

1

1

Getting Started

Getting Started

This book is about database security and auditing. By reading it you will
learn many methods and techniques that will be helpful in securing, moni-
toring, and auditing database environments. The book covers diverse topics
that include all aspects of database security and auditing, including network
security for databases, authentication and authorization issues, links and
replication, database Trojans, and more. You will also learn of vulnerabilities
and attacks that exist within various database environments or that have
been used to attack databases (and that have since been fixed). These will
often be explained to an “internals” level. Many sections outline the “anat-
omy of an attack” before delving into the details of how to combat such an
attack. Equally important, you will learn about the database auditing land-
scape—both from a business and regulatory requirements perspective as
well as from a technical implementation perspective.

This book is written in a way that will be useful to you—the database
administrator and/or security administrator—regardless of the precise data-
base vendor (or vendors) that you are using within your organization. This
is not to say that the book is theoretical. It is a practical handbook that
describes issues you should address when implementing database security
and auditing. As such, it has many examples that pertain to Oracle, SQL
Server, DB2, Sybase, and sometimes even MySQL. However, because
detailing every single example for every database platform would have
meant a 2,000-page book, many of the examples are given for a single data-
base or a couple of them. The good news is that all techniques (or almost all
of them) are relevant to all database platforms, and I urge you to read
through all sections even if the example code snippets are taken from a
database environment that you are not running. In all of these cases, it will
be easy for you to identify the equivalent setting or procedure within your
own environment.

Courtesy of Digital Press, an imprint of Elsevier, Inc. Science and Technology Books www.elsevierdirect.com

2 Getting Started

More important, many of the techniques you will see in this book will
never be described in a manual or a book that is devoted to a certain data-
base product. As you’ll learn throughout this book, good database security
cannot always be implemented solely within the database, and many of
the most serious security issues that you may face as the database owner
(or the server owner) have to do with the way applications use a database
and the way various interacting systems are configured. Addressing these
complex issues must take into account more than just the database, and
focusing on capabilities that are provided only by the database vendor is
not always enough.

At this point you may be asking yourself a few questions:

�

Doesn’t the database have many security and auditing features? Isn’t a
database merely a file system with a set of value-added services such as
transaction management and

security

? Isn’t my database secure?

�

Why now? The database has been part of the IT environment for
many years (relational databases for at least 20 years); why should we
suddenly be overly concerned with security and auditing?

The answer to the first set of questions is that while such features exist,
they are not always used and are not always used correctly. Security issues
are often a matter of misconfiguration, and the fact that the database imple-
ments a rich security model does not mean that it is being used or that it is
being used correctly. If you are like 90% of database administrators or secu-
rity administrators, you are probably aware that your database has big gap-
ing holes—disasters waiting to happen. In fact, here are some examples that
made the headlines (and rest assured that for every incident that makes
headlines there are 100 that are kept quiet):

�

In early 2000, the online music retailer CD Universe was compro-
mised by a hacker known as “Maxus.” The hacker stole credit card
numbers from the retailer’s database and tried to extort money from
the retailer. When his demands were refused, he posted thousands of
customers’ credit card details to the Internet. (Go to http://data-
bases.about.com/gi/dynamic/offsite.htm?site=http://
www.pc%2Dradio.com/maxus.htm to see what Maxus’ Web site
looked like.)

Courtesy of Digital Press, an imprint of Elsevier, Inc. Science and Technology Books www.elsevierdirect.com

Getting Started 3

Chapter 1

�

In December 2000, the online retailer Egghead.com announced that
its customer database may have been compromised and warned that
more than 3.5 million credit card numbers may have been stolen.
Egghead.com later announced that the credit cards were not compro-
mised but the investigation cost millions and few customers were
willing to continue to do business with the retailer. The company
went out of business shortly thereafter.

�

In 2001, Bibliofind, a division of Amazon.com that specialized in
rare and out-of-print books, was attacked and details for almost
100,000 credit cards were stolen. Even worse, the attackers main-
tained free access to the database for four months before being dis-
covered! As a result, Bibliofind stopped offering buy/sell services and
ended up as a matching service only (i.e., had to forgo a large portion
of its revenues).

�

In March 2001, the FBI reported that almost 50 bank and retail Web
sites were attacked and compromised by Russian and Ukrainian
hackers.

�

In November 2001, Playboy.com was attacked and credit card infor-
mation was stolen. In fact, the hackers sent e-mails to customers that
displayed the credit card information.

�

In the course of 2001, Indiana University was successfully attacked
twice and private information, such as social security numbers and
addresses, was stolen.

�

A study conducted by Evans Data (a market research firm) in 2002
sampled 750 companies and reported that 10% of databases had a
security incident in 2001! More than 40% of banking and financial
services companies reported “incidents of unauthorized access and
data corruption” and 18% of medical/healthcare firms reported simi-
lar types of incidents.

�

In Oct. 2004 a hacker compromised a database containing sensitive
information on more than 1.4 million California residents. The
breach occurred on Aug 1 but was not detected until the end of the
month. The database in question contained the names, addresses,
Social Security numbers, and dates of birth of caregivers and care
recipients participating in California’s In-Home Supportive Services
(IHSS) program since 2001. The data was being used in a UC Berke-
ley study of the effect of wages on in-home care and was obtained with
authorization from the California Department of Social Services. The
hacker had reportedly taken advantage of an unpatched system and

Courtesy of Digital Press, an imprint of Elsevier, Inc. Science and Technology Books www.elsevierdirect.com

4 Getting Started

while officials declined to state which vendor’s database was the sub-
ject of the attack they did report that it was a “commercially available
product with a known vulnerability that was exploited.”

�

In Jan 2005 the following was reported by Security Focus (http://
www.securityfocus.com/news/10271):

A sophisticated computer hacker had access to servers at wireless
giant T-Mobile for at least a year, which he used to monitor U.S.
Secret Service e-mail, obtain customers’ passwords and Social Secu-
rity numbers, and download candid photos taken by Sidekick users,
including Hollywood celebrities, SecurityFocus has learned… by late
July [of 2004] the company had confirmed that the offer was genu-
ine: a hacker had indeed breached their customer database

The answer to the second set of questions—why now?—is a conver-
gence of several factors—almost a “perfect storm.” True, the database has
been around for a long time, but the following trends are dominating the
last few years:

�

E-commerce and e-business

�

New and wonderful ways to use databases

�

Increased awareness among the hacker community

�

Widespread regulations that pertain to IT and to security

E-commerce and e-business have changed the way we live. We buy from
online retailers, we pay our utility bills using online banking sites, and
more. Businesses have optimized their supply chains and use Customer
Relationship Management (CRM) software to manage relationships with
their clients. In doing so, systems have become much “closer” to each other
and much “closer” to the end users. Sure, we use firewalls to secure our net-
works and we don’t connect databases directly to the Internet, but you’ll see
in Chapter 5 that there is more than one way to skin a cat and that data-
bases are far more exposed than they used to be. Ten years ago the database
was accessed by applications that were only available to internal employees.
Now it is (indirectly through the application) accessed by anyone who has
access to the Web site (i.e., everyone in the world).

Courtesy of Digital Press, an imprint of Elsevier, Inc. Science and Technology Books www.elsevierdirect.com

Getting Started 5

Chapter 1

While e-commerce has certainly added many indirect users on the data-
base, e-business has had a much bigger impact on security (or the lack of it).
Doing efficient business with suppliers, customers, and employees has cre-
ated new and wonderful ways in which the database is used and innovative
ways in which it is configured. Opening up the enterprise to improve pro-
cesses and streamline business was done quickly and without too much
analysis of security implications. Databases are deployed in many places
(physically and logically) and often with no significant protective layers.

New technologies are constantly being released by the vendors. These
technologies include Web services within the database, XML handling
within the database, tight integration with application servers, and the abil-
ity to run any application logic directly within the database (to the extent of
having an embedded Java virtual machine inside the database). This is great
for developers and for increasing productivity, but it creates a security
nightmare. More functionality means more (actually, many more) bugs that
can be exploited by hackers, and many of the leading vendor databases have
been plagued with bug-related vulnerabilities. Even if new functions have
no vulnerability, these features are usually risky because they open up the
database to more types of attacks. They increase not only the developer’s
productivity but also the hacker’s productivity.

While we’re discussing hacker skills and effectiveness, let’s move on to
hacker awareness. Hackers are always looking for new targets for their
attacks and new methods they can use. In the same way that you realize that
databases hold the crown jewels, so do the hackers. Furthermore, after mas-
tering attacks on networks and operating systems, hackers have turned to
applications and databases as new breeding ground. This is very visible in
hacker forums. It is interesting, for example, to track hacker conferences
such as BlackHat and Defcon. In 2001, both BlackHat and Defcon had
one presentation each devoted to database hacking. In 2002, BlackHat had
five such presentations and Defcon had four such presentations. In 2003,
BlackHat already had a full track dedicated to database hacking.

Last, but by no means least, is regulation. Bad accounting practices,
fraud, and various corporate scandals/crimes have prompted regulators to
define and enforce new regulations that have a direct impact on IT audit-
ing. Because financial, personal, and sensitive data is stored within data-
bases, these requirements usually imply database auditing requirements.
Because regulations such as Sarbanes-Oxley, GLBA, and HIPAA (all dis-
cussed in Chapter 11) have financial and criminal penalties associated
with noncompliance, database security and auditing have suddenly come
to the forefront.

Courtesy of Digital Press, an imprint of Elsevier, Inc. Science and Technology Books www.elsevierdirect.com

6

1.1

Harden your database environment

So now that you are (hopefully) convinced that you need to invest in the
security of your database, let’s turn to the book. The book has two main
parts: Chapters 1 through 10 show you how to implement various facets of
database security, and Chapters 11 through 13 can help you with database
auditing implementations. Each chapter is focused on a certain aspect of
the database. For example, Chapter 3 is focused on the database as a net-
worked server, Chapter 4 on database authentication, and Chapter 10 on
encryption within the database environment. The only exception is this
chapter—Chapter 1. In this chapter you will get started by taking care of
the basics—various best practices in terms of hardening your database,
applying patches, and so on. This is also the most boring chapter of the
book, specifically because it includes long lists of things you should remem-
ber when starting off. Don’t skip this chapter, because it has many useful
snippets of experience, but remember that the rest of the book is much
more elaborate and much more annotated than this chapter.

1.1 Harden your database environment

Hardening is a process by which you make your database more secure and is
sometimes referred to as locking down the database. When you harden your
database environment, you remove vulnerabilities that result from lax con-
figuration options and can even compensate for vulnerabilities that are
caused by vendor bugs. Although you cannot remediate these bugs, you can
form an environment in which those bugs cannot be exploited.

Hardening is also called hack-proofing. The essence of the process
involves three main principles. The first involves locking down access to
important resources that can be misused—maliciously or by mistake. The
second involves disabling functions that are not required for your imple-
mentation, which can be misused by their very existence. The third princi-
ple is that of least privileges (i.e., giving every user, task, and process the
minimal set of privileges required to fulfill their role).

Hardening is a process that is relevant to any resource within IT, and
hardening scripts are available for every operating system, server, and so on.
In many ways you can view the entire book as a hardening guide; in each
chapter you will focus on one aspect of the relational database management
system (RDBMS), learn how it can be misused, and what you should do to
avoid these cases. The lists presented below do not go into that level of
detail and do not cover the many dimensions of database security that are
covered by Chapters 3 through 10. Instead, this section provides a starting
point after which the lessons learned in later chapters can be implemented.

Courtesy of Digital Press, an imprint of Elsevier, Inc. Science and Technology Books www.elsevierdirect.com

1.1

Harden your database environment 7

Chapter 1

This section is broken up into different database types, but many of the
tasks are common and do not depend on the particular database platform.
For example, good security always starts with securing the physical environ-
ment and the operating system (OS) the database runs on and ends with
disallowing developer access to production instances. Apart from mention-
ing these as list items, I do not go into the details of how to secure the OS
layer because there are many books on that topic alone. (see the resource
section at the end of this chapter)

1.1.1 Hardening an Oracle environment

Oracle is one of the most well-documented database environments, and
there are many hardening scripts on the Web (e.g., Pete Finnigan’s checklist
at www.petefinnigan.com/orasec.htm). Hardening an Oracle environment
should include at least the following tasks:

�

Physically secure the server on which Oracle lives.

�

In a UNIX environment:

�

Don’t install Oracle as root.

�

Before installing, set the umask to 022.

�

Don’t use /tmp as the temporary install directory; use a directory
with 700 permissions.

�

In a Windows environment, do not install Oracle on a domain con-
troller.

�

Create an account for each DBA that will access the server; don’t have
all DBAs logging into the server using the the same user.

�

Lock the software owner account; don’t use it to administer the data-
base.

�

Verify that the Oracle user (at the operating system level) owns all of
the files in $ORACLE_HOME/bin. Check permissions in this direc-
tory and (on UNIX) check the umask value. File permissions should
be 0750 or less.

�

Understand what features and packages are installed on your system.
Oracle is very functional and has many options. If you’re installing
from scratch, install only those features that you really need. If you
already have an installation, review the options that are enabled and
remove those that you don’t need. The first principle of hardening (in

Courtesy of Digital Press, an imprint of Elsevier, Inc. Science and Technology Books www.elsevierdirect.com

8

1.1

Harden your database environment

any environment) is that an option that is not installed cannot be
used against you.

�

Ensure limited file permissions for init.ora.

�

Verify limited file permissions for webcache.xml, snmp_ro.ora,
snmp_rw.ora, sqlnet.ora, htaccess, wdbsvr.app, and xsqlconfig.xml.

�

Set HTTP passwords.

�

Disable iSQL*Plus for production servers.

�

Remove default accounts that are not used. (More on this in Chapter 4.)

�

There are many issues related to the SNMPAGENT user, so make
sure this is one of the users that are removed (unless you really
need to use it).

�

Check for default passwords such as “

change_on_install.

” (More
on this in Chapter 4.)

�

Check that users are defined using strong passwords. This is especially
important for SYS and for SYSTEM. (More on this in Chapter 4.)

�

Use password profiles. (More on this in Chapter 4.)

�

Close ports that are not needed. Don’t use port redirection. Remove net-
working protocols that are not needed. (More on these in Chapter 3.)

�

Ensure that the following values are set in init.ora:

_trace_files_public=FALSE

global_names=TRUE

remote_os_authent=FALSE

remote_os_roles=FALSE

remote_listener=""

sql92_security=TRUE

�

On Windows, set the OSAUTH_PREFIX_DOMAIN registry key to
true.

�

Remove completely or limit privileges that include ANY.

�

Limit or disallow privileges for ALTER SESSION, ALTER SYS-
TEM, and BECOME USER.

�

Don’t set default_tablespace or temporary_tablespace to SYSTEM for
user accounts.

�

Limit users who have a “DBA” granted role.

Courtesy of Digital Press, an imprint of Elsevier, Inc. Science and Technology Books www.elsevierdirect.com

1.1

Harden your database environment 9

Chapter 1

�

Don’t collapse OSDBA/SYSDBA, OSOPER/SYSOPER, and DBA
into one role. Groups mapping to the OSDBA role, the OSOPER
role, and the software owner should be distinct.

�

Limit users who have “

with admin

” privileges. This will limit users
who can change the schema and other system attributes.

�

Limit “

with grant

” options. These create privilege chains in which a
user is allowed to grant access to other users.

�

Fully understand, monitor, and review system privileges assigned to
users and roles. These are stored in

DBA_SYS_PRIVS

. Remember
that you will get a list for both users and roles and that there is a hier-
archical role structure. As an example, selecting

select * from

dba_sys_privs where grantee='SYS' will show all of the SYS sys-
tem privileges:

GRANTEE PRIVILEGE ADM
---------- ------------------------------------ ---
SYS AUDIT ANY NO
SYS DROP USER NO
SYS RESUMABLE NO
SYS ALTER USER NO
SYS ANALYZE ANY NO
SYS BECOME USER NO
SYS CREATE ROLE NO
SYS CREATE RULE YES
…
SYS ADMINISTER DATABASE TRIGGER NO
SYS ADMINISTER RESOURCE MANAGER NO
SYS CREATE PUBLIC DATABASE LINK NO
SYS DROP ANY EVALUATION CONTEXT YES
SYS ALTER ANY EVALUATION CONTEXT YES
SYS CREATE ANY EVALUATION CONTEXT YES
SYS EXECUTE ANY EVALUATION CONTEXT YES

139 rows selected.

� Make sure that the utl_file_dir parameter in V$PARAMETER is not
set to * or to the same value as that for user_dump_dest.

� Limit as much as possible permission to the SGA tables and views.
Users have no business accessing the X$ tables, DBA_ views, or V$
views, and there is too much sensitive information in these objects
that would be a paradise for hackers.

Courtesy of Digital Press, an imprint of Elsevier, Inc. Science and Technology Books www.elsevierdirect.com

10 1.1 Harden your database environment

� Limit as much as possible access to ALL_USERS and all the ALL_%
views.

� Limit access to SYS.AUD$, SYS.USER_HISTORY$, SYS.LINK$,
SYS_USER$, SYS.RESOURCE$, PERFSTAT.STAT$SQLTEXT,
PERFSTAT.STATS$SQL_SUMMARY, ALL_SOURCE,
DBA_ROLES, DBA_SYS_PRIVS, DBA_ROLE_PRIVS,
DBA_TAB_PRIVS, DBA_USERS, ROLE_ROLE_PRIVS,
USER_TAB_PRIVS, and USER_ROLE_PRIVS.

� Secure access to catalog roles and dba role views.

� Revoke public execute privileges on utl_file, utl_tcp, utl_http,
utl_snmp, dbms_random, dbms_lob, dbms_job, dbms_scheduler,
owa_util, dbms_sql, and dbms_sys_sql.

� Revoke CONNECT and RESOURCE roles from all users.

� Check all database links and make sure you are not storing passwords
in clear text. (More on this in Chapter 8.)

� Set a password for the listener. (More on this in Chapter 3.)

� Remove the EXTPROC entry from listener.ora. (More on this in
Chapter 7.)

� Use product profiles to secure SQL*Plus. (More on this in Chapter 5.)

� Set tcp.validnode_checking, tcp.invited_nodes, and tcp.excluded_nodes
in protocol.ora (Oracle 8i) or sqlnet.ora (Oracle 9i,10g). (More on this in
Chapter 5.)

� Revoke as many packages from PUBLIC as possible.

� Audit that developers cannot access production instances.

� Enable auditing. This is a complex topic. (More on this in Chapters
11 through 13.)

Once you have finished hardening your Oracle environment, you may
want to validate your environment using the audit checklist available at
www.petefinnigan.com/orasec.htm.

1.1.2 Hardening a SQL Server environment

SQL Server has suffered from a lot of bad press and from several very visible
attacks. It is also one of the most functionally rich databases, which trans-
lates to “inherently insecure” in security lingo. Luckily, SQL Server is also

Courtesy of Digital Press, an imprint of Elsevier, Inc. Science and Technology Books www.elsevierdirect.com

1.1 Harden your database environment 11

Chapter 1

one of the most well-documented environments. There are numerous
resources available that can help you secure your SQL Server environments,
many products that can be of assistance, and a very large community sup-
porting security in this environment. Furthermore, contrary to public per-
ception, Microsoft is actually investing a lot in making the SQL Server
platform more secure.

Hardening a SQL Server environment should include at least the fol-
lowing tasks:

� Physically secure the server on which SQL Server lives.

� Apply all service packs and hot fixes to both the Windows operating
system and SQL Server. You can execute select @@version to see
precisely which version you are running. You can see what this ver-
sion maps to in terms of patch levels at www.sqlsecurity.com/Desk-
topDefault.aspx?tabid=37.

� Make sure all SQL Server data files and system files are installed on
an NTFS partition and that the appropriate permissions are defined
for the files.

� Use a low-privilege user account for the SQL Server service. Don’t use
LocalSystem or Administrator.

� Delete setup files. Setup files may contain plain text and weakly
encrypted credentials. They contain sensitive configuration informa-
tion that has been logged during installation. These files include sql-
stp.log, sqlsp.log, and setup.iss in the MSSQL\Install (or
MSSQL$<instance name>\Install). Microsoft provides a free utility
called killpwd that locates and removes these passwords from your
system.

� Secure the sa account with a strong password.

� Remove all sample users and sample databases.

� Review all passwords. At the very least, check for null passwords
using the following SQL: select name, password from syslogins
where password is null. (See Chapter 4 for more on password
strength.)

� Remove the guest user from all databases except from master and
tempdb.

� Review how roles are assigned to users at a database and server level
and limit assignment to the minimal set necessary.

Courtesy of Digital Press, an imprint of Elsevier, Inc. Science and Technology Books www.elsevierdirect.com

12 1.1 Harden your database environment

� Put a process in place that allows you to periodically review role and
group membership.

� Use Windows authentication rather than mixed authentication.

� Remove network libraries that are not used (or that you don’t know
are used). SQL Server can be accessed using several network libraries.
Most environments are based on TCP/IP, in which case all other net-
work libraries should be removed. (More on this in Chapter 3.)

� Require all access to the database server to be networked. Don’t allow
or promote remote access to the operating system and running tools
locally.

� Remove or restrict access to extended (xp__ stored procedures).
Restrictions can be to administrator accounts only or in some cases
even more restrictive. (See Chapter 7 for more details.)

� Do not install user-created extended procedures because they run
with full security rights on the server.

� Check and limit procedures that are available to PUBLIC. To check
which procedures may be a problem, you can use the following SQL:
select sysobjects.name from sysobjects, sysprotects where

sysprotects.uid = 0 and xtype IN ('X','P') and sysob-

jects.id = sysprotects.id.

� Disable SQL mail capabilities and find alternative solutions to notifi-
cation methods.

� Do not install full-text search unless your application requires it.

� Disable Microsoft Distributed Transaction Coordinator unless dis-
tributed transactions are really required for your application.

� Check for startup Trojans. Make sure there are no weird calls in
master..sp_helpstartup. (See Chapter 9 for more details.)

� Check for password-related Trojans by comparing
master..sp_password to that of a fresh install. (See Chapter 9 for
more details.)

� Closely monitor all failed login attempts. Put together the procedure
and process for giving you constant access to this information. (More
on this in Chapters 4 and 12.)

� Audit that developers cannot access production instances.

� Enable auditing. This is a complex topic. (More on this later in this
chapter and in Chapters 11 through 13.)

Courtesy of Digital Press, an imprint of Elsevier, Inc. Science and Technology Books www.elsevierdirect.com

1.1 Harden your database environment 13

Chapter 1

An excellent resource for hardening SQL Server is a script written by
Chip Andrews that you can download from www.sqlsecurity.com/
DesktopDefault.aspx?tabid=25 (or go to www.sqlsecurity.com and select
Tools -> Lockdown Script from the menu bar).

1.1.3 Hardening a DB2 UDB (LUW) environment

� Physically secure the server on which the DB2 instance lives.

� Do not run DB2 as root (or as LocalSystem on Windows). On
Windows, run the service as a local nonprivileged user and lock
down registry permissions on DB2 keys.

� Verify that all DB2 files have restrictive file permissions. On UNIX
this means 0750 or more restrictive.

� Remove default accounts that are not used.

� Remove the sample database and any other databases that are not
needed.

� Check for default passwords. Check password strengths, especially
in db2admin, db2inst?, db2fenc?, and db2as. (More on this in
Chapter 4.)

� Enable password profiles (lockout and expiration).

� Never use CLIENT authentication. Use SERVER_ENCRYPT,
DCE_ENCRYPT, or KRB_SERVER_ENCRYPT if possible. (More
on this in Chapter 4.)

� Close unnecessary ports and services (e.g., the JDBC applet service
and ports 6789 and 6790).

� Remove all permissions granted to PUBLIC. At the very least, revoke
IMPLICIT_SCHEMA database authority from PUBLIC.

� Restrict who has SYSADM privileges. The installation may assign
SYSADM privileges to too many of the default users, and it is impor-
tant to remove these privileges.

� Revoke privileges on system catalogs: SYSCAT.COLAUTH,
SYSCAT.DBAUTH, SYSCAT.INDEXAUTH, SYSCAT.PACKAGE-
AUTH, SYSCAT.PASSTHRUAUTH, SYSCAT.ROUTINEAUTH,
SYSCAT.SCHEMAAUTH, and SYSCAT.TABAUTH.

� If running on Windows, add all normal users to the DB2USERS
group and all administrators to the DB2ADMINS group.

Courtesy of Digital Press, an imprint of Elsevier, Inc. Science and Technology Books www.elsevierdirect.com

14 1.1 Harden your database environment

� If running on Windows, change the user under which the DAS ser-
vice runs using db2admin setid<username> <password>. Don’t use
the services utility, because some of the required access rights will not
be set for the logon account.

� Audit that developers cannot access production instances.

� Enable auditing. This is a complex topic. (More on this later in this
chapter and in Chapters 11 through 13.)

1.1.4 Hardening a Sybase environment

� Physically secure the server on which Sybase lives.

� Apply all Emergency Bug Fixes (EBFs), Electronic Software Deliver-
ies (ESDs), and Interim Releases (IRs) to both the operating system
and to Sybase. You can execute select ++version and download
appropriate patches from the Sybase support Web site.

� Ensure that the directories in which Sybase is installed can be
accessed only by the administrator user.

� Secure the sa account with a strong password.

� Remove all sample databases and review which databases are available
on the server. You can use exec sp_helpdb.

� Remove all system accounts that are not used and review password
strengths for those that are left. Pay special attention to the following
login names, which may exist as part of installations of other Sybase
servers:

Name Description

dba Created with Enterprise Portal Express Edition

entldbdbo Created with database access control

entldbreader Created with database access control

jagadmin Created with Enterprise Portal Application Server

pkiuser Created with Enterprise Portal

PlAdmin Created with Enterprise Portal Application Server

PortalAdmin Created with Enterprise Portal

pso Created with Enterprise Portal

sybmail Created when the Sybase mail service in installed (it should
not be installed—see the next bullet)

Courtesy of Digital Press, an imprint of Elsevier, Inc. Science and Technology Books www.elsevierdirect.com

1.1 Harden your database environment 15

Chapter 1

� Don’t use the Sybase mail capability.

� Review all passwords. (See Chapter 4 for more on password strength.)

� Make sure that passwords are set to expire by setting exec
sp_configure "password expiration interval", 60. You can use
any number except 0, which means that passwords never expire. The
example above sets passwords to expire after 60 days. (More on this in
Chapter 4.)

� Require strong passwords. For example, set exec sp_configure
"password expiration interval", 1 to ensure that each password
has at least one digit and set exec sp_configure "minimum password
length", 8 to ensure that each password is at least eight characters
long (or whatever your policy requires). (More on this in Chapter 4.)

� Remove the guest user from all databases except from master and
tempdb.

� If you are running a Windows-based system, verify that the Sybase
registry keys have the appropriate permissions.

� If running on a Windows system, prefer integrated authentication
mode. You can check the authentication mode using exec
sp_loginconfig "login mode". Integrated is a value of 1.

� Ensure that the default login (used in integrated login mode when a
user has no entry in the syslogins table) is mapped to a low-privilege
account or, preferably, to null. You can view the mapping using exec
sp_loginconfig "default account".

� Protect the source code of stored procedures, views, triggers, and con-
straints. Ensure that the syscomments table is protected by testing
that the value for exec sp_configure "select on syscom-
ments.text" is 0. (More on this in Chapter 9.)

� Ensure that users cannot write stored procedures that modify system
tables. You can test the value using exec sp_configure "allow
updates to systems tables".

� Make sure resource limits are enabled by testing the value using exec
sp_configure "allow resource limit". You can then set resource
limits per user (stored in sysresourcelimit). This protects your server
against denial-of-service attacks because a user who has been granted
access to the system cannot bring the server to its knees by issuing
commands that generate huge result sets and otherwise consume too
many resources.

Courtesy of Digital Press, an imprint of Elsevier, Inc. Science and Technology Books www.elsevierdirect.com

16 1.1 Harden your database environment

� Closely monitor all failed login attempts. There are numerous ways
to do this. (More on this in Chapters 4 and 12.) If you want to log
these failed attempts to the error logs, use exec sp_configure "log
audit logon failure".

� When running on a Windows server, remove the xp_cmdshell
extended procedure by executing exec sp_dropextendedproc
xp_cmdshell.

� Audit that developers cannot access production instances.

� Install the Sybase auditing feature and use the auditing tables in syb-
security or use other audit mechanisms. (More on this later in this
section and in Chapter 11 through 13.)

1.1.5 Hardening a MySQL environment

Of the database platforms mentioned in this chapter, MySQL is the only
open-source database platform. Being open source has advantages and dis-
advantages when dealing with security and hardening. In the long term, the
open-source community has shown that the sheer number of users and the
open sharing of information guarantees high levels of quality and therefore
fewer vulnerabilities and better security. In the short term, however, open
source means that hackers have access to the source code and can easily fig-
ure out the weaknesses of the product and how to exploit them. Regarding
MySQL, we are still in the early days, and security for MySQL is a concern.
Moreover, the new features recently introduced in version 5.0 will lead to
more security issues, and security management in version 5.0 promises to
be a challenge. A good starting point for MySQL hardening should include
at least the following:

� Physically secure the server on which MySQL lives.

� Use the following mysqld options:

� --local-infile=0 to disable LOCAL in LOAD DATA statements
� --safe-show-database to ensure that a SHOW DATABASES com-

mand only lists databases for which the user has some kind of
privilege. If you wish to be even more restrictive, use the --skip-
show-database option.

� --safe-user-create ensuring that a user cannot create new users
using GRANT unless the user has INSERT privileges into
MYSQL.USER

Courtesy of Digital Press, an imprint of Elsevier, Inc. Science and Technology Books www.elsevierdirect.com

1.1 Harden your database environment 17

Chapter 1

� --secure-auth disallowing authentication for accounts that have
passwords from versions prior to 4.1

� --skip-name-resolve
� --skip-symbolic-links disallows the use of symbolic links to tables

on UNIX

� Do not use the --skip-grant-tables mysqld option.

� Do not use the --enable-named-pipe option on Windows—use TCP
network access rather than named pipes. (More on this in Chapter 3.)

� Do not grant the PROCESS, FILE, or SUPER privileges to nonad-
ministrative users.

� When using MySQL as a back-end for a Web server, don’t run
MySQL on the same host as the Web server. This has been suggested
in some texts so that MySQL can be configured to disallow remote
connections. However, the risks of having the database on the same
host as the Web server are greater than the benefit in disallowing net-
worked connections. For example, many Web servers have known
vulnerabilities that would allow a hacker to download files, including
for example MyISAM or innodb files used by MySQL.

� Ensure a strong password for user root.

� Disallow the default full control of the database to local users and dis-
allow the default permissions for remote user to connect to the data-
base. delete from user where user =’’;

� Don’t use MySQL prior to version 4.1.x; there are too many serious
vulnerabilities in the authentication protocol. Prefer a version later
that 4.1.2 because these do not suffer from a buffer overflow vulnera-
bility that allows authentication bypass.

� Limit privileges to the load_file function.

� Limit privileges to load data infile and select into <file>.

� Disallow developer access to production instances.

� Enable auditing. This is a complex topic. (More on this later in this
chapter and in Chapters 11 through 13.)

1.1.6 Use configuration scanners or audit checklists

After you harden your database environment, you need to periodically
check that your database is still locked down and that no new misconfigura-
tions have been introduced. This involves a continuous effort that can

Courtesy of Digital Press, an imprint of Elsevier, Inc. Science and Technology Books www.elsevierdirect.com

18 1.1 Harden your database environment

sometimes be automated with a set of tools. Sometimes this best practice
may already be implemented by the information security group. For exam-
ple, if you are running SQL Server, your security group may already be
using Microsoft’s Baseline Security Analyzer in the context of checking con-
figurations of Windows and servers such as IIS and SQL Server. In this case
you may be able to piggyback on their activities and include a continuous
check for the database.

The Microsoft Baseline Security Analyzer (MBSA) is a tool that allows
you to scan one or more Windows systems for common security misconfig-
urations. MBSA will scan a Windows-based computer and check the oper-
ating system and other installed components, such as Internet Information
Services (IIS) and SQL Server. The scan checks for security misconfigura-
tions and whether these servers are up-to-date with respect to recom-
mended security updates. MBSA scans for security issues in SQL Server 7.0
and SQL Server 2000 (including MSDE instances) and checks things like
the type of authentication mode, sa account password status, and SQL ser-
vice account memberships. Descriptions of each SQL Server check are
shown in the security reports with instructions on fixing any of the issues
found. MBSA will help you with:

� Checking members of the sysadmin role. This check determines the
number of members of the sysadmin role (giving system admin rights
to the instance) and displays the results in the security report.

� Checking restrictions of cmdexec rights. This check ensures that the
cmdexec right is restricted to sysadmin only. All other accounts that
have the cmdexec right are listed on the security report. Because the
SQL Server Agent can automate administrative tasks by using
scripted jobs that can perform a wide range of activities, including
running T-SQL scripts, command-line applications, and Microsoft
ActiveX scripts, their execution should be limited to privileged users.

� Checking SQL Server local account passwords. This check determines
whether any local SQL Server accounts have simple passwords, such
as a blank password. This check also notifies you of any accounts that
have been disabled or are currently locked out. Password checks
include checks for:

� Password is blank
� Password is the same as the user account name
� Password is the same as the machine name
� Password uses the word “password”
� Password uses the word “sa”

Courtesy of Digital Press, an imprint of Elsevier, Inc. Science and Technology Books www.elsevierdirect.com

1.1 Harden your database environment 19

Chapter 1

� Password uses the word “admin” or “administrator”

� Checking that Windows authentication is being used.

� Checking whether SQL Server BUILTIN\Administrators is a member of
the sysadmin role. This check determines whether the built-in Admin-
istrators group is listed as a member of the Sysadmin role. Fixed
server roles have a server-wide scope. They exist outside of the data-
base. Each member of a fixed server role is able to add other logins to
that same role. All members of the Windows BUILTIN\Administra-
tors group (the local administrator’s group) are members of the sysad-
min role by default, which gives them full access to all of your
databases.

� Checking SQL Server directory access. This check verifies that a set of
SQL Server directories has limited access to SQL service accounts
and local Administrators only. The tool scans the access control list
(ACL) on each of these folders and enumerates the users contained in
the ACL. If any other users (aside from the SQL service accounts and
Administrators) have access to read or modify these folders, the tool
marks this check as a vulnerability. The directories scanned are:

� Program Files\Microsoft SQL Server\MSSQL$InstanceName\
Binn

� Program Files\Microsoft SQL Server\MSSQL$InstanceName\
Data

� Program Files\Microsoft SQL Server\MSSQL\Binn
� Program Files\Microsoft SQL Server\MSSQL\Data

� Checking whether the sa account password is exposed. This check deter-
mines whether SQL Server 7.0 SP1, SP2, or SP3 sa account pass-
words are written in plain text to the setup.iss and sqlstp.log\
sqlspX.log files in the %windir% and %windir%\%temp% directo-
ries (this may happen when mixed authentication is used). The spl-
stp.log\sqlspX.log file is also checked on SQL 2000 to see if domain
credentials are used in starting the SQL Server services.

� Checking the SQL Server guest account. This check determines whether
the SQL Server guest account has access to databases other than mas-
ter, tempdb, and msdb. All databases to which the account has access
are listed in the security report.

� Checking whether SQL Server is running on a domain controller. It is
recommended that you do not run SQL Server on a domain control-
ler. Domain controllers contain sensitive data such as user account
information. If you run a SQL Server database on a domain control-

Courtesy of Digital Press, an imprint of Elsevier, Inc. Science and Technology Books www.elsevierdirect.com

20 1.2 Patch your database

ler, you increase the complexity involved in securing the server and
preventing an attack.

� Checking SQL Server registry key security. This check ensures that the
Everyone group is restricted to read permission for registry keys,
including HKLM\Software\Microsoft\Microsoft SQL Server and
HKLM\Software\Microsoft\MSSQLServer. If the Everyone group
has more than read permission to these keys, it will be flagged in the
security scan report as a vulnerability.

� Checking SQL Server service accounts. This check determines whether
the SQL Server service accounts are members of the local or domain
administrators group on the scanned computer, or whether any SQL
Server service accounts are running under the LocalSystem context.
The MSSQLServer and SQLServerAgent service accounts are
checked on the scanned computer.

1.2 Patch your database

One of the expressions used by information security professionals is that
you should patch, patch, and then patch some more. Although patch man-
agement is not synonymous with security and certainly does not guarantee
security, it is one of the most important and fundamental techniques, with-
out which security does not exist. Software bugs are often exploited for
launching an attack, and if there is a bug in the security layer (e.g., the bugs
in MySQL’s authentication systems prior to version 4.1.x), then database
security is certainly a challenge. Moreover, it is hard enough to combat
threats that use problems you may not know about. At the very least,
patches help you address threats that are launched against known problems.

Patching is difficult and unfortunately has an inherent time delay dur-
ing which your system is exposed to an attack. Some of this time delay
results from your own schedules for testing and applying patches to pro-
duction environments. Some of this delay involves vendors who don’t nec-
essarily release the patches quickly enough. As an example, IBM DB2
UDB Version 7.2 had a buffer overflow vulnerability in the LOAD and
INVOKE commands. These vulnerabilities were acknowledged by IBM on
November 22, 2002. The fix was available starting September 17, 2003—
10 months later! This is not unique to IBM—any complex software takes
time to fix, test and release. Therefore, patching is not a silver bullet, but it
is a bullet nevertheless.

Courtesy of Digital Press, an imprint of Elsevier, Inc. Science and Technology Books www.elsevierdirect.com

1.2 Patch your database 21

Chapter 1

1.2.1 Track security bulletins

Knowing where your database environment is vulnerable and what patches
are available to remediate these security problems is one of the most useful
things you can do. This does not necessarily mean that for every published
alert you must go through a patching process (nor does it mean that the
vendor releases a hotfix for every vulnerability). However, you should
always be aware of security issues, and you need to know when vulnerabili-
ties apply to your environment.

Several Web sites track security vulnerabilities, alerts, and advisories,
including vulnerabilities for database environments. The various sites often
mirror each other in terms of the content—when a security alert is posted
on one it is normally available on the others as well. Major security vendors
also post security alerts as a service to their customers (and to promote
themselves). While each person has a preference, these sites are a good start-
ing point:

� www.cert.org: Established in 1988, the CERT Coordination Center
(CERT/CC) is a center of Internet security expertise, located at the
Software Engineering Institute, a federally funded research and devel-
opment center operated by Carnegie Mellon University.

� cve.mitre.org: The Common Vulnerabilities and Exposures (CVE) is a
list of standardized names for vulnerabilities and other information
security exposures. CVE aims to standardize the names for all pub-
licly known vulnerabilities and security exposures and is based on a
community effort. The content of CVE is a result of a collaborative
effort of the CVE Editorial Board. The Editorial Board includes rep-
resentatives from numerous security-related organizations, such as
security tool vendors, academic institutions, and government as well
as other prominent security experts. The MITRE Corporation main-
tains CVE and moderates Editorial Board discussions. CVE is not a
database; it is a list. The goal of CVE is to make it easier to share data
across separate vulnerability databases and security tools. You will
therefore see that vendors often map their IDs for vulnerabilities to a
CVE number. These numbers will have a format similar to CAN-
2003-0058 or CVE-2001-0001—the first one being a candidate as
opposed to an entry accepted and cataloged into CVE.

� www.securityfocus.com/bid: A vendor-neutral site that provides objec-
tive, timely, and comprehensive security information to all members

Courtesy of Digital Press, an imprint of Elsevier, Inc. Science and Technology Books www.elsevierdirect.com

22 1.2 Patch your database

of the security community, from end users, security hobbyists, and
network administrators to security consultants, IT Managers, CIOs,
and CSOs.

� www.securitytracker.com/search/search.html: SecurityTracker is a service
that helps you keep track of the latest security vulnerabilities. You can
also submit a vulnerability to bugs@securitytracker.com.

In addition to organizations such as CERT and repositories such as
CVE that classify security alerts of all types, each vendor has its own secu-
rity resource page:

� Oracle: The Oracle Security Alerts Page is at www.oracle.com/tech-
nology/deploy/security/alerts.htm.

� SQL Server: The SQL Server Security Center is at
www.microsoft.com/technet/security/prodtech/dbsql/default.mspx.

� DB2: The DB2 support page is at www-306.ibm.com/software/data/
db2/udb/support/.

� Sybase: The Sybase support page is at www.sybase.com/support and
the support ASE page is at www.sybase.com/products/information-
management/adaptiveserverenterprise/technicalsupport.

You can subscribe to security alerts for each of the main database plat-
forms:

� Oracle: www.oracle.com/technology/deploy/security/securityemail.html

� SQL Server: www.microsoft.com/technet/security/bulletin/notify.mspx

� DB2: Register for the My Support program at www-1.ibm.com/
support/mysupport/us/en/.

� Sybase: Register for MySybase notifications from a link on the Sybase
support page at www.sybase.com/support.

The user community for each of the major database platforms is quite
large, and while learning that your product has a flaw and is vulnerable to
an attack is certainly not fun, all vendors realize that if the community noti-

Courtesy of Digital Press, an imprint of Elsevier, Inc. Science and Technology Books www.elsevierdirect.com

1.2 Patch your database 23

Chapter 1

fies them of the problem, they can fix it and better support their customers.
If you find a vulnerability, you can report them to the following resources:

� Oracle: E-mail to SECALERT_US@ORACLE.COM

� SQL Server: https://s.microsoft.com/technet/security/bulletin/aler-
tus.aspx

� DB2: www-306.ibm.com/software/support/probsub.html

Oracle even went out of its way back in 2001 and posted the following
notice on many forums:

How to Contact Oracle with Security Vulnerabilities

Oracle sincerely regrets the difficulty that its user community—its
customers, partners and all other interested parties—has recently had
in notifying Oracle of security vulnerabilities in its products and
locating subsequent patches for these vulnerabilities.

Oracle has taken the following corrective measures to facilitate
notification of security vulnerabilities and location of security patch
information. Oracle will post Security Alerts on Oracle Technology
Network at URL: otn.oracle.com/deploy/security/alerts.htm. (A
Security Alert contains a brief description of the vulnerability, the
risk associated with it, workarounds and patch availability.) This
URL also provides mechanisms for supported customers to directly
submit a perceived security vulnerability in the form of an iTAR
(Technical Assistance Request) to Oracle Worldwide Support Ser-
vices. Those individuals who are not supported customers but who
wish to report a vulnerability can directly email Oracle at
SECALERT_US@ORACLE.COM with the details of the security
vulnerability.

Oracle believes that these mechanisms make maximum use of its
existing customer support services, yet allow non-supported Oracle
users and security-interested parties to contact Oracle directly and
swiftly with information about security vulnerabilities.

Oracle proactively treats security issues with the highest priority
and reiterates that it is committed to providing robust security in its
products. Oracle wishes to thank its user community for its
patience and understanding and appreciates cooperation in this col-
laborative endeavor.

Courtesy of Digital Press, an imprint of Elsevier, Inc. Science and Technology Books www.elsevierdirect.com

24 1.2 Patch your database

1.2.2 Example of a class of vulnerabilities:
Buffer overflows

Although many types of vulnerabilities and attacks can affect a database (or
any server for that matter), the class of vulnerabilities called buffer overflows
has earned a prominent role in the history of information security. It is per-
haps the most well known and most illustrious type of attack there is, and
buffer overflow problems have almost become synonymous with the term
security vulnerability. If you do a query on the CERT Web site, you will find
48 buffer overflow vulnerability notes related to Oracle and 13 buffer over-
flow vulnerability notes related to SQL Server. If you look at the Oracle
Security Alerts page (www.oracle.com/technology/deploy/security/
alerts.htm), you will find that of the 60 alerts listed, 16 are buffer overflow
alerts. DB2 UDB 7.2 had a buffer overflow vulnerability in the INVOKE
command and in the LOAD command. Versions 6 and 7 of DB2 had a
buffer overflow vulnerability in db2ckpw that may let local users gain root
access on the system. Sybase ASE has buffer overflow vulnerabilities in
DBCC CHECKVERIFY, in DROP DATABASE, and in XP_FREEDLL. If
you look at the number of buffer overflow vulnerabilities in general, you will
find more than 660 different vulnerability notes on the CERT Web site.

If you look deeper into what components of a database these problems
exist in, you may be surprised to find that it is very widespread. As an exam-
ple, looking through the Oracle buffer overflow vulnerability notes will
show that these exist in the listener, in the Oracle process itself (e.g.,
VU#953746), in functions (e.g., VU#840666), in the mechanism used for
calling external procedures (e.g., VU#936868), in command-line programs
(e.g., VU#496340), and more.

Any complex software usually has buffer overflow vulnerabilities, and
databases certainly are highly complex programs. This is a direct conse-
quence of the fact that buffer overflow vulnerabilities exist when developers
do not validate the length of data that is used to reference a buffer or when
they don’t validate data that is copied into a buffer. Because this type of val-
idation is easy to overlook and because many development environments
are not always security conscious (in terms of coding best practices), this
problem is very widespread. Although it is not the purpose of this chapter
to teach you these coding best practices, it is a good idea to understand
what a buffer overflow vulnerability really is, because you will encounter
this term frequently if you adopt the habit of looking at security alerts (and
patching your environment).

Courtesy of Digital Press, an imprint of Elsevier, Inc. Science and Technology Books www.elsevierdirect.com

1.2 Patch your database 25

Chapter 1

1.2.3 Anatomy of buffer overflow vulnerabilities

Buffer overflows are most common in languages such as C or C++, where
arrays and pointers are the bread and butter of programming (and certainly,
all of the major databases are written in C/C++). The simplest buffer over-
flow problem occurs when you have code that looks like:

char buf[100];
…
buf[111] = 'a';

In this case an array of size 100 was created but then the 111th location
was dereferenced and written over. Another simple example occurs in the
following code:

char buf[10];
…
strcpy(buf, "abcdefghijklmnopqrstuvwxyz");

Both of these code fragments are perfectly correct from a syntactic per-
spective and will not cause any problems for C and C++ compilers. How-
ever, these programs have an undefined result from a C/C++ language
perspective, meaning that they may work sometimes and usually will wreak
havoc within the program. The reason is that this code oversteps memory
that may belong to another variable or that may be used by other elements
in the program.

Before we move on to understand how this simple bug can be used by an
attacker, it is worthwhile mentioning that the two code fragments shown
previously are examples of problems that create stack buffer overflow vulner-
abilities. There is a second class of buffer overflow problems that involve the
heap and that occur when a developer would use char *buf = malloc(10)
rather than char buf[100], but in general stack-based buffer overflow vul-
nerabilities are more common and the principles are not very different.

In order to understand why overflows are such a big security problem,
you need to remind yourself of how the operating system manages memory
on behalf of a process. Any program needs memory to perform its tasks,
and memory is usually divided into three main types:

Courtesy of Digital Press, an imprint of Elsevier, Inc. Science and Technology Books www.elsevierdirect.com

26 1.2 Patch your database

1. Memory that is fixed for the program such as the code itself, static
data, and read-only data

2. The heap, which is used when a program dynamically allocates
memory using malloc or using new

3. The stack, which is used when calling methods and functions

In order to use all memory allotted for a process by the operating sys-
tem, most computers manage the process memory as shown in Figure 1.1.
The fixed parts (including the code and any static memory) are loaded at
the bottom of the address space (usually not exactly at 0x00000000 but not
far from it). Then comes the heap, which grows from low addresses to high
addresses. If you continuously allocate variables on the heap, they will
increasingly live in higher memory. Because both the heap and the stack
may dynamically grow (the heap when you allocate more memory and the
stack when you make more function calls), the operating system maximizes
the usage of memory (and minimizes the work it has to do) by making the
stack grow from high address spaces to low address spaces. As an example, if
your main() calls foo(), which in turn calls bar(), and then your stack will
include the segments for each of these functions, as shown in Figure 1.2.

Figure 1.1
Memory layout for

an operating system
process.

Courtesy of Digital Press, an imprint of Elsevier, Inc. Science and Technology Books www.elsevierdirect.com

1.2 Patch your database 27

Chapter 1

The stack is used to manage the entire function calling process, including
parameter passing and return values. When a function is called, the func-
tion’s parameters are pushed onto the stack. Then an area is allocated for the
return address. Then the frame pointer is pushed onto the stack (the frame
pointer is used to reference the local variables and the function parameters
that are always at fixed offsets from the frame pointer). Then the function’s
local automatic variables are allocated. At this point the program can run the
function’s code and has all of the required variables available. As an example,
if you call a function foo(“ab”, “cd”) that is defined as shown, the stack struc-
ture will include allocations, as shown in Figure 1.3.

int foo(char* a, char* b) {
 char buf[10];
 // now comes the code
 ...
}

Suppose that the first thing that the developer of foo does is copy the
first parameter into the local variable so that he or she can manipulate the

Figure 1.2
Stack grows down

(from high memory
to low memory).

Courtesy of Digital Press, an imprint of Elsevier, Inc. Science and Technology Books www.elsevierdirect.com

28 1.2 Patch your database

data. Assume also that no-bounds checking is done and that the code looks
like the following:

int foo(char* a, char* b) {
 char buf[10];
 // now comes the code
 strcpy(buf, a);
 ...
}

Foo has a buffer overflow vulnerability. In order to understand this, ask
yourself what would happen if I were to call the function using:

main() {
 …
 int i = foo("I am a string that has many more characters than
10 and I will wreak havoc on your program", "ta da!");
 …
}

Figure 1.3
Stack allocations
when calling foo.

Courtesy of Digital Press, an imprint of Elsevier, Inc. Science and Technology Books www.elsevierdirect.com

1.3 Audit the database 29

Chapter 1

The result of this call is undefined. If you look at the memory layout,
you will see that when the strcpy is performed, the long string starts out in
the area allocated for buf, but because the stack grows top-down and the
strcpy copies bottom-up, the string will start overwriting the frame
pointer, then the return address area, and more. This will in many cases cor-
rupt the stack and can easily cause your program to fail. Therefore, one type
of attack that exploits buffer overflow vulnerabilities is a simple denial-of-
service attack (vandalism). However, sophisticated hackers will use this vul-
nerability for something much more useful—for running their own code.
Specifically, hackers will try to craft a string that, when overwriting the
memory on the stack, will place malicious code and then overwrite the
return address on the stack. When the function completes and the stack is
unwound, the program will jump to the address of the malicious code
(because the hacker has placed that return address there). This is not a sim-
ple thing to do, and the details are beyond the scope of this section. For an
excellent paper that shows you how this can be done, refer to Aleph One’s
paper called “Smashing the Stack for Fun and Profit” (www.phrack.org/
show.php?p=49&a=14).

Note that in a database environment the arbitrary malicious code is
injected by the hacker into the program that has the buffer overflow vulner-
ability. In many cases this is the database server process, and the malicious
code will have the same permissions as the database process.

1.3 Audit the database

There is no security without audit, and there is no need to audit without
the need for security. For example, the term C2 auditing is often used inde-
pendently, whereas it is really the auditing complement to a security classifi-
cation called C2 security (see Appendix 1.A for a brief overview on C2
security). If you are serious about either one of these, you should imple-
ment both security and auditing in an integrated fashion.

Auditing plays both an active role and a passive role in security. By
auditing database activity and access, you can identify security issues and
resolve them quickly. The auditing function also serves to create checks and
balances to ensure that an oversight does not cause the security layers to
become invalid or ineffective. Finally, the fact that a database environment
is being closely watched and audited causes a security layer based on deter-
rence—a very effective method in many environments.

On the flip side, auditing is not a goal but a means to elevate the security
of your environment or to elevate the reliability and availability of your

Courtesy of Digital Press, an imprint of Elsevier, Inc. Science and Technology Books www.elsevierdirect.com

30 1.4 Define an access policy as the center of your database security and auditing initiative

environment. In the context of this book, auditing is one of the most
important security techniques. In fact, page-for-page, it is described in
more detail than any other security technique covered in this book.

1.4 Define an access policy as the center of your
database security and auditing initiative

Throughout this chapter you will learn about many domains with which
you can start an implementation of database security and/or auditing. For
example, you can start with network security and address protection of your
database from remote attacks. You can start with a user-oriented approach
and put provisions for increased security for privileged users such as DBAs.
You can tackle issues that relate to the ways applications use your database
and can even tackle the implementation layer by layer—starting with the
authentication layer, moving to the authorization layer, and so on.

Regardless of how you choose to start, you should realize that database
security is a complex topic, and there are many items to address. In order
to ensure a successful implementation and avoid many frustrations, you
should base the entire implementation on the concept of defining and
implementing a security policy for your database environment. This will
ensure that you do not lose sight of the big picture and the end goals, and

Figure 1.4
A database access

policy is the
core of any

implementation.

Courtesy of Digital Press, an imprint of Elsevier, Inc. Science and Technology Books www.elsevierdirect.com

1.5 Resources and Further Reading 31

Chapter 1

that your investments in what are often disparate layers and techniques all
work together toward the same goal. Additionally, any database security
implementation will involve multiple people from multiple departments
(e.g., DBAs, developers, information security officers, and auditors). A
well-documented database usage security policy will also ensure that these
individuals (who often have different skills and competencies) can use a
common terminology and can augment each other rather than combat
each other.

1.5 Resources and Further Reading

After you complete reading this book, here are additional resources (online
resources and books) that can help you when implementing security and
auditing initiatives that involve your database environments:

Oracle:

� www.petefinnigan.com: Pete Finnigan is one of the world’s foremost
Oracle security experts, and he posts a lot of useful information on
his Web site.

� www.petefinnigan.com/weblog/archives: Pete Finnigan’s Oracle
security weblog

� www.dba-oracle.com/articles.htm#burleson_arts: Many good articles on
Oracle (and some on Oracle security) published by Don Burleson

� www.linuxexposed.com: A good resource for security including an
excellent paper “Exploiting and Protecting Oracle” (http://files.linux-
exposed.com/linuxexposed.com/files/oracle-secu-
rity.pdf#search='pentest%20exploiting%20and%20protecting%20or
acle')

� www.appsecinc.com/techdocs/whitepapers.html: Application Security
Inc.’s white paper page, including a white paper titled “Protecting
Oracle Databases”

� www.dbasupport.com: Miscellaneous articles, resources, and tips on
Oracle

� Oracle Security Handbook by Marlene Theriault and Aaron Newman

� Effective Oracle Database 10g Security by Design by David Knox

� Oracle Privacy Security Auditing by Arup Nanda and Donald Burleson

Courtesy of Digital Press, an imprint of Elsevier, Inc. Science and Technology Books www.elsevierdirect.com

32 1.5 Resources and Further Reading

SQL Server:

� www.sqlsecurity.com: Web site dedicated to SQL Server security

� www.winnetmag.com/SQLServer/Security: SQL Server Magazine’s
security page

� http://vyaskn.tripod.com/sql_server_security_best_practices.htm: Over-
view of SQL Server security model and best practices

� www.appsecinc.com/techdocs/whitepapers.html: Application Security
Inc.’s white paper page, including a white paper titled “Hunting
Flaws in Microsoft SQL Server White Paper”

� SQL Server Security by Chip Andrews, David Litchfield, Bill Grind-
lay, and Next Generation Security Software

DB2:

� www.databasejournal.com/features/db2: Database Journal for DB2

� www.db2mag.com: DB2 Magazine

� www.appsecinc.com/techdocs/presentations.html: Presentations on vari-
ous topics, including “Hacker-proofing DB2”

Sybase:

� www.isug.com/ISUG3/Index.html: Sybase user group

MySQL:

� www.nextgenss.com/papers.htm: Papers on various topics, including
MySQL security (e.g., “Hacker-proofing MySQL”).

� http://dev.mysql.com/doc/mysql/en/Security.html: Security section from
MySQL manual

� www.appsecinc.com/techdocs/presentations.html: Presentations on vari-
ous topics, including “Hacker-proofing MySQL”

Hardening Linux:

� Hardening Linux by John Terpstra, et al

� Hardening Linux by James Turnbull

Hardening Windows:

� Hardening Windows Systems by Roberta Bragg

� Hardening Windows by Jonathan Hasell

Courtesy of Digital Press, an imprint of Elsevier, Inc. Science and Technology Books www.elsevierdirect.com

1.A C2 Security and C2 Auditing 33

Chapter 1

Hardening Solaris:

� http://www.boran.com/security/sp/Solaris_hardening.html

Hardening AIX:

� A great IBM whitepaper is available at
http://www-1.ibm.com/servers/aix/whitepapers/aix_security.html

Hardening HP/UX:

� www.securit.eclipse.co.uk/whitepapers/HPUX Hardening Guide.pdf

� www.hp.com/products1/unix/operating/security

1.6 Summary

In this chapter you learned some important first steps in securing your data-
base environments. You learned how to harden your database environment
and the importance of security alerts and of patching. You also got a
glimpse into the world of database vulnerabilities and an example of how
one class of vulnerabilities work. However, all of this is just an introduction.

In Chapter 2 you will continue in intro-mode and will get a glimpse
into categories and domains of the security industry that are relevant to an
effective implementation of database security and auditing. Chapter 3 is
where the fun begins; this is when you will start to delve deeper into data-
base security.

1.A C2 Security and C2 Auditing

C2 security is a government rating for security in which the system has been
certified for discretionary resource protection and auditing capabilities. For
example, SQL Server has a C2 certification, but this certification is only
valid for a certain evaluated configuration. You must install SQL Server in
accordance with the evaluated configuration or you cannot claim to be run-
ning a C2-level system. You can, however, be using C2 auditing in a system
that is not C2-certified.

In order for a system to be certified with a C2 classification, it must be
able to identify a user. Therefore, any C2-level system must implement the
notion of user credentials (e.g., username and a password), must require a
user to login using these credentials, must have a well-defined process by
which a user enters these credentials, and must protect these credentials
from capture by an attacker.

Courtesy of Digital Press, an imprint of Elsevier, Inc. Science and Technology Books www.elsevierdirect.com

34 1.A C2 Security and C2 Auditing

In a C2-certified system, users are accountable for their activities and
any process they initiate. In order for this to be possible, any C2-certified
system must be able to audit any user activity, including any attempt to
read, write, and execute a resource managed by the system.

The next requirement of a C2-level system is that an owner of an object
can grant permissions for access to the object for other users or groups. This
is what the term discretionary implies. The default access for any object is no
access other than the owner. If an administrator takes control over an
object, the owner must know about this.

There are many other requirements for a system to be given a C2 certifi-
cation, but many of them are not dealt with within the database security
model but rather within the operating system’s security model (e.g., protec-
tion for memory spaces, files, preemption of processing).

If you are running SQL Server, most chances are that you care more
about C2 auditing than you do about C2 certification (unless you work for
a government agency). C2 auditing tracks C2 audit events and records
them to a file in the \mssql\data directory for default instances of SQL
Server 2000, or the \mssql$instancename\data directory for named
instances of SQL Server 2000. If the file reaches a size limit of 200 mega-
bytes, C2 auditing will start a new file, close the old file, and write all new
audit records to the new file.

To enable C2 auditing, you must be a member of the sysadmin role and
you need to use the sp_configure system stored procedure to set show
advanced options to 1. Then set c2 audit mode to 1 and restart the server.
In a C2 certification, auditing is a must. Therefore, C2 auditing is imple-
mented in a way that if auditing cannot occur, the entire database shuts
down. For example, if the audit directory fills up, the instance of SQL
Server will be stopped! You must be aware of this and take appropriate mea-
sures to avoid outage. Moreover, when you restart the instance of SQL
Server, auditing is set to start up automatically, so you must remember to
free up disk space for the audit log before you can restart the instance of
SQL Server (or start the instance with the –f flag to bypass all auditing alto-
gether). To stop C2 audit tracing, set c2 audit mode to 0. Finally, remem-
ber the following (extracted from SQL Server documentation):

Important: If all audit counters are turned on for all objects, there could be
a significant performance impact on the server.

Courtesy of Digital Press, an imprint of Elsevier, Inc. Science and Technology Books www.elsevierdirect.com

