
 IBM Data and AI Expert Labs

IBM Cognos TM1 TI-Process Synchronization:

Proven practices, Recommendations and a

plug&play TI-Synchronization Utility

Prepared:

Jan/Feb 2014

Created By:

 Andreas Kugelmeier

Executive Consultant, FOPM
Planning Analytics Architect

IBM Data and AI Expert Labs
Mobile Phone: +1-215-384-7302
Email: kugelmeier@us.ibm.com

mailto:kugelmeier@us.ibm.com

 IBM Data and AI Expert Labs

2

Notices & Disclaimers

Copyright © 2015 by International Business Machines Corporation (IBM). No part of this document may be reproduced or
transmitted in any form without written permission from IBM.
U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM.
Information in these presentations and papers (including information relating to products that have not yet been announced by
IBM) has been reviewed for accuracy as of the date of initial publication and could include unintentional technical or typographical
errors. IBM shall have no responsibility to update this information. THIS document is distributed "AS IS" without any warranty,
either express or implied. In no event shall IBM be liable for any damage arising from the use of this information, including but not
limited to, loss of data, business interruption, loss of profit or loss of opportunity. IBM products and services are warranted
according to the terms and conditions of the agreements under which they are provided.
Any statements regarding IBM's future direction, intent or product plans are subject to change or withdrawal
without notice.
Performance data contained herein was generally obtained in a controlled, isolated environments. Customer examples are
presented as illustrations of how those customers have used IBM products and the results they may have achieved. Actual
performance, cost, savings or other results in other operating environments may vary.
References in this document to IBM products, programs, or services does not imply that IBM intends to make such products,
programs or services available in all countries in which IBM operates or does business.
Workshops, sessions and associated materials may have been prepared by independent session speakers, and do not necessarily
reflect the views of IBM. All materials and discussions are provided for informational purposes only, and are neither intended to,
nor shall constitute legal or other guidance or advice to any individual participant or their specific situation.
It is the customer’s responsibility to insure its own compliance with legal requirements and to obtain advice of competent legal
counsel as to the identification and interpretation of any relevant laws and regulatory requirements that may affect the customer’s
business and any actions the customer may need to take to comply with such laws. IBM does not provide legal advice or represent
or warrant that its services or products will ensure that the customer is in compliance with any law.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or
other publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM
products should be addressed to the suppliers of those products. IBM does not warrant the quality of any third-party products, or
the ability of any such third-party products to interoperate with IBM’s products. IBM expressly disclaims all warranties, expressed
or implied, including but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM
patents, copyrights, trademarks or other intellectual property right.
IBM, the IBM logo, ibm.com, Aspera®, Bluemix, Blueworks Live, CICS, Clearcase, Cognos®, DOORS®, Emptoris®, Enterprise
Document Management System™, FASP®, FileNet®, Global Business Services ®, Global Technology Services ®, IBM
ExperienceOne™, IBM SmartCloud®, IBM Social Business®, Information on Demand, ILOG, Maximo®, MQIntegrator®,
MQSeries®, Netcool®, OMEGAMON, OpenPower, PureAnalytics™, PureApplication®, pureCluster™, PureCoverage®, PureData®,
PureExperience®, PureFlex®, pureQuery®, pureScale®, PureSystems®, QRadar®, Rational®, Rhapsody®, Smarter Commerce®,
SoDA, SPSS, Sterling Commerce®, StoredIQ, Tealeaf®, Tivoli®, Trusteer®, Unica®, urban{code}®, Watson, WebSphere®,
Worklight®, X-Force® and System z® Z/OS, are trademarks of International Business Machines Corporation, registered in many
jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM
trademarks is available on the Web at "Copyright and trademark information" at: www.ibm.com/legal/copytrade.shtml.

• IBM’s statements regarding its plans, directions, and intent are subject to change or withdrawal without notice at IBM’s sole

discretion.
• Information regarding potential future products is intended to outline our general product direction and it should not be relied

on in making a purchasing decision.
• The information mentioned regarding potential future products is not a commitment, promise, or legal obligation to deliver

any material, code or functionality. Information about potential future products may not be incorporated into any contract.
• The development, release, and timing of any future features or functionality described for our products remains at our sole

discretion.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual
throughput or performance that any user will experience will vary depending upon many factors, including considerations such as
the amount of multiprogramming in the user’s job stream, the I/O configuration, the storage configuration, and the workload
processed. Therefore, no assurance can be given that an individual user will achieve results similar to those stated here.

http://www.ibm.com/legal/copytrade.shtml

 IBM Data and AI Expert Labs

3

Document Version History

Date Version Author Description

2013 .9 Andreas Kugelmeier Development of Utility

February. 2014 1.0 Andreas Kugelmeier Document Release

08/07/2015 2.0 Andreas Kugelmeier Misc. edits and improvements, add TOC

Contents

1. TI-Process Synchronization - Introduction ______________________________ 4

2. Recommendations on how to use SYNCHRONIZED() ______________________ 5

3. Configurable TI Synchronization Utility ________________________________ 6

4. TI Synchronization Utility Objects ____________________________________ 8

 IBM Data and AI Expert Labs

4

1. TI-Process Synchronization - Introduction

For TI processes that edit/update dimensions and/or update security, it is a proven practice to implement

of a Synchronization Methodology to serialize TI processing to prevent thrashing/rollback: Thrashing, or

successive rollbacks and retries, can result from the concurrent execution of Turbo Integrator processes
that lock the same objects and block each other. If two or more TI processes may perform an update of

one and the same dimension, the first process to acquire the dimension ‘lock’ will block the other process
from continuing, the 2nd process will hence do a rollback of its actions before encountering the lock and

then will attempt to start anew (possibly hitting the same lock later should process 1 not have finished).
Such two processes should be kept from being executed in parallel and instead should only be allowed to

be run in serial to avoid thrashing and excessive rollback actions. The same applies to fact updates and

dimension updates: if you are running a process that updates fact data you should not attempt to update
the dimension master data using a different process as this will cause locking and rollbacks. Typically, a

TI process will only perform actual updates at or towards the end of the process after 1st retrieving data
and/or performing various validations, and if it then finds that the object it is trying to update is locked,

then it performs a roll back and retry. In some cases, two or more TI-process may even enter into a

‘loop’ of multiple to endless rollbacks and retries due to locking one another during various stages of
processing.

Thrashing Examples:

1. Two or more TI processes may perform an update of one and the same dimension

2. The first process to acquire the dimension ‘lock’ will block the other process from continuing
3. The 2nd process will hence do a rollback of its actions before encountering the lock and then will

attempt to start anew
4. The 2nd process may possibly hit the same lock later should process 1 not have finished or have

released the lock (again resulting in a roll-back, i.e. back to the beginning...).
5. Or the 2nd process will find that the lock was released, but: the 2nd TI process ,may obtain a lock

on a different object that is needed by the first process (but later on, i.e. towards the end of the

1st process running
6. Now the 2nd process is locking the 1st process & the 1st process will do a roll-back...

7. Not only may there be roll-backs and retries, but the rollbacks and retries – depending on the TI
procedures in place, may affect one another, resulting in two or more processes locking each

other out.

The idea behind the synchronization and serialization logic is therefore to reduce if not eliminate

thrashing inefficiencies by ‘locking’ the target object (or a common related object) upfront before
retrieving data or performing any other time consuming operations. A semaphore logic can be used to

synchronize certain (applicable) TI processes to run in serial execution mode only. The synchronization
logic will ensure that a process is told to ‘wait’ at the very beginning of execution (before it would require

a roll-back or data updates etc.) until the ‘lock’ that would prevent the process from continuing is

released.

As of TM1 10, the SYNCHRONIZED()1 function allows for easy serialization of TI processes if needed.

1 TM1 SYNCHRONIZED() function: IBM® Cognos® TM1® TurboIntegrator (TI) function called synchronized() can be used in a
TurboIntegrator script to force serial execution of a designated set of TurboIntegrator processes. The synchronized() function uses
the following syntax: synchronized(string)
A TurboIntegrator process may make any number of calls to synchronized(), with any number of lock objects. Serializing is effective
from the time synchronized() is called, until the containing transaction completes. For example, if synchronized() is called from a
subprocess (Ps) of master process (Pm) or master chore (Cm), the Lock Object is "released" when Pm or Cm completes. The
exception is that a SaveDataAll (SDA) prematurely "ends" a transaction mid-process execution; this applies to Lock Objects as well.
The synchronized() call may be placed anywhere within a TurboIntegrator script, but serialization applies to the entire

http://pic.dhe.ibm.com/infocenter/ctm1/v10r1m0/index.jsp?topic=%2Fcom.ibm.swg.ba.cognos.tm1_turb.10.1.0.doc%2Fc_tm1_op_synchronized_syntax.html

 IBM Data and AI Expert Labs

5

2. Recommendations on how to use SYNCHRONIZED()

SYNCHRONIZED() takes a single required parameter that is a user-defined name for a lock object. This

lock object name can be used in multiple TI-processes in order to serialize their execution as a group. A

TI-process may make any number of calls to synchronized(), with any number of lock objects. Serializing
is effective from the time synchronized() is called, until the containing transaction completes.

Recommended use of SYNCHRONZIED():

 Use Dimension Names as the lock names for SYNCHRONIZED()

 For TI processes that are built specifically to updated a certain dimension, add the following code
to the beginning of the TI process (TI prolog): SYNCHRONIZED (<DimensionName>);

 For TI-processes that update a cube, issue SYNCHRONIZED() calls for each of the cube’s

dimensions. If the TI is dynamic in terms of which cube it uses, use a WHILE loop with TABDIM

to loop through each dimension and call SYNCHRONIZED(), like:

 nFlag = 1;
 nDimCounter = 1;
 WHILE (nFlag = 1);
 sDimensionXName = '';
 sDimensionXName = TABDIM (pSourceCube, DimCounter);
 IF (sDimensionXName @<> '');
 SYNCHRONIZED (sDimensionXName);
 ELSE;
 nFlag = 0;
 ENDIF;
 nDimCounter = nDimCounter + 1;
 END;

 For TI processes that are parameterized such that multiple or varying cubes, dimensions or

objects could be accessed and locked, implementation of a configurable TM1 TI-
Synchronization utility is recommended. The utility is to leverage the SYNCHRONIZED()

function in combination with a configurable Lookup model to allow setting, maintaining and
testing different serialization configurations in an ad-hoc/dynamic fashion. Such a utility – which

allows a plug&play implementation – is described in the following section.

TurboIntegrator process when it is encountered.Consider a TurboIntegrator process with a synchronized() call somewhere in the
"middle" of its script, and an operation O1 preceding that call. Two instances of this TurboIntegrator process may start at the same
time. It is possible for one instance to run to completion, including its call to synchronized(), before the second instance reaches its
synchronized() call. In this case, the two processes appear to the user to have run concurrently. If, instead, the second process
does reach its synchronized() call before the first completes, it will undo any work it had done (O1) and wait for the first to
complete. In this case, the two processes appear to the user to have serialized. To avoid such confusion, and to optimize the use of
synchronized(), it is recommended (but not enforced) that synchronized() calls be the first statements of a TurboIntegrator process.

 IBM Data and AI Expert Labs

6

3. Configurable TI Synchronization Utility

The TM1 Utility leverages the SYNCHONIZED() function in combination with a configurable Lookup model

to allow setting, maintaining and testing different serialization configurations in an ad-hoc/dynamic

fashion. Here is how to implement the TM1 Asset for semaphore locking:

a) Drop the files from the attached archive in your TM1 data directory and restart the TM1 Database
Process

b) ‘SYS_IBM_Semaphore_Lock.pro’ should be invoked in the prolog of TI processes that shall be

serialized with other specific or non-specific TI processes. Corresponding code to be inserted into the

prolog of a TI process:
EXECUTEPROCESS ('SYS_IBM_Semaphore_Lock' , 'pProcessName' , GetprocessName());

c) For dimension }Dimensions.dim, create an Attribute ‘Is Synchronized’. Set the attribute value for Y
for every dimension for which you want to implement serialization of dimension maintenance tasks.

d) The lookup cube ‘SYS_IBM_TI_Synchronization_Lookup.cub’ then is used to determine the
SYNCHRONIZED() flags to be set by a specific TI process. The SYNCHONIZED flags are set by

process ‘SYS_IBM_Semaphore_Lock.pro’. Configure SYS_IBM_TI_Synchronization_Lookup.cub’ such
that for each TI process that shall be serialized, the cube value for the corresponding dimension (i.e.

the dimension the TI will edit or lock) is set to 1.

e) Sub-process ‘SYS_IBM_Semaphore_Lock.pro’ will now, via the lookup cube entries in

‘SYS_IBM_TI_Synchronization_Lookup.cub’ set SYNCHRONIZED(<DimensionName>) flags as follows:

i. Cube ‘SYS_IBM_TI_Synchronization_Lookup.cub’ will be queried for the specific process (with

process = <processname> below). The process will query the ‘Lock’ value for applicable
<processname>/<dimensions> combinations

ii. Depending on process parameter pFilterDimensionsVia_IsSynchronized:
 If pFilterDimensionsVia_IsSynchronized =N: with <dimensions> = all dimensions in

}Dimensions.dim (i.e. If pFilterDimensionsVia_IsSynchronized = N or <> Y, all

dimensions, i.e. all elements in }Dimensions.dim will be evaluated)
 if pFilterDimensionsVia_IsSynchronized = Y or <dimensions> = dimensions in

}Dimensions.dim with value Y for attribute ‘Is Synchronized’ (i.e. If Parameter

 IBM Data and AI Expert Labs

7

pFilterDimensionsVia_IsSynchronized = Y a filter will be applied such that a
synchronization flag is only going to be evaluated against dimensions where the

}Dimensions.dim Attribute ‘Is Synchronized’ = Y (via an MDX subset).

ii. IF the ‘Lock’ value is 1, the process ‘SYS_IBM_Semaphore_Lock.pro’ will issue a

synchronization semaphore flag <dimension> using the TM1 function SYNCHRONIZED(), i.e.
SYNCHRONIZED (<dimension>) will be issued for each <processname>/<dimension>

combination with value ‘Lock’ = 1, i.e. if needed, more than one synchronization flags can be

issued by a process.

 IBM Data and AI Expert Labs

8

4. TI Synchronization Utility Objects

https://ibm.box.com/s/euluj72iqi9nga1yj52fklezvd2mu99l

https://ibm.box.com/s/euluj72iqi9nga1yj52fklezvd2mu99l

