IBM solidDB
Version 7.0

Programmer Guide

<||I

Note
FBefore using this information and the product it supports, read the information in|[“Notices” on page 309,

First edition, fifth revision

This edition applies to V7.0 Fix Pack 8 of IBM solidDB (product number 5724-V17) and to all subsequent releases
and modifications until otherwise indicated in new editions.

© Oy IBM Finland Ab 1993, 2013

Contents

Figures

Tables

Summary of changes.

About this manual
Typographic conventions
Syntax notation conventions

1 Introduction to APlIs.
1.1 solidDB ODBC Diriver .
1.2 solidDB JDBC Driver

API) . .

1.4 solidDB Server Control API (SSC API)

1.5 solidDB Server Control API (SSC API) for Java

1.6 solidDB Transaction Log Reader.

1.7 Building client applications
1.7.1 What is a client? . .
1.7.2 How is the query passed to the server’.
1.7.3 How are the results passed back to the
client? e
1.7.4 Statement cache

2 solidDB ODBC API
2.1 Getting started with solidDB ODBC
2.1.1 Installing solidDB ODBC Driver .
2.1.2 Using the ODBC driver library
2.1.3 ODBC API basic application steps
2.1.4 Format of the solidDB connect string .
2.1.5 Client-side solid.ini configuration file
2.1.6 ODBC non-standard behavior .
2.1.7 Overview of usage on Windows operatlng
systems.
2.2 solidDB ODBC Drlver 3. 51 Features Support .
2.3 Calling functions o .
2.4 Connecting to a data source. .
2.4.1 Network name and connect strlng syntax
2.4.2 Using logical data source names.
2.4.3 Empty data source name .

2.4.4 Configuring the solidDB ODBC Data Source

for Windows .
2.4.5 Using solidDB ODBC Drlver w1th
unixODBC.
2.4.6 Retrieving user logln 1nformat10n
2.5 ODBC handle validation .
2.6 Executing transactions
2.7 Retrieving information about the data source's
catalog .
2.8 Using ODBC extensmns to SQL
2.8.1 Procedures . oL
2.8.2 Hints.
2.8.3 Additional ODBC exten51on functlons

1.3 solidDB Application Programmlng Interface (SA

. Vil

. Xi

. X
. Xiii
. Xiv

N =

B s 0 W W Ww

o G

R
[SENICIENEEN LN |

.11
.12

.13
.14
.14
. 16
.17
.19

.20

.21

.22
. 24
.24
. 25

.27
.27
. 28
.29
. 30

2.9 solidDB extensions for ODBC API

2.10 Using cursors . .
2.10.1 Assigning storage for rowsets (blndlng) .
2.10.2 Cursor support . .

2.11 Using bookmarks .

2.12 Error text format .
2.12.1 Processing error messages

2.13 Terminating transactions and connections.

2.14 Constructing an application .

2.15 Testing and debugging an apphcatlon .

3 solidDB JDBC Driver.

3.1 Getting started with solidDB JDBC Drrver
3.1.1 Registering solidDB JDBC Driver
3.1.2 Connecting to the database .

3.2 Special notes about solidDB and JDBC .

3.3 JDBC driver interfaces and methods .

3.4 solidDB JDBC Driver extensions
3.4.1 WebSphere compatibility .

3.4.2 Connection timeout in JDBC .
3.4.3 Non-standard JDBC connection propertles

3.5 JDBC 2.0 optional package API support.
3.5.1 JDBC connection pooling .

3.5.2 solidDB Connected RowSet Class
Solid]J]DBCRowSet

3.5.3 Java Naming and D1rectory Interface (]NDI)

3.6 Code examples . .
3.7 solidDB JDBC Driver type conversion matrrx .

4 solidDB SA .
4.1 What is solidDB SA? . .
4.2 Getting started with solidDB SA .

. 30
. 33
. 33
. 34
. 39
. 39
.41
.41
. 42
. 50

. 53
. 53
. 55
. 55
. 57
. 58
. 64
. 64
. 65

66

.70
.70

.78
80

. 80
.92

. 95
.95
. 96

4.3 Writing data by using solidDB SA without SQL 97
4.4 Reading data by using solidDB SA without SQL 99

4.5 Running SQL Statements by using solidDB SA
4.6 Transactions and autocommit mode.
4.7 Handling database errors . .
4.8 Special notes about solidDB SA .
4.9 solidDB SA Function Reference .

4.9.1 SaArrayFlush

4.9.2 SaArraylnsert

4.9.3 SaColSearchCreate .

4.9.4 SaColSearchFree.

4.9.5 SaColSearchNext

4.9.6 SaConnect.

49.7 SaCursorAscendlng

4.9.8 SaCursorAtleast .

4.9.9 SaCursorAtmost.

4.9.10 SaCursorBegin . .

4.9.11 SaCursorClearConstr .

4.9.12 SaCursorColData .

4.9.13 SaCursorColDate .

4.9.14 SaCursorColDateFormat.

4.9.15 SaCursorColDfloat

4.9.16 SaCursorColDouble .

101

. 101
. 102
. 103
. 105
. 107
. 108
. 108
. 109
. 109
. 110
. 110
111
.11
. 112
. 112
. 113
. 114
. 115
. 115
. 116

iii

49.17 SaCursorColDynData 117 49.78 SaGloballnit.154

4.9.18 SaCursorColDynStr 118 49.79 SaSetDateFormat154
49.19 SaCursorColFloat119 4.9.80 SaSetSortBufSize155
49.20 SaCursorCollnt.120 4.9.81 SaSetSortMaxFiles.155
49.21 SaCursorColLong121 49.82 SaSetTimeFormat156
4.9.22 SaCursorColNullFlag.121 4.9.83 SaSetTimestampFormat 157
4.9.23 SaCursorColStr.122 4.9.84 SaSQLExecDirect 157
49.24 SaCursorColTime123 4985 SaTransBegin158
4.9.25 SaCursorColTimestamp 124 49.86 SaTransCommit 158
4.9.26 SaCursorCreate124 49.87 SaTransRollback 159
49.27 SaCursorDelete125 4988 SsaUserld.159
4.9.28 SaCursorDescending125
4929 SaCursorEnd126 5 Transaction Log Reader. 161
4.9.30 SaCursorEqual126 5.1 Considerations for developing applications with
4.9.31 SaCursorErrorInfo. 127 Log Reader . . . 161
4.9.32 SaCursorFree127 5.2 Configuring the Log Reader L. .. . 163
4.9.33 SaCursorIpsert Coe e e e 128 5.3 Reading log data with the Log Reader .. . 164
4.9.34 SaCursorLike128 5.4 Partitioning and filtering log records 165
4.9.35 SaCursorNext129 5.4.1 Creating and deleting partitions 165
4.9.36 SaCursorOpen . . . coe e 129 5.4.2 Using partition filters 165
4.9.37 SaCursorOrderbyVector I 5.5 Setting transaction batches. 166
4.9.38 SaCursorPrev130
4.9.39 SaCursorReSearch.131 . . .
4.9.40 SaCursorSearch . . S 1 g 1"‘\/’\/0}1';':'2%:1\?::6}, nicode.1 16678
igg gaCursorSearchByRowm Ce e 13 6.2 Designing Unicode databases. 169

aCursorSearchReset.132

6.3 Using solidDB tools with Unicode 171
4.9.43 SaCursorSetLockMode 134 L) .
e 6.4 Compatibility between Unicode and partial

4.9.44 SaCursorSetPosition135 Unicode databases. 179
4.9.45 SaCursorSetRowsPerMessage 136 6.4.1 Converting partial Umco de databases to
4946 SaCursorUpdate136 Unicode 179
igg 2232;2%;::& o ig; 6.5 Developing apphcatlons for Umcode 174
4'9' 49 SaDateSet As.ciiz' o s 137 6.5.1 ODBC applications and Unicode databases 175
4950 SaDateSetTimet 138 6.5.2 JDBC applications and Unicode databases 177
4951 SaDateToAsciiz.139
4952 SaDateToTimet. 140 Appendlx A. solidDB Supported OoDBC
4953 SaDefineChSet140 functions e e e .. 179
4954 saDfloatCmp141
4955 SaDfloatDiff.141 Appendix B. solidDB ODBC Driver
4.9.56 SaDfloatOverflow.142 3.5.1 attributes support 189
4957 SaDfloatProd142 e e
4.9.58 SaDfloatQuot143 .
4959 SaDfloatSetAsciiz143 Appendix C. SQLSTATE error codes 197
49.60 SaDfloatSum144 . .
49.61 SaDfloatToAsciiz 144 Appendix D. Minimum SQL grammar
49.62 SaDfloatUnderflow145 requirements forODBC 219
49.63 SaDisconnect145 D.1 SQL statements 219
4.9.64 SaDynDataAppend145 D.1.1 Control statements (loglcal condltlon) .. 220
4.9.65 SaDynDataChLen. 146 D.2 Data type support221
4.9.66 SaDynDataClear147 D.3 Parameter data types222
4.9.67 SaDynDataCreate147 D.4 Literals in ODBC.223
4.9.68 SaDynDataFree 148 D.5 List of reserved keywords.224
4.9.69 SaDynDataGetData 148
49.70 SaDynDataGetLen149 Appendix E. Datatypes 227
49.71 SaDynDataMove 149 E.1 SQL data type overview227
4.9.72 SaDynDataMoveRef 150 E2 C data types 297
4.9.73 SaDynStrAppend 151 E.3 Data type identifiers.228
4.9.74 SaDynStrCreate152 E.4 SOL data types 228
49.75 SaDynStrFree152 E.5 C data typZE [230
49.76 SaDynStrtMove.152 E.6 Numeric literals237
49.77 SaErrorInfo153

iv IBM solidDB: Programmer Guide

E.7 Overriding default precision and scale for

numeric data types

E.8 Data type identifiers and descrlptors

E.9 Decimal digits .

E.10 Transfer octet length

E.11 Constraints of the gregorian calendar

E.12 Converting data from SQL to C data types
E.12.1 Data conversion tables from SQL to C
E.12.2 SQL to C data conversion examples.

E.13 Converting data from C to SQL data types
E.13.1 Data conversion tables from C to SQL
E.13.2 C to SQL data conversion examples.

Appendix F. Scalar functions.
F.1 ODBC and SQL-92 scalar functions .
F.2 String functions

F.3 Numeric functions

F.4 Time and date functions

F.5 System functions . .

F.6 Explicit data type conversion .

F.7 SQL-92 CAST function .

. 239
. 240
. 241
. 242
. 244

245
247

. 257

258
260

. 271

. 273
. 273
. 273
. 277
. 280
. 285
. 286
. 287

Appendix G. Timeout controls .
G.1 Client timeouts

G.2 Server timeouts

G.3 HotStandby timeouts

Appendix H. Client-side configuration
parameters . .
H.1 Setting client-side parameters through the
solid.ini configuration file .

H.2 Client section .

H.3 Com section

H.4 Data Sources section

H.5 SharedMemoryAccess sectlon

H.6 TransparentFailover section

Index .

Notices .

Contents

. 289
. 289
. 292
. 295

. 297

. 297
. 298
. 299
. 300
. 300
. 301

. 303

. 309

A\

vi IBM solidDB: Programmer Guide

Figures

1.

ODBC driver setup .

.22

2.

ODBC data source administrator

.24

vii

viii IBM solidDB: Programmer Guide

Tables

PN UT PN

e e T S ey
Gl W= o0

16.

17.

18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.

Typographic conventions.

Syntax notation conventions.

Connect string options .

Connect string options .

Additional ODBC Extension Functlons
Non-standard ODBC functions .

A Sample Resultset .

A sample resultset

A sample resultset

A Sample Resultset .

. A Sample Resultset .

Errors in a Data Source
Sample Error Messages
SQLSTATE values

Differences to the Standard CallableStatement

Interface .
Differences to the Standard Connectlon
Interface

Differences to the Standard PreparedStatement

Interface

Differences to the Standard ResultSet Interface
Differences to the Standard Statement Interface
Differences to the Standard ResultSet Interface

Constructor

Constructor

setDescription.
getDescription

setURL .

getURL .

setUser .

getUser .

setPassword

getPassword
setConnectionURL .
getConnectionURL .
getLoginTimeout .
getLogWriter .
getPooledConnection
getPooledConnection
setLoginTimeout .
setLogWriter . .
addConnectlonEventLlstener
close .

getConnectron
removeConnectlonEventLlstener

Java data type to SQL data type conversion

Insert operation steps .

Update and delete operation steps
Query Operation Steps . .
solidDB SA Function Return Codes .
Supported SQL Datatype.

solidDB SA Parameter usage types
Return Usage Types for Pointers .
SaArrayFlush Parameters
SaArrayInsert Parameters
SaColSearchCreate Parameters .

. xiii
. Xiv
. 10
.18
. 30
. 30
. 36
. 36
. 37
. 38
. 39
. 40
. 40

.41

. 59

. 59

. 61
61
63
64

.71
.71
.71
.72
.72
.72
.73
.73
.73
. 74
.74
. 74
.75
.75
.75
. 76
. 76
.77
.77
.77
. 78
. 78

92

. 97

. .98
. 100

. 102

. 104

. 106

. 107

. 107

. 108

. 109

54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.

SaColSearchCreate Parameters .
SaColSearchNext Parameters
SaColSearchNext Return Value.
SaConnect Parameters.
SaConnect Return Value .
SaCursorAscending parameters
SaCursorAtleast Parameters .
SaCursorAtmost Parameters
SaCursorBegin Parameters .
SaCursorClearConstr Parameters .
SaCursorColData Parameters
SaCursorColDate Parameters

SaCursorColDateFormat parameters .

SaCursorColDfloat Parameters .
SaCursorColDouble Parameters
SaCursorColDynData Parameters .
SaCursorColDynStr Parameters
SaCursorColFloat Parameters
SaCursorColInt Parameters .
SaCursorColLong Parameters .
SaCursorColNullFlag Parameters .
SaCursorColStr Parameters .
SaCursorColTime parameters

SaCursorColTimestamp parameters .

SaCursorCreate Parameters .
Return Value. . .
SaCursorDelete parameters .
SaCursorDescending parameters .
SaCursorEnd parameters.
SaCursorEqual parameters .
SaCursorErrorInfo parameters .
SaCursorFree parameters.
SaCursorInsert parameters .
SaCursorLike parameters
SaCursorNext parameters
SaCursorOpen parameters .

SaCursorOrderbyVector parameters .

SaCursorPrev parameters
SaCursorReSearch Parameters .
SaCursorSearch parameters .

SaCursorSearchByRowid parameters .

SaCursorSearchReset Parameters .
SaCursorSetLockMode Parameters
SaCursorSetPosition parameters

SaCursorSetRowsPerMessage parameters

SaCursorUpdate parameters
SaDateCreate Return Values.
SaDateFree parameters
SaDateSetAsciiz Parameters.
SaDateSetTimet parameters .
SaDateToAsciiz parameters .
SaDateToTimet parameters .
SaDefineChSet parameters .
SaDfloatCmp parameters.
SaDfloatDiff parameters .
SaDfloatOverflow parameters .

. 109
. 109
. 110
. 110
. 110
111
111
. 112
. 112
. 112
. 114
. 114
. 115
. 116
. 116
. 118
. 119
. 119
. 120
. 121
. 122
. 123
. 123
. 124
. 125
. 125
. 125
. 126
. 126
. 126
. 127
. 127
. 128
. 128
. 129
. 129
. 130
. 131
. 131
. 131
. 132
. 134
. 135
. 135

136

. 136
. 137
. 137
. 138
. 139
. 139
. 140
. 140
. 141
. 141
. 142

ix

110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.

142.
143.
144.
145.
146.
147.
148.
149.
150.

151.
152.

153.
154.
155.
156.
157.
158.

159.

X

SaDfloatProd Parameters.

SaDfloatQuot parameters
SaDfloatSetAsciiz parameters

SaDfloatSum parameters .
SaDfloatToAsciiz parameters
SaDfloatUnderflow parameters.
SaDisconnect Parameters.
SaDynDataAppend parameters
SaDynDataChLen Parameters .
SaDynDataClear Parameters
SaDynDataCreate Return Value
SaDynDataFree parameters .
SaDynDataGetData parameters
SaDynDataGetData Parameters
SaDynDataMove Parameters
SaDynDataMoveRef Parameters
SaDynStrAppend parameters
SaDynStrCreate Return Value .
SaDynStrFree parameters

SaDynStrMove Parameters .

SaErrorInfo Parameters

SaSetDateFormat Parameters
SaSetSortBufSize Parameters
SaSetSortMaxFiles parameters .
SaSetTimeFormat Parameters
SaSetTimestampFormat parameters
SaSQLExecDirect Parameters

SaTransBegin parameters.

SaTransCommit Parameters .
SaTransRollback Parameters.

SaUserld Parameters .

Command line options for sothB tools for
partial Unicode and Unicode databases .
solidDB supported ODBC functions .

001 Environment Level

002 Connection Level .

03 Statement Level.

04 Column Attributes .

Error code class values

SQLSTATE codes

Control Statements.

Determining Data Ttype for Several Types of
Parameters
List of Reserved Keywords . .
Common SQL Data Type Names, Ranges and
Limits . .
Data types SQLGetTypeInfo returns (1)
Data Types SQLGetTypelnfo Returns (2)
Data Types SQLGetTypelnfo Returns (3)
C vs ODBC Naming Correspondence
Conversions Involving Numeric Literals
Override Default Precision and Scale Values
for Numeric Data Type .o

Concise Type Identifier, Verbose Identlfler
and Type Subcode for Each Datetime

IBM solidDB: Programmer Guide

. 142
. 143
. 143
. 144
. 144
. 145
. 145
. 146
. 146
. 147
. 148
. 148
. 148
. 149
. 150
. 151
. 151
. 152
. 152
. 153
. 153
. 154
. 155
. 156
. 156
. 157
. 157
. 158
. 159
. 159
. 159

. 172
. 179
. 189
. 190
. 191
. 194
. 197
. 197

. 220

. 222

. 224

. 229

231
231
231
233
237

. 239

. 240

160.
161.
162.

163.

164.
165.
166.

167.
168.
169.
170.
171.
172.
173.
174.

175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
206.

207.

ODBC Functions' Return Parameter .

SQL data type decimal digits

Descriptor field corresponding to dec1rna1
digits .

ODBC Functions' Return parameter Dec1rna1
Attributes.

Transfer Octet Lengths . .
Constraints of the Gregorian Calendar

C Data Type — SQL_C_datatype where
Datatype Is: .

Character SQL Data to ODBC C Data Types
SQL Data to ODBC C Data Types.

Binary SQL Data to ODBC C Data Types
Date SQL Data to ODBC C Data Types
Time SQL Data to ODBC C Data Types
Timestamp SQL Data to ODBC C Data Types
SQL to C Data Conversion Examples

SQL Data Type — SQL_datatype where
Datatype Is: .

C Character Data to ODBC SQL Data Types
Numeric C Data to ODBC SQL Data Types
Bit C Data to ODBC SQL Data Types
Binary C Data to ODBC SQL Data Types
Date C Data to ODBC SQL Data Types
Time C Data to ODBC SQL Data Types
Timestamp C Data to ODBC SQL Data Ttypes
C Data to SQL Data

String Function Arguments .

List of String Functions .

Numeric Function Arguments .

List of Numeric Functions

Time and Data Arguments .

List of Time and Date Functions .
System Function Arguments

List of System Functions .

Login timeouts .

Connection timeout

Query Timeout . .
SQL statement execution tlmeouts
Lock wait timeout .

Optimistic lock wait timeout

Table lock wait timeout .
Transaction Idle Timeout.

connection idle timeout .

Connect timeout

Ping timeout.

Transparent connection tlmeout
Client parameters .

Client-side communication parameters
Data Sources parameters. .
Shared memory access parameters
(client-side) . .
TransparentFailover pararneters

. 241
. 242

. 242

. 243
. 243

244

. 246

248

. 251

253
254
255
256
257

. 259

261
265
266
267
268
269
270
. 271

. 274
. 274
. 277
. 278
. 280
. 280
. 285
. 285
. 289
. 290
. 292
. 293
. 293
. 294
. 294
. 295
. 295
. 296
. 296
. 296
. 298

299

. 300

. 300
. 301

Summary of changes

Changes for revision 05

Editorial corrections.

Changes for revision 04

Editorial corrections.

Changes for revision 03

Information about timeout unit for JDBC method setQueryTimeout() updated in
section Server timeouts| As of V7.0 Fix Pack 4, the timeout unit in SMA
connections is the same as in network-based connections, that is, the timeout
unit is seconds.

Changes for revision 02

properties:

Information about timeout unit for JDBC method setQueryTimeout() updated in
section Berver timeouts} In SMA connections, the timeout unit is milliseconds. In
network-based connections, the timeout unit is seconds.

Information about support for uppercase and lowercase conversions in Unicode
databases updated in section [Developing applications for Unicode} conversions
are now supported for all Unicode characters.

Factory value for the Com.SocketLinger client-side parameter changed from yes
to no in section [Client-side configuration parameters}

New JDBC connection properties added in section [Non-standard connection|

— "solid_gskit_path"

— "solid_socket_linger"

— "solid_socket_linger_time"

— "solid_use_strong_encryption"

Previously undocumented client-side parameters Com.SocketLinger and
Com.SocketLingerTime added in section [Client-side configuration parameters,

Section for client-side parameter 0DBCHand1eValidation corrected; the

ODBCHandleValidation is in the|Client sectio

Changes for revision 01

New parameter Client.GSKitPath added in .

xi

xii IBM solidDB: Programmer Guide

About this manual

This guide contains information about using IBM® solidDB® through the different
Application Programming Interfaces, with or without the shared memory access
(SMA), linked library access (LLA), or HotStandby:.

solidDB ODBC Driver, solidDB Light Client, and solidDB JDBC Driver help your
client application access solidDB.

¢ The solidDB ODBC Driver conforms to the Microsoft ODBC 3.51 API standard.

¢ The solidDB Light Client is a lightweight version of the solidDB ODBC API and
is intended for environments where the footprint of the client application must
be very small.

¢ The solidDB JDBC Driver is a solidDB implementation of the JDBC 2.0 standard.

This guide assumes general knowledge of relational databases and SQL. It also
assumes familiarity with solidDB. If you will use the ODBC driver, this manual
assumes a working knowledge of the C programming language. If you will use the
JDBC driver, this manual assumes a working knowledge of the Java"
programming language.

Typographic conventions

solidDB documentation uses the following typographic conventions:

Table 1. Typographic conventions

Format Used for
Database table This font is used for all ordinary text.
NOT NULL Uppercase letters on this font indicate SQL keywords and

macro names.

solid.ini These fonts indicate file names and path expressions.

gg;Mi_YrNﬁomeER YES: This font is used for program code and program output.

Example SQL statements also use this font.

run.sh This font is used for sample command lines.
TRIG_COUNT() This font is used for function names.

java.sql.Connection This font is used for interface names.

LockHashSize This font is used for parameter names, function arguments,

and Windows registry entries.

argument Words emphasized like this indicate information that the
user or the application must provide.

xiii

Table 1. Typographic conventions (continued)

Format

Used for

Administrator Guide

This style is used for references to other documents, or
chapters in the same document. New terms and emphasized
issues are also written like this.

File path presentation

Unless otherwise indicated, file paths are presented in the
UNIX format. The slash (/) character represents the
installation root directory.

Operating systems

If documentation contains differences between operating
systems, the UNIX format is mentioned first. The Microsoft
Windows format is mentioned in parentheses after the
UNIX format. Other operating systems are separately
mentioned. There may also be different chapters for
different operating systems.

Syntax notation conventions

xiv

solidDB documentation uses the following syntax notation conventions:

Table 2. Syntax notation conventions

Format

Used for

INSERT INTO table_name

Syntax descriptions are on this font. Replaceable sections are
on this font.

solid.ini

This font indicates file names and path expressions.

[]

Square brackets indicate optional items; if in bold text,
brackets must be included in the syntax.

A vertical bar separates two mutually exclusive choices in a
syntax line.

Curly brackets delimit a set of mutually exclusive choices in
a syntax line; if in bold text, braces must be included in the
syntax.

An ellipsis indicates that arguments can be repeated several
times.

A column of three dots indicates continuation of previous
lines of code.

IBM solidDB: Programmer Guide

1 Introduction to APlIs

solidDB supports ODBC and JDBC interfaces that enable application developers to
write applications with C or Java languages calling ODBC functions or JDBC
methods and writing or generating the SQL string at the application level.

solidDB also provides two proprietary interfaces, solidDB Application
Programming Interface (SA API) and solidDB Server Control API (SSC API). These
allow, for example, C programs to directly call functions inside the database server.
These proprietary interfaces are provided with the linked library access (LLA) and
shared memory access (SMA) libraries.

Other programming environments

Multiple ways exist to raise the abstraction level from the ODBC/JDBC level. It
can be done either by enabling database access from various (usually higher level
programming or scripting languages, such as Visual Basic, Perl, and PHP) or
enabling database access directly through application level objects that are able to
load or save themselves without the application programmer having to be aware
of database connections, transactions, or even SQL Strings.

Database access from higher level programming is usually based on some
middleware component translating the higher level language calls to regular ODBC
or JDBC calls. In these conditions, the middleware component is seen as an
application from the database perspective. Usually the middleware components
hide the difference between database brands. However, as solidDB is a relatively
new product, not all middleware vendors explicitly list it among the supported
database products. In those cases, there is usually an option to have a generic
ODBC database or generic JDBC database that works with solidDB drivers.

Certain programming environments do not have a direct counterpart in solidDB
applications, such as Embedded SQL or Java-based stored procedures. Applications
designed to run on these programming environments must be redesigned to fit
solidDB.

1.1 solidDB ODBC Driver

The solidDB ODBC Driver conforms to the Microsoft ODBC 3.5.1 API standard.
The solidDB ODBC API is the native call level interface (CLI) for solidDB
databases. It is compliant with ANSI X3H2 SQL CLI standard.

The solidDB ODBC Driver is a distributed in the form of a library. solidDB
provides two ODBC drivers (libraries): one for Unicode and one for ASCIIL. The
Unicode version is a superset of the ASCII version; you can use it with either
Unicode or ASCII character sets.

The solidDB implementation of the ODBC API supports a rich set of database
access operations sufficient for creating robust database applications, including:

* Allocating and deallocating handles

* Getting and setting attributes

* Opening and closing database connections
* Accessing descriptors

* Executing SQL statements

* Accessing schema metadata

* Controlling transactions

* Accessing diagnostic information

Depending on the application's request, the solidDB ODBC Driver can
automatically commit each SQL statement or wait for an explicit commit or
rollback request. When the driver performs a commit or rollback operation, the
driver resets all statement requests associated with the connection.

Configuration file for solidDB ODBC Driver

The solidDB ODBC Driver gets its client configuration information from the
client-side solid.ini file. The client-side configuration file must be located in the
working directory of the application.

When the solidDB ODBC Driver is started, it attempts to open the configuration
file solid.ini. If the file does not exist, solidDB uses the factory values for the
parameters. If the file exists, but a value for a particular parameter is not set in the
solid.ini file, solidDB uses the factory value for that parameter.

Non-standard extensions for ODBC

solidDB provides a set of proprietary, non-standard ODBC attributes and functions.
For example, the non-standard ODBC attributes can be used to provide encryption
related configuration information on a connection level.

Related concepts:

PR, “solidDB ODBC APL” on page 7|
This section contains information and usage samples for developing applications
that use the solidDB ODBC APIL

R.1.5, “Client-side solid.ini configuration file,” on page 11|

The solidDB ODBC Driver gets its client configuration information from the
client-side solid.ini file. The client-side configuration file must be located in the
working directory of the application.

.1.4, “Format of the solidDB connect string,” on page 10|

The client processes use the solidDB connect string (network name) to specify
which server it will connect to.

R.9, “solidDB extensions for ODBC API,” on page 30|

The solidDB server and clients include various and connection attributes that are
proprietary extensions to the ODBC APL

1.2 solidDB JDBC Driver

2

The JDBC 2.0 Driver provides support for JDBC 2.0.
For solidDB JDBC Driver, Java Development Kit (JDK) 1.4.2 or newer is supported.

solidDB JDBC Diriver allows you to develop your application with a Java tool that
accesses the database using JDBC. The JDBC AP, the core API for JDK 1.2, defines
Java classes to represent database connections, SQL statements, result sets, database
metadata, and so on. It allows you to issue SQL statements and process the results.
JDBC is the primary API for database access in Java.

IBM solidDB: Programmer Guide

In order to use JDBC, you have to install the solidDB JDBC Driver. Usage of JDBC
drivers varies depending on your Java development environment.

Instructions and samples for using the solidDB JDBC Driver are located in the
/jdbc subdirectory in the solidDB installation package and in 3, “solidDB JDB(
Driver,” on page 53

1.3 solidDB Application Programming Interface (SA API)

solidDB SA is a C-language client library to connect solidDB database products.
This library is used internally in solidDB products and provides access to data in
solidDB database tables. The library contains 90 functions providing low-level
mechanisms for connecting the database and running cursor-based operations.
Related concepts:

i, “solidDB SA,” on page 95|

This section describes how to use the solidDB Application Programming Interface
(API) also known as solidDB SA

4.9, “solidDB SA Function Reference,” on page 105|

This topic contains the list of the solidDB SA functions in alphabetic order.

1.4 solidDB Server Control APl (SSC API)

The solidDB Server Control API (SSC API) is proprietary API that contains a set of
functions that provide a simple and efficient means to control the tasking system
of the solidDB server. For example, the SSC API functions are used to start and
stop the linked library access (LLA) and shared memory access (SMA) server.

The SSA API is provided with the shared memory access (SMA) and linked library
access (LLA) libraries. For more details, see solidDB Server Control API (SSC API) in
the IBM solidDB Shared Memory Access and Linked Library Access User Guide.

1.5 solidDB Server Control API (SSC API) for Java

The solidDB Server Control API (SSC API) for Java is a proprietary API, named
after SolidServerControl class. The SSC API for Java calls are used to start and stop
the LLA server. The actual database connections are done with normal solidDB
JDBC API. Both the SSC API for Java classes and solidDB JDBC driver classes are
included in the solidDB JDBC driver (SolidDriver2.0.jar).

For more information about SSC API for Java, see the IBM solidDB Shared
Memory Access and Linked Library Access User Guide.

1.6 solidDB Transaction Log Reader

The solidDB Transaction Log Reader provides an interface that you can use to read
log records from the solidDB transaction log transaction by transaction. Using the
Log Reader interface, you can, for example, write an application that listens to and
displays log traffic in the solidDB server.

The solidDB Universal Cache functionality uses the Log Reader interface:
InfoSphere® CDC replication engine accesses the solidDB transaction log to capture
data changes and transmits these changes to the backend replication engine, which
copies the changes to the backend database.

Related concepts:

1 Introduction to APIs 3

b5, “Transaction Log Reader,” on page 161]

The solidDB Transaction Log Reader is a solution that makes it possible to read log
records from the solidDB transaction log transaction by transaction. Using the Log
Reader interface, you can, for example, write an application that listens to and
displays log traffic in the solidDB server.

1.7 Building client applications

4

This section provides an overview of how to create a client application that will
work with solidDB. The information in this section applies primarily to C-language
programs that use the ODBC driver.

1.7.1 What is a client?

A client application, or client for short, is a program that submits requests (SQL
queries) to the server and gets results back from the server.

A client program is separate from the server program. In many cases, the client is
also running on a separate computer. Using shared memory access or linked
library access, you can link the client's code directly to the server's code so that
both run as a single process. For more information, see IBM solidDB Shared Memory
Access and Linked Library Access User Guide.

Since the client is a separate program, it cannot directly call functions in the server.
Instead, it must use a communications protocol (such as TCP/IP or named pipes)
to communicate with the server. Different platforms support different protocols. On
some platforms, you may need to link a specific library file (which supports a
specific protocol) to your application so that your application can communicate
with the server.

1.7.2 How is the query passed to the server?

Queries are written using the SQL programming language.

One way that the server and client can exchange data is simply to pass literal
strings back and forth. The client could send the server the string:

SELECT name FROM employees WHERE id = 12;

and the server could send back the string:
"Smith, Jane".

In practice, however, communication is usually done via a "driver", such as an
ODBC driver or a JDBC driver. "ODBC" stands for "Open DataBase Connectivity"
and is an API (Application Programming Interface) designed by Microsoft to make
database access more consistent across vendors. If your client program follows the
ODBC conventions, then your client program will be able to talk with any
database server that follows those same conventions. Most major database vendors
support ODBC to at least some extent. The ODBC standard is generally used by
programs written in the C programming language.

"JDBC" stands for "Java DataBase Connectivity". It is based heavily on the ODBC
standard and is essentially "ODBC for Java programs".

There are two major ways to pass specific data values (for example, "Smith, Jane"
to the server. The first way is to simply embed the values as literals in the query.
This can be seen in SQL statements like:

IBM solidDB: Programmer Guide

INSERT INTO employees (id, name) VALUES (12, 'Smith, Jane');

This works well if you have a single statement that you want to execute. There are
times, however, that you may want to execute the same basic statement with
different values. For example, if you want to insert data for 500 employees, you
may not want to compose 500 separate statements such as

INSERT INTO employees (id, name) VALUES (12, 'Smith, Jane');
INSERT INTO employees (id, name) VALUES (13, 'Jones, Sally');

Instead, you might prefer to compose a single "generic" statement and then pass
specific values for that statement. For example, you might want to compose the
following statement:

INSERT INTO employees (id, name) VALUES (?, ?);

and have the question marks replaced with specific data values. This way you can
easily execute all 500 INSERT statements inside a loop without composing a
unique INSERT statement for each employee. By using parameters, you can specify
different values each time a statement executes. A parameter allows you to specify
a variable that will be used by the client program and the ODBC driver to store
values that the client and server exchange. In essence, you pass a parameter for
each place in the statement where you have a question mark.

Another situation where you might want to use parameters to exchange data
values is when working with data that is difficult to represent as string literals. For
example, if you want to insert a digitized copy of the song "American Pie" into
your database, and you do not want to compose an SQL statement with a literal
that contains a series of hexadecimal numbers to represent that digitized data, then
you can store the digitized data in an array and notify the ODBC driver of the
location of that array.

To use parameters with SQL statements, you go through a multistep process. The
following shows the process of inserting data. The process is somewhat similar
when you want to retrieve data.

1. Prepare the SQL statement. During the prepare phase, the server analyzes the
statement and (among other things) looks to see how many parameters there
will be. The number and meaning of the parameters is shown by the question
marks that are included in the SQL statement.

2. Tell the ODBC driver which variables will be used as parameters. Telling the
ODBC driver which variable is associated with which column or value is called
"binding" the parameters.

3. Put values into the parameters (that is, set the values of the variables).

4. Execute the prepared statement.

During the execution phase, the ODBC driver will read the values you have stored
in the parameters and will pass those values to the server to use with the
statement that it has already prepared.

1.7.3 How are the results passed back to the client?

The result of a query is a set of 0 or more rows. If you are using an ODBC driver
or JDBC driver, you retrieve each row by using the appropriate ODBC or JDBC
functions.

As a general rule, you go through the following steps

1 Introduction to APIs 5

6

1. Prepare the SQL statement. During the prepare phase, the server analyzes the
statement and (among other things) looks to see how many parameters there
will be. The number and meaning of the parameters is shown by the question
marks that are included in the SQL statement.

2. Tell the ODBC driver which variables will be used as parameters. Telling the
ODBC driver which variable is associated with which column or value is called
"binding" the parameters.

3. Execute the prepared statement. This tells the server to execute the query and
collect the result set. However, the result set is not passed to the client
immediately.

4. Fetch the next row of the result set. When you do a fetch, you tell the server
and the ODBC driver to retrieve one row of results from the result set and then
store the values of that row into the parameters that you previously defined for
the ODBC driver to share with your application.

Normally you will perform a loop, fetching one row at a time and reading the data
from the parameters after each fetch.

1.7.4 Statement cache

Processing of queries is additionally optimized by a built-in statement cache.

Statement cache is an internal memory for storing a small number of previously
prepared SQL statements. The statement cache operates in such a way that the
prepare phase is omitted if the prepared statement is in the cache. If a connection
is closed, the statement cache is purged.

In ODBC, the number of cached statements for a session can be set by using a
client-side solid.ini configuration parameter Client.StatementCache.

In JDBC, the statement cache size can be dynamically set by using a non-standard
StatementCache connection property.

Related concepts:

B.4.3, “Non-standard JDBC connection properties,” on page 66|
The following connection properties can be used to attain connection-specific
behavior.

Related information:

[H.2, “Client section,” on page 298|

IBM solidDB: Programmer Guide

2 solidDB ODBC API

This section contains information and usage samples for developing applications
that use the solidDB ODBC API.

In general, solidDB conforms to the Microsoft ODBC 3.51 standard. solidDB ODBC
APIs are defined based on the function prototypes provided by Microsoft. This
guide details those areas where solidDB-specific usage applies and where support
for options, data types, and functions differ.

Note: This IBM solidDB Programmer Guide does not contain a full ODBC API
reference. For details on developing applications with ODBC API, refer to the
Microsoft ODBC Programmer's Referencel

solidDB provides two versions of the ODBC driver, one for Unicode and one for
ASCIL The Unicode version is a superset of the ASCII version; you can use it with
either Unicode or ASCII character sets.

2.1 Getting started with solidDB ODBC

The solidDB ODBC Driver is installed as part of the solidDB server installation.
After installation, distribute the driver on your client computers, define data
sources and other connection details by using ODBC driver managers or by linking
to the driver directly.

2.1.1 Installing solidDB ODBC Driver

The solidDB installation program installs two ODBC Drivers: one for Unicode and

one for ASCII. The Unicode version is a superset of the ASCII version; you can use
it with either Unicode or ASCII character sets. On Windows environments, you can
also use the solidDB installation program to install only the ODBC driver.

Windows

In Windows environments, the solidDB installation program installs the ODBC
drivers and the following system Data Source Names (DSN) automatically. You can
also add you own user DSNs.

* Windows 32-bit operating systems:
— IBM solidDB 7.0 32-bit — ANSI
— IBM solidDB 7.0 32-bit — Unicode
* Windows 64-bit operating systems:
— IBM solidDB 7.0 64-bit — ANSI
— IBM solidDB 7.0 64-bit — Unicode

Linux and UNIX

In Linux and UNIX environments, the ODBC driver library files are installed to the
following directories:

¢ <solidDB installation directory>/bin/: dynamic library files
— sac<platform><version>.sa or sac<platform><version>.so — ANSI
— soc<platform><version>.sa or soc<platform><version>.so — Unicode

http://msdn.microsoft.com/en-us/library/ms714177(VS.85).aspx

* <solidDB installation directory>/1ib/: static library files
— solidodbca.sa or solidodbca.so — ANSI
— solidodbcu.sa or solidodbcu.so — Unicode

The file extension .sa or .so depends on the operating system.
Installing ODBC drivers without solidDB installation (Windows)

To install the ODBC drivers without installing solidDB in Windows environments:
1. Start the solidDB installation program.

2. Select Custom installation.

3. Select ODBC (clear Server and Samples).

4. Follow the displayed instructions to complete the installation.

Installing ODBC drivers without solidDB installation (Linux and
UNIX)

To install the ODBC drivers without installing solidDB in Linux and UNIX
environments:

1. Install solidDB using the installation program.
2. Copy the ODBC driver library file to your client node.
Related concepts:

R.4.5, “Using solidDB ODBC Driver with unixODBC,” on page 22|

unixODBC is an ODBC driver manager for UNIX type environments. Instead of
linking an application directly with the solidDB ODBC driver, a unixODBC
DriverManager can be used.

Related tasks:

R.4.4, “Configuring the solidDB ODBC Data Source for Windows,” on page 21|
To configure an ODBC data source for Windows platforms, you need to perform
the steps described in this section.

2.1.2 Using the ODBC driver library

The ODBC driver libraries must be linked with your client application program.
You will then be able to call the functions that are defined in these libraries.

Static vs. dynamic Libraries
solidDB provides both a static and a dynamic version of the ODBC driver library.

Static libraries are linked to your client application's executable program at the
time that you do a compile-and-link operation. Dynamic librarires are stored
separately from your executable and are loaded into memory at the time your
program executes.

The advantage of a static library is that your application is largely self-contained; if
you distribute the application to your customers, those customers do not have to
install a separate shared library in addition to installing your application.

The advantage of a dynamic library is that on many systems it requires less disk
space (and, on some platforms, less memory space) if more than one client uses
that library. For example, if you have two client applications that each link to a 5
MB static library, you will need not only 5 MB of disk space to store the static

8 IBM solidDB: Programmer Guide

library, but also 10 MB of additional disk space to store both copies of the library
that are linked into the application. However, if you link two client applications to
a dynamic library, no additional copies of that library will be required; each
application does not keep its own copy.

In Windows environments, solidDB provides an import library in some cases. Each
import library is associated with a corresponding dynamic link library. Your
application will link to the import library. When the application is actually loaded
and executed, the operating system will load the corresponding dynamic link
library.

2.1.3 ODBC API basic application steps

A client database application calls the solidDB ODBC API directly (or through the
ODBC Driver Manager) to perform all interactions with a database. For example,

to insert, delete, update, or select records, you make a series of calls to functions in
the ODBC API.

An application using ODBC API performs the following tasks:.

1. The application allocates memory and creates handles, and establishes a
connection to the database.

a. The application allocates memory for an environment handle (henv) and a
connection handle (hdbc); both are required to establish a database
connection.

An application may request multiple connections for one or more data
sources. Each connection is considered a separate transaction space. In other
words, a COMMIT or ROLLBACK on one connection will not commit or
rollback any statements executed through any other connection.

b. The SQLConnect() call establishes the database connection, specifying the
server name (a connect string or a data source name), user id, and
password.

c. The application then allocates memory for a statement handle.

2. The application executes the statement. This requires a series of function calls.

a. The application calls either SQLExecDirect(), which both prepares and
executes an SQL statement, or SQLPrepare() and SQLExecute(), which
allows statements to be executed multiple times.

b. If the statement was a SELECT, the result columns must be bound to
variables in the application so that the application can see the returned data.
The SQLBindCol() function will bind the application's variables to the
columns of the result set. The rows can then be fetched using SQLFetch()
repeatedly. SELECT statements must be committed as soon as processing of
the resultset is done.

If the statement was an UPDATE, DELETE, or INSERT, then the application
needs to check if the execution succeeded and call SQLEndTran() to commit
the transaction.
3. Finally the application closes the connection and frees any handles.
a. The application frees the statement handle.
b. The application closes the connection.

c. The application frees the connection and environment handles (hdbc and
henv).

Note that step 2 (executing SQL statements) may be done repeatedly, depending
upon how many SQL statements need to be executed.

2 solidDB ODBC API 9

Read |2, “solidDB ODBC APL"” on page 7] for more information about using these
API calls.

2.1.4 Format of the solidDB connect string

The client processes use the solidDB connect string (network name) to specify
which server it will connect to.

A default connect string can be defined with the client-side Com.Connect
configuration parameter. The connect string can also be supplied, for example, at
connection time or when configuring data sources with an ODBC driver manager.

The same format of the connect string applies to the Com.Connect parameter as
well as to the connect string used by solidDB tools or ODBC applications.

The format of a connect string is the following:
protocol_name [options] [host_computer_name] server_name

where
e options can be any combination of the following;:

Table 3. Connect string options

Option Description Protocol
-4 Specifies that client connects using IPv4 protocol only. TCP/1P
-6 Specifies that client connects using IPv6 protocol only. TCP/1P

In Windows environments, this option is mandatory if IPv6 protocol is used.

-isource_address Specifies an explicit connecting socket source address for cases where the system TCP/1P
default source IP address binding does not meet application needs.

source_address can be an IP address or a host name.

-z Enables data compression for the connection All
Important:

* Data compression is not available for HotStandby connections (HotStandby.Connect)
and NetBackup connections (ADMIN COMMAND 'netbackup').

* Data compression for netcopy connections cannot be enabled with the -z option.
Instead, use the HotStandby.NetcopyRpcCompress=yes parameter setting.

-c milliseconds Specifies the login timeout (the default is operating-system-specific). A login request TCP/IP
fails after the specified time has elapsed.

-r milliseconds Specifies the connection (or read) timeout. A network request fails when no response is | TCP/IP
received during the time specified. The value 0 (default) sets the timeout to infinite
(operating system default timeout applies).

-ofilename Turns on the Network trace facility and defines the name of the trace output file All

See Network trace facility in the IBM solidDB Administrator Guide for details.

-plevel Pings the server at the given level (0-5). All

Clients can always use the solidDB Ping facility at level 1 (0 is no operation/default).
Levels 2, 3, 4 or 5 may only be used if the server is set to use the Ping facility at least at
the same level.

See Ping facility in the IBM solidDB Administrator Guide for details.

-t Turns on the Network trace facility All

See Network trace facility in the IBM solidDB Administrator Guide for details.

10 IBM solidDB: Programmer Guide

* host_computer_name is needed with TCP/IP and Named Pipes protocols, if the
client and server are running on different machines.

* server_name depends on the communication protocol:
— In TCP/IP protocol, server_name is a service port number, such as '2315".
— In other protocols, server_name is a name, such as 'soliddb’ or 'chicago_office'.

For details on the syntax in different communication protocols, see
Communication protocols in the IBM solid DB Administrator Guide.

Note:

* The protocol_name and the server_name must match the ones that the server is
using in its network listening name.

* If given at the connection time, the connect string must be enclosed in double
quotation marks.

* All components of the connect string are case insensitive.

Examples

[Com]
Connect=tcp -z -cl1000 1315

[Com]
Connect=nmpipe host22 SOLID

solsql "tcp Tocalhost 1315"
solsql "tcp 192.168.255.1 1315"
rc = SQLConnect (hdbc, "upipe SOLID", (SWORD)SQL NTS, "dba", 3, "dba", 3);

rc = SQLDriverConnect (hdbc,
(SQLHWND) NULL,
(SQLCHAR*)"DSN=tcp localhost 1964;UID=dba;PWD=dba",
38,
out_string,
255,
&out_Tength,
SQL_DRIVER NOPROMPT);

2.1.5 Client-side solid.ini configuration file

The solidDB ODBC Driver gets its client configuration information from the
client-side solid.ini file. The client-side configuration file must be located in the
working directory of the application.

In most cases, only solidDB server-side parameters are used when programming
for the solidDB. However, occasionally there is a need to use client-side
parameters. For example, you might want to create an application that defines no
data source, but takes the data source from the connect string defined in the
client-side configuration file.

Note: In solidDB documentation, references to solid.ini file are usually for the
server-side solid.ini file.

When the solidDB ODBC Diriver is started, it attempts to open the configuration
file solid.ini. If the file does not exist, solidDB will use the factory values for the
parameters. If the file exists, but a value for a particular parameter is not set in the
solid.ini file, solidDB will use a factory value for that parameter. The factory
values may depend on the operating system you are using.

2 solidDB ODBC API 11

12

By default, the driver looks for the solid.ini file in the current working directory,
which is normally the directory from which you started the client. When searching
for the file, the following precedence (from high to low) is used:

* location specified by the SOLIDDIR environment variable (if this environment
variable is set)

* current working directory
Client-side parameters

This section describes the most important solidDB client-side parameters.
e Com.Connect

The Connect parameter in the [Com] section defines the default network name
(connect string) for a client to connect to when it communicates with a server.
Since the client should talk to the same network name as the server is listening
to, the value of the Com.Connect parameter on the client should match the value
of the Com.Listen parameter on the server.

e Com.Trace and Com.TraceFile

If you set the Com.Trace parameter default setting from No to Yes, solidDB starts
logging trace information about network messages for the established network
connection to the default trace file or to the file specified in the Com.TraceFile
parameter.

2.1.6 ODBC non-standard behavior

This section describes the non-standard behavior and limitations of solidDB ODBC
driver.

Error information

Regardless of the version set by the client, the driver returns error information
based on the ODBC 3.0 specification.

Error in SQLPutData using SQL_NULL_DATA as parameter
length

If you try to insert or update one or more data items where one of the items has
SQL_NULL_DATA as the length specifier, no data will be inserted. The column
value will become NULL.

SQLAllocHandle can return incomplete error information

If you call SQLAllocHandle with an invalid handle type, for example,
SQLAT1ocHandle(-5, hdbc, &hstmt);

the function will return SQL_ERROR but not Error State "HY(092" or message
"Invalid Attribute/Option Identifier".

MSAccess - linking the table with certain column types

After linking the table with data types WCHAR, WVARCHAR, and LONG
WVARCHAR, when a user inserts a particular record and then
inserts/updates/deletes another record, the driver shows '#deleted' for the
previous newly added/updated record.

IBM solidDB: Programmer Guide

ADO - OpenSchema methods

The following OpenSchema methods are not supported through ADO:
* adSchemaCatalogs

* adSchemaColumnPrivileges

¢ adSchemaConstraintColumnUsage

* adSchemaConstraintTableUsage

* adSchemaTableConstraint

¢ adSchemaForeignKeys

* adSchemaTablePrivileges

* adSchemaViews

* adSchemaViewTableUsage

The above mentioned OpenSchema methods are not supported by ADO with any
ODBC Driver. This is a limitation of the Microsoft OLE DB Provider for ODBC.
This is not specific to the solidDB ODBC Driver.

2.1.7 Overview of usage on Windows operating systems

On Windows operating systems, the solidDB ODBC Libraries are provided as .DLL
files.

The files are named socw32VV.d11 and sacw32VV.d11 (where "VV" indicates the
version number) for the Unicode and ASCII versions, respectively. For example, the
Unicode ODBC driver in version 4.1 is named socw3241.d11. To call the functions
in one of these .DLL files, you must link to a solidDB import library file. In
Windows environments, the import library file is named solidimpodbcu.1ib
(Unicode) or solidimpodbca.1ib (ASCII). This import library file contains the entry
points to the corresponding solidDB ODBC DLL (for example, socw3241.d11).

Note: The library files have been produced with C++. Linkers by other
development toolkit manufacturers might expect different library file formats. In
such cases, the Import Library utility of the development toolkit should be used to
build a library file that is compatible with your linker.

Instructions for usage of solidDB client DLLs (solidDB ODBC
Driver files)

There are two alternatives to building application programs that use the solidDB
ODBC driver:

1. Using Microsoft ODBC Driver Manager.

Microsoft ODBC software needs to be installed on all client workstations and a
Data Source must be defined using solidDB ODBC Driver. If you use the Driver
Manager, any application that can use the solidDB ODBC driver works also
with any other ODBC compliant engine.

2. Using solidDB ODBC driver directly.

Connections are opened directly to a server process without using Microsoft
ODBC Driver Manager. This can be useful in embedded deployments of the
solidDB server. However, the application can only use the functions provided
by the solidDB library (that is, solidDB ODBC Driver); the application cannot
use the ODBC functions that are implemented by the Microsoft ODBC Driver
Manager or the Microsoft Cursor library.

2 solidDB ODBC API 13

The solidDB server package provides some sample programs that can be used
either with or without the Microsoft ODBC Driver Manager. The samples are in
subdirectories of the samples directory in your solidDB installation directory. Below
are brief instructions on how to build and run the provided samples in both of the
alternative ways:

* Building the samples to use ODBC Driver Manager.

1.

o ok wDN

7.

Create a new application project.

Add the C-source file (for example, sqled.c or embed.c) to the project.
Make the header files visible to the compiler.

Define SS_WINDOWS for the compiler.

Compile and link.

Make sure that you have installed the solidDB ODBC driver. Also, make sure
that the connection string you intend to use is defined as the ODBC data
source name.

Run to connect to a listening solidDB server.

Building the samples to use solidDB ODBC library directly.

The necessary changes to the ODBC Driver Manager configuration are listed

below.

1. Add the solidDB ODBC driver library file (solidimpodbcu.1ib) to the project.

2. Remove ODBC Driver manager libraries 0DBC*.LIB from the default library
list.

3. Compile and link.

4. Now it is possible to connect to data sources bypassing ODBC Driver
Manager. Make sure that the SQL API DLL socw32<VV>.d11 (where "VV"
indicates the version number) and the solidDB communication DLLs are
available. Data Sources can be defined in solid.ini or in the ODBC
Administration Window.

5. Run the client to connect to a listening solidDB server.

2.2 solidDB ODBC Driver 3.51 Features Support

This section provides details about the ODBC Driver 3.51 features support for
users who have migrated from a previous version (1.0, 2.0, and 3.0) of the solidDB
ODBC Driver to solidDB ODBC Driver 3.51.

The following features are supported in this driver:

Complete support of descriptors

All catalog API support

Unicode support

Multithread support

ADO/DAO/RDO/OLE DB support

Data access through MS Access and MS Query
Block cursor support

2.3 Calling functions

This section provides information about how programs call functions in the ODBC
driver.

14 1BM solidDB: Programmer Guide

Header files and function prototypes

If your program calls functions in the ODBC driver, your program must include
the ODBC header files. These files define the ODBC functions, and the data types
and constants that are used with ODBC functions. The header files are not
solidDB-specific; they are standard header files provided by Microsoft. The solidDB
ODBC driver (like any ODBC driver) implements the functions that are specified
in these header files.

ASCII and Unicode

ODBC drivers come in two "flavors": ASCII and Unicode. The ASCII driver
supports only ASCII character sets. The Unicode driver supports both the Unicode
and the ASCII character sets.

For details on driver, API, and SQL conformance levels, refer to section
[ntroduction to ODB{ in the Microsoft ODBC Programmer’s Reference.

Using the ODBC Driver Manager

An application may link directly to the solidDB ODBC driver, or the application
may link to an ODBC Driver Manager.

On Windows systems, the Driver Manager is required if applications that connect
to the solidDB server use OLE DB or ADO APIs, or you use database tools that
require the Driver Manager, such as Microsoft Access, FoxPro, or Crystal Reports.
In most other cases, you can link to the ODBC driver directly, instead of linking to
the Driver Manager.

On Windows systems, Microsoft supplies the Driver Manager, and you link to the
Driver Manager import library (0DBC32.LIB) to gain access to the Driver Manager.

On other platforms, you can link to another vendor's Driver Manager. For
example, on Linux systems, you can use unixODBC.

For basic application steps that occur whenever an application calls an ODBC
function and details on calling ODBC functions, refer to section
in the Microsoft ODBC Programmer’s Reference.

Data types

|[Appendix E, “Data types,” on page 227|provides information about SQL data types
that are supported by the solidDB server. The header files from Microsoft provide
information about C-language data types used by your client program. To transfer
data between the application program and the database server, you must use
appropriate types. For example, on most 32-bit platforms, the C-language "int" data
type corresponds to the SQL data type "INT". The C-language "float" data type
corresponds to the SQL "REAL" data type.

Scalar functions

Scalar functions return a value for each row. For example, the absolute value scalar
function takes a numeric column as an argument and returns the absolute value of
each value in the column. Scalar functions are invoked with the following ODBC
escape sequence:

{fn scalar-function}

2 solidDB ODBC API 15

http://msdn.microsoft.com/en-us/library/ms715408(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms715408(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms715408(VS.85).aspx

Note: The starting and ending characters are the curly bracket characters, not
parentheses.

For a list of scalar functions and a more complete example of their usage, refer to
[Appendix F, “Scalar functions,” on page 273.|

solidDB native scalar functions
The solidDB server provides the following native scalar functions, which
cannot be invoked using the ODBC escape sequence.

* CURRENT_CATALOG() - returns a WVARCHAR string that contains the
current active catalog name. This name is the same as ODBC scalar
function {fn DATABASE()}.

¢ LOGIN_CATALOG() - returns a WVARCHAR string that contains the
login catalog for the connected user (currently the login catalog is the
same as the system catalog).

¢ CURRENT_SCHEMA() - returns a WVARCHAR string that contains the
current active schema name.

Function return codes

When an application calls a function, the driver executes the function and returns a
predefined code. These return codes indicate success, warning, or failure status.
The return codes are:

. SQL_SUCCESS

« SQL_SUCCESS_WITH_INFO
« SQL_NO_DATA_FOUND

+ SQL_ERROR
 SQL_INVALID_HANDLE

« SQL_STILL_EXECUTING
 SQL_NEED_DATA

If the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, the
application can call SQLError to retrieve additional information about the error.

2.4 Connecting to a data source

16

A data source can be a database server, a flat file, or another source of data.

To access the data source, you need to define the solidDB server's network name
which the application will use in a SQLConnect() call (ServerName). The network
name may be given in one of the three following ways:

* Include the network name in the function call directly

* Include the network name in the function call using a logical data source name
mapping

* Give the network name in the function call as an empty string

There are three connectivity types for defining the network name:
* Basic connectivity

* Transparent connectivity

* SMA connectivity

IBM solidDB: Programmer Guide

The following sections describe how to connect to a data source using basic
connectivity.

For information about Transparent Connectivity (TC Info), see the sections Using the
Transparent Connectivity and Syntax of the Transparent Connectivity Info in the IBM
solidDB High Availability User Guide.

For information about SMA connectivity, see section Establishing local connections for
SMA in the IBM solidDB Shared Memory Access and Linked Library Access User Guide.

2.4.1 Network name and connect string syntax

The solidDB network name syntax depends on the connectivity type: basic
connectivity or transparent connectivity (TC Info). Both connectivity types can be
used with network-based connections or local shared memory access (SMA)
connections.
* Basic connectivity
Basic connectivity is the most commonly used connectivity type where the
connect string defines the connection between the application and the solidDB
server.

* Transparent connectivity (TC Info)
Transparent connectivity (TC Info) is used in High Availability (HA)

configurations for specifying a (single) connection between the application and
the solidDB HotStandby servers.

Both basic connectivity and transparent connectivity can be used in shared
memory access (SMA) setups.

Network name syntax

The syntax of the network name is the following:
<network_name>::=<basic_connectivity>|<transparent_connectivity>

where
* <basic_connectivity>::=[<encryption attribute>]
<network_connect_string> | <sma_connect string>

<encryption attribute>::=USE_ENCRYPTION=YES|NO

<network_connect string>::=protocol_name
[options] [server_name]
[port_number]

<sma_connect_string>::=sma protocol_name port_number
| pipe_name
For example:
USE_ENCRYPTION=YES tcp localhost 1315
sma tcp 2315
For more information about SMA connections, see section Establishing local
connections for SMA in the IBM solidDB Shared Memory Access and Linked Library
Access User Guide.

* <transparent_connectivity>::= {[<failure_transparency level attribute>]
[<preferred_access_attribute>] [<encryption_attribute>]
<connect_target_list>} | <cluster_ info>

For details on the attributes, see Syntax of the Transparent Connectivity Info -
ODBC in the IBM solidDB High Availability User Guide

2 solidDB ODBC API 17

For example:
TF=SESSION USE_ENCRYPTION=YES SERVERS=tcp 2315 tcp 1315

solidDB connect string (<network_connect_string>)

The most commonly used network-based solidDB connect string consists of a
communication protocol, a possible set of special options, an optional host computer

name and a server name.

By this combination, the client specifies the server it will establish a connection to.
The communication protocol and the server name must match the ones that the
server is using in its network listening name. In addition, most protocols need a

specified host computer name if the client and server are running on different
machines. All components of the client's network name are case insensitive.

The format of a connect string is the following;:

protocol_name [options] [host_computer name] server name

where
e options can be any combination of the following:

Table 4. Connect string options

See Network trace facility in the IBM solidDB Administrator Guide for details.

Option Description Protocol
-4 Specifies that client connects using IPv4 protocol only. TCP/1P
-6 Specifies that client connects using IPv6 protocol only. TCP/1P
In Windows environments, this option is mandatory if IPv6 protocol is used.
-isource_address Specifies an explicit connecting socket source address for cases where the system TCP/1P
default source IP address binding does not meet application needs.
source_address can be an IP address or a host name.
-z Enables data compression for the connection All
Important:
* Data compression is not available for HotStandby connections (HotStandby.Connect)
and NetBackup connections (ADMIN COMMAND 'netbackup').
* Data compression for netcopy connections cannot be enabled with the -z option.
Instead, use the HotStandby.NetcopyRpcCompress=yes parameter setting.
-c milliseconds Specifies the login timeout (the default is operating-system-specific). A login request TCP/IP
fails after the specified time has elapsed.
-r milliseconds Specifies the connection (or read) timeout. A network request fails when no response is | TCP/IP
received during the time specified. The value 0 (default) sets the timeout to infinite
(operating system default timeout applies).
-ofilename Turns on the Network trace facility and defines the name of the trace output file All
See Network trace facility in the IBM solidDB Administrator Guide for details.
-plevel Pings the server at the given level (0-5). All
Clients can always use the solidDB Ping facility at level 1 (0 is no operation/default).
Levels 2, 3, 4 or 5 may only be used if the server is set to use the Ping facility at least at
the same level.
See Ping facility in the IBM solidDB Administrator Guide for details.
-t Turns on the Network trace facility All

18 IBM solidDB: Programmer Guide

* host_computer_name is needed with TCP/IP and Named Pipes protocols, if the
client and server are running on different machines.

* server_name depends on the communication protocol:
— In TCP/IP protocol, server_name is a service port number, such as '2315".
— In other protocols, server_name is a name, such as 'soliddb' or 'chicago_office'.

For details on the syntax in different communication protocols, see
Communication protocols in the IBM solid DB Administrator Guide.

Note:

* The protocol_name and the server_name must match the ones that the server is
using in its network listening name.

* If given at the connection time, the connect string must be enclosed in double
quotation marks.

* All components of the connect string are case insensitive.

The same format of the connect string applies to the Com.Connect parameter as
well as to the connect string used by solidDB tools or ODBC applications.

Examples

[Com]
Connect=tcp -z -cl000 1315

[Com]
Connect=nmpipe host22 SOLID

solsql "tcp Tocalhost 1315"
solsql "tcp 192.168.255.1 1315"
rc = SQLConnect (hdbc, "upipe SOLID", (SWORD)SQL_NTS, "dba", 3, "dba", 3);

rc = SQLDriverConnect (hdbc,
(SQLHWND) NULL,
(SQLCHAR*) "DSN=tcp localhost 1964;UID=dba;PWD=dba",
38,
out_string,
255,
&out_Tength,
SQL_DRIVER NOPROMPT);

2.4.2 Using logical data source names

If the data source name is not a valid solidDB connect string, the driver assumes it
is a logical data source name.

The logical data source name can be mapped to a data source as a 'logical name'
and 'connect string' (network name) pair in the following ways:

* Using the [Data Sources] section in the client-side solid.ini file
The syntax of the parameters is the following:

[Data Sources]
logical_name = connect_string; Description

where Description can be used for comments on the purpose of the logical
name

Example:

To map a logical name My_application to a database that you want to connect
using TCP/IP, include the following lines in the solid.ini file:

[Data Sources]
My_application = tcpip irix 1313; Sample data source

2 solidDB ODBC API 19

20

When an application calls the data source 'My_application’, the solidDB client
maps this to a call to 'tcpip irix 1313".

* In Windows environments, using the registry settings (ODBC Driver
Manager)

You can use the Control Panel > Administrative Tools > Data Sources (ODBC)
dialog or the Registry Editor (regedit) to add mappings.

For details, see Configuring the solidDB ODBC Data Source for Windows in the IBM
solidDB Programmer Guide.

Tip: The solidDB data management tools use the solidDB ODBC APL If you
have defined an ODBC Data Source, you can use the logical name source name
also when connecting to solidDB server with the solidDB tools.

For example, if you have created a data source named 'solid_1" with ServerName
'tcp 2525, you can connect to the solidDB server with solidDB SQL Editor
(so1sql) using the following command:

solsql solid_1

When connecting to the solidDB server, if the network name is not a valid connect
string, the solidDB tools and clients assume it is a logical data source name. To
find a mapping between the logical data source name and a valid connect string,
the solidDB tools and clients check the client-side solid.ini file.

In Windows environments, if the solid.ini file is not found or the logical data
source name is not defined in the [Data Sources] section, the data source settings
made with the Windows registry settings are checked in the following order.

1. Look for the Data Source Name from the following registry path:
HKEY_CURRENT_USER\software\odbc\odbc.ini\DSN

2. Look for the Data Source Name from the following registry path
HKEY_LOCAL_MACHINE\software\odbc\odbc.ini\DSN

The check for the logical data source mappings might impact performance:

* If the file system is particularly slow, for example, because the working directory
is mapped to a network drive, checking the existence of the solid.ini file can
have a measurable performance impact.

* In Windows environments, all logical data source mappings in the ODBC
registry are checked. The time consumed for this operation is proportional to the
amount of defined data sources.

— With only few (1 to 5) data sources, the connection time will be
approximately 5 ms.

— With 1000 data sources, the connection time will be approximately 200 ms.

However, if the solid.ini file contains the logical data source name mapping,
the tools and clients do not try to access the ODBC registry for the mapping.

2.4.3 Empty data source name

When an application uses the ODBC API directly and calls SQLConnect() without
specifying the solidDB server network name (by giving an empty string), it is read
from the Com.Connect parameter setting in the client-side solid.ini file.

The client-side solid.ini file must reside in the current working directory of the
application or in a path specified by the SOLIDDIR environment variable.

IBM solidDB: Programmer Guide

The following connect line in the solid.ini of the application workstation connects
an application (client) using the TCP/IP protocol to the solidDB server running on
a host computer named spiff and listening with the name (port number in this
case) 1313.

[Com]
Connect = tcpip spiff 1313

If the Com.Connect parameter is not specified in the solid.ini configuration file,
the client uses the environment-dependent default instead. The defaults for the
server-side Com.Listen parameter and the client-side Com.Connect parameters are
set so that the application (client) will always connect to a local solidDB server
listening with a default network name. Therefore, local communication (inside one
machine) does not necessarily need a configuration file for establishing a
connection.

2.4.4 Configuring the solidDB ODBC Data Source for Windows

To configure an ODBC data source for Windows platforms, you need to perform
the steps described in this section.

Before you begin

To be able to configure solidDB ODBC data sources, the solidDB ODBC Driver
must be installed.

Procedure

1. Invoke Data Sources (ODBC) from Control Panel > Administrative Tools
2. Open the User DSN tab.

3. Click the Add... button.
4

. Select the solidDB ODBC Driver (ANSI or UNICODE according to your
database requirements).

5. Enter the Data Source configuration in the solidDB ODBC Driver Setup box as
shown in the following example.

Note: The NetworkName entry must be compliant with the database server
listen addresses defined in solid.ini. The network name follows the

connection string format presented in 2.1.4, “Format of the solidDB connect|
[string,” on page 10.]

2 solidDB ODBC API 21

SOLID ODBC Driver Setup =

Change data zource name and description. Then chooze OF.

Data Source Mame: 1BM zolidDBE 7.0 64-bit - Unicode

Description: Local connection ta [BM =olidDE 7.0

M etwarkh ame; top 2315

MetwaorkMame must match the zereer listen name.

Ok] I Catizel I

L

— A

Figure 1. ODBC driver setup

22

2.4.5 Using solidDB ODBC Driver with unixODBC

unixODBC is an ODBC driver manager for UNIX type environments. Instead of
linking an application directly with the solidDB ODBC driver, a unixODBC
DriverManager can be used.

For detailed information on unixODBC and the unixODBC DriverManager, see
lhttp:/ /www.unixodbe.org /|

Configuration files

The unixODBC DriverManager loads the correct data source driver according to
the specifications in the following two configuration files:

e odbc.ini or .odbc.ini: specifies the logical name of the data source and the
actual ODBC driver

The odbc.ini file defines the system-level settings that are available to all users.
The .odbc.ini file defines user-level settings.

* odbcinst.ini: connects the logical driver name with its physical location in the
file system.

The odbcinst.ini is a system-level file.

In addition to the files above, the solidDB ODBC Driver needs a client-side
solid.ini configuration file where the logical data source name is connected with
the a valid solidDB connect string.

Syntax of the odbc.ini configuration files

The odbc.ini or .odbc.ini file must include at least the following two items for
each data source:

» Logical name of the data source inside brackets, for example [my_solid]

* Logical name of the actual ODBC driver to be used by using the syntax
Driver=<driver name>, for example Driver = solid_odbc.

IBM solidDB: Programmer Guide

http://www.unixodbc.org/

An additional description can be added by using the syntax Description=My
first Solid

All additional information is ignored.
Syntax of the odbcinst.ini configuration file

The logical name and the physical location of the ODBC driver must be specified
in the odbcinst.ini file as follows:

* [<the Togical name of the driver>], for example, [solid_odbc]

* Driver = <absolute path to the driver>, for example, Driver =
/home/jsmith/sac12x64.so

Syntax of the client-side solid.ini configuration file

In the client-side solid.ini file, the logical data source name must be connected to
a valid solidDB connect string (network name) as follows:

» [Data Sources]

* <the Togical data source name> = <connect_string> , for example,
my_solid=tcp my_machine 1964

Location of the configuration files

The system-level configuration files, odbc.ini and odbcinst.ini are located in a
system level configuration directory, such as /etc/. For example:

/usr/local/etc/odbc.ini
/usr/Tocal/etc/odbcinst.ini

User-level data sources are specified in ~/.odbc.ini.

The client-side solid.ini file can be located either in the directory set by the
SOLIDDIR environment variable or in the current working directory.

Linking the driver

To link to the unixODBC driver instead of the solidDB ODBC Driver:

1. Copy the unixODBC driver to the location of your choice.

2. Replace the solidDB ODBC Diriver library file with the unixODBC library file.
For example:
Direct linking: LDFLAGS = $(SOLID_LIB)/Tinux/sac12x70.so
unixODBC driver manager: LDFLAGS = $(SOLID_LIB)/1inux/1ibodbc.so

Examples of configuration files

$HOME/.odbc.ini
[my_solid]
Description = Testing solidDB
Driver = solid_odbc
$HOME/.odbcinst.ini

[solid_odbc]
Description
Driver

$SOLIDDIR/solid.ini
[Data Sources]
my_solid = tcp 1964

The solidDB ODBC driver
/home/jsmith/solid/bin/sac12x64.s0

2 solidDB ODBC API 23

2.4.6 Retrieving user login information

This section describes how the Driver Manager retrieves login information.

If the application calls SQLDriverConnect() and requests that the user be prompted
for information, the Driver Manager displays a dialog box similar to the following
example:

-

- "I
=) ODEC Data Source Administrator | | e |

=

| User DSH | System DSN | File DSM | Drivers | Tracing | Connection Pooling | About |

System Data Sources:

Mame Diriver Add...
| |IEM solidDB 7.0 64-bit - ANSI IEM solidDE 7.0 64-bit - (ANS e
IEM solidDE 7.0 64-bit - Unicode 1BM solidDB 7.0 64-bit - (Unic
Corfigure
i 1 [F i

I ", An ODBC System data source stores information about how to connect to
| 0| the indicated data provider. A System data source is visible to all users
——1 anthis machine, including NT services.

[ok || Cancel Aoty | [Hep |

L A

Figure 2. ODBC data source administrator

On request from the application, the driver retrieves login information by
displaying a dialog box.

2.5 ODBC handle validation

You can control ODBC handle validation with the client-side
Client.0DBCHandleValidation parameter or dynamically with the non-standard
ODBC attribute SQL_ATTR_HANDLE_VALIDATION. For performance reasons, ODBC
handle validation in solidDB is switched off by default.

For example, in Windows environments with ODBC driver manager, the driver
manager performs the handle validation and the solidDB ODBC driver does not
need to repeat the same validation procedures. Also, a carefully written ODBC
application does not normally cause invalid handles to be used; in such a case, the
handle validation in the ODBC driver is not needed. In both cases, the applications
can benefit from performance improvements when skipping the handle validation
in the driver.

To switch ODBC handle validation on or off:
* Set the client-side Cl1ient.0DBCHandleValidation to yes or no. Default is no.

24 IBM solidDB: Programmer Guide

[Client]
ODBCHandleValidation=yes

or
* Set the non-standard environment attribute SQL_ATTR_HANDLE_VALIDATION to 1
(on) or 0 (off). Default is 0.
— To switch handle validation on:
SQLSetEnvAttr(henv, SQL_ATTR_HANDLE_VALIDATION, (SQLPOINTER)1, 0);
— To switch handle validation off:
SQLSetEnvAttr(henv, SQL_ATTR_HANDLE_VALIDATION, (SQLPOINTER)O, 0);

Important: The SQL_ATTR_HANDLE_VALIDATION attribute must be set after creating
the environment handle but before any other handle is created. The
SQL_ATTR_HANDLE_VALIDATION attribute is global; when set, it affects all the
solidDB ODBC handles initiated by the application. This ensures consistency by
preventing the application from allocating both validated and non-validated
handles.

When the handle validation is switched on, any ODBC function may fail with the
standard return value SQL_INVALID_HANDLE.

If handle validation is turned off and invalid handle is used by the application, the
ODBC driver behavior is unpredictable and most likely causes the application to
crash.

Related concepts:

.9, “solidDB extensions for ODBC APL"” on page 30|
The solidDB server and clients include various and connection attributes that are
proprietary extensions to the ODBC APIL

Related reference:

[Appendix H, “Client-side configuration parameters,” on page 297]

The client-side configuration parameters define various characteristics for usage of
the solidDB ODBC client and solidDB tools such as solidDB SQL Editor (solsql).
The client-side parameters are stored in the client-side solid.ini configuration file
and are read when the client starts.

2.6 Executing transactions

This section provides information about how transactions are committed.

In auto-commit mode, each SQL statement is a complete transaction, which is
automatically committed when the statement finishes executing. Refer to the
important notes in the Committing Read-Only Transactions section on committing
read-only SELECTs.

In manual-commit mode, a transaction consists of one or more statements. In
manual-commit mode, when an application submits an SQL statement and no
transaction is open, the driver implicitly begins a transaction. The transaction
remains open until the application commits or rolls back the transaction with
SQLEndTran.

Committing Read-Only Transactions

Important:

* When the isolation level is other than READ COMMITTED, even read-only
statements (for example, SELECT) must be committed. Furthermore, the user

2 solidDB ODBC API 25

26

must commit SELECT statements even if the server is in autocommit mode.
Failure to commit statements can reduce performance or cause the server to run
out of memory. This is explained in more detail below.

* If the isolation level is READ COMMITTED, read-only statements need not be
committed. In that case, the explanation below does not apply.

Even a read-only statement must be committed. The reason for this is that solidDB
saves the 'read-level' of each transaction and until that transaction commits, all
subsequent transactions from other connections are also maintained in memory.
(This behavior is part of the row versioning performed by the Bonsai Tree
technology. See solidDB Administration Guide for more details about the Bonsai
Tree.) If a transaction is not committed, the server will need more and more
memory as other transactions accumulate; this will reduce performance, and
eventually the server may run out of available memory. For more details, read the
Performance Tuning chapter in solidDB Administration Guide.

SELECT and autocommit

Using autocommit mode does not ensure that SELECT statements are committed.
The server cannot automatically commit SELECTs because SELECTs do not execute
as a single statement. Each SELECT involves opening a cursor, fetching rows, and
then closing the cursor.

There are two possible ways that the server could automatically commit when
fetching multiple rows: the server could commit after the final fetch, or the server
could commit after each individual fetch. Unfortunately, neither of these is
practical, and therefore the server cannot commit the SELECT statement even in
autocommit mode.

The server cannot automatically commit after the final fetch because the server
does not know which fetch is the final fetch — the server does not know how
many rows the user will fetch. (Until the user closes the cursor, the server does not
know that the user is done fetching.)

It is not practical to commit after each individual fetch because each transaction
should see the data as it was at the time that the transaction started, and therefore
if each fetch is in a different transaction then the data can be from a different
"snapshot” of the database. Putting each fetch in a different transaction would also
make REPEATABLE READ and SERIALIZABLE transaction isolation levels
confusing or meaningless for the cursor, even though the cursor is for a single
SELECT statement.

To commit the SELECT statement, the user may:
* Execute an explicit COMMIT WORK statement.

* Execute a statement to which autocommit does apply (i.e. a statement other than
SELECT).

* If the cursor is the only open cursor, then the user may commit by explicitly
closing the cursor (the server automatically commits when a cursor is closed and
there are no other open cursors (and the server is in autocommit mode). This is
part of why we recommend that you explicitly close every cursor as soon as you
are done with it.

Note: To ensure that the data in the cursor is consistent and recent, the server
actually does an automatic commit immediately prior to opening the cursor (if
autocommit is on). The server then immediately starts a new transaction to contain

IBM solidDB: Programmer Guide

the subsequent FETCH statement(s). This new transaction, like any other
transaction, must be committed (or rolled back).

Summary

All statements must be committed, even if they are read-only statements, if an
isolation level other than READ COMMITTED is used.

In most cases when you are doing SELECT statements in autocommit mode, you
should explicitly close each cursor as soon as you are done with it and then
explicitly COMMIT, even though you are in autocommit mode.

2.7 Retrieving information about the data source's catalog

This section describes functions (known as catalog functions) that return information
about a data source's catalog.

* SQLTables returns the names of tables stored in a data source.
¢ SQLTablePrivileges returns the privileges associated with one or more tables.
* SQLColumns returns the names of columns in one or more tables.

¢ SQLColumnPrivileges returns the privileges associated with each column in a
single table.

¢ SQLPrimaryKeys returns the names of columns that comprise the primary key
of a single table.

* SQLForeignKeys returns the names of columns in a single table that are foreign
keys. It also returns the names of columns in other tables that refer to the
primary key of the specified table.

* SQLSpecialColumns returns information about the optimal set of columns that
uniquely identify a row in a single table or the columns in that table that are
automatically updated when any value in the row is updated by a transaction.

* SQLStatistics returns statistics about a single table and the indexes associated
with that table.

* SQLProcedures returns the names of procedures stored in a data source.

* SQLProcedureColumns returns a list of the input and output parameters, as well
as the names of columns in the resultset, for one or more procedures.

Each function returns the information as a resultset. An application retrieves these
results by calling SQLBindCol() and SQLFetchy).

Executing Functions Asynchronously

Note: ODBC drivers in all solidDB products do not support asynchronous
execution.

2.8 Using ODBC extensions to SQL

ODBC defines extensions to SQL, which are common to most database
management systems.

For details on SQL extensions, refer to [Escape Sequences in ODBC|in the Microsoft
ODBC Programmer’s Reference.

Included in the ODBC extensions to SQL are:
e Procedures

2 solidDB ODBC API 27

http://msdn.microsoft.com/en-us/library/ms715364(VS.85).aspx

28

* Hints

Details on solidDB usage for these extensions are described in the following
sections.

2.8.1 Procedures

Stored procedures are procedural program code containing one or more SQL
statements and program logic.

Stored procedures are stored in the database and executed with one call from the
application or another stored procedure.

An application can call a procedure in place of an SQL statement. The escape
clause ODBC uses for calling a procedure is:

{call procedure-name [([parameter][,[parameter]]...)]}

where procedure-name specifies the name of a procedure stored on the data source
and parameter specifies a procedure parameter.

Note: solidDB does not sup