
IBM solidDB
Version 7.0

Shared Memory Access and Linked
Library Access User Guide

SC27-3846-05

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 95.

First edition, fifth revision

This edition applies to V7.0 Fix Pack 8 of IBM solidDB (product number 5724-V17) and to all subsequent releases
and modifications until otherwise indicated in new editions.

© Oy IBM Finland Ab 1993, 2013

Contents

Figures v

Tables vii

Summary of changes. ix

About this manual xi
Typographic conventions xi
Syntax notation conventions. xii

1 Overview of shared memory access
and linked library access 1
1.1 Shared memory access (SMA) 2

1.1.1 System requirements for SMA 4
1.1.2 SMA components and packaging 4

1.2 Linked library access (LLA) 6
1.2.1 System requirements for LLA 6
1.2.2 LLA components and packaging 6
1.2.3 Static and dynamic link libraries for LLA . . 8

1.3 solidDB APIs and drivers for SMA and LLA . . 9
1.3.1 solidDB SA API 9
1.3.2 solidDB ODBC API 9
1.3.3 solidDB JDBC API 10
1.3.4 solidDB Server Control API (SSC API). . . 10
1.3.5 solidDB Server Control API (SSC API) for
Java 10

1.4 Configurations with local and remote
applications types 11

2 Creating and running SMA
applications 13
2.1 Creating SMA applications - overview 13

2.1.1 Modifying shared memory kernel
parameters - overview. 14
2.1.2 Preparing applications for SMA use with
driver manager 20
2.1.3 Preparing applications for SMA use without
driver manager 21
2.1.4 Establishing local connections for SMA . . 23

2.2 Starting and shutting down SMA server . . . 24
2.2.1 Starting SMA server 24
2.2.2 Shutting down SMA server 24
2.2.3 Starting SMA server as a service (Windows) 25

2.3 Monitoring SMA 26
2.4 Troubleshooting SMA 27

3 Creating and running SMA
applications with Java 31
3.1 Overview of using SMA with Java 31
3.2 Configuring your environment for SMA use with
Java 31
3.3 Starting and shutting down SMA server . . . 33

3.3.1 Starting SMA server 33

3.3.2 Shutting down SMA server 33
3.4 Making JDBC connections for SMA 33

4 SMA with HotStandby 35
4.1 Configuring SMA TC with HotStandby 36

5 Creating and running LLA
applications 39
5.1 Configuring your environment for LLA use . . 39
5.2 Establishing a local connection for LLA 40
5.3 Starting and shutting down LLA server 41

5.3.1 Explicit startup with SSC API function
SSCStartServer 42
5.3.2 Implicit startup with ODBC API function
call SQLConnect 44
5.3.3 Implicit startup with SA API function call
SaConnect 45
5.3.4 Shutting down LLA server 45

5.4 Sample C applications for LLA. 46
5.4.1 Samples for LLA with advanced replication 46

6 Creating and running LLA
applications with Java 49
6.1 Overview of using LLA with Java. 49

6.1.1 Limitations 50
6.2 Configuring your environment for LLA use with
Java 50
6.3 Starting and stopping LLA server with SSC API
for Java. 52
6.4 Making JDBC connections for LLA 52
6.5 Compiling and running a sample LLA program 52

7 Using the diskless capability 55

8 Creating and running remote or
dual-mode applications 57
8.1 Example: Creating a dual-mode LLA application
with ODBC and SSC API function calls 57
8.2 Establishing remote connections 57

Appendix A. Shared memory access
parameters 59

Appendix B. Linked library access
parameters 61

Appendix C. Configuration parameters
for a diskless server 63
C.1 IndexFile.Filespec_[1...n] parameter in diskless
servers 63
C.2 IndexFile.CacheSize parameter in diskless
servers 64

iii

C.3 Com.Listen in diskless servers 65
C.4 Configuration parameters that do not apply to
diskless engines 65

Appendix D. solidDB Server Control
API (SSC API). 67
D.1 Summary of SSC API functions 67
D.2 SSC API reference 69

D.2.1 SSCGetServerHandle 71
D.2.2 SSCGetStatusNum 72
D.2.3 SSCIsRunning 72
D.2.4 SSCIsThisLocalServer 73
D.2.5 SSCRegisterThread 73
D.2.6 SSCSetNotifier 74
D.2.7 SSCSetState 76
D.2.8 SSCStartDisklessServer 77

D.2.9 SSCStartServer 79
D.2.10 SSCStartSMADisklessServer 82
D.2.11 SSCStartSMAServer 83
D.2.12 SSCStopServer 85
D.2.13 SSCUnregisterThread 86
D.2.14 Retrieving task information. 87
D.2.15 Obtaining solidDB status and server
information 87

Appendix E. SolidServerControl class
interface 89

Index 93

Notices 95

iv IBM solidDB: Shared Memory Access and Linked Library Access User Guide

Figures

1. Configurations with SMA, LLA, and
network-connection-based solidDB server . . . 2

2. Example: SMA and LLA APIs for C/C++
programs. 9

3. Architecture of SMA Transparent Connectivity
with HotStandby. 35

4. Example: HotStandby with SMA configuration 37

v

vi IBM solidDB: Shared Memory Access and Linked Library Access User Guide

Tables

1. Typographic conventions xi
2. Syntax notation conventions xii
3. SMA drivers (libraries) 5
4. SMA server applications 5
5. Linked library access (LLA) system libraries 7
6. SSC API and SA API libraries for remote

applications 12
7. Minimum requirements of shared memory

kernel parameters for SMA (HP-UX) 17
8. Minimum requirements of shared memory

kernel parameters for SMA (Linux) 18
9. Minimum requirements of shared memory

kernel parameters for SMA (Solaris) 20
10. SMA drivers (libraries) 20
11. SMA drivers (libraries) 22
12. Starting the SMA server 24
13. SMA default address spaces 28
14. SMA drivers (libraries) 32
15. Starting the SMA server 33
16. Linked library access (LLA) system libraries 39
17. SSCStartServer parameters 42

18. Linked library access (LLA) system libraries 50
19. Shared memory access parameters 59
20. Shared memory access parameters (client-side) 60
21. Accelerator parameters. 61
22. Configuration parameters not applicable to

diskless engines 65
23. Summary of control API functions 67
24. SSC API parameter usage types 70
25. Error codes and messages for SSC API

functions 71
26. SSCGetStatusNum parameters 72
27. SSCIsRunning parameters 73
28. SCCRegisterThread parameters 74
29. SSCSetNotifier parameters 74
30. SSCSetState parameters 77
31. SSCStartDisklessServer parameters 78
32. SSCStartServer parameters 79
33. SSCStartSMADisklessServer parameters 82
34. SSCStartSMAServer parameters 83
35. SSCStopServer parameters 85
36. SCCUnregisterThread parameters 87

vii

viii IBM solidDB: Shared Memory Access and Linked Library Access User Guide

Summary of changes

Changes for revision 05
v Information about configuring the cache size in diskless servers updated in

sections Using the diskless capability and Configuration parameters for a
diskless server.

v Information about the SSC_NOTIFY_SHUTDOWN_REQUEST event in the
SSCSetNotifier function updated in section SSCSetNotifier: to accept the
shutdown request, SSC_SUCCESS must be returned, not SSC_CONT.

Changes for revision 04
v Editorial corrections.

Changes for revision 03
v Editorial corrections.

Changes for revision 02
v Section Troubleshooting SMA updated.

Changes for revision 01
v Section Configuring SMA TC with HotStandby updated with information about

specifying load balancing method when using SMA with Transparent
Connectivity. When using SMA with TC, the load balancing method must be set
to LOCAL_READ. If READ_MOSTLY or WRITE_MOSTLY is specified, a
network connection is used instead of the SMA connection.

ix

x IBM solidDB: Shared Memory Access and Linked Library Access User Guide

About this manual

The IBM® solidDB® shared memory access (SMA) and linked library access (LLA)
enable applications to link to solidDB server directly, without the need to
communicate through network protocols such as TCP/IP. SMA allows to link
multiple applications while LLA allows to link one application. By replacing the
network connection with local function calls, performance is improved
significantly.

This guide contains information specific to SMA and LLA. This guide supplements
the information contained in the IBM solidDB Administrator Guide, which contains
details on administration and maintenance of solidDB.

This guide assumes a working knowledge of the C programming language, general
DBMS knowledge, familiarity with SQL, and knowledge of a solidDB data
management product, such as solidDB in-memory database, or solidDB disk-based
engine. If you are going to use SMA or LLA with Java™, then this manual also
assumes a working knowledge of Java.

Typographic conventions
solidDB documentation uses the following typographic conventions:

Table 1. Typographic conventions

Format Used for

Database table This font is used for all ordinary text.

NOT NULL Uppercase letters on this font indicate SQL keywords and
macro names.

solid.ini These fonts indicate file names and path expressions.

SET SYNC MASTER YES;
COMMIT WORK; This font is used for program code and program output.

Example SQL statements also use this font.

run.sh This font is used for sample command lines.

TRIG_COUNT() This font is used for function names.

java.sql.Connection This font is used for interface names.

LockHashSize This font is used for parameter names, function arguments,
and Windows registry entries.

argument Words emphasized like this indicate information that the
user or the application must provide.

Administrator Guide This style is used for references to other documents, or
chapters in the same document. New terms and emphasized
issues are also written like this.

xi

Table 1. Typographic conventions (continued)

Format Used for

File path presentation Unless otherwise indicated, file paths are presented in the
UNIX format. The slash (/) character represents the
installation root directory.

Operating systems If documentation contains differences between operating
systems, the UNIX format is mentioned first. The Microsoft
Windows format is mentioned in parentheses after the
UNIX format. Other operating systems are separately
mentioned. There may also be different chapters for
different operating systems.

Syntax notation conventions
solidDB documentation uses the following syntax notation conventions:

Table 2. Syntax notation conventions

Format Used for

INSERT INTO table_name
Syntax descriptions are on this font. Replaceable sections are
on this font.

solid.ini This font indicates file names and path expressions.

[] Square brackets indicate optional items; if in bold text,
brackets must be included in the syntax.

| A vertical bar separates two mutually exclusive choices in a
syntax line.

{ } Curly brackets delimit a set of mutually exclusive choices in
a syntax line; if in bold text, braces must be included in the
syntax.

... An ellipsis indicates that arguments can be repeated several
times.

.

.

.

A column of three dots indicates continuation of previous
lines of code.

xii IBM solidDB: Shared Memory Access and Linked Library Access User Guide

1 Overview of shared memory access and linked library
access

The solidDB shared memory access (SMA) and linked library access (LLA) allow
applications to link to solidDB server directly, without the need to communicate
through performance-consuming network protocols such as TCP/IP. SMA allows to
link multiple applications while LLA allows to link one application.

SMA and LLA are implemented as library files that contain a complete copy of the
solidDB server in library format.
v With SMA, the library that the applications link to can be seen as a driver.

Before the linked application is started, the solidDB server is started in a SMA
mode, which loads the SMA driver dynamically and allocates and initializes a
shared memory segment that the applications use to access the database.

v With LLA, the application links to the LLA library and the application and
server are built into a single executable program.

Your application does not have to be rewritten to use SMA or LLA. The
applications communicate with the solidDB server using ODBC or JDBC calls, or
the solidDB proprietary SA API.

The SMA and LLA servers can also handle requests from remote applications
which connect to the server through communications protocols such as TCP/IP.
The remote applications see the SMA or LLA server as similar to any other solidDB
server, while the local SMA and LLA applications see a faster, more precisely
controllable version of the solidDB server.

Also, similarly to network-based servers, multiple SMA and LLA servers can be
run on the same node.

The solidDB server used with SMA and LLA can be disk-based or diskless. Both
in-memory tables and disk-based tables are also supported.

1

1.1 Shared memory access (SMA)
With shared memory access (SMA), multiple applications can be linked to a
dynamic driver library that contains the full database server functionality. This
means that the applications ODBC or JDBC requests are processed almost fully in
the application process space, without a need for a context switch among

21

JDBC/ODBC
driver

Application N
(optional)

JDBC/ODBC
driver

Application 2
(optional)

solidDB LLA

Application 1

JDBC/ODBC
driver

Application N
(optional)

JDBC/ODBC
driver

Application 2
(optional)

solidDB

JDBC/ODBC
driver

Application 1

3

JDBC/ODBC
driver

Application N
(optional)

JDBC/ODBC
driver

Application 3
(optional)

solidDB SMA

Application 1 Application 2

1. In a standard solidDB database configuration the applications and the server are separate programs.

2. In LLA configuration, LLA is a library that is linked into an application. Other applications may also
communicate with the LLA server.

3. In SMA configuration, SMA is a driver library that multiple applications can link to. Other network connections
based applications may also communicate with the SMA server.

Figure 1. Configurations with SMA, LLA, and network-connection-based solidDB server

2 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

processes. To facilitate the processing of a common database, the driver has access
to a shared memory segment initialized by the server.

The application that is linked to the solidDB server using the SMA driver is called
an SMA application; the server is called SMA server.

SMA server

Before the first application is started with SMA, the solidDB server is initialized in
a SMA mode by starting a small application (solidsma) that loads the SMA driver
library dynamically. This SMA server application starts the server code internally
and allocates and initializes a shared memory segment that the applications use to
access the database.

The SMA server has the full functionality of the network server:
v The SMA server process takes care of all client-independent tasks: startup and

recovery, checkpointing and logging, making backups, and so on.
v The solidDB configuration parameters, admin commands, and command-line

parameters can be used.
v Both in-memory and disk-based tables can be accessed equally.
v The SMA server can be used in solidDB Universal Cache, and with High

Availability, Advanced Replication, and InfoSphere® CDC Replication
configurations.

v The SMA server can also be used as a regular network-connection-based server.

When the server is started in the SMA mode, it accepts connection requests from
the SMA driver at the normal listening port. By assigning different port numbers
to different SMA servers, it is possible to run several SMA servers on a single
system simultaneously.

When the server is shut down, or all the users are thrown out, the applications
receive the error Connection lost on the next request. If the application is waiting
for a response during a forceful shutdown, it receives a shutdown notification.

The SMA server can be disk-based or diskless. Diskless server can be useful in
embedded systems that do not have hard disks, such as line cards in a network
router or switch.

The solidDB data management tools can be used with network-based connections
to the SMA server.

SMA application

An existing ODBC or JDBC application does not need to be modified in order to
use SMA, with the exception of a data source name or a connect string. For
example, in an ODBC application, the connection is requested with the regular
ODBC SQLConnect() call.

An existing LLA application can be changed into an SMA application or vice versa.
An application can also be changed from a SMA application to a network-based
application.

1 Overview of shared memory access and linked library access 3

SMA driver

The SMA driver is a dynamic library that contains a complete copy of the solidDB
server in library format. The applications can link to the SMA driver directly or
using a driver manager.

The footprint of the driver's binary file corresponds to the full solidDB server,
which is 3-6 MB, depending on the platform. However, because all applications
link to the same driver, the in-memory footprint is not multiplicated when
additional applications are added. The total memory footprint of the whole
application system (applications, drivers, and the server) is comparable to the one
of the client-server model.

SMA connection

Once the SMA server is running, applications can establish either SMA or network
connections. For SMA connections, the applications have to be located on the same
node as the server. The connection type is defined within the connect string. In the
case of ODBC applications, if a driver manager is used, the SMA data source can
be configured in the same way as an ODBC driver.

The connection request is sent over a network connection (handshake connection)
using any locally available protocol (tcpip, named pipes, unix pipes). During the
connect handshake, the shared-memory segment handle is passed to the driver so
that it can access the server's shared memory segment.

1.1.1 System requirements for SMA
SMA is available on 64-bit platforms as well as 32-bit Linux. For SMA with Java,
Java Runtime Environment (JRE) 1.4.2 or Java Development Kit (JDK) 1.4.2 or
newer is required.

Supported platforms for SMA
v AIX®

v HP-UX
v Linux 64-bit
v Linux 32-bit
v Solaris
v Windows 64-bit

For more details on the supported platforms, see section solidDB supported platforms
in the IBM solidDB Getting Started Guide .

1.1.2 SMA components and packaging
The SMA driver library and SMA server application are included in the solidDB
software package. For SMA with Java, the solidDB JDBC Driver is needed.

SMA driver (library)

The SMA driver libraries for most common platforms are shown in the table
below:

4 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

Table 3. SMA drivers (libraries)

Platform SMA driver library Default installation location

Windows ssolidsmaxx.dll
Note: If you link to the SMA
driver directly (without driver
manager), you link to the
solidsma.lib import library file
that gives you access to the
actual .dll library file.

Library: <solidDB installation
directory>\bin

Import library: <solidDB installation
directory>\lib

Linux ssolidsmaxx.so <solidDB installation directory>/bin

Solaris ssolidsmaxx.so <solidDB installation directory>/bin

HP-UX ssolidsmaxx.so <solidDB installation directory>/bin

AIX ssolidsmaxx.so <solidDB installation directory>/bin

xx is the version number of the driver library, for example, ssolidsma70.so.

The SMA driver library for all platforms contains the following:
v full solidDB server functionality
v functions for three APIs

– solidDB ODBC driver functions that allow for direct communication with the
server library, without going through the network.

– solidDB Control API (SSC API) library that contains functions to control
starting and shutting down the SMA server.

– solidDB SA API library which may be required for additional functionality
using the linked library access. For example, this library allows you to insert,
delete, and select records from a table.

Since the library that your application links to contains three APIs, your
application program may call functions from any combination of these APIs. For
details on each of these APIs, see 1.3, “solidDB APIs and drivers for SMA and
LLA,” on page 9.

For SMA use with Java, the solidDB JDBC Driver is needed; the solidDB JDBC
Driver (SolidDriver2.0.jar) is installed during solidDB server installation into the
jdbc directory in the solidDB installation directory.

SMA server application

Table 4. SMA server applications

Platform SMA application

Windows solidsma.exe

Linux solidsma

Solaris solidsma

HP-UX solidsma

AIX solidsma

1 Overview of shared memory access and linked library access 5

1.2 Linked library access (LLA)
With the linked library access (LLA), an application links to a static library or a
dynamic library that contains the full database server functionality. This means
solidDB runs in the same executable program with the application, eliminating the
need to transfer data through the network.

The application that is linked to the solidDB server using the LLA library is called
an LLA application; the server is called LLA server.

The application that links to the LLA library can also have multiple connections,
using ODBC API, SA API, and JDBC API. All these APIs are reentrant, allowing
simultaneous connections from separate threads.

The application that links directly to LLA library can also create remote
connections to other database servers. The connection type (local or remote) is
defined in the connect string that is passed to the ODBC API or SA API connect
function or defined in the JDBC connection properties.

Principles of operation

When you start your application, only the code in your application starts running
automatically. The server code is largely independent of your application code, and
you must explicitly start the server by calling a function. In most implementations,
the server runs on threads that are separate from the thread or threads used by the
application. Calling the function to start a server performs any initialization steps
required by the server code, creates the appropriate additional threads if necessary,
and starts the server running on those threads.

Disk-based and diskless server

The solidDB server used with LLA can be disk-based or diskless. The LLA library
contains two different function calls to start the server. The SSCStartServer function
call starts a normal disk-based server, while SSCStartDisklessServer starts a server
that does not use the disk drive.

1.2.1 System requirements for LLA
LLA is available on all platforms that solidDB supports. For LLA with Java, Java
Runtime Environment (JRE) 1.4.2 or Java Development Kit (JDK) 1.4.2 or newer is
required.

For more details on the supported platforms, see section solidDB supported platforms
in the IBM solidDB Getting Started Guide .

1.2.2 LLA components and packaging
The LLA library is included in the solidDB software package. For LLA with Java,
the JDBC driver and solidDB proprietary control classes are embedded in the
solidDB JDBC Driver.

The LLA libraries for most common platforms are shown in the table below:

6 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

Table 5. Linked library access (LLA) system libraries

Platform Static LLA library
Dynamic/Shared LLA
Library

Windows bin\ssolidacxx.dll lib\solidimpac.lib

This is an import library file
that gives you access to the
actual library file
bin\ssolidacxx.dll.

AIX bin/solidac.a lib/libssolidacxx.so

This is a symbolic link that
gives you access to the actual
library file
bin/ssolidacxx.so.

HP-UX bin/solidac.a lib/libssolidacxx.so

This is a symbolic link that
gives you access to the actual
library file
bin/ssolidacxx.so.

Linux bin/solidac.a lib/libssolidacxx.so

This is a symbolic link that
gives you access to the actual
library file
bin/ssolidacxx.so

Solaris bin/solidac.a lib/libssolidacxx.so

This is a symbolic link that
gives you access to the actual
library file
bin/ssolidacxx.so

The LLA library for all platforms contains the following:
v full solidDB server functionality
v functions for three separate APIs

– solidDB Control API (SSC API) library that contains functions to control task
scheduling.

– solidDB ODBC Driver functions that allows for direct communication with
the server library, without going through the network.

– solidDB SA API library which may be required for additional functionality
using the linked library access. For example, this library allows you to insert,
delete, and select records from a table.

The library that your application links to contains all three APIs (SSC, SA, and
ODBC); your application program can call functions from any combination of
these APIs. For details on each of these APIs, see 1.3, “solidDB APIs and drivers
for SMA and LLA,” on page 9.

Note: Remote applications have access to the same three APIs (SSC, SA, and
ODBC). However, the functions for these three APIs are not all in the same file
for remote applications. For details on remote and dual role applications, read

1 Overview of shared memory access and linked library access 7

1.4, “Configurations with local and remote applications types,” on page 11. For
information about API files for remote applications, read 1.3, “solidDB APIs and
drivers for SMA and LLA,” on page 9.

For LLA use with Java, the solidDB JDBC driver is needed; the solidDB JDBC
driver jar file (SolidDriver2.0.jar) contains the following packages:
v solid.jdbc.* solidDB JDBC driver classes
v solid.ssc.* solidDB Server Control classes (proprietary SSC API for Java

interface)

1.2.3 Static and dynamic link libraries for LLA
solidDB provides both a static and a dynamic version of the linked library access
library.

Both the static and dynamic library files contain a complete copy of the solidDB
server in library format. When you use a static library file (for example,
lib/solidac.a), you link your program directly to it. Both your code and the
library code are written to the resulting executable file. If you link to a dynamic
library file, the code from the library is not included in the output file that contains
your executable program. Instead, the code is loaded from the dynamic link library
separately when your program runs.

Other than changing the size of your executable, there is no difference between
linking to the static library file or the dynamic library file. For example, the total
amount of code in memory at any one time is similar. Performance is also similar,
although there is a slight amount of extra overhead if you use the dynamic library.

The main advantage of using the dynamic link library file is that if you execute
more than one copy of the server in the same computer, you can save memory. For
example, if you are doing development work on a single computer and you want
to have both a advanced replication master and replica on the computer at the
same time, or you would like to have a HotStandby Primary and a HotStandby
Secondary at the same time, then you might prefer to use the dynamic library so
that you do not have multiple copies of LLA in memory at the same time.

On Windows environments, the solidDB linked library access includes the
additional file lib/solidimpac.lib. If you want to use a dynamic link library, you
do not link directly to the ssolidacxx.dll dynamic link library itself. Instead, you
link to solidimpac.lib, which is an import library. This type of linking links only a
small amount of code to your client executable program. When your client
program executes, the Windows operating system loads the the ssolidacxx.dll file
will automatically. Your client can then call the usual linked library access
functions in the .dll file. The .dll file must be in your load path when you run
the program that references it.

Note: Using the dynamic link library file does not mean that you can have
multiple LLA applications clients linked to a single solidDB server. Even with the
dynamic library approach, you are still limited to a single local client; all other
clients must be remote clients. The remote clients communicate with the solidDB
server by using TCP or some other network protocol, rather than the direct
function calls available to the local client. To enable multiple local applications to
access solidDB, design your environment using shared memory access (SMA).

8 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

1.3 solidDB APIs and drivers for SMA and LLA
The SMA and LLA application requests are typically handled through ODBC API
direct function calls or JDBC calls. The solidDB proprietary solidDB API is
available also. The solidDB Server Control API (SSC API and SSC API for Java) is
included in the LLA library for handling local requests to control solidDB
background processes and client tasks. SMA includes limited support for SSC API;
only calls for starting or stopping the SMA server are included.

1.3.1 solidDB SA API
solidDB SA API is a low-level proprietary C-language API for data management
services. The SA API provides support for local applications using SA API function
calls.

The SA API library is used internally in the solidDB server. It provides access to
data in database tables. The library contains about 90 functions providing low-level
mechanisms for connecting the database and running cursor-based operations. The
SA API can enhance performance significantly. You can use SA API to optimize the
performance of batch insert operations, for example.

For details on the SA API, see IBM solidDB Programmer Guide.

Remote applications can use the SA API function calls also. Remote applications
must link to a separate SA API library file (for example, solidimpsa.lib for
Windows).

1.3.2 solidDB ODBC API
solidDB ODBC API provides a standards-compliant way to access data of a local or
remote solidDB database through SQL. It provides functions for controlling
database connections, executing SQL statements, retrieving result sets, committing
transactions, and other data management functionality.

solidDB
database files

SMA or LLA library

Query executor

SQL parser and optimizer

SA
API SSC API

for Java
ODBC

Application

Network
layer

ODBC
API

JDBC
API

External application

External application

SSC
API

JDBC

Figure 2. Example: SMA and LLA APIs for C/C++ programs

1 Overview of shared memory access and linked library access 9

solidDB ODBC API is a Call Level Interface (CLI) for solidDB databases. It is
compliant with ANSI X3H2 SQL CLI.

SMA and LLA support the ODBC 3.51 standard. The SMA and LLA libraries
include solidDB ODBC 3.x, which provides support for local applications that
require direct function calls to the server.

See IBM solidDB Programmer Guide for more details on the solidDB ODBC API.

1.3.3 solidDB JDBC API
The JDBC API defines Java classes to represent database connections, SQL
statements, result sets, database metadata, and so on. It allows you to issue SQL
statements and process the results. JDBC is the primary API for database access in
Java.

SMA and LLA support both JDBC 1.x and 2.x.

The JDBC interface and the solidDB JDBC Driver, including descriptions of the
solidDB specific enhancements are documented in IBM solidDB Programmer Guide.

1.3.4 solidDB Server Control API (SSC API)
solidDB Server Control API (SSC API) is a C-language, thread-safe interface to
control the solidDB server behavior.

The SSC API functions are included in the SMA driver and LLA library files.
However, for SMA, only the functions for starting and stopping the server are
supported.

LLA provides support for local applications using SSC API function calls and a
separate library is available for remote-only applications.

If your LLA application runs remotely and contains SSC API function calls, then
you must link to the SSC API stub library (for example, solidctrlstub.lib for
Windows). This library does not actually give your remote application control of
the server; it merely allows you to compile and link your application as a remote
application without getting link-time errors from solidDB with LLA.

1.3.5 solidDB Server Control API (SSC API) for Java
The solidDB Server Control API (SSC API) for Java is a proprietary API, named
after SolidServerControl class. The SSC API for Java calls are used to start and stop
the LLA server. The actual database connections are done with normal solidDB
JDBC API. Both the SSC API for Java classes and solidDB JDBC driver classes are
included in the solidDB JDBC driver (SolidDriver2.0.jar).

The SolidServerControl classes for accessing solidDB server have been embedded
inside solidDB JDBC driver file, inside the solid.ssc package. The solidDB JDBC
driver jar file (SolidDriver2.0.jar) contains the following packages:
v solid.jdbc.* solidDB JDBC driver classes
v solid.ssc.* solidDB Server Control classes (proprietary API interface)

The classes inside the solidDB Server Control (solid.ssc) package are:
v SolidServerControl (for starting and stopping LLA server from Java)
v SolidServerControlInitializationError (for reporting errors)

10 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

For more details, see Appendix E, “SolidServerControl class interface,” on page 89.

1.4 Configurations with local and remote applications types
With SMA and LLA, the applications always connect to a local solidDB server
(SMA server or LLA server); the application and solidDB server are located on the
same node. In addition to handling requests from the local SMA or LLA
application, the SMA or LLA server can also handle requests from remote
applications, which connect to the server through communications protocols such
as TCP/IP. A dual-mode application can also be written; it switches modes
between local and remote, depending upon how it is compiled and linked.

The SMA or LLA application is a local application; the server and the application are
located on the same node. For example, calls to ODBC functions go directly to the
server, rather than going through an ODBC driver and the communications
protocol (such as TCP/IP).

A remote application is not linked to the SMA driver or LLA library. It is a separate
executable that must communicate with the server using a network connection
(such as TCP/IP) or other connection. Remote applications are usually run on a
different node from the one that is running the server, but the application is also
considered remote if it uses a network communication protocol to communicate
with the server. A single node can run a local SMA or LLA application, while
running one or more remote applications as separate processes.

The remote applications see the SMA and LLA server as similar to any other
solidDB server, while the local application sees a faster, more precisely controllable
version of the solidDB server.

Most applications are either local (linked to the SMA driver or LLA library) or
remote (never linked). However, it is also possible to write a dual-mode application
that uses both local and network-based connections. For example, the application
can use the same C-language application code in either local or remote mode. The
application is linked to a different library when in local mode than when in remote
mode.

Dual-mode applications may be useful for example in the following cases:
v You want to test your local application first before linking it with the SMA or

LLA library.
v You want all users/processes to have the same application logic whether they

are local or remote.

The remote applications may be a mix of C and Java programs. The language in
which the local client is written does not restrict which languages the remote
clients can be written in. For example, if you use LLA with Java, the remote client
programs may use C, Java, or both.

SSC API and SA API libraries for remote applications

Remote applications that contain SSC API or SA API function calls must link to
separate libraries.

1 Overview of shared memory access and linked library access 11

Table 6. SSC API and SA API libraries for remote applications

Platform
SSC API stub
library SA API library Default location

Windows solidctrlstub.lib solidimpsa.lib <solidDB installation
directory>\lib

Other
platforms solidctrlstub.a

solidsa.a <solidDB installation
directory>/bin

The SSC API stub library is required for remote applications because the SSC API
functions included in the SMA and LLA libraries cannot be used with remote
applications. For example, assume that you have a local application (containing
SSC API functions) that links to a standard ODBC library. You want to run the
same application remotely. By linking to the SSC API stub library, you avoid
having to remove the SSC API function calls from your code. In this way, you can
easily turn your LLA or SMA application into a normal remote client application.

Note: The SSC API stub library contains "do-nothing" functions; if you call them in
a remote application, they have no effect on the server. The SSC API stub library
does not actually give your remote application control of the server. Instead, it
allows you to compile and link your application as a remote application, without
getting link-time errors from solidDB with LLA or SMA.

12 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

2 Creating and running SMA applications

To create SMA applications, you configure solidDB as necessary, link your
applications to the SMA driver, start an SMA server, and establish a local
connection between the applications and the server. After you have created your
application, you can monitor the SMA performance using the monitoring features
provided with solidDB.

Important: The instructions for creating and running SMA applications provide
SMA-specific additions, supplements, and usage differences in comparison to the
solidDB without SMA.

For information about solidDB SQL, solidDB data management tools, general
solidDB administration and maintenance, and database error codes, refer to the
IBM solidDB Administrator Guide.

For detailed information about the APIs and solidDB JDBC and ODBC Drivers, see
IBM solidDB Programmer Guide.

2.1 Creating SMA applications - overview
To create an application that uses SMA, you must prepare your system for SMA
use, configure solidDB, set your application to use the SMA driver, start the SMA
server, and connect your application to it.

About this task

This procedure provides an overview on how to create SMA applications. The
SMA applications for C/ODBC environments are created in a similar way to
applications that are not using SMA.

Note: When developing your application, it is recommended to use a
network-based connection. Once your application is ready, switch to using the
SMA connection.

For an example of a SMA application written in C, see the SMA sample in the
samples/sma directory in your solidDB installation directory.

Procedure
1. Check the system settings for shared memory use in your environment.

The default values for shared memory use in your environment may not be
sufficient for using SMA. For details on viewing and setting the shared
memory system parameters on your system, see 2.1.1, “Modifying shared
memory kernel parameters - overview,” on page 14.

2. Set up your database environment by creating a working directory, your
solidDB database, and user accounts.

For instructions, see Creating a new database in the IBM solidDB Administrator
Guide.

Note: The application and the SMA server processes must have identical file
access permissions (database files, log files, and so on). The file access

13

permissions are not checked at startup; subsequently, insufficient file access
permissions may cause the SMA server to crash at a later point.

3. Configure solidDB to meet your environment, performance, and operation
needs.

Use the solid.ini configuration file to define basic configuration settings such
as database file names and locations, database block size, and so on.
v In normal setups, it is not necessary to modify the SMA-specific parameters

in the [SharedMemoryAccess] section of the solid.ini file. The factory values
are applicable to most use cases.

v Do not set the Srv.ProcessMemoryLimit parameter when using SMA. If you
need to limit the memory the SMA server uses, use the
SharedMemoryAccess.MaxSharedMemorySize parameter.

If there is no configuration file, the factory values are used.
4. Prepare your application for SMA use.

You can set up your application to use SMA with or without a driver manager.
v 2.1.2, “Preparing applications for SMA use with driver manager,” on page 20
v 2.1.3, “Preparing applications for SMA use without driver manager,” on page

21
5. Start the SMA server.

For instructions, see 2.2.1, “Starting SMA server,” on page 24.
6. Start the application.

2.1.1 Modifying shared memory kernel parameters - overview
Shared memory is allocated in segments. The shared memory system parameters
control the maximum size and number of segments allowed on your system.

Typically solidDB uses 32 MB segment sizes.

The shared memory parameters and their management mechanisms depend on the
system. In Linux and UNIX environments, you may need to address the type of
kernel parameters described below.

Important: This section and the sections below discuss only the requirements set
by solidDB. Other processes running on the same system may require higher limit
values.
v Maximum size of a shared memory segment

Typically you do not need to modify the default system setting. This is because
the solidDB segment size of 32 MB is considerably small.

v Maximum number of shared memory segments in a system/process
– Because solidDB allocates most of the segments in 32 MB, you may need

more segments than allowed by your system by default, especially if you
have a large database.
The maximum number of shared memory segments must be at least the
solidDB process size in MB divided by 32.
For example, for a process size of 1 GB (1024 MB), at least 32 segments are
needed.

– Set the maximum number of segments to a clearly higher value than required
by your database size. A higher value has no side effects.

14 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

– solidDB uses only one process; if your environment requires you to set the
maximum number of segments for a process and for the system separately,
you can use the same value for both.

v Maximum total size of all shared memory segments
The total combined size of all shared memory segments depends on the size of
your database and availability of disk space.

Note: In addition to this kernel parameter, the maximum total size of shared
memory used by solidDB is controlled with the solidDB parameter
MaxSharedMemorySize (in the [SharedMemoryAccess] section of the solid.ini file)
as follows:
– The value set with the MaxSharedMemorySize parameter takes precedence over

the value set with the kernel parameter. Thus, the value set with the
MaxSharedMemorySize parameter must never be higher than the value set with
the kernel parameter.

– By default, solidDB is set to use the maximum size of the physical memory of
the computer (MaxSharedMemorySize=0). Thus, the default value set with the
kernel parameter may be too low.

Example 1

If the system has 2 GB of memory and MaxSharedMemorySize is set to 0, solidDB
uses maximum of 2 GB of memory. If the kernel parameter for maximum total size
of all shared memory segments is then set to 1 GB, solidDB runs out of memory
when the 1 GB is reached.

Example 2

If the system has 2 GB of memory and MaxSharedMemorySize is set to 500M, solidDB
never uses more than 500 MB of memory. As long as the kernel parameter for
maximum total size of all shared memory segments is set to 500 MB or higher,
solidDB never runs out of memory. It is recommended to set the value to a higher
value than the memory required by solidDB.

Shared memory kernel parameters for SMA on AIX
On AIX systems, the shared memory kernel parameters do not need to be
modified. The upper limits are defined for the AIX IPC mechanisms, which are not
configurable. The shared memory limits are allocated and deallocated dynamically
as needed, so that the memory requirements always depend on the current system
usage.

Important: Do not set the page space allocation policy to early page space
allocation. Instead, use the deferred (default) or late space allocation policy.

For more details, see the following sections in the IBM Systems Information Center
(http://publib16.boulder.ibm.com/pseries/index.htm):
v Inter-Process Communication (IPC) Limits – Shared memory default limits and

the IPC mechanisms
v Page space allocation – Page space allocation policies

Modifying shared memory kernel parameters for SMA on HP-UX
The default values for shared memory kernel parameters on HP-UX may not be
sufficient for running a SMA application. The kernel parameter values can be
changed dynamically using the kctune command.

2 Creating and running SMA applications 15

http://publib16.boulder.ibm.com/pseries/index.htm
http://publib.boulder.ibm.com/infocenter/aix/v6r1/index.jsp?topic=/com.ibm.aix.genprogc/doc/genprogc/ipc_limits.htm
http://publib.boulder.ibm.com/infocenter/aix/v6r1/index.jsp?topic=/com.ibm.aix.prftungd/doc/prftungd/page_space_alloc.htm

Before you begin

You must have root authority to modify shared memory kernel parameters.

About this task

The following steps show how to set shared memory kernel parameters on HP-UX.
The minimum values that are shown according to the requirements set by solidDB.
Other processes running on the same system may require higher limit values.

In HP-UX environments, you may need to modify the following shared memory
kernel parameters:
v shmmni — Maximum number of shared memory segments on the system
v shmseg — Maximum number of shared memory segments attached to a process
v shmmax — Maximum size of a single shared memory segment (bytes)

Procedure
1. View the shared memory kernel parameters to determine if there are any

necessary changes required for your system.

View the shmmni parameter:
kctune -v shmmni
Tunable shmmni
Description Maximum number of shared memory segments on the system
Module vm_asi
Current Value 400 [Default]
Value at Next Boot 400 [Default]
Value at Last Boot 400
Default Value 400
Constraints shmmni >= 3

shmmni <= 32768
shmmni >= shmseg

Can Change Immediately or at Next Boot

View the shmseg parameter:
kctune -v shmseg
Tunable shmseg
Description Maximum number of shared memory segments attached to a process
Module vm_asi
Current Value 300 [Default]
Value at Next Boot 300 [Default]
Value at Last Boot 300
Default Value 300
Constraints shmseg >= 1

shmseg <= shmmni
Can Change Immediately or at Next Boot

View the shmmax parameter:
kctune -v shmmax
Tunable shmmax
Description Maximum size of a shared memory segment (bytes)
Module vm_asi
Current Value 1073741824 [Default]
Value at Next Boot 1073741824 [Default]
Value at Last Boot 1073741824
Default Value 1073741824
Constraints shmmax >= 2048

shmmax <= 4398046511104
Can Change Immediately or at Next Boot

16 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

Table 7. Minimum requirements of shared memory kernel parameters for SMA (HP-UX)

Parameter Description When to modify Notes

shmmni Maximum
number of shared
memory segments
on the system

If the value is smaller than the
solidDB process size (MB) divided
by 32

For example, for a process size of 1
GB (1024 MB), at least 32 segments
are needed.

Set this parameter to a clearly higher value
than required by your database size; a higher
value has no side effects.

shmseg Maximum
number of shared
memory segments
attached to a
process

If the value is smaller than the
solidDB process size (MB) divided
by 32

For example, for a process size of 1
GB (1024 MB), at least 32 segments
are needed.

Because solidDB uses only 1 process, the
value of shmmni and shmseg can be the same.

shmmax Maximum size of
a single shared
memory segment
(bytes)

If the value is smaller than 32768
KB (32 MB)

Setting this parameter to a higher value has
no side effects.

2. To modify the parameters, use the kctune command. For example, to set the
maximum number of shared memory segments to 1024, use the following
command:
kctune shmmni=1024

The parameter value change becomes effective immediately and stays effective
after reboot.

What to do next

If you modified the shared memory parameters after getting an out of memory
error, you may need to clear hanging shared memory segments with the ipcrm
command. For more details, see 2.4, “Troubleshooting SMA,” on page 27.

Modifying shared memory kernel parameters for SMA on Linux
The default values for shared memory kernel parameters on Linux may not be
sufficient for running a SMA application. To modify the shared memory kernel
parameters on Linux, edit the /etc/sysctl.conf file.

Before you begin

You must have root authority to modify kernel parameters.

About this task

The following steps show how to update kernel parameters on Red Hat and SUSE
Linux using the shared memory requirements set by solidDB. Other processes
running on the same system may require higher limit values.

In Linux environments, you may need to modify the following shared memory
parameters:
v SHMMNI — Maximum number of shared memory segments on a system
v SHMMAX — Maximum size of a single shared memory segment on a system
v SHMALL — Maximum allocation of shared memory pages on a system

2 Creating and running SMA applications 17

Procedure
1. Run the ipcs -l command.

For example:

Note: Comments have been added following the // to show what the
parameter names are.

ipcs -l

------ Shared Memory Limits --------
max number of segments = 4096 // SHMMNI
max seg size (kbytes) = 32768 // SHMMAX
max total shared memory (kbytes) = 8388608 // SHMALL

2. Analyze the output to determine if there are any necessary changes required
for your system.

Table 8. Minimum requirements of shared memory kernel parameters for SMA (Linux)

Kernel
parameter Description When to modify Notes

SHMMNI Maximum number of
shared memory
segments on a system

If the value is smaller than the
solidDB process size (MB) divided
by 32

For example, for a process size of 1
GB (1024 MB), at least 32 segments
are needed.

Set this parameter to a clearly higher value than
required by your database size; a higher value has
no side effects.

SHMMAX Maximum size of a
single shared memory
segment on a system

If the value is smaller than 32768 KB
(32 MB)

Setting this parameter to a higher value has no
side effects.
Note: The ipcs output has converted SHMMAX
kilobytes. The kernel requires the SHMMAX value
in bytes.

SHMALL Maximum allocation
of shared memory
pages on a system

If MaxSharedMemorySize=0 and the
value of this parameter is smaller
than the maximum size of the
physical memory size of your
computer in KB divided by 4.

or

If the value of this parameter is
smaller than the value (in KB
divided by 4) you have set with the
parameter MaxSharedMemorySize.

v The value set with the MaxSharedMemorySize
parameter takes precedence over the value set
with the kernel parameter. Thus, the value set
with the MaxSharedMemorySize parameter must
never be higher than the value set with the
kernel parameter.

v By default, solidDB is set to use the maximum
size of the physical memory of the computer
(MaxSharedMemorySize=0). Thus, the default
value set with the kernel parameter may be too
low.

Note: The ipcs output has converted SHMALL
into kilobytes. The kernel requires the SHMALL
value as a number of pages.

3. To modify these kernel parameters, edit the /etc/sysctl.conf file.

If the file does not exist, create it. For example, create a file with the following
lines:
#Example shmmni for a 1 GB database
kernel.shmmni=400
#Example shmmax for a 64-bit system
kernel.shmmax=1073741824
#Example shmall for 16 GB memory
kernel.shmall=3774873

4. Run sysctl with -p parameter to load in sysctl settings from the default file
/etc/sysctl.conf.
sysctl -p

5. Make the changes effective after every reboot.

18 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

v In SUSE Linux: make boot.sysctl active.
v In Red Hat Linux: the rc.sysinit initialization script reads the

/etc/sysctl.conf file automatically.

What to do next

If you modified the shared memory parameters after getting an out of memory
error, you may need to clear hanging shared memory segments with the ipcrm
command. For more details, see 2.4, “Troubleshooting SMA,” on page 27.

Modifying shared memory kernel parameters for SMA on Solaris
The default values for shared memory kernel parameters on Solaris 10 may not be
sufficient for running a SMA application. In Solaris 10, the shared memory kernel
parameter values can be changed dynamically with the Solaris resource control
facilities.

Before you begin

You must have root authority to modify shared memory parameters.

About this task

The following steps show how to set shared memory kernel parameters on Solaris
10. The minimum values that are shown according to the requirements set by
solidDB. Other processes running on the same system may require higher limit
values.

In Solaris environments, you may need to modify the following shared memory
parameters:
v max-shm-ids — Maximum number of shared memory segments on a system
v max-shm-memory — Maximum size of all shared memory segments on a system

(MB)

In the examples below, the operating system default project is used.

Procedure
1. View the shared memory parameters to determine if there are any necessary

changes required for your system.

View the project.max-shm-ids parameter:
prctl -n project.max-shm-ids -i project default
project: 3: default
NAME PRIVILEGE VALUE FLAG ACTION RECIPIENT
project.max-shm-ids

privileged 128 - deny -
system 16.8M max deny -

View the project.max-shm-memory parameter:
prctl -n project.max-shm-memory -i project default
project: 3: default
NAME PRIVILEGE VALUE FLAG ACTION RECIPIENT
project.max-shm-memory

privileged 62.7GB - deny -
system 16.0EB max deny

2 Creating and running SMA applications 19

Table 9. Minimum requirements of shared memory kernel parameters for SMA (Solaris)

Parameter Description When to modify Notes

max-shm-ids Maximum number of
shared memory
segments on a system

If the value is smaller than the solidDB
process size (MB) divided by 32

For example, for a process size of 1 GB
(1024 MB), at least 32 segments are needed.

Set this parameter to a clearly higher
value than required by your database
size; a higher value has no side effects.

max-shm-memory Maximum size of all
shared memory
segments on a system

If MaxSharedMemorySize=0 and the memory
size set with this parameter is smaller than
the maximum size of the physical memory
size of your computer.

or

If the memory size set with this parameter
is smaller than the memory size you have
set with the parameter
MaxSharedMemorySize.

Setting this parameter to a higher value
has no side effects.

v The value set with the
MaxSharedMemorySize parameter takes
precedence over the value set with the
kernel parameter. Thus, the value set
with the MaxSharedMemorySize
parameter must never be higher than
the value set with the kernel
parameter.

v By default, solidDB is set to use the
maximum size of the physical memory
of the computer
(MaxSharedMemorySize=0). Thus, the
default value set with the kernel
parameter may be too low.

2. To modify the parameters, use the prctl command.

For example, to set the maximum number of shared memory segments to 1024,
use the following command:
prctl -n project.max-shm-ids -r -v 1024 -i project default

3. Make the changes effective after every reboot.
/usr/sbin/projmod -sK "project.max-shm-ids=(privileged,1024,deny)" default

What to do next

If you modified the shared memory parameters after getting an out of memory
error, you may need to clear hanging shared memory segments with the ipcrm
command. For more details, see 2.4, “Troubleshooting SMA,” on page 27.

2.1.2 Preparing applications for SMA use with driver manager
When using SMA with a driver manager, you connect to a SMA data source in a
similar way as when connecting to a regular solidDB ODBC data source.

About this task

The SMA driver library file is installed during the solidDB server installation. The
table below lists the file names and their default installation locations for the most
common platforms.

Table 10. SMA drivers (libraries)

Platform SMA driver library Default installation location

Windows ssolidsmaxx.dll
Note: If you link to the SMA
driver directly (without driver
manager), you link to the
solidsma.lib import library file
that gives you access to the
actual .dll library file.

Library: <solidDB installation
directory>\bin

Import library: <solidDB installation
directory>\lib

20 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

Table 10. SMA drivers (libraries) (continued)

Platform SMA driver library Default installation location

Linux ssolidsmaxx.so <solidDB installation directory>/bin

Solaris ssolidsmaxx.so <solidDB installation directory>/bin

HP-UX ssolidsmaxx.so <solidDB installation directory>/bin

AIX ssolidsmaxx.so <solidDB installation directory>/bin

xx is the version number of the driver library, for example, ssolidsma70.so.

Procedure
1. Configure the SMA data source according to the instructions provided with

your driver manager.

2. Connect to the SMA data source.

Use the SMA-specific connect string when defining the data source connection
information.
The connect string syntax for a SMA connection is:
sma <protocol name> <port number or pipe name>

For example:
sma tcp 2315

3. Check the use of signal handlers.

Signal handlers are used to report the occurrence of an exceptional event to the
application. The SMA driver installs by default its own signal handler that can
help the SMA system to survive the most common application failures, such as
killing or interrupting the applications from outside. Upon the capture of
certain signals, the signal handler closes the SMA connections safely and exits
the SMA application. This means that in most cases, the SMA server continues
to run despite abnormal application exits.
By default, the SMA driver handles the following signals that can cause the
SMA connection to break:
v Linux and UNIX: SIGINT, SIGTERM
v Windows: SIGINT

You can modify the set of signals that the SMA driver handles with the
client-side parameter SharedMemoryAccess.Signals. You can also disable the
SMA driver signal handler by setting the client-side parameter
SharedMemoryAccess.SignalHandler to no.
If the SharedMemoryAccess.SignalHandler parameter is set to 'yes' (default), do
not set signal handlers in your application for those signals that are handled by
the SMA driver; the application setting will override the SMA driver settings.

Related reference:
Appendix A, “Shared memory access parameters,” on page 59

2.1.3 Preparing applications for SMA use without driver
manager

When you are using SMA without a driver manager, you link your application to
the SMA driver library directly. You link to the SMA driver in a similar way as
when linking directly to an solidDB ODBC driver library.

Procedure
1. Link your application to the SMA driver library.

2 Creating and running SMA applications 21

The SMA driver library files are installed during the solidDB installation. The
table below lists the file names and their default installation locations for the
most common platforms.

Table 11. SMA drivers (libraries)

Platform SMA driver library Default installation location

Windows ssolidsmaxx.dll
Note: If you link to the SMA
driver directly (without driver
manager), you link to the
solidsma.lib import library file
that gives you access to the
actual .dll library file.

Library: <solidDB installation
directory>\bin

Import library: <solidDB installation
directory>\lib

Linux ssolidsmaxx.so <solidDB installation directory>/bin

Solaris ssolidsmaxx.so <solidDB installation directory>/bin

HP-UX ssolidsmaxx.so <solidDB installation directory>/bin

AIX ssolidsmaxx.so <solidDB installation directory>/bin

xx is the version number of the driver library, for example, ssolidsma70.so.

2. Change the connect string to the local SMA server name.

The connect string syntax for a SMA connection is:
sma <protocol name> <port number or pipe name>

For example:
sma tcp 2315

For examples of the connect string when using ODBC API or SA API, see 2.1.4,
“Establishing local connections for SMA,” on page 23.

3. Check the use of signal handlers.

Signal handlers are used to report the occurrence of an exceptional event to the
application. The SMA driver installs by default its own signal handler that can
help the SMA system to survive the most common application failures, such as
killing or interrupting the applications from outside. Upon the capture of
certain signals, the signal handler closes the SMA connections safely and exits
the SMA application. This means that in most cases, the SMA server continues
to run despite abnormal application exits.
By default, the SMA driver handles the following signals that can cause the
SMA connection to break:
v Linux and UNIX: SIGINT, SIGTERM
v Windows: SIGINT

You can modify the set of signals that the SMA driver handles with the
client-side parameter SharedMemoryAccess.Signals. You can also disable the
SMA driver signal handler by setting the client-side parameter
SharedMemoryAccess.SignalHandler to no.
If the SharedMemoryAccess.SignalHandler parameter is set to 'yes' (default), do
not set signal handlers in your application for those signals that are handled by
the SMA driver; the application setting will override the SMA driver settings.

Related reference:
Appendix A, “Shared memory access parameters,” on page 59

22 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

2.1.4 Establishing local connections for SMA
For SMA use, the application needs to establish a local SMA connection with the
SMA server. The connection type is defined with a SMA-specific connect string.

For SMA, the connection request is sent over the network connection (handshake
connection) using any locally available protocol (tcpip, named pipes, unix pipes).
During the connect handshake, the shared-memory segment handle is passed to
the driver so that it can access the server's shared memory.

The connect string syntax for a SMA connection is:
sma <protocol name> <port number or pipe name>

For example:
sma tcp 2315

If an SMA connect request is made to the server that is not an SMA Server, a
connect error is returned.

Important: A single application can connect to only one SMA server. However, the
SMA application may make regular network-based connections to any local or
remote server.

ODBC API

When using the ODBC API, define the SMA-specific connect string in the
SQLConnect function call.

Examples

The following ODBC API code examples connect directly to the local SMA solidDB
server with username dba and password dba:
rc = SQLConnect(hdbc, "sma tcp 1315", (SWORD)SQL_NTS, "dba", 3, "dba", 3);

or
rc = SQLConnect(hdbc, "sma upipe SOLID", (SWORD)SQL_NTS, "dba", 3, "dba", 3);

SA API

When using the SA API, define the SMA-specific connect string in the SaConnect
function call.

The following code examples connect directly to the local SMA solidDB server
with username dba and password dba:
SaConnectT* sc = SaConnect("sma tcp 1315", "dba", "dba");

or
SaConnectT* sc = SaConnect("sma upipe SOLID", "dba", "dba");

Driver manager

When using a Driver manager, define the SMA-specific connect string in the SMA
Data Source.

2 Creating and running SMA applications 23

2.2 Starting and shutting down SMA server
The SMA server is started, restarted, and shutdown in a similar way as the normal
network-connection-based solidDB server.

2.2.1 Starting SMA server
The SMA server is started using the command prompt in the same way as with a
normal network-connection-based solidDB server. When SMA server is started, it
checks if a database exists. The server first looks for a solid.ini configuration file
and reads the value of FileSpec parameter. If a database file is found with the
names and paths specified in the FileSpec parameter, that database is opened
automatically. If no database is found, the server prompts you to create a database.

Procedure

To start the SMA server:

Table 12. Starting the SMA server

Operating
system To start the SMA server:

Linux and UNIX Enter the command solidsma at the command prompt.

When you start the server for the first time, enter the command
solidsma -f at the command prompt to force the server to run in the
foreground.

Windows Enter the command solidsma at the command prompt.

To start the SMA server as a service:

Results

When the server is started in the SMA mode, it loads the SMA driver library
dynamically, accepting connection requests from the SMA driver at the normal
listening port. By assigning different port numbers to different SMA servers, it is
possible to run several SMA servers on a single system at the same time.

Tip: It is also possible to start the solidDB server in SMA mode by having the
application call an SSC API function SSCStartSMAServer. However, in such a
setup, only one application can start (and stop) the SMA server. For details on the
SSC API calls, see D.2.11, “SSCStartSMAServer,” on page 83.

2.2.2 Shutting down SMA server
SMA server is shut down using the solidDB ADMIN COMMANDs.

Procedure
1. To prevent new connections to solidDB, close the database by entering the

following command:
ADMIN COMMAND ’close’

2. Exit all solidDB users by entering the following command:
ADMIN COMMAND ’throwout all’

3. Stop solidDB by entering the following command:
ADMIN COMMAND ’shutdown’

24 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

Results

All the shutdown mechanisms start the same routine, which writes all buffered
data to the database file, frees cache memory, and finally terminates the server
program. Shutting down a server may take awhile since the server must write all
buffered data from main memory to the disk.

Tip: It is also possible to stop the solidDB server in SMA mode by having the
application call an SSC API function SSCStopServer(). Only one application can
start and stop the SMA server. The same application that started the SMA server
must also perform the shutdown. For details, see D.2.12, “SSCStopServer,” on page
85.

2.2.3 Starting SMA server as a service (Windows)
solidDB with SMA can be run as a service in Windows. The first time you want to
run the SMA server as a service, you must install the service, that is, allow
Windows to run the SMA server as a service. After that, you can start and stop the
services with the Windows Service dialog or command prompt, or remove the
services using solidDB command-line options.

Before you begin

To be able to install and start services in some Windows environments (for
example, Windows 2008 Server), you need to run the Windows command prompt
with administrator rights.
1. In the Start menu, right-click Command Prompt.
2. Select Run as administrator.
3. Log in with an administrator account.

About this task

The first time you want to run the SMA server as a service, you must first install
the service, and then start the service with the Windows Service dialog or
command prompt.

Procedure
1. Allow (install) Windows to run the SMA server as a service.

In the solidDB working directory, issue the following command:
solidsma -s"install,<name>,<fullexepath> -c<working directory>[,autostart]"

where
<name> is the service name
<fullexepath> is the full path for solidsma.exe

<working directory> is the full path for solidDB working directory (where
your solid.ini configuration file and license file are located)
[autostart] is an optional parameter that sets the Startup Type of the service
to Automatic, that is, the SMA server runs automatically as a service when
Windows is started.

Note:

Regardless of the [autostart] parameter, the service is not started
automatically at the time of installation. For the first time, the service has to be

2 Creating and running SMA applications 25

started manually in the Windows Services dialog or command prompt. (See
step 2 below.)
Example 1

The following command installs a service named SOLIDSMA (with Startup
Type Manual) when the SMA server is installed into the directory C:\soliddb
and the working directory is C:\soliddb.
solidsma -s"install,SOLIDSMA,C:\soliddb\bin\solidsma.exe -cC:\soliddb"

Example 2

The following command installs a service named SOLIDSMA (with Startup
Type Automatic) when the SMA server is installed into the directory C:\soliddb
and the working directory is C:\soliddb. The next time Windows is started, the
SMA server will automatically run as a service.
solidsma -s"install,SOLIDSMA,C:\soliddb\bin\solidsma.exe -cC:\soliddb,autostart"

Tip:

Alternatively, you can create the service using the Windows command-line
utility sc.exe. In that case, to start the SMA server in a services mode, you
must include the solidDB -sstart command-line option in the command. For
example:
sc create SOLIDSMA binPath= "c:\soliddb\bin\solidsma.exe -cC:\soliddb -sstart"

The -sstart command-line option is required to remove the GUI-based
interactions between the SMA server and the user. Programs running as a
Windows service cannot use the GUI operations.

2. Start the service manually in the Windows Services dialog or command
prompt.

v You can access the Windows Services dialog through Control Panel: Control
Panel > Administrative Tools > Services.

v In the command prompt, issue the following command:
sc start <name>

For example:
sc start SOLIDSMA

Results

When running as an Windows service, solidDB with SMA will log warning and
error messages to the Windows event log. These messages can be viewed from
Windows by using the Event Viewer, available through Control Panel: Control
Panel > Administrative Tools > Event Viewer. Messages are also logged to the
solmsg.out file.

2.3 Monitoring SMA
solidDB includes means for monitoring and collecting data on the type and
number of SMA connections as well as the SMA memory segment sizes.
v Use ADMIN COMMAND ’userlist' to print a list of the type of user connections

(network client or SMA client).
v Use ADMIN COMMAND ’report’ to print a list of the connections by the type.
v Check the solmsg.out file login entries for the type of the connections made.
v Use the performance counter SMA connection count to collect data on the

number of SMA connections.

26 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

v Use the performance counter SMA shared memory used to collect data on the
SMA memory segment size.

For details on using the ADMIN COMMANDs, the solmsg.out, and the
performance counters, see IBM solidDB Administrator Guide.

Measuring processor utilization in SMA-based databases

The SMA server process (solidsma) cannot be used to measure the processor
utilization of the database used by SMA applications. With SMA, most of the
solidDB server code executes in the application's address space. On the other hand,
the processor utilization reported for an SMA application reflects both the load
inflicted by the application code itself and the solidDB code invoked to process the
application's request.

If the applications are not processor-intensive, the best approximation of the
processor utilization of the total database system is the sum of the processor
utilization values of all the SMA applications and the SMA server process.

The SMA server process consumes very little of the processor capacity in its own
address space. The server process consists of only housekeeping and asynchronous
tasks like checkpointing, backup, and so on.

2.4 Troubleshooting SMA
This section provides instructions and guidelines on how to prevent or
troubleshoot common problems while configuring or using SMA.

Error: Server could not allocate shared memory segment by id -1

Symptoms

When trying to start a SMA server, the following type of error is displayed,
and the SMA server cannot be started.
IBM solidDB process has encountered an internal error and is unable to
continue normally. Report the following information to technical support.
SOLID Fatal error: Out of central memory when allocating buffer memory (size = 33554432)
Date: 2012-04-24 15:39:44
Product: IBM solidDB
Version: 7.0.0.2 Build 2012-04-20

[solid1]~ ./solidsma -f -c .
Server could not allocate shared memory segment by id -1

Causes

The SMA server startup fails because there is no memory available. This
situation can occur if:
v When a SMA application or SMA server terminates abnormally, they can

leave shared memory allocated. Even if you shut down all SMA
processes, the shared memory is still left reserved.

v You have allocated too little memory for SMA use.

This leads to a situation where all memory is used and you cannot start a
SMA server any more.

Resolving the problem

In Linux and UNIX environments, clear the hanging shared memory
segments with the ipcrm command.

2 Creating and running SMA applications 27

For example in Linux environments, use the following script to identify
and remove the unused shared memory segments.
#!/bin/sh

if [$# -ne 1]
then

echo "$0 user"
exit 1

fi

for shm_id in $(ipcs -m|grep $1|awk -v owner=$1 ’ { if (owner == $3) {print $2} }’)
do
ipcrm -m $shm_id

done

For more details on the ipcrm command, see your operating system
documentation.

Cannot map shared memory area

Symptoms

When trying to connect to a SMA server, the following type of error is
displayed, and the connection fails.
v Linux and UNIX operating systems

cannot map shared memory area 1288077395 to 0x2b0029800000
Cannot connect to target database.

v Windows operating systems
SQL State "08004"; Native Error Code "25215";
Error Text "SMA failed in MapViewOfFileExt,
desired addr: 0000000800000000, got addr: 000000000000000000, error: 6.

Causes

When started, the SMA starts attaching shared memory segments to an
address space that is used by another process.

Resolving the problem

In general, the earlier your application connects to the SMA server, the less
likely it is that the address space requested by solidDB is in use.

The SMA server uses the following address spaces by default:

Table 13. SMA default address spaces

Operating system Default start address space*

AIX 0x700000010000000ul

Linux 64-bit 0x2c0000000000

Linux 32-bit 0x50000000

Solaris Intel 0x2b0000000000

Solaris Sparc 0xffffffff60000000

Windows 0x0000000080000000

*The start address space is the value of the parameter shmaddr in the shmat() system call.

1. Force the start address space for the SMA server to a different address
space using the environment variable SOLSMASTART.
v Linux and UNIX operating systems:

export SOLSMASTART=<start_address_space>

For example:
export SOLSMASTART=0x2b0000000000

28 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

v Windows operating systems:
set SOLSMASTART=<start_address_space>

For example:
set SOLSMASTART=0x0000000800000000

2. Restart the SMA server.

Error 21300: Protocol 'sma' is not supported

Symptoms
When trying to connect to a SMA server, the following type of error is
displayed:
Error HY000: SOLID Communication Error 21300:
Protocol ’sma’ is not supported
SQLConnect failed

Causes
The application has been linked both to the solidDB ODBC library and the
SMA library (ssolidsmaxx).

Resolving the problem
Check your application code and remove any references to the solidDB
ODBC libraries (for example, sacl2x70.so or socw6470.dll.

2 Creating and running SMA applications 29

30 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

3 Creating and running SMA applications with Java

Java applications are linked to the SMA driver library. The actual database
connections are done with the normal JDBC API.

3.1 Overview of using SMA with Java
A Java application that uses SMA is created in the same way as an application that
uses a regular solidDB server, with the exception that you start an SMA server
instead of a regular solidDB server. The Java application connects to the SMA
server and uses the services solidDB server provides through a standard JDBC API.
Linking to the dynamic library allows the application to avoid the overhead of
RPC (Remote Procedure Calls) through the network.

Java/JDBC programs that want to use SMA link to the SMA driver library
(ssolidsmaxx). This library contains the entire solidDB server, except that it is in
the form of a callable library instead of a stand-alone executable program. The
libraries used with Java/JDBC are the same as the ones used with C/C++
applications; there are no separate versions for Java.

When you use SMA with Java/JDBC, you link the following components into a
single executable process:
v SMA driver library
v your Java-language client program
v the JVM

The layers in the executable process are, from top to bottom:
v Local Java (JDBC) client application
v JVM (Java Virtual Machine)
v SMA driver library

The Java commands in your client are executed by the JVM. If the command is a
JDBC function call, the JVM calls the appropriate function in the SMA driver
library. The function call is direct, it does not go through the network (through
RPC). The calls are made using Java Native Interface (JNI). You do not need to
write any JNI code yourself; you simply have to call the same JDBC functions that
you would call if you were writing a remote client program.

Every application that uses SMA follows the same basic four-step pattern:
1. Configure the solidDB server and connection settings.
2. Start the SMA server.
3. Access the database by using normal JDBC API.
4. When database processing is done, stop the SMA server.

3.2 Configuring your environment for SMA use with Java
When using SMA with Java, your LD_LIBRARY_PATH or LIBPATH (Linux and
UNIX) or PATH (Windows) environment variable must include the location of the
SMA driver library.

31

Before you begin

It is assumed that you have a working installation of the solidDB JDBC Driver.

About this task

The SMA driver library file is installed during the solidDB installation. The
following table lists the file names and their default installation locations for the
most common platforms.

Table 14. SMA drivers (libraries)

Platform SMA driver library Default installation location

Windows ssolidsmaxx.dll
Note: If you link to the SMA
driver directly (without driver
manager), you link to the
solidsma.lib import library file
that gives you access to the
actual .dll library file.

Library: <solidDB installation
directory>\bin

Import library: <solidDB installation
directory>\lib

Linux ssolidsmaxx.so <solidDB installation directory>/bin

Solaris ssolidsmaxx.so <solidDB installation directory>/bin

HP-UX ssolidsmaxx.so <solidDB installation directory>/bin

AIX ssolidsmaxx.so <solidDB installation directory>/bin

xx is the version number of the driver library, for example, ssolidsma70.so.

Procedure
1. Add the location of the SMA driver library to the LD_LIBRARY_PATH or

LIBPATH (Linux and UNIX) or PATH (Windows) environment variable.

v In Linux and UNIX environments, use the following syntax:
export LD_LIBRARY_PATH=<path to SMA library>:$LD_LIBRARY_PATH

or
in AIX environments:
export LIBPATH=<path to SMA library>:$LIBPATH

v In Windows environments, use the following syntax:
set PATH=<path to SMA library>;%PATH%

2. Set up your database environment by creating a working directory, your
solidDB database, and user accounts.

For instructions, see Creating a new database in the IBM solidDB Administrator
Guide.

Note: The application and the SMA server processes must have identical file
access permissions (database files, log files, and so on). The file access
permissions are not checked at startup; subsequently, insufficient file access
permissions may cause the SMA server to crash at a later point.

3. Configure solidDB to meet your environment, performance, and operation
needs.

Use the solid.ini configuration file to define basic configuration settings such
as database file names and locations, database block size, and so on.
v In normal setups, it is not necessary to modify the SMA-specific parameters

in the [SharedMemoryAccess] section of the solid.ini file. The factory values
are applicable to most use cases.

32 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

v Do not set the Srv.ProcessMemoryLimit parameter when using SMA. If you
need to limit the memory the SMA server uses, use the
SharedMemoryAccess.MaxSharedMemorySize parameter.

If there is no configuration file, the factory values are used.

3.3 Starting and shutting down SMA server
The SMA server is started, restarted, and shutdown in a similar way as the normal
network-connection-based solidDB server.

3.3.1 Starting SMA server
The SMA server is started using the command prompt in the same way as with a
normal network-connection-based solidDB server. When SMA server is started, it
checks if a database exists. The server first looks for a solid.ini configuration file
and reads the value of FileSpec parameter. If a database file is found with the
names and paths specified in the FileSpec parameter, that database is opened
automatically. If no database is found, the server prompts you to create a database.

Procedure

To start the SMA server:

Table 15. Starting the SMA server

Operating
system To start the SMA server:

Linux and UNIX Enter the command solidsma at the command prompt.

When you start the server for the first time, enter the command
solidsma -f at the command prompt to force the server to run in the
foreground.

Windows Enter the command solidsma at the command prompt.

To start the SMA server as a service:

3.3.2 Shutting down SMA server
SMA server is shut down using the solidDB ADMIN COMMANDs.

Procedure
1. To prevent new connections to solidDB, close the database by entering the

following command:
ADMIN COMMAND ’close’

2. Exit all solidDB users by entering the following command:
ADMIN COMMAND ’throwout all’

3. Stop solidDB by entering the following command:
ADMIN COMMAND ’shutdown’

3.4 Making JDBC connections for SMA
To make a local (non-RPC-based) JDBC connection to the SMA server, you need to
connect to a SMA server using the non-standard connection property
solid_shared_memory, and use a local server at a given port in the JDBC URL
(connection string).

3 Creating and running SMA applications with Java 33

Connecting with Driver Manager
1. Set the non-standard connection property solid_shared_memory to yes.
2. Set the connection string to use a local server (localhost) and define an

available port number.

For example:
Properties props = new Properties();
// enable the direct access property
props.put("solid_shared_memory", "yes");
// get connection
Connection c = DriverManager.getConnection
("jdbc:solid://localhost:1315", props);

Defining connection property in the connect string

Include the connection property solid_shared_memory=yes in the connect string,
and use a local server (localhost), defining an available port number.

For example:
Connection c = DriverManager.getConnection
("jdbc:solid://localhost:1315?solid_shared_memory=yes");

Note: In addition to the DriverManager class, a similar syntax is available for
classes SolidDataSource and SolidConnectionPoolDataSource.

34 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

4 SMA with HotStandby

The SMA server node can be made highly available with the solidDB HotStandby
component.

In an SMA with HotStandby setup, there can be one or more SMA applications on
each node. The application connection to the database can be configured as a
regular SMA connection (SMA Basic Connectivity) or as a Transparent Connectivity
SMA connection (SMA TC). With both connectivity types, the application on the
Primary node uses an SMA connection to execute reads and writes locally, and the
application on the Secondary uses an SMA connection to execute reads locally.
Additionally, with SMA TC connection, write transactions from the application on
the Secondary can be executed on the Primary server using a network connection.
Furthermore, if the load balancing option is enabled with the SMA TC connection,
the applications can operate in an active-active manner; on each node, the full
functionality of database access is available.

With SMA TC, the application on each node must be able to connect to the local
server with a SMA connection and to the remote server with a network-based
connection.

Failover and switchover handling
v The connection handle is maintained over switchovers and failovers for as long

as one of the servers is in the PRIMARY ACTIVE, PRIMARY ALONE, or
STANDALONE state.

v If the SMA server fails, the application might fail also. To ensure high
availability in such a failure scenario, your system needs to include an
application-level failover mechanism that moves the service offered by the
application from the failed application instance to another one.

Application

SMA driver

solidDB
Secondary

Node A

Application

SMA driver

solidDB
Primary

Node B

SMA connection
Read/Write

SMA connection
Read-only

solidDB
HSB replication

Network connection
Write

Figure 3. Architecture of SMA Transparent Connectivity with HotStandby

35

4.1 Configuring SMA TC with HotStandby
When using SMA with Transparent Connectivity (TC), the applications on the
Primary and the Secondary must connect to the databases using a SMA-specific TC
connect info syntax.

About this task

With SMA TC, the application on each node must be able to connect to the local
server with a SMA connection and to the remote server with a network-based
connection.

The format of the TC connect target list for SMA with HotStandby is the following:
connect_target_list::=[SERVERS:]sma_connect_string, network_connect_string

where
sma_connect_string::= sma protocol_name port_number | pipe_name

network_connect_string::= protocol_name IP_address | host_computer_name
port_number | pipe_name

Additionally, you need to set the load balancing method to LOCAL_READ
(PREFERRED_ACCESS=LOCAL_READ).

Important: When using SMA with TC, if you set the load balancing method to
READ_MOSTLY or WRITE_MOSTLY (default), a network connection is used
instead of the SMA connection. Thus, when using SMA with TC, always set the
load balancing method to LOCAL_READ.

Procedure
1. Set up the two HotStandby servers.
2. Set up SMA on both servers.
3. For both applications, define the TC connection using the SMA-specific connect

target list syntax and the load balancing attribute
PREFERRED_ACCESS=LOCAL_READ.

4. Compile and start the applications.

Example

Connect info of the application on host1 where solidDB is listening at port 1964:
PREFERRED_ACCESS=LOCAL_READ SERVERS=sma tcp 1964, tcp host2 2315

Connect string of the application on host2 where solidDB is listening at port 2315:
PREFERRED_ACCESS=LOCAL_READ SERVERS=sma tcp 2315, tcp host1 1964

36 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

Application

SMA driver

solidDB
Secondary

sma tcp 2315

host1

tcp host2 2315

tcp host1 1964

Application

SMA driver

solidDB
Primary

sma tcp 1964

host2

Figure 4. Example: HotStandby with SMA configuration

4 SMA with HotStandby 37

38 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

5 Creating and running LLA applications

Creating LLA applications includes linking your application to the library, starting
the server, and establishing a local connection between the application and the
server. You can start and stop the server with the SSC API, ODBC API, and SA
API.

The instructions contain LLA-specific additions, supplements, and usage
differences in comparison to the solidDB without LLA.

For information about solidDB SQL, solidDB data management tools, general
solidDB administration and maintenance, and database error codes, refer to the
IBM solidDB Administrator Guide.

For detailed information about the APIs and solidDB JDBC and ODBC Drivers, see
IBM solidDB Programmer Guide.

5.1 Configuring your environment for LLA use
When using LLA, you must link your application to the LLA library file.

Procedure
1. Link your application to the LLA library file specific to your operating

system.

Table 16. Linked library access (LLA) system libraries

Platform Static LLA library
Dynamic/Shared LLA
Library

Windows bin\ssolidacxx.dll lib\solidimpac.lib

This is an import library file
that gives you access to the
actual library file
bin\ssolidacxx.dll.

AIX bin/solidac.a lib/libssolidacxx.so

This is a symbolic link that
gives you access to the actual
library file
bin/ssolidacxx.so.

HP-UX bin/solidac.a lib/libssolidacxx.so

This is a symbolic link that
gives you access to the actual
library file
bin/ssolidacxx.so.

Linux bin/solidac.a lib/libssolidacxx.so

This is a symbolic link that
gives you access to the actual
library file
bin/ssolidacxx.so

39

Table 16. Linked library access (LLA) system libraries (continued)

Platform Static LLA library
Dynamic/Shared LLA
Library

Solaris bin/solidac.a lib/libssolidacxx.so

This is a symbolic link that
gives you access to the actual
library file
bin/ssolidacxx.so

Note: In Linux and UNIX environments, you need to link to the symbolic link
library libssolidacxx that is available in the
<solidDB_installation_directory/lib> directory. Alternatively, rename the
ssolidacxx library in the <solidDB_installation_directory/bin> directory as
libssolidacxx.
Example: Makefile for providing the LLA library name in Windows

In the makefile example below, the solidimpac.lib library is used.
compiler
CC = cl
compiler flags
CFLAGS = -I. -DSS_WINDOWS -DSS_WINNT
linker flags and directives
SYSLIBS = libcmt.lib kernel32.lib advapi32.lib netapi32.lib wsock32.lib
user32.lib oldnames.lib gdi32.lib
LFLAGS = ..\solidimpac.lib
OUTFILE = -Fe

MyApp building
all: myapp

myapp: myapp.c
$(CC) $(CFLAGS) $(OUTFILE)myapp myapp.c /link$(LFLAGS)

/NODEFAULTLIB:libc.lib

2. If you do not plan to use the implicit start method for starting the solidDB
server with SSC API, set the ImplicitStart parameter to no.

In the [Accelerator] section of the solid.ini configuration file, the parameter
ImplicitStart, by default, is set to Yes. This default setting starts the server
automatically when you use the function SQLConnect which is required for
any ODBC connection. The function SaConnect behaves in the same way. When
the SQLConnect or SaConnect function is called for the first time, the server is
implicitly started.

3. Disable signal handlers.

Signal handlers are used to report the occurrence of an exceptional event to the
application, for example division by zero. You must not set signal handlers in
user applications because they would override the signal handlers that are set
by the linked library access. For example, if the user application sets a signal
handler for floating point exceptions, that setting overrides the handler set by
the linked library access. Thus the server is unable to catch, for example,
division by zero.

5.2 Establishing a local connection for LLA
Once an application is linked to the linked library access library, it can use ODBC
API or SA API to establish a local or remote connection directly to the local server.
An application can also establish remote connections to other solidDB servers,
including others using the linked library access.

40 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

In the ODBC API, to establish a connection to a local server (the server that was
linked to the application), the user application calls the SQLConnect function with
the literal string "localserver". You can also specify an empty source name "" for the
local server connection. Furthermore, you can also specify a local server name.
However, specifying a local server name causes the linked library access to use a
"remote" connection, that is, to go through the network rather than to use the
direct function calls to the linked library access library.

The following ODBC API code examples connect directly to a local solidDB server
with username dba and password dba :
rc = SQLConnect(hdbc, "localserver", (SWORD)SQL_NTS, "dba", 3, "dba", 3);

or
rc = SQLConnect(hdbc, "", (SWORD)SQL_NTS, "dba", 3, "dba", 3);

In the SA API, to establish a connection, the user application calls the SaConnect
function with the literal string "localserver" (not the server name). You can also
specify an empty source name "" for the local server connection. Furthermore, you
can also specify a local server name. However, specifying a local server name
causes the linked library access to use a "remote" connection, that is, to go through
the network rather than to use the direct function calls to the linked library access
library.

The following SA API example code connects directly to a solidDB server with
username dba and password dba :
SaConnectT* sc = SaConnect("localserver", "dba", "dba");

or
SaConnectT* sc = SaConnect("", "dba", "dba");

5.3 Starting and shutting down LLA server
You can start, restart, and shut down the LLA server using the SSC API, ODBC
API, or SA API function calls. The ODBC API and SA API function calls can be
used to start the server only if a database exists already. The SSC API can be used
to create a database at the startup.

At server startup, recovery is performed if needed before control returns to the
application. Therefore, if the server is successfully started, it is ready to serve
application requests. For the duration of the application process, the server can be
started or stopped as needed.

Explicit startup and shutdown with SSC API

The SSC API is used to start and shut down the LLA server explicitly. The
application calls the SSC API function SSCStartServer to start the server and
SSCStopServer to shut it down.

When you start a new LLA server that does not already have a database, you must
specify explicitly that a new database is created. To create a database, include the
following parameters with the SSCStartServer() function:

-Uusername
-Ppassword
-Ccatalogname (the default database catalog name)

5 Creating and running LLA applications 41

Note: If you want to start a diskless server, you must start the server with SSC
API function SSCStartDisklessServer.
For details, see 5.3.1, “Explicit startup with SSC API function SSCStartServer.”

Implicit startup and shutdown with ODBC API and SA API

The ODBC API and SA API can only be used to start and shut down the LLA
server implicitly. When the application connects locally to LLA server for the first
time, it calls the ODBC API function SQLConnect or SA API function SaConnect.
In this case, shut down occurs when the last local connection disconnects from the
server using either function SQLDisconnect or SaDisconnect.

When the LLA server is started implicitly from the application, it checks if a
database exists in the working directory. If a database file is found, the server
opens that database automatically. If a database file is not found, the server returns
an error.

The server does not create a database during implicit startup. To create a database,
you must use an explicit startup function, such as SSCStartServer with the
appropriate parameters, or create a database as for a non-linked server.

For details, see 5.3.2, “Implicit startup with ODBC API function call SQLConnect,”
on page 44 and 5.3.3, “Implicit startup with SA API function call SaConnect,” on
page 45.

For instructions on how to create a database in a non-linked server setup, see
section Creating a new database in the IBM solidDB Administrator Guide.

5.3.1 Explicit startup with SSC API function SSCStartServer
To start solidDB explicitly, have the user application call the solidDB Server
Control API function SSCStartServer().
SSCStartServer (int argc, char* argv [],
SscServerT* h, SscStateT runflags)

where the parameters are:

Table 17. SSCStartServer parameters

Parameter Description

argc The number of command-line arguments.

argv Array of command-line arguments that are used during the function call. The argument argv[0] is
reserved for the path and filename of the user application only and must be present. For valid options,
see SSCStartServer options below.

h Each server has a "handle" (a pointer to a data structure) that identifies that server and indicates where
information about that server is stored. This handle is required when referencing the server with other
Control API functions. The handle of the server is provided to you when you call the SSCStartServer
function.

To get the handle of the server, you create a variable that is of type pointer-to-server-handle. You create
an SSCServerT *, which is a pointer to a handle (essentially a pointer to a pointer) and you pass that
when you call SSCStartServer. If the server is created successfully, the SSCStartServer function writes
the handle (pointer) of the new server into the variable whose address you passed.

42 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

Table 17. SSCStartServer parameters (continued)

Parameter Description

runflags The value for this parameter is a combination of 2 flags: the open flag and the netcopy disabling flag.
The following flag symbols can be used:

v SSC_STATE_OPEN – the open flag is set to 1: new connections are allowed.

v SSC_STATE_CLOSED – the open flag is set to 0: all new network and LLA connections are rejected,
except for connections from solidDB Remote Control (solcon) program.

v SSC_DISABLE_NETCOPY – the netcopy disabling flag is set to 1: in HotStandby configuration, no
netcopy can be received by the server for which the SSC_DISABLE_NETCOPY is set.

The flag does not prevent the server to act as a source of netcopy. If only SSC_DISABLE_NETCOPY
flag is set, the server is in the closed state. To enable netcopy, use the SSC API function SSCSetState()
with the runflag value SSC_STATE_OPEN or SSC_STATE_CLOSED.

runflags = SSC_STATE_OPEN | SSC_STATE_CLOSED | SSC_DISABLE_NETCOPY

Tip: The flags can be used in combinations, for example:

...
rc = SSCStartServer(g_argc, g_argv, &hh, SSC_STATE_OPEN|SSC_DISABLE_NETCOPY);
...

If the server is started as closed, it can be opened with ADMIN COMMAND 'open', or with the solcon
command open. The same effect can be achieved with the SSC API function SSCSetState().

Starting LLA server without an existing database

When you start the server for the first time, solidDB creates a database only if you
have specified the database administrator username, password, and a name for the
default database catalog.

For example:
SscServerT h; char* argv[4];
argv[0] = "appname"; /* path and filename of the user app. */
argv[1] = "-UDBA"; /* user name */
argv[2] = "-PDBA"; /* user’s password */
argv[3] = "-CDBA"; /* catalog name */
/* Start the server */
rc = SSCStartServer(argc, argv, &h, run_flags);

If you start the server without an existing database and do not specify a database
catalog name, solidDB returns an error that the database is not found.

By default, the database is created as one file (with the default name solid.db or
the name you specified in the solid.ini file) in the solidDB working directory. An
empty database containing only the system tables and views uses approximately
850 KB of disk space. The time it takes to create the database depends on the
hardware platform you are using.

After the database has been created, solidDB starts listening to the network for
remote client connection requests.

Starting LLA server with an existing database

If you already have an existing database, you do not need to specify the username
and password, or the catalog name in the SSCStartServer function call.

5 Creating and running LLA applications 43

5.3.2 Implicit startup with ODBC API function call SQLConnect
When function SQLConnect is called for the first time, the server is implicitly
started. The server is shut down implicitly when the user application calls function
SQLDisconnect, which is the last open local connection.

Note: The server shuts down regardless of currently existing remote connections.

Note: When you start the server for the first time, you must create a solidDB
database by using function SSCStartServer() and specifying the default database
catalog, along with the administrator username and password. For a description
and example, read 5.3.1, “Explicit startup with SSC API function SSCStartServer,”
on page 42.

Following is an example of implicit startup and shutdown with SQLConnect and
SQLDisconnect:
/* Connection #1 */
rc = SQLConnect (hdbc1, "", SQL_NTS, "dba", SQL_NTS, "dba",
SQL_NTS); //Server Started Here
... odbc calls

/* Disconnect #1 */
SQLDisconnect (hdbc1); //Server Shut Down Here

/* Connection #2 */
rc = SQLConnect (hdbc2, "", SQL_NTS, "dba", SQL_NTS, "dba",
SQL_NTS); //Server Started Here
... odbc calls

/* Disconnect #2 * /
SQLDisconnect (hdbc2); //Server Shut Down Here

or
/* Connection #1*/
rc = SQLConnect (hdbc1, "", SQL_NTS, "dba",
SQL_NTS, "dba", SQL_NTS); // Server Started Here

/* Connection #2*/
rc = SQLConnect (hdbc2, "", SQL_NTS, "dba", SQL_NTS, "dba", SQL_NTS);

... odbc calls

/* Disconnect #1 */
SQLDisconnect (hdbc1);
/* Disconnect #2 * /
SQLDisconnect (hdbc2); // Server Shut Down Here

Note: If the server is started with the SSCStartServer function call, the
SQLDisconnect function call does not do implicit shutdown. The server must be
shut down explicitly, either by SSCStopServer function call, the ADMIN COMMAND
'shutdown' command, or other explicit shutdown methods.
SscStateT runflags = SSC_STATE_OPEN;
SscServerT server;
SQLHDBC hdbc;
SQLHENV henv;
SQLHSTMT hstmt;

/* Start the server */
SSCStartServer (argc, argv, &server, runflags); // Server Started Here

/* Alloc environment */
rc = SQLAllocEnv (&henv);

44 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

/* Connect to the database */
rc = SQLAllocConnect (henv, &hdbc);
rc = SQLConnect (hdbc, "", SQL_NTS, "dba", SQL_NTS, "dba", SQL_NTS);

/* Delete all the rows from table foo */
rc = SQLAllocStmt (hdbc, &hstmt):
rc = SQLExecDirect (hsmt, (SQLCHAR *) "DELETE FROM FOO", SQL_NTS);

/* Commit */
rc = SQLTransact (henv, hdbc, SQL_COMMIT);
rc = SQLFreeStmt (hstmt, SQL_DROP);

/* Disconnect */
SQLDisconnect (hdbc);
SQLFreeConnect (hdbc);

/* Free the environment */
SQLFreeEnv(henv);

/* Stop the server */
SSCStopServer (server, TRUE); // Server Shut Down Here

5.3.3 Implicit startup with SA API function call SaConnect
When function SaConnect is called for the first time, the server is implicitly started.
The server is shut down implicitly when the user application calls function
SaDisconnect and there are no more subsequent connections.

Note: When you start the server for the first time, you must create a solidDB
database by using function SSCStartServer() and specifying the default database
catalog, along with the username and password. For a description and example,
read 5.3.1, “Explicit startup with SSC API function SSCStartServer,” on page 42.

Following is an example of implicit startup and shutdown with SaConnect and
SaDisconnect:
/* Open Connection */
SaConnect(...);

Server Started Here
... sa calls

/* Close Connection */
SaDisconnect(...);

Server Shut Down Here

Note: If the server is started with the SSCStartServer function call, it can only be
shut down with the SSCStopServer function call.

5.3.4 Shutting down LLA server
As long as you have SYS_ADMIN_ROLE privileges, you can shut down the
solidDB server from solidDB client interfaces and even from another remote
solidDB connection.

Programmatically, you can perform the shutdown from an application such as
solidDB SQL Editor (solsql), or solidDB Remote Control (solcon).

To shutdown solidDB:
1. To prevent new connections to solidDB, close the database by entering the

following command:

5 Creating and running LLA applications 45

ADMIN COMMAND 'close'

2. Exit all solidDB users by entering the following command:
ADMIN COMMAND 'throwout all'

3. Stop solidDB by entering the following command:
ADMIN COMMAND 'shutdown'

All the shutdown mechanisms start the same routine, which writes all buffered
data to the database file, frees cache memory, and finally terminates the server
program. Shutting down a server may take awhile since the server must write all
buffered data from main memory to the disk.

Note: You can use the explicit method SSCStopServer to shut down a server that
was started with implicit methods (SQLConnect). The converse is not true; for
example, you cannot use SQLDisconnect to stop a server that was started with
SSCStartServer.

Shutting down LLA server with SSCStopServer

If the server is started by SSCStartServer, then it must be shut down with the
following function call in the embedded application:

SSCStopServer()

For example:
/* Stop the server * /
SSCStopServer (h, TRUE);

5.4 Sample C applications for LLA
The solidDB package includes samples of LLA applications written in C that use
ODBC API functions to connect to solidDB servers.

The samples are located in the following directories in the solidDB installation
directory:
v samples/aclib: sample of an LLA application using a single solidDB
v samples/aclib_control_api: sample of an LLA application that uses the SSC API

functions.
v samples/aclib_diskless: sample of an LLA application using a diskless solidDB

server
v samples/aclib_replication: sample of an LLA application that combines LLA

and advanced replication
See 5.4.1, “Samples for LLA with advanced replication” for information about
how to use the replication samples.

Each directory contains a readme.txt file that provides instructions on how to set
up your system and run the samples.

5.4.1 Samples for LLA with advanced replication
If you are new to solidDB data synchronization, IBM solidDB Advanced Replication
User Guide contains information about how to use the sample scripts provided with
solidDB.

46 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

Before you run the sample C application acsnet.c (under directory
samples/aclib_replication), it is recommended that you become familiar with
solidDB functionality by doing at least one of the following:
v Use solidDB without SMA or LLA to run the SQL scripts contained in IBM

solidDB Advanced Replication User Guide. These scripts are found in
samples/replication.

v Run the SQL scripts locally, using the solidDB SMA or LLA. As a prerequisite,
you are required to set up an application to start the server according to the
instructions in this document.

Note: You cannot use the SA API to run synchronization commands.
v Running the implementation sample file aclibstandalone.c, which with the

linked library access library, emulates a normal server. The sample file is located
in directory samples/aclib.

After using any of these methods, it is possible to run all the steps in the section
Getting started with data synchronization in the IBM solidDB Advanced Replication User
Guide using solidDB SQL Editor (solsql).

Setting up your ODBC application with the advanced replication
sample scripts

You can build an ODBC application, similar to the sample C application acsNet.c,
to execute all statements required to set up, configure, and run a synchronizing
environment. You can find acsNet.c under directory samples/aclib_replication.

To set up sample databases for use with an ODBC client application, you can
execute sample scripts replica3.sql, replica4.sql, replica5.sql, and
replica6.sql, all of which you can find in the samples/replication/eval_setup
directory. These sample scripts contain SQL statements that write new data to
replicas and control the execution of synchronization messages. These scripts can
be run independently through the solidDB SQL Editor (solsql).

Alternatively, you can embed the SQL statements into a C/ODBC application,
compile, and link it directly to the linked library access library. When linked with
the linked library access, the sample scripts allow you to get the performance
benefit inherent in linked library access's architecture.

The sample program embed.c in the samples/odbc directory illustrates how to set
up databases with an ODBC client application using linked library access. You can
insert the SQL commands from the sample scripts, such as replica3.sql, into the
embed.c application.

5 Creating and running LLA applications 47

48 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

6 Creating and running LLA applications with Java

Java applications are linked to the LLA library and they use solidDB SSC API calls
to start and stop the solidDB. The actual database connections are done with the
normal JDBC API. Both the SolidServerControl API calls and JDBC driver are
included in the solidDB JDBC Driver .jar file (SolidDriver2.0.jar).

6.1 Overview of using LLA with Java
LLA enables Java applications to start a local solidDB server, which will be loaded
into the Java Virtual Machine context from a dynamic library. The Java application
is then able to connect to the solidDB server and use the services solidDB server
provides through a standard JDBC API. Linking to the dynamic library allows the
application to avoid the overhead of RPC (Remote Procedure Calls) through the
network.

Java/JDBC programs that want to use LLA link to the LLA library (ssolidacxx).
The LLA library contains the entire solidDB server, except that it is in the form of a
callable library instead of a stand-alone executable program. The libraries used
with Java/JDBC are the same as the ones used with C/C++ applications; there are
not separate versions for Java.

When you use LLA with Java/JDBC, you link the following into a single
executable process:
v LLA library,
v your Java-language client program, and
v the JVM.

The layers in the executable process are, from top to bottom:
v Local Java (JDBC) client application
v JVM (Java Virtual Machine)
v LLA library

Java commands in your client are executed by the JVM. If the command is a JDBC
function call, the JVM calls the appropriate function in ssolidacxx. The function
call is direct, it does not go through the network (through RPC). The calls are
made using Java Native Interface (JNI). You do not need to write any JNI code
yourself; you simply have to call the same JDBC functions that you would call if
you were a remote client program.

Accessing a solidDB database from with LLA is identical to accessing a solidDB
database through RPC — with one exception: to access the database services, the
application using LLA must first start the LLA server. You can start the LLA server
with a proprietary API called solidDB Server Control (SSC) API for Java (named
after SolidServerControl class. The actual database connections are done with
normal solidDB JDBC API. Both the SSC API for Java and solidDB JDBC driver can
be found in the .jar file named SolidDriver2.0.jar.

49

When the local solidDB server is started, it is loaded into the Java Virtual Machine
context from the dynamic library. The Java application can then connect to the
solidDB server and use the services the server provides through a standard JDBC
API.

Every application that uses LLA follows the same basic four-step pattern:
1. Configure the solidDB server and the connection settings.
2. Start the LLA server with SolidServerControl class.
3. Access the database by using normal JDBC API.
4. When database processing is done, stop the LLA server again with

SolidServerControl class.

6.1.1 Limitations
v All solidDB 'admin commands' cannot be used when using LLA with Java.
v Java does not behave consistently if something fails outside the VM context (for

example, inside a native method call). If something should assert (or even crash)
in the solidDB server native code, Java either exits abnormally or hangs up
completely. In the latter case, you may have to kill the dangling Java process
manually.

v To minimize memory consumption, drop all allocated statements explicitly; all
allocated JDBC statement objects must be explicitly freed by calling the close()
method. Freeing objects is important especially if your setup use Transparent
Connectivity (TC).

6.2 Configuring your environment for LLA use with Java
When using LLA with Java, your LD_LIBRARY_PATH or LIBPATH (Linux and
UNIX) or PATH (Windows) environment variable must include the location of the
LLA library. The LLA link libraries are available in the
<solidDB_installation_directory/bin> and <solidDB_installation_directory/
lib> directories.

Before you begin

It is assumed that you have installed and registered the solidDB JDBC Driver.

About this task

Table 18. Linked library access (LLA) system libraries

Platform Static LLA library
Dynamic/Shared LLA
Library

Windows bin\ssolidacxx.dll lib\solidimpac.lib

This is an import library file
that gives you access to the
actual library file
bin\ssolidacxx.dll.

AIX bin/solidac.a lib/libssolidacxx.so

This is a symbolic link that
gives you access to the actual
library file
bin/ssolidacxx.so.

50 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

Table 18. Linked library access (LLA) system libraries (continued)

Platform Static LLA library
Dynamic/Shared LLA
Library

HP-UX bin/solidac.a lib/libssolidacxx.so

This is a symbolic link that
gives you access to the actual
library file
bin/ssolidacxx.so.

Linux bin/solidac.a lib/libssolidacxx.so

This is a symbolic link that
gives you access to the actual
library file
bin/ssolidacxx.so

Solaris bin/solidac.a lib/libssolidacxx.so

This is a symbolic link that
gives you access to the actual
library file
bin/ssolidacxx.so

xx is the version number of the driver library, for example, ssolidac70.so.

Note: In Linux and UNIX environments, you need to link to the symbolic link
library libssolidacxx that is available in the <solidDB_installation_directory/
lib> directory. Alternatively, rename the ssolidacxx library in the
<solidDB_installation_directory/bin> directory as libssolidacxx.

Procedure
1. Add the location of the LLA library to the LD_LIBRARY_PATH or LIBPATH

(Linux and UNIX) or PATH (Windows) environment variable.

v In Linux and UNIX environments, use the following syntax:
export LD_LIBRARY_PATH=<path to LLA library>:$LD_LIBRARY_PATH

or
in AIX environments:
export LIBPATH=<path to LLA library>:$LIBPATH

Example:
export LD_LIBRARY_PATH=/opt/solidDB/soliddb-7.0/lib

v In Windows environments, use the following syntax:
set PATH=<path to LLA library>=;%PATH%

2. Set up your database environment by creating a working directory, your
solidDB database, and user accounts.

For instructions, see Creating a new database in the IBM solidDB Administrator
Guide.

Note: The application and the SMA server processes must have identical file
access permissions (database files, log files, and so on). The file access
permissions are not checked at startup; subsequently, insufficient file access
permissions may cause the SMA server to crash at a later point.

6 Creating and running LLA applications with Java 51

6.3 Starting and stopping LLA server with SSC API for Java
To start the solidDB server from a Java application, you must instantiate the class
SolidServerControl in the beginning of your application and call the
ssc.startServer method with correct parameters. After starting the server, you are
ready to make a JDBC connection to the server. Similarly, the server is stopped
with the call ssc.stopServer.

Procedure
1. Starting the server

v LLA server: ssc.startServer

When starting the server, you must pass the solidDB server at least the
following parameters:
-c<solidDB working directory containing license file>
-U<username>
-P<password>
-C<catalog>

Tip: Uppercase C and lowercase c are not interchangeable; they provide
different functionality.

2. Stopping the server

v LLA server: ssc.stopServer

6.4 Making JDBC connections for LLA
Linked library access (LLA) with Java supports both local database connections as
well as RPC based connections.

In order to make a local (non-RPC-based) JDBC connection, you need to specify
the JDBC driver that you are using 'localserver' at port 0.
jdbc:solid://localserver:0

If you are making the database connection by using, for example, JDBC class
DriverManager, connect by using the following statement:
DriverManager.getConnection("jdbc:solid://localserver:0", myLogin, myPwd);

The DriverManager uses the URL "jdbc:solid://localserver:0" for making a
connection to the local server. If the getConnection subroutine is given another
URL, the driver will try to connect with RPC.

6.5 Compiling and running a sample LLA program

About this task

The examples in this procedure are given for Windows command prompt.

Procedure
1. Set the paths.

set PATH=<path to your ssolidacxx DLL>;%PATH%

Make sure that you have the directory containing solidDB communication
libraries in your path too.

2. Set your path environment variable to include JDK HOTSPOT runtime
environment in (SJA has only been tested in hotspot JRE).

52 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

For example:
set PATH=<your JDK directory>\jre\bin\hotspot;%PATH%

3. Compile the sample SJASample.java file (located in the samples/aclib_java
directory) with the following command:
javac -classpath <IBM solidDB JDBC driver directory>/
SolidDriver2.0.jar;. \ SJASample.java

4. Run the sample application with a command line resembling the next one:
java -Djava.library.path=<path to ssolidacxx DLL> \ -classpath
<IBM solidDB JDBC driver directory>/SolidDriver2.0.jar;. \ SJAsample

For example, if you installed the server to C:\soliddb and would like to run
the SJASample program, then your command line would look like:
java -Djava.library.path=C:\soliddb\bin
-classpath C:\soliddb\jdbc\SolidDriver2.0.jar;. SJASample

On Windows, the ssolidacxx.dll dynamic library is in the bin subdirectory of
the solidDB root installation directory.
As in the example class SJASample, you must pass the solidDB server at least
the following parameters with the SolidServerControl startServer method:
-c<directory containing solidDB license file>
-U<username>
-P<password>
-C<catalog>

Note: Uppercase and lowercase "C" are both used, and they mean different
things.

5. If you have all the necessary files (ssolidacxx library, communication libraries,
JDBC driver, and license file in your current working directory, you can start
SJASample with a command line like the following one:
java -Djava.library.path=. -classpath SolidDriver2.0.jar;. SJAsample

Results

Your LLA server is up and running.

6 Creating and running LLA applications with Java 53

54 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

7 Using the diskless capability

SMA and LLA servers can be used to create a database engine that runs without
any disk storage space. Diskless server is useful in embedded systems that do not
have hard disks, such as line cards in a network router or switch.

Diskless server can contain both disk-based tables (D-tables) and in-memory tables
(M-tables). D-tables typically take less space than M-tables. Because a diskless
server does not use any disk storage space, it maintains all D-tables in the database
cache. The database cache size (IndexFile.CacheSize) has to be configured to
contain the whole database.

There are two ways to run a diskless server: as a single server (alone) or as a
replica in an advanced replication system. In both cases, you need to start the
server by using the SSC API or SSC API for Java function calls.

SSC API

v Use SSCStartSMADisklessServer to start a diskless SMA server.
v Use SSCStartDisklessServer to start a diskless LLA server.

SSC API for Java

v Use startDisklessServer to start a diskless LLA server.

Diskless server alone

If you run a diskless server alone, it has no way to read data when it starts and no
way to write data when it shuts down. This means that each time the server starts,
it starts without any previous data.

Since the server has no way to write data to disk, if the server is shut down
abnormally (due to a power failure, for example), then any data in the server is
lost and cannot be recovered. You can reduce the risk of data loss by using the
HotStandby feature to create a 'hot standby' machine that contains a copy of the
data. For more information about the HotStandby capabilities, see IBM solidDB
High Availability User Guide.

Diskless server as part of advanced replication systems

A diskless server may be a replica in an advanced replication system. In this
situation, the replica can send data to the master server and download data from
that master server. Thus, even though the replica has no disk storage or other
permanent storage of its own, it can make some or all of its data persistent within
the advanced replication system.
Related information:
C.2, “IndexFile.CacheSize parameter in diskless servers,” on page 64

55

56 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

8 Creating and running remote or dual-mode applications

The SMA and LLA server can be accessed by remote applications. If your remote
application includes SSC API or SA API function calls, you must link to separate
SSC API and SA API libraries. The SSC API and SA API libraries are needed
because the functions included in the SMA and LLA libraries cannot be accessed
by remote applications. If your remote application uses only ODBC or JDBC, you
can build you applications normally using the ODBC and JDBC interfaces. The
remote connection type is defined in the connect string.

8.1 Example: Creating a dual-mode LLA application with ODBC and
SSC API function calls

If your application is a dual-mode application that uses SSC API and ODBC
function calls, you need two different executable programs, one to be run locally
and one to be run remotely.

Procedure
1. Create the application version that runs in local mode.

a. Link the application to the LLA library (for example, solidimpac.lib for
Windows).
The LLA library provides support for both the ODBC functions and the SSC
API functions.

b. Modify the connection string to use local connection.
2. Create the application version that runs in remote mode.

a. Link the application to both the solidDB ODBC driver and to the SSC API
stub library (for example, solidctrlstub.lib for Windows).
The stub library does not actually give your remote application any control
over the server. It simply allows you to compile and link your program
without getting errors about "unresolved symbols".

b. Modify the connection string to use remote connection.

8.2 Establishing remote connections
When you establish a remote connection, the application calls to the server go
through the network rather than use the direct function calls to the SMA or LLA
library.

ODBC API

With the ODBC API, to establish a remote connection, the application calls the
SQLConnect function with the name of the remote server.

Example

The following ODBC API code example connects to a remote solidDB server with
username dba and password dba. In this example, the network protocol that the
client and server use is "tcp" (TCP/IP). The server is named "remote_server1" and
the port that it listens on is 1313.

57

rc = SQLConnect(hdbc, "tcp remote_server1 1313",
(SWORD)SQL_NTS, "dba", 3, "dba", 3);

SA API

With the SA API, to establish a remote connection, the application calls the
SaConnect function with the name of the remote server.

Example

In this example, the network protocol that the client and server use is "tcp"
(TCP/IP). The server is named "remote_server1" and the port that it listens on is
1313.
SaConnectT* sc = SaConnect("tcp remote_server1 1313", "dba", "dba");

JDBC

With JDBC, to establish a remote connection, the name of the remote server is
defined in the connect string.
jdbc:solid://<hostname>:<port>

58 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

Appendix A. Shared memory access parameters

Server-side parameters

Table 19. Shared memory access parameters

[SharedMemoryAccess] Description Factory value Startup

MaxSharedMemorySize This parameter sets the maximum total size of the
shared memory area used by solidDB.

If the SMA server tries to allocate more, an "out of
memory" error occurs. With value "0", the maximum
value is set automatically to be the size of the
physical memory of the computer (platform
specific).
Note: The value set with the
SharedMemoryAccess.MaxSharedMemorySize parameter
takes precedence over the value set with any
corresponding kernel parameter (for example,
SHMALL in Linux environments). Thus, the value
set with the
SharedMemoryAccess.MaxSharedMemorySize parameter
must not be higher than the value set with the
corresponding kernel parameter.

If you set the
SharedMemoryAccess.MaxSharedMemorySize
parameter, do not use the Srv.ProcessMemoryLimit
parameter.

0 (automatic)

Unit: 1 byte,
G=GB, M=MB,
K=KB

RW

SharedMemoryAccessRights This parameter sets a validation context for the user
access to the shared memory area.

The validation context is modeled after a traditional
file validation mask. The possible values are:

v user – access is granted only to the same user as
the one that started the SMA server

v group – access is granted to any user belonging to
the same group as the one that started the SMA
server

v all – access is granted to all users

group RW

59

Client-side parameters

Table 20. Shared memory access parameters (client-side)

[SharedMemoryAccess] Description Factory value Startup

SignalHandler The SignalHandler parameter controls the SMA signal
handler functionality.

When set to yes, the SMA driver signal handler handles
the signals defined with the Signals parameter.

The SMA driver signal handler enables the SMA system to
survive the most common application failures, such as
killing or interrupting the applications from outside, or
when one of the application threads runs within the
server code, and another thread running application code
causes application to crash.

Upon the capture of certain signals, the signal handler
closes the SMA connections safely and exits the SMA
application. In most cases, the SMA server continues to
run despite abnormal application exits.

The SMA driver signal handler installs itself when the first
SMA connection is established and uninstalls itself when
the last SMA connection is closed. Previously installed
signal handlers are retained.

yes NA

Signals This parameter defines the signals that can break the SMA
connection and is handled by the SMA driver.

The signals are defined as integers or with the following
mnemonics: SIGSTOP, SIGKILL, SIGINT, SIGTERM,
SIGQUIT, SIGABORT.
Note: If the SMA application loops outside of the SMA
driver (for example, does not call any functions), the
signal can fail to terminate the application. In such a case:

1. Throw out the connections at the server.

admin command ’throwout <userid>’

2. Use SIGKILL signal to force the SMA application to
exit.

kill -SIGKILL <pid>

Linux and UNIX:
SIGINT, SIGTERM

Windows: SIGINT

NA

60 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

Appendix B. Linked library access parameters

Linked library access (LLA) parameters appear in the [Accelerator] section of the
solid.ini configuration file.

Table 21. Accelerator parameters

[Accelerator] Description
Factory
Value

Access
Mode

ImplicitStart If set to yes, solidDB starts automatically as soon as the ODBC
API function SQLConnect is called in a user application. If set to
no, solidDB must be explicitly started with a call to the SSC API
function SSCStartServer.

yes RW/
Startup

ReturnListenErrors If this parameter is set to yes and network listening fails, the
SSCStartServer function returns an error.

If this parameter is set to no and network listening fails, the
SSCStartServer starts the LLA server but network connections
are not possible.

no RW/
Startup

Related reference:
D.2.9, “SSCStartServer,” on page 79
The SSCStartServer functions starts the linked library access server.

61

62 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

Appendix C. Configuration parameters for a diskless server

This section describes the most important parameter settings for implementing and
maintaining a diskless server.

In the IndexFile section, the FileSpec and CacheSize parameters have specific
settings for a diskless server.

If you are using the diskless server as an advanced replication replica server, the
Listen parameter in the Com section affects the communication between the master
and the diskless replica server.

C.1 IndexFile.Filespec_[1...n] parameter in diskless servers
The IndexFile.FileSpec parameter describes the name and the maximum size of
the database file. To define the maximum size in bytes for the main memory
engine, the IndexFile.FileSpec parameter accepts the following arguments:
v Database file name - Since the diskless server does not create a physical database

file, this parameter is not used. However, a dummy value must be provided for
this argument.

v Maximum file size - This setting is required. You need to specify the size in
bytes that is large enough to store all the data in the diskless server. The
maximum file size must be smaller than the cache size, which is set with the
IndexFile.CacheSize parameter.

The default value for the IndexFile.FileSpec parameter is solid.db, 2147483647
bytes (2 GB -1). For example:
FileSpec_1=solid.db 2147483647

Note: If you specify multiple files, the maximum file size setting is the sum of all
the IndexFile.FileSpec parameter settings.

The maximum size is limited by the physical memory available. A diskless
machine has no disk to use as swap space for virtual memory.

Note: On some platforms, the amount of physical memory available to the
applications can be less than the amount of physical memory in the machine.

For example, in some versions of Linux 32-bit systems, the amount of memory
available to applications is limited to one half or one quarter of the theoretical
address space (4 GB) because Linux reserves the 1 or 2 most significant bits of the
address for its own memory manager.

If the data in memory exceeds the maximum file size, the error message 11003 is
displayed:
11003,System,Fatal Error,File write failed, configuration exceeded.
Writing to the database file failed because the maximum database file size
set with IndexFile.FileSpec parameter has been exceeded. Increase the maximum
file size limit or divide the database into multiple files.

63

C.2 IndexFile.CacheSize parameter in diskless servers
The IndexFile.CacheSize parameter defines the amount of main memory in bytes
that the server allocates for the buffer cache.

For example:
[IndexFile]
CacheSize=10000000

With diskless servers, the cache size depends on the following criteria:
v Because a diskless server does not use any disk storage space, it maintains all

D-tables in the database cache. The database cache size (IndexFile.CacheSize)
has to be configured to contain the whole database. Thus, if the database on a
diskless server contains mainly disk-based tables (D-tables), the cache size (in
bytes) needs to be at least 20% larger than the maximum file size (that is, the
amount of data) set with the IndexFile.FileSpec parameter. The 20% buffer is
an estimate that can vary depending on the usage of the database.
For example:
[IndexFile]
FileSpec_1=solid.db 10MB
CacheSize=12MB

v If the database on a diskless server contains mainly in-memory tables (M-tables),
a database cache still exists: it holds the system tables. With M-tables, the
minimum cache size is 1-2 MB. The space occupied by the system tables
depends of the number and complexity of database objects and whether
advanced replication is used or not.

v The cache size must be less than the physical memory available for running the
diskless server.
You can estimate the total memory used by the diskless server by using the
following formula. The total memory must fit within the amount of physical
memory available, which means that the cache size must be smaller than the
amount of physical memory available to the server.
CacheSize
+ 5MB
+ (100K * number of users * number of active statements per user)
+ in-memory table space
+ (HSB operations to be sent to the Secondary) [1][2]

[1] This term of the equation applies to HotStandby users only. An HSB Primary
server needs some memory to store HotStandby operations that are to be sent to
the Secondary server. During a temporary network failure between the Primary
server and the Secondary diskless server, the Primary may continue to accept
transactions from an application. When the network connection is restored
between the servers, updates from the Primary server are sent to the Secondary
server. (HotStandby uses the transaction log to store these operations. A diskless
server cannot write the transaction log to disk; the information must be stored in
memory.) This memory is separate from the Cache.
[2] For this term of the equation, the maximum limit is currently 1 MB or 512
operations, whichever is lower. Unlike on a disk-based server, the transaction log
is not allowed to keep growing until it uses up all available space.
The exact amount required also depends on other factors, including the nature
of the queries executed against the server. The amount of memory available to
the server is less than the total physical memory, since, for example, the
operating system uses some of the physical memory.

64 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

C.3 Com.Listen in diskless servers
If you are using the diskless server as an advanced replication replica server, the
Listen parameter in the Com section affects the communication between the master
and the diskless replica server. The Com.Listen parameter defines the protocol and
the name that the diskless server uses when it starts listening to the network.

For example:
[Com]
Listen=tcpip 2315

The default value of the Com.Listen parameter is tcp 1964.

For more information about the network names and protocols, see section
Managing network connections in IBM solidDB Administrator Guide.

C.4 Configuration parameters that do not apply to diskless engines
The following configuration file parameters (grouped by section) are disabled or
inoperable for diskless servers. These parameters affect behaviors that do not apply
to diskless engines.

Table 22. Configuration parameters not applicable to diskless engines

Parameter Description

[General] Section

CheckpointInterval This parameter is disabled since checkpoints do not apply to
diskless servers.

[IndexFile] Section

ReadAhead No physical read from the database file, so this parameter is
inoperable

PreFlushPercent No physical write to the database file, so this parameter is
inoperable

[Logging] Section

LogEnabled This parameter is disabled since transaction logging is always
disabled for diskless servers.
Note: Diskless mode supports transaction rollback only.
Transaction rollbacks are typically used when some failure
interrupts a half-completed transaction. The diskless mode
does not support roll-forward recovery.

Appendix C. Configuration parameters for a diskless server 65

66 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

Appendix D. solidDB Server Control API (SSC API)

The solidDB Server Control API (SSC API) is a set of functions that provide a
simple and efficient means to control the tasking system of the solidDB server.

Note: Some information about the functions applies also to SSC API for Java. For
more information about SSC API for Java, see section Appendix E,
“SolidServerControl class interface,” on page 89.

D.1 Summary of SSC API functions
The following is a brief summary of solidDB Server Control API (SSC API)
functions and where the function is described in the SSC API Function Reference
section.

Table 23. Summary of control API functions

Function Description Supported in For more details, see

SSCStartSmaServer Starts a SMA server.
SMA See D.2.11, “SSCStartSMAServer,” on page 83.

SSCStartSMADisklessServer Starts a diskless SMA server.
SMA See D.2.10, “SSCStartSMADisklessServer,” on

page 82.

SSCStartServer Starts an LLA server.
LLA and SSC
API stub library See D.2.9, “SSCStartServer,” on page 79.

SSCStartDisklessServer Starts a diskless LLA server.
LLA and SSC
API stub library See D.2.8, “SSCStartDisklessServer,” on page

77.

67

Table 23. Summary of control API functions (continued)

Function Description Supported in For more details, see

SSCSetState Sets the state of a solidDB server
(for example, SSC_STATE_OPEN
indicates that subsequent
connections are allowed). Setting
the state to ~SSC_STATE_OPEN
will block LLA connections and
remote network connections.

The following flag symbols can
be used:

v SSC_STATE_OPEN – the open
flag is set to 1: new
connections are allowed.

v SSC_STATE_CLOSED – the
open flag is set to 0: all new
network and LLA connections
are rejected, except for
connections from solidDB
Remote Control (solcon)
program.

v SSC_DISABLE_NETCOPY –
the netcopy disabling flag is
set to 1: in HotStandby
configuration, no netcopy can
be received by the server for
which
SSC_DISABLE_NETCOPY is
set.

The flag does not prevent the
server to act as a source of
netcopy. If only
SSC_DISABLE_NETCOPY flag
is set, the server is in the
closed state. To enable
netcopy, use the SSC API
function SSCSetState() with
the runflag value
SSC_STATE_OPEN or
SSC_STATE_CLOSED.

LLA and SSC
API stub library See D.2.7, “SSCSetState,” on page 76.

SSCRegisterThread -
deprecated as of 6.5 FP1

Registers a linked library access
application thread for the server.
Registration is required in every
thread in the user application
before any LLA API function can
be called.

LLA and SSC
API stub library See D.2.5, “SSCRegisterThread,” on page 73.

SSCUnregisterThread -
deprecated as of 6.5 FP1

Unregisters an LLA application
thread for the server.
Registration removal is required
in every thread that is registered
before terminating.

LLA and SSC
API stub library See D.2.13, “SSCUnregisterThread,” on page

86.

SSCStopServer Stops SMA or LLA server.
SMA, LLA, and
SSC API stub
library

See D.2.12, “SSCStopServer,” on page 85.

SSCSetNotifier Specifies a user-defined function
which solidDB calls at a
specified event, such as merge,
backup, or shutdown.

LLA and SSC
API stub library See D.2.6, “SSCSetNotifier,” on page 74.

68 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

Table 23. Summary of control API functions (continued)

Function Description Supported in For more details, see

SSCIsRunning Returns non-zero if the server is
running.

LLA and SSC
API stub library See D.2.3, “SSCIsRunning,” on page 72.

SSCIsThisLocalServer Indicates whether the
application is linked to the
solidDB server with the LLA or
the "dummy" (solidctrlstub)
library to test solidDB remote
applications using the SSC API.

LLA and SSC
API stub library See D.2.4, “SSCIsThisLocalServer,” on page 73.

SSCGetServerHandle Returns the solidDB server
handle if the server is running.

LLA and SSC
API stub library See D.2.1, “SSCGetServerHandle,” on page 71.

SSCGetStatusNum Gets solidDB status information.
LLA and SSC
API stub library See D.2.2, “SSCGetStatusNum,” on page 72.

D.2 SSC API reference
The SSC API reference describes each SSC API function in alphabetic order. Each
description includes the purpose, synopsis, parameters, return value, and
comments.
v “Function synopsis”
v “Parameters”
v “Return values” on page 70
v “SSC API error codes and messages” on page 71

Function synopsis

The declaration synopsis for the function is:
ReturnType SSC_CALL function(modifier parameter[,...]);

The ReturnType varies, but is usually a value that indicates success or failure of
the call. Return values are described in more detail later in this section.

SSC_CALL is required for portability. SSC_CALL specifies the calling convention of
the function. It is defined appropriately for each platform in the sscapi.h file.

Parameters are in italics.

Parameters

In each function description, parameters are described in a table format. The table
includes the general usage type of the parameter (described below), as well as the
use of the parameter variable in the specific function.

Parameter usage type

The table below shows the possible usage type for SSC API parameters. Note that
if a parameter is used as a pointer, it contains a second category of usage to specify
the ownership of the parameter variable after the call.

Appendix D. solidDB Server Control API (SSC API) 69

Table 24. SSC API parameter usage types

Usage Type Meaning

in Indicates the parameter is input.

output Indicates the parameter is output.

in out Indicates the parameter is input/output

use Applies only to a pointer parameter. It means that the parameter is
used during the function call. The caller can do whatever it wants
with the parameter after the function call. use is the most common
type of parameter passing.

take Applies only to a pointer parameter. It means that the parameter value
is taken by the function. The caller cannot reference the parameter
after the function call. The function or an object created in the function
is responsible for releasing the parameter when it is no longer needed.

hold Applies only to a pointer parameter. It means that the function holds
the parameter value even after the function call. The caller can
continue to reference the parameter value after the function call and is
responsible for releasing the parameter.

Attention:

Because this parameter is shared by the user and the server, you must
not release it until the server is finished with it. In general, you can
free the held object after you free the object that is holding it. For
example:

conn = SaConnect("", "dba", "dba");
/* Connection is held until cursor is freed */
scur = SaCursorCreate(conn, "mytable");
...
SaCursorFree(scur);
/* After we free the cursor, it is safe to free */
/* the connection (or, as in this case, call a */
/* server function that frees the connection). */
SaDisconnect(conn);

Return values

Each function description indicates if the function returns a value and the type of
value that is returned.

SscTaskSetT

When functions return a value of type SscTaskSetT, this definition is used as a bit
mask. SScTaskSetT is defined in sscapi.h with the following possible values:
SSC_TASK_NONE
SSC_TASK_CHECKPOINT
SSC_TASK_BACKUP
SSC_TASK_MERGE
SSC_TASK_LOCALUSERS
SSC_TASK_REMOTEUSERS
SSC_TASK_SYNC_HISTCLEAN

70 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

SSC_TASK_SYNC_MESSAGE
SSC_TASK_HOTSTANDBY
SSC_TASK_HOTSTANDBY_CATCHUP
SSC_TASK_ALL (all of the above tasks)

The HotStandby "netcopy" and HotStandby "copy" operations are performed by
the task "SSC_TASK_BACKUP"; there is no separate task "SSC_TASK_NETCOPY".

SSC API error codes and messages

SSC API functions may return the error codes and messages listed in the table
below.

These constants are defined in the sscapi.h file.

Table 25. Error codes and messages for SSC API functions

Error Code/Message Description

SSC_SUCCESS Operation is successful.

SSC_ERROR Generic error.

SSC_ABORT Operation cancelled.

SSC_FINISHED SSCAdvanceTasks returns this message if all
tasks are executed.

SSC_CONT SSCAdvanceTasks returns this message if there
are still more tasks to execute.

SSC_CONNECTIONS_EXIST There are open connections.

SSC_UNFINISHED_TASKS There are unfinished tasks.

SSC_INFO_SERVER_RUNNING The server is already running.

SSC_INVALID_HANDLE Invalid local server handle given. This server
does not match the one started through
SSCStartServer.

SSC_INVALID_LICENSE No license or invalid license file found.

SSC_NODATABASEFILE No database file found.

SSC_SERVER_NOTRUNNING The server is not running.

SSC_SERVER_INNETCOPYMODE The server is in netcopy mode (applies only
with HotStandby).

D.2.1 SSCGetServerHandle
SSCGetServerHandle returns the solidDB server handle if the server is running.
SscServerT SSC_CALL SSCGetServerHandle(void)

Appendix D. solidDB Server Control API (SSC API) 71

Comments

This function has no corresponding solidDB SQL extension ADMIN COMMAND.

Return value
v NULL if the server is not running.
v The server handle if the server is running.

D.2.2 SSCGetStatusNum
SSCGetStatusNum returns the status information of the solidDB server.
SscRetT SSC_CALL SSCGetStatusNum(SscServerT h, SscStatusT stat,

long * num)

The SSCGetStatusNum function accepts the following parameters:

Table 26. SSCGetStatusNum parameters

Parameters Usage Type Description

h in, use Handle to server.

stat in Specifies the status identifier for retrieval.

num out Upon successful return of the function, the value of the
parameter value is set to either the number of writes
not merged, or the number of server threads, depending
upon which information was requested.

Comments

This function has no corresponding solidDB SQL extension ADMIN COMMAND.

If you call SSCGetStatusNum and pass an unrecognized value for the stat
parameter, the function returns SSC_SUCCESS.

Return value
v SSC_SUCCESS - Operation is successful. This value is also returned if you pass

an invalid value for the stat parameter.
v SSC_ERROR - Operation failed.
v SSC_SERVER_INNETCOPYMODE - The server is in netcopy mode (HotStandby

only)
v SSC_SERVER_NOTRUNNING - The server is not running.

D.2.3 SSCIsRunning
If the server is running, SSCIsRunning returns a non-zero value.
int SSC_CALL SSCIsRunning(SscServerT h)

The SSCIsRunning function accepts the following parameters:

72 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

Table 27. SSCIsRunning parameters

Parameters Usage Type Description

h in, use Handle to server

Return value
v 0 - The server is not running.
v nonzero - The server is running.

Comments

This function has no corresponding solidDB SQL extension ADMIN COMMAND.

D.2.4 SSCIsThisLocalServer
The SSCIsThisLocalServer function indicates whether the application is linked to a
solidDB server or the solidctrlstub library. You can use the solidctrlstub library
to test remote applications using SSC API without linking the linked library access
library and modifying the source code.
int SSC_CALL SSCIsThisLocalServer(void)

Return value
v 0 - The application is not linked to the solidDB server.
v 1 - The application is linked to the solidDB server.

Comments

This function has no corresponding solidDB SQL extension ADMIN COMMAND.

D.2.5 SSCRegisterThread

Note: SSCRegisterThread is deprecated as of 6.5 FP1; it is no longer necessary to
register and unregister threads explicitly when using solidDB with linked library
access (LLA). As of 6.5 FP1, thread registration is handled implicitly.

SSCRegisterThread registers a solidDB application thread for the server. Every
thread that uses Control API, ODBC API, or SA API must be registered. The
SSCRegisterThread function must be called by the thread before any other linked
library access API function can be used.

If the application has only one (main) thread, that is, if the application creates no
threads itself, then registration is not required.

Before a thread terminates, it must unregister itself by calling the function
SSCUnregisterThread.

Synopsis
SscRetT SSC_CALL SSCRegisterThread(SscServerT h)

The SCCRegisterThread function accepts the following parameters:

Appendix D. solidDB Server Control API (SSC API) 73

Table 28. SCCRegisterThread parameters

Parameters Usage Type Description

h In, Use Handle to server

Return value
v SSC_SUCCESS
v SSC_INVALID_HANDLE

Comments

This function has no corresponding solidDB SQL extension ADMIN COMMAND.

See also

D.2.13, “SSCUnregisterThread,” on page 86

D.2.6 SSCSetNotifier
The SSCSetNotifier function sets the callback functions that a linked library access
server calls when it is started or stopped. The function does not have a
corresponding ADMIN COMMAND.

You can use the SSCSetNotifier function to verify that the solidDB server calls a
specified user-defined function whenever a special event occurs. The function
detects the following events:
v Server shutdown
v Bonsai merge from the index to the storage tree
v Bonsai merge interval maximum
v Backup or checkpoint request
v Idle server state
v Netcopy request received from the Primary server
v Completion of a netcopy request, which occurs when the server is started with

the new database received through netcopy
SscRetT SSC_CALL SSCSetNotifier(SscServerT h, SscNotFunT what,

notify_fun handler, void* userdata
)

The SSCSetNotifier function accepts the following parameters:

Table 29. SSCSetNotifier parameters

Parameters Usage Type Description

h in Handle to the server

74 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

Table 29. SSCSetNotifier parameters (continued)

Parameters Usage Type Description

what in Specifies the event for notification.

The options are:

v SSC_NOTIFY_EMERGENCY_EXIT

This function is called if a server shuts down abnormally after it has been
activated with SSCStartServer(). The notifier call SSCSetNotifier() must be
issued before SSCStartServer()

v SSC_NOTIFY_SHUTDOWN

Function is called at shutdown.

v SSC_NOTIFY_SHUTDOWN_REQUEST

Function is called when the server receives the shutdown request and might
shut down if the user-defined function accepts the request. You can refuse
the shutdown by returning SSC_ABORT from the notified function, or
proceed with the request by returning SSC_SUCCESS.

v SSC_NOTIFY_ROWSTOMERGE

Function is called when there is data in the Bonsai index tree that needs to
be merged to the storage server.

v SSC_NOTIFY_MERGE_REQUEST

Function is called when the General.MergeInterval parameter setting in the
solid.ini configuration file is exceeded and the merge has to start.

v SSC_NOTIFY_BACKUP_REQUEST

Function is called when a backup is requested. You can refuse the backup by
returning SSC_ABORT from the notified function.

v SSC_NOTIFY_CHECKPOINT_REQUEST

Function is called when a checkpoint is requested. You can refuse the
checkpoint by returning SSC_ABORT from the notified function.

v SSC_NOTIFY_IDLE

Function is called when the server switches to the idle state.

v SSC_NOTIFY_NETCOPY_REQUEST

This callback function applies to the HotStandby component only. The
function is called when a netcopy request is received from the Primary
server.

v SSC_NOTIFY_NETCOPY_FINISHED

This callback function applies to the HotStandby component only. The
function is called when a netcopy request is finished. When finished, the
server is started with the new database received through the network copy
(netcopy). SSC_NOTIFY_NETCOPY_FINISHED is called to inform the
application that the server is again available.

notify_fun_handler in, hold User function to call.

userdata in, hold User data to be passed to the notify function.
Note: Check the warning on releasing parameters of usage type hold in section
“Parameters” on page 69.

Return value
v SSC_SUCCESS - Request from the server accepted.

HotStandby only:
If SSC_NOTIFY_NETCOPY_FINISHED returns SSC_SUCCESS, all other
application connections are terminated and the server is set to netcopy listening
mode. The server accepts the connection from the Primary server and the only
possible operation for the Secondary server is to receive the data from the
HotStandby netcopy command.

Appendix D. solidDB Server Control API (SSC API) 75

v SSC_ABORT - Request from the server denied.
HotStandby only:
If the SSC_NOTIFY_NETCOPY_REQUEST returns SSC_ABORT, the netcopy is
not started and the error SRV_ERR_OPERATIONREFUSED is returned to the
Primary server.

v SSC_INNETCOPYMODE - The server is in netcopy mode (HotStandby only).
SSC_SERVER_NOTRUNNING - The server is not running.

Comments

This function has no corresponding solidDB SQL extension ADMIN COMMAND.

The user-defined notifier functions cannot call any SA, SSC, or ODBC functions.

When creating a user-defined notifier function, you must conform to the following
prototype:
int SSC_CALL mynotifyfun(SscServerT h, SscNotFunT what ,void* userdata);

After you have used SSC_CALL to explicitly define the convention for your user
function, use the SSCSetNotifier function to register the function so that it is called
during the specified event. For example:
SscRetT SSCSetNotifier(h, SSC_NOTIFY_IDLE, mynotifyfun, NULL);

Example: Calling a function upon shutdown

Assume that a user creates the function user_own_shutdownrequest, which is
called every time a shutdown is requested:
int SSC_CALL user_own_shutdownrequest(SscServerT h, SscNotFunT what, void

*userdata);
{

if (shutdown not needed) {
return SSC_ABORT;

}
return SSC_SUCCESS; /*Proceed with shutdown*/

}

The SSCSetNotifier function can then be called as follows to specify that
user_own_shutdownrequest gets called before the server is shut down.
SSCSetNotifier(handle, SSC_NOTIFY_SHUTDOWN, user_own_shutdownrequest, NULL);

Note: If function user_own_shutdownrequest returns SSC_ABORT, the shutdown
is not allowed. If the function returns SSC_SUCCESS, the shutdown can proceed.

D.2.7 SSCSetState
The SSCSetState functions controls whether the server accepts subsequent
connections.

The SSCSetState functions sets the state of an LLA or SMA server to open or
closed. If the server is set to open", the server accepts connections. If the server is
set to closed, it does not accept any further connections (local or remote).
However, any connections that have already been made are allowed to continue.
SscRetT SSC_CALL SSCSetState(SscServerT h,SscStateT runflags)

The SSCSetState function accepts the following parameters:

76 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

Table 30. SSCSetState parameters

Parameter Usage Type Description

h in, use Handle to the server.

runflags in The value for this parameter is a combination of 2 flags: the open flag and the netcopy
disabling flag. The following flag symbols can be used:

v SSC_STATE_OPEN – the open flag is set to 1: new connections are allowed.

v SSC_STATE_CLOSED – the open flag is set to 0: all new network, LLA, and SMA connections
are rejected, except for connections from solidDB Remote Control (solcon) program.

v SSC_DISABLE_NETCOPY – the netcopy disabling flag is set to 1: in HotStandby
configuration, no netcopy can be received by the server for which SSC_DISABLE_NETCOPY
is set.

The flag does not prevent the server to act as a source of netcopy. If only
SSC_DISABLE_NETCOPY flag is set, the server is in the closed state. To enable netcopy, use
the SSC API function SSCSetState() with the runflag value SSC_STATE_OPEN or
SSC_STATE_CLOSED.

runflags = SSC_STATE_OPEN | SSC_STATE_CLOSED | SSC_DISABLE_NETCOPY

Tip: The flags can be used in combinations, for example:

...
rc = SSCStartServer(g_argc, g_argv, &hh, SSC_STATE_OPEN|SSC_DISABLE_NETCOPY);
...

If the server is started as closed, it can be opened with ADMIN COMMAND 'open', or with the
solcon command open. The same effect can be achieved with the SSC API function
SSCSetState().

Return value
v SSC_SUCCESS - Operation is successful.
v SSC_ERROR - Operation failed.
v SSC_SERVER_INNETCOPYMODE - The server is in netcopy mode (HotStandby

only).
v SSC_SERVER_NOTRUNNING - The server is not running.

Comments

This function has a corresponding solidDB SQL extension ADMIN COMMAND.
The command is:

ADMIN COMMAND 'close'

D.2.8 SSCStartDisklessServer
The SSCStartDisklessServer function starts a diskless server using the linked library
access.
SscRetT SSC_CALL SSCStartDisklessServer (int argc, char* argv[],

SscServerT * h, SscStateT runflags, char* lic_string, char* ini_string);

The SSCStartDisklessServer function accepts the following parameters:

Appendix D. solidDB Server Control API (SSC API) 77

Table 31. SSCStartDisklessServer parameters

Parameters Usage Type Description

argc in The number of command-line arguments.

argv in, use Array of command-line arguments that are used during the function call. The argument
argv[0] is reserved only for the path and filename of the user application and must be
present.

For a list of available arguments, see section solidDB command-line options in the IBM
solidDB Administrator Guide.

h out Returns a handle to the started server. This handle is needed when referencing the server
with other Control API functions.

runflags in The value for this parameter is a combination of 2 flags: the open flag and the netcopy
disabling flag. The following flag symbols can be used:

v SSC_STATE_OPEN – the open flag is set to 1: new connections are allowed.

v SSC_STATE_CLOSED – the open flag is set to 0: all new network and LLA connections
are rejected, except for connections from solidDB Remote Control (solcon) program.

v SSC_DISABLE_NETCOPY – the netcopy disabling flag is set to 1: in HotStandby
configuration, no netcopy can be received by the server for which the
SSC_DISABLE_NETCOPY is set.

The flag does not prevent the server to act as a source of netcopy. If only
SSC_DISABLE_NETCOPY flag is set, the server is in the closed state. To enable
netcopy, use the SSC API function SSCSetState() with the runflag value
SSC_STATE_OPEN or SSC_STATE_CLOSED.

runflags = SSC_STATE_OPEN | SSC_STATE_CLOSED | SSC_DISABLE_NETCOPY

Tip: The flags can be used in combinations, for example:

...
rc = SSCStartServer(g_argc, g_argv, &hh, SSC_STATE_OPEN|SSC_DISABLE_NETCOPY);
...

If the server is started as closed, it can be opened with ADMIN COMMAND 'open', or
with the solcon command open. The same effect can be achieved with the SSC API
function SSCSetState().

lic_string in Specifies the string containing the solidDB license file.

ini_string in Specifies the string containing the solidDB configuration file.

Return value
v SSC_SUCCESS - The server is started.
v SSC_ERROR - The server failed to start.
v SSC_SERVER_INNETCOPYMODE - The server is netcopy mode (HotStandby

only).
v SSC_INFO_SERVER_RUNNING - The server is already running.
v SSC_INVALID_HANDLE - Invalid local server handle given.
v SSC_INVALID_LICENSE - No license or invalid license file found.

78 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

Comments

By default, the state is set to SSC_STATE_OPEN.

This function has no corresponding solidDB SQL extension ADMIN COMMAND.

Example: SSCStartDisklessServer
SscStateT runflags = SSC_STATE_OPEN;
SscServerT h;
char* argv[4]; /* pointers to four parameter strings */
int argc = 4;
char* lic = get_lic(); /* get the license */
char* ini = get_ini(); /* get the solid.ini */
SscRetT rc;
argv[0] = "appname"; /* path and filename of the user app */
argv[1] = "-Udba"; /* user name */
argv[2] = "-Pdba"; /* user’s password */
argv[3] = "-Cdba"; /* catalog name */
/* Start the diskless server */
rc = SSCStartDisklessServer(argc, argv, &h, runflags, lic, ini);

Note:

In the example, get_ini() and get_lic() are functions that the user must write. Each
must return a string that contains the solid.ini file text or the solid.lic license
file.

If you do not specify a catalog name, the server returns an error.
Related concepts:
7, “Using the diskless capability,” on page 55
SMA and LLA servers can be used to create a database engine that runs without
any disk storage space. Diskless server is useful in embedded systems that do not
have hard disks, such as line cards in a network router or switch.
Related reference:
D.2.12, “SSCStopServer,” on page 85
The SSCStopServer function stops a linked library access (LLA) server or a shared
memory access (SMA) server.

D.2.9 SSCStartServer
The SSCStartServer functions starts the linked library access server.

In multithreaded environments, the server runs in a separate threads from the
client. For the duration of the application, the application can start or stop the
server subroutines as needed.
SscRetT SSC_CALL SSCStartServer(int argc, char* argv[], SscServerT* h

SscStateT runflags)

The SSCStartServer function accepts the parameters described in the following
table.

Table 32. SSCStartServer parameters

Parameters
Usage
Type Description

argc in Number of command-line arguments.

Appendix D. solidDB Server Control API (SSC API) 79

Table 32. SSCStartServer parameters (continued)

Parameters
Usage
Type Description

argv in, use Array of command-line arguments.

For a list of available arguments, see section solidDB command-line options in the IBM solidDB
Administrator Guide.

h out Returns a handle to the started server. This handle is needed when referencing the server with other
Control API functions.If the server is started successfully, the SSCStartServer routine sets this
parameter to point to the handle for this server.

runflags in
The value for this parameter is a combination of 2 flags: the open flag and the netcopy disabling flag.
The following flag symbols can be used:

v SSC_STATE_OPEN – the open flag is set to 1: new connections are allowed.

v SSC_STATE_CLOSED – the open flag is set to 0: all new network and LLA connections are
rejected, except for connections from solidDB Remote Control (solcon) program.

v SSC_DISABLE_NETCOPY – the netcopy disabling flag is set to 1: in HotStandby configuration, no
netcopy can be received by the server for which the SSC_DISABLE_NETCOPY is set.

The flag does not prevent the server to act as a source of netcopy. If only
SSC_DISABLE_NETCOPY flag is set, the server is in the closed state. To enable netcopy, use the
SSC API function SSCSetState() with the runflag value SSC_STATE_OPEN or
SSC_STATE_CLOSED.

runflags = SSC_STATE_OPEN | SSC_STATE_CLOSED | SSC_DISABLE_NETCOPY

Tip: The flags can be used in combinations, for example:

...
rc = SSCStartServer(g_argc, g_argv, &hh, SSC_STATE_OPEN|SSC_DISABLE_NETCOPY);
...

If the server is started as closed, it can be opened with ADMIN COMMAND 'open', or with the
solcon command open. The same effect can be achieved with the SSC API function SSCSetState().

Return value
v SSC_SUCCESS - The server started.
v SSC_ERROR - The server failed to start.
v SSC_ABORT
v SSC_BROKENNETCOPY - Database corrupted because of incomplete netcopy.
v SSC_FINISHED
v SSC_CONT
v SSC_CONNECTIONS_EXIST
v SSC_UNFINISHED_TASKS
v SSC_INVALID_HANDLE - Invalid local server handle given.
v SSC_INVALID_LICENSE - No license or invalid license file found.
v SSC_NODATABASEFILE - No database file found.
v SSC_SERVER_NOTRUNNING
v SSC_INFO_SERVER_RUNNING - The server is already running.
v SSC_SERVER_INNETCOPYMODE - The server is in netcopy mode (HotStandby

only).
v SSC_DBOPENFAIL - Failed to open database.
v SSC_DBCONNFAIL - Failed to connect to database.
v SSC_DBTESTFAIL - Database test failed.

80 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

v SSC_DBFIXFAIL - Database fix failed.
v SSC_MUSTCONVERT - Database must be converted.
v SSC_DBEXIST - Database exists.
v SSC_DBNOTCREATED - Database not created.
v SSC_DBCREATEFAIL - Database create failed.
v SSC_COMINITFAIL - Communication init failed.
v SSC_COMLISTENFAIL - Communication listen failed.
v SSC_SERVICEFAIL - Service operation failed.
v SSC_ILLARGUMENT - Illegal command line argument.
v SSC_CHDIRFAIL - Failed to change directory.
v SSC_INFILEOPENFAIL - Input file open failed.
v SSC_OUTFILEOPENFAIL - Output file open failed.
v SSC_SRVCONNFAIL - Server connect failed.
v SSC_INITERROR - Operation init failed.
v SSC_CORRUPTED_DBFILE - Assert or other fatal error.
v SSC_CORRUPTED_LOGFILE - Assert or other fatal error.

Comments

By default, the state is set to SSC_STATE_OPEN.

This function has no corresponding solidDB SQL extension ADMIN COMMAND.

When you start a new solidDB server, you must explicitly specify that the solidDB
server creates a database with the function SSCStartServer() by using the -U
username -P password -C catalogname (the default database catalog name)
parameters. For details, read 5.3.1, “Explicit startup with SSC API function
SSCStartServer,” on page 42.

If you are restarting a database server (a database exists in the directory), the
server uses the existing database.

The SSCStartServer function can spawn multiple threads to run the server tasks.
The server tasks include processing local and remote client requests, as well as
running various background tasks, such as checkpoints, merges, and so on.

Note: If you want to start a diskless server, use the function D.2.8,
“SSCStartDisklessServer,” on page 77.

Example: Starting up SSCStartServer

Start SSCStartServer with the server name, the catalog name, and the administrator
username and password:
SscStateT runflags = SSC_STATE_OPEN;
SscServerT h;
char* argv[5];
argv[0] = "appname"; /* path and filename of the user app. */
argv[1] = "-nsolid1";
argv[2] = "-Udba";
argv[3] = "-Pdba";
argv[4] = "-Cdba";
/* Start the server */
rc = SSCStartServer(argc, argv, &h, run_flags);

Appendix D. solidDB Server Control API (SSC API) 81

Note: If you already have an existing database, you do not need to specify the
username and password, or the catalog name.
Related reference:
D.2.12, “SSCStopServer,” on page 85
The SSCStopServer function stops a linked library access (LLA) server or a shared
memory access (SMA) server.

D.2.10 SSCStartSMADisklessServer
The SSCStartSMADisklessServer function starts a diskless server using SMA.

Synopsis
SscRetT SSC_CALL SSCStartSMADisklessServer (int argc, char* argv[],

SscServerT * h, SscStateT runflags, char* lic_string, char* ini_string);

The SSCStartSMADisklessServer function accepts the following parameters:

Table 33. SSCStartSMADisklessServer parameters

Parameters
Usage
Type Description

argc in The number of command-line arguments.

argv in, use Array of command-line arguments that are used during the function call. The argument
argv[0] is reserved only for the path and filename of the user application and must be
present.

For a list of available arguments, see section solidDB command-line options in the IBM solidDB
Administrator Guide.

h out Returns a handle to the started server. This handle is needed when referencing the server
with other Control API functions.

runflags in The value for this parameter is a combination of 2 flags: the open flag and the netcopy
disabling flag. The following flag symbols can be used:

v SSC_STATE_OPEN – the open flag is set to 1: new connections are allowed.

v SSC_STATE_CLOSED – the open flag is set to 0: all new network and SMA connections
are rejected, except for connections from solidDB Remote Control (solcon) program.

v SSC_DISABLE_NETCOPY – the netcopy disabling flag is set to 1: in HotStandby
configuration, no netcopy can be received by the server for which
SSC_DISABLE_NETCOPY is set.

The flag does not prevent the server to act as a source of netcopy. If only
SSC_DISABLE_NETCOPY flag is set, the server is in the closed state. To enable netcopy,
use the SSC API function SSCSetState() with the runflag value SSC_STATE_OPEN or
SSC_STATE_CLOSED.

runflags = SSC_STATE_OPEN | SSC_STATE_CLOSED | SSC_DISABLE_NETCOPY

Tip: The flags can be used in combinations, for example:

...
rc = SSCStartSMAServer(g_argc, g_argv, &hh, SSC_STATE_OPEN|SSC_DISABLE_NETCOPY);
...

If the server is started as closed, it can be opened with ADMIN COMMAND 'open', or with
the solcon command open. The same effect can be achieved with the SSC API function
SSCSetState().

82 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

Table 33. SSCStartSMADisklessServer parameters (continued)

Parameters
Usage
Type Description

lic_string in Specifies the string containing the solidDB license file.

ini_string in Specifies the string containing the solidDB configuration file.

Return values
v SSC_SUCCESS - The server is started.
v SSC_ERROR - The server failed to start.
v SSC_SERVER_INNETCOPYMODE - The server is netcopy mode (HotStandby

only).
v SSC_INFO_SERVER_RUNNING - The server is already running.
v SSC_INVALID_HANDLE - Invalid local server handle given.
v SSC_INVALID_LICENSE - No license or invalid license file found.

Comments

By default, the state is set to SSC_STATE_OPEN.

This function has no corresponding solidDB SQL extension ADMIN COMMAND.

See also

D.2.12, “SSCStopServer,” on page 85

D.2.11 SSCStartSMAServer
The SSCStartSMAServer function starts a server using SMA.

Synopsis
SscRetT SSC_CALL SSCStartSMAServer (int argc, char* argv[],

SscServerT * h, SscStateT runflags, char* lic_string, char* ini_string);

The SSCStartSMAServer function accepts the following parameters:

Table 34. SSCStartSMAServer parameters

Parameters Usage Type Description

argc in The number of command-line arguments.

argv in, use Array of command-line arguments that are used during the function call. The argument argv[0] is
reserved only for the path and filename of the user application and must be present.

For a list of available arguments, see section solidDB command-line options in the IBM solidDB
Administrator Guide.

h out Returns a handle to the started server. This handle is needed when referencing the server with other
Control API functions.

Appendix D. solidDB Server Control API (SSC API) 83

Table 34. SSCStartSMAServer parameters (continued)

Parameters Usage Type Description

runflags in The value for this parameter is a combination of 2 flags: the open flag and the netcopy disabling flag.
The following flag symbols can be used:

v SSC_STATE_OPEN – the open flag is set to 1: new connections are allowed.

v SSC_STATE_CLOSED – the open flag is set to 0: all new network and SMA connections are
rejected, except for connections from solidDB Remote Control (solcon) program.

v SSC_DISABLE_NETCOPY – the netcopy disabling flag is set to 1: in HotStandby configuration, no
netcopy can be received by the server for which SSC_DISABLE_NETCOPY is set.

The flag does not prevent the server to act as a source of netcopy. If only
SSC_DISABLE_NETCOPY flag is set, the server is in the closed state. To enable netcopy, use the
SSC API function SSCSetState() with the runflag value SSC_STATE_OPEN or
SSC_STATE_CLOSED.

runflags = SSC_STATE_OPEN | SSC_STATE_CLOSED | SSC_DISABLE_NETCOPY

Tip: The flags can be used in combinations, for example:

...
rc = SSCStartSMAServer(g_argc, g_argv, &hh, SSC_STATE_OPEN|SSC_DISABLE_NETCOPY);
...

If the server is started as closed, it can be opened with ADMIN COMMAND 'open', or with the
solcon command open. The same effect can be achieved with the SSC API function SSCSetState().

Return values
v SSC_SUCCESS - The server started.
v SSC_ERROR - The server failed to start.
v SSC_ABORT
v SSC_BROKENNETCOPY - Database corrupted because of incomplete netcopy.
v SSC_FINISHED
v SSC_CONT
v SSC_CONNECTIONS_EXIST
v SSC_UNFINISHED_TASKS
v SSC_INVALID_HANDLE - Invalid local server handle given.
v SSC_INVALID_LICENSE - No license or invalid license file found.
v SSC_NODATABASEFILE - No database file found.
v SSC_SERVER_NOTRUNNING
v SSC_INFO_SERVER_RUNNING - The server is already running.
v SSC_SERVER_INNETCOPYMODE - The server is in netcopy mode (HotStandby

only).
v SSC_DBOPENFAIL - Failed to open database.
v SSC_DBCONNFAIL - Failed to connect to database.
v SSC_DBTESTFAIL - Database test failed.
v SSC_DBFIXFAIL - Database fix failed.
v SSC_MUSTCONVERT - Database must be converted.
v SSC_DBEXIST - Database exists.
v SSC_DBNOTCREATED - Database not created.
v SSC_DBCREATEFAIL - Database create failed.
v SSC_COMINITFAIL - Communication init failed.
v SSC_COMLISTENFAIL - Communication listen failed.

84 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

v SSC_SERVICEFAIL - Service operation failed.
v SSC_ILLARGUMENT - Illegal command line argument.
v SSC_CHDIRFAIL - Failed to change directory.
v SSC_INFILEOPENFAIL - Input file open failed.
v SSC_OUTFILEOPENFAIL - Output file open failed.
v SSC_SRVCONNFAIL - Server connect failed.
v SSC_INITERROR - Operation init failed.
v SSC_CORRUPTED_DBFILE - Assert or other fatal error.
v SSC_CORRUPTED_LOGFILE - Assert or other fatal error.

Comments

By default, the state is set to SSC_STATE_OPEN.

This function has no corresponding solidDB SQL extension ADMIN COMMAND.

When you start a new solidDB server, you must explicitly specify that solidDB
create a database with the function SSCStartSMAServer() with the -U username -P
password -C catalogname (the default database catalog name) parameters.

If you are restarting a database server (a database exists in the directory), then
SSCStartSMAServer uses the existing database.

The SSCStartSMAServer function may spawn multiple threads to run the server
tasks. The server tasks include processing local and remote client requests, as well
as running various background tasks, such as checkpoints, merges, and so on.

See also

D.2.12, “SSCStopServer”

D.2.12 SSCStopServer
The SSCStopServer function stops a linked library access (LLA) server or a shared
memory access (SMA) server.

You can use explicit methods (for example, SSCStopServer) to shut down a server
that was started with implicit methods (for example, SQLConnect). The converse is
not true; for example, you cannot use SQLDisconnect to stop a server that was
started with SSCStartServer.

An application is not limited to starting and stopping the server once each time
that the application is run. After the server has been stopped, the application can
restart the server by using, for example, SSCStartServer.
SscRetT SSC_CALL SSCStopServer(SscServerT h, bool force)

The SSCStopServer function accepts the following parameters:

Table 35. SSCStopServer parameters

Parameter Usage Type Description

h in, use Handle to server

Appendix D. solidDB Server Control API (SSC API) 85

Table 35. SSCStopServer parameters (continued)

Parameter Usage Type Description

force in Options are:

v TRUE - stop server in all cases.

v FALSE - stop server if there are no open connections.
Otherwise, stop fails.

Return value
v SSC_SUCCESS - The server is stopped.
v SSC_CONNECTIONS_EXIT - There are open connections.
v SSC_UNFINISHED_TASKS - Tasks that are executing.
v SSC_ABORT
v SSC_ERROR

Comments

Remote users can stop solidDB by using ADMIN COMMAND 'shutdown'. For more
information, see Appendix B, “Linked library access parameters,” on page 61.

The FALSE option does not permit shutdown if there are open connections to the
database or existing users. This option is equivalent to solidDB SQL extension
ADMIN COMMAND 'shutdown'.

The SSCSetState() function with the SSC_STATE_OPEN option prevents new
connections to the solidDB server.
Related reference:
D.2.7, “SSCSetState,” on page 76
The SSCSetState functions controls whether the server accepts subsequent
connections.
D.2.9, “SSCStartServer,” on page 79
The SSCStartServer functions starts the linked library access server.
D.2.11, “SSCStartSMAServer,” on page 83
The SSCStartSMAServer function starts a server using SMA.

D.2.13 SSCUnregisterThread

Note: SSCUnregisterThread is deprecated as of 6.5 FP1; it is no longer necessary to
register and unregister threads explicitly when using solidDB with linked library
access (LLA). As of 6.5 FP1, thread registration is handled implicitly.

The SSCUnregisterThread function unregisters a solidDB application thread for the
server. The SSCUnregisterThread function must be called by every thread that has
registered itself with the function SSCRegisterThread. The function is called before
the thread terminates.

Synopsis
SscRetT SSC_CALL SSCUnregisterThread(SscServerT h)

The SCCUnregisterThread function accepts the following parameters:

86 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

Table 36. SCCUnregisterThread parameters

Parameter Usage Type Description

h in, use Handle to server

Return value
v SSC_SUCCESS
v SSC_INVALID_HANDLE

Comments

SSC_CALL is required to explicitly define the calling convention of your user
function. It is defined in the sscapi.h file appropriately for each platform.

This function has no corresponding solidDB ADMIN COMMAND.

See also

D.2.5, “SSCRegisterThread,” on page 73

D.2.14 Retrieving task information
To retrieve a list of all active tasks, use the SSCGetActiveTaskClass function. To
retrieve a list of all suspended tasks, use the SSCGetSuspendedTaskClass function.
To get the priority of a task class, use the SSCGetTaskClassPrio function.

D.2.15 Obtaining solidDB status and server information
You can use the function SSCGetStatusNum to view status information of the
solidDB database server. The following information is displayed:
v Number of rows that are not merged from the Bonsai Tree to the Storage Tree

The SSCGetServerHandle function returns the solidDB server handle if the server
is running.

You can also use the function SSCIsRunning to verify if the server is running. Use
the function SSCIsThisLocalServer to verify whether an application is linked to the
local linked library access server library (for example, ssolidacxx.dll for Windows
platforms) or a "dummy" server library (for example, solidctrlstub.lib for
Windows platforms) that are used to test remote applications that are using
Control API.

Appendix D. solidDB Server Control API (SSC API) 87

88 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

Appendix E. SolidServerControl class interface

The complete public interface for the SolidServerControl class is described below.

Details on parameters and corresponding ADMIN COMMANDs are included in
the SSC function descriptions in section D.2, “SSC API reference,” on page 69.

For an example of an LLA program that uses some of the methods in this class, see
the LLA for Java sample in the samples/aclib_java directory.

Return value constants
public final static int SSC_SUCCESS = 0;
public final static int SSC_ERROR = 1;
public final static int SSC_ABORT = 2;
public final static int SSC_FINISHED = 3;
public final static int SSC_CONT = 4;
public final static int SSC_CONNECTIONS_EXIST = 5;
public final static int SSC_UNFINISHED_TASKS = 6;
public final static int SSC_INVALID_HANDLE = 7;
public final static int SSC_INVALID_LICENSE = 8;
public final static int SSC_NODATABASEFILE = 9;
public final static int SSC_SERVER_NOTRUNNING = 10;
public final static int SSC_INFO_SERVER_RUNNING = 11;
public final static int SSC_SERVER_INNETCOPYMODE = 12;

/**
* Initiates a SolidServerControl class. Output is not directed to any
* PrintStream.
*
* @return SolidServerControl instance
*/
public static SolidServerControl instance()

throws SolidServerInitializationError;

/**
* Initiates a SolidServerControl class. Output is being directed
* to a PrintStream object given in parameter ’os’.
*
* @param os the PrintStream for output
* @return SolidServerControl instance
*
*/
public static SolidServerControl instance(PrintStream os)

throws SolidServerInitializationError;

/**
* setOutStream method sets the output to the given PrintStream
*
* @param os the PrintStream for output
*/
public void setOutStream(PrintStream os);

/**
* getOutStream returns the stream used for output in class
* SolidServerControl
*
* @return returns the outputstream of this object
*/
public PrintStream getOutStream();

89

/**
* startDisklessServer starts the Linked Library Access server
* in a diskless mode
*
* @param argv parameter vector for the accelerator server.
*
* @param runflags Options for this parameter are SSC_STATE_OPEN,
* SSC_STATE_CLOSED, and SSC_DISABLE_NETCOPY.
*
* @param lic_file The contents of the license file as a string,
* since the diskless version cannot read the
* information from the disk
*
* @param ini_file The contents of the solid.ini configuration file as a string,
* because the diskless version cannot read the information
* from the disk
*
* @return the return value from the server :
* SSC_SUCCESS
* SSC_ERROR
* SSC_INVALID_LICENSE - No license or license file found.
* SSC_NODATABASEFILE - No database file found.
*/
public static long startDisklessServer(String[] argv, long runflags,
String lic_string, String ini_string)

/**
* startServer starts the Linked Library Access server
*
* @param argv parameter vector for the LLA server
* Note: You must give the working directory containing
* license file (f.ex. -c\tmp) first, in front
* of other parameters.
*
* @param runflags Options for this parameter are SSC_STATE_OPEN,
* SSC_STATE_CLOSED, and SSC_DISABLE_NETCOPY.
* *
* @return the return value from the server:
* SSC_SUCCESS
* SSC_ERROR
* SSC_INVALID_LICENSE - No license or invalid license file found.
* SSC_NODATABASEFILE - No database file found.
*/
public long startServer(String[] argv, long runflags);

/**
* stopServer stops the LLA server
*
* @param runflags Runflags for stopping LLA server.
* See section SSCStopServer for more
* details.
*
* @return the return value from the server
* SSC_SUCCESS if server is stopped.
* SSC_CONNECTIONS_EXIT if there are open connections.
* SSC_UNFINISHED_TASKS if there are still tasks that are
* executing.
* SSC_SERVER_NOTRUNNING if the server is not running.
*/
public long stopServer(int runflags);

/**
* returns the state of the server: server is running or not

90 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

*
* @return SSC_STATE_OPEN if server is up and running
*/
public int getState();

/**
* registerThread registers this user thread to Linked Library Access server
* - deprecated as of V6.5 Fix Pack 1
*
*
* @return the return value from the server
* SSC_SUCCESS Registration succeeded.
* SSC_ERROR Registration failed.
* SSC_INVALID_HANDLE Invalid local server handle given.
* SSC_SERVER_NOTRUNNING Server is not running.
*/
public long registerThread();

/**
* unregisterThread unregisters this user thread from the
* Linked Library Access server - deprecated as of V6.5 Fix Pack 1
*
*
* @return the return value from the server
* SSC_SUCCESS Registration succeeded.
* SSC_ERROR Registration failed.
* SSC_INVALID_HANDLE Invalid local server handle given.
* SSC_SERVER_NOTRUNNING Server is not running.
*/
public long unregisterThread();

Appendix E. SolidServerControl class interface 91

92 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

Index

A
administering

diskless server configuration file options 63
advanced replication

linked library access (LLA) 46

B
backup

listening mode 74

C
C applications

samples 46
CacheSize (parameter) 64

diskless server 64
configuration file

diskless 63
Control API

SSCGetActiveTaskClass (function) 87
SSCGetServerHandle (function) 87
SSCGetStatusNum (function) 87
SSCGetTaskClassState (function) 87
SSCIsRunning (function) 87
SSCIsThisLocalServer (function) 87

D
database

size 42
diskless server mode

overview 55
dual-mode applications 11, 57

I
ImplicitStart (parameter) 61

J
JDBC API 10

L
linked library access (LLA) 1

components 6
definition 6
shutting down 45
starting 41
supported platforms 4, 6

Linux
memory limitations 63

Listen (parameter)
configuring for diskless 65

local application
definition 11

M
MaxSharedMemorySize (parameter) 59
memory

CacheSize (for diskless server) 64
total used by diskless server 64

N
netcopy

listening mode 74

O
ODBC

overview 10

R
remote applications 57

definition 11
ReturnListenErrors (parameter) 61

S
SA API

definition 9
SaConnect

implicit startup with 45
server information

retrieving 87
shared memory access (SMA) 1

components 4
configuring 13
definition 3
monitoring 26
troubleshooting 27

SharedMemoryAccessRights (parameter) 59
shutdown

linked library access 45
SignalHandler (parameter) 59
Signals (parameter) 59
SMA server

starting 24, 33
SMA system parameters

AIX 15
overview 14

solidctrlstub 10, 69
solidDB client APIs and drivers 9
solidDB configuration file

Listen (parameter) 65
solidDB drivers and client APIs 9
solidDB SA 9
solidDB Server Control (SSC) API for Java 10, 89
solidDB Server Control API (SSC API)

definition 10
solidctrlstub 10

solidimpac 8
SolidServerControl class 89

93

SQLConnect (function)
implicit startup with 44

SSC API (Control API) 67
definition 10
summary of scheduling functions 67

SSC API for Java 10, 89
SSC_ABORT 71
SSC_CALL 69
SSC_CONNECTIONS_EXIST 71
SSC_CONT 71
SSC_ERROR 71
SSC_FINISHED 71
SSC_INFO_SERVER_RUNNING 71
SSC_INVALID_HANDLE 71
SSC_INVALID_LICENSE 71
SSC_NODATABASEFILE 71
SSC_SERVER_INNETCOPYMODE 71
SSC_SERVER_NOTRUNNING 71
SSC_STATE_OPEN 78, 82, 84
SSC_SUCCESS 71
SSC_TASK_ALL 69
SSC_TASK_BACKUP 69
SSC_TASK_CHECKPOINT 69
SSC_TASK_HOTSTANDBY 69
SSC_TASK_HOTSTANDBY_CATCHUP 69
SSC_TASK_LOCALUSERS 69
SSC_TASK_MERGE 69
SSC_TASK_NONE 69
SSC_TASK_REMOTEUSERS 69
SSC_TASK_SYNC_HISTCLEAN 69
SSC_TASK_SYNC_MESSAGE 69
SSC_UNFINISHED_TASKS 71
sscapi.h 69
SSCGetServerHandle

function description 71
SSCGetStatusNum

function description 72
SSCIsRunning

function description 72
SSCIsThisLocalServer

function description 73
SSCRegisterThread

function description 73
SSCServerT 42
SSCSetNotifier

function description 74
SSCSetState

function description 76
SSCStartDisklessServer

function description 77
SSCStartDisklessSMAServer 83
SSCStartServer

explicit startup with 42
function description 79

SSCStartSMADisklessServer 82
SSCStopServer

function description 85
shut down with 45

SscTaskSetT 69
SSCUnregisterThread

function description 86
starting

solidDB
with linked library access 41

status
retrieving 87

T
task information

retrieving 87

94 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

Notices

© Copyright Oy IBM Finland Ab 1993, 2013.

All rights reserved.

No portion of this product may be used in any way except as expressly authorized
in writing by IBM.

This product is protected by U.S. patents 6144941, 7136912, 6970876, 7139775,
6978396, 7266702, 7406489, 7502796, and 7587429.

This product is assigned the U.S. Export Control Classification Number
ECCN=5D992b.

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

95

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Canada Limited
Office of the Lab Director
8200 Warden Avenue
Markham, Ontario
L6G 1C7
CANADA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

96 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

IBM, the IBM logo, ibm.com®, Solid, solidDB, InfoSphere, DB2®, Informix®, and
WebSphere® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and
service names might be trademarks of IBM or other companies. A current list of
IBM trademarks is available on the Web at “Copyright and trademark information”
at www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other product and service names might be trademarks of IBM or other companies.

Notices 97

http://www.ibm.com/legal/copytrade.shtml

98 IBM solidDB: Shared Memory Access and Linked Library Access User Guide

����

SC27-3846-05

	Contents
	Figures
	Tables
	Summary of changes
	About this manual
	Typographic conventions
	Syntax notation conventions

	1 Overview of shared memory access and linked library access
	1.1 Shared memory access (SMA)
	1.1.1 System requirements for SMA
	1.1.2 SMA components and packaging

	1.2 Linked library access (LLA)
	1.2.1 System requirements for LLA
	1.2.2 LLA components and packaging
	1.2.3 Static and dynamic link libraries for LLA

	1.3 solidDB APIs and drivers for SMA and LLA
	1.3.1 solidDB SA API
	1.3.2 solidDB ODBC API
	1.3.3 solidDB JDBC API
	1.3.4 solidDB Server Control API (SSC API)
	1.3.5 solidDB Server Control API (SSC API) for Java

	1.4 Configurations with local and remote applications types

	2 Creating and running SMA applications
	2.1 Creating SMA applications - overview
	2.1.1 Modifying shared memory kernel parameters - overview
	Shared memory kernel parameters for SMA on AIX
	Modifying shared memory kernel parameters for SMA on HP-UX
	Modifying shared memory kernel parameters for SMA on Linux
	Modifying shared memory kernel parameters for SMA on Solaris

	2.1.2 Preparing applications for SMA use with driver manager
	2.1.3 Preparing applications for SMA use without driver manager
	2.1.4 Establishing local connections for SMA

	2.2 Starting and shutting down SMA server
	2.2.1 Starting SMA server
	2.2.2 Shutting down SMA server
	2.2.3 Starting SMA server as a service (Windows)

	2.3 Monitoring SMA
	2.4 Troubleshooting SMA

	3 Creating and running SMA applications with Java
	3.1 Overview of using SMA with Java
	3.2 Configuring your environment for SMA use with Java
	3.3 Starting and shutting down SMA server
	3.3.1 Starting SMA server
	3.3.2 Shutting down SMA server

	3.4 Making JDBC connections for SMA

	4 SMA with HotStandby
	4.1 Configuring SMA TC with HotStandby

	5 Creating and running LLA applications
	5.1 Configuring your environment for LLA use
	5.2 Establishing a local connection for LLA
	5.3 Starting and shutting down LLA server
	5.3.1 Explicit startup with SSC API function SSCStartServer
	5.3.2 Implicit startup with ODBC API function call SQLConnect
	5.3.3 Implicit startup with SA API function call SaConnect
	5.3.4 Shutting down LLA server

	5.4 Sample C applications for LLA
	5.4.1 Samples for LLA with advanced replication

	6 Creating and running LLA applications with Java
	6.1 Overview of using LLA with Java
	6.1.1 Limitations

	6.2 Configuring your environment for LLA use with Java
	6.3 Starting and stopping LLA server with SSC API for Java
	6.4 Making JDBC connections for LLA
	6.5 Compiling and running a sample LLA program

	7 Using the diskless capability
	8 Creating and running remote or dual-mode applications
	8.1 Example: Creating a dual-mode LLA application with ODBC and SSC API function calls
	8.2 Establishing remote connections

	Appendix A. Shared memory access parameters
	Appendix B. Linked library access parameters
	Appendix C. Configuration parameters for a diskless server
	C.1 IndexFile.Filespec_[1...n] parameter in diskless servers
	C.2 IndexFile.CacheSize parameter in diskless servers
	C.3 Com.Listen in diskless servers
	C.4 Configuration parameters that do not apply to diskless engines

	Appendix D. solidDB Server Control API (SSC API)
	D.1 Summary of SSC API functions
	D.2 SSC API reference
	D.2.1 SSCGetServerHandle
	D.2.2 SSCGetStatusNum
	D.2.3 SSCIsRunning
	D.2.4 SSCIsThisLocalServer
	D.2.5 SSCRegisterThread
	D.2.6 SSCSetNotifier
	D.2.7 SSCSetState
	D.2.8 SSCStartDisklessServer
	D.2.9 SSCStartServer
	D.2.10 SSCStartSMADisklessServer
	D.2.11 SSCStartSMAServer
	D.2.12 SSCStopServer
	D.2.13 SSCUnregisterThread
	D.2.14 Retrieving task information
	D.2.15 Obtaining solidDB status and server information

	Appendix E. SolidServerControl class interface
	Index
	A
	B
	C
	D
	I
	J
	L
	M
	N
	O
	R
	S
	T

	Notices

