Secure and Audit
Oracle 10g and 11g

Chapter 14

Database Activity Monitoring

Database activity monitoring (DAM) is a technology for monitoring and analyzing database
activity that operates independently of the database and does not rely on any form of native
auditing. Database activity monitoring and prevention (DAMP) is an extension to DAM that
also prevents activities from happening even if these activities are allowed according to privi-
leges defined in the database. DAMP preserves the most important characteristic of DAM—the
independence from the database management system (DBMS).

DAM systems emerged when companies faced many requirements that put a focus on the need
to provide more visibility into what activity occurs within production databases. DAM systems
are very often used as the solution of choice to implement database auditing. But DAM systems
do much more than generate audit trails—the focus of this chapter is mostly on the additional
functions DAM systems can perform in addition to auditing.

When monitoring requirements first started emerging, database administrators (DBAs) tried
to address them with the most appropriate tool that they had—auditing. By using AUDIT state-
ments (and by using fine-grained auditing [FGA] policies), you can write out what the database is
doing and then export these records to another system for analysis, alerting, etc. However, these
implementations were lacking in two ways. The first is that the overhead of these schemes made
them very expensive to implement. Requirements for activity monitoring can be very diverse and
can include monitoring activities that occur very frequently. Although one very important use case
for DAM is privileged user monitoring, there are other use cases including application monitoring,
sensitive data monitoring, and even comprehensive monitoring. When you monitor (and audit)
privileged users only, the burden in terms of the size of the audit trail will not have a huge impact
on the database. But as you start monitoring and auditing more and more you need to find access
anomalies in Data Manipulation Language (DML) or SELECT access, using native auditing
implies a performance hit that most people cannot tolerate. This is the first type of overhead that
DAM systems help resolve.

The second is the overhead associated with change management. When an auditor changes
requirements, you have to modify the AUDIT statements. You cannot just apply these AUDIT
statements to your production systems—ryou have to make sure this will not have any impact
to the application. You need to try it on your test systems first and you may need to test it for a
lengthy period of time to ensure that there are no issues in terms of performance and storage.

285

286 m HOWTO Secure and Audit Oracle 10g and 11g

If you have to pass a yearly audit and every year the requirements change (which is not uncom-
mon) this is a huge cost to bear. Because DAM systems do not rely on the database for monitoring
and do not affect the production systems, you can apply changes to monitoring and audit policies
without fearing that this will impact the applications.

Beyond the overhead, DAM systems emerged because in addition to monitoring requirements,
many architectural and organizational requirements emerged. The most important of them are
separation of duties and the need for the information security officers to take ownership of data-
base security and auditing. As long as it is the database that does the auditing and as long as audit
trails are written to a location where the DBA or instance owner can modify audit records, and as
long as the DBA can modify the audit definitions, the implementation will not pass most audits.
Additionally, because these audit trails and the definitions of the policies should be owned by the
infosec group (and not by the database group), the tools used to manage the definitions and the
data should not require database expertise.

Another important architectural requirement that helped DAM emerge is the fact that there
are very few companies that use only Oracle. Most companies have a heterogeneous environment
that may include Oracle databases but also includes other databases such as SQL Server, DB2,
Sybase, Informix, MySQL, etc. Each database has its own implementation of native auditing.
The functionality and the usage is different in each platform. For companies that have such het-
erogeneous environments DAM provides an easy way out—all functions implemented by DAM
systems are equivalent no matter what the monitored database type.

DAM systems also implement real-time alerting. Good DAM systems can alert you of inap-
propriate access at the moment that it occurs. This allows you to launch a remediation process
immediately and for most requirements this is enough. Even if someone grabs sensitive data that
they are not entitled to have, if you know about it soon enough and if you have enough informa-
tion about who it was and where the access was made from, then you can usually contain the issue.
DAM is considered to be a very effective technology for combating data breaches (using real-time
alerting and precise information about the access). However, it is still a reactive technology—the
breach already occurred and the data has already leaked. DAMP is a technology that evaluates
policies before letting the queries and transactions reach the database. Rather than alerting when
inappropriate access occurs, it simply prevents that access from happening. Both DAM real-time
alerting and DAMP prevention are important data-security technologies that are at the core of the
DAM value proposition.

DAM systems are different from Security Incident Event Managers (SIEM) systems. SIEM sys-
tems read the audit records produced by the database’s audit trails and populate an event repository
that includes data from other logs such as firewall logs, routers, operating system logs, etc. The big-
gest differences between DAM and SIEM are in nonintrusiveness and in monitoring functions:

B DAM systems usually produce the monitoring data independently and nonintrusively
(to the database), whereas SIEM systems rely on database auditing.

B DAM systems provide far more advanced functions in terms of database monitoring whereas
SIEM systems are “generalists” in that database events are merely another type of event.

B SIEM systems can correlate and analyze events from multiple sources whereas DAM
systems usually focus on database access (including application access).

Oracle Audit Vault is closer to a STEM system than to a DAM system both in terms of architecture

and in terms of functionality, but it is still an early-stage SIEM in that it can only get logs from Oracle
databases and SQL server databases and as of version 10.2.3.1 DB2 UDB and Sybase as well.

Database Activity Monitoring ® 287

Common DAM and DAMP Architectures—How They Work?

Although there are many functions that a DAM system provides, the most important function is
that of being able to show you what Structured Query Language (SQL) statements were executed
on the database. There are three main architectures that DAM systems used:

1. Interception-based architectures (also called inspection-based architectures): Most mod-
ern DAM systems collect what the database is doing by being able to “see” the communi-
cations between the database client and the databases server. Any database session involves
a client that connects to the database server. The client and the server can reside on the
same host or can be on different hosts. If the client is running on a remote host the session
is a Transparent Network Substrate (TNS) session that usually runs over Transmission
Control Protocol/Internet Protocol (TCP/IP). If the client resides on the same host as the
server then the session can be of a variety of types—local TCP/IP session or non-TCP/
IP sessions (such as those that occur when a client connects using a Bequeath protocol).
In any case, there is always a client/server relationship. What DAM systems do is find
places where they can view this communication stream and get the requests and responses
without requiring participation from the database. The interception itself can be done at
multiple points such as the network itself (using a network TAP or a SPAN port—if the
communication is not encrypted using advanced security option [ASO]), at the operating
system level, or even at the level of the database libraries. As Figure 14.1 shows, if there
is unencrypted network traffic then packet sniffing can be used. The advantage is that
nothing is done on the host and thus there is no impact on performance whatsoever. To
capture local access a probe runs on the host. This probe intercepts all local access and can
also intercept all networked access in case you do not want to use network gear or in case
the database communications are encrypted. The probe does not do all the processing—it

Application/Tool

g--------F

TCP or non-TICP connection

Application/Tool/|
DAM system -<________ . Batch process
probe

Figure 14.1 Inspection-based DAM architecture.

288 m HOWTO Secure and Audit Oracle 10g and 11g

DAM system

DAM system

Figure 14.2 Query-based DAM architecture.

relays the data to the DAM server where all the processing occurs. This ensures that the
impact on the database is negligible.

2. Query-based architectures: Some DAM systems connect to Oracle and continuously poll the
system global area (SGA) to collect what SQL statements are being performed as shown in
Figure 14.2. This is a carryover architecture from some of the performance products that used
the SGA and other shared data structure. There are two variants of this approach—one that
makes a real connection to Oracle and makes valid queries to the database and one that runs
on the host and attaches to the process at the OS level to inspect private data structures. This
architecture is no longer being used in the mainstream—at least not for DAM and auditing.
The main problem with this architecture is that if you don’t poll the SGA fast enough you can
casily miss many of the statements run against the database and if you poll too often you will
impact the performance of the database. Another problem with this architecture is that the
DAM system needs a high-privilege connection into each of the database systems it monitors.
This architecture has all but gone away and most vendors that started with this architecture
have re-architected their product to use an interception-based architecture.

3. Log-based architectures: Some DAM systems analyze and extract the information from the
transaction logs (e.g., the redo logs). These systems use the fact that much of the data is stored
within the redo logs and they scrape these logs. Unfortunately, not all the information that is
required is in the redo logs. For example, SELECT statements are not and so these systems will
augment the data that they gather from the redo logs with data that they collect from the native
audit trails as shown in Figure 14.3. These systems are in many respects a hybrid between a true
DAM system (that is fully independent from the DBMS) and a SIEM which relies on data gener-
ated by the database. These architectures usually imply more overhead on the database server.

There are multiple architectures for DAM systems but there is only one architecture for DAMP
systems. All DAMP systems have an architecture resembling the interception-based DAM archi-
tecture. The reason is that in both the query-based and the log-based architectures the DAM
system knows that something has occurred only after it has occurred—it needs the database to
process the request for it to be available. Therefore, it can never prevent anything from happening.

Database Activity Monitoring ® 289

A
Redo logs

Audit files(if using
OS auditing) or
AUDS and
FGA_LOGS$

DAM system fg------------- -1 DAM agent

Figure 14.3 Log-based DAM architecture.

The interception-based architecture on the other hand has access to the request before it gets to the
database and it can evaluate whether to allow it through or not. DAMP systems therefore have
an interception-based architecture as shown in Figure 14.4. As in the DAM architectures, inter-
ception and prevention can occur on the network (by deploying the DAMP system between the
database server and the network switch as shown in Figure 14.4 by system 1) or using a probe

DAMP authorizer

TCP or non-TCP connection

Application/Tool,
Batch process

IPC interception |

Figure 14.4 DAMP architecture.

290 m HOWTO Secure and Audit Oracle 10g and 11g

that can decide whether or not to let the request reach the database using a policy defined by the
DAMP system (as shown in Figure 14.4 by system 2). The latter architecture has two important
advantages—it is far easier to deploy because it does not require network changes and it allows
prevention for local connections as well as remote connections.

Functions Provided by DAM Systems

The term DAM is broad because it covers any type of access to the database and covers both
logging/auditing as well as monitoring and real-time alerting. However, a few use cases that are
very common and usually prompt people to adopt DAM technologies are

B Privilege user monitoring: DBAs, ISAs, developers, and other privileged users need to be
monitored. This has become a best practice and is mandated by most regulations. Monitoring
privileged user activity includes auditing their activities, identifying anomalous privileged
activity and reconciling privileged activities with change requests. A very common example
of this use case is a SOX implementation.

B Application activity monitoring: Application activity differs from users who connect directly
to the database. Application activity tends to be very intensive but also highly repetitive.
There are two forms of application activity monitoring. One usage of DAM monitors all
application activity and generates a normative baseline. Once approved, this baseline can be
used to identify anomalous application activity. The main goal in such a scenario is to detect
and prevent an attack on the data from the application layer (possibly using a vulnerability
in the application). A second usage type occurs when application users perform administra-
tive activities or access sensitive information through the application and the application
uses connection pooling to connect to the database. Audit trails are needed showing which
transactions and queries were performed by which application user. The difficulty is that the
credentials are at the application level whereas the activity is at a database level; this is what
this form of application activity monitoring resolves. DAM can help you to identify the real
user—more on that in Section 14.7.

B Access to sensitive data: Many regulations mandate the tracking of access to sensitive data.
Sensitive data differs for different companies—sometimes it is personally identifiable infor-
mation (PII), sometimes it is patient information, sometimes it is financial data, and other
times it is intellectual property. The use cases around sensitive data sometimes require only
the changes to be monitored (i.e., DML). In other cases you may be required to also moni-
tor SELECT statements. When SELECT statements need to be monitored, the result sets
(or subsets thereof) may also need to be monitored. In both cases the need to monitor this
activity may be limited to some connections or may encompass all connections irrespective
of the originator. Two common initiatives that fall in this use case are privacy initiatives and
payment card industry (PCI) (see more in Appendix A).

B Access to encryption keys: As you saw in Chapter 8, you can use DBMS_CRYPTO to encrypt
data or you can use TDE. TDE only encrypts data at the storage level and is not used as an
access control mechanism. If you decide to use DBMS_CRYPTO then you are responsible for
managing the encryption keys yourself. Normally, these keys are kept inside a database table
so that application code and stored procedures can use them. The main issue then becomes
whether or not you have enough controls in place to ensure that an unauthorized user
cannot use the keys. One of the DAM use cases is to monitor and alert on unauthorized
access to the encryption keys. Although this is really a subset of the sensitive data monitoring
use case, it is common enough and specific enough to warrant special mention.

Database Activity Monitoring ® 291

Anomaly detection and intrusion detection: Because DAM systems can monitor all activity
in the database without requiring auditing to be turned on, they can monitor for anomalous
behavior of authenticated users and application and help identify an attack that is launched
on the database. Because DAM systems inherently understand the SQL commands and the
result sets, they act as an intrusion detection system (IDS) for databases.

Support for notification laws: Most countries have some form of notification laws. Notifica-
tion laws help combat identity theft. They specify that if you have PII of a person and have
had a data breach in which that PII was compromised, you must notify that person that
the breach occurred and usually you also have to compensate that individual (e.g., with free
credit reports). The reason that these notification laws have emerged is that companies, left
to their own devices, prefer to hide the data breach rather than make it public and notify
the people whose information was stolen. Letting the public know about a data breach can
damage a company’s brand, cause the company to lose customers, and more. However, these
data breaches often lead to identity theft and to damage that can be avoided if the individu-
als knew their data was compromised and that they are at risk. Simple monitoring of bank
accounts, credit card accounts, credit reports, etc., is a very effective measure. Hence the
notification laws—they ensure that companies do the responsible thing and tell the people
whose data has been compromised of the breach. What DAM systems can help with (besides
help identify the breach), is limit the number of people to whom a company needs to send
this letter (and limit the number of people that need to receive remediation provisions). By
monitoring access to PII and result sets, a DAM system can record precisely which records
were accessed by an offending connection. If this offending connection extracted 2000
records from a table that has 2 million records, and if you monitor this access, you may be
able to notify only 2000 people—much simpler and much cheaper.

Given these use cases, the main capabilities that DAM systems must have:

Ability to monitor activity which is both local and remote, and cover all types of connec-
tions such as TCP, BEQ, IPC, etc.

Ability to monitor activity no matter how SQL Net is configured. Ability to monitor the
activity even when connections are encrypted.

Ability to set policies that determine what to audit, what to monitor and at which granularity to
audit. Policy rules must be sensitive to users, IPs, source programs, commands, objects, etc.
Ability to extract and report on all attributes such as the user name, the program, the OS
user, the client host, the client OS, the SQL statement run, etc. There are typically over a 100
attributes in a modern DAM system that can be used in a report.

Ability to manage an independent audit trail that cannot be modified. Ability to prove this.
Ability to support full identification and accountability. For example, when the connection
is made using the Oracle instance account using “/ as sysdba”, show who is logged into the
instance account (more on this in Section 14.7).

Ability to monitor and record information about the requests and the responses. Ability to
not only show the SQL statements but also data about the result sets and error conditions
returned by the database.

Ability to send real-time alerts.

Ability to manage large quantities of data efficiently without huge storage costs. Ability to
archive data securely and efficiently and restore data quickly when needed.

Ability to support and prove separation of duties without incurring additional staffing costs.

292 m HOWTO Secure and Audit Oracle 10g and 11g

14.1 HOWTO Protect against SQL Injection

SQL injection is a technique for exploiting bad coding practices in applications that use relational
databases. The attacker uses the application to send a SQL statement that is composed from an
application statement concatenated with an additional statement that the attacker introduces.
Many application developers compose SQL statements by concatenating strings and do not use
prepared statement; in this case the application is susceptible to a SQL injection attack. The tech-
nique transforms an application SQL statement from an innocent SQL call to a malicious call that
can cause unauthorized access, deletion of data, or theft of information.

SQL injection has received a lot of press and is usually considered to be related to Web applications.
This is not true. SQL injection can be present in any application architecture. The focus on Web
applications is however justified because Web applications cater to a broad range of users—internal
as well as external—so the chance of an attacker trying to exploit the application is much higher.

Let’s start with the classic example of application authentication bypass using SQL injection.
Suppose that you have a Web form that has two fields that need to be entered by a user when they
want to login to the system as shown in Figure 14.5. The application receives a user id and a pass-
word and needs to authenticate the user by checking the existence of the user in the USER table
and matching the password with the data in the PWD column in that table. If the query produces
a result set then the user is logged on. If not, an error message is shown. Assume (and this is the
really important assumption) that the application is not doing any validation of what the user
types into these two fields and that the SQL statement is created by doing string concatenation.
Let’s look at what happens if you maliciously type in the following user ID and password:

User ID: ¢ OR “=’
Password: ¢ OR “=’

In this case the SQL string that would be used to create the result set would be
select USERID from USER where USERID = " OR "=" and PWD = " OR "="

This will surely return a result set and the attacker will be logged onto the application (usually as
the first user in the table).

Another very popular SQL injection technique involves the use of UNION ALL SELECT to
grab data from any table in the system. The syntax for this SELECT option is:

SELECT ...
UNION [ALL | DISTINCT]
SELECT ...
[UNION [ALL | DISTINCT]
SELECT ...]

User ID:
Password:

> ID & Password Help

Loy o[Lesrn ore | ot

Figure 14.5 Sample application login form.

Database Activity Monitoring ® 293

UNION is used to combine the result from many SELECT statements into one result set. If you
don’t use the keyword ALL for the UNION, all returned rows will be unique, as if you had done
a DISTINCT for the total result set. If you specify ALL, you will get all rows from all the used
SELECT statements. Therefore, most SQL injection attacks make use of UNION ALL.

Attackers use UNIONSs to “piggy back” additional queries onto existing ones. Lists that are
displayed following a conditional search issue a select and display the contents of a result set on
the page. For example, suppose that you can look up all flights to a certain city by entering the
city name to get a list of flights. Each line in the list shows you the airline, flight number, and
departure time. Assume that the application is vulnerable to SQL injection—i.e., it uses string
concatenation and does not do any validation on what you type into the city input field which is
used in the WHERE clause. The normal SELECT issued by such an application may be

select airline, flightNum, departure from flights where city='ORD'

Suppose that instead of entering ORD (for Chicago) into the search input field you inject the
following string:

ORD' union all select userid, 'dummyl', sysdate from USER where 'l'='1l
In this case the resulting select statement will be

select airline, flightNum, departure from flights where city='ORD' union all
select userid, 'dummyl', sysdate from USER where '1l'='1l"

The result set you will get will include all user names in the application as shown in Figure 14.6.
The attacker is using SQL injection to get information that they should not have access to and that
may be used to further launch an attack.

|Aidine Ithhr# |Depa:ture Date/Time
Delta [2362 [8/20/2004 17:00
laA 62 (872012007 19:00
DeBle [51 [8/20/2007 1630
[Continental (144 [8/20/2007 19:40
Delta [414 [8/20/2007 22:00
[United [2314 [8/20/2007 20:00
RONB [dummy1 [20-AUG-2007
JANE |dummyl 20-AUG-2007
JOHN [dummyl[20-AUG-2007
IALEX |dummyl 20-AUG-2007
[URSULA |dummy1 [20-AUG-2007
IMITCH |dummy] [20-AUG-2007
[SYSADM |dummy1 [20-AUG-2007
[SYSTEM |dummy1 [20-AUG-2007

Figure 14.6 User names exposed in a UNION-based SQL injection attack.

294 m HOWTO Secure and Audit Oracle 10g and 11g

RECENT POSTS

Subject Author DatefTime (ET)
t g ol ity thie fat 11:29am, Aug 30
Wi Dol gy gty QU 11:29am, Aug 30
S TIAITIT gt ST 11:29am, Aug 30
L Ll 211 kg o 11:28am, Aug 30
hgalie L Dy 3 b 1 11:23am, Aug 30
s a FetHE 11:21am, Aug 30
P 11:19am, Aug 30
huails st iy A 11:16am, Aug 30
£ gieflefiaty Wi 11:14am, Aug 30
Syl LI i b 08 11:13am, Aug 30
g ity 1 11:04am, Aug 30
st g fefistioint 11:01am, Aug 30
, i Prirfh s 10:57am, Aug 30
Ui i ' ; 10:53am, Aug 30
% : 10:51am, Aug 30
WA i e s 10:50am, Aug 30
wi gt fis — 10:46am, Aug 30
i piat L Pt e 10:21am, Aug 30
£ g 2 #i et v 10:18am, Aug 30
¢ L uiis ' ; 10:18am, Aug 30

Figure 14.7 Posting a message to a message board.

Finally, let’s quickly look at another SQL injection pattern—one involving insert selects. This
method makes use of the fact that SELECT subqueries can be used within an INSERT request.
As an example, suppose that you have a screen that allows you to add a message to a message board
as shown in Figure 14.7. The application functionality may be as simple as inserting this message
to a MESSAGE table and allowing all members to review messages posted to the board as shown
in Figure 14.8 (blurred to protect the innocent).

Type message subject

Type message

[Preview] [Post Message H Cancel]

Figure 14.8 Viewing messages on the message board.

Database Activity Monitoring ® 295

Building a message board can use a table in the database called MESSAGES. The application
can do a SELECT on this table, and the posting function can do an INSERT into this table. For
simplicity, assume that the columns in the MESSAGES table are called SUBJECT, AUTHOR,
TEXT, and TIMESTAMP and that the timestamp is auto generated. In this case the application

code for posting a message may simply do

INSERT into MESSAGES (SUBJECT, AUTHOR, TEXT) values (<whatever you type
in the subject fields>, <your login name in the application>, <whatever
you type in the message text areas)

This simple function is vulnerable to an injection attack using an insert select command.
If you type in the following into the appropriate fields (with the proper escape characters omitted
here for the sake of clarity):

SLﬁjeCtﬁekL start’, ‘start’, ‘start’); insert into messages (subject, author, text) select
owner, object name, object_ type from all objects; insert into messages values (‘end

Author field: ena
Text field: end

The following SQL statements will be sent to Oracle:

INSERT into MESSAGES (SUBJECT, AUTHOR, TEXT) values ('start', 'start', 'start')
insert into messages (subject, author, text) select owner, object name,
object_type from all objects

insert into messages values ('end', 'end', 'end')

In this case you will be able to see all the table object names listed on the message board.

Combating SQL Injection

There are a number of things you can do to combat SQL injection, including limiting applica-
tion vulnerabilities, discovering SQL injection vulnerabilities and requiring that they be fixed,
and protect your database by using DAM. As you've seen, SQL injection is not really a vulner-
ability of the database. It is a vulnerability in the application code that exposes the database and
the data.

The first implementation option is to remove the application vulnerabilities. This is normally
the responsibility of the application owner but sometimes it is appropriate for you as the database
owner to be involved. By now there are some very good SQL injection guidelines for application
developers; guidelines such as:

B All data entered by users needs to be sanitized of any characters or strings that should not be
part of the input expression. All input fields must be validated.

B SQL used to access the database from application code should never be formed using string
concatenation.

B Strongly typed parameters (usually in combination with stored procedures) should be used
wherever possible.

B Prepared statements, parameter collections, and parameterized stored procedures should be
used wherever possible.

B Application login should be implemented as a stored procedure.

296 m HOWTO Secure and Audit Oracle 10g and 11g

These guidelines are for developers. If you have some leverage—use it. Make developers adhere to
these guidelines. If you are fortunate you can even require a code review in which you participate.
If you do, stress the use of prepared statements. When you use prepared statements as opposed to
string concatenation the SQL strings are distinct from the values that you get from the user and thus
there is no mixing of SQL and parameters. This is therefore one of the simplest ways to combat SQL
injection. Beyond better security, they also can imply better performance if used correctly.

Monitoring and tracking whether or not prepared statements are used is one of the simplest things
uses of a DAM system—you can see the difference in the SQL that travels on the network when using
prepared statements and you can easily look at all the SQL traffic generated by an application to make
sure that only prepared statements are used. With prepared statements, the SQL looks like:

update test set a = :1

The value would be communicated in an adjoining packet. Without prepared statements, the SQL

looks like:

update test set a = 'ABC'

By monitoring this access and producing a report per application you can work towards more
widely used prepared statements and a more secure environment.

In addition to code and design reviews, you can also make use of SQL injection detection
tools. Tools can help you simulate a SQL injection attack to test your applications. These tools
should be used by the developers themselves but in case you are the last bastion of hope for the
data, you might want to explore the use of these tools yourself. Note that although these tools are
effective, they are not comprehensive and are not always easy to use. The good news is that these
tools are usually free of charge. As an example, SQL injector is a tool offered as part of the SPI
Toolkit by SPI Dynamics (now HP) (http://www.spidynamics.com/products/Comp_Audit/tool-
kit/SQLinjector.html). This tool conducts automatic SQL injection attacks against applications
making use of Oracle and test if they are vulnerable to SQL injection. The tool only supports two
of the common SQL injection attacks—Dbut even this limited test can be useful.

If you already have code deployed, or don’t have the authority or energy to conduct code reviews
you can use a DAM systems to identify and prevent SQL injection by monitoring the application
activity and generating a baseline. A baseline of application access is a set of SQL structures that the
application uses in normal operation. When a SQL injection attack occurs, these structures change.
For example, in the login example a new OR condition suddenly appears. In the message board
example, new INSERT statements appear, and in the flights example a UNION command suddenly
appears. Because an application is generating these SQL statements and not a user, there should not
be any changes to the SQL structures that the application is sending to the database. A DAM system
generates a baseline of “normal behavior” and is able to identify an attack by seeing that there is a
divergence from normal SQL structures and normal sequences. This is the only method that is effec-
tive on all types of SQL injection attacks and that does not introduce many false positives.

Before moving on to the next subject, be aware that there are IDSs that have SQL injection
signatures. Unfortunately, signatures are not an effective tool in an Oracle environment simply
because SQL and PL/SQL are very rich and any attack can be carried out in any number of ways.
Looking for an attack based on a signature is not effective because of the many permutations that
can occur. Signatures try to identify certain patterns as an indicator of an attack. The signatures
that IDS use are usually the commonly used techniques of SQL injection. For example, you can

Database Activity Monitoring ® 297

look for signatures such as 1=1 or UNION SELECT. The problem with this approach is that there
are too many ways to carry out such an actack. For example, think how many different predicates
you can think up that compute to an always true value. It may be ‘I’=1’, or a’="a’ or ‘my dog’="my
dog’ or ‘ron was here’="ron was here’ or ‘ron” LIKE r0%’ or 1<2 or ...—an infinite number of ways.
The second problem is that some of these signatures may actually be used in real systems—it is not
unheard of for people to use UNION ALL—cthis is why SQL supports the function. So your IDS
may alert you on completely legal SQL and DAM is your best choice for SQL injection.

Three Things to Remember about SQL Injection

1. SQL injection has many variants and can happen in any application architecture. It is a
vulnerability at the application level that occurs when user input is not validated and is
used blindly to construct SQL statements that are sent to the database.

2. Use prepared statements or check user input at the application level and you will not have
SQL injection vulnerabilities.

3. Use DAM systems with baselining features by identifying when a SQL statement has

been modified from its normal structure.

14.2 HOWTO Categorize and Identify Misuse
and Intrusions

Because the database performs many activities on behalf of many different users, it is not trivial
to identify an intrusion or misuse of the data. For example, the use of DBMS_CRYPTO or
UTL_HTTP may be completely legitimate for some users and some applications and may be a
sign that something malicious is going on in other cases. Identifying intrusions needs to be based
on context as well as content.

Because DAM monitors all database activity and has full visibility into what is being asked of the
database, it is necessary for identifying misuse and intrusions. It is necessary because without it you only
see what you have setup in your audit trails. DAM is a necessary technology but not all DAM systems
can identify intrusions. It is not enough that the DAM system can see everything—it also needs to have
analysis capabilities. Looking for intrusion or misuse is like looking for a needle in a haystack.

DAM systems that can differentiate between normal behavior and between intrusions look
at content, context, and historical information. Content includes the use of signatures (or the
signature equivalent in the database world), the use of profiles and the use of data. For example,
the use of UTL_FILE or UTL_SMTP will trigger more scrutiny because of possible exposure.
Context includes analysis of environmental parameters as well as the relationships between
different SQLs. For example, a session in which 50,000 identity numbers are selected in sequence
needs to be handled differently versus a session that does the normal sequence of application
behavior which includes two selects, an update, another select, and an insert. Intrusion and
anomaly detection for Oracle requires at least the following categories of analysis:

B Basclines and behavioral divergence: There are two forms of database activity—there are DBAs,
developers, and power users that connect to the database and issue SQL statements and there are
users that navigate through application modules and in the process cause SQL statements to be

298 m HOWTO Secure and Audit Oracle 10g and 11g

sent to the database. For the first class of users it is hard to identify patterns because such users can
potentially perform any SQL statement. However, these tend to have low volume and it is easier
to monitor these connections closely. It is much harder to monitor application activity because of
the volume. However, because the applications have a fixed set of SQL statements that they may
call (it is fixed code after all), it is not too difficult to create a baseline of all observed application
activity. This is called an application baseline and it encodes the state machine of the application
as it accesses the database. Once such a baseline has been created it can be used for detecting
intrusions. For example, if someone tries to launch a SQL injection attack then the SQL state-
ment will have a different structure (e.g., different number of conditions) and the intrusion can
be identified.

B Sequence monitoring: Baselines are usually constructed as points in a multidimensional space
comprising of all the defining attributes of a SQL access. These dimensions include the objects,
the statement, the structure of the SQL, the user, the application, the time, etc. However, you
can get an even more granular definition of application activity if you account for sequences
of statements. This allows you to identify intrusions not only based on a single activity but
on a pattern of activity, frequency of activity, and the order between different activities.

B Errors and exceptions: In addition to monitoring SQL statements it is important to monitor
ALL errors generated by Oracle and what SQL statements (or other activity) caused such an
error to occur. An attack on a database does not take one second—it takes time and usu-
ally requires trial and error (especially if it is an attack launched through an application as
opposed to an attack performed by a trusted insider). As an example, the attack may involve
a UNION-based SQL injection attempt in which the types of columns may be wrong.
It may involve trying to get data and causing privilege errors or errors when a column or
table does not exist. All these errors are of utmost importance where intrusion detection is
concerned and your DAM system must be able to monitor these events.

B Data extrusion: Another form of detection involves inspecting what data is returned on
which session, how much data is returned, etc.

B Signatures of statements and packages: There are many Oracle procedures and packages that
are either vulnerable (if you don’t have the latest critical patch updates (CPUs) installed) or
that are useful when performing an attack. You can monitor usage of these procedures to iden-
tify an attack—especially if you can profile under what conditions they are used normally.

B White lists and black lists: Almost all detection of intrusions involves some form of white
list and black lists. You can have lists of users, lists of statements, list of objects, list of
applications, lists of IPs, etc. White lists enumerate the elements from which you expect
certain behavior and through which you approve certain behavior. For example, you can
create a white list of users and a white lists of IPs for the use of UTL_SMTP. If you
see any use of UTL_SMTP from a user or an IP not within the relevant white list you
can classify this access as an intrusion. A black list is an enumeration of elements that
you do not allow. For example, you can list a set of errors that you do not allow for any
session—any session that will generate such an alert will be immediately flagged as an
intrusion or as misuse.

Finally, note that to identify misuse you need to be able to analyze across multiple sessions. It is
not enough to just monitor each session separately—sometimes understanding what is happening
requires you to look at multiple connections and even multiple databases. As an example, a single
user credential that is concurrently being used from different IPs is at least a misuse of credentials
and sometimes an intrusion.

Database Activity Monitoring ® 299

Two Things to Remember about Identifying Database Intrusions

1. Identifying user intrusions requires a combination of technologies that inspect the SQL
requests, error states, and the responses for the database.

2. Detecting intrusions by users accessing the database directly uses different techniques
than detecting intrusions that take advantage of applications. In the first you can use
combinations of signatures and error messages while in the second using a baseline along
with error detection is more effective.

14.3 HOWTO Understand the Compliance Landscape

Much of the investment in database security is driven by compliance. When using the term com-
pliance the first question is “compliance with what?” Usually the answer is that your company needs
to comply with a certain regulation or with an internal policy. There are thousands of regulations
today that affect database security; yes—thousands. This certainly does not mean that all of them
affect you—most regulations are geographical, some are related to only certain industries, and some
to the size and type of the company. As an example, Table 14.1 provides a very partial list from a few
national regulations relevant in certain countries (partial both in terms of countries and the regula-
tions within each country). As you can see, different countries have different mandates. Also, Table
14.1 only lists national regulations. There are also separate regulations which are enforced through
local government, for example, in the United States there are 38 separate state-level regulations that
affect privacy of PII. There are regulations that are enforced by industry leaders. For example, the
Payment Card Industry (PCI) Data Security Standard (DSS) is not a national regulation—it is an
industry regulation which has been created by the credit card companies. There are even regulations
that have been adopted from one country to another. For example, J-SOX is a Japanese regulation
which has been created based on the American Sarbanes—Oxley regulation. Euro-SOX is similar
within the European Union. Finally, there are internal controls and policies that are usually defined
by internal audit or the internal risk management group that define requirements that you need to
abide by in terms of database security, database auditing, and database risk management.

Table 14.1 can be frightening. No one has time to even understand all these requirements, let alone
implement for them. The good news is that there aren’t many variants in terms of the requirements
posed by regulations on what you need to do in a database environment as inferred by the columns of
Table 14.1. As the table shows, different regulations imply different categories within database security/
monitoring/auditing that you should invest in, but there aren’t hundreds of different permutations.

Atahigh level there are two main classes of regulations. There are regulations which are focused
on governance and regulations that focus on sensitive data. Regulations that focus on governance
are primarily focused on the controls you have in place and on risk management. These regulations
usually put a very strong emphasis on DBAs and privileged users and almost always the first step
in such implementations is to produce comprehensive audit trails for DBAs and define controls
around changes that may affect the applications. The 9001b gorilla of this category is SOX.

The second set of regulations focus on access to sensitive data. Such regulations also have a
set of requirements that deal with DBAs (e.g., making sure that DBAs cannot access PII) but
overall the focus of these regulations is largely on sensitive data—i.e., a subset of database objects.
Examples include PII in various privacy regulations, PCI DSS where the focus is on credit holder
information, credit card information, etc.

300 m HOWTO Secure and Audit Oracle 10g and 11g

epeue)

, » » 2 » , L9 "ON || @1euas
(erdnnw)
» » » » 2 7 4| eteweD ep reap oysloid
2 2 » » » 2 7861 JO MET SOnRWLIOMU]
a A’ L’ S S 19 "ON []1g ©}euaS [elapay
000c Jo
A, » A, » » A, 2 PV sown) tvndwo)
a A’ a A’ L’ S Va 000c/veve 11'd
l1zeig
» » 7 S 2 1OV Adealid
1OV uonewloju|
’ » 2 2 2 JO Wop9a.4 [eIdpa
7 7 7 7 7 ’ SMIa
» » » 2 » » , PV sew)
Z Z Z Z 644310
a A a a a 09€7:SZN/SY
eljes)sny
1Y8Ision0 sanng jo JuswaSeuep 8unioday Aupiqepreay | juswoaSeuepy J043U0D juawaiinbay A103e[n8ay
pue uone8aifog | ssadoid pue pue pue a8ueyH Jiuswaeuepy
JuswaSeuepyy juswaSeuepy ‘Sunipny Awi8ayuy SS90V B1E(]
sjo1u0) ys1y ‘uriojiuopy ereqg pue [013U0D
$S900Y

sa11033)e) SuLiojiuoy pue A1INdAS Aseqeje(0} suonengay [euoneN jo Suiddeyy [enteq

L'v1 9qeL

Database Activity Monitoring m 301

(ponunuod)

2%\

meT 1oddng
193 Je [eldueUld Yl

Auewan

aidw

11d Jo 19jsuer]
9Y) U0 9AIDAIIJ N1

84/¢00¢ @A23IId N3

99/£6 @A™ N1

SOES S S

SOES S S

SOES S S

9%/G6 @A™ N1

9d0UBUI9A0ND

aresodiod NI-vIDIA4
/aA1911Q Y8 N1

(n3) uolun ueadoing

10V SUOIEDIUNWWODI|A]

96-0£80-YSD/NVD vdidld

1OV AdeALd [elopad

1OV UOIeWIOoJU|
0} $S920Y [eJopa4

€LE-CS VSO

1OV 221A19G 20ouadi|[Pu]
A}11NDaG uelpeUERD)

(9€-D) PV wisLol_muy

302 m HOWTO Secure and Audit Oracle 10g and 11g

sopuady
211qnd Aq uonew.loju|
JO 21NSOISI UO Y

uonNISU0)D
9y} JO L /PPy

uede(

QAR AdeALld
SUOI}EdIUNWIWO0D3[3]

1DV UO1129)04d Ble(Uel[e)|

SUOISIAOI{
uonoajold eye aaiojdwy

uonnsu0)

Arey

Dngsuel|

dUBUIPIO
u01129)0. ele(] siatiie)
SUOI}EDIUNWIWO0D3[3]

Py
u0132930.14 eye(] [elopad

MeT synyodsuaje(

N

N

N

yoday
UOISSILIWOD) SWWO0ID)

NTEIEYYe)
pue
JuswaSeueyy
sj0U0D)

sanng jo
uoipe8aidog

juswaSeueyy
ssadou4 pue
jJuswaSeueyy

sty

8unioday
pue
‘Sunipny
‘Surioyuow

Aupiqeqreay
pue
Awi8aqug
211g]

JuswaSeuey
a8ueyH

jonu0)
Juswaleuey
SS90V BJE(]
pue jo13U0)
$S900Y

judwaiinbay A1oyein8ay

sa11033)e) Suriopuow pue A}LINdAS dseqeje(0} suonengay [euoneN jo Suiddew jenteq

(panunuod) |y 9jqeL

Database Activity Monitoring ® 303

(panunuod)

1OV UOI1}D2]0.1d Mueq

saje}s pajun

119 218D [e1D0S pUE Yi[eaH

»y
uoljew.Oju] JO wopaal4

uone|si3a]
AoeaLd aakojdwy

1OV U01d}0.d ele(

wopSury payun

(@dueUIaA0ND)
91es1o0dion) [Suy

10y Sulioyiuow
pue uondadiayul

1119 suonodesuel
pue suonedIuNWWoD)
21U04309|]

JOV UOI}eUWLIOJU| 0} SS20Y

©LYY Yinos

Y
u01309)0.14 uonew.oju|

>

>

>

>

UOIJBW.IOJU| JO WOPaI

1OV SUOonEdIUNWWOD)

eISSNYy

1OV U01}23)0.1d
UOIJeWIOJU] [BUOSID]

DIW

s34 aAnRASIUTWLPY

Aq p|oy ere(|euosiad

passanold Joindwon
JO UO13D9)0.4 dY} 10} OV

304 m HOWTO Secure and Audit Oracle 10g and 11g

£67vCL-11d

(ednjnw)
1 1DV 9AI9SY |etapaq

1V Ad1jod A81au7

Y
AJBALI SUOIEDIUNWIWOD)
21U04309|]

(eydnnwy agoa

(a1dnnw)
uononasu| god

(e1dnnw) seAnda11q goa

uo12310.4d
24njonJiselju| [eanLd

>

(L00Z) 1Y usWadUEYU]
Ayanoag 1oandwo)

hS

>

1PV Alndag seindwon

(Yv4D) 1V 9snqy
pue pnely saandwo)

(e1dnnw) Wso[D

A S

(e1dnjnw) [sOD

SIS IS S

A

s

s

A

SIS SIS

¢eed40

WIEIEYYe)
pue
JuswaSeuey
sj0.3u0>)

sann(Jo
uone8oi8og

jJuswaSeuey
ssadolg pue
JuswaSeuepy

At

8unioday
pue
‘Sunipny
‘8uriojiuopy

Aupiqejreay
pue
Awi8aquy
vleqy

JuswoaSeuepyy
a8ueyH

JleXililels)
JiuswaSeuey
SS90V BlE(]
pue j0uo)
$S900Y

juawoaiinbay A103e[n8ay

sa11083)e) Suliojluop pue A}Indag Iseqeje o) suone|nday [euonep jo Suiddeyy [enteyq

(panunuod) L'y | 3d|qer

Database Activity Monitoring ® 305

smeq
UOIEDIJIION 9)e)S SNOLIeA

>

>

A S

>

LLES DSN

0€0L DSN

9661 30
1OV SUOIIEDIUNWWOD[D]

VdO1

00T $0 1oV uond}01d
10}SOAU| pUEB WIOJY

Sununodoy Auedwon

211qnd A8]X(saueqJes

>

>

10V AdeAlld

>

Vvdd

SSd 1Dd

L00T JO 1OV J0oLijed

SIS SIS S S

(e1dnjnw) gwo

dSSILSN

A S

(a1dnnw) 008 LSIN

SUISIS SIS

SUS IS IS IS IS IS

>

SUS IS IS IS ISIS S

(e1dnjnw) 530

(VVdIH)

PV ANjIqeIunodDy
pue Ayjigeriod
aouelnsu| yyeay

6661 JO
1PV A9jI|g—yoea-wweln

(€00T) 1V A1Indag
JOMISN JUSWUIBA0D

>

>

>

VdSIO

6771114

306 m HOWTO Secure and Audit Oracle 10g and 11g

The good news is that if you go through a fairly comprehensive implementation of database
security you will likely cover multiple regulations that you may have to comply with. Certainly
if you implement one of the regulations you will be covering all regulations within that category,
but if you also adhere to the best practices rather than looking at the regulation then you will
likely cover many more requirements. In fact, you should consider implementing security best
practices rather than addressing a compliance checklist. If you implement elements of what this
book covers (e.g., assessments, monitoring, auditing, change tracking, encryption—even if you
implement each partially), and if you put a process in place that enforces best practices, then you
will almost certainly have a secure environment and you will be in compliance with the relevant
regulations. If you invest in complying with a very specific checklist you might find that you have
not achieved better security, that you have not brought yourself closer to compliance with other
requirements, and you may even be at risk with your main compliance driver because the techni-
cal implementation is an interpretation of the regulation. The bottom line is that good security
implies compliance (and compliance with multiple regulations) whereas compliance with a certain
requirement does not necessarily lead to better security and does not imply compliance with
multiple regulations.

Two Things to Remember about the Compliance Landscape and Mapping Compliance
Requirements to a Technical Implementation

1. Secure your database environment well following the guidelines and tools presented in
this book—this will guarantee that you are compliant with any regulation your database
environment needs to comply with.

2. There is a high degree of commonality between many regulations—don’t let the sheer
number of regulations overwhelm you. Identify which regulations focus on governance
and risk management and which regulations focus on data access and data privacy and
implement generic controls and policies that will cover all relevant regulations.

14.4 HOWTO Determine Whether You Need DAM or DAMP

Technically, it seems very simple to know when you need DAMP. You need DAMP when you
need to prevent activities from happening versus the use of monitoring and real-time alerting and
using these as prevention-through-deterrence. At a business-level, it is harder to know when DAM
(and the right process) is enough versus when DAMP is truly required. You should make the dis-
tinction because the cost associated with DAMP is usually higher than the cost associated with
DAM and because DAM is a truly nonintrusive technology whereas DAMP is not. Here are some
important use cases for DAMP deployments:

1. Privileged user access to sensitive data such as PII: DBAs and other privileged users with
system privileges can access any data in any schema. There is no need to explicitly grant
privileges to objects containing PII data and there is no way (in Oracle or any other
database) to limit such access. Preventing such access (mostly preventing SELECTS) is
required by multiple regulations and in many geographies. This is usually solved through
monitoring and real-time alerting but many are moving to prevention as a way to reduce
cost (of review). Monitoring is also viewed as a compensating control whereas preven-

Database Activity Monitoring ® 307

tion is the control that compliance requires. Note that although SELECT statements
are the most common, there are many activities that may need to be prevented—e.g.,
creation of views, creating data pump tables, dropping tables, etc. This use case covers
many scenarios that differ only in which rules are defined—Dbased on user accounts,
based on which IP or subnet the connection comes from, based on which application
is making the request, based on the time of day, based on which schema and database
objects are accessed, etc.

. Outsourced DBAs and cross-boundary laws: Companies that outsource DBA positions are
extremely sensitive to access by nonemployees. This use case is a subset of the previous one
but gets more visibility and priority. This use case also gets special attention due to the pos-
sibility of changes to business-affecting data. In the previous use case the focus is often on
access to sensitive data and is often related to PII. However, there is also a similar use case
involving business-affecting data. In this use case the focus is usually not only on access to
data but also on the ability that a DBA has to change data (i.e., DML versus SELECT).
Although this scenario is as valid for internal DBAs as it is to outsourced work, addressing
this issue when internal employees are involved is often based on monitoring and auditing
whereas outsourced scenario often require better preventive controls.

. Segmentation of applications and their related data: Because multiple applications often
live in the same instance or on the same operating system and because users with system
privileges can access data across these schema and database boundaries, there is a need to
enforce policies in which privileged users of one application cannot connect to the schema
of another application, even when running on the same instance or machine.

. Separation of duties: There are often requirements for more than one person to collectively
perform a highly privileged activity. This is hard or impossible to implement when users have
all privileges. Prevention based on multiple factors is used to implement such schemes (meta-
phorically similar to two people turning a key to launch a missile). This use case includes
handling of patch installations, upgrades, backups, replication changes, etc. This use case
is also relevant when database links are involved and where data from one application is
exposed through another, and the linked application cannot rely on the security rules built
into the linking application.

. Implementation of encryption schemes: When implementing data encryption using DBMS_
CRYPTO (versus TDE), the encryption keys are often stored in the database within tables.
Prevention is used to ensure that DBAs do not access the encryption keys. This is another
special case of use case #1.

. External policy definition for legacy applications with limited access control: Applications
(especially legacy application and database schemas that are part of a purchased application)
often have very limited built-in schema access control. It is not possible to change these
applications and yet access control is mandated by regulations. To maintain compliance and
not have to replace applications, external prevention is used.

. Data leak prevention: Vulnerabilities in application and lax access control definitions
increase the risk of leakage of sensitive data. For example, a vulnerable script or application
can be changed to extract ALL records from the database. Prevention can be based on extru-
sion of data and not on access. Prevention in this case is coupled with reporting to support
notification—e.g., rather than have all 2 million customer records extracted, terminate the
connection as soon as the breach is identified (e.g., after access to 250 records), report on
which 250 records were extracted and supply the records to allow notifying only these 250
customers.

308 m HOWTO Secure and Audit Oracle 10g and 11g

8. Rogue application prevention: Application data in the database should only be accessed and
changed through the application. However, access control is almost always based on user
name. Compliance requirements often specify that changes to data (and sometimes also
access to data) should only be made through the application where application-level security
is enforced. Any connection from another application, script or tool should be prevented.
An example is the use of Excel to connect to the database, extract data and even change data
using VBA.

9. Enforcement of change request process: Most companies manage DBA tasks in a change
request/ticketing system. When DBAs needs to perform work they should have a valid ticket
number that references at least the instance. Most companies rely on auditing and recon-
ciliation of activities produced by the auditing system with the ticket description. A more
advanced approach is to require ticket information to be entered as part of the session and
prevent certain activities if the ticket number is invalid or is not related to the instance. This
can be used for all DBA work or, more likely, for security-affecting work such as changes to
authentication attributes, changes to encryption options, changes to backup options, etc.

It is interesting to note that DAMP, like DAM, is very much driven by compliance and risk
management.

Three Things to Remember about Using DAMP versus DAM

1. Most DAMP implementations are still driven by compliance, but they have a very strong
security orientation because they create an external access control overlay.

2. DAMP implementations are simple because they are rule based and can easily support
any requirement for access control based on any number of factors—all without modifi-
cations to Oracle.

3. The main use cases for DAMP are controls around users with system privileges and
breaches that occur and extract data from the database.

14.5 HOWTO Analyze Impact on Performance

DAM systems (especially those with interception architectures) have less impact on performance
than the alternative options. However, even within this DAM architecture there are different
attributes that can affect impact on the database server.

Looking back at Figure 14.1, a DAM system can intercept database communications on the
database server itself or by using network gear. The only impact that a DAM system can have
is when the probe is running on the database server; if packets are inspected using a switch
port mirror (e.g., a SPAN port) or using a network tap then the impact on performance is zero.
SPAN ports and network taps create a copy of the packets as they are being placed on the port
on their way to the database server, and placing this copy on the port mirror (see Figure 14.9).
They do so while guaranteeing that there is absolutely no impact on performance—there is
no added latency to the real packets on their way to the database, there is no impact on the
throughput, etc. Therefore, when you inspect through network gear you don’t even have to do
any testing.

Database Activity Monitoring ® 309

Operating system

Operating system Switch

Backplan, ‘

SPAN port

Port

client

‘Port mirroring —
i copy packets on

: the database
{server port to the
{SPAN port

DAM system

Figure 14.9 Using a switch to get a mirror stream of database activity.

Technically, doing packet sniffing is an optimal solution (at least as far as performance is con-
cerned). However, there are a number of issues with packet sniffing including the fact that local
traffic cannot be analyzed, the fact that encrypted traffic cannot be inspected, and the fact that
for an environment with a large number of servers it may be impractical to intercept at the switch.
Therefore, it is important to understand how these probes work so you can better analyze their
impact on performance.

As shown in Figure 14.1, probes do two things—they create a copy of the database activity at
real time by inspecting the interprocess communication that the database is involved with, and
they send this data to the DAM server. The fact that the probe does so little is key to the ability
of a DAM system to remain nonintrusive and not impact the database performance. However,
the probe is running on the database server and is consuming resources. You should understand
what attributes such probes can have and how this can affect performance:

1. The impact of a DAM probe on performance is directly related to the amount of database
activity that it needs to monitor. The probe makes a copy of data packets and writes them—
usually on a socket. Writing ten times more information generally means that the probe has
ten times more work to do and thus consumes ten times more resources. Therefore, make
sure that the DAM system that youre evaluating allows you to filter out various database
activities, for example, based on who the user is.

2. At least half of what the probe does is write the data to a socket. Apart from consuming
resources, this also has an impact on network load because this data needs to be sent
to the DAM server. A DAM probe that can filter what gets sent to the DAM server not
only consumes less resources on the host, it also adds less overhead from a networking
perspective. Some probes will even allow you to fine-tune whether or not you want long
result sets sent to the DAM server. This gives you even more control on the impact on
resources.

3. Encryption is a relatively expensive computational operation. DAM probes have the ability
to encrypt the traffic (usually using Secure Sockets Layer, SSL) between the probe and the
DAM system. However, think twice about whether or not you need this capability because

310 m HOWTO Secure and Audit Oracle 10g and 11g

it does affect performance. It is not unrealistic to have a probe consume 2 percent CPU
without SSL and seeing it go up to 4 to 5 percent when SSL is enabled. As with other opera-
tions performed by the probe, the impact on performance is proportional to the amount of
data sent to the DAM server—if you need to encrypt ten times more data you will consume
ten times more resources. As a rule of thumb, you only need to use encryption between
the DAM probe and the DAM server if you are encrypting the data-in-transit between the
database clients and the database server.

To summarize, DAM systems have the best audit-to-performance ratio and have the least impact
on server performance. Using network inspection has the potential to reduce the impact to zero.
Using host probes will have some impact but can be very small especially if your probe allows you
to control just how much you write to the network.

Three Things to Remember about Analyzing DAM’s Affect on Performance

1. Impact on performance is directly correlated to the amount of data you are inspecting for
all but network-based DAM inspection.

2. Use filters to define what you are collecting and what you are auditing—there is little
sense in auditing what you do not need.

3. If you are using a host probe only, remember that encrypting DAM communication is
relatively time consuming. Do this only if your database traffic is encrypted in the first
place.

14.6 HOWTO Analyze Impact on Storage

DAM systems potentially collect a lot of information. For example, when a vendor tells you
that it can audit at a rate of 2500 statements per second, you can do some simple math to see
what the impact on storage can potentially be. For example, if you assume that an audit record
takes 200 bytes then a simple calculation implies that the audit records from a single day will
consume over 40 GB of disk space. If this data is archived it can be compressed, but will still
take a lot of disk space. More importantly, you cannot always compress this data and move it
to secondary storage immediately—you may need to keep it online for a certain period of time
for compliance reporting purposes. As an example, if you need to keep it online for a period
of 60 days, then just that one system may require over 2.5 TB of disk—this is a very expensive
proposition. If the average audit record consumes only 20 bytes then this becomes a more man-
ageable 250 GB of disk space. If the average audit record is 800 bytes then this number becomes
an unmanageable 10 TB for a period of 60 days. The most important number is the average size
of an audit record. Other attributes that will affect the amount of storage you will require for
your implementation are:

B Appliance packaging or software-only deployments: Many DAM systems are packaged as a
security appliance. Beyond the advantages that this packaging provides in terms of the system
being hardened by design, these systems include their own disks so that they can collect and
report on data without requiring external storage. For these systems you need to validate how

Database Activity Monitoring ® 311

long data can be kept on the appliance’s disks. At some point you will need to archive the data
to make room for new data but if the DAM system is well designed this goes directly to second-
ary storage so that you do not have to analyze storage requirements. For software-only DAM
solutions you need to size the disks on the server that will be running the DAM system.
Monitoring versus auditing: Many people do not distinguish between the requirements for
DAM monitoring versus DAM auditing. If you audit at a rate of 2500 records per second
there is no doubt that no one will review this audit trail. Therefore, auditing at such rates is
only valuable for potential future investigations. Much more typical are requirements which
include monitoring database activity at very high rates (tens of thousands per second) and
auditing a small subset of these activities. From a storage perspective, the monitoring rate is
not important; it is just the auditing rate that is important. Therefore, make sure that when
you look at DAM systems you have a clear understanding of what your monitoring require-
ments are, what your auditing requirements are, and that the DAM system is able to define
monitoring policy rules and auditing policy rules that may be distinct. As an example, you may
need to monitor all database activity to detect misuse and intrusions but will only audit access
to sensitive data and statements that are identified as an intrusion.

Normalization: One of the biggest issues with some DAM systems is that they do not nor-
malize the data before they store it. In Chapter 13 you saw that the Audit Vault schema
has a FACT table that contains the statement and that all of the attributes that qualify this
statement are stored in DIM tables. The data is normalized in that you do not save all of the
dimension information multiple times, one per access. This is the convention with DAM
systems—most of them store the data in a database in a normalized manner. However, some
first-generation DAM systems store the data in flat files and repeat the data per statement.
An audit record of that form may look like:

14 February 2008 10:32:36, 192.168.1.8,192.168.2.222,3920,1521,
"Risk Management DB-Production", "ORACLE", "aqua data studio",
"user2","user2", "client.dbasecurity.com",

"select * from tl","select* from tl", "user2",

Note that the dimension information is written per audit record. This means that if you audit
one thousand invocations of “select * from t1” you are not storing one thousand times 30 bytes
(which is the length of the statement plus some pointers to DIM records) but one thousand
times 500 bytes! There is no reason to duplicate the session information per audit record.

Three Things to Remember about Analyzing DAM Storage Requirements

. Make sure to use a DAM system that normalizes data to avoid expensive duplication of
data.

. Check the average audit record size and your policies and compute the estimated stor-
age requirement for 30—60 days; this is normally the amount of data you need to keep
online.

. Distinguish between what you need to monitor versus what you need to audit to reduce
unnecessary storage requirements.

312 m HOWTO Secure and Audit Oracle 10g and 11g

: Application server

- Database connection

Figure 14.10 Database connection pooling scenario.

14.7 Discussion: Identifying the Real User

One of the hardest problems that DAM solves involves end-user credentials. Most auditors will
require full accountability—i.e., every audit record must be associated with a single individual. The
same applies to monitoring and security—every action at the database level needs to be mapped
to a single user—a unique individual. There are two important scenarios that make it difficult
to meet this requirement. The first scenario is that of application servers. As Figure 14.10 shows,
application servers manage a pool of connections. These connections all logon to the database
when the application server starts up using a single functional ID. Therefore, any audit trail or
monitoring system will only be able to mark these activities as being performed by the functional
account. Unfortunately, this is not full accountability and is not useful from either a security or an
auditing perspective. Instead, you need to be able to tell which database activity was performed on
behalf of user A and which database activity was performed on behalf of user B.

The second scenario involves the Oracle instance account. In many environments there are cer-
tain activities that you would do from the Oracle instance account. On Unix you might connect to
the host using your own operating system account using ssh and from there su into the Oracle instance
account and connect using “/ as sysdba”. The problem here is again the lack of full accountability.
When you look at the audit trail you will see the database user as SYS and the operating system user
as oracle (the instance account). What is really required is an indication that these activities are being
done by you—i.e., the account from which the su to the Oracle account occurred.

In both these scenarios inspection-based DAM systems can help you with full accountability.
Because these systems live outside the database, they can look at additional information that can
be used to augment the information on the database connection. This is a very important advan-
tage afforded by DAM that will make your auditors very happy.

Getting end-user credentials in the application server scenario is done either by instrumenta-
tion of the code or by instrumentation of the application server. You've already seen that if you use
dbms_session.set_context or dbms_session.set_identifier as shown in Figure 14.11 then standard
auditing will log this user, and DAM systems will also pick that up as the real user. In this case,
when the application gets a connection from the connection pool it makes a call to set_context

Database Activity Monitoring ®m 313

[Application serve

: Get the connection; set the database context to "User B"
% by calling
: exec dbms_session.set_identifier ("User B")

Figure 14.11 Using dbms_session to set the end-user credentials.

and the DAM system knows that all SQL statements on this connection (up until the next call to
set_context) belong to user B.

DAM systems can do more. DAM systems can observe what is happening on the application
server. They can see the requests when they come into the application server and match them
with the requests that the application server makes to the database. This matching still requires
instrumentation—at the application server. Don’t fall for solutions that tell you that they can
inspect the requests coming to the application server and the requests the application server makes
to the database and correlate them. Time-based correlation and value-based correlation will only
give you the right answer sometimes, but unless you can match these requests up with 100 percent
accuracy all of the time, you cannot use the solution for monitoring or auditing.

Similarly, in the scenario involving the Oracle instance account, because the DAM probe lives
at the operating system it knows that the connection to Oracle has been made from a shell that was
initiated by another shell that is owned by the real user. DAM looks wider than just the database
level and therefore can help you achieve full accountability.

Database security

HOWTO Secure and
Audit Oracle 10g and 11g

Ron Ben Natan

Foreword by Pete Finnigan

Oracle is the number one database engine in use today. The fact that it is the choice of military
organizations and agencies around the world is part of the company’s legacy and is evident in the
product. Oracle has more security-related functions, products, and tools than almost any other
database engine. Unfortunately, the fact that these capabilities exist does not mean that they are
used correctly or even used at all. In fact, most users are familiar with less than 20 percent of the
security mechanisms within Oracle.

Written by Ron Ben Natan, one of the most respected and knowledgeable database security
experts in the world, HOWTO Secure and Audit Oracle 10g and 11g shows readers how to
navigate the options, select the right tools and avoid common pitfalls. The text is structured as
HOWTOs — addressing each security function in the context of Oracle 11g and Oracle 10g.

Among a long list of HOWTOs, readers will learn to —

* Choose configuration settings that make it harder to gain unauthorized access

¢ Understand when and how to encrypt data-at-rest and data-in-transit and how to
implement strong authentication

e Use and manage audit trails, and advanced techniques for auditing

* Assess risks that may exist and determine how to address them

* Make use of advanced tools and options such as Advanced Security Options,
Virtual Private Database, Audit Vault, and Database Vault

The text also provides an overview of cryptography, covering encryption and digital signatures
and shows readers how Oracle Wallet Manager and orapki can be used to generate and manage
certificates and other secrets.

While the book’s 17 chapters follow a logical order of implementation, each HOWTO can be
referenced independently to meet a user’s immediate needs. Providing authoritative and succinct
instructions highlighted by examples, this ultimate guide to security best practices for Oracle
bridges the gap between those who install and configure security features and those who secure
and audit them.

AU4L27

CRC P 6000 Broken Sound Parkway, NW
ress Suite 300, Boca Raton, FL 33487 ISBN: 978-1-4200-8412-2
Taylor & Francis Group 270 Madison Avenue 90000
an informa business New York, NY 10016

www.taylorandfrancisgroup.com | 2 Park Square, Milton Park | ||
q%7a81420"084 122

Abingdon, Oxon OX14 4RN, UK
www.auerbach-publications.com

Compliments of: For more information contact:
— e e IBM InfoSphere Guardium

5 Technology Park Drive guardium@us.ibm.com
@ Westford MA 01886 ibm.com/software/data/guardium

