SPACE(count) A string consisting of count spaces.

SUBSTRING(string_exp, start,
length)

A string derived from string_exp beginning at the
character position start for length characters.

UCASE(string_exp) Lowercase characters in string_exp converted to
uppercase.

Table 2-3. Scalar String Functions (cont.)

Function Returns
DataDirect Connect Series for ODBC Reference

Scalar Functions 31
Numeric Functions

Table 2-4 lists the numeric functions that ODBC supports.

The numeric functions listed accept the following arguments:

■ numeric_exp can be a column name, a numeric literal, or the
result of another scalar function, where the underlying data
type is SQL_NUMERIC, SQL_DECIMAL, SQL_TINYINT,
SQL_SMALLINT, SQL_INTEGER, SQL_BIGINT, SQL_FLOAT,
SQL_REAL, or SQL_DOUBLE.

■ float_exp can be a column name, a numeric literal, or the
result of another scalar function, where the underlying data
type is SQL_FLOAT.

■ integer_exp can be a column name, a numeric literal, or the
result of another scalar function, where the underlying data
type is SQL_TINYINT, SQL_SMALLINT, SQL_INTEGER, or
SQL_BIGINT.

Table 2-4. Scalar Numeric Functions

Function Returns

ABS(numeric_exp) Absolute value of numeric_exp.

ACOS(float_exp) Arccosine of float_exp as an angle in radians.

ASIN(float_exp) Arcsine of float_exp as an angle in radians.

ATAN(float_exp) Arctangent of float_exp as an angle in radians.

ATAN2(float_exp1, float_exp2) Arctangent of the x and y coordinates, specified by
float_exp1 and float_exp2 as an angle in radians.

CEILING(numeric_exp) Smallest integer greater than or equal to
numeric_exp.

COS(float_exp) Cosine of float_exp as an angle in radians.

COT(float_exp) Cotangent of float_exp as an angle in radians.

DEGREES(numeric_exp) Number if degrees converted from numeric_exp
radians.
DataDirect Connect Series for ODBC Reference

32 Chapter 2 ODBC API and Scalar Functions
EXP(float_exp) Exponential value of float_exp.

FLOOR(numeric_exp) Largest integer less than or equal to numeric_exp.

LOG(float_exp) Natural log of float_exp.

LOG10(float_exp) Base 10 log of float_exp.

MOD(integer_exp1, integer_exp2) Remainder of integer_exp1 divided by
integer_exp2.

PI() Constant value of pi as a floating-point number.

POWER(numeric_exp, integer_exp) Value of numeric_exp to the power of integer_exp.

RADIANS(numeric_exp) Number of radians converted from numeric_exp
degrees.

RAND([integer_exp]) Random floating-point value using integer_exp as
the optional seed value.

ROUND(numeric_exp, integer_exp) numeric_exp rounded to integer_exp places right of
the decimal (left of the decimal if integer_exp is
negative).

SIGN(numeric_exp) Indicator of the sign of numeric_exp. If
numeric_exp < 0, -1 is returned. If numeric_exp = 0,
0 is returned. If numeric_exp > 0, 1 is returned.

SIN(float_exp) Sine of float_exp, where float_exp is an angle in
radians.

SQRT(float_exp) Square root of float_exp.

TAN(float_exp) Tangent of float_exp, where float_exp is an angle
in radians.

TRUNCATE(numeric_exp, integer_exp) numeric_exp truncated to integer_exp places right
of the decimal. (If integer_exp is negative,
truncation is to the left of the decimal.)

Table 2-4. Scalar Numeric Functions (cont.)

Function Returns
DataDirect Connect Series for ODBC Reference

Scalar Functions 33
Date and Time Functions

Table 2-5 lists the date and time functions that ODBC supports.

The date and time functions listed accept the following
arguments:

■ date_exp can be a column name, a date or timestamp literal,
or the result of another scalar function, where the
underlying data type can be represented as SQL_CHAR,
SQL_VARCHAR, SQL_DATE, or SQL_TIMESTAMP.

■ time_exp can be a column name, a timestamp or timestamp
literal, or the result of another scalar function, where the
underlying data type can be represented as SQL_CHAR,
SQL_VARCHAR, SQL_TIME, or SQL_TIMESTAMP.

■ timestamp_exp can be a column name; a time, date, or
timestamp literal; or the result of another scalar function,
where the underlying data type can be represented as
SQL_CHAR, SQL_VARCHAR, SQL_TIME, SQL_DATE, or
SQL_TIMESTAMP.

Table 2-5. Scalar Time and Date Functions

Function Returns

CURRENT_DATE()
[ODBC 3.0 only]

Current date.

CURRENT_TIME[(time-precision)]
[ODBC 3.0 only]

Current local time. The time-precision argument
determines the seconds precision of the returned
value.

CURRENT_TIMESTAMP[(timestamp-
precision)]
[ODBC 3.0 only]

Current local date and local time as a timestamp value.
The timestamp-precision argument determines the
seconds precision of the returned timestamp.

CURDATE() Current date as a date value.

CURTIME() Current local time as a time value.
DataDirect Connect Series for ODBC Reference

34 Chapter 2 ODBC API and Scalar Functions
DAYNAME(date_exp) Character string containing a data-source-specific
name of the day for the day portion of date_exp.

DAYOFMONTH(date_exp) Day of the month in date_exp as an integer value
(1–31).

DAYOFWEEK(date_exp) Day of the week in date_exp as an integer value (1–7).

DAYOFYEAR(date_exp) Day of the year in date_exp as an integer value
(1–366).

HOUR(time_exp) Hour in time_exp as an integer value (0–23).

MINUTE(time_exp) Minute in time_exp as an integer value (0–59).

MONTH(date_exp) Month in date_exp as an integer value (1–12).

MONTHNAME(date_exp) Character string containing the data source-specific
name of the month.

NOW() Current date and time as a timestamp value.

QUARTER(date_exp) Quarter in date_exp as an integer value (1–4).

SECOND(time_exp) Second in date_exp as an integer value (0–59).

TIMESTAMPADD(interval,
integer_exp, time_exp)

Timestamp calculated by adding integer_exp intervals
of type interval to time_exp. interval can be one of the
following values:

SQL_TSI_FRAC_SECOND
SQL_TSI_SECOND
SQL_TSI_MINUTE
SQL_TSI_HOUR
SQL_TSI_DAY
SQL_TSI_WEEK
SQL_TSI_MONTH
SQL_TSI_QUARTER
SQL_TSI_YEAR

Fractional seconds are expressed in billionths of a
second.

TIMESTAMPDIFF(interval,
time_exp1, time_exp2)

Integer number of intervals of type interval by which
time_exp2 is greater than time_exp1. interval has the
same values as TIMESTAMPADD. Fractional seconds are
expressed in billionths of a second.

Table 2-5. Scalar Time and Date Functions (cont.)

Function Returns
DataDirect Connect Series for ODBC Reference

Scalar Functions 35
System Functions

Table 2-6 lists the system functions that ODBC supports.

WEEK(date_exp) Week of the year in date_exp as an integer value
(1–53).

YEAR(date_exp) Year in date_exp. The range is data-source dependent.

Table 2-5. Scalar Time and Date Functions (cont.)

Function Returns

Table 2-6. Scalar System Functions

Function Returns

DATABASE() Name of the database, corresponding to the
connection handle (hdbc).

IFNULL(exp,value) value, if exp is null.

USER() Authorization name of the user.
DataDirect Connect Series for ODBC Reference

36 Chapter 2 ODBC API and Scalar Functions
DataDirect Connect Series for ODBC Reference

37
3 Threading

The ODBC specification mandates that all drivers must be
thread-safe, that is, drivers must not fail when database requests
are made on separate threads. It is a common misperception that
issuing requests on separate threads always results in improved
throughput. Because of network transport and database server
limitations, some drivers serialize threaded requests to the server
to ensure thread safety.

The ODBC 3.0 specification does not provide a method to find
out how a driver services threaded requests, although this
information is useful to an application. All the DataDirect
Connect Series for ODBC drivers provide this information to the
user through the SQLGetInfo information type 1028.

The result of calling SQLGetInfo with 1028 is a SQL_USMALLINT
flag that denotes the session’s thread model. A return value of 0
denotes that the session is fully thread-enabled and that all
requests use the threaded model. A return value of 1 denotes
that the session is restricted at the connection level. Sessions of
this type are fully thread-enabled when simultaneous threaded
requests are made with statement handles that do not share the
same connection handle. In this model, if multiple requests are
made from the same connection, the first request received by
the driver is processed immediately and all subsequent requests
are serialized. A return value of 2 denotes that the session is
thread-impaired and all requests are serialized by the driver.
DataDirect Connect Series for ODBC Reference

38 Chapter 3 Threading
Consider the following code fragment:

rc = SQLGetInfo (hdbc, 1028, &ThreadModel, NULL, NULL);

If (rc == SQL_SUCCESS) {
 // driver is a DataDirect driver that can report
 // threading information

 if (ThreadModel == 0)
 // driver is unconditionally thread-enabled
 // application can take advantage of threading

 else if (ThreadModel == 1)
 // driver is thread-enabled when thread requests are
 // from different connections
 // some applications can take advantage of threading

 else if (ThreadModel == 2)
 // driver is thread-impaired
 // application should only use threads if it reduces
 // program complexity

}
else
 // driver is guaranteed to be thread-safe
 // use threading at your own risk
DataDirect Connect Series for ODBC Reference

39
4 Internationalization,
Localization, and Unicode

This chapter provides an overview of how internationalization,
localization, and Unicode relate to each other. It also provides a
background on Unicode, and how it is accommodated by
Unicode and non-Unicode ODBC drivers. This chapter includes
the following topics:

■ “Internationalization and Localization” on page 39

■ “Unicode Character Encoding” on page 43

■ “Unicode and Non-Unicode ODBC Drivers” on page 47

■ “The Driver Manager and Unicode Encoding on UNIX and
Linux” on page 56

Internationalization and Localization
Software that has been designed for internationalization is able
to manage different linguistic and cultural conventions
transparently and without modification. The same binary copy
of an application should run on any localized version of an
operating system without requiring source code changes.
DataDirect Connect Series for ODBC Reference

40 Chapter 4 Internationalization, Localization, and Unicode
Software that has been designed for localization includes
language translation (such as text messages, icons, and buttons),
cultural data (such as dates, times, and currency), and other
components (such as input methods and spell checkers) for
meeting regional market requirements.

Properly designed applications can accommodate a localized
interface without extensive modification. The applications can be
designed, first, to run internationally, and, second, to
accommodate the language- and cultural-specific elements of a
designated locale.

Locale

A locale represents the language and cultural data chosen by the
user and dynamically loaded into memory at runtime. The locale
settings are applied to the operating system and to subsequent
application launches.

While language is a fairly straightforward item, cultural data is a
little more complex. Dates, numbers, and currency are all
examples of data that is formatted according to cultural
expectations. Because cultural preferences are bound to a
geographic area, country is an important element of locale.
Together these two elements (language and country) provide a
precise context in which information can be presented. Locale
presents information in the language and form that is best
understood and appreciated by the local user.
DataDirect Connect Series for ODBC Reference

Internationalization and Localization 41
Language

A locale's language is specified by the ISO 639 standard. The
following table lists some commonly used language codes.

Because language is correlated with geography, a language code
might not capture all the nuances of usage in a particular area.
For example, French and Canadian French may use different
phrases and terms to mean different things even though basic
grammar and vocabulary are the same. Language is only one
element of locale.

Language Code Language

en English

nl Dutch

fr French

es Spanish

zh Chinese

ja Japanese

vi Vietnamese
DataDirect Connect Series for ODBC Reference

42 Chapter 4 Internationalization, Localization, and Unicode
Country

The locale's country identifier is also specified by an ISO standard,
ISO 3166, which describes valid two-letter codes for all countries.
ISO 3166 defines these codes in uppercase letters. The following
table lists some commonly used country codes.

The country code provides more contextual information for a
locale and affects a language's usage, word spelling, and
collation rules.

Variant

A variant is an optional extension to a locale. It identifies a
custom locale that is not possible to create with just language
and country codes. Variants can be used by anyone to add
additional context for identifying a locale. The locale en_US
represents English (United States), but en_US_CA represents even
more information and might identify a locale for English
(California, U.S.A). Operating system or software vendors can use
these variants to create more descriptive locales for their specific
environments.

Country Code Country

US United States

FR France

IE Ireland

CA Canada

MX Mexico
DataDirect Connect Series for ODBC Reference

Unicode Character Encoding 43
Unicode Character Encoding
In addition to locale, the other major component of
internationalizing software is the use of the Universal Codeset,
or Unicode. Most developers know that Unicode is a standard
encoding that can be used to support multilingual character sets.
Unfortunately, understanding Unicode is not as simple as its
name would indicate. Software developers have used a number
of character encodings, from ASCII to Unicode, to solve the many
problems that arise when developing software applications that
can be used worldwide.

Background

Most legacy computing environments have used ASCII character
encoding developed by the ANSI standards body to store and
manipulate character strings inside software applications. ASCII
encoding was convenient for programmers because each ASCII
character could be stored as a byte. The initial version of ASCII
used only 7 of the 8 bits available in a byte, which meant that
applications could use only 128 different characters. This version
of ASCII could not account for European characters and was
completely inadequate for Asian characters. Using the eighth bit
to extend the total range of characters to 256 added support for
most European characters. Today, ASCII refers to either the 7-bit
or 8-bit encoding of characters.

As the need increased for applications with additional
international support, ANSI again increased the functionality of
ASCII by developing an extension to accommodate multilingual
software. The extension, known as the Double-Byte Character
Set (DBCS), allowed existing applications to function without
change, but provided for the use of additional characters,
including complex Asian characters. With DBCS, characters map
to either one byte (for example, American ASCII characters) or
two bytes (for example, Asian characters). The DBCS
DataDirect Connect Series for ODBC Reference

44 Chapter 4 Internationalization, Localization, and Unicode
environment also introduced the concept of an operating system
code page that identified how characters would be encoded into
byte sequences in a particular computing environment. DBCS
encoding provided a cross-platform mechanism for building
multilingual applications.

The DataDirect Connect Series for ODBC UNIX and Linux drivers
can use double-byte character sets. The drivers normally use the
character set defined by the default locale "C" unless explicitly
pointed to another character set. The default locale "C"
corresponds to the 7-bit US-ASCII character set. Use the following
procedure to set the locale to a different character set:

1 Add the following line at the beginning of applications that
use double-byte character sets:

setlocale (LC_ALL, "");

This is a standard UNIX function. It selects the character set
indicated by the environment variable LANG as the one to be
used by X/Open compliant, character-handling functions. If
this line is not present, or if LANG is not set or is set to NULL,
the default locale "C" is used.

2 Set the LANG environment variable to the appropriate
character set. The UNIX command locale -a can be used to
display all supported character sets on your system.

For more information, refer to the man pages for "locale" and
"setlocale."

Using a DBCS, however, was not ideal; many developers felt that
there was a better way to solve the problem. A group of leading
software companies joined forces to form the Unicode
Consortium. Together, they produced a new solution to building
worldwide applications—Unicode. Unicode was originally
designed as a fixed-width, uniform two-byte designation that
could represent all modern scripts without the use of code pages.
The Unicode Consortium has continued to evaluate new
DataDirect Connect Series for ODBC Reference

Unicode Character Encoding 45
characters, and the current number of supported characters is
over 95,000.

Although it seemed to be the perfect solution to building
multilingual applications, Unicode started off with a significant
drawback—it would have to be retrofitted into existing
computing environments. To use the new paradigm, all
applications would have to change. As a result, several
standards-based transliterations were designed to convert
two-byte fixed Unicode values into more appropriate character
encodings, including, among others, UTF-8, UCS-2, and UTF-16.

UTF-8 is a standard method for transforming Unicode values into
byte sequences that maintain transparency for all ASCII codes.
UTF-8 is recognized by the Unicode Consortium as a mechanism
for transforming Unicode values and is popular for use with
HTML, XML, and other protocols. UTF-8 is, however, currently
used primarily on AIX, HP-UX, Solaris, and Linux.

UCS-2 encoding is a fixed, two-byte encoding sequence and is a
method for transforming Unicode values into byte sequences. It
is the standard for Windows 95, Windows 98, Windows Me, and
Windows NT.

UTF-16 is a superset of UCS-2, with the addition of some special
characters in surrogate pairs. UTF-16 is the standard encoding
for Windows 2000, Windows XP, Windows Server 2003, and
Windows Vista.

For the DataDirect Connect Series for ODBC Unicode drivers, refer
to specific driver chapters in the DataDirect Connect Series for
ODBC User’s Guide to determine which encodings are supported.

Unicode Support in Databases

Recently, database vendors have begun to support Unicode data
types natively in their systems. With Unicode support, one
database can hold multiple languages. For example, a large
DataDirect Connect Series for ODBC Reference

46 Chapter 4 Internationalization, Localization, and Unicode
multinational corporation could store expense data in the local
languages for the Japanese, U.S., English, German, and French
offices in one database.

Not surprisingly, the implementation of Unicode data types varies
from vendor to vendor. For example, the Microsoft SQL Server
2000 implementation of Unicode provides data in UTF-16 format,
while Oracle provides Unicode data types in UTF-8 and UTF-16
formats. A consistent implementation of Unicode not only
depends on the operating system, but also on the database itself.

Unicode Support in ODBC

Prior to the ODBC 3.5 standard, all ODBC access to function calls
and string data types was through ANSI encoding (either ASCII or
DBCS). Applications and drivers were both ANSI-based.

The ODBC 3.5 standard specified that the ODBC Driver Manager
(on both Windows and UNIX) be capable of mapping both
Unicode function calls and string data types to ANSI encoding as
transparently as possible. This meant that ODBC 3.5-compliant
Unicode applications could use Unicode function calls and string
data types with ANSI drivers because the Driver Manager could
convert them to ANSI. Because of character limitations in ANSI,
however, not all conversions are possible.
DataDirect Connect Series for ODBC Reference

Unicode and Non-Unicode ODBC Drivers 47
The ODBC Driver Manager version 3.5 and later, therefore,
supports the following configurations:

■ ANSI application with an ANSI driver
■ ANSI application with a Unicode driver
■ Unicode application with a Unicode driver
■ Unicode application with an ANSI driver

A Unicode application can work with an ANSI driver because the
Driver Manager provides limited Unicode-to-ANSI mapping. The
Driver Manager makes it possible for a pre-3.5 ANSI driver to
work with a Unicode application. What distinguishes a Unicode
driver from a non-Unicode driver is the Unicode driver's capacity
to interpret Unicode function calls without the intervention of
the Driver Manager, as described in the following section.

Unicode and Non-Unicode ODBC Drivers
The way in which a driver handles function calls from a Unicode
application determines whether it is considered a "Unicode
driver."

Function Calls

Instead of the standard ANSI SQL function calls, such as
SQLConnect, Unicode applications use "W" (wide) function calls,
such as SQLConnectW. If the driver is a true Unicode driver, it can
understand "W" function calls and the Driver Manager can pass
them through to the driver without conversion to ANSI. The
DataDirect Connect Series for ODBC drivers that support "W"
function calls are:

■ DB2 Wire Protocol
■ Greenplum Wire Protocol
■ MySQL Wire Protocol
DataDirect Connect Series for ODBC Reference

48 Chapter 4 Internationalization, Localization, and Unicode
■ Oracle Wire Protocol
■ Oracle
■ PostgreSQL Wire Protocol
■ SQL Server Classic Wire Protocol
■ SQL Server Native Wire Protocol
■ Sybase Wire Protocol
■ Teradata
■ XML

If the driver is a non-Unicode driver, it cannot understand
W function calls, and the Driver Manager must convert them to
ANSI calls before sending them to the driver. The Driver Manager
determines the ANSI encoding system to which it must convert by
referring to a code page. On Windows, this reference is to the
Active Code Page. On UNIX and Linux, it is to the
IANAAppCodePage connection string attribute, part of the
odbc.ini file.

The following examples illustrate these conversion streams for
the DataDirect Connect Series for ODBC drivers. The Driver
Manager on UNIX and Linux prior to the DataDirect Connect
Series for ODBC Release 5.0 assumes that Unicode applications and
Unicode drivers use the same encoding (UTF-8). For the
DataDirect Connect Series for ODBC Release 5.0 and higher on
UNIX and Linux, the Driver Manager determines the type of
Unicode encoding of both the application and the driver, and
performs conversions when the application and driver use
different types of encoding. This determination is made by
checking two ODBC environment attributes:
SQL_ATTR_APP_UNICODE_TYPE and
SQL_ATTR_DRIVER_UNICODE_TYPE. “The Driver Manager and
Unicode Encoding on UNIX and Linux” on page 56 describes in
detail how this is done.
DataDirect Connect Series for ODBC Reference

Unicode and Non-Unicode ODBC Drivers 49
Unicode Application with a Non-Unicode
Driver

An operation involving a Unicode application and a
non-Unicode driver incurs more overhead because function
conversion is involved.

Windows

1 The Unicode application sends UCS-2/UTF-16 function calls to
the Driver Manager.

2 The Driver Manager converts the function calls from
UCS-2/UTF-16 to ANSI. The type of ANSI is determined by the
Driver Manager through reference to the client machine’s
Active Code Page.

3 The Driver Manager sends the ANSI function calls to the
non-Unicode driver.

4 The driver returns ANSI argument values to the Driver
Manager.

5 The Driver Manager converts the function calls from ANSI to
UCS-2/UTF-16 and returns these converted calls to the
application.

UNIX and Linux: DataDirect Connect® Series for ODBC
Releases Prior to 5.0

1 The Unicode application sends UTF-8 function calls to the
Driver Manager.

2 The Driver Manager converts the function calls from UTF-8 to
ANSI. The type of ANSI is determined by the Driver Manager
through reference to the client machine’s value for the
IANAAppCodePage connection string attribute.

3 The Driver Manager sends the converted ANSI function calls
to the non-Unicode driver.
DataDirect Connect Series for ODBC Reference

50 Chapter 4 Internationalization, Localization, and Unicode
4 The driver returns ANSI argument values to the Driver
Manager.

5 The Driver Manager converts the function calls from ANSI to
UTF-8 and returns these converted calls to the application.

UNIX and Linux: DataDirect Connect® Series for ODBC
5.0 and Higher

1 The Unicode application sends function calls to the Driver
Manager. The Driver Manager expects these function calls to
be UTF-8 or UTF-16 based on the value of the
SQL_ATTR_APP_UNICODE_TYPE attribute.

2 The Driver Manager converts the function calls from UTF-8 or
UTF-16 to ANSI. The type of ANSI is determined by the Driver
Manager through reference to the client machine’s value for
the IANAAppCodePage connection string attribute.

3 The Driver Manager sends the converted ANSI function calls
to the non-Unicode driver.

4 The driver returns ANSI argument values to the Driver
Manager.

5 The Driver Manager converts the function calls from ANSI to
UTF-8 or UTF-16 and returns these converted calls to the
application.

Unicode Application with a Unicode Driver

An operation involving a Unicode application and a Unicode
driver that use the same Unicode encoding is efficient because no
function conversion is involved. If the application and the driver
each use different types of encoding, there is some conversion
overhead. See “The Driver Manager and Unicode Encoding on
UNIX and Linux” on page 56 for details.
DataDirect Connect Series for ODBC Reference

Unicode and Non-Unicode ODBC Drivers 51
Windows

1 The Unicode application sends UCS-2 or UTF-16 function calls
to the Driver Manager.

2 The Driver Manager does not have to convert the
UCS-2/UTF-16 function calls to ANSI. It passes the Unicode
function call to the Unicode driver.

3 The driver returns UCS-2/UTF-16 argument values to the
Driver Manager.

4 The Driver Manager returns UCS-2/UTF-16 function calls to
the application.

UNIX and Linux: DataDirect Connect® Series for ODBC
Releases Prior to 5.0

1 The Unicode application sends UTF-8 function calls to the
Driver Manager.

2 The Driver Manager does not have to convert the UTF-8
function calls to ANSI. It passes the Unicode function call with
UTF-8 arguments to the Unicode driver.

3 The driver returns UTF-8 argument values to the Driver
Manager.

4 The Driver Manager returns UTF-8 function calls to the
application.

UNIX and Linux: DataDirect Connect® Series for ODBC
5.0 and Higher

1 The Unicode application sends function calls to the Driver
Manager. The Driver Manager expects these function calls to
be UTF-8 or UTF-16 based on the value of the
SQL_ATTR_APP_UNICODE_TYPE attribute.
DataDirect Connect Series for ODBC Reference

52 Chapter 4 Internationalization, Localization, and Unicode
2 The Driver Manager passes Unicode function calls to the
Unicode driver. The Driver Manager has to perform function
call conversions if the SQL_ATTR_APP_UNICODE_TYPE is
different from the SQL_ATTR_DRIVER_UNICODE_TYPE.

3 The driver returns argument values to the Driver Manager.
Whether these are UTF-8 or UTF-16 argument values is based
on the value of the SQL_ATTR_DRIVER_UNICODE_TYPE
attribute.

4 The Driver Manager returns appropriate function calls to the
application based on the SQL_ATTR_APP_UNICODE_TYPE
attribute value. The Driver Manager has to perform function
call conversions if the SQL_ATTR_DRIVER_UNICODE_TYPE
value is different from the SQL_ATTR_APP_UNICODE_TYPE
value.

Data

ODBC C data types are used to indicate the type of C buffers that
store data in the application. This is in contrast to SQL data types,
which are mapped to native database types to store data in a
database (data store). ANSI applications bind to the C data type
SQL_C_CHAR and expect to receive information bound in the
same way. Similarly, most Unicode applications bind to the C data
type SQL_C_WCHAR (wide data type) and expect to receive
information bound in the same way. Any ODBC 3.5-compliant
Unicode driver must be capable of supporting SQL_C_CHAR and
SQL_C_WCHAR so that it can return data to both ANSI and
Unicode applications.

When the driver communicates with the database, it must use
ODBC SQL data types, such as SQL_CHAR and SQL_WCHAR, that
map to native database types. In the case of ANSI data and an
ANSI database, the driver receives data bound to SQL_C_CHAR
and passes it to the database as SQL_CHAR. The same is true of
SQL_C_WCHAR and SQL_WCHAR in the case of Unicode data and
a Unicode database.
DataDirect Connect Series for ODBC Reference

Unicode and Non-Unicode ODBC Drivers 53
When data from the application and the data stored in the
database differ in format, for example, ANSI application data
and Unicode database data, conversions must be performed. The
driver cannot receive SQL_C_CHAR data and pass it to a Unicode
database that expects to receive a SQL_WCHAR data type. The
driver or the Driver Manager must be capable of converting
SQL_C_CHAR to SQL_WCHAR, and vice versa.

The simplest cases of data communication are when the
application, the driver, and the database are all of the same type
and encoding, ANSI-to-ANSI-to-ANSI or
Unicode-to-Unicode-to-Unicode. There is no data conversion
involved in these instances.

When a difference exists between data types, a conversion from
one type to another must take place at the driver or Driver
Manager level, which involves additional overhead. The type of
driver determines whether these conversions are performed by
the driver or the Driver Manager. “The Driver Manager and
Unicode Encoding on UNIX and Linux” on page 56 describes how
the Driver Manager determines the type of Unicode encoding of
the application and driver.

The following sections discuss two basic types of data conversion
in the DataDirect Connect Series for ODBC drivers and the Driver
Manager. How an individual driver exchanges different types of
data with a particular database at the database level is beyond
the scope of this discussion.

Unicode Driver

The Unicode driver, not the Driver Manager, must convert
SQL_C_CHAR (ANSI) data to SQL_WCHAR (Unicode) data, and
vice versa, as well as SQL_C_WCHAR (Unicode) data to
SQL_CHAR (ANSI) data, and vice versa.

The driver must use client code page information (Active Code
Page on Windows and IANAAppCodePage attribute on
DataDirect Connect Series for ODBC Reference

54 Chapter 4 Internationalization, Localization, and Unicode
UNIX/Linux) to determine which ANSI code page to use for the
conversions. The Active Code Page or IANAAppCodePage must
match the database default character encoding; if it does not,
conversion errors are possible.

ANSI Driver

The Driver Manager, not the ANSI driver, must convert
SQL_C_WCHAR (Unicode) data to SQL_CHAR (ANSI) data, and vice
versa (see “Unicode Support in ODBC” on page 46 for a detailed
discussion). This is necessary because ANSI drivers do not support
any Unicode ODBC types.

The Driver Manager must use client code page information
(Active Code Page on Windows and the IANAAppCodePage
attribute on UNIX/Linux) to determine which ANSI code page to
use for the conversions. The Active Code Page or
IANAAppCodePage must match the database default character
encoding. If not, conversion errors are possible.

Default Unicode Mapping

The default Unicode mapping for an application’s SQL_C_WCHAR
variable is:

Platform Default Unicode Mapping

Windows UCS-2/UTF-16

AIX UTF-8

HP-UX UTF-8

Solaris UTF-8

Linux UTF-8
DataDirect Connect Series for ODBC Reference

Unicode and Non-Unicode ODBC Drivers 55
Connection Attribute for Unicode

If you do not want to use the default Unicode mappings for
SQL_C_WCHAR, a connection attribute is available to override
the default mappings. This attribute determines how character
data is converted and presented to an application and the
database.

You can set this attribute before or after you connect. After this
attribute is set, all conversions are made based on the character
set specified.

For example:

rc = SQLSetConnectAttr (hdbc, SQL_ATTR_APP_WCHAR_TYPE,
(void *)SQL_DD_CP_UTF16, SQL_IS_INTEGER);

SQLGetConnectAttr and SQLSetConnectAttr for the
SQL_ATTR_APP_WCHAR_TYPE attribute return a SQL State of
HYC00 for drivers that do not support Unicode.

This connection attribute and its valid values can be found in the
file qesqlext.h, which is installed with the product.

NOTE: For the SQL Server Classic Wire Protocol driver, this
attribute is supported only on UNIX and Linux, not on Windows.

Attribute Description

SQL_ATTR_APP_WCHAR_TYPE
(1061)

Sets the SQL_C_WCHAR type
for parameter and column
binding to the Unicode type,
either SQL_DD_CP_UTF16
(default for Windows) or
SQL_DD_CP_UTF8 (default
for UNIX/Linux).
DataDirect Connect Series for ODBC Reference

56 Chapter 4 Internationalization, Localization, and Unicode
The Driver Manager and Unicode Encoding on
UNIX and Linux

Unicode ODBC drivers on UNIX and Linux can use UTF-8 or UTF-16
encoding. This would normally mean that a UTF-8 application
could not work with a UTF-16 driver, and, conversely, that a
UTF-16 application could not work with a UTF-8 driver. To
accomplish the goal of being able to use a single UTF-8 or UTF-16
application with either a UTF-8 or UTF-16 driver, the Driver
Manager must be able to determine with which type of encoding
the application and driver use and, if necessary, convert them
accordingly.

To make this determination, the Driver Manager supports two
ODBC environment attributes: SQL_ATTR_APP_UNICODE_TYPE
and SQL_ATTR_DRIVER_UNICODE_TYPE, each with possible
values of SQL_DD_CP_UTF8 and SQL_DD_CP_UTF16. The default
value is SQL_DD_CP_UTF8.

The Driver Manager undertakes the following steps before
actually connecting to the driver.

1 Determine the application Unicode type: Applications that
use UTF-16 encoding for their string types need to set
SQL_ATTR_APP_UNICODE_TYPE accordingly before
connecting to any driver. When the Driver Manager reads this
attribute, it expects all string arguments to the ODBC "W"
functions to be in the specified Unicode format. This attribute
also indicates how the SQL_C_WCHAR buffers must be
encoded.
DataDirect Connect Series for ODBC Reference

The Driver Manager and Unicode Encoding on UNIX and Linux 57
2 Determine the driver Unicode type: The Driver Manager must
determine through which Unicode encoding the driver
supports its "W" functions. This is done as follows:

a SQLGetEnvAttr(SQL_ATTR_DRIVER_UNICODE_TYPE) is
called in the driver by the Driver Manager. The driver, if
capable, returns either SQL_DD_CP_UTF16 or
SQL_DD_CP_UTF8 to indicate to the Driver Manager
which encoding it expects.

b If the preceding call to SQLGetEnvAttr fails, the Driver
Manager looks either in the Data Source section of the
odbc.ini specified by the connection string or in the
connection string itself for a connection option named
DriverUnicodeType. Valid values for this option are
1 (UTF-16) or 2 (UTF-8). The Driver Manager assumes that
the Unicode encoding of the driver corresponds to the
value specified.

c If neither of the preceding attempts are successful, the
Driver Manager assumes that the Unicode encoding of
the driver is UTF-8.

3 Determine if the driver supports SQL_ATTR_WCHAR_TYPE:
SQLSetConnectAttr (SQL_ATTR_WCHAR_TYPE, x) is called in
the driver by the Driver Manager, where x is either
SQL_DD_CP_UTF8 or SQL_DD_CP_UTF16, depending on the
value of the SQL_ATTR_APP_UNICODE_TYPE environment
setting. If the driver returns any error on this call to
SQLSetConnectAttr, the Driver Manager assumes that the
driver does not support this connection attribute.

If an error occurs, the Driver Manager returns a warning. The
Driver Manager does not convert all bound parameter data
from the application Unicode type to the driver Unicode type
specified by SQL_ATTR_DRIVER_UNICODE_TYPE. Neither does
it convert all data bound as SQL_C_WCHAR to the application
Unicode type specified by SQL_ATTR_APP_UNICODE_TYPE.
DataDirect Connect Series for ODBC Reference

58 Chapter 4 Internationalization, Localization, and Unicode
Based on the information it has gathered prior to connection, the
Driver Manager either does not have to convert function calls, or,
before calling the driver, it converts to either UTF-8 or UTF-16 all
string arguments to calls to the ODBC "W" functions.

References:

Java Internationalization: An Overview, John O’Connor,
http://java.sun.com/developer/technicalArticles/Intl/IntlIntro/

Unicode Support in the Solaris Operating Environment,
May 2000, Sun Microsystems, Inc., 901 San Antonio Road, Palo
Alto, CA 94303-4900
DataDirect Connect Series for ODBC Reference

http://java.sun.com/developer/technicalArticles/Intl/IntlIntro/

59
5 Designing ODBC Applications
for Performance Optimization

Developing performance-oriented ODBC applications is not easy.
Microsoft’s ODBC Programmer’s Reference does not provide
information about system performance. In addition, ODBC
drivers and the ODBC driver manager do not return warnings
when applications run inefficiently. This chapter contains some
general guidelines that have been compiled by examining the
ODBC implementations of numerous shipping ODBC
applications. These guidelines include:

■ Use catalog functions appropriately
■ Retrieve only required data
■ Select functions that optimize performance
■ Manage connections and updates

Following these general rules will help you solve some common
ODBC performance problems, such as those listed in the
following table Table 5-1.

Table 5-1. Common Performance Problems Using ODBC Applications

Problem Solution See guidelines in...

Network communication is
slow.

Reduce network
traffic.

“Using Catalog Functions” on page 60

The process of evaluating
complex SQL queries on the
database server is slow and
can reduce concurrency.

Simplify queries. “Using Catalog Functions” on page 60

“Selecting ODBC Functions” on page 69
DataDirect Connect Series for ODBC Reference

60 Chapter 5 Designing ODBC Applications for Performance Optimization
Using Catalog Functions
Because catalog functions, such as those listed here, are slow
compared to other ODBC functions, their frequent use can impair
system performance:

SQLGetTypeInfo is included in this list of expensive ODBC
functions because many drivers must query the server to obtain
accurate information about which types are supported (for
example, to find dynamic types such as user defined types).

Excessive calls from the
application to the driver slow
performance.

Optimize
application-to-driv
er interaction.

“Retrieving Data” on page 64

“Selecting ODBC Functions” on page 69

Disk I/O is slow. Limit disk
input/output.

“Managing Connections and Updates” on
page 73

Table 5-1. Common Performance Problems Using ODBC Applications (cont.)

Problem Solution See guidelines in...

■ SQLColumns ■ SQLProcedureColumns
■ SQLColumnPrivileges ■ SQLSpecialColumns
■ SQLForeignKeys ■ SQLStatistics
■ SQLGetTypeInfo ■ SQLTables
■ SQLProcedures
DataDirect Connect Series for ODBC Reference

Using Catalog Functions 61
Minimizing the Use of Catalog
Functions

Compared to other ODBC functions, catalog functions are
relatively slow. By caching information, applications can avoid
multiple executions. Although it is almost impossible to write an
ODBC application without catalog functions, their use should be
minimized.

To return all result column information mandated by the ODBC
specification, a driver may have to perform multiple queries,
joins, subqueries, or unions to return the required result set for a
single call to a catalog function. These particular elements of the
SQL language are performance expensive.

Applications should cache information from catalog functions so
that multiple executions are unnecessary. For example, call
SQLGetTypeInfo once in the application and cache the elements
of the result set that your application depends on. It is unlikely
that any application uses all elements of the result set generated
by a catalog function, so the cached information should not be
difficult to maintain.

Avoiding Search Patterns

Passing NULL arguments or search patterns to catalog functions
generates time-consuming queries. In addition, network traffic
potentially increases because of unwanted results. Always supply
as many non-NULL arguments to catalog functions as possible.
Because catalog functions are slow, applications should invoke
them efficiently. Any information that the application can send
the driver when calling catalog functions can result in improved
performance and reliability.
DataDirect Connect Series for ODBC Reference

62 Chapter 5 Designing ODBC Applications for Performance Optimization
For example, consider a call to SQLTables where the application
requests information about the table "Customers." Often, this
call is coded as shown, using the fewest non-NULL arguments
necessary for the function to return success:

rc = SQLTables (NULL, NULL, NULL, NULL, "Customers",
 SQL_NTS, NULL);

A driver processes this SQLTables call into SQL that looks like this:

SELECT ... FROM SysTables WHERE TableName = ’Customers’
 UNION ALL
SELECT ... FROM SysViews WHERE ViewName = ’Customers’
 UNION ALL
SELECT ... FROM SysSynonyms WHERE SynName = ’Customers’
 ORDER BY ...

In our example, the application provides scant information about
the object for which information was requested. Suppose three
"Customers" tables were returned in the result set: the first table
owned by the user, the second owned by the sales department,
and the third a view created by management.

It may not be obvious to the end user which table to choose. If
the application had specified the OwnerName argument in the
SQLTables call, only one table would be returned and
performance would improve. Less network traffic would be
required to return only one result row and unwanted rows would
be filtered by the database. In addition, if the TableType
argument was supplied, the SQL sent to the server can be
optimized from a three-query union into a single Select
statement as shown:

SELECT ... FROM SysTables WHERE TableName = 'Customers' and
 Owner = 'Beth'
DataDirect Connect Series for ODBC Reference

Using Catalog Functions 63
Using a Dummy Query to Determine
Table Characteristics

Avoid using SQLColumns to determine characteristics about a
table. Instead, use a dummy query with SQLDescribeCol.

Consider an application that allows the user to choose the
columns that will be selected. Should the application use
SQLColumns to return information about the columns to the
user or prepare a dummy query and call SQLDescribeCol?

Case 1: SQLColumns Method

rc = SQLColumns (... "UnknownTable" ...);
// This call to SQLColumns will generate a query to the
// system catalogs... possibly a join which must be
// prepared, executed, and produce a result set
rc = SQLBindCol (...);
rc = SQLExtendedFetch (...);
// user must retrieve N rows from the server
// N = # result columns of UnknownTable
// result column information has now been obtained

Case 2: SQLDescribeCol Method

// prepare dummy query
rc = SQLPrepare (... "SELECT * from UnknownTable

WHERE 1 = 0" ...);
// query is never executed on the server - only prepared
rc = SQLNumResultCols (...);
for (irow = 1; irow <= NumColumns; irow++) {

rc = SQLDescribeCol (...)
// + optional calls to SQLColAttributes
}

// result column information has now been obtained
// Note we also know the column ordering within the table!
// This information cannot be
// assumed from the SQLColumns example.
DataDirect Connect Series for ODBC Reference

64 Chapter 5 Designing ODBC Applications for Performance Optimization
In both cases, a query is sent to the server, but in Case 1, the
query must be evaluated and form a result set that must be sent
to the client. Clearly, Case 2 is the better performing model.

To complicate this discussion, let us consider a database server
that does not natively support preparing a SQL statement. The
performance of Case 1 does not change, but the performance of
Case 2 improves slightly because the dummy query is evaluated
before being prepared. Because the Where clause of the query
always evaluates to FALSE, the query generates no result rows
and should execute without accessing table data. Again, for this
situation, Case 2 outperforms Case 1.

Retrieving Data
To retrieve data efficiently, return only the data that you need,
and choose the most efficient method of doing so. The guidelines
in this section will help you optimize system performance when
retrieving data with ODBC applications.

Retrieving Long Data

Unless it is necessary, applications should not request long data
(SQL_LONGVARCHAR and SQL_LONGVARBINARY data) because
retrieving long data across the network is slow and
resource-intensive. Most users do not want to see long data. If
the user does need to see these result items, the application can
query the database again, specifying only long columns in the
select list. This method allows the average user to retrieve the
result set without having to pay a high performance penalty for
network traffic.

Although the best method is to exclude long data from the select
list, some applications do not formulate the select list before
DataDirect Connect Series for ODBC Reference

Retrieving Data 65
sending the query to the ODBC driver (that is, some applications
simply SELECT * FROM table_name ...). If the select list contains
long data, the driver must retrieve that data at fetch time even if
the application does not bind the long data in the result set.
When possible, use a method that does not retrieve all columns
of the table.

Reducing the Size of Data Retrieved

To reduce network traffic and improve performance, you can
reduce the size of data being retrieved to some manageable
limit by calling SQLSetStmtAttr with the
SQL_ATTR_MAX_LENGTH option.

Although eliminating SQL_LONGVARCHAR and
SQL_LONGVARBINARY data from the result set is ideal for
performance optimization, sometimes, long data must be
retrieved. When this is the case, remember that most users do
not want to see 100 KB, or more, of text on the screen. What
techniques, if any, are available to limit the amount of data
retrieved?

Many application developers mistakenly assume that if they call
SQLGetData with a container of size x that the ODBC driver only
retrieves x bytes of information from the server. Because
SQLGetData can be called multiple times for any one column,
most drivers optimize their network use by retrieving long data
in large chunks and then returning it to the user when
requested. For example:

char CaseContainer[1000];
...
rc = SQLExecDirect (hstmt, "SELECT CaseHistory FROM Cases
 WHERE CaseNo = 71164", SQL_NTS);
DataDirect Connect Series for ODBC Reference

66 Chapter 5 Designing ODBC Applications for Performance Optimization
...
rc = SQLFetch (hstmt);
rc = SQLGetData (hstmt, 1, CaseContainer,(SWORD)
sizeof(CaseContainer), ...);

At this point, it is more likely that an ODBC driver will retrieve
64 KB of information from the server instead of 1000 bytes. In
terms of network access, one 64-KB retrieval is less expensive
than 64 retrievals of 1000 bytes. Unfortunately, the application
may not call SQLGetData again; therefore, the first and only
retrieval of CaseHistory would be slowed by the fact that 64 KB of
data must be sent across the network.

Many ODBC drivers allow you to limit the amount of data
retrieved across the network by supporting the
SQL_MAX_LENGTH attribute. This attribute allows the driver to
communicate to the database server that only x bytes of data are
relevant to the client. The server responds by sending only the
first x bytes of data for all result columns. This optimization
substantially reduces network traffic and improves client
performance. The previous example returned only one row, but
consider the case where 100 rows are returned in the result set—
the performance improvement would be substantial.

Using Bound Columns

Retrieving data through bound columns (SQLBindCol) instead of
using SQLGetData reduces the ODBC call load and improves
performance.

Consider the following code fragment:

rc = SQLExecDirect (hstmt, "SELECT <20 columns>
 FROM Employees WHERE HireDate >= ?", SQL_NTS);
do {
rc = SQLFetch (hstmt);
// call SQLGetData 20 times
} while ((rc == SQL_SUCCESS) || (rc == SQL_SUCCESS_WITH_INFO));
DataDirect Connect Series for ODBC Reference

Retrieving Data 67
Suppose the query returns 90 result rows. In this case, more than
1890 ODBC calls are made (20 calls to SQLGetData x 90 result
rows + 91 calls to SQLFetch).

Consider the same scenario that uses SQLBindCol instead of
SQLGetData:

rc = SQLExecDirect (hstmt, "SELECT <20 columns>
 FROM Employees WHERE HireDate >= ?", SQL_NTS);
// call SQLBindCol 20 times
do {
rc = SQLFetch (hstmt);
} while ((rc == SQL_SUCCESS) || (rc ==
 SQL_SUCCESS_WITH_INFO));

The number of ODBC calls made is reduced from more than 1890
to about 110 (20 calls to SQLBindCol + 91 calls to SQLFetch). In
addition to reducing the call load, many drivers optimize how
SQLBindCol is used by binding result information directly from
the database server into the user’s buffer. That is, instead of the
driver retrieving information into a container and then copying
that information to the user’s buffer, the driver simply requests
the information from the server be placed directly into the user’s
buffer.

Using SQLExtendedFetch Instead of
SQLFetch

Use SQLExtendedFetch to retrieve data instead of SQLFetch. The
ODBC call load decreases (resulting in better performance) and
the code is less complex (resulting in more maintainable code).

Most ODBC drivers now support SQLExtendedFetch for forward
only cursors; yet, most ODBC applications use SQLFetch to
DataDirect Connect Series for ODBC Reference

68 Chapter 5 Designing ODBC Applications for Performance Optimization
retrieve data. Again, consider the preceding example using
SQLExtendedFetch instead of SQLFetch:

rc = SQLSetStmtOption (hstmt, SQL_ROWSET_SIZE, 100);
// use arrays of 100 elements
rc = SQLExecDirect (hstmt, "SELECT <20 columns>
 FROM Employees WHERE HireDate >= ?", SQL_NTS);
// call SQLBindCol 1 time specifying row-wise binding
do {
rc = SQLExtendedFetch (hstmt, SQL_FETCH_NEXT, 0,
 &RowsFetched,RowStatus);
} while ((rc == SQL_SUCCESS) || (rc == SQL_SUCCESS_WITH_INFO));

Notice the improvement from the previous examples. The initial
call load was more than 1890 ODBC calls. By choosing ODBC calls
carefully, the number of ODBC calls made by the application has
now been reduced to 4 (1 SQLSetStmtOption + 1 SQLExecDirect +
1 SQLBindCol + 1 SQLExtendedFetch). In addition to reducing the
call load, many ODBC drivers retrieve data from the server in
arrays, further improving the performance by reducing network
traffic.

For ODBC drivers that do not support SQLExtendedFetch, the
application can enable forward-only cursors using the ODBC
cursor library (call SQLSetConnectOption using
SQL_ODBC_CURSORS or SQL_CUR_USE_IF_NEEDED). Although
using the cursor library does not improve performance, it should
not be detrimental to application response time when using
forward-only cursors (no logging is required). Furthermore, using
the cursor library when SQLExtendedFetch is not supported
natively by the driver simplifies the code because the application
can always depend on SQLExtendedFetch being available. The
application does not require two algorithms (one using
SQLExtendedFetch and one using SQLFetch).
DataDirect Connect Series for ODBC Reference

Selecting ODBC Functions 69
Choosing the Right Data Type

Advances in processor technology brought significant
improvements to the way that operations such as floating-point
math are handled; however, retrieving and sending certain data
types are still expensive when the active portion of your
application will not fit into on-chip cache. When you are
working with data on a large scale, it is still important to select
the data type that can be processed most efficiently. For
example, integer data is processed faster than floating-point
data. Floating-point data is defined according to internal
database-specific formats, usually in a compressed format. The
data must be decompressed and converted into a different
format so that it can be processed by the wire protocol.

Processing time is shortest for character strings, followed by
integers, which usually require some conversion or byte
ordering. Processing floating-point data and timestamps is at
least twice as slow as processing integers.

Selecting ODBC Functions
The guidelines in this section will help you select which ODBC
functions will give you the best performance.

Using SQLPrepare/SQLExecute and
SQLExecDirect

Using SQLPrepare/SQLExecute is not always as efficient as
SQLExecDirect. Use SQLExecDirect for queries that will be
executed once and SQLPrepare/SQLExecute for queries that will
be executed multiple times.
DataDirect Connect Series for ODBC Reference

70 Chapter 5 Designing ODBC Applications for Performance Optimization
ODBC drivers are optimized based on the perceived use of the
functions that are being executed. SQLPrepare/SQLExecute is
optimized for multiple executions of statements that use
parameter markers. SQLExecDirect is optimized for a single
execution of a SQL statement. Unfortunately, more than 75% of
all ODBC applications use SQLPrepare/SQLExecute exclusively.

Consider the case where an ODBC driver implements SQLPrepare
by creating a stored procedure on the server that contains the
prepared statement. Creating stored procedures involve
substantial overhead, but the statement can be executed
multiple times. Although creating stored procedures is
performance-expensive, execution is minimal because the query
is parsed and optimization paths are stored at create procedure
time.

Using SQLPrepare/SQLExecute for a statement that is executed
only once results in unnecessary overhead. Furthermore,
applications that use SQLPrepare/SQLExecute for large single
execution query batches exhibit poor performance. Similarly,
applications that always use SQLExecDirect do not perform as
well as those that use a logical combination of
SQLPrepare/SQLExecute and SQLExecDirect sequences.

Using Arrays of Parameters

Passing arrays of parameter values for bulk insert operations, for
example, with SQLPrepare/SQLExecute and SQLExecDirect can
reduce the ODBC call load and network traffic. To use arrays of
parameters, the application calls SQLSetStmtAttr with the
following attribute arguments:

■ SQL_ATTR_PARAMSET_SIZE sets the array size of the
parameter.

■ SQL_ATTR_PARAMS_PROCESSED_PTR assigns a variable filled
by SQLExecute, which contains the number of rows that are
actually inserted.
DataDirect Connect Series for ODBC Reference

Selecting ODBC Functions 71
■ SQL_ATTR_PARAM_STATUS_PTR points to an array in which
status information for each row of parameter values is
returned.

NOTE: With ODBC 3.x, calls to SQLSetStmtAttr with the
SQL_ATTR_PARAMSET_SIZE,
SQL_ATTR_PARAMS_PROCESSED_ARRAY, and
SQL_ATTR_PARAM_STATUS_PTR arguments replace the ODBC 2.x
call to SQLParamOptions.

Before executing the statement, the application sets the value of
each data element in the bound array. When the statement is
executed, the driver tries to process the entire array contents
using one network roundtrip. For example, let us compare the
following examples, Case 1 and Case 2.

Case 1: Executing Prepared Statement Multiple Times

rc = SQLPrepare (hstmt, "INSERT INTO DailyLedger (...)
 VALUES (?,?,...)", SQL_NTS);
// bind parameters
...
do {
// read ledger values into bound parameter buffers
...
rc = SQLExecute (hstmt);
// insert row
} while ! (eof);

Case 2: Using Arrays of Parameters

SQLPrepare (hstmt, " INSERT INTO DailyLedger (...) VALUES
 (?,?,...)", SQL_NTS);
SQLSetStmtAttr (hstmt, SQL_ATTR_PARAMSET_SIZE, (UDWORD)100,
 SQL_IS_UINTEGER);
SQLSetStmtAttr (hstmt, SQL_ATTR_PARAMS_PROCESSED_PTR,
 &rows_processed, SQL_IS_POINTER);
// Specify an array in which to return the status of
// each set of parameters.
SQLSetStmtAttr(hstmt, SQL_ATTR_PARAM_STATUS_PTR,
 ParamStatusArray, SQL_IS_POINTER);
DataDirect Connect Series for ODBC Reference

72 Chapter 5 Designing ODBC Applications for Performance Optimization
// pass 100 parameters per execute
// bind parameters
...
do {
// read up to 100 ledger values into
// bound parameter buffers
...
rc = SQLExecute (hstmt);
// insert a group of 100 rows
} while ! (eof);

In Case 1, if there are 100 rows to insert, 101 network roundtrips
are required to the server, one to prepare the statement with
SQLPrepare and 100 additional roundtrips for each time
SQLExecute is called.

In Case 2, the call load has been reduced from 100 SQLExecute
calls to only 1 SQLExecute call. Furthermore, network traffic is
reduced considerably.

Using the Cursor Library

If the driver provides scrollable cursors, do not use the cursor
library automatically. The cursor library creates local temporary
log files, which are performance-expensive to generate and
provide worse performance than native scrollable cursors.

The cursor library adds support for static cursors, which simplifies
the coding of applications that use scrollable cursors. However,
the cursor library creates temporary log files on the user’s local
disk drive to accomplish the task. Typically, disk I/O is a slow
operation. Although the cursor library is beneficial, applications
should not automatically choose to use the cursor library when
an ODBC driver supports scrollable cursors natively.

Typically, ODBC drivers that support scrollable cursors achieve
high performance by requesting that the database server
DataDirect Connect Series for ODBC Reference

Managing Connections and Updates 73
produce a scrollable result set instead of emulating the
capability by creating log files. Many applications use:

rc = SQLSetConnectOption (hdbc, SQL_ODBC_CURSORS,
SQL_CUR_USE_ODBC);

but should use:

rc = SQLSetConnectOption (hdbc, SQL_ODBC_CURSORS,
SQL_CUR_USE_IF_NEEDED);

Managing Connections and Updates
The guidelines in this section will help you to manage
connections and updates to improve system performance for
your ODBC applications.

Managing Connections

Connection management is important to application
performance. Optimize your application by connecting once and
using multiple statement handles, instead of performing
multiple connections. Avoid connecting to a data source after
establishing an initial connection.

Although gathering driver information at connect time is a good
practice, it is often more efficient to gather it in one step rather
than two steps. Some ODBC applications are designed to call
informational gathering routines that have no record of already
attached connection handles. For example, some applications
establish a connection and then call a routine in a separate DLL
or shared library that reattaches and gathers information about
the driver. Applications that are designed as separate entities
should pass the already connected HDBC pointer to the data
collection routine instead of establishing a second connection.
DataDirect Connect Series for ODBC Reference

74 Chapter 5 Designing ODBC Applications for Performance Optimization
Another bad practice is to connect and disconnect several times
throughout your application to process SQL statements.
Connection handles can have multiple statement handles
associated with them. Statement handles can provide memory
storage for information about SQL statements. Therefore,
applications do not need to allocate new connection handles to
process SQL statements. Instead, applications should use
statement handles to manage multiple SQL statements.

You can significantly improve performance with connection
pooling, especially for applications that connect over a network
or through the World Wide Web. With connection pooling,
closing connections does not close the physical connection to the
database. When an application requests a connection, an active
connection from the connection pool is reused, avoiding the
network round trips needed to create a new connection.

Connection and statement handling should be addressed before
implementation. Spending time and thoughtfully handling
connection management improves application performance and
maintainability.

Managing Commits in Transactions

Committing data is extremely disk I/O intensive and slow. If the
driver can support transactions, always turn autocommit off.

What does a commit actually involve? The database server must
flush back to disk every data page that contains updated or new
data. This is not a sequential write but a searched write to replace
existing data in the table. By default, autocommit is on when
connecting to a data source. Autocommit mode usually impairs
system performance because of the significant amount of disk I/O
needed to commit every operation.

Some database servers do not provide an Autocommit mode. For
this type of server, the ODBC driver must explicitly issue a
COMMIT statement and a BEGIN TRANSACTION for every
DataDirect Connect Series for ODBC Reference

Managing Connections and Updates 75
operation sent to the server. In addition to the large amount of
disk I/O required to support Autocommit mode, a performance
penalty is paid for up to three network requests for every
statement issued by an application.

Although using transactions can help application performance,
do not take this tip too far. Leaving transactions active can
reduce throughput by holding locks on rows for long times,
preventing other users from accessing the rows. Commit
transactions in intervals that allow maximum concurrency.

Choosing the Right Transaction Model

Many systems support distributed transactions; that is,
transactions that span multiple connections. Distributed
transactions are at least four times slower than normal
transactions due to the logging and network round trips
necessary to communicate between all the components involved
in the distributed transaction. Unless distributed transactions are
required, avoid using them. Instead, use local transactions when
possible.

Using Positioned Updates and Deletes

Use positioned updates and deletes or SQLSetPos to update
data. Although positioned updates do not apply to all types of
applications, developers should use positioned updates and
deletes when it makes sense. positioned updates (either through
UPDATE WHERE CURRENT OF CURSOR or through SQLSetPos) allow
the developer to signal the driver to "change the data here" by
positioning the database cursor at the appropriate row to be
changed. The designer is not forced to build a complex SQL
statement, but simply supplies the data to be changed.

In addition to making the application more maintainable,
positioned updates usually result in improved performance.
DataDirect Connect Series for ODBC Reference

76 Chapter 5 Designing ODBC Applications for Performance Optimization
Because the database server is already positioned on the row for
the Select statement in process, performance-expensive
operations to locate the row to be changed are not needed. If
the row must be located, the server typically has an internal
pointer to the row available (for example, ROWID).

Using SQLSpecialColumns

Use SQLSpecialColumns to determine the optimal set of columns
to use in the Where clause for updating data. Often,
pseudo-columns provide the fastest access to the data, and these
columns can only be determined by using SQLSpecialColumns.

Some applications cannot be designed to take advantage of
positioned updates and deletes. These applications typically
update data by forming a Where clause consisting of some subset
of the column values returned in the result set. Some applications
may formulate the Where clause by using all searchable result
columns or by calling SQLStatistics to find columns that are part
of a unique index. These methods typically work, but can result in
fairly complex queries.

Consider the following example:

rc = SQLExecDirect (hstmt, "SELECT first_name, last_name,
 ssn, address, city, state, zip FROM emp", SQL_NTS);
// fetchdata
...
rc = SQLExecDirect (hstmt, "UPDATE EMP SET ADDRESS = ?
 WHERE first_name = ? and last_name = ? and ssn = ? and
 address = ? and city = ? and state = ? and zip = ?",
 SQL_NTS);
// fairly complex query
DataDirect Connect Series for ODBC Reference

Managing Connections and Updates 77
Applications should call SQLSpecialColumns/SQL_BEST_ROWID to
retrieve the optimal set of columns (possibly a pseudo-column)
that identifies a given record. Many databases support special
columns that are not explicitly defined by the user in the table
definition but are "hidden" columns of every table (for example,
ROWID and TID). These pseudo-columns provide the fastest
access to data because they typically point to the exact location
of the record. Because pseudo-columns are not part of the
explicit table definition, they are not returned from
SQLColumns. To determine if pseudo-columns exist, call
SQLSpecialColumns.

Consider the previous example again:

...
rc = SQLSpecialColumns (hstmt, ’emp’, ...);
...
rc = SQLExecDirect (hstmt, "SELECT first_name, last_name,
 ssn, address, city, state, zip, ROWID FROM emp",
 SQL_NTS);
// fetch data and probably "hide" ROWID from the user
...
rc = SQLExecDirect (hstmt, "UPDATE emp SET address = ?
 WHERE ROWID = ?",SQL_NTS);
// fastest access to the data!

If your data source does not contain special pseudo-columns, the
result set of SQLSpecialColumns consists of columns of the
optimal unique index on the specified table (if a unique index
exists). Therefore, your application does not need to call
SQLStatistics to find the smallest unique index.
DataDirect Connect Series for ODBC Reference

78 Chapter 5 Designing ODBC Applications for Performance Optimization
DataDirect Connect Series for ODBC Reference

79
6 Using Indexes

This chapter discusses the ways in which you can improve the
performance of database activity using indexes. It provides
general guidelines that apply to most databases. Consult your
database vendor’s documentation for more detailed
information.

For information regarding how to create and drop indexes, refer
to the appropriate database driver chapter for flat-file drivers or
your database system documentation for relational drivers. This
chapter includes the following topics:

■ “Improving Row Selection Performance” on page 80
■ “Indexing Multiple Fields” on page 81
■ “Deciding Which Indexes to Create” on page 83
■ “Improving Join Performance” on page 85

Introduction
An index is a database structure that you can use to improve the
performance of database activity. A database table can have one
or more indexes associated with it.

An index is defined by a field expression that you specify when
you create the index. Typically, the field expression is a single
field name, like emp_id. An index created on the emp_id field,
for example, contains a sorted list of the employee ID values in
the table. Each value in the list is accompanied by references to
the rows that contain that value.
DataDirect Connect Series for ODBC Reference

80 Chapter 6 Using Indexes
A database driver can use indexes to find rows quickly. An index
on the emp_id field, for example, greatly reduces the time that
the driver spends searching for a particular employee ID value.
Consider the following Where clause:

WHERE emp_id = 'E10001'

Without an index, the driver must search the entire database
table to find those rows having an employee ID of E10001. By
using an index on the emp_id field, however, the driver can
quickly find those rows.

Indexes may improve the performance of SQL statements. You
may not notice this improvement with small tables, but it can be
significant for large tables; however, there can be disadvantages
to having too many indexes. Indexes can slow down the
performance of some inserts, updates, and deletes when the
driver has to maintain the indexes as well as the database tables.
Also, indexes take additional disk space.

Improving Row Selection Performance
For indexes to improve the performance of selections, the index
expression must match the selection condition exactly. For
DataDirect Connect Series for ODBC Reference

Indexing Multiple Fields 81
example, if you have created an index whose expression is
last_name, the following Select statement uses the index:

SELECT * FROM emp WHERE last_name = 'Smith'

This Select statement, however, does not use the index:

SELECT * FROM emp WHERE UPPER(last_name) = 'SMITH'

The second statement does not use the index because the Where
clause contains upper(last_name), which does not match the
index expression last_name. If you plan to use the UPPER
function in all your Select statements and your database
supports indexes on expressions, then you should define an
index using the expression upper(last_name).

Indexing Multiple Fields
If you often use Where clauses that involve more than one field,
you may want to build an index containing multiple fields.
Consider the following Where clause:

WHERE last_name = 'Smith' AND first_name = 'Thomas'

For this condition, the optimal index field expression is
last_name, first_name. This creates a concatenated index.
DataDirect Connect Series for ODBC Reference

82 Chapter 6 Using Indexes
Concatenated indexes can also be used for Where clauses that
contain only the first of two concatenated fields. The last_name,
first_name index also improves the performance of the following
Where clause (even though no first name value is specified):

last_name = 'Smith'

Consider the following Where clause:

WHERE last_name = 'Smith' AND middle_name = 'Edward' and
first_name = 'Thomas'

If your index fields include all the conditions of the Where clause
in that order, the driver can use the entire index. If, however,
your index is on two nonconsecutive fields, for example,
last_name and first_name, the driver can use only the last_name
field of the index.

The driver uses only one index when processing Where clauses. If
you have complex Where clauses that involve a number of
conditions for different fields and have indexes on more than
one field, the driver chooses an index to use. The driver attempts
to use indexes on conditions that use the equal sign as the
relational operator rather than conditions using other operators
(such as greater than). Assume you have an index on the emp_id
field as well as the last_name field and the following Where
clause:

WHERE emp_id >= 'E10001' AND last_name = 'Smith'

In this case, the driver selects the index on the last_name field.

If no conditions have the equal sign, the driver first attempts to
use an index on a condition that has a lower and upper bound,
and then attempts to use an index on a condition that has a
lower or upper bound. The driver always attempts to use the
most restrictive index that satisfies the Where clause.
DataDirect Connect Series for ODBC Reference

Deciding Which Indexes to Create 83
In most cases, the driver does not use an index if the Where
clause contains an OR comparison operator. For example, the
driver does not use an index for the following Where clause:

WHERE emp_id >= 'E10001' OR last_name = 'Smith'

Deciding Which Indexes to Create
Before you create indexes for a database table, consider how
you will use the table. The most common operations on a table
are:

■ Inserting, updating, and deleting rows
■ Retrieving rows

If you most often insert, update, and delete rows, then the
fewer indexes associated with the table, the better the
performance. This is because the driver must maintain the
indexes as well as the database tables, thus slowing down the
performance of row inserts, updates, and deletes. It may be
more efficient to drop all indexes before modifying a large
number of rows, and re-create the indexes after the
modifications.

If you most often retrieve rows, you must look further to define
the criteria for retrieving rows and create indexes to improve the
performance of these retrievals. Assume you have an employee
database table and you will retrieve rows based on employee
name, department, or hire date. You would create three
indexes—one on the dept field, one on the hire_date field, and
one on the last_name field. Or perhaps, for the retrievals based
on the name field, you would want an index that concatenates
the last_name and the first_name fields (see “Indexing Multiple
Fields” on page 81 for details).
DataDirect Connect Series for ODBC Reference

84 Chapter 6 Using Indexes
Here are a few rules to help you decide which indexes to create:

■ If your row retrievals are based on only one field at a time (for
example, dept='D101'), create an index on these fields.

■ If your row retrievals are based on a combination of fields,
look at the combinations.

■ If the comparison operator for the conditions is And (for
example, city = 'Raleigh' AND state = 'NC'), then build a
concatenated index on the city and state fields. This index is
also useful for retrieving rows based on the city field.

■ If the comparison operator is OR (for example, dept = 'D101'
OR hire_date > {01/30/89}), an index does not help
performance. Therefore, you need not create one.

■ If the retrieval conditions contain both AND and OR
comparison operators, you can use an index if the OR
conditions are grouped. For example:

dept = 'D101' AND (hire_date > {01/30/89} OR
exempt = 1)

In this case, an index on the dept field improves performance.

■ If the AND conditions are grouped, an index does not
improve performance. For example:

(dept = 'D101' AND hire_date) > {01/30/89}) OR
exempt = 1
DataDirect Connect Series for ODBC Reference

Improving Join Performance 85
Improving Join Performance
When joining database tables, index tables can greatly improve
performance. Unless the proper indexes are available, queries
that use joins can take a long time.

Assume you have the following Select statement:

SELECT * FROM dept, emp WHERE dept.dept_id = emp.dept

In this example, the dept and emp database tables are being
joined using the dept_id field. When the driver executes a query
that contains a join, it processes the tables from left to right and
uses an index on the second table’s join field (the dept field of
the emp table).

To improve join performance, you need an index on the join
field of the second table in the FROM clause. If there is a third
table in the FROM clause, the driver also uses an index on the
field in the third table that joins it to any previous table. For
example:

SELECT * FROM dept, emp, addr
WHERE dept.dept_id = emp.dept AND emp.loc = addr.loc

In this case, you should have an index on the emp.dept field and
the addr.loc field.
DataDirect Connect Series for ODBC Reference

86 Chapter 6 Using Indexes
DataDirect Connect Series for ODBC Reference

87
7 Locking and Isolation Levels

This chapter discusses locking and isolation levels and how their
settings can affect the data you retrieve. Different database
systems support different locking and isolation levels.

NOTE: Refer to the section "Isolation and Lock Levels
Supported" in the appropriate driver chapter in the DataDirect
Connect Series for ODBC User’s Guide for database-specific locking
and isolation level information.

This chapter includes the following topics:

■ “Locking” on page 87
■ “Isolation Levels” on page 88
■ “Locking Modes and Levels” on page 91

Locking
Locking is a database operation that restricts a user from
accessing a table or record. Locking is used in situations where
more than one user might try to use the same table or record at
the same time. By locking the table or record, the system ensures
that only one user at a time can affect the data.

Locking is critical in multiuser databases, where different users
can try to access or modify the same records concurrently.
Although such concurrent database activity is desirable, it can
create problems. Without locking, for example, if two users try
to modify the same record at the same time, they might
encounter problems ranging from retrieving bad data to
deleting data that the other user needs. If, however, the first
user to access a record can lock that record to temporarily
DataDirect Connect Series for ODBC Reference

88 Chapter 7 Locking and Isolation Levels
prevent other users from modifying it, such problems can be
avoided. Locking provides a way to manage concurrent database
access while minimizing the various problems it can cause.

Isolation Levels
An isolation level represents a particular locking strategy
employed in the database system to improve data consistency.
The higher the isolation level, the more complex the locking
strategy behind it. The isolation level provided by the database
determines whether a transaction will encounter the following
behaviors in data consistency:

Dirty reads User 1 modifies a row. User 2 reads the
same row before User 1 commits. User 1
performs a rollback. User 2 has read a
row that has never really existed in the
database. User 2 may base decisions on
false data.

Non-repeatable reads User 1 reads a row, but does not commit.
User 2 modifies or deletes the same row
and then commits. User 1 rereads the
row and finds it has changed (or has
been deleted).

Phantom reads User 1 uses a search condition to read a
set of rows, but does not commit. User 2
inserts one or more rows that satisfy this
search condition, then commits. User 1
rereads the rows using the search
condition and discovers rows that were
not present before.
DataDirect Connect Series for ODBC Reference

Isolation Levels 89
Isolation levels represent the database system’s ability to prevent
these behaviors. The American National Standards Institute
(ANSI) defines four isolation levels:

■ Read uncommitted (0)
■ Read committed (1)
■ Repeatable read (2)
■ Serializable (3)

In ascending order (0–3), these isolation levels provide an
increasing amount of data consistency to the transaction. At the
lowest level, all three behaviors can occur. At the highest level,
none can occur. The success of each level in preventing these
behaviors is due to the locking strategies they use, which are as
follows:

Read uncommitted (0) Locks are obtained on modifications
to the database and held until end of
transaction (EOT). Reading from the
database does not involve any
locking.

Read committed (1) Locks are acquired for reading and
modifying the database. Locks are
released after reading but locks on
modified objects are held until EOT.

Repeatable read (2) Locks are obtained for reading and
modifying the database. Locks on all
modified objects are held until EOT.
Locks obtained for reading data are
held until EOT. Locks on
non-modified access structures (such
as indexes and hashing structures) are
released after reading.

Serializable (3) All data read or modified is locked
until EOT. All access structures that
are modified are locked until EOT.
Access structures used by the query
are locked until EOT.
DataDirect Connect Series for ODBC Reference

90 Chapter 7 Locking and Isolation Levels
Table 7-1 shows what data consistency behaviors can occur at
each isolation level.

Although higher isolation levels provide better data consistency,
this consistency can be costly in terms of the concurrency
provided to individual users. Concurrency is the ability of multiple
users to access and modify data simultaneously. As isolation levels
increase, so does the chance that the locking strategy used will
create problems in concurrency.

The higher the isolation level, the more locking involved, and the
more time users may spend waiting for data to be freed by
another user. Because of this inverse relationship between
isolation levels and concurrency, you must consider how people
use the database before choosing an isolation level. You must
weigh the trade-offs between data consistency and concurrency,
and decide which is more important.

Table 7-1. Isolation Levels and Data Consistency

Level Dirty Read Nonrepeatable
Read

Phantom
Read

0, Read uncommitted Yes Yes Yes

1, Read committed No Yes Yes

2, Repeatable read No No Yes

3, Serializable No No No
DataDirect Connect Series for ODBC Reference

Locking Modes and Levels 91
Locking Modes and Levels
Different database systems use various locking modes, but they
have two basic ones in common: shared and exclusive. Shared
locks can be held on a single object by multiple users. If one user
has a shared lock on a record, then a second user can also get a
shared lock on that same record; however, the second user
cannot get an exclusive lock on that record. Exclusive locks are
exclusive to the user that obtains them. If one user has an
exclusive lock on a record, then a second user cannot get either
type of lock on the same record.

Performance and concurrency can also be affected by the locking
level used in the database system. The locking level determines
the size of an object that is locked in a database. For example,
many database systems let you lock an entire table, as well as
individual records. An intermediate level of locking, page-level
locking, is also common. A page contains one or more records
and is typically the amount of data read from the disk in a single
disk access. The major disadvantage of page-level locking is that
if one user locks a record, a second user may not be able to lock
other records because they are stored on the same page as the
locked record.
DataDirect Connect Series for ODBC Reference

92 Chapter 7 Locking and Isolation Levels
DataDirect Connect Series for ODBC Reference

93
8 SSL Encryption Cipher Suites

The following tables list the SSL encryption cipher suites
supported by the DataDirect Connect Series for ODBC drivers.

Refer to the section “Using Security” on page 101 in Chapter 3
of the DataDirect Connect Series for ODBC User’s Guide for more
information about SSL data encryption.

Table 8-1 shows the Encryption Cipher suite used by the driver if
it cannot negotiate either SSL3 or TLS1 with the server.

Table 8-1. SSL Encryption Cipher Suite

DHE-RSA-AES256-SHA

DHE-DSS-AES256-SHA

AES256-SHA

EDH-RSA-DES-CBC3-SHA

EDH-DSS-DES-CBC3-SHA

DES-CBC3-SHA

DES-CBC3-MD5

DHE-RSA-AES128-SHA

DHE-DSS-AES128-SHA

AES128-SHA

RC2-CBC-MD5

RC4-SHA

RC4-MD5

EDH-RSA-DES-CBC-SHA

EDH-DSS-DES-CBC-SHA

DES-CBC-SHA

DES-CBC-MD5

EXP-EDH-RSA-DES-CBC-SHA
DataDirect Connect Series for ODBC Reference

94 Chapter 8 SSL Encryption Cipher Suites
Table 8-2 shows the SSL3 Encryption Cipher suite used by the
driver if it can negotiate SSL3 with the server.

EXP-EDH-DSS-DES-CBC-SHA

EXP-DES-CBC-SHA

EXP-RC2-CBC-MD5

EXP-RC4-MD5

Table 8-2. Encryption Cipher Suite SSL3

DHE-RSA-AES256-SHA

DHE-DSS-AES256-SHA

AES256-SHA

EDH-RSA-DES-CBC3-SHA

EDH-DSS-DES-CBC3-SHA

DES-CBC3-SHA

DHE-RSA-AES128-SHA

DHE-DSS-AES128-SHA

AES128-SHA

RC4-SHA

RC4-MD5

EDH-RSA-DES-CBC-SHA

EDH-DSS-DES-CBC-SHA

DES-CBC-SHA

EXP-EDH-RSA-DES-CBC-SHA

EXP-EDH-DSS-DES-CBC-SHA

EXP-DES-CBC-SHA

Table 8-1. SSL Encryption Cipher Suite (cont.)
DataDirect Connect Series for ODBC Reference

95
Table 8-3 shows the TLS1 Encryption Cipher suite used by the
driver if it can negotiate TLS1 with the server.

EXP-RC2-CBC-MD5

EXP-RC4-MD5

Table 8-3. Encryption Cipher Suite TLS1

DHE-RSA-AES256-SHA

DHE-DSS-AES256-SHA

AES256-SHA

EDH-RSA-DES-CBC3-SHA

EDH-DSS-DES-CBC3-SHA

DES-CBC3-SHA

DHE-RSA-AES128-SHA

DHE-DSS-AES128-SHA

AES128-SHA

RC4-SHA

RC4-MD5

EDH-RSA-DES-CBC-SHA

EDH-DSS-DES-CBC-SHA

DES-CBC-SHA

EXP-EDH-RSA-DES-CBC-SHA

EXP-EDH-DSS-DES-CBC-SHA

EXP-DES-CBC-SHA

EXP-RC2-CBC-MD5

EXP-RC4-MD5

Table 8-2. Encryption Cipher Suite SSL3 (cont.)
DataDirect Connect Series for ODBC Reference

96 Chapter 8 SSL Encryption Cipher Suites
DataDirect Connect Series for ODBC Reference

97
9 DataDirect Bulk Load

This chapter contains detailed information about the functions
and statement attributes associated with DataDirect Bulk Load.
This chapter includes the following topics:

■ “DataDirect Bulk Load Functions”
■ “DataDirect Bulk Load Statement Attributes”

For a full discussion of the features and operation of DataDirect
Bulk Load, refer to “Using DataDirect Bulk Load” in Chapter 3 of
the DataDirect Connect Series for ODBC User’s Guide.

DataDirect Bulk Load Functions
The following DataDirect functions and parameters are not part
of the standard ODBC API. They include functions for returning
errors and warnings on bulk operations as well as functions for
bulk export, loading, and verification.

NOTE: For your application to use DataDirect Bulk Load
functionality, it must obtain driver connection handles and
function pointers, as follows:

1 Use SQLGetInfo with the parameter SQL_DRIVER_HDBC to
obtain the driver’s connection handle from the Driver
Manager.

2 Use SQLGetInfo with the parameter SQL_DRIVER_HLIB to
obtain the driver’s shared library or DLL handle from the
Driver Manager.
DataDirect Connect Series for ODBC Reference

98 Chapter 9 DataDirect Bulk Load
3 Obtain function pointers to the bulk load functions using the
function name resolution method specific to your operating
system. The bulk.c source file shipped with the drivers
contains the function resolveName that illustrates how to
obtain function pointers to the bulk load functions.

All of this is detailed in the code examples shown in the following
sections. All of these functions can be found in the commented
bulk.c source file that ships with the drivers. This file is located in
the \example\bulk subdirectory of the product installation
directory along with a text file named bulk.txt. Please consult
bulk.txt for instructions about the bulk.c file.

Utility Functions
The example code in this section shows utility functions to which
the DataDirect functions for bulk exporting, verification, and
bulk loading refer, as well as the DataDirect functions
GetBulkDiagRec and GetBulkDiagRecW.

GetBulkDiagRec and GetBulkDiagRecW
Syntax SQLReturn

GetBulkDiagRec (SQLSMALLINT HandleType,
 SQLHANDLE Handle,
 SQLSMALLINT RecNumber,
 SQLCHAR* Sqlstate,
 SQLINTEGER* NativeError,
 SQLCHAR* MessageText,
 SQLSMALLINT BufferLength,
 SQLSMALLINT* TextLength);
DataDirect Connect Series for ODBC Reference

Utility Functions 99
GetBulkDiagRecW (SQLSMALLINT HandleType,
 SQLHANDLE Handle,
 SQLSMALLINT RecNumber,
 SQLWCHAR* Sqlstate,
 SQLINTEGER* NativeError,
 SQLWCHAR* MessageText,
 SQLSMALLINT BufferLength,
 SQLSMALLINT* TextLength);

The standard ODBC return codes are returned: SQL_SUCCESS,
SQL_SUCCESS_WITH_INFO, SQL_INVALID_HANDLE,
SQL_NO_DATA, and SQL_ERROR.

Description GetBulkDiagRec (ANSI application) and GetBulkDiagRecW
(Unicode application) return errors and warnings generated by
bulk operations. The argument definition, return values, and
function behavior is the same as for the standard ODBC
SQLGetDiagRec and SQLGetDiagRecW functions with the
following exceptions:

■ The GetBulkDiagRec and GetBulkDiagRecW functions can be
called after a bulk load, export or validate function is
invoked to retrieve any error messages generated by the bulk
operation. Calling these functions after any function except a
bulk function is not recommended.

■ The values returned in the Sqlstate and MessageText buffers
by the GetBulkDiagRecW function are encoded as UTF-16 on
Windows platforms. On UNIX and Linux platforms, the values
returned for Sqlstate and MessageText are UTF-16 if the
value of the SQL_ATTR_APP_UNICODE_TYPE is
SQL_DD_CP_UTF16 and UTF-8 if the value of
SQL_ATTR_APP_UNICODE_TYPE is SQL_DD_CP_UTF8.

■ The handle passed as the Handle argument must be a driver
connection handle obtained by calling SQLGetInfo (<ODBC
Conn Handle>, SQL_DRIVER_HDBC).

■ SQL_HANDLE_DBC is the only value accepted for HandleType.
Any other value causes an error to be returned.
DataDirect Connect Series for ODBC Reference

100 Chapter 9 DataDirect Bulk Load
Example

#include "qesqlext.h"

#ifndef NULL
#define NULL 0
#endif

#if (! defined (_WIN32)) && (! defined (_WIN64))
typedef void * HMODULE;
#endif

/* Get the address of a routine in a shared library or DLL. */
void * resolveName (
 HMODULE hmod,
 const char *name)
{
#if defined (_WIN32) || defined (_WIN64)

 return GetProcAddress (hmod, name);
#elif defined (hpux)
 void *routine = shl_findsym (hmod, name);

 shl_findsym (hmod, name, TYPE_PROCEDURE, &routine);

 return routine;
#else
 return dlsym (hmod, name);
#endif
}

DataDirect Connect Series for ODBC Reference

Utility Functions 101
/* Get errors directly from the driver's connection handle. */
void driverError (void *driverHandle, HMODULE hmod)
{
 UCHAR sqlstate[16];
 UCHAR errmsg[SQL_MAX_MESSAGE_LENGTH * 2];
 SDWORD nativeerr;
 SWORD actualmsglen;
 RETCODE rc;
 SQLSMALLINT i;
 PGetBulkDiagRec getBulkDiagRec;

 getBulkDiagRec = (PGetBulkDiagRec)
 resolveName (hmod, "GetBulkDiagRec");

 if (! getBulkDiagRec) {
 printf ("Cannot find GetBulkDiagRec!\n");
 return;
 }

 i = 1;
loop: rc = (*getBulkDiagRec) (SQL_HANDLE_DBC,
 driverHandle, i++,
 sqlstate, &nativeerr, errmsg,
 SQL_MAX_MESSAGE_LENGTH - 1, &actualmsglen);

 if (rc == SQL_ERROR) {
 printf ("GetBulkDiagRec failed!\n");
 return;
 }

 if (rc == SQL_NO_DATA_FOUND) return;

 printf ("SQLSTATE = %s\n", sqlstate);
 printf ("NATIVE ERROR = %d\n", nativeerr);
 errmsg[actualmsglen] = '\0';
 printf ("MSG = %s\n\n", errmsg);
 goto loop;
}

DataDirect Connect Series for ODBC Reference

102 Chapter 9 DataDirect Bulk Load
Export, Validate, and Load Functions
The example code in this section shows the DataDirect functions
for bulk exporting, verification, and bulk loading.

ExportTableToFile and
ExportTableToFileW

Syntax SQLReturn
ExportTableToFile (HDBC hdbc,
 SQLCHAR* TableName,
 SQLCHAR* FileName,
 SQLLEN IANAAppCodePage,
 SQLLEN ErrorTolerance,
 SQLLEN WarningTolerance,
 SQLCHAR* LogFile)

ExportTableToFileW (HDBC hdbc,
 SQLWCHAR* TableName,
 SQLWCHAR* FileName,
 SQLLEN IANAAppCodePage,
 SQLLEN ErrorTolerance,
 SQLLEN WarningTolerance,
 SQLWCHAR* LogFile)

The standard ODBC return codes are returned: SQL_SUCCESS,
SQL_SUCCESS_WITH_INFO, SQL_INVALID_HANDLE, and
SQL_ERROR.

Description ExportTableToFile (ANSI application) and ExportTableToFileW
(Unicode application) bulk export a table to a physical file. Both a
bulk data file and a bulk configuration file are produced by this
operation. The configuration file has the same name as the data
file, but with an XML extension. The bulk export operation can
create a log file and can also export to external files. Refer to
“External Overflow Files” in Chapter 3 of the DataDirect Connect
Series for ODBC User’s Guide for more information. The export
DataDirect Connect Series for ODBC Reference

Export, Validate, and Load Functions 103
operation can be configured such that if any errors or warnings
occur:

■ The operation always completes
■ The operation always terminates
■ The operation terminates after a certain threshold of

warnings or errors is exceeded.

Parameters hdbc is the driver’s connection handle, which is not the handle
returned by SQLAllocHandle or SQLAllocConnect. To obtain the
driver's connection handle, the application must then use the
standard ODBC function SQLGetInfo (ODBC Conn Handle,
SQL_DRIVER_HDBC).

TableName is a null-terminated string that specifies the name of
the source database table that contains the data to be exported.

FileName is a null-terminated string that specifies the path
(relative or absolute) and file name of the bulk load data file to
which the data is to be exported. It also specifies the file name of
the bulk configuration file. This file must not already exist. If the
file already exists, an error is returned.

IANAAppCodePage specifies the code page value to which the
driver must convert all data for storage in the bulk data file.
Refer to “Character Set Conversions” in Chapter 3 of the
DataDirect Connect Series for ODBC User’s Guide for more
information.

The default value on Windows is the current code page of the
machine. On UNIX/Linux, the default value is 4.

ErrorTolerance specifies the number of errors to tolerate before
an operation terminates. A value of 0 indicates that no errors are
tolerated; the operation fails when the first error is
encountered.

The default of -1 means that an infinite number of errors is
tolerated.
DataDirect Connect Series for ODBC Reference

104 Chapter 9 DataDirect Bulk Load
WarningTolerance specifies the number of warnings to tolerate
before an operation terminates. A value of 0 indicates that no
warnings are tolerated; the operation fails when the first
warning is encountered.

The default of -1 means that an infinite number of warnings is
tolerated.

LogFile is a null-terminated character string that specifies the
path (relative or absolute) and file name of the bulk log file.
Events logged to this file are:

■ Total number of rows fetched
■ A message for each row that failed to export
■ Total number of rows that failed to export
■ Total number of rows successfully exported

Information about the load is written to this file, preceded by a
header. Information about the next load is appended to the end
of the file.

If LogFile is NULL, no log file is created.

Example
HDBC hdbc;
HENV henv;
void *driverHandle;
HMODULE hmod;
PExportTableToFile exportTableToFile;

char tableName[128];
char fileName[512];
char logFile[512];
int errorTolerance;
int warningTolerance;
int codePage;
DataDirect Connect Series for ODBC Reference

Export, Validate, and Load Functions 105
/* Get the driver's connection handle from the DM.
 This handle must be used when calling directly into the driver. */

rc = SQLGetInfo (hdbc, SQL_DRIVER_HDBC, &driverHandle, 0, NULL);
if (rc != SQL_SUCCESS) {
 ODBC_error (henv, hdbc, SQL_NULL_HSTMT);
 EnvClose (henv, hdbc);
 exit (255);
}

/* Get the DM's shared library or DLL handle to the driver. */

rc = SQLGetInfo (hdbc, SQL_DRIVER_HLIB, &hmod, 0, NULL);
if (rc != SQL_SUCCESS) {
 ODBC_error (henv, hdbc, SQL_NULL_HSTMT);
 EnvClose (henv, hdbc);
 exit (255);
}

exportTableToFile = (PExportTableToFile)
 resolveName (hmod, "ExportTableToFile");
if (! exportTableToFile) {
 printf ("Cannot find ExportTableToFile!\n");
 exit (255);
}

rc = (*exportTableToFile) (
 driverHandle,
 (const SQLCHAR *) tableName,
 (const SQLCHAR *) fileName,
 codePage,
 errorTolerance, warningTolerance,
 (const SQLCHAR *) logFile);
if (rc == SQL_SUCCESS) {
 printf ("Export succeeded.\n");
}
else {
 driverError (driverHandle, hmod);
}

DataDirect Connect Series for ODBC Reference

106 Chapter 9 DataDirect Bulk Load
ValidateTableFromFile and
ValidateTableFromFileW

Syntax SQLReturn
ValidateTableFromFile (HDBC hdbc,
 SQLCHAR* TableName,
 SQLCHAR* ConfigFile,
 SQLCHAR* MessageList,
 SQLULEN MessageListSize,
 SQLULEN* NumMessages)

ValidateTableFromFileW (HDBC hdbc,
 SQLCHAR* TableName,
 SQLCHAR* ConfigFile,
 SQLCHAR* MessageList,
 SQLULEN MessageListSize,
 SQLULEN* NumMessages)

The standard ODBC return codes are returned: SQL_SUCCESS,
SQL_SUCCESS_WITH_INFO, SQL_INVALID_HANDLE, and
SQL_ERROR.

Description ValidateTableFromFile (ANSI application) and
ValidateTablefromFileW (Unicode application) verify the
metadata in the configuration file against the data structure of
the target database table. Refer to “Verification of the Bulk Load
Configuration File” in Chapter 3 of the DataDirect Connect Series
for ODBC User’s Guide for more detailed information.

Parameters hdbc is the driver’s connection handle, which is not the handle
returned by SQLAllocHandle or SQLAllocConnect. To obtain the
driver's connection handle, the application must then use the
standard ODBC function SQLGetInfo (ODBC Conn Handle,
SQL_DRIVER_HDBC).

TableName is a null-terminated character string that specifies the
name of the target database table into which the data is to be
loaded.
DataDirect Connect Series for ODBC Reference

Export, Validate, and Load Functions 107
ConfigFile is a null-terminated character string that specifies the
path (relative or absolute) and file name of the bulk
configuration file.

MessageList specifies a pointer to a buffer used to record any of
the errors and warnings. MessageList must not be null.

MessageListSize specifies the maximum number of characters
that can be written to the buffer to which MessageList points. If
the buffer to which MessageList points is not big enough to hold
all of the messages generated by the validation process, the
validation is aborted and SQL_ERROR is returned.

NumMessages contains the number of messages that were added
to the buffer. This method reports the following criteria:

■ Check data types - Each column data type is checked to
ensure no loss of data occurs. If a data type mismatch is
detected, the driver adds an entry to the MessageList in the
following format: Risk of data conversion loss:
Destination column_number is of type x, and source
column_number is of type y.

■ Check column sizes - Each column is checked for appropriate
size. If column sizes are too small in destination tables, the
driver adds an entry to the MessageList in the following
format: Possible Data Truncation: Destination
column_number is of size x while source column_number is
of size y.

■ Check codepages - Each column is checked for appropriate
code page alignment between the source and destination. If
a mismatch occurs, the driver adds an entry to the
MessageList in the following format: Destination column
code page for column_number risks data corruption if
transposed without correct character conversion from
source column_number.
DataDirect Connect Series for ODBC Reference

108 Chapter 9 DataDirect Bulk Load
■ Check Config Col Info - The destination metadata and the
column metadata in the configuration file are checked for
consistency of items such as length for character and binary
data types, the character encoding code page for character
types, precision and scale for numeric types, and nullablity for
all types. If any inconsistency is found, the driver adds an
entry to the MessageList in the following format: Destination
column metadata for column_number has column info
mismatches from source column_number.

■ Check Column Names and Mapping - The columns defined in
the configuration file are compared to the destination table
columns based on the order of the columns. If the number of
columns in the configuration file and/or import file does not
match the number of columns in the table, the driver adds an
entry to the MessageList in the following format: The number
of destination columns number does not match the number
of source columns number.

The function returns an array of null-terminated strings in the
buffer to which MessageList points with an entry for each of
these checks. If the driver determines that the information in the
bulk load configuration file matches the metadata of the
destination table, a return code of SQL_SUCCESS is returned and
the MessageList remains empty.

If the driver determines that there are minor differences in the
information in the bulk load configuration file and the
destination table, then SQL_SUCCESS_WITH_INFO is returned and
the MessageList is populated with information on the cause of
the potential problems.

If the driver determines that the information in the bulk load
information file cannot successfully be loaded into the
destination table, then a return code of SQL_ERROR is returned
and the MessageList is populated with information on the
problems and mismatches between the source and destination.
DataDirect Connect Series for ODBC Reference

Export, Validate, and Load Functions 109
Example
HDBC hdbc;
HENV henv;
void *driverHandle;
HMODULE hmod;
PValidateTableFromFile validateTableFromFile;

char tableName[128];
char configFile[512];
char messageList[10240];
SQLLEN numMessages;

/* Get the driver's connection handle from the DM.
 This handle must be used when calling directly into the driver. */

rc = SQLGetInfo (hdbc, SQL_DRIVER_HDBC, &driverHandle, 0, NULL);
if (rc != SQL_SUCCESS) {
 ODBC_error (henv, hdbc, SQL_NULL_HSTMT);
 EnvClose (henv, hdbc);
 exit (255);
}

/* Get the DM's shared library or DLL handle to the driver. */

rc = SQLGetInfo (hdbc, SQL_DRIVER_HLIB, &hmod, 0, NULL);
if (rc != SQL_SUCCESS) {
 ODBC_error (henv, hdbc, SQL_NULL_HSTMT);
 EnvClose (henv, hdbc);
 exit (255);
}

validateTableFromFile = (PValidateTableFromFile)
 resolveName (hmod, "ValidateTableFromFile");
if (!validateTableFromFile) {
 printf ("Cannot find ValidateTableFromFile!\n");
 exit (255);
}

DataDirect Connect Series for ODBC Reference

110 Chapter 9 DataDirect Bulk Load
messageList[0] = 0;
numMessages = 0;

rc = (*validateTableFromFile) (
 driverHandle,
 (const SQLCHAR *) tableName,
 (const SQLCHAR *) configFile,
 (SQLCHAR *) messageList,
 sizeof (messageList),
 &numMessages);
printf ("%d message%s%s\n", numMessages,
 (numMessages == 0) ? "s" :
 ((numMessages == 1) ? " : " : "s : "),
 (numMessages > 0) ? messageList : "");
if (rc == SQL_SUCCESS) {
 printf ("Validate succeeded.\n");
}
else {
 driverError (driverHandle, hmod);
}

LoadTableFromFile and
LoadTableFromFileW

Syntax SQLReturn
LoadTableFromFile (HDBC hdbc,
 SQLCHAR* TableName,
 SQLCHAR* FileName,
 SQLLEN ErrorTolerance,
 SQLLEN WarningTolerance,
 SQLCHAR* ConfigFile,
 SQLCHAR* LogFile,
 SQLCHAR* DiscardFile,
 SQLULEN LoadStart,
 SQLULEN LoadCount,
 SQLULEN ReadBufferSize)
DataDirect Connect Series for ODBC Reference

Export, Validate, and Load Functions 111
LoadTableFromFileW (HDBC hdbc,
 SQLWCHAR* TableName,
 SQLWCHAR* FileName,
 SQLLEN ErrorTolerance,
 SQLLEN WarningTolerance,
 SQLWCHAR* ConfigFile,
 SQLWCHAR* LogFile,
 SQLWCHAR* DiscardFile,
 SQLULEN LoadStart,
 SQLULEN LoadCount,
 SQLULEN ReadBufferSize)

The standard ODBC return codes are returned: SQL_SUCCESS,
SQL_SUCCESS_WITH_INFO, SQL_INVALID_HANDLE, and
SQL_ERROR.

Description LoadTableFromFile (ANSI application) and LoadTablefromFileW
(Unicode application) bulk load data from a file to a table. The
load operation can create a log file and can also create a discard
file that contains rows rejected during the load. The discard file
is in the same format as the bulk load data file. After fixing
reported issues in the discard file, the bulk load can be reissued
using the discard file as the bulk load data file.

The load operation can be configured such that if any errors or
warnings occur:

■ The operation always completes
■ The operation always terminates
■ The operation terminates after a certain threshold of

warnings or errors is exceeded.

If a load fails, the LoadStart and LoadCount parameters can be
used to control which rows are loaded when a load is restarted
after a failure.

Parameters hdbc is the driver’s connection handle, which is not the handle
returned by SQLAllocHandle or SQLAllocConnect. To obtain the
driver's connection handle, the application must then use the
standard ODBC function SQLGetInfo (ODBC Conn Handle,
SQL_DRIVER_HDBC).
DataDirect Connect Series for ODBC Reference

112 Chapter 9 DataDirect Bulk Load
TableName is a null-terminated character string that specifies the
name of the target database table into which the data is to be
loaded.

FileName is a null-terminated string that specifies the path
(relative or absolute) and file name of the bulk data file from
which the data is to be loaded.

ErrorTolerance specifies the number of errors to tolerate before
an operation terminates. A value of 0 indicates that no errors are
tolerated; the operation fails when the first error is encountered.

The default of -1 means that an infinite number of errors is
tolerated.

WarningTolerance specifies the number of warnings to tolerate
before an operation terminates. A value of 0 indicates that no
warnings are tolerated; the operation fails when the first
warning is encountered.

The default of -1 means that an infinite number of warnings is
tolerated.

ConfigFile is a null-terminated character string that specifies the
path (relative or absolute) and file name of the bulk
configuration file.

LogFile is a null-terminated character string that specifies the
path (relative or absolute) and file name of the bulk log file.
Events logged to this file are:

■ Total number of rows read
■ Message for each row that failed to load.
■ Total number of rows that failed to load
■ Total number of rows successfully loaded

Information about the load is written to this file, preceded by a
header. Information about the next load is appended to the end
of the file.
DataDirect Connect Series for ODBC Reference

Export, Validate, and Load Functions 113
If LogFile is NULL, no log file is created.

DiscardFile is a null-terminated character string that specifies
the path (relative or absolute) and file name of the bulk discard
file. Any row that cannot be inserted into database as result of
bulk load is added to this file, with the last row to be rejected
added to the end of the file.

Information about the load is written to this file, preceded by a
header. Information about the next load is appended to the end
of the file.

If DiscardFile is NULL, no discard file is created.

LoadStart specifies the first row to be loaded from the data file.
Rows are numbered starting with 1. For example, when
LoadStart=10, the first 9 rows of the file are skipped and the first
row loaded is row 10. This parameter can be used to restart a
load after a failure.

LoadCount specifies the number of rows to be loaded from the
data file. The bulk load operation loads rows up to the value of
LoadCount from the file to the database. It is valid for
LoadCount to specify more rows than exist in the data file. The
bulk load operation completes successfully when either the
LoadCount value has been loaded or the end of the data file is
reached. This parameter can be used in conjunction with
LoadStart to restart a load after a failure.

ReadBufferSize specifies the size, in KB, of the buffer that is used
to read the bulk data file for a bulk load operation. The default
is 2048.
DataDirect Connect Series for ODBC Reference

114 Chapter 9 DataDirect Bulk Load
Example
HDBC hdbc;
HENV henv;
void *driverHandle;
HMODULE hmod;
PLoadTableFromFile loadTableFromFile;

char tableName[128];
char fileName[512];
char configFile[512];
char logFile[512];
char discardFile[512];
int errorTolerance;
int warningTolerance;
int loadStart;
int loadCount;
int readBufferSize;

/* Get the driver's connection handle from the DM.
 This handle must be used when calling directly into the driver. */

rc = SQLGetInfo (hdbc, SQL_DRIVER_HDBC, &driverHandle, 0, NULL);
if (rc != SQL_SUCCESS) {
 ODBC_error (henv, hdbc, SQL_NULL_HSTMT);
 EnvClose (henv, hdbc);
 exit (255);
}

/* Get the DM's shared library or DLL handle to the driver. */

rc = SQLGetInfo (hdbc, SQL_DRIVER_HLIB, &hmod, 0, NULL);
if (rc != SQL_SUCCESS) {
 ODBC_error (henv, hdbc, SQL_NULL_HSTMT);
 EnvClose (henv, hdbc);
 exit (255);
}

DataDirect Connect Series for ODBC Reference

DataDirect Bulk Load Statement Attributes 115
loadTableFromFile = (PLoadTableFromFile)
 resolveName (hmod, "LoadTableFromFile");
if (! loadTableFromFile) {
 printf ("Cannot find LoadTableFromFile!\n");
 exit (255);
}

rc = (*loadTableFromFile) (
 driverHandle,
 (const SQLCHAR *) tableName,
 (const SQLCHAR *) fileName,
 errorTolerance, warningTolerance,
 (const SQLCHAR *) configFile,
 (const SQLCHAR *) logFile,
 (const SQLCHAR *) discardFile,
 loadStart, loadCount,
 readBufferSize);
if (rc == SQL_SUCCESS) {
 printf ("Load succeeded.\n");
}
else {
 driverError (driverHandle, hmod);
}

DataDirect Bulk Load Statement Attributes
In addition to exporting tables with the ExportTableToFile
methods, result sets can be exported to a bulk load data file
through the use of two DataDirect statement attributes,
SQL_BULK_EXPORT_PARAMS and SQL_BULK_EXPORT.
SQL_BULK_EXPORT_PARAMS is used to configure information
about where and how the data is to be exported.
SQL_BULK_EXPORT begins the bulk export operation.
DataDirect Connect Series for ODBC Reference

116 Chapter 9 DataDirect Bulk Load
SQL_BULK_EXPORT_PARAMS

The ValuePtr argument to SQLSetStmtAttr or SQLSetStmtAttrW
when the attribute argument is SQL_BULK_EXPORT_PARAMS is a
pointer to a BulkExportParams structure. The definitions of the
fields in the BulkExportParams structure are the same as the
corresponding arguments in the ExportTableToFile and
ExportTableToFileW methods except that the generation of the
log file is controlled by the EnableLogging field. When
EnableLogging is set to 1, the driver writes events that occur
during the export to a log file. Events logged to this file are:

■ A message for each row that failed to export.
■ Total number of rows fetched
■ Total number of rows successfully exported
■ Total number of rows that failed to export

The log file is located in the same directory as the bulk load data
file and has the same base name as the bulk load data file with a
.log extension. When EnableLogging is set to 0, no logging takes
place

If the bulk export parameters are not set prior to setting the
SQL_BULK_EXPORT attribute, the driver uses the current driver
code page value, defaults EnableLogging to 1 (enabled), and
defaults ErrorTolerance and WarningTolerance to -1 (infinite)

The SQL_BULK_EXPORT_PARAMS structure is as follows:

struct BulkExportParams {
 SQLLEN Version; /* Must be the value 1 */
 SQLLEN IANAAppCodePage;
 SQLLEN EnableLogging;
 SQLLEN ErrorTolerance;
 SQLLEN WarningTolerance;
};
DataDirect Connect Series for ODBC Reference

DataDirect Bulk Load Statement Attributes 117
SQL_BULK_EXPORT

The ValuePtr argument to SQLSetStmtAttr or SQLSetStmtAttrW
when the attribute argument is SQL_BULK_EXPORT is a pointer
to a string that specifies the file name of the bulk load data file
to which the data in the result set will be exported.

Result set export occurs when the SQL_BULK_EXPORT statement
attribute is set. If using the SQL_BULK_EXPORT_PARAMS
attribute to set values for the bulk export parameters, the
SQL_BULK_EXPORT_PARAMS attribute must be set prior to
setting the SQL_BULK_EXPORT attribute. Once set, the bulk
export parameters remain set for the life of the statement. If the
bulk export parameters are not set prior to setting the
SQL_BULK_EXPORT attribute, the driver uses the current driver
code page value, defaults EnableLogging to 1 (enabled), and
defaults ErrorTolerance and WarningTolerance to -1 (infinite)

Both a bulk load data file and a bulk load configuration file are
produced by this operation. The configuration file has the same
base name as the bulk load data file, but with an XML extension.
The configuration file is created in the same directory as the bulk
load data file.
DataDirect Connect Series for ODBC Reference

118 Chapter 9 DataDirect Bulk Load
DataDirect Connect Series for ODBC Reference

119
10 SQL for Flat-File Drivers

This chapter describes the SQL statements that you can use with
the flat-file drivers (Btrieve, dBASE, Paradox, and Text). Any
exceptions to the supported SQL functionality described in this
chapter are documented in the individual flat-file driver chapters
in the DataDirect Connect Series for ODBC User’s Guide.

The database drivers parse SQL statements and translate them
into a form that the database can understand. The SQL
statements described in this chapter let you:

■ Read, insert, update, and delete rows from a database
■ Create new tables
■ Drop existing tables

These SQL statements allow your application to be portable
across other databases. This chapter includes information about
the following topics:

■ “Select Statement” on page 120
■ “Create and Drop Table Statements” on page 138
■ “Insert Statement” on page 140
■ “Update Statement” on page 142
■ “Delete Statement” on page 143
■ “Reserved Keywords” on page 144
DataDirect Connect Series for ODBC Reference

120 Chapter 10 SQL for Flat-File Drivers
Select Statement
The form of the Select statement supported by the flat-file
drivers is:

SELECT [DISTINCT] {* | column_expression, ...}
FROM table_names [table_alias] ...
[WHERE expr1 rel_operator expr2]
[GROUP BY {column_expression, ...}]
[HAVING expr1 rel_operator expr2]
[UNION [ALL] (SELECT...)]
[ORDER BY {sort_expression [DESC | ASC]}, ...]
[FOR UPDATE [OF {column_expression, ...}]]

Select Clause

Follow Select with a list of column expressions you want to
retrieve or an asterisk (*) to retrieve all fields.

SELECT [DISTINCT] {* | column_expression, [[AS]
column_alias]. . .}

column_expression can be simply a field name (for example,
LAST_NAME). More complex expressions may include
mathematical operations or string manipulation (for example,
SALARY * 1.05). See “SQL Expressions” on page 126 for details.

column_alias can be used to give the column a descriptive name.
For example, to assign the alias DEPARTMENT to the column DEP:

SELECT dep AS department FROM emp

Separate multiple column expressions with commas (for example,
LAST_NAME, FIRST_NAME, HIRE_DATE).
DataDirect Connect Series for ODBC Reference

Select Statement 121
Field names can be prefixed with the table name or alias. For
example, EMP.LAST_NAME or E.LAST_NAME, where E is the alias
for the table EMP.

The Distinct operator can precede the first column expression.
This operator eliminates duplicate rows from the result of a
query. For example:

SELECT DISTINCT dep FROM emp

Aggregate Functions

Aggregate functions can also be a part of a Select clause.
Aggregate functions return a single value from a set of rows. An
aggregate can be used with a field name (for example,
AVG(SALARY)) or in combination with a more complex column
expression (for example, AVG(SALARY * 1.07)). The column
expression can be preceded by the Distinct operator. The Distinct
operator eliminates duplicate values from an aggregate
expression. For example:

COUNT (DISTINCT last_name)

In this example, only distinct last name values are counted.

Table 10-1 lists valid aggregate functions.

Table 10-1. Aggregate Functions

Aggregate Returns

SUM The total of the values in a numeric field expression. For example,
SUM(SALARY) returns the sum of all salary field values.

AVG The average of the values in a numeric field expression. For example,
AVG(SALARY) returns the average of all salary field values.
DataDirect Connect Series for ODBC Reference

122 Chapter 10 SQL for Flat-File Drivers
From Clause

The From clause indicates the tables to be used in the Select
statement. The format of the From clause is:

FROM table_names [table_alias]

table_names can be one or more simple table names in the
current working directory or complete path names.

table_alias is a name used to refer to a table in the rest of the
Select statement. Database field names may be prefixed by the
table alias. Given the table specification:

FROM emp E

you may refer to the LAST_NAME field as E.LAST_NAME. Table
aliases must be used if the Select statement joins a table to itself.
For example:

SELECT * FROM emp E, emp F WHERE E.mgr_id = F.emp_id

The equal sign (=) includes only matching rows in the results.

COUNT The number of values in any field expression. For example,
COUNT(NAME) returns the number of name values. When using COUNT
with a field name, COUNT returns the number of non-NULL field values.
A special example is COUNT(*), which returns the number of rows in the
set, including rows with NULL values.

MAX The maximum value in any field expression. For example, MAX(SALARY)
returns the maximum salary field value.

MIN The minimum value in any field expression. For example, MIN(SALARY)
returns the minimum salary field value.

Table 10-1. Aggregate Functions
DataDirect Connect Series for ODBC Reference

Select Statement 123
If you are joining more than one table, you can use LEFT OUTER
JOIN, which includes non-matching rows in the first table you
name. For example:

SELECT * FROM T1 LEFT OUTER JOIN T2 on T1.key = T2.key

Where Clause

The Where clause specifies the conditions that rows must meet
to be retrieved. The Where clause contains conditions in the
form:

WHERE expr1 rel_operator expr2

expr1 and expr2 can be field names, constant values, or
expressions.

rel_operator is the relational operator that links the two
expressions. See “SQL Expressions” on page 126 for details.

For example, the following Select statement retrieves the names
of employees that make at least $20,000.

SELECT last_name,first_name FROM emp WHERE salary >= 20000

Group By Clause

The Group By clause specifies the names of one or more fields by
which the returned values should be grouped. This clause is used
to return a set of aggregate values. It has the following form:

GROUP BY column_expressions

column_expressions must match the column expression used in
the Select clause. A column expression can be one or more field
names of the database table, separated by a comma (,) or one or
more expressions, separated by a comma (,). See “SQL
Expressions” on page 126 for details.
DataDirect Connect Series for ODBC Reference

124 Chapter 10 SQL for Flat-File Drivers
The following example sums the salaries in each department:

SELECT dept_id, sum(salary) FROM emp GROUP BY dept_id

This statement returns one row for each distinct department ID.
Each row contains the department ID and the sum of the salaries
of the employees in the department.

Having Clause

The Having clause enables you to specify conditions for groups of
rows (for example, display only the departments that have
salaries totaling more than $200,000). This clause is valid only if
you have already defined a Group By clause. It has the following
form:

HAVING expr1 rel_operator expr2

expr1 and expr2 can be field names, constant values, or
expressions. These expressions do not have to match a column
expression in the Select clause.

rel_operator is the relational operator that links the two
expressions. See “SQL Expressions” on page 126 for details.

The following example returns only the departments whose sums
of salaries are greater than $200,000:

SELECT dept_id, sum(salary) FROM emp
GROUP BY dept_id HAVING sum(salary) > 200000

Union Operator

The Union operator combines the results of two Select
statements into a single result. The single result is all the returned
rows from both Select statements. By default, duplicate rows are
DataDirect Connect Series for ODBC Reference

Select Statement 125
not returned. To return duplicate rows, use the All keyword
(UNION ALL). The form is:

SELECT statement
UNION ALL
SELECT statement

When using the Union operator, the Select lists for each Select
statement must have the same number of column expressions
with the same data types, and must be specified in the same
order. For example:

SELECT last_name, salary, hire_date FROM emp
UNION
SELECT name, pay, birth_date FROM person

This example has the same number of column expressions, and
each column expression, in order, has the same data type.

The following example is not valid because the data types of the
column expressions are different (salary from emp has a
different data type than last_name from raises). This example
does have the same number of column expressions in each Select
statement but the expressions are not in the same order by data
type.

SELECT last_name, salary FROM emp
UNION
SELECT salary, last_name FROM raises

Order By Clause

The Order By clause indicates how the rows are to be sorted. The
form is:

ORDER BY {sort_expression [DESC | ASC]}, ...

sort_expression can be field names, expressions, or the
positioned number of the column expression to use.
DataDirect Connect Series for ODBC Reference

126 Chapter 10 SQL for Flat-File Drivers
The default is to perform an ascending (ASC) sort.

For example, to sort by last_name and then by first_name, you
could use either of the following Select statements:

SELECT emp_id, last_name, first_name FROM emp
ORDER BY last_name, first_name

or

SELECT emp_id, last_name, first_name FROM emp
ORDER BY 2,3

In the second example, last_name is the second column
expression following Select, so Order By 2 sorts by last_name.

For Update Clause

The For Update clause locks the rows of the database table
selected by the Select statement. The form is:

FOR UPDATE OF column_expressions

column_expressions is a list of field names in the database table
that you intend to update, separated by a comma (,).

The following example returns all rows in the employee database
that have a salary field value of more than $20,000. When each
record is fetched, it is locked. If the record is updated or deleted,
the lock is held until you commit the change. Otherwise, the lock
is released when you fetch the next record.

SELECT * FROM emp WHERE salary > 20000
 FOR UPDATE OF last_name, first_name, salary

SQL Expressions

Expressions are used in the Where clauses, Having clauses, and
Order By clauses of SQL Select statements.
DataDirect Connect Series for ODBC Reference

Select Statement 127
Expressions enable you to use mathematical operations as well
as character string and date manipulation operators to form
complex database queries.

The most common expression is a simple field name. You can
combine a field name with other expression elements.

Valid expression elements are as follows:

Constants

Constants are values that do not change. For example, in the
expression PRICE * 1.05, the value 1.05 is a constant.

You must enclose character constants in pairs of single (') or
double (") quotation marks. To include a single quotation mark
in a character constant enclosed by single quotation marks, use
two single quotation marks together (for example, 'Don''t').
Similarly, if the constant is enclosed by double quotation marks,
use two double quotation marks to include one.

You must enclose date and time constants in braces ({}), for
example, {01/30/89} and {12:35:10}. The form for date constants
is MM/DD/YY or MM/DD/YYYY. The form for time constants is
HH:MM:SS.

The logical constants are .T. and 1 for True and .F. and 0 for False.
For portability, use 1 and 0.

■ Field names ■ Date operators
■ Constants ■ Relational operators
■ Exponential notation ■ Logical operators
■ Numeric operators ■ Functions
■ Character operators
DataDirect Connect Series for ODBC Reference

128 Chapter 10 SQL for Flat-File Drivers
Exponential Notation

You can include exponential notation in expression elements. For
example:

SELECT col1, 3.4E+7 FROM table1 WHERE calc < 3.4E-6 * col2

Numeric Operators

You can include the following operators in numeric expressions:

The following table shows examples of numeric expressions. For
these examples, assume salary is 20000.

You can precede numeric expressions with a unary plus (+) or
minus (–). For example, –(salary * 1.1) is -22000.

Operator Meaning

+ Addition

– Subtraction

* Multiplication

/ Division

** Exponentiation

^ Exponentiation

Example Resulting value

salary + 10000 30000

salary * 1.1 22000

2 ** 3 8
DataDirect Connect Series for ODBC Reference

Select Statement 129
Character Operators

Character expressions can include the following operators:

The following table shows examples of character expressions. In
the examples, last_name is 'JONES ' and first_name is
'ROBERT '.

NOTE: Some flat-file drivers return character data with trailing
blanks as shown in the table; however, you cannot rely on the
driver to return blanks. If you want an expression that works
regardless of whether the drivers return trailing blanks, use the
TRIM function before concatenating strings to make the
expression portable. For example:

TRIM(first_name) + '' + TRIM(last_name)

Date Operators

You can include the following operators in date expressions:

Operator Meaning

+ Concatenation, keeping trailing blanks.

– Concatenation, moving trailing blanks to the end.

Example Resulting Value

first_name + last_name 'ROBERT JONES '

first_name – last_name 'ROBERTJONES '

Operator Meaning

+ Add a number of days to a date to produce a new
date.

– The number of days between two dates, or
subtract a number of days from a date to produce a
new date.
DataDirect Connect Series for ODBC Reference

130 Chapter 10 SQL for Flat-File Drivers
The following table shows examples of date expressions. In these
examples, hire_date is {01/30/1990}.

Relational Operators

Relational operators separating any two expressions can be any
one of those listed in Table 10-2.

Example Resulting Value

hire_date + 5 {02/04/1990}

hire_date – {01/01/1990} 29

hire_date – 10 {01/20/1990}

Table 10-2. Relational Operators

Operator Meaning

= Equal.

<> Not Equal.

> Greater Than.

>= Greater Than or Equal.

< Less Than.

<= Less Than or Equal.

Like Matching a pattern.

Not Like Not matching a pattern.

Is NULL Equal to NULL.

Is Not NULL Not Equal to NULL.

Between Range of values between a lower and upper
bound.

In A member of a set of specified values or a member
of a subquery.

Exists True if a subquery returned at least one record.
DataDirect Connect Series for ODBC Reference

Select Statement 131
The following list shows some examples of relational operators:

salary <= 40000
dept = 'D101'
hire_date > {01/30/1989}
salary + commission >= 50000
last_name LIKE 'Jo%'
salary IS NULL
salary BETWEEN 10000 AND 20000
WHERE salary = ANY (SELECT salary FROM emp WHERE dept = 'D101')
WHERE salary > ALL (SELECT salary FROM emp WHERE dept = 'D101')

Logical Operators

Two or more conditions may be combined to form more complex
criteria. When two or more conditions are present, they must be
related by AND or OR. For example:

salary = 40000 AND exempt = 1

The logical NOT operator is used to reverse the meaning. For
example:

NOT (salary = 40000 AND exempt = 1)

Any Compares a value to each value returned by a
subquery. Any must be prefaced by =, <>, >, >=, <,
or <=.

=Any is equivalent to In.

All Compares a value to each value returned by a
subquery. All must be prefaced by =, <>, >, >=, <,
or <=.

Table 10-2. Relational Operators (cont.)

Operator Meaning
DataDirect Connect Series for ODBC Reference

132 Chapter 10 SQL for Flat-File Drivers
Operator Precedence

As expressions become more complex, the order in which the
expressions are evaluated becomes important. Table 10-3 shows
the order in which the operators are evaluated. The operators in
the first line are evaluated first, then those in the second line,
and so on. Operators in the same line are evaluated left to right
in the expression.

The following example shows the importance of precedence:

WHERE salary > 40000 OR
hire_date > {01/30/1989} AND
dept = 'D101'

Because AND is evaluated first, this query retrieves employees in
department D101 hired after January 30, 1989, as well as every
employee making more than $40,000, no matter what
department or hire date.

Table 10-3. Operator Precedence

Precedence Operator

1 Unary -, Unary +

2 **

3 *, /

4 +, -

5 =, <>, <, <=, >, >=, LIKE, NOT LIKE, IS NULL, IS NOT
NULL, BETWEEN, IN, EXISTS, ANY, ALL

6 NOT

7 AND

8 OR
DataDirect Connect Series for ODBC Reference

Select Statement 133
To force the clause to be evaluated in a different order, use
parentheses to enclose the conditions to be evaluated first. For
example:

WHERE (salary > 40000 OR hire_date > {01/30/1989})
AND dept = 'D101'

retrieves employees in department D101 that either make more
than $40,000 or were hired after January 30, 1989.

Functions

The flat-file drivers support a number of functions that you may
use in expressions. In Table 10-4 through Table 10-6 on
page 137, the functions are grouped according to the type of
result they return.

Table 10-4. Functions that Return Character Strings

Function Description

CHR Converts an ASCII code into a one-character string.

CHR(67) returns C.

RTRIM Removes trailing blanks from a string.

RTRIM('ABC ') returns ABC.

TRIM Removes trailing blanks from a string.

TRIM('ABC ') returns ABC.

LTRIM Removes leading blanks from a string.

LTRIM(' ABC') returns ABC.

UPPER Changes each letter of a string to uppercase.

UPPER('Allen') returns ALLEN.

LOWER Changes each letter of a string to lowercase.

LOWER('Allen') returns allen.

LEFT Returns leftmost characters of a string.

LEFT('Mattson',3) returns Mat.
DataDirect Connect Series for ODBC Reference

134 Chapter 10 SQL for Flat-File Drivers
RIGHT Returns rightmost characters of a string.

RIGHT('Mattson',4) returns tson.

SUBSTR Returns a substring of a string. Parameters are the string, the first
character to extract, and the number of characters to extract
(optional).

SUBSTR('Conrad',2,3) returns onr.

SUBSTR('Conrad',2) returns onrad.

SPACE Generates a string of blanks.

SPACE(5) returns ' '.

DTOC Converts a date to a character string. An optional second
parameter determines the format of the result:

0 (the default) returns MM/DD/YY.

1 returns DD/MM/YY.

2 returns YY/MM/DD.

10 returns MM/DD/YYYY.

11 returns DD/MM/YYYY.

12 returns YYYY/MM/DD.

An optional third parameter specifies the date separator
character. If not specified, a slash (/) is used.

DTOC({01/30/1997}) returns 01/30/97.

DTOC({01/30/1997}, 0) returns 01/30/97.

DTOC({01/30/1997}, 1) returns 30/01/97.

DTOC({01/30/1997}, 2,'-') returns 97-01-30.

DTOS Converts a date to a character string using the format
YYYYMMDD.

DTOS({01/23/1990}) returns 19900123.

IIF Returns one of two values, true or false. Parameters are a logical
expression, the true value, and the false value. If the logical
expression evaluates to true, the function returns the true value.
Otherwise, it returns the false value.

IIF(salary>20000,'BIG','SMALL') returns BIG if salary is
greater than 20000. If not, it returns SMALL.

Table 10-4. Functions that Return Character Strings (cont.)

Function Description
DataDirect Connect Series for ODBC Reference

Select Statement 135
STR Converts a number to a character string. Parameters are the
number, the total number of output characters (including the
decimal point), and optionally the number of digits to the right
of the decimal point.

STR(12.34567,4) returns 12.

STR(12.34567,4,1) returns 12.3.

STR(12.34567,6,3) returns 12.346.

STRVAL Converts a value of any type to a character string.

STRVAL('Woltman') returns Woltman.

STRVAL({12/25/1953}) returns 12/25/1953.

STRVAL (5 * 3) returns 15.

STRVAL (4 = 5) returns 'False'.

TIME Returns the time of day as a character string.

At 9:49 PM, TIME() returns 21:49:00.

TTOC NOTE: This function applies only to flat-file drivers that support
SQL_TIMESTAMP: the Btrieve, dBASE (access to FoxPro 3.0), and
Paradox drivers.

Converts a timestamp to a character string. An optional second
parameter determines the format of the result:

When set to 0 or none (the default), MM/DD/YY HH:MM:SS AM is
returned.

When set to 1, YYYYMMDDHHMMSS is returned, which is a
suitable format for indexing.

TTOC({1992-04-02 03:27:41}) returns 04/02/92 03:27:41 AM.

TTOC({1992-04-02 03:27:41, 1}) returns 19920402032741

USERNAME For Btrieve, the logon ID specified at connect time is returned. For
Paradox drivers, the user name specified during configuration is
returned. For all other flat-file drivers, an empty string is
returned.

Table 10-4. Functions that Return Character Strings (cont.)

Function Description
DataDirect Connect Series for ODBC Reference

136 Chapter 10 SQL for Flat-File Drivers
Table 10-5. Functions that Return Numbers

Function Description

MOD Divides two numbers and returns the remainder of the division.

MOD(10,3) returns 1.

LEN Returns the length of a string.

LEN('ABC') returns 3.

MONTH Returns the month part of a date.

MONTH({01/30/1989}) returns 1.

DAY Returns the day part of a date.

DAY({01/30/1989}) returns 30.

YEAR Returns the year part of a date.

YEAR({01/30/1989}) returns 1989.

MAX Returns the larger of two numbers.

MAX(66,89) returns 89.

DAYOFWEEK Returns the day of week (1-7) of a date expression.

DAYOFWEEK({05/01/1995}) returns 5.

MIN Returns the smaller of two numbers.

MIN(66,89) returns 66.

POW Raises a number to a power.

POW(7,2) returns 49.

INT Returns the integer part of a number.

INT(6.4321) returns 6.

ROUND Rounds a number.

ROUND(123.456, 0) returns 123.

ROUND(123.456, 2) returns 123.46.

ROUND(123.456, –2) returns 100.
DataDirect Connect Series for ODBC Reference

Select Statement 137
The following examples use some of the number and date
functions.

Retrieve all employees that have been with the company at least
90 days:

SELECT first_name, last_name FROM emp
 WHERE DATE() – hire_date >= 90

NUMVAL Converts a character string to a number. If the character string is
not a valid number, a zero (0) is returned.

NUMVAL('123') returns the number 123.

VAL Converts a character string to a number. If the character string is
not a valid number, a zero (0) is returned.

VAL('123') returns the number 123.

Table 10-5. Functions that Return Numbers (cont.)

Function Description

Table 10-6. Functions that Return Dates

Function Description

DATE Returns today’s date.

If today is 12/25/1999, DATE() returns {12/25/1999}.

TODAY Returns today's date.

If today is 12/25/1999, TODAY() returns {12/25/1999}.

DATEVAL Converts a character string to a date.

DATEVAL('01/30/1989') returns {01/30/1989}.

CTOD Converts a character string to a date. An optional second
parameter specifies the format of the character string: 0 (the
default) returns MM/DD/YY, 1 returns
DD/MM/YY, and 2 returns YY/MM/DD.

CTOD('01/30/1989') returns {01/30/1989}.

CTOD('01/30/1989',1) returns {30/01/1989}.
DataDirect Connect Series for ODBC Reference

138 Chapter 10 SQL for Flat-File Drivers
Retrieve all employees hired in January of this year or last year:

SELECT first_name, last_name FROM emp
 WHERE MONTH(hire_date) = 1
 AND (YEAR(hire_date) = YEAR(DATE())
 OR YEAR(hire_date) = YEAR(DATE()) – 1)

Create and Drop Table Statements
The flat-file drivers support SQL statements to create and delete
database files. The Create Table statement is used to create files
and the Drop Table statement is used to delete files.

Create Table

The form of the Create Table statement is:

CREATE TABLE table_name (col_definition[,col_definition,...])

table_name can be a simple table name or a full path name. A
table name is preferred for portability to other SQL data sources.
If a table name is used, the file is created in the directory you
specified as the database directory in the connection string. If you
did not specify a database directory in the connection string, the
file is created in the directory specified as the database directory
in .odbc.ini. If you did not specify a database directory in either
place, the file is created in the current working directory at
connect time.

col_definition is the column name, followed by the data type,
followed by an optional column constraint definition. Values for
column names are database specific. The data type specifies a
column’s data type.

The only column constraint definition currently supported by
some flat-file drivers is "not NULL." Not all flat-file tables support
DataDirect Connect Series for ODBC Reference

Create and Drop Table Statements 139
"not NULL" columns. In the cases where "not NULL" is not
supported, this restriction is ignored and the driver returns a
warning if "not NULL" is specified for a column. The "not NULL"
column constraint definition is allowed in the driver so that you
can write a database-independent application (and not be
concerned about the driver raising an error on a Create Table
statement with a "not NULL" restriction).

A sample Create Table statement to create an employee
database table is:

CREATE TABLE emp (last_name CHAR(20) NOT NULL,
 first_name CHAR(12) NOT NULL,
 salary NUMERIC (10,2) NOT NULL,
 hire_date DATE NOT NULL)

Drop Table

The form of the Drop Table statement is:

DROP TABLE table_name

table_name can be a simple table name (emp) or a full path
name. A table name is preferred for portability to other SQL
data sources. If a table name is used, the file is dropped from the
directory you specified as the database directory in the
connection string. If you did not specify a database directory in
the connection string, the file is deleted from the directory
specified as the database directory in .odbc.ini. If you did not
specify a database directory in either of these places, the file is
dropped from the current working directory at connect time.

A sample Drop Table statement to delete the emp table is:

DROP TABLE emp
DataDirect Connect Series for ODBC Reference

140 Chapter 10 SQL for Flat-File Drivers
Insert Statement
The Insert statement is used to add new rows to a database table.
With it, you can specify either of the following options:

■ A list of values to be inserted as a new record

■ A Select statement that copies data from another table to be
inserted as a set of new rows

The form of the Insert statement is:

INSERT INTO table_name [(col_name, ...)]
{VALUES (expr, ...) | select_statement}

table_name can be a simple table name or a full path name. A
table name is preferred for portability to other SQL data sources.

col_name is an optional list of column names giving the name and
order of the columns whose values are specified in the Values
clause. If you omit col_name, the value expressions (expr) must
provide values for all columns defined in the file and must be in
the same order that the columns are defined for the file.

expr is the list of expressions giving the values for the columns of
the new record. Usually, the expressions are constant values for
the columns. Character string values must be enclosed in single (’)
or double (") quotation marks, date values must be enclosed in
braces {}, and logical values that are letters must be enclosed in
periods (for example, .T. or .F.).

An example of an Insert statement that uses a list of
expressions is:

INSERT INTO emp (last_name, first_name, emp_id, salary, hire_date)
VALUES ('Smith', 'John', 'E22345', 27500, {4/6/1999})
DataDirect Connect Series for ODBC Reference

Insert Statement 141
Each Insert statement adds one record to the database table. In
this case a record has been added to the employee database
table, emp. Values are specified for five columns. The remaining
columns in the table are assigned a blank value, meaning NULL.

select_statement is a query that returns values for each col_name
value specified in the column name list. Using a Select statement
instead of a list of value expressions lets you select a set of rows
from one table and insert it into another table using a single
Insert statement.

An example of an Insert statement that uses a Select
statement is:

INSERT INTO emp1 (first_name, last_name, emp_id, dept, salary)
SELECT first_name, last_name, emp_id, dept, salary from emp
WHERE dept = 'D050'

In this type of Insert statement, the number of columns to be
inserted must match the number of columns in the Select
statement. The list of columns to be inserted must correspond to
the columns in the Select statement just as it would to a list of
value expressions in the other type of Insert statement. That is,
the first column inserted corresponds to the first column
selected; the second inserted to the second, and so forth.

The size and data type of these corresponding columns must be
compatible. Each column in the Select list should have a data
type that the driver accepts on a regular Insert/Update of the
corresponding column in the Insert list. Values are truncated
when the size of the value in the Select list column is greater
than the size of the corresponding Insert list column.

The Select statement is evaluated before any values are inserted.
This query cannot be made on the table into which values are
inserted.
DataDirect Connect Series for ODBC Reference

142 Chapter 10 SQL for Flat-File Drivers
Update Statement
The Update statement is used to change rows in a database file.
The form of the Update statement supported for flat-file drivers
is:

UPDATE table_name SET col_name = expr, ...
[WHERE { conditions | CURRENT OF cursor_name }]

table_name can be a simple table name or a full path name. A
table name is preferred for portability to other SQL data sources.

col_name is the name of a column whose value is to be changed.
Several columns can be changed in one statement.

expr is the new value for the column. The expression can be a
constant value or a subquery. Character string values must be
enclosed with single (’) or double (") quotation marks, date
values must be enclosed by braces {}, and logical values that are
letters must be enclosed by periods (for example, .T. or .F.).
Subqueries must be enclosed in parentheses.

The Where clause (any valid clause described in “Select
Statement” on page 120) determines which rows are to be
updated.

The Where Current Of cursor_name clause can be used only by
developers coding directly to the ODBC API. It causes the row at
which cursor_name is positioned to be updated. This is called a
"positioned update." You must first execute a Select...For Update
statement with a named cursor and fetch the row to be updated.

An example of an Update statement on the emp table is:

UPDATE emp SET salary=32000, exempt=1
WHERE emp_id = 'E10001'

The Update statement changes every record that meets the
conditions in the Where clause. In this case, the salary and
exempt status are changed for all employees having the
DataDirect Connect Series for ODBC Reference

Delete Statement 143
employee ID E10001. Because employee IDs are unique in the
emp table, only one record is updated.

An example using a subquery is:

UPDATE emp SET salary = (SELECT avg(salary) from emp)
WHERE emp_id = 'E10001'

In this case, the salary is changed to the average salary in the
company for the employee having employee ID E10001.

Delete Statement
The Delete statement is used to delete rows from a database
table. The form of the Delete statement supported for flat-file
drivers is:

DELETE FROM table_name
[WHERE { conditions | CURRENT OF cursor_name }]

table_name can be a simple table name or a full path name. A
table name is preferred for portability to other SQL data sources.

The Where clause determines which rows are to be deleted. If
you include only the keyword Where, all rows in the table are
deleted, but the file is left intact.

The Where Current Of cursor_name clause can be used only by
developers coding directly to the ODBC API. It causes the row at
which cursor_name is positioned to be deleted. This is called a
"positioned delete." You must first execute a Select...For Update
statement with a named cursor and fetch the row to be deleted.
DataDirect Connect Series for ODBC Reference

144 Chapter 10 SQL for Flat-File Drivers
An example of a Delete statement on the emp table is:

DELETE FROM emp WHERE emp_id = 'E10001'

Each Delete statement removes every record that meets the
conditions in the Where clause. In this case, every record having
the employee ID E10001 is deleted. Because employee IDs are
unique in the employee table, at most, one record is deleted.

Reserved Keywords
The following words are reserved for use in SQL statements. If
they are used for file or column names in a database that you
use, you must enclose them in double (") quotation marks in any
SQL statement where they appear as file or column names.

■ ALL ■ FROM ■ LIKE ■ OR
■ AND ■ FULL ■ NATURAL ■ ORDER
■ BETWEEN ■ GROUP ■ NOT ■ RIGHT
■ COMPUTE ■ HAVING ■ NULL ■ UNION
■ CROSS ■ INNER ■ ON ■ WHERE
■ DISTINCT ■ INTO ■ OPTIONS
■ FOR ■ LEFT ■ OR
DataDirect Connect Series for ODBC Reference

145
11 WorkAround Options

DataDirect has included non-standard connection options
(workarounds) for the Connect Series for ODBC drivers that enable
you to take full advantage of packaged ODBC-enabled
applications requiring non-standard or extended behavior.

To use these options, we recommend that you create a separate
user data source for each application. After you create the data
source,

■ On Windows, using the registry editor REGEDIT, open the
HKEY_CURRENT_USER\SOFTWARE\ODBC\ODBC.INI section of
the registry. Select the data source that you created.

■ On UNIX/Linux, using a text editor, open the odbc.ini file to
edit the data source that you created.

Add the string WorkArounds= (or WorkArounds2=) with a value
of n (WorkArounds=n or WorkArounds2=n), where the value n is
the cumulative value of all options added together. For example,
if you wanted to use both WorkArounds=1 and WorkArounds=8,
you would enter in the data source:

WorkArounds=9

WARNING: Each of these options has potential side effects
related to its use. An option should only be used to address the
specific problem for which it was designed. For example,
WorkArounds=2 causes the driver to report that database
qualifiers are not supported, even when they are. As a result,
applications that use qualifiers may not perform correctly when
this option is enabled.

The following lists includes both WorkArounds and
WorkArounds2.
DataDirect Connect Series for ODBC Reference

146 Chapter 11 WorkAround Options
WorkArounds=1. Enabling this option causes the driver to return
1 instead of 0 if the value for SQL_CURSOR_COMMIT_BEHAVIOR
or SQL_CURSOR_ROLLBACK_BEHAVIOR is 0. Statements are
prepared again by the driver.

WorkArounds=2. Enabling this option causes the driver to report
that database qualifiers are not supported. Some applications
cannot process database qualifiers.

WorkArounds=8. Enabling this option causes the driver to return
1 instead -1 for SQLRowCount. If an ODBC driver cannot
determine the number of rows affected by an Insert, Update, or
Delete statement, it may return -1 in SQLRowCount. This may
cause an error in some products.

WorkArounds=16. Enabling this option causes the driver not to
return an INDEX_QUALIFIER. For SQLStatistics, if an ODBC driver
reports an INDEX_QUALIFIER that contains a period, some
applications return a "tablename is not a valid name" error.

WorkArounds=32. Enabling this option causes the driver to
re-bind columns after calling SQLExecute for prepared
statements.

WorkArounds=64. Enabling this option results in a column name
of C<position> where <position> is the ordinal position in the
result set. For example, "SELECT col1, col2+col3 FROM table1"
produces the column names "col1" and C2. For result columns
that are expressions, SQLColAttributes/SQL_COLUMN_NAME
returns an empty string. Use this option for applications that
cannot process empty string column names.

WorkArounds=256. Enabling this option causes the value of
SQLGetInfo/SQL_ACTIVE_CONNECTIONS to be returned as 1.

WorkArounds=512. Enabling this option prevents ROWID results.
This option forces the SQLSpecialColumns function to return a
unique index as returned from SQLStatistics.
DataDirect Connect Series for ODBC Reference

147
WorkArounds=2048. Enabling this option causes DATABASE=
instead of DB= to be returned. For some data sources, Microsoft
Access performs more efficiently when the output connection
string of SQLDriverConnect returns DATABASE= instead of DB=.

WorkArounds=65536. Enabling this option strips trailing zeros
from decimal results, which prevents Microsoft Access from
issuing an error when decimal columns containing trailing zeros
are included in the unique index.

WorkArounds=131072. Enabling this option turns all occurrences
of the double quote character (") into the accent grave character
(`). Some applications always quote identifiers with double
quotes. Double quoting can cause problems for data sources
that do not return SQLGetInfo/SQL_IDENTIFIER_QUOTE_CHAR =
<double quote>.

WorkArounds=524288. Enabling this option forces the maximum
precision/scale settings. The Microsoft Foundation Classes (MFC)
bind all SQL_DECIMAL parameters with a fixed precision and
scale, which can cause truncation errors.

WorkArounds=1048576. Enabling this option overrides the
specified precision and sets the precision to 256. Some
applications incorrectly specify a precision of 0 for character
types when the value will be SQL_NULL_DATA.

WorkArounds=2097152. Enabling this option overrides the
specified precision and sets the precision to 2000. Some
applications incorrectly specify a precision of -1 for character
types.

WorkArounds=4194304. Enabling this option converts, for
PowerBuilder users, all catalog function arguments to uppercase
unless they are quoted.

WorkArounds=536870912. Enabling this option allows
re-binding of parameters after calling SQLExecute for prepared
statements.
DataDirect Connect Series for ODBC Reference

148 Chapter 11 WorkAround Options
WorkArounds=1073741824. Enabling this option addresses the
assumption by the application that ORDER BY columns do not
have to be in the SELECT list. This assumption may be incorrect
for data sources such as Informix.

WorkArounds2=2. Enabling this option causes the driver to
ignore the ColumnSize/DecimalDigits specified by the application
and use the database defaults instead. Some applications
incorrectly specify the ColumnSize/DecimalDigits when binding
timestamp parameters.

WorkArounds2=4. Enabling this option reverses the order in
which Microsoft Access returns native types so that Access uses
the most appropriate native type. Microsoft Access uses the last
native type mapping, as returned by SQLGetTypeInfo, for a given
SQL type.

WorkArounds2=8. Enabling this option causes the driver to add
the bindoffset in the ARD to the pointers returned by
SQLParamData. This is to work around a MSDASQL problem.

WorkArounds2=16. Enabling this option causes the driver to
ignore calls to SQLFreeStmt(RESET_PARAMS) and only return
success without taking other action. It also causes parameter
validation not to use the bind offset when validating the
charoctetlength buffer. This is to work around a MSDASQL
problem.

WorkArounds2=24. Enabling this option allows a flat-file driver,
such as dBASE, to operate properly under MSDASQL.

WorkArounds2=32. Enabling this option appends "DSN=" to a
connection string if it is not already included. Microsoft Access
requires "DSN" to be included in a connection string.

WorkArounds2=128. Enabling this option causes 0 to be returned
by SQLGetInfo(SQL_ACTIVE_STATEMENTS).Some applications
open extra connections if SQLGetInfo(SQL_ACTIVE_STATEMENTS)
does not return 0.
DataDirect Connect Series for ODBC Reference

149
WorkArounds2=256. Enabling this option causes the driver to
return Buffer Size for Long Data on calls to SQLGetData with a
buffer size of 0 on columns of SQL type SQL_LONGVARCHAR or
SQL_LONGVARBINARY. Applications should always set this
workaround when using MSDASQL and retrieving long data.

WorkArounds2=512. Enabling this option causes the flat-file
drivers to return old literal prefixes and suffixes for date, time,
and timestamp data types. Microsoft Query 2000 does not
correctly handle the ODBC escapes that are currently returned as
literal prefix and literal suffix.

WorkArounds2=1024. Enabling this option causes the driver to
return "N" for SQLGetInfo(SQL_MULT_RESULT_SETS). ADO
incorrectly interprets SQLGetInfo(SQL_MULT_RESULT_SETS) to
mean that the contents of the last result set returned from a
stored procedure are the output parameters for the stored
procedure.

WorkArounds2=2048. Enabling this option causes the driver to
accept 2.x SQL type defines as valid. ODBC 3.x applications that
use the ODBC cursor library receive errors on bindings for
SQL_DATE, SQL_TIME, and SQL_TIMESTAMP columns. The cursor
library incorrectly rebinds these columns with the ODBC 2.x type
defines.

WorkArounds2=4096. Enabling this option causes the driver to
internally adjust the length of empty strings. The ODBC Driver
Manager incorrectly translates lengths of empty strings when a
Unicode-enabled application uses a non-Unicode driver. Use this
workaround only if your application is Unicode-enabled.

WorkArounds2=8192. Enabling this option causes Microsoft
Access not to pass the error -7748. Microsoft Access only asks for
data as a two-byte SQL_C_WCHAR, which is an insufficient
buffer size to store the UCS2 character and the null terminator;
thus, the driver returns a warning, "01004 Data truncated" and
returns a null character to Microsoft Access. Microsoft Access
then passes error -7748.
DataDirect Connect Series for ODBC Reference

150 Chapter 11 WorkAround Options
DataDirect Connect Series for ODBC Reference

151
Glossary

application An application, as it relates to the ODBC standard, performs
tasks such as: requesting a connection to a data source; sending
SQL requests to a data source; processing errors; and terminating
the connection to a data source. It may also perform functions
outside the scope of the ODBC interface.

client load
balancing

Client load balancing distributes new connections in a
computing environment so that no one server is overwhelmed
with connection requests.

conformance There are two types of conformance levels for ODBC drivers—
ODBC API and ODBC SQL grammar (see SQL Grammar). Knowing
the conformance levels helps you determine the range of
functionality available through the driver, even if a particular
database does not support all of the functionality of a particular
level.

For ODBC API conformance, most quality ODBC drivers support
Core, Level 1, and a defined set of Level 2 functions, depending
on the database being accessed.

connection
failover

Connection failover allows an application to connect to an
alternate, or backup, database server if the primary database
server is unavailable, for example, because of a hardware failure
or traffic overload.

connection retry Connection retry defines the number of times the driver
attempts to connect to the primary and, if configured, alternate
database servers after the initial unsuccessful connection
attempt. Connection retry can be an important strategy for
system recovery.

connection string A string passed in code that specifies connection information
directly to the Driver Manager and driver.
DataDirect Connect Series for ODBC Reference

152 Glossary
data source A data source includes both the source of data itself, such as
relational database, a flat-file database, or even a text file, and
the connection information necessary for accessing the data.
Connection information may include such things as server
location, database name, logon ID, and other driver options.
Data source information is usually stored in a DSN (see Data
Source Name).

driver An ODBC driver communicates with the application through the
Driver Manager and performs tasks such as: establishing a
connection to a data source; submitting requests to the data
source; translating data to and from other formats; returning
results to the application; and formatting errors into a standard
code and returning them to the application.

Driver Manager The main purpose of the Driver Manager is to load drivers for the
application. The Driver Manager also processes ODBC
initialization calls and maps data sources to a specific driver.

DSN (Data Source
Name)

A DSN stores the data source information (see Data Source)
necessary for the Driver Manager to connect to the database. This
can be configured either through the ODBC Administrator or in a
DSN file. On Windows, the information is called a system or user
DSN and is stored in the Registry. Data source information can
also be stored in text configuration files, as is the case on
UNIX/Linux. Applications deployed in the global assembly cache
must have a strong name to handle name and version conflicts.

DTC (Distributed
Transaction
Coordinator)

In Microsoft Windows NT, Windows 2000, Windows XP, Windows
Vista, and the Windows Server 2003 family, the DTC is a system
service that is part of COM+ services. COM+ components that use
DTC can enlist ODBC connections in distributed transactions. This
makes it possible to scale transactions from one to many
computers without adding special code.

index A database structure used to improve the performance of
database activity. A database table can have one or more indexes
associated with it.
DataDirect Connect Series for ODBC Reference

Glossary 153
isolation level An isolation level represents a particular locking strategy
employed in the database system to improve data consistency.
The higher the isolation level number, the more complex the
locking strategy behind it. The isolation level provided by the
database determines how a transaction handles data
consistency.

The American National Standards Institute (ANSI) defines four
isolation levels:

■ Read uncommitted (0)
■ Read committed (1)
■ Repeatable read (2)
■ Serializable (3)

load balancing See client load balancing.

locking level Locking is a database operation that restricts a user from
accessing a table or record. Locking is used in situations where
more than one user might try to use the same table at the same
time. By locking the table or record, the system ensures that only
one user at a time can affect the data.

MTS (Microsoft
Transaction
Server)

MTS is a component-based transaction processing system for
developing, deploying, and managing high-performance,
scalable, and robust enterprise, Internet, and intranet server
applications. MTS was the precursor to COM+, the current
version of this processing system (see DTC).

ODBC
Administrator

The ODBC Data Source Administrator manages database drivers
and configures DSNs. On computers running the Microsoft
Windows 2000, XP, or Vista operating systems, this application is
located in the Windows Control Panel under Administrative
Tools. Its icon is named "Data Sources (ODBC)."

In UNIX/Linux environments, the DataDirect UNIX ODBC Data
Source Administrator is located in the /tools directory of the
product installation directory.
DataDirect Connect Series for ODBC Reference

154 Glossary
SQL Grammar ODBC defines a core grammar that roughly corresponds to the
X/Open and SQL Access Group SQL CAE specification (1992).
ODBC also defines a minimum grammar, to meet a basic level of
ODBC conformance, and an extended grammar, to provide for
common DBMS extensions to SQL. The following list summarizes
the grammar included in each conformance level:

Minimum SQL Grammar:

■ Data Definition Language (DDL): CREATE TABLE and DROP
TABLE.

■ Data Manipulation Language (DML): simple SELECT, INSERT,
UPDATE SEARCHED, and DELETE SEARCHED.

■ Expressions: simple (such as A > B + C).

■ Data types: CHAR, VARCHAR, or LONG VARCHAR.

Core SQL Grammar:

■ Minimum SQL grammar and data types.

■ DDL: ALTER TABLE, CREATE INDEX, DROP INDEX, CREATE
VIEW, DROP VIEW, GRANT, and REVOKE.

■ DML: full SELECT.

■ Expressions: subquery, set functions such as SUM and MIN.

■ Data types: DECIMAL, NUMERIC, SMALLINT, INTEGER, REAL,
FLOAT, DOUBLE PRECISION.
DataDirect Connect Series for ODBC Reference

Glossary 155
Extended SQL Grammar:

■ Minimum and Core SQL grammar and data types.

■ DML: outer joins, positioned UPDATE, positioned DELETE,
SELECT FOR UPDATE, and unions.

■ Expressions: scalar functions such as SUBSTRING and ABS,
date, time, and timestamp literals.

■ Data types: BIT, TINYINT, BIGINT, BINARY, VARBINARY, LONG
VARBINARY, DATE, TIME, TIMESTAMP.

■ Batch SQL statements.

■ Procedure calls.

Unicode Unicode, developed by the Unicode Consortium, is a standard
that attempts to provide unique coding for all international
language characters. The current number of supported
characters is over 95,000.
DataDirect Connect Series for ODBC Reference

156 Glossary
DataDirect Connect Series for ODBC Reference

157
Index

A
Administrator, ODBC 153
aggregate functions, flat-file drivers 121
application 151

B
bound columns 66
bulk load

bulk load configuration file 117
bulk load data file 117
functions

bulk errors 98
bulk export 102
bulk load 110
bulk load validation 106
utility 98

statement attributes 115
validating metadata in the bulk load

configuration file 106

C

catalog functions, using 60
character encoding 43
cipher suite, encryption

SSL3 encryption cipher suite 94
TLS1 encryption cipher suite 95
when driver cannot negotiate SSL3 or

TLS1 93
client code page

See code pages

client load balancing 151
code pages, IANAAppCodePage attribute 17
code pages, IBM DB2 21, 24
conformance 151
connection failover 151
connection retry 151
connection string 151
connections, optimizing 73
contacting Technical Support 14
conventions, typographical 9
Create Table statement, flat-file 138

D
data retrieval, optimizing 64
data source 152
date and time functions 33
DB2, IBM code page values 21, 24
Delete statement, flat-file drivers 143
dirty reads 88
documentation, about 11
double-byte character sets in UNIX and

Linux 44
driver 152
Driver Manager 152
Drop Table statement, flat-file drivers 139
DSN (Data Source Name) 152
DTC (Distributed Transaction

Coordinator) 152
DataDirect Connect Series for ODBC Reference

158 Index
E
encryption cipher suites 93
environment-specific information 10
exporting result sets to a bulk load data

file 115
ExportTableToFile 102
ExportTableToFileW 102

F

flat-file drivers
aggregate functions 121
Create Table statement 138
Delete statement 143
Drop Table statement 139
For Update clause 126
From clause 122
Group By clause 123
Having clause 124
Insert statement 140
operator precedence 132
Order By clause 125
Select clause 120
Select statement 120
SQL expressions 126
SQL for 119
Union operator 124
Update statement 142
Where clause 123

From clause, flat-file drivers 122
functions, ODBC

DataDirect functions for bulk
operations 97

selecting for performance 69

G
GetBulkDiagRec 98
GetBulkDiagRecW 98
glossary 151
Group By clause, flat-file drivers 123

H

Having clause, flat-file drivers 124

I
IANAAppCodePage

connection option values 17
improving

database performance 79
index performance 79
join performance 85
ODBC application performance 59
record selection performance 81

index, database 152
indexes

deciding which to create 83
improving performance 79

indexing multiple fields 81
Insert statement, flat-file drivers 140
internationalization 39
isolation levels

about 88
read committed 89
read uncommitted 89
repeatable read 89
serializable 89

isolation levels and data consistency
compared 90
dirty reads 88
non-repeatable reads 88
phantom reads 88
DataDirect Connect Series for ODBC Reference

Index 159
L
LoadTableFromFile 110
LoadTableFromFileW 110
locale 40
localization 39
locking level 153
locking modes and levels 91

M

managing connections 73
MIBenum value 17
MTS (Microsoft Transaction Server) 153

N
non-repeatable reads 88
numeric functions 31

O

ODBC
API functions 25
designing for performance 59
functions, selecting for performance 69
scalar functions 28

ODBC Administrator 153
optimization, performance 59
Order By clause, flat-file drivers 125

P
performance optimization

avoiding catalog functions 60
avoiding search patterns 61
commits in transactions 74
managing connections 73
overview 59
reducing the size of retrieved data 65
retrieving long data 64
using a dummy query 63
using bound columns 66

performance, improving
database using indexes 79
index 79
join 85
record selection 81

phantom reads 88
positioned updates and deletes 75

R

read committed 89
read uncommitted 89
repeatable read 89
reserved keywords 144
retrieving data, optimizing 64

S
scalar functions, ODBC 28
search patterns, avoiding 61
Select clause, flat-file drivers 120
Select statement, flat-file drivers 120
serializable 89
SQL

expressions, flat-file drivers 126
flat-file drivers 119
reserved keywords 144
DataDirect Connect Series for ODBC Reference

160 Index
SQL Grammar 154
SSL encryption cipher suites 93
SSL3 encryption cipher suite 94
statement attributes for DataDirect bulk

load operations 115
string functions 28
SupportLink 14
system functions 35

T
Technical Support, contacting 14
threading, overview 37
time functions 33
TLS1 encryption cipher suite 95
transactions, managing commits 74
typographical conventions 9

U

UCS-2 45
Unicode

character encoding 43
definition 155
ODBC drivers 47
support in databases 45
support in ODBC 46

Union operator, flat-file drivers 124
UNIX and Linux

code pages, IANAAppCodePage
attribute 17

double-byte character sets 43, 44
Update statement, flat-file drivers 142
updates, optimizing 73
UTF-16 45
UTF-8 45

V
ValidateTableFromFile 106
ValidateTableFromFileW 106
validating metadata in the bulk load

configuration file 106

W

Where clause, flat-file drivers 123
WorkAround options for ODBC drivers 145
DataDirect Connect Series for ODBC Reference

	Table of Contents
	Preface
	Using this Book
	Conventions Used in This Book
	Typographical Conventions
	Environment-Specific Information

	About the Product Documentation
	HTML Version
	PDF Version

	Contacting Technical Support

	1 Code Page Values
	IBM to IANA Code Page Values
	Teradata Code Page Values

	2 ODBC API and Scalar Functions
	API Functions
	Scalar Functions
	String Functions
	Numeric Functions
	Date and Time Functions
	System Functions

	3 Threading
	4 Internationalization, Localization, and Unicode
	Internationalization and Localization
	Unicode Character Encoding
	Background
	Unicode Support in Databases
	Unicode Support in ODBC

	Unicode and Non-Unicode ODBC Drivers
	Function Calls
	Data
	Default Unicode Mapping

	The Driver Manager and Unicode Encoding on UNIX and Linux

	5 Designing ODBC Applications for Performance Optimization
	Using Catalog Functions
	Minimizing the Use of Catalog Functions
	Avoiding Search Patterns
	Using a Dummy Query to Determine Table Characteristics

	Retrieving Data
	Retrieving Long Data
	Reducing the Size of Data Retrieved
	Using Bound Columns
	Using SQLExtendedFetch Instead of SQLFetch
	Choosing the Right Data Type

	Selecting ODBC Functions
	Using SQLPrepare/SQLExecute and SQLExecDirect
	Using Arrays of Parameters
	Using the Cursor Library

	Managing Connections and Updates
	Managing Connections
	Managing Commits in Transactions
	Choosing the Right Transaction Model
	Using Positioned Updates and Deletes
	Using SQLSpecialColumns

	6 Using Indexes
	Introduction
	Improving Row Selection Performance
	Indexing Multiple Fields
	Deciding Which Indexes to Create
	Improving Join Performance

	7 Locking and Isolation Levels
	Locking
	Isolation Levels
	Locking Modes and Levels

	8 SSL Encryption Cipher Suites
	9 DataDirect Bulk Load
	DataDirect Bulk Load Functions
	Utility Functions
	GetBulkDiagRec and GetBulkDiagRecW

	Export, Validate, and Load Functions
	ExportTableToFile and ExportTableToFileW
	ValidateTableFromFile and ValidateTableFromFileW
	LoadTableFromFile and LoadTableFromFileW

	DataDirect Bulk Load Statement Attributes
	SQL_BULK_EXPORT_PARAMS
	SQL_BULK_EXPORT

	10 SQL for Flat-File Drivers
	Select Statement
	Select Clause
	From Clause
	Where Clause
	Group By Clause
	Having Clause
	Union Operator
	Order By Clause
	For Update Clause
	SQL Expressions

	Create and Drop Table Statements
	Create Table
	Drop Table

	Insert Statement
	Update Statement
	Delete Statement
	Reserved Keywords

	11 WorkAround Options
	Glossary
	Index

