
Performance Tuning and Monitoring for
Cognos BI

Cognos BI Performance Team
IBM Cognos Analytics 11.0.13

1

IBM Cognos BI and System Performance

• We have compiled a list of the most common software and hardware
bottlenecks and how to monitor the system for them.

• Process Threading:

• Too few threads and queuing can occur

• Process Memory Sizing:

• Too little memory and OutOfMemory conditions can exist

• Too little memory and Garbage Collection can become costly

• Nothing in the deck can minimize the impact of a sub-optimal BI model or
poorly authored report spec.

2

IBM Cognos BI Basic Architecture

n Report Report

Service Processes (C++)

n Bathc Service

Processes (C++)

Dynamic Query Process (Java)

n Cognos Graphics

Service Processes (Java)

Cognos Access Manager

Service Process (Java)

Cognos Dispatcher

Processes (JAVA)

The following 6 Services account for the core BI processes seen in
system process views.

▪ Cognos Dispatcher – Java application responsible for routing
requests through the BI system and managing BI content

▪ Report Service – C++ application that manages interactive
requests to execute reports (Process name
BIBusTKServerMain.exe)

▪ Batch Report Service – C++ application that manages non-
interactive requests to execute reports (Process name:
BIBusTKServerMain.exe)

▪ Dynamic Query – Java application that manages Dynamic
Query requests and returns the result to the requesting Report
Service or Batch Report Service

▪ Cognos Graphics Service – Java application that produces
graphics on behalf of the Report service (Process name:
Windows - cgsLauncher.exe, *nix - Java)

▪ Cognos Access Manager Service – Java application that
handles user authentication, authorization, and encryption
(Process name: CAM_LPSvr)

3

BI Report Service Tuning
• Key things to considering when tuning Report Service:

o If Report Service processes are not enough for the load we are running with on the
system queuing can occur.

o Queuing of requests negatively impacts the BI system,

• Would affect both Interactive Report Service and Batch Report Service.

• Affects Dynamic and Compatible Reporting Engines.

o Cognos Workspace (parallel report execution) generally utilizes more Report
Service connections per user than Cognos Viewer.

39 users in queue

Waiting 12s

4

Bottlenecks in BI

• The threading model in 10.2.2 allows for 8 low affinity threads and 2 high affinity threads

• 2 Report Server processes map to 16 low affinity threads (Default value).

• If 24 requests are issued to report service, 16 get served and 8 will get queued.

• Increase the number of Report Server processes through Cognos Administration

BI Report Service Tuning

24 current Report
Execution requests

8 parallel Report Executions

8 parallel Report Executions

4 Report Executions in queue

4 Report Executions in queue

Report
Service

Report
Service

Increase the
value to 19

5

Batch Report Service 10.2.2 Tuning

• Similar to the Report Service. The Batch Report Service handles job report execution.
The number of processes has a significant effect on batch report execution

o Too few Batch Report Service processes will lead to report execution requests
waiting in the Queue.

• Set in IBM Cognos Administration:

Batch Report
Service

Batch Report
Service

20 current Batch Report
Execution requests

4 parallel Batch Report Executions

4 parallel Batch Report Executions

6 Batch Report Executions in
queue

6 Batch Report Executions in
queue

Solution - Increase
the Batch Report
Service Process to 5
to prevent Queuing!

6

Batch Report Service 10.2.2 Tuning

• The number of Delivery Service connections may need to be increased for heavy Batch
environments that write to disk:

7

JVM Tuning for BI
• There are 3 main java processes associated with Cognos BI:

o Dispatcher JVM

o Dynamic Query JVM

o Cognos Graphics Service JVM

• There are 2 key performance parameters for the JVM processes:

o JVM Settings

o Initial Heap Size (Xms) = Maximum Heap Size (Xmx)

o Xmn

o Xgcpolicy:gencon http://javaeesupportpatterns.blogspot.com/2012/03/ibm-jvm-tuning-gencon-gc-policy.html

o Thread Pools (1500)

• Non-optimal settings in these areas can lead to:

o OutOfMemory conditions

o Frequent or long Garbage Collection pauses

o ‘timeout’ or ‘unresponsive’ application

o Overall poor performance and queuing

JAVA Heap

- Xms

- Xmx

-Xmn

-Xgcpolicy:gencon

-Xcompressedrefs

8

• WebSphere Liberty

• JVM size is configured in Cognos Configuration (1536MB default)

• Gencon and Xcompressedref applied by default in 10.2.2

• Any extra JVM arguments configured in bootstrap_<os>.xml file

• Threading by default is configured for high load testing (1500 threads) in the
config tool file

• Websphere

• JVM size and arguments are configured in the Webpshere Admin Web Portal

• Gencon and Xcompressedrefs are not applied by default

• Threading is configured in the WebSphere Admin Portal. Default is 50
threads – too small for high load testing

• Websphere “Allow thread allocation beyond maximum thread size” – use at
own risk.

• Ensure the WebSphere version is up to date. Old WebSphere Java versions
can significantly affect Cognos BI

Dispatcher Tuning
JAVA Heap

- Xms

- Xmx

-Xmn

-Xgcpolicy:gencon

-Xcompressedrefs

9

Dynamic Query (DQ) Tuning

• JVM size and JVM arguments are configured in Cognos Administration

• Default JVM size of 1GB

• Xgencon and Xcompressedrefs applied to the JVM by default

• Threading is handled dynamically by the Query Engine. The number of Interactive Report
Services and Batch Report Services affect the thread count.

• DQ automatically provides logs (dq_verbosegc_<timestamp>.log) to help determine if your
values are set correctly and allow for easy debugging.

JAVA Heap

- Xms

- Xmx

-Xmn

-Xgcpolicy:gencon

-Xcompressedrefs

10

Cognos Graphics Service (CGS) Tuning

• Threading configured in Cognos Administration. 50 threads per process.

• Default JVM size of 1GB with no JVM arguments applied.

• Unix / Linux

• JVM values and arguments configured in cgsServer.sh in the bin and bin64 locations.
JVM arguments set after $JAVA_OPTS:

$JAVA_OPTS –Xmx4g –Xms4g –Xmn2g –Xcompressedrefs –Xgcpolicy:gencon

• Windows

• JVM values and arguments configured in cgsService.xml in /webapps/p2pd/WEB-
INF/services. JVM arguments set between child-proc-cmd tags after vmargs (2 places in
the same file):

<child-proc-cmd>-vmargs</child-proc-cmd>
<child-proc-cmd>Xmx2g</child-proc-cmd>
<child-proc-cmd>Xms2g</child-proc-cmd>
<child-proc-cmd>Xmn1g</child-proc-cmd>

<child-proc-cmd>Xcompressedrefs</child-proc-cmd>
<child-proc-cmd>Xgcpolicy:gencon</child-proc-cmd>

JAVA Heap

- Xms

- Xmx

-Xmn

-Xgcpolicy:gencon

-Xcompressedrefs

11

JVM Memory and GC Policies

• Enabling GC logging is a low impact method of measuring JVM sizing and Garbage
Collection policies. Undersized JVMs can lead to OOM situations or excessive garbage
collections and high JVM pause times.

• For Dispatcher and CM, edit bin64\bootstrap_<OS>.xml and add the following line to
the Java arg list

• For CGS, edit \webapps\p2pd\WEB-INF\services\cgsService.xml or cgsServer.sh on
UNIX and add to the JVM arguments (in two locations in the file!)

-Xverbosegclog:../logs/verbosegc_CGS_%Y%m%d.%H%M%S.%pid.log,10,10000

• For Dynamic Query and Dynamic Cubes, GC Logging is on by default in a file named
dq_verbosegc_%timeStamp%.log

Monitoring Tools: GC Logs

12

GC Logging output from IBM Support Assistant

• Classic example of the IBM Support Assistant helping determine ‘ideal’ JVM size

o Left graph shows a properly tuned JVM with GC occurring approximately every 2
hours with a pause time of under 35 seconds.

o Right graph illustrates a JVM running an undersized Java Heap. GC occurs every
10 minutes with a pause time of over 40 seconds.

Healthy BI System

13

Operating System Monitoring for BI

• Important to use tools that allow for unattended monitoring of resource utilization over
time. For example:

o PerfMon for Windows

o Nmon on AIX/Linux (use Nmon Analyser to process Nmon output)

• Read the Cognos BI documentation for any OS specific settings that may need to be
applied.

• Bottlenecks in the system resources can lead to frustration in the BI community due to:

o Inconsistent performance

o Unexpected error messages

• As hardware and software evolve, system bottlenecks tend to shift. The four most
common system bottlenecks are:

o CPU

o Memory for both the entire system and key BI processes

o Network utilization

o Disk for read, writes, and waits

14

Operating System Monitoring for BI
• If CPU is a bottleneck:

o Shift BI services to other servers in the system that may have available CPU

o Consider adding additional CPU resources or an additional server

o Monitor Run Queue

• If memory is a bottleneck:

o Turn off services and processes to free up memory

o Add more memory to the system or shift BI services to servers with more available RAM

o Do not rely on Virtual Memory. Absolute performance killer!

• If network appears to be a bottleneck:

o Check that the NIC card is using the full bandwidth available

o Ensure the server resolves localhost locally first and not to the DNS first (netsvc.conf)

o Ensure routers in the BI system are not overtaxed

• If disk might be a bottleneck:

o Check that file system logging is turned off or minimized (mount)

o Consider using fast storage to host disk intensive BI services

15

Appendix 1: IBM Support Assistant

• The gathered Garbage Collection Logs can be viewed using a free tool from IBM called
‘IBM Support Assistant Workbench’.

• Download from
http://www-01.ibm.com/software/support/isa/workbench.html

• The desired toolset is ‘IBM Monitoring and Diagnostic Tools for Java’

• Quick steps to use the tool:

• Highlight the ‘Garbage Collection and Memory Visualizer’ tool and hit ‘Launch’ and
browse to the garbage collection log using the ‘Remote Artifact Browser’

• Arguably the most useful view is ‘Heap size’, ‘Pause time’, and ‘Used heap (after
collection)’ chosen from the File menu ‘VGC pause’ and ‘VGC heap’

16

▪ Edit \webapps\p2pd\WEB-INF\services\cgsService.xml and in two locations add the following args
at the end of the <JVM arguments> section

▪ View the current Java internals using
jconsole hostname:jmxport
E.G.: jconsole tp-pilonmw7:6999

▪ JConsole is one of ways to get internal metrics from the BI Query Service.

Appendix 2: Monitoring Tools: JConsole

17

IBM Cognos BI Tuning Suggestions
• Information provided.

• Peak number of reports/day: ~8000, majority are interactive reports

• Number of active users: ~1500 that have run at least 1 report in that day

• Concurrency level: ~10 reports running simultaneously

• Based on the above information I would suggest the below tuning.

• Set the number of Report Service processes to 19

• Set the dispatcher jvm for report server to 4196mb

• Set the dispatcher jvm for content manager to 8192mb

• Tune the cgs process to 2gb, minimum (4gb as this is a large server.)

• Set dynamic query to 8192mb once these types of reports start being used

• Batch report service we need to determine how many batch reports are
running and tune accordingly

• These are suggestions only. The system will need to monitored to determine if
these are the optimal settings

Hardware Configuration:
CPU: 64 cores
RAM: 256 GB

18

