
InfoSphere Streams: Release 2.0 Performance Report

IBM® InfoSphere® Streams
Release 2.0 Performance Report

Roch Archambault

Richard King

Sujay Parekh
IBM Software Group

InfoSphere Streams: Release 2.0 Performance Report

Executive Summary

In Release 2.0 of IBM® InfoSphere® Streams, IBM replaced the

SPADE language with SPL. Using SPL programs, IBM measured a

basic throughput of 440,000 tuples per second or 903 Mbit per second

for 256-byte normal tuples and measured a round-trip latency time of

57 microseconds for 256-byte normal tuples. IBM made these

measurements using TCP as the transport mechanism over 1 gigabit

(Gb) Ethernet connections. For these, and all other measurements,

IBM used Red Hat Release 5.5 Linux, 64-bit running on IBM HS-22

blades.

Using IBM® WebSphere® MQ Low Latency Messaging for tuple

transport over InfiniBand (IB), IBM measured a basic throughput of

3,500,000 tuples per second or 7.2Gbit per second for 256-byte normal

tuples. Also with that transport, IBM measured a round-trip latency

time of 28 microseconds for 256-byte normal tuples.

Contents

1. Introduction

2. Throughput Test

3. Latency Test

4. Conclusions

InfoSphere Streams: Release 2.0 Performance Report

Introduction

This document presents some performance measurements for IBM® InfoSphere® Streams Release 2.0.

We will describe the tests carried out and the corresponding results.

IBM obtained all performance data contained in this publication in the specific operating environment

and under the conditions described herein. Performance obtained in other environments may vary, so

customers should conduct their own testing.

Test Environment

IBM obtained results using a cluster of IBM BladeCenter blades with specific hardware details as

follows:
 IBM HS-22 Blades (model 7870-AC1) each with:

o Two Intel® Xeon® X5570 CPU with:
 2.98 GHz clock speed
 4-cores
 Cache: 32KB L1 (per core), 256KB L2 (per core), 8MB L3 (shared)
 6.4 GigaTransfer/sec Intel® QPI interconnect

o 32GB RAM
o 1Gbit Ethernet NIC on motherboard
o Infiniband QDR NIC: Mellanox Technologies ConnectX VPI PCIe 2.0 MT25408

 Up to 32 Gbit/sec effective throughput
 1.2 microsecond MPI ping latency

 Infiniband switch module: IBM BCH QDR HSSM, Voltaire 40Gb/s Switch module

 OS: RedHat Enterprise Linux 5.5 64-bit

 Infiniband driver:OFED v1.5.2

Any special software not included in the base RHEL 5.5 OS is as follows:
 netperf v2.4.5 (http://www.netperf.org/netperf/) - for measuring system level TCP performance

 perftestv1.2.4- for measuring system level Infiniband performance (ib_send_bw and related utilities)

The measurements correspond to the following versions of Streams:
 Streams v1.2.1 GA version

 Streams v2.0 GA version

For those throughput tests that use IBM® WebSphere® MQ Low Latency Messaging (LLM) for data

transport (compiler option –F llm_rum_tcp or –F llm_rum_ib), the LLM configuration specifies that

MinBatchingMicro = 400 and MaxBatchingMicro = 800. For latency tests, the configuration sets

MinBatchingMicro = 25 and MaxBatchingMicro = 50.

http://www.netperf.org/netperf/

InfoSphere Streams: Release 2.0 Performance Report

Throughput Test

Test Description

IBM measures the maximum throughput achievable by Streams using a 2-operator SPL program: a

source operator produces a stream that is consumed by a sink operator. The different variations (1 node,

2 nodes, all in a single thread, InfiniBand networking, etc.) are achieved with configuration options in

the SPL (e.g. host placement constraints) and with SPL compiler options (e.g.-F llm_rum_ib). The sink

operator performs the measurements; it records the arrival times of the first and last tuples and the

number of tuples, together yielding the throughput.

The ―Intranode‖ configuration we often refer to is one where the source and sink operators are placed on

the same host; all communication is therefore within that one host. Conversely, the ―Inter-node‖

configuration uses 2 hosts, one for the source, the other for the sink.

Intranode Configuration

In an intranode configuration, we compare the Streams Source-Sink application against similar sender-

receiver applications that use the corresponding native APIs. From Figure 1 and Table 1 (columns 2, 3

and 4), we see that up to tuple sizes of 2KB, the default TCP transport only suffers small penalties

relative to direct TCP access. Beyond 2KB, the default TCP transport encounters some bottleneck and

the throughput flattens out, while direct TCP access continues to scale its throughput up to 8KB tuples.

The nature of this bottleneck is unknown and is to be investigated further.

tuple size
(bytes)

llmrumtcp tcp streams LLMRUMIB
Streams

4 0.16 0.03 0.17

8 0.33 0.06 0.29

Figure 1 Comparison of intranode throughput with TCP based transports

0

2

4

6

8

10

12

14

4 16 64 256 1024 4096 16384

Th
ro

u
gh

p
u

t
(G

b
it

/s
e

c)

Tuple Size (Bytes)

IntranodeLLMRUMTCP Streams

TCP Streams

InfoSphere Streams: Release 2.0 Performance Report

16 0.77 0.12 0.74

32 1.55 0.24 1.46

64 3.46 0.71 2.02

128 9.33 1.58 5.48

256 10.32 2.51 8.14

512 10.18 4.29 12.61

1024 9.42 7.06 13.39

2048 8.59 11.52 16.03

4096 6.59 12.32 15.80

8192 5.80 12.49 16.55

16384 7.74 13.07 17.39

Table 1 Throughput (Gbits/sec)

Interestingly, using TCP via the LLM transport (LLM_RUM_TCP) provides increased throughput even

over raw TCP, at least up to 1KB tuples. This is due to some amount of batching that occurs in LLM,

resulting in fewer system calls being made. For larger tuples, however, the LLM performance is worse

than using the native TCP transport. The reason for this performance degradation is unknown and will

be the subject of further study.

With InfiniBand, the batching introduced by LLM offers significant benefits relative to direct transfer

using native InfiniBand primitives. As shown in Figure 2 and Table 1 (columns 5 and 6), the throughput

can be as much as 3 times more using LLM (for tuple size of 1K

0

5

10

15

20

25

4 16 64 256 1024 4096 16384

T
h

ro
u

g
h

p
u

t
(G

b
it

/s
ec

)

Tuple Size (Bytes)

Intranode
LLMRUMIB Streams

Figure 2 Comparison of intranode throughput with Infiniband transport

InfoSphere Streams: Release 2.0 Performance Report

Inter-node Configuration

Figure 3 Comparison of inter-node throughput with TCP transport

tuple size llmrumtcp tcp streams llmrumib

4 0.21 0.06 0.13

8 0.62 0.13 0.31

16 0.75 0.24 0.61

32 0.83 0.45 1.21

64 0.88 0.81 2.44

128 0.90 0.87 5.17

256 0.92 0.89 7.79

512 0.93 0.92 13.75

1024 0.93 0.93 12.96

2048 0.93 0.92 19.20

4096 0.93 0.94 19.04

8192 0.93 0.94 17.11

16384 0.93 0.93 20.42

Table 2 Internode Throughput (Gbits/sec)

We now consider the same application as before, but the sender and receiver are placed on different

hosts (see Figure 3 and Table 2 columns 2, 3 and 4). In this case, the inter-node TCP throughput is

limited by the 1Gbit/sec capacity of the Ethernet. Once again, we see that using the default TCP

transport incurs a modest overhead for small tuples (up to 256B) and almost no overhead for larger

tuples. Using TCP via the LLM option provides the best of both worlds: much higher throughput for

small tuples (up to 32 bytes) and in the limit it is identical to the native TCP transport.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 16 64 256 1024 4096 16384

T
h

ro
u

g
h

p
u

t
(G

b
it

/s
ec

)

Tuple Size (Bytes)

Inter-node

LLMRUMTCP Streams

TCP Streams

InfoSphere Streams: Release 2.0 Performance Report

Figure 4 Comparison of inter-node throughput with Infiniband transport

Infiniband in the inter-node case has a much higher theoretical capacity relative to TCP: 32 Gbit/sec

effective throughput. In Figure 4 and Table 2 (columns 5 and 6), we see that the throughput achieved

with a single sender-receiver pair seems to reach a limit around 20-22 Gbit/sec with larger tuples.

Similar to LLM with TCP, using LLM with IB helps achieve good throughput with smaller tuples (up to

1KB).

Benefit of Façade Tuples

Using the ―-k‖ or ―—prefer-façade-tuples‖ option of the SPL compiler allows the generated code to to

treat tuples as fixed-size data buffers that don’t require serialization and deserialization. With Intranode

TCP, façade tuples provide a slight advantage, as seen in Figure 5 and Table 3 columns 2 through 5.

(Note: we attribute the areas where Normal exceeds Façade to measurement noise.)

0

5

10

15

20

25

4 16 64 256 1024 4096 16384

T
h

ro
u

g
h

p
u

t
(G

b
/s

ec
)

Tuple Size (bytes)

Inter-node

LLMRUMIB Streams

InfoSphere Streams: Release 2.0 Performance Report

Figure 5 Comparison of Facade Tuples with Regular Tuples

Intranode communication using Infiniband also benefits from using façade tuples, as we see in Figure 6

and Table 3 columns 6 and 7. Larger tuples do better with façade tuples because of the elimination of

lengthy copying during serialization and deserialization.

tuple size (bytes) LLMRUMTCP
Façade

LLMRUMTCP
Normal

TCP Façade TCP Normal LLMRUMIB
Façade

LLMRUMIB
Normal

4 0.16 0.16 0.03 0.03 0.17 0.17

8 0.33 0.31 0.06 0.06 0.29 0.32

16 0.77 0.74 0.12 0.12 0.74 0.54

32 1.55 1.15 0.24 0.24 1.46 1.18

64 3.46 2.51 0.71 0.59 2.02 2.53

128 9.33 5.56 1.58 1.55 5.48 3.61

256 10.32 8.77 2.51 2.39 8.14 7.39

512 10.18 10.74 4.29 4.01 12.61 10.99

1024 9.42 11.44 7.06 6.59 13.39 11.88

2048 8.59 9.01 11.52 10.14 16.03 12.91

4096 6.59 6.38 12.32 11.30 15.80 10.91

8192 5.80 6.19 12.49 11.62 16.55 14.05

16384 7.74 9.79 13.07 11.63 17.39 17.12

Table 3 Facade vs Normal Throughput (Gbits/sec)

0

2

4

6

8

10

12

14

4 16 64 256 1024 4096 16384

T
h

ro
u

g
h

p
u

t
(G

b
it

/s
ec

)

Tuple Size (Bytes)

Intranode

LLMRUMTCP Facade

LLMRUMTCP Normal

TCP Facade

TCP Normal

InfoSphere Streams: Release 2.0 Performance Report

Figure 6 Intranode throughput using IB

For Inter-node communication using 1GbE (via either plain TCP transport or LLMRUMTCP), façade

tuples provide no significant benefit, as we see in Figure 7 and Table 4 columns 2 through 5.

Figure 7 Comparison of plain TCP throughput with LLM-TCP

tuple size (bytes) LLMRUMTCP
Façade

LLMRUMTCP
Normal

TCP Façade TCP Normal LLMRUMIB
Façade

LLMRUMIB
Normal

4 0.21 0.13 0.06 0.06 0.13 0.18

8 0.62 0.62 0.13 0.13 0.31 0.27

0

2

4

6

8

10

12

14

16

18

20

4 16 64 256 1024 4096 16384

T
h

ro
u

g
h

p
u

t
(G

b
/s

ec
)

Tuple Size (bytes)

Intranode

LLMRUMIB Facade

LLMRUMIB Normal

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 16 64 256 1024 4096 16384

T
h

ro
u

g
h

p
u

t
(G

b
it

/s
e
c
)

Tuple Size (Bytes)

Inter-node

LLMRUMTCP Facade

LLMRUMTCP Normal

TCP Facade

TCP Normal

InfoSphere Streams: Release 2.0 Performance Report

16 0.75 0.75 0.24 0.24 0.61 0.54

32 0.83 0.83 0.45 0.43 1.21 1.08

64 0.88 0.88 0.81 0.80 2.44 2.21

128 0.90 0.91 0.87 0.86 5.17 3.65

256 0.92 0.92 0.89 0.90 7.79 7.18

512 0.93 0.93 0.92 0.92 13.75 11.82

1024 0.93 0.93 0.93 0.93 12.96 12.13

2048 0.93 0.93 0.92 0.93 19.20 13.61

4096 0.93 0.93 0.94 0.94 19.04 11.39

8192 0.93 0.93 0.94 0.94 17.11 16.95

16384 0.93 0.93 0.93 0.93 20.42 19.73

Table 4 Internode Facade vs Normal (Gbits/sec)

The higher throughputs of Inter-node communication using Infiniband are sufficient to significantly load

the host processors (especially on the sending host). Thus, with a processing bottleneck limiting the

throughput, the savings provided by façade tuples once again becomes apparent. Figure 8 and Table 4

(columns 6 and 7) once again shows us an advantage with façade tuples when the tuples are larger.

Figure 8 Inter-node throughput of InfiniBand

Overhead of Threaded Ports

Fusing the source and sink operators into a single thread yields the lowest possible communication costs

(a function call). When the application would benefit from use of another core, the sink can put a

threaded input port (a new feature in Streams v2.0) in its configuration. This provides it with a separate

thread for its processing, at the cost of having the source enqueue a tuple in the sending thread, and

having the sink dequeue it in the receiving thread. See, for example,

https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/W4671426578cc

_49bd_b585_3b9911c491b8/page/Streams%20Performance%20Topics for information on performance

0

5

10

15

20

25

4 16 64 256 1024 4096 16384

T
h

ro
u

g
h

p
u

t
(G

b
/s

ec
)

Tuple Size (bytes)

Inter-node

LLMRUMIB Facade

LLMRUMIB Normal

https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/W4671426578cc_49bd_b585_3b9911c491b8/page/Streams%20Performance%20Topics
https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/W4671426578cc_49bd_b585_3b9911c491b8/page/Streams%20Performance%20Topics

InfoSphere Streams: Release 2.0 Performance Report

bottlenecks; the techniques discussed there can help one decide if the use of threaded ports would be

helpful in a particular application.

One could, instead, get use of another core by communicating intranode using LLM over InfiniBand.

Note, however, that this would require InfiniBand hardware on the node, even if it is only intranode

communication that requires this speed, plus tuning of LLM to get the best performance out of it. See,

for example, http://www.ibm.com/developerworks/data/library/techarticle/dm-

1006performancetuning/index.html for suggestions on how to go about tuning LLM.

Figure 9 and Table 5 show the overhead of using threaded ports for pipeline parallelism. The overhead

of threaded ports is slightly greater than the overhead of using LLM over InfiniBand between PEs for

tuples of 512 bytes and smaller. However, for larger tuples, threaded ports have the advantage over

LLM over InfiniBand. With threaded ports, the communicating operators run in the same address space.

No data copies occur, only the enqueueing and dequeueing of pointers, giving an advantage over LLM,

which must copy data into and out of communication buffers to pass data between the processes that

contain the PEs. This leads to as much as 20 times the throughput via threaded ports as that achieved

between PEs. Given this and the other considerations already mentioned, we strongly recommend the

use of threaded ports to gain parallelism between operators.

Another way of comparing these transports is to say that fused operators can pass 20 million tuples per

second, while operators separated by a threaded port can pass 2.5 million tuples per second. LLM over

InfiniBand also runs at about 2.5 million tuples per second as long as the tuples are 512 bytes or smaller,

but is limited in bandwidth for larger tuples, while fused operators and those using threaded ports are

not. Given that our processors run at 2.98GHz, we can figure that in return for adding about 170

processor cycles to enqueue and dequeue the tuple, we can pipeline the processing of it across 2

different cores. For a string of operators that are fused together (for example by COLA, as discussed in

the next section), or for a large custom operator that can be rewritten as a pipeline of operators, this can

relieve a bottleneck that limits the performance of an entire application.

http://www.ibm.com/developerworks/data/library/techarticle/dm-1006performancetuning/index.html
http://www.ibm.com/developerworks/data/library/techarticle/dm-1006performancetuning/index.html

InfoSphere Streams: Release 2.0 Performance Report

Figure 9 Comparison of threaded port throughput with Infiniband used intranode

tuple size
(bytes)

Fused Threaded
Port

LLMRUMIB

4 0.66 0.09 0.16

8 1.32 0.14 0.30

16 2.47 0.36 0.61

32 4.94 0.67 1.23

64 9.91 1.33 2.30

128 19.81 2.54 4.48

256 42.08 5.47 7.62

512 84.42 10.46 12.29

1024 169.49 21.19 12.59

2048 337.85 39.95 15.44

4096 677.63 71.21 14.28

8192 1355.20 179.81 16.16

16384 2711.61 349.17 18.67

Table 5 Threaded Port Throughput (Gbits/sec)

Optimized Fusion using COLA

COLA is the new fusion optimizer for the SPL compiler. Based on statistics gathered on previous runs

of an application (compiler options –P 10 –S 0.1, for example), COLA computes which operators to fuse

together into a single thread (compiler option –p FOPT). Its goal is to maximize the application

throughput given the available resources. To see how good a job COLA does at this, we ran an

application based on the VWAP calculation (see

http://www.sciencedirect.com/science/article/pii/S074373151000167X#s000045 for details) that we

0.001

0.01

0.1

1

10

100

1000

10000

4 16 64 256 1024 4096 16384

Th
ro

u
gh

p
u

t
(G

b
it

/s
e

c)

Tuple Size (Bytes)

Fused ThreadedPortNo

Fused ThreadedPortYes

LLMRUMIB ThreadedPortNo

http://www.sciencedirect.com/science/article/pii/S074373151000167X#s000045

InfoSphere Streams: Release 2.0 Performance Report

configured the application to include a total of 332 operators. We measured the throughput of the

application when it was run 4 different ways: unfused (each operator running as a separate PE using

only TCP transport), cola 1 (as fused by COLA based on the stats collected during the unfused run), cola

2 (as fused by COLA based on the stats collected during the cola 1 run), and manual (fusion specified by

the programmer based on some trial & error). We also tried these variations on different numbers of

hosts.

The results, seen in Figure 10, indicate that COLA doesn’t always do a better job than humans, but that

it often does. It’s especially interesting to note that the second round of COLA optimization further

improves performance over the first round. COLA’s calculations are based on an approximate model of

both the communication costs between operators and the topology of the system (since it is oblivious of

the number of cores on each of the hosts), and these approximations limit its accuracy. When the result

of the first round of COLA optimization actually runs, the newer stats give COLA a chance to apply

itself to a more accurate measure of the consequences of its fusion choices. That second round is seems

worthwhile in our tests and we believe it to be so in general. Performing more iterations might possibly

be advantageous, but the results in

http://www.springerlink.com/content/aw817m13m4536001/fulltext.pdf indicate that additional iterations

provide no significant further improvement.

Figure 10 VWAP Throughput as Fusion Varies

Fan-out within a Single Host

It turns out that there is another reason to use LLM over TCP instead of the plain TCP transport. When

an operator sends to multiple operators, all of which are on the same host, including the sender, the

throughput drops. Note that we observe this only when communication is intranode, not when

communication is between different nodes.

That is, with plain TCP as the transport between the operators, we get the result seen in Figure 11 and

Table 6. For small (22-byte to 108-byte) tuples, the throughput drops dramatically (by about a factor of

10) when going from 1 to 2 receivers, and staying at that low rate as more receivers are added. Our own

investigations, as well as those by Linux experts elsewhere in IBM, indicate that this is a reaction of

0

50000

100000

150000

200000

250000

1 2 4

Th
ro

u
gh

p
u

t
(t

u
p

le
s/

se
co

n
d

)

Number of Hosts

VWAP on Cola
unfused

cola 1

cola 2

manual

http://www.springerlink.com/content/aw817m13m4536001/fulltext.pdf

InfoSphere Streams: Release 2.0 Performance Report

TCP to the fast arrival of acknowledgements to small packets when used intra-node. As a result of these

quick acknowledgements, TCP never bothers to batch the packets. This (somehow) interacts with the

time spent cycling between the different receivers. Various attempts were made to work around this

problem, including fiddling with TCP parameters and user-level batching. The only general-purpose

solution is to switch to using LLM over TCP as the transport. As we can see, again in Figure 11, the

throughput when using LLM over TCP is always better than plain TCP transport, and does not suffer

from the fan-out problems of plain TCP. We attribute this to the batching being performed by LLM,

which keeps TCP from seeing small packets in the first place.

Figure 11 Intra-node Fan-out with Different Tuple Sizes and Transports

Receivers 22 bytes
TCP

108
bytes
TCP

1004
bytes
TCP

22 bytes
LLM-
TCP

108
bytes
LLM-
TCP

1004
bytes
LLM-
TCP

1 0.14 0.91 2.89 0.77 2.44 3.34

2 0.03 0.15 2.88 0.78 2.89 3.54

3 0.02 0.11 2.94 0.92 2.84 3.46

4 0.02 0.11 2.83 0.92 2.82 3.67

5 0.02 0.11 2.78 0.94 2.98 3.73

6 0.02 0.11 2.78 0.93 3.09 3.83

Table 6 Fan-out Throughput (Gbits/sec)

Comparison to Previous Release

To verify that Streams changes between versions 1.2 and 2.0 were improvements to its performance, we

made a variety of comparison runs. In Figure 12 and Table 7 columns 2 through 5 we compare the v1.2

and v2.0 performance within a single node using TCP (and LLM over TCP) as the transport between

source and sink. The plain TCP results show no significant change, but LLM is significantly different.

Since Streams changed from LLM version 2.3 to version 2.5, this is not a surprise. Happily, when using

0.0E+00

1.0E+09

2.0E+09

3.0E+09

4.0E+09

0 1 2 3 4 5 6 7

A
gg

re
ga

te
 T

h
ro

u
gh

p
u

t
(b

it
s/

se
c)

Number of Receivers

Intranode Fanout

22 bytes tcp

108 tcp

1004 tcp

22 llm-tcp

108 llm-tcp

1004 llm-tcp

InfoSphere Streams: Release 2.0 Performance Report

TCP, LLM version 2.5 seems to perform better, overall, than version 2.3. There’s a crossover for tuples

around 1KB, but that may well be measurement noise.

Figure 12 Comparison between Streams v1.2 and v2.0 using TCP intranode

tuple size (bytes) LLMRUMTCP
v1.2

LLMRUMTCP
v2.0

TCP v1.2 TCP v2.0 LLMRUMIB
v1.2

LLMRUMIB
v2.0

4 0.05 0.16 0.03 0.03 0.04 0.17

8 0.09 0.33 0.06 0.06 0.09 0.29

16 0.23 0.77 0.11 0.12 0.27 0.74

32 0.36 1.55 0.23 0.24 0.44 1.46

64 0.86 3.46 0.77 0.71 0.68 2.02

128 1.90 9.33 1.47 1.58 1.58 5.48

256 3.94 10.32 2.26 2.51 2.56 8.14

512 8.14 10.18 4.07 4.29 5.56 12.61

1024 10.26 9.42 6.87 7.06 8.01 13.39

2048 10.27 8.59 11.11 11.52 10.44 16.03

4096 6.61 6.59 11.50 12.32 13.48 15.80

8192 6.61 5.80 12.52 12.49 16.73 16.55

16384 8.76 7.74 12.74 13.07 17.65 17.39

Table 7 Intranode Throughput Comparison (Gbits/sec)

In Figure 13 and Table 7 columns 6 and 7 we have the results when still staying with a single node, but

switching to InfiniBand transport. The advantage of Streams version 2.0 over version 1.2 is clearer here,

over an even wider range of tuple sizes. Since we used the same LLM configurations, we attribute this

to the use of LLM 2.5 instead of LLM 2.3.

0

2

4

6

8

10

12

14

4 16 64 256 1024 4096 16384

Th
ro

u
gh

p
u

t
(G

b
it

/s
e

c)

Tuple Size (Bytes)

Intranode

LLMRUMTCP v1.2

LLMRUMTCP v2.0

TCP v1.2

TCP v2.0

InfoSphere Streams: Release 2.0 Performance Report

Figure 13 Comparison between Streams v1.2 and v2.0 using InfiniBand intranode

Inter-node throughput comparisons using TCP can be seen in Figure 14 and Table 8 columns 2 through

5. The only significant difference between Streams v1.2 and v2.0 is for LLM over TCP with 4-byte and

8-byte tuples.

Figure 14 Comparison of Streams v1.2 with v2.0 using TCP between 2 nodes

0

2

4

6

8

10

12

14

16

18

20

4 16 64 256 1024 4096 16384

Th
ro

u
gp

u
t

(G
b

it
/s

e
c)

Tuple Size (Bytes)

Intranode

LLMRUMIB v1.2

LLMRUMIB v2.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 16 64 256 1024 4096 16384

Th
ro

u
gh

p
u

t
(G

b
it

/s
e

c)

Tuple Size (Bytes)

Inter-node

LLMRUMTCP v1.2

LLMRUMTCP v2.0

TCP v1.2

TCP v2.0

InfoSphere Streams: Release 2.0 Performance Report

tuple size (bytes) LLMRUMTCP
v1.2

LLMRUMTCP
v2.0

TCP v1.2 TCP v2.0 LLMRUMIB
v1.2

LLMRUMIB
v2.0

4 0.11 0.21 0.06 0.06 0.13 0.13

8 0.23 0.62 0.11 0.13 0.21 0.31

16 0.78 0.75 0.23 0.24 0.45 0.61

32 0.86 0.83 0.42 0.45 1.09 1.21

64 0.89 0.88 0.83 0.81 2.19 2.44

128 0.91 0.90 0.88 0.87 3.58 5.17

256 0.92 0.92 0.91 0.89 6.36 7.79

512 0.93 0.93 0.92 0.92 12.08 13.75

1024 0.93 0.93 0.93 0.93 11.34 12.96

2048 0.93 0.93 0.94 0.92 16.02 19.20

4096 0.93 0.93 0.94 0.94 21.35 19.04

8192 0.93 0.93 0.94 0.94 21.69 17.11

16384 0.93 0.93 0.94 0.93 22.54 20.42

Table 8 Inter-node Throughput Comparison (Gbits/sec)

The inter-node comparison using InfiniBand in Figure 15 and Table 8 columns 6 and 7 gives the overall

advantage to Streams v2.0 over v1.2. The lead is held by v2.0 up to 4KB tuples, where v1.2 takes a bit

of a lead. The stumble by v2.0 at 8KB is the largest of the problems. Again, this may be noise,

although repeated runs always seem to show some problem at 8KB. Since within Streams itself the

handling of the tuples is uniform across the entire range of tuple sizes, this is, if anything, an LLM issue.

As of yet, this is unconfirmed.

Figure 15 Comparison of Streams v1.2 with v2.0 using InfiniBand between 2 nodes

0

5

10

15

20

25

4 16 64 256 1024 4096 16384

Th
ro

u
gh

p
u

t
(G

b
it

/s
e

c)

Tuple Size (Bytes)

Inter-node

LLMRUMIB v1.2

LLMRUMIB v2.0

InfoSphere Streams: Release 2.0 Performance Report

Latency Test

Test Description

Clock skew is always an issue with latency measurements. We control that by always doing round-trip

measurements: from a source operator, to one that receives tuples and passes them along, to the final

sink. The source records the current time in each tuple, and the sink compares that with the arrival time

there at the sink to compute the round-trip latency. When measuring the latency between 2 different

nodes, clock skew is avoided by always putting the source and sink on the same node, with the relay

operator being on the other. That way, the timestamp recorded by the source is compared to a

timestamp read by the sink from the very same clock. We also avoid use of the high-performance cycle

counter as a clock since these can be different on different cores within a single node. This avoids all of

the problems that arise when trying to keep the clocks on 2 different nodes in sync.

Various queueing and batching effects can come into play as the workload varies, and these can have a

significant impact on latency. To see if that’s the case, we measure latency while having the source

offer tuples at both a rate of 1,000 tuples per second and also, separately, at a rate of 5,000 tuples per

second.

Latency Results

When the source, relay, and sink are all on the same node, there’s little to distinguish the latencies seen,

regardless of the Streams transport chosen, as we see in Figure 16. LLM works off of timers, so the

lack of variation among the different flavors and flow rates for LLM is unsurprising; it’s just doing what

it does based on the configuration that we specify, and that’s what we get. It’s difficult to say what’s

required for TCP to have reduced latency at higher throughputs. It might have something to do with

timers in the kernel.

Figure 16 Latency within a single node using different transports

When we look at the inter-node results (where the source and sink are on one node, while the relay is on

another) shown in Figure 17, we see that LLM over InfiniBand has much lower latencies. Unlike the

intranode measurements, here we have a clear upward trend as the tuple size grows. The time on the

wire really does change when sending more data.

0

5

10

15

20

25

30

35

128 256 512

La
te

n
cy

 (
μ

se
c
)

Tuple Size (byte)

Intranode

LLMRUMIB@1000

LLMRUMIB@5000

LLMRUMTCP@1000

LLMRUMTCP@5000

TCP@1000

TCP@5000

InfoSphere Streams: Release 2.0 Performance Report

Figure 17 Latency between 2 nodes using different transports

Comparison to Previous Release

Intranode latency with plain TCP and with LLM over IB was unchanged from Streams v1.2 to v2.0, as

we can see in Figure 18. The one difference is an improvement (reduction, that is) in latency with LLM

over TCP. Intranode throughput numbers for these tuple sizes also showed a big improvement, and it’s

quite possible that these are related to each other, and to the change in LLM version that we speculated

about earlier.

Figure 18 Comparison of Streams v1.2 and v2.0 latencies within a single node

Figure 19 shows the result of measuring inter-node latency at 5,000 tuples per second. Latencies for

LLM over InfiniBand latencies were unchanged. However, in repeated runs, both plain TCP and LLM

0

10

20

30

40

50

60

70

80

90

100

128 256 512

La
te

n
cy

 (
μ

se
c
)

Tuple Size (bytes)

Inter-node

LLMRUMIB@1000

LLMRUMIB@5000

LLMRUMTCP@1000

LLMRUMTCP@5000

TCP@1000

TCP@5000

0

5

10

15

20

25

30

35

40

128 256 512

La
te

n
cy

 (
μ

se
c)

Tuple Size (bytes)

Intranode

LLMRUMIB v1.2

LLMRUMIB v2.0

LLMRUMTCP v1.2

LLMRUMTCP v2.0

TCP v1.2

TCP v2.0

InfoSphere Streams: Release 2.0 Performance Report

over TCP improved significantly with Streams v2.0. It is our conjecture that this is due to differences in

how Streams v1.2 and Streams v2.0 interact with the Nehalem processors in the HS22 blades.

Figure 19 Comparison of Streams v1.2 and v2.0 latencies between 2 nodes

0

20

40

60

80

100

120

128 256 512

La
te

n
cy

 (
μ

se
c
)

Tuple Size (bytes)

Inter-node

LLMRUMIB v1.2

LLMRUMIB v2.0

LLMRUMTCP v1.2

LLMRUMTCP v2.0

TCP v1.2

TCP v2.0

InfoSphere Streams: Release 2.0 Performance Report

Conclusions

We have now looked at all of the various ways of passing data from one operator to another using

Streams v2.0. This ranges from the fastest (fused into a single thread) to the slowest (plain TCP over

1Gb Ethernet between hosts). Given complicated differences in system use (like when using threaded

ports to bring additional cores into play within a group of fused operators), the choice of which transport

to use is not a simple either-or proposition.

Fused operators can pass data at up to 20 million tuples per second, regardless of tuple size. Placing a

threaded port (a new feature in Streams v2.0) between the operators limits throughput to 2.5 million

tuples per second, but allows a pipeline of processing to take advantage of multiple processing cores.

LLM over InfiniBand can, within a node, offer approximiately the same throughput as threaded ports for

smaller tuples (512 bytes and smaller) but is bandwidth limited for larger tuples. LLM over TCP

reaches throughputs of 10Gbit/sec, but its throughput drops off for tuples larger than 1KB. The plain

TCP transport offered by Streams achieves 12Gbit/sec for tuples 2KB and larger, but is much slower

than LLM over TCP for smaller tuples.

Between nodes, Streams using LLM over QDR InfiniBand reached 20Gbit/sec, and was well over

1Gbit/sec even for relatively small tuples. The other transports, LLM over TCP and plain TCP, were

limited to the 1Gbit/sec provided by our Ethernet. LLM over TCP was much better for smaller tuples,

providing over 600 Mbit/sec even for 4-byte tuples.

Low latency can be achieved with Streams using any of the transports for intranode communication.

Round-trip (2 hop) times between operators within a node were all between 15 and 30 microseconds.

When communicating between 2 nodes, the round-trip time was 20 microseconds when Streams used

LLM over InfiniBand. The other transports (LLM over TCP and plain TCP) provided round-trip times

between 50 and 80 microseconds, depending mostly on the tuple size.

The new fusion optimizer for the SPL compiler (COLA), automatically chooses which operators to fuse

into a single thread. Test results from runs on a single host indicate that COLA’s choices do not always

improve on the hand tuning that humans can provide, but are a reasonable improvement over no fusion.

However, COLA proved to be superior on all of our tests on multiple hosts. With very large SPL

programs, where hand tuning is impractical or even impossible, COLA provides good fusion choices.

Aside from the features newly added to Streams v2.0, performance comparisons were made between

corresponding Spade programs from Streams v1.2 and SPL programs from Streams v2.0. Streams v2.0

improves on Streams v1.2 in both throughput and latency. The throughput improved for smaller tuples

both within a node and between nodes, when using LLM transports. Latency improved for

communication within a single node when using LLM, and also improved when communicating over

1GbE using either plain TCP transport or LLM over TCP.

The significance of some of the results presented in this document is not obvious. Providing a guide to

the programmer based on these and other results is beyond the scope of this document. A separate

document is currently planned to serve that role.

InfoSphere Streams: Release 2.0 Performance Report

For more information

To learn more about IBM InfoSphere Streams and associated products to build them, visit:

http://www.ibm.com/software/data/infosphere/streams/

© Copyright IBM Corporation 2011

IBM Corporation

Software Group

Route 100

Somers, NY 10589

U.S.A.

Produced in the United States of America

02-08

All Rights Reserved

The information contained in this publication is provided for informational

purposes only. While efforts were made to verify the completeness and

accuracy of the information contained in this publication, it is provided AS IS

without warranty of any kind, express or implied. In addition, this information is

based on IBM’s current product plans and strategy, which are subject to

change by IBM without notice. IBM shall not be responsible for any damages

arising out of the use of, or otherwise Related to, this publication or any other

materials. Nothing contained in this publication is intended to, nor shall have

the effect of, creating any warranties or representations from IBM or its

suppliers or licensors, or altering the terms and conditions of the applicable

license agreement governing the use of IBM software. References in this

publication to IBM products, programs, or services do not imply that they will

be available in all countries in which IBM operates. Product Release dates

and/or capabilities referenced in this presentation may change at any time

at IBM’s sole discretion based on market opportunities or other factors, and

are not intended to be a commitment to future product or feature

availability in any way. Nothing contained in these materials is intended to,

nor shall have the effect of, stating or implying that any activities undertaken

by you will result in any specific sales, revenue growth, savings or other results.

Performance is based on measurements and projections using standard IBM

benchmarks in a controlled environment. The actual throughput or

performance that any user will experience will vary depending upon many

factors, including considerations such as the amount of multiprogramming in

the user's job stream, the I/O configuration, the storage configuration, and

the workload processed. Therefore, no assurance can be given that an

individual user will achieve results similar to those stated here.

All performance data contained in this publication was obtained in the

specific operating environment and under the conditions described above

and is presented as an illustration only. Performance obtained in other

operating environments may vary and customers should conduct their own

testing.

IBM, the IBM logo, InfoSphere, and WebSphere are trademarks of IBM

Corporation, registered in many jurisdictions worldwide.

Intel and Intel Xeon are trademarks or registered trademarks of Intel

Corporation or its subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

Other product and service names might be trademarks of IBM or other

companies.

Neither this documentation nor any part of it may be copied or reproduced

in any form or by any means or translated into another language, without the

prior consent of all of the above mentioned copyright owners.

IBM makes no warranties or representations with respect to the content

hereof and specifically disclaims any implied warranties of merchantability or

fitness for any particular purpose. IBM assumes no responsibility for any errors

that may appear in this document. The information contained in this

document is subject to change without any notice. IBM reserves the right to

make any such changes without obligation to notify any person of such

revision or changes. IBM makes no commitment to keep the information

contained herein up to date.

IBM7

http://www.ibm.com/software/data/infosphere/streams/

