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ER Real-Time Analysis
for Intensive Care

T
he lives of many thousands of children born premature
or ill at term around the world have been saved by those
who work within neonatal intensive care units (NICUs).
Modern-day neonatologists, together with nursing staff

and other specialists within this domain, enjoy modern technol-
ogies for activities such as financial transactions, online pur-
chasing, music, and video on demand. Yet, when they move
into their workspace, in many cases, they are supported by
nearly the same technology they used 20 years ago. Medical
devices provide visual displays of vital signs through physio-
logical streams such as electrocardiogram (ECG), heart rate,
blood oxygen saturation (SpO2), and respiratory rate. Electronic
health record initiatives around the world provide an environ-
ment for the electronic management of medical records, but
they fail to support the high-frequency interpretation of stream-
ing physiological data. Recent medical research has reported
that potentially life-threatening conditions such as nosocomial
infection [1], pneumothorax [2], intraventricular hemorrhage
[3], [4], and periventricular leukomalacia [5] exhibit early indi-
cators in physiological data (see ‘‘Conditions Affecting Patients
in an NICU’’). These indicators precede the detection of the
medical conditions using existing clinical practices.

We have taken a collaborative research approach to address
this need to provide a flexible platform for the real-time online
analysis of patients’ data streams to detect medically significant
conditions that precede the onset of medical complications. The
platform supports automated or clinician-driven knowledge dis-
covery to discover new relationships between physiological data
stream events and latent medical conditions as well as to refine
existing analytics. Patients benefit from the system because earlier
detection of signs of the medical conditions may lead to earlier
intervention that may potentially lead to improved patient out-
comes and reduced length of stays. The clinician benefits from a
decision support tool that provides insight into multiple streams
of data that are too voluminous to assess with traditional methods.

The remainder of this article summarizes the strengths of
our research collaboration and the resulting environment
known as Artemis, named after the Greek goddess associated
with protecting child-bearing women and young children,
which is currently being piloted within the NICU of The Hos-

pital for Sick Children (SickKids) in Toronto, Ontario, Canada.
Although the discussion in this article focuses on a NICU, the
technologies can be applied to any intensive care environment.

Research Collaboration Teams
Artemis was designed, built, and deployed by a multiinstitu-
tional, multidisciplinary research team. The research team from
IBM T.J. Watson Research Center has an average of more than
15 years of industrial research experience in distributed comput-
ing, ubiquitous computing, pervasive health care, and machine
learning. They also bring five years experience in building
health-care solutions, including two years experience building
health-care solutions using a state-of-the-art stream computing
platform, which was the result of a five-year research project.

The University of Ontario Institute of Technology (UOIT)
team brings to the collaboration expertise in health infor-
matics with more than ten years of research collaboration with
clinicians on information technology use in NICUs, event
stream processing, and acquisition of data from medical sen-
sors, and 20 years of expertise in data warehousing and data
mining. Their research on temporal abstraction is particularly
relevant for the real-time processing and temporal data-
mining components of the project [6].

The team from the SickKids and the Department of Pedia-
trics, University of Toronto, has more than 20 years of experi-
ence in neonatology and clinical research. This team provides
the clinical and medical expertise, guides in interpreting the
analytic results, and leads in designing the clinical deployment
of Artemis at the SickKids.

Collaborations like this involve more than just a shared
technical vision and complementary research teams. The teams
had to put in place intellectual property agreements and institu-
tional Research Ethics Board applications that were mutually
agreeable and that met the guidelines at each institution.

Evolution of the Artemis Design
The Artemis system design evolved over time as the research
teams joined together to define the research project. The infor-
matics research team from the UOIT has many years of experi-
ence in collaborating with clinicians on the application of
information technologies in NICUs. They had started a path of
research on collecting patient data from a large group of patients,
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and given the known outcomes of the patients, to perform analy-
sis to find correlations between distinctive patterns in the physio-
logical data streams and the onset of medical conditions. One
goal of the Artemis project is to assist them in taking the steps in
their research to perform temporal data mining on a broad set of
physiological data from infants in a NICU. To do this, we need to
capture all of the raw physiological data streams from a large
number of infants over time. This means that the Artemis system

must be capable of 1) interfacing with a broad set of medical
devices and 2) storing the raw physiological data from multiple
infants at the rate the data are generated.

A second major goal of the Artemis project is to run clinical
rules, some of which are derived from the research described
earlier, online and in real time. In this way, knowledge of early
indicators of medical conditions can be made available to clini-
cians as soon as they are detected. This means the data must not

Conditions Affecting Patients in an NICU
Nosocomial Infection
Infection is a very common cause of morbidity and an
important cause of mortality for the newborn infant.
Although many infants acquire their infection around
the time of delivery, others acquire an infection while
receiving intensive care in the NICU. Nosocomial infec-
tions, also called hospital-acquired infections, are infec-
tions that are secondary to the original cause for
admission into the NICU. The early diagnosis of a noso-
comial infection is difficult, because the clinical signs of
infection are usually subtle, vague, and nonspecific until
the infection is well established. Such infections occur
48 h or more after birth and are caused by pathogens
not associated with the mother. Data from the neona-
tal network indicate that almost 30% of infants born at
25–28 weeks gestation and more than 45% of infants
born prior to 25 weeks gestation will experience a seri-
ous nosocomial infection while in the NICU [S1]. Earlier
detection and intervention would be expected to
reduce morbidity and may reduce mortality.

Pneumothorax
One to 2% of all newborns have air or gas in the pleural
cavity that separates the visceral from the parietal
pleura. The lungs are surrounded by a membrane that
folds back on itself, with one layer attached to the
chest wall and one layer attached to the lungs. The
membrane produces a fluid that acts as lubrication so
that these layers move smoothly when we inhale and
exhale. When air or gas accumulates between these
two layers, it is called pneumothorax. Goldberg [S2]
showed that the recognition of subtle clinical signs,
including increased in systolic arterial blood pressure as
well as an increased heart rate and pulse pressure, can
lead to earlier recognition of pneumothorax, and
therefore, earlier intervention.

Intraventricular Hemorrhage
Intraventricular hemorrhage (IVH) is another common
cause of morbidity and mortality for the newborn infant.
Approximately 20% of preterm infants less than 1,500 g
birthweight develop an IVH. The incidence and severity
are inversely proportional to gestational age. The

hemorrhages occur during the first few days of life. More
than 90% of the IVHs have occurred by the third day of
life. Nearly 10% of IVHs occur before delivery. Important
risk factors for IVH include extreme immaturity, birth
asphyxia, asynchronous breathing of ventilated preterm
infants, pneumothorax, and sudden increase in arterial
blood pressure [S3]. Fluctuations in cerebral blood flow,
and especially blood flow through the delicate, fragile
blood vessels of the germinal matrix layer, a centrally
located region of the brain, are considered to be the
dominant cause of IVH. There are many events around
the time of birth and during the first week of life, which
are associated with fluctuations in cerebral blood flow.
The likely cause of most IVHs is a rapid increase in cere-
bral blood flow occurring after a period of reduced flow.

Periventricular Leukomalacia
Periventricular leukomalacia (PVL) refers to the death
of white matter near the cerebral ventricles: 3–4% of
premature, very low birthweight (1,500 g or 3 lb 5 oz)
infants and 4–10% of those born prior to 33 weeks gesta-
tion will develop PVL [S4]. The white matter is the inner
part of the brain, and periventricular refers to the part
of the white matter that surrounds the ventricles. Leuko-
malacia refers to the softening of the white matter,
which quickly leads to death of the brain tissue. PVL
typically occurs when a fetus or newborn experiences
oxygen deprivation during labor and delivery or at any
time after birth. Variations in the oxygen and carbon
dioxide content of the blood are involved in the causa-
tion of PVL. Stream analysis of physiological data has
the potential to detect these variations.

References
[S1] R. Polin and L. Saiman, ‘‘Nosocomial infections in the neonatal
intensive care unit,’’ NeoReviews, vol. 4, no. 3, pp. e81–e89, 2003.
[S2] R.N. Goldberg, ‘‘Sustained arterial blood pressure elevation
associated with pneumothoraces: Early detection via continuous
monitoring,’’ Pediatrics, vol. 68, no. 6, pp. 775–777, 1981.
[S3] J.J. Volpe, ‘‘Intracranial hemorrhage: Germinal matrix-intraven-
tricular hemorrhage of the premature infant,’’ in Neurology of the
Newborn, 4th ed. Philadelphia, PA: Saunders, 2001, pp. 428–493.
[S4] J.J. Volpe, ‘‘Hypoxic-ischemic encephalopathy: Clinical
aspects,’’ in Neurology of the Newborn, 4th ed. Philadelphia, PA:
Saunders, 2001, pp. 331–394.

Infection is a very common cause of morbidity

and an important cause of mortality for the

newborn infant.

IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE MARCH/APRIL 2010 111

Authorized licensed use limited to: KnowledgeGate from IBM Market Insights. Downloaded on March 23,2010 at 12:52:21 EDT from IEEE Xplore.  Restrictions apply. 



only be stored in real time, but the data must be processed in
real time. IBM Research entered the collaboration with the goal
of exploiting a novel streaming middleware system developed
in a five-year, multidisciplinary, multiparty research project. It
was decided to include the streaming middleware component in
the Artemis system to provide an online, real-time processing
run-time environment. If we want to execute clinical rules, the
neonatologist pointed out that we must incorporate patient data
from a number of data sources; streaming physiological data
from medical devices was necessary but not sufficient for clinical
rules. Therefore, another Artemis system requirement was the
need to stream the most up-to-date data from the clinical infor-
mation management system (CIMS) and the laboratory system.

Artemis would have a set of components to aid in discover-
ing clinical rules and a set of components for executing clini-
cal rules. The Artemis team decided on a goal of creating a
closed-loop system, whereby the new clinical rules, parameter
values, and clinical rule refinements can be immediately
deployed in the run-time component of Artemis. The key to
the closed-loop system is to create an ontological relationship
between the output of the knowledge extraction component of
Artemis and the clinical rule execution component of Artemis.
A number of Artemis system requirements are generated from
this goal. We need a way to efficiently integrate newly

captured patient data into the data mining repository. We need
an ontology relating data mining outputs to clinical rules.

These high-level system goals generated the following
Artemis design requirements:
� support real-time processing of multiple high-rate physio-

logical data streams using a novel stream processing system
� interface to and stream data from medical devices, the

clinical information management system CIMS, and the
laboratory system

� store all of the raw physiological data from devices con-
nected to an infant and selected patient data from other
sources

� support temporal data mining and other data mining
techniques to find relationships, particularly time-based
relationships, between patterns and correlations in multi-
ple patient data streams and medical conditions

� scale with respect to the number of data streams and the
number of patients connected to the system.

The next section will describe the system that was imple-
mented to meet these requirements.

The Artemis Framework
The Artemis platform supports the acquisition and storage of
patients’ physiological data streams and clinical information

The Artemis platform supports the acquisition

and storage of patients’ physiological data

streams and clinical information system data for

the purposes of online real-time analytics,

retrospective analysis, and data mining.
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system data for the purposes of online real-time analytics, retro-
spective analysis, and data mining. The Artemis system archi-
tecture is illustrated in Figure 1.

To meet the goal of being able to interface Artemis to the
myriad of medical devices used in intensive care environ-
ments, Artemis employs a set of hardware and software ele-
ments from Capsule Tech Inc. [7]. Capsule Tech has cables
and device drivers for interfacing with more than 450 different
types of devices from all of the major vendors. A DataCaptor
terminal unit shown in Figure 2, which is located near the
medical devices, can connect to eight devices and convert the
devices’ RS232 output to an Internet Protocol (IP) stream.
Alternate RS232 to IP converters have also been tested and
found to be compatible with this configuration. By converting
the data stream to an IP stream, only the terminal unit has to be
located in the busy and crowded intensive care unit. The other
Artemis computers can be placed in a secure area of the hospi-
tal. All data are forwarded to a Capsule DataCaptor Interface
Server that can support up to 500 simultaneously connected
devices [8]. Using the Capsule application programming inter-
face (API) and software development tool kit, we imple-
mented a server-based function to filter the data received at
the server to extract only data streams necessary for the study,
format it for use by Artemis, and send it to the Medical Data
Hub. We implemented a configurable Medical Data Hub sys-
tem consisting of a set of data hubs that receive the aggregated
data item from the server and create concurrent data streams
for the streaming system. Although a single Capsule Server is
sufficient for our deployment, multiple servers can be used to
achieve system scalability.

The clinical information system (CIS) adapter interfaces with
the clinical information management system CIMS to access the
SickKids CIMS patient data and stream the data to the Artemis
clinical rules. Information-use protocols at
the SickKids do not allow nonclinical ac-
cess to the CIMS or laboratory database, of
which both are Oracle based. If clinical
researchers at SickKids require such data
for patients satisfying their research study,
a database for enrolled/qualifying patients
is created in which CIMS data and labora-
tory database data are replicated every
30 min. Researchers then use these shadow
databases for their approved research. As
per this protocol, a replica subset database
for Artemis was created that is populated
for enrolled patients. The CIS adapter ex-
tracts the selected data for infants enrolled
in the Artemis project and maintains the
data in a set of database tables accessible

by Artemis. We have implemented system operators to access
these interface database tables and stream the updated data to
the clinical rule applications.

The core of Artemis is a stream computing middleware
component, IBM InfoSphere Stream Computing System, which
provides scalable processing of multiple streams of high-volume,
high-rate data [9], [10]. The conventional approach to processing
data streams is to store the data and then immediately analyze the
data in near real time. If the processing cannot keep up with the
rate, the data are stored and will eventually be analyzed. Stream
processing systems are compute-first, store-second systems. In
Artemis, processing of data streams and storing of the data are
done concurrently. The stream computing system can run on a
range of systems from notebooks to supercomputers; thus, it pro-
vides Artemis with a very scalable real-time execution environ-
ment. An application in streams consists of a set of operator
nodes interconnected in a graph. Each operator node inputs one
or more streams and produces one or more output streams.

The programming language for the stream computing sys-
tem is stream processing application declarative engine
(SPADE). SPADE is a high-level declarative language for
programming the streaming system [11]. It allows a program-
mer to specify the data streams, operators, and connections
between the operators and streams. SPADE language con-
structs have many similarities with higher-level programming
languages like stream structured query language (StreamSQL),
yet provide mechanisms to interact with lower-level system
programming APIs if needed. SPADE has operators that are
specialized for ingesting data from varied data sources, for
interacting with external entities through protocols like IP and
simple mail transport protocol (SMTP), and for coordinating
data streams during processing. Indeed, while SPADE pro-
vides a set of built-in stream-relational operators able to per-

form relational query on data streams,
SPADE can also be extended. It allows the
developer to specify user-defined opera-
tors typically written in C++ or Java, when
the need for complex operators arises.
These operators can be integrated seam-
lessly with built-in operators to compose
applications. An application specified in
the SPADE language is compiled into
directed graph processing elements, which
can then be instantiated on the system run
time. Artemis’ clinical rules are imple-
mented as SPADE programs.

The data integration manager (DIM)
consists of a set of SPADE operators that
have the specialized function to interact
with an open database connectivity

Fig. 2. Capsule DataCaptor terminal
unit.

The data integration manager allows Artemis

to interact with an open database

connectivity system.
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(ODBC) system. Some operators are specialized to insert a
steam element into the database and some are specialized to
stream data from a database table to the application. The
requirement to store all raw data into the database is achieved
by the selective placement of DIM operators in the application
graph. Periodically, the data are moved from the DIM database
system to a data repository in the knowledge extraction compo-
nent by the data mover. The data mover gives us the ability to
control the frequency of the data movement and to perform
some data transformations in preparation for data mining.

The knowledge extraction component uses new, multidimen-
sional, temporal, data stream data mining frameworks and tech-
niques [12]–[14]. These new data mining approaches can be
automated but also enable clinicians to perform scientific
method-based hypothesis research as an active participant in the
multidimensional temporal data mining process. The output of
the knowledge extraction component can be a new correlation
between a pattern detected in the streaming physiological data
and a medical condition or a new set of parameters for an existing
SPADE application. We are developing an ontology that relates
the output of the knowledge extraction component and the
expression of the clinical rules. The ontology-driven rule modi-
fier (ODRM) component, using the ontology, supports the trans-
lation of the new rule into a SPADE program as well as the
modification of the parameters in an existing SPADE applica-
tion. This closed-loop feature permits us to dynamically update a
running clinical rule or replace the clinical rule with the one that
has been shown through analysis and testing to be better.

The deployment server supports the deployment of the new
SPADE application into the stream computing run time and
maintains information about which SPADE applications are
active at any given time. The deployment history can be queried
to determine which version of what clinical rule was active for
a given patient at a given time. The deployment server has both
a graphical user interface and a programmatic interface. The
ORDM uses the programmatic interface to drive the redeploy-
ment of clinical rules based on the output of the knowledge
extraction component. When a patient is enrolled in Artemis,
the deployment server deploys the clinical rule applications. All
clinical rule applications allow per-patient parameterization.

Programming Clinical Rules in Artemis
A clinical rule is a specification as detailed within an existing
clinical guideline, defined anecdotally by a clinician as part of
clinical research, or proposed through data mining of a set of
conditions in the physiological data streams, laboratory results,
and observations of a patient, which if found to be present,
holds a strong correlation as a predictor for an impending clini-
cal event and as such should be reported by some means to a
nurse or physician. Some clinical rules can be processed by the
people. An example of such a rule is ‘‘notify me when an

hourly systolic blood pressure (BP) reading exceeds 140.’’ The
clinician who takes the patient’s BP can easily monitor this
clinical rule. However, when the clinical rule involves specifi-
cation of second-to-second changes across multiple data sour-
ces of physiological streams, it becomes impractical and
sometimes impossible for a human to detect these subtle sig-
nals of condition onset [15]. In some cases, the conditions are
episodic and do not occur often, and it is unlikely a clinician
will be observing when the condition occurs.

Although Artemis can easily monitor the simple clinical
rules, it is ideally suited for clinical rules that specify condi-
tions involving multiple data sources and/or high-rate data
sources. Data sources such as ECGs and electroencephalo-
grams are time sampled at 500–1,000 Hz and require nontri-
vial signal processing techniques for analysis. As mentioned
in the previous section, Artemis clinical rules are implemented
as streaming system applications encoded in the SPADE
language. The following paragraphs provide an example of a
clinical rule and explain portions of the program for imple-
menting the clinical rule.

Although our testing encompasses simple and complex
rules, we provide further details via the explanation of a simple
clinical rule that we used to test Artemis. The clinical rule ‘‘if
mean arterial BP (MBP) is less than the neonatal patient’s cur-
rent gestational age (e.g., 24 mmHg for 24 weeks gestation) for
20 s or more, and if SpO2 is less than 85% for the same period
of 20 s or more, then a reportable condition is present.’’ Prior to
commencing our pilot study with SickKids, we utilized data
from the companion Targeted Delivery Intervention Study
(TARDIS) [14], a randomized control trial of volume-targeted
ventilation for resuscitation of preterm babies intubated in the
delivery suite. The data were collected as discontinuous seg-
ments of at least 2 h of data at a time commencing en route to
the delivery suite and then at 12, 24, 36, and 48 h after delivery.
For that study, each data set contains multiple concurrent
streams of physiological data; however, for the purpose of this
case study demonstration, we focused on six, 5-min, patient
segments extracted at a reduced data set containing four of
these temporal data streams, specifically: 1) ECG; 2) SpO2; 3)
MBP; and 4) BP. The team performing the test of Artemis was
blinded to the characteristics of these chosen segments.

We will describe this clinical rule using the four stages of
clinical rules that have been observed. Figure 3 illustrates the
four stages.

The Adaptation Stage
In this stage, SPADE source operators listen for streaming
events sent by the medical data hubs, which in this study are
simulators which replay the TARDIS data in faster-than real
time. This scenario uses two source operators: one for SpO2

data and the other for the MBP data.

The intensive care unit is a very dynamic

environment where the care of the patient

is paramount.
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The Intrastream
Analysis Stage
The SpO2 module and the
MBP module operate in paral-
lel. The SpO2 module contains
logic to count the number of
times SpO2 events are below
85% in a 20-s sliding window
and issues SpO2 alerts if this
count is greater than a prede-
fined threshold. Meanwhile,
the MBP module contains log-
ic to count the number of
times MBP events fall below
the patient’s gestational age,
in a 20-s sliding window, and
issues MBP alerts if this count
is greater than a threshold.
The gestational age is a pa-
rameter obtained from the
CIMS. To access it within this
SPADE application, we use
the DIM enrich operator.

The Fusion and
Scoring Stage
In the fusion and storage step,
the SpO2 and MBP features are merged using a SPADE join
operator. Its output is consumed by another operator that deter-
mines whether this is a reportable event for this clinical rule.

The Delivery Stage
The delivery stage externalizes reportable analytic results. In
our test setup, we wrote the result to a database table and sent
a short message service/e-mail message.

By replaying these traces into the SPADE application
described earlier, we accurately detected which patients exhib-
ited the clinical rule. The clinical rule was present for two
patients within these six traces: patients 2 and 5. Both were cor-
rectly identified by the SPADE application. For the remaining
normal patients, no alerts were generated by the SPADE appli-
cation, as expected.

Figure 4(a)–(c) shows the plots of the results obtained for
patient 5. We can clearly see in these graphs that the long dips
in MBP and SpO2 were accurately identified and resulted in
instability alerts. For patient 5, we may note that the SPADE
code also detected the number of physiological streams that
are out of range, as shown in the Figure 4(a).

While clinical rules can be implemented in the SPADE
language, there are approaches to integrating other rule repre-
sentation languages with SPADE. The first approach lever-
ages standard rule representation languages, thus allowing our
infrastructure to be compliant with the existing rule languages.
One example is the predictive modeling markup language
(PMML) [16], a well-established extensible markup language
(XML) dialect used to represent prediction rules. The streams
team has implemented an operator that accepts PMML models
and scores them in real time.

The second approach to represent clinical rules can be used
by developers who have proprietary rule representation
schemes. In this case, one can leverage the extensibility of the
SPADE language to develop user-defined operators capable

of interpreting such proprietary rules. SPADE user-defined
operators can be implemented in either C/C++ or Java, thus
facilitating the integration of legacy clinical rule systems.

Security and Privacy
Because the data collected is personal health-care data, we are
bound by the health-care privacy laws of Canada, the United
States, and the province of Ontario. The Research Ethics
Boards at the three institutions all mandated a plan to ensure
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compliance with the laws. We do not collect or store any data
that could directly identify the infants. We deidentify the data
prior to it entering Artemis; Artemis processes and stores only
deidentified patient data. An Artemis identifier is generated for
each infant when the infant is enrolled. An unique identifier of
the patient monitor associated with each data element is trans-
mitted from that patient monitor. The hospital tracks an associa-
tion between a bed and the patient monitor associated with that
bed. During enrollment processing, an association between the
patient monitor identifier and the Artemis identifier is placed in
a mapping database table. As the data streams into the Artemis
system, one of the initial operators has the task to pick up the
patient identifier from the data elements and insert the associ-
ated Artemis identifier, thereby, deidentifying the data.

The Artemis system operates on the hospital network that
has been secured for the transmission of all types of medical
data. The processing components and Artemis database sys-
tem are located in a physically secure location accessible only
by Artemis team members. Using the built-in authentication
system of the operating system and the authorization mecha-
nism and access control system of the database system, Arte-
mis controls the operations a user can perform on the
physiological data streams stored in the database. Because the
system is separate from all other hospital systems, we can

administer access to the Artemis database to ensure there is no
unauthorized access, even from within the hospital’s network.

The interactions between the deployment server and the
streaming system are done over the network, so steps have
been taken to close the security exposure. First, access to the
deployment server is password protected. Furthermore, the
deployment server authenticates with the streaming system
for each remote operation it attempts to perform on the stream-
ing system.

The UOIT creates a mirror copy of the Artemis database by
doing incremental downloads on a periodic basis. The connec-
tion between the computers at the SickKids and UOIT is made
using a secure tunnel. The tunnel is implemented using the tun-
neling capabilities of the secure shell 2 (SSH2) protocol. The
tunnel is encrypted with a 4,096-b Rivest, Shamir, Adleman
public encryption algorithm (RSA) key. At the UOIT, the mir-
ror copy is maintained on a dedicated computer in a secure
locked room accessible to members of the UOIT team only.

The IBM team maintains a mirror by performing incremen-
tal periodic downloads from the UOIT mirror. The same
secure tunnel mechanisms are used to securely transmit the
data. The IBM mirror is stored on a password-protected
machine stored in a secure laboratory environment. The data
are available only to members of the IBM team.

Deployment
Artemis has been deployed in the NICU of the SickKids in
Toronto, Ontario, Canada, since early August 2009. In this
phase of deployment, we are capturing physiological data
streams and electronic health record information forwarded
from the CIMS data for the infants within the study. The
physiological data being collected contains ECG, heart rate,
respiratory rate, and blood SpO2; BP may be streamed or
obtained as CIMS observations. We also monitor these data
using Artemis and an initial version of a clinical rule for the
early detection of nosocomial infection, which represents a
complex rule that will be reported in future research publica-
tions. In this phase, we have monitored as many as four infants
at the same time. Because the stream computing middleware
is scalable, we believe our approach could easily be used to
monitor all patients within the NICU, but we have not tested
this configuration. As of early December 2009, 19 infants
have been enrolled in the research study.

A Capsule DataCaptor terminal unit is located in each of
two NICU bed bays. The placement of a unit in a bed bay is
illustrated in Figure 5. Figure 6 shows a typical bed in a NICU
with the associated equipment. The DataCaptor terminal unit
transmits data streams from Philips IntelliVue MP70 patient
monitors to the Capsule server. Each DataCaptor terminal unit
can handle up to eight patient monitors. The dimensions of the
unit are 9.3 in by 10.6 in by 2.1 in. To evaluate the processor
and memory requirements of the Artemis server components,
we partitioned the Artemis server among a Windows PC and
two Linux notebooks.

Before Artemis could be deployed at the SickKids, we had
to perform some tests to provide assurances to the hospital
staff. All interfaces to the existing NICU devices and hospital
systems had to be designed so that no data or process used by
the NICU staff would be disrupted. Hardware deployed in the
NICU could not interfere with clinical processes and had to be
effectively invisible to the medical staff. In the NICU, there is
a patient monitor (Philips IntelliVue MP70) per patient, and

Fig. 6. Example of devices and equipment attached to an
infant in an NICU (photo used with permission from Terry
Tremethick).
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the devices connected to the patient are connected to the
patient monitor. There are two ports on the patient monitor for
externalizing the data streams. One port is currently being used
for clinical purposes, and we were able to demonstrate that we
can get the stream from the alternate port without interference.

We also performed extensive testing to ensure that the
deployment would not interfere with the existing network traf-
fic or with the existing slower feeds of data to the CIMS data-
base. The initial development testing was all performed away
from the NICU setting utilizing a Philips IntelliVue MP50
running in demonstration mode located within the Health
Informatics Research laboratory located at UOIT. Once alpha
component testing and integrated system beta testing were
completed, we commenced testing utilizing an Philips Intelli-
Vue MP70 located within the NICU in demonstration mode
and then later with a patient simulator. Our initial tests show
that the network traffic generated is below 0.2% (based on a
100 Mb/s network) for each Philips IntelliVue MP70 con-
nected to the Artemis system.

The deidentified data are collected by the deployed Artemis
system at the SickKids into the local Artemis relational data-
base. Periodically, the UOIT team, using secure connections,
performs an incremental download from the Artemis database
to a database at UOIT.

The nosocomial infection clinical rules will be refined over
time with both new feature sets and fusion rules based on data
mining results and review of the correlation of computed fea-
tures with infants who actually develop nosocomial infection.

Lessons Learned
Even in this early phase of deployment, we have learned some
lessons that should be of interest to other researchers and to us
as we move forward.

Expect Unforeseen Situations in NICUs
We realized early that it was imperative to develop mecha-
nisms that allow us to dynamically change the configuration
of the system. In particular, mechanisms have been built to
allow the dynamic deployment of data sources and the rede-
ployment of parts of applications on a running instance of the
Artemis system. Even though it was not a primary design
requirement, the decision to implement these mechanisms has
been quite important for the success of the deployment. On
several occasions, we had to either change the configuration
of the system or modify a running application and redeploy it.

Minimize Data Source Dependency for Clinical Rules
The intensive care unit is a very dynamic environment where
the care of the patient is paramount. Patients are disconnected
and reconnected to devices for various reasons. The staff is
more concerned with the generation of data they need to care
for the patient than they are in making sure the research system
is receiving the data it needs. A clinical rule should be
designed to generate analytic results as long as the requisite
data streams are flowing. The temporary loss of some data
streams may reduce the set of features available, but, the pres-
ence of the requisite streams ensures the generation of a set of
critical features required to generate results. This causes some
complication in the implementation of clinical rules in gen-
eral. The initial nosocomial clinical rule design assumed the
presence of all seven data streams; however, we determined
that four of the streams were always present and the other

three were less likely to be present. We reimplemented the
clinical rule to work under these conditions.

Conclusions
We have described the design, implementation, and initial
deployment of Artemis. Artemis has the potential to revolu-
tionize intensive care medicine, because it gives clinicians a
way to discover early indicators of medical conditions and to
encode these in clinical rules. Artemis also provides a way for
clinicians to have online, real-time execution of the clinical
rules in an intensive care environment. We have also shown
the need for a diverse collaborative team to address the broad
set of issues involved in such a system.

While many research and industry-based initiatives exist to
propose clinical rules for specific condition onset or propose
methods for detecting features in certain streams, these
approaches do not apply a systems-based approach for the
support of multiple streams, from multiple patients relating to
multiple diagnoses [17].

The UOIT and SickKids-based teams have membership
with the Canadian Neonatal Network (a network of 30 level 3
and above NICUs in Canada) and envision an ultimate
national rollout of the technology introduced here.
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