
IBM solidDB
IBM solidDB Universal Cache
Version 6.3

Administrator Guide

SC23-9824-03

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 277.

First edition, third revision

This edition applies to version 6, release 3 of IBM solidDB (product number 5724-V17) and IBM solidDB Universal
Cache (product number 5724-W91) and to all subsequent releases and modifications until otherwise indicated in
new editions.

© Oy International Business Machines Ab 1993, 2011

Contents

Figures vii

Tables ix

Summary of changes. xi

About this manual xiii
Typographic conventions xiii
Syntax notation conventions xiv

1 Managing data with solidDB 1
solidDB data management components 1

Programming interfaces (ODBC and JDBC) . . . 1
Network communications layer 2
SQL parser and optimizer 2
solidDB 2
System tools and utilities 3

solidDB architecture 4
Data storage for disk-based tables 4
Data storage for memory-based tables 5
solidDB SQL Optimizer 5
solidDB Network Services 6
Multithread processing 7

2 Administering solidDB. 9
Background information 9

Using solidDB Embedded Engine databases 2.20
or prior 9
Special roles for database administration 9
Automated and manual administration 10

Starting solidDB 10
Creating a new database 11
Login 12
About solidDB databases 12

solidDB configuration file (solid.ini) 12
Setting up database environment 12
Setting database block size (BlockSize) and
location (FileSpec) 14
Defining database objects 14

Connecting to solidDB. 15
Viewing error messages and log files 16

Controlling message log output. 16
Viewing error message descriptions with ADMIN
COMMAND 'errorcode' 16
Using trace files 17
Tracing failed login attempts 17

Monitoring solidDB 18
Checking overall database status 18
Obtaining currently connected users 18
Throwing out a connected solidDB user 19
Querying the status of the most recent backup . 19
Producing a status report 19
Performance counters (perfmon) 19

Shutting down solidDB 28

Performing backup and recovery 29
Making local backups 29
Making backups over network 30
Configuring and automating backups 32
What happens during backup 33
Administering network backup server 34
Monitoring and controlling backups 34
Correcting a failed backup 35
Typical problems in backups. 35
Restoring backups 36
Transaction logging. 37

Creating checkpoints 37
Closing a database 38
Running solidDB as a Windows service 38

Starting solidDB as a service for the first time . . 39
Starting and stopping solidDB services 40
Removing solidDB services 40

Running several servers on one computer 41
Entering timed commands 41
Compacting the database files 42

What is database reorganization 42
How does the database reorganization work . . 42
Database reorganization command line options 42

Encrypting a database 43
Encrypting database and log files 43
Starting an encrypted database 44
Changing the encryption password 44
Decrypting a database 44
Querying database encryption level 45
Making backups of encrypted databases 45
Encrypting HotStandby servers 45
Encryption and performance 45

3 Configuring solidDB 47
Configuration files and parameter settings 47
Most important client-side parameters 48

Defining network names (Com section) 48
Most important server-side parameters 49

Defining network names (Com section) 49
Managing database files and caching (IndexFile
section) 50
Specifying the local backup directory (General
section) 52
Specifying the network backup directory
(General section). 52
Specifying a directory for the external sorter
algorithm (Sorter section) 53
Setting threads for processing (Srv section) . . . 54
Setting SQL trace level (SQL section) 54
Specifying network communication tracing (Com
section) 54

Managing server-side parameters 55
Viewing and setting parameters with ADMIN
COMMAND 55
Viewing and setting parameters in solid.ini . . 57

iii

Constant parameter values 58

4 Using solidDB data management
tools. 59
Entering password from a file 59
solidDB Remote Control (solcon) 59

Starting solidDB Remote Control 60
Entering commands in solidDB Remote Control 60

solidDB SQL Editor (solsql) 61
Starting solidDB SQL Editor 61
Executing SQL statements with solidDB SQL
Editor 63

solidDB Speed Loader (solload) 64
Control file 64
Import file 65
Message log file 65
Configuration file 65
Starting solidDB Speed Loader 66
Loading fixed-format records 74
Loading variable-length records 75
Running a sample load using solidDB Speed
Loader (solload) 76
Hints to speed up loading 76

solidDB Export (solexp) 76
Starting solidDB Export 77

solidDB Data Dictionary (soldd) 78
Starting solidDB Data Dictionary 78

Tools sample: reloading a database 80
To reload the database. 80

5 Performance tuning 83
Logging and transaction durability 83

Background 83
Balancing performance and safety 84
How relaxed transaction durability can improve
performance 85
Standards compliance 85
Limitations on transaction durability 85

Choosing transaction isolation levels 85
Setting the isolation level 86

Controlling memory consumption 86
Controlling process size 87
Tuning your operating system 89
Database cache 89
Sorting 90
Using in-memory database 91

Tuning network messages 92
Tuning I/O 92

Distributing I/O. 92
Setting the MergeInterval parameter 92

Tuning checkpoints 93
Reducing Bonsai Tree size by committing
transactions 94

Preventing excessive Bonsai Tree growth . . . 94
Diagnosing poor performance 96

6 Managing network connections . . . 99
Communication between client and server 99
Managing network names 99

Viewing supported protocols for the server . . 100

Viewing network names for the server 100
Adding and modifying a network name for the
server 100
Removing network name from the server . . . 101
Factory value for a network name 101

Connect strings for clients 101
Mapping logical data source names to connect
strings. 102
Default connect string 103

Communication protocols 103
Shared Memory 104
TCP/IP 104
UNIX Pipes 105
Named Pipes 106
NetBIOS 106
Summary of protocols 107

Logical Data Source Names 108

7 Diagnostics and troubleshooting 111
Tracing communication between client and server 111

The network trace facility 111
The Ping facility 113

Problem reporting 114
Problem categories 115

solidDB ODBC API problems 115
solidDB ODBC Driver problems 115
solidDB JDBC Driver problems 115
Communication between a client and server . . 116
Database disk block integrity 116

Appendix A. Server-side configuration
parameters 117
Setting parameters through the solid.ini
configuration file 117

Rules for formatting the solid.ini file 118
Changing parameters through ADMIN
COMMAND 121
Descriptions of configuration parameters 122
Accelerator section 123
Cluster section 123
Communication section 123
General section 127
HotStandby section 136
IndexFile section 140
Logging section 142
LogReader section 146
MME section 148
Sorter section 151
SQL section 152
Srv section 156
Synchronizer section 167

Appendix B. Client-side configuration
parameters 171
Setting client-side parameters through the
solid.ini configuration file 171

Rules for formatting the client-side solid.ini
file 171

Descriptions of client-side configuration parameters 172
Communication section 172

iv IBM solidDB: Administrator Guide

Data sources. 173
Client 173

Appendix C. solidDB command line
options 175

Appendix D. Error codes 179
solidDB system errors 181
solidDB database errors 183
solidDB table errors 192
solidDB session errors 206
solidDB communication errors. 207
solidDB server errors 210
solidDB procedure errors 216
solidDB API errors 219
solidDB sorter errors 219
solidDB RPC errors and messages 219
solidDB synchronization errors 221
solidDB HotStandby errors 234
solidDB SSA (SQL API) errors 235
solidDB COM (communication) messages 237
solidDB SRV (server) errors 238
solidDB DBE (database engine) errors and
messages 239

solidDB CP (checkpoint) messages 241
solidDB BCKP (backup) messages 241
solidDB AT (timed commands) messages 241
solidDB LOG (logging) messages 242
solidDB INI (configuration file) messages 242
solidDB HSB (HotStandby) errors and messages 243
solidDB SNC (synchronization) messages 245
solidDB XS (external sorter) errors and messages 246
solidDB FIL (file system) messages 246
solidDB TAB (table) messages 247
solidDB SQL errors 247
solidDB executable errors 254
solidDB Speed Loader (solload) errors 255

Appendix E. solidDB ADMIN
COMMAND syntax 257
ADMIN COMMAND 257

Index 269

Notices 277

Contents v

vi IBM solidDB: Administrator Guide

Figures

1. solidDB components 3

vii

viii IBM solidDB: Administrator Guide

Tables

1. Typographic conventions xiii
2. Syntax notation conventions. xiv
3. Starting the server 10
4. solidDB default files 13
5. Connecting to solidDB 15
6. Perfmon counters 21
7. Options for the backup command 30
8. Options for the netbackup command 30
9. Parameter correspondence to the solid.ini file

for local backup 32
10. Parameter correspondence to the solid.ini file

for netbackup 32
11. Available backup and netbackup commands 35
12. Arguments and defaults for different timed

commands 41
13. Connect string options 49
14. solcon command options 60
15. Remote control specific commands 61
16. solsql command options 61
17. solload command options 66
18. Speed Loader reserved words 67
19. Full syntax of the control file. 67
20. Data masks 69
21. solexp command options 77
22. soldd command options 79
23. Determinig command status 95
24. Determining which connections have

committed transactions. 95
25. Diagnosing poor performance 96
26. Connect string format. 102
27. Shared Memory protocol in the solid.ini file 104
28. TCP/IP protocol in the solid.ini file 104
29. UNIX Pipes protocol in the solid.ini file 105
30. Named Pipes protocol in the solid.ini file 106
31. NetBIOS protocol in the solid.ini file 106
32. solidDB protocols and network names 107
33. Application protocols and network names 107
34. Ping facility levels 113
35. Accelerator parameters 123
36. Cluster parameters. 123
37. Communication parameters 123
38. General parameters 127

39. HotStandby parameters 136
40. IndexFile parameters 140
41. Logging parameters 142
42. LogReader parameters 146
43. MME parameters 148
44. Sorter parameters 151
45. SQL parameters 152
46. Srv parameters 156
47. Synchronizer parameters 167
48. Communication parameters 172
49. Data source parameters 173
50. Client parameters 173
51. solidDB command line options. 175
52. solidDB error categories 179
53. solidDB system errors. 181
54. solidDB database errors 183
55. solidDB session errors 206
56. solidDB communication errors 207
57. solidDB server errors 210
58. solidDB SA API errors 219
59. solidDB sorter errors 219
60. solidDB RPC errors and messages 219
61. solidDB synchronization errors. 221
62. solidDB HotStandby errors 234
63. solidDB SSA (SQL API) errors 235
64. solidDB COM (communication) messages 237
65. solidDB SRV errors 238
66. solidDB DBE errors and messages 239
67. solidDB CP (checkpoint) messages 241
68. solidDB BCKP (backup) messages. 241
69. solidDB AT (timed commands) messages 241
70. solidDB LOG (logging) messages 242
71. solidDB INI (configuration file) messages 242
72. solidDB HSB errors and messages 243
73. solidDB SNC (synchronization) messages 245
74. solidDB XS (external sorter) errors 246
75. solidDB FIL (file system) messages 246
76. solidDB TAB (table) messages 247
77. solidDB SQL errors 247
78. solidDB executable errors 254
79. solidDB Speed Loader (solload) errors 255
80. ADMIN COMMAND syntax and options 258

ix

x IBM solidDB: Administrator Guide

Summary of changes

Changes for revision 03

v Section ADMIN COMMAND updated with the following changes:
The following undocumented ADMIN COMMAND 'trace' options have been
added:
– est - SQL estimator information
– estplans - SQL execution plan
– flow - advanced replication statements
– rexec - remote procedure call information
– batch - background job and deferred procedure call information
The following undocumented ADMIN COMMANDs have been added:
– 'errormessage <string>' – Outputs the user-defined <string> to the error

message log (solerror.out).
– 'logmessage <string>' – Outputs the user-defined <string> to the message log

(solmsg.out).
– 'tracemessage <string>' – Outputs the user-defined <string> to the trace

message log (soltrace.out).
v Information on the support of IndexFile.DirectIO and Logging.DirectIO

parameters added in section Server-side configuration parameters: these
parameters are not effective in Windows® environments; in Windows
environments, database files always use Direct I/O.

v Section Appendix D, “Error codes,” on page 179 updated to correspond to ADMIN
COMMAND ’errorcode all’ output. Previously undocumented messages added in
the following sections:
– “solidDB API errors” on page 219
– “solidDB AT (timed commands) messages” on page 241
– “solidDB BCKP (backup) messages” on page 241
– “solidDB COM (communication) messages” on page 237
– “solidDB CP (checkpoint) messages” on page 241
– “solidDB DBE (database engine) errors and messages” on page 239
– “solidDB FIL (file system) messages” on page 246
– “solidDB HSB (HotStandby) errors and messages” on page 243
– “solidDB INI (configuration file) messages” on page 242
– “solidDB LOG (logging) messages” on page 242
– “solidDB RPC errors and messages” on page 219
– “solidDB SNC (synchronization) messages” on page 245
– “solidDB SRV (server) errors” on page 238
– “solidDB TAB (table) messages” on page 247
– “solidDB XS (external sorter) errors and messages” on page 246

v New section added: “Viewing error message descriptions with ADMIN COMMAND
'errorcode'” on page 16

Changes for revision 02

v New section added: “Setting up database environment” on page 12

xi

v Section “Encrypting a database” on page 43 updated.
v The following new parameters have been added in “Srv section” on page 156:

– Srv.HealthCheckEnabled

– Srv.HealthCheckInterval

– Srv.HealthCheckTimeout

v New parameter HotStandby.TCConnect added in “HotStandby section” on page
136.

v New parameter LogReader.Silent added in “LogReader section” on page 146.
v New parameter SQL.DecFloatPrecision16 added in “SQL section” on page 152.
v New ADMIN COMMAND ’indexusage’ added in section “ADMIN COMMAND” on

page 257.

Changes for revision 01

v New section added: “Running solidDB as a Windows service” on page 38.
v Factory value for parameter Srv.MemoryReportLimit changed from 100 MB to 0

(no reporting) in section “Srv section” on page 156.
v New server error, 30152 (Memory allocation size has exceeded a given value),

added in section “solidDB server errors” on page 210.
v New option, STOPPING, added for ADMIN COMMAND ’status backup |

netbackup’ in Appendix solidDB® ADMIN COMMAND Syntax, section “ADMIN
COMMAND” on page 257.

v The syntax for the start command for solidDB Export (solexp) clarified in section
“Starting solidDB Export” on page 77.

v Communication protocol Shared Memory (shmem) is deprecated as of release 6.3
Fix Pack 1. Examples using shmem updated throughout the manual: instead of
shmem <servername>, tcpip 1964 is used.

v Default database block size corrected to 16 KB in section “Setting database block
size (BlockSize) and location (FileSpec)” on page 14.

v Command for stopping monitoring (ADMIN COMMAND ’pmon diff stop’) corrected
in section “Producing a continuous performance monitoring report” on page 20.

v Factory value for parameter MME.LockEscalationEnabled corrected in section
“MME section” on page 148: default is 'no'.

xii IBM solidDB: Administrator Guide

About this manual

IBM® solidDB® is a versatile database management system that can be used in
systems starting from small embedded systems to large-scale systems. Various
functional IBM solidDB components may be enacted to serve special needs. Such
components are:
v an in-memory database
v a highly available hot standby configuration
v advanced asynchronous replication
v a library for directly linking applications with the server code.

All of the above mentioned components are orthogonal, that is they can be used in
the presence of other components. An administrator of solidDB can use a wide
range of configuration options and tools to set up the product in the most
appropriate way.

This guide describes how to set up, monitor, manage, and optimize the basic
database server function of the product. More detailed information about
configuring specific solidDB components are included in the related manuals.

This guide assumes the reader has general DBMS knowledge and a familiarity
with SQL.

Typographic conventions
solidDB documentation uses the following typographic conventions:

Table 1. Typographic conventions

Format Used for

Database table This font is used for all ordinary text.

NOT NULL Uppercase letters on this font indicate SQL keywords and
macro names.

solid.ini These fonts indicate file names and path expressions.

SET SYNC MASTER YES;
COMMIT WORK; This font is used for program code and program output.

Example SQL statements also use this font.

run.sh This font is used for sample command lines.

TRIG_COUNT() This font is used for function names.

java.sql.Connection This font is used for interface names.

LockHashSize This font is used for parameter names, function arguments,
and Windows registry entries.

argument Words emphasized like this indicate information that the
user or the application must provide.

xiii

Table 1. Typographic conventions (continued)

Format Used for

Administrator Guide This style is used for references to other documents, or
chapters in the same document. New terms and emphasized
issues are also written like this.

File path presentation Unless otherwise indicated, file paths are presented in the
UNIX® format. The slash (/) character represents the
installation root directory.

Operating systems If documentation contains differences between operating
systems, the UNIX format is mentioned first. The Microsoft®

Windows format is mentioned in parentheses after the
UNIX format. Other operating systems are separately
mentioned. There may also be different chapters for
different operating systems.

Syntax notation conventions
solidDB documentation uses the following syntax notation conventions:

Table 2. Syntax notation conventions

Format Used for

INSERT INTO table_name
Syntax descriptions are on this font. Replaceable sections are
on this font.

solid.ini This font indicates file names and path expressions.

[] Square brackets indicate optional items; if in bold text,
brackets must be included in the syntax.

| A vertical bar separates two mutually exclusive choices in a
syntax line.

{ } Curly brackets delimit a set of mutually exclusive choices in
a syntax line; if in bold text, braces must be included in the
syntax.

... An ellipsis indicates that arguments can be repeated several
times.

.

.

.

A column of three dots indicates continuation of previous
lines of code.

xiv IBM solidDB: Administrator Guide

1 Managing data with solidDB

The core of solidDB is a relational database server. This database server accepts
queries in the SQL language. Usually, these SQL queries are submitted by a "client"
application that sends SQL statements to the server and receives result sets back
from the server.

In addition, solidDB has synchronization features that allow updated data in one
solidDB to be sent to one or more other solidDBs. solidDB also allows you to run a
pair of solidDBs in a hot standby configuration, and link your client application
directly to the database server routines for higher performance and tighter control
over the server. These features, called HotStandby and linked library access, are
described later in this chapter.

This chapter describes the underlying components and processes that make
solidDB the solution for managing distributed data in today's complex distributed
system environments. It provides you with the background necessary to administer
and maintain solidDB in your network environment.

solidDB data management components
solidDB includes the components described in the following sections.

Programming interfaces (ODBC and JDBC)
To submit a query (an SQL statement) to a database server, a client must be able to
communicate with that database server. solidDB, like many other database servers,
uses "drivers" to enable this communication. Client applications call functions in
the driver, and the driver then handles the communications and other details with
the server. For example, you might write a C program that calls functions in the
ODBC driver, or you might write a Java™ program that calls functions in the JDBC
driver.

ODBC
solidDB provides ODBC and JDBC drivers that communicate with solidDB. The
solidDB ODBC Driver conforms to the Microsoft ODBC 3.51 API standard. solidDB
ODBC Driver supported functions are accessed with solidDB ODBC API, a Call
Level Interface (CLI) for solidDB databases, which is compliant with ANSI X3H2
SQL CLI.

JDBC
The solidDB JDBC Driver allows Java applications to access the database by using
JDBC. The solidDB JDBC Driver implements most of the JDBC 2.0 specification.

Proprietary interfaces
solidDB also provides proprietary interfaces. These allow, for example, C programs
to directly call functions inside the database server. These proprietary interfaces are
provided with the solidDB linked library access (described later).

For more details on ODBC, JDBC, and solidDB's propriety programming interfaces,
see the IBM solidDB Programmer Guide.

1

Network communications layer
solidDB runs on all major network types and supports all of the main
communication protocols (such as TCP/IP). Developers can create distributed
applications for use in heterogeneous computing environments. Read 6, “Managing
network connections,” on page 99, for more details on network communication.

SQL parser and optimizer
solidDB uses SQL syntax based on the ANSI X3H2 and IEC/ISO 9075 SQL
standards. SQL-89 Level 2 standard is fully supported as well as SQL-92 Entry
Level. Many features of full SQL-92 and SQL-99 standards are also supported.
solidDB contains an advanced cost-based optimizer, which ensures that even
complex queries can be run efficiently. The optimizer automatically maintains
information about table sizes, the number of rows in tables, the available indices,
and the statistical distribution of the index values.

See the section “solidDB SQL Optimizer” on page 5 for more details on the
solidDB SQL Optimizer.

Optimizer hints
Optimizer hints (which are an extension of SQL) are directives specified through
embedded pseudo comments within query statements. The optimizer detects these
directives or hints and bases its query execution plan accordingly. Optimizer hints
allow applications to be optimized under various conditions to the data, query
type, and the database. They not only provide solutions to performance problems
occasionally encountered with queries, but shift control of response times from the
system to the user.

For more details on optimizer hints, read IBM solidDB SQL Guide.

solidDB
The solidDB processes the data requests submitted via solidDB SQL. The solidDB
server shown in Figure 1 on page 3 stores data and retrieves it from the database.

2 IBM solidDB: Administrator Guide

System tools and utilities
solidDB also includes the following tools for data management and administration:

Console tools
solidDB provides two ASCII-based console tools, solidDB Remote Control (solcon)
and solidDB SQL Editor (solsql), to manage databases. These tools use a command
line interface. Read 4, “Using solidDB data management tools,” on page 59 for
details.

Tools for handling external ASCII data
solidDB provides the following tools for handling ASCII data:
v solidDB Speed Loader (solload) loads data from external ASCII files into a

solidDB database. It is capable of inserting character data from character format.
solidDB Speed Loader bypasses the SQL parser and uses direct writes to the
database file with loading, which allows for fast loading speed.

v solidDB Export (solexp) writes from a solidDB database to character format
files. It is capable of writing control files used by solidDB Speed Loader to
perform data load operations.

1

solidDB
database

solidDB

Query executor

SQL parser and optimizer

Network communication layer

Network communication layer

JDBCSA APIODBC

Application

1. SA API is solidDB's own API for use with the accelerator library. For details, see IBM solidDB Linked Library Access
User Guide.

Figure 1. solidDB components

1 Managing data with solidDB 3

v solidDB Data Dictionary (soldd) writes the data dictionary of a database. This
tool produces a SQL script that contains data definition statements describing
the structure of the database.

Read4, “Using solidDB data management tools,” on page 59, for details.

solidDB architecture
This section provides conceptual information that can give you an understanding
in configuring solidDB to meet the needs of your own applications and platforms.
It looks at the following:
v Data Storage

– Main Storage Tree
– Bonsai Tree Multiversioning and Concurrency Control

v Dynamic SQL Optimization
v Network Services
v Multithread processing

Data storage for disk-based tables
The main data structure used to store disk-based tables (D-tables) is a B-tree
variation. The server uses two of these structures; the "main storage tree" holds
permanent data, and a differential index tree called "Bonsai Tree" stores "new" data
temporarily until it is ready to be moved to the main storage tree.

The internal part of the server taking care of storing D-tables is called the
Disk-Based Engine (DBE).

Main storage tree
The main storage tree contains all the data in the server, including tables and
indexes. Internally, the server stores ALL data in "indexes" — there are no separate
tables. Each index contains either complete primary keys (i.e. all the data in a row)
or secondary keys (what SQL refers to as "indexes" — just the column values that
are part of the SQL index). There is no separate storage method for data rows,
except for Binary Large Objects (BLOB) and other long column values.

All the indexes are stored in a single tree, which is the main storage tree. Within
that tree, indexes are separated from each other by a system-defined index
identification inserted in front of every key value. This mechanism divides the
index tree into several logical index subtrees, where the key values of one index
are clustered close to each other. For details on data clustering and primary key
indexes, read the discussion of Primary Key Indexes in IBM solidDB SQL Guide.

solidDB Bonsai Tree multiversioning and concurrency control
The Bonsai Tree is a small active "index" (data storage tree) that efficiently stores
new data (deletes, inserts, updates) in central memory, while maintaining
multiversion information. Multiple versions of a row (old and new) can co-exist in
the Bonsai Tree. Both the old and new data are used for concurrency control and
for ensuring consistent read levels for all transactions without any locking
overhead. With the Bonsai Tree, the effort needed for concurrency control is
significantly reduced.

When a transaction is started, it is given a sequential Transaction Start Number
(TSN). The TSN is used as the "read level" of the transaction; all key values
inserted later into the database from other connections are not visible to searches

4 IBM solidDB: Administrator Guide

within the current transaction. This offers consistent index read levels that appear
as if the read operation was performed atomically at the time the transaction was
started. This guarantees read operations are presented with a consistent view of
the data without the need for locks, which have higher overhead.

Old versions of rows (and the newer version(s) of those same rows) are kept in the
Bonsai Tree for as long as there are transactions that need to see those old versions.
After the completion of all transactions that reference the old versions, the "old"
versions of the data are discarded from the Bonsai tree, and new committed data is
moved from the Bonsai Tree to the main storage tree. The presorted key values are
merged as a background operation concurrently with normal database operations.
This offers significant I/O optimization and load balancing. During the merge, the
deleted key values are physically removed.

Index compression
Two methods are used to store key values in the Bonsai Tree and the storage tree.
First, only the information that differentiates the key value from the previous key
value is saved. The key values are said to be prefix-compressed. Second, in the
higher levels of the index tree, the key value borders are truncated from the end;
that is, they are suffix-compressed.

Data storage for memory-based tables
solidDB allows for creation of memory-resident tables, so-called M-tables. The
advantage of M-tables is their performance. M-tables have the same properties in
terms of durability and recoverability as traditional disk-based tables (D-tables).
The only difference is the location of the primary storage. M-tables are primarily
stored in main memory, meaning that the bigger the in-memory database is, the
more room it occupies in main memory. In addition to the actual data, the indexes
for M-tables are built in main memory as well. solidDB uses a
main-memory-optimized index technology called "tries" to implement the indexes.
To evaluate the amount of memory needed to store the M-tables and their indexes,
see the IBM solidDB In-Memory Database User Guide.

The internal part of the server taking care of storing M-tables is called
Main-Memory Engine (MME)

solidDB SQL Optimizer
The solidDB SQL Optimizer, a cost-based optimizer, ensures that the execution of
SQL statements is done efficiently. It uses the same techniques as a rules-based
optimizer, relying on a preprogrammed set of rules to determine the shortest path
to the results. For example, the SQL Optimizer considers whether or not an index
exists, if it is unique, and if it is over single or composite table columns. However,
unlike a rule-based optimizer, its cost-based feature can adapt to the actual
contents of the database — for example, the number of rows and the value
distribution of individual columns.

solidDB maintains the statistical information about the actual data automatically,
ensuring optimal performance. Even when the amount and content of data
changes, the optimizer can still determine the most effective route to the data.

Query processing
Query processing is performed in small steps to ensure that one time-consuming
operation does not block another application's request. A query is processed in a
sequence containing the following phases:
v Syntax analysis

1 Managing data with solidDB 5

v Creating the execution graph
v Processing the execution graph

Syntax analysis
An SQL query is analyzed and the server produces either a parse tree for the
syntax or a syntax error. When a statement is parsed, the information necessary for
its execution is loaded into the statement cache. A statement can be executed
repeatedly without re-optimization, as long as its execution information remains in
the statement cache.

Creating the execution graph
The execution graph, with the following features, is created from the query parse
tree.
v Complex statements are written to a uniform and more simple form.
v If better performance will be realized, OR criteria are converted to UNION

clauses. (For more details about OR vs. UNION, see the discussion of
CONVERTORSTOUNIONS in the IBM solidDB SQL Guide.

v Intelligent join constraint transfer is performed to produce intermediate join
results that reduce the join process execution time.

For details on each operation or unit in theexecution plan, read the discussion of
the EXPLAIN PLAN FOR statement in the IBM solidDB SQL Guide.

Processing the execution graph
Processing of the execution graph is performed in three consecutive phases:
v Type-evaluation phase

The column data types of the result set are derived from the underlying table
and view definitions

v Estimate-evaluation phase
The cost of retrieving first rows and also entire result sets is evaluated, and an
appropriate search strategy is dynamically selected based on the parameter
values that are bound to the statement.
The SQL Optimizer bases cost estimates on automatically maintained
information on key value distribution, table sizes, and other dynamic statistical
data. No manual updates to the index histograms or any other estimation
information is required.

v Row-retrieval phase
The result rows of the query are retrieved and returned to the client application.

solidDB Network Services
solidDB Network Services are based on the remote procedure call (RPC) paradigm,
which makes the communication interface simple to use. When a client sends a
request to the server, it resembles calling a local function. The Network Services
invisibly route the request and its parameters to the server, where the actual
service function is called by the RPC Server. When the service function completes,
the return parameters are sent back to the calling application.

In a distributed system, several applications may request a server to perform
multiple operations concurrently. For maximum parallelism, solidDB Network
Services use the operating system threads when available to offer a seamless
multiuser support. On single-threaded operating systems, the Network Services
extensively use asynchronous operations for the best possible performance.

6 IBM solidDB: Administrator Guide

Communication session layer
solidDB communication protocol DLLs (or static libraries) offer a standard internal
interface to each protocol. The lowest part of the communication session layer
works as a wrapper that takes care of choosing the correct protocol DLL or library
that relates with the given address information. After this point, the actual protocol
information of the session is hidden.

solidDB can listen to many protocols simultaneously.

Multithread processing
solidDB's multithread architecture provides an efficient way of sharing the
processor within an application. A thread is a dispatchable piece of code that
merely owns a stack, registers (while the thread is executing), and its priority. It
shares everything else with all other active threads in a process. Creating a thread
requires much less system overhead than creating a process, which consists of
code, data, and other resources such as open files and open queues.

Threads are loaded into memory as part of the calling program; no disk access is
therefore necessary when a thread is invoked. Threads can communicate using
global variables, events, and semaphores.

If the operating system supports symmetric multi-threading between different
processors, solidDB automatically takes advantage of the multiple processors.

Types of threads
The solidDB threading system consists of general purpose threads and dedicated
threads.

General purpose threads

General purpose threads execute tasks from the server's tasking system. They
execute such tasks as serving user requests, making backups, executing timed
commands, merging indexes, and making checkpoints (storing consistent data to
disk).

General purpose threads take a task from the tasking system, execute the task step
to completion and switch to another task from the tasking system. The tasking
system works in a round-robin fashion, distributing the client operations evenly
between different threads.

The number of general purpose threads can be set in the solid.ini configuration
file.

Dedicated threads

Dedicated threads are dedicated to a specific operation. The following dedicated
threads may exist in the server:
v I/O manager thread

This thread is used for intelligent disk I/O optimization and load balancing. All
I/O requests go through the I/O manager, which determines whether to pass
each I/O request to the cache or to schedule it among other I/O requests. I/O
requests are ordered by their logical file address. The ordering optimizes the file
I/O since the file addresses accessed on the disk are in close range, reducing the
disk read head movement.

v Communication read threads

1 Managing data with solidDB 7

Applications always connect to a listener session that is running in the selector
thread. After the connection is established, a dedicated read thread can be
created for each client.

v One communication select thread per protocol (known as the selector thread)
There is usually one communication selector thread per protocol. Each running
selector thread writes incoming requests into a common message queue.

v Communication server thread (also known as the RPC server main thread)
This thread reads requests from the common message queue and serves
applications by calling the requested service functions.

8 IBM solidDB: Administrator Guide

2 Administering solidDB

This chapter describes how to maintain your solidDB installation. The
administration tasks covered in this chapter are:
v Performing basic solidDB operations, such as starting and stopping the server
v Backing up the server
v Encrypting a database

Important: In the solidDB with linked library access, there are some differences in
administration from standard solidDB. Wherever necessary, this chapter refers you
to the IBM solidDB Linked Library Access User Guide for linked library access
-specific information.

Background information

Using solidDB Embedded Engine databases 2.20 or prior
Beginning with solidDB Embedded Engine version 2.3 to the current version, the
default collation sequence is set to the standard Latin-1. solidDB Embedded Engine
databases that were created with version 2.20 or prior do not match the Latin-1
collation sequence. To convert the data to Latin 1 in a version 2.20 database, you
must export the database from its tables, extract data definitions, and load the
tables to the new database. For details, read “Tools sample: reloading a database”
on page 80.

Special roles for database administration
solidDB has the following roles for administration and maintenance:
v SYS_ADMIN_ROLE

This is the Database Administrator role and hasprivileges to all tables, indexes,
and users, as well as theright to use solidDB Remote Control (solcon).This is also
the role of the creator of the database.

v SYS_CONSOLE_ROLE
This role has the right to use solidDB Remote Control,but has no other
administration privileges.

v SYS_SYNC_ADMIN_ROLE
This is an administration role for performingadministrative operations related to
synchronization, such asdeleting messages. ("Messages" are used to pass
informationback and forth between a master and its replicas. Forexample, to
refresh the data that is in a master publication,the replica sends a REFRESH
message, unless the synchronousrefresh mode is used.) Anyone with this
accesshas all synchronization roles granted automatically. Thisrole automatically
includes the SYS_SYNC_REGISTER_ROLE.

v SYS_SYNC_REGISTER_ROLE
This is a role only for registering or unregistering areplica database to the
master.
You define these roles using the GRANT ROLE statement.For details, read
"Managing User Privileges and Roles" in IBM solidDB SQL Guide.

9

Automated and manual administration
solidDB is designed for continuous, unattended operation and ease of deployment.
It requires minimal maintenance. Administrative operations, including backups,
can be performed programmatically using SQL extensions, which can run
automatically or at an administrator's request.

Sometimes, however, it makes sense to administer systems manually. This chapter
also refers you to the tools and methods available for performing manual
administration. To perform administration tasks, you can issue solidDB SQL's own
ADMIN COMMANDs in solidDB SQL Editor (solsql). For a comprehensive list of
commands, refer to Appendix E, “solidDB ADMIN COMMAND syntax,” on page
257.

If you are using solidDB with linked library access, the Control API gives a user
application programmatic control over task execution. A Control API function is
available for assigning priorities for such tasks as database backup, database
checkpoint, and merge of the Bonsai Tree. The priority assignment determines in
what order a task is run once it is executed. For details, read IBM solidDB Linked
Library Access User Guide.

solidDB Remote Control (solcon) lets you enter administrative commands without
using the ADMIN COMMAND syntax. See “solidDB Remote Control (solcon)” on
page 59 for details.

Starting solidDB

Note:

This section applies to standard solidDB only. If you are using solidDB with linked
library access, read the corresponding section in IBM solidDB Linked Library Access
User Guide.

When solidDB is started, it checks if a database already exists. The server first
looks for a solid.ini configuration file and reads the value of FileSpec parameter.
Then the server checks if there is a database file with the names and paths
specified in the FileSpec parameter. If a database file is found, then the solidDB
will automatically open that database. If no database is found, then the server
creates a new database.

Table 3. Starting the server

Operating System To Start the Server...

UNIX/Linux Enter the command solid at the command prompt. When you
start the server for the first time, enter the command solid -f at
the command prompt to force the server to run in the
foreground.

Microsoft Windows Click the shortcut, in the Start menu, labeled solidDB Server.
Alternatively, enter the command solid at the command prompt
in the server's working directory (by default, bin\, in the
installation directory. To start the server to run in the
background, enter the command start solid.

Open VMS Enter the command run solid at the command prompt.

10 IBM solidDB: Administrator Guide

For details on the FileSpec parameter, read “FileSpec_[1...n] parameter” on page 50.

Creating a new database
If a database does not exist, solidDB will at start up automatically create a new
database. In the Microsoft Windows environment, creating the database begins
with a dialog prompting for the database administrator's username, password, and
a name for the default database catalog. For details, read "Managing Database
Objects" in solidDB SQL Guide.

In other environments, if you do not have an existing database, the following
message appears:
Database does not exist. Do you want to create a new database (y/n)?

By answering "yes", solidDB prompts you for the database administrator's
username, password, and a name for the default database catalog.

The username requires at least two characters. The maximum number of characters
is 80. A user name must begin with a letter or an underscore.

The password requires at least three characters. The maximum number of
characters is 80. Passwords can begin with any letter, underscore, or number. Use
lower case letters from a to z, upper case letters from A to Z, the underscore
character "_", and numbers from 0 to 9.

You cannot use the double quote (") character in the password. The use of
apostrophe ('), semicolon (;), or especially space (' ') is strongly discouraged,
because some tools may not accept these characters in the password.

Lowercase characters are converted to uppercase.

The catalog requires at least one character. The maximum number of characters is
39.

See also “Entering password from a file” on page 59.

Note:

If you plan to use solcon, do not create passwords with non-ASCII characters,
because solcon does not perform UTF-8 translation for any input.

CAUTION:
The catalog name must not contain spaces.

Note: You must remember your username and password to be able to connect to
solidDB. There are no default usernames ; the administrator username you enter
when creating the database is the only username available for connecting to the
new database.

After accepting the database administrator's username and password, solidDB
creates the new database.

By default the database will be created as one file (solid.db) in the solidDB
working directory. An empty database containing only the system tables and views
uses approximately four megabytes of disk space. The time it takes to create the
database depends on the hardware platform you are using. If you have a very

2 Administering solidDB 11

small database (less than four megabytes) and want to keep the disk space less
than four megabytes, set the value of the ExtendIncrement parameter in the
solid.ini configuration file to less than 500 (default). This parameter and other
parameters are discussed in Appendix A, “Server-side configuration parameters,”
on page 117.

After the database has been created, solidDB starts listening to the network for
client connection requests. In the Microsoft Windows environment, a solidDB icon
appears, but in most environments solidDB runs invisibly in the background as a
daemon process.

Login
solidDB database requires users to login to the database with their username and
password.

If you try to login four times with an incorrect username and/or password, the
system will block your IP address for a maximum of 60 seconds. This feature
cannot be configured or switched off.

About solidDB databases
This section describes solidDB database structure and ways you can specify
different values when creating solidDB databases.

solidDB configuration file (solid.ini)
When you start solidDB, it reads configuration parameters from the solid.ini
configuration file.

The solid.ini file specifies parameters that help customize and optimize the
solidDB database server. For example, the FileSpec parameter in the solid.ini file
specifies the directory and file names of the data files in which the server stores
the user data. Another parameter specifies the block size for the database. The
block size affects performance and also limits the maximum record size. The
FileSpec and BlockSize parameters are described in the next section.

You can find a complete description of all parameters, details about the proper
format of the solid.ini file, and instructions for specifying solid.ini
configuration parameters in Appendix A, “Server-side configuration parameters,”
on page 117. For more details about setting parameters, read 3, “Configuring
solidDB,” on page 47.

Setting up database environment
By default the solidDB database files, log, message, and trace files are created in
the solidDB working directory. For production environments, you may want to set
up an environment where, for example, database files, backup files, and log files
are located on different disks.

Default working directory settings

A working directory is the directory that contains the files related to running a
particular solidDB instance.

The following table shows the most common solidDB files, their factory value
locations, and how to modify the locations.

12 IBM solidDB: Administrator Guide

Table 4. solidDB default files

File
Factory value
location How to modify

license file (solid.lic,
soliduc.lic, or
solideval.lic)

working
directory

Define path in SOLIDDIR environmental
variable

solid.ini configuration file working
directory

Define path in SOLIDDIR environmental
variable

database files (solid.db) working
directory

Define with IndexFile.FileSpec parameter

transaction log files
(sol#####.log)

working
directory

Define location with Logging.LogDir
parameter

or

Define location and file name with
Logging.FileNameTemplate parameter
Note: If you specify a directory for the log
files, the directory must exist before you start
solidDB: solidDB cannot create directories.

message file (solmsg.out) working
directory

Location and name cannot be changed; the
solmsg.out file is always output in the
working directory.

error file (solerror.out) working
directory

Location and name cannot be changed; the
solerror.out file is always output in the
working directory.

trace file (soltrace.out) working
directory

Define with Com.TraceFile parameter

backup files <working
directory>/
backup

Define with General.BackupDirectory
parameter
Note: The directory for the backup files must
exist before you make a backupsolidDB:
solidDB cannot create directories.

Recommendations for production environments
v If you do not wish to run the installer on your production environment node,

install solidDB on a separate node and copy the executables, libraries, and
drivers manually to your production node, as applicable for your setup.

v To prevent loss of data in case of a disk failure, store the database files and
transaction log files on different physical drives. This will also provide best
performance, especially during database checkpoints when both database files
and transaction log files are written at the same time.

v Use local disks (instead of network disks) for storing the database files and log
files.
This is especially important with a solidDB HotStandby setup. The HotStandby
configurations are targeted for environments with shared nothing architecture,
and this is best achieved by having the primary and secondary databases in
separate nodes, each using local disks. Network disks have a risk of being a
logical/physical single point of failure in the system.

Related topics
v “Configuration files and parameter settings” on page 47
v “Managing database files and caching (IndexFile section)” on page 50

2 Administering solidDB 13

v “Viewing error messages and log files” on page 16
v “Performing backup and recovery” on page 29
v “Running several servers on one computer” on page 41

Setting database block size (BlockSize) and location
(FileSpec)

The default block size for the solidDB database file is 16 KB. The block size is
defined in multiples of 2 KB. The minimum block size is 2 KB and the maximum
is 64 KB. The maximum size of the database is 64 TB.

The block size is set with the parameter Indexfile.BlockSize. If you want solidDB
to create a database with a different block size, you have to set a new constant
value before creating a new database. If you have an existing database, be sure to
move the old database (.db) and log files (.log) to another directory; the next time
you start solidDB, a new database is created.

To modify the constant value for the new database, add the following lines in the
solid.ini file, providing the size in bytes :
[Indexfile]
BlockSize=size_in_bytes

The unit of size is 1 byte (as in all size-related parameters). The unit symbols of K
and M (for KB and MB, respectively) can also be used.

After you save the file and start solidDB, it creates a new database with the new
constant values from the solid.ini file.

Similarly, you can also modify the FileSpec parameter to define the following:
v location of the database file (the default is solid.db in the solidDB directory)
v maximum size (in bytes) the database file can reach (the default value is

2147483647, which equals 2 G-1 bytes). The maximum file size is (4
G-1)*blocksize. With the default 16 KB block size, this makes 64 TB - 1.

You can also use the FileSpec parameter to divide the database file into multiple
files and onto multiple disks. This may be required if you want to create a large
physical database.

For details on configuration with the FileSpec parameter, read “Managing database
files and caching (IndexFile section)” on page 50.

Defining database objects
solidDB database objects include catalogs, schemas, tables, views, indexes, stored
procedures, triggers, and sequences. By default, database object names are
qualified with the object owner's user id and a system catalog name that you
specify when creating a database for the first time or converting an old database to
a new format. You can also specify that database objects be qualified by a schema
name. For details, see section Managing database objects in the IBM solidDB SQL
Guide.

solidDB supports a practically unlimited number of tables, rows, and indexes.
Character strings and binary data are stored in variable length format. This feature
saves disk space. It also makes programming easier on developers since the
lengths of strings or binary fields do not have to be fixed. The maximum size for a
single column value is 2G-1 bytes.

14 IBM solidDB: Administrator Guide

By configuring the MaxBlobExpressionSize parameter, you can set the maximum
size of LONG VARCHAR (or CLOB) columns that are used in string functions.
(The size can be specified in kilobytes (K) or megabytes (M).) By default, the size is
1MB (1 megabyte).

For efficiency, solidDB can store BLOB data outside the table. When BLOBs (Binary
Large Objects), such as objects, images, video, graphics, or digitized sound are
larger than a particular size, solidDB automatically detects this and stores the
objects to a special file area that has optimized block sizes for large files. No
administrative action is required. For more information, see section BLOBs and
CLOBs in the Appendix: Data Types in the IBM solidDB SQL Guide.

Connecting to solidDB

Note: This section applies to standard solidDB only. If you are using solidDB with
linked library access, refer to the corresponding section in IBM solidDB Linked
Library Access User Guide.

After starting solidDB, you can test the configuration by connecting to the server
from your workstation using the solidDB teletype tools, SQL Editor or Remote
Control. Read 4, “Using solidDB data management tools,” on page 59, for details
on these utilities, which are part of the solidDB Data Management tools.

To connect to solidDB:
1. View the solmsg.out file in your database directory for valid network names

that you can use to connect to solidDB.
The following messages indicate what names you can use.
Listening of ’tcp hobbes 1313’ started.

2. Start one of the following applications and give the network name of the server
as a command line parameter:

Table 5. Connecting to solidDB

Tool Command

solidDB Remote Control (solcon)
solcon "networkname" [userid [password]]

For example:

solcon "tcp hobbes 1313"

If you did not specify the database administrator's user name and password on the
command line, then solcon will prompt you to enter them.

solidDB SQL Editor (solsql)
solsql "networkname" [userid [password]]

For example:

solsql "tcp hobbes 1313"

If you did not specify the database administrator's user name and password on the
command line, then solsql will prompt you to enter them.

After a while you will see a message indicating that a connection to the server has
been established.

2 Administering solidDB 15

Viewing error messages and log files
By default, solidDB outputs errors and messages in the solmsg.out and
solerror.out log files in the solidDB working directory. To view the descriptions
of single or all error messages, use ADMIN COMMAND ’errorcode’.

Controlling message log output
If you want to process the message files programmatically, you can enable the
messages to be output with an 8-character unique code. You can also disable the
generation of message log files.

solidDB maintains the following message log files:
v solmsg.out – log file for normal informational events, such as connects,

disconnects, checkpoints, backups, failed logins and so on
v solerror.out – log file for fatal errors, typically causing the server to crash

Additionally, solidDB can also produce trace files (soltrace.out) for
troubleshooting purposes.

You can view the message log files with a text editor.

The message log file size is controlled with the Srv.MessageLogSize parameter.
When the maximum size of the message log file is reached, the current solxxx.out
file is renamed to solxxx.bak, and a new solxxx.out file is started. To avoid
overwriting the contents of the backup solxxx.bak message log the next time the
maximum size of the message log file is reached, use the Srv.KeepAllOutFiles
parameter to enable the log files to be named incrementally.

Enabling message codes in message logs

Each error and status message is identified with an 8-character unique code. If the
message files are processed programmatically, it is easier to parse them if the
message codes are included. To enable the message code output, set the
Srv.PrintMsgCode to 'yes' (default is 'no').

Disabling message log generation

To disable the generation of the solmsg.out and the solerror.out log files, set the
Srv.DisableOutput parameter to 'yes' (default is 'no').

Important: Disabling the generation of log files makes it difficult to diagnose
problems. Turning off message logging will increase performance and reduce disk
space usage; however, in most cases the improvement is minimal. This option is
useful only in unusual situations, such as when I/O is "expensive" (as it is in some
systems that use FLASH memory), or in systems where data storage space is
extremely limited and the message log file accumulates indefinitely without being
deleted.

Viewing error message descriptions with ADMIN COMMAND
'errorcode'

Each error and status message is identified with a unique number that you can use
with ADMIN COMMAND ’errorcode’ to view the error description.

16 IBM solidDB: Administrator Guide

The command ADMIN COMMAND ’errorcode <error_number>’ displays the
description of the given error message.

For example:
ADMIN COMMAND ’errorcode 14706’;

RC TEXT
-- ----
0 Code: SRV_ERR_HSBINVALIDREADTHREADMODE (14706)
0 Class: Server
0 Type: Error
0 Text: Invalid read thread mode for HotStandby, only mode 2 is supported.

4 rows fetched.

The command ADMIN COMMAND ’errorcode all’ displays the descriptions of all
error messages in a Comma Separate Value (CSV) format.

The error codes and their descriptions are also available in Appendix D, “Error
codes,” on page 179.

Using trace files
The trace files (soltrace.out) are needed primarily for troubleshooting of
exceptional events.

Monitoring the trace files is not necessary for everyday operation of the server. For
more details about the trace files and how to use them, see 7, “Diagnostics and
troubleshooting,” on page 111.

Tracing failed login attempts
When login fails, the information about the attempt is recorded for security
reasons.

Failed attempt always
v raises a SYS_EVENT_ILL_LOGIN event, and
v prints message to both solmsg.out and solerror.out.

Messages include the IP address and the username of the attempt, for instance. The
syntax of the message is as follows:

timestamp [message code] User username tried to
connect from {hostname | unnamed host} with an
illegal username or password. [SOLAPPINFO is solappinfo value.]

Example:
Thu May 12 17:55:17 2005
12.05 17:55:17 User ’FOO’ tried to connect
from localhost.localdomain (127.0.0.1)
with an illegal username or password.

Note: The message code is only included if message code printing is enabled
(Srv.PrintMsgCode=yes) in solid.ini.

Note: The SOLAPPINFO part is only included if the corresponding environment
variable is set at the client computer.

2 Administering solidDB 17

Monitoring solidDB
The following sections describe the methods used for querying the status of a
solidDB database.

Checking overall database status
The general server status may be retrieved by using the following command in
solidDB SQL Editor (solsql):
admin command ’status’;

RC TEXT
-- ----
0 IBM solidDB started at 2008-12-04 12:48:24
0 Current directory is C:\solidsw\solid63\eval_kit\standalone
0 Using configuration file C:\solidsw\solid63\eval_kit\standalone\solid.ini
0 Memory statistics:
0 39269 kilobytes
0 Process size statistics:
0 Resident set size: 16312 kilobytes
0 Virtual size: 43040 kilobytes
0 Transaction count statistics:
0 Commit Abort Rollback Total Read-only Trxbuf Active Validate
0 114 0 1 115 237 0 1 0
0 Cache count statistics:
0 Hit rate Find Read Write
0 100.0 28809 0 56
0 Database statistics:
0 Index writes 3623 After last merge 0
0 Log writes 2277 After last cp 0
0 Active searches 0 Average 1
0 Database size 8064 kilobytes
0 Log size 16 kilobytes
0 User count statistics:
0 Current Maximum Total
0 1 1 1

The result set fields are described below:
v Memory statistics show the amount of memory solidDB has allocated from the

operating system. This number does not include the size of the executable itself.
v Transaction count statistics show the number of different transaction operations

since startup.
v Cache count statistics show cache hit rate and number of cache operations since

startup. Cache hit rate usually should be above 95 percent. If it is below 95
percent, consider increasing the cache size.

v Database statistics show a number of the most important database operations
since startup. The Index writes - After last merge is an important figure here.
It reveals the size of the multi-versioning storage tree ofsolidDB, known as the
"Bonsai Tree." The smaller this value is, the better the server performance. A
large value indicates that there is a long-running transaction active in the engine.
Note that an excessively large Bonsai Tree causes performance degradation. For
details on reducing Bonsai tree size, read “Reducing Bonsai Tree size by
committing transactions” on page 94.

v User count statistics shows the current and the maximum number of concurrent
users.

Obtaining currently connected users
You can also obtain a listing of connected users by entering the following
command in solidDB SQL Editor (solsql):

18 IBM solidDB: Administrator Guide

ADMIN COMMAND 'userlist';

The command provides the following kind of result set:
RC TEXT
-- ----
0 User name: User id: Type: Machine id: Login time:
0 DBA 1 SQL Local 27.05 16:13:22

Throwing out a connected solidDB user
To disconnect a single user from the server, enter the following command in
solidDB SQL Editor (solsql):
ADMIN COMMAND ’throwout user_id’;

Note that this command throws out user connections; it does not break the
connection between a HotStandby Primary and HotStandby Secondary server.

Querying the status of the most recent backup
To obtain a status of the most recently run local backup, enter the following
command in solsql:

ADMIN COMMAND 'status backup';

Obtaining the status of the most recently made network backup, enter the
command:

ADMIN COMMAND 'status netbackup"

If the last backup is successful, the result set looks as follows:
RC TEXT
-- ----
0 SUCCESS

If the latest backup has failed, then the RC column returns an error code. Return
code 14003 with text "ACTIVE" means that the backup is currently running.

Producing a status report
To create a report about the current status of solidDB, enter the following
command in solidDB SQL Editor (solsql):
ADMIN COMMAND ’report report_filename’

This report is primarily meant for solidDB internal use only because it contains
information that requires very detailed understanding about the internals of
solidDB. End users sometimes are requested to produce the report for
troubleshooting purposes.

Performance counters (perfmon)
You can get information about various database operations and performance with
ADMIN COMMAND ’perfmon’.

The ADMIN COMMAND ’perfmon’ command returns a result set of all solidDB
performance counters (called perfmons or pmons). All the counters are listed and
described in “Full list of perfmon counters” on page 21.

2 Administering solidDB 19

ADMIN COMMAND ’perfmon’;
RC TEXT
-- ----
0 Performance statistics:
0 Time (sec) 3 Total
0 File open : 0.0 0.1
0 File read : 0.0 1.2
0 File write : 0.0 0.0
0 File append : 0.0 0.6
0 File flush : 0.0 0.0
0 File lock : 0.0 0.0
0 Cache find : 0.0 78.5
0 Cache read : 0.0 1.0
0 Cache write : 0.0 0.0
0 Cache prefetch : 0.0 0.0
0 Cache prefetch wait : 0.0 0.0
0 Cache preflush : 0.0 0.0
0 Cache LRU write : 0.0 0.0
...

Each column represents a snapshot of the performance information that reflects the
most recent few minutes. The first column shows average performance information
from a period of seconds. The Total column shows average information since
solidDB was started.

Most numbers are events/second. Those numbers that cannot be expressed as
events/second (for example, database size) are expressed in absolute values.

The command syntax also has options that allow you to specify output options.
For details on these options, see the perfmon option in Appendix E, “solidDB
ADMIN COMMAND syntax,” on page 257.

You can restrict the output by providing a list of prefixes of counter names. For
example, ADMIN COMMAND ’perfmon db’ returns all pmon counters starting with 'db':
ADMIN COMMAND ’perfmon db’;
RC TEXT
-- ----
0 Performance statistics:
0 Time (sec) 42 43 43 42 30 42 43 26 Total
0 DBE insert : 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 DBE delete : 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 DBE update : 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 DBE fetch : 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7
0 DBE dd operation : 0 0 0 0 0 0 0 0 0
0 Db size : 8064 8064 8064 8064 8064 8064 8064 8064 8064
0 Db free size : 7472 7472 7472 7472 7472 7472 7472 7472 7472
0 DB actiongate lock time, latest: 0 0 0 0 0 0 0 0 0
0 DB actiongate lock time, sum : 0 0 0 0 0 0 0 0 0
0 DB actiongate lock count : 0 0 0 0 0 0 0 0 0
12 rows fetched.

Producing a continuous performance monitoring report
The command ADMIN COMMAND ’perfmon diff’ allows you to start and stop
producing continuous performance counter reports to a file.

To start monitoring:
ADMIN COMMAND ’perfmon diff start filename interval’

For example, to start logging all counters, with 1 second interval:
ADMIN COMMAND ’pmon diff start counter_log.csv 1000’

This will log the counter data to a comma-separated values (CSV) file starting with
a row of counter names, and having one row per each sampling time.

20 IBM solidDB: Administrator Guide

To stop monitoring:
ADMIN COMMAND ’pmon diff stop’

Full list of perfmon counters
The counters are listed in the order they appear in the output report.

Table 6. Perfmon counters

Perfmon Variable Description

Time (sec) In one-time report: length of the measurement time interval, in
seconds. The latest interval is on the right side of the table.

TimeMs In a differential report: measurement time interval, in
milliseconds. The oldest interval is in the first row of the table.

File open File open calls/sec

File read File read calls/sec

File write File write calls/sec

File append File append calls/sec

File flush File flush calls/sec

File lock File lock calls/sec

Cache find Cache fetches/sec

Cache read Cache misses/sec

Cache write Cache page flushes/sec

Cache prefetch Cache prefetched pages/sec

Cache prefetch wait Cache waits for prefetched pages/sec

Cache preflush Preflushing cache pages/sec

Cache LRU write A write from cache is done when performing an LRU
replacement. This indicates that the client thread must write one
block to disk before reading a new block from the disk because
there has not been a free disk block available. A very high value
can indicate just high I/O load, or it can indicate that I/O
preflusher values are not optimal.

Cache slot wait This counter indicates that there is concurrent access to the same
block and one thread must wait for the other. Depending on the
cache configuration, it can also indicate that the mutex count for
the cache is not optimal and there are false conflicts. The default
mutex count does not cause false conflicts here.

Cache slot replace Database cache slot is replaced and old slot is removed.

Cache write storage leaf Database cache has written a storage tree leaf page to disk.

Cache write storage index Database cache has written a storage tree index page to disk.

Cache write bonsai leaf Database cache has written a Bonsai-tree leaf page to disk.

Cache write bonsai index Database cache has written a Bonsai-tree index page to disk.

2 Administering solidDB 21

Table 6. Perfmon counters (continued)

Perfmon Variable Description

RPC messages Total number of sent messages/sec

RPC read Total number of read messages/s

RPC write Total number of write messages/sec

RPC uncompressed When RPC compression enabled, number of bytes/sec

RPC compressed When RPC compression enabled, number of compressed byte/s

Com sel empty TCP socket select nil returns/sec

Com sel found TCP socket select successes/sec

SQL prepare SQL prepare statements/sec

SQL execute SQL execute statements/sec

SQL fetch SQL fetch statements/sec

DBE insert Table engine row inserts/sec

DBE delete Table engine row deletes /sec

DBE update Table engine row updates /sec

DBE fetch Table engine row fetches /sec

DBE dd operation Server has executed SQL data dictionary operation.

Proc exec Procedure executions/sec

Trig exec Trigger executions/sec

SA insert SA-level row inserts/sec

SA delete SA-level row deletes/sec

SA update SA-level row updates/sec

SA fetch SA-level row fetches/sec

Trans commit Committed transactions/sec

Trans abort Aborted transactions/sec

Trans rollback Rolled back transactions/sec

Trans readonly Read-only transactions/sec

Trans buf Current® transaction buffer size

Trans buf cleanup Cumulative number of cleanup operations since startup

22 IBM solidDB: Administrator Guide

Table 6. Perfmon counters (continued)

Perfmon Variable Description

Trans buf added Cumulative number of transactions added since startup

Trans buf removed Cumulative number of transactions removed since startup

Trans validate Current number of active commit-time validations

Trans active Current number of active transactions

Trans read level This counter indicates the current transaction read level. This
counter value increases all the time. Because the counter value is
32-bit variable, it can have a negative value, but still logically
the value is increasing. If the value stays the same for a long
time with concurrent write transactions, it indicates that a long
transaction is blocking the read level and can cause merge
blocking and an increase in the Bonsai tree size.

Ind write Index writes/sec

Ind nomrg write number of nonmerged rows (committed and uncommitted)

Log write Log record writes/sec

Log file write Log block writes/sec

Log nocp write Pending log records since last checkpoint

Log size Total size of log file, in KB

Search active Table engine-level active searches.

Db size Total database size on disk, in KB

Db free size Free space in the database (page level), in KB

Mem size Total size of dynamically allocated memory, in KB

Merge quickstep Quick merge steps/sec

Merge step Full merge steps/sec

Merge step (purge) Node split-inflicted merge keys/sec (if enabled)

Merge step (user) User thread-activated merge row/sec

Merge oper Lower-level merge operations/sec

Merge cleanup Transaction buffer cleanup calls/sec (if split purge enabled)

Merge active Yes/no (1/0)

Merge nomrg write Current number of index entries waiting for merge

Merge file write Merge-inflicted file writes/sec

2 Administering solidDB 23

Table 6. Perfmon counters (continued)

Perfmon Variable Description

Merge file read Merge-inflicted file reads/sec

Merge level Current merge level (read level of the oldest active transaction)

Backup step Database backup steps/sec (also in netbackup and netcopy)

Backup active Yes/no (1/0)

Checkpoint active Yes/no (1/0)

Checkpoint count Checkpoint serial no. from startup

Checkpoint file write Checkpoint file writes/sec

Checkpoint file read Checkpoint file reads/sec

Est read samples Estimator sample refresh call/s

Sync repl msg forw Replica: fowarded messages/sec

Sync repl msg getr Replica: received message replies/sec

Sync repl msg exec Replica: executed messages/sec

Sync mast msg read Master: message reads/sec

Sync mast msg exec Master: message execs/sec

Sync mast msg write Master: message writes/sec

Sync mast subs Master: refreshes/sec

Log flush (L) Logical log flushes/sec (e.g. commit)

Log flush (P) Physical log flushes/sec

Log grpcommwkup Group commit wakeups/sec

Log flush full Log page full flushes/sec

Log wait flush Current number of user threads waiting for log operation

Log writeq full rec Log writes while log write queue full (in number of records)

Log writeq records Number of records in current log writer queue.

Log writeq bytes Number of bytes in log writer queue.

Log writeq pending bytes Number of bytes for the next log writer queue flush.

Log writeq add Number of records added to log writer queue.

Log writeq write Number of records written from log writer queue to log file.

Log writeq full byt (byte size) Log writes while log write queue full (in bytes)

HSB operation count Primary/Secondary: transferred log record/sec

24 IBM solidDB: Administrator Guide

Table 6. Perfmon counters (continued)

Perfmon Variable Description

HSB commit count Primary: commit record/sec

HSB packet count Primary: messages/sec

HSB flush count Primary/Secondary: message flushes/sec

HSB cached bytes Primary/Secondary: current size memory based log buffer, in
bytes

HSB cached ops Primary/Secondary: current size of the memory-based log
buffer, in operations (log records)

HSB flusher bytes Number of bytes of the HSB log in the send queue to the
Secondary

HSB notsent bytes Number of bytes in the HSB log that has been accumulated (for
example, during a catchup) and not sent to the Secondary yet

HSB grouped acks Secondary: current number of ack groups (physical acks)

HSB state Name of the current HSB state

HSB wait cpmes Yes/no (1/0) Primary: waiting for checkpoint ack from the
Secondary

HSB secondary queues Secondary: current number of queues pending processing

HSB log reqcount HSB log write requests/sec

HSB log waitct HSB log waits-for-write requests/sec

HSB log freespc HSB: number of log operations there is space for in the protocol
window

HSB catchup reqcnt HSB log write requests/sec, for catchup

HSB catchup waitcnt HSB log waits-for-write requests/sec, for catchup

HSB catchup freespc HSB: number of log operations there is space for in the protocol
window, for catchup

HSB alone freespc Primary: in Primary alone, bytes there is room for in the
transaction log

Thread count Current number of threads

Trans wait readlvl Waits/sec for read level at commit

Lock ok Successful lock requests/sec

Lock timeout Lock timeouts/sec

Lock deadlock Deadlocks/s

Lock deadlock check Number of lock manager deadlock checks done.

2 Administering solidDB 25

Table 6. Perfmon counters (continued)

Perfmon Variable Description

Lock deadlock loop Number of lock manager deadlock check loops done.

Lock wait Lock waits/sec

Lock count Number of locks in lock manager.

Dropped search buffers Number of search buffers removed from disk based table
searches because too many buffers were used.

Number of search buffers Current number of search buffers used for disk based tables.

NOCHECK operations Internal number of nocheck operations performed.

MME cur num of locks Current no. IME locks

MME max num of locks Peak number of IME locks (since startup)

MME cur num of lock chains Current no. IME hash buckets

MME max num of lock chains Peak no. IME hash buckets (since startup)

MME longest lock chain path IME: longest hash overflow path

MME mem used by tuples IME memory allocated to tuples in kilobytes

MME mem used by indexes IME memory allocated to indexes in kilobytes

MME mem used by page structs IME memory allocated to the shadow structures in kilobytes

MME inserts with x gate Number of inserts done in exclusive mode. Insert switches from
shared mode to exclusive mode for example, when the insert
causes index node split.

Posted events queue Number of posted events that has not been consummated by
the subscribers

Index search both Search is done from both the Bonsai tree and the storage tree

Index search storage Index search is done from storage tree only

B-tree node search keys DBE B tree searches/sec

B-tree node search mismatch A search was done by using the mismatch index search
structure within a B-tree node. Mismatch index is a search
structure where anarray of mismatch index positions is built
within a B-tree node. This mismatch index is a compact and
linear data structure that is used to perform a fast scan over
compressed key information to find a key position within the
B-tree node. It attempts to optimize the search by using fast
access in the processor cache row by packing relevant search
information in one to three processor cache pages.

B-tree node build mismatch A new mismatch index search search structure is built within a
B-tree node. Mismatch index is a search structure where an
array of mismatch index positions is built within a B-tree node.
This mismatch index is a compact and linear data structure that
is used to perform a fast scan over compressed key information
to find a key position within the B-tree node. It attempts to
optimize the search by using fast access in the processor cache
row by packing relevant search information in one to three
processor cache pages.

26 IBM solidDB: Administrator Guide

Table 6. Perfmon counters (continued)

Perfmon Variable Description

B-tree node split DBE B tree node splits/sec

B-tree node relocate A B-tree node is relocated. This happens when a block that
belongs to a previous checkpoint is changed for the first time.
Typically, this value is highest immediately after a checkpoint.

B-tree node delete empty An empty B-tree node is deleted.

B-tree node exclusive Exclusive access to the B-tree is used. This can happen, for
example, in a node split case such as when the tree root is split.

B-tree key read Normal key value is read from the B-tree.

B-tree key read delete Delete mark is read from the B-tree.

B-tree key read oldversion Old row version is read from the B-tree.

B-tree key read abort A row from an aborted transaction is read from the B-tree. This
includes all transactions that were not successfully completed.

B-tree storage leaf len Average length for storage tree leaf node.

B-tree storage index len Average length for storage tree index node.

B-tree bonsai leaf len Average length for Bonsai-tree leaf node.

B-tree bonsai index len Average length for Bonsai-tree index node.

Bonsai-tree height Current Bonsai tree height in levels.

B-tree lock node Number of B-tree node lock calls.

B-tree lock tree Number of whole B-tree lock calls.

B-tree lock full path Number of B-tree full node path lock calls.

B-tree lock partial path Number of B-tree partial node path lock calls.

B-tree get no lock Number of B-tree no lock calls.

B-tree get shared lock Number of B-tree shared lock calls.

Pessimistic gate wait Number of waits for pessimistic disk based table gate.

Merge gate wait Number of waits for merge gate.

Storage gate wait Number of waits for storage tree gate.

Bonsai Gate wait Number of waits for Bonsai-tree gate.

Gate wait There is a wait in a gate object. A gate object is an internal
synchronization mechanism.

Logreader spm reqcount Logreader log space request/sec

Logreader spm waitct Logreader log space waits/sec

Logreader spm freespc Logreader: number of log operations the protocol window has
space for.

Logreader logdata queue len Logreader: number of log record blocks waiting for processing.

Logreader record queue len Logreader: number of log records waiting for propagation.

Logreader stmt queue len Logreader: number of statements waiting for statement
commit/rollback.

2 Administering solidDB 27

Table 6. Perfmon counters (continued)

Perfmon Variable Description

Logreader open cursors Logreader: number of open cursors to SYS_LOG.

Logreader records processed Logreader: number of log records processed/sec.

Logreader records sent Logreader: number of log records sent for propagation/sec.

Logreader commits processed Logreader: number of commits processed/sec.

Logreader commits sent Logreader: number of commits sent to the propagator/sec.

Logreader messages sent Logreader: number of wakeup messages to open cursors/sec.

Logreader catchup state Logreader catchup state.

Logreader catchup queue len Logreader: number of log records in catchup queue.

Logreader catchup queue size Logreader: size of the catchup queue, in bytes.

Logreader pending queue len Logreader: number of pending log records in the in-memory log
buffer.

Logreader memcache queue len Logreader: length of the in-memory buffer queue, in operations.

Logreader batch queue len Logreader: current number of operations queued for the next
batch.

Logreader flush batch full
Logreader: a full transaction back was flushed from logreader.

Logreader flush batch force Logreader: a non-full transaction batch was flushed from
logreader.

TS applied transactions
Number of transactions applied into solidDB by CDC instance
when solidDB is a target datastore.

DB actiongate lock time, latest Amount of time in milliseconds the last lock lasted

DB actiongate lock time, sum Amount of time in milliseconds all locks have lasted since
server startup

DB actiongate lock count Number of locks since server startup

Shutting down solidDB

Note: This section applies to standard solidDB only. If you are using solidDB with
linked library access, read the corresponding section in IBM solidDB Linked Library
Access User Guide.

You can shut down the solidDB in the following ways:
v Programmatically from an application such as solidDB Remote Control, or

solidDB SQL Editor. To do this, perform the steps below.

Note: When using solidDB SQL Editor for steps 1-3 below, enter the full SQL
Syntax,
ADMIN COMMAND ’command_name’

(for example, ADMIN COMMAND 'close')

28 IBM solidDB: Administrator Guide

1. To prevent new connections to solidDB, close the database(s) by entering the
following command:
close
Note that you can revert the effect by entering the command:
open

2. Exit all users of solidDB (except the current connection) by entering the
following command:
throwout all
Note that this command does not wait for open transactions to finish; it
aborts and rolls back all open transactions.

3. Stop solidDB by entering the following command:
shutdown

v Using command ADMIN COMMAND 'shutdown force" that includes all of the
above.

v Right-clicking the server icon and selecting Close from the menu appearing in
the Microsoft Windows environment.

v Remotely, using the command 'net stop' through the Windows system services.
Note that you may also start up solidDB remotely, using the 'net start'
command.

Each of these shutdown mechanisms will start the same routine, which writes all
buffered data to the database file, frees cache memory, and finally terminates the
server program. Shutting down a server may take a while since the server must
write all buffered data from main memory to the disk.

Performing backup and recovery
Backups are made to secure the information stored in your database files. If your
database files have become corrupted or they are lost due to a system failure, you
can restore the database from the backup files. To ensure that data is secure in the
event of a system failure, you should regularly back up master and possibly also
the replica databases.

solidDB main memory engine supports both local backups and backups made over
the network, that is, network backups. Local backup produces a copy — one
database file — of the current logical database, which possibly consists of multiple
files. Network backup does the same except that the backup database is sent over
the network to Network Backup Server.

This section describes how to back up your solidDB in-memory databases and
recover from system failure. Furthermore, means of configuring, administering,
and monitoring backup operations are presented. For guidelines for backing up
and restoring the master and replica databases, see the solidDB Advanced Replication
Guide.

Making local backups
You can initiate a local backup by entering the following command in solsql:
ADMIN COMMAND ’backup [-s] [dir backup dir]’

Available options for the backup command:

2 Administering solidDB 29

Table 7. Options for the backup command

Option Description

-s Synchronized execution. The call returns either when the backup
is completed or due to an error.

dir backup dir is a path expression determining the backup directory
in the local file system.

If the backup directory is omitted, it must be specified in the
solid.ini configuration file.

If the specified backup directory does not exist, solidDB
database error 10030 is given. For more information on this
error, see Appendix D, “Error codes,” on page 179

The backup directory can be set beforehand in the configuration file by setting the
parameter BackupDirectory in the [General] section of the configuration file. For
the full list of available configuration parameters see Appendix A, “Server-side
configuration parameters,” on page 117.

CAUTION:
If two databases are copied to the same directory, the earlier will be overwritten
by the latter. The backup dir must be different at least for each database.
Moreover, although database files may be stored to different directories and
partitions at the source server they all are copied to the same backup directory.
Therefore equally named database files will conflict in the backup directory. As
a consequence, only the last backed-up file among the equally named ones has
backup copy in the backup directory.

Making backups over network
A network backup command may be sent to any host running a solidDB server. A
server playing the role of the backup receiver is called a NetBackup Server.

Making netbackup
You can initiate a network backup ("netbackup" for short) by entering the
following command in solsql:
ADMIN COMMAND ’netbackup [options] [DELETE_LOGS | KEEP_LOGS]
[connect connect str] [dir backup dir]’

Available options for the netbackup command:

Table 8. Options for the netbackup command

Option Description

-s Synchronized execution. The call returns either when the
netbackup is completed or due to an error.

connect connect str is an elementary connect string specifying the
connection to NetBackup Server.

If the connect string is omitted it must be specified in the
solid.ini configuration file.

30 IBM solidDB: Administrator Guide

Table 8. Options for the netbackup command (continued)

Option Description

dir backup dir is a path expression determining the backup directory
in NetBackup Server. The path can be either absolute or relative
to the netbackup root directory.

If the backup directory is omitted it must be specified in the
solid.ini configuration file.

DELETE_LOGS Delete backed-up log files in the source server. The backup
using DELETE_LOGS is sometimes referred to as Full backup.
This is the default value.

KEEP_LOGS Keep backed-up log files in the source server. The backup using
KEEP_LOGS is sometimes referred to as Copy backup. Using the
keyword KEEP_LOGS corresponds to setting the General
parameter NetbackupDeleteLog to "no".

For the full connect string syntax see “Format of the connect string” on page 49.
For the full ADMIN COMMAND syntax see Appendix E, “solidDB ADMIN
COMMAND syntax,” on page 257.

CAUTION:
If two databases are copied to the same directory, the earlier will be overwritten
by the latter. The backup dir should never point, for instance, to the root directory
of the Netbackup Server.

Note:

v The command ADMIN COMMAND ’netbackup’ is not supported within the Srv.At
configuration parameter.

v The ADMIN COMMAND ’status netbackup’ is a synonym of ADMIN COMMAND ’status
backup’ and reports on both local and network backups.

v The ADMIN COMMAND ’netbackuplist' is a synonym of ADMIN COMMAND
’backuplist’ and reports on both local and network backups.

Flat and deep NetBackup directory structures
The NetBackup Server sees all the database files sent to it as one logical database
even though the source database may consist of multiple files stored in different
directories and on different permanent storage devices. By default, netbackup
copies all the files of the source database to a single directory, that is, the
user-specified netbackup directory.

It is, however, possible to explicitly specify the directories, the names and sizes of
the backup files stored into the file system of the NetBackup Server. This is done
by creating a backup.ini netbackup configuration file to the netbackup directory.
The netbackup configuration file follows the syntax of [IndexFile] section in
solidDB configuration file. Therefore, in addition to the section name, it may
include multiple specifications for file names and sizes. Formally the syntax is as
follows:
[IndexFile]
FileSpec_[1...N]=[path/]file name [maximum file size]

A NetBackup Server having such a backup.ini file receives the incoming database
as a whole, splits it into N separate parts and stores the parts as files in accordance
with the specifications in the backup.ini file.

2 Administering solidDB 31

Tip:

An easy way to retain the directory structure of the source server is to copy and
rename the source server's solid.ini to backup.ini and move it to the backup
directory at the NetBackup Server. The NetBackup Server reads only the
FileSpec_[1...N] specifications from the [IndexFile] section, creates similar directory
structure and stores backup files with their original properties to the NetBackup
Server.

Configuring and automating backups
For both local and network backup, all the optional settings except the
synchronized execution, -s, can be set beforehand in the database configuration file.
Since the name and the syntax of the configuration parameters differ from the
ADMIN COMMAND options, the corresponding parameter-option pairs are listed
in the table below.

Corresponding ADMIN COMMAND options and configuration parameters for
local backup

Table 9. Parameter correspondence to the solid.ini file for local backup

Option Value
parameter in section [General] of
solid.ini

dir backup dir BackupDirectory = backup dir

default: no default

Corresponding ADMIN COMMAND options and configuration parameters for
netbackup

Table 10. Parameter correspondence to the solid.ini file for netbackup

option value
parameter in section [General] of
solid.ini

connect connect str NetBackupConnect = connect str

default: no default

dir backup dir NetBackupDirectory = backup dir

default: no default

netbackup DELETE_LOGS NetbackupDeleteLog = yes

default: yes

netbackup KEEP_LOGS NetbackupDeleteLog = no

default: yes

For the complete list of configuration parameters and ADMIN COMMAND
options see Appendix A, “Server-side configuration parameters,” on page 117 and
Appendix E, “solidDB ADMIN COMMAND syntax,” on page 257, respectively.

Note: The options entered in ADMIN COMMAND command override
corresponding parameters specified in the solid.ini database configuration file.

32 IBM solidDB: Administrator Guide

Making backups can be automated by using timed commands. Read “Entering
timed commands” on page 41 for details.

What happens during backup
Both local and network backup create a self-contained and self-consistent image of
a database by copying necessary files to the user-specified backup directory.

Every backup makes a checkpoint as its first action. This guarantees that the
possible restore starts with as fresh backup as possible. This way, the slower
roll-forward portion of the restore is minimized. The following files are then
copied by default to the specified backup directory:
v the database files containing the checkpointed database itself,
v the log files including changes made by those transactions that are active when

the backup takes place,
v the solmsg.out database message file (this is for convenience in diagnosing

problems — the message file is not required during a restore), and
v the solid.ini configuration file is also copied by default because after a disk

crash the original might be destroyed (the configuration file is not required
during a restore).

The solid.lic licence file is not automatically copied.

Note: The name of the database files and their maximum size are specified in the
FileSpec[1...N] parameters in the [IndexFile] section of the solid.ini
configuration file. The name and location of log files is specified in the [Logging]
section of the configuration file.

The log files are typically deleted from the source server after they have been
copied to the backup directory since they have become useless. This is the default
backup procedure and it is referred to as Full backup.

It is, however, possible to retain all the log files produced over time by the update
transactions in the database server directory. Keeping all the log files is
space-consuming but allows, for instance, bringing the database up-to-date by
re-executing all the updates by using the log files only. This backup type is called
Copy backup.

Note: If you want to use Copy backups, that is, retain the full log file history, you
also must ensure that the log files are not deleted at the end of checkpoint. This
can be done by ensuring that you do not have the line CheckpointDeleteLog=yes
in section [General] of the solid.ini configuration file.

Local backup
In local backup the database and the log files are copied from the database
directory to user specified backup directory accessible from within the same
machine.

If the backup directory already includes files with same names, they will be
overwritten. If the specified backup directory does not exist, the backup fails and
the call returns an error.

2 Administering solidDB 33

CAUTION:

Ensure that backup and database directories are both on different physical
device and in different file system than database files. If one disk drive is
damaged, you will lose either your database files or backup files but not both.
Similarly, if one file system fails, either the backup or the database files will
survive.

Network backup
Netbackup is a facility for storing the whole database at some remote location.
This is done by way of a solidDB Netbackup Server whose function is to receive
backups over the network. One Netbackup Server can serve multiple simultaneous
backup source servers.

Similarly to local backup, the files are written into a user specified directory in the
Netbackup Server. If the target netbackup directory includes files with the same
names, they will be overwritten. Unlike the local backup, if the specified remote
directory does not exist, it is created automatically.

solidDB Netbackup Server requires the administrator privileges from the caller of
netbackup. Less privileged users can perform netbackups by using stored
procedures that are created by an administrator. In that case the user must be
granted the right to execute the procedure.

Netbackup can be performed between different server versions provided that they
are netbackup compatible. By principle, a newer version of the Netbackup Server
will serve older versions of source servers. In other cases, the protocol version is
checked and an incompatibility error is returned at the netbackup's request.

Administering network backup server
Every solidDB database server since version 4.5 also acts as a Network Backup
Server. One configuration parameter, however, must be set in the in [Srv] section in
the solid.ini configuration file:
NetBackupRootDir=netbackup root path

The path is relative to the working directory and the default is the working
directory.

You can shut down a Netbackup Server by following the normal shutdown
sequence and using the normal close and shutdown commands.
1. ADMIN COMMAND 'close'

No new netbackup requests are accepted.
2. ADMIN COMMAND 'throwout all'

Aborts the backups in progress.
3. ADMIN COMMAND 'shutdown"

Shuts down the server.

Monitoring and controlling backups
solidDB offers a set of commands for monitoring and controlling backups. Backups
can be controlled both by using the ADMIN COMMAND syntax in solsql.

34 IBM solidDB: Administrator Guide

Local backup and netbackup on source-server side
You can query and control backup processes by using the ADMIN COMMAND
-SQL extension in solsql. The syntax is as follows:
ADMIN COMMAND ’command’

where the command may be any of those presented in the table below.

Table 11. Available backup and netbackup commands

Local Backup Network Backup Description

status backup status netbackup Displays the status of the most recent
backup.

backuplist netbackuplist Displays a status list of last backups.

info bcktime Displays the time of the latest completed
backup.

abort backup abort netbackup Cancels the on-going backup process.

Query the list of all completed backups and their success status

To query the list of all completed backups and their success status, use the
command:

ADMIN COMMAND 'backuplist'

Abort an active network backup operation

To abort an active network backup operation, use the command:

ADMIN COMMAND 'abort netbackup'

Correcting a failed backup
When solidDB is performing a backup — local or network — the command
ADMIN COMMAND ’status [backup | netbackup]’

returns the value "ACTIVE". The default option is backup. Once the backup is
completed, the command returns either "OK" or "FAILED".

If the backup failed, you can find the error message that describes the reason for
the failure in the solmsg.out file in the database directory. Correct the cause of the
error and try again.

Typical problems in backups
Backup media is out of disk space. Making a backup requires the same amount of disk
space as the database being backed-up. Therefore be sure you have enough disk
space in the backup storage device.

Invalid path for backup directory. The backup directory you enter must be a valid
path name in the server operating system. For example, if the server runs on a
UNIX operating system, path separators must be slashes, not backslashes.

2 Administering solidDB 35

The local backup directory does not exist. Specifying a non-existent backup directory
causes the server to print an error message and the backup fails. If you perform
backups as timed operations you can ensure the success of backups from
solmsg.out file.

The local backup directory is the same as that of the database. Since the backup copies
database files with their original names to the target directory, using same source
and target directories would lead to file sharing conflict.

solidDB network backup server does not exist in the specified location. Trying to start a
network backup without setting up solidDB network backup server properly will
fail the netbackup.

Restoring backups
You can restore the database to the state it was in when the backup was created by
following the instructions below. Furthermore, you can revive a backup database to
the current state by using log files generated after the backup was made. Those log
files include information about the data inserted or updated since the latest
backup.

Preparing netbackup files for recovery
Two preliminary steps may have to be taken before a database can be recovered
from remote backup files.
1. If backup.ini was not used, the original naming and sizing of the database

files must be restored from the solid.db file.
2. All the backup files must be copied to the node where the restore takes place.

Besides these steps, restoring a netbackup is similar to restoring local backup.

Returning to the state of the last backup
1. Shut down solidDB, if it is running.
2. Delete all log files from the log file directory. The default log file names are

sol00001.log, sol00002.log, etc.
3. Copy the database files from the backup directory to the database file

directory.
4. Start solidDB.

This method will not perform any recovery because no log files exist.

Refreshing database from the backup to the current state
1. Shut down solidDB, if it is running.
2. Copy the database files from the backup directory to the database directory.
3. Copy the log files from the backup directory to the log directory. If the same

log files exist in both directories, do not overwrite the newer log files with the
older backup log files.

4. Start solidDB.

solidDB will automatically use the log files to perform a roll-forward recovery.

Recovering from abnormal shutdown
If the server was closed abnormally, that is, if it was not shut down using the
procedures described earlier, solidDB automatically uses the log files to perform a
roll-forward recovery during the next start up. No administrative procedures are
required to start the recovery.

36 IBM solidDB: Administrator Guide

Transaction logging
Transaction logging guarantees that no committed operations are lost in the case of
a system failure. When an operation is executed in the server, the operation is also
saved to a transaction log file. The log file is used for recovery in case the server is
shut down abnormally.

There are two different logging modes:
v Ping-pong method

This method uses the last two allocated disk blocks in the log file to write the
two latest versions of the same logical incomplete disk block. The ping-pong
method toggles between these two blocks until one block becomes full.

v Overwriting method

This method rewrites in complete blocks at each commit until it becomes full. It
may be used when data loss from the last log-file disk block is affordable.

solidDB allows you to decide whether you want to use logging or not. If logging is
used, abnormally shut down databases can be restored to the state they were at the
moment the failure took place. If the logging is disabled, databases can be restored
to the backup state only. Transaction logging is enabled by default. If the full
transaction recovery is not needed, logging can be disabled. To do this, set the
[Logging] parameter LogEnabled to "no".

Logging may be synchronous or asynchronous, depending on the transaction
durability setting. For more on transaction durability, see the subsection Logging
and transaction durability in 5, “Performance tuning,” on page 83.

Creating checkpoints
A checkpoint updates the database file(s) on disk. Specifically, a checkpoint copies
pages from the database server's memory cache to the database file on the disk
drive. The server does the copy in a transactionally-consistent way; in other words,
it only copies the results of committed transactions. The result is that all of the
data in the database file is committed data from complete transactions. If the
server fails between checkpoints, the disk drive will have a consistent and valid
(although not necessarily up-to-date) snapshot of the data.

In between checkpoints, the server writes committed transactions to a transaction
log. If the server fails, any transactions committed since the last checkpoint can be
recovered from this transaction log. After a system crash, the database will start
recovering transactions from the latest checkpoint.

Conceptually, you can think of checkpoints as being the main write operations to
the database files on disk. The server does not write the results of each individual
insert/update/delete statement (or even the result of each transaction) to the disk
as it happens; instead the server accumulates committed transactions (in the form
of updated pages in memory) and writes them to the disk only during
checkpoints. (The server may also use part of the database file as swap space if the
server's cache overflows. In this situation, the server will also write to the database
file.)

Before and after a database operation, you may want to create a checkpoint
manually. You can do this programmatically from your application with SQL
command

2 Administering solidDB 37

ADMIN COMMAND 'makecp'

(Make CheckPoint). You can also force a checkpoint using a timed command. Read
“Entering timed commands” on page 41 for details.

solidDB has an automatic checkpoint creation daemon, which creates a checkpoint
after a certain number of writes to the log files. For more information about
controlling the frequency of checkpoints, see “Tuning checkpoints” on page 93.

Checkpoints apply also to persistent in-memory tables, not just disk-based tables.

Note:

There can only be one checkpoint in the database at a time. When a new
checkpoint is created successfully, the older checkpoint is automatically erased. If
the server process is terminated in the middle of checkpoint creation, the previous
checkpoint is used for recovery.

A checkpoint can require a substantial amount of I/O, and may affect the server's
responsiveness while the checkpoint is occurring. For more details, read “Tuning
checkpoints” on page 93.

Closing a database
You can close the database, which means no new connections to the database are
allowed. To do this, issue the following command in solidDB SQL Editor (solsql):

ADMIN COMMAND 'close';

You use the close command when you want to prevent users from connecting to
the database. For example, when you are shutting down solidDB, you must
prevent new users from connecting to the database. As part of the shut down
procedure you use the close command. Read “Shutting down solidDB” on page 28
for procedures to shut down a database.

After closing the database, connections from solidDB Remote Control will only be
accepted. Closing the database does not affect existing user connections. When the
database is closed no new connections are accepted (clients will get solidDB Error
Message 14506).

To revert the effect of the close command, use:

ADMIN COMMAND 'open';

Running solidDB as a Windows service
solidDB can be run as a service in Windows. The first time you want to run
solidDB as a service, you must install the service, that is, allow Windows to run
solidDB as a service. After that, you can start and stop the services with the
Windows Service dialog or command prompt, or remove the services using
solidDB command line options.

38 IBM solidDB: Administrator Guide

Starting solidDB as a service for the first time
The first time you want to run solidDB as a service, you must first install the
service, and then start the service with the Windows Service dialog or command
prompt.

Before you begin
v If you have not created a database before, you must create the database by

starting the server for the first time as a foreground process. This is because
when solidDB is running as a service, it does not interact with a display and
cannot create a new database. You can start the server as a foreground process
from the command line with the command solid or use the Start IBM solidDB
icon in the Programs menu.

v The solidDB that you intend to run as a service cannot be located on a network
drive.

Procedure
1. Allow (install) Windows to run solidDB as a service.

In the command prompt, issue the following command:
solid -s"install,<name>,<fullexepath> -c<working directory>[,autostart]"

where
<name> is the service name
<fullexepath> is the full path for solid.exe

<working directory> is the full path for solidDB working directory (where
your solid.ini and license file are located)
[autostart] is an optional parameter that sets the Startup Type of the service
to Automatic, that is, solidDB will run automatically as a service when Windows
is started.

Note:

Regardless of the [autostart] parameter, the service is not started
automatically at the time of install. For the first time, the service has to be
started manually in the Windows Services dialog or command prompt. (See
step 2 below.)
Example 1

The following command installs a service named SOLID (with Startup Type
Manual) when solidDB is installed into the directory C:\soliddb and the
working directory is C:\soliddb.
solid -s"install,SOLID,C:\soliddb\bin\solid.exe -cC:\soliddb"

Example 2

The following command installs a service named SOLID (with Startup Type
Automatic) when solidDB is installed into the directory C:\soliddb and the
working directory is C:\soliddb. The next time Windows is started, solidDB
will automatically run as a service.
solid -s"install,SOLID,C:\soliddb\bin\solid.exe -cC:\soliddb,autostart"

Tip:

2 Administering solidDB 39

Alternatively, you can create the service using the Windows command line
utility sc.exe. In that case, to start solidDB in a services mode, you must
include the solidDB -sstart command line option in the command. For
example:
sc create SOLID binPath= "c:\soliddb\bin\solid.exe -cC:\soliddb -sstart"

The -sstart command line option is required to remove the GUI-based
interactions between the solidDB server and the user. Programs running as a
Windows service cannot use those.

2. Start the service manually in the Windows Services dialog or command
prompt.

v You can access the Windows Services dialog through Control Panel: Control
Panel > Administrative Tools > Services.

v In the command prompt, issue the following command:
sc start <name>

Results

When running as an Windows service, solidDB will log warning and error
messages to the Windows event log. These messages can be viewed from Windows
by using the Event Viewer, available through Control Panel: Control Panel >
Administrative Tools > Event Viewer. Messages are also logged to the solmsg.out
file.

Starting and stopping solidDB services
The solidDB services can be started and stopped using the Windows Services
dialog or command prompt.

Procedure
v You can access the Services dialog through Control Panel: Control Panel >

Administrative Tools > Services.
v In the command prompt,

– issue the following command to start the service:
sc start <name>

– issue the following command to stop the service:
sc stop <name>

where <name> is the name of the service you want to start or stop.

Removing solidDB services
You can remove the solidDB services using solidDB command line options.

Procedure
1. Stop the service in the Windows Services dialog or command prompt.

v You can access the Windows Services dialog through Control Panel: Control
Panel > Administrative Tools > Services.

v In the command prompt, issue the following command:
sc stop <name>

where <name> is the name of service you want to stop.
2. Remove the solidDB service.

In the command prompt, issue the following command:
solid -s"remove,<name>"

40 IBM solidDB: Administrator Guide

Example

The following command removes a service named SOLID.
solid -s"remove,SOLID"

Running several servers on one computer
In some cases, you may want to run two or more databases on one computer. For
example, you may need a configuration with a production database and a test
database running on the same computer.

solidDB is able to provide one database per database server, but you can start
several engines each using its own database file. To make these engines use
different databases, either start the engine processes from the directories your
databases are located in or give the locations of configuration files by using the
command line option -c directory_name to change the working directory. Remember
to use different network listen names for each database.

Entering timed commands
solidDB has a built-in timer, which allows you to automate your administrative
tasks. You can use timed commands to execute system commands, to create
backups, checkpoints, and database status reports, to open and close databases,
and to disconnect users and shut down servers.

To enter a timed command, edit the At parameter in the [Srv] section of the
solid.ini file. The syntax is:
At = At_string
At_string ::= timed_command [, timed_command]
timed_command ::= [day] HH:MM command argument
day ::= sun | mon | tue | wed | thu | fri | sat

If the day is not given, the command is executed daily.

Example:
[Srv]
At = 20:30 makecp, 21:00 backup, sun 23:00 shutdown

Note:

The format used is HH:MM (24-hour format).

The list of valid commands is in the table below:

Table 12. Arguments and defaults for different timed commands

Command Argument Default

backup backup directory the default backup directory that is set in
the configuration file

throwout user name, all no default, argument compulsory

makecp no arguments no default

shutdown no arguments no default

2 Administering solidDB 41

Table 12. Arguments and defaults for different timed commands (continued)

Command Argument Default

report report file name no default, argument compulsory

system operating system command

For example in Linux® environments:

cp solmsg.out solmsg2.out

no default

open no argument no default

close no argument no default

Compacting the database files

What is database reorganization
solidDB server is capable of allocating new disk pages as the database grows.
However, it does not free the space allocated previously in the database files even
if it is not needed any more. Instead, it maintains a list of unused pages for later
use. In some applications, however, there may be short-term peaks in the database
space usage, resulting in large allocated disk space. If such peaks are seldom, there
may be a need to return the unused space back to the file system. The database file
reorganization feature serves this particular purpose.

How does the database reorganization work
The current implementation allows performing database file compaction in offline
mode, at the page level. Offline means that a database file being compacted cannot
be actively used by the server. Page level means that only empty pages are
discovered and removed from the file. No intra-page compaction is performed, i.e.
data is not moved among pages.

When using the feature, note that the reorganization operation may not be
recoverable. If there is a failure during the reorganization run, neither the run nor
the database file can be later recovered. To protect yourself against such failures,
make a database backup before starting the reorganization.

Database reorganization command line options
There are two command line options available for database reorganization: Free
factor report and Reorganization.

Free factor report
solid -x infodbfreefactor

The infodbfreefactor option outputs a report of how many free pages there are in
the database, how much space is free, in kilobytes, and also a percentage value of
free space. After printing the report to ssdebug.log and console, the solidDB
process returns with a success return value.

Reorganization
solid -x reorganize

42 IBM solidDB: Administrator Guide

The reorganize option invokes database reorganization. The operation moves
pages to unused slots in the database file, as long as there are any. When the page
relocation is complete, the unused space is released back to the file system, i.e. the
file is truncated, a new checkpoint is created, and the solidDB process terminates
with a success return code. The report of the reorganization run is written to the
ssdebug.log file.

See Appendix C, “solidDB command line options,” on page 175 for other utilities
invoked with a command line option.

Encrypting a database
By default, solidDB always encrypts passwords using the DES algorithm. If you
want to encrypt also the database files and log files, you need to create an
encrypted database using solidDB command line options. You can also disable the
encryption of passwords.

The DES algorithm shipped with solidDB is based on a symmetric-key algorithm
that uses a 56-bit key. To protect the symmetric encryption key, a startup password
must be specified when creating, starting, or decrypting an encrypted database.

The solidDB DES algorithm is a weak DES algorithm that is not recommended for
applications that require strong security.

Encrypting database and log files
The encryption of the entire database (database and log files) is enabled using
command line options -E and -x keypwdfile:<filename>.

About this task
v The -E option invokes database encryption. The database can be encrypted when

creating a new database or when starting an existing database.
v The -x keypwdfile:<filename> option provides the encryption password from a

file.
The encryption password is needed to protect the symmetric encryption key
which is stored in an unencrypted header page of the database file.
The encryption password is mandatory when -E is specified. The minimum
length of the password is three characters. If your specify an empty password,
the encryption key is left unprotected.

Note: Alternatively, option -S can be used to provide the password as part of
the startup command. However, this is not secure on most of systems. For
example in UNIX systems, the password can be seen in the ps command output.
Use the -S option only for debugging or evaluation purposes.

Procedure
v Creating a new encrypted database

To create an encrypted database, include the -E and -x keypwdfile:<filename>
options in the solidDB startup command.
For example:
solid -C mycatalog -U admin -P admin -E -x keypwdfile:pwd.txt

v Encrypting an existing database

To encrypt an existing database, include the -E and -x keypwdfile:<filename>
options in the solidDB startup command.

2 Administering solidDB 43

For example:
solid -U admin -P admin -E -x keypwdfile:pwd.txt

Starting an encrypted database
To start an encrypted database, you must provide the encryption password at the
startup. If you do not include the password in the startup command, the server
prompts you for the password.

Procedure

Start solidDB using the following command:
solid -x keypwdfile:<filename>

For example:
solid -x keypwdfile:pwd.txt

Alternative, you can provide the password using the -S command line option:
solid -S <password>

Changing the encryption password
To change the password of the encryption key, solidDB must be started using
option -E and the options specifying the old and the new password.

Procedure

Changing the encryption password
To change the encryption password, start solidDB with the following command
syntax:
solid -E -x keypwdfile:<old key filename> -x keypwdfile:<new key filename>

For example:
solid -E -x keypwdfile:pwd.txt -x keypwdfile:newpdw.txt

Alternatively, you can specify the new and old password in the command line
using the -S option
solid -E -S <old_password> -S <new_password>

Decrypting a database
You can decrypt a database with the option -x decrypt. You also need to provide
the encryption password.

Procedure

Decrypting a database
To decrypt a database, start solidDB with the following command syntax:
solid -x decrypt -x keypwdfile:<filename>

For example:
solid -x decrypt -x keypwdfile:pwd.txt

44 IBM solidDB: Administrator Guide

Querying database encryption level
You can check the database encryption level using the
DATABASE_ENCRYPTION_LEVEL() function. This can be useful, for example, if
your system does not allow storing data in an unencrypted file, and you need to
register a new replica.

Procedure

Use the DATABASE_ENCRYPTION_LEVEL() function. The function has the
following return values:
v 0 - no encryption
v 1 - encrypted, the key is not protected (empty password)
v 2 - encrypted, the key is protected by a separate startup password

Making backups of encrypted databases
Database backups and netbackups create encrypted copies of the database with the
same encryption key and password.

Encrypting HotStandby servers
In High Availability (HotStandby) configurations, the Primary and Secondary
servers must use the same encryption method and encryption key.

Encrypt the Primary database first and then copy or netcopy it.

HotStandby traffic is not encrypted by means of database file encryption. To
protect the HSB traffic, other security means are needed. When making an HSB
copy or netcopy, the database file and logs are transfered in encrypted form to
avoid redundant encryption/decryption of the files.

Encryption and performance
Using an encrypted database affects the database server performance for both read
and write operations.
1. On read type operations, performance impact is mostly determined by the

cache hit rate and is not significant when the cache hit rate is high.
2. On insert and update operations, the server encrypts and decrypts the log files

(if they are used) and in this case performance penalty can be more significant.

2 Administering solidDB 45

46 IBM solidDB: Administrator Guide

3 Configuring solidDB

This chapter describes how to configure solidDB to meet your environment,
performance, and operation needs. It includes the most important parameters and
their settings. See “Managing server-side parameters” on page 55 for step-by-step
instructions on how to view and set the parameter values by using solidDB
Remote Control (solcon), or SQL Editor (solsql).

Important:

If you are using solidDB with linked library access, please refer to IBM solidDB
Linked Library Access User Guide for more information on parameters that are
specific to linked library access.

If you are using solidDB with the HotStandby component, please refer to IBM
solidDB High Availability User Guide for information on HotStandby-specific
parameters.

Configuration files and parameter settings
solidDB gets most of its configuration information from the solid.ini file. There
are two different solid.ini configuration files, one on the server and one on the
client. Neither configuration file is obligatory. If there is no configuration file, the
factory values are used. The solid.ini configuration files contain configuration
parameters for the client and for the server, respectively. The client-side
configuration file is used if the ODBC driver is used and the file must be located
in the working directory of the application.

Note:

In solidDB documentation, references to solid.ini file are usually for the
server-side solid.ini file.

When solidDB starts, it attempts to open solid.ini first from the directory set by
the SOLIDDIR environment variable. If the file is not found from the path
specified by this variable or if the variable is not set, the server or client attempts
to open the file from the current working directory. The current working directory
is normally the same as the directory from which you started the solidDB server,
or a client application. You may specify a different working directory by using the
-c server command-line option. For more information about command line options,
see the section Appendix C, “solidDB command line options,” on page 175.

The configuration files contain settings for the solidDB parameters. If a value for a
specific parameter is not set in the solid.ini file, solidDB will use a factory value
for the parameter. The factory values may depend on the operating system you are
using.

Generally, factory values offer good performance and operability, but in some cases
modifying some parameter values can improve performance.

You can modify the configuration by setting parameter name/value pairs in the
solid.ini file. For example, to specify the network address of the server, you use
the parameter name Listen and an appropriate value, for example,

47

Listen=tcp 192.168.255.1 1315

This specifies that when the server listens for client requests, it should listen using
the TCP/IP protocol, the network address 192.168.255.1, and the port number 1315.

Parameters are grouped according to section categories in the configuration file.
For an overview of the section categories and all the available parameters, see the
sections Appendix A, “Server-side configuration parameters,” on page 117 and
Appendix B, “Client-side configuration parameters,” on page 171.

Each section category starts with a section name inside square braces, for example:
[com]

The [com] section lists communication information. Note that section names are
case insensitive. The section names "[COM]", "[Com]", and "[com]" are equivalent.

Below is a sample section from a server-side solid.ini configuration file:
[IndexFile]
FileSpec_1=C:\soldb\solid1.db 1000M
CacheSize=64M

Most important client-side parameters
This section describes the most important solidDB client-side parameters and their
default settings.

Defining network names (Com section)
A client application uses a network name to specify which protocol to use when
communicating with the server, and which server to connect to.

Connect parameter
The Connect parameter in the [Com] section defines the default network name
(connect string) for a client to connect to when it communicates with a server. Not
surprisingly, since the client should talk to the same network name as the server is
listening to, the value of the Connect parameter on the client should match the
value of the Listen parameter on the server.

The default value is Operating System dependent. Refer to 6, “Managing network
connections,” on page 99.

The following connect line tells the client to communicate with the server by using
the TCP/IP protocol to talk to a computer named 'spiff' using server port number
'1313'.
[Com]
connect = tcpip spiff 1313

When an application program is using a solidDB ODBC Driver, the ODBC Data
Source Name is used and the Connect parameter has no effect.

Note that similar connect parameters are used in sections [HotStandby] and
[Synchronizer] to enable connections between solidDB servers. For the description
of these parameters, refer to IBM solidDB High Availability User Guide and IBM
solidDB Advanced Replication User Guide.

48 IBM solidDB: Administrator Guide

Format of the connect string
The same format of the connect string applies to all listen configuration parameters
as well as to connect strings used in ODBC applications.

Connect string format:
protocol_name [options] [server_name] [port_number]

where options can be any number of:

Table 13. Connect string options

Option Meaning

-z Data compression is enabled for this connection

-c milliseconds Login timeout is specified (the default is operating-system-
specific). A login request fails after the specified time has
elapsed. Note: applies for the tcp protocol only.

-r milliseconds Connection (or read) timeout is specified (the default is 60 s). A
network request fails when no response is received during the
time specified. The value 0 sets the timeout to infinite. Note:
applies for the tcp protocol only.

Examples:
tcp localhost 1315
tcp 1315
tcp -z -c1000 1315
nmpipe host22 SOLID

Trace parameter
If you change the Trace parameter default setting from No to Yes, solidDB starts
logging trace information on network messages for the established network
connection to the default trace file or to the file specified in the TraceFile
parameter.

TraceFile parameter
If the Trace parameter is set to Yes, then trace information on network messages is
written to a file specified by the TraceFile parameter. If no file name is specified,
the server uses the default value soltrace.out, which is written to the current
working directory of the server or client, depending on which end the tracing is
started at.

Most important server-side parameters
This section describes the most important solidDB server-side parameters and their
default settings.

Defining network names (Com section)
When a server is started, it will start listening to one or more protocols with
network names that distinguish it in the network. A client application uses a
similar network name to specify which protocol to use and which server to connect
to.

3 Configuring solidDB 49

Listen parameter
The Listen parameter in the [Com] section defines the network name for the
server; this is the protocol and name that a solidDB server uses when it starts to
listen to the network. Client processes communicate with the server using this
network name. The default value is operating system dependent. Refer to 6,
“Managing network connections,” on page 99, for details on the parameter format.
[Com]
Listen = tcpip localhost 1313

Managing database files and caching (IndexFile section)
In solidDB, data and indexes are stored in the same file(s). The term "index file" is
used as a synonym for the term "database file". The [IndexFile] section of the
solid.ini file contains parameters that specify the name and location of the file(s)
used to store the database. The [IndexFile] section of solid.ini also controls the
caching-related parameters.

FileSpec_[1...n] parameter
The FileSpec parameter describes the location and the maximum size of an index
file (database file). To define the location and maximum size, the FileSpec
parameter accepts the following three arguments:
v database file name
v max filesize
v device number (optional)
[IndexFile]
FileSpec_1=SOLID.DB 2000M

The default value for this parameter is

solid.db 2147483647

(which equals 2 GB-1 expressed in bytes)

The size unit is 1 byte. You can use K and M unit symbols to denote kilobytes and
megabytes, respectively. The maximum file size is (4G-1)*blocksize. With the
default 8 KB block size, this makes 32 TB - 1.

The FileSpec parameter is also used to divide the database into multiple files and
onto multiple disks. To divide the database into multiple files, specify another
FileSpec parameter identified by the number 2. The index file will be written to
the second file if it grows over the maximum value of the first FileSpec parameter.

In the following example, the parameters divide the database file on the disks C:,
D: and E: to be split after growing larger than about 1 GB (=1073741824 bytes).
This example does not use the optional device number.
[IndexFile]
FileSpec_1=C:\soldb\solid.1 1000M
FileSpec_2=D:\soldb\solid.2 1000M
FileSpec_3=E:\soldb\solid.3 1000M

Note:

The index file locations entered must be valid path names in the server's operating
system. For example, if the server runs on a UNIX operating system, path
separators must be slashes instead of backslashes.

50 IBM solidDB: Administrator Guide

Although the database files reside in different directories, the file names must be
unique. In the above example, the different device numbers indicate that C:, D: and
E: partitions reside on separate disks.

There is no practical limit to the number of database files you may use.

Splitting the database file on multiple disks will increase the performance of the
server because multiple disk heads will provide parallel access to the data in your
database.

Note that you may need to have multiple files on a single disk if your physical
disk is partitioned into multiple logical disks and no single logical disk can
accommodate the size of the database file you expect to create.

If the database file is split into multiple physical disks, then multithreaded solidDB
is capable of assigning a separate disk I/O thread for each device. This way the
server can perform database file I/O in a parallel manner. Read section Dedicated
threads in “Types of threads” on page 7 for more details.

The optional "device number" that you may specify for each data file helps the
server optimize its performance. Note that the actual device number serves only as
a means for you to designate a distinct number for each physical device; the device
number serves no other purpose, such as indicating the brand, model, or
characteristics of your storage device.

If you have different files on the same physical device, use the same device
number for each of those files. For example, assume that your computer runs
Microsoft Windows and has two physical disk drives. The first physical disk drive
is C:. The second physical disk drive is partitioned into two logical disk drives, D:
and E:. If one data file is put on C:, one on D:, and one on E:, then the solid.ini
file might look like the following:
FileSpec_1=C:\soldb\solid.1 1000M 1
FileSpec_2=D:\soldb\solid.2 1000M 2
FileSpec_3=E:\soldb\solid.3 1000M 2

In this case, FileSpec_2 and FileSpec_3 use the same physical device (even though
the device names D: and E: are different), so they are assigned the same device
number. The actual values used for the device number (1 for C:, 2 for D:, and 2 for
E:) are arbitrary and meaningless.

If your database has reached the maximum size specified by the FileSpec
parameter, you can increase the limit. Simply shut down the server, increase the
size field, and restart the server. You may increase the size this way, but you must
not try to decrease the size this way.

CAUTION:
Do not attempt to use the FileSpec parameter to decrease the size of a database;
you risk losing pre-existing data and corrupting the database.

CacheSize
The CacheSize parameter defines the amount of main memory used to maintain
the shared buffer pool of the disk database. This buffer pool is called the database
cache. The factory value depends on the server operating system. For the pure
in-memory database operation, the cache size is mostly irrelevant once it is not less
than 8 MB. The absolute minimum size is 512 kilobytes. For example:

3 Configuring solidDB 51

[IndexFile]
CacheSize=512

The size unit is bytes. You may also specify the amount of space in units of
megabytes, for example, "10M" for 10 megabytes. Although solidDB is able to run
with a small cache size, a larger cache size generally speeds up the server. The
cache size needed depends on the size of the database, the number of connected
users, and the nature of the operations executed against the server.

The default cache size is 32 MB.

Specifying the local backup directory (General section)
Backups of the database, log files and the configuration file solid.ini are copied
to the local backup directory. The directory must exist and it must have enough
disk space for the backup files since all the database files of one database are
copied to the same directory. It can be set to any existing directory except the
solidDB database file directory, the log file directory or the working directory.

BackupDirectory parameter
The BackupDirectory parameter in the [General] section defines a name and
location for your backup directory. Note that default 'backup' is a directory relative
to your solidDB working directory. For example, if the parameter is:
[General]
BackupDirectory=backup

then the backup will be written to a directory that is a sub-directory of the solidDB
directory.

Note:

The backup directory entered must be a valid path name in the server's operating
system. For example, if the server runs on a UNIX operating system, path
separators must be slashes instead of backslashes.

Specifying the network backup directory (General section)
The target directory in the NetBackup Server for the backup files, log files and the
configuration file is set with the NetBackupDirectory parameters in the source
server and the network server side. If the remote directory doesn't exist, it is
created if possible.

Source-side parameter
The parameter
[General]
NetBackupDirectory=netbackupdir

in the source server sets the remote directory for use of Network Backup. The
netbackupdir is either absolute or relative to the root directory of the NetBackup
Server.

Netbackup server-side parameter
The parameter
[Srv]
NetBackupRootDir=netbackup root dir

52 IBM solidDB: Administrator Guide

in the NetBackup Server sets the root directory to all netbackup operations using
relative path expressions by their NetBackupDirectory specifications. The netbackup
root dir is either absolute or relative to the working directory.

Important:

NetBackup copies logical database consisting of multiple files to one flat file to the
NetBackupDirectory by default. Instead of flattening the structure to one file you
can define multiple files to which the source database files are mapped in
netbackup. Mapping source database file(s) to multiple backup database files is
done by way of using the backup.ini file.)

To ensure the durability of committed transactions, transaction results are written
immediately to a file in a specified directory when the transaction is committed.
This file must be stored to a local drive using local disk names to avoid problems
with network I/O and to achieve better performance. The default log file directory
is the solidDB working directory.

FileNameTemplate
The FileNameTemplate parameter in the Logging section defines a filename
structure for the transaction log files. For example, the following setting
[Logging]
FileNameTemplate = d:\logdir\sol#####.log

instructs solidDB to create log files to directory d:\logdir and to name them
sequentially starting from sol00001.log.

Note:

Placing log files on a physical disk separate from database files improves
performance.

The filename can also be structured by using the FileNameTemplate parameter
together with the LogDir parameter, in which case the LogDir parameter defines
the directory prefix of the filename and the FileNameTemplate parameter defines
the actual filename. For more information, see “Logging section” on page 142.

Specifying a directory for the external sorter algorithm (Sorter
section)

The external sorter algorithm is used for sorting tasks that do not fit in main
memory. When the TmpDir_[1...N] is specified in the configuration file, the
external sorter algorithm is enabled. All temporary files used by the external sort
are created in a specified directory (or directories) and are automatically deleted.

Note that an "external sort" requires space both on disk and in memory, not just
space on the disk. You can configure the maximum amount of disk space to use by
setting the MaxMemPerSort and MaxCacheUsePercent parameters in the [Sorter]
section of the solid.ini file.

TmpDir_[1...N]
The TmpDir[1-N] parameter in the Sorter section defines the directory (or
directories) that can be used by the external sorter. There is no default setting. For
example:

3 Configuring solidDB 53

[Sorter]
TmpDir_1=c:\soldb\temp.1
TmpDir_2=d:\soldb\temp.2
TmpDir_3=g:\soldb\temp.3

To achieve better performance, these files must be stored to a local drive using
local disk names to avoid network I/O. Note that when temporary directories are
not defined, this can lead to poor query performance.

Setting threads for processing (Srv section)
In addition to the communication, I/O, and log manager threads, solidDB can start
general purpose worker threads to execute user tasks in the server's tasking
system. Read “Multithread processing” on page 7 for more details.

The optimum number of threads depends on the number of processors the system
has installed. Usually it is most efficient to have between two and eight threads
per processor.

You must experiment to find the value that provides the best performance on your
hardware and operating system. A good formula to start with is:

threads= (2 x number of processors) + 1

Threads
The Threads parameter in the [Srv] section defines the number of general purpose
worker threads used by solidDB. For example:
[Srv]
Threads=9

Setting SQL trace level (SQL section)
The SQL Info facility lets you specify a tracing level on the SQL Parser and
Optimizer. For details on each level, see IBM solidDB SQL Guide.

Info
The SQL Info facility is turned on by setting the Info parameter to a non-zero
value in the [SQL] section of the configuration file. The output is written to a file
named soltrace.out in the solidDB directory.

Use this parameter for troubleshooting purposes only as it slows down the server
performance significantly. This parameter is typically used for analyzing
performance for a specific single query or specific queries. Standard solidDB
monitoring is a better choice for generic application SQL database tracing.

Specifying network communication tracing (Com section)
The communication tracing facility is necessary, for instance, if the network
hardware is not functioning properly. By turning the tracing on, the
communication layer is capable of logging even the system specific errors and may
help in diagnosing the real problem in the network. For details, read “The network
trace facility” on page 111. The following parameters control the outputting of
network trace information.

54 IBM solidDB: Administrator Guide

Trace
If you change the Trace parameter default setting from No to Yes, solidDB starts
logging trace information on network messages for all the established network
connections to the default trace file or to the file specified in the TraceFile
parameter.

TraceFile
If the Trace parameter is set to Yes, then trace information on network messages is
written to a file specified by the TraceFile parameter. If no file name is specified,
the server uses the default value soltrace.out, which is written to the current
working directory of the server or client, depending on which end the tracing is
started at.

Managing server-side parameters
You can view and modify solidDB parameters and their values in the following
ways:
v Entering the commands:

ADMIN COMMAND 'parameter'
and
ADMIN COMMAND 'describe parameter'
in solidDB SQL Editor (teletype).

v Directly, by editing the solid.ini file in the solidDB directory.

The sections below contain instructions for managing parameters with ADMIN
COMMAND and solid.ini.

Note: For details on viewing and setting server communication protocol
parameters only, see the section 6, “Managing network connections,” on page 99.

Viewing and setting parameters with ADMIN COMMAND
With ADMIN COMMAND, you can change the parameters remotely through a
solidDB server without restarting it. All parameters are accessible even if they are
not present in the solid.ini configuration file. If the parameter is not present, the
factory value is used.

Viewing parameters
A summary view of many parameters or one parameter may be obtained with the
command
ADMIN COMMAND ’parameter [-r] [section_name[.parameter_name]]’;

where:
v -r option specifies that only the current value is required
v section_name is the category name where the parameter is located in solid.ini

To view all parameters, enter the following command in solidDB SQL Editor
(teletype):

ADMIN COMMAND 'parameter';

A list of all parameters with current, startup value, and factory values is returned.
You can restrict the viewed parameters to a specific section by adding a section
name, e.g.:

3 Configuring solidDB 55

ADMIN COMMAND ’parameter logging’;

You can view the values related a single parameter by giving a full parameter
name, like in:
admin command ’parameter logging.durabilitylevel’;

RC TEXT
-- ----
0 Logging DurabilityLevel 3 2 2

1 rows fetched.

The three values shown are (in this order):
v current value

v startup value that was used when the server was started up
v factory value preset in the product

If desired, you can also qualify this command with a -r option to display only the
current values. For example:

ADMIN COMMAND 'parameter -r';

Viewing the description of a specific parameter
You can also view a more detailed description of a specific parameter, which
includes valid parameter types and access modes. This is useful information,
especially because parameters may need to be handled dynamically; parameter
support may vary between products, platforms, or releases.

To view a parameter's description, enter the following command using solidDB
SQL Editor (teletype):
ADMIN COMMAND ’describe parameter [section_name[.parameter_name]] ’;

A result set for a single parameter looks like this:
admin command ’describe parameter logging.durabilitylevel’;

RC TEXT
-- ----
0 DurabilityLevel
0 Default transaction durability level
0 LONG
0 RW
0 2
0 3
0 2

7 rows fetched.

The rows of the resultset are:
v Parameter name is the name of the parameter, for example CacheSize.
v Description of the parameter
v Data type

v Access mode that may be one of the following:
– RO: read-only, the value cannot be changed dynamically
– RW: read/write, the value may be changed dynamically and the change

takes effect immediately
– RW/STARTUP: the value may be changed dynamically but the change takes

effect upon next server startup
– RW/CREATE: the value may be changed dynamically but the change takes

effect when a new database is created

56 IBM solidDB: Administrator Guide

v Startup value displays the parameter's startup value
v Current value displays the parameter's current value
v Factory value displays the value preset in the product

Setting a parameter value
To set a value for a specific parameter, enter the following command using solidDB
SQL Editor (teletype):
ADMIN COMMAND ’parameter section_name.parameter_name=value [temporary]’;

where:

value is a valid parameter value.

Note:

If no value is specified, this sets the parameter with a factory (or unset) value.
Furthermore, if you assign a parameter value with an asterisk (*), the parameter
will be set to its factory value.

When temporary is set, the changed value is not stored in the solid.ini file.

Note that, optionally, you can provide blanks around the equal sign.

Example:
--set communication trace on
ADMIN COMMAND ’parameter com.trace = yes’;

Note:

Parameter management operations are not part of a transaction and cannot be
rolled back.

The commands return the new value as the resultset. If the parameter's access
mode is RO (read-only) or the value entered is invalid, the ADMIN COMMAND
statement returns an error.

Persistence of parameter modifications
All the changes made to parameters having the access mode RW* are stored in the
solid.ini file at the next checkpoint. This does not apply to values set with the
temporary option.

It is also possible to request an immediate storing of changed values, with the
command:
ADMIN COMMAND ’save parameters [ini_file_name]’;

When ini_file_name is not specified, the current solid.ini file is re-written.
Otherwise, a full configuration file is written to a new location. This is a
convenient way to save configuration file checkpoints for later use.

Viewing and setting parameters in solid.ini
1. Open the solid.ini file located in the working directory of your solidDB

process.
2. View the value of the parameter.

3 Configuring solidDB 57

The parameters displayed are the parameters currently active in the server. If
you have not set a parameter value, the factory value is used at startup. The
factory value may depend on the operating system that solidDB runs on.

3. If necessary, add the section, the parameter, and the parameter's value.
4. Save the changes.

You must restart the server to activate the changes.

Constant parameter values
The parameter access mode for the Blocksize parameter in the IndexFile section of
the configuration file is RO. The parameter is set when the database is created and
cannot be modified afterwards.

If you want to use a different constant value, you have to create a new database.
Before creating a new database, set the new parameter constant value by editing
the solid.ini file in the solidDB directory.

The following example sets a new block size for the index file by adding the
following lines to the solid.ini file :
[IndexFile]
Blocksize = 4096

After editing and saving the solid.ini file, move or delete the old database and
log files, and start solidDB.

Note:

The log block size can be changed between startups of the server.

58 IBM solidDB: Administrator Guide

4 Using solidDB data management tools

solidDB data management tools are a set of utilities for performing various
database tasks. The tools are:
v solidDB Remote Control (solcon) and solidDB SQL Editor (solsql) for command

line sessions at the operating system prompt.
v solidDB Speed Loader (solload) for loading data from external ASCII files into a

solidDB database.
v solidDB Export (solexp) for unloading data from a solidDB database to ASCII

files.
v solidDB Data Dictionary (soldd) for retrieving data definition statements from a

solidDB database.

Note: solidDB data management tools do not support the Transparent Failover
(TF) feature. Transparent Failover is a characteristic of the High Availability
configuration. It hides the server change from the user. For more information, refer
to IBM solidDB High Availability User Guide.

Entering password from a file
User-identification information is typically entered as plain text, for example to
solidDB startup command, and to solidDB data management tools. It is, however,
possible to enter password from a file. This way the password can't be seen by
running the UNIX command ps.

The syntax is as follows:
command -x pwdfile:filename

The command can be any of the following: solcon, soldd, solexp, solid, solload,
solsql. Option filename can be either absolute or relative to the working directory.

The first character string ending at newline character is read and considered as
password. Preceding space and newline characters are ignored. If the password
includes space or newline characters, it must be enclosed in quotes. Using quotes,
however, means that quote and backslash characters that belong to the password
must be escaped by a backslash character.

Command examples:
solsql -x pwdfile:userpwd "tcp solsrv 1313" dba
solid -f -c soldb -x pwdfile:solpwd -U dba

solidDB Remote Control (solcon)
With solidDB Remote Control, you can execute administrative commands
(equivalent to the solidDB SQL ADMIN COMMANDs), at the command line,
command prompt, or by executing a script file that contains the commands.

Note: The user performing the administration operation must have
SYS_ADMIN_ROLE or SYS_CONSOLE_ROLE rights, or the connection will be
refused.

59

Starting solidDB Remote Control
Start solidDB Remote Control by issuing the command solcon at the operating
system prompt.

You can also specify the following syntax and include these optional command line
arguments:
solcon options servername username password

where options can be:

Table 14. solcon command options

Option Syntax Description

-c dir Change working directory.

-e command string Execute the specified Remote Control command.

-f filename Execute command string from a script file.

-x pwdfile: filename Read password from the filename.

-h, -? Help = Usage.

Servername is the network name of a solidDB server that you are connected to.
Logical Data Source Names can also be used with tools; refer to 6, “Managing
network connections,” on page 99 for further information. The given network
name must be enclosed in quotes.

Username is required to identify the user and to determine the user's authorization.
Without appropriate rights, command execution is denied.

Password is the user's password for accessing the database.

solidDB Remote Control connects to the first server specified in the Connect
parameter in the solid.ini file. If you specify no arguments, you are prompted for
the database administrator's user name and password. You can give connection
information at the command line to override the connect definition in solid.ini.

To exit Remote Control, enter the command exit.

Remote control

Start up Remote Control with the server name and the administrator's username
and password:
solcon "tcp localhost 1313" admin iohi4y

Start up Remote Control to back up a specific database:
solcon -ebackup ’tcpip 1313" dbadmin password

Entering commands in solidDB Remote Control
After the connection to the server is established, the command prompt appears.

60 IBM solidDB: Administrator Guide

You can execute all commands at the command line with the -e option or in a text
file with the -f option. You can also execute administrative commands
programmatically using options of the SQL command "ADMIN COMMAND".

When you execute administrative commands in solidDB Remote Control, you
provide only the command_name as the syntax for the command string (without
quotes); for example, the SQL command ADMIN COMMAND 'backup' in solidDB
Remote Control is simply:
backup

For a list of administrative commands you can use in solidDB Remote Control,
refer to the description of "ADMIN COMMAND" in the "solidDB SQL Syntax"
appendix in IBM solidDB SQL Guide.

When there is an error in the command line, solidDB Remote Control gives you a
list of the possible options as a result. Please be sure to check the command line
you entered.

Table 15. Remote control specific commands

Command Abbreviation Explanation

exit ex Exits solidDB Remote Control.

help ? Displays available Remote Control
commands.

solidDB SQL Editor (solsql)
With solidDB SQL Editor, SQL statements (including the SQL ADMIN
COMMANDs) can be issued at the command line, command prompt, or by
executing a script file that contains the SQL statements. For a formal definition of
SQL statements and a list of ADMIN COMMANDs, refer to the description of
"ADMIN COMMAND" in the "Solid® SQL Syntax" appendix in IBM solidDB SQL
Guide. To access a short description of available ADMIN COMMANDs, including
short abbreviations, execute:

ADMIN COMMAND 'help'

Starting solidDB SQL Editor
Start solidDB SQL Editor by issuing the command solsql at the operating system
prompt.

You can also specify the following syntax and include these optional command line
arguments:
solsql options servername username password

where options can be:

Table 16. solsql command options

Option Syntax Description

-a Auto commit every statement.

4 Using solidDB data management tools 61

Table 16. solsql command options (continued)

Option Syntax Description

-c dir Change working directory.

-e sql-string Execute the SQL string; if used commit can only be done using
-a.

-f filename Execute SQL string from a script file.

-h, -? Help = Usage.

-m Expect input in multi-byte character format.

-o filename Write result set to this file.

-O filename Append result set to this file.

-s schema_name Use only this schema.

-t Print execution time per command.

-u Expect input in UTF-8 format.

-x pwdfile: filename Read password from the filename.

-x onlyresults Print only rows.

-x outputsql This command-line switch also prints out the executed SQL
commands instead of only printing out the results of each
operation.

-x returnerroronexit This command-line switch is used to display return codes for
SQL errors and user raised procedure errors. The possible return
codes are: Code 60 is returned if the execution of an SQL
statement fails. Code 61 is returned if a procedure call returns
an error. If several sql statements and/or procedure calls fail
during the execution of an SQL script, the returned code is that
of the first failure.

-x stoponerror This command-line switch is used to force stop and exit solsql
immediately when an error is detected.

Note:

If the user name and password are specified at the command line, the server name
must also be specified. Also if the name of the SQL script file is specified at the
command line (except with the -f option), the server name, user name, and
password must also be specified. Remember to commit work at the end of the SQL
script or before exiting SQL Editor.

Servername is the network name of a solidDB server that you are connected to.
Logical Data Source Names can also be used with tools; Refer to 6, “Managing
network connections,” on page 99 for further information. The given network
name must be enclosed in double quotes.

Username is required to identify the user and to determine the user's authorization.
Without appropriate rights, command execution is denied.

62 IBM solidDB: Administrator Guide

Password is the user's password for accessing the database.

solidDB SQL Editor connects to the first server specified in the Connect parameter
in the solid.ini file. If you specify no arguments, you are prompted for the
database administrator's user name and password.

When there is an error in the command line, the solidDB SQL Editor gives you a
list of the possible options as a result. Please be sure to check the command line
you entered.

To exit SQL Editor, enter the command exit.

Running SQL scripts
You can execute SQL scripts directly in the solidDB SQL Editor. The SQL script
that you specify can also call other SQL scripts. The syntax for script calls in SQL
Editor is:
@filename

For example:
---Execute the SQL script named "insert_rows.sql" in the
-- root ("\") directory of the C: drive.
@\c:\insert_rows.sql;

Both absolute and relative path names are supported. If you specify a relative path,
it should be relative to the SQL Editor working directory.

SQL script examples

Assuming that a database connection is established, this command example
executes the SQL statements terminated by a semicolon:
create table testtable (value integer, name varchar);
commit work;

Start SQL Editor and execute the tables.sql script:
solsql "tcp localhost 1313" admin iohe47 tables.sql

Executing SQL statements with solidDB SQL Editor
After the connection to the server has been established, a command prompt
appears. solidDB SQL Editor executes SQL statements terminated by a semicolon.

Example:
create table testtable (value integer, name varchar);
commit work;

insert into testtable (value, name) values (31, ’Duffy Duck’);
select value, name from testtable;
commit work;

drop table testtable;
commit work;

Executing a SQL script from a file
To execute a SQL script from a file, the name of the script file must be given as a
command line parameter:
solsql servername username password filename

4 Using solidDB data management tools 63

All statements in the script must be terminated by a semicolon. solidDB SQL
Editor exits after all statements in the script file have been executed.

Example:
solsql "tcp localhost 1313" admin iohe4y tables.sql

Note:

Remember to commit work at the end of the SQL script or before exiting solidDB
SQL Editor. If an SQL string is executed with the option -e, commit can only be
done using the -a option.

solidDB Speed Loader (solload)
solidDB Speed Loader (solload) is a tool for loading data from external ASCII files
into a solidDB database. solidDB Speed Loader can load data in a variety of
formats and produce detailed information of the loading process into a log file.
The format of the import file, that is, the file containing the external ASCII data, is
specified in a control file.

The data is loaded into the database through the solidDB program. This enables
online operation of the database during the loading. The data to be loaded does
not have to reside in the server computer.

Please note the following:
v The table must exist in the database in order to perform data loading.
v Catalog support is available in solidDB Speed Loader. The following syntax is

supported:
catalog_name.schema_name.table_name

v solidDB Speed Loader checks for the following constraints:
– referential
– NOT NULL
– unique

v solidDB Speed Loader does not support check constraints, which are used to
specify data value restrictions in columns and are defined using the CREATE
TABLE and ALTER TABLE statement.

However, solidDB Speed Loader always checks for unique or foreign key
constraints that are defined using the CREATE TABLE statement. For more details
on constraints, see the CREATE TABLE syntax in the Appendix: solidDB SQL Syntax
in the IBM solidDB SQL Guide.

Control file
The control file provides information on the structure of the import file. It gives
the following information:
v name of the import file
v format of the import file
v table and columns to be loaded

Note: Each import file requires a separate control file. solidDB Speed Loader
loads data into one table at a time.

64 IBM solidDB: Administrator Guide

For more details about the control file format, read “Control file syntax” on page
67.

Import file
The import file must be of ASCII type. The import file may contain the data either
in a fixed or a delimited format:
v In fixed-length format data records have a fixed length, and the data fields

inside the records have a fixed position and length.
v In delimited format data records can be of variable length. Each data field and

data record is separated from the next with a delimiting character such as a
comma (this is what solidDB Export produces). Fields containing no data are
automatically set to NULL.

Data fields within a record may be in any order specified by the control file. Please
note the following:
v Data in the import file must be of a suitable type. For example, numbers that are

presented in a float format cannot be loaded into a field of integer or smallint
type.

v Data of varbinary and long varbinary type must be hexadecimal encoded in the
import file.

v When using any fixed-width field, regardless of the data type, Solload expects
the import file to have the specified width, even when NULL is used.

Message log file
During loading, solidDB Speed Loader produces a log file containing the following
information:
v Date and time of the loading
v Loading statistics such as the number of rows successfully loaded, the number

of failed rows, and the load time if it has been specified with the option
v Any possible error messages. For details on solidDB Speed Loader errors, see

“solidDB Speed Loader (solload) errors” on page 255.

If the log file cannot be created, the loading process is terminated. By default the
name of the log file is generated from the name of the import file by substituting
the file extension of the import file with the file extension .log. For example,
my_table.ctr creates the log file my_table.log. To specify another file name, use
the option -l.

Configuration file
A configuration file is not required for solidDB Speed Loader. The configuration
values for the server parameters are included in the solidDB configuration file
solid.ini.

Client copies of this file can be made to provide connection information required
for solidDB Speed Loader. If no server name is specified in the command line,
solidDB Speed Loader will choose the server name it will connect to from the
server configuration file. For example to connect to a server using the NetBIOS
protocol and with the server name solidDB, the following lines should be included
in the configuration file:
[Com]
Connect=netbios SOLIDDB

4 Using solidDB data management tools 65

Starting solidDB Speed Loader
Start solidDB Speed Loader with the command solload followed by various
argument options. If you start solidDB Speed Loader with no arguments, you will
see a summary of the arguments with a brief description of their usage. The
command line syntax is:
solload [options] [servername] username [password]control_file

where options can be:

Table 17. solload command options

Option Syntax Description

-b records Number of records to commit in one batch

-c dir Change working directory

-C catalog_name Set the default catalog from where data is read from or written
to.

-l filename Write log entries to this file.

-L filename Append log entries to this file.

-n records Insert array size (network version).

-s schema_name Set the default schema.

-t Print load time.

-h Help = Usage.

-x emptytable Load data only if there are no rows in the table.

-x errors: count Maximum error count.

-x nointegrity No integrity checks during load.

-x pwdfile: filename Read password from the file.

-x skip: records Number of records to skip.

-x utf8 WCHAR data is in UTF-8 format.

For details on the control_file, read the following section.

Servername is the network name of a solidDB server that you are connected to.
Logical Data Source Names can also be used with tools; Refer to 6, “Managing
network connections,” on page 99 for further information. The given network
name must be enclosed in quotes.

Username is required to identify the user and to determine the user's authorization.
Without appropriate rights, execution is denied.

Password is the user's password for accessing the database.

66 IBM solidDB: Administrator Guide

When there is an error in the command line, the solidDB Speed Loader gives you a
list of the possible options as a result. Please be sure to check the command line
you entered.

Control file syntax
The control file syntax has the following characteristics:
v keywords must be given in capital letters
v comments can be included using the standard SQL double-dash (--) comment

notation
v statements can continue from line to line with new lines beginning with any

word

solidDB Speed Loader reserved words must be enclosed in quotes if they are used
as data dictionary objects, that is, table or column names. The following list
contains all reserved words for the solidDB Speed Loader control file:

Table 18. Speed Loader reserved words

Speed Loader Reserved Words

AND ANSI APPEND BINARY

BLANKS BY CHAR CHARACTERSET

DATA DATE DECIMAL DOUBLE

ENCLOSED ERRORS FIELDS FLOAT

IBMPC INFILE INSERT INTEGER

INTO LOAD LONG MSWINDOWS

NOCNV NOCONVERT NULLIF NULLSTR

NUMERIC OPTIONALLY OPTIONS PCOEM

POSITION PRECISION PRESERVE REAL

REPLACE SCAND7BIT SKIP SMALLINT

TABLE TERMINATED TIME TIMESTAMP

TINYINT VARBIN VARCHAR WHITESPACE

The control file begins with the statement LOAD [DATA] followed by several
statements that describe the data to be loaded. Only comments or the OPTIONS
statement may optionally precede the LOAD [DATA] statement.

Table 19. Full syntax of the control file

Syntax Element Definition

control_file
::= [option_part]
load_data_part
into_table_part
fields
column_list

4 Using solidDB data management tools 67

Table 19. Full syntax of the control file (continued)

Syntax Element Definition

option_part
::= OPTIONS (options)

options
::= option [, option]

option
::= [SKIP = int_literal] [ERRORS = int_literal]

load_data_part
::= LOAD [DATA] [characterset_specification]
[DATE date_mask]
[TIME time_mask]
[TIMESTAMP timestamp_mask]
[INFILE filename]
[PRESERVE BLANKS]

characterset_specification
::= CHARACTERSET { NOCONVERT |

NOCNV |
ANSI |

MSWINDOWS |
PCOEM |
IBMPC |

SCAND7BIT }

Note that UTF8 is not allowed inside the control file.

into_table_part
::= INTO TABLE tablename

fields
::= [FIELDS {termination | enclosure}]

termination
::= TERMINATED BY termination_char
[[OPTIONALLY] enclosure]

termination_char
::= WHITESPACE | ’char’ | "char" | hex_literal

enclosure
::= ENCLOSED BY enclose_char [AND enclose_char]

enclose_char
::=’char’ | "char" | hex_literal

hex_literal
::= X’hex_byte_string’

column_list
::= column [, column]

column
::= column_name datatype_spec
[POSITION (int_literal {: | -} int_literal)]
[DATE date_mask]
[TIME time_mask]
[TIMESTAMP timestamp_mask]
[NULLIF BLANKS | NULLIF NULLSTR| NULLIF ’string’ |
NULLIF ((int_literal {: | -} int_literal) = ’string’)]

datatype_spec
::= {BINARY | CHAR [(length)] | DATE |
DECIMAL [(precision [, scale])] |
DOUBLE PRECISION | FLOAT [(precision)] | INTEGER |
LONG VARBINARY | LONG VARCHAR |
NUMERIC [(precision [, scale])] |
REAL | SMALLINT | TIME |
TIMESTAMP [(timestamp precisionv)] |
TINYINT | VARBINARY | VARCHAR [(length)] }

68 IBM solidDB: Administrator Guide

CHARACTERSET
The CHARACTERSET keyword is used to define the character set used in the
input file. If the CHARACTERSET keyword is not used or if it is used with the
parameter NOCONVERT or NOCNV, no conversions are made. Use the parameter
ANSI for the ANSI character set, MSWINDOWS for the Microsoft Windows
character set, PCOEM for the ordinary PC character set, IBMPC for the IBM® PC
character set, and SCAND7BIT for the 7-bit character set containing Scandinavian
characters.

Note: UTF-8 is not allowed inside the control file.

DATE, TIME, and TIMESTAMP
The DATE, TIME and TIMESTAMP keywords can be used in two places with
different functionality:
v When one of these keywords is used as a part of the load-data-part element, it

defines the format used in the import file for inserting data into any column of
that type.

v When a keyword appears as a part of a column definition it specifies the format
used when inserting data into that column.

Note:

1. Masks used as part of the load-data-part element must be in the following
order: DATE, TIME, and TIMESTAMP. Each is optional.

2. Data must be of the same type in the import-file, the mask, and the column in
the table into which the data is loaded.

Table 20. Data masks

Data Type Available Data Masks

DATE YYYY/YY-MM/M-DD/D

TIME HH/H:NN/N:SS/S

TIMESTAMP YYYY/YY-MM/M-DD/D HH/H:NN/N:SS/S

In the above table, year masks are YYYY and YY, month masks MM and M, day
masks DD and D, hour masks HH and H, minute masks NN and N, and second
masks SS and S. Masks within a date mask may be in any order; for example, a
date mask could be 'MM-DD-YYYY'. If the date data of the import file is formatted
as 1995-01-31 13:45:00, use the mask YYYY-MM-DD HH:NN:SS.

Date Example in Control File

Note that the following example uses the POSITION keyword. For details on this
keyword, read “POSITION” on page 74.
OPTIONS(SKIP=1)

LOAD DATA
RECLEN 12
INTO TABLE SLTEST2
(

ID POSITION(1:2) NULLIF BLANKS,
DT POSITION(3:12) DATE ’DD.MM.YYYY’ NULLIF ((4:6) = ’ ’)

)

4 Using solidDB data management tools 69

Date, Time, and Timestamp Examples in Control File

Note that the following example uses the FIELDS TERMINATED BY keyword. For
details on this keyword, read “FIELDS TERMINATED BY” on page 72.
LOAD
DATE ’MM/DD/YY’
TIME ’HH-NN-SS’
TIMESTAMP ’HH.NN.SS YY/MM/DD’
INTO TABLE SLTEST3
FIELDS TERMINATED BY ’,’
(

ID,
DT,
TM,
TS

)

PRESERVE BLANKS
The PRESERVE BLANKS keyword is used to preserve all blanks in text fields.

INTO_TABLE_PART
The into_table_part element is used to define the name of the table and columns
that the data is inserted into.

FIELDS ENCLOSED BY
The FIELDS ENCLOSED BY clause is used to define delimiting characters around
each field. The delimiter may be one character or two separate characters that
precede and follow each data field in the input file. You might use one character
(such as the double quote character) or a pair of characters (such as left and right
parentheses) to delimit your fields. If you use the double quote mark as the
delimiter and the comma as the terminator/separator, then your input might look
like the following:
"field1", "field2"

If you use left and right parentheses, then your input might look like the
following:
(field1),(field2)

Note that if the keyword OPTIONALLY is used, then the delimiters are optional
and do not need to appear around every single piece of data.

If you specify a character value, it must be enclosed in single or double quotes. For
example, the following examples have the same effect:
ENCLOSED BY ’(’ AND ’)’
ENCLOSED BY "(" AND ")"

You can even use the single quotes to surround one enclosing character and double
quotes to surround the other, for example:
ENCLOSED BY ’(’ AND ")"

This is potentially confusing, however, and this format is not recommended.
Instead, it is recommended that you use single quotes unless you are using single
quote itself as the enclosing character, for example:
ENCLOSED BY "’" AND "’"

70 IBM solidDB: Administrator Guide

Note that if you are using single quotes as the enclosing characters, you must
double the apostrophes as shown in the clause above. For example, to produce in
the database:
Didn’t I warn you?

the input must be:
’Didn’’t I warn you?’

Almost any printable characters may be used as the "enclosing" characters. The
enclosing characters may also be specified using the hexadecimal format. For
example, if a hexadecimal string is used, then the format is:
X ’hex_byte_string’

For example:

X’3a’ means 3A hexadecimal value and specifies the colon (":")

The opening and closing characters in an enclosing pair can be identical. For
example, the following is valid inside the control file:
ENCLOSED BY ’"’ AND ’"’

If both the opening and closing characters are the same, then the ENCLOSED BY
clause only needs to show the character once. For example, the following should
have the same effect:
ENCLOSED BY ’"’
ENCLOSED BY ’"’ AND ’"’

When the preceding is defined in the control file, here are some examples of input
and the corresponding values actually stored in the table.
"Hello."
Hello.

"""Ouch!"", he cried."
"Ouch!", he cried.

"""He said her last words were ""I’ll never quit!"""""
"He said her last words were "I’ll never quit!""

"""He said: ""Her last words were ""I’ll never quit!"""""""
"He said: "Her last words were "I’ll never quit!"""

Note that there may be enclosing characters used in the column data itself
(embedded field separators). If this is the case, then you can use the
TERMINATED BY clause together with the OPTIONALLY ENCLOSED BY clause
to be sure the column data is enclosed correctly as described in “FIELDS
TERMINATED BY” on page 72.

ENCLOSED BY input rules and examples

This section contains basic rules and examples when using enclosing characters.
Each example, unless stated otherwise, contains the following control file lines:
FIELDS TERMINATED BY X’3a’
OPTIONALLY ENCLOSED BY "(" AND ")"

This means that the enclosing characters are parentheses and the separator
(terminator) character is the colon — hexadecimal 3A specifies the colon (":").

4 Using solidDB data management tools 71

v The data is to be loaded into a table with two columns, the first of which is of
type VARCHAR and the second of which is type INTEGER.

Treatment of enclosed characters within the data

The ENCLOSED BY characters themselves may occur within the data. However,
when occurring within the data, each of the enclosing characters should occur
twice in the input for each time that it should occur once in the database.

If the input file contains:
(David Bowie ((born David Jones)) released ’space Oddity"):1972

it produces the following format in the database:
David Bowie (born David Jones) released ’space Oddity":1972

This works for deeply nested parentheses as well. If the input file contains:
(You((can((safely((try))this))at))home.):2

it produces the following value in the first column of the table.
You(can(safely(try)this)at)home.

Treatment of final enclosing character

The final enclosing character must occur an odd number of times at the end of the
input. For example:

To get the following format in the database:
American Pie (The Day The Music Died)

the input file must contain:
(American Pie ((The Day The Music Died)))

Of the last three closing parentheses, the first two are treated as a single instance of
the character, while the last one is treated as the enclosing character.

Embedding newline characters

When enclosing characters are used, newline characters (carriage return and/or
line feed) can be embedded within a string. For example:
(This is a long line that can be split across two or more input
lines ((and keep the end-of-line characters)) if the enclosing
characters are used):1

If the field separator (the colon in the above example) is not used in the data and if
there is no need to preserve newlines in the input data, then only the field
separator (not the enclosing characters) is required in the input data.

If your data is fixed-width, then you do not need either the separator or the
enclosing characters.

FIELDS TERMINATED BY
The FIELDS TERMINATED BY clause is used to define the separator character that
distinguishes where fields end in the input file. The character must be specified in
one of the following three ways:
v Surrounded by double quotes, for example, ":"

72 IBM solidDB: Administrator Guide

v Surrounded by single quotes, for example, ':'
v In hexadecimal format, for example, X'3A'

When using hexadecimal format, the quotation marks must be single quotes, not
double quotes.

Note that the FIELDS TERMINATED BY clause specifies a separator, not a true
terminator; the specified character is not required after the last field. For example,
if the colon is the separator, the following two data file formats are equivalent and
valid:
1:2:3:

or
1:2:3

Note that the trailing colon is accepted, but not required, after the final field.

The OPTIONALLY ENCLOSED BY clause is used after the FIELDS TERMINATED
BY clause when the character used to enclose the column data is contained in the
column data itself. Following is a control file example:
FIELDS TERMINATED BY ’,’
OPTIONALLY ENCLOSED BY "’"

In the example above, the separator is a comma.

The single quote is defined as the character that encloses embedded field
separators (commas) in the data file. Note that the OPTIONALLY ENCLOSED BY
clause may use either single or double quotes to delimit the enclosing characters.
The following example:
OPTIONALLY ENCLOSED BY ’(’AND")"

illustrates the use of both single and double quotes for enclose_char in the syntax:
ENCLOSED BY enclose_char [AND enclose_char]

The example is unusual, but its potential for confusion makes it worth noting.

The following example summarizes the use of separators and enclosing characters.
In this example, the ":" (colon) is defined as the separator (FIELDS TERMINATED
BY) and the parentheses are used to enclose the ":" (colon), which is embedded in
the field and should not be interpreted as a separator. The example also contains
two fields, the first of which is VARCHAR and the second of which is INTEGER.

Data File Example
(This colon : is enclosed by parentheses and is not a separator):12345

Control File Example
LOAD DATA
CHARACTERSET MSWINDOWS
INFILE ’test6.dat’
INTO TABLE SLTEST
FIELDS TERMINATED BY X’3a’ -- X’3a’ == ’:’
OPTIONALLY ENCLOSED BY ’(’ AND ")"
(

TEXT,
ID

)

4 Using solidDB data management tools 73

POSITION
The POSITION keyword is used to define a field's position in the logical record.
Both the start and the end position must be defined.

NULLIF
The NULLIF keyword is used to give a column a NULL value if the appropriate
field has a specified value. An additional keyword specifies the value the field
must have. The keyword BLANKS sets a NULL value if the field is empty; the
keyword NULL sets a NULL value if the field is the string 'NULL'; the definition
'string' sets a NULL value if the field matches the string 'string'; the definition
'((start : end) = 'string')' sets a NULL value if a specified part of the field matches
the string 'string'.

Using NULLIF keyword with keyword BLANKS

The following example shows the use of the NULLIF keyword with the keyword
BLANKS to set a NULL value if the field is empty. It also shows the use of the
keyword NULL to set a NULL value if the field is the string 'NULL'.
LOAD
INFILE ’test7.dat’
INTO TABLE SLTEST
FIELDS TERMINATED BY ’,’
(

NAME VARCHAR NULLIF BLANKS,
ADDRESS VARCHAR NULLIF NULL,
ID INTEGER NULLIF BLANKS

)

Using NULLIF keyword with keyword BLANKS

The following example uses the definition '((start : end) = 'string')' for the third
field in the input file. This syntax only works with fixed-width fields because the
exact position of the 'string' must be specified.
LOAD
INFILE ’7b.dat’
INTO TABLE t7
(

NAME CHAR(10) POSITION(1:10) NULLIF BLANKS,
ADDRESS CHAR(10) POSITION(11:20) NULLIF NULL,
ADDR2 CHAR(10) POSITION(21:30) NULLIF((21:30)=’MAKEMENULL’)

)

Note that in this example, the string is case sensitive. 'MAKEMENULL' and
'makemenull' are not equivalent.

Loading fixed-format records
Control File Example 1
-- EXAMPLE 1 uses multiple columns in fixed-width field

OPTIONS(ARRAYSIZE=3)

LOAD
INFILE ’test1.dat’
INTO TABLE SLTEST
(

"NAME" POSITION(1-5),
ADDRESS POSITION(6:10),
ID POSITION(11-15)

)

74 IBM solidDB: Administrator Guide

Control File Example 2
-- EXAMPLE 2
OPTIONS (SKIP = 10, ERRORS = 5)
-- Skip the first ten records. Stop if
-- errorcount reaches five.
LOAD DATA
INFILE ’sample.dat’
-- import file is named sample.dat
INTO TABLE TEST1 (
IDINTEGER POSITION(1-5),
ANOTHER_ID INTEGER POSITION(8-15),
DATE1 POSITION(20:29) DATE ’YYYY-MM-DD’,
DATE2 POSITION(40:49) DATE ’YYYY-MM-DD’ NULLIF NULL)

Loading variable-length records
This section contains examples of the control file when loading data from a
variable-length import file:

Control File Example 3
-- EXAMPLE 1 uses multiple columns that have separators rather than
-- fixed length fields.

LOAD
INFILE ’test1.dat’
INTO TABLE SLTEST
FIELDS TERMINATED BY ’,’
(

NAME,
ADDRESS,
ID

)

Control File Example 4
LOAD DATA
INFILE ’EXAMP2.DAT’
INTO TABLE SUPPLIERS
FIELDS TERMINATED BY ’,’
(NAME VARCHAR, ADDRESS VARCHAR, ID INTEGER)
-- EXAMPLE 2
OPTIONS (SKIP=10, ERRORS=5)
-- Skip the first ten records. Stop if
-- errorcount reaches five.
LOAD
DATE ’YYYY-MM-DD HH:NN:SS’
-- The date format in the import file
INFILE ’sample.dat’
-- The import file
INTO TABLE TEST1
-- data is inserted into table named TEST1
FIELDS TERMINATED BY X’2C’
-- Field terminator is HEX ’,’ == 2C
-- This line could also be:
-- FIELDS TERMINATED BY ’,’
OPTIONALLY ENCLOSED BY ’[’ AND ’)’
-- Fields may be enclosed
-- with ’[’ and ’)’
(
ID INTEGER,
ANOTHER_ID DECIMAL(2),
DATE1 DATE(20) DATE ’YYYY-MM-DD HH:NN:SS’,
DATE2 NULLIF NULL
)
-- ID is inserted as integer
-- ANOTHER_ID is a decimal number with 2

4 Using solidDB data management tools 75

-- digits.
-- DATE1 is inserted using the datestring
-- given above
-- The default datestring is used for DATE2.
-- If the column for DATE2 is ’NULL’ a NULL is
-- inserted.

Running a sample load using solidDB Speed Loader (solload)
Note that the files that are referred to in this section are contained in the
samples/importexport/solload directory.
1. Start solidDB.
2. Create the table by using the load.sql script and your solidDB SQL Editor.
3. Start loading by entering the command below:

solload "tcpip 1964" dba dba delim.ctr
The user name and password are assumed to be 'dba'. To use the fixed length
control file, enter the command below:
solload "tcpip 1964" dba dba fixed.ctr
The output of a successful loading using delim.ctr or fixed.ctr is:
IBM solidDB Speed Loader v.06.30.0015
(c) Solid Information Technology Ltd. 1993, 2008
Load completed successfully, 19 rows loaded.

Hints to speed up loading
The following hints can be used to ensure that loading is done with maximum
performance:
v Connect locally if possible; it is faster not to load data over the network.
v Increase the number of records committed in one batch. By default, commit is

done after each record.
v Disable transaction logging.

You must use the LogEnabled parameter to disable logging. The following lines in
the solid.ini file will disable logging:
[Logging]
LogEnabled=no

After the loading has been completed, remember to enable logging again. The
following line in the solid.ini file will enable logging:
[Logging]
LogEnabled=yes

Note: Running the server in production use with logging disabled is strongly
discouraged. If logs are not written, no recovery can be made if an error occurs
due to power failure, disk error etc.

solidDB Export (solexp)
solidDB Export (solexp) is a tool for unloading data from a solidDB database to
ASCII files. solidDB Export produces both the import file, that is, the file
containing the exported ASCII data, and the control file that specifies the format of
the import file. solidDB Speed Loader can directly use these files to load data into
a solidDB database.

Note:

76 IBM solidDB: Administrator Guide

The user name used for performing the export operation must have select rights
on the table exported. Otherwise no data is exported.

Starting solidDB Export
Start solidDB Export with the command solexp. If you start solidDB Export with
no arguments, a summary of the arguments with a brief description is displayed.

The syntax for the solexp command is:
solexp [options] [servername] username [password] {tablename | *}

where
v options is optional; the argument can be:

Table 21. solexp command options

Option Syntax Description

-c dir Change working directory

-e sql_string Execute SQL string for export.

-f filename Execute SQL string from file for export.

-l filename Write log entries to this file.

-L filename Append log entries to this file.

-o filename Write exported data to this file.

-s schema_name Use only this schema for export.

-C catalog_name Set the default catalog from where data is read
from or written to.

-p Preserve case of schema and table names.

-8 Output 8-bit names to .crt file (disables UNICODE
names).

-h, -? Help = Usage.

-x pwdfile: filename Read password from the file.

v servername is optional; it defines the network name of a solidDB that you are
connected to. Logical Data Source Names can also be used with tools; refer to 6,
“Managing network connections,” on page 99 further information. The given
network name must be enclosed in double quotes.

Note: If you do not specify servername, solexp uses the environment-dependent
defaults for the connection (NmPipe solid in Windows; UPipe solid in Linux
and UNIX).

v username is mandatory; it identifies the user and determines the user's
authorization. Without appropriate rights, execution is denied.

v password is
– mandatory, if the password is not read from a file (defined with option -x

pwdfile: filename)

4 Using solidDB data management tools 77

– optional, if the password is read from a file
v tablename or * is mandatory. The symbol * can be used to export all tables with

one command. However, it cannot be used as a wildcard.

Note: The -t tablename (Export table) option is still supported in order to
keep old scripts valid.

Example
solexp -CMyCatalog -sMySchema -ofile.dat "tcp 1315" MyID My_pwd MyTable

Troubleshooting

v When there is an error in the command line entry, solexp gives you a list of the
possible options as a result. Check your entries on the command line.

v Username, password and table name are always expected:
For example, with the command
solexp "tcp 1315" dba dba

you may receive a SOLID Communication Error 21306. This is because there was
no server listening to the environment-dependent default. In this case, solexp
assumes:
– "tcp 1315" is the username
– dba is the password
– dba is the table name
In this case, the correct command is, for example:
solexp "tcp 1315" dba dba myTable

v If you omit the name of the schema, you may get a message saying that the
specified table could not be found. The solexp program cannot find the table if it
does not know which schema to look in.

solidDB Data Dictionary (soldd)
solidDB Data Dictionary (soldd) is a tool for retrieving data definition statements
from a solidDB database. solidDB Data Dictionary produces a SQL script that
contains data definition statements describing the structure of the database. The
generated script contains definitions for tables, views, indexes, triggers, procedures,
sequences, publications, and events.

Note:

1. User and role definitions are not listed for security reasons.
2. The user name used for performing the export operation must have select

right on the tables. Otherwise the connection is refused.

Starting solidDB Data Dictionary
Start solidDB Data Dictionary with the command soldd. If you invoke solidDB
Data Dictionary with no arguments, you'll see a summary of the arguments with a
brief description. The command line syntax is:
soldd options servername username password [tablename]

where options can be:

78 IBM solidDB: Administrator Guide

Table 22. soldd command options

Option Syntax Description

-c dir Change working directory

-m Expect input in multi-byte character format.

-o filename Write data definitions to this file.

-O filename Append data definitions to this file.

-C catalog_name Set the default catalog from where data definitions are read
from or written to.

-s schema_name List definitions from this schema only.

-p Preserve case of schema and table names.

-8 Output 8-bit names to .crt file (disables UNICODE names).

-h, -? Help = Usage.

-x tableonly List table definitions only.

-x indexonly List index definitions only.

-x viewonly List view definitions only.

-x sequenceonly List sequence definitions only.

-x procedureonly List procedure definitions only.

-x publicationonly List publication definitions only.

-x eventonly List event definitions only.

-x triggeronly List trigger definitions only.

-x schemaonly List schema definitions only.

-x hiddennames List internal constraint names only.

-x pwdfile: filename Read password from the file.

Servername is the network name of a solidDB server that you are connected to.
Logical Data Source Names can also be used with tools; Refer to 6, “Managing
network connections,” on page 99 for further information. The given network
name must be enclosed in quotes.

Username is required to identify the user and to determine the user's authorization.
Without appropriate rights, execution is denied.

Password is the user's password for accessing the database.

4 Using solidDB data management tools 79

When there is an error in the command line, the solidDB Data Dictionary gives
you a list of the possible options as a result. Please be sure to check the command
line you entered.

solidDB Data Dictionary Examples
soldd -odatabase.sql "tcp database_server 1313" dbadmin f1q32j4

Print the definition of procedure TEST_PROC:
soldd -x procedureonly " " dba dba TEST_PROC

Note:

1. If no table name is given, all definitions to which the user has rights are listed.
2. If the objectname parameter is provided with one of the -x options, the name is

used to print only the definition of the named object.
3. The -t tablename option is still supported in order to keep old scripts valid.

Tools sample: reloading a database
This example demonstrates how a solidDB database can be reloaded to a new one.
At the same time the use of each solidDB tool is introduced with an example. Note
that delete and update operations can leave gaps (unused space) in the database.
The reload is a useful procedure since it will rewrite the database without gaps
and shrink the size of the database file solid.db to a minimum.

To reload the database
1. Extract data definitions from the old database.
2. Extract data from the old database.
3. Replace the old database with a new one.
4. Load data definitions into a new database.
5. Load data into the new database.

Reloading the database: Walkthrough

In this example, the server name is solidDB and the protocol used for connections
is TCP/IP, using port 1964. Therefore, the network name is "tcpip 1964". The
database has been created with the user name "dbadmin" and the password
"password".
1. Data definitions are extracted with solidDB Data Dictionary. Use the following

command line to extract a SQL script containing definitions for all tables,
views, triggers, indexes, procedures, sequences, and events. The default for the
extracted SQL file is soldd.sql.
soldd "tcpip 1964" dbadmin password
With this command, all data definitions are listed into one file, soldd.sql (the
default name). As mentioned earlier, user and role definitions are not listed for
security reasons. If the database contains users or roles, they must be appended
into this file.

2. All data is extracted with solidDB Export. The export results in control files
(files with the extension .ctr) and data files (files with the extension .dat). The
default file name is the same as the exported table name. In 16-bit
environments, file names longer than eight letters are concatenated. Use the
following command line to extract the control and data files for all tables.
solexp "tcpip 1964" dbadmin password *

80 IBM solidDB: Administrator Guide

With this command data is exported from all tables. Each table's data is written
to an import file named table_name.dat. A separate control file table_name.ctr
is written for each table name.

3. A new database can be created to replace the old one by deleting the solid.db
and all sol#####.log files from the appropriate directories. When solidDB is
started for the first time after this, a new database is created.

Note: It is recommended that a backup is created of the old database before it
is deleted. This can be done using solidDB Remote Control.

4. Use the following command line to create a backup using solidDB Remote
Control:
solcon -eBACKUP "tcpip 1964" dbadmin password
With this command, a backup is created. The option -e precedes an
administration command.

5. Load data definitions into the new database. This can be done using solidDB
SQL Editor. Use the following command line to execute the SQL script created
by solidDB Data Dictionary.
solsql -fSOLDD.SQL "tcpip 1964" dbadmin password
With this command, data definitions are loaded into the new, empty database.
Definitions are retrieved with the option -f from the file soldd.sql. Connection
parameters are the same as in the earlier examples.
The previous two steps can be performed together by starting solidDB with the
following command line. The option -x creates a new database, executes
commands from a file, and exits. User name and password are defined as well.
solid -Udbadmin -Ppassword -x execute:soldd.sql

6. Load data into the new database. This is done with solidDB Speed Loader. To
load several tables into the database, a batch file containing a separate
command line for each table is recommended. In Unix-based operating systems,
using the wildcard symbol * is possible. Use the following command line to
load data into the new database.
solload "tcpip 1964" dbadmin password table_name.ctr

7. With this command, data for one table is loaded. The server is online.
Batch files that can be used are:
v Shell scripts in Unix environments
v .com scripts in VMS
v .bat scripts in Windows

4 Using solidDB data management tools 81

82 IBM solidDB: Administrator Guide

5 Performance tuning

This chapter discusses techniques that you can use to improve the performance of
solidDB. The topics included in this chapter are:
v Logging and Transaction Durability
v Choosing isolation levels
v Controlling memory consumption
v Tuning network messages
v Tuning I/O
v Tuning checkpoints
v Reducing Bonsai Tree size by committing read-only transactions
v Diagnosing poor performance

For tips on optimizing advanced replication, see IBM solidDB Advanced Replication
User Guide.

Tip: The following parameters help you improve database performance or balance
performance against safety. These parameters are discussed in more detail in
Appendix A, “Server-side configuration parameters,” on page 117. The
DurabilityLevel parameter is also discussed in 5, “Performance tuning.”
v IsolationLevel

v DurabilityLevel

v DefaultStoreIsMemory

Logging and transaction durability
This chapter discusses transaction durability from a theoretical perspective. For
more information on choosing the transaction durability level and setting it, refer
to IBM solidDB SQL Guide.

Background
When a transaction is committed, the database server writes data to two locations:
the database file, and the transaction log file. However, the data is not necessarily
written to those two locations at the same time. When a transaction is committed,
the server normally writes the data to the transaction log file immediately — that
is, as soon as the server commits the transaction. The server does not necessarily
write the data to the database file immediately. The server may wait until it is less
busy, or until it has accumulated multiple changes, before writing the data to the
database file.

If the server shuts down abnormally (due to a power failure, for example) before
all data has been written to the database file, the server can recover 100% of
committed data by reading the combination of the database file and the transaction
log file. Any changes since the last write to the database file are in the transaction
log file. The server can read those changes from the log file and then use that
information to update the database file. The process of reading changes from the
log file and updating the database file is called "recovery". At the end of the
recovery process, the database file is 100% up to date.

83

The recovery process is automatically executed always when the server restarts
after an abnormal shutdown. The process is generally invisible to the user (except
that there may be a delay before the server is ready to respond to new requests).

Not surprisingly, to have 100% recovery, you must have 100% of the transactions
written to the log file. Normally, the database server writes data to the log file at
the same time that the server commits the data. Thus committed transactions are
stored on disk and will not be lost if the computer is shut down abnormally. This
is called "strict durability". The data that has been committed is "durable", even if
the server is shut down abnormally.

If durability is 'strict", the user is not told that his data has been committed until
AFTER that data was successfully written to the transaction log on disk — this
ensures that the data is recoverable if the server shuts down abnormally. Strict
durability makes it almost impossible to lose committed data unless the hard disk
drive itself fails.

If durability is "relaxed", the user may be told that the data has been committed
even before the data has been written to the transaction log on disk. The server
may choose to delay writing the data, for example, by waiting until there are
several transactions to write. If durability is relaxed, the server may lose a few
committed transactions if there is a power failure before the data is written to disk.

solidDB allows to control the durability level in variety of ways. For the
server-wide setting, the parameter DurabilityLevel in the [Logging] section may
take three values: 3 (for 'strict"), 1 (for "relaxed") and 2 (for "adaptive").

Adaptive durability is meant for HotStandby operation. If durability is "adaptive",
then the server follows the rules below:
v If the server is a Primary server in a HotStandby system, and if the Secondary is

active, then the server (Primary server) uses relaxed durability;
v In all other situations, the server uses strict durability.

Note:

v The above behavior is observed only if the value of the [HotStandby] parameter
SafenessLevel is set to 2safe (default). If this parameter is set to any other value,
the server uses relaxed durability in all cases.

v If HotStandby is not enabled, the "adaptive" setting is treated as 'strict".

Balancing performance and safety
Historically, the goal of most database servers has been to maximize safety, that is,
to make sure that data is not lost due to a power failure or other problems. These
database servers use 'strict durability". This approach is appropriate for many
types of data, such as accounting data, where it is often unacceptable to lose track
of even a single transaction.

Some database servers have been designed to maximize performance, without
regard to safety. This is acceptable in situations where, for example, you only need
to sample data, or where the server can simply operate on the most recent set of
data, regardless of the size of that set. As an example, suppose that you have a
server that contains statistical data about performance — e.g. which computers
experience the heaviest loads at particular times of the day. You might use such
information to balance the load on your computers. This information changes over
time, and "old" data is less valuable than "new" data. In fact, you might completely

84 IBM solidDB: Administrator Guide

discard any data that is more than a week old. If you were to lose the performance
and load balancing data, then your system would still function, and within a week
you would have acquired a complete set of new data (assuming that you normally
discard data older than one week). In this situation, occasional or small data loss is
acceptable, and performance may be more important.

solidDB allows you to specify whether you want logging to be 'strict" to guarantee
that all committed data can be recovered after an unexpected shutdown, or
"relaxed" to allow some recent transactions to be lost in some circumstances.

How relaxed transaction durability can improve performance
You can increase performance by telling the server that it does not necessarily have
to write to the log file at the same time that it commits data. This allows the server
to write to the log file later, perhaps when the server is less busy, or when several
transactions can be written at once. This is called " relaxed durability". It increases
performance by decreasing the I/O (Input/Output) load.

If you set the transaction durability level to "relaxed", then you risk losing some
data if the server shuts down abnormally after it has committed some data but
before it has written that data to the transaction log. Therefore, you should use
relaxed durability ONLY when you can afford to lose a small amount of recent
data.

Standards compliance
Transaction durability is not part of the ANSI standard for SQL-99.

Limitations on transaction durability
CAUTION:

When you use "relaxed" transaction durability, you risk losing data. If the
database server shuts down abnormally (due to a power failure, for example),
the server will lose any committed transactions that were not written to the
transaction log file. If you use relaxed durability, some transactions may not
have been written to the log file yet, even though those transactions were
committed. You should ONLY use relaxed durability when you can afford to
occasionally lose a small amount of the most recent data.

If you want to set a maximum delay time before the server writes data, set the
RelaxedMaxDelay parameter in the solid.ini configuration file. For more
information about the RelaxedMaxDelay parameter, see the section “Logging
section” on page 142.

Choosing transaction isolation levels
Concurrency control is based on an application's requirements. Some applications
need to execute as if they had exclusive ownership of the database. Other
applications can tolerate some degree of interference from other applications
running simultaneously. To meet the needs of different applications, the SQL-92
standard defines four levels of isolation for transactions. By principle, solidDB
cannot read uncommitted data. The reason is that it sacrifices the consistent view
and potentially also database integrity. The three supported isolation levels are
explained below.
v Read Committed

5 Performance tuning 85

This isolation level allows a transaction to read only committed data.
Nonetheless, the view of the database may change in the middle of a transaction
when other transactions commit their changes.

v Repeatable Read
This isolation level allows a transaction to read only committed data and
guarantees that read data will not change until the transaction terminates.
solidDB additionally ensures that the transaction sees a consistent view of the
database. When using optimistic concurrency control, conflicts between
transactions are detected by using transaction write-set validation. This means
that the server validates only write operations, not read operations. For example,
if a transaction involves one read and one update, solidDB validates that no one
has updated the same row in between the read operation and the update
operation. In this way, lost updates are detected, but the read is not validated.
With transaction write-set validation, phantom updates may occur and
transactions are not serializable.

v Serializable
This isolation level allows a transaction to read only committed data with a
consistent view of the database. Additionally, no other transaction may change
the values read by the transaction before it is committed because otherwise the
execution of transactions cannot be serialized in the general case.
solidDB can provide serializable transactions by detecting conflicts between
transactions. It does this by using both write-set and read-set validations.
Because no locks are used, all concurrency control anomalies are avoided,
including the phantom updates. This feature is enabled by using the command
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE, which is described in
Appendix: "solidDB SQL Syntax" in IBM solidDB SQL Guide.

Note: The SERIALIZABLE isolation level is available for disk-based tables only.

Setting the isolation level
To set the isolation level, use one of the following SQL commands:
SET ISOLATION LEVEL

{READ COMMITTED | REPEATABLE READ | SERIALIZABLE}
SET TRANSACTION ISOLATION LEVEL

{READ COMMITTED | REPEATABLE READ | SERIALIZABLE}

For example:
SET ISOLATION LEVEL REPEATABLE READ;
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;

Note that solidDB supports both "transaction-level" and 'session-level" isolation
level commands. For more details, see the descriptions in IBM solidDB SQL Guide,
Appendix: solidDB SQL syntax.

Controlling memory consumption
Main memory is allocated dynamically according to system usage and the
operating system environment. The basic element of the memory management
system is a pool of central memory buffers of equal size. You can configure the
amount and size of memory buffers to meet the demands of different application
environments.

Note:

86 IBM solidDB: Administrator Guide

Right after the solidDB startup, Microsoft Windows reports a significantly smaller
process size than the real allocated size is. This is because cache pages are allocated
at this stage, but Microsoft Windows excludes them from the process size until
they are used for the first time. As opposed to Microsoft Windows, Unix based
operating systems include the cache pages and report a bigger process size.

Controlling process size
The process size, as such, does not directly correspond to the actual database
memory consumption, because the process size contains also non-database
elements. The process size includes elements as follows:
v The cache size. The solid.ini default value is 32 Mbytes.
v The code footprint is approximately three Mbytes, but it initialises different

libraries and can grow up to 8 Mbytes.
v Client threads. Each client consumes a few hundred kilobytes of main memory.
v Dynamic memory reserved for command handling. This memory allocation

deals with execution plans, temporary data, and so on.
v Statement cache. When solidDB executes SQL statements, it parses and

optimizes them first. This can be time consuming. The server can store the
parsed and optimised statements in the virtual memory. This is called the
statement cache.

v The hash table for the transaction lookup table.
v Transaction and sort buffers.
v The LockHashSize parameter affects the memory consumption. This parameter

defines the number of elements in the lock hash table.
v The accessed tables are also buffered in the main memory.

The elements above are the main elements affecting the process size.

You can control the process size by using the admin command and parameters
presented in the following sections. The violations of process limits are logged in
the solmsg.out log file.

ADMIN COMMAND 'info processsize';
The ADMIN COMMAND 'info processsize'; command returns the current amount
of memory that the in-memory database process uses. The value returned is a
VARCHAR, and it indicates the number of kilobytes used by the process. Note that
this returns the amount of virtual memory used, not the amount of physical
memory used.

ProcessMemoryLimit parameter
The ProcessMemoryLimit parameter specifies the maximum amount of virtual
memory that can be allocated to the in-memory database process. The
ProcessMemoryLimit parameter is controlled with the
ProcessMemoryCheckInterval parameter.

If the ProcessMemoryCheckInterval parameter value is 0 (factory value), the
ProcessMemoryLimit parameter is not effective, that is, there is no process
memory limit.

The factory value for ProcessMemoryLimit is 1G (one Gigabyte). Set the parameter
to a value that will ensure that the in-memory database process will fit entirely
within physical memory. The following factors impact the amount of memory
needed:

5 Performance tuning 87

v the amount of physical memory in the computer
v the amount of memory used by the operating system
v the amount of memory used by in-memory tables (including Temporary Tables,

Transient Tables, and "normal" in-memory tables) and the indexes on those
in-memory tables

v the amount of memory set aside for the solidDB server's cache (the CacheSize
solid.ini configuration parameter)

v the amount of memory required by the connections, transactions and statements
running concurrently in the server. The more concurrent connections and active
statements there are in the server, the more working memory the server requires.
Typically, you should allocate at least 0.5 MB of memory for each client
connection in the server.

v the memory used by other processes (programs and data) that are running in the
computer

When the limit is reached, that is, when the in-memory database process uses up
100% of the memory specified by ProcessMemoryLimit, the server will accept
admin commands only. You can use the ProcessMemoryWarningPercentage and
ProcessMemoryLowPercentage parameters to warn you about increasing memory
consumption.

ProcessMemoryLowPercentage parameter
The ProcessMemoryLowPercentage parameter sets a warning limit for the total
process size. The limit is expressed as percentage of the ProcessMemoryLimit
parameter value. Prior to exceeding this limit, you have exceeded the warning
limit defined by using the ProcessMemoryWarningPercentage parameter and
received a warning. When the ProcessMemoryLowPercentage limit is exceeded, a
system event is given.

The limit set with ProcessMemoryLowPercentage must be higher than the
ProcessMemoryWarningPercentage limit. For example, if the
ProcessMemoryWarningPercentage is set to 82, the
ProcessMemoryLowPercentage value must be at least 83.

ProcessMemoryWarningPercentage parameter
The ProcessMemoryWarningPercentage parameter sets the first warning limit for
the total process size. The warning limit is expressed as percentage of the
ProcessMemoryLimit parameter value. When the
ProcessMemoryWarningPercentage limit is exceeded, a system event is given.

The limit set with ProcessMemoryWarningPercentage must be lower than the
ProcessMemoryLowPercentage limit.

ProcessMemoryCheckInterval parameter
The process size limits are checked periodically. The check interval is set with the
ProcessMemoryCheckInterval parameter. The interval is given in milliseconds.

The minimum non-zero value is 1000 (ms). Only values 0 or 1000 or above 1000 (1
second) are allowed. If the given value is above 0 but below 1000, an error
message is given.

The factory value is 0, that is, process size checking is disabled.

88 IBM solidDB: Administrator Guide

The ProcessMemoryCheckInterval also controls the ProcessMemoryLimit
parameter; if the ProcessMemoryCheckInterval parameter value is 0, the
ProcessMemoryLimit parameter is not effective, that is, there is no process
memory limit.

Tuning your operating system
Your operating system may store information in:
v real (physical) memory
v virtual memory
v expanded storage
v disk

Your operating system may also move information from one location to another.
Depending on your operating system, this movement is called paging or
swapping. Many operating systems page and swap to accommodate large amounts
of information that do not fit into real memory. However, this takes time. Excessive
paging or swapping can reduce the performance of your operating system and
indicates that your system's total memory may not be large enough to hold
everything for which you have allocated memory. You should either increase the
amount of total memory or decrease the amount of database cache memory
allocated.

Database cache
The information managed by solidDB is stored either in memory or on disk. Since
memory access is faster than disk access, it is desirable for data requests to be
satisfied by access to memory rather than access to disk.

Defining database cache size
Database cache uses available memory to store information that is read from the
hard disk, in a disk-based database. It is also used to buffer the database pages
while the server is executing the checkpoint -- equally in a disk based and an
in-memory database. When an application next time requests this information, the
data is read from memory instead of from the hard disk. The default value of
cache depends on the platform used and can be changed through the CacheSize
parameter. Increasing the value is recommended when there are several concurrent
users.

If a database is primarily disk-based, the following estimates can be used:
v 0.5 MB per each concurrent user of the system

or
v 2-5% of the database size,

When estimating the necessary cache size by using the values above, use the larger
value. If the database is purely an in-memory database, the factory value will
suffice. When decreasing the cache size, note that in order to facilitate efficient
checkpoint activity, the size should not be less than 8 MB.

You should increase the value of CacheSize carefully. If the value is too large, it
leads to poor performance because the server process does not fit completely in
memory and therefore swapping of the server code itself occurs. If, on the other
hand, the cache size is too small, the cache hit rate remains poor. The symptoms of
poor cache performance are database queries that seem to be slower than expected
and excessive disk activity during queries.

5 Performance tuning 89

You can verify if the server is retrieving most of the data from disk instead of from
RAM by checking the cache hit rate using the command ADMIN COMMAND ’status’
or by checking the overall cache and file ratio statistics using ADMIN COMMAND
’perfmon’. For details on these commands, read “Performance counters (perfmon)”
on page 19 and “Checking overall database status” on page 18. Note that the cache
hit rate should be better than 95%.

Dynamically changing database cache size
You can change the CacheSize value dynamically as follows:

admin command 'parameter IndexFile.CacheSize=40mb'

Note:

The cache size cannot be decreased.

solidDB uses a hash table to ease access to the cache. The hash table size equals
the number of pages in the cache. This guarantees almost collision-free access. If
the cache size is increased dynamically, the hash table is not automatically
enlarged. This results in a higher collision probability. To avoid this, you can use
the ReferenceCacheSizeForHash parameter to accommodate the enlarged cache.
The ReferenceCacheSizeForHash parameter value is used for calculating the cache
hash table size. You should only use the parameter if you know, in advance, what
will be the maximum cache size during the server lifecycle. On the other hand, if
the value is not given, hash table collisions may occur when the cache size is
increased.

Note:

The ReferenceCacheSizeForHash parameter value must not be smaller than the
CacheSize value. If it is, the ReferenceCacheSizeForHash parameter value is
rejected and the default value is used. Also, a message is printed to the solmsg.out
log file.

Sorting
By default, solidDB does all sorting in memory. The amount of memory used for
sorting is determined by the parameter SortArraySize in the [SQL] section. If the
amount of data to be sorted does not fit into the allocated memory, you may want
to increase the value of the parameter SortArraySize.

Note that it may seem that the correct setting for the size of the sort array must
accommodate the largest expected result set (that cannot be ordered by key
values); however, there are some non-intuitive consequences to consider when
increasing the sort array size.

If increasing the value of the SortArraySize results in slower, rather than faster
query times, then it is likely that one of the following behaviors of the Optimizer is
involved:
v The SortArraySize parameter affects whether indices are used for sorting. If the

SortArraySize setting is large, the Optimizer is likely to use the sort array for
sorting, rather than using the available indices for sorting. If the SortArraySize
is small, the Optimizer is likely to use the available indices for sorting. In some
cases (especially those with small result sets), a small SortArraySize setting
performs better than a large SortArraySize setting.

90 IBM solidDB: Administrator Guide

v The SortArraySize parameter affects the way that the Optimizer performs
GROUP operations. The Optimizer considers a GROUP operation on non-sorted
result sets as an expensive operation. Thus, with smaller settings for the
SortArraySize, the optimizer causes the result sets to be sorted before
performing the GROUP operation. With larger settings for the SortArraySize,
the GROUP operation tends to proceed without first sorting the result set. In
some cases, this can result in slower performance for the larger settings of the
SortArraySize than for the smaller settings.

Note that for large sorts, or when there is not enough memory to increase the
value of SortArraySize, you should activate the external sort, which stores
intermediate information to disk.

The external disk sort is activated by adding the following section and parameters
in the configuration file solid.ini:
[sorter]
TmpDir_1 = c:\tmp

Additional sort directories are added with similar definitions:
[sorter]
TmpDir_1 = c:\tmp
TmpDir_2 = d:\tmp
TmpDir_3 = e:\tmp

Defining more than one sorter temporary directory on separate physical disks may
significantly improve sort performance by balancing the I/O load to multiple
disks.

Optimized sorts
Some queries implicitly require sorting. For example, if the SQL Optimizer chooses
a JOIN operation to use the MERGE JOIN algorithm, the result sets to be joined
require sorting before the join can occur. You can query the Optimizer's decisions
from solidDB using the EXPLAIN PLAN FOR statement. For details, read the
description of the EXPLAIN PLAN FOR command in IBM solidDB SQL Guide.

Sorting occurs only if the result set is not returned automatically in the correct
order. If the table data is accessed using the primary key or index, then the result
set is automatically in the order specified by the index in use. Hence, you can
significantly improve server performance by designing primary keys and indices to
support the ordering requirements of frequently used, performance-critical queries.

Using in-memory database
The solidDB database products use two integrated database engines: one is a
traditional disk-based engine and the other is a main memory engine allowing to
create tables that reside permanently in main memory. Also the indexes created for
those tables are stored totally in main memory. When using the in-memory
database capability you may choose, for each table, which is the storage for the
table: disk or memory. A solidDB server process running in-memory tables is
significantly larger than a purely disk-based server process. To evaluate the
amount of memory required by the in-memory tables and their indexes, refer to
IBM solidDB In-Memory Database User Guide.

5 Performance tuning 91

Tuning network messages
You can improve solidDB performance in reading large result sets by instructing a
solidDB server to return several result set rows in one network message. To
activate this functionality, you edit one or both of the following parameters in the
[Srv] section of the solidDB server's solid.ini configuration file.
v RowsPerMessage: The default value is 10.
v ExecRowsPerMessage: The default value is 2.

For more information about these two parameters, see Appendix A, “Server-side
configuration parameters,” on page 117.

Tuning I/O
The performance of many software systems is inherently limited by disk I/O.
Often CPU activity must be suspended while I/O activity completes.

Distributing I/O
Disk contention occurs when multiple processes try to access the same disk
simultaneously. To avoid this, move files from heavily accessed disks to less active
disks until they all have roughly the same amount of I/O.

Follow these guidelines:
v Use a separate disk for log files.
v Divide your database into several files and place each of these database files on

a separate disk. Read “Managing database files and caching (IndexFile section)”
on page 50.

v Consider using a separate disk for the external sorter

It is usually faster to scan a table if the disk file is contiguous on the disk, rather
than spread across many non-contiguous disk blocks. To reduce existing
fragmentation, you may want to run defragmentation software if one is available
on your system. If your database file is growing, you may be able to reduce future
file fragmentation by using the configuration parameter ExtendIncrement.
Increasing the size of this parameter tells the server to allocate larger amounts of
disk space when it runs out of space. (Note that this does not guarantee contiguity
because the operating system itself may allocate non-contiguous sectors to satisfy
even a single request for more space.) As a general rule, larger values of
ExtendIncrement improve performance slightly, while smaller values keep the
database size slightly smaller. See Appendix A, “Server-side configuration
parameters,” on page 117, for more details about ExtendIncrement.

Setting the MergeInterval parameter
solidDB's indexing system consists of two storage structures:
v the Bonsai Tree, which stores new data in central memory, and
v the main storage tree, which stores more stable data.

As the Bonsai Tree performs concurrency control, storing delete, insert, and update
operations, as well as key values, it merges new committed data to the storage tree
as a highly-optimized batch insert. This offers significant I/O optimization and
load balancing.

92 IBM solidDB: Administrator Guide

You can adjust the number of index inserts made in the database that causes the
merge process to start by setting the following parameter in the General section of
the solid.ini file. For example:
MergeInterval = 1000

Normally the recommended setting is the default value, which is cache size
dependent. The default is calculated dynamically from the cache size, so that only
part of the cache is used for the Bonsai Tree. If you change the merge interval, be
sure that the cache is large enough to accommodate the Bonsai Tree. The longer the
merge interval is (i.e. the more data that is stored in memory before being moved
to the main storage tree), the larger the cache needs to be.

Note: If the merge interval setting is too big to allow the Bonsai Tree to fit into
cache, then it is flushed partially to the disk; this has an adverse affect on
performance. Hence, avoid setting merge intervals that are too large. On a diskless
system, the Bonsai Tree will fill the available memory and the Diskless server will
run out of memory.

Note: Although the server will have higher performance if merge intervals are
less frequent (i.e. batch inserts are larger), you may also see less consistent
response times. If your highest priority is not overall throughput, but is instead to
minimize the longest response time, then you may want to make merge intervals
more frequent rather than less frequent. More frequent merges will reduce the
worst case delays that interactive users may experience.

For details on detecting and preventing performance problems associated with
Bonsai Tree growth, read “Reducing Bonsai Tree size by committing transactions”
on page 94.

Tuning checkpoints
Checkpoints are used to store a transactionally-consistent state of the database
quickly onto the disk.

Checkpoints affect:
v runtime performance
v recovery time performance

Checkpoints cause solidDB to perform data I/O with high priority, which
momentarily reduces the run-time performance. This overhead is usually small. As
with merge intervals, less frequent checkpoints may mean less frequent, but longer,
delays before the system responds to interactive queries. More frequent
checkpoints tend to minimize the worst case delays that an interactive user might
experience. However, such delays may be more frequent even if they are shorter.

It is possible to control the execution of checkpoints to prevent them from
occurring during, for example, periods of high user volume. You may:
v Set configuration parameters in the solid.ini file.

– Set the CheckpointInterval parameter in the solid.ini configuration file.
The default checkpoint interval is every 50000 log writes.

– Set the MinCheckpointTime parameter in solid.ini.
For more information about these parameters, see Appendix A, “Server-side
configuration parameters,” on page 117. To learn how to change a parameter
value, see “Managing server-side parameters” on page 55 in this guide.

5 Performance tuning 93

v Force a checkpoint by using the makecp command. For details on makecp, read
“Creating checkpoints” on page 37.

Frequent checkpoints can reduce the recovery time in the event of a system failure.
If the checkpoint interval is small, then relatively few changes to the database are
made between checkpoints and consequently, few changes need to be made during
recovery. To speed up recoveries, create checkpoints frequently; note, however, that
the server performance is reduced during the creation of a checkpoint.
Furthermore, the speed of checkpoint creation depends on the amount of database
cache used; the more database cache is used, the longer the checkpoint creation
will take. See Appendix A, “Server-side configuration parameters,” on page 117, for
a description of the use of CacheSize parameter. You need to consider these issues
when deciding the frequency of checkpoints.

For more details on checkpoints, read “Creating checkpoints” on page 37. You may
also wish to read about transaction logging.

Reducing Bonsai Tree size by committing transactions
solidDB provides a consistent view of data within one transaction. If a user does
not commit a transaction, solidDB keeps an image of the database as it existed at
the moment the transaction was started — even if the transaction is a read-only
transaction. This is implemented by the multiversioning solidDB Bonsai Tree,
which stores the newest data in central memory. The new data is merged to the
main storage tree as soon as currently active transactions no longer need to see the
old versions of the rows.

When other connections perform many write operations, the server must use a
large amount of memory to provide a consistent image of the database. If an open
transaction remains uncommitted for a long duration of time, solidDB requires
more memory; if the amount of memory available is insufficient, then solidDB
performs excessive paging or swapping, which slows performance.

To determine whether slow performance is caused by excessive Bonsai Tree
growth, you can monitor memory usage and Bonsai Tree size using operating
system specific and solidDB specific tools.

Preventing excessive Bonsai Tree growth
To prevent excessive Bonsai Tree growth, make sure that every database connection
commits every transaction. Even read-only transactions and transactions that
contain only SELECT statements must be committed explicitly. (In autocommit
mode, solidDB ODBC Driver version 3.50 and solidDB JDBC Driver version 2.0
perform an implicit commit after the last open cursor has been closed or dropped.
In previous versions, the implicit commit is not available.)

Note that even in autocommit mode, SELECT statements are not automatically
committed after the data is read. solidDB cannot immediately commit SELECTs
since the rows need to be retrieved by the client application first. Even in
autocommit mode, you must either explicitly commit work, or you must explicitly
close the cursor for the SELECT statement. Otherwise, the SELECT transaction is
left open until the connect timeout expires.

In order to ensure that every transaction is committed, you can:
v Determine what connections currently exist
v Determine when the connections have a committed transaction

94 IBM solidDB: Administrator Guide

v In the application code, ensure that every database operation gets committed
v Check for commit problems when using solidDB APIs

Each of these topics is described in the following sections.

Determining currently existing connections
The following solidDB commands and files allow you to determine the status of
existing connections.

Table 23. Determinig command status

Command/File Information

ADMIN COMMAND 'ul' Obtain a list of existing connections.

ADMIN COMMAND 'sta' Obtain the number of existing connections.

solmsg.out Obtain the date and time when new connections are created.

ADMIN COMMAND 'trace on sql' Obtain information when new connections are started. The
results are written to the soltrace.out file.

ADMIN COMMAND 'report filename.txt' Obtain a list of internal variables containing connection and
status information.

Determining when connections have committed transactions
The following solidDB commands and files allow you to determine which
connections have committed transactions.

Table 24. Determining which connections have committed transactions

Command/File Information

ADMIN COMMAND 'trace' Shows if a transaction gets committed at the server

ADMIN COMMAND 'report filename.txt' Obtain a list of internal variables containing connection and
status information. To find out connections that have not
committed their transaction, look for the Readlevel for each
connection. If the transaction at a particular connection is
properly closed, the Readlevel should be zero (0) for that
connection.

To find those statements with active status, look under USER
SEARCHES with column 'Act' having a value of 1. If the active
status remains at the same Readlevel for a lengthy period of
time, this is an indication that the statement has not closed or
committed during this interval.

Providing commit statements in the application code
To make sure every database operation gets committed, be sure to either:
v Execute the statement COMMIT WORK.
v Call ODBC function SQLTransact or SQLEndTran.
v Call JDBC method commit.

Make sure these operations succeed by checking the return code or by properly
catching the possible exception. Be aware how many database connections your
application has, when and where they are created, and when the transactions at
these connections are committed.

5 Performance tuning 95

Troubleshooting COMMITs when using ODBC Driver Manager
When using ODBC Driver Manager and running in autocommit mode, most
versions of ODBC Driver Manager regard calls to SQLTransact and SQLEndTran as
redundant and never actually pass them to the driver.

This means that the application program only receives return code 'SUCCESS' from
the ODBC Driver Manager, even though no transaction is committed in the
database. This situation may go unnoticed. Besides, ODBC Driver Manager and
SQL Editor, other utilities can also have an open transaction.

Make sure that you are aware of all database connections. Note that each FETCH
after COMMIT (keeping the statement handle alive) also causes a new transaction
to start.

Diagnosing poor performance
Different areas in solidDB can degrade its performance. To remedy performance
problems, you need to determine the underlying cause. The following table lists
common symptoms of poor performance, possible causes, and directs you to the
section in this chapter for the remedy.

Table 25. Diagnosing poor performance

Symptoms Diagnosis Solution

Slow response time for a single query.
Other concurrent access to the database is
affected. Disk may be busy.

Inefficient usage of indexes in the query.

Non-optimal decision from the Optimizer.

External sorting is not defined and a large
internal sorting is causing excessive
swapping to disk.

If index definitions are missing, create
new indices or modify existing ones to
match the indexing requirements of the
slow query. For more details, read the
section in IBM solidDB SQL Guide titled
"Using Indexes to Improve Query
Performance".

Run the EXPLAIN PLAN FOR statement
for the slow query and verify whether the
query optimizer is using the indices. For
more details, read the description of the
EXPLAIN PLAN FOR command in IBM
solidDB SQL Guide.

If the Optimizer is not choosing the
optimal query execution plan, override
the Optimizer decision by using optimizer
hints. For more details, read "Using
Optimizer Hints" in IBM solidDB SQL
Guide.

Make sure the external sorter is enabled
by defining the Sorter.TmpDir
configuration parameter. For more details,
see “TmpDir_[1...N]” on page 53.

Slow response time is experienced for all
queries. An increase in the number of
concurrent users deteriorates the
performance more than linearly. When all
users are thrown out and then
reconnected, performance still does not
improve.

Insufficient cache size. Increase the cache size. Allocate for cache
at least 0.5MB per concurrent user or 2-5%
of the database size. For more details,
read “Dynamically changing database
cache size” on page 90.

96 IBM solidDB: Administrator Guide

Table 25. Diagnosing poor performance (continued)

Symptoms Diagnosis Solution

Slow response time is experienced for all
queries and write operations. When all
users are thrown out and are connected,
performance only improves temporarily.
The disk is very busy.

The Bonsai Tree is too large to fit into the
cache.

Make sure that there are no
unintentionally long-running transactions.
Verify that all transactions (also read-only
transactions) are committed in a timely
manner. For more details, read “Reducing
Bonsai Tree size by committing
transactions” on page 94.

Slow performance during batch write
operation as the database size increases.
There is an excessive amount of disk I/O.

The data is committed to the database in
batches that are too small.

Data is written to disk in an order that is
not supported by the primary key of the
table.

Make sure that the autocommit is
switched off and the write operations are
committed in batches of at least 100 rows
per transaction.

Modify the primary keys or batch write
processes so that write operations occur in
the primary key order. For more details,
read chapter "Optimizing Batch Inserts
and Updates" in IBM solidDB SQL Guide.

The server process footprint grows
excessively and causes the operating
system to swap. The disk is very busy.
The ADMIN COMMAND 'report' output
shows a long list of currently active
statements.

SQL statements have not been closed and
dropped after use.

Make sure that the statements that are no
longer in use by the client application are
closed and dropped in a timely manner.

5 Performance tuning 97

98 IBM solidDB: Administrator Guide

6 Managing network connections

As a true client/server DBMS, solidDB provides simultaneous support for multiple
network protocols and connection types. Both the database server and the client
applications can be simultaneously connected to multiple sites using multiple
different network protocols.

This chapter describes how to set up network connections for each of the
supported platforms.

Note:

Some platforms and configurations may limit the number of concurrent users to a
single solidDB server process even if the solidDB license accepts higher limits.

Communication between client and server
The database server and client transfer information between each other through the
computer network using a communication protocol.

When a database server process is started, it will publish at least one network
name that distinguishes it in the network. The server starts to listen to the network
using the given network name. The network name consists of a communication
protocol and a server name.

To establish a connection from a client to a server they both have to be able to use
the same communication protocol. The client has to know the network name of the
server and often also the location of the server in the network. The client process
uses the network name to specify which server it will connect to.

This chapter will give you information on how to administer network names.

Managing network names
The network name of a server consists of a communication protocol and a server
name. This combination identifies the server in the network. The network names
are defined with the Listen parameter in the [Com] section of the configuration
file. The solid.ini file should be located in a solidDB program's working directory
or in the directory set by the SOLIDDIR environment variable.

A server may use an unlimited number of network names. Note that all
components of network names are case insensitive.

Network names are managed in the following ways:
v Using the ADMIN COMMAND 'parameter com.listen' command in solidDB SQL

Editor (solsql).
v Editing the server configuration file solid.ini.

An example of an entry in solid.ini is:
[Com]
Listen = tcpip 1313, nmpipe soliddb

99

The example contains two network names which are separated by a comma. The
first one uses the protocol TCP/IP and the service port 1313; the other one uses the
Named Pipes protocol with the name 'soliddb'. In the example, the 'tcpip' and
'nmpipe' are communication protocols, while '1313' and 'soliddb' are server names.
The conventions for server names depend upon the protocol. A server name may
be a name, such as "soliddb" or "chicago_office". A server name might be a service
port number optionally preceded by a node name, such as "hobbes 1313" or
"localhost 1313". In some protocols, the server name might simply be a service port
number, such as "1313", if the client and server are running on the same computer.

If the Listen parameter is not set in the solid.ini file, the environment-dependent
defaults are used.

Note:

1. When a database server process is started, it publishes the network names that
it starts to listen to. This information is also written to a file named solmsg.out
located in the same directory as the solid.ini file.

2. Network names must be unique within one host computer. For example, you
cannot have two database servers running, both listening to the same TCP/IP
port in one host, but it is possible that the same port number is in use in
different hosts. Exceptions to this is the NetBIOS protocol, which requires that
the used server names are unique throughout the whole network.

Viewing supported protocols for the server
All protocols are not supported in all environments and operating systems.

To view supported protocols for your server, enter the following command in
solidDB SQL Editor (solsql):

ADMIN COMMAND 'protocols'

A list of all available communication protocols is displayed. The command
provides the following kind of result set, which contains one row for each
supported communication protocol:
admin command ’protocols’;

RC TEXT
-- ----
0 NetBIOS nb
0 NmPipe np
0 TCP/IP tc

3 rows fetched.

Viewing network names for the server
You can view the network names for the server in the following ways:
v View the Listen parameter in the [Com] section in the solid.ini file.
v Enter the following command in solidDB SQL Editor (solsql):

ADMIN COMMAND 'parameter com.listen'
A list of all network names for the server is displayed.

Adding and modifying a network name for the server
Following are ways you can add and edit network names for a server, which
consists of a communication protocol and a server name; for example, nmpipe soliddb.
v To add network names for the server, enter the following command in solidDB

SQL Editor (solsql):

100 IBM solidDB: Administrator Guide

ADMIN COMMAND 'parameter com.listen= network_name'
The command returns the new value as the resultset. If the network name
entered is invalid, the ADMIN COMMAND statement returns an error.
Otherwise the new name is enacted immediately. The changes are written to
solid.ini at the next checkpoint.

v In solid.ini, locate the working directory of your solidDB process and add a
new network name or edit an existing one as a part of the Listen parameter
entry in the [Com] section.
Use a comma (,) to separate network names. For example:
[Com]
Listen = tcpip 1313, nmpipe soliddb

Be sure to save the changes and to restart the solidDB process to activate the
changes.

Removing network name from the server
You can remove network names for a server, which consists of a communication
protocol and a server name, for example, nmpipe soliddb, as follows:
v To make the change by updating the solid.ini configuration file, locate the

working directory of your solidDB process and remove the network name in the
Listen parameter entry in the [Com] section.
Be sure to save the changes and to restart the solidDB process to activate the
changes.

When you start the server, if you want to temporarily disable one of the network
names listed in the solid.ini file, you can disable the network name by using
option -d after the protocol name in the network name when you start the server.
For example:
solid tcp -d hobbes 1313

This prevents the server from using this network name. This does not change the
contents of the solid.ini file, so this will have no effect on the server name(s) the
next time that the server starts up.

Factory value for a network name
If no network name is specified in the .ini file, the server uses a factory preset that
is "tcpip 1964". In other words, the server will listen to the TCP/IP port 1964, if no
.ini file is used.

Connect strings for clients
A networks name used by a client is a logical data source name or a data source
connect string. A data source connect string consists of a communication protocol, a
possible set of special options, an optional host computer name and a server name. By
this combination, the client specifies the server it will establish a connection to. The
communication protocol and the server name must match the ones that the server
is using in its network listening name. In addition, most protocols need a specified
host computer name if the client and server are running on different machines. All
components of the client's network name are case insensitive.

The same format of a connect string for clients applies to both the connect
configuration parameters in the solid.ini file and network names used in ODBC
applications.

6 Managing network connections 101

The format of a connect string is the following:
protocol_name [options] [server_name] [port_number]

where options may be any number of:

Table 26. Connect string format

Option Meaning

-z Data compression is enabled for this connection

-c milliseconds Login timeout is specified (the default is operating-system-
specific). A login request fails after the specified time has
elapsed. Note: for the tcp protocol only.

-r milliseconds Connection (or read) timeout is specified (the default is 60 s). A
network request fails when no response is received during the
time specified. The value 0 sets the timeout to infinite. Note:
applies for the tcp protocol only.

Examples:
tcp localhost 1315
tcp 1315
tcp -z -c1000 1315
nmpipe host22 SOLIDDB

Mapping logical data source names to connect strings
solidDB Clients support Logical Data Source Names. These names can be used for
giving a database a descriptive name. This name can be mapped to a data source
in three ways:
1. Using the parameter settings in the application's solid.ini file.
2. Using the Microsoft Windows operating system's registry settings.
3. Using settings in a solid.ini file located in the Windows directory.

This feature is available on all supported platforms. However, on non-Windows
platforms, only the first method is available.

A solidDB Client attempts to open the file solid.ini first from the directory set by
the SOLIDDIR environment variable. If the file is not found from the path
specified by this variable or if the variable is not set, an attempt is made to open
the file from the current working directory.

To define a Logical Data Source Name using the solid.ini file, you need to create
a solid.ini file containing the section [Data Sources]. In that section you need to
enter the 'logical name' and 'network name' pairs that you want to define. The
syntax of the parameters is the following:
[Data Sources]
logical_name = connect_string, Description

In the description field, you may enter comments on the purpose of this logical
name.

For example, assume you want to define a logical name for the application
My_application and the database that you want to connect is located in a UNIX
server using TCP/IP. Then you should include the following lines in the solid.ini
file, which you need to place in the working directory of your application:

102 IBM solidDB: Administrator Guide

[Data Sources]
My_application = tcpip irix 1313, Sample data source

When your application now calls the Data Source 'My_application', the solidDB
Client maps this to a call to 'tcpip irix 1313'.

On Windows platforms, the registry is typically used to map Data Sources. To
setup the registry with a GUI interface, use the Windows Administrative Control
Panel "Data Sources (ODBC)".

Default connect string
When no data source is specified for the connection, the default connect string will
be used. The client's default connect string may be defined in the client's
configuration file solid.ini in the [Com] section with the Connect parameter. The
client's solid.ini file should be located in the application program's working
directory or in the directory set by the SOLIDDIR environment variable. The value
of the Connect parameter is read by all solidDB tool programs and client libraries
when no data source is specified for the connection. The client libraries do not
need this value if a valid connect string is supplied at run time, or when a
standard ODBC driver manager is used.

The following connect line in the solid.ini of the application workstation will
connect an application (client) using the TCP/IP protocol to a solidDB server
running on a host computer named 'spiff' and listening with the name (port
number in this case) '1313'.
[Com]
Connect = tcpip spiff 1313

If the Connect parameter is not found in the solid.ini configuration file, then the
client uses the environment-dependent default instead. The defaults for the Listen
and Connect parameters are selected so that the application (client) will always
connect to a local solidDB server listening with a default network name. So local
communication (inside one machine) does not necessarily need a configuration file
for establishing a connection.

Communication protocols
A client process and solidDB communicate with each other by using computer
networks and network protocols. Supported communication protocols depend on
the type of computer and network you are using.

The following paragraphs describe the supported communication protocols and
common environments that may be used and also show the required forms of
network names for the various protocols.

Note:

Depending on your network protocol, there may be relevant communication
parameters associated with the protocol. Be sure to use ADMIN COMMAND
'parameter' in the solidDB Query window to find the communication parameters
in use. Then you can use ADMIN COMMAND 'describe parameter' to view details
on the specific communication parameter. See 3, “Configuring solidDB,” on page
47 for details on these commands.

6 Managing network connections 103

Shared Memory

Note: Shared Memory is has been deprecated as of release 6.3 Fix Pack 1.

Usually the fastest way two processes can exchange information is to use Shared
Memory. This can be used only when solidDB and application processes are both
running in the same computer. The Shared Memory protocol uses a shared
memory location for moving data from one process to another.

To use the Shared Memory protocol in solidDB, select ShMem from the list of
protocols in solidDB and enter server name. The server name has to be unique
only in this computer.

Table 27. Shared Memory protocol in the solid.ini file

Where Syntax example

Server
Listen = shmem servername

Client
Connect = shmem servername

Note:

Server names must be character strings less than 128 characters long.

TCP/IP
When starting a server using the TCP/IP protocol, you must reserve a port
number for it. You will find reserved port numbers in the /etc/services file of
your system. Select a free number greater than 1024 since smaller numbers are
usually reserved for the operating system.

To use the TCP/IP protocol, select TCP/IP in the list of protocols in solidDB and
enter a non-reserved port number.

Table 28. TCP/IP protocol in the solid.ini file

Where Syntax example

Server
Listen = tcpip server_port_number

Client
Connect = tcpip [host_computer_name] server_port_number

For example
Listen = tcp 1315
Connect = tcpip accounting_dept_server 1315

Note:

1. If the server is running in the same computer with the client program, the host
computer name need not be specified. The client computer must have the used
host name listed in its /etc/hosts file or it must be recognized by the DNS
(Domain Name Server). You can also give the host computer's TCP/IP address
in dotted decimal format (for example, 194.53.94.97) instead of its host name.

104 IBM solidDB: Administrator Guide

2. On Windows and UNIX, the TCP/IP protocol is usually included in the
operating system. On other environments (like VAX/VMS) the TCP/IP
software needs to be installed on the system. For a list of supported TCP/IP
software, contact IBM Corporation at: http://www.ibm.com/software/data/
soliddb.

3. The local loopback interface address, 127.0.0.1, is the default address when a
client attempts to open a TCP/IP connection without specifying a hostname.

4. Using option -i ip_address or -i host_name , the solidDB listens only to the
specified IP address or host name. This is useful in multi-homed systems that
support many TCP/IP interfaces (or have multiple ip-addresses). For example,
a server with the following setting in solid.ini accepts connection requests
only from inside the same machine, either referred by IP address 127.0.0.1 or
with the name 'localhost', if the DNS is correctly configured:
[com]
Listen = tcp -i127.0.0.1 1313

Note that DNS entries can be used instead of IP addresses, for example:
[com]
Listen = tcp -ilocalhost 1313

5. Using option -i127.0.0.1, which starts the server to listen only to a local
loopback connection, allows TCP/IP listening with a desktop license. To enable
TCP/IP usage with desktop licenses, all entries in solid.ini have to be edited
to include -i. Note that default listening of port 1313 (without solid.ini) works
automatically.

UNIX Pipes
The UNIX domain sockets (UNIX Pipes) are typically used when communicating
between two processes running in the same UNIX machine. UNIX Pipes usually
have a very good throughput. They are also more secure than TCP/IP, since Pipes
can only be accessed from applications that run on the computer where the server
executes.

When starting a server using UNIX Pipes, you must reserve a unique listening
name (inside that machine) for the server, for instance, 'soliddb'. Because UNIX
Pipes handle the UNIX domain sockets as standard file system entries, there is
always a corresponding file created for every listened pipe. In solidDB's case, the
entries are created under the path /tmp Our example listening name 'soliddb'
creates the directory /tmp/solunp_SOLIDDB and shared files in that directory. The
/tmp/solunp_ is a constant prefix for all created objects while the latter part
('SOLIDDB' in this case) is the listening name in upper case format.

Table 29. UNIX Pipes protocol in the solid.ini file

Where Syntax example

Server
Listen = upipe server_name

Client
Connect = upipe server_name

Note:

1. Server and client processes must run in the same machine in order to use
UNIX Pipes for communication.

2. The server process must have "write" permission to the directory /tmp.

6 Managing network connections 105

http://www.ibm.com/software/data/soliddb
http://www.ibm.com/software/data/soliddb

3. The client that is accessing UNIX Pipes must have "execute" permission on the
directory /tmp.

4. The directory /tmp must exist.
5. UNIX Pipes cannot be used in Caldera/SCO UNIX.

Named Pipes
Named Pipes is a protocol commonly used in the Microsoft Windows operating
systems.

Table 30. Named Pipes protocol in the solid.ini file

Where Syntax example

Server
Listen = nmpipe server_name

Client
Connect = nmpipe [host_computer_name] server_name

Note:

1. The server names must be character strings at most 50 characters long.
2. If the server is running in the same computer with the application program, the

host computer name should not be specified.
3. In order to connect to the solidDB for Windows through Named Pipes, the user

must have at least the same rights as the user who started the server. For
example if an administrator starts the server, then only users with
administrator's rights are able to connect to the server through Named Pipes.
Similarly, if a user with normal user's rights starts the server, then all users
with equal or greater rights are able to connect the server through Named
Pipes. If a user doesn't have proper rights, solidDB Communication Error 21306
message will be given.

4. It is not recommended to use the Named Pipes communication from solidDB
Remote Control. The asynchronous nature of solidDB Remote Control
communication may cause problems with Named Pipes.

Note that you may use either "nmpipe" or "nmp" to specify the named pipes
protocol.

NetBIOS
The NetBIOS protocol is commonly used in the Microsoft Windows operating
systems.

To use NetBIOS protocol, select NetBIOS in the list of available protocols in
solidDB and enter a non-reserved server name.

Table 31. NetBIOS protocol in the solid.ini file

Where Syntax example

Server
Listen = netbios [aLANA_NUMBER] server_name

Client
Connect = netbios [aLANA_NUMBER] server_name

Note:

106 IBM solidDB: Administrator Guide

1. The server name must be a character string at most 16 characters long. It may
not begin with an asterisk (*).

2. In the above format, the optional -aLANA_NUMBER parameter is used to
override the default value of the LANA number.

3. In Windows, the available LANA numbers can be checked using the Network
Setup found in the Control Panel. The default value 0 may not be generally
very good. You should choose the one(s) where the protocol stack matches the
other computers you are using. The LANA number (Network Route: Nbf →
Elnk3 → Elnk31) that uses NetBEUI as a transport usually functions quite
smoothly when used for solidDB communication.

4. The server names have to be unique in the whole network. Establishing a
connection or starting the listener using the NetBIOS protocol may be
somewhat slow because of the checks needed for uniqueness.

5. solidDB products use all available LANA numbers by default. This makes it
unnecessary to specify explicitly which LANA number the application or
solidDB should use. For backward compatibility, the -aLANA_NUMBER
parameter remains available.

Summary of protocols
The following tables summarize the possible operating systems and required forms
for network names for the various communication protocols.

Table 32. solidDB protocols and network names

Protocol Server OS Network name in solid.ini file

Shared Memory - deprecated as of release
6.3 Fix Pack 1

Windows Listen = shmem server

NetBIOS Windows Listen = netbios server

Named Pipes Windows Listen = nmpipe server

TCP/IP Windows, UNIX, VxWorks Listen = tcpip port

UNIX Pipes UNIX Listen = upipe server

Table 33. Application protocols and network names

Protocol Server OS Network name in solid.ini file

Shared Memory - deprecated as of release
6.3 Fix Pack 1

Windows Connect = shmem server

NetBIOS Window Connect = netbios server

Named Pipes Windows Connect = nmpipe [host] server

TCP/IP Windows, UNIX, VxWorks Connect = tcpip [host] port

UNIX Pipes UNIX Connect = upipe server

1) Requires Digital PATHWORKS 32 for Microsoft Windows.

6 Managing network connections 107

Logical Data Source Names
solidDB Clients support Logical Data Source Names. These names can be used for
giving a database a descriptive name. This name can be mapped to a network
name in three ways:
1. Using the parameter settings in the application's solid.ini file.
2. Using the Microsoft Windows operating system's registry settings.
3. Using settings in a solid.ini file located in the Windows directory.

This feature is available on all supported platforms. However, on non-Windows
platforms, only the first method is available.

A solidDB Client attempts to open the file solid.ini first from the directory set by
the SOLIDDIR environment variable. If the file is not found from the path
specified by this variable or if the variable is not set, an attempt is made to open
the file from the current working directory.

To define a Logical Data Source Name using the solid.ini file, you need to create
a solid.ini file containing the section [Data Sources]. In that section you need to
enter the logical name and network name pairs that you want to define. The syntax
of the parameters is the following:
[Data Sources]
logical_name = network_name, Description

In the description field, you may enter comments on the purpose of this logical
name.

For example, assume you want to define a logical name for the application
My_application and the database that you want to connect is located in a UNIX
server using TCP/IP. Then you should include the following lines in the solid.ini
file, which you need to place in the working directory of your application:
[Data Sources]
My_application = tcpip irix 1313, Sample data source

When your application now calls the Data Source My_application, the solidDB
Client maps this to a call to 'tcpip irix 1313'.

On Windows platforms, the registry can be used to map Data Sources. These
follow the standards of mapping ODBC Data Sources on a system.

In Windows, a Data Source may be defined in the Windows Registry. The entry is
searched from the path software\odbc\odbc.ini

1. first under the root HKEY_CURRENT_USER and if not found,
2. under the root HKEY_LOCAL_MACHINE.

The order of resolving a Data Source name in Microsoft Windows systems is the
following:
1. Look for the Data Source Name from the solid.ini file in the current working

directory, under the section [Data Source]
2. Look for the Data Source Name from the following registry path

HKEY_CURRENT_USER\software\odbc\odbc.ini\DSN
3. Look for the Data Source Name from the following registry path

HKEY_LOCAL_MACHINE\software\odbc\odbc.ini\DSN

108 IBM solidDB: Administrator Guide

If an application uses normal ODBC Data Sources, the network name is mapped
normally using the methods that are provided in the ODBC Driver Manager.

6 Managing network connections 109

110 IBM solidDB: Administrator Guide

7 Diagnostics and troubleshooting

This chapter provides information on the following solidDB diagnostic tools:
v Network trace facility used to trace the server communication
v Ping facility used to trace client communication

You can use these facilities to observe performance, troubleshoot problems, and
produce high quality problem reports. These reports let you pinpoint the source of
your problems by isolating them under product categories (such as solidDB ODBC
API, solidDB ODBC Driver, solidDB JDBC Driver, etc.).

You may also want to read “Performance counters (perfmon)” on page 19, which
discusses various monitoring techniques including the perfmon command.

Tracing communication between client and server
solidDB provides the following tools for observing the communication between an
application or an external application (if using linked library access) and a
database server:
v the Network Trace facility
v the Ping facility

You can use these tools to analyze the functionality of the networking between an
application and solidDB. The network trace facility should be used when you want
to know why a connection is not established to solidDB. The ping facility is used
to determine how fast packets are transferred between an application and a
database server.

The network trace facility
Network tracing can be done on the solidDB computer, on the application
computer or on both computers concurrently. The trace information is written to
the default trace file or file specified in the TraceFile parameter.

The default name of the output file is soltrace.out. This file will be written to the
current working directory of the server or client depending on which end the
tracing is started.

The file contains information about:
v loaded DLLs
v network addresses
v possible errors

The Network Trace facility is turned on by editing the configuration file:
[Com]
Trace ={Yes|No}
; default No
TraceFile = file_name
; default soltrace.out

111

or by using the environment variables SOLTRACE and SOLTRACEFILE to override
the definitions in the configuration file. Setting of SOLTRACE and SOLTRACEFILE
environment variables have the same effect as the parameters Trace and TraceFile
in the configuration file.

Note: Defining the TraceFile configuration parameter or the SOLTRACEFILE
environment variable automatically turns on the Network trace facility.

A third way to turn on the Network trace facility is to use the option -t and/or
-ofilename as a part of the network name. The option -t turns on the Network
trace facility. The option -o turns on the facility and defines the name of the trace
output file.

Defining parameter Trace in the client-side configuration file
[Com]
Connect = nmp SOLIDDB
Listen = nmp SOLIDDB
Trace = Yes

Defining environment variables
set SOLTRACE = Yes

or
set SOLTRACEFILE = trace.out

Using network name options
[Com]
Connect = nmp -t soliddb
Listen = nmp -t soliddb

or
[Com]
Connect = nmp -oclient.out soliddb
Listen = nmp -oserver.out soliddb

Network trace facility output

Following is an excerpt from a trace file:
Scanning listening keyword Listen from section Com.
No listening information found from section Com.
Generating default listening info.

Parsing address ’TCP/IP 1964’.
Address information:

fullname : ’TCP/IP 1964’
lisname : ’1964’
protocol : ’tcp’ (TCP/IP)
enabled : Yes
ping : 0
trace : No

Reading communication configuration from file D:\solid\solid.ini.

Parsing address ’TCP/IP 1964’.
Address information:

fullname : ’TCP/IP 1964’
lisname : ’1964’
protocol : ’tcp’ (TCP/IP)
enabled : Yes
ping : 0

112 IBM solidDB: Administrator Guide

trace : No

Initialising protocol ’tcp’ (TCP/IP).
Searching DLL ’DTCW3237’.
DLL s:\soldll\DTCW3237.DLL loaded.
SOLID version 03.70.0026, DLL interface version 4.
Build information Tue Oct 25 00:18:07 2002.
Initialization of protocol ’tcp’ succeeded.

Protocol TCP/IP using configuration :
MaxPhysMsgLen: 8192

ReadBufSize: 2048
WriteBufSize: 2048
SelectThread: Yes

Trace: Yes
MinWritePoolBuffers: 4
MaxWritePoolBuffers: -1
WritePoolIncrement: 1
SyncRead: No
SyncWrite: No

26.07 15:12:21 Initializing server. Listen info ’TCP/IP 1964’.
Starting the listening of ’TCP/IP 1964’.

The Ping facility
The Ping facility can be used to test the performance and functionality of the
networking. The Ping facility is built into all solidDB client applications and is
turned on with the network name option -p level .

The output file will be written to the current working directory of the computer
where the parameter is given. The default name of the output file is soltrace.out.

Clients can always use the Ping facility at level 1. Levels 2, 3, 4 or 5 may only be
used if the server is set to use the Ping facility at least at the same level.

The Ping facility levels are:

Table 34. Ping facility levels

Setting Function Description

0 no operation do nothing, default

1 check that server is alive exchange one 100 byte message

2 basic functional test exchange messages of sizes 0.1K, 1K,
2K..30K, increment 1K

3 basic speed test exchange 100 messages of sizes 0.1K, 1K,
8K and display each sub-result and total
time

4 heavy speed test exchange 100 messages of sizes 0.1K, 1K,
2K, 4K, 8K, 16K and display each
sub-result and total time

5 heavy functional test exchange messages of sizes 1..30K,
increment 1 byte

Note:

7 Diagnostics and troubleshooting 113

If a solidDB client does not have an existing server connection, you can use the
SQLConnect() function with the connect string -p1 option (ping test, level 1) to
check if solidDB is listening in a certain address. Without logging into solidDB,
SQLConnect() can then check the network layer and ensure solidDB is listening.
When used in this manner, SQLConnect() generates error code 21507, which means
the server is alive.

Running Ping facility at level 1

The client turns on the Ping facility by using the following network name:
nmp -p1 -oping.out SOLIDDB

This runs the Ping facility at the level 1 into a file named soltrace.out. This test
checks if the server is alive and exchanges one 100 byte message to the server.

After the Ping facility has been run, the client exits with the following message:
SOLID Communication return code xxx: Ping test successful/failed,
results are in file FFF.XX

How the listen parameter restricts the use of Ping facility

If the server is using the following listen parameter, applications can run the Ping
facility at levels 1, 2, and 3, but not 4 and 5.
[Com]
Listen = nmp -p3 SOLID

Note:

Ping clients running at level greater than 3 may cause heavy network traffic and
may slow down any application that is using the network, including any ordinary
SQL clients connected to the same solidDB.

Problem reporting
solidDB offers sophisticated diagnostic tools and methods for producing high
quality problem reports with very limited effort. Use the diagnostic tools to
capture all the relevant information about the problem.

All problem reports should contain the following files and information:
v solid.ini

v license number
v solmsg.out

v solerror.out

v soltrace.out

v ssdebug.out

v problem description
v steps to reproduce the problem
v all error messages and codes
v contact information, preferably email address of the contact person

114 IBM solidDB: Administrator Guide

Problem categories
Most problems can be divided into the following categories:
v solidDB ODBC API
v solidDB ODBC or JDBC Driver
v Communication problems between the application or an external application (if

using linked library access) and solidDB.
v Problems with disk block integrity

The following pages include detailed instructions to produce a proper problem
report for each problem type. Please follow the guidelines carefully.

solidDB ODBC API problems
If the problem concerns the performance of a specific solidDB ODBC API or SQL
statement, you should run SQL info facility at level 4 and include the generated
soltrace.out file into your problem report. This file contains the following
information:
v create table statements
v create view statements
v create index statements
v SQL statement(s)

solidDB ODBC Driver problems
If the problem concerns the performance of solidDB ODBC Driver, please include
the following information:
v solidDB ODBC Driver name, version, and size
v ODBC Driver Manager version and size

If the problem concerns the cooperation of solidDB and any third party standard
software package, please include the following information:
v Full name of the software
v Version and language
v Manufacturer
v Error messages from the third party software package

Use ODBC trace option to get a log of the ODBC statements and include it in your
problem report.

solidDB JDBC Driver problems
If the problem is related to the solidDB JDBC Driver, please include the following
information in your problem report:
v Exact version of JDK or JRE used
v Name, size, and date of the SOLIDDriver class package
v Contents of DriverManager.setLogStream(someOutputStream) output, if

available
v Call stack (that is, Exception.printStackTract() output) of the application, if an

exception has occurred in the application

7 Diagnostics and troubleshooting 115

Communication between a client and server
If the problem concerns the performance of the communication between a client
and server use the Network trace facility and include the generated trace files into
your problem report. Please include the following information:
v solidDB communication DLLs used: version and size
v Other communication DLLs used: version and size
v Description of the network configuration

Database disk block integrity
If the problem concerns the database disk block integrity, check the integrity by
starting solidDB database with the -x testblocks parameter. This option will check
the disk block integrity and produce a report in the ssdebug.out file.

116 IBM solidDB: Administrator Guide

Appendix A. Server-side configuration parameters

By managing the configuration parameters of your solidDB, you can modify the
environment, performance, and operation of the server. The configuration
parameters are stored in the solid.ini configuration file and are read when the
server starts.

Generally, the factory value settings offer the best performance and operability, but
in some special cases modifying a parameter will improve performance. You can
change the parameters in the following ways:
v Manually editing the configuration file solid.ini. Since the file is only read

when the server is started, changes to a parameter value in the solid.ini file do
not take effect until the next time that the server is started.

v Entering the command
ADMIN COMMAND ’parameter name=value’

Note: Parameter support may vary between platforms.

The first part of this appendix focuses on the solid.ini file, and describes the
proper format for parameter values in that file.

The second part of this appendix describes how to use an ADMIN COMMAND to
change the value of a parameter dynamically.

The remainder of this appendix describes the parameters themselves, including the
valid range of values and the factory values.

Note: Parameters for some components, such as HotStandby, may be described in
the manual for that component rather than in this guide.

Setting parameters through the solid.ini configuration file
When the solidDB is started, it attempts to open the configuration file solid.ini. If
the file does not exist, solidDB will use the factory values for the parameters. If the
file exists, but a value for a particular parameter is not set in the solid.ini file,
solidDB will use a factory value for that parameter. The factory values depend on
the operating system you are using.

By default, the server looks for the solid.ini file in the current working directory,
which is normally the directory from which you started the server. If you would
like to specify a different directory to be used as the current working directory,
then use the -c command line option. (For more details about command line
options, see Appendix C, “solidDB command line options,” on page 175.) If you
want to specify a different directory for the solid.ini file, you can set the
SOLIDDIR environment variable to specify the location of the solid.ini file. When
searching for the file, the solidDB uses the following precedence (from high to
low):
v location specified by the SOLIDDIR environment variable (if this environment

variable is set)
v current working directory

117

Rules for formatting the solid.ini file
The configuration file solid.ini is an ASCII file with line breaks.

The solid.ini configuration file is divided into sections. Each section contains a
group of one or more loosely-related parameters. Each section has a name, and
that name is delimited with square brackets, e.g.
[SQL]

Within each section are the parameters. Parameters are specified in the following
format:
param_name=param_value

for example:
Listen=tcp 127.123.45.156 1313
DurabilityLevel=2

Blank spaces around the equals sign are allowed but not required. The following
are equivalent:
DurabilityLevel=2
DurabilityLevel = 2

If you omit the parameter value, then the server will use the factory value. For
example:
; Use the factory value
DurabilityLevel=

If you omit the parameter value and the equals sign, you get an error message.

Every parameter must be under a section header. If you put a parameter before
any section header, you get an error message indicating that there is an
unrecognized entry in the section named "<no section>".

Section names can be repeated. For example:
[Index] BlockSize=2048
[Com]
...
[Index]
CacheSize=8m

However, repeating sections names makes it more difficult for users to keep the
file up-to-date and consistent, so we do not recommend doing this.

Parameter names can also be repeated (you won't get a warning message), but this
is very strongly discouraged. The last occurrence of the parameter in the file takes
the precedence.

The solid.ini file can contain comments, which must begin with a semicolon.
; This is a valid comment.

You can also put a comment on the same line as a parameter.
DurabilityLevel=2 ; This is also a valid comment.

Below is a simple example of part of a solid.ini file that contains a section
heading, a parameter, and a comment:

118 IBM solidDB: Administrator Guide

[Logging]
; Use "relaxed logging", which improves performance but may
; risk losing the last few transactions during a failure.
DurabilityLevel=1

[Com]
...

There are a few cases where two or more sections have parameters with the same
name. Therefore, you must be careful to place each parameter in the correct
section.

Most sections and parameters are optional. You do not need to specify a value for
every parameter in every section, and in fact you can omit entire sections. If you
omit a parameter(s), the server will use the factory value. Later in this appendix,
we list each section, each parameter name, the factory value for that parameter,
and a description of the purpose and valid range of values for that parameter.

The server checks each entry in the solid.ini file. If the entry is not a comment,
the server checks that the combination of section name and parameter name is
valid. If you have invalid entries in the file, the server will display an error
message in the solmsg.out file; if the server is running as a foreground process, the
message will also be displayed on the console. The message will be similar to one
of the following:
1. Warning: Unrecognized entry in inifile: '<section>.<parameter>'.

You will see this message if you have entries that fit the proper form, but
which do not have the pre-defined section names and parameter names. For
example, you would get this message if you had a solid.ini file like the
following:
; This has a valid section name, but an invalid parameter name.
[Logging]
NoSuchParam=NoSuchValue

This has an invalid section name.
[NoSuchSectionName]

The message for the first of these errors would be similar to:
Warning: Unrecognized entry ’Logging.NoSuchParam’ in inifile.

2. Warning: Illegal entry in inifile: <whole illegal line>

The server will display this message if a line could not be recognized as a
section header, parameter name, comment, or blank line. You may see this
message if you have entries that are not in the proper form. For example, you
will see this message if your solid.ini file contains something like the
following:
; This text was intended to be a comment
but we forgot to precede part of it with a semicolon.

3. Warning: 1 unrecognized or illegal entry in '<inifilename>'

or
Warning: <number> unrecognized or illegal entries in '<inifilename>'.

After the server has finished processing the solid.ini file, it will list the total
number of errors detected.

4. Warning: Unregistered parameter <section>.<parameter> is used.

If this error occurs, it is a sign of a possible problem inside the server itself. If
you see this error, please report it to IBM Corporation.

Appendix A. Server-side configuration parameters 119

Note that the server does not necessarily display an error message if you use an
invalid value for a parameter. The server may simply use the factory value without
issuing an error message.

The solid.ini parameter file is checked only when the server starts. If you edit it
after the server starts, the server will not see the changes until the next time that
the server starts.

CAUTION:
If you make changes to the solid.ini file AND you make changes to parameters
in the server by using an ADMIN COMMAND, the behavior is unpredictable.
While the server is running, you can safely change the solid.ini file OR make
changes to server values using the ADMIN COMMAND, but you should not do
both during the same "run" of the server.

A summary of the rules is below:
v Section name is in the format

[section-name]

v The same section name may be used several times (however, this is not
recommended).

v Each parameter is set in a separate line.
v Entries in the files may be preceded with blanks.
v If the first non-blank character is the comment character, then the whole line is

ignored (that is, it is treated as a comment line).
v The comment character is the semicolon (;).
v Comments may follow other entries that are in the same line.
v Lines that have no characters, or that have only blank characters, are ignored.

Format of configuration parameter names and values
The rules for configuration parameter names and values are the same regardless of
whether the parameters are set through the solid.ini file or an ADMIN
COMMAND:
v The section and parameter names are not case-sensitive.
v The string values are not case-sensitive.
v In most cases, units are not case-sensitive. For example, to specify that the units

are in megabytes, you may use any of the following: m, M, MB, mb, Mb, or mB.
Some units (e.g. time units 's' (seconds) and 'ms' (milliseconds)) are case
sensitive and such cases are documented.

v The syntax for general parameter value setting is:
param_name [space characters] = [space characters] value_literal

The syntax for the value is
value_literal [space characters] unit_of_measure

where
param_name is the parameter name. When this is used in an ADMIN
COMMAND, the name should be the full parameter name, including the section
name, for example, Logging.DurabilityLevel. When this is used in the
solid.ini file, it should NOT include the section name, since the parameter
should already be listed under the appropriate section header.
value_literal is the value to be assigned to the parameter. This is usually a literal,
such as the number 12, or the string "tcp MyServer2 1315". If you give no value,
the parameter will be set to its startup value. If you assign a parameter value

120 IBM solidDB: Administrator Guide

with an asterisk (*), the parameter will be set to its factory value. Note that
string literals should normally be in double quotes if they are used in an
ADMIN COMMAND.
unit_of_measure is the unit of measure, for example MB for megabytes or ms for
milliseconds.
[space characters] represents places where spaces are allowed but not required.
Spaces around the equals sign are optional. Spaces between the value and the
unit of measure are optional.
For example, allowed forms include:
CacheSize=32M
cachesize=32m
CacheSize = 32 m
etc.

Changing parameters through ADMIN COMMAND
Most parameters can be changed with an ADMIN COMMAND:
ADMIN COMMAND ’parameter param_name = value [temporary]’;

The param_name and value generally follow the rules specified in “Format of
configuration parameter names and values” on page 120.

Note: If no value is specified, this sets the parameter with a factory (or unset)
value. Furthermore, if you assign a parameter value with an asterisk (*), the
parameter will be set to its factory value.

Note that the param_name in an ADMIN COMMAND (unlike in the solid.ini
file) must include the section name and the parameter name, separated by a period
character. For example, to set the value of the DurabilityLevel parameter, which is
part of the [Logging] section, issue a command like:
ADMIN COMMAND ’parameter Logging.DurabilityLevel=1’;

When the value of a parameter is changed with an ADMIN command, the change
may or may not apply immediately, and may or may not apply the next time that
the server is started. If a parameter value is written to the solid.ini file, then it
will take effect the next time that the server starts. If the temporary option is used,
then the value will affect the server's current behavior, but will not affect the server
when it restarts. In some cases, changing a parameter may take effect immediately
AND be written to the solid.ini file so that it also applies the next time that the
server starts. See the explanations of Access Mode below.

Access Mode

The tables later in this appendix list the "Access Mode" for each parameter. The
Access Mode indicates whether the parameter can be changed dynamically (via an
ADMIN COMMAND), and when the change takes effect. The possible Access
Modes are:
v RO (read-only): the value cannot be changed; the current value is always

identical to the startup value.
v RW: can be changed via an ADMIN COMMAND, and the change takes effect

immediately.
v RW/Startup: can be changed via an ADMIN COMMAND, and the change takes

effect the next time that the server starts.

Appendix A. Server-side configuration parameters 121

v RW/Create: can be changed via an ADMIN COMMAND, and the change
applies when a new database is created.

Saving parameter changes

Unless the option temporary is used, all the changes made to the parameters will
be saved in the solid.ini file at the next checkpoint. The saving may be also
expedited with the command:
ADMIN COMMAND
’save parameters [file_name]’;

By default, the command rewrites the default solid.ini file. By using the file_name
option, the output can be directed to a different location.

Descriptions of configuration parameters
There is one table below for each section of the solid.ini file. The sections (and
tables) are:
v Accelerator
v Cluster
v Com
v General
v HotStandby (discussed in the IBM solidDB High Availability User Guide)
v IndexFile
v Logging
v LogReader
v MME
v Sorter
v SQL
v Srv
v Synchronizer

Most parameters in most sections apply to all solidDB components. The sections
that do not apply to all components are listed below:
v The MME section applies only to the solidDB diskless edition.
v The Synchronizer section applies only to solidDB advanced replication

capability, which is available in the solidDB in-memory database.
v The HotStandby section only applies to the HotStandby component.

The descriptions of a few individual parameters specify that those parameters (or
some specific settings of those parameters) apply only to a particular component.
Each of these exceptions is documented in the description of the parameter itself.

122 IBM solidDB: Administrator Guide

Accelerator section
Table 35. Accelerator parameters

[Accelerator] Description Factory Value

ImplicitStart If set to yes, this parameter starts solidDB
automatically as soon as the ODBC API
function SQLConnect is called in a user
application. If set to no, solidDB must be
explicitly started with a call to the Control
API function SSCStartServer.

yes

Cluster section
Table 36. Cluster parameters

[Cluster] Description Factory Value Access Mode

ReadMostlyLoadPercentAtPrimary Percentage of read load directed
to the Primary

50 RW/Startup

Communication section
Table 37. Communication parameters

[Com] Description Factory Value Access Mode

Listen Defines the network name for
a server. When a solidDB
database server process is
started, it will publish at least
one network name that
distinguishes it in the network.
The server can then start to
listen to the network using the
given network name. The
network name consists of a
communication protocol and a
server name.

For more details, read 6,
“Managing network
connections,” on page 99.

tcp 1964 RW

MaxPhysMsgLen Defines the maximum length
of a single physical network
message in bytes; longer
network messages will be split
into smaller messages of this
size.

OS dependent RW/Startup

Appendix A. Server-side configuration parameters 123

Table 37. Communication parameters (continued)

[Com] Description Factory Value Access Mode

RConnectLifetime A time period in seconds for
how long the idle connections
are kept open in the pool.
Whenever the connection is
used, the timer starts from
zero. Valid values range from
0-3600

This parameter is associated
with server-maintained remote
connections used to execute
Remote Stored Procedures in
advanced replication.

60

Unit: 1 second

RW/Startup

RConnectPoolSize Number of remote connections
in the connection pool. These
are the connections that are
used to execute the remote
procedure calls. For
performance reasons, we can
keep the connections open in
the pool for a specified time. If
the pool becomes full, and
there is call for a node that
doesn't exist in the pool, then
that call is blocked until there
is room in the pool. Valid
values range from 1-1000

This parameter is associated
with server-maintained remote
connections used to execute
Remote Stored Procedures in
advanced replication.

10 RW/Startup

RConnectRPCTimeout RPC timeout for remote
connections. Default is 0 (no
timeout).

This parameter is associated
with server-maintained remote
connections used to execute
Remote Stored Procedures in
advanced replication.

0.

Unit 1 millisecond

RW/Startup

ReadBufSize Sets the buffer size in bytes for
the data read from the network

OS dependent RW/Startup

SocketLinger This parameter controls the
TCP socket option
SO_LINGER. It indicates if the
system attempts to deliver any
buffered data (Yes), or if the
system discards it (No), when
a close() is issued. The
parameter affects all server
side connections, including
advanced replication and
HotStandby.

Yes RW/Startup

124 IBM solidDB: Administrator Guide

Table 37. Communication parameters (continued)

[Com] Description Factory Value Access Mode

SocketLingerTime This parameter defines the
length of the time interval (in
seconds) the socket lingers
after a close is issued. If the
time interval expires before the
graceful shutdown sequence
completes, an abortive
shutdown sequence occurs (the
data is discarded). The default
value zero indicates that the
system default is used
(typically, 1 second)

0 RW/Startup

TcpKeepAlive This parameter can only be
used for Linux, HP-UX, Solaris
and QNX platforms. On other
platforms, the parameter has
no effect.

If the client computer is
rebooted, the connection status
on the server side remains
'ESTABLISHED'. You can set
the SO_KEEPALIVE socket
option with this parameter.

See also parameters
TcpKeepAliveIdleTime,
TcpKeepAliveProbeCount and
TcpKeepAliveProbeInterval.

No RW/Startup

TcpKeepAliveIdleTime This parameter can only be
used for Linux, HP-UX, Solaris
and QNX platforms. On other
platforms, the parameter has
no effect.

This parameter controls the
TCP_KEEPIDLE socket option.
If the SO_KEEPALIVE option
is enabled with the
TcpKeepAlive parameter, TCP
sends a keepalive probe to the
remote system of a connection
that has been idle for a period
of time. If the remote system
does not respond to the
keepalive probe, TCP
retransmits a keepalive probe
for a certain number of times
before a connection is
considered to be broken.
TCP_KEEPIDLE specifies the
number of seconds before TCP
will send the initial keepalive
probe.

See also parameters
TcpKeepAlive,
TcpKeepAliveProbeCount and
TcpKeepAliveProbeInterval.

7200 RW/Startup

Appendix A. Server-side configuration parameters 125

Table 37. Communication parameters (continued)

[Com] Description Factory Value Access Mode

TcpKeepAliveProbeCount This parameter can only be
used for Linux, HP-UX, Solaris
and QNX platforms. On other
platforms, the parameter has
no effect.

This parameter controls the
TCP_KEEPCNT socket option.
If the SO_KEEPALIVE option
is enabled with the
TcpKeepAlive parameter, TCP
sends a keepalive probe to the
remote system of a connection
that has been idle for a period
of time. If the remote system
does not respond to the
keepalive probe, TCP
retransmits a keepalive probe
for a certain number of times
before a connection is
considered to be broken. The
TCP_KEEPCNT option
specifies the maximum number
of keepalive probes to be sent.

See also parameters
TcpKeepAlive,
TcpKeepAliveIdleTime and
TcpKeepAliveProbeInterval.

9 RW/Startup

TcpKeepAliveProbeInterval This parameter can only be
used for Linux, HP-UX, Solaris
and QNX platforms. On other
platforms, the parameter has
no effect.

This parameter controls the
TCP_KEEPINTVL socket
option. If the SO_KEEPALIVE
option is enabled with the
TcpKeepAlive parameter, TCP
sends a keepalive probe to the
remote system of a connection
that has been idle for a period
of time. If the remote system
does not respond to the
keepalive probe, TCP
retransmits a keepalive probe
for a certain number of times
before a connection is
considered to be broken. The
TCP_KEEPINTVL option
specifies the number of
seconds to wait before
retransmitting a keepalive
probe.

See also parameters
TcpKeepAlive,
TcpKeepAliveIdleTime and
TcpKeepAliveProbeCount.

75 RW/Startup

126 IBM solidDB: Administrator Guide

Table 37. Communication parameters (continued)

[Com] Description Factory Value Access Mode

Trace If this parameter is set to yes,
trace information on network
messages for the established
network connection is written
to a file specified with the
TraceFile parameter. The
factory value for the TraceFile
parameter is soltrace.out.

no RW/Startup

TraceFile If the Trace parameter is set to
yes, trace information on
network messages is written to
a file specified with this
TraceFile parameter.

soltrace.out (written to the
current working directory of
the server or client depending
on which end the tracing is
started)

RW/Startup

WriteBufSize Sets the buffer size in bytes for
the data written into the
network

OS dependent RW/Startup

General section
Table 38. General parameters

[General] Description Factory Value Access Mode

BackupBlockSize Block size for backup file writing 64 KB

Unit: 1 byte k=KB

RW/Startup

BackupCopyIniFile If set to yes, solid.ini file will be copied to
the backup directory

yes RW/Startup

BackupCopyLog If set to yes, backup operation will copy log
files to the backup directory

yes RW/Startup

BackupCopySolmsgOut If set to yes, solmsg.out file is copied to the
backup directory

yes RW/Startup

BackupDeleteLog If set to yes, old log files will be deleted
after backup operation

yes RW/Startup

Appendix A. Server-side configuration parameters 127

Table 38. General parameters (continued)

[General] Description Factory Value Access Mode

BackupDirectory Makes a backup of the database, log files,
and the configuration file solid.ini, using
the factory value 'backup' or a given name.
For example, BackupDirectory=abc, creates a
backup on directory 'abc'.

The backup directory must exist and it must
have enough disk space for the backup files.
It can be set to any existing directory, except
the solidDB database file directory, the log
file directory, or the working directory.

All directory definitions are relative to the
solidDB working directory unless the full
path is provided.

Note that the backup directory entry must
be a valid path name in the server's
operating system. For example, if the server
runs on a UNIX operating system, path
separators must be slashes instead of
backslashes.

'backup' directory RW/Startup

BackupStepsToSkip Controls how frequently netcopy and
backup tasks are executed. The value is a
number of the tasking system steps that are
skipped between backup execution phases.
Reasonable values are in the range of 2 - 20.
With the factory value 0, the backup
proceeds with the maximum speed.

0 (no skipping) RW/Startup

128 IBM solidDB: Administrator Guide

Table 38. General parameters (continued)

[General] Description Factory Value Access Mode

CheckpointDeleteLog If this parameter is set to yes, then the
server deletes the transaction log file(s) after
each successful checkpoint. This saves disk
space, but makes it impossible to recover
data by rolling forward the logs.

The transaction logs contain a copy of the
transactions executed by the server. If the
database file is erased or corrupted, and if
you have kept the transaction log files, then
you can restore the data by restoring the
backup database file and then rolling
forward all the transaction logs that
accumulated since the last backup. If you
deleted those transaction logs, then you will
lose all transactions since the last successful
backup.

You should only set CheckpointDeleteLog to
yes if your database has data that you are
willing to risk losing (e.g. test data created
during development). See also the
BackupDeleteLog parameter.

NOTE: If you are using HotStandby and if
you set CheckpointDeleteLog=Yes on the
Primary server, then the server deletes only
the logs that are already acknowledged by
Secondary. For example, if the Secondary is
down and the Primary is in PRIMARY
ALONE state, then the Primary will keep
the logs even after the data has been
checkpointed on the Primary.

no RW/Startup

CheckpointInterval The number of writes to the log files made
in the database which causes automatic
checkpoint creation. A large setting can
delay checkpoints and make them larger. A
small setting will guarantee a small
checkpoint size. SEE ALSO:
MinCheckpointTime. (Note that
CheckpointInterval and MinCheckpointTime
use different units of measurement.
CheckpointInterva is based on the number
of log writes, while MinCheckpointTime
specifies the minimum time between
consecutive checkpoints.)

50000 log writes RW

DataDictionaryErrorMaxWait When a data "dictionary operation active"
error for prepared statements occurs, the
server automatically attempts to reprepare
the SQL statement, for the time specified
with this parameter. If the table is still
compatible with the SQL statement, the
operation can continue without any errors
reported to the user. This parameter should
only be enabled when the thread/client
mode is used (Srv.ReadThreadMode=2),
because the wait blocks the waiting thread.

0 (Disabled)

Unit: 1 second

RW/Startup

DecimalPrecAsNumeric
If set to "yes", the precision of NUMERIC is
allowed to be greater than specified.

No

Appendix A. Server-side configuration parameters 129

Table 38. General parameters (continued)

[General] Description Factory Value Access Mode

DefaultStoreIsMemory If set to Yes, then new tables are created as
in-memory tables if they are created without
an explicit STORE clause in the CREATE
TABLE statement. If set to No, then by
default new tables are stored on disk. You
can override the factory value by using the
STORE clause in the CREATE TABLE
statement.

Note that system tables are stored on disk,
even if this parameter is set to Yes.

Yes RW

DisableIdleMerge If set to yes, database is set to disable
idlemerge.

No RW/Startup

FileWriteFlushMode filewriteflushmode=0 means no flushing
after write or read operations.

filewriteflushmode=1 means flush before
reading from the file.

filewriteflushmode=2 means flush after
write operations (recommended for
vxworks)

0 on most platforms. RW/Startup

IOThreads Number of helper I/O threads (per IO
device) for read and write purposes.

Note: You can restrict the number of write
threads with the General.WriterIOThreads
parameter. Must be IOThreads >
WriterIOThreads. If this rule is violated, the
IOThreads parameter takes the precedence
(wins).

5 RW/Startup

130 IBM solidDB: Administrator Guide

Table 38. General parameters (continued)

[General] Description Factory Value Access Mode

LockHashSize The server uses a hash table (array) to store
lock information. If the size of the array is
remarkably underestimated the performance
degrades. Too large hash table doesn't affect
directly to the performance although it
causes memory overhead. The LockHashSize
determines the number of elements in hash
table.

This information is needed when the server
is using pessimistic concurrency control (i.e.
locking). The server uses separate arrays for
in-memory tables and disk-based tables.
This parameter applies to disk-based tables.

In general, the more locks you need, the
larger this array should be. However, it is
difficult to calculate the number of locks
that you need, so you will probably need to
experiment to find the best value for your
applications.

The value that you enter is the number of
hash table entries. Each table entry has a
size of one pointer (4 bytes in 32-bit
architectures). Thus, for example, if you
choose a hash table size of 1,000,000, then
the amount of memory required is 4,000,000
bytes (assuming 32-bit pointers).

1000 RW/Startup

Appendix A. Server-side configuration parameters 131

Table 38. General parameters (continued)

[General] Description Factory Value Access Mode

LockWaitTimeOut LockWaitTimeout specifies the time in
seconds that the engine waits for a lock to
be released. When the timeout interval is
reached, solidDB terminates the timed-out
transaction.

For example, if one user is querying a
specific row in a table and a second user is
updating the same row, the second user's
update will wait until either the first user's
query is completed or the second user times
out. If the first user's query is completed
before the second user times out, then the
second user is issued a lock for the update.

The maximum lock timeout is 1000 seconds.
The server won't start if the default lock
timeout in solid.ini is more than 1000
seconds.

Note: You can set the lock time out for a
single connection by using the following
SQL command:

SET LOCK TIMEOUT timeout_in_se

You can change the granularity of the SET
LOCK TIMEOUT command from seconds to
milliseconds by appending "MS" to the
number, e.g.

SET LOCK TIMEOUT 500MS

Note: The SET LOCK TIMEOUT command
does not change the setting in the solid.ini
file.

See also TableLockWaitTimeOut.

30

Unit: seconds

RW

LongSequential SearchLimit Sets the number of sequential fetches after
which search is treated as long sequential
search

500

MaxMergeParts This parameter is used to specify the
maximum number of concurrent merge
operations, or the number of merge parts.

100 RW/Startup

MaxMergeTasks The merge process can use multiple merge
tasks to accelerate the cleaning up of Bonsai
Tree. This parameter specifies the maximum
number of merge tasks.

5 RW/Startup

MaxOpenFiles Sets the maximum number of files kept
concurrently open during solidDB sessions

OS dependent RW/Startup

132 IBM solidDB: Administrator Guide

Table 38. General parameters (continued)

[General] Description Factory Value Access Mode

MaxWriteConcurrency
Limits the number of concurrent row writes
(update/deletes/insert) performed at a time.

The optimal value depends on the number
of available cores (CPUs) and the scattering
of updates among different tables. The more
cores are available and the more the writes
are scattered, the higher is the optimal
value. The value should not be higher than
the number of available cores (CPUs).

Value 0 means there is no limit on the
number of concurrent writes.

4 RW/Startup

MergeInterval Sets the number of index inserts made in the
database that causes the merge process to
start

Cache size dependent RW

MinCheckpointTime Specifies the minimum time in seconds
between two checkpoint operations. SEE
ALSO: CheckpointInterval. (Note that
CheckpointInterval and MinCheckpointTime
use different units of measurement.
CheckpointInterval is based on the number
of log writes, while MinCheckpointTime
specifies the minimum time between
consecutive checkpoints.)

300

Unit: 1 second

RW

MinMergeTime This sets a minimum time (in seconds)
between two merge operations. For more
information about merge operations, see the
sections “solidDB Bonsai Tree
multiversioning and concurrency control”
on page 4 and “Setting the MergeInterval
parameter” on page 92.

0 RW

NetBackupConnect This sets the connect string to the
Netbackup Server.

No factory value. RW/Startup

NetBackupConnectTimeout Sets the maximum time in milliseconds that
a netbackup operation waits for a
connection to a NetBackup Server.

For example, to set
the timeout to 30
seconds use value
30000 (milliseconds).

0 (no timeout)

RW/Startup

NetBackupCopyIniFile If set to "yes" the solid.ini configuration
file is copied to the remote backup directory.

Yes RW/Startup

NetBackupCopyLog If set to "yes" the log files are copied to the
remote backup directory.

Yes RW/Startup

NetBackupCopy SolmsgOut If set to "yes" the solmsg.out message file is
copied to the remote backup directory.

Yes RW/Startup

NetBackupDeleteLog If set to "yes" the backed-up log files are
deleted from the source server after the
NetBackup has accomplished.

Yes RW/Startup

Appendix A. Server-side configuration parameters 133

Table 38. General parameters (continued)

[General] Description Factory Value Access Mode

NetBackupDirectory Sets the remote backup directory. The path
expression may be relative or absolute.
Non-absolute paths are related to the
working directory of the NetBackup Server.

No factory value. RW/Startup

NetBackupReadTimeout Sets the maximum time in milliseconds that
any operation waits for the response from
the NetBackup Server.

For example, to set the timeout to 30
seconds use value 30000 (milliseconds).

60 000 RW/Startup

Pessimistic When you specify PESSIMISTIC
concurrency control, the server places locks
on rows to control the level of consistency
and concurrency when users are submitting
queries or updates to rows. The factory
value is 'No', that is, the server uses
optimistic concurrency control. However, by
setting the Pessimistic parameter to 'Yes',
you can tell the server to default to
pessimistic locking for any new tables that
are created AND for any old tables whose
concurrency control method was never
explicitly set with the ALTER TABLE
command.

If you set a table's locking mode by using
the command

ALTER TABLE base_table_name SET
{OPTIMISTIC | PESSIMISTIC}

the ALTER TABLE command takes
precedence.

For a detailed explanation of pessimistic vs.
optimistic concurrency control, as well as a
discussion of whether the Pessimistic
parameter in solid.ini takes precedence
over other methods of setting the
concurrency control, see IBM solidDB SQL
Guide.

No RW/Startup

ReadLevelMaxTime This parameter specifies in seconds how
long an SQL execute can hold the
transaction read level in the READ
COMMITTED isolation level until it is
released. The default value is 10 seconds.

10 RW/Startup

Readonly if set to yes, database is set to read-only
mode

No RW/Startup

134 IBM solidDB: Administrator Guide

Table 38. General parameters (continued)

[General] Description Factory Value Access Mode

SearchBufferLimit Sets the maximum percentage of search
buffers from the total buffered memory
reserved for open cursors.

The search buffer contains a local copy of
the last B-tree page. Because of this, active
searches do not need to go through the
index and cache manager to get to the next
row in the search. Instead, the searches read
the local copy residing in the cache
manager. Other searches can also access the
page for read-only purposes unless it has
been modified by a transaction.

When calculating the buffer limit value, take
the approximate number of active searches
in the database and multiply it by two. The
result is the need for search buffers. After
this, you can calculate the suitable
percentage from the cache size.

50 RW/Startup

StartupForceMerge If this parameter is set to Yes, it forces a
merge operation to run when the server is
started. The server accepts no user
commands until the merge operation has
been completed.

No RW/Startup

TableLockWaitTimeout Sets the time in seconds that a transaction
waits to get a lock. When messages are
executed in the replica, it is possible to run
them in pessimistic or mixed concurrency
mode, which means table level locks are
used.

There are times when a transaction will
acquire an exclusive lock to a table. If there
is a conflict, this setting provides the
transaction's wait period until the exclusive
or shared lock is released. This parameter is
used for synchronized databases only.

Table level locks are used when the
PESSIMISTIC keyword is explicitly provided
in the following solidDB commands:

IMPORT SUBSCRIPTION
MESSAGE message_name EXECUTE
(only with NO EXECUTE option)
MESSAGE message_name FORWARD
MESSAGE message_name GET REPLY
DROP SUBSCRIPTION

See also LockWaitTimeOut.

30

Unit: 1 second

RW

TransactionEarlyValidate Transaction early validating is used when
this parameter is set to yes. The possible
values are yes and no.

Yes RW/Startup

Appendix A. Server-side configuration parameters 135

Table 38. General parameters (continued)

[General] Description Factory Value Access Mode

TransactionHashSize The hash table contains slots that are
occupied by incomplete (i.e. open)
transactions. The transaction hash size sets
the size of the table for open transactions.
Once the number of occupied slots
increases, the operations with this table
become slower.

The database offers higher performance
when the average number of transactions
per slot is lower (5 is a good initial limit for
the transaction per slot average).

Note that you can monitor the status of this
hash table using ADMIN COMMAND
'report filename'. For example:

ADMIN COMMAND ’report myfile.txt’

The output contains the following related
information:

tablesize = setting

nused = slots taken from hash table

list length = sum of all transactions in the
table

4000, but depends
partly on the cache
size. Minimum value
is 1000. Maximum is
50,000.

RW/Startup

VersionedPessimisticReadCommitted If this parameter is enabled, pessimistic
D-tables use versioned reads with READ
COMMITTED isolation. Read with FOR
UPDATE work as before. In other words,
pessimistic D-tables work like M-tables.

Yes RW/Startup

VersionedPessimisticRepeatableRead If this parameter is enabled, pessimistic
D-tables use versioned reads with
REPEATABLE READ isolation.

Yes RW/Startup

WriterIOThreads Number of helper threads dedicated to
writing tasks (per IO device). Must be
IOThreads > WriterIOThreads. If this rule is
violated, the factory value is used. If
IOThreads=1 then the setting
WriterIOThrreads=0 is enforced.

1 RW/Startup

HotStandby section
Table 39. HotStandby parameters

Parameter name Description Factory value Access mode

1SafeMaxDelay In 1-Safe replication, the maximum delay before a
committed transaction is sent to the Secondary (in
milliseconds).

5000 RW

136 IBM solidDB: Administrator Guide

Table 39. HotStandby parameters (continued)

Parameter name Description Factory value Access mode

2SafeAckPolicy This specifies the timing of the Secondary's
acknowledgement when it receives a transaction
from the Primary.

Valid values are:

v 1 = 2-safe received. The Secondary server
acknowledges when it receives the data.

v 2 = 2-safe visible. The Secondary server
acknowledges when the data is "visible", that is,
when the Secondary has executed the transaction.

v 3 = 2-safe durable. The Secondary server
acknowledges when it has made the data durable,
that is, when it has committed the data and
written the data to the disk.

Not surprisingly, 2-safe durable is the safest
approach, and 2-safe received has the fastest
response time. However, in practice, the 2-safe
received mode provides in most cases sufficient
guarantees for data safety hence providing the best
compromise between safety and speed.

This parameter applies only if the server is using
2-safe replication.
Note: Although this parameter controls the
Secondary server's behavior, this parameter is set on
the Primary. The value in the Secondary's solid.ini
value is ignored.

1 RW

AutoPrimaryAlone If this parameter is set to Yes, then the server is
automatically put in PRIMARY ALONE state (rather
than PRIMARY UNCERTAIN state) when the
connection to the Secondary is broken.

If you plan to set this to "yes", read the warnings in
Network partitions and dual primaries.

No RW

CatchupSpeedRate While the server is performing catchup, it also
continues to service database requests from clients.
You may use the CatchupSpeedRate parameter to
give greater importance to responding to application
requests and lower priority to catchup, or vice versa.

The speed rate is expressed as a percentage of the
maximum available speed dictated by the link and
Secondary throughput. Larger numbers mean more
emphasis on catchup and less on servicing client
requests. Allowed values are 1-99.

50 RW

Appendix A. Server-side configuration parameters 137

Table 39. HotStandby parameters (continued)

Parameter name Description Factory value Access mode

Connect The Connect parameter indicates the address of the
other HotStandby server in the pair.

The format of the Connect string in the HotStandby
section is the same as the format of the Listen
parameter in the [Com] section.

If you omit this parameter in a server that you
intend for HotStandby, then you can set this
parameter dynamically by using an ADMIN
COMMAND. Until the server has a Connect string,
the server can only be in the states that do not
involve a connection, that is, PRIMARY ALONE,
SECONDARY ALONE, and STANDALONE.

The Connect parameter is ignored unless the
HSBEnabled parameter is set to "yes".

For Transparent Connectivity (TC) connections, the
Connect parameter can be overridden with the
TCConnect parameter.

No factory value. RW

ConnectTimeout By specifying a connect timeout value, you can set
the maximum time in seconds that a HotStandby
connect operation waits for a connection to a remote
machine.

The ConnectTimeout parameter (which is useful
only on certain platforms) is only used with certain
administration commands. These are:

v hotstandby connect

v hotstandby switch primary

v hotstandby switch secondary

For example, to set the timeout to 30 seconds (30000
milliseconds):

[HotStandby]
ConnectTimeout=30000

See also PingTimeout.

0 (no timeout)

Unit: 1 ms

RW

CopyDirectory The CopyDirectory parameter in the [HotStandby]
section defines a name and location for the
HotStandby copy operation that is performed when
the user executes the command:

ADMIN COMMAND ’hotstandby copy’;

For example, the parameter may look like:

[HotStandby]
CopyDirectory=C:\solidDB\secondary\dbfiles

If you provide a relative path for the CopyDirectory
parameter, the path will be relative to the directory
that holds the Primary server's solid.ini file.

This parameter has no factory value, so if the
directory is not specified in the solid.ini file, it
must be provided in the copy command.

Please note that ADMIN COMMAND 'hotstandby
netcopy' as the more flexible solution is the
recommended way to copy the database.

No factory value RW

138 IBM solidDB: Administrator Guide

Table 39. HotStandby parameters (continued)

Parameter name Description Factory value Access mode

HSBEnabled If this parameter is set to yes, the server may act as
a HotStandby Primary or Secondary server. If this
parameter is set to no, then the server may not act
as a HotStandby server.

Setting this parameter to Yes will implicitly define
the default initial state of the server to be
SECONDARY ALONE when the server first starts.
Valid values are "yes" and "no".

To use HotStandby, you must also specify the
Connect parameter, either by setting it in the
solid.ini file or by using an ADMIN COMMAND
to set it.

no RO

MaxLogSize Maximum size of the disk-based HSB log. The
factory value: unlimited

0

Unit: 1 byte k=KB
m=MB

MaxMemLogSize When the file-based logging is disabled
(Logging.LogEnabled=No), the size of the
in-memory log holding transactions before they are
sent to the Secondary. The value affects the time the
server may stay in the PRIMARY ALONE state,
before the in-memory log becomes full.

8M

Unit: 1 byte k=KB
m=MB

RO

NetcopyRpcTimeout Data transmission acknowledgment timeout for
netcopy operation (in milliseconds)

30000

Unit: 1 ms

RW

PingInterval The Primary and Secondary send "ping" messages to
each other at regular intervals to make sure that
they are still connected. (These pings are
independent of the transaction information that the
Primary sends to the Secondary.)

The value is equal to the interval (in milliseconds)
between two consecutive pings sent by a server.

1000 (one second)

Unit: 1 ms

RW

PingTimeout The parameter specifies how long a server should
wait before concluding that the other server is down
or inaccessible.

After the time specified (in milliseconds) has passed
the server concludes that a connection is broken and
changes the state accordingly.

See also ConnectTimeout.

4000 (four seconds)

Unit: 1 ms

RW

PrimaryAlone This parameter is deprecated. Use the
AutoPrimaryAlone parameter.

No RW

SafenessLevel This parameter sets the safeness level of the
replication protocol.

By using the "auto" value, you can allow the
safeness level to dynamically change in relation to
the durability level. If you set SafenessLevel to
"auto" and set the durability to relaxed by using the
SET DURABILITY command or the DurabilityLevel
parameter, the safeness level is set to 1-safe, and
when you set the durability level to strict, the
safeness level is set to 2-safe. However, if
DurabilityLevel is set to 2 (Adaptive Durability), the
"auto" setting has no effect - the safeness level will
always be 2-safe.

Possible values are:
1safe, 2safe and auto

RW

Appendix A. Server-side configuration parameters 139

Table 39. HotStandby parameters (continued)

Parameter name Description Factory value Access mode

TCConnect This parameter overrides the connect string defined
with the Connect parameter for the purposes of
Transparent Connectivity (TC) connections, where
the servers need to use different networks to connect
to each other.

By default, the secondary servers provide the
Connect connect string to the TC clients for
specifying the location of the primary server. If the
servers use different network to connect to each
other and TC clients cannot or are not supposed to
use the same network, the TCConnect parameter can
be used to override the Connect connect string.

No factory value. RW

IndexFile section
Table 40. IndexFile parameters

[IndexFile] Description Factory Value Access Mode

BlockSize Sets the block size of the database file in
bytes; use multiple of 2 KB: minimum 2
KB, maximum 64 KB

16 KB

Unit: 1 byte k=KB

RO

CacheSize Sets the size of database cache memory for
the server in bytes; the minimum is 512
kilobytes. Although solidDB is able to run
with a small cache size, a larger cache size
speeds up the server. The cache size
needed depends on the size of the
database file, the number of connected
users, and the nature of the operations
executed against the server.

You can change the CacheSize value
dynamically as follows:

admin command 'parameter
IndexFile.CacheSize=40mb'

Attention: Setting the CacheSize to a
value larger than the amount of memory
available may significantly degrade
performance. If your system only has a
small amount of free memory available,
you should reduce the CacheSize.

32 MB

Unit: 1 byte k=KB
m=MB

RW

DirectIO Defines if the index file uses Direct I/O.
Direct I/O means that operating system
buffer pool is bypassed in file I/O.

This parameter is not effective in Windows
environments; in Windows environments,
database files always use Direct I/O.

No RW/Startup

ExtendIncrement Sets the number of blocks of disk space
that are allocated at one time when
solidDB needs to allocate more space for
the database file. Currently, each block is
8KB. E.g. a value of 500 (8KB blocks)
corresponds to 4 MB of disk space.

500 RW/Startup

140 IBM solidDB: Administrator Guide

Table 40. IndexFile parameters (continued)

[IndexFile] Description Factory Value Access Mode

FileSpec_[1... N] Defines the location and the maximum
size of the index file. Note that in solidDB,
the term "index file" is used as a synonym
for "database file." The parameter accepts
the following three arguments: database
file name followed with maximum size (in
bytes) of the database file, for example:

FileSpec_1=c:\soldb\solid.db 200000000

This parameter also has an optional
argument after the maximum size: device
number, which is the physical drive
number. The number value itself is not
essential, but it is used as a hint for I/O
threads, allowing the server to perform
database file I/O requests in a parallel
manner if you split the file into multiple
physical disks. The N in the parameter
syntax signifies the number of the file if
the database file is divided into multiple
files and onto multiple disks. For details,
read “FileSpec_[1...n] parameter” on page
50.

To achieve better performance, the
database file must be stored to a local
drive using local disk names to avoid
problems with network I/O.

Note that you may also want to have
multiple files on a single disk if your
physical disk is partitioned into multiple
logical disks and no single logical disk can
accommodate the size of the database file
you expect to create.

solid.db 2147483647
(2G-1 bytes)

RW/Startup

PreFlushPercent Sets the percentage of page buffer which is
kept clean by the preflush thread.

Note that the preflush operations prepare
the cache for the allocation of new blocks.
The blocks are written onto the disk from
the tail of the cache based on a Least
Recently Used (LRU) algorithm. Therefore,
when the new cache blocks are needed,
they can be taken immediately without
writing the old contents onto the disk.

1 RW/Startup

ReadAhead Sets the number of prefetched index reads
during long sequential searches.

Note that when the I/O manager is
handling a long sequential search, it enters
a read-ahead operation mode. This mode
ensures that the next file blocks of the
search in question are read into the cache
in advance. This naturally improves the
overall performance of sequential searches.

4 RW/Startup

Appendix A. Server-side configuration parameters 141

Table 40. IndexFile parameters (continued)

[IndexFile] Description Factory Value Access Mode

ReferenceCacheSizeForHash solidDB uses a hash table to ease access to
the cache. The hash table size equals the
number of pages in the cache. This
guarantees almost collision-free access. If
the cache size is increased dynamically, the
hash table is not automatically enlarged.
This results in a higher collision
probability. To avoid this, you can use the
ReferenceCacheSizeForHash parameter to
accommodate the enlarged cache. The
ReferenceCacheSizeForHash parameter
value is used for calculating the cache
hash table size. You should only use the
parameter if you know, in advance, what
will be the maximum cache size during
the server lifecycle. On the other hand, if
the value is not given, hash table collisions
may occur when the cache size is
increased.
Note: The ReferenceCacheSizeForHash
parameter value must not be smaller than
the CacheSize value. If it is, the
ReferenceCacheSizeForHash parameter
value is rejected and the default value is
used. Also, a message is printed to the
solmsg.out log file.

0 RW/Startup

SynchronizedWrite On UNIX/Linux platforms this parameter
may be set to "no" to enact asynchronous
I/0. Asynchronous I/O provides, in
general, more performance but it can cause
higher variance of response latencies
(lower latency determinism).

yes RO

Logging section
Table 41. Logging parameters

[Logging] Description Factory Value Access Mode

BlockSize Sets the block size of log files. The log block
size may be changed between startups. Logs
having block size different than the one set
are accepted at recovery. The value has to be
a multiplicity of 1 KB. Bigger blocks reduce
the overhead of log writing.

16 KB

Unit: byte k=KB

RW/Startup

DigitTemplateChar Specifies the template character that will be
replaced in the name template of the log file.
See the description of the FileNameTemplate
for more details.

RW/Startup

DirectIO Defines if the log file uses Direct I/O. Direct
I/O means that operating system buffer pool
is bypassed in file I/O.

This parameter is not effective in Windows
environments; in Windows environments,
database files always use Direct I/O.

No RW/Startup

142 IBM solidDB: Administrator Guide

Table 41. Logging parameters (continued)

[Logging] Description Factory Value Access Mode

DurabilityLevel This parameter controls whether the
transaction durability level is "strict",
"relaxed", or "adaptive". If durability is
"strict", then writes to the transaction log are
synchronous — i.e. as soon as a transaction
has been committed, the transaction is
written to the transaction log. If durability is
"relaxed", then writes are asynchronous —
there may be a delay between the time that
the transaction is committed and the time
that it is logged. For a detailed explanation of
"strict" and "relaxed" durability, see “Logging
and transaction durability” on page 83.

The possible values are:

1 = relaxed durability

2 = adaptive durability. This value applies
only to HSB (HotStandby) Primary servers.

3 = strict durability

The server's durability level may be set
dynamically by using the command:

ADMIN COMMAND
’parameter Logging.DurabilityLevel=n’;

where n is one of the valid values for this
parameter.

Each connection may override this solid.ini
parameter by using the SET DURABILITY or
SET TRANSACTION DURABILITY
command. See chapter "SET" in solidDB SQL
Guide.

Note that the DurabilityLevel parameter
affects the server's behavior only if
transaction logging is turned on. If you turn
off transaction logging by setting

[Logging]
LogEnabled=No

then your data will not be logged to disk,
regardless of the setting of DurabilityLevel. If
LogEnabled is set to No and DurabilityLevel
is set, then the server will briefly display a
warning message at the time that it starts.

DurabilityLevel is not the only configuration
parameter that influences how the server
writes information to logs. You may also
want to read about the LogWriteMode
parameter, which also offers some options
that allow you to trade off speed and
reliability. If you are using HotStandby, you
may also want to read about the
2SafeAckPolicy parameter.

1 RW

Appendix A. Server-side configuration parameters 143

Table 41. Logging parameters (continued)

[Logging] Description Factory Value Access Mode

FileFlush This parameter controls log file flush
behavior. This parameter is only valid for
platforms supporting Synchronized I/O Data
Integrity Completion. These are such as
Solaris, HP-UX, and Linux.

When set to no in these platforms, the
operating system, rather than the solidDB
engine, flushes the log file.

yes RW/Startup

FileNameTemplate Defines the path and naming convention
used when creating log files. These log files
contain information used to recover data if
the server crashes.

To be more specific, this parameter defines at
least the naming convention used when
creating log files, but not necessarily the path.
If this is the case, the Logging.LogDir
parameter defines the path. For more
information, see the LogDir parameter
description.

Template characters (e.g. "#") are replaced
with sequential numbers; for example, the
following file entry instructs solidDB to
create log files in directory C:\soliddb\log
and to name them sequentially starting from
sol00001.log.

FileNameTemplate =
c:\soliddb\log\sol#####.log

Your template may use between 4 and 10
template characters. If you do not want to
use the "#" sign as a template character, you
may specify a different character by setting
the parameter DigitTemplateChar.

If the number of log files would exceed the
maximum possible number (e.g. all names
from sol00001.log to sol99999.log are used
up), then the server will give an error
message and exit. The error message will be
similar to the following:

"Error: Illegal log file name template.
Most likely the log file name
template specified in solid.ini ...
contains too few or too many sequence
number digit positions. There should
be at least 4 and at most 10 digit
positions."

To achieve better performance, the log files
must be stored to a local drive using local
disk names to avoid problems with network
I/O.

sol#####.log RW/Startup

144 IBM solidDB: Administrator Guide

Table 41. Logging parameters (continued)

[Logging] Description Factory Value Access Mode

LogDir This parameter sets the directory prefix of the
log file path specified by using the Logging.
FileNameTemplate parameter. Effectively, it
specifies the log file directory if
FileNameTemplate only specifies the file
name (default). The default value is the
server working directory. The specified
directory has to exist prior to starting the
server.

"." (the server's working
directory)

RW/Startup

LogEnabled Specifies whether transaction logging is
enabled or not. If transaction logging is
disabled, you will get better performance but
lower transaction durability (if solidDB shuts
down unexpectedly, then you lose any
transactions since the last checkpoint). Note
that this parameter applies to in-memory
tables as well as disk-based tables.

yes RW/Startup

LogWriteMode Specifies the mode in which the log will be
written. The following two modes are
available:

v 0: ping-pong method

v 2: Overwrite method (factory value)

The choice of logging method depends on the
log file media and the level of security
required. For details on each of these
methods, read “Transaction logging” on page
37.

2 (Overwrite method) RW/Startup

MinSplitSize When this file size is reached, logging will be
continued to the following log file after the
next checkpoint

10 MB

Unit: 1 KB k=KB m=MB

RW/Startup

RelaxedMaxDelay This sets the maximum time in milliseconds
that the server waits until the committed
transaction(s) are written to the log. This
parameter applies only when the transaction
durability level is set to RELAXED (with the
DurabilityLevel parameter or the SET
DURABILITY statement). The units are
milliseconds. Minimum allowed value: 100
(i.e. 100 milliseconds).

5000 milliseconds (5
seconds)

Unit: 1 ms

RW/Startup

SyncWrite This parameter applies only to platforms,
such as Solaris, HP-UX, and Linux, which
support Synchronized I/O Data Integrity
Completion.

When set to yes, solidDB assumes that the
platform supports Synchronized I/O Data
Integrity Completion. It should be set to No
on all other platforms.

no RW/Startup

Appendix A. Server-side configuration parameters 145

LogReader section
Table 42. LogReader parameters

[LogReader] Description Factory Value Access Mode

LogReaderEnabled By using this parameter, you
can enable or disable the log
reader capability.

In solidDB Universal Cache
and configurations with
InfoSphere™ CDC Replication,
this parameter must be set to
Yes.

no RO

MaxLogSize This parameter defines the size
of the protected portion of the
disk-based transaction log.

When the log files are
removed, for example, in
conjunction with a backup, at
least the specified amount of
the log data is retained. The
protected portion of the log
facilitates a possible catchup
after a failure case when the
replication has not been active
for some time.

The actual log size may exceed
the MaxLogSize value, if the
log files are not removed.
Catchup is possible as long as
the propagator log position is
within the existing log.

The minimum value is 5 (5
MB). If you attempt to define a
smaller log size, it is
automatically changed to 5
MB. The maximum possible
log size is practically
unlimited.

Unit: megabytes.

10240 RW

146 IBM solidDB: Administrator Guide

Table 42. LogReader parameters (continued)

[LogReader] Description Factory Value Access Mode

MaxSpace This parameter defines the
maximum number of log
records buffered before
slowdown.

The log records are buffered in
an in-memory log reader
buffer. The size of a log record
is that of the (binary) row size,
plus a few bytes of additional
metadata overhead.

When the buffer fills up,
throughput throttling is
applied in solidDB: the
operations are blocked until
there is room in the logreader
buffer.

The throttling only takes place
when the log reading is active.
If there is no log reader
activity, solidDB continues the
processing and log files are
preserved at least until the
defined MaxLogSize limit is
reached (see above).

100000 RW

Silent If set to 'Yes', the Log Reader
activities are not output to
solmsg.out.

Possible values are 'Yes' and
'No'.

No RW/Startup

Appendix A. Server-side configuration parameters 147

MME section

Note: The DefaultStoreIsMemory parameter (in the [General] section of the
solid.ini file) is also related to solidDB in-memory database. For more
information, see “General section” on page 127.

Table 43. MME parameters

[MME] Description Factory Value Access Mode

ImdbMemoryLimit This sets an upper limit on the amount of memory
(virtual memory) that the server will allocate for
in-memory tables and indexes on in-memory tables.
Note that "in-memory tables" includes Temporary Tables
and Transient Tables, as well as "normal" (persistent)
in-memory tables.

The limit may be specified in bytes, kilobytes (kb),
megabytes (mb), or gigabytes (gb). For example:

ImdbMemoryLimit=1073741824
ImdbMemoryLimit=1048576kb
ImdbMemoryLimit=1024MB
ImdbMemoryLimit=1GB

If you use the value 0, it means "no limit".

As a general rule, for servers with 1 GB or less of
memory, the maximum amount that you should allocate
to in-memory tables is usually 30% - 70% of the
system's physical memory. The more memory the
system has, the larger the percentage of it you may use
for in-memory tables.

For more details about controlling memory usage of
in-memory tables, see IBM solidDB In-Memory Database
User Guide.

Note: This parameter only applies only to solidDB main
memory engine tables. It does not apply to other
versions of solidDB or to disk-based tables.

You can change this with the command:

ADMIN COMMAND ’parameter
MME.ImdbMemoryLimit=n[kb|mb|gb]’;

where 'n' is a positive integer. You may only increase,
not decrease, this value while the server is running. The
command takes effect immediately. The new value is
written back to the solid.ini file at shutdown.

CAUTION:
We strongly recommend that you ensure that your
in-memory tables will fit within the available physical
memory. If you exceed the amount of physical memory
available, performance will decrease significantly. If
you use up all of the available virtual memory, the
server will abruptly limit inserts, updates, etc. and will
return error codes.

0

Unit: 1 byte
k=KB m=MB
g=GB

RW

148 IBM solidDB: Administrator Guide

Table 43. MME parameters (continued)

[MME] Description Factory Value Access Mode

ImdbMemoryLowPercentage Once you have set ImdbMemoryLimit, you may set this
additional parameter to give you advance warning
before you use up all of memory. This
ImdbMemoryLowPercentage parameter allows you to
indicate what percentage of memory you may use
before the server starts limiting your ability to insert
rows into in-memory tables, etc. For example, if
ImdbMemoryLimit is 1000MB and
ImdbMemoryLowPercentage is 90 (percent), then the
server will stop accepting inserts when you've used up
900 megabytes of memory for your in-memory tables.

Valid values are between 60 and 99 (percent).

For more details about controlling memory usage of
in-memory tables, see IBM solidDB In-Memory Database
User Guide.
Note: This parameter only applies to solidDB main
memory engine tables. It does not apply to other
versions of solidDB or to disk-based tables.

90 RW/Startup

ImdbMemoryWarningPercentage This parameter sets a warning limit for the IMDB
memory size. The warning limit is expressed as a
percentage of the ImdbMemoryLimit parameter value.
When the ImdbMemoryWarningPercentage limit is
exceeded, a system event is given.

The ImdbMemoryWarningPercentage parameter value
is automatically checked for consistency. It must be
lower than the ImdbMemoryLimit parameter value.

For more details about controlling memory usage of
in-memory tables, see IBM solidDB In-Memory Database
User Guide.
Note: This parameter only applies to solidDB main
memory engine tables. It does not apply to other
versions of solidDB or to disk-based tables.

90 RW/Startup

LockEscalationEnabled Typically, when the server needs to use locks to prevent
concurrency conflicts, the server locks individual rows.
This means that each user affects only those other users
who want to use the same row(s). However, the more
rows are locked, the more time the server must spend
checking for conflicting locks. In some cases, it is
worthwhile to lock an entire table rather than a large
number of the rows in that table. When
LockEscalationEnabled is set to yes, the lock level is
escalated from row-level to table-level after a specified
number of rows (in the same table) have been locked
within the current transaction. Lock escalation improves
performance, but reduces concurrency, because it means
that other users are temporarily unable to use the same
table, even if they want to use different rows within that
table. See the parameter LockEscalationLimit.

The value may be "yes" or "no".
Note: This parameter applies to in-memory tables only.

no RW/Startup

Appendix A. Server-side configuration parameters 149

Table 43. MME parameters (continued)

[MME] Description Factory Value Access Mode

LockEscalationLimit If LockEscalationEnabled is set to yes, then this
parameter indicates how many rows must be locked
(within a single table) before the server will escalate
lock level from row-level to table-level. (See
LockEscalationEnabled for more details.)

The value may be any number from 1 to 2,147,483,647
(2^32-1).
Note: This parameter applies to in-memory tables only.

1000 RW/Startup

LockHashSize The server uses a hash table (array) to store lock
information. If the size of the array is remarkably
underestimated the performance degrades. Too large
hash table doesn't affect directly to the performance
although it causes memory overhead. The
LockHashSize determines the number of elements in
hash table.

This information is needed when the server is using
pessimistic concurrency control (i.e. locking). The server
uses separate arrays for in-memory tables and
disk-based tables. This parameter applies to in-memory
tables.

In general, the more locks you need, the larger this
array should be. However, it is difficult to calculate the
number of locks that you need, so you will probably
need to experiment to find the best value for your
applications.

The value that you enter is the number of hash table
entries. Each table entry has a size of one pointer (4
bytes in 32-bit architectures). Thus, for example, if you
choose a hash table size of 1,000,000, then the amount of
memory required is 4,000,000 bytes (assuming 32-bit
pointers).

1000000 RW/Startup

MaxBytesCachedInPrivateMemoryPool
This parameter defines the maximum bytes stored into
the free list of MME's private memory pool (private
memory pool is private for each main-memory index). If
there is more free memory in the private pool, the extra
memory is merged into global pools.

Value 0 means immediate merge to global pool, usually
degrades performance, but minimizes memory footprint.
There is no maximum value; the default value of 100000
gives good performance with little memory overhead.

100000 RW/Startup

MaxCacheUsage The value of MaxCacheUsage limits the amount of
D-table cache used while checkpointing M-tables. The
value is expected to be given in bytes. Regardless of the
value of the MaxCacheUsage at most half of the D-table
cache (IndexFile.CacheSize) is used for checkpointing
M-tables. Value MaxCacheUsage=0 sets the value
unlimited, which means that the cache usage is
IndexFile.CacheSize/2.

8MB RW/Startup

150 IBM solidDB: Administrator Guide

Table 43. MME parameters (continued)

[MME] Description Factory Value Access Mode

NumberOfMemoryPools
This parameter defines the number of global memory
pools. Bigger values may give better performance on
multicore systems with certain load scenarios but they
also increase memory slack and hence server process
size.

Minimum value is 1. There is no maximum value;
however, the number of cores in the system should not
be exceeded.

1 RW/Startup

ReleaseMemoryAtShutdown When set to "yes", this tells the server that when it shuts
down it should explicitly release memory used by
in-memory tables, rather than relying on the operating
system to clean up all memory associated with this
process. Some operating systems (like VxWorks) may
require you to set this to "yes" to ensure that all
memory is released.

The possible values are yes and no.

The factory value is no because shutting down the
server is faster that way.

No RW/Startup

Sorter section
Table 44. Sorter parameters

[Sorter] Description Factory Value Access Mode

BlockSize Block size of the external sorter
files. With the factory value 0,
the database block size is used.

0 RW/Startup

MaxCacheUsePercent This parameter sets the
maximum percentage of cache
pages that can used for sorting.
The valid values range from
10% to 50%. E.g. if the
CacheSize (in the IndexFile
section of the solid.ini file) is
20MB, and if
MaxCacheUsePercent is 25,
then a maximum of 5MB of
memory is available for
sorting.

If you specify both the
MaxCacheUsePercent and the
MaxMemPerSort, the values
must be compatible. You get an
error message if the following
is not true:
MaxCacheUsePercent x
CacheSize >= MaxMemPerSort

25

(that is, 25 percent)

RW/Startup

MaxFilesTotal Maximum number of files used
for sorting

100 RW/Startup

Appendix A. Server-side configuration parameters 151

Table 44. Sorter parameters (continued)

[Sorter] Description Factory Value Access Mode

MaxMemPerSort This parameter sets the
maximum memory available in
bytes for one sort (that is,
sorting the result set of one
query). This value must not
exceed the amount of memory
available to the sorter (see
MaxCacheUsePercent for more
information).

RW/Startup

SorterEnabled This parameter enables or
disables the usage of the
external sorter.

Yes RW/Startup

TmpDir_[1... N] When this parameter is
specified in the configuration
file, the external sorter
algorithm is enabled. The
external sorter algorithm is
used for sorting processes that
do not fit in main memory. The
parameter defines the name of
the directory (or directories)
that contain temporary files
created when using the
external sorter algorithm. The
N signifies the file directory
number if more than one
directory is used to store the
temporary file. For example:

TmpDir_1=c:\soldb\temp1
TmpDir_2=d:\soldb\temp2

Defaults to ".", in other words,
the current directory (the
directory from which the
server was started).

RW/Startup

SQL section
Table 45. SQL parameters

[SQL] Description Factory Value Access Mode

AllowDuplicateIndex If set to yes, allows duplicate index
definitions. This is a backward
compatibility parameter. In versions
preceding 4.5, it was possible to create
duplicate indexes.

no RO

CharPadding When set to yes, enforces SQL standard
padding of CHAR values with blanks
(right-filled) to the length defined for the
column. With the default setting (no), the
blanks are discarded. The value of the
parameter does not affect comparisons
(where blanks are always discarded).

This feature is not implemented in the
solidDB SQL Editor (solsql). Use ODBC3 or
JDBC2 drivers with this feature. Notice also
that this parameter affects the ODBC and
JDBC driver behaviour.

no RO

152 IBM solidDB: Administrator Guide

Table 45. SQL parameters (continued)

[SQL] Description Factory Value Access Mode

ConvertOrsToUnionsCount This parameter specifies the maximum
number of OR operations that may be
converted to UNION operations. Note that
this parameter does not force the optimizer
to convert OR operations to UNION
operations; it merely sets a maximum limit
on the number of OR operations that the
server may convert to UNION operations.

0 RW/Startup

CursorCloseAtTransEnd By default, the solidDB ODBC driver closes
all the cursors opened from the user
connection when a commit is called with
SqlTransact from this connection. If this
parameter is set to No, the cursors are kept
open.

yes RO

DecFloatPrecision16 If set to 'Yes', the precision of the decimal
float data type is limited to 16 (same as in
solidDB 4.5 and earlier).

In storage, the decimal float type is
inflicted by the column type specification
'DECIMAL' (without scale and precision).

Also, expressions involving DECIMAL or
NUMERIC data types may produce
decimal float values.

By default (No), the precision of the
decimal float data type is 52.

Possible values are 'Yes' and 'No'.

No RO

EmulateOldTimestampDiff If included in the solid.ini file and set to
"Yes", the old TIMESTAMPDIFF behavior is
emulated by the server. This old behavior
returns the integer number of intervals of
type interval by which timestamp_exp2 is
greater than timestamp_exp1. Otherwise,
the default is the new behavior which
returns the integer number of interval as
the amount of full units between
timestamp_exp1 and timestamp_exp2.

"No" RW/Startup

EnableHints If this parameter is included in the
solid.ini file and set to "Yes", hints are
enabled. If set to "No," hints are disabled.

For details on hints, read "Using Optimizer
Hints" in IBM solidDB SQL Guide.

Sometimes hints in queries may produce
undesirable effects. They may be disabled
by setting this parameter to "no"

yes RW/Startup

ExecuteNodataODBC3Behaviour By default, when the execution of a
DELETE or UPDATE statement does not
affect any rows, the statement returns
SQL_SUCCESS. This is the ODBC v.2
behavior. By setting this parameter to 'yes',
the SQLSTATE returned in those cases is
SQL_NO_DATA, which conforms with
ODBC v.3.

No RW/Startup

Appendix A. Server-side configuration parameters 153

Table 45. SQL parameters (continued)

[SQL] Description Factory Value Access Mode

Info Sets the level of informational messages
[0-8] printed from the server (0=no info,
8=all info); information is written into the
file defined by parameter InfoFileName, or
into soltrace.out if InfoFileName is not
defined.

0 RW/Startup

SQLInfo Sets the level of informational SQL level
messages [0-8] (0=no info, 8=all info);
information is written into a file defined by
parameter InfoFileName, or into
soltrace.out if InfoFileName is not
defined.

0 RW/Startup

InfoFileFlush If set to yes, flushes info file after every
write operation

yes RW/Startup

InfoFileName Default info file name. The default name is
soltrace.out. Since the soltrace.out file
may contain information from several
sources, we recommend that you explicitly
set InfoFileName to another name if you
set the Info or SQLInfo parameters to a
number larger than 0.

soltrace.out RW/Startup

InfoFileSize Sets the maximum size of the info file. 1 MB RW/Startup

IsolationLevel Possible values:

3 (SERIALIZABLE)

2 (REPEATABLE READ)

1 (READ COMMITTED)

This is the default transaction isolation
level. For more information about
transaction isolation levels, see the
description of the SET TRANSACTION
ISOLATION command (part of IBM
solidDB SQL Guide, Appendix B, solidDB
SQL Syntax), and section “Choosing
transaction isolation levels” on page 85.

In addition to setting this parameter in the
solid.ini file, you may also set the value
by executing the following command:

ADMIN COMMAND ’parameter
SQL.IsolationLevel={1 | 2 | 3}’

Note that if you execute this as an admin
command, then it takes effect after the
server is restarted.

Note that in version 4.0 and later,
in-memory tables will not work with
IsolationLevel set to SERIALIZABLE.

1 (Read
Committed)

RW/Startup

Latin1CaseSemantics If set to 'No', uppercase/lowercase
conversions are disabled for characters
with decimal value between 126 and 256.

Yes RW/Startup

154 IBM solidDB: Administrator Guide

Table 45. SQL parameters (continued)

[SQL] Description Factory Value Access Mode

MaxBlobExpressionSize Certain string operations use only the first
N bytes of a character value, not the entire
value. For example, the LOCATE()
operation checks only the first N bytes of
the string. If you want to tell the server to
check further into (or less far into) long
strings, you may set this parameter. By
default, the units are kilobytes — e.g. "64"
means 64KB You may specify "MB" if you
want to express the units in megabytes.
This parameter applies to all the character
data types, including CHAR, VARCHAR,
LONG VARCHARY, WCHAR,
WVARCHAR, and LONG WVARCHAR.
Since the Wide character data types use 2
bytes per character, the number of
characters searched is half the number of
bytes. E.g. if you set
MaxBlobExpressionSize to 64K bytes, then
the first 32K characters of Wide character
data types will be searched.

1024KB (1MB)

Unit: 1 KB m=MB

RW/Startup

MaxNestedProcedures Sets the maximum number of allowed
nested procedures. If this parameter is
defined too high, the server stack may
become insufficient depending on the
operating system.

16 RW/Startup

MaxNestedTriggers Sets the maximum number of allowed
nested triggers. This maximum number
includes both direct and indirect nesting,
so both A → A → A and A → B → A are
counted as three nested triggers.

16 RW/Startup

NumericPadding
If set to Yes, causes output of DECIMAL
and NUMERIC to be zero-right-padded up
to the specified scale.

No RO

ProcedureCache Specifies the number of procedures which
set the size of cache memory for parsed
procedures.

10 RW/Startup

SimpleOptimizerRules Instead of using full optimization rules,
simplified one can be used by setting the
value to "yes".

No RW/Startup

SortArraySize The size of the array that SQL uses when
ordering the result set of a query. The units
are "rows" — e.g. if you specify a value of
1000, then the server will create an array
big enough to sort 1000 rows of data.

2000 RW/Startup

TimestampDisplaySize19 If this parameter is included in the
solid.ini file and set to "Yes", it sets the
precision (i.e. maximum number of digits)
of data type timestamp to 19. In this case,
the timestamp is presented as yyyy-mm-dd
hh:mm:ss.

No Startup

Appendix A. Server-side configuration parameters 155

Table 45. SQL parameters (continued)

[SQL] Description Factory Value Access Mode

TriggerCache Specifies the number of triggers which set
the size of cache memory that each user
has for triggers.

20 RW/Startup

UpCaseQuotedIdentifiers If set to yes, the SQL identifiers given in
quotes are converted to upper case when
reaching the solidDB server. If set to no,
the upper/lower case distinction is
preserved whereby uniqueness of names
incorporates the case too.

Yes RW/Startup

Srv section
Table 46. Srv parameters

[Srv] Description Factory Value Access Mode

AbortTimeOut Specifies the time in minutes after an idle
transaction is aborted; negative or zero value
means infinite.

120

Unit: 1 min

RW/Startup

AdaptiveRowsPerMessage This parameter takes the average number of
rows returned to the client as the rows per
message value. The start value grows as more
rows are fetched. If set to no, the
RowsPerMessage parameter value is used. That
is also the default value.

yes RW/Startup

AllowConnect If set to no, only connections from Remote
Control or solidDB SQL Editor are allowed

yes RW/Startup

156 IBM solidDB: Administrator Guide

Table 46. Srv parameters (continued)

[Srv] Description Factory Value Access Mode

At The syntax is:

At = At_string
At_string ::= timed_command
[,timed_command]

timed_command ::=
[day] HH:MM argument
day ::= sun |

mon |
tue |
wed |
thu |
fri |
sat

If entered, allows you to specify a command to
automate an administrative task, such as
executing system commands, creating backups,
checkpoints, and database status reports. For
example:

At = 20:30 makecp,
21:00 backup,
sun 23:00 shutdown

If you specify a backup, the default backup
directory is the one set with the
BackupDirectory parameter in the General
section.

If the day is not given, the command is
executed daily.

There is no factory value for this parameter.

(no factory value) RW

ConnectionCheckInterval When the ReadThreadMode parameter is set to
2 (default), the server doesn't detect a broken
connection until it tries to write something back
to the client. This parameter specifies the
number of seconds between connection status
checks in thread/client mode.

10

Unit: seconds

RW/Startup

ConnectTimeOut Specifies the continuous idle time in minutes
after a connection is dropped; negative or zero
value means infinite.

480

Unit: 1 min

RW/Startup

DatabaseSizeReportInterval When the database size exceeds the limit
defined with this parameter, the system
generates a report file. This parameter gives the
delta after which the next report is printed. The
minimum delta value is 1 MB. The report file
name is repdb<mb>MB.dbg.

This parameter is useful, for example when
tracing unexpected database size growth.

If you leave this parameter to its default value
0, no reports are generated. The minimum
non-zero value for this parameter is 1 MB.

0 MB RW/Startup

Appendix A. Server-side configuration parameters 157

Table 46. Srv parameters (continued)

[Srv] Description Factory Value Access Mode

DisableOutput Disables generation of the solmsg.out and the
solerror.out files. For details on these files,
read “Viewing error messages and log files” on
page 16. To disable file generation, this
parameter must be included in the solid.ini
file and set to yes. If this parameter is set to no
or not included in the solid.ini file, the log
files are generated.

no RW/Startup

Echo If set to yes, contents of solmsg.out file are
displayed also at the server's command
window.

no RW/Startup

ExecRowsPerMessage This parameter specifies how many result rows
are sent (pre-fetched) to the client driver in
response to the SQLExecute call with a SELECT
statement. The result rows are subsequently
returned to the application with the first
SQLFetch calls issued by the application. The
default value of 2 allows for pre-fetching of
single-row results. If your SELECT statements
usually return larger number of rows, setting
this to an appropriate value can improve
performance significantly.

See also the RowsPerMessage configuration
parameter.

2 RW/Startup

ForceThreadsToSystemScope This parameter applies only to symmetric
multi-process (SMP) Solaris operating systems,
in which the default scope provided by the
threads of the runtime library can be set to
process scope, system scope, or light weight
process (lwp) scope. (In Sun's terminology,
"threads" are "lightweight processes".)

A yes value may significantly improve the
server's performance in a multi-CPU machine.
(The actual performance improvement depends
on how evenly the workload is already spread
across your CPUs.) A no value usually provides
slightly better performance in single-CPU
systems.

To fully understand how this parameter works,
you must understand the threading facilities of
Solaris. An explanation of the Solaris threading
facilities is beyond the scope of this manual.
However, it may be helpful to understand that
when this parameter is set to yes, it forces lwp
threads to be run in system scope, instead of
process scope. A Yes setting allows Solaris to
schedule solidDB threads on any available
CPU. This reduces bottlenecks and enhances the
parallelization of operations, including I/O.

Servers compiled
for Solaris default
to Yes. All other
servers default to
no.

RW/Startup

158 IBM solidDB: Administrator Guide

Table 46. Srv parameters (continued)

[Srv] Description Factory Value Access Mode

HealthCheckEnabled When the parameter is set to 'Yes', a periodical
check is performed to detect a stalled server
due to, for example, unexpected operating
system stalls or software errors.

The check uses a timeout-based server deadlock
detection algorithm that checks certain critical
low-level concurrent programming
synchronization objects (mutexes).

If a deadlock is detected, the server process
terminates with an error and a message is
printed to solerror.out.

For example in High Availability (HotStandby)
configurations, a failover can be enforced upon
the detection of a server deadlock.
Note: This parameter is not related to
transaction-level deadlock detection
mechanisms.

No RW/Startup

HealthCheckInterval This parameter sets the interval of the server
deadlock check.

Unit: seconds

60 RW

HealthCheckTimeout This parameter sets the deadlock detection
timeout time.

The factory value is high enough to escape false
errors. If faster detection is needed, set the
parameter to a lower value.

Unit: seconds.

60 RW

KeepAllOutFiles If this parameter is set to yes, the solidDB
message log (solmsg.out) and trace files are not
overwritten with new contents. Instead, when a
file limit is reached, a new file is created with
an incremented file name number postfix. The
starting value of the postfix is set by using
parameters Srv.TraceBackupFileNum and
Srv.SolmsgBackupFileNum.

No RW/Startup

LocalStartTasks Number of server's internal tasks (see footnote
1) that execute the local background statements
that were started with command START AFTER
COMMIT (without FOR EACH REPLICA).

Valid values range from 1 - 100.

1 RW/Startup

Appendix A. Server-side configuration parameters 159

Table 46. Srv parameters (continued)

[Srv] Description Factory Value Access Mode

MaxBgTaskInterval This parameter (MAXimum BackGround TASK
INTERVAL) tells the server the maximum
length of time to wait before checking whether
internal administrative tasks that are "sleeping"
should be "awakened".

The units are seconds.

For example, if a connection has been broken or
disconnected, this parameter specifies the
maximum length of time that the server will
wait before noticing that the connection is gone.
This time is IN ADDITION TO whatever time
is required for the underlying communication
layer to detect that the connection is broken.
For example, if you have a Connect Timeout of
100 seconds and a MaxBgTaskInterval of 50
seconds, then you may have to wait up to 150
seconds before a broken connection is detected
and no longer counted as one of the
connections.

You may want to set or adjust this parameter if
you get errors similar to the following:

Error 08004:
[Solid][SOLID ODBC Driver]

[SOLID]SOLID Server Error 14507:
Maximum number of licensed user
connections exceeded

This parameter only applies to the server's own
internal administrative tasks. It does not affect
the scheduling of user tasks.

Attention: MaxBgTaskInterval applies to all
server administration tasks, regardless of each
task's priority. Even when a high priority task is
running, the server will check the low-priority
tasks at the specified intervals.

Setting MaxBgTaskInterval to a small enough
value may reduce performance and may
reallocate some time from high-priority tasks to
low-priority tasks. This is particularly likely to
happen in "real-world" situations because the
customers who use this parameter are most
likely to be the customers with busy systems
(that is, systems that were so busy they did not
check low-priority connections often enough to
notice that they had been disconnected).
However, because the parameter only affects
server administrative tasks, not user tasks, the
effect is generally small.

2 (seconds) RW/Startup

160 IBM solidDB: Administrator Guide

Table 46. Srv parameters (continued)

[Srv] Description Factory Value Access Mode

MaxConstraintLength This parameter controls the maximum number
of bytes that the server will search through in a
string, for example in WHERE clauses such as:

WHERE LOCATE(sought_string,
column1) > 0;

For example, if the value is 1024, ASCII
character strings are searchable up to 1024
characters and Unicode character strings are
searchable up to 512 characters (1024 bytes).

This parameter applies to strings that have the
following data types:

CHAR(#)

VARCHAR(#)

It does not apply to strings that have the data
type(s):

LONG VARCHAR

The minimum valid value is 254. If you specify
a smaller number, the server will still search the
first 254 bytes. Although you can use any value
from 254 to 2G-1, practical values are generally
in the range of a few kilobytes, like 1024, or
8192.

254 (254 bytes =
254 ASCII
characters, or 127
Unicode
characters)

RW

MaxOpenCursors The maximum number of cursors that a
database client can have simultaneously open.

1000 RW/Startup

MaxRPCDataLen This allows users to specify the maximum
string length of a single SQL statement sent to
the server. This is particularly useful if you are
sending CREATE PROCEDURE commands that
are longer than 64K. The value should be
between 64K (65536) and 1024K (1048576). If
the value is less than 64K, the server will use a
minimum of 64K.

512K (524288) RW/Startup

MaxStartStatements Maximum number of simultaneous
"uncommitted" START AFTER COMMIT
statements. Valid values range from 0 - 1000000.

10000 RW/Startup

MemoryReportLimit This parameter defines the minimum size for
memory allocations after which reporting to
solmsg.out is done.

0 (no reporting) RW/Startup

MemoryReportDelta This parameter defines how much memory
allocations must increase or decrease compared
to the previous message before the new
message is printed to solmsg.out.

20 MB RW/Startup

Appendix A. Server-side configuration parameters 161

Table 46. Srv parameters (continued)

[Srv] Description Factory Value Access Mode

MemorySizeEventHysteresisPercentage As the amount on memory used crosses
different boundaries specified with, for
example, the ImdbLowPercentage or the
ProcessMemoryLimit parameter, system events
are given. The event behavior expresses
hysteresis in a way that the value triggering the
BELOW event is somewhat lower than the
specified value triggering the ABOVE event. The
difference can be, for instance, 5%. As a result,
the number of system events is not too large if
the amount of memory alternates rapidly just
above and below the specified boundaries. The
MemorySizeEventHysteresisPercentage
parameter is used to set the difference as a
percentage value.

5 RW

MemorySizeReportInterval When the memory size exceeds the limit
defined with this parameter, the system
generates a report file. This parameter defines
the delta after which the next report is printed.
The minimum delta value is 1 MB. The report
file name is repmem<mb>MB.dbg.

This is parameter is useful, for example when
tracing unexpected memory growth in the
server.

If you leave this parameter to its default value
0, no reports are generated. The minimum
non-zero value for this parameter is 1 MB.

0 MB RW/Startup

MessageLogSize The maximum size of the solmsg.out file in
bytes.

1 MB

Unit: 1 byte k=KB
m=MB

RW/Startup

Name Specifies the informal name of the server,
equivalent to the -n command line option.

RW/Startup

NetBackupRootDir Sets the root directory for the network backups
in NetBackup Server. The path is relative to the
working directory.

The working
directory

RW

ODBCDefaultCharBinding If set to UTF-8, ODBC-applications are allowed
to store and retrieve UNICODE data in UTF-8
encoded format.

Raw RW/Startup

PessimisticTableUseNFetch Pessimistic table locks are used to prevent other
sessions from adding, editing, or deleting any
records or placing any record or table locks on
a given table. Table locks block other record or
table lock attempts, but do not block any reads
of the locked table.

If pessimistic tables are used, they force the
RowsPerMessage value to 1 if the query locks
any rows. You can enable the RowsPerMessage
for pessimistic tables by enabling the
PessimisticTableUseNFetch parameter. By
default, it is disabled.

No RW/Startup

162 IBM solidDB: Administrator Guide

Table 46. Srv parameters (continued)

[Srv] Description Factory Value Access Mode

PrintMsgCode Causes a unique 8-character message code to be
inserted before each status and error message in
the message log files (solmsg.out and
solerr.out).

no RW/Startup

ProcessMemoryCheckInterval The process size limits are checked periodically.
The check interval is set with the
ProcessMemoryCheckInterval parameter. The
interval is given in milliseconds.

The minimum non-zero value is 1000 (ms).
Only values 0 or 1000 or above 1000 (1 second)
are allowed. If the given value is above 0 but
below 1000, an error message is given.

The factory value is 0, that is, process size
checking is disabled.

The ProcessMemoryCheckInterval also controls
the ProcessMemoryLimit parameter; if the
ProcessMemoryCheckInterval parameter value
is 0, the ProcessMemoryLimit parameter is not
effective, that is, there is no process memory
limit.

See also parameters
ProcessMemoryLowPercentage and
ProcessMemoryWarningPercentage.

0 RW

ProcessMemoryLimit This parameter specifies the maximum amount
of virtual memory that can be allocated to the
in-memory database process.

When this limit is exceeded, the server gives an
error message and accepts admin commands
only. The limit can be changed dynamically.

The ProcessMemoryLimit parameter is
controlled with the
ProcessMemoryCheckInterval parameter; if the
ProcessMemoryCheckInterval parameter value
is 0, the ProcessMemoryLimit parameter is not
effective

1G

Unit: 1 byte,
G=GB, M=MB,
K=KB

RW

Appendix A. Server-side configuration parameters 163

Table 46. Srv parameters (continued)

[Srv] Description Factory Value Access Mode

ProcessMemoryLowPercentage The ProcessMemoryLowPercentage parameter
sets a warning limit for the total process size.
The limit is expressed as percentage of the
ProcessMemoryLimit parameter value.

Prior to exceeding this limit, you have exceeded
the warning limit defined by using the
ProcessMemoryWarningPercentage parameter
and received a warning. When the
ProcessMemoryLowPercentage limit is
exceeded, a system event is given.

The ProcessMemoryLowPercentage parameter
value is automatically checked for consistency.
It must be higher than the
ProcessMemoryWarningPercentage parameter
value.

See also parameters ProcessMemoryLimit,
ProcessMemoryCheckInterval , and
ProcessMemoryWarningPercentage.

90 RW

ProcessMemoryWarningPercentage The ProcessMemoryWarningPercentage
parameter sets the first warning limit for the
total process size. The warning limit is
expressed as percentage of the
ProcessMemoryLimit parameter value. When
the ProcessMemoryWarningPercentage limit is
exceeded, a system event is given.

The ProcessMemoryWarningPercentage
parameter value is automatically checked for
consistency. It must be lower than the
ProcessMemoryLowPercentage parameter
value.

See also parameters ProcessMemoryLimit,
ProcessMemoryCheckInterval , and
ProcessMemoryLowPercentage.

80 RW

164 IBM solidDB: Administrator Guide

Table 46. Srv parameters (continued)

[Srv] Description Factory Value Access Mode

ReadThreadMode This parameter controls the number of threads
that the server uses to service client requests. If
the value is 0, the server uses the number of
threads specified with the parameter
Srv.Threads. If the value is 2, the server creates
a separate thread for each client. Using more
threads will generally improve performance,
but also requires more memory.

This parameter only controls the number of
threads serving client requests. It does not affect
the number of threads doing other work within
the server.

Some operating systems may limit the
maximum number of threads allowed, and
setting this parameter's value to 2 may cause
the server to request more threads than the OS
allows. If you try to exceed the number of
threads allowed, you will get a message similar
to the following:

"Failed to create thread
’dnet_clientthread’".

(msgcode 30146)

2 RW/Startup

RemoteStartTasks Number of Replica server's internal tasks1

inside the server that execute the remote
background statements started at Master with
command START AFTER COMMIT... FOR
EACH REPLICA. Valid values range from 1 -
100.

1 RW/Startup

RowsPerMessage Specifies the number of rows returned from the
server in one network message when an
SQLFetch call is executed (and there are no
pre-fetched rows).

See also the ExecRowsPerMessage configuration
parameter.

100 RW/Startup

Silent If set to yes, no output is generated to the
server's command window. Only license
information is displayed.

No RW/Startup

SolmsgBackupFileNum The starting value of the message log file
(solmsg.out) name postfix appended to the file
name if the Srv.KeepAllOutFiles parameter is
set to yes.

Valid values range from 0 to 999999

0 RW/Startup

Appendix A. Server-side configuration parameters 165

Table 46. Srv parameters (continued)

[Srv] Description Factory Value Access Mode

StandardDateTimeFormat By default, solidDB uses the ISO/IEC/ANSI
standard date representation, which is also the
standard date literal format in SQL. The date is
represented as shown in the timestamp example
below:

2008-10-15 09:29:40

If you assign a "no" value to the
StandardDateTimeFormat parameter, the
message log files (solmsg.out) use a date
presentation such as 15.10 09:29:40. The
solerror.out file uses another presentation,
such as Mon Oct 22 15:16:35 2007.

yes RW/Startup

StatementMemoryTraceLimit This parameter switches on tracing for
statements that have allocated memory over the
defined value. These statements are put into the
peak memory usage list. The peak memory list
is printed to report file. Statements that use
memory over the defined limit are also printed
to the solmsg.out file.

0 MB RW/Startup

Threads If the Srv.ReadThreadMode parameter is set to
0, this parameter specifies the number of
concurrent threads that the server uses to
process user requests. The helper threads, such
as I/O threads, are not included in the count. If
the value of Srv.ReadThreadMode is other than
0, the value of this parameter is insignificant, as
the server controls the number of threads
automatically.

5 RW/Startup

TraceBackupFileNum The starting value of the trace file name postfix
appended to the file name if the
Srv.KeepAllOutFiles parameter is set to yes.

Valid values range from 0 to 999999

0 RW/Startup

TraceLogSize This parameter allows you to limit the
maximum size of the trace log file. The size is
specified in bytes; for example,
TraceLogSize=10000 limits the size of the trace
log file to 10000 bytes. The trace log file is the
file to which the server writes information
when you turn on monitoring. (For information
about turning on monitoring, see the
description of ADMIN COMMAND 'monitor...'
in Appendix B, "solidDB SQL Syntax", in IBM
solidDB SQL Guide, and the -m command-line
option in Appendix C, “solidDB command line
options,” on page 175.)

Monitoring uses the file named soltrace.out
for output. Note that after reaching this
maximum size, the server will:

1. delete any existing file named soltrace.bak;

2. rename the current soltrace.out file to
soltrace.bak; and

3. start a new soltrace.out file.

1 megabyte

Unit: 1 byte k=KB
m=MB

RW/Startup

166 IBM solidDB: Administrator Guide

Table 46. Srv parameters (continued)

[Srv] Description Factory Value Access Mode

TraceSecDecimals Number of second decimals in trace outputs.
Allowed values are from 0 to 3.

0 RW/Startup

1 In this context, "task" means solidDB's internal task. Do not confuse this with
"thread" or with the term "task" as it is used in some Real-Time Operating Systems
such as Wind River Systems VxWorks. A task is just an operation that has to be
executed, such as checkpoint, backup, or SQL statement. In this case, we can have
1 to N tasks that execute the background operations. More tasks mean that
background tasks reserve more resources and are handled faster — and that other
operations (for example, interactive ones) will get fewer resources and be handled
more slowly.

Synchronizer section
Table 47. Synchronizer parameters

[Synchronizer] Description Factory Value Access Mode

ConnectStrForMaster This parameter indicates the
connection string that the
master must use to
communicate with the replica.
This information is read when
the server is started, and sent
to the master as part of each
message from the replica to the
master.

For example,

ConnectStrForMaster=
tcp replicahost 1316

none RW/Startup

MasterStatementCache The size of the statement cache
used during one propagation
in Master. The statement cache
is used to store prepared
statements received by Master
in one propagation from
Replica.

10 RW/Startup

Appendix A. Server-side configuration parameters 167

Table 47. Synchronizer parameters (continued)

[Synchronizer] Description Factory Value Access Mode

RpcEventThresholdByteCount This parameter controls how
frequently the server posts
events to indicate how many
bytes have been sent or
received in the current
synchronization message. The
units are measured in bytes;
the smaller the value (that is,
the smaller the number of
bytes), the less frequently
events are posted. Note that
you cannot use suffixes such as
"K" or "M" to indicate
Kilobytes or Megabytes.

The factory value is 0, which
means that no events are
posted.

For more information, see the
IBM solidDB Advanced
Replication User Guide.

0 RW/Startup

RefreshIsolationLevel With this parameter, you can
select the transaction isolation
level for refresh operations
instead of using the solid.ini
default value. The possible
values are

1. READ COMMITTED

2. REPEATABLE READ

Defaults to SQL.IsolationLevel RW/Startup

RefreshReadLevelRows With this parameter, you can
define the number of rows
after the read level is released
in the master if the used
isolation level is READ
COMMITTED. In other cases,
the read level is kept for the
full time of the refresh
operation. The read level
denotes a snapshot-consistent
version of the data in the
whole database. By releasing
the read level, you avoid
keeping too much data in main
memory during the refresh
operation.

1000 RW

Note: The RemoteStartTasks
parameter in the Srv section is
also related to advanced
replication.

RW/Startup

168 IBM solidDB: Administrator Guide

Table 47. Synchronizer parameters (continued)

[Synchronizer] Description Factory Value Access Mode

ReplicaRefreshLoad This parameter defines the
amount of system processing
capacity (as percentage) used
to perform a refresh in Replica.
By default, the full power is
used. If some capacity is to be
secured for local processing, in
parallel with refresh, a lower
value may be set.

100 RW

Appendix A. Server-side configuration parameters 169

170 IBM solidDB: Administrator Guide

Appendix B. Client-side configuration parameters

The client-side configuration parameters are stored in the solid.ini configuration
file and are read when the client starts.

Generally, the factory value settings offer the best performance and operability, but
in some special cases modifying a parameter will improve performance. You can
change the parameters by editing the configuration file solid.ini.

The parameter values set in the client side configuration file come to effect each
time an application issues a call to the SqlConnect ODBC function. If the values are
changed in the file during the program's run time, they affect the connections
established thereafter.

Setting client-side parameters through the solid.ini configuration file
When the solidDB is started, it attempts to open the configuration file solid.ini. If
the file does not exist, solidDB will use the factory values for the parameters. If the
file exists, but a value for a particular parameter is not set in the solid.ini file,
solidDB will use a factory value for that parameter. The factory values may
depend on the operating system you are using.

By default, the client looks for the solid.ini file in the current working directory,
which is normally the directory from which you started the client. When searching
for the file, the solidDB uses the following precedence (from high to low):
v location specified by the SOLIDDIR environment variable (if this environment

variable is set)
v current working directory

Rules for formatting the client-side solid.ini file
When you format the client-side solid.ini file, the same rules apply as for the
server-side solid.ini file. For more information, refer to section “Rules for
formatting the solid.ini file” on page 118.

Client-side solid.ini file
[Com]
;use this connect string of no data source given
Listen = tcp host1.acme.com 1315

[Client]
;at SQLConnect, timeout after this time (ms)
ConnectTimeout = 5000

;at any ODBC network request, timeout after this time (ms)
ClientReadTimeout = 10000

[DataSources]
Primary_Server = tcp irix1 1315, The Primary Server
Secondary_Server = tcp irix2 1315, The Secondary Server

171

Descriptions of client-side configuration parameters
There is one table below for each section of the solid.ini file. The sections (and
tables) are:
v Com
v Data Sources
v Client

Communication section
Table 48. Communication parameters

[Com] Description Factory Value

ClientReadTimeout This parameter defines the connection (or
read) timeout in milliseconds. A network
request fails if no response is received
during the time specified. The value 0 sets
the timeout to infinite. This value can be
overridden with the connect string option
-r and, further on, with the ODBC
attribute
SQL_ATTR_CONNECTION_TIMEOUT.

Note: applies for the TCP protocol only.

60 000

Connect The Connect parameter defines the default
network name (connect string) for a client
to connect to when it establishes a
connection to a server. This value is used
when the SQLConnect() call is issued with
an empty data source name.

tcp localhost 1964

ConnectTimeout The ConnectTimeout parameter defines
the login timeout in milliseconds.

This value can be overridden with the
connect string option -c and, further on,
with the ODBC attribute
SQL_ATTR_LOGIN_TIMEOUT.

Note: applies for the TCP protocol only.

OS-specific

ODBCHandleValidation The ODBCHandleValidation parameter
switches ODBC handle validation on/off.

See also in section "ODBC Handle
Validation" in IBM solidDB Programmer
Guide for more information on the
SQL_ATTR_HANDLE_VALIDATION ODBC
attribute.

No

Trace If this parameter is set to yes, trace
information on network messages for the
established network connection is written
to a file specified with the TraceFile
parameter. The factory value for the
TraceFile parameter is soltrace.out.

no

172 IBM solidDB: Administrator Guide

Table 48. Communication parameters (continued)

[Com] Description Factory Value

TraceFile If the Trace parameter is set to yes, trace
information on network messages is
written to a file specified with this
TraceFile parameter.

soltrace.out (written to the current
working directory of the server or client
depending on which end the tracing is
started)

Data sources
Table 49. Data source parameters

[Data Sources] Description Factory Value Access Mode

logical name = network name,
Description

These parameters can be used
to give a logical name to a
solidDB server in a solid.ini
file of the client application.
For details, read section
“Logical Data Source Names”
on page 108.

N/A

Client
Table 50. Client parameters

[Client] Description Factory Value

ExecRowsPerMessage This parameter specifies how many result
rows are sent (pre-fetched) to the client
driver in response to the SQLExecute call
with a SELECT statement. The result rows
are subsequently returned to the
application with the first SQLFetch calls
issued by the application. The default
value of 2 allows for pre-fetching of
single-row results. If your SELECT
statements usually return larger number
of rows, setting this to an appropriate
value can improve performance
significantly.

See also the RowsPerMessage
configuration parameter.

decided by the server

NoAssertMessages This parameter is relevant to the Windows
platform only. If set to Yes, the Windows
run-time error dialog is not shown.

No

ODBCCharBinding If set to UTF-8, ODBC-applications are
allowed to store and retrieve UNICODE
data in UTF-8 encoded format.

Raw

RowsPerMessage Specifies the number of rows returned
from the server in one network message
when an SQLFetch call is executed (and
there are no pre-fetched rows).

See also the ExecRowsPerMessage
configuration parameter.

decided by the server

Appendix B. Client-side configuration parameters 173

Table 50. Client parameters (continued)

[Client] Description Factory Value

StatementCache Statement cache is an internal memory
storing a few previously prepared SQL
statements. With this parameter, you can
set the number of cached statements per
session.

6

174 IBM solidDB: Administrator Guide

Appendix C. solidDB command line options
Table 51. solidDB command line options

Option Description Examples

-c dir Changes working directory.
solid -c /data/solid

-d network_name Disables network name, that is, instructs
the server not to listen for connections on
this network name.

solid tcp -d hobbes 1313

-f Starts the server in foreground.

-h Displays help.

-m Monitors users' messages and SQL
statements.

-n name Sets the server name.

-s install,name,fullexepath -c
workingdirectory[,autostart]

The Microsoft Windows version of
solidDB is by default an icon exe version.
You can allow Windows to run solidDB as
a service by using the option -s install.
Note: After the service is installed, it
must be started manually using the
Windows Services dialog or command
prompt.

The [autostart] parameter sets the Startup
Type of the service to Automatic, that is,
solidDB will run automatically as a
service when Windows is started. Note,
however, that regardless of the [autostart]
parameter, the service is not started
automatically at the time of install. For the
first time, the service has to be started
manually in the Windows Services dialog
or command prompt.

When the server is running as a service,
the server cannot interact with the display
and cannot create a new database. The
service version writes warning and error
messages also to the Windows event log.

solid -s"install,SOLID,
D:\SOLID\SOLID.EXE
-cD:\SOLID"

solid -s"install,SOLID,
D:\SOLID\SOLID.EXE
-cD:\SOLID,autostart"

-s remove,name Removes solidDB service.
solid -s"remove,SOLID"

-s start Specifies that solidDB will start in a
services mode when, for example, solidDB
is created as a service using the Windows
sc.exe utility.

In the services mode, solidDB cannot
interact with the display and cannot
create a new database.
Note: The - s start option is included
automatically when using the -s install
option.

sc create SOLID binPath=
"c:\soliddb\bin\solid.exe
-cC:\soliddb -sstart"

175

Table 51. solidDB command line options (continued)

Option Description Examples

-U username See option -x execute or -x exit. If used
without the -x option, specifies the
username for the database being created.

-P password See option -x execute or -x exit. If used
without the -x option, specifies the given
password for the database being created.

-C catalog Specify the database catalog

-E Encrypt the database

-S password The database file encryption password.

-x assert:s Disables emergency exit dialog.

-x autoconvert Converts database format to the current
format used by solidDB and starts the
server process.

-x convert Converts database format to the current
format used by solidDB and starts the
server process.

-x backupserver See IBM solidDB High Availability User
Guide for information.

-x disableallmessageboxes Hides all message windows

-x decrypt -S password Decrypts the database.
solid -x decrypt
-S dba

solid -x decrypt
-x keypwdfile:pwd.txt

-x execute: input file Prompts for the database administrator's
user name and password, creates a new
database, executes SQL statements from a
file, and exits. The options -U and -P can
be used to give the database the
administrator's user name and password.

The input file must be encoded with a
7-bit or 8-bit character set, such as ASCII
or Latin-1.

solid.exe -x
execute:init.sql

solid.exe -x
execute:init.sql
-Udba -Pdba

-x executeandnoexit: input file Prompts for the database administrator's
user name and password, creates a new
database, executes SQL statements from a
file, but does not exit.

You can use this command with an
existing database provided that you use
options -U and -P to give the database the
administrator's user name and password.

The input file must be encoded with a
7-bit or 8-bit character set, such as ASCII
or Latin-1.

solid.exe -x
executeandnoexit:
init.sql

solid.exe -x
executeandnoexit:
init.sql
-Udba -Pdba

176 IBM solidDB: Administrator Guide

Table 51. solidDB command line options (continued)

Option Description Examples

-x exit Prompts for the database administrator's
user name and password, creates a new
database, and exits. Options -U and -P can
be used to give the database
administrator's user name and password.

solid.exe -x exit
solid.exe -x exit
-Udba -Pdba

-x errormsgnostop Does not wait for user actions on error
dialogs.

-x forcerecovery Does a forced roll-forward recovery.

-x hide Hides the server icon.

-x ignorecrashed Ignores log files and reverts to checkpoint.

-x ignoreerrors Ignores index errors.

-x infodbfreefactor Informs about unused pages. See also:-x
reorganize. The server exits after
performing the task

-x inifile: <file-name> Substitutes an INI file.

-x listen:<connect-string> Sets a listening address.

-x migratehsbg2 This command-line switch has two effects.
It instructs the server to accept and
convert the existing database (the same
effect as the -x autoconvert parameter).
Also, it enables the new Secondary to
communicate with the old Primary by
way of the old replication protocol.

This parameter is needed only when
upgrading a server that uses HotStandby.

-x nologrecovery With this command-line switch, you can
ignore log files during recovery.

-x pathprefix: <dir > Uses files in the directory <dir>.

-x pwdfile: file name The password is read from the file name
instead of command-line argument. This
way the password can't be seen by
running the UNIX command ps.

-x keypwdfile: file name The database encryption password is read
from the file name instead of
command-line argument. This way the
password can't be seen by running the
UNIX command ps.

-x recreate_noconfirm Creates a new empty database in place of
the existing one.

-x reorganize Compacts the database by removing
unused pages. The server exits after
performing the task

Appendix C. solidDB command line options 177

Table 51. solidDB command line options (continued)

Option Description Examples

-x testblocks Tests database blocks and exits.

-x testindex Tests database index and exits.

-x testintegrity Performs a full database integrity test and
exits.

-x version Displays the server version and exits.

-? Help = Usage.

-h Help = Usage.

178 IBM solidDB: Administrator Guide

Appendix D. Error codes

This appendix lists error and message codes that can be generated by the server.
This appendix lists the errors and messages according to the error class, following
the order the error descriptions appear in the ADMIN COMMAND ’errorcode all’
output.

Error classes

Table 52. solidDB error categories

Error class Description

System System errors are detected by the operating system and demand administrative actions.

For the list of errors, see “solidDB system errors” on page 181.

Database or DBE
(database engine)

The errors in these classes are detected by the solidDB and may demand administrative actions.
Messages typically do not require administrative actions.

For the list of errors and messages, see “solidDB database errors” on page 183 and “solidDB DBE
(database engine) errors and messages” on page 239.

Table or TAB (table) These errors and messages are caused by erroneous SQL statements detected by solidDB.
Administrative actions are not needed.

For the list of errors and messages, see “solidDB table errors” on page 192 and “solidDB TAB (table)
messages” on page 247.

Communication, COM,
Session, or RPC

The communication type errors are encountered by network problems, faulty configuration of the
solidDB software, or ping facility errors. These errors in these classes usually demand administrative
actions. Messages typically do not require administrative actions.

For the list of errors and messages, see

v “solidDB communication errors” on page 207

v “solidDB session errors” on page 206

v “solidDB COM (communication) messages” on page 237

v “solidDB RPC errors and messages” on page 219

Server These errors are caused by erroneous administrative actions or client requests. They may demand
administrative actions.

For the list of errors, see “solidDB server errors” on page 210

Procedure These errors are encountered when defining or executing a stored procedure. Administrative actions
are not needed.

For the list of errors, see “solidDB procedure errors” on page 216.

SA API The SA API errors are return codes for the SA function SaSQLExecDirect.

For more information, see “solidDB API errors” on page 219 and SaSQLExecDirect in the IBM solidDB
Programmer Guide.

Sorter or XS
These errors are encountered when the external sorter algorithm is solving queries that require
ordering rows.

For the list of errors, see “solidDB sorter errors” on page 219 and “solidDB XS (external sorter) errors
and messages” on page 246.

179

Table 52. solidDB error categories (continued)

Error class Description

Synchronization or SNC These errors may be encountered when creating or maintaining the solidDB environment. They occur
when using certain solidDB statements that are solidDB SQL extensions.

For the list of errors, see “solidDB synchronization errors” on page 221 and “solidDB SNC
(synchronization) messages” on page 245.

HotStandby or HSB The HotStandby errors occur when using the ADMIN COMMAND ’HotStandby’ commands.

For the list of errors, see “solidDB HotStandby errors” on page 234 and “solidDB HSB (HotStandby)
errors and messages” on page 243.

SSA (solidDB SQL API) These errors are caused by erroneous use of the solidDB SQL API (SSA). solidDB ODBC and JDBC
drivers are implemented on this API.

For the list of errors, see “solidDB SSA (SQL API) errors” on page 235

CP (checkpoint) The CP messages provide information about the status or conditions of checkpoint operations.

For the list of messages, see “solidDB CP (checkpoint) messages” on page 241.

BCKP (backup) The BCKP messages provide information about the status or conditions of backup operations.

For the list of messages, see “solidDB BCKP (backup) messages” on page 241.

AT (timed commands) The AT messages provide information about the status or conditions of executing timed commands.

For the list of messages, see “solidDB AT (timed commands) messages” on page 241.

LOG (logging) The LOG messages provide information about the status or conditions of transaction logging.

For the list of messages, see “solidDB LOG (logging) messages” on page 242.

INI (configuration file) The INI messages provide information about the use of the solid.ini configuration file.

For the list of messages, see “solidDB INI (configuration file) messages” on page 242.

FILE (file system) The FILE messages provide information about file system operations, for example, for database and
log files.

For the list of messages, see “solidDB FIL (file system) messages” on page 246.

SQL errors
These errors are caused by erroneous SQL statements detected by the solidDB SQL Parser.
Administrative actions are not needed.

For the list of errors, see “solidDB SQL errors” on page 247

Executable errors
These errors are caused by the failure of the solidDB executable or a command line argument related
error. They enable implementing intelligent error handling logic in system startup scripts.

For the list of errors, see “solidDB executable errors” on page 254

solidDB Speed Loader
(solload)

These errors are encountered when running the Speed Loader utility (solload) to load data from
external files into the solidDB database.

For the list of errors, see “solidDB Speed Loader (solload) errors” on page 255

In addition to the errors and messages described above, you might receive an
internal error. In such a case, contact solidDB Technical Support at
http://www.ibm.com/software/data/soliddb/support/.

180 IBM solidDB: Administrator Guide

http://www.ibm.com/software/data/soliddb/support/

solidDB system errors
Table 53. solidDB system errors

Code Class Type Description

11000
System Error

File open failure.

The server is unable to open the database file. Reason for the failure can be:

v The database file has been set to read-only.

v You do not have rights to open the database file in write mode.

v Another solidDB is using the database file.

Correct the error and try again.

11001
System Fatal Error

File write failure.

The server is unable to write to the disk. The database files may have a read-only
attribute set or you may not have rights to write to the disk. Add rights or unset
read-only attribute and try again.

11002
System Fatal Error

File write failed, disk full.

The server failed to write to the disk, because the disk is full. Free disk space or
move the database file to another disk. You can also split the database file to several
disks using the FileSpec_[1-N] parameter in IndexFile section.

11003
System Fatal Error

File write failed, configuration exceeded.

Writing to the database file failed, because the maximum database file size set in
FileSpec_[1-N] parameter is exceeded.

11004
System Fatal Error

File read failure.

An error occurred reading a file. This may indicate a disk error in your system.

11005
System Fatal Error

File read beyond end of file.

This error is given, if the file EOF is reached during the read operation.

11006
System Fatal Error

File read failed, illegal file address.

An error occurred reading a file. This may indicate a disk error in your system.

11007
System Fatal Error

File lock failure.

The server failed to lock the database file.

11008
System Fatal Error

File unlock failure.

The server failed to unlock a file.

11009
System Fatal Error

File free block list corrupted.

This error is given when reading data from disk to memory, but the memory space is
already allocated for another purpose.

11010
System Error

Too long file name.

Filename specified in parameter FileSpec_[1-N] is too long. Change the name to a
proper file name.

Appendix D. Error codes 181

Table 53. solidDB system errors (continued)

Code Class Type Description

11011
System Error

Duplicate file name specification.

Filename specified in parameter FileSpec_[1-N] is not unique. Change the name to a
proper file name.

11012
System Fatal Error

License information not found, exiting from solidDB

Check the existence of your solid.lic file.

11013
System Fatal Error

License information is corrupted.

Your solid.lic file has been corrupted.

11014
System Fatal Error

Database age limit of evaluation license expired.

11015
System Fatal Error

Evaluation license expired.

11016
System Fatal Error

License is for different CPU architecture.

11017
System Fatal Error

License is for different OS environment.

11018
System Fatal Error

License is for different version of this OS.

11019
System Fatal Error

License is not valid for this server version.

11020
System Fatal Error

License information is corrupted.

11021
System Fatal Error

Problem with Your license, please contact IBM Corporation immediately.

11022
System Error

Desktop license is only for local protocol communication, cannot use protocol for
listening.

11023
System Error

Internal binary stream error.

This error is given if read or write fails when handling a binary stream object.

11024
System Error

Desktop license is only for local communication, cannot use name for listening.

11025
System Error

License file filename is not compatible with this server executable.

The server has been started with an incompatible license file. You need to update
your license file to match the server version.

11026
System Error

Backup directory contains a file which could not be removed.

Some file could not be removed from the backup directory. The backup directory
may point to a wrong location.

11027
System Error

No such parameter section section.

Parameter was not found from the specified section in the solid.ini file.

11028
System Error

No such parameter section.name.

Parameter does not exist.

182 IBM solidDB: Administrator Guide

Table 53. solidDB system errors (continued)

Code Class Type Description

11029
System Error

Not allowed to set parameter value.

User is not allowed to set the parameter value.

11030
System Error

Cannot set values to multiple parameters.

Only one parameter can be set at one time.

11031
System Error

Illegal type for parameter.

Parameter type is illegal.

11032
System Error

Cannot set new value for parameter section.name.

A new value cannot be set for the parameter.

11033
System Error

Parameter is read-only.

11034
System Error

File remove failure.

11035
System Error

Value for parameter is smaller than minimum value.

11036
System Error

Value for parameter is bigger than maximum value.

11037
System Error

Value for parameter is invalid.

11038
System Error

File specification exceeds the database address space.

11039
System Error

File specification exceeds the database address space.

This error is given if solidDB attempts to use a file, whose given size is larger that
the size that solidDB can use.

11040
System Error

Password file cannot be opened.

This error is given if solidDB cannot find the database password file.

11041
System Error

No password found in password file.

This error is given if the database password is not in the password file.

11042 System Error Internal error: Empty diagnostic record. Contact technical support for more
information.

solidDB database errors
Table 54. solidDB database errors

Code Class Type Description

1004 Database Warning Database headers are inconsistent

1005 Database Warning Database is crashed

1012 Database Warning BLOB size overflow

1013 Database Warning BLOB size underflow

1019 Database Return Code Operation canceled

Appendix D. Error codes 183

Table 54. solidDB database errors (continued)

Code Class Type Description

1022 Database Warning
The database you are using has been originally created with a different database block
size setting than your current

10001 Database Error
Key value is not found.

Internal error: a key value cannot be found from the database index.

10002 Database Error
Operation failed.

This is an internal error indicating that the index of the table accessed is in inconsistent
state. Try to drop and create the index again to recover from the error.

You may also receive this error if you try to SET TRANSACTION READ ONLY when the
transaction already contains some write operations.

10004 Database Error
Redefinition.

Unexpected failure occurred in the database engine.

This error may also occur during recovery: either an index or a view has been redefined
during recovery. The server is not able to do the recovery. Delete log files and start the
server again.

10005 Database Error
Unique constraint violation.

You have violated a unique constraint. This happens when you have tried to insert or
update a column which has a unique constraint and the value inserted or updated is not
unique.

This error message applies not only to user tables, but also to the system tables. For
example, if you try to create a table that has the same name as an existing table, you may
see this message. The same applies to other database object names, such as names of
users, roles, triggers, etc.

10006 Database Error
Concurrency conflict, two transactions updated or deleted the same row.

Two separate transactions have modified a same row in the database simultaneously. This
has resulted in a concurrency conflict.

10007 Database Error
Transaction is not serializable.

The transaction committed is not serializable.

10008 Database Error
Snapshot does not exist.

10009 Database Error
Snapshot is newest.

10010 Database Fatal Error
No checkpoint in database.

This error occurs when the server has crashed in the middle of creating a new database.
Delete the database and log files and try to create the database again.

10011 Database Fatal Error
Database headers are corrupted.

The headers in the database are corrupted. This may be caused by a disk error or other
system failure. Restore the database from the backup.

10012 Database Fatal Error
Node split failed.

This error is given if the node split of the in-memory database (B+ tree) fails.

184 IBM solidDB: Administrator Guide

Table 54. solidDB database errors (continued)

Code Class Type Description

10013 Database Error
Transaction is read-only.

You tried to do one of the following:

1) Execute conflicting SET TRANSACTION statements, e.g. you executed SET
TRANSACTION READ WRITE after you already SET TRANSACTION READ ONLY
within the same transaction.

2) Write on a HotStandby database server that is in a Secondary state.

3) Write inside a transaction that is set read-only. Remove the write operation or unset the
read-only mode in the transaction.

If you see this message in the first transaction that you try to execute after connecting to a
server, and if you haven't done anything to set the transaction or server to read-only
mode, then try simply executing a COMMIT WORK statement and then re-executing the
statement that caused the 10013 error.

10014 Database Error
Resource is locked.

This error occurs when you are trying to use a key value in an index which has been
concurrently dropped.

10016 Database Error
Log file is corrupted.

One of the log files of the database is corrupted. You can not use these log files. Delete
them and start the server again.

10017 Database Error
Too long key value.

The maximum length of the key value has been exceeded. The maximum value is one
third of the size of the index leaf.

If there are blobs (long varchars or long varbinaries) among the columns, the capacity
requirements for a row can be reduced by storing the blob separately in the blob storage.
However, when storing data in the blob storage, the first 254 bytes are also stored on the
actual row. Therefore, with 8K block size, only 11 varchar columns with 254 characters of
data is sufficient to exceed the key value limitation and cause this error message.

You can try to:

1. Increase the [IndexFile] block size to increase the key value limit

2. Redesign your database to reduce space requirements. Design alternatives include:

v Break columns with big VARCHAR strings to several rows in separate tables.
Implement a view to represent the data accordingly.

v Define columns with big VARCHAR strings to be concatenated inside one long
VARCHAR to be processed as a blob. Implement a view to represent the data
accordingly.

3. Define the table to be stored in the main memory. Since main memory storage uses a
different algorithm, where the row size limitation is defined the by disk block size
(minus overhead in the range of tens of bytes per row and few bytes per column), the
limit is higher than with disk based tables. If the key value limit is exceeded in main
memory tables, the error message is 16501.

10019
Database Error

Backup is active

You have tried to start a backup when a backup process is already in progress.

10020
Database Error

Checkpoint creation is active.

You have tried to start a checkpoint when a checkpoint creation is already in progress.

Appendix D. Error codes 185

Table 54. solidDB database errors (continued)

Code Class Type Description

10021
Database Error

Failed to delete log file <log_file> (errno = <operating_system_error_code>.

The deletion of a log file in making a backup has failed.

Reasons for the failure can be:

v The log file has already been deleted from the operating system.

v The log file has a read-only attribute.

10023
Database Fatal Error

Wrong log file, maybe the log file is from another database.

The log file in the database directory is from another solidDB database. Copy the correct
log files to the database directory.

10024
Database Error

Illegal backup directory.

The backup directory is either an empty string or a dot indicating that the backup will be
created in the current directory.

10026
Database Error

Transaction is timed out.

An idle transaction has exceeded the maximum idle transaction time. The transaction has
been aborted.

The maximum value is set in parameter AbortTimeOut in SRV section. The default value
is 120 minutes.

10027
Database Error

No active search.

This error is given during the UPDATE or DELETE operation if it is found that the active
search identifying the data in the database to be updated or deleted does not exist.

10028
Database Error

Referential integrity violation, foreign key values exist.

You tried to delete a row that is referenced from a foreign key.

10029
Database Error

Referential integrity violation, referenced column values do not exist.

The definition of a foreign key does not uniquely identify a row in the referenced table.

10030
Database Error

Backup directory 'directory name' does not exist.

Backup directory is not found. Check the name of the backup directory.

10031
Database Error

Transaction detected a deadlock, transaction is rolled back.

Deadlock detected. If necessary, begin transaction again.

10032
Database Fatal Error

Wrong database block size specified.

The block size of the database file differs from the block size given in the configuration
file solid.ini.

10033
Database Error

Primary key unique constraint violation.

Your primary key definition is not unique.

10034
Database Error

Sequence name sequence conflicts with an existing entity.

Choose a unique name for a sequence. The specified name is already used.

186 IBM solidDB: Administrator Guide

Table 54. solidDB database errors (continued)

Code Class Type Description

10035
Database Error

Sequence does not exist.

Check the name of the sequence.

10036
Database Error

Data dictionary operation is active for accessed sequence.

A create or drop operation is active for the accessed sequence. Finish the current
transaction and then try again.

10037
Database Error

Can not store sequence value, the target data type is illegal.

The valid target data types are BIGINT, INTEGER, and BINARY.

10038
Database Error

Illegal column value for descending index.

Corrupted data found in descending index. Drop the index and create it again.

10039
Database Error INTERNAL: Assertion failure

For more information, contact solidDB Technical Support at http://www.ibm.com/
software/data/soliddb/support/.

10040
Database Error

Log file write failure, probably the disk containing the log files is full.

Shut down the server and reserve more disk space for log files.

10041
Database Error

Database is read-only.

10042
Database Error

Database index check failed, the database file is corrupted.

10043
Database Error

Database free block list corrupted, same block twice in free list.

10044
Database Error

Primary key can not contain blob attributes.

10045
Database Error

This database is a HotStandby secondary server, the database is read only.

10046
Database Error

Operation failed, data dictionary operation is active. Wait and try again.

10047
Database Error

Replicated transaction is aborted.

10048
Database Error

Replicated transaction contains schema changes, operation failed.

10049
Database Error

Slave server not available any more, transaction aborted

10050
Database Error

Replicated row contains BLOb columns that cannot be replicated.

10051
Database Error

Log file is corrupted.

10052
Database Fatal Error

Cannot convert an abnormally closed database. Please use the old solidDB database
version to recover the database first.

10053
Database Error

Table is read only.

10054
Database Fatal Error

Opening the database file failed.

Probably another solidDB process is already running in the same directory.

Appendix D. Error codes 187

http://www.ibm.com/software/data/soliddb/support/
http://www.ibm.com/software/data/soliddb/support/

Table 54. solidDB database errors (continued)

Code Class Type Description

10055
Database Fatal Error

Too little cache memory has been specified for the solidDB process.

10056
Database Fatal Error

Cannot open database file. Error text (number). Most likely the solidDB process does not
have correct access rights to the database file.

10057
Database Fatal Error

The database is irrevocably corrupted.

Revert to the latest backup.

10058
Database Fatal Error

The internal database file format version (number) does not match with the solidDB
version. Possible causes for this error include:

v a version of solidDB that is too old is used with this database

v the database has been corrupted

10059
Database Fatal Error

The internal header version (number) does not match with the solidDB version.

Possible causes for this error include:

v a version of solidDB that is too old is used with this database

v the database has been corrupted

10060
Database Fatal Error

Cannot perform roll-forward recovery in read-only mode.

Read-only mode can be specified in 3 ways. To restart solidDB in normal mode, verify
that:

v solidDB process is not started with command-line option -x read only

v solid.ini does not contain the following parameter setting:

[General]
ReadOnly=yes

v license file does not have read-only limitation

10061
Database Fatal Error

Out of database cache memory blocks.

solidDB process cannot continue because there is too little cache memory allocated for the
solidDB process. Typical cause for this problem is a heavy load from several concurrent
users. To allocate more cache memory, set the following solid.ini parameter to a higher
value:

[IndexFile]
CacheSize=cache_size_in_bytes

NOTE: Allocated cache memory size should not exceed the amount of physical memory.

10062
Database Fatal Error

Failed to write to log filename at offset.

Verify that the disk containing the log files is not full and is functioning properly. Also,
log files should not be stored on shared disks over the network.

10063
Database Fatal Error

Cannot create new log filename because such a file already exists in the log file directory.

Probably your log file directory also contains logs from some other database. solidDB
process cannot continue until invalid log files are removed from the log file directory.
Remove log filename and all other log files with greater sequence numbers.

188 IBM solidDB: Administrator Guide

Table 54. solidDB database errors (continued)

Code Class Type Description

10064
Database Fatal Error

Illegal log file name template.

Most likely, the log file name template specified in:

[Logging]
FileNameTemplate=name

contains too few or too many sequence number digit positions. There should be at least 4
and at most 10 digit positions.

10065
Database Fatal Error

Unknown log write mode. Please, recheck the configuration parameter.

10066
Database Fatal Error

Cannot open log filename. Check the following log file name template in solid.ini:

[Logging]
FileNameTemplate=name

and verify that:

v it can be expanded into a valid file name in this environment

v solidDB process has appropriate privileges to the log files directory.

10067
Database Fatal Error

Cannot create database because old log filename exists in the log files directory.

Possibly the database has been deleted without deleting the log files or there are log files
from some other database in the log files directory of the database to be created.

10068
Database Fatal Error

Roll-forward recovery cannot be performed because the configured log file block size
number does not match with block size number of existing filename.

To enable recovery, edit solid.ini to include parameter setting:

[Logging]
BlockSize=blocksize in bytes

and restart the solidDB process. After successful recovery, you can change the log file
block size by performing these steps:

1. Shut down the solidDB process.

2. Remove old log files.

3. Edit new block size into solid.ini.

4. Restart solidDB.

10069
Database Fatal Error

Roll-forward recovery failed because relation id number was not found. Database has been
irrevocably corrupted. Please restore the database from the last backup.

10070
Database Fatal Error

Roll-forward failed because relation id number was not found. Database has been
irrevocably corrupted. Please restore the database from the latest backup.

10071
Database Fatal Error

Please restore the database from the latest backup.

10072
Database Fatal Error

Database operation failed because of the file I/O problem.

10073
Database Fatal Error

Database is inconsistent. Illegal index block type size, address, routine, reachmode. Please
restore the database from the latest backup.

10074
Database Fatal Error

Roll-forward recovery failed. Please revert to the latest backup.

Appendix D. Error codes 189

Table 54. solidDB database errors (continued)

Code Class Type Description

10075
Database Fatal Error

The database you are trying to use has been originally created with different database
block size settings than your current settings.

Edit the solid.ini file to contain the following parameter setting:

[IndexFile]
BlockSize=blocksize in bytes

10076
Database Fatal Error

Roll-forward recovery failed because tablename or viewname is redefined in the log
filename.

Possible causes for this error include:

v another solidDB process is using the same log file directory

v old log files are present in the log file directory

solidDB process cannot use this corrupted log file to recover. In order to continue, you
have the following alternatives:

1. Revert to the last backup

2. Revert to the last checkpoint

3. Revert to the last committed transaction within the last valid log file

10077
Database Fatal Error

No base catalog given for database conversion (use -C catalogname)

A database's base catalog must be provided when converting the database to a new
format.

10078 Database Error User rolled back the transaction.

10079 Database Error Cannot remove filespec. File is already in use.

10080 Database Error HotStandby Secondary server can not execute operation received from Primary server.

Meaning: A possible cause for this error is that the database did not originate from the
Primary server using HotStandby copy or netcopy command.

10081 Database Error The database file is incomplete or corrupt.

Meaning: If the file is on a hot standby secondary server, use the hotstandby copy or
hotstandby netcopy command to send the file from the primary server again.

10082 Database Error Backup aborted.

10083 Database Error Failed to abort HSB transaction because commit is already sent to secondary.

10084 Database Error Table is not locked.

10085 Database Error Checkpointing is disabled.

10086
Database Error

Deleted row not found.

A key value being deleted cannot be found in the b-tree. This is an internal error.

10087 Database Error HotStandby not allowed for main memory tables.

10088 Database Error Specified lock timeout is too large.

10089 Database Error Operation failed, server is in HSB primary uncertain mode.

10090
Database Error

Data dictionary operation in a newer transaction.

This error is returned when a transaction tries to access a table whose schema has been
altered by a later transaction. The recommended action is to retry the failing SQL
command in a new transaction.

10091
Database Error

Backup detected a log file with wrong block size, backup aborted.

10092
Database Fatal Error

HotStandby cannot operate when logging is disabled.

190 IBM solidDB: Administrator Guide

Table 54. solidDB database errors (continued)

Code Class Type Description

10093
Database Fatal Error

HotStandby migration is not possible if Hotstandby is not configured.

10094
Database Fatal Error

Only %d cache pages configured for M-table usage, at least %d needed.

10095
Database Error

Cursor is closed after isolation change.

The current cursor is closed, because its isolation level has been changed.

10096
Database Fatal Error

Only <kilobytes> kilobytes configured for M-table checkpointing, at least <kilobytes>KB
needed.

Not enough memory has been configured for the M-table.

10098
Database Error

Incrementing sequence sequence_name failed.

10099
Database Fatal Error

Encryption password has not been given for encrypted database.

10100
Database Fatal Error

Incorrect password has been given for encrypted database.

10101
Database Fatal Error

Unknown encryption algorithm.

10104
Database Fatal Error

Database is not created using solidDB Storage Engine for MySQL Prototype. Cannot open
database.

10105 Database Error Cache size for hash table specified with <value> parameter is smaller than actual cache
size.

10106
Database Fatal Error

Too big cache memory has been specified for the SOLID process. Please edit the solid.ini
file to change this parameter value not to exceed system limit and restart the SOLID
process.

This is a fatal error.

10107 Database Error Cursor is closed after logreader partition change.

10108 Database Error Search is aborted because of concurrent data dictionary operation on table.

16004 Database Message M-table operations now have enough memory for normal service.

16005 Database Message M-table operations now have enough memory for updates, inserts still disallowed.

16006 Database Message Memory for M-tables is now back below the warning level.

16501
Database Error

New row value too large for M-table.

16502
Database Error

BLOBs are not supported in M-tables.

16503
Database Error

Serializable isolation level is not supported in M-tables.

16504
Database Error

Memory for M-tables is running low, inserts to M-tables disallowed.

16505
Database Error

Ran out of memory for M-tables, updates and inserts to M-tables disallowed.

16506
Database Fatal Error

Too small configured MME.ImdbMemoryLimit to start server.

16507 Database Error Memory for M-tables is above the warning level.

Appendix D. Error codes 191

solidDB table errors

Error code Class Type Description

13001
Table Error

Illegal character constant constant.

An illegal character constant was found in the SQL statement.

13002
Table Error

Type CHAR not allowed for arithmetic.

You have entered a calculation having a character type constant. Character
constants are not supported in arithmetic.

13003
Table Error

Aggregate function not available for ordinary call.

The aggregate function, such as SUM(), is called as an ordinary function. This is
not allowed. For example, the following calls are illegal: SELECT * FROM TAB1
WHERE SUM(INT_COL) > 5; CALL SUM(1);

13004
Table Error

Illegal aggregate function parameter parameter.

An illegal parameter has been given to an aggregate function. Aggregate function
parameters can only be column names or numbers.

13005
Table Error

SUM and AVG not supported for CHAR type.

Aggregate functions SUM and AVG are not supported for character type
parameters.

13006
Table Error

SUM or AVG not supported for DATE type.

Aggregate functions SUM and AVG are not supported for date type parameters.

13007
Table Error

Function function is not defined.

The function you tried to use is not defined.

13008
Table Error

Illegal parameter to ADD function.

13009
Table Error

Division by zero.

A division by zero has occurred.

13011
Table Error

Table table does not exist.

You have referenced a table which does not exist or you do not have
REFERENCES privilege on the table.

13013
Table Error

Table name table conflicts with an existing entity.

Choose a unique name for a table. The specified name is already used.

13014
Table Error

Index index does not exist.

You have referenced an index which does not exist.

13015
Table Error

Column column does not exist on table table.

You have referenced a column in a table which does not exist.

192 IBM solidDB: Administrator Guide

Error code Class Type Description

13018
Table Error

Join table is not supported

Joined tables are not supported in this version of solidDB.

13019
Table Error

Transaction savepoints are not supported.

Transaction savepoints are not supported in this version of solidDB.

13020
Table Error

Default values are not supported.

Default column values are not supported in this version of solidDB.

13022
Table Error

Descending keys are not supported.

Descending keys are not supported in this version of solidDB.

13023
Table Error

Schema is not supported.

Schema is not supported in this version of solidDB.

13025
Table Error

Update through a cursor with no current row.

You have tried to update using a cursor, but you do not have a current row in the
cursor.

13026
Table Error

Delete through a cursor with no current row

You have tried to delete using a cursor, but you do not have a current row in the
cursor.

13028
Table Error

View view_name does not exist.

You have referenced a view which does not exist.

13029
Table Error

View name view_name conflicts with an existing entity.

Choose a unique name for a view. The specified name is already used.

13030
Table Error

No value specified for NOT NULL column column.

You have not specified a value for a column which is defined NOT NULL.

13031
Table Error

Data dictionary operation is active for accessed table or key.

You can not access the table or key, because a data dictionary operation is
currently active. Try again after the data dictionary operation has completed.

13032
Table Error

Illegal type type.

You have tried to create a table with a column having an illegal type.

13033
Table Error

Illegal parameter parameter for type type.

The type of the parameter you entered is illegal in this column.

13034
Table Error

Illegal constant constant.

You have entered an illegal constant.

Appendix D. Error codes 193

Error code Class Type Description

13035
Table Error

Illegal INTEGER constant constant.

You have entered an illegal integer type constant. Check the syntax of the
statement and try again.

13036
Table Error

Illegal DECIMAL constant constant.

You have entered an illegal decimal type constant. Check the decimal number and
try again.

13037
Table Error

Illegal DOUBLE PREC constant constant.

Typically, this is a general parse error. The SQL statement may contain a syntax
error before the constant. As a last resort, the parser has attempted to parse a
DOUBLE PREC constant, but has failed.

This error also occurs if you entered an illegal double precision type constant.

(More specifically, this error occurs when a space is placed between the asterisk
and the closing parenthesis ("*)") in an optimizer hint.)

In any of these cases, be sure to check the syntax of the statement and try again.

13038
Table Error

Illegal REAL constant constant.

You have entered an illegal real type constant. Check the real number and try
again.

13039
Table Error

Illegal assignment.

You have tried to assign an illegal value for a column. For example, you may have
tried to assign a value that was too large or was of the wrong data type.

13040
Table Error

Aggregate function function is not defined.

The aggregate function you tried to use is not supported.

13041
Table Error

Type DATE not allowed for arithmetic.

DATE type columns or constants are not allowed in arithmetic.

13042
Table Error

Power arithmetic not allowed for NUMERIC and DECIMAL data type.

Decimal and numeric data types do not support power arithmetic.

13043
Table Error

Illegal date constant constant.

A date constant is illegal. The correct form for date constants is: YYYY-MM-DD.

13046
Table Error

Illegal user name user.

User name entered is not legal. A legal user name is at least 2 and at most 31
characters in length. A user name may contain characters from A to Z, numbers
from 0 to 9 and underscore character '_'.

194 IBM solidDB: Administrator Guide

Error code Class Type Description

13047 Table Error
No privileges for operation.

You have no privileges for the attempted operation. To carry out this operation,
you must be granted appropriate privileges. Alternatively, the operation can be
performed by another user who already has the appropriate privileges. See the
GRANT statement for more information.

NOTE: If you are trying to drop a catalog that you previously created, and you get
this error message, then your SYS_ADMIN_ROLE (i.e. DBA) privileges have been
revoked. Only the creator of the database or users having SYS_ADMIN_ROLE (i.e.
DBA) have privileges to create or drop a catalog. Even the creator of a catalog
cannot drop that catalog if she loses SYS_ADMIN_ROLE privileges. (Creating a
catalog, unlike creating most other objects (such as tables) does not make you the
owner; instead, the ownership of all catalogs belongs to the DBA/
SYS_ADMIN_ROLE.)

13048 Table Error
No grant option privilege for entity name.

You have no privileges to grant privileges for the entity.

13049 Table Error
Column privileges cannot be granted WITH GRANT OPTION

Granting column privileges WITH GRANT OPTION is not supported in this
version of solidDB.

13050 Table Error
Too long constraint value.

Maximum constraint length has been exceeded. Maximum constraint length is 255
characters.

13051 Table Error
Illegal column name column.

You have tried to create a table with an illegal column name.

13052 Table Error
Illegal comparison operator operator for a pseudo column column.

You have tried to use an illegal comparison operator for a pseudo column. Legal
comparison operators for pseudo columns are: equality '=' and non-equality '<>'.

13053 Table Error
Illegal data type for a pseudo column.

You have tried to use an illegal data type for a pseudo column. Data type of
pseudo columns is BINARY.

13054 Table Error
Illegal pseudo column data, maybe data is not received using pseudo column.

You have tried to compare pseudo column data with non-pseudo column data.
Pseudo column data can only be compared with data received from a pseudo
column.

13055 Table Error
Update not allowed on pseudo column.

Updates are not allowed on pseudo columns.

13056 Table Error
Insert not allowed on pseudo column.

Inserts are not allowed on pseudo columns.

13057 Table Error
Index name index already exists.

You have tried to create an index, but an index with the same name already exists.
Use another name for the index.

Appendix D. Error codes 195

Error code Class Type Description

13058 Table Error
Constraint checks were not satisfied on column column.

Column has constraint checks which were not satisfied during an insert or update.

13059 Table Error
Reserved system name name.

You tried to use a name which is a reserved system name such as PUBLIC and
SYS_ADMIN_ROLE.

13060 Table Error
User name user not found.

You tried to reference a user name which is not created.

13061 Table Error
Role name role not found.

You tried to reference a role name which is not created.

13062 Table Error
Admin option is not supported.

Admin option is not supported in this version of solidDB.

13063 Table Error
Name name already exists.

You tried to use a role or user which already exists. User names and role names
must all be different, that is, you can not have a user named HOBBES and a role
named HOBBES.

13064 Table Error
Not a valid user name user.

You tried to create an invalid user name. A valid user name has at least 2
characters and at most 31 characters. A user name may contain characters from A
to Z, numbers from 0 to 9 and underscore character '_'.

13065 Table Error
Not a valid role name role.

You tried to create an invalid role name. A valid role name has at least 2 characters
and at most 31 characters. A role name may contain characters from A to Z,
numbers from 0 to 9 and underscore character '_'.

13066 Table Error
User user not found in role role.

You tried to revoke a role from a user and the user did not have that role.

13067 Table Error
Too short password.

You have entered a too short password. Password length must be at least 3
characters.

13068 Table Error
Shutdown is in progress.

You are unable to complete this operation, because server shutdown is in progress.

13070 Table Error
Numerical overflow.

A numerical overflow has occurred. Check the values and types of numerical
variables.

13071 Table Error
Numerical underflow.

A numerical underflow has occurred. Check the values and types of numerical
variables.

196 IBM solidDB: Administrator Guide

Error code Class Type Description

13072 Table Error
Numerical value out of range.

A numerical value is out of range. Check the values and types of numerical
variables.

13073 Table Error
Math error.

A mathematical error has occurred. Check the mathematics in the statement and
try again.

13074 Table Error
Illegal password.

You have tried to enter an illegal password.

13075 Table Error
Illegal role name role.

You have tried to enter an illegal role name. A legal role name is at least 2 and at
most 31 characters in length. A user role may contain characters from A to Z,
numbers from 0 to 9 and underscore character '_'.

13077 Table Error
Last column can not be dropped.

You have tried to drop the final column in a table. This is not allowed; at least one
column must remain in the table.

13078 Table Error
Column already exist on table.

You have tried to create a column which already exists in a table.

13079 Table Error
Illegal search constraint.

Check the search engine. There may be mismatch between data types.

13080 Table Error
Incompatible types, can not modify column column fromtype type to type type.

You have tried to modify column to a data type that isincompatible with the
original definition, such as VARCHARand INTEGER

13081 Table Error
Descending keys are not supported for binary columns.

You can not define a descending key for a binary column.

13082 Table Error
Function function: parameter * not supported.

You can not use parameter star (*) with ODBC Scalar Functions.

13083 Table Error
Function function: Too few parameters.

The function expects more parameters. Check the function call.

13084 Table Error
Function function: Too many parameters.

The function expects fewer parameters. Check the function call.

13085 Table Error
Function function: Run-time failure.

An error was detected during the execution of the function. Check the parameters.

Appendix D. Error codes 197

Error code Class Type Description

13086
Table Error

Function function: type mismatch in parameter parameter number.

An erroneous type of parameter was detected in the given position of the function
call. Check the function call.

13087
Table Error

Function function: illegal value in parameter parameter number.

An illegal value for a parameter detected in the given position of the function call.
Check the function call.

13088
Table Error

No primary key for table.

13090
Table Error

Foreign key column column data type not compatible with referenced column data
type.

References specification error. Check that the column data type are compatible
between referencing and referenced tables.

13091
Table Error

Foreign key does not match to the primary key or unique constraint of the
referenced table.

References specification error. Check that the column data types are compatible
between referencing and referenced tables and that the foreign key is unique for
the referenced table.

13092
Table Error

Event name event conflicts with an existing entity.

Choose a unique name for an event. The specified name is already used.

13093
Table Error

Event event does not exist.

You referenced a nonexistent event. Check the name of the event.

13094
Table Error

Duplicate column column in primary key definition.

Duplicate columns are not allowed in a table-constraint-definition. Remove
duplicate columns from the definition.

13095
Table Error

Duplicate column column in unique constraint definition.

Duplicate columns are not allowed in a table-constraint-definition. Remove
duplicate columns from the definition.

13096
Table Error

Duplicate column column in index definition.

Duplicate columns are not allowed in CREATE INDEX statement. Remove
duplicate columns.

13097 Table Error
Primary key columns must be NOT NULL.

Error in a column_constraint_definition. Define primary key columns NOT NULL.
For example: CREATE TABLE DEPT (DEPTNO INTEGER NOT NULL, DNAME
VARCHAR, PRIMARY KEY(DEPTNO));

13098 Table Error Unique constraint columns must be NOT NULL.

Error in a column_constraint_definition. Define unique columns NOT NULL. For
example: CREATE TABLE DEPT4 (DEPTNO INTEGER NOT NULL, DNAME
VARCHAR, UNIQUE(DEPTNO));

13099 Table Error No REFERENCES privileges to referenced columns in table table.

You do not have privileges to reference to the table.

198 IBM solidDB: Administrator Guide

Error code Class Type Description

13100 Table Error Illegal table mode combination.

You have defined an illegal combination of concurrency control settings. This
message occurs, for example, if you have an in-memory table and you try to
change it from pessimistic concurrency control (locking) to optimistic concurrency
control by using the command ALTER TABLE <table_name> SET PESSIMISTIC.

In-memory tables must always use pessimistic concurrency control.

13101 Table Error Only execute privileges can be used with procedures.

13102 Table Error Execute privileges can be used only with procedures.

13103 Table Error Illegal grant or revoke operation.

This error occurs if you try to revoke privileges from yourself.

This error occurs if the DBA tries to grant privileges to herself or himself (to the
DBA).

13104 Table Error Sequence name sequence conflicts with an existing entity.

Choose a unique name for a sequence. The specified name is already used.

13105 Table Error Sequence sequence does not exist.

You referenced a nonexistent sequence. Check the name of sequence.

13106 Table Error
Foreign key reference exists to table table.

13107 Table Error
Illegal set operation.

You tried to execute a non-existent set operation.

13108 Table Error
Comparison between incompatible types datatype and datatype.

13109 Table Error
There are schema objects for this user, drop failed

13110 Table Error
NULL values given for NOT NULL column column.

13111 Table Error
Ambiguous entity name name.

This message occurs if the name of the specified database object (for example, a
table name) does not exist in the schema that you are currently in, but more than
one other schema contains an object with that name.

If the database object that you want is in a different schema than the schema you
are currently in, then change to the appropriate schema by using the SET
SCHEMA command, or specify the desired object by using a more fully qualified
object name, for example:

sales_catalog.jan_wong_schema.table.1

13112 Table Error
Foreign keys are not supported with main memory tables.

13113 Table Error
Illegal arithmetic between types datatype and datatype.

13114 Table Error
String operations are not allowed on values stored as BLOBs or CLOBs.

13115 Table Error
Function function_name: Too long value (stored as CLOB) in parameter parameter.

The parameter value was stored as CLOB and cannot be used with a function.

Appendix D. Error codes 199

Error code Class Type Description

13116 Table Error
Column column_name specified more than once.

Column was specified more than once in the GRANT or REVOKE statement.

13117 Table Error
Wrong number of parameters

Wrong number of parameters when converting subscription parameters to base
publication parameter types.

13118 Table Error
Column privileges are supported only for base tables.

Column privileges are allowed only for base tables; they cannot be used, for
example, for views.

13119 Table Error
Types column_type and column_type are not union compatible.

Column types are not union compatible. When a UNION operation is performed,
two columns from two different tables are used to generate one column of output.
The operation is successful as long as the two columns are of the same type or
"compatible" types. Types are compatible if one type can reasonably be converted
into the other type. For example, you can UNION a column of FLOAT with a
column of INT because any integer value can also be represented as a
corresponding float value (for example, 2 can be converted to 2.0). However, if you
attempt a UNION operation on two incompatible types, such as FLOAT and
DATE, you will receive 13119.

13120 Table Error
Too long entity name 'entity_name'.

Entity name is too long, maximum entity name is 254 characters.

13121 Table Error
Too many columns, maximum number of columns per table is value.

Note that the maximum number of columns may be less if each column requires a
large number of bytes.

13122 Table Error
Operation is not supported for a table with sync history.

Operation is not supported because the table has synchronization history defined.

13123 Table Error
Table 'table_name' is not empty.

Some operations are allowed only for empty tables.

13124
Table Error

User id user_id not found.

Internal user id was not found; the user may have been dropped.

13125
Table Error

Illegal LIKE pattern 'pattern'.

Illegal like pattern was given as a search constraint.

13126
Table Error

Illegal type datatype for LIKE pattern.

Only CHAR and WCHAR allowed for LIKE search constraints.

13127
Table Error

Comparison failed because at least one of the values was too long.

Comparison failed because at least one of the column values was stored as a BLOB
or CLOB.

200 IBM solidDB: Administrator Guide

Error code Class Type Description

13128
Table Error

LIKE predicate failed because value is too long.

LIKE predicate failed because the column value is stored as a CLOB.

13129
Table Error

LIKE Predicate failed because pattern is too long.

LIKE predicate failed because pattern value is stored as a CLOB.

13130
Table Error

Illegal type datatype for LIKE ESCAPE character.

Like ESCAPE character must be CHAR or WCHAR type.

13131
Table Error

Too many nested triggers.

Maximum number of nested triggers is reached. Triggers may be nested, for
example, by activating other triggers from a trigger or causing recursive cycle
when activating triggers. Default value for maximum allowed nested triggers is 16.
It can be changed using a configuration parameter:

[SQL]
MaxNestedTriggers=n

13132
Table Error

Too many nested procedures.

Maximum number of nested procedures is reached. Procedures may be nested, for
example, by activating other procedures from a procedure or causing a recursive
cycle when activating procedures. Default value for maximum allowed nested
procedures is 16. It can be changed using a configuration parameter:

[SQL]
MaxNestedProcedures=n

13133 Table Error
Not a valid license for this product.

The license file is for another solidDB product.

13134 Table Error
Operation is allowed only for base tables.

Given operation is available only for base tables.

13135 Table Error Internal error, arithmetic error in estimator

For more information, contact solidDB Technical Support at http://www.ibm.com/
software/data/soliddb/support/.

13136 Table Error Internal error, transaction is not active

For more information, contact solidDB Technical Support at http://www.ibm.com/
software/data/soliddb/support/.

13137 Table Error
Illegal grant/revoke mode

Grant or revoke mode is not allowed for given database objects.

13138
Table Error

Index index_name given in index hint does not exist.

Index name given in optimizer hint is not found for a table.

13139
Table Error

Catalog catalog_name does not exist.

Catalog name is not a valid catalog.

Appendix D. Error codes 201

http://www.ibm.com/software/data/soliddb/support/
http://www.ibm.com/software/data/soliddb/support/
http://www.ibm.com/software/data/soliddb/support/
http://www.ibm.com/software/data/soliddb/support/

Error code Class Type Description

13140
Table Error

Catalog catalog_name already exists.

Catalog name is an existing catalog.

13141
Table Error

Schema schema_name does not exist.

Schema name is not a valid schema.

13142
Table Error

Schema schema_name already exists.

Schema name is an existing schema.

13143
Table Error

Schema schema_name is an existing user.

Schema name specifies an existing user name.

13144
Table Error

Commit and rollback are not allowed inside trigger.

Commit or rollback are not supported inside trigger execution. This error is also
given if a trigger calls a procedure that tries to execute commit or rollback
command.

13145
Table Error

Sync parameter not found.

Parameter name given in command SET SYNC PARAMETER name NONE is not
found.

13146
Table Error

There are schema objects for this catalog, drop failed.

Catalog contains schema object and cannot be dropped. Schema objects like tables
and procedures need to be dropped before catalog can be dropped.

13147
Table Error

Current catalog can not be dropped.

The catalog that you want to drop must not be the current catalog. If you get this
message, you should switch to another catalog, then re-execute the DROP
CATALOG command.

13148
Table Error

There are objects for this schema, drop failed.

13149
Table Error

There are objects for this catalog, drop failed.

13150
Table Error

Index can be created only into same catalog and schema as the base table.

13151
Table Error

Cannot drop a column that is part of primary or unique key.

Table definition contains a column that is part of a primary or unique key in an
index.

13152
Table Error

There are objects for this user, drop failed.

13153
Table Error

Can not remove last administrator.

13154
Table Error

Name cannot be an empty string.

13155
Table Error

Column <column name> already exists on view <view name>

The view definition contains the same column name twice.

202 IBM solidDB: Administrator Guide

Error code Class Type Description

13156
Table Error

Column attributes already exists on view.

13157
Table Error

Current schema cannot be dropped.

13158
Table Error

Current user cannot be dropped.

13160
Table Error

Cannot alter table name because it is referenced in trigger(s).

Altering the name of the table would prevent the trigger from working properly.

13161
Table Error

An M-table is being updated with UPDATE ... WHERE CURRENT OF CURSOR
and CURSOR is not declared FOR UPDATE.

When you update an in-memory table (an "M-table") using the command UPDATE
... WHERE CURRENT OF CURSOR, you must have declared the cursor using the
FOR UDPATE clause. This is required when the table is an in-memory table; it is
strongly recommended, but not required, when the table is a disk-based table.

13162
Table Error

A record in an M-table is being deleted with DELETE ... WHERE CURRENT OF
CURSOR and CURSOR is not declared FOR UPDATE.

When you delete a record from an in-memory table (an "M-table") using the
command DELETE ... WHERE CURRENT OF CURSOR, you must have declared
the cursor using the FOR UDPATE clause. This is required when the table is an
in-memory table; it is strongly recommended, but not required, when the table is a
disk-based table.

13163
Table Error

Descending keys are not supported for bigint columns.

If you try to create a DESCending index on a column of type BIGINT, you will get
this message. Use an ASCending key instead.

13164
Table Error

Transaction is active, operation failed.

13165
Table Error

Can't fetch previous row from an M-table.

This message can occur only when fetching rows from in in-memory table
("M-table") by using solidDB's low-level SA API.

13166
Table Error

License does not allow accessing M-tables

You will get this error message if you try to create an in-memory table and you do
not have a license that allows you to do this. Generally, you need a license for
solidDB disk-based engine to create in-memory tables.

13167
Table Error

Only M-tables can be transient.

13168
Table Error

Transient tables can not be set temporary.

13169
Table Error

Temporary tables can not be set transient.

13170
Table Error

Only M-tables can be temporary.

13171
Table Error

Foreign key constraints between D- and M-tables are not supported.

Appendix D. Error codes 203

Error code Class Type Description

13172
Table Error

A persistent table can not reference a transient table.

For more details, see the discussion on persistent and transient tables under the
CREATE TABLE command in the "Solid SQL Syntax" appendix in solidDB SQL
Guide.

13173
Table Error

A persistent table can not reference a temporary table.

For more details, see the discussion on persistent and transient tables under the
CREATE TABLE command in the "Solid SQL Syntax" appendix in solidDB SQL
Guide.

13174
Table Error

A transient table can not reference a temporary table.

For more details, see the discussion on persistent and transient tables under the
CREATE TABLE command in the "Solid SQL Syntax" appendix in solidDB SQL
Guide.

13175
Table Error

A reference between temporary and non-temporary table is not allowed.

13176
Table Error

Cannot change STORE for a table with sync history.

13177
Table Error

Cannot define UNIQUE constraint with duplicated or implied restriction.

13178
Table Error

Constraint not found.

13179
Table Error

Foreign key actions other than restrict are not supported.

13180
Table Error

Constraint name already exists.

13181
Table Error

Constraint check fails on existing data.

13182
Table Error

Added column with NOT NULL must have a non-NULL default.

13183
Table Error

Index is referenced by foreign key, it cannot be dropped.

13184
Table Error

Primary key not found for table. Cannot define foreign key.

13185
Table Error

Cannot set NOT NULL on column that already has NULL value.

13186
Table Error

Cannot drop NOT NULL on column that is used as part of unique key.

13187
Table Error

The cursor cannot continue accessing M-tables after the transaction has committed
or aborted. The statement must be re-executed.

13188
Table Error

Foreign key refers to itself.

13189
Table Error

Positioning is not supported for M-tables.

13190 Table Fatal Error
Definition in file is not valid.

13191 Table Fatal Error
Parameter setting in file conflicts with the setting in database.

13192 Table Fatal Error Database is in read-only state

204 IBM solidDB: Administrator Guide

Error code Class Type Description

13193 Table Fatal Error Foreign key creates update dependency loop.

A foreign key creates a dependency between one or more tables in such a way that
update to one row in one table might cause multiple updates to the same row in
the same or another table. Such update might be ambiguous and the server does
not allow creation of such dependencies.

This restriction does not apply to cascaded deletes (when deletion of one row
causes multiple deletions of another row), but it still applies when the deletion of
one row causes multiple updates (SET NULL or SET DEFAULT) to another row.

13194 Table Error
Can not drop a table that is part of a foreign key

13195 Table Error
Update failed, READ COMMITTED isolation requires FOR UPDATE

13196 Table Error
Delete failed, READ COMMITTED isolation requires FOR UPDATE

13197 Table Error
M-tables are not supported

13198 Table Error
Commit and rollback are not allowed inside function.

13199 Table Error
Duplicate index definition

This error is returned when a duplicate or redundant index is detected during
index creation.

For example, if you have created an index as follows:

CREATE UNIQUE INDEX IND_1 ON T1(C1,C2,C3);

Next, if you create this index:

CREATE INDEX IND_2 ON T1(C2,C3,C1,C4);

After this step, solidDB returns error 13199. In the example above, the second
index is a superset of the unique first index. This implies that the second index
(although it is not explicitly specified as unique) is also unique. In practice, the
second index is useless. It only affects space consumption and update
performance, not lookup performance.

13200 Table Error
Update failed.

Used isolation level requires FOR UPDATE.

13201 Table Error
Delete failed.

Used isolation level requires FOR UPDATE.

13202 Table Error
Cluster connection does not support isolation levels higher than READ
COMMITTED.

13203 Table Error License does not allow creating D-tables

13204 Table Error SET WRITE command makes sense only for TC connection

13205 Table Error Cannot change STORE for a table with foreign keys.

13400 Table Error
Alter or drop table not allowed for propagated tables.

13401 Table Error
Truncate table not allowed for propagated tables.

13402 Table Error
Propagation information loading active.

Appendix D. Error codes 205

Error code Class Type Description

13403 Table Error
Propagation information loading not active.

13404
Table Error

Triggers not allowed for propagated tables.

13405
Table Error

Cascading foreign keys not allowed for propagated tables.

13406
Table Error

Primary key is required for propagated tables.

13407
Table Error

Propagation schema data inconsistent: Table name not found.

13408
Table Error

Logreader feature is disabled.

13409
Table Error

Log overflow, catchup is not possible.

13410 Table Error
Logreader partition not found .

13411 Table Error
No active logreader query.

13412
Table Error

Propagated tables allow only one row update when primary or unique key is
changed.

13413 Table Error Blobs not supported for propagated tables.

13414 Table Error Given attribute value is incorrect for range partitioned table <value>.

13415 Table Error Range column <value> is not found from partitioned table <value>.

13416 Table Error Logreader partition already exists

13417 Table Error Table not found from logreader partition

13418 Table Error Table already exists in logreader partition

13501 Table Warning String data truncation in assignment from <value> to <value>

13502 Table Warning Numeric value right truncation in assignment from <value> to <value>

solidDB session errors
Table 55. solidDB session errors

Code Class Type Description

20001 Session Error
Illegal session class.

20002 Session Error
Dynamic link library not found.

20003 Session Error
Wrong dynamic link library version.

20004 Session Error
Illegal address info.

20005 Session Error
Listening address is in use.

20006 Session Error
Server not found.

20007 Session Error
Illegal control parameter.

20008 Session Error
Illegal size parameter.

206 IBM solidDB: Administrator Guide

Table 55. solidDB session errors (continued)

Code Class Type Description

20009 Session Error
Write operation failed.

This error is returned if the server or client is trying to write to an underlying communication
channel (socket, named pipe, shared memory, etc.) that is broken.

20010 Session Error
Read operation failed.

20011 Session Error
Accept operation failed.

20012 Session Error
Network not found.

20013 Session Error
Out of network resources.

20023 Session Error
Too many name resolver requests already in progress.

20024 Session Error
Timeout while resolving host name.

20025 Session Error
Timeout while connecting to a remote host.

solidDB communication errors
Table 56. solidDB communication errors

Code Class Type Description

21100 Communication Warning
Illegal value value for configuration parameter parameter, using default.

An illegal value was given to the parameter parameter. The server will use a default
value for this parameter.

21101 Communication Warning
Invalid protocol definition protocol in configuration file.

The protocol is defined illegally in the configuration file. Check the syntax of the
definition.

21300 Communication Error
Protocol protocol is not supported.

Protocol is not supported.

21301 Communication Error
Cannot load the dynamic link library library or one of its components.

The server was unable to load the dynamic link library or a component needed by this
library. Check the existence of necessary libraries and components.

21302 Communication Error
Wrong version of dynamic link library library.

The version of this library is wrong. Update this library to a newer version.

21303 Communication Error
Network adapter card is missing or needed protocol software is not running.

The network adapter card is missing or not functioning.

21304 Communication Error
Out of protocol resources

The network protocol is out of resources. Increase the protocols' resources in the
operating system.

Appendix D. Error codes 207

Table 56. solidDB communication errors (continued)

Code Class Type Description

21305 Communication Error
An empty or incomplete network name was specified.

The network name specified is not legal. Check the network name.

21306 Communication Error
Server network name not found, connection failed.

The server was not found. 1) Check that the server is running. 2) Check that the network
name is valid. 3) Check that the server is listening to the given network name.

21307 Communication Error
Invalid connect info network name.

The network name given as the connect info is not legal. Check the network name.

21308 Communication Error
Connection is broken (protocol read/write operation failed with code internal code).

The connection using the protocol is broken. Either a read or a write operation has failed
with an internal error internal code.

21309 Communication Error
Failed to accept a new client connection, out of protocol resources.

The server was not able to establish a new client connection. The protocol is out of
resources. Increase the protocol's resources in the operating system.

21310 Communication Error
Failed to accept a new client connection, listening of network name interrupted.

The server was not able to establish a new client connection. The listening has been
interrupted.

21311 Communication Error
Failed to start a selecting thread for network name.

A thread selection has failed for network name.

21312 Communication Error
Listening info network name already specified for this server.

A network name has already been specified for this server. A server can not use a same
network name more than once.

21313 Communication Error
Already listening with the network name network name.

You have tried to add a network name to a server when it is already listening with that
network name. A server can not use a same network name more than once.

21314 Communication Error
Cannot start listening, network name network name is used by another process.

The server can not start listening with the given network name. Another process in this
computer is using the same network name.

21315 Communication Error
Cannot start listening, invalid listening info network name.

The server can not start listening with the given listening info. The given network name
is invalid. Check the syntax of the network name.

21316 Communication Error
Cannot stop the listening of network name. There are clients connected.

You can not stop listening of this network name. There are clients connected to this
server using this network name.

208 IBM solidDB: Administrator Guide

Table 56. solidDB communication errors (continued)

Code Class Type Description

21317 Communication Error
Failed to save the listen information into the configuration file.

The server failed to save this listening information to the configuration file. Check the
file access rights and format of the configuration file.

21318 Communication Error
Operation failed because of an unusual protocol return code code.

Possible network error. Create connection again.

21319 Communication Error
RPC request contained an illegal version number.

Either the message was corrupted or there may be a mismatch between server and client
versions.

21320 Communication Error
Called RPC service is not supported in the server.

There maybe a mismatch between server and client versions.

21321 Communication Error
Protocol protocol is not valid, try using switch '-a' for specifying another adapter id
instead of switch.

This is returned if the NetBIOS LAN adapter id given in listen/connect string is not
valid.

21322 Communication Error
The host machine given in connect info '%s' was not found.

This is returned in clients if the host machine name given in connect info is not valid.

21323 Communication Error
Protocol protocol can not be used for listening in this environment.

This message is displayed if the server end communication using specified protocol is
not supported.

21324 Communication Error
The process does not have the privilege to create a mailbox.

21325 Communication Error
Only one listening name is supported in this server.

21326 Communication Error
Failed to establish an internal number socket connection code number.

solidDB uses one connect socket for internal use. Creation of this socket has failed; the
local loopback may not be working correctly.

21327 Communication Error
Too many name resolver requests already in progress.

21328 Communication Error
Timeout while resolving host name.

21329 Communication Error
Timeout while connecting to host.

Appendix D. Error codes 209

solidDB server errors
Table 57. solidDB server errors

Code
Class Type

Description

14003 Server Return
Code

ACTIVE

ADMIN COMMANDs that may return this status in the result set of the command:

v ADMIN COMMAND 'hotstandby status switch'

v ADMIN COMMAND 'hotstandby status catchup'

v ADMIN COMMAND 'hotstandby status copy'

Meaning: The switch process, catchup process, copy or netcopy process is still active.

14007 Server Return
Code

CONNECTING

ADMIN COMMANDs that may return this status in the result set of the command:

v ADMIN COMMAND 'hotstandby status connect'

Meaning: The Primary and Secondary servers are in the process of connecting.

14008 Server Return
Code

CATCHUP

ADMIN COMMANDs that may return this status in the result set of the command:

v ADMIN COMMAND 'hotstandby status connect'

Meaning: The Primary server is connected to the Secondary server, but the transaction log is
not yet fully copied. This message is returned only from the Primary server.

14009 Server Return
Code

No server switch occurred before.

ADMIN COMMANDs that may return this status in the result set of the command:

v ADMIN COMMAND 'hotstandby status switch'

Meaning: The switch process has never happened between the servers.

14501 Server Error
Operation failed.

This error occurs when a timed command fails. Check the arguments of timed commands.

This error number is also used for certain HotStandby errors. See IBM solidDB High
Availability User Guide for details.

14502 Server Error
RPC parameter is invalid.

A network error has occurred.

14503 Server Error
Communication error.

A communication error has occurred.

14504 Server Error
Duplicate cursor name cursor.

You have tried to declare a cursor with a cursor name which is already in use. Use another
name.

14505 Server Error
Connect failed, illegal user name or password.

You have entered either a user name or a password that is not valid.

14506 Server Error
The server is closed, no new connections allowed.

You have tried to connect to a closed server. Connecting was aborted.

210 IBM solidDB: Administrator Guide

Table 57. solidDB server errors (continued)

Code
Class Type

Description

14507 Server Error
Maximum number of licensed user connections exceeded.

You have tried to connect to a server which has all licenses currently in use. Connecting was
aborted.

14508 Server Error
The operation has timed out.

You have launched an operation that has been aborted.

14509 Server Error
Version mismatch.

A version mismatch has occurred. The client and server are different versions. Use same
versions in the client and the server.

14510 Server Error
Communication write operation failed.

A write operation failed. This indicates a network problem. Check your network settings.

14511 Server Error
Communication read operation failed.

A read operation failed. This indicates a network problem. Check your network settings.

14512
Server Error

There are users logged to the server.

You can not shutdown the server now. There are users connected to the server.

14513
Server Error

Backup process is active.

You cannot shut down the server now. The backup process is active

14514
Server Error

Checkpoint creation is active.

You cannot shut down the server now. The checkpoint creation is active.

14515
Server Error

Invalid user id.

You tried to drop a user, but the user id is not logged in to the server.

14516
Server Error

Invalid user name.

You tried to drop a user, but the user name is not logged in to the server.

14517
Server Error

Someone has updated the at commands at the same time, changes not saved.

You tried to update timed commands at the same time another user was doing the same.
Your changes will not be saved.

14518
Server Error

Connection to the server is broken, connection lost.

Possible network error. Reconnect to the server.

14519
Server Error

The user was thrown out from the server, connection lost.

Possible network error.

14520 Server Error Server is HotStandby secondary server, no connections are allowed.

14521
Server Error

Failed to create a new thread for the client.

Appendix D. Error codes 211

Table 57. solidDB server errors (continued)

Code
Class Type

Description

14522 Server Error HotStandby copy directory not specified.

Meaning: No copy directory is specified.

ADMIN COMMANDs that may return this status in the result set of the command:

v ADMIN COMMAND 'hotstandby copy'

To solve this problem, either specify the directory as part of the command, for example:

ADMIN COMMAND ’hotstandby copy \Secondary\dbfiles\’

or else set the CopyDirectory parameter in the solid.ini configuration file.

14523 Server Error Switch process is already active.

Meaning: The switch process is already active in the HotStandby server. If you only need to
complete the current switch, then wait. If you are trying to switch a second time (that is,
switch back to the original configuration), then you must wait for the first switch to
complete before you can start the second switch.

ADMIN COMMANDs that may return this status in the result set of the command:

v ADMIN COMMAND 'hotstandby switch primary'

v ADMIN COMMAND 'hotstandby switch secondary'

v ADMIN COMMAND 'hotstandby status switch'

14524 Server Error HotStandby databases have a different base database, database time stamps are different.

Meaning: Databases are from a different seed database. You must synchronize databases. You
may need to perform netcopy of the Primary's database to the Secondary.

ADMIN COMMANDs that may return this status in the result set of the command:

v ADMIN COMMAND 'hotstandby connect'

v ADMIN COMMAND 'hotstandby status switch'

14525 Server Error HotStandby databases are not properly synchronized.

Meaning: Databases are not properly synchronized. You must synchronize the databases. You
may need to start one of the database servers (the one that you intend to become the
Secondary) with the command line parameter -x backupserver and then netcopy the
Primary's database to the Secondary.

ADMIN COMMANDs that may return this status in the result set of the command:

v ADMIN COMMAND 'hotstandby connect'

v ADMIN COMMAND 'hotstandby status switch'

14526 Server Error Invalid argument.

Meaning: An argument used in the HotStandby ADMIN COMMAND is unknown or
invalid.

All HotStandby commands can return this error in the result set of the ADMIN
COMMAND.

Note: In the following HotStandby commands, the invalid argument error is a syntax error
when the specified Primary or Secondary server can not apply to the switch:

v ADMIN COMMAND 'hotstandby switch primary'

v ADMIN COMMAND 'hotstandby switch secondary'

212 IBM solidDB: Administrator Guide

Table 57. solidDB server errors (continued)

Code
Class Type

Description

14527 Server Error This is a non-HotStandby server.

Meaning: The command was executed on a server that is not configured for HotStandby.

ADMIN COMMANDs that may return this status in the result set of the command:

v ADMIN COMMAND 'hotstandby connect'

v ADMIN COMMAND 'hotstandby status switch'

v ADMIN COMMAND 'hotstandby switch primary'

v ADMIN COMMAND 'hotstandby switch secondary'

v ADMIN COMMAND 'hotstandby state'

14528 Server Error Both HotStandby databases are primary databases.

Meaning: Both databases are Primary. This is a fatal error because there may be conflicting
changes. Both databases are automatically dropped to Secondary state by the system. You
must decide which database is the real Primary database and then synchronize the
databases.

ADMIN COMMANDs that may return this status in the result set of the command:

v ADMIN COMMAND 'hotstandby connect'

v ADMIN COMMAND 'hotstandby status switch'

14529
Server Error

The operation timed out.

14530
Server Error

The connected client does not support UNICODE data types.

Connected client is an old version client that does not support UNICODE data types.
UNICODE data type columns cannot be used with old clients.

14531
Server Error

Too many open cursor, max limit is value.

There are too many open cursors for one client; maximum number of open cursors for one
connection is 1000. The value can be changed using a configuration value:

[Srv]
MaxOpenCursors=n

14532 Server Error Internal error: cursor synchronization between client and server failed. Contact technical
support for more information.

14533
Server Error

Operation cancelled

Operation was cancelled because client application called ODBC or JDBC cancel function.

14534
Server Error

Only administrative statements are allowed.

Only administrative statements are allowed for the connection.

14535 Server Error Server is already a primary server.

Meaning: The server you are trying to switch to Primary is already in one of the PRIMARY
states.

ADMIN COMMANDs that may return this status in the result set of the command:

v ADMIN COMMAND 'hotstandby switch primary'

Appendix D. Error codes 213

Table 57. solidDB server errors (continued)

Code
Class Type

Description

14536 Server Error Server is already a secondary server.

Meaning: The server you are trying to switch to Secondary is already in one of the
SECONDARY states.

ADMIN COMMANDs that may return this status in the result set of the command:

v ADMIN COMMAND 'hotstandby switch secondary'

14537 Server Error HotStandby connection is broken.

Meaning: This command is returned from both the Primary and Secondary server.

ADMIN COMMANDs that may return this status in the result set of the command:

v ADMIN COMMAND 'hotstandby status connect'

One possible cause of this problem is an incorrect Connect string in the Secondary's
solid.ini file. If the netcopy operation succeeds but the connect command fails, check the
Connect string. (Netcopy does not require the Secondary to open a separate connection to
the Primary, and thus may succeed even if the Connect string on the Secondary is wrong.)

14538 Server Error Server is not HotStandby primary server.

Meaning: To issue this command, the server must be a HotStandby Primary server.

ADMIN COMMANDs that may return this status in the result set of the command:

v ADMIN COMMAND 'hotstandby copy copy_directory'

v ADMIN COMMAND 'hotstandby netcopy'

v ADMIN COMMAND 'hotstandby connect'

v ADMIN COMMAND 'hotstandby set primary alone'

v ADMIN COMMAND 'hotstandby set standalone'

14539 Server Error Operation Refused.

This error code is given when one of the following situations occurs:

v The user issued a netcopy command to a Primary server, but the server that should be
Secondary is not actually in a Secondary state, or is not in "netcopy listening mode". (Both
the Primary and the "Secondary" server are probably in PRIMARY ALONE state.)

To solve the problem, restart the "Secondary" with the -x backupserver command-line
option, then try again to issue the netcopy command to the Primary.

Attention: If both servers were in PRIMARY ALONE state, and if both servers executed
transactions while those servers were in PRIMARY ALONE state, then they probably each
have data that the other one does not. This is a serious error, and doing a netcopy to put
them back in sync would result in writing over some transactions that have already been
committed in the "Secondary" server.

v This message can be generated when you use a callback function and the callback
function refuses to shut down or accept a backup or netcopy command.

When you use linked library access, you can provide "callback" functions by using the
SSCSetNotifier function. Your callback functions will be notified when the server has been
commanded to shut down or to do a netcopy operation. If for some reason your
application doesn't want the command to be followed, then your callback can return a
value that cancels the command. In this situation, you will see error 14539.

To solve the problem, wait until the client code finishes the operation that it does not
want to interrupt, then retry the command (for example, the shutdown or netcopy).

14540 Server Error Server is already a non-HotStandby server.

14541 Server Error HotStandby configuration in solid.ini conflicts with ADMIN COMMAND 'HSB SET
STANDALONE'.

14542 Server Error Server in backupserver mode. Operation refused.

14543 Server Error Invalid command. The database is a HotStandby database but, HotStandby section not
found in solid.ini configuration file.

14544 Server Error Operation failed. This command is not supported on diskless server.

214 IBM solidDB: Administrator Guide

Table 57. solidDB server errors (continued)

Code
Class Type

Description

14545 Server Error Primary can only be set to primary alone when its role is primary broken.

14546 Server Error Switch failed. The server or the remote server cannot switch from primary alone to
secondary server. Catchup should be done first before switch.

Meaning: This command is returned when a state switch to SECONDARY is executed from a
local or remote Primary server that is in the PRIMARY ALONE state and it is detected that
the Primary and Secondary server are not in sync. You must connect the Primary server to
the Secondary server and wait for the catchup process to complete before switching the
Secondary to the Primary.

HotStandby commands that return this error:

v ADMIN COMMAND 'hotstandby switch secondary'

14547 Server Error The value for the -R option (Read Timeout) was missing or invalid.

14548 Server Error Switch failed. The server in Standalone cannot be switched to a secondary.

Meaning: This command is returned when a state switch to SECONDARY is executed from a
local or remote Primary server that is in the STANDALONE state and it is detected that the
Primary and Secondary server are not in sync. You must connect the Primary server to the
Secondary server and wait for the catchup to complete before switching the Secondary to the
Primary.

HotStandby commands that return this error:

v ADMIN COMMAND 'hotstandby switch secondary'

14549 Server Error HotStandby transaction is active.

Meaning: If the HotStandby connection is broken, Primary server must be set to alone mode
or switched to secondary mode before shutdown.

14550 Server Error Hotstandby connect parameter can be changed only when the primary is not connected to
secondary.

14551 Server Error Maximum number of START AFTER COMMIT statements reached.

14552 Server Error Server is in backup server mode, no connections are allowed.

Error 14552 is returned when a client attempts to establish a connection to a solidDB server
which is in a backup server mode (also called netcopy listening mode). The backup server
mode is a special server mode where the solidDB instance has been started with the
command line option -xbackupserver. This mode indicates that the solidDB instance is a
Secondary server that is either waiting for or in the process of receiving the database file
from the Primary server due to a netcopy command issued at the Primary server.

14553
Server Error

Backup process is not active

This error is given if ADMIN COMMAND 'abort backup' is issued and no backup is active.

14554
Server Error

The server does not support the required Transparent Failover level.

Reserved for future. This error will be reported when the server does not implement the
Transparent Failover (TF) level requested by the application. Currently, there is only one
level.

14555
Server Error

Netbackup: Conflicting usage of backup directory %s.

14556
Server Error

Netbackup: No server connection string specified.

14557
Server Error

Netbackup: A server configured for HotStandby cannot act as a netbackup server.

14600 Server Error Command is ambiguous in cluster session.

14706 Server Error Invalid read thread mode for HotStandby, only mode 2 is supported.

Appendix D. Error codes 215

solidDB procedure errors

Code Class Type Description

23001 Procedure Error Undefined symbol symbol

23002
Procedure Error

Undefined cursor cursor.

You have used a cursor that has not been defined in a procedure definition.

23003
Procedure Error

Illegal SQL operation operation.

23004
Procedure Error

Syntax error: parse error, line line number.

Check the syntax of your procedure.

23005
Procedure Error

Procedure procedure not found.

23006
Procedure Error

Wrong number of parameters for procedure procedure.

23007
Procedure Error

Procedure name value conflicts with an existing entity.

Choose a unique name for a procedure. The specified name is already used.

23010
Procedure Error

Incompatible event event parameter type, line line number.

23011
Procedure Error

Wrong number of parameter for event event, line line number.

23012
Procedure Error

Duplicate wait for event event, line line number.

23013
Procedure Error

Undefined sequence sequence.

23014
Procedure Error

Duplicate sequence name sequence.

23015
Procedure Error

Sequence sequence not found.

23016
Procedure Error

Incompatible variable type in call to sequence sequence, line line number.

23017
Procedure Error

Duplicate symbol symbol.

You have duplicate definitions for a symbol.

23018
Procedure Error

Procedure owner owner not found.

23019
Procedure Error

Duplicate cursor name 'cursor'

23020
Procedure Error

Illegal option option for WHENEVER SQLERROR ... statement.

23021
Procedure Error

RETURN ROW not allowed in procedure with no return type, line line number.

23022
Procedure Error

SQL String variable variable must be of character data type, line line number.

23023
Procedure Error

Call syntax error: syntax, line line number.

23024
Procedure Error

Trigger trigger_name not found.

Trigger name not found.

216 IBM solidDB: Administrator Guide

Code Class Type Description

23025
Procedure Error

Trigger name trigger_name conflicts with an existing entity.

Trigger name conflicts with some other database object. Triggers share the same name
space, as for example, in table and procedures.

23026
Procedure Error

Variable variable is of character type, line line number.

A CHAR or WCHAR variable is required for the operations like RETURN SQLERROR
variable.

23027
Procedure Error

Duplicate reference to column column_name in trigger definition.

One column can be referenced only once in the trigger definition.

23028
Procedure Error

Commit and rollback are not allowed in triggers.

Trigger body may not contain commit or rollback statements.

23029
Procedure Error

Commit and rollback are not allowed in functions.

23030
Procedure Error

Function function_name not found

23501
Procedure Error

Cursor cursor is not open.

23502
Procedure Error

Illegal number of columns in EXECUTE ... procedure in cursor cursor.

You will see this message if the number of columns that you selected does not match
the number of variables in the INTO clause.

23503
Procedure Error

Previous SQL operation operation failed in cursor cursor.

23504
Procedure Error

Cursor cursor is not executed.

23505
Procedure Error

Cursor cursor is not a SELECT statement.

23506
Procedure Error

End of table in cursor cursor.

23508
Procedure Error

Illegal assignment, line line number.

23509
Procedure Error

In procedure line line number Stmt statement was not in error state in RETURN
SQLERROR OF ...

23510
Procedure Error

In procedure line line number Transaction cannot be set read only, because it has written
already.

23511
Procedure Error

In procedure line line number USING part is missing for dynamic parameters for
procedure.

23512
Procedure Error

In procedure line line number USING list is too short for procedure.

23513
Procedure Error

In procedure line line number Comparison between incompatible types data type and data
type.

23514
Procedure Error

In procedure line line number type data type is illegal for logical expression.

Appendix D. Error codes 217

Code Class Type Description

23515
Procedure Error

In procedure line line number assignment of parameter parameter in list list failed.

One possible cause of this error is trying to bind a parameter in a prepared statement
that has a clause like "...? IS NULL...". To work around this problem, we recommend
that you cast the placeholder (the question mark) to the appropriate data type. For
example, if you are binding a parameter of type TIMESTAMP, then replace

WHEN ? IS NULL

with

WHEN CAST(? AS TIMESTAMP) IS NULL

23516
Procedure Error

In CALL procedure, assignment of parameter parameter failed.

23517 Procedure Error Internal error: illegal operation code in procedure. Contact technical support for more
information.

23518
Procedure Error

User error: error_text

User generated error in a procedure or trigger. User can generate this error by using a
statement RETURN SQLERROR string or RETURN SQLERROR variable. Variable must
be of CHAR or WCHAR type.

23519
Procedure Error

Fetch previous is not supported for procedures.

Fetch previous row does not work for result sets returned by a procedure.

23520
Procedure Error

Invalid link name given in remote procedure call.

23521
Procedure Error

Link name not given in remote procedure call.

23522
Procedure Error

Dynamic parameters not allowed with remote procedure call.

23523
Procedure Error

Default node not defined.

23524
Procedure Error

Could not load application.

23525
Procedure Error

Function not found from the DLL.

23526
Procedure Error

In CALL <procedure_name> assignment of default value of parameter
<parameter_number> failed.

This error message occurs if you call a procedure with too few parameters and you
have not specified default values for the missing parameters.

23527
Procedure Error

In CALL <procedure_name> parameter <parameter_number> assigned twice.

This occurs if you specify the same parameter more than once.

23528
Procedure Error

Application is already running.

23529
Procedure Error

Application is not running.

218 IBM solidDB: Administrator Guide

solidDB API errors
Table 58. solidDB SA API errors

Code Class Type Description

15001 API Error Syntax error: <error>, <line>.

15002 API Error Illegal column name <name>.

15003 API Error Too many parameters for string constraints.

15004 API Error Too few parameters for string constraints.

solidDB sorter errors
Table 59. solidDB sorter errors

Code Class Type Description

24001
Sorter Error

Sort failed due to insufficient configured TmpDir space

24002
Sorter Error

Sort failed due to insufficient physical TmpDir space

24003
Sorter Error

Sort failed due to insufficient sort buffer space

24004
Sorter Error

Sort failed due to too long row (internal failure)

24005
Sorter Error

Sort failed due to I/O error

30803
Sorter Error

Illegal value specified for parameter: <parameter>=<value>(legal range is <value>)

30804
Sorter Error

Sorter temporary directory: <value> does not exist

solidDB RPC errors and messages
Table 60. solidDB RPC errors and messages

Code Class Type Description

21500
RPC Error

Illegal Ping RPC sequence number. A message was either lost or duplicated.

21501
RPC Error

Corrupted Ping message.

21502
RPC Error

Incomplete Ping message. Part of the data was lost.

21503
RPC Error

Extra bytes in Ping message or header corrupted.

21504
RPC Error

Requested Ping level is not currently allowed in server. Start listening with -p<ping
level> option.

21505
RPC Error

Illegal Ping buffer size or message corrupted.

21506
RPC Error

Ping session was disconnected abnormally because of a communication error.

21507 RPC Return Code Ping test <ping level> successful. Results are in file <filename>.

21508
RPC Error

Ping feature is not supported in the server. Update your server.

Appendix D. Error codes 219

Table 60. solidDB RPC errors and messages (continued)

Code Class Type Description

21509
RPC Error

Failed to write to file <file_name>.

21510
RPC Error

Failed to read from file <file_name>.

30600 RPC Message Received an illegal freearray size <value>

30601 RPC Message Received an illegal attribute count <value> routine <value>

30602 RPC Message Received an illegal relop <value> routine <value>

30603 RPC Message Received an illegal table name <value> routine <value>

30604 RPC Message Received an illegal selflags size <value> routine <value>

30605 RPC Message Current cursor id <value> found from free array

30606 RPC Message Illegal cursor id <value> found from free array

30607 RPC Message Received an illegal user id <value>

30608 RPC Message Received an illegal connect id <value>

30609 RPC Message Received an illegal sequence number <value> expected <value>

30610 RPC Message Received an illegal cursor id <value>

30611 RPC Message Illegal attribute id <value> in order list

30612 RPC Message Illegal attribute id <value> in constraint list

30613 RPC Message Illegal attribute id <value> in select list

30614 RPC Message Received an illegal length parameter <value> routine <value>

30615 RPC Message Received an illegal attribute number parameter routine <value> nattrs <value>

30616 RPC Message Cannot send UNICODE string to old client version

30617 RPC Message Received an illegal type number routine <value> types <value>

30618 RPC Message Received an illegal date attribute from Java client routine <value>

30619 RPC Message Received an illegal attribute type parameter routine <value> type <value>

30620 RPC Message Received a corrupted data tuple routine <value> row length mismatch

30621 RPC Message Received an illegal SQL cursor sync array size <value>

30622 RPC Message Received an illegal SQL cursor id <value>in sync array

30623 RPC Message Illegal RPC console information

30624 RPC Message Illegal RPC session

30625 RPC Message Received an illegal done array size <value>

30626 RPC Message Received an illegal SQL statement id <value> routine <value>

30627 RPC Message Received an illegal SQL statement id <value> pos <value> routine <value>

30628 RPC Message Received an illegal read BLOB id <value> routine <value>

30629 RPC Message Received an illegal SQL read BLOB buffer size <value> routine <value>

30630 RPC Message BLOB data crc failed block count = <value> routine <value>

30631 RPC Message Received an illegal BLOB id <value> routine <value>

30632 RPC Message Received an illegal BLOB piece length <value> routine <value>

30633 RPC Message Received an illegal data length routine <value> length <value>

30634 RPC Message Illegal tuple position <value>

30635 RPC Message Hot Standby received an illegal counter data size <value> from another server

30636 RPC Message Received an illegal replication type parameter <value>

30637 RPC Message Ping client from <value> connected

30638 RPC Message Ping client from <value> disconnected

30639 RPC Message Received an illegal cursor id <value>

30640 RPC Message <Server RPC error message>

220 IBM solidDB: Administrator Guide

solidDB synchronization errors
Table 61. solidDB synchronization errors

Code Class Type Description

25001
Synchronization Error

Master cannot save propagated statements.

The master received propagated transaction statements from the replica, but is not
able to save the statements. (Note that the master must save the statements before
executing them). Possible causes of the error are:

v Master database has exceeded the database size limit. You can increase the
database size by changing the FileSpec parameter setting in the solid.ini file. For
details on this parameter, read “FileSpec_[1...n] parameter” on page 50. Be sure to
restart the server for the new setting to take effect.

v An internal error exists in the database server. If error 25001 occurs even after you
have increased the database size, contact IBM Corporation Technical support at
http://www.ibm.com/software/data/soliddb/support/.

25002
Synchronization Error

Cannot save data dictionary statements.

25003
Synchronization Error

Cannot save SAVE statements.

It is not possible to save a "SAVE" statement for later propagation. For example, the
following SQL statement returns an error:

SAVE CALL MYPROC(1, ’foo’)

solidDB statements that return this error:

SAVE sql_statement

25004
Synchronization Error

Dynamic parameters are not supported.

Input parameters of a subscription must be given as literals. They cannot be
dynamically bound to the statement.

solidDB statements that return this error:

DROP SUBSCRIPTION
MESSAGE message_name APPEND REFRESH publication_name

25005
Synchronization Error

Message message_name is already active.

A message of the specified name that was created appears to still be active. A
message becomes active when the following MESSAGE command is executed:

MESSAGE message_name BEGIN

The message is automatically deleted when the reply of the message has been
successfully executed in the replica database.

solidDB statements that return this error:

MESSAGE message_name APPEND
MESSAGE message_name BEGIN
MESSAGE message_name DELETE
MESSAGE message_name EXECUTE
MESSAGE message_name FORWARD
MESSAGE GET REPLY

Appendix D. Error codes 221

http://www.ibm.com/software/data/soliddb/support/

Table 61. solidDB synchronization errors (continued)

Code Class Type Description

25006
Synchronization Error

Message message_name not active

A message has already been committed or ended using the MESSAGE END
statement. New tasks cannot be appended to the message using the MESSAGE
APPEND command. Probable cause for this error is that the AUTOCOMMIT mode
is used in the connection.

You must first remove the message with MESSAGE message_name DELETE
command. Then switch autocommit off and run the script again.

solidDB statements that return this error:

MESSAGE message_name APPEND synchronization_task

25007
Synchronization Error

Master master_name not found

A replica attempts to perform an operation to a master database that cannot be
found.

solidDB statements that return this error:

SET SYNC CONNECT connect_string TO MASTER master_name
DROP MASTER master_name
IMPORT ’filename’
SAVE sql_statement

25009
Synchronization Error

Replica replica_name not found

The replica name specified in a command cannot be found.

solidDB statements that return this error:

DROP REPLICA replica_name
DROP SUBSCRIPTION publication_name(parameter_list)

[FROM REPLICA replica_name]
GRANT REFRESH ON publication_name
MESSAGE DELETE CURRENT TRANSACTION
MESSAGE message_name [FROM REPLICA replica_name] DELETE

25010
Synchronization Error

Publication publication_name not found.

The publication name of a subscription is incorrect.

solidDB statements that return this error:

MESSAGE APPEND REFRESH publication_name(parameter_list)
DROP PUBLICATION publication_name
EXPORT SUBSCRIPTION publication_name ...
REVOKE REFRESH ON publication_name...

25011
Synchronization Error

Wrong number of parameters to publication publication_name.

A subscription to a publication contains incorrect number of parameters. The data
types of the given subscription parameters must match the input parameter
definition of the publication.

solidDB statements that return this error:

DROP SUBSCRIPTION publication_name (parameter_list)
[FROM REPLICA replica_name]

MESSAGE message_name APPEND REFRESH
publication_name (parameter_list)

222 IBM solidDB: Administrator Guide

Table 61. solidDB synchronization errors (continued)

Code Class Type Description

25012
Synchronization Error

Message reply timed out.

A reply message has not arrived to the replica database within the given timeout
period. The reason is that the reply message is not yet ready in the master database.
The message needs to be retrieved later using "MESSAGE message_name GET
REPLY" command.

solidDB statements that return this error:

MESSAGE message_name FORWARD TIMEOUT timeout_in_seconds
MESSAGE message_name GET REPLY TIMEOUT timeout_in_seconds

25013
Synchronization Error

Message name message_name not found.

The message with the given name does not exist. The message name is given when
the message is created with command MESSAGE message_name BEGIN. The
message name is released when the reply message has been successfully executed in
the replica database.

Message names must be unique within the replica database.

A message can be deleted from the database with command:

MESSAGE message_name [FROM REPLICA replica_name] DELETE

solidDB statements that return this error:

MESSAGE message_name APPEND
MESSAGE message_name DELETE
MESSAGE message_name END
MESSAGE message_name EXECUTE
MESSAGE message_name FORWARD
MESSAGE message_name FROM REPLICA EXECUTE
MESSAGE message_name FROM REPLICA

replica_name DELETE CURRENT TRANSACTION
MESSAGE message_name GET REPLY

25014
Synchronization Error

More than one master name found.

25015
Synchronization Error

Syntax error: error_message, line line_number

Syntax is not correct.

solidDB statements that return this error:

MESSAGE message_name APPEND
CREATE PUBLICATION publication_name

Note: See the CREATE PUBLICATION syntax reference for correct syntax.

25016
Synchronization Error

Message not found, replica id replica_id, message id message_id

Message not found in master during processing. This can happen if the message is
explicitly deleted in master.

solidDB statements that return this error:

MESSAGE message_name FORWARD
MESSAGE message_name GET REPLY
MESSAGE message_name RESTART

Appendix D. Error codes 223

Table 61. solidDB synchronization errors (continued)

Code Class Type Description

25017
Synchronization Error

No unique key found for table table_name.

The primary key for the table has not been defined.

Each table that is part of an incremental publication must have a primary key
defined. The synchronization history mechanism cannot function without explicitly
defined primary keys.

solidDB statements that return this error:

ALTER TABLE table_name SET SYNCHISTORY

25018
Synchronization Error

Illegal message state.

An internal error has occurred in the message processing. It is not possible to
continue executing the message after this error. Delete the message using the
following command:

MESSAGE message_name [FROM REPLICA replica_name] DELETE

solidDB statements that return this error:

MESSAGE message_name ...

25019
Synchronization Error

Database is not a replica.

A synchronization message can only be created in a database that has been
registered to be a replica database. See the example code in IBM solidDB Advanced
Replication User Guide, which provides information on registering a replica database.

solidDB statements that return this error:

DROP MASTER master_name
DROP PUBLICATION publication_name REGISTRATION
DROP SUBSCRIPTION publication_name ...
IMPORT ’filename’
MESSAGE message_name BEGIN
MESSAGE message_name ENDSET SYNC CONNECT

’connect_string’ TO MASTER master_name

25020
Synchronization Error

Database is not a master.

A command that can be executed only in a master database has been attempted to
execute in a non-master database.

A database can be set to be a master database of a system by entering the following
command:

SET SYNC MASTER YES

solidDB statements that return this error:

ALTER USER replica_user SET MASTER master_name USER
MESSAGE message_name FROM REPLICA replica_name RESTART
MESSAGE message_name FROM REPLICA replica_name DELETE
DROP REPLICA replica_name DROP SUBSCRIPTION

subscription_name FROM REPLICA replica_name

224 IBM solidDB: Administrator Guide

Table 61. solidDB synchronization errors (continued)

Code Class Type Description

25021
Synchronization Error

Database is not master or replica database.

In order to create or drop publication definitions or set the SYNCHISTORY property
of a table, the database must be defined to be either master or replica (or both).

solidDB statements that return this error:

CREATE PUBLICATION publication_name ...
DROP PUBLICATION publication_name REGISTRATION
SET SYNC MAINTENANCE MODE ...;
ALTER TABLE table_name SET SYNCHISTORY

25022
Synchronization Error

User generated error.

The execution of a transaction has been cancelled and rolled back in the master
database. Because of the failed transaction, the execution of the message that
contained the transaction has been stopped.

User can request solidDB to roll back a transaction by setting the following
parameters to the bulletin board of the transaction:

PutParam(’SYS_ROLLBACK’, ’YES’)
PutParam(’SYS_ERROR_CODE’, numeric_value_as_string)
PutParam(’SYS_ERROR_TEXT’, error_text_as_string)

If the SYS_ERROR_CODE parameter is not specified or it contains an invalid value,
the error number 25022 is returned.

solidDB statements that return this error:

MESSAGE message_name FORWARD TIMEOUT timeout_in_seconds
MESSAGE message_name GET REPLY TIMEOUT timeout_in_seconds

25023
Synchronization Error

Replica registration failed.

An error has occurred during replica registration.

solidDB statements that return this error:

MESSAGE message_name FORWARD TIMEOUT timeout_in_seconds
MESSAGE message_name GET REPLY TIMEOUT timeout_in_seconds

25024
Synchronization Error

Master not defined.

No definition for the master exists or the configuration changed during message
processing. solidDB was unable to properly initialize the synchronization
environment. You can check the master from the replica's system table
SYS_SYNC_MASTERS. All successfully registered replicas are found from the master
database system table SYS_SYNC_REPLICAS.

Note that this error can be produced if you use double quotes rather than single
quotes around the master_connect_string in a MESSAGE FORWARD command.
solidDB statements that return this error:

IMPORT ’filename’
MESSAGE message_name FORWARD TO ’master_connect_string’
TIMEOUT timeout_in_seconds

Note: The use of double quotes rather than single quotes around the
master_connect_string in can produce this error message.

MESSAGE message_name GET REPLY ...
MESSAGE message_name APPEND REFRESH publication_name
MESSAGE message_name EXECUTE

Appendix D. Error codes 225

Table 61. solidDB synchronization errors (continued)

Code Class Type Description

25025
Synchronization Error

Node name not defined.

Before setting up a master database or registering a replica database, the node name
of the database must be set. This can be done with the following command:

SET SYNC NODE node_name

solidDB statements that return this error:

DROP PUBLICATION publication_name REGISTRATION
MESSAGE message_name APPEND REGISTER REPLICA
MESSAGE message_name BEGIN ...

25026
Synchronization Error

A user who has not been defined in the master database, attempts to perform a
solidDB SQL command.

solidDB statements that return this error:

IMPORT ’filename’
SAVE sql_statement
MESSAGE message_name...

To resolve this problem, use the correct user ID if there is one. If there is not already
a correct user ID, then you have two options:

1) Map a master user to the replica userid you are using. (The master user must
already have been downloaded from the master to the replica.) To map a master
user to a replica user, execute the command:

ALTER USER replica_user SET MASTER master_name
USER user_specification

2) Add an appropriate user to the master database, and download it with:

MESSAGE message_name APPEND SYNC_CONFIG

25027
Synchronization Error

Too long column or parameter value; configured maximum is <value>

25028
Synchronization Error

Message message_name can include only one system subscription.

System subscriptions (REGISTER REPLICA and SYNC_CONFIG) must be kept in
separate messages. These tasks must be the only ones of their messages.

solidDB statements that return this error:

MESSAGE message_name APPEND REFRESH publication_name

25030
Synchronization Error

Replica replica_name is already registered.

A replica attempts to register itself using a name that is already in use. Replica
names must be unique. If you know that the chosen replica name is no longer used
by any other replicas, drop it from the master database with the command DROP
REPLICA replica_name. Then register the replica again. Otherwise, change the
newly created replica's name and register it again. Note that replica registration
occurs after the registration message is sent to the master.

solidDB statements that return this error:

MESSAGE message_name FORWARD ...
MESSAGE message_name GET REPLY ...

226 IBM solidDB: Administrator Guide

Table 61. solidDB synchronization errors (continued)

Code Class Type Description

25031
Synchronization Error

Transaction is active, operation failed.

A replica attempts to process a message when having an active transaction.

solidDB statements that return this error:

IMPORT ’filename’
MESSAGE message_name FORWARD ...
MESSAGE message_name GET REPLY TIMEOUT ...
MESSAGE message_name EXECUTE

25032
Synchronization Error

All publication SQL statements must return rows.

The publication definition contains SQL operations that don't return rows. Only
SELECT statements are allowed in the publication.

solidDB statements that return this error:

CREATE PUBLICATION publication_name

25033
Synchronization Error

Publication publication_name already exists.

A publication has been attempted to create with a name that is already in use.

solidDB statements that return this error:

CREATE PUBLICATION publication_name

25034
Synchronization Error

Message name message_name already exists.

Each message must have a name that is unique within the database.

solidDB statements that return this error:

MESSAGE message_name BEGIN

25035
Synchronization Error

Message message_name is in use.

A solidDB message is locked during an attempt to execute it or delete it. A locked
message cannot be re-executed or deleted. If you get this error while attempting to
create a new solidDB message, it is probably due to an existing message with the
same name. You can check existing messages from the system table
SYS_SYNC_REPLICA_MSGINFO in the replica or from the system table
SYS_SYNC_MASTER_MSGINFO in the master database.

solidDB statements that return this error:

MESSAGE message_name BEGIN
MESSAGE message_name END
MESSAGE message_name EXECUTE ...
MESSAGE message_name FROM REPLICA replica_name DELETE
MESSAGE message_name FORWARD TIMEOUT ...
MESSAGE message_name GET REPLY TIMEOUT ...

Appendix D. Error codes 227

Table 61. solidDB synchronization errors (continued)

Code Class Type Description

25036
Synchronization Error

Publication publication_name not found or publication version mismatch.

A publication has been dropped or redefined at master during message processing.
Recover by DROP SUBSCRIPTION at replica.

solidDB statements that return this error:

IMPORT ’filename’
MESSAGE message_name FORWARD TIMEOUT ...
MESSAGE message_name GET REPLY TIMEOUT ...
MESSAGE message_name EXECUTE ...

25037
Synchronization Error

Publication column count mismatch in table table_name.

Database definitions at master and replica do not match.

solidDB statements that return this error:

MESSAGE message_name FORWARD TIMEOUT timeout_in_seconds
MESSAGE message_name GET REPLY TIMEOUT timeout_in_seconds
MESSAGE message_name EXECUTE

25038
Synchronization Error

Table is referenced in publication publication_name; drop or alter operations are not
allowed.

A table which is referenced in a publication can not be dropped or altered.

solidDB statements that return this error:

DROP TABLE table_name
ALTER TABLE table_name

25039
Synchronization Error

Table is referenced in subscription to publication publication_name; drop or alter
operations are not allowed.

solidDB statements that return this error:

ALTER TABLE table_name

25040
Synchronization Error

User id user_id is not found.

User information has been changed at the replica during message execution.

solidDB statements that return this error:

IMPORT ’filename’
MESSAGE message_name GET REPLY TIMEOUT timeout_in_seconds
MESSAGE message_name EXECUTE ...
MESSAGE message_name FORWARD ...

25041
Synchronization Error

Subscription to publication publication_name not found.

The subscription that is expected to be in the replica is not found. This error occurs
if the subscription is explicitly dropped at the replica.

solidDB statements that return this error:

IMPORT ’filename’
MESSAGE message_name EXECUTE ...
MESSAGE message_name FORWARD ...
MESSAGE message_name GET REPLY ...
DROP SUBSCRIPTION subscription_name
DROP SUBSCRIPTION subscription_name REPLICA replica_name

228 IBM solidDB: Administrator Guide

Table 61. solidDB synchronization errors (continued)

Code Class Type Description

25042
Synchronization Error

Message is too long (number bytes) to forward. Maximum is set to number bytes.

The length of a message to be forwarded exceeds the limit for message's length. The
limit can be set by variable SYS_R_MAXBYTES_OUT.

solidDB statements that return this error:

MESSAGE message_name FORWARD

25043
Synchronization Error

Reply message is too long (number bytes). Maximum is set to number bytes.

The length of a message to be received as a reply exceeds the limit for message's
length. The limit can be set by variable SYS_R_MAXBYTES_IN.

solidDB statements that return this error:

MESSAGE message_name GET REPLY

25044
Synchronization Error

SYNC_CONFIG system publication takes only character arguments.

In a subscription attempt, publication SYNC_CONFIG was found to have invalid
data types for the arguments.

solidDB statements that return this error:

MESSAGE message_name APPEND REFRESH SYNC_CONFIG

25045
Synchronization Error

Master/replica node support disabled.

25046
Synchronization Error

Commit and rollback are not supported in propagated transactions.

This error is caused when a transaction attempts to execute a COMMIT or
ROLLBACK command in the master database. The error is returned to the solidDB
server running the procedure. The message containing the procedure will fail.

25047
Synchronization Error

Parameter info publication not found.

25048
Synchronization Error

Publication publication_name request info not found.

A publication has been dropped while message is being executed.

solidDB statements that return this error:

IMPORT ’filename’
MESSAGE message_name EXECUTE ...
MESSAGE message_name FORWARD ...
MESSAGE message_name GET REPLY ...

25049
Synchronization Error

Referenced table table_name not found in subscription hierarchy.

A publication has referenced a table which does not exist.

solidDB statements that return this error:

CREATE PUBLICATION publication_name ...

25050
Synchronization Error

Table has no history.

Appendix D. Error codes 229

Table 61. solidDB synchronization errors (continued)

Code Class Type Description

25051
Synchronization Error

Unfinished messages found.

Replica mode has been attempted to be switched off while there are messages either
waiting to be forwarded or being executed at master.

solidDB statements that return this error:

SET SYNC REPLICA NO

25052
Synchronization Error

Failed to set node name to node_name.

The node_name may be invalid.

25053
Synchronization Error

Replica not registered in master.

25054
Synchronization Error

Table table_name is not set for synchronization history.

A table in the master database has the SYNCHISTORY property set, but the
corresponding table in the replica does not.

solidDB statements that return this error:

IMPORT ’filename’
MESSAGE message_name GET REPLY ...
MESSAGE message_name FORWARD ...

25055
Synchronization Error

Connect information is allowed only when not registered.

The connect info in MESSAGE message_name FORWARD TO connect_info options is
allowed only if the replica has not yet been registered to the master database.

solidDB statements that return this error:

MESSAGE message_name FORWARD TO connect_info options

25056
Synchronization Error

Autocommit not allowed.

The solidDB statement must be executed with autocommit mode turned off.

solidDB statements that return this error:

All MESSAGE message_name ... statements
DROP SUBSCRIPTION subscription_name
DROP SUBSCRIPTION subscription_name REPLICA replica_name
DROP REPLICA replica_name
DROP MASTER master_name
EXPORT SUBSCRIPTION
IMPORT ’filename’

25057
Synchronization Error

Already registered to master master_name.

The replica database has already been registered to a master database.

solidDB statements that return this error:

MESSAGE message_name GET REPLY ...
(when registering a replica)
MESSAGE message_name FORWARD ...
(when registering a replica)

25058
Synchronization Error

Missing connect information.

230 IBM solidDB: Administrator Guide

Table 61. solidDB synchronization errors (continued)

Code Class Type Description

25059
Synchronization Error

After registration nodename cannot be changed.

The SYNC NODE NAME property of a database cannot be changed if the master
has any registered replicas or replica has already been registered to a master
database.

solidDB statements that return this error:

SET SYNC NODE NAME unique_node_name

25060
Synchronization Error

Column column_name does not exist on publication publication_name resultset in table
table_name.

This error occurs when a replica finds out that the master is transferring data that
does not include primary key values that the replica requires.

solidDB statements that return this error:

IMPORT ’filename’
MESSAGE message_name GET REPLY ...
MESSAGE message_name FORWARD ...

25061
Synchronization Error

Where condition for table table_name must refer to an outer table of the publication.

If a publication contains nested SELECTs, the WHERE clause of the inner SELECT
must refer to the outer table of the outer SELECT.

solidDB statements that return this error:

CREATE PUBLICATION publication_name

25062
Synchronization Error

User user_id is not mapped to master user_id.

Dropping the user mapping failed because user is not mapped to a given master.

solidDB statements that return this error:

ALTER USER replica_user SET MASTER master_name USER

25063
Synchronization Error

User user_id is already mapped to master user_id.

User is already mapped to a given master.

solidDB statements that return this error:

ALTER USER replica_user SET MASTER master_name USER

25064
Synchronization Error

Unfinished message message_name found for replica replica_name.

Dropping the replica failed because there are unfinished messages.

solidDB statements that return this error:

DROP REPLICA replica_name

Appendix D. Error codes 231

Table 61. solidDB synchronization errors (continued)

Code Class Type Description

25065
Synchronization Error

Unfinished message message_name found for master master_name.

Dropping the master failed because there are unfinished messages.

solidDB statements that return this error:

DROP MASTER master_name

25066
Synchronization Error

Synchronization bookmark bookmark_name already exists.

Cannot create synchronization bookmark since the name already exists.

solidDB statements that return this error:

CREATE SYNC BOOKMARK

25067
Synchronization Error

Synchronization bookmark bookmark_name not found.

Bookmark name is not an existing bookmark.

solidDB statements that return this error:

DROP SYNC BOOKMARK

25068
Synchronization Error

Export file file_name open failure.

Failed to open export file for EXPORT SUBSCRIPTION.

solidDB statements that return this error:

EXPORT SUBSCRIPTION

25069
Synchronization Error

Import file file_name open failure.

Failed to open import file for IMPORT.

solidDB statements that return this error:

IMPORT ’filename’

25070
Synchronization Error

Statements can be saved only for one master in transaction.

Statements cannot be saved for multiple masters in one transaction.

solidDB statements that return this error:

SAVE sql_statement

25071
Synchronization Error

Not registered to publication publication_name.

Replica must be registered to a publication before the publication can be refreshed to
the replica.

solidDB statements that return this error:

DROP PUBLICATION publication_name REGISTRATION
MESSAGE message_name APPEND REFRESH publication_name

232 IBM solidDB: Administrator Guide

Table 61. solidDB synchronization errors (continued)

Code Class Type Description

25072
Synchronization Error

Already registered to publication publication_name.

Replica is already registered to a publication.

solidDB statements that return this error:

MESSAGE message_name APPEND REGISTER REPLICA

25073
Synchronization Error

Export file can have data only from one master.

25074
Synchronization Error

User definition not allowed for this operation.

Master user attempts to perform synchronization operation, but is denied access in
the replica database because the registration user is still the active user. After the
registration process, the command SET SYNC username must be set to NONE.

solidDB statements that return this error:

SAVE sql_statement
DROP SUBSCRIPTION publication_name (in replica)
MESSAGE message_name APPEND REFRESH publication_name
MESSAGE message_name APPEND PROPAGATE TRANSACTIONS
MESSAGE message_name APPEND REGISTER PUBLICATION
MESSAGE message_name APPEND UNREGISTER PUBLICATION
MESSAGE message_name EXECUTE (in replica)

25075
Synchronization Error

Transaction not found.

25076
Synchronization Error

Only REGISTER REPLICA is allowed in message.

25077
Synchronization Error

Node name is not valid.

25078
Synchronization Error

Node name already exists.

25079
Synchronization Error

Catalog is master and there are registered replicas. Catalog is not dropped.

25080
Synchronization Error

Catalog is replica and it is registered to a master. Catalog is not dropped.

25081
Synchronization Error

Subqueries are not allowed in publication definition.

25082
Synchronization Error

Node name can not be removed if node is master or replica.

Node name cannot be set to NONE on a synchronized master and/or replica
catalog.

solidDB statements that return this error:

SET SYNC NODE NONE

25083
Synchronization Error

Commit block can not be used with HotStandby.

25084
Synchronization Error

Can not save ADMIN COMMAND.

25085
Synchronization Error

Failed to store blob from message.

During synchronization, reading or storing a BLOB (LONG VARCHAR or LONG
VARBINARY data) has failed because of an internal error.

Appendix D. Error codes 233

Table 61. solidDB synchronization errors (continued)

Code Class Type Description

25086
Synchronization Error

Cannot save START statement.

25087
Synchronization Error

Missing connect information for node node_name.

There is no connect string in the table sys_sync_replicas for the specified replica.
Registering a replica doesn't doesn't automatically add the connect string into that
table if you haven't defined it in the replica's solid.ini. You should define it as
shown below:

[Synchronizer]
ConnectStrForMaster=tcp replicahost 1316

25088
Synchronization Error

Catalog already in maintenance mode. You have set the mode on already.

25089
Synchronization Error

Not allowed to set maintenance mode off. Someone else has set the mode on, so you
cannot set it off.

25090
Synchronization Error

Catalog already in maintenance mode. Someone else has set the mode on, so you
cannot set it off.

25091
Synchronization Error

Catalog is not in maintenance mode. You tried to set the mode off when it was not
on.

25092
Synchronization Error

User version strings are not equal in master and replica, operation failed.

When the replica executes either of the following commands:

MESSAGE FORWARD
MESSAGE GET REPLY

The server checks whether the master and replica sync schema version numbers are
equal. If the version numbers are not equal, then the server gives this error. (Note: If
neither the master nor the replica has set the version number, then you won't get the
error message.)

25093
Synchronization Error

A master database for this replica exists, operation failed. This message is returned
when the user either tries to drop a replica catalog which is registered to a master,
or tries to execute 'SET SYNC REPLICA NO' when the replica is registered to a
master.

25094
Synchronization Error

Received illegal message part type.

25095
Synchronization Error

Message execution aborted.

solidDB HotStandby errors
Table 62. solidDB HotStandby errors

Code Class Type Description

14700 HotStandby Error Rejected connection, both servers in PRIMARY role.

Meaning: Command 'hsb connect' returns this error if both nodes are in same role.

14701 HotStandby Error Rejected connection, both servers in SECONDARY role.

Meaning: Command 'hsb connect' returns this error if both nodes are in same role.

234 IBM solidDB: Administrator Guide

Table 62. solidDB HotStandby errors (continued)

Code Class Type Description

14702 HotStandby Error Operation failed, catchup is active.

Meaning: While the servers are performing catchup, you will get this error if you issue
any of the following commands on the Primary: 'hsb switch secondary', 'hsb set
secondary alone', 'hsb set standalone', 'hsb connect', 'hsb copy' or 'hsb netcopy'.

While the servers are performing catchup, you will get this error if you issue any of
the following commands on the Secondary: 'hsb switch primary', 'hsb set secondary
alone', 'hsb set primary alone', 'hsb set standalone', or 'hsb connect'.

14703 HotStandby Error Operation failed, copy is active.

Meaning: While the Primary is doing copy or netcopy, the following commands
returns this error: 'hsb switch secondary', 'hsb set secondary alone', 'hsb set standalone',
'hsb connect', 'hsb disconnect', 'hsb copy' or 'hsb netcopy'.

14704 HotStandby Error HotStandby copy or netcopy is only allowed when primary is in alone state.

Meaning: This error is returned if the server is in PRIMARY ACTIVE state and the
command 'hsb copy' or 'hsb netcopy' is issued.

14705 HotStandby Error Setting to STANDALONE is not allowed in this state.

Meaning: If the server is in PRIMARY ACTIVE state and you issue the command 'hsb
set standalone', then you will get this message.

14706 HotStandby Error Invalid read thread mode for HotStandby, only mode 2 is supported.

14707 HotStandby Error Operation not allowed in the STANDALONE state.

14708 HotStandby Error Catchup failed, catchup position was not found from log files.

14709 HotStandby Error Hot Standby enabled, but connection string is not defined.

14710 HotStandby Error Hot Standby admin command conflict with an incoming admin command.

14711 HotStandby Error Failed because server is shutting down.

14712 HotStandby Error Server is secondary. Use primary server for this operation.

solidDB SSA (SQL API) errors
Table 63. solidDB SSA (SQL API) errors

Error code Description

25200
SSA Error

Invalid application buffer type

This error is used for the ODBC driver. It is given if signals attempt to use inappropriate buffer
type for reading values (such as reading string to integer value). This error is documented into
more detail in the ODBC specifications.

25201
SSA Error

Invalid use of null pointer

This error is given, if an invalid parameter - NULL is passed as a statement handle, connection
handle, or application buffer.

25202
SSA Error

Function sequence error

This error is given, if an attempt to violate the ODBC function call sequence is made. This can
happen, for example, when trying to execute a statement that has not been prepared.

25203
SSA Error

Invalid transaction operation code

This error is given, if an attempt to use an incorrect transaction completion code with the
SQLEndTran function (SQL_COMMIT and SQL_ROLLBACK are allowed) is made.

Appendix D. Error codes 235

Table 63. solidDB SSA (SQL API) errors (continued)

Error code Description

25204
SSA Error

Invalid string or buffer length

This error is given, if 0 or any negative buffer size is passed to an ODBC function that requires an
application buffer.

25205
SSA Error

Invalid attribute/option identifier

This error is given, if an invalid operation code is passed to the SQLSetPos, SQLDriverConnect,
SQLFreeStmt and so on.

25206
SSA Error

Connection timeout expired

25207
SSA Error

Invalid cursor state

This error is given, for example, if an attempt is made to fetch with a closed cursor.

25208
SSA Error

String data, right truncated

This error is given if a string buffer was not big enough.

25209
SSA Error

Datetime field overflow

This error is given when updating a date or time column with incorrect data.

25210
SSA Error

COUNT field incorrect

This error is given, for example, when trying to pass an extra parameter to an insert statement.

25211
SSA Error

Invalid descriptor index

This error is given, for example, when using 0 or negative value as SQLBindParameter column
index.

25212
SSA Error

Client unable to establish a connection

The ODBC client cannot connect to the server.

25213
SSA Error

Connection name in use

This error is given, for example, when trying to reconnect an already connected connection.

25214
SSA Error

Connection does not exist

This error is given, for example, when trying to use a closed or not connected connection.

25215
SSA Error

Server rejected the connection

Transport layer connection to the server has been established, but the server rejects the connection
(for example, because it is shutting down).

25216
SSA Error

Connection switch, some session context may be lost

This is a TF-1 specific error. A TF-1 connection has encountered a connection switch. The
application must roll back the transaction to restore the connection.

236 IBM solidDB: Administrator Guide

Table 63. solidDB SSA (SQL API) errors (continued)

Error code Description

25217
SSA Error

Client unable to establish a primary connection

This is a TF-1 specific error. The ODBC driver has not been able to establish connection to the
primary server, for example, after an application rolled back a transaction after a failover, or if
there is no primary server address in the TF-1 connection string (all the reachable servers are
secondary).

25404 SSA Error COUNT field incorrect

25406 SSA Error Invalid descriptor index

25411 SSA Error String data

25416 SSA Error Datetime field overflow

25418 SSA Error Invalid cursor state

25424 SSA Error Invalid application buffer type

25427 SSA Error Invalid use of null pointer

25428 SSA Error Function sequence error

25429 SSA Error Invalid transaction operation code

25432 SSA Error Invalid string or buffer length

25434 SSA Error Invalid attribute/option identifier

25448 SSA Error Connection timeout expired

solidDB COM (communication) messages
Table 64. solidDB COM (communication) messages

Code Class Type Description

30001 COM Message User <username> connected, user id <id>, machine id <id>

30002 COM Message User <username> connection timed out, user id <id>, machine id <id>

30003 COM Message User <username> was disconnected abnormally, user id <id>, machine id <id>

30004 COM Message User <username> disconnected, user id <id>, machine id <id>

30005 COM Message Admin user <username> connected, user id <id>, machine id <id>

30006 COM Message User <username> connected from a remote control, user id <id>, machine id <id>

30007 COM Message User <username> transaction idle timed out, user id , machine id <id>

30008 COM Message User <username> transaction timed out, user id %d machine id <id>

30009 COM Message User <username> tried to connect from <value> with an illegal username or password.

30010 COM Message
User <username> failed to connect version mismatch. Client version <version>, server version
<version>

30011 COM Message User <username> failed to connect, collation version mismatch.

30012 COM Message User <username> failed to connect, there are too many connected clients.

30013 COM Message New connections allowed.

30014 COM Message New connections can not be allowed.

30015 COM Message No new connections allowed.

30016 COM Message Listening of <connect string> started.

30017 COM Message Listening of <connect string> stopped.

30018 COM Message No valid listening name specified. Exiting from <server_name>.

30019 COM Message Cannot start listening

30020 COM Message Server is in fatal state no new connections are allowed

30021 COM Message Unknown connection recycling XECB.

Appendix D. Error codes 237

solidDB SRV (server) errors
Table 65. solidDB SRV errors

Code Class Type Description

30100 SRV Message Server shut down by the application.

30101 SRV Message Server shut down by either ALT+F4 or kill command

30102 SRV Message User <username> issued shut down server command user id <username>

30103 SRV Message Server shut down by unknown user (sc==NULL)

30104 SRV Message Shutdown aborted; denied by user callback.

30105 SRV Message <server_name> is shut down

30106 SRV Message Some thread still active wait extra <value> seconds...

30110 SRV Message Service <service_name> installed

30111 SRV Message Service <service_name> removed

30112 SRV Message Install service <service_name> failed! Error code <error_code>

30113 SRV Message Remove service <service_name> failed! Error code <error_code>

30114 SRV Message Usage for service option: -s{start|install|remove} name exepath [autostart]

30115 SRV Message Failed to change the current working directory to <directory_name>

30116 SRV Message Current working directory changed to <directory_name>

30117 SRV Message <solidDB_version>

30118 SRV Message <copyright>

30119 SRV Message <startup_time>

30120 SRV Message Failed to start the server. Exiting from <value>

30121 SRV Message Causing intentionally an access violation...

30122 SRV Message Causing intentionally an internal error...

30123 SRV Message Exiting server with ADMIN COMMAND 'errorexit <number>'...

30124 SRV Message Exiting server with ADMIN COMMAND 'assertexit'...

30125 SRV Message Admin command: <command>

30126 SRV Message Admin event: <command>

30127 SRV Message Invalid license file <license_file>

30128 SRV Message Using license file <license_file>

30129 SRV Message Signal <value>

30130 SRV Message solidDB process has encountered an internal error and is unable to continue normally.

30131 SRV Message Command line: <value>

30132 SRV Message SS_DEBUG=<value>

30133 SRV Message Asynch pingtest completed successfully to <value>.

30134 SRV Message Alternate inifile name is too long (>254); parameter ignored.

30140 SRV Message The argument following option -x pagedmem:[client:] must be 16 32 or 64 (default: 16)

30141 SRV Message Testing system performance.

30142 SRV Message Testing was successful.

30143 SRV Message Testing failed.

30144 SRV Message Server in backupserver mode. Operation refused

30145 SRV Message Connect failed illegal user name or password

30146 SRV Message Failed to create thread <value>

30147 SRV Message
HSB enabled server cannot operate without HotStandby license: set
HotStandby.HSBEnabled to No.

238 IBM solidDB: Administrator Guide

Table 65. solidDB SRV errors (continued)

Code Class Type Description

30148 SRV Message <value> option is activated.

30149 SRV Message Server emergency shutdown.

30150 SRV Fatal Error

Server not started.

This error is given if the solidDB server cannot be started.

30151 SRV Message Database started.

30152 SRV Message
Memory allocation size has exceeded <value>MB. Current size: <value> butes. Number of
allocations: <value>.

30153 SRV Message
Memory allocation size has fallen below <value>MB. Current size: <value> bytes. Number
of allocations: <value>.

30154 SRV Message
Statement (id: <userid> userid: <type> type: <value>) has allocated <value> bytes of
memory SQL: <value>.

30155 SRV Message Process size <virtual_size> is <above|below> the <warning_level|limit|low_level> <value>

30156 SRV Message Server health check monitoring started.

solidDB DBE (database engine) errors and messages
Table 66. solidDB DBE errors and messages

Code Class Type Description

30200 DBE Message Creating a new database.

30201 DBE Message Database converted successfully.

30202 DBE Message Database already exists.

30203 DBE Message Converting database ...

30204 DBE Message

This database is from an older Solid version. To convert database for use with this version,
start server with option -x convert. Please note that after conversion, the database cannot be
used with older versions of server anymore.

30205 DBE Message New database was not created.

30206 DBE Message

Database does not exist. Cannot create a new database because the server is not running as a
foreground process. To create a new database, start the server as a foreground process with -f
option.

30207 DBE Message Failed to open the database. Exiting from <server_name>

30208 DBE Message Merge not started; denied by user callback.

30209 DBE Message Idle merge started <value> keys to remove

30210 DBE Message Merge started, <value> keys to remove

30211 DBE Message Idle quick merge started

30212 DBE Message Quick merge started

30213 DBE Message Merge stopped, all keys merged

30214 DBE Message Merge stopped, <value> keys merged

30215 DBE Message Merge task started, <value> tasks active

30216 DBE Message User merging enabled

30217 DBE Message Error when converting procedures procedure <procedure_name>

30218 DBE Message Quick merge stopped

30220 DBE Message Checking database index

30221 DBE Message Database index is ok

30222 DBE Message Database is in backup server mode. Cannot check the index.

30223 DBE Message Testing the database index.

Appendix D. Error codes 239

Table 66. solidDB DBE errors and messages (continued)

Code Class Type Description

30224 DBE Message Database index has been tested successfully. Database index is ok.

30225 DBE Message ERROR! Database index is NOT ok! Check errors from file ssdebug.log.

30226 DBE Message SOLID Fatal Error: Failed to open the database for testing.

30227 DBE Message SOLID Fatal Error: Failed to connect to the database for testing.

30228 DBE Message Database file has been reorganized successfully.

30229 DBE Message ERROR! Failed to reorganize the database file! Check errors from file ssdebug.log.

30230 DBE Message Starting roll-forward recovery, please wait ...

30231 DBE Message Recovery of <value> transactions successfully completed

30232 DBE Message Recovery successfully completed

30233 DBE Message Writing IMDB pages to disk. Pages: <value>

30234 DBE Message Finished writing IMDB pages to disk. Pages: <value>

30235 DBE Message Loading IMDB. Pages: <value>

30236 DBE Message Finished loading IMDB. Pages: <value>

30237 DBE Message Starting to reorganize and compact the database file.

30240 DBE Message Failed to create a new database

30241 DBE Message Failed to log on to the database

30242 DBE Message Failed to connect, script not executed.

30243 DBE Message Failed to open SQL input file

30244 DBE Message Script <script_name> failed

30245 DBE Message Table <table_name> not found.

30246 DBE Message Converting table <table_name>...

30247 DBE Message Table <table_name> converted

30248 DBE Message No need to convert table <table_name>

30249 DBE Message

There is a problem opening the database because not all db files defined is the solid.ini were
found. Please check the configuration. Note that only the file(s) defined with the largest
FileSpec_n definition(s) should be missing.

30250 DBE Message Using SplitMerge

30251 DBE Message Starting to recreate the database (delete old database and create a new one).

30252 DBE Message Successfully deleted database and logs

30253 DBE Message Failed to delete database and/or logs check file permissions.

30254 DBE Message Database is a broken HSB copy or netcopy database.

30255 DBE
Fatal
Error Exiting from server (FAKE_DBE_CRASHAFTERCPMARK).

30256 DBE
Fatal
Error Database must exist!

30257 DBE
Fatal
Error Database creation date is already reset!

30258 DBE
Fatal
Error Database creation time can be reset only once!

30259 DBE
Fatal
Error Error test in file <file_name> line <value>

30260 DBE Message Database version does not match with SOLID version.

30261 DBE Message Database file format does not match with SOLID version.

30320 DBE Message Logreader using default transaction batch size <value>

30321 DBE Message Logreader transaction batch size <value>

30322 DBE Message Logreader read full statements

240 IBM solidDB: Administrator Guide

Table 66. solidDB DBE errors and messages (continued)

Code Class Type Description

30323 DBE Message Logreader catchup init

30324 DBE Message Logreader catchup error

30325 DBE Message Logreader catchup scan open

30326 DBE Message Logreader catchup active

30327 DBE Message Logreader catchup completed

30328 DBE Message Logreader live data

solidDB CP (checkpoint) messages
Table 67. solidDB CP (checkpoint) messages

Code Class Type Description

30280 CP Message Checkpoint creation completed

30281 CP Message Checkpoint creation started

30282 CP Message Checkpoint creation not started because shutdown is in progress

30283 CP Message Checkpoint creation not started because checkpointing is disabled

30284 CP Message Checkpoint not started; denied by user callback.

30285 CP Message Create <value> start failed.

30286 CP Message Checkpoint DBE flushing timed out, <number> of <number> pages left.

30287 CP Message Checkpoint MME flushing timed out, <number> of <number> pages left.

30288 CP Message MME flush batch completion wait timed out, trying to proceed.

30289 CP Message Checkpoint DBE flush, <number> pages left.

30290 CP Message Checkpoint MME flush, <number> pages left.

solidDB BCKP (backup) messages
Table 68. solidDB BCKP (backup) messages

Code Class Type Description

30300 BCKP Message Backup completed successfully

30301 BCKP Message Backup started to <directory path>.

30302 BCKP Message Backup start failed. <Shutdown is in progress|Backup is already active>

30303 BCKP Message Backup aborted.

30304 BCKP Message Backup failed. <error description>

30305 BCKP Message Backup not started; denied by user callback.

30306 BCKP Message Backup not started; Backup is not supported on diskless server.

30307 BCKP Message Backup not started index check failed. Errors written to file ssdebug.log.

solidDB AT (timed commands) messages
Table 69. solidDB AT (timed commands) messages

Code Class Type Description

30350 AT Message At: backup <backup_directory>

30351 AT Message At: makecp

Appendix D. Error codes 241

Table 69. solidDB AT (timed commands) messages (continued)

Code Class Type Description

30352 AT Message At: throwout <user_name>

30353 AT Message At: report <report_file_name>

30354 AT Message At: shutdown

30355 AT Message At: system <operating_system_command>

30356 AT Message At: open

30357 AT Message At: close

30358 AT Message At: assert

30359 AT Message
Server noticed time inconsistency during at-command execution. If the system time has been
changed, please restart server.

30360 AT Message AT command failed. <reason>

30361 AT Message Illegal at command <command> ignored.

30362 AT Message Illegal immediate at command <command> ignored.

30362 AT Message Deleted %d rows from SYS_BACKGROUNDJOB_INFO

solidDB LOG (logging) messages
Table 70. solidDB LOG (logging) messages

Code Class Type Description

30400 LOG Message Transaction logging is disabled roll-forward recovery is not possible

30401 LOG Message Using log write mode

30402 LOG Message Conflicting parameters General.BackupCopyLog=Yes and General.CheckpointDeleteLog=Yes

30403 LOG Message Log file write failure

30404 LOG Message Check results from file <file_name>.

30405 LOG Message Unable to open message log file <file_name>

30406 LOG Message SOLID Fatal Error: Failed to open trace file <file_name>.

30407 LOG Message The tail of log was corrupt the corrupt part was ignored.

solidDB INI (configuration file) messages
Table 71. solidDB INI (configuration file) messages

Code Class Type Description

30450 INI Message Value <value> for parameter <parameter> is not multiple of 512 using default value <value>

30451 INI Message
Value for index file specification <specification> is invalid using default file <file_name> and
max size <value>

30452 INI Message
Value for index file specification <specification> is invalid all following file specifications are
ignored

30453 INI Message Illegal value <value> for parameter <parameter> using default value <value>

30454 INI Message Failed to save configuration file <configuration_file>

30455 INI Message Failed to set the maximum number of open files to <value> using default <value>

30456 INI Message Using configuration file <configuration_file>

30457 INI Message Configuration file <configuration_file> not found using defaults

30458 INI Message Illegal value <value> for parameter <parameter> using default value <value>

30459 INI Message Illegal value <value> for parameter <parameter> using default value <value>

242 IBM solidDB: Administrator Guide

Table 71. solidDB INI (configuration file) messages (continued)

Code Class Type Description

30460 INI Message Illegal value <value> for parameter <parameter>using default value <value>

30461 INI Message Illegal value <value> for parameter <parameter> using default value <value>

30463 INI Message ReadThreadMode forced to (<value>) for parameter <parameter>

30464 INI Message Illegal value <value> for parameter <parameter> using default value <value>

30465 INI Message

Process size <value> exceeds parameter Srv.ProcessMemoryLimit value <value>

Increase the size of the value of the Srv.ProcessMemoryLimit parameter or disable the
checking of the process memory size by setting Srv.ProcessMemoryCheckInterval parameter
value to 0.

solidDB HSB (HotStandby) errors and messages
Table 72. solidDB HSB errors and messages

Code Class Type Description

14007 HSB Message CONNECTING

14008 HSB Message CATCHUP

14009 HSB Message No role switches since the server startup

14010 HSB Message DISCONNECTING

14522 HSB Message HotStandby copy directory not specified.

14537 HSB Message BROKEN

14704 HSB Error HotStandby copy or netcopy is only allowed when primary is in alone state

14712 HSB Error Server is secondary. Use primary server for this operation

30500 HSB Message Started as a HotStandby primary

30501 HSB Message Started as a HotStandby secondary

30502 HSB Message
The database was not shut down properly the last time that it was used starting as a HotStandby
secondary

30503 HSB Message Forcing HotStandby primary to start as a secondary

30504 HSB Message HotStandby role switched to secondary

30505 HSB Message HotStandby role switched to primary

30506 HSB Message Primary server must be set to PRIMARY ALONE or switched to the secondary role.

30507 HSB Message HotStandby server set to PRIMARY ALONE.

30508 HSB Message HotStandby server set to SECONDARY ALONE

30509 HSB Message HotStandby switch to primary failed, error <error_code>

30510 HSB Message HotStandby switch to secondary failed, error <error_code>

30511 HSB Message Failed to start HotStandby to <server_name>, error <error_code>

30512 HSB Message Failed to switch HotStandby role to primary, error <error_code>

30513 HSB Message Failed to switch HotStandby role to secondary, error <error_code>

30514 HSB Message Both databases are primary servers starting as a secondary

30515 HSB Message Both HotStandby databases are primaries

30516 HSB Message Failed to start HotStandby to <server_name>, other server rejected with error <error_code>

30517 HSB Message HotStandby role in secondary switched

30518 HSB Message HotStandby role switched to standalone

30530 HSB Message Starting to send HotStandby catchup data to secondary server

30531 HSB Message HotStandby catchup completed successfully

30532 HSB Message HotStandby catchup ended abnormally

Appendix D. Error codes 243

Table 72. solidDB HSB errors and messages (continued)

Code Class Type Description

30533 HSB Message
HotStandby catchup can not be started. Secondary is not properly synchronized with primary full
synchronization is required

30534 HSB Message HotStandby catchup ended abnormally, status <error_code>

30535 HSB Message HotStandby catchup ended abnormally, error <error_code>

30536 HSB Message HotStandby catchup ended abnormally due to a communication error

30537 HSB Message HotStandby catchup ended abnormally, secondary returned error <error_code>

30538 HSB Message
HotStandby catchup size <value> greater than configured maximum size <value>, stopping
HotStandby

30539 HSB Message File error in HotStandby catchup, stopping HotStandby

30540 HSB Message Starting to receive HotStandby catchup data from primary server

30541 HSB Message
Secondary is not properly synchronized with primary due to a log file corruption. Please restart
secondary and execute a HSB netcopy.

30550 HSB Message Connection broken to HotStandby secondary server

30551 HSB Message Connected to HotStandby

30552 HSB Message HotStandby secondary connected

30553 HSB Message HotStandby primary connected

30554 HSB Message

Hot Standby connection broken to Secondary server with an open transaction waiting for the
operator to resolve transaction status. Primary server must be set to alone mode or switched to
secondary mode.

30555 HSB Message HotStandby ping timeout

30556 HSB Message Connection broken to HotStandby secondary

30557 HSB Message HotStandby databases are not properly synchronized

30558 HSB Message HotStandby connection to secondary timed out

30559 HSB Message HotStandby connection broken

30560 HSB Message HotStandby: <HotStandby_error_message>

30570 HSB Message Network backup completed.

30571 HSB Message Started to receive network backup.

30572 HSB Message Database started using a HotStandby copy/netcopy.

30573 HSB Message Network backup failed.

30574 HSB Message Hot Standby forcing threads to 1

30575 HSB Message Hot Standby replication configured but no active license found replication not started

30577 HSB Message HotStandby connect operation failed

30579 HSB Message HotStandby connection is already active.

30581 HSB Message Invalid event <event>

30582 HSB Message HotStandby cannot set the server to PRIMARY ALONE.

30583 HSB Message HotStandby copy failed.

30585 HSB Message Database starts to listen for netcopy.

30750 HSB Message HotStandby connection is already active.

30752 HSB Message Operation failed disconnect is active.

30757 HSB Message CONNECTED

30758 HSB Message Bad Hot Standby command.

30759 HSB Message HotStandby server is set to STANDALONE.

30760 HSB Message Started the process of disconnecting the servers.

30761 HSB Message Started the process of switching the role to primary.

30762 HSB Message Started the process of switching the role to secondary.

30763 HSB Message Started the process of connecting the servers.

244 IBM solidDB: Administrator Guide

Table 72. solidDB HSB errors and messages (continued)

Code Class Type Description

30764 HSB Message Copy started.

30765 HSB Message Parameter AutoPrimaryAlone is set to Yes.

30766 HSB Message Parameter AutoPrimaryAlone is set to No.

30767 HSB Message Parameter Connect is set to <value>.

30768 HSB Message HotStandby connection is already broken.

30769 HSB Message Operation failed because connection between the servers is active.

30772 HSB Message Hot Standby node identifier must be defined in the ini file.

30774 HSB Message Server is already STANDALONE.

30775 HSB Message Parameter CopyDirectory is set to <value>.

30776 HSB Message Parameter ConnectTimeout is set to <value>.

30777 HSB Message Parameter PingTimeout is set to <value> milliseconds.

30779 HSB Message Hot Standby migration is active

30782 HSB Message Server is already set to primary alone.

30783 HSB Message Server is already set to secondary alone.

30784 HSB Message Parameter <parameter_name> is set to <value>.

30785 HSB Message Parameter <parameter_name> is set to <value>.

30786 HSB Message Parameter <parameter_name> is set to <value>.

30787 HSB Fatal Error

pri_dologskip:bad type, log pos, log size

This error refers to a failed operation on the HSB primary server. The error returns the failed
operation and its location in the log, and the log size. Operations in the replication log are
skipped.

30788 HSB Fatal Error

pri_hsblogcopy_write:bad type, log pos, log size

This error refers to a failed operation on the HSB primary server. The write to the replication log
file fails. The error returns the failed operation and its location in the log, and the log size.

30789 HSB Fatal Error Failed to open hot standby replication log file.

30790 HSB Fatal Error

Failed to allocate memory for HotStandby log. Max Log size is logsize.

This error concerns a diskless database using hotstandby. In these systems, the hotstandby log is
written to memory. This error is given if allocating more memory for the log file fails.

30791 HSB Fatal Error HotStandby:solhsby:bad type <type>, log pos <log_pos>, log size <log_size>

30792 HSB Message Both servers are secondary.

solidDB SNC (synchronization) messages
Table 73. solidDB SNC (synchronization) messages

Code Class Type Description

30700 SNC Message Starting parallel sync history key conversion...

30701 SNC Message Starting sync history key conversion...

30702 SNC Message Sync history key conversion done

30703 SNC Message Database is not a master database

Appendix D. Error codes 245

solidDB XS (external sorter) errors and messages
Table 74. solidDB XS (external sorter) errors

Code Class Type Description

30800 XS Message
Unable to reserve requested <number> memory blocks for external sorter. Only <number>
memory blocks were available. SQL: <sql statement>

30801 XS Message
Unable to reserve requested <number> memory blocks for external sorter. Only <number>
memory blocks were available.

30802 XS Fatal
Error

Failed to create a temporary file for local sorting (system errno =)

The sorter cannot create a temporary file.

solidDB FIL (file system) messages
Table 75. solidDB FIL (file system) messages

Code Class Type Description

30900 FIL Message SsBLock failed, file <file_name>, error = <error_code>

30901 FIL Message SsBLock failed, file <file_name>, error = <error_code>, fd = <value>

30902 FIL Message
SsBOpenLocal failed, file <file_name>, error = <error_code>, retries = <value>, open files =
<value>

30903 FIL Message
SsBOpenLocal failed, file <file_name>, error = <error_code>, vaxc$error = <value>, fab stv =
<value>, retries = <value>, open files = <value>

30904 FIL Message
SsBOpenLocal failed, file <file_name>, error = <error_code>, vaxc$error = <value>, retries =
<value>

30905 FIL Message
SsBOpenLocal failed, file <file_name>, error = <error_code>, dos rc = <value>, retries =
<value>

30906 FIL Message SsBOpenLocal failed, file <file_name>, error = <error_code>, retries = <value>

30907 FIL Message SsBOpen failed, file <file_name>, error = <error_code>, retries = <value>

30908 FIL Message File flush failed, error <error_code>, file <file_name>

30909 FIL Message File flush failed, error <error_code>, vaxc$error = <value>, file <file_name>

30910 FIL Message File flush failed, error <error_code>, dos rc <value>, file <file_name>

30911 FIL Message File flush close failed, error <error_code>, file <file_name>

30912 FIL Message File flush open failed, error <error_code>, file <file_name>

30913 FIL Message File size query failed, error<error_code>, file <file_name>, retries <value>

30914 FIL Message File size query seek failed, file <file_name>

30915 FIL Message File size change failed, error <error_code>, file <file_name>, newsize <value>, retries <value>

30916 FIL Message File <file_name>size change failed, not supported by Windows mmio

30917 FIL Message File read failed, error <error_code>, file <file_name>, location <directory>, retries <value>

30918 FIL Message
File read failed, error <error_code>, file <file_name>, location <directory>, retries <value>,
vaxc$error = <value>

30919 FIL Message File read seek failed, error <error_code>, file <file_name>, location <directory>, retries <value>

30920 FIL Message
File read seek failed, error <error_code>, file <file_name>, location <directory>, retries <value>,
vaxc$error = <value>

30921 FIL Message File write failed, error <error_code>, file <file_name>, location <directory>, retries <value>

30922 FIL Message
File write failed, error <error_code>, file <file_name>, location <directory>, retries <value>,
vaxc$error = <value>

30923 FIL Message File write seek failed, error <error_code>, file <file_name>, location <directory>, retries <value>

30924 FIL Message
File write seek failed, error <error_code>, file <file_name>, location <directory> retries <value>,
vaxc$error = <value>

246 IBM solidDB: Administrator Guide

Table 75. solidDB FIL (file system) messages (continued)

Code Class Type Description

30925 FIL Message File write end failed, error <error_code>, file <file_name>, retries <value>

30926 FIL Message
File write end failed, error <error_code>, file <file_name>, retries <value>, vaxc$error =
<value>

30927 FIL Message File append write failed, error <error_code>, file <file_name>, retries <value>

30928 FIL Message
File append write failed, error <error_code>, file <file_name>, retries <value>, vaxc$error =
<value>

30929 FIL Message File append seek failed, error <error_code>, file <file_name>, retries <value>

30930 FIL Message
File append seek failed, error <error_code>, file <file_name>, retries <value>, vaxc$error =
<value>

30931 FIL Message File seek failed, error <error_code>, file <file_name>, location <directory>, retries <value>

30932 FIL Message
File seek failed, disk full, error <error_code>, file <file_name>, location <directory>, new
location <directory>, retries <value>

30933 FIL Message File seek end failed, error <error_code>, file <file_name>, retries <value>

30934 FIL Message File seek to new size failed, error <error_code>, file <file_name>, newsize <value>

30935 FIL Message File expand write failed, file <file_name>

30936 FIL Message File expand seek failed, file <file_name>

30937 FIL Message VirtualAlloc failed, error = <error_code>

30938 FIL Message
File paged read failed, error <error_code>, file <file_name>, npages <value>, pagesize <value>,
page address <value>, retries <value>

30939 FIL Message
File paged write failed, error <error_code>, file <file_name>, npages <value>, pagesize
<value>, page address <value>, retries <value>

solidDB TAB (table) messages
Table 76. solidDB TAB (table) messages

Code Class Type Description

31000 TAB Message Bad cursor state, function <function> state <state>

31001 TAB Message Table <table_name> created as <table_name>

solidDB SQL errors
Table 77. solidDB SQL errors

Error code Description

SQL Error 1 Parsing error 'syntax error'

The SQL parser could not parse the SQL string. Check the syntax of the SQL statement and
try again.

SQL Error 2 Table table can not be opened

You may not have privileges to access the table and its data.

SQL Error 3 Table table can not be created

Table can not be created. You may not have privileges for this operation.

Appendix D. Error codes 247

Table 77. solidDB SQL errors (continued)

Error code Description

SQL Error 4 Illegal type definition column

A column type in your CREATE TABLE statement is illegal. Use a legal type for the
column.

SQL Error 5 Table table can not be dropped

Table can not be dropped. Only the owner (that is, the creator) can drop it.

SQL Error 6 Illegal value specified for column column

The value specified for column is invalid. Check the value for the column.

SQL Error 7 Insert failed

The server failed to do the insertion. You may not have INSERT privilege on the table or it
may be locked.

SQL Error 8 Delete failed

The server failed to do the deletion. You may not have DELETE privilege on the table or
the row may be locked.

SQL Error 9 Row fetch failed

The server failed to fetch a row. You may not have SELECT privilege on the table or there
may be an exclusive lock on the row.

SQL Error 10 View view can not be created

You cannot create this view. You may not have SELECT privilege on one or more tables in
the query-specification of your CREATE VIEW statement.

SQLError 11 View view cannot be dropped.

You cannot drop this view. Only the owner (i.e. the creator) of the view can drop it.

SQLError 12 Illegal view definition view

The view definition is illegal. Check the syntax of the definition.

SQLError 13 Illegal column name column

Column name is illegal. Check that the name is not a reserved name.

SQL Error 14 Call to function function failed

Function call to function failed. Check the arguments and their types.

SQL Error 15 Arithmetic error

An arithmetical error occurred. Check the operators, values and types.

SQL Error 16 Update failed

The server failed to update a row. There may a lock on a row.

248 IBM solidDB: Administrator Guide

Table 77. solidDB SQL errors (continued)

Error code Description

SQL Error 17 View is not updatable

This view is not updatable. UPDATE, INSERT and DELETE operations are not allowed.

SQL Error 18 Inserted row does not meet check option condition

You tried to insert a row, but one or more of the column values do not meet column
constraint definition.

SQL Error 19 Updated row does not meet check option condition

You tried to update a row, but one or more of the column values do not meet column
constraint definition.

SQL Error 20 Illegal CHECK constraint

A check constraint given to the table is illegal. Check the types of the check constraint of
this table.

SQL Error 21 Insert failed because of CHECK constraint

You tried to insert a row, but the values do not meet the check option conditions.

SQL Error 22 Update failed because of CHECK constraint

You tried to update a row, but the values do not meet the check option conditions.

SQL Error 23 Illegal DEFAULT value

The DEFAULT value for the column given is illegal.

SQL Error 25 Duplicate columns in INSERT column list

You have included a column in column list twice. Remove duplicate columns.

SQL Error 26 At least one column definition required in CREATE TABLE

You need to specify at least one column definition in a CREATE TABLE statement.

SQL Error 27 Illegal REFERENCES column list

There are wrong number of columns in your REFERENCES list.

SQL Error 28 Only one PRIMARY KEY allowed in CREATE TABLE

You can use only one PRIMARY KEY in CREATE TABLE.

SQL Error 29 GRANT failed

Granting privileges failed. You may not have privileges for this operation.

SQL Error 30 REVOKE failed

Revoking privileges failed. You may not have privileges for this operation.

SQL Error 31 Multiple instances of a privilege type

You tried to grant privileges to a role or a user. You have included multiple instances of a
privilege type in the list of privileges.

Appendix D. Error codes 249

Table 77. solidDB SQL errors (continued)

Error code Description

SQL Error 32 Illegal constant constant

Illegal constant was found. Check the syntax of the statement.

SQL Error 33 Column name list of illegal length

You have entered different number of columns in CREATE VIEW statement to the view
and to the table.

SQL Error 34 Conversion between types failed

An expression in UPDATE statement has illegal type for a column.

SQL Error 35 Column names not allowed in ORDER BY for UNION

You can not use column name in an ORDER BY for UNION statement.

SQL Error 36 Nested aggregate functions

Nested aggregate functions can not be used. For example: SUM(AVG(column)).

SQL Error 37 Aggregate function with no arguments

An aggregate function was entered with no arguments. For example: SUM().

SQL Error 38 Set operation between different row types

You have tried to execute a set operation of tables with incompatible row types. The row
types in a set operation must be compatible.

SQL Error 39 COMMIT WORK failed

Committing a transaction failed.

SQL Error 40 ROLLBACK WORK failed

Rolling back a transaction failed.

SQL Error 41 Savepoint could not be created

A savepoint could not be created.

SQL Error 42 Could not create index index

An index could not be created. You may not have privileges for this operation. You need to
be an owner of the table or have SYS_ADMIN_ROLE to have privileges to create index for
the table.

SQL Error 43 Could not drop index index

An index could not be dropped. You may not have privileges for this operation. You need
to be an owner of the table or have SYS_ADMIN_ROLE to have privileges to drop index
from the table.

SQL Error 44 Could not create schema schema

A schema could not be created.

250 IBM solidDB: Administrator Guide

Table 77. solidDB SQL errors (continued)

Error code Description

SQL Error 45 Could not drop schema schema

A schema could not be dropped.

SQL Error 46 Illegal ORDER BY specification

You tried to use an ORDER BY column that does not exist. Refer to an existing column in
the ORDER BY specification.

SQL Error 47 Maximum length of identifier is 31

You have exceeded the maximum length for the identifier.

SQL Error 48 Subquery returns more than one row

You have used a subquery that returns more than one row. Only subqueries returning one
row may be used in this situation.

SQL Error 49 Illegal expression expression

You tried to insert or update a table using an aggregate function (SUM, MAX, MIN or
AVG) as a value. This is not allowed.

SQL Error 50 Ambiguous column name column

You have referenced a column which exists in more than one table. Use syntax table.column
to indicate which table you want to use.

SQL Error 51 Non-existent function function

You tried to use a function which does not exist.

SQL Error 52 Non-existent cursor cursor

You tried to use a cursor which is not created.

SQL Error 53 Function call sequence error

A function was called in wrong order. Check the sequence and success of the function
calls.

SQL Error 54 Illegal use of a parameter

A parameter was used illegally. For example: SELECT * FROM TEST WHERE ? < ?;

SQL Error 55 Illegal parameter value

A parameter has an illegal value. Check the type and value of the parameter.

SQL Error 56 Only ANDs and simple condition predicates allowed in UPDATE CHECK

All search condition predicates are not supported.

SQL Error 57 Opening the cursor did not succeed

Server failed to open a cursor. You may not have cursor open at this moment.

Appendix D. Error codes 251

Table 77. solidDB SQL errors (continued)

Error code Description

SQL Error 58 Column column is not referenced in group-by-clause

You tried to group rows using column. All columns in group_by_clause must be listed in
your select_list. A star ('*') notation is not allowed with GROUP BY.

SQL Error 59 Comparison between incompatible types

You tried to compare values which have incompatible types. Incompatible types are for
example an integer and a date value.

SQL Error 60 Reference to the insert table not allowed in the source query

You have referenced in subquery a table where you are inserting values. This is not
allowed.

SQL Error 61 Reference to the update table not allowed in subquery

You have referenced in subquery a table where you are updating values. This is not
allowed.

SQL Error 62 Reference to the delete table not allowed in subquery

You have referenced in subquery a table where you are deleting values. This is not
allowed.

SQL Error 63 Subquery returns more than one column

You have used a subquery that returns more than one column. Only subqueries returning
one column may be used.

SQL Error 64 Cursor cursor not updatable

The cursor opened is not updatable.

SQL Error 65 Insert or update tried on pseudo column

You tried to update a pseudo column (ROWID, ROWVER). Pseudo columns are not
updatable.

SQL Error 66 Could not create user user

A user could not be created. You may not have privileges for this operation.

SQL Error 67 Could not alter user user

A user could not be altered. You may not have privileges for this operation.

SQL Error 68 Could not drop user user

A user could not be dropped. You may not have privileges for this operation.

SQL Error 69 Could not create role role

A role could not be created. You may not have privileges for this operation.

SQL Error 70 Could not drop role role

A role could not be dropped. You may not have privileges for this operation.

252 IBM solidDB: Administrator Guide

Table 77. solidDB SQL errors (continued)

Error code Description

SQL Error 71 Grant role failed

Granting role failed. You may not have privileges for this operation.

SQL Error 72

Revoke role failed

Revoking role failed. You may not have privileges for this operation.

SQL Error 73 Comparison of vectors of different length

You have tried to compare row value constructors that have different number of
dimensions. For example you have compared (a,b,c) to (1,1).

SQL Error 74 Expression * not compatible with aggregate expression

The aggregate expression can not be used with * columns. Specify columns using their
names when used with this aggregate expression. This usually happens when GROUP BY
expression is used with the * columns.

SQL Error 75 Illegal reference to table table

You have tried to reference a table which is not in the FROM list. For example: SELECT
T1.* FROM T2.

SQL Error 76 Ambiguous table name table

You have used the syntax table.column_name ambiguously. For example: SELECT T1.*
FROM T1 A,T1 B WHERE A.F1=0;

SQL Error 77 Illegal use of aggregate expression

You tried to use aggregate expression illegally. For example: SELECT ID FROM TEST
WHERE SUM(ID) = 3;

SQL Error 78 Row fetch failed

The server failed to fetch a row. You may not have SELECT privilege on the table or there
may be an exclusive lock on the row.

SQL Error 79 Subqueries not allowed in CHECK constraint

You tried to use subquery in a check constraint.

SQL Error 80 Sorting failed

External sorter is out of disk space or cache memory. Modify parameters in configuration
file solid.ini.

SQL Error 81 SET syntax results in error

SQL Error 82 Improper type used with LIKE

SQL Error 83 Syntax error

SQL Error 84 Parser error statement

SQL Error 85 Incorrect number of values for INSERT

Appendix D. Error codes 253

Table 77. solidDB SQL errors (continued)

Error code Description

SQL Error 86 Illegal ROWNUM constraint

SQL Error 88 Subquery not allowed in UPDATE expression

Subqueries cannot be used with UPDATE statements.

SQL Error 90 Incorrect ALTER table

SQL Error 93 Illegal GROUP BY expression

GROUP BY expression is illegal.

SQL Error 102 Unused optimizer hint

A table name alias was used in the query, but this alias was not specified as the table name
in the optimizer hint. The alias name must be specified, not the table name.

solidDB executable errors
Table 78. solidDB executable errors

Error code Description

Executable Error 10 Failed to open database

Executable Error 11 Failed to connect to database

Executable Error 12 Database test failed

Executable Error 13 Database fix failed

Executable Error 14 License error

Executable Error 15 Database must be converted

Executable Error 16 Database does not exist

Executable Error 17 Database exists

Executable Error 18 Database not created

Executable Error 19 Database create failed

Executable Error 20 Communication init failed

Executable Error 21 Communication listen failed

Executable Error 22 Service operation failed

Executable Error 23 Failed to open all the defined database files.

Executable Error 24 Database is a broken netcopy database

Executable Error 50 Illegal command line argument

Executable Error 51 Failed to change directory

254 IBM solidDB: Administrator Guide

Table 78. solidDB executable errors (continued)

Error code Description

Executable Error 52 Input file open failed

Executable Error 53 Output file open failed

Executable Error 54 Server connect failed

Executable Error 55 Operation init failed

Executable Error 100 Assert or other fatal error.

solidDB Speed Loader (solload) errors
Table 79. solidDB Speed Loader (solload) errors

Error Code Meaning

No error code Operation was successful

No error code Operation has completed

100 Operation failed. For example, this error code is procedured when performing an
operation, such as flushing arrays and inserting records.

106 Illegal column name

This error applies to the column name used in the control file.

107 Illegal constraint

108 Invalid column data

The data type in the data file conflicts with the table definition.

109 Unique constraint violation

110 Concurrency conflict, two transactions updated or deleted the same row

112 Unsupported character set

114 Null data in NOT NULL column

NULL data value given in a NOT NULL column

116 Communication error, connection is lost

121 RPC parameter error

122 Table not found

124 Wrong number of parameters

Appendix D. Error codes 255

256 IBM solidDB: Administrator Guide

Appendix E. solidDB ADMIN COMMAND syntax

This appendix describes the solidDB ADMIN COMMAND syntax. This command
set is not part of ANSI SQL; it is a solidDB-specific extension.

ADMIN COMMAND
ADMIN COMMAND ’command_name’

command_name ::= ABORT | ASSERTEXIT | BACKUP |
BACKGROUNDJOB | BACKUPLIST | CHECKPOINTING | CLEANBGJOBINFO |
CLOSE | DESCRIBE | ERRORCODE | ERROREXIT | ERRORMESSAGE | FILESPEC |
HELP | HOTSTANDBY | INDEXUSAGE | INFO | LOGMESSAGE | MAKECP | MEMORY |
MESSAGES | MONITOR | NETBACKUP | NETBACKUPLIST | NETSTAT | NOTIFY |
OPEN | PARAMETER | PERFMON | PERFMON DIFF | PID | PROCTRACE |
PROTOCOLS | REPORT | RUNMERGE | SAVE | SHUTDOWN | SQLLIST | STARTMERGE |
STATUS | THROWOUT | TID | TRACE | TRACEMESSAGE | USERID | USERLIST |
USERTRACE | VERSION

Usage

The ADMIN COMMAND is a solidDB-specific SQL extension that executes administrative
commands.

Using ADMIN COMMAND with solidDB SQL Editor (solsql)

When used with the solidDB SQL Editor (solsql), the command_name must be given
with quotes. For example:
ADMIN COMMAND ’backup’

Using ADMIN COMMAND with solidDB Remote Control (solcon)

When used with the solidDB Remote Control (solcon), the ADMIN COMMAND
syntax includes the command_name only, without the quotes. For example:
backup

Abbreviations

Abbreviations for ADMIN COMMANDs are also available. For example:
ADMIN COMMAND ’bak’

To access a list of abbreviated commands, execute
ADMIN COMMAND ’help’

The result set contains two columns: RC and TEXT:
v The RC (return code) column is a command return code. If the execution of the

command was successful, value 0 is returned.
v The TEXT column is the command reply.

Important usage notes

v All options of the ADMIN COMMAND are not transactional and cannot be
rolled back.

v ADMIN COMMANDs and starting transactions

257

Although ADMIN COMMANDs are not transactional, they will start a new
transaction if one is not already open. (They do not commit or roll back any
open transaction.) This effect is usually insignificant. However, it may affect the
'start time" of a transaction, and that may occasionally have unexpected effects.
solidDB's concurrency control is based on a versioning system; you see a
database as it was at the time that your transaction started.
For example, if you issue an ADMIN COMMAND without another commit and
then leave for an hour; when you return, your next SQL command may see the
database as it was an hour ago, that is, when you first started the transaction
with the ADMIN COMMAND.

v Error codes

Error codes in ADMIN COMMANDS return an error only if the command
syntax or parameter values are incorrect. If only the requested operation may be
started, the command returns SQLSUCCESS (0). The outcome of the operation
itself is written into a result set. The result set has two columns: RC and TEXT.
The RC (return code) column contains the return code of the operation: it is "0"
for success, and different numeric values for errors. It is thus necessary to check
both the codes of the ADMIN COMMAND statement and of the operation.

Following is a description of the syntax for each ADMIN COMMAND command
option:

Table 80. ADMIN COMMAND syntax and options

Option syntax Description

ADMIN COMMAND ’abort
[backup | netbackup]’ Aborts the active local or network backup process. The backup operation is not

guaranteed to be atomic, therefore the cancelled operation may produce an incomplete
backup file to the backup directory until the next backup takes place.

If the option is not entered, the command defaults to ADMIN COMMAND ’abort backup’.

ADMIN COMMAND ’assertexit’
Abbreviation: asex Terminates the server immediately without a proper shut down.

ADMIN COMMAND ’backgroundjob’
[LIST [-l] [user]] |
[ABORT {jobid | user | ALL }] |
[DELETE ERRORINFO
{jobid | user | ALL }]’

user ::= USER {username|userid}

Abbreviation: bgjob

Lists and possibly aborts running background jobs, that is, SQL statements that have
been started by using the START AFTER COMMIT statement.

v LIST option lists running jobs for all users or a specified user.

v -l option refers to a long list (similar to ADMIN COMMAND ’userlist -l’).

v ABORT option aborts either jobs by job identification number or all jobs by user
identification number. If you give the ABORT without arguments, it aborts all jobs
from all users.

v DELETE ERRORINFO option deletes error information from the
SYS_BACKGROUNDJOB_INFO system table, where the errors encountered by
background jobs are stored. This option performs the same operation as the
deprecated ADMIN COMMAND ’CLEANBGJOBINFO’ command.

ADMIN COMMAND ’backup [-s]
[backup_directory]’
Abbreviation: bak

Makes a backup of the database. The operation can be performed as a synchronized
or an asynchronic (default) manner. The synchronized operation is specified by using
the optional -s option.

The default backup directory is defined with the General.BackupDirectory. The
backup directory may also be given as an argument. For example, backup abc creates
a backup in directory abc. All directory definitions are relative to the solidDB working
directory.

ADMIN COMMAND ’backuplist’
Abbreviation: bls

Displays a status list of last local backups.

ADMIN COMMAND ’checkpointing {ON|OFF}’
Abbreviation: cp

Turns checkpointing on or off.

258 IBM solidDB: Administrator Guide

Table 80. ADMIN COMMAND syntax and options (continued)

Option syntax Description

ADMIN COMMAND ’cleanbgjobinfo’
Abbreviation: cleanbgi

Note: This command has been deprecated. Use ADMIN COMMAND ’backgroundjob’
instead.

Cleans the table SYS_BACKGROUNDJOB_INFO containing status data of background
procedures.

ADMIN COMMAND ’close’
Abbreviation: clo

Closes the server to new connections; no new connections are allowed.

ADMIN COMMAND ’describe
parameter param’
Abbreviation: des

Returns a description of all parameters or a parameter specified with param.

param must be given in the format section_name.param_name. The section and
parameter names are case-insensitive.

The following example describes parameter Com.Trace = y/n:

ADMIN COMMAND ’des parameter com.trace’ RC TEXT
-- ----
0 Trace
0 If set to ’yes’, trace information of the network messages

is written to a file
0 BOOL
0 RW/STARTUP
0
0
0 No

7 rows fetched.

ADMIN COMMAND ’errorcode
{all | SOLID_error_code}’
Abbreviation: ec

Returns a description of all error codes or a specific error code.

SOLID_error_code is the code number, for example 10034.

ADMIN COMMAND ’errorcode 10034’;
RC TEXT
-- ----
0 Code: DBE_ERR_SEQEXIST (10034)
0 Class: Database
0 Type: Error
0 Text: Sequence already exists

4 rows fetched.

ADMIN COMMAND ’errorexit <number>’
Abbreviation: erex

Forces the server into an immediate process exit with the given process exit code.

ADMIN COMMAND ’errormessage <string>’
Abbreviation: errmsg

Outputs the user-defined <string> to the error message log (solerror.out).

ADMIN COMMAND ’filespec’
Abbreviation: fs Displays database file specifications defined with the IndexFile.FileSpec parameter as

well file sizes and current fill ratios (percentage).

ADMIN COMMAND ’help’
Abbreviation: ?

Displays available commands.

ADMIN COMMAND
’hotstandby [option]’
Abbreviation: hsb

A HotStandby command.

For a list of options, see the IBM solidDB High Availability User Guide.

For a list of options, see HotStandby ADMIN COMMANDs in the IBM solidDB High
Availability User Guide.

ADMIN COMMAND ’indexusage’
Abbreviation: idxu

Displays the indexes, showing the number of times each index has been used.

Appendix E. solidDB ADMIN COMMAND syntax 259

Table 80. ADMIN COMMAND syntax and options (continued)

Option syntax Description

ADMIN COMMAND ’info [options]’
Abbreviation: info

Returns server information.

The output consists of 25 rows of data.

options are as follows:

v numusers - Number of current users.

v maxusers - Maximum number of users.

v sernum - Server serial number.

v dbsize - Database size.

v logsize - Size of log files.

v uptime - Server up since.

v bcktime - Timestamp of last successfully completed local backup.

v cptime - Timestamp of last successfully completed checkpoint.

v tracestate - Current trace state.

v monitorstate - Current monitor state, shown as the number of users who have SQL
monitoring currently enabled (see ADMIN COMMAND ’monitor’ for information on SQL
monitoring).

If all users have SQL monitoring enabled, the value is -1.

v openstate - Current open or close state — that is, whether the database server
accepts new connections or not. Open means that the database server accepts new
connections.

v nummerges - Number of merges.

v numlocks - Number of locks.

v numcursors - Number of open cursors.

v numtransactions - Number of open transactions.

v memtotal - Total amount of memory allocated bytes.

v dbfreesize - Amount of free space remaining in database.

v dbpagesize - Database page size.

v imdbsize - Amount of space used by in-memory tables (including temporary tables
and transient tables) and the indexes on those tables. The return value is in
kilobytes (KB) and is in the form of a VARCHAR.

v name - Server name.

v primarystarttime - The time the Primary role has started.

v secondarystarttime- The time the Secondary role has started.

v dbconfigsize - The configured database size.

v dbcreatetime - This option prints out the database creation timestamp. The
abbreviation dbcreationtime can also be used.

v processsize - This option prints out the system-level virtual process size in
kilobytes. The abbreviation psize can also be used.

More than one option can be used per command. Values are returned in the same
order as requested, one row for each value.

Example:

ADMIN COMMAND ’info dbsize logsize’;
RC TEXT
-- ----
0 851968
0 573440

2 rows fetched.

ADMIN COMMAND ’logmessage <string>’
Abbreviation: logmsg

Outputs the user-defined <string> to the message log (solmsg.out).

260 IBM solidDB: Administrator Guide

Table 80. ADMIN COMMAND syntax and options (continued)

Option syntax Description

ADMIN COMMAND ’makecp [-s]’
Abbreviation: mcp Makes a checkpoint.

Only users with SYS_ADMIN_ROLE privilege can execute this command.

By default, the checkpoint is asynchronous. With the option -s, the command returns
only after the checkpoint has completed.

ADMIN COMMAND ’memory’
Abbreviation: mem Returns the server process memory size. The reported process memory size can differ

from the process size reported by your operating system.

ADMIN COMMAND ’messages
[{ warnings | errors}] [count]’
Abbreviation: mes

Displays server messages. Optional severity and message numbers can also be
defined. For example:

ADMIN COMMAND 'messages warnings 100' displays last 100 warnings.

ADMIN COMMAND ’monitor
{on | off} [user
{username | userid}]’
Abbreviation: mon

Sets server monitoring on and off.

When set to on, user activity and SQL calls are logged into the soltrace.out file.

ADMIN COMMAND ’netbackup
[options] [DELETE_LOGS |
KEEP_LOGS] [connect
connect str] [dir
backup dir]’
Abbreviation: nbak

Makes a network backup of the database. The operation can be performed as a
synchronized or an asynchronic (default) manner. The synchronized operation is
specified by using the -s option.

DELETE_LOGS means that backed-up log files in the source server are deleted. This
is sometimes referred to as full backup. This is the default value.

KEEP_LOGS means that backed-up log files are kept in the source server. This is
sometimes referred to as copy backup. Using KEEP_LOGS corresponds to setting the
General.NetbackupDeleteLog parameter to no.

The default connect string and the default netbackup directory are defined with the
General.NetBackupConnect and the General.NetBackupDirectory parameters.

The options that are entered with this command override the values specified in the
configuration file.

Directory definitions are relative to the solidDB working directory.

ADMIN COMMAND ’netbackuplist’
Abbreviation: nbls Displays a status list of the most recently made network backups of the database

server.

ADMIN COMMAND ’netstat’
Abbreviation: net

Displays server settings and the network status.

ADMIN COMMAND ’notify
user {username | user id | ALL }
message’
Abbreviation: not

This command sends an event to a given user with event identifier NOTIFY. This
identifier is used to cancel an event-waiting thread when the statement timeout is not
long enough for a disconnect or to change the event registration.

The following example sends a notify message to a user with user id 5 ; the event
then gets the value of the message parameter.

ADMIN COMMAND ’notify user 5 Canceled by admin’

ADMIN COMMAND ’open’
Abbreviation: ope

Opens server for new connections; new connections are allowed.

Appendix E. solidDB ADMIN COMMAND syntax 261

Table 80. ADMIN COMMAND syntax and options (continued)

Option syntax Description

ADMIN COMMAND ’parameter
[-r][name[=
[*|value][temporary]]’
Abbreviation: par

Displays and sets server parameter values.

If you run the command without any options, all parameters are displayed.

The output can contain three columns. For example:

0 PassThrough SqlPassthroughRead Force Conditional None

v First column shows the current value (Force) that might have been changed
dynamically.

v Second column shows the value set in the .ini file at startup. (Conditional)

v Third column shows the factory value. (None)

v -r means that only the current parameter values are returned.

v name may be a section name or a parameter name prefaced by a section name
(section_name.parameter_name). There must be a period between the section name
and the parameter name.

v = [*|value][temporary]

– If you assign a parameter value with an asterisk (*), the parameter will be set to
its factory value.

– If value is not specified, the parameter will be set to its startup value.

– temporary means that the changed value is not stored in the solid.ini file.

For example:

v ’parameter general’ displays all parameters from section [General].

v ’parameter general.readonly’ displays the parameter Readonly in the [General]
section.

v ’parameter com.trace=yes’ sets communication trace on.

v ’parameter com.trace=’ sets communication trace to its startup value.

v ’parameter com.trace=*’ sets communication trace to its factory value.

ADMIN COMMAND ’perfmon
[- c | - r] [print_options]
[name_prefix_list]’
Abbreviation: pmon

Returns server performance counters for the past few minutes at approximately one
minute intervals. Most values are shown as the average number of events per second.
Counters that cannot be expressed as events per second (for example, database size)
are expressed in absolute values.

v -c - prints actual counter values for each snapshot.

v -r - prints counter values in raw mode, which includes only the latest counter
values without any formatting. The counter names are not printed. This option is
useful if actual monitoring is performed using some other external program that
retrieves the counter values from the server. You can retrieve the counter names
with the --xnames option.

v print_options

– -xtime - prints the time in seconds

– -xtimediff - prints the difference to the last pmon call in milliseconds

– -xnames - prints out the column names for the output

– -xdiff - indicates the difference to the last ADMIN COMMAND 'perfmon'
execution instead of the absolute value

v name_prefix_list - limits the output to specific counter types, as indicated by the first
word in the counter name. For example, to print all File related counters, the
name_prefix_list should be file. You can also specify multiple prefixes.

The following example returns all information:

ADMIN COMMAND 'perfmon'

The following example returns all values for counters whose name starts with prefix
File and Cache.

ADMIN COMMAND 'perfmon -c file cache'

262 IBM solidDB: Administrator Guide

Table 80. ADMIN COMMAND syntax and options (continued)

Option syntax Description

ADMIN COMMAND ’perfmon diff
[start | stop]
[filename][interval]’
Abbreviation: pmon diff

Starts a server task that prints out all perfmon counters with specified intervals to a
file.

v filename is the name of the output file. The performance data is output in
comma-separated value format; the first row contains the counter names, and each
subsequent row contains the performance data per each sampling time.

The default file name is pmondiff.out.

v interval is the interval in milliseconds at which performance data is collected.

The default interval is 1000 milliseconds.

The following command starts a task that outputs performance data to myd.csv file on
500 milliseconds interval:

ADMIN COMMAND 'pmon diff start myd.csv 500'

ADMIN COMMAND ’pid’
Abbreviation: pid

Returns server process id.

ADMIN COMMAND ’proctrace
{ on | off } user username
{ procedure | trigger | table }
entity_name’
Abbreviation: ptrc

This turns on tracing in stored procedures and triggers.

username is the name of the user whose procedure calls (or triggers) you want to trace.
If multiple connections are using the same username, calls from all of those
connections will be traced. Furthermore, if you are using advanced replication, the
tracing will be done not only for calls on the replica, but also calls that are propagated
to the master and then executed on the master.

entity_nameis the name of the procedure, trigger, or table for which you want to turn
tracing on or off. If you specify a procedure or trigger name, then it will generate
output for every statement in the specified procedure or trigger. If you specify a table
name, then it will generate output for all triggers on that table. Trace is activated only
when the specified username calls the procedure / trigger.

For more details about proctrace, see section Tracing facilities for stored procedures
and triggers in IBM solidDB SQL Guide.

See also ADMIN COMMAND ’usertrace’.

ADMIN COMMAND ’protocols’
Abbreviation: prot Returns a list of available communication protocols, one row for each protocol.

Example (Windows environments):

ADMIN COMMAND ’protocols’;
RC TEXT
-- ----
0 NmPipe np
0 TCP/IP tc

2 rows fetched.

ADMIN COMMAND ’report filename’
Abbreviation: rep

Generates a report of server information to a file defined with filename.

ADMIN COMMAND ’runmerge’
Abbreviation: rm

Runs an index merge.

ADMIN COMMAND ’save parameters
[filename]’
Abbreviation: save

Saves the set of current configuration parameter values to a file. If no file name is
given, the default solid.ini file is rewritten. This operation is performed implicitly at
each checkpoint.

ADMIN COMMAND
’shutdown [force]’
Abbreviation: sd

Stops solidDB.

If the force option is used, the active transactions are aborted and the users are
disconnected forcefully.

ADMIN COMMAND ’sqllist
top number_of_statements’

This command prints out a list of the longest running SQL statements among the
currently running statements. The list contains the selected number of statements.

ADMIN COMMAND ’startmerge’
Abbrevation: sm Starts and waits for completion of merge.

Appendix E. solidDB ADMIN COMMAND syntax 263

Table 80. ADMIN COMMAND syntax and options (continued)

Option syntax Description

ADMIN COMMAND ’status’
Abbreviation: sta

Displays server statistics.

ADMIN COMMAND ’status
backup | netbackup’
Abbreviation: sta backup | netbackup

Displays status of the last started local or network backup. The status can be one of
the following:

v If the last backup was successful or no backups have been requested, the output is
0 SUCCESS.

v If the backup is in process (for example, started but not ready yet), then the output
is 14003 ACTIVE.

v If the backup is being finalized, the output is 14003 STOPPING.

v If the last backup failed, the output is: errorcode ERROR where the errorcode shows
the reason for the failure.

ADMIN COMMAND ’throwout
{username |
userid | all}’
Abbreviation: to

Exits all or specific users from solidDB. To exit a specified user, give the username or
user id as an argument. To throw out all users, use the keyword ALL as an argument.

ADMIN COMMAND ’tid’
Abbreviation: tid This command returns the ID (4-digit code) of the current user thread (in the server).

ADMIN COMMAND ’trace
{ on | off } sql | est |
estplans | rpc |
sync | flowplans |
rexec | batch | logreader |
info <level> |
all | active’
Abbreviation: tra

Sets server trace on or off.

The name of the default trace file is soltrace.out.

The tracing options are:

v sql - SQL messages

v est - SQL estimator information

v estplans - SQL execution plan

v rpc - Network communications

v sync - synchronization messages

v flowplans - plans of SQL statements related to advanced replication

v rexec - remote procedure call information

v batch - background job and deferred procedure call information

v logreader - logs the following information into the trace file soltrace.out.

– Logreader read started.

– Errors in logreader cursor start. Total of 14 different error conditions are printed.

– Logreader read stopped.

– Abnormal read stop after certain system changes.

– High level information of number of returned log records and read progress.

Each information is tagged with user id so operations from different users can be
separated.

v info <level> - SQL execution trace (level can be 0...8)

v all - both SQL messages and network communications messages are written to the
trace file.

v active - lists all active traces

ADMIN COMMAND ’tracemessage <string>’
Abbreviation: trcmsg

Outputs the user-defined <string> to the trace message log (soltrace.out).

264 IBM solidDB: Administrator Guide

Table 80. ADMIN COMMAND syntax and options (continued)

Option syntax Description

ADMIN COMMAND ’userid’
Abbreviation: uid

Returns the user identification number of the current connection.

The lifetime of an Id is that of the user session. After a user logs out, the number may
be reused.

ADMIN COMMAND ’userid’
RC TEXT
-- ----
0 8

1 rows fetched.

For example, the userid can be used in the ADMIN COMMAND ''throwout'
command to disconnect a specific user.

Appendix E. solidDB ADMIN COMMAND syntax 265

Table 80. ADMIN COMMAND syntax and options (continued)

Option syntax Description

ADMIN COMMAND ’userlist [-l]
[name | id]’
Abbreviation: ul

This command displays a list of users that are currently logged into the database, as
well as information about various database operations and settings for each user. The
option -l (long) displays a more detailed output.

Without the -l option, the following information is displayed: User name, User Id,
Type, Machine Id, Login time, and Appinfo (if available).

With the -l option, the following information is displayed:

v Id - The user session identification number (userid) within the database. The
lifetime of the userid is that of the user session. After a user logs out, the number
may be reused.

v Type - Client type. Possible values are:

– Java, which refers to a client using JDBC

– ODBC, which refers to a client using ODBC

– SQL, which refers to solidDB SQL Editor (solsql)

v Machine - The client computer name (host name) and its IP address, if available

v Login tile - The client computer login timestamp

v Appinfo - The value of the client computer's environmental variable SOLAPPINFO
(ODBC), or the value of JDBC connection property solid_appinfo.

v Last activity - The time when the client last time sent a request to the server.

v Autocommit - Value 0 means that the autocommit mode is switched off; the current
transaction is open until a COMMIT or ROLLBACK statement is issued.

Value 1 means that the autocommit mode is switched on; each statement is
automatically committed.

v RPC compression - Indicates whether the data transmission compression is on or off.

v Transparent failover - This field indicates if Transparent Failover (TF) is in use
(HotStandby configurations). Because solidDB tools do not support TF, you will
only see a "no" value in this field when using solsql or solcon.

v Transparent cluster - Transparent cluster indicates whether the load balancing feature
(in HSB) is enabled for this connection or not.

v Transaction active - This field indicates whether there is an open, uncommitted
transaction on the connections (value 1) or not (value 0). When the connection is set
for Autocommit, the value is, most of the time, 0.

v Transaction duration - This field indicates the duration of the currently open
transaction. After COMMIT or ROLLBACK, the value becomes 0.

v Transaction isolation - This field indicates the transaction isolation level for the
transactions. The isolation level decides how data which is a part of an ongoing
transaction is made visible to other transactions.

v Transaction durability - This field indicates the durability of the currently open
transaction.

v Transaction safeness - This field indicates the safeness of the currently open
transaction (set with HotStandby.SafenessLevel).

v Transaction autocommit - This field indicates whether the currently open transaction
is automatically committed. If the transaction autocommit for the current
transaction is switched off (value 0), the current transaction is open until a
COMMIT or ROLLBACK statement is issued. After that, a new statement starts a
new transaction.

If the autocommit mode is switched on for the current transaction (value 1), each
statement is automatically committed.

266 IBM solidDB: Administrator Guide

Table 80. ADMIN COMMAND syntax and options (continued)

Option syntax Description

..continued..

ADMIN COMMAND ’userlist [-l]
[name | id]’
Abbreviation: ul

v Current catalog - Indicates the current catalog name.

v Current schema - Indicates the current schema name.

v Sortgroubby - Indicates how the GROUP BY statement is performed if explicit
information about the number of result groups is not available. There are two
possible values:

– ADAPTIVE - GROUP BY input is pre-sorted if the real number of result groups
exceeds the number of rows that fit into the central memory array for GROUP BY.

–

STATIC - GROUP BY input is pre-sorted whenever there are at least two items in
the GROUP BY list. Otherwise, the GROUP BY input is not pre-sorted.

v Simple optimizer rules - Indicates whether simple optimizer rules are in use
(SQL.SimpleOptimizerRules) Possible values are Yes/No/Default.

v Statement max time - Indicates the connection-specific statement maximum
execution time in seconds. This setting is effective until a new maximum time is
given. Zero time indicates that there is no maximum time. This is the default value.

v Lock timeout - Indicates the timeout set by using the SET LOCK TIMEOUT statement.

v Optimistic lock timeout - Indicates the timeout set by using the SET OPTIMISTIC LOCK
TIMEOUT statement.

v Idle timeout - Indicates the timeout set by using the SET IDLE TIMEOUT
statement.

v Join Path Span - Indicates the join path span value set by using the SET SQL
JOINPATHSPAN statement.

v RPC seqno - Internal protocol message sequence number.

v SQL sortarray - The size of user-specific internal sort array.

v SQL unionsfromors - The value tells how many (at most) OR operators may be
converted to UNIONs. Unions are faster but require more memory to execute.

v EVENT QUEUE LENGTH - Indicates the number of posted events in the event
queue.

v Connection idle timeout - Indicates the connection idle timeout setting

v Stmt id - The current statement identification number. The numbers are session
specific and they are assigned for each different statement.

v Stmt state - An internal statement execution state.

v Stmt rowcount - The number of rows retrieved or inserted in the current statement.

v Stmt start time - The current statement start date and time.

v Stmt last activity time -

v Stmt duration - Internal statement duration in seconds. Note: this value has no
relevance to the externally visible statement latency. Typically, the statement
duration is much longer than latency.

v Stmt SQL str - The current SQL statement string.

Appendix E. solidDB ADMIN COMMAND syntax 267

Table 80. ADMIN COMMAND syntax and options (continued)

Option syntax Description

ADMIN COMMAND ’usertrace
{ on | off } user username
{ procedure | trigger | table }
entity_name’
Abbreviation: utrc

This turns on user tracing in stored procedures and triggers. This command will
generate output for every WRITETRACE statement in the specified procedure or
trigger.

v username is the name of the user whose procedure calls (or triggers) you want to
trace. If multiple connections are using the same username, then calls from all of
those connections will be traced. Furthermore, if you are using advanced
replication, the tracing will be done not only for calls on the replica, but also calls
that are propagated to the master and then executed on the master.

v entity_name is the name of the procedure, trigger, or table for which you want to
turn tracing on or off. If you specify a table name, it will generate output for all
triggers on that table. Trace is activated only when the specified user calls the
procedure / trigger.

For more details about usertrace, see section Tracing facilities for stored procedures
and triggers in IBM solidDB SQL Guide.

See also ADMIN COMMAND 'proctrace'.

ADMIN COMMAND ’version’
Abbreviation: ver

Displays server version information and information related to the solidDB software
licence in use.

268 IBM solidDB: Administrator Guide

Index

Special characters
-x autoconvert 176
-x convert 176
@ AT sign 63

A
abnormal shutdown

recovering from 36
AbortTimeOut (parameter) 156
access mode 121

read-only 121
RO 121
RW 121
RW/Create 121
RW/Startup 121

AdaptiveRowsPerMessage (parameter) 156
ADMIN COMMAND

abort 258
assertexit 258
backgroundjob 258
backup 258
backuplist 258
checkpointing 258
cleanbgjobinfo 259
close 259
commands 257
describe 259
errorcode 259
errorexit 259
filespec 259
help 259
hotstandby 259
indexusage 259
info 260
info processsize 87
makecp 261
memory 261
messages 261
monitor 261
netbackup 261
netbackuplist 261
netstat 261
notify 261
open 261
parameter 262
perfmon 262
perfmon diff 263
pid 263
proctrace 263
protocols 263
runmerge 263
save parameters 263
shutdown 263
sqllist 263
startmerge 263
status 264
throwout 264
tid 264
trace 264

ADMIN COMMAND (continued)
userid 265
userlist 266, 267
usertrace 268
version 268

ADMIN COMMAND 'perfmon'
server performance 19

ADMIN COMMAND 'report report_filename'
producing a report for troubleshooting 19

ADMIN COMMAND 'status backup'
querying last backup status 19

ADMIN COMMAND 'status'
querying database status 18

ADMIN COMMAND 'throwout' 29
disconnecting users 19

ADMIN COMMAND 'userlist'
querying for connected users 18

administering multiple servers manually 10
AllowConnect (parameter) 156
AllowDuplicateIndex (parameter) 152
amount of memory used by in-memory tables and

indexes 260
ANSI (reserved word) 67
architecture

multithread processing 7
autocommit 94
autoconvert

command line option 176
automating administrative tasks 10, 41

B
B-tree 4
backup

and timed commands 41
automating 41
configuring and automating 32
failed 35
local 29
making manually 29
monitoring and controlling 34
network backup 30
network backup server administration 34
querying 19
restoring 36
typical problems 35
what happens during backup 33

BackupBlockSize (parameter) 127
BackupCopyIniFile (parameter) 127
BackupCopyLog (parameter) 127
BackupCopySolmsgOut (parameter) 127
BackupDeleteLog (parameter) 127
BackupDirectory (parameter) 52, 128
BackupStepsToSkip (parameter) 128
bcktime ADMIN COMMAND 260
BLANKS

solidDB Speed Loader 68
BLOB 4, 14

definition 14
BlockSize (parameter) 14, 58, 140, 142, 151
Bonsai Tree 4, 92, 94

269

Bonsai Tree (continued)
concurrency 4
index compression 5
multiversion 4
reducing size 94

C
cache

database 89
CacheSize (parameter) 51, 140
CAST (function) 218
catalogs

name criteria 11
CHARACTERSET

solidDB Speed Loader 69
CharPadding (parameter) 152
checkpoint

'makecp' command 261
CheckpointDeleteLog (parameter) 129
CheckpointInterval (parameter) 93, 129
checkpoints 37

and timed commands 41
automatic daemon 37
automating 41
erasing automatically 37
forcing 94
frequency 93
tuning 93

client-side configuration parameters 171
ClientReadTimeout (parameter) 172
close 29
closing solidDB 28
clustering

data clustering 4
columns

setting LONG VARCHAR 14
command line options 175
COMMIT statements

providing in application code 95
troubleshooting 96

communication
between client and server 99
selecting a protocol 103
tracing problems 111

communication protocols 103
Named Pipes 106
NetBIOS 106
selecting 103
shared memory (deprecated) 104
summary 107
supported protocols 103
TCP/IP 104
UNIX Pipes 105

Communication Session Layer
described 7

communication tracing 54
configuration file 117, 171

described 12
on the client 47
on the server 47

configuring
client-side configuration file 47
configuration file 47
default settings 47
example 47
factory values 47

configuring (continued)
managing parameters 55, 56, 57
parameter settings 47
server-side configuration file 47
setting parameters 55, 57
solid.ini 47
viewing parameter descriptions 56
viewing parameters 55

Connect (parameter) 48, 172
connect string 49

clients 101
connecting

basics 15
ConnectionCheckInterval (parameter) 157
connections

and committed transactions 95
determining existing 95

ConnectStrForMaster (parameter) 167, 234
ConnectTimeOut (parameter) 157, 172
control file

solidDB Speed Loader 64, 67
conversions

command line option 176
converting database format 176
ConvertOrsToUnionsCount (parameter) 153
counters 20
cptime ADMIN COMMAND 260
creating

checkpoints 37
CursorCloseAtTransEnd (parameter) 153

D
D-table 5
Data Sources 108

defining in solid.ini 102, 108
database

automating 41
backing up 29
block size 14
cache 89, 90
checking last backup status 19
checking overall status 18
closing 38, 41
compacting 42
configuring 55
converting format 176
creating 11
creation time 260
currently connected users 18
decreasing database file size 50
defining objects 14
disconnecting a user 19
free space in 260
in-memory 55
index file 50
location 14, 50
login 12, 15
maximum size 14
monitoring 19
opening 41
performance 19
querying last backup 19
recovery 36
restoring master and replica 29
several databases on one computer 41
shutting down 28

270 IBM solidDB: Administrator Guide

database (continued)
size 11, 50
troubleshooting 19
using in-memory database 91

database cache 89, 90
defining cache size 89
dynamically changing cache size 90

DatabaseSizeReportInterval (parameter) 157
DataDictionaryErrorMaxWait (parameter) 129
DATE

solidDB Speed Loader 69
dbconfigsize ADMIN COMMAND 260
dbcreatetime ADMIN COMMAND 260
dbfreesize ADMIN COMMAND 260
dbpagesize ADMIN COMMAND 260
dbsize ADMIN COMMAND 260
DecFloatPrecision16 (parameter) 153
DecimalPrecAsNumeric (parameter) 129
decreasing database file size 50
decrypting databases 44
DefaultStoreIsMemory (parameter) 130
DigitTemplateChar (parameter) 142
DirectIO (parameter) 140, 142
DisableIdleMerge (parameter) 130
DisableOutput (parameter) 16, 158
Disabling message log output 16
disconnecting users 29
durability

relaxed 83
strict 83

DurabilityLevel (parameter) 143

E
Echo (parameter) 158
EmulateOldTimestampDiff (parameter) 153
EnableHints (parameter) 153
ENCLOSURE

solidDB Speed Loader 70
encryption 43

DES
changing password 44
creating 43
decrypting 44
enabling 43
password 44
starting encrypted database 44

level 45
entering timed commands 41
environment variables

SOLTRACE 111
SOLTRACEFILE 111

error codes
error handling 179

error handling
AT messages 241
BCKP messages 241
COM messages 237
communication errors 207
CP messages 241
database errors 183
DBE errors 239
error codes 179
executable errors 254
FIL messages 246
HotStandby errors 234
HSB errors 243

error handling (continued)
INI messages 242
LOG messages 242
procedure errors 216
RPC errors 219
SA API errors 219
server errors 210
SNC errors 245
sorter errors 219
Speed Loader errors 255
SQL API errors 235
SQL errors 247
SRV errors 238
synchronization errors 221
system errors 181
TAB messages 247
table errors 192
XS errors 246

events
soldd and listing event descriptions 79

ExecRowsPerMessage (parameter) 158, 173
ExecuteNodataODBC3Behaviour (parameter) 153
executing

system commands, automating 41
Execution Graph

described 6
ExtendIncrement (parameter) 92, 140
external sorting 90

specify a directory for external sorting algorithm 53

F
file locations 12
file system 12
FileFlush (parameter) 144
FileNameTemplate (parameter) 53, 144
FileSpec (parameter) 14, 50
FileWriteFlushMode (parameter) 130
ForceThreadsToSystemScope (parameter) 158
format of configuration parameter names and values 120
free space in database 260

H
HealthCheckEnabled (parameter) 159
HealthCheckInterval (parameter) 159
HealthCheckTimeout 159

I
I/O

distributing 92
tuning 92

IBMPC (reserved word) 67
ImdbMemoryLimit (parameter) 148
ImdbMemoryLowPercentage (parameter) 149
ImdbMemoryWarningPercentage (parameter) 149
imdbsize ADMIN COMMAND 260
ImplicitStart (parameter) 123
import file

solidDB Speed Loader 65
index file

splitting to multiple disks 50
Info (parameter) 54, 154
InfoFileFlush (parameter) 154
InfoFileName (parameter) 154

Index 271

InfoFileSize (parameter) 154
ini file

solidDB Speed Loader 65
intelligent join constraint transfer 6
INTO_TABLE_PART

solidDB Speed Loader 70
IOThreads (parameter) 130
isolation levels

read committed 85
repeatable read 86
serializable 86

IsolationLevel (parameter) 154

J
JDBC 1

K
KeepAllOutFiles (parameter) 159

L
Latin1CaseSemantics (parameter) 154
Light Client 49
Listen (parameter) 50, 123
listen name 99, 100, 101
listing users 267
Local backup 29
LocalStartTasks (parameter) 159
LockEscalationEnabled (parameter) 149
LockEscalationLimit (parameter) 150
LockHashSize (parameter) 131, 150
LockWaitTimeOut (parameter) 132
log files 37

solerror.out 16
solidDB Speed Loader 65
solmsg.out 16

LogDir (parameter) 145
LogEnabled (parameter) 145
logging

Transaction Durability 83
transactions 37

Logical Data Source Names 108
login 12

incorrect username or password 12
LogReaderEnabled (parameter) 146
logsize ADMIN COMMAND 260
LogWriteMode (parameter) 145
LongSequential SearchLimit (parameter) 132

M
M-table 5
makecp 94
manual administration 10
master database

backing up 29
restoring 29

MasterStatementCache (parameter) 167
MaxBgTaskInterval (parameter) 160
MaxBlobExpressionSize (parameter) 155

defining objects 14
MaxBytesCachedInPrivateMemoryPool (parameter) 150
MaxCacheUsage (parameter) 150

MaxCacheUsePercent (parameter) 151
MaxConstraintLength (parameter) 161
MaxFilesTotal (parameter) 151
MaxLogSize (parameter) 146
MaxMemPerSort (parameter) 152
MaxMergeParts (parameter) 132
MaxMergeTasks (parameter) 132
MaxNestedProcedures (parameter) 155
MaxNestedTriggers (parameter) 155
MaxOpenCursors (parameter) 161
MaxOpenFiles (parameter) 132
MaxPhysMsgLen (parameter) 123
MaxRPCDataLen (parameter) 161
MaxSpace (parameter) 147
MaxStartStatements (parameter) 161
maxusers ADMIN COMMAND 260
MaxWriteConcurrency (parameter) 133
memory

physical 89
virtual 89

memory allocation
tuning 86

memory consumption 86
MemoryReportDelta (parameter) 161
MemoryReportLimit (parameter) 161
MemorySizeEventHysteresisPercentage (parameter) 162
MemorySizeReportInterval (parameter) 162
memtotal ADMIN COMMAND 260
MergeInterval (parameter) 92, 133
message log 16
MessageLogSize (parameter) 162
MinCheckpointTime (parameter) 93, 133
MinMergeTime (parameter) 133
MinSplitSize (parameter) 145
monitoring 18
monitorstate ADMIN COMMAND 260
MSWINDOWS (reserved word) 67
Multithread Processing

described 7
multiversioning

solidDB Bonsai Tree 4

N
Name (parameter) 162
name ADMIN COMMAND 260
Named Pipes 106
netbackup 30
NetBackupConnect (parameter) 133
NetBackupConnectTimeout (parameter) 133
NetBackupCopy SolmsgOut (parameter) 133
NetBackupCopyIniFile (parameter) 133
NetBackupCopyLog (parameter) 133
NetBackupDeleteLog (parameter) 133
NetBackupDirectory (parameter) 134
NetBackupDirectory (parameters) 52
NetBackupReadTimeout (parameter) 134
NetBackupRootDir (parameter) 162
NetBIOS 106
network backup 30

directory 52
network communications

communication session layer 7
solidDB Network Services 6
specifying tracing for 54
troubleshooting 116

272 IBM solidDB: Administrator Guide

network messages
tuning 92

network names 99, 100, 101
adding 100
clients 101
defining 48, 49
modifying 100
Named Pipes 106
NetBIOS 106
removing 101
shared memory (deprecated) 104
TCP/IP 104
UNIX Pipes 105
viewing 100

network trace facility 111
nmp 106
nmpipe 106
NoAssertMessages (parameter) 173
non-graphical user interfaces

creating new database 11
NULLIF

solidDB Speed Loader 68
Speed Loader 74

NULLSTR
solidDB Speed Loader 68

NumberOfMemoryPools (parameter) 151
numcursors ADMIN COMMAND 260
NumericPadding (parameter) 155
numlocks ADMIN COMMAND 260
nummerges ADMIN COMMAND 260
numtransactions ADMIN COMMAND 260
numusers ADMIN COMMAND 260

O
ODBC 1, 48, 49
ODBCCharBinding (parameter) 173
ODBCDefaultCharBinding (parameter) 162
ODBCHandleValidation (parameter) 172
open 29
openstate ADMIN COMMAND 260
operating system

tuning 89
optimization

optimized sorts 91
optimizer hints 2

P
parameters 117, 171

BackupDirectory 52
BlockSize 14, 58
CacheSize 51
CheckpointInterval 93
Connect 48
ExtendIncrement 92
FileNameTemplate 53
FileSpec 14, 50
Info 54
Listen 50
MaxBlobExpressionSize 14
MergeInterval 92
MinCheckpointTime 93
NetBackupDirectory 52
ProcessMemoryCheckInterval 87, 88
ProcessMemoryLimit 87, 88

parameters (continued)
ProcessMemoryLowPercentage 88
ProcessMemoryWarningPercentage 88
setting 92
SortArraySize 90
Threads 54
TmpDir 53
Trace 49, 55
TraceFile 49, 55

passwords
criteria 11
maximum number of characters 11

PCOEM (reserved word) 67
performance

counters 20
diagnosing problems 96
snapshot of 19
tuning 83, 96

performing batch mode operations 10
Pessimistic (parameter) 134
PessimisticTableUseNFetch (parameter) 162
phantom 86
phantom updates

repeatable read 86
serializable 86

physical memory 89
Ping facility 113
POSITION (function)

solidDB Speed Loader 74
PreFlushPercent (parameter) 141
PRESERVE BLANKS

solidDB Speed Loader 70
primarystarttime ADMIN COMMAND 260
PrintMsgCode (parameter) 16, 163
problem reporting 114
ProcedureCache (parameter) 155
process size

controlling 87
elements 87

ProcessMemoryCheckInterval (parameter) 87, 88, 163
ProcessMemoryLimit (parameter) 87, 88, 163
ProcessMemoryLowPercentage (parameter) 88, 164
ProcessMemoryWarningPercentage (parameter) 88, 164
processsize ADMIN COMMAND 260
programming interfaces 1
proprietary interfaces 1
psize ADMIN COMMAND 260

Q
Query processing

described 5
querying database

ADMIN COMMAND 'status' 18

R
RConnectLifetime (parameter) 124
RConnectPoolSize (parameter) 124
RConnectRPCTimeout (parameter) 124
READ COMMITTED 168
ReadAhead (parameter) 141
ReadBufSize (parameter) 124
ReadLevelMaxTime (parameter) 134
ReadMostlyLoadPercentAtPrimary (parameter) 123
Readonly (parameter) 134

Index 273

ReadThreadMode (parameter) 165
recovery 83

automatic roll-forward 29
ReferenceCacheSizeForHash (parameter) 142
RefreshIsolationLevel (parameter) 168
RefreshReadLevelRows (parameter) 168
relaxed durability 83
RelaxedMaxDelay (parameter) 145
ReleaseMemoryAtShutdown (parameter) 151
RemoteStartTasks (parameter) 165
REPEATABLE READ 168
replica databases

backing up 29
restoring 29

ReplicaRefreshLoad (parameter) 169
reports

automating 41
creating a continuous performance monitoring report 20
creating a report for troubleshooting 19
creating a status report 19
full list of perfmon counters 21

Restoring backups 36
RO

access mode 121
roles

database administration 9
roll-forward recovery 29
RowsPerMessage (parameter) 165, 173
RPC 6
RpcEventThresholdByteCount (parameter) 168
running several servers 41
RW

access mode 121
RW/Create

access mode 121
RW/Startup

access mode 121

S
SCAND7BIT (reserved word) 67
scripts

calling 63
executing SQL script from file 63

SearchBufferLimit (parameter) 135
secondarystarttime ADMIN COMMAND 260
sernum ADMIN COMMAND 260
server names

(see also network names) 99
server-side configuration parameters 117
shared memory (deprecated) 104
shutdown 29
shutting down

solidDB 28
Silent (parameter) 147, 165
SimpleOptimizerRules (parameter) 155
SocketLinger (parameter) 124
SocketLingerTime (parameter) 125
soldd 4, 78
solerror.out

description 16
solexp 3, 76, 77
solid.ini

configuration parameters 117, 171
configuring solidDB 47
described 12

solidDB
Administering solidDB 9
command line options 175
components 1
Connecting to 15
executable program 10
processes 1
starting 10

solidDB AT messages 241
solidDB BCKP messages 241
solidDB COM (communication) messages 237
solidDB communication errors 207
solidDB CP messages 241
solidDB Data Dictionary 4, 78

description 3
starting 78

solidDB data management tools 59
solcon 59
soldd 59
solexp 59
solload 59

solidDB database errors 183
solidDB DBE errors 239
solidDB executable

-x execute command line option 81
command line options 175
errors 254

solidDB Export 3, 76
description 3
starting 77

solidDB FIL messages 246
solidDB HotStandby errors 234
solidDB HSB errors 243
solidDB INI messages 242
solidDB JDBC Driver

troubleshooting 115
solidDB Light Client 49, 101
solidDB LOG messages 242
solidDB Network Services

described 6
solidDB ODBC Driver

troubleshooting 115
solidDB procedure errors 216
solidDB Remote Control (solcon) 59

commands 60
starting 60

solidDB RPC errors 219
solidDB SA API errors 219
solidDB server errors 210
solidDB session errors 206
solidDB SNC errors 245
solidDB sorter errors 219
solidDB Speed Loader

control file 64
control file syntax 67
described 64
description 3
errors 255
import file 65
ini file 65
log file 65

solidDB SQL
errors 247

solidDB SQL API
troubleshooting 115

solidDB SQL API Errors 235
solidDB SQL Editor (solsql) 61

274 IBM solidDB: Administrator Guide

solidDB SQL Editor (solsql) (continued)
executing SQL statements 63
starting 61

solidDB SQL Optimizer
described 5

solidDB SRV errors 210, 238
solidDB synchronization errors 221
solidDB system errors 181
solidDB TAB messages 247
solidDB table errors 192
solidDB XS errors 246
solload 64, 66
solmsg.out 15

description 16
SolmsgBackupFileNum (parameter) 165
SOLTRACE

environment variable 111
SOLTRACEFILE

environment variable 111
SortArraySize (parameter) 90, 155
SorterEnabled (parameter) 152
sorting 90

optimized sorts 91
space ADMIN COMMAND 260
Special roles for database administration 9
SQL 1
SQL trace level

setting 54
SQL-89 2
SQL-92 2
SQL-99 2
SQLInfo (parameter) 154
StandardDateTimeFormat (parameter) 166
starting solidDB 10
starting solidDB Remote Control (solcon) 60
starting solidDB SQL Editor (solsql) 61
StartupForceMerge (parameter) 135
StatementCache (parameter) 174
StatementMemoryTraceLimit (parameter) 166
storage tree

described 4
store mode 121
strict durability 83
supported protocols 100
SynchronizedWrite (parameter) 142
SyncWrite (parameter) 145
syntax

ADMIN COMMAND 257
syntax analysis 6
SYS_ADMIN_ROLE

database administration 9
SYS_CONSOLE_ROLE

for database administration 9
SYS_R_MAXBYTES_IN (parameter)

description 229
SYS_R_MAXBYTES_OUT (parameter)

message length 229
SYS_SYNC_ADMIN_ROLE

for database administration 9
SYS_SYNC_REGISTER_ROLE

for database administration 9

T
TableLockWaitTimeout (parameter) 135
TCP/IP 2, 104
TcpKeepAlive (parameter) 125

TcpKeepAliveIdleTime (parameter) 125
TcpKeepAliveProbeCount (parameter) 126
TcpKeepAliveProbeInterval (parameter) 126
TERMINATION

solidDB Speed Loader 72
thread 7

dedicated 7
general purpose 7
setting for processing 54
types of 7

Threads (parameter) 54, 166
throwing out users

automating 41
throwout 19
throwout all 29
TIME

solidDB Speed Loader 69
timed commands 41

and backups 41
and checkpoints 41
at 41

TIMESTAMP (keyword)
solidDB Speed Loader 69

TimestampDisplaySize19 (parameter) 155
TmpDir (parameter) 53
TmpDir_[1... N] (parameter) 53, 152
Trace (parameter) 49, 55, 127, 172
trace files 17

description 16
TraceBackupFileNum (parameter) 166
TraceFile (parameter) 49, 55, 127, 173
TraceLogSize (parameter) 166
TraceSecDecimals (parameter) 167
tracestate ADMIN COMMAND 260
tracing

communication 111
Tracing Failed Login Attempts 17
transaction log

files, specifying directory 52
Transaction Logging 37

Overwriting 37
Ping-pong 37

TransactionEarlyValidate (parameter) 135
TransactionHashSize (parameter) 136
transactions

committing to reduce Bonsai Tree size 94
logging 37

tries 5
TriggerCache (parameter) 156
tuning

checkpoints 93
I/O 92
memory allocation 86
network messages 92
operating system 89

U
UNIX Pipes 105
UpCaseQuotedIdentifiers (parameter) 156
uptime ADMIN COMMAND 260
userlist ADMIN COMMAND 266, 267
usernames

criteria 11
default 11
maximum number of characters 11

Index 275

users
throwing out 41

V
VersionedPessimisticReadCommitted (parameter) 136
VersionedPessimisticRepeatableRead (parameter) 136
virtual memory 89

W
Windows Registry

data sources 108
working directory 12
WriteBufSize (parameter) 127
WriterIOThreads (parameter) 136

276 IBM solidDB: Administrator Guide

Notices

© Copyright Oy International Business Machines Ab 1993, 2011.

All rights reserved.

No portion of this product may be used in any way except as expressly authorized
in writing by Oy International Business Machines Ab.

This product is protected by U.S. patents 6144941, 7136912, 6970876, 7139775,
6978396, 7266702, 7406489, 7502796, and 7587429.

This product is assigned the U.S. Export Control Classification Number
ECCN=5D992b.

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

277

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Canada Limited
Office of the Lab Director
8200 Warden Avenue
Markham, Ontario
L6G 1C7
CANADA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the

278 IBM solidDB: Administrator Guide

names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

IBM, the IBM logo, ibm.com®, Solid, solidDB, InfoSphere, DB2®, Informix®, and
WebSphere® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and
service names might be trademarks of IBM or other companies. A current list of
IBM trademarks is available on the Web at “Copyright and trademark information”
at www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other product and service names might be trademarks of IBM or other companies.

Notices 279

http://www.ibm.com/legal/copytrade.shtml

280 IBM solidDB: Administrator Guide

����

Printed in USA

SC23-9824-03

	Contents
	Figures
	Tables
	Summary of changes
	About this manual
	Typographic conventions
	Syntax notation conventions

	1 Managing data with solidDB
	solidDB data management components
	Programming interfaces (ODBC and JDBC)
	ODBC
	JDBC
	Proprietary interfaces

	Network communications layer
	SQL parser and optimizer
	Optimizer hints

	solidDB
	System tools and utilities
	Console tools
	Tools for handling external ASCII data

	solidDB architecture
	Data storage for disk-based tables
	Main storage tree
	solidDB Bonsai Tree multiversioning and concurrency control
	Index compression

	Data storage for memory-based tables
	solidDB SQL Optimizer
	Query processing
	Syntax analysis
	Creating the execution graph
	Processing the execution graph

	solidDB Network Services
	Communication session layer

	Multithread processing
	Types of threads

	2 Administering solidDB
	Background information
	Using solidDB Embedded Engine databases 2.20 or prior
	Special roles for database administration
	Automated and manual administration

	Starting solidDB
	Creating a new database
	Login
	About solidDB databases
	solidDB configuration file (solid.ini)
	Setting up database environment
	Setting database block size (BlockSize) and location (FileSpec)
	Defining database objects

	Connecting to solidDB
	Viewing error messages and log files
	Controlling message log output
	Viewing error message descriptions with ADMIN COMMAND 'errorcode'
	Using trace files
	Tracing failed login attempts

	Monitoring solidDB
	Checking overall database status
	Obtaining currently connected users
	Throwing out a connected solidDB user
	Querying the status of the most recent backup
	Producing a status report
	Performance counters (perfmon)
	Producing a continuous performance monitoring report
	Full list of perfmon counters

	Shutting down solidDB
	Performing backup and recovery
	Making local backups
	Making backups over network
	Making netbackup
	Flat and deep NetBackup directory structures

	Configuring and automating backups
	What happens during backup
	Local backup
	Network backup

	Administering network backup server
	Monitoring and controlling backups
	Local backup and netbackup on source-server side

	Correcting a failed backup
	Typical problems in backups
	Restoring backups
	Preparing netbackup files for recovery
	Returning to the state of the last backup
	Refreshing database from the backup to the current state
	Recovering from abnormal shutdown

	Transaction logging

	Creating checkpoints
	Closing a database
	Running solidDB as a Windows service
	Starting solidDB as a service for the first time
	Starting and stopping solidDB services
	Removing solidDB services

	Running several servers on one computer
	Entering timed commands
	Compacting the database files
	What is database reorganization
	How does the database reorganization work
	Database reorganization command line options

	Encrypting a database
	Encrypting database and log files
	Starting an encrypted database
	Changing the encryption password
	Decrypting a database
	Querying database encryption level
	Making backups of encrypted databases
	Encrypting HotStandby servers
	Encryption and performance

	3 Configuring solidDB
	Configuration files and parameter settings
	Most important client-side parameters
	Defining network names (Com section)
	Connect parameter
	Format of the connect string
	Trace parameter
	TraceFile parameter

	Most important server-side parameters
	Defining network names (Com section)
	Listen parameter

	Managing database files and caching (IndexFile section)
	FileSpec_[1...n] parameter
	CacheSize

	Specifying the local backup directory (General section)
	BackupDirectory parameter

	Specifying the network backup directory (General section)
	Source-side parameter
	Netbackup server-side parameter
	FileNameTemplate

	Specifying a directory for the external sorter algorithm (Sorter section)
	TmpDir_[1...N]

	Setting threads for processing (Srv section)
	Threads

	Setting SQL trace level (SQL section)
	Info

	Specifying network communication tracing (Com section)
	Trace
	TraceFile

	Managing server-side parameters
	Viewing and setting parameters with ADMIN COMMAND
	Viewing parameters
	Viewing the description of a specific parameter
	Setting a parameter value
	Persistence of parameter modifications

	Viewing and setting parameters in solid.ini
	Constant parameter values

	4 Using solidDB data management tools
	Entering password from a file
	solidDB Remote Control (solcon)
	Starting solidDB Remote Control
	Entering commands in solidDB Remote Control

	solidDB SQL Editor (solsql)
	Starting solidDB SQL Editor
	Running SQL scripts

	Executing SQL statements with solidDB SQL Editor
	Executing a SQL script from a file

	solidDB Speed Loader (solload)
	Control file
	Import file
	Message log file
	Configuration file
	Starting solidDB Speed Loader
	Control file syntax
	CHARACTERSET
	DATE, TIME, and TIMESTAMP
	PRESERVE BLANKS
	INTO_TABLE_PART
	FIELDS ENCLOSED BY
	FIELDS TERMINATED BY
	POSITION
	NULLIF

	Loading fixed-format records
	Loading variable-length records
	Running a sample load using solidDB Speed Loader (solload)
	Hints to speed up loading

	solidDB Export (solexp)
	Starting solidDB Export

	solidDB Data Dictionary (soldd)
	Starting solidDB Data Dictionary

	Tools sample: reloading a database
	To reload the database

	5 Performance tuning
	Logging and transaction durability
	Background
	Balancing performance and safety
	How relaxed transaction durability can improve performance
	Standards compliance
	Limitations on transaction durability

	Choosing transaction isolation levels
	Setting the isolation level

	Controlling memory consumption
	Controlling process size
	ADMIN COMMAND 'info processsize';
	ProcessMemoryLimit parameter
	ProcessMemoryLowPercentage parameter
	ProcessMemoryWarningPercentage parameter
	ProcessMemoryCheckInterval parameter

	Tuning your operating system
	Database cache
	Defining database cache size
	Dynamically changing database cache size

	Sorting
	Optimized sorts

	Using in-memory database

	Tuning network messages
	Tuning I/O
	Distributing I/O
	Setting the MergeInterval parameter

	Tuning checkpoints
	Reducing Bonsai Tree size by committing transactions
	Preventing excessive Bonsai Tree growth
	Determining currently existing connections
	Determining when connections have committed transactions
	Providing commit statements in the application code
	Troubleshooting COMMITs when using ODBC Driver Manager

	Diagnosing poor performance

	6 Managing network connections
	Communication between client and server
	Managing network names
	Viewing supported protocols for the server
	Viewing network names for the server
	Adding and modifying a network name for the server
	Removing network name from the server
	Factory value for a network name

	Connect strings for clients
	Mapping logical data source names to connect strings
	Default connect string

	Communication protocols
	Shared Memory
	TCP/IP
	UNIX Pipes
	Named Pipes
	NetBIOS
	Summary of protocols

	Logical Data Source Names

	7 Diagnostics and troubleshooting
	Tracing communication between client and server
	The network trace facility
	The Ping facility

	Problem reporting
	Problem categories
	solidDB ODBC API problems
	solidDB ODBC Driver problems
	solidDB JDBC Driver problems
	Communication between a client and server
	Database disk block integrity

	Appendix A. Server-side configuration parameters
	Setting parameters through the solid.ini configuration file
	Rules for formatting the solid.ini file
	Format of configuration parameter names and values

	Changing parameters through ADMIN COMMAND
	Descriptions of configuration parameters
	Accelerator section
	Cluster section
	Communication section
	General section
	HotStandby section
	IndexFile section
	Logging section
	LogReader section
	MME section
	Sorter section
	SQL section
	Srv section
	Synchronizer section

	Appendix B. Client-side configuration parameters
	Setting client-side parameters through the solid.ini configuration file
	Rules for formatting the client-side solid.ini file

	Descriptions of client-side configuration parameters
	Communication section
	Data sources
	Client

	Appendix C. solidDB command line options
	Appendix D. Error codes
	solidDB system errors
	solidDB database errors
	solidDB table errors
	solidDB session errors
	solidDB communication errors
	solidDB server errors
	solidDB procedure errors
	solidDB API errors
	solidDB sorter errors
	solidDB RPC errors and messages
	solidDB synchronization errors
	solidDB HotStandby errors
	solidDB SSA (SQL API) errors
	solidDB COM (communication) messages
	solidDB SRV (server) errors
	solidDB DBE (database engine) errors and messages
	solidDB CP (checkpoint) messages
	solidDB BCKP (backup) messages
	solidDB AT (timed commands) messages
	solidDB LOG (logging) messages
	solidDB INI (configuration file) messages
	solidDB HSB (HotStandby) errors and messages
	solidDB SNC (synchronization) messages
	solidDB XS (external sorter) errors and messages
	solidDB FIL (file system) messages
	solidDB TAB (table) messages
	solidDB SQL errors
	solidDB executable errors
	solidDB Speed Loader (solload) errors

	Appendix E. solidDB ADMIN COMMAND syntax
	ADMIN COMMAND

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Notices

