AUE

HOWTO
Secure and Audit
Oracle 10g and 11g

Chapter 2

Hardening the Database

System hardening is the process by which you securely configure a system to protect it from unau-
thorized access. System hardening is necessary in any system that has a range of configuration
options and is viable in any system that has enough security measures to make them suitable for
usage in security-oriented environments. Oracle database falls into both of these categories.

The purpose of system hardening is to eliminate as many security risks as possible. This is done
by removing all nonessential elements from the system and by selecting configuration options that
limit access and reduce risk. As Oracle has evolved, more and more options have become available
and these options offer new ways to access data—sometimes by unauthorized users if used inappro-
priately. The larger the footprint and capabilities of a system, the harder it is to harden and the more
security risks may be present. Therefore, as the Oracle database grows in size and functionality, hard-
ening becomes even more important. Luckily, as Oracle evolves, there are also more and more secu-
rity options available that you can use to secure the data—Chapters 3 through the end of the book
outline these capabilities and how you should use them. But first, you need to harden the database.

Oracle hardening covers a wide range of activities and involves many types of configuration
options. The most important guideline is that if there is a feature that you do not use, remove it.
The fact that you don’t use something does not mean that an attacker won’t. The smaller the
surface area of a system, the more secure it is. Examples of this include:

B Remove or lock predefined accounts that you do not use and change the password for accounts
you do use that have a predefined password (Oracle 11g already comes configured that way).

B Remove predefined roles that you do not use.

B Remove components in the database software that you do not use.

B Remove options that you do not use—for example, remove EXTPROC from your listener
if you do not use external procedures.

B Remove privileges from PUBLIC that you do not require.

Because Oracle has so many capabilities and configuration options, hardening is usually an exer-

cise that involves hundreds of activities. Coming up with a list of these required activities is a
monumental task. Luckily, you don’t have to come up with this list. Lists have been created and

11

12 m HOWTO Secure and Audit Oracle 10g and 11g

entire books are dedicated to this topic—so all you have to do is pick a source—the topic of the

first HOWTO of this chapter.

2.1 HOWTO Choose a Hardening Guideline

Hardening of any complex system involves many little details. The more a system can be config-
ured, the lengthier the list of tasks you need to perform (or validate) to create a hardened configu-
ration. The list for Oracle is long, but openly available and free.

There are two documents that provide very mature guidelines for implementing a secure Oracle
configuration and that you should look at when forming your standard hardening process. One is
the Database Security Technical Implementation Guide (STIG) developed by Defense Information
Systems Agency (DISA) for the Department of Defense (DOD) and the second is the Center for
Internet Security (CIS) Benchmark for Oracle developed by the CIS. Both are excellent and very
comprehensive; use one of them (or both) rather than develop your own hardening checklist.

Database STIG

STIGs are documents published by the DISA to assist in improvement of the security of DOD
information systems. There are numerous STIG documents—all of them are accessible at
htep://iase.disa.mil/stigs/stig/index.html. The checklists can be downloaded from htep://iase.disa.
mil/stigs/checklist/index.html. The Database STIG focuses on relational databases. The Database
STIG has a generic section which outlines guidelines relevant to any database management system
(DBMS) and has an Oracle-specific section which adds steps relevant for Oracle only. The sections
within the general document address:

1. Integrity

Software integrity

Database software development

Ad-hoc queries

Multiple services host systems

Data integrity—including file integrity, software baseline, and file backup and recovery
iscretionary access control

Account control

Authentication

Database accounts

Authorizations

Protection of sensitive data

Protection of stored applications

Protection of database files
atabase auditing

Audit data requirements

Audit data backups

Audit data reviews

Audit data access

Database monitoring

0D TR DR me R0 TR O &0 T

Hardening the Database ®m 13

4. Network access
a. Protection of database identification parameters
b. Network connections to the database
c. Database replication
d. Database links
5. Operating system (OS)
a. File access
b. Local database accounts
c. Administrator accounts
d. OS groups

The Oracle-Specific Policy and Implementation appendix specifically addresses:

6. Oracle access control
a. Oracle identification and authentication
Oracle connection pooling
Secure distributed computing
Oracle administrative connections
Oracle administrative OS groups
Default accounts

Oracle password management requirements
acle authorizations
Predefined roles
b. System privileges
c. Object privileges
d. Administration of privileges
8. Oracle replication
9. Network security
a. Encrypting network logins
b. Protecting network communications
c. Listener security
d. XML DB protocol server
10. Oracle Intelligent Agent/Oracle Enterprise Manager (OEM)
11. Oracle account protections
12. ARCHIVELOG
13. Securing SQL Plus
14. Protecting stored procedures
15. Oracle trace utility
16. Auditing in Oracle—includes standard auditing, fine-grained auditing, mandatory audit-

b

c

d

e,

f.

g. Default passwords
h.

Or

a.

ing, and architectural discussions
17. File and directory permissions at the OS level
18. Ciritical file management—including control files, redo log files, and data files
19. Optimal Flexible Architecture (OFA)
20. Initialization parameters
21. Miscellaneous OS requirements—including Unix, Window, and z/OS

14 m HOWTO Secure and Audit Oracle 10g and 11g

The Database STIG is published as an unclassified document and is made available to all.
DISA also publishes a set of evaluation scripts and these can help you check the security
strength of your database—download these from http://iase.disa.mil/stigs/SRR/index.html.

CIS Oracle Benchmark
The CIS (www.cisecurity.org) publishes the CIS Benchmark for Oracle as part of a set of bench-

marks, scoring tools, software, data, and other services that are made public as a service to
all users worldwide. You can download the benchmark from htep://www.cisecurity.org/bench_
oracle.html. The recommendations contained in the Oracle benchmark result from a consensus-
building process that involves the leading Oracle security experts. The CIS benchmark takes the
form of a checklist partitioned into a number of sections. Within each section is a list of items
that should be validated. Each such item includes a description of the item, the action or recom-
mended setting for parameters, comments, which Oracle version it applies to, and whether it is
relevant to Unix, Windows, or both. The main sections in the CIS Oracle benchmark are

. OS-specific settings

. Installation and patch

. Oracle directory and file permissions
. Oracle parameter settings

. Encryption-specific settings

. Startup and shutdown

. Backup and disaster recovery

. Oracle user profile setup settings

. Oracle user profile access settings

10. Enterprise Manager/Grid Control/Agents
11. Items relevant to specific subsystems
12. General policy and procedures

O 00~ O B o N

13. Auditing policy and procedures
14. Appendix A—additional settings

Both documents take a broad approach to hardening. They do not have a narrow interpretation
that hardening only involves certain configuration settings, removing default components, lock-
ing users, etc. They provide a full checklist that also includes what activities should be audited,
where separation of duties is required, what activities need to be performed, etc. Of the two—the
STIG puts even more focus on the general implementation, process, roles that need to be involved
in securing an Oracle environment, etc.

Two Things to Remember about Choosing a Hardening Guideline

1. Don’t build your own checklists—hardening an Oracle database is no longer an art;
there are good mature guidelines for you to choose from such as the CIS Oracle bench-
mark or the Database STIG.

2. Use these documents not only as a hardening guide but also as the basis for putting
together a complete Oracle security implementation. These documents outline configura-
tion settings but also outline process, procedures, and what to focus on. In many ways,
all the chapters in this book explain how to use Oracle tools to implement what these
two documents suggest that you do.

Hardening the Database ®m 15

2.2 HOWTO Use a Vulnerability Assessment Tool

Using hardening checklists is simple but tedious. From a pure hardening perspective, the checklists
contain many checks and modifications that you need to perform and these can be automated. In
fact, without automation this tasks quickly becomes unmanageable—especially if you have tens and
hundreds of instances and they do not all conform to a single “gold build.” Tools that you can use to
automate this process are called vulnerability assessment (VA) tools or vulnerability scanners.

For almost any type of system there are VA tools and Oracle is no exception. VA tools will scan
your database instances and come back with a report showing what changes you need to perform
to make your database more secure. These results are presented in the form of a security report
where each problem is classified and a recommendation provided for what changes you need to
make (e.g., see Figure 2.1). These checks and recommendations usually cover the items specified in
the various hardening checklists—meaning that a VA tool can save you most of the tedious work
involved in reviewing your databases and their alignment with the checklists.

There are many VA tools for Oracle including AppDetective, AppSentry, Guardium, IPLocks,
and NGS Squirrel. Some of these tools are stand-alone VA scanners and some tools are part of a
larger suite of products that address multiple aspects of Oracle security. From a pure VA perspective
all these tools scan your database to recommend changes you need to make to harden your instances.
The tools that are integrated within a larger suite have an advantage—in the same way that STIG
and CIS take the wider interpretation to securing the database environment and define practices for
auditing, practices for review, etc. (see the previous section), so do these suite-based tools. This allows
you to become secure and fully compliant within a single implementation thus saving a lot of time.

VA tools perform many types of checks. These checks can be classified into three main groups:

1. Checks for software vulnerabilities
2. Checks for misconfigurations

3. Checks for misuse of the database

All of these checks are necessary to check for vulnerabilities in your database. An attacker can
gain unauthorized access to your database by using a code vulnerability that exists because you
have not patched your server using the latest Critical Patch Update (CPU) (an example of type 1),
through the use of a default account that has not been locked and still has a default password (an
example of type 2), because you have REMOTE_OS_AUTHENT set to true (an example of type
2), or because everyone knows the password for SYSTEM and multiple people make use of this
account constantly (an example of type 3).

Checking for vulnerabilities (of all types) is done using a multipronged approach. Some things can
be checked from the outside-in and other checks are done from within the database. VA tools have
multiple modes in which they work to provide you with the full picture. Many checks need to be per-
formed from the inside. For example, to check for bad configurations the VA tool needs to be able to
access VSPARAMETER. To check for bad privilege assignment (as an example—too many privileges
assigned to PUBLIC can be a serious vulnerability), VA tools need certain SELECT privileges to the
catalog. These tools come with scripts that grant these privileges to a user or a role (that is then assigned
to a user you create for the tool to use). Review these scripts when you evaluate the tool to ensure that
it does not assign itself too many privileges. The better VA tools also inspect and check files at the OS
level. For example, lax file permissions or a wrong owner or group used for important Oracle files (such
as data files, software files, configuration files, and log files) are a serious vulnerability. Contents of files
such as sqlnet.ora can affect how your database behaves and checking a configuration must include
checks on files, on registry values (on Windows), environment variables, etc. Finally, comprehensive
checks will often include inspecting output from scripts and OS commands—e.g., inspecting the

16 ®m HOWTO Secure and Audit Oracle 10g and 11g

“I3UUEdS YA JPeIQ ue wod) Jiodas uonepuswwodal sjdwes |z 3indiy

—
- %001 Y% PWL] B auoq|
1 r I=
& v o sy = g g —rr N
LANY, 60 Suoissiusad el Jou Nod J8y] PUSUALIBDES BAA "SSO) BIED U1 JASe) Jo Bjep Jnod afewep Aew JeuY) SUOIIR
aye) o) sefepand sassaoxe siesn anl yogn pejuesl Useq SARY 1G] ANV, U0 Tla| Ly TUONSPUSLLIOIEY
ssn ycads of paqueil puncy 3TAYL ANV YISO QLREIO WD FAba[Ald |
3U0NEIONNLITTISHOOVLNISHIHIVEHE Y14/ d080/E LYTUO INTNNODEMDVEMILTY [BIUD IRd FNOVHO BREL ATV, UTIN 1851 [ENDINIPUT O “Atid |

VIGTEVIO. ‘HOLINCW IO, ‘Waa, o) pajuesl oq Asw ANYNOILDIG ANV 10F135, "Sabajiud ANY

L1NY. PuE JOTNAINL ANY INVYS, ‘FHNOTI0N ANV JLNIZXG, 541 pejueid 8q uea pus ALoyine eap pajiuy

F0Y FSVEVLYO TING WL #10J peuyep-aid ey “ebanaud JuNTII0N ANV FLNITHT, o pauwid 8g ued

pue RUOHNG BGP DAY S8Y ISYEYLYG TINS NG 9104 PRUYSE-3.d) “SSE3IALA 2D WM SIS JO $I3SN O

paesB 2 A0 PINOYS SAS LIGNY, ANV LIONY, ANVHEN LTI, ‘TI0H ANV INVHS, ‘FOTTARC 13390

ANV LNV, ‘F0TWAIYS ANV LNVHO, ‘FUNTID0UD ANV ILNOTG, sebaiud waisis 8y
“L1098 "DINeNd SAS LI0NY, "ANY 110NV,

“AMYHEN 31¥IE0. 3708 ANY LNVHO, ‘OIS 1O3r80 ANY LNVED, "3OTTIAIHD ANV YIS0 gLeIo W Faba[Atg

ANTHD. ' FENO3D08- AN JLNITHE. Of $E00E YIM PUNO| BB, 'SYEd UBY] MU0 's80 10 een [BINLD IR TIVEO TSRS WATEAS O] SUCTEIUOUTTY OF “Atid |
‘Pannbal &I Oyl SI8SN S2aY] O AUR Jof Spuomssed |
24 OuURYD NOA JRL) PUSLLICS JBUDLS M PUR baus £ JOU aug ey JOSN IORID

AUz ADLURL INOA 1B PUSLNLOIR 31 "Alewen sy ﬂnh&%ﬁqﬁg_gguﬂmﬁgtgguﬁﬂ
DUS BIIRI0) LU SRIINLE) SUOKUE O] LMOUY-IaM ST SDUONSSEd PUR SUSSN JJ0eu0 peuyepaud asay) puomssed

UG J|IRIC PY] ARG IS PUR PRIGRUR |INS SuR JEEN IO pIUY awog Y yanso greioTwd

"SpIOmSSE ||NEjBD BABY LBen paUUBP-ald BADE | [BIQU) B4 FovEo PEBUE]] PIGAEEE] STONGITY TES] iy
SEUDNSTR YEAM J0 850 Ay Jasad o] Uoouny “rgm«wn
L jcian nak Jau) f au O UBSG SRY SUNNOY LONBIYLEA o Oy]
PR uBwE| S Yanso LeIoT W [UENTEGOT]
100 NOILONNG ™ AJIEIATQUOMSSYd Wie LINVIS0 TZ0uS ONIKOLINOIN. B1Uoxd aspe punog [BQU] |14 F0ve0 SINOILONNS Adi43N QHOMSSVd 21U0id vad jusd|

‘spuoussed SISEN JO SWBNY Sy) P 0f 130 Ul sewesed Siy) jeE Nok By PUSUNLCOE! J| SN
pazuBYNeUn o] UNOUY SWCI8G 0] A|8y| J8 aw) Jo spojsd Buo| Joj BSN u| UBSY BARY JEY] SPIDNSSEY ABNuapUI
piomssed MRS By] UIRJaS 0] S18SN BUWO|IR 165 jou 5i sejeweied S1L I THOMES Y BUL UOREpUBLILDOEaY
BAJEA PIOYEBI) PRUIBE §O 1N Yougso gleI0 W |
punoy JPILTIHT GHOMSE Y Mawemd dnies [37130u4 ONMOLINOIN L INY+30] ®jucsd men [B3U) B4 T1ove0O PApun s IWIL 341 GHOMSSVd 21Uoid vag juod|
JuNo0e S1en sy Buyoo) auoyeq sdwaye wibo) PapE] JO JSGUINY Sy Juiy 0] 2o Ll ssswesed Sy 198
mod jey) puswnuesal &) eep nof o) ssecoe pazuoyneun wel oy Dudiy s s8Sn PaZUDLNIEUN LE JBY) SJEINL] UED
Spdwane wibo) pejiey yo sequny yBiy ¥ 183 jou) sajeweied S 1 WAL LY NISOT QI VS YL ‘UonepusiiLnIay
BNIEA DISYTRY) PRLNER 0 N pungy YasoTgLeIoTWwI pamun

SLdNILLY NIDOT 03TIV4 mawemmd dnjas (3713084 ONNOLINOIN ' LINVI30] Mucid e [BIUY 1Ry Fovec BIVSIdNALLV W07 03 V4 81U01d vad uod)
- uoseay A§ did 22inoseiRq awen 1saL o
(pasayjyy p) spnsas g jo 92 Burmoys ey snoiAsig W SEdWe S)NsaY 159 JUSLISEISEY
SOHuET o ol e e el v o e el i - 2o
105 [19 |§ kL oane SN (o o il ol b o o L Bl Bl -~ *
— = = =)l — e sdz - J5d5 — o dp uogesnbyuod
“fymcygc~aaik] 0 =il 4 — — 48— ucqesguaymy
-MNYS-SeE 000 0 |=i=i=i=i=i=l=— o= =45 — — s dog b
- Iy Moyg - sequarag ojul uogne) Joumwy Jofel [RINUD
=] :paydde Buuayy Wwaany (paussyyy) Synsad 91 jo 9. Bupmoys Aewwns ynsay

Lmho_axm um.Emuc_ nz.cu_.:? u__._ mu_ acwEmm.am sy _J_.__z...ww F__.:Em:u.

Hardening the Database ®m 17

output of orapatch to ensure that you have the latest CPUs installed to address known code vulnerabili-
ties. At the end of the day, a VA tool is the only way to ensure that you have hardened your databases
properly and that you remain compliant over time.

Three Things to Remember about Using an Assessment Tool

1. Some VA tools are stand-alone scanners and others are part of a larger database secu-
rity suite. If you're implementing the full set of recommendations presented by within
the Database STIG or within the CIS checklist you should consider the suite products
that can also support your auditing implementation, intrusion detection implementation,
separation of duties, etc.

2. VA scanners check both vulnerabilities and CPUs installed (or that should be installed)
as well as the configurations of your database.

3. Some of the checks that you need to perform are at the OS level. Make sure the VA tool
you choose can perform checks on file ownership, file permissions, etc.

2.3 HOWTO Create and Maintain a Secure
Configuration Baseline

Once you have finished hardening your database, you have a tight configuration, but you need to
ensure that it remains tight and does not degrade over time. There are two things you can do to ensure
a sustained secure configuration—(1) run assessments on a scheduled basis to find new vulnerabili-
ties as they are created, and (2) create a baseline for the configuration once you are happy with it and
track any changes from this configuration using an alert that needs to be reviewed and approved. The
best practice suggests that you do both of these because they complement each other.

If you have a VA tool, then running an assessment periodically is easy. All VA tools have a sched-
uler that allows you to test your databases every month or every week. Most VA tools also have a
“diff report” that shows you changes to the assessment results between one run and another—so
once you are happy with the results of a scan you can monitor only the differences in future scans.

The second set of tools is called change tracking tools. These tools create a baseline of your
configurations and alert you on any change that is made. Baselines are created by computing a
digest on configuration elements and then periodically recomputing them to see if there are any
changes. Digests (or hash values) can be computed on files (to ensure for example that no one
modifies the software files themselves), on the output of a script (e.g., the output of a script that
greps certain values from sqlnet.ora), on Structured Query Language (SQL) result sets (e.g., the
output of a query that checks assignment of system privileges), etc. A change tracking tool tells you
when there is a deviation from the hardened configuration.

Change tracking tools will always be part of a database security implementation. These tools are
required to comply with the broad hardening checklists because this is the only way you can ensure
that no one replaces your files with Trojan versions. They are also the most effective way to ensure
that scripts run periodically are not used as a point-of-compromise; tracking changes made to
scripts is much simpler and more effective than reviewing audit trails that show what a script did.

Because you'll have access to these tools if you're responsible for database security, use them in the
context of VA change tracking tools—once you've completed your hardening process use them to

18 ®m HOWTO Secure and Audit Oracle 10g and 11g

ensure that you don’t deviate from this standard. If there are changes over time (and there always will
be changes) you can reauthorize and update the baseline and track changes from that point on. Look
for a VA tool that includes a change tracking tool to ensure sustained and continuous compliance.

Three Things to Remember about Creating and Maintaining a Secure
Configuration Baseline

1. Change tracking tools have multiple uses within an Oracle security implementation. One
of these is to create and track a secure baseline following the hardening phase. VA tools
that incorporate a change tracking tool offer you more options in terms of continued
compliance.

2. Baselines are generated by creating digests that uniquely identify a file or a result of a
script. Any change to the underlying entity will cause the digest to change and a change
report to be issued. Digests act as digital fingerprints of the underlying entity.

3. Baselines include digests for files that should not change, digests for the result of an OS
script, digests for the result of a query, digests for values of environment variables or reg-
istry entries, and more.

2.4 HOWTO Understand Critical Patch Updates

Always install patches to security issues as soon as they are available from Oracle. When code
vulnerabilities are discovered (and there always will be code vulnerabilities—any large piece of
software has bugs), Oracle issues patches—you must install these patches to remove these vulner-
abilities from your environment.

Security patches come in the form of Oracle CPUs. An Oracle CPU is a bundle of patches that
are released on a quarterly basis to fix security issues. CPUs have been around since 2005 (before
that there were called Security Alerts) and they come out at 1 p.m. Pacific time on the Tuesday
closest to the 15th of January, April, July, and October. The fact the CPUs are released at a known
date is important—it allows you to plan ahead and define change management windows accord-
ingly. Before CPUs were used, security alerts were issued when issues were discovered and fixed.
This made installing these security patches very difficult and sometimes as people were in the
processing of testing one fix, another one would be announced. Knowing when the patches are
published makes it easier for you to build a process around applying them.

The Oracle CPU includes fixes for all Oracle software components. One patch is released per
version of the database, application server, Enterprise Manager, etc. This has changed as of 2007
with the introduction of the n-apply process (more on that later). Patches are also released for
Oracle E-Business Suite, PeopleSoft, Siebel, and other applications. Patches for the database are
cumulative so that the latest CPU includes fixes for all earlier CPUs unless stated otherwise.

Each CPU includes a set of patches, an advisory, preinstallation notes, and release notes. The
CPU advisory contains information which helps you evaluate the impact of the fixed vulnerabili-
ties so that you may assess the criticality of issues and how quickly you need to install patches on
production systems. The advisory includes a set of risk matrices—one per software system—in
which Oracle reports on the risks of the discovered issues.

Hardening the Database ®m 19

Reading a CPU Advisory Risk Matrix

A CPU adpvisory contains a database risk matrix. The risk matrix helps you understand the risk of
discovered issues in terms of loss of confidentiality, loss of integrity, and loss of availability—the
three dimensions that can be affected by security vulnerabilities.

Figure 2.2 shows a sample from the database risk matrix of the April 2008 CPU. The matrix sum-
marizes the list of vulnerabilities fixed within the CPU and for each one provides information about
risk. Each vulnerability is given a vulnerability number composed of four characters—the first two
characters represent the system and the last two are an incremental numeric code starting from 01.
Database vulnerabilities are tagged as DB##. Each CPU has its own numbering scheme so the vulner-
ability number is unique within a CPU. Sometimes a vulnerability in another system affects users of
the Oracle database—in this case that vulnerability will be included in the database risk matrix so that
the risk matrix is self-contained and you do not need to read the entire CPU if you only care about the
database. As an example, in Figure 2.2 EMO1 is listed within the database risk matrix even though
the vulnerability is in Enterprise Manager. In such a case the vulnerability number appears in italics.

The risk matrix contains information about which component the vulnerability is in, what
protocol is required to exploit the vulnerability, what package or privilege is required to exploit the
vulnerability and whether an attacker can exploit the vulnerability from a remote node without

Ovacle Database Risk Malrix

CVSS VERSION 2.0 RISK (see Risk Malrix Definitions) Last

Remote Aftected
Package andior Privilege Exploit Paich set
Vuin#| Component Protocol . p Hotes
Required without | Base Acvess| Actess e, iality Itegrity Avallabit (per
Auth.? score| Vector Complexity od
Release)
Oracle
EMOT | Enterorse Local Hone Mo L) Local Medurm Sngle Complete Comoiete Complets 2015
uanagar
H01.5.,
. 8208,
pagy | Advenced | Omack | ke o0 SYS.DEMS_AQ Mo 55 |Network| Low Sngl Partal Partal | Mone azoaov, | 5%
Queuing Mel 10105 Mole 1
10203
Changelsts | Orack Tuien,
Dao2 ety Execube on DBMS_COC_UTILITY Mo 58 |Network Low Single Parlials Partial+ Hene 10203,
Capure Net MA10E
8015+,
Orack: s See
0303 | Core RDEMS i Creale Sessin Ho 55 |Network Low Sngle Parlial+ Partial Mo 92080V, (g,
5 10.1.0.5, =
10203
B0154
Oracle Secure SJG&I
= Enterprise | Oracle Execute on WKSYS.WI_GRY or e o aspany | 50
DBOM | o archor Net WKSYS WK QUERY AR Ho Hetwork Low Single Partial+ Partial Mone ultn‘i;ns\. Mot 1
Utrasaarch o
10203
D805 | Oracke Spatia n::! Execute on SO0_UTL Ho 55 |Network| Low Single Partal Partal | Mene '1'1 ; - :
9.0.1.5+,
8208,
0806 | Oracie Spatia n:::n Execute on S00_GEOM e 55 |Networs| Low Single Partial Portid | Mone 920,80V _ﬁ:’:‘
10105 |
10203
9.0.1.5-,
52,08,
080V
D907 | Oracle Spabial e Execute on S0O_DX Mo 55 |Network Low Snglke Partial Parial Hene Hans0y &e.
Nel 10.1.05, |Mol=1
10203,
11.1.0€
b, Oracke , a
D808 | Authentication et Hone Ves 50 |Network Low Nene Partisl None None 11108
pac e 8208, | .
pogg | OracieNet Local Hone o 46 | Local Low Nene Fartials Fartale | Farake 1.10s, |3
Services Mole 2

10203

Figure 2.2 Sample from a database risk matrix in a CPU.

20 m HOWTO Secure and Audit Oracle 10g and 11g

first being authenticated. The next thing provided per vulnerability is a Common Vulnerability
Scoring System (CVSS) score. CVSS is a standardized method for assessing security vulnerabilities
in all systems. CVSS has been used by Oracle since October 2006—before then vulnerabilities were
scored using a proprietary scoring system.

CVSS scores range between 0.0 and 10.0 with 10.0 being the worst possible score (implying the
worst possible vulnerability, and the highest risk). Oracle currently uses CVSS version 2.0 to derive
a base score and this score is included in the risk matrix. Scores are computed using a calculator
available at nvd.nist.gov and shown in Figure 2.3. The score is computed after you enter a selection
for each of the entries. When Oracle scores vulnerabilities they key in the answers to the base score

/= National Vulnerability Database CV55 Scoring - Windows Internet Explorer

|nist cvss calculator

B - B - & - [5Page ')‘Tguls" e

a‘?
DHS National Cyber Sacurity Divisian/US-CERT { Natisnal Institute of
b Srandords and Techrology
Nat[onal \/ulner“ablllty tabase
automating vulnerability m.]lmqr-men ity measurement, and compliance checking

Vulnerabilities Checklists | Product Dictionary Impact Metrics Data Feeds | Statistics
Home [ISAP/SCAP |SCAP validated Tools | SCAP Events. |About |contact |vendor Comments |

Common Vulnerability Scoring System Calculator

This page provides a calculator for creating CVSS vulnerability severity scores. Please read the CVSS standards guide
to fully understand how to score CVSS vulnerabiliies and to interpret CVSS scores. The scores are computed in
sequence such that the Base Score is used to calculate the Temporal Score and the Temporal Score is used to
calculate the Environmental Score. A concise form of this page is available to CVSS experts.

Update Scores Reset Scores Environmental Score Metrics

CVSS Base Score Undafined This section addresses metrics that describe the effect of
a vulnerability within an organization's environment. These

CVSS T poral Sco Undefined = FEd i
ks e bl metrics must calculated separately for each organization.
CVSS Environmental Score Undefined
Organization specific
Overall CVSS Score Undefined i P [Undefined v

potential for loss
(CollateralDamageFotential)

Base Score Metrics Percentage of vulnerable Mot Defined -

systems
These metrics describe inherent characteristics of the (Ergeu)istribulion‘
vulnerability. All of these metrics must be filled in to !
parform any CVSS sconng.

Temporal Score Metrics

Exploitability Metrics
) § These metrics describe elements about the vulinerability
Related exploit range Undefined that change over time. If all of these values are left as
(AccessVector) ‘Undefined’, the environmental score will be based on the
= base score.
Attack complexity Undefined &
(AccessComplexity) Availability of exploit [Undefined]
Level of authentication Undefined ¥ (Exploitabiity) - -
needed 3 —a T i]
. ype of fix available Mot Defined
(Authentication) (RemediationLevel) FT I
5 Level of venfication that Undefined R
Impact Metrics vulnerability exists |
XN —— (ReportConfidence)
Confidentiality impact Undefined »
{Conflmpact)
Integnty impact Undefined »
(IntegIimpact)
Availability impact Undefined
(Availlmpact)
Impact value weighting Mormal i
(Impactgias)
b
& Intemnet H100% -

Figure 2.3 NIST CVSS calculator.

Hardening the Database ®m 21

metrics and get a base score which then goes into the CPU risk matrix. Note that although the
CVSS scores desire to be a single number through which you can tell right away whether it is critical
or not, CVSS ratings depend on Oracle’s interpretation of the problem. To fully understand how
Oracle fills in the entries for computing CVSS scores see Metalink Note 394487.1.

It is especially important to understand how Oracle interprets the effect on confidentiality, avail-
ability, and integrity. The CVSS calculator allows you to enter one of three values—None, Partial, or
Complete. Complete is defined to mean that the impact is to the “whole system.” The question is what
exactly this means. One interpretation of Complete can be that the impact is to all Oracle software
running on a system and the other can be that the impact is to all software running on the system—
OS and all. Oracle chooses to use the latter interpretation. This means for example that if the vulner-
ability affects all data within the database—all tables in all schemas—the CVSS score is still going to
be based on a “Partial” selection in the calculator. Having chosen the first interpretation would have
created higher CVSS scores. This is not uncommon and is the way most vendors interpret CVSS levels
but you should understand this when you determine what your threshold for risk is.

To distinguish between cases in which the impact can be limited versus wide (which were the
terms used before adoption of CVSS), Oracle introduces another level called Partial + (see Figure
2.2). A vulnerability that affects a limited set of resources (e.g., a specific database table) will have
Partial in the risk matrix. If the vulnerability affects a wide range of resources (e.g., all tables in the
database) then the impact is logged as Partial +. Note that this does not impact the CVSS score—
the score in both cases is computed using Partial! It is therefore important to look at the entries in
the risk matrix and not only the CVSS score.

Database n-Apply CPUs

Until 2007 CPUs included one monolithic patch for the database every quarter. It was impossible
to install a subset of the fixes. This changed with the CPU of July 2007 when the n-apply patch
format was introduced to CPUs. n-apply CPUs have the following benefits:

1. Customized patch conflict resolution.
2. Elimination of rollbacks and reinstallation of CPU patches that are already installed to limit
downtime. CPUs are still cumulative but the installation process has been improved.

3. Ability to install only parts of the CPU fixes rather than have to install the whole CPU.

An n-apply CPU is a zip file that contains molecules and are installed using opatch. Each molecule
is a group of security fixes. A molecule is an independent patch that does not conflict with any of
the other molecules within the CPU.

Five Things to Remember about CPUs

1. CPUs are released every three months at specific dates so that you can plan ahead for
testing and deploying fixes.

2. CPUs include security fixes to discovered vulnerabilities. It is very important to apply
security fixes because this is the best way to protect yourself from attacks that exploit
such vulnerabilities. Note that once a CPU has been released it is easier for an attacker to
find the vulnerability because there is some information (e.g., the component) listed per
vulnerability—therefore, apply CPUs as soon as possible while going through a standard
testing and change management process.

(continued)

22 m HOWTO Secure and Audit Oracle 10g and 11g

(continued)

3. CPUs include a risk matrix that allows you to determine how critical these fixes are for
your environments. Risk matrices list which components are affected and how severe the
issue is—all are there to help you decide whether or not you can tolerate the risk if you
can’t immediately apply the CPU.

4. CPUs are cumulative—if you apply the latest CPU you have included all fixes for all
previous vulnerabilities too.

5. The new n-apply CPU packaging allows you to deploy fixes to only some vulnerabilities

versus the old format which was delivered as a single patch.

2.5 HOWTO Sanitize Data for Test

As part of the section on Database Software Development the Database STIG states:

(DG0076: CAT II) The DBA will ensure that export data from a production database
used to populate a development database has all sensitive data such as payroll data or
personal information, etc., removed or modified prior to import to the development
database.

Production databases usually have better access controls and are monitored with higher scrutiny
than development databases. This only makes sense if you assume that the sensitivity levels of data
in development and test databases are lower than those of production servers. Developers have
access to development and test databases but usually not to production servers (outside a “break
glass,” or emergency maintenance event). Therefore, you must sanitize data before you can load it
to development servers.

Sanitizing data is hard. Not only do you need to know where all your sensitive data resides,
you also need to change a lot of data in a way that does not invalidate your application and your
tests. You can’t change data randomly. If you have foreign keys (whether they are constraints in
the database or managed by the application) you need to make sure that keys are preserved and
that all references stay intact. Some fields encode application logic. For example, many account
numbers follow a certain scheme in which there is a checksum or some algorithm for generating
numbers—not any random set of digits is a valid account number. Another example is credit
card numbers. When you sanitize data you need to preserve this property or your application
will break. And finally, you need to make sure that after you sanitize the data, columns used for
indexes maintain a statistical distribution which is close to that of the production data. Otherwise,
performance tests on the sanitized data may not be indicative of the performance you will have on
the production data. All in all, sanitizing test data is a hard problem to solve—that is why many
development organizations don’t do it and simply use the production data as-is. This is in violation
of any security guideline, and tools do exist to help you accomplish this task.

The first tool available to you is the Data Masking option in Enterprise Manager. Follow these
steps once you have enabled the data masking option in Enterprise Management Grid Control:

Step 1: Log onto EM
Step 2: Click on the Targets tab and the Databases subtab.

Step 3: Select the database where you want to mask sensitive data.

Hardening the Database w 23

Create Format

Cancel OK

» Mame [SSEC
Description [Random SSEC numbers

Format Entries
Define masking format by adding one or more format entries of different types

Add |Random Digits 'I Go

Type Description Edit Remove
Random Digits Digits Length Range: 11 - 11 3"

Post Processing Function |9c ott.insantdashes

Specity s function here (for eoample: scolt checksum) to process the masked data

Sample Masked Data
Samples are generated using defined format. Use Refresh o re-generate samples. (_Refresh

« B4995606500
» 58835795501
« 59750212802
« 19015244303
= 55254386504

|_Cancel OK

Figure 2.4 Defining a masking format.

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

Click on the Administration link. At the bottom right is a Data Masking section. The
Definitions link lets you set the masking rules. The Format Library link lets you build up
a library of data masking formats. A data masking format defines how you want to mask
sensitive data. For example, you can use random numbers or random characters. For
more advanced functions (and usually you need more advanced obfuscation techniques
for real applications) you need to build PL/SQL routines. For example, if you want to test
an application you probably will want data that may have indexes with the same statisti-
cal distribution as the real data—using random characters will certainly not preserve
cardinalities.

Click on the Format Library link. This takes you to a page with a list of formats available
to you. As this product matures, there will be many predefined formats for the most com-
mon identity patterns but for now click on Create.

Figure 2.4 shows a format for masking social security numbers. These numbers have a
pattern of [0-9]{3}-[0-9]{2}-[0-9]{4}. In this case you can choose Random digits from
the drop down and click on Go. Enter 1 as the start and 11 as the end to ask Oracle to
create 11 random digits for you. Click on OK. Then, you'll have to call a PL/SQL proce-
dure to put in the dashes in locations 4 and 7, so enter the name of your procedure and
click OK.

Click on the Masking Definitions breadcrumb at the top to take you back to the masking
definitions screen. Click on Mask to create a masking job. Give the job a name and select
the database where the sensitive data resides.

Click on Add to define which column to mask and how to mask it. Put in the schema
name and click on the search icon. Select the sensitive column from the list (or multiple
columns). Click on Define Format and Add.

Click on Import From Library because you have already created the masking format.
Select your format and click Import. You've now selected where the sensitive data is and
how to mask it as shown in Figure 2.5. Click on Next.

24 m HOWTO Secure and Audit Oracle 10g and 11g

Masking Definition Impact Report Schedule Review

(Cantel) (Save) Step 1 of 4 [Neg)

=Name [MASKING_DEF_33
Database |smrep 4{

&

Description [replace SSEC numbers

Columns

Add columns you want to mask and define masking format for each column. Foreign key columns are automatically added to maintain referential integrity
Dependent columns are columns that do not have foreign key constraints defined, but reference a masked column due to application level constraints. You can
manuslly add dependent columns to 5 masked column, Removing a column from this list will remove all foreign key and dependent columns. (Add J

__Define Format) Remave)

Selact Al | Select None
F""':!" Dependent Columns

Select Owner Table Column Data Type Format Col Cou Add
I scotT EMP SSEC VARCHAR2(11) IS? 0 0 &

Foreign Key Columns

Owner Table Column Parent Owner Parent Table Parent Column

Mo foreign key

columns

Dependent Columns

Owmer Table Column Parent Owner Parent Table Parent Column Remove

Mo dependent
columns added

Figure 2.5 Defining which sensitive data to mask.

Step 10: The script is generated. Review the generation information and click Next. Enter the host
credentials where the script will be stored. Enter a schedule if the job should be scheduled
or select Immediately. Click on Next.

Step 11: Oracle produces the script and you can review it as shown in Figure 2.6. Submit the
masking job. You can then review the status (and possible errors) of masking jobs as
shown in Figure 2.7.

Rinaw
Mask: Review
Database emrep Number of Tables 1 ((Cancel) ((Back] Step 4 of 4 ((Submit)
Logged In As sysman Columns 1
Job Name MASKING_JOB_33
Job Schedule Run Immediately
Seript

The script summary is a list of the database commands that will be used to mask the selected columns. The full script is a PL/SGL script that ((Save Full Script)
includes functions, procedures, and other commands needed during the masking operation. The full script will be created when you submit the job
and will be executed by the job to perform the masking operation
View € Script Summary & Full Script
et acho off ﬂ
set feedback off
set serveroutput on
sat pagesize D

spool C:\DracleH db10g/db king33.log

- Secript Header Section

|-- functions and procedures

CREATE OR REPLACE PROCEDURE mgmi$mask_sendMsg (msg IN VARCHARZ) 1S
msg1 VARCHARZ(1020),
len INTEGER := length(msag);
| INTEGER := 1; =l

(Cancal) (Back| Step 4 of4 (Submit)

Figure 2.6 Reviewing the masking script and submitting the masking job.

Jatabase Instance: emren > Masking Definilions >
Masking Definition: MASKING_DEF_33

Hardening the Database ®w 25

A data masking definition specifies what columns to be masked and the formal of masked data

replace
Mame MASKING_DEF_33 Cstabsse emrep Description SSEC
numbers
Columns
|Ovmer i'l'ala'le Name Column Name Format
SCOTT EME SSEC oo
Feoreign Key Columns
Owmner Table Hame Column Name Parent Owner Parent Table Parent Column
No foreicn key columns
Dependent Columns
Owmer Table Hame Column Name Parent Owner Parent Table Parent Column
Mo dependent columns
Masking Jobs
lJob Name |stats |Ended Elapsed Time (seconds)|

MASKING_JOB_35
MASKING_JOB_33

Succeeded Apr 1€, 2008 10:11.39 AM (UTC-04.00)
Apr 18, 2008 1005 11 AM (UTC-04 00)

Eroblems

b
32

Figure 2.7 Reviewing the status of masking jobs.

As an example, if you use random digits and a PL/SQL procedure that adds the dashes, and if

the data looks like:

SQL> select * from emp;

EMPNC ENAME

ADAMS
TURNER
CLARK
JONES
KING
JAMES
SCOTT
SMITH
7934 MILLER

Then, your masked data will look like:

SQL> select * from emp;

EMPNO ENAME
7844 TURNER
7782 CLARK
7934 MILLER
7566 JONES
7839 KING
7788 SCOTT

JOB MGR
SALESMAN 7698
CLERK 7788
SALESMAN 7698
MANAGER 7839
MANAGER 7839
PRESIDENT

CLERK 7698
ANALYST 7566
CLERK 7902
CLERK 7782
JOB MGR
SALESMAN 7698
MANAGER 7839
CLERK 7782
MANAGER 7839
PRESIDENT
ANALYST 7566

HIREDATE

20-FEB-81
23-MAY-87
08-SEP-81
09-JUN-81
02-APR-B1
17-NOV-81
03-DEC-81
19-APR-87
17-DEC-80
23-JAN-82

HIREDATE

08-SEP-81
09-JUN-81
23-JAN-82
02-APR-81
17-NOV-81
19-APR-87

110
111

COMM DEPTNO SSEC

COMM DEPTNO

0 30
10
10
20
10
20

111-11-1111
222-22-2222
333-33-3333
444-44-4444
000-00-0000
B88B-88-8888
TI7-77-7777
555-55-5555
999-99-9999
666-66-6666

745-80-4600
B857-87-7301
522-91-5302
658-07-6603
B886-14-8204
661-97-3505

26 m HOWTO Secure and Audit Oracle 10g and 11g

7369 SMITH CLERK 7902 17-DEC-80 110 20 995-32-6006
7900 JAMES CLERK 7698 03-DEC-81 106 30 B21-79-0807
7876 ADAMS CLERK 7788 23-MAY-87 101 20 420-95-5508
7499 ALLEN SALESMAN 7698 20-FEB-81 100 300 30 375-11-5609

The Data Masking option is a new product and therefore has only rudimentary formats. With
time the masking format library will grow and you will get logic-preserving and statistically
preserving formats. However, there is a large set of third-party tools that perform this function
and have a mature set of operators and formats. Examples include Princeton Softech (now IBM

Optim), Application, Solix, and HP/Outerbay.

Three Things to Remember about Sanitizing Test Data

1. You must sanitize sensitive information if you generate test data by copying real data
from production systems.

2. Sanitizing data is far from trivial—you cannot simply replace data with random strings
or numbers. You have to preserve application logic which is often coded into data and you
must preserve statistical distribution for performance tests to be valid.

3. You should use tools to sanitize data—use either the data making pack that is now part
of Enterprise Management Grid Control or use third-party tools.

2.6 Discussion: Defense in Depth

All modern information security is founded on a concept called defense in depth. Defense in depth
involves multiple layers of defense that increase the cost of an attack and places multiple barriers
between an attacker and your computing resources. Multiple techniques and systems help
mitigate the impact when one component of the defense is compromised or circumvented.
The deeper an attacker tries to go the harder it gets. In addition to protecting your resources better,
by the mere fact that there are multiple layers, defense in depth naturally provides areas in which
you can put systems that can monitor and identify intrusions. This can often buy time to detect
and respond to a breach and reduce its impact.

The term “defense in depth” is derived from a military strategy called defense in depth (also
known as deep defense or elastic defense). This military strategy seeks to delay the advance of an
attacker rather that prevent the advance. This buys time and causes enemy casualties—so rather
than defeating an attacker with a single line, defense in depth relies on the tendency of an attack
to lose momentum over a period of time or when it has to cover a larger area. The defender can
yield some lines and territories causing the attacker to spread. This allows the defender to identify
and mount counterattacks on the attacker’s weak points.

Defense in depth is considered the only viable strategy for information systems. The reason is
that there is no such thing as a perfect security layer. Anything can be cracked and every system
has bugs. Moreover—the quality of both security and attacks are highly correlated with their cost.
The goal of a good IT security implementation is to create an environment in which an attack
will cost too much to be worth it—and do it all within a reasonable budget. Therefore, relying

Hardening the Database W 27

on a single super-duper security system just does not work. Instead, build multiple good (but
perhaps not perfect) security layers. This has been described in an excellent paper called “Defense
in Depth—A practical strategy for achieving information assurance in today’s highly networked
environments~ published by the National Security Agency (NSA)—http://www.nsa.gov/snac/
support/defenseindepth.pdf.

Securing Oracle environments must follow the same strategy. The hardening checklists clearly
discuss multiple types of activities that, if done in concert, implement a best practice in Oracle
security. Remember that the security techniques available within the database can (and should) be
augmented with security systems sitting outside the database—be they network security systems,
database activity monitoring systems or host security. Always think of the main thesis of defense
in depth—don’t rely on one layer only.

Database security

HOWTO Secure and
Audit Oracle 10g and 11g

Ron Ben Natan

Foreword by Pete Finnigan

Oracle is the number one database engine in use today. The fact that it is the choice of military
organizations and agencies around the world is part of the company’s legacy and is evident in the
product. Oracle has more security-related functions, products, and tools than almost any other
database engine. Unfortunately, the fact that these capabilities exist does not mean that they are
used correctly or even used at all. In fact, most users are familiar with less than 20 percent of the
security mechanisms within Oracle.

Written by Ron Ben Natan, one of the most respected and knowledgeable database security
experts in the world, HOWTO Secure and Audit Oracle 10g and 11g shows readers how to
navigate the options, select the right tools and avoid common pitfalls. The text is structured as
HOWTOs — addressing each security function in the context of Oracle 11g and Oracle 10g.

Among a long list of HOWTOs, readers will learn to —

* Choose configuration settings that make it harder to gain unauthorized access

¢ Understand when and how to encrypt data-at-rest and data-in-transit and how to
implement strong authentication

e Use and manage audit trails, and advanced techniques for auditing

* Assess risks that may exist and determine how to address them

* Make use of advanced tools and options such as Advanced Security Options,
Virtual Private Database, Audit Vault, and Database Vault

The text also provides an overview of cryptography, covering encryption and digital signatures
and shows readers how Oracle Wallet Manager and orapki can be used to generate and manage
certificates and other secrets.

While the book’s 17 chapters follow a logical order of implementation, each HOWTO can be
referenced independently to meet a user’s immediate needs. Providing authoritative and succinct
instructions highlighted by examples, this ultimate guide to security best practices for Oracle
bridges the gap between those who install and configure security features and those who secure
and audit them.

AU4L27

CRC P 6000 Broken Sound Parkway, NW
ress Suite 300, Boca Raton, FL 33487 ISBN: 978-1-4200-8412-2
Taylor & Francis Group 270 Madison Avenue 90000
an informa business New York, NY 10016

www.taylorandfrancisgroup.com | 2 Park Square, Milton Park | ||
q%7a81420"084 122

Abingdon, Oxon OX14 4RN, UK
www.auerbach-publications.com

Compliments of: For more information contact:

———== IBM InfoSphere Guardium
5 Technology Park Drive guardium@us.ibm.com
® Westford MA 01886 ibm.com/software/data/guardium

