
IBM solidDB
IBM solidDB Universal Cache
Version 6.3

SQL Guide

SC23-9826-03

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 389.

First edition, third revision

This edition applies to version 6, release 3 of IBM solidDB (product number 5724-V17) and IBM solidDB Universal
Cache (product number 5724-W91) and to all subsequent releases and modifications until otherwise indicated in
new editions.

© Oy International Business Machines Ab 1993, 2011

Contents

Figures xi

Tables xiii

Summary of changes xv

About this manual xvii
Typographic conventions xvii
Syntax notation conventions xviii

1 Database concepts 1
Relational databases 1

Tables, rows, and columns 1
Relating data in different tables 2

Client-Server architecture 4
Multi-user capability. 4
Transactions 5
Transaction logging and recovery 5

Background. 5
Summary 6

2 Getting started with SQL. 7
Tables, rows, and columns 7
SQL 7
The mathematical origins of SQL 9
Creating tables with related data 10

Table aliases 12
Subqueries. 12

Which formats are used for each data type 13
BLOBs (or binary data types) 14
NULL IS NOT NULL (or "how to say 'none of
the above' in SQL") 15
NOT NULL 17
Expressions and casts 17
Row value constructors 19

More about transactions 21
Summary 21
Where to find additional information about SQL . . 21

3 Stored procedures, events, triggers,
and sequences 23
Stored procedures 23

Basic procedure structure 23
Naming procedures. 24
Parameter section 24
Declare section 27
Procedure body 27
Assignments 27
Expressions 29
Control structures 31

Remote stored procedures 37
Access rights 38

Using SQL in a stored procedure 40
EXECDIRECT 40

Using a cursor 40
Error handling 43
Parameter markers in cursors 44

Calling other procedures 46
Positioned updates and deletes 47
Transactions 48
Default cursor management 48
Notes on SQL 49
Functions for procedure stack viewing 49

Procedure privileges 50
Using triggers 50

How triggers work 50
Creating triggers. 51
Keywords and clauses 52
Triggers comments and restrictions 55

Triggers and procedures 56
Setting default or derived columns 56
Using parameters and variables 56

Triggers and transactions 58
Recursion and concurrency conflict errors . . . 59
Trigger privileges and security 65
Raising errors from inside triggers. 66
Trigger example 66
Dropping triggers 69
Altering trigger attributes. 70
Obtaining trigger information 71
Trigger functions 71
SYS_TRIGGERS system table 71
Trigger parameter settings 72

Deferred procedure calls 72
Sync Pull Notify ("Push Synchronization")
Example 81
Tracing the execution of background jobs . . . 83
Controlling background tasks 84

Using sequences 84
Using events 85

4 Using solidDB SQL for database
administration 95
Using solidDB SQL syntax 95

solidDB SQL data types 95
solidDB ADMIN COMMAND 95
Using functions 96

Managing user privileges and roles 96
User privileges 96
User roles 96
Examples of SQL statements 97

Managing tables 99
Accessing system tables 99
Examples of SQL statements 100

Managing indexes 102
Examples of SQL statements 102
Primary key indexes 103
Secondary key indexes 103
Protection against duplicate indexes 104

iii

Referential integrity 104
Primary keys and candidate keys. 105
Foreign keys. 105
Referential actions 108
Dynamic constraint management 108

Managing database objects 110
Introduction 110
Catalogs 110
Schemas 111
Uniquely identifying objects within catalogs and
schemas 111
Examples of SQL statements 112

5 Managing transactions 115
Defining read-only and read-write transactions . . 115
Concurrency control and locking 115

PESSIMISTIC vs. OPTIMISTIC concurrency
control. 116
Locks and lock modes 118
Setting concurrency control 122

Choosing the transaction durability 125
Setting the transaction durability level 125

6 Diagnostics and troubleshooting 127
Observing performance 127

SQL Info facility 127
EXPLAIN PLAN FOR statement 128

Problem reporting 133
Problem categories 133

solidDB ODBC API problems 134
solidDB ODBC driver problems 134
solidDB JDBC driver problems 134
Communication between a client and server . . 134

Tracing facilities for stored procedures and triggers 135
User-definable trace output from procedure
code 135
Procedure execution trace 135

Measuring and improving performance of START
AFTER COMMIT statements 136

Tuning performance of START AFTER COMMIT
statements 136
Analyzing failures in START AFTER COMMIT
statements 136

7 Performance tuning 139
Tuning SQL statements and applications 139

Evaluating application performance 139
Using stored procedure language. 140

Optimizing single-table SQL queries. 140
Using indexes to improve query performance . . 141

Full table scan 142
Concatenated indexes 142

Waiting on events 143
Optimizing batch inserts and updates 143

Increasing speed of batch inserts and updates 144
Using optimizer hints 144
Diagnosing poor performance 145

Appendix A. Data types 147
Supported data types. 147

Character data types 147
Numeric data types 148
Binary data types 150
Date data type 150
Time data type 151
Timestamp data type 151
Smallest possible non-zero numbers 151
BLOBs and CLOBs 152

Appendix B. solidDB SQL syntax . . . 155
ADMIN COMMAND 155
ADMIN EVENT 167

Usage 167
Examples 168

ALTER TABLE 168
Usage 168
Example 169

ALTER TABLE ... SET HISTORY COLUMNS . . . 169
Usage 169
Usage in master 170
Usage in replica 170
Example 170
Return values 170
See also 170

ALTER TABLE ... SET SYNCHISTORY 170
Usage 170
Usage in master 171
Usage in replica 171
Example 172
Return values 172
See also 172

ALTER TRIGGER 172
Usage 172
Example 172

ALTER USER 172
Usage 173
Example 173

ALTER USER (replica) 173
Usage 173
Usage in master 174
Usage in replica 174
Example 174
Return values 174

CALL 174
Supported in 174
Usage 174
Transactions 175
Return values from the remote procedure . . . 175
Access rights for remote stored procedure calls 176
Durability 177
Example 177

COMMIT WORK 177
Usage 177
Example 177
See also 177

CREATE CATALOG 177
Usage 178
Examples 179

CREATE EVENT 180
Usage 180
Example 181

iv IBM solidDB: SQL Guide

See also 181
CREATE INDEX 182

Usage 182
Example 182
See also 182

CREATE PROCEDURE 182
Usage 183
Preparing SQL statements 187
Executing prepared SQL statements 187
Fetching results. 187
Closing and dropping cursors 188
Checking for errors 188
Using transactions 188
Using sequencer objects and event alerts . . . 188
Writetrace 188
Procedure stack functions 188
Dynamic cursor names 189
EXECDIRECT 190
CREATE PROCEDURE 190
Using the explicit RETURN statement 190
Using EXECDIRECT 191
Using CURSORNAME 191
Using GET_UNIQUE_STRING and
CURSORNAME 191
Example 6 192
Creating a unique name for a synchronization
message 192
Using GET_UNIQUE_STRING 193

CREATE [OR REPLACE] PUBLICATION 194
Usage 194
Usage in master 195
Usage in replica 195
Example 196
Return values 197

CREATE ROLE 197
Usage 197
Example 197

CREATE SCHEMA 197
Usage 197
Examples 198

CREATE SEQUENCE. 199
Usage 199
Examples 200

CREATE SYNC BOOKMARK 200
Supported in 200
Usage 200
Usage in master 201
Usage in replica 201
Example 201
Return values 201

CREATE TABLE 201
Usage 202
Example 204

CREATE TRIGGER 204
Usage 205
Trigger name 205
BEFORE | AFTER clause 205
INSERT | UPDATE | DELETE clause 207
Table_name 208
Trigger_body 208
REFERENCING clause 208

{OLD | NEW} column_name AS col_identifier 209
Triggers comments and restrictions 209

CREATE USER 212
Usage 212
Example 212

CREATE VIEW 212
Usage 212
Example 213

DELETE 213
Usage 213
Example 213

DELETE (positioned) 213
Usage 213
Example 213

DROP CATALOG 213
Usage 213
Example 213

DROP EVENT 214
Usage 214
Example 214

DROP INDEX 214
Usage 214
Example 214

DROP MASTER 214
Usage 214
Usage in master 214
Usage in replica 214
Examples 214
Return values 215

DROP PROCEDURE 215
Usage 215
Example 215

DROP PUBLICATION 215
Usage 215
Usage in master 215
Usage in replica 215
Example 215
Return values 216

DROP PUBLICATION REGISTRATION 216
Supported in 216
Usage 216
Usage in master 216
Usage in replica 216
Example 216
Return values 216

DROP REPLICA 217
Supported in 217
Usage 217
Usage in master 217
Usage in replica 217
Example 217
Return values 217

DROP ROLE 217
Usage 218
Example 218

DROP SCHEMA 218
Usage 218
Examples 218

DROP SEQUENCE 218
Usage 218
Examples 218

Contents v

DROP SUBSCRIPTION 218
Supported in 219
Usage 219
Usage in master 220
Usage in replica 220
Example 220

DROP SYNC BOOKMARK 220
Supported in 220
Usage 220
Usage in master 221
Usage in replica 221
Example 221
Return values 221

DROP TABLE 221
Usage 222
Examples 222

DROP TRIGGER 222
Usage 222
Examples 222

DROP USER. 222
Usage 222
Example 222

DROP VIEW 222
Usage 222
Examples 223

EXPLAIN PLAN FOR 223
Usage 223
Example 223

EXPORT SUBSCRIPTION 223
Supported in 223
Usage 223
Usage in master 225
Usage in replica 225
Example 225
Return values 225

EXPORT SUBSCRIPTION TO REPLICA 225
Supported in 225
Usage 225
Usage in master 226
Usage in replica 226
Example 226
Return values 226

GET_PARAM() 227
Supported in 227
Usage 227
Usage in master 227
Usage in replica 227
solidDB system parameters 227
Example 228
Return values 228
See also 228

GRANT 228
Usage 228
Example 229
See also 229

GRANT REFRESH 229
Supported in 229
Usage 229
Usage in master 229
Usage in replica 230
Example 230

Return values 230
HINT 230

Pseudo comment identifier 230
Example 1 231
Example 2 231
Usage 234
Example 235

IMPORT 235
Usage 236
Usage in master 237
Usage in replica 237
Example 237
Return values 237

INSERT 238
Usage 238
Example 238

LOCK TABLE 239
Usage 239
Examples 241
Return values 241
See also 241

MESSAGE APPEND 241
Supported in 242
Usage 242
Usage in master 243
Usage in replica 243
Example 243
Return values 243

MESSAGE BEGIN 244
Supported in 244
Usage 244
Usage in master 245
Usage in replica 245
Example 245
Return values from master 245

MESSAGE DELETE 245
Supported in 246
Usage 246
Usage in master 246
Usage in replica 246
Example 246

MESSAGE DELETE CURRENT TRANSACTION 247
Supported in 247
Usage 247
Usage in master 248
Usage in replica 248
Example 248
Return values 248

MESSAGE END 248
Supported in 248
Usage 249
Usage in master 249
Usage in replica 249
Return values from replica 249
Return values from master 250

MESSAGE EXECUTE. 250
Supported in 250
Usage 250
Usage in master 250
Usage in replica 250
Result set. 251

vi IBM solidDB: SQL Guide

Example 251
Return values 251

MESSAGE FORWARD 251
Supported in 252
Usage 252
Example 253
Return values from replica 253
Return values from master 255

MESSAGE FROM REPLICA DELETE 255
MESSAGE FROM REPLICA EXECUTE 255

Supported in 255
Usage 255
Usage in master 256
Usage in replica 256
Example 256
Return values 256

MESSAGE FROM REPLICA RESTART 256
MESSAGE GET REPLY 256

Supported in 257
Usage 257
Usage in master 257
Usage in replica 257
Example 258
Return values from replica 258
Return values from master 259
Result set. 259

POST EVENT 260
PUT_PARAM() 261

Supported in 261
Usage 261
Usage in master 261
Usage in replica 261
Differences between "PUT_PARAM()" and
"SAVE PROPERTY property_name VALUE
property_value;" 261
Example 261
Return values 262
See also 262

REFRESH 262
Usage 262
Example 263
Return values 263

REGISTER EVENT 265
REVOKE (role from user) 265

Usage 265
Example 265

REVOKE (privilege from role or user) 266
Usage 266
Example 266
See also 266

REVOKE REFRESH 266
Supported in 266
Usage 266
Usage in master 266
Usage in replica 267
Example 267
Return values 267

ROLLBACK WORK 267
Usage 267
Example 267

SAVE 267

Supported in 267
Usage 267
Usage in master 268
Usage in replica 268
Example 268
Return values 269

SAVE PROPERTY 269
Supported in 269
Usage 269
Usage in master 270
Usage in replica 270
Differences between "PUT_PARAM()" and
"SAVE PROPERTY property_name VALUE
property_value;" 270
Example 270
Return values 270
Result set. 270

SELECT 270
Usage 271
Examples 271
START WITH example 271
LEVEL and ORDER SIBLINGS BY example . . 272

SET. 272
Usage 272
Differences between SET and SET
TRANSACTION 273
SET (read/write level) 273
SET CATALOG. 273
SET DURABILITY 273
SET ISOLATION LEVEL 274
SET SAFENESS. 274
SET SCHEMA 274
SET SQL 275
SET STATEMENT MAXTIME 276
SET SYNC 276
SET TIMEOUT 283
SET TRANSACTION 284

START AFTER COMMIT 287
Usage 287
Transactions 288
Context of the background statements 288
Durability 289
Rollback 289
Order of execution 289
Examples 289

TRUNCATE TABLE 289
Usage 290

UNLOCK TABLE 290
Usage 290
Examples of using LOCK and UNLOCK . . . 290
Return values 291
See also 291

UNREGISTER EVENT 291
UPDATE (positioned) 291

Usage 291
Example 291

UPDATE (searched) 291
Usage 292
Example 292

WAIT EVENT 292
Table_reference 292

Contents vii

Query_specification 293
Search_condition 293
Check_condition 294
Expression 294
String functions 296
Numeric functions. 297
Date time functions 298
System functions 300
Miscellaneous functions 301
Data_type 301
Date and time literals. 302
Pseudo columns 302
Wildcard characters 302

Using SQL wildcards 303
Wildcard characters as literals 303

Appendix C. Reserved words 305

Appendix D. Database system tables
and system views 319
System tables 319

SQL_LANGUAGES 319
SYS_ATTAUTH. 319
SYS_BACKGROUNDJOB_INFO 320
SYS_BLOBS 320
SYS_CARDINAL 321
SYS_CATALOGS 321
SYS_CHECKSTRINGS 322
SYS_COLUMNS 322
SYS_COLUMNS_AUX 323
SYS_DL_REPLICA_CONFIG 323
SYS_DL_REPLICA_DEFAULT 324
SYS_EVENTS 324
SYS_FORKEYPARTS 325
SYS_FORKEYS 325
SYS_HOTSTANDBY 325
SYS_INFO 326
SYS_KEYPARTS 326
SYS_KEYS 326
SYS_PROCEDURES 327
SYS_PROCEDURE_COLUMNS 328
SYS_PROPERTIES 329
SYS_RELAUTH 329
SYS_SCHEMAS 329
SYS_SEQUENCES 330
SYS_SYNC_REPLICA_PROPERTIES 330
SYS_SYNONYM 330
SYS_TABLEMODES 330
SYS_TABLES 331
SYS_TRIGGERS 332
SYS_TYPES 332
SYS_UROLE. 333
SYS_USERS 333
SYS_VIEWS 334

System tables for data synchronization 334
SYS_BULLETIN_BOARD 334
SYS_PUBLICATION_ARGS. 335
SYS_PUBLICATION_REPLICA_ARGS 335
SYS_PUBLICATION_REPLICA_STMTARGS . . 335
SYS_PUBLICATION_REPLICA_STMTS. . . . 336

SYS_PUBLICATION_STMTARGS. 336
SYS_PUBLICATION_STMTS 337
SYS_PUBLICATIONS. 337
SYS_PUBLICATIONS_REPLICA 338
SYS_SYNC_BOOKMARKS 338
SYS_SYNC_HISTORY_COLUMNS 338
SYS_SYNC_INFO 339
SYS_SYNC_MASTER_MSGINFO 339
SYS_SYNC_MASTER_RECEIVED_BLOB_REFS 340
SYS_SYNC_MASTER_RECEIVED_MSGPARTS 341
SYS_SYNC_MASTER_RECEIVED_MSGS . . . 341
SYS_SYNC_MASTER_STORED_BLOB_REFS 341
SYS_SYNC_MASTER_STORED_MSGPARTS . . 342
SYS_SYNC_MASTER_STORED_MSGS 342
SYS_SYNC_MASTER_SUBSC_REQ 343
SYS_SYNC_MASTER_VERSIONS 343
SYS_SYNC_MASTERS 344
SYS_SYNC_RECEIVED_BLOB_ARGS 344
SYS_SYNC_RECEIVED_STMTS 344
SYS_SYNC_REPLICA_MSGINFO. 345
SYS_SYNC_REPLICA_RECEIVED_BLOB_REFS 346
SYS_SYNC_REPLICA_RECEIVED_MSGPARTS 347
SYS_SYNC_REPLICA_RECEIVED_MSGS . . . 347
SYS_SYNC_REPLICA_STORED_BLOB_REFS 348
SYS_SYNC_REPLICA_STORED_MSGS 348
SYS_SYNC_REPLICA_STORED_MSGPARTS 348
SYS_SYNC_REPLICA_VERSIONS 349
SYS_SYNC_REPLICAS 349
SYS_SYNC_SAVED_BLOB_ARGS 349
SYS_SYNC_SAVED_STMTS 350
SYS_SYNC_TRX_PROPERTIES 350
SYS_SYNC_USERMAPS 351
SYS_SYNC_USERS 351

System views 351
COLUMNS 352
SERVER_INFO 352
TABLES 353
USERS 353

Synchronization-related views 353
SYNC_FAILED_MESSAGES 354
SYNC_FAILED_MASTER_MESSAGES 354
SYNC_ACTIVE_MESSAGES 355
SYNC_ACTIVE_MASTER_MESSAGES 355

Appendix E. System stored
procedures 357
Synchronization-related stored procedures. . . . 357

SYNC_SETUP_CATALOG 357
SYNC_REGISTER_REPLICA 358
SYNC_UNREGISTER_REPLICA 359
SYNC_REGISTER_PUBLICATION 360
SYNC_UNREGISTER_PUBLICATION 361
SYNC_SHOW_SUBSCRIPTIONS 362
SYNC_SHOW_REPLICA_SUBSCRIPTIONS . . 363
SYNC_DELETE_MESSAGES 364
SYNC_DELETE_REPLICA_MESSAGES. . . . 365

Miscellaneous stored procedures 365
SYS_GETBACKGROUNDJOB_INFO. 365

Appendix F. System events 367

viii IBM solidDB: SQL Guide

Miscellaneous events 367
Errors that cause SYS_EVENT_ERROR 374
Conditions or warnings that cause
SYS_EVENT_MESSAGES 375
HotStandby events 376
Advanced replication synchronization events . . . 376

Index 377

Notices 389

Contents ix

x IBM solidDB: SQL Guide

Figures

1. Sync pull notify 81
2. Example: Tables with referential constraints 106
3. Self-referential constraint. 107

4. Execution graph 1 132
5. Execution graph 2 133

xi

xii IBM solidDB: SQL Guide

Tables

1. Typographic conventions xvii
2. Syntax notation conventions xviii
3. Example database table 1
4. Example database table 7
5. Example database table 7
6. Comparison operators 29
7. Logical operators: NOT 30
8. Logical operators: AND 30
9. Logical operatORs: or 30

10. Determining data type from parameters 45
11. Statement atomicity in a trigger 55
12. INSERT/UPDATE/DELETE operations for

BEFORE/AFTER triggers 61
13. Example Entry 1 63
14. Example entry 2 64
15. Metadata for the SYS_TRIGGERS system table 71
16. Reserved user names and roles 97
17. Viewing tables and granting access. 99
18. Expressions and operators 109
19. SQL Info levels 127
20. EXPLAIN PLAN FOR units 128
21. Explain Plan table columns 129
22. Texts in the unit INFO column 129
23. EXPLAIN PLAN FOR, Example 1. 131
24. EXPLAIN PLAN FOR, Example 2. 132
25. Diagnosing poor performance 146
26. Supported data types 147
27. Character Data Types 147
28. Numeric Data Types 148
29. Binary Data Types 150
30. Date Data Type 150
31. Time data type 151
32. Timestamp data type 151
33. Smallest possible non-zero numbers 151
34. ADMIN COMMAND syntax and options 156
35. ALTER TABLE SET HISTORY COLUMNS

return values. 170
36. ALTER TABLE SET SYNCHISTORY return

values 172
37. ALTER USER return values 174
38. Comparison of the parameter modes 184
39. Control statements 185
40. CREATE PUBLICATION Return Values 197
41. CREATE SYNC BOOKMARK Return Values 201
42. Statement Atomicity in a Trigger 209
43. DROP MASTER return values 215
44. DROP PUBLICATION Return Values 216
45. DROP PUBLICATION REGISTRATION

Return Values 216
46. DROP REPLICA return values 217
47. DROP SUBSCRIPTION return values 220
48. DROP SYNC BOOKMARK return values 221
49. EXPORT SUBSCRIPTION return values 225
50. EXPORT SUBSCRIPTION TO REPLICA

return values. 226
51. GET_PARAM return values 228

52. GRANT REFRESH return values 230
53. solidDB-supported hints 232
54. IMPORT return values 237
55. LOCK TABLE return values. 241
56. MESSAGE APPEND return values 243
57. MESSAGE BEGIN return values from replica 245
58. MESSAGE BEGIN return values from master 245
59. MESSAGE DELETE Return Values from

Replica. 246
60. MESSAGE DELETE Return Values from

Master 247
61. MESSAGE DELETE CURRENT

TRANSACTION Return Values 248
62. MESSAGE END return values from replica 249
63. MESSAGE END return values from master 250
64. MESSAGE EXECUTE return values 251
65. MESSAGE FORWARD return values from

replica 253
66. MESSAGE FORWARD return values from

master 255
67. MESSAGE FROM REPLICA EXECUTE return

values 256
68. MESSAGE GET REPLY return values from

replica 258
69. MESSAGE GET REPLY return values from

master 259
70. MESSAGE GET REPLY Result Set Table 260
71. PUT_PARAM() return values 262
72. REFRESH return values 263
73. REVOKE REFRESH return values. 267
74. SAVE return values 269
75. SAVE PROPERTY return values 270
76. SET SYNC return values 277
77. SET SYNC CONNECT return values 278
78. How different operations apply to

synchronization history tables 279
79. SET SYNC MODE return values 280
80. SET SYNC NODE return values 281
81. SET SYNC PARAMETER Return Values 282
82. LOCK TABLE return values. 291
83. Table_reference 292
84. Query_specification 293
85. Search_condition 293
86. Check_condition 294
87. Expression 294
88. String Functions 296
89. Numeric Functions. 297
90. Date Time Functions 298
91. System Functions 300
92. Miscellaneous functions 301
93. Data_type. 301
94. Date and time literals 302
95. Pseudo columns 302
96. Wildcard characters 302
97. Reserved Words List 305
98. SQL_LANGUAGES 319

xiii

99. SYS_ATTAUTH 319
100. SYS_BACKGROUNDJOB_INFO 320
101. SYS_BLOBS 320
102. SYS_CARDINAL 321
103. SYS_CATALOGS 321
104. SYS_CHECKSTRINGS 322
105. SYS_COLUMNS 322
106. SYS_COLUMNS_AUX 323
107. SYS_DL_REPLICA_CONFIG 323
108. SYS_DL_REPLICA_DEFAULT 324
109. SYS_EVENTS 324
110. SYS_FORKEYPARTS 325
111. SYS_FORKEYS 325
112. SYS_INFO 326
113. SYS_KEYPARTS. 326
114. SYS_KEYS 327
115. SYS_PROCEDURES 327
116. SYS_PROCEDURE_COLUMNS 328
117. SYS_PROPERTIES 329
118. SYS_RELAUTH 329
119. SYS_SCHEMAS 329
120. SYS_SEQUENCES 330
121. SYS_SYNC_REPLICA_PROPERTIES 330
122. SYS_SYNONYM 330
123. SYS_TABLEMODES 330
124. SYS_TABLES. 331
125. SYS_TRIGGERS 332
126. SYS_TYPES 332
127. SYS_UROLE 333
128. SYS_USERS 333
129. SYS_VIEWS 334
130. SYS_BULLETIN_BOARD 334
131. SYS_PUBLICATION_ARGS 335
132. SYS_PUBLICATION_REPLICA_ARGS 335
133. SYS_PUBLICATION_REPLICA_STMTARGS 335
134. SYS_PUBLICATION_REPLICA_STMTS 336
135. SYS_PUBLICATION_STMTARGS 336
136. SYS_PUBLICATION_STMTS 337
137. SYS_PUBLICATIONS 337
138. SYS_PUBLICATIONS_REPLICA 338
139. SYS_SYNC_BOOKMARKS 338
140. SYS_SYNC_HISTORY_COLUMNS 339
141. SYS_SYNC_INFO 339
142. SYS_SYNC_MASTER_MSGINFO 339
143. SYS_SYNC_MASTER_

RECEIVED_BLOB_REFS 340
144. SYS_SYNC_MASTER_RECEIVED

_MSGPARTS 341
145. SYS_SYNC_MASTER_RECEIVED_MSGS 341
146. SYS_SYNC_MASTER_STORED_BLOB_REFS 342

147. SYS_SYNC_MASTER_STORED_MSGPARTS 342
148. SYS_SYNC_MASTER_STORED_MSGS 342
149. SYS_SYNC_MASTER_SUBSC_REQ 343
150. SYS_SYNC_MASTER_VERSIONS 343
151. SYS_SYNC_MASTERS 344
152. SYS_SYNC_RECEIVED_BLOB_ARGS 344
153. SYS_SYNC_RECEIVED_STMTS 345
154. SYS_SYNC_REPLICA_MSGINFO 346
155. SYS_SYNC_REPLICA_RECEIVED_

BLOB_REFS 347
156. SYS_SYNC_REPLICA_RECEIVED_

MSGPARTS 347
157. SYS_SYNC_REPLICA_RECEIVED_MSGS 347
158. SYS_SYNC_REPLICA_STORED_BLOB_REFS 348
159. SYS_SYNC_REPLICA_STORED_MSGS 348
160. SYS_SYNC_REPLICA_STORED_MSGPARTS 348
161. SYS_SYNC_REPLICA_VERSIONS. 349
162. SYS_SYNC_REPLICAS 349
163. SYS_SYNC_SAVED_BLOB_ARGS 350
164. SYS_SYNC_SAVED_STMTS 350
165. SYS_SYNC_TRX_PROPERTIES. 351
166. SYS_SYNC_USERMAPS 351
167. SYS_SYNC_USERS. 351
168. COLUMNS 352
169. SERVER_INFO 353
170. TABLES 353
171. USERS 353
172. SYNC_FAILED_MESSAGES. 354
173. SYNC_FAILED_MASTER_MESSAGES 354
174. SYNC_ACTIVE_MESSAGES 355
175. SYNC_ACTIVE_MASTER_MESSAGES 355
176. SYNC_SETUP_CATALOG error codes 357
177. SYNC_REGISTER_REPLICA error codes 358
178. SYNC_UNREGISTER_REPLICA error codes 359
179. SYNC_REGISTER_PUBLICATION error codes 360
180. SYNC_UNREGISTER_PUBLICATION error

codes 361
181. CREATE PROCEDURE

SYNC_SHOW_SUBSCRIPTIONS result set . . 362
182. SYNC_SHOW_SUBSCRIPTIONS error codes 362
183. SYNC_SHOW_REPLICA_SUBSCRIPTIONS

result set 363
184. SYNC_SHOW_REPLICA_SUBSCRIPTIONS

error codes 363
185. SYNC_DELETE_MESSAGES error codes 364
186. SYNC_DELETE_REPLICA_MESSAGES error

codes 365
187. Miscellaneous events 368
188. Errors that cause SYS_EVENT_ERROR 374
189. Warnings that cause SYS_EVENT_MESSAGES 375

xiv IBM solidDB: SQL Guide

Summary of changes

Changes for revision 03

v Section ADMIN COMMAND updated with the following changes:
The following undocumented ADMIN COMMAND 'trace' options have been
added:
– est - SQL estimator information
– estplans - SQL execution plan
– flow - advanced replication statements
– rexec - remote procedure call information
– batch - background job and deferred procedure call information
The following undocumented ADMIN COMMANDs have been added:
– 'errormessage <string>' – Outputs the user-defined <string> to the error

message log (solerror.out).
– 'logmessage <string>' – Outputs the user-defined <string> to the message log

(solmsg.out).
– 'tracemessage <string>' – Outputs the user-defined <string> to the trace

message log (soltrace.out).
v Section “Concurrency control and locking” on page 115 updated.
v Section “LOCK TABLE” on page 239 updated.
v Section “Closing and dropping cursors” on page 188 updated.

Changes for revision 02

v The following Optimizer hints have been added in section “HINT” on page 230:
– TRIPLE MERGE JOIN
– UNION FOR OR
– OR FOR OR
– LOOP FOR OR

Changes for revision 01

v New ADMIN COMMAND ’indexusage' added in section “ADMIN COMMAND” on
page 155.

v Factory value of the parameter Logging.DurabilityLevel corrected through out
the manual; the factory value is 1 (Relaxed durability).

v Data type DOUBLE corrected to DOUBLE PRECISION in Appendix Data types,
section Smallest possible non-zero numbers.

xv

xvi IBM solidDB: SQL Guide

About this manual

This guide introduces you to the relational database server theory and the SQL
programming language. It also includes appendices that show the syntax of all
SQL statement supported by IBM® solidDB®, and describes the data types that can
be used in tables and SQL statements.

This guide is for users who want to learn about SQL in general or who want to
learn about solidDB® specific SQL.

Typographic conventions
solidDB documentation uses the following typographic conventions:

Table 1. Typographic conventions

Format Used for

Database table This font is used for all ordinary text.

NOT NULL Uppercase letters on this font indicate SQL keywords and
macro names.

solid.ini These fonts indicate file names and path expressions.

SET SYNC MASTER YES;
COMMIT WORK; This font is used for program code and program output.

Example SQL statements also use this font.

run.sh This font is used for sample command lines.

TRIG_COUNT() This font is used for function names.

java.sql.Connection This font is used for interface names.

LockHashSize This font is used for parameter names, function arguments,
and Windows® registry entries.

argument Words emphasized like this indicate information that the
user or the application must provide.

Administrator Guide This style is used for references to other documents, or
chapters in the same document. New terms and emphasized
issues are also written like this.

File path presentation Unless otherwise indicated, file paths are presented in the
UNIX® format. The slash (/) character represents the
installation root directory.

xvii

Table 1. Typographic conventions (continued)

Format Used for

Operating systems If documentation contains differences between operating
systems, the UNIX format is mentioned first. The Microsoft®

Windows format is mentioned in parentheses after the
UNIX format. Other operating systems are separately
mentioned. There may also be different chapters for
different operating systems.

Syntax notation conventions
solidDB documentation uses the following syntax notation conventions:

Table 2. Syntax notation conventions

Format Used for

INSERT INTO table_name
Syntax descriptions are on this font. Replaceable sections are
on this font.

solid.ini This font indicates file names and path expressions.

[] Square brackets indicate optional items; if in bold text,
brackets must be included in the syntax.

| A vertical bar separates two mutually exclusive choices in a
syntax line.

{ } Curly brackets delimit a set of mutually exclusive choices in
a syntax line; if in bold text, braces must be included in the
syntax.

... An ellipsis indicates that arguments can be repeated several
times.

.

.

.

A column of three dots indicates continuation of previous
lines of code.

xviii IBM solidDB: SQL Guide

1 Database concepts

If you are not already familiar with relational database servers such as solidDB,
you may want to read this chapter.

This chapter explains the following concepts:
v Relational databases

– Tables, rows, and columns
– Relating data in different tables

v Multi-user capability / Concurrency control and locking
v Client-Server architecture
v Transactions
v Transaction logging and Recovery

Relational databases

Tables, rows, and columns
Most relational database servers, including the solidDB family, use a programming
language known as the Structured Query Language (SQL). SQL is a set-oriented
programming language that is designed to allow people to query and update
tables of information. This chapter discusses tables, and how data is represented
within tables. Later in the manual, we will discuss the syntax of the SQL language
in more detail.

All information is stored in tables. A table is divided into rows and columns. (SQL
theorists refer to columns as "attributes" and rows as "tuples", but we will use the
more familiar terms "columns" and "rows". We will also use the terms "record" and
"row" interchangeably.) Each database contains 0 or more tables. Most databases
contain many tables. An example of a table is shown below.

Table 3. Example database table

ID NAME ADDRESS

1 Beethoven 23 Ludwig Lane

2 Dylan 46 Robert Road

3 Nelson 79 Willie Way

This table contains 3 rows of data. (The top "row", which has the labels "ID",
"NAME", and "ADDRESS" is shown here for the convenience of the reader. The
actual table in the database does not have such a row.) The table contains 3
columns (ID, NAME, and ADDRESS).

SQL provides commands to create tables, insert rows into tables, update data in
tables, delete rows from tables, and query the rows in tables.

1

Tables in SQL, unlike arrays in programming languages like C, are not
homogeneous. In SQL one column may have one data type (such as INTEGER),
while an adjacent column may have a very different data type (such as CHAR(20),
which means an array of 20 characters).

A table may have varying numbers of rows. Rows may be inserted and deleted at
any time; you do not need to pre-allocate space for a maximum number of rows.
(All database servers have some maximum number of rows that they can handle.
For example, most database servers that run on 32-bit operating systems have a
limit of approximately two billion rows. In most applications, the maximum is far
more than you are likely to need.)

Each row ("record") must have at least one value, or combination of values, that is
unique. If we have two composers named David Jones to our table, and we need
to update the address of only one of them, then we need some way to tell them
apart. In some cases, you can find a combination of columns that is unique, even if
you can't find any single column that contains unique values. For example, if the
name column is not sufficient, then perhaps the combination of name and address
will be unique. However, without knowing all the data ahead of time, it is difficult
to absolutely guarantee that each value will be unique. Most database designers
add an "extra" column that has no purpose other than to uniquely and easily
identify each record. In our table above, for example, the ID numbers are unique.
As you may have noticed, when we actually try to update or delete a record, we
identify it by its unique ID (e.g. "... WHERE id = 1") rather than by using another
value, such as name, that might not be unique.

Relating data in different tables
If SQL could only handle one table at a time, it would be convenient, but not very
powerful. The true power of SQL and relational databases lies in the fact that
tables can be related to each other in useful ways, and SQL queries can gather data
from multiple tables and display that data in a logical fashion.

We will show how multiple tables are useful by using a bank as an example.

Each customer of a bank may have more than 1 account. There is no real limit to
the number of accounts a person might have. One customer might have a checking
account, savings account, certificate of deposit, mortgage, credit card, etc.
Furthermore, a person may have multiple accounts of the same type. For example,
a customer might have one savings account with retirement money and another
savings account (of the same type) that has money for her daughter's college fund.
We describe the "relationship" between a person and her accounts as a "one to
many" relationship -- one person may have many accounts.

Because there is no limit to the number of accounts a person may have, there is no
way to design a record structure ahead of time that can handle all possible
combinations of accounts. And if you created a record structure that held the
maximum number of accounts that anyone actually owned, you'd have to waste a
lot of space. Let's suppose that we tried to build a single table that held all the
information about one bank customer and her accounts. Our first draft might look
like the following:
Customer ID Number
Customer Name
Customer Address
Checking Account #1 ID
Checking Account #1 Balance
CD #1 ID

2 IBM solidDB: SQL Guide

CD #1 Balance
CD #2 ID
CD #2 Balance
...

As you can see, we just don't know when to stop because there is no obvious limit
to the number of accounts that each person might own.

Another solution is to create multiple records, one for each account, and duplicate
the customer information for each account. So we have a table that looks like:
Customer Name
Customer Address
Account ID
Account Balance

If a customer has more than one account, we merely create a complete record for
each account. This works reasonably well, but it means that every single account
record holds all the information about the customer. This wastes storage space and
also makes it harder to update the customer's address if the customer moves (you
may have to update the address in several places).

Relational databases, such as solidDB's, are designed to solve this problem. We will
create one table for customers, and another table for accounts. (In a real bank, we'd
probably divide the accounts into multiple tables, too, with one table for checking
accounts, another table for savings accounts, etc.) Then we create a "link" between
the customer and each of her accounts. This allows us to waste very little space
and yet still have complete information available to us.

As we mentioned earlier, in our example of composers, every record should have a
unique value that allows us to identify that record. The unique value is usually
just an integer. We'll use that unique integer to help us "relate" a customer to her
accounts. This is discussed in more detail in 2, “Getting started with SQL,” on
page 7.

When we create an account for a customer, we store that customer's ID number as
part of the account information. Specifically, each row in the accounts table has a
customer_id value, and that customer_id value matches the id of the customer
who owns that account. Smith has customer id 1, and each of Smith's accounts has
a 1 in the customer_id field. That means that we can find all of Smith's account
records by doing the following:
1. Look up Smith's record in the customers table.
2. When we find Smith's record, look at the id number in that record. (In Smith's

case, the id is 1.)
3. Now look up all accounts in the accounts table that have a value of 1 in the

customer_id field.

It's as though you taped a copy of your home telephone number onto the forehead
of each of your children when they went to school. If there is an emergency and
you need to send a taxi driver to find and pick up your children at school, you can
simply tell the taxi driver your phone number and he can check every child in the
school to see if the child has your phone number. (This isn't very efficient, but it
works.) By knowing the parent's id number, you can identify all the children.
Conversely, by knowing each child, you can identify the parent. If, for example,
one of your children is lost on a field trip away from the school, any helpful
person can simply read the telephone number off the child's forehead and call you.

1 Database concepts 3

As you can see, the parent and child are linked to each other without any sort of
physical contact. Simply having the id number (or phone number) is enough to
determine which children belong to a parent and which parent belongs to each
child. The technique works regardless of how many children you have.

Relational databases use the same technique. Note that join operations are not
limited to two tables. It's possible to create joins with an almost arbitrary number
of tables. As a realistic extension of our banking example, we might have another
table, "checks", which holds information about each check written. Thus we would
have not only a 1-to-many relationship from each customer to her accounts, but
also a 1-to-many relationship from each checking account to all of the checks
written on that account. It's quite possible to write a query that will list all the
checks that a customer has written, even if that customer has multiple checking
accounts.

Client-Server architecture
solidDB uses the client-server model. In a client-server model, a single "server"
may process requests from 1 or more "clients". This is quite similar to the way that
a restaurant works — a single waiter and cook may handle requests from many
customers.

In a client-server database model, the server is a specialized computer program
that knows how to store and retrieve data efficiently. The server typically accepts
four basic types of requests:
v Insert a new piece of information
v Update an existing piece of information
v Retrieve an existing piece of information
v Delete an existing piece of information

The server can store almost any type of data, but generally doesn't know the
"meaning" of the data. The server typically knows little or nothing about "business
issues", such as accounting, inventory, and so on. It doesn't know whether a
particular piece of information is an inventory record, a description of a bank
deposit, or a digitized copy of the song "American Pie".

The "clients" are responsible for knowing something about the particular business
issues and about the "meaning" of the data. For example, we might write a client
program that knows something about accounting. The client program might know
how to calculate interest on late payments, for example. Or, the client might
recognize that a particular piece of data is a song, and might convert the digital
data to analog audio output.

It is possible to write a single program that does both the "client" and the "server"
part of the work. A program that reads digitized music and plays it could also
store that data to disk and look it up on request. However, it's not very efficient for
every company to write its own data storage and retrieval routines. It is usually
more efficient to buy an off-the-shelf data storage solution that is general enough
to meet your needs, yet has relatively high performance.

Multi-user capability
An important advantage of client-server architecture is that it usually makes it
easier to have more than one client. solidDB, like most relational database servers,
will allow multiple users to access the data in a table.

4 IBM solidDB: SQL Guide

When two users try to update the same data, there is potential danger. If the
updates are not the same, then one user's updates could write over the other user's
updates. solidDB uses concurrency control mechanisms to prevent this. For more
information, see IBM solidDB Administrator Guide.

Transactions
SQL allows you to group multiple statements into a single "atomic" (indivisible)
piece of work called a transaction. For example, if you write a check to a grocery
store, then the grocery store's bank account should be given the money at the same
instant that the money is withdrawn from your account. It wouldn't make sense
for you to pay the money without the grocery store receiving it, and it wouldn't
make sense for the grocery store to be paid without your account having the
money subtracted. If either of these operations (adding to the grocery store's
account or subtracting from yours) fails, then the other one ought to fail, too. If
both statements are in the same transaction, and either statement fails, then you
can use the ROLLBACK command to restore things as they were before the
transaction started — this prevents half-successful transactions from occurring.
Naturally, if both halves of our financial transaction are successful, then we'd like
our database transaction to be successful, too. Successful transactions are preserved
with the command COMMIT WORK. Below is a simplistic example.
COMMIT WORK; -- Finish the previous transaction.
UPDATE stores SET balance = balance + 199.95
WHERE store_name = ’Big Tyke Bikes’;
UPDATE checking_accounts SET balance = balance - 199.95
WHERE name = ’Jay Smith’;
COMMIT WORK;

Transaction logging and recovery
One of the major advantages of buying a commercial database server is that most
such servers have been designed to protect data if the database server shuts down
unexpectedly for any reason, such as a power failure, a hardware failure, or a
failure in the database software itself.

There are a number of different ways to help protect data. We will focus on one
such way, called Transaction Logging.

Background
Suppose that you are writing data to a disk drive (or other permanent storage
medium) and suddenly the power fails. The data that you write might not be
written completely. For example, you might try to write the account balance
"122.73", but because of the power failure you just write "12". The person whose
account is missing some money will be quite displeased. How do we ensure that
we always write complete data? Part of the solution is to use what is called a
"transaction log".

Note:

In the world of computers, many different things are called "logs". For example,
the solidDB writes multiple log files, including a transaction log file and an error
message log file. For the moment, we are discussing only the transaction log file.

As we mentioned previously, work is usually done in "transactions". An entire
transaction is either committed or rolled back. No partial transactions are allowed.
In the situation described here, where we started to write a person's new account

1 Database concepts 5

balance to disk but lost power before we could finish, we'd like to roll back this
transaction. Any transactions that were already completed and were correctly
written to disk should be preserved.

To help us track what data has been written successfully and what data has not
been written successfully, we actually write data to a "transaction log" as well as to
the database tables. The transaction log is essentially a linear sequence of the
operations that have been performed — that is, the transactions that have been
committed. There are markers in the file to indicate the end of each transaction. If
the last transaction in the file does not have an "end-of-transaction" marker, then
we know that fractional transaction was not completed, and it should be rolled
back rather than committed.

When the server re-starts after a failure, it reads the transaction log and applies the
completed transactions one by one. In other words, it updates the tables in the
database, using the information in the transaction log file. This is called "recovery".
When done properly, recovery can even protect against power failures during the
recovery process itself.

This is not a complete description of how transaction logging protects against data
corruption. We have explained how the server makes sure that it doesn't lose
transactions. But we haven't really explained how the server prevents the database
file from becoming corrupted if a write failure occurs while the server is in the
middle of writing a record to a table in the disk drive. That topic is more advanced
and is not discussed here.

Summary
This brief introduction to relational databases has explained the concepts that you
need to start using a relational database. You should now be able to answer the
following questions:

What are tables, rows, and columns?

Can you work with data in more than one table at a time?

How do transactions help keep data consistent?

Why do we write ("log") transaction data to the disk drive?

6 IBM solidDB: SQL Guide

2 Getting started with SQL

This chapter gives you a quick overview (or refresher) in SQL.

Tables, rows, and columns
SQL is a set-oriented programming language that is designed to allow people to
query and update tables of information.

All information is stored in tables. A table is divided into rows and columns. (SQL
theorists refer to columns as "attributes" and rows as "tuples", but we will use the
more familiar terms "columns" and "rows". We will also use the terms "record" and
"row" interchangeably.) Each database contains 0 or more tables. Most databases
contain many tables. An example of a table is shown below.

Table 4. Example database table

ID NAME ADDRESS

1 Beethoven 23 Ludwig Lane

2 Dylan 46 Robert Road

3 Nelson 79 Willie Way

This table contains three rows of data. (The top "row", which has the labels "ID",
"NAME", and "ADDRESS" is shown here for the convenience of the reader. The
actual table in the database does not have such a row.) The table contains three
columns (ID, NAME, and ADDRESS). SQL provides commands to create tables,
insert rows into tables, update data in tables, delete rows from tables, and query
the rows in tables.

SQL
The following SQL "program" creates the table shown in the example below:
CREATE TABLE composers (id INTEGER PRIMARY KEY, name CHAR(20),
address CHAR(50));
INSERT INTO composers (id, name, address) VALUES (1, ’Beethoven’,
’23 Ludwig Lane’);
INSERT INTO composers (id, name, address) VALUES (2, ’Dylan’,
’46 Robert Road’);
INSERT INTO composers (id, name, address) VALUES (3, ’Nelson’,
’79 Willie Way’);

Table 5. Example database table

ID NAME ADDRESS

1 Beethoven 23 Ludwig Lane

2 Dylan 46 Robert Road

3 Nelson 79 Willie Way

7

the column "id" is designated to be the "primary key" of the table. This means that
each row may be uniquely identified by using this column. From now on, the
system will guarantee that the value of "id" is unique and it always exists (that is,
it has the NOT NULL property).

If Mr. Dylan moves to 61 Bob Street, you can update his data with the command:
UPDATE composers SET ADDRESS = ’61 Bob Street’ WHERE ID = 2;

Because the ID field is unique for each composer, and because the WHERE clause
in this command specifies only one ID, this update will be performed on only one
composer.

If Mr. Beethoven dies and you need to delete his record, you can do so with the
command:
DELETE FROM composers WHERE ID = 1;

Finally, if you would like to list all the composers in your table, you can use the
command:
SELECT id, name, address FROM composers;

Note that the SELECT statement, unlike the UPDATE and DELETE statements
listed above, did not include a WHERE clause. Therefore, the command applied to
ALL records in the specified table. Thus the result of this SQL statement is to select
(and list) all of the composers listed in the table.
ID NAME ADDRESS
1 Beethoven 23 Ludwig Lane
2 Dylan 46 Robert Road
3 Nelson 79 Willie Way

Note that although you entered the strings with quotes, they are displayed without
quotes.

The above simple commands help show some important points about SQL.
v SQL is a relatively "high level" language. A single command can create a table

with as many columns as you wish. Similarly, a single command can execute an
UDPATE of almost any complexity. Although not shown here, you can update
multiple columns at a time, and you can even update more than one row at a
time. Operations that might take dozens, or hundreds, of lines of code in
languages like C or Java™ can be executed in a single SQL command.

v Unlike some other computer languages, SQL uses single quotes to delimit
strings. For example, 'Beethoven' is a string. "Beethoven" is something different.
(Technically, it is a delimited identifier, which is not discussed in this chapter.) If
you are used to programming languages like C, which use double quotes to
delimit strings (character arrays) and single quotes to delimit individual
characters, you will have to adjust to SQL's way of doing things.

Although the example above does not clearly show it, there are several additional
points you need to know about basic SQL:
v Although SQL is a very powerful high-level language, it is also a very limited

one. SQL is designed for table-oriented and record-oriented operations. It has
very few low-level operations. For example, there is no direct way to open a file,
or to shift bits leftward or rightward. It is also hardware-independent, which is
both an advantage and disadvantage. You have very little control over the
format of the output from SQL queries; you may choose the order of the
columns, and by using the ORDER BY clause you may control the order of the

8 IBM solidDB: SQL Guide

rows, but you cannot do things such as control the size of the font on the screen,
or print page numbers at the bottom of each printed page of output. SQL simply
is not a complete programming language such as C, Java, PASCAL, and so on.

v Each SQL implementation has a fixed set of data types. The data types in
solidDB (and most other implementations of SQL) include INTEGER,
CHARacter array, FLOATing point, DATE, and TIME.

v SQL is generally an "interpreted" language rather than a "compiled" language. To
execute one or more SQL statements, you typically execute a separate program
that reads your script and then executes it. No "compiled program" or
"executable" is generated and stored for later use. Each time you run the
program, it is interpreted again. (Stored Procedures can be re-used without
necessarily re-interpreting them. Stored Procedures are discussed briefly in
Appendix B, “solidDB SQL syntax,” on page 155 and extensively in 3, “Stored
procedures, events, triggers, and sequences,” on page 23.

v Table and column names are case-insensitive in SQL. In our examples, keywords
(such as CREATE, INSERT, SELECT) are capitalized, and table and columns
names are shown in lower case. However, this is only a convention, not a
requirement.

v SQL is also not very picky about whether commands are written on a single line
or are split across multiple lines. There are examples of multi-line statements
later in this chapter.

v SQL commands can get extremely complicated, with multiple nested "layers" of
queries within queries. Figuring out how to write a complex query can be quite
difficult - and figuring out how to understand a query that someone else wrote
can be equally difficult. As in any programming language, it is a good idea to
document your code!

v To help you document your code, SQL allows "comments". Comments are only
for the human reader; they are skipped over by the SQL interpreter. To create a
comment, you have two options:
– Line comment: put two dashes (--) at the start of the line and end the

comment with a line break. The comment cannot extend to a new line.
– Block (multi-line) comment: Begin the comment with a slash and an asterisk

(/*) and end the comment with an asterisk and a slash (*/).
All the subsequent characters up to the end of the line will be ignored. (There is
an exception for "optimizer hints", another advanced topic that we will not
discuss in this chapter.)

The mathematical origins of SQL
Relational databases and SQL were originally based in part upon the mathematical
concept of set theory. If you are familiar with set theory, it will help you
understand how relational databases work. If you are not familiar with set theory,
then don't worry about it; this is merely one way of looking at relational databases
and SQL.

A table can be thought of as a mathematical set, where each element of the set is a
row. (In our example above, each person, or composer, is an element of a set. The
table contains all of the elements of the set 'composers'.) In mathematics, sets are
unordered. Similarly, in SQL, tables are largely treated as unordered, even though
if you could look at the bits and bytes on the disk you would find that at any
given time the records are stored in a particular order.

This lack of ordering is important, because it means that the results of a query may
be shown in a different order each time that you run the query. With small data

2 Getting started with SQL 9

sets stored on a single disk drive, you will usually see the same rows in the same
order each time, but this is not necessarily the case when data is spread across
multiple files or disk drives.

Because SQL is a set-oriented language, you can use it to perform some
set-oriented operations, such as UNIONs (that is, combining two sets of input into
one set of output). However, operations such as UNION require that the sets
match each other - i.e. that they have the same number of columns, and that they
have the same data type (or compatible data type) in corresponding columns. You
can't perform a UNION operation if the first column in set1 is of type DATETIME
and the first column in set2 is INTEGER, for example.

Again, if you are not comfortable with set theory, don't worry about it. This is just
another way of looking at relational databases.

Creating tables with related data
As described in the previous chapter, each customer of a bank may have more
than one account. We describe the "relationship" between a person and her
accounts as a "one to many" relationship — one person may have many accounts.

Because there is no limit to the number of accounts a person may have, there is no
way to design a record structure ahead of time that can handle all possible
combinations of accounts.

Relational databases, such as IBM® Corporation's, are designed to solve this
problem. We will create one table for customers, and another table for accounts. (In
a real bank, we'd probably divide the accounts into multiple tables, too, with one
table for checking accounts, another table for savings accounts, etc.) Then we create
a "link" between the customer and each of her accounts. This allows us to waste
very little space and yet still have complete information available to us.

As we mentioned earlier, in our example of composers, every record should have a
primary key that allows us to identify that record. It is usually just an integer. We'll
now use that unique integer to help us "relate" a customer to her accounts. Below
are the commands to create and populate the customer table:
CREATE TABLE customers (id INTEGER PRIMARY KEY, name CHAR(20),
address CHAR(40));
INSERT INTO customers (id, name, address) VALUES (1, ’Smith’,
’123 Main Street’);
INSERT INTO customers (id, name, address) VALUES (2, ’Jones’,
’456 Fifth Avenue’);

We have inserted two customers, named Smith and Jones. Let us create the account
table:
CREATE TABLE accounts (id INTEGER PRIMARY KEY, balance FLOAT,
customer_id INT REFERENCES customers);

Here, we have designated the column customer_id to be a "foreign key" pointing to
the customer table (this is indicated by the REFERENCES keyword). The value of
this column is supposed to be exactly the same as the "id" value (the primary key)
in the corresponding customer row in the "customers" table. This way we will
associate account rows with customer rows. The feature of a database allowing to
maintain such relationships in a reliable way is called "referential integrity", and
the corresponding SQL syntax elements used to define such relationships are called
"referential integrity constraints". For more on referential integrity, see “Referential
integrity” on page 104.

10 IBM solidDB: SQL Guide

Customer Smith has two accounts, and customer Jones has 1 account.
INSERT INTO accounts (id, balance, customer_id)
VALUES (1001, 200.00, 1);
INSERT INTO accounts (id, balance, customer_id)
VALUES (1002, 5000.00, 1);
INSERT INTO accounts (id, balance, customer_id)
VALUES (1003, 222.00, 2);

As Smith has two accounts, each of Smith's accounts has a 1 in the customer_id
field. That means that a user can find all of Smith's account records by doing the
following:
1. Look up Smith's record in the customers table.
2. When we find Smith's record, look at the id number in that record. (In Smith's

case, the id is 1.)
3. Now look up all accounts in the accounts table that have a value of 1 in the

customer_id field.

It's as though you taped a copy of your home telephone number onto the forehead
of each of your children when they went to school. If there is an emergency and
you need to send a taxi driver to find and pick up your children at school, you can
simply tell the taxi driver your phone number and he can check every child in the
school to see if the child has your phone number. (This isn't very efficient, but it
works.) By knowing the parent's id number, you can identify all the children.
Conversely, by knowing each child, you can identify the parent. If, for example,
one of your children is lost on a field trip away from the school, any helpful
person can simply read the telephone number off the child's forehead and call you.

As you can see, the parent and child are linked to each other without any sort of
physical contact. Simply having the id number (or phone number) is enough to
determine which children belong to a parent and which parent belongs to each
child. The technique works regardless of how many children you have.

Relational databases use the same technique. Now that we've created our customer
table and our accounts table, we can show each customer and each of the accounts
that she has. To do this, we use what SQL programmers call a "join" operation. The
WHERE clause in the SELECT statement "joins" those pairs of records where the
account's customer_id number matches the customer's id number.
SELECT name, balance

FROM customers, accounts
WHERE accounts.customer_id = customers.id;

The output of this query is similar to the following:
NAME BALANCE
Smith 200.0
Smith 5000.0
Jones 222.0

If a person has multiple accounts, she might want to know the total amount of
money that she has in all accounts. The computer can provide this information by
using the following query:
SELECT customers.id, SUM(balance)

FROM customers, accounts
WHERE accounts.customer_id = customers.id
GROUP BY customers.id;

The output of this query is similar to the following:

2 Getting started with SQL 11

NAME BALANCE
Smith 5200.0
Jones 222.0

Note that this time, Smith appears only once, and she appears with the total
amount of money in all her accounts.

This query uses the GROUP BY clause and an aggregate function named SUM().
The topic of GROUP BY clauses is more complex than we want to go into during
this simple introduction to SQL. This query is just to give you a little taste of the
type of useful work that SQL can do in a single statement. Getting the same result
in a language like C would take many statements.

Note that join operations are not limited to two tables. It's possible to create joins
with an almost arbitrary number of tables. As a realistic extension of our banking
example, we might have another table, "checks", which holds information about
each check written. Thus we would have not only a 1-to-many relationship from
each customer to her accounts, but also a 1-to-many relationship from each
checking account to all of the checks written on that account. It's quite possible to
write a query that will list all the checks that a customer has written, even if that
customer has multiple checking accounts.

Table aliases
SQL allows you to use an "alias" in place of a table name in some queries. In some
cases, aliases are merely an optional convenience. In some queries, however, aliases
are actually required (for reasons we won't explain here). We'll introduce the topic
of aliases here because they are required for some examples later in this chapter.
The query below is the same as an earlier query, except that we've added the table
alias "a" for the accounts table and "c" for the customers table.
SELECT name, balance
FROM customers c, accounts a
WHERE a.customer_id = c.id;

As you can see, we defined an alias in the "FROM" clause and then used it
elsewhere in the query (in the WHERE clause in this case).

Subqueries
SQL allows one query to contain another query, called a "subquery".

Returning to our bank example, over time, some customers add accounts and other
customers terminate accounts. In some cases, a customer might gradually
terminate accounts until he has no more accounts. Our bank may want to identify
all customers that don't have any accounts so that those customers' records can be
deleted, for example. One way to identify the customers who don't have any
accounts is to use a subquery and the EXISTS clause.

To try this out, we need to create a customer who doesn't have any accounts:
INSERT INTO customers (id, name, address) VALUES (3, ’Zu’, ’B St’);

Before we list all customers who don't have accounts, let's list all customers who
do have accounts.
SELECT id, name
FROM customers c
WHERE EXISTS (SELECT * FROM accounts a WHERE a.customer_id = c.id);

12 IBM solidDB: SQL Guide

The subquery (also called the "inner query") is the query inside the parentheses.
The inner query is executed once for each record selected by the outer query. (This
functions a lot like nested loops would function in another programming language,
except that with SQL we can do nested loops in a single statement.) Naturally, if
there are any accounts for the particular customer that the outer loop is processing,
then those account records are returned to the outer query.

The "EXISTS" clause in the outer query says, effectively, "We don't care what values
are in those records; all we care about is whether there are any records or not."
Thus EXISTS returns TRUE if the customer has any accounts. If the customer has
no accounts, then the EXISTS returns false. The EXISTS clause doesn't care whether
there are multiple accounts or single accounts. It doesn't care what values are in
the accounts. All the EXISTS wants to know is "Is there at least one record?"

Thus, the entire statement lists those customers who have at least one account. No
matter how many accounts the customer has (as long as it's at least 1), the
customer is listed only once.

Now let's list all those customers who don't have any accounts:
SELECT id, name
FROM customers c
WHERE NOT EXISTS (SELECT * FROM accounts a WHERE a.customer_id = c.id);

Merely adding the keyword NOT reverses the sense of the query.

Subqueries may themselves have subqueries. In fact, subqueries may be nested
almost arbitrarily deep.

Which formats are used for each data type
As we've already shown above, SQL requires that values be expressed in a
particular way. For example, character strings must be delimited by single quote
marks.

Other values also must be formatted properly. The exact format required depends
upon the data type. Several data types other than CHARacter data types also
require single quotes to delimit the values that you enter.

Below are some examples of how to format input data for most of the data types
that solidDB supports. We'll show this in the form of a simple SQL script that you
can execute if you wish. Note that in this script, many commands are split across
multiple lines. This is quite legal in SQL. It's one of the reasons that most SQL
interpreters expect a semicolon to separate each SQL statement, even though the
ANSI Standard for SQL doesn't actually require a semicolon at the end of each
statement.
CREATE TABLE one_of_almost_everything (
int_col INTEGER,
float_col FLOAT,
string_col CHAR(20),
wide_string_col WCHAR(20), -- "wide" means wide chars, e.g. unicode.
varchar_col VARCHAR, -- Note that we did not have to specify width.
date_col DATE,
time_col TIME,
timestamp_col TIMESTAMP
);

INSERT INTO one_of_almost_everything (
int_col,

2 Getting started with SQL 13

float_col,
string_col,
wide_string_col,
varchar_col,
date_col,
time_col,
timestamp_col
)
VALUES (
1,
2.0,
’three’,
’four’,
’five point zero zero zero zero zero zero zero zero zero zero ...’,
’2002-12-31’,
’11:59:00’,
’1999-12-31 23:59:59.00000’
);

As you can see, timestamp values are entered in order from the "most significant"
digit to the "least significant" digit. Similarly, date and time values are also entered
from the most significant digit to the least significant digit. And all 3 of these data
types (timestamp, date, time) use punctuation to separate individual fields.

The reason for requiring particular formats is that some of the other possible
formats are ambiguous. For example, to someone in the U.S., '07-04-1776' is July 4,
1776, since Americans usually write dates in the 'mm-dd-yyyy' (or 'mm/dd/yyyy'
format). But to a person from Europe, this date is obviously April 7, not July 4th,
since most Europeans write dates in the format 'dd-mm-yyyy'. Although it may
seem that the problem of having too many formats is not well solved by adding
still another format, there are some advantages to SQL's approach of using a
format that starts with the most significant digit and moves steadily toward the
least significant digit. First, it means that all three data types (date, time, and
timestamp) follow the same rule. Second, the date format and the time format are
both perfect subsets of the timestamp format. Third, although it's yet another
format to memorize, the rule is reasonably simple and is consistent with the way
that "western" languages write numbers (most significant digit is furthest to the
left). Finally, by being obviously incompatible with the existing formats, there's no
chance that a person will accidentally write one date (e.g. '07-04-1776') and have it
interpreted by the machine as another date.

BLOBs (or binary data types)
So far, we have discussed data types that store data that is intended to be read by
humans. Some types of data are not intended to be read directly by humans, but
can still be stored in a database. For example, a picture from a digital camera, or a
song from a CD, is stored as a series of numbers. These numbers are almost
meaningless to a human. Digitized pictures and sounds can be stored as BINARY
data, however. solidDB supports three binary data types: BINARY, VARBINARY,
and LONG VARBINARY (or BLOB).

In most cases, you will read and write binary data using the ODBC (Open
DataBase Connectivity) API from a C program, or the JDBC API from a Java
program. However, it is possible to insert data into a binary field using a utility
that executes SQL statements. To insert a value into a binary field, you must
represent the value as a series of hexadecimal numbers inside single quotes. For
example, if you wanted to insert a series of bytes with the values 1, 9, 11, 255 into
a binary field, you would execute:
INSERT INTO table1 (binary_col) VALUES (CAST(’01090BFF’ AS VARBINARY));

14 IBM solidDB: SQL Guide

Because this command instructs the server to CAST the value to type VARBINARY,
the server automatically interprets the string as a series of hexadecimal numbers,
not as a string literal.

You may also insert a string literal directly, e.g.
INSERT INTO table1 (binary_col) VALUES (’Thank you’);

When you retrieve the data via solsql (solidDB utility for executing SQL
statements), the return value from a binary column is expressed in hexadecimal,
whether or not you originally entered it as hexadecimal. Thus, after you insert the
value 'Thank you', if you select this value from the table you will see:
5468616E6B20796F75

where 54 represents capital 'T', 68 represents lower-case 'h', 61 represents
lower-case 'a', 6E represents lower-case 'n', etc.

Note also that for long values only the first several digits are shown.

NULL IS NOT NULL (or "how to say 'none of the above' in
SQL")

Sometimes you don't have enough information to fill out a form completely. SQL
uses the keyword NULL to represent "Unknown" or "No Value". (This is different
from the meaning of NULL in programming languages such as C.) For example, if
we are inserting a record for Joni Mitchell into our table of composers, and we
don't know Joni Mitchell's address, then we might execute the following:
INSERT INTO composers (id, name, address) VALUES (5, ’Mitchell’, NULL);

If we don't specify the address field, it will contain NULL by default.
INSERT INTO composers (id, name) VALUES (5, ’Mitchell’);

To give you some information about NULL, and also give you some practice
reading SQL code, we've written our explanation of NULL as a sample program
with comments. You can read this now. When you're ready to run it, simply cut
and paste part or all of it into a program that executes SQL, such as the solsql
utility provided with the solidDB Development Kit. (For more information about
solsql, see IBM solidDB Administrator Guide.)
-- This sample script shows some unusual characteristics
-- of the value NULL.

-- Data of any data type may contain NULL.
-- For example, a column of type INTEGER may contain not
-- only valid integer values, but also NULL.

-- Set up for experiments...
CREATE TABLE table1 (x INTEGER, name CHAR(30));

-- The value NULL means "there is no value".
-- NULL is not the same as zero, or an empty string.
-- (It’s also not a pointer value, as it is in
-- programming languages such as C.)
-- To help show this, we’ll insert 3 rows, one of which has
-- "normal" values, one of which has a 0 and an empty string,
-- and one of which has two NULL values.
INSERT INTO table1 (x, name) VALUES (2, ’Ludwig Von Beethoven’);
INSERT INTO table1 (x, name) VALUES (0, ’’);
INSERT INTO table1 (x, name) VALUES (NULL, NULL);
-- This returns only the row containing 0,
-- not the row containing NULL.

2 Getting started with SQL 15

SELECT * FROM table1 WHERE x = 0;
-- This returns only the row containing the empty string,
-- not the row containing NULL.
SELECT * FROM table1 WHERE name = ’’;

-- It’s not surprising that NULL doesn’t match other values.
-- What IS surprising is that NULL doesn’t match even itself.
-- (A mathematician would say that NULL violates the
-- reflexive property "a = a"!)
SELECT * FROM table1 WHERE x = x;

-- Since NULL doesn’t equal NULL, what will the following query return?
SELECT * FROM table1 WHERE x != x;

-- Similarly, although you might think that the
-- expression below is always true, it’s actually
-- always false.
SELECT * FROM table1 WHERE NULL IN (NULL, 2);

-- The result set will contain 2 (since 2 is in
-- the set (NULL, 2)), but the result set will
-- not contain NULL.
SELECT * FROM table1 WHERE x IN (NULL, 2);

-- But suppose that I *want* to find all the records that
-- have NULL values. How do I do that if I can’t say ... = NULL?
SELECT * FROM table1 WHERE x IS NULL;
-- And the opposite query is ...
SELECT * FROM table1 WHERE x IS NOT NULL;

-- Set up for more experiments...
CREATE TABLE parent (id INTEGER, name CHAR(20));
CREATE TABLE children (id INTEGER, name CHAR(12), parent_id INT);
INSERT INTO parent (id, name) VALUES (1, ’Smith’);
INSERT INTO children (id, name, parent_id) VALUES (11, ’Smith child’, 1);
INSERT INTO children (id, name, parent_id) VALUES (131, ’orphan’, NULL);
INSERT INTO parent (id, name) VALUES (NULL, ’Has Null’);

-- Since NULL != NULL, if a "parent" record has NULL and a "child"
-- record has NULL, the child’s value won’t match the parent’s value.
-- This result set will contain ’Smith’, but not ’Has Null’.
SELECT p.name FROM parent p, children c
WHERE c.parent_id = p.id;

-- Note that a row that contains nothing but a
-- single NULL is still a row.
-- In the following query, we use an EXISTS clause,
-- which evaluates to TRUE if the subquery returns
-- any rows. Even a row that contains nothing but a
-- single NULL value is still a row, and so if the
-- subquery returns a single NULL the EXISTS clause
-- still evaluates to TRUE.
-- Even though the subquery below returns NULL rather than a name
-- or ID, the EXISTS expression evaluates to TRUE, and Smith is printed.
SELECT name FROM parent p
WHERE EXISTS(SELECT NULL FROM children c WHERE c.parent_id = p.id);

-- Now that we’ve trained you to recognize that NULL != NULL,
-- we’ll confuse you with something that breaks the pattern.

16 IBM solidDB: SQL Guide

-- Contrary to what you might expect, the UNIQUE keyword
-- DOES filter out multiple NULL values.
INSERT INTO table1 (x, name) VALUES (NULL, ’any name’);
-- Now the table has more than one row in which x is NULL,
-- but a query with UNIQUE nonetheless returns only a
-- single NULL value.
SELECT DISTINCT x FROM table1;
-- You may be interested to know that a UNIQUE index
-- will allow only a single NULL value. (Note that a primary key
-- will not allow any NULL values.)

-- Clean up.
DROP TABLE parent;
DROP TABLE children;
DROP TABLE table1;

NOT NULL
As opposed to NULL, NOT NULL is one of the SQL data constraints. NOT NULL
indicates that null values are not allowed in any row of the table for the specified
column. For more information and examples, refer to Appendix B, “solidDB SQL
syntax,” on page 155.

Expressions and casts
SQL allows expressions in some parts of SQL statements. For example, the
following statement multiplies the value in a column by 12:
SELECT monthly_average * 12 FROM table1;

As another example, the following statement uses the built-in SQRT function to
calculate the square root of each value in the column named "variance".
SELECT SQRT(variance) FROM table1;

Our next example uses the "REPLACE" function to convert numbers from U.S.
format to European format. In U.S. format, numbers use the period character ('.') as
the decimal point, but in Europe the comma (',') is used. For example, in the U.S.
the approximation of pi is written as "3.14", while in Europe it is written as "3,14".
We can use the REPLACE function to replace the '.' character with the ',' character.
The following series of statements shows an example of this.
CREATE TABLE number_strings (n VARCHAR);
INSERT INTO number_strings (n) VALUES (’3.14’); -- input in US format.
SELECT REPLACE(n, ’.’, ’,’) FROM number_strings; -- output in European.

The output looks like
n

3,14

Note that one function can call another. The following expression takes the square
root of a number and then takes the natural log of that square root:
SELECT LOG(SQRT(x)) FROM table1;

solidDB SQL does not accept completely general expressions in all clauses. For
example, in the SELECT clause, you may use pre-defined functions, but you may
not call stored procedures that you have created. Even if you have created a stored
procedure named "foo", the following will not work:
SELECT foo(column1) FROM table1;

2 Getting started with SQL 17

When you use expressions, you may want to specify a new name for a column.
For example, if you use the expression
SELECT monthly_average * 12 FROM table1;

you probably don't want the output column to be called "monthly_average".
solidDB server will actually use the expression itself as the name of the column. In
this case, the name of the column would be "monthly_average * 12". That's
certainly descriptive, but for a long expression this can get very messy. You can use
the "AS" keyword to give an output column a specific name. In the following
example, the output will have the column heading "yearly_average".
SELECT monthly_average * 12 AS yearly_average FROM table1;

Note that the AS clause works for any output column, not just for expressions. If
you like, you may do something like the following:
SELECT ssn AS SocialSecurityNumber FROM table2;

A CASE clause allows you to control the output based on the input. Below is a
simple example, which converts a number (1-12) to the name of a month:
CREATE TABLE dates (m INT);
INSERT INTO dates (m) VALUES (1);
-- ...etc.
INSERT INTO dates (m) VALUES (12);
INSERT INTO dates (m) VALUES (13);

SELECT
CASE m

WHEN 1 THEN ’January’
-- etc.
WHEN 12 THEN ’December’
ELSE ’Invalid value for month’

END
AS month_name
FROM dates;

Note that this not only allows you to convert valid values, but also allows you to
generate appropriate output if there is an error. The "ELSE" clause allows you to
specify an alternative value if you get an input value that you weren't expecting.

In some situations, you may want to cast a value to a different data type. For
example, when inserting BLOB data, it is convenient to create a string that contains
your data, and then insert that string into a BINARY column. You may use a cast
as shown below:
CREATE TABLE table1 (b BINARY(4));
INSERT INTO table1 VALUES (CAST(’FF00AA55’ AS BINARY));

This cast allows you to take data that is a series of hexadecimal digits and input it
as though it were a string. Each of the hexadecimal pairs in the quoted string
represents a single byte of data. There are 8 hexadecimal digits, and thus 4 bytes of
input.

A cast can be used to change output as well as input. In the rather complex code
sample below, the expression in the CASE clause converts the output from the
format '2003-01-20 15:33:40' to '2003-Jan-20 15:33:40'.
CREATE TABLE sample1(dt TIMESTAMP);
COMMIT WORK;

INSERT INTO sample1 VALUES (’2003-01-20 15:33:40’);
COMMIT WORK;

18 IBM solidDB: SQL Guide

SELECT
CASE MONTH(dt)

WHEN 1 THEN REPLACE(CAST(dt AS varchar), ’-01-’, ’-Jan-’)
WHEN 2 THEN REPLACE(CAST(dt AS varchar), ’-02-’, ’-Feb-’)
WHEN 3 THEN REPLACE(CAST(dt AS varchar), ’-03-’, ’-Mar-’)
WHEN 4 THEN REPLACE(CAST(dt AS varchar), ’-04-’, ’-Apr-’)
WHEN 5 THEN REPLACE(CAST(dt AS varchar), ’-05-’, ’-May-’)
WHEN 6 THEN REPLACE(CAST(dt AS varchar), ’-06-’, ’-Jun-’)
WHEN 7 THEN REPLACE(CAST(dt AS varchar), ’-07-’, ’-Jul-’)
WHEN 8 THEN REPLACE(CAST(dt AS varchar), ’-08-’, ’-Aug-’)
WHEN 9 THEN REPLACE(CAST(dt AS varchar), ’-09-’, ’-Sep-’)
WHEN 10 THEN REPLACE(CAST(dt AS varchar), ’-10-’, ’-Oct-’)
WHEN 11 THEN REPLACE(CAST(dt AS varchar), ’-11-’, ’-Nov-’)
WHEN 12 THEN REPLACE(CAST(dt AS varchar), ’-12-’, ’-Dec-’)

END
AS formatted_date

FROM sample1;

This takes a value from a column named dt, converts that value from timestamp to
VARCHAR, then replaces the month number with an abbreviation for the month
(for example, it replaces "-01-" with "-Jan-"). By using the CASE/WHEN/END
syntax, we can specify exactly what output we want for each possible input. Note
that because this expression is so complicated, it is almost mandatory to use an AS
clause to specify the column header in the output.

Row value constructors
This section explains one of the less familiar types of expressions, the Row Value
Constructor (RVC), and how it is used with relational operators, such as greater
than, less than, etc.

A row value constructor is an ordered sequence of values delimited by
parentheses, for example:
(1, 4, 9)
(’Smith’, ’Lisa’)

You can think of this as constructing a row based on a series of elements/values,
just like a row of a table is composed of a series of fields.

Row value constructors, like individual values, may be used in comparisons. For
example, just as you may have expressions like:
WHERE x > y;
WHERE 2 > 1;

you also may have expressions like:
WHERE (2, 3, 4) > (1, 2, 3);
WHERE (t1.last_name, t1.first_name) = (t2.last_name, t2.first_name);

Comparisons using row value constructors must be done carefully. Rather than
give the technical definition of comparisons (which you can find in section 8.2
(comparison predicates) of the SQL-92 standard), we will give examples and an
analogy to help you see the pattern.

The following expressions are true:
(9, 9, 9) > (1, 1, 1)
(’Baker’, ’Barbara’) > (’Alpert’, ’Andy’)
(1, 1) = (1, 1)
(3, 2, 1) != (4, 3, 2)

2 Getting started with SQL 19

The examples above are simple, because the expression is correct for each
corresponding pair of elements and is therefore true for the RVCs. For example,
’Baker’ > ’Alpert’ and ’Barbara’ > ’Andy’, and therefore
(’Baker’, ’Barbara’) > (’Alpert’, ’Andy’)

However, when comparing row value constructors, it is not necessary that the
expression be true for each corresponding element. In a row value constructor, the
further left an element is, the more significance it has. Thus the following
expressions are also true:
(9, 1, 1) > (1, 9, 9)
(’Zoomer’, ’Andy’) > (’Alpert’, ’Zelda’)

In these examples, since the most significant element of the first RCV is greater
than the corresponding element of the second RCV, the expression is true,
regardless of the values of the remaining elements. Similarly, in the examples
below, the first elements are identical, but the expressions overall are true:
(1, 1, 2) > (1, 1, 1)
(1, 2, 1) > (1, 1, 1)
(’Baker’, ’Zelda’) > (’Baker’, ’Allison’)

Again, in a row value constructor, the further left an element is, the more
significance it has. This is similar to the way that we compare multi-digit numbers.
In a 3-digit number, such as 911, the hundreds-place digit is more significant than
the tens-place digit, and the tens-place digit is more significant than the ones-place
digit. Thus, the number 911 is greater than the number 199, even though not all
digits of 911 are greater than the corresponding digits of 199.

This is useful when comparing multiple columns that are related. A practical
application of this is when comparing people's names. For example, suppose that
we have 2 tables, each of which has an lname (last name) and fname (first name)
column. Suppose that we want to find all people whose names are less than
Michael Morley's. In this situation, we want the last name to have more
significance than the first name. The following names are shown in the correct
alphabetical order (by last name):

Adams, Zelda

Morley, Michael

Young, Anna

If we want to list all persons whose names are less than Michael Morley's, then we
do NOT want to use the following:
table1.lname < ’Morley’ and table1.fname < ’Michael’

If we used this expression, we would reject Zelda Adams because her first name is
alphabetically after Michael Morley's first name. One correct solution is to use the
row value constructor approach:
(table1.lname, table1.fname) < (’Morley’, ’Michael’)

Note that when using equality, the expression must be true for ALL elements of
the RCVs. E.g.:
(1, 2, 3) = (1, 2, 3)

Not surprisingly, for inequality the expression must be true for only one element:

20 IBM solidDB: SQL Guide

(1, 2, 1) != (1, 1, 1)

More about transactions
As described in the previous chapter, SQL allows you to group multiple statements
into a single "atomic" (indivisible) piece of work called a transaction. Successful
transactions are preserved with the command COMMIT WORK. Below is a
simplistic example.
COMMIT WORK; -- Finish the previous transaction.
UPDATE stores SET balance = balance + 199.95
WHERE store_name = ’Big Tyke Bikes’;
UPDATE checking_accounts SET balance = balance - 199.95
WHERE name = ’Jay Smith’;
COMMIT WORK;

If you don't want to keep a particular transaction, you can roll it back by using the
command:
ROLLBACK WORK;

If you do not explicitly commit or roll back your work, then the server will roll it
back for you. In other words, unless you confirm that you want to keep the data
(by committing it), the data will be discarded.

Summary
This brief introduction to SQL and relational databases has explained the concepts
that you need to start using SQL. You should now be able to answer the following
questions:

What are tables, rows, and columns?

How do I create a table?

How do I put data into a table?

How do I update data in a table?

How do I delete data from a table?

How do I list data in a table?

How do I list related data in two different tables?

How do I ensure that multiple statements are executed together (so that all fail or
all succeed as a group)?

Where to find additional information about SQL
Other chapters in this manual explain more about SQL and solidDB -specific
features. However, this manual is neither a complete tutorial nor a comprehensive
reference on SQL. You may wish to acquire additional documents on SQL.

There are many books on SQL. These books are not specific to solidDB's
implementation of SQL; most of the material is generic and will apply to any
database server, such as solidDB's, that conforms to the ANSI standards. General
SQL books include:

2 Getting started with SQL 21

v Introduction to SQL: Mastering the Relational Database Language, by Rick van der
Lans, published by Addison-Wesley.

ANSI standards on SQL include:
v Database Language - SQL with Integrity Enhancement, ANSI, 1989 ANSI

X3.135-1989.
v Database Language - SQL: ANSI X3H2 and ISO/IEC JTC1/SC21/WG3 9075:1992

(SQL-92).

For more information on ANSI standards, see http://www.ansi.org/.

ISO (International Standards Organization) also has standards for SQL. See
http://www.iso.org for more information.

22 IBM solidDB: SQL Guide

http://www.ansi.org/
http://www.iso.org

3 Stored procedures, events, triggers, and sequences

In solidDB databases, a number of features are available that make it possible to
move parts of the application logic into the database. These features include:
v stored procedures
v deferred procedure calls ("Start After Commit")
v event alerts
v triggers
v sequences

Stored procedures
Stored procedures are simple programs, or procedures, that are executed in
solidDB databases. The user can create procedures that contain several SQL
statements or whole transactions, and execute them with a single call statement. In
addition to SQL statements, 3GL type control structures can be used enabling
procedural control. In this way complex, data-bound transactions may be run on
the server itself, thus reducing network traffic.

Granting execute rights on a stored procedure automatically invokes the necessary
access rights to all database objects used in the procedure. Therefore, administering
database access rights may be greatly simplified by allowing access to critical data
through procedures.

This section explains in detail how to use stored procedures. In the beginning of
this section, the general concepts of using the procedures are explained. Later
sections go more in-depth and describe the actual syntax of different statements in
the procedures. The end of this section discusses transaction management,
sequences and other advanced stored procedure features.

Basic procedure structure
A stored procedure is a standard solidDB database object that can be manipulated
using standard DDL statements CREATE and DROP.

In its simplest form a stored procedure definition looks like:
"CREATE PROCEDURE procedure_name
parameter_section
BEGIN
declare_section_local_variables
procedure_body
END";

The following example creates a procedure called TEST:
"CREATE PROCEDURE test
BEGIN
END"

Procedures can be run by issuing a CALL statement followed by the name of the
procedure to be invoked:
CALL test

23

Naming procedures
Procedure names have to be unique within a database schema.

All the standard naming restrictions applicable to database objects, like using
reserved words, identifier lengths, etc., apply to stored procedure names. For an
overview and complete list of reserved words, see Appendix C, “Reserved words,”
on page 305.

Parameter section
A stored procedure communicates with the calling program using parameters.
solidDB supports two methods to return values to the calling program. The first
method is the standard SQL-99 method, which uses parameters, and the other is a
solidDB proprietary method, RETURNS, which uses result sets.

Using parameters
Using parameters is the standard SQL-99 method of returning data. Stored
procedures accept three types of parameters:
v Input parameters, which are used as input to the procedure. Parameters are

input parameters by default. Thus, keyword IN is optional.
v Output parameters, which are returned values from the procedure.
v Input/output parameters, which pass values into the procedure and return a

value back to the calling procedure.

Declaring input parameters in the procedure heading make their values accessible
inside the procedure by referring to the parameter name. The parameter data type
must also be declared. For supported data types, see Appendix A, “Data types,” on
page 147.

The syntax used in the parameter declaration is (for the complete syntax, see
Appendix B, “solidDB SQL syntax,” on page 155):
parameter_definition ::= [parameter_mode] parameter_name data_type
parameter_mode ::= IN | OUT | INOUT

There can be any number of parameters. Input parameters have to be supplied in
the same order as they are defined when the procedure is called.

You can give default values to the parameters when you create the procedure.
When you declare the parameter, just add an equals character (=) and the default
value after the parameter data type. For example:
"CREATE PROCEDURE participants(adults integer = 1,
children integer = ’0’,
pets integer = ’0’)
BEGIN
END"

When you call the procedure which has default values for the parameters defined,
you don't have to give values for all the parameters. To use default values for all
parameters you can simply use the command:
call participants()

To give a value to a parameter, use the parameter name in the call statement and
assign the parameter value by using the equals character as shown in the example
below:
call participants(children = 2)

24 IBM solidDB: SQL Guide

This command gives value 2 for parameter "children" and default values for
parameters "adults" and "pets".

If parameter names are not used in the call statement, solidDB assumes that the
parameters are given in same the order as in the create statement.

Examples:
call participants(1)

This command uses value 1 for parameter "adults" and default values for
parameters "children" and "pets".
call participants(1,2)

This command uses value 1 for parameter "adults" and value 2 for parameter
"children". The default value is used for parameter "pets".

If a name is given to a parameter, all parameters following it must also have a
name. This is why command:
call participants(adults = 1,2)

returns an error.
call participants(1,children = 2)

This command uses value 1 for parameter "adults" and value 2 for parameter
"children". The default value is used for parameter "pets".

Using RETURNS
You can use stored procedures to return a result set table with several rows of data
in separate columns. This is a solidDB proprietary method to return data and it is
performed by using the RETURNS structure.

When you use the RETURNS structure, you must separately declare result set
column names for the output data rows. There can be any number of result set
column names. The result set column names are declared in the RETURNS section
of the procedure definition:
"CREATE PROCEDURE procedure_name
[(IN input_param1 datatype[,
input_param2 datatype, ...])]
[RETURNS
(output_column_definition1 datatype[,
output_column_definition2 datatype, ...])]
BEGIN
END";

By default, the procedure only returns one row of data containing the values as
they were at the moment when the stored procedure was run or was forced to exit.
However, it is also possible to return result sets from a procedure using the
following syntax:
return row;

Every RETURN ROW call adds a new row into the returned result set where
column values are the current values of the result set column names.

The following statement creates a procedure that has two input parameters and
two result set column names for output rows:

3 Stored procedures, events, triggers, and sequences 25

"CREATE PROCEDURE PHONEBOOK_SEARCH
(IN FIRST_NAME VARCHAR, LAST_NAME VARCHAR)
RETURNS (PHONE_NR NUMERIC, CITY VARCHAR)
BEGIN
-- procedure_body
END";

This procedure should be called by using two input parameter of data type
VARCHAR. The procedure returns an output table consisting of two columns
named PHONE_NR of type NUMERIC and CITY of type VARCHAR.

For example:
call phonebook_search (’JOHN’,’DOE’);

The result looks as follows (when the procedure body has been programmed):
PHONE_NR CITY
3433555 NEW YORK
2345226 LOS ANGELES

The following statement creates a calculator procedure:
"create procedure calc(i1 float, op char(1),
i2 float)
returns (calcresult float)
begin
declare i integer;

if op = ’+’ then
calcresult := i1 + i2;
elseif op = ’-’ then
calcresult := i1 - i2;
elseif op = ’*’ then
calcresult := i1 * i2;
elseif op = ’/’ then
calcresult := i1 / i2;
else
calcresult := ’Error: illegal op’;
end if
end";

You can test the calculator with the command:
call calc(1,’/’,3);

With RETURNS, select statements can also be wrapped into database procedures.
The following statement creates a procedure that uses a select statement to return
backups created from the database:
"create procedure show_backups
returns (backup_number varchar, date_created varchar)
begin
-- First set action for failing statements.
exec sql whenever sqlerror rollback, abort;

-- Prepare and execute the select statement
exec sql prepare sel_cursor select
replace(property, ’backup ’, ’’),
substring(value_str, 1, 19) from sys_info
where property like ’backup %’;
exec sql execute sel_cursor into (backup_number, date_created);

-- Fetch first row;
exec sql fetch sel_cursor;
-- Loop until end of table
while sqlsuccess loop

26 IBM solidDB: SQL Guide

-- Return the fetched row
return row;

-- Fetch next
exec sql fetch sel_cursor;
end loop;
end";

Declare section
Local variables that are used inside the procedure for temporary storage of column
and control values are defined in a separate section of the stored procedure
directly following the BEGIN keyword.

The syntax of declaring a variable is:
DECLARE variable_name datatype;

Note that every declare statement should be ended with a semicolon (;).

The variable name is an alphanumeric string that identifies the variable. The data
type of the variable can be any valid SQL data type supported. For supported data
types, see Appendix A, “Data types,” on page 147.

For example:
"CREATE PROCEDURE PHONEBOOK_SEARCH
(FIRST_NAME VARCHAR, LAST_NAME VARCHAR)
RETURNS (PHONE_NR NUMERIC, CITY VARCHAR)
BEGIN
DECLARE i INTEGER;

DECLARE dat DATE;

END";

Note that input and output parameters are treated like local variables within a
procedure with the exception that input parameters have a preset value and output
parameter values are returned or can be appended to the returned result set.

Procedure body
The procedure body contains the actual stored procedure program based on
assignments, expressions, and SQL statements.

Any type of expression, including scalar functions, can be used in a procedure
body. For valid expressions, see “Expression” on page 294.

Assignments
To assign values to variables either of the following syntax is used:
SET variable_name = expression;

or
variable_name := expression;

Example:
SET i = i + 20 ;

i := 100;

3 Stored procedures, events, triggers, and sequences 27

Scalar functions with assignments
A scalar function is an operation denoted by a function name followed by a pair of
parentheses enclosing zero or more specified arguments. Each scalar function
returns one value. Note that scalar functions can be used with assignments, as in:
"CREATE PROCEDURE scalar_sample
RETURNS (string_var VARCHAR(20))
BEGIN
-- CHAR(39) is the single quote/apostrophe
string_var := ’Joe’ + {fn CHAR (39)} + ’s Garage’;
END";

The result of this stored procedure is the output:
Joe’s Garage

For a list of solidDB-supported scalar functions (SQL-92), see Appendix B,
“solidDB SQL syntax,” on page 155. Note that solidDB Programmer Guide contains
an appendix that describes ODBC scalar functions, which contain some differences
for SQL-92.

Variables, constants, and parameters in assignments
Variables and constants are initialized every time a procedure is executed. By
default, variables are initialized to NULL. Unless a variable has been explicitly
initialized, its value is NULL, as the following example shows:
BEGIN
DECLARE total INTEGER;
...
total := total + 1; -- assigns a null to total
...

Therefore, a variable should never be referenced before it has been assigned a
value.

The expression following the assignment operator can be arbitrarily complex, but it
must yield a data type that is the same as or convertible to the data type of the
variable.

When possible, solidDB procedure language can provide conversion of data types
implicitly. This makes it possible to use literals, variables and parameters of one
type where another type is expected.

Implicit conversion is not possible if:
v information would be lost in the conversion
v a string to be converted to an integer contains non-numeric data

Examples:
DECLARE integer_var INTEGER;
integer_var := ’NR:123’;

returns an error.
DECLARE string_var CHAR(3);
string_var := 123.45;

results in value '123' in variable string_var.
DECLARE string_var VARCHAR(2);
string_var := 123.45;

28 IBM solidDB: SQL Guide

returns an error.

Single quotes and apostrophes in string assignments
Strings are delimited by single quotes. If you want to have a single quote marks
within a string, then you can put two single quote marks (''), side by side, to
produce one quote mark in your output. This is commonly known as an "escape
sequence." Following is a stored procedure that uses this technique:
"CREATE PROCEDURE q
RETURNS (string_var VARCHAR(20))
BEGIN
string_var :=’Joe’’s Garage’;
END";
CALL q;

The result is:
Joe’s Garage

Here are some other examples:
’I’’m writing.’

becomes:
I’m writing.

and
’Here are two single quotes:’’’’’

becomes:
Here are two single quotes:’’

Note that in the last example there are five single quotes in a row at the end of the
string. The last of these is the delimiter (the closing quote mark); the preceding
four are part of the data. The four quotes are treated as two pairs of quotes, and
each pair of quotes is treated as an escape sequence representing one single quote
mark.

Expressions

Comparison operators
Comparison operators compare one expression to another. The result is always
TRUE, FALSE, or NULL. Typically, comparisons are used in conditional control
statements and allow comparisons of arbitrarily complex expressions. The
following table gives the meaning of each operator:

Table 6. Comparison operators

Operator Meaning

= is equal to

<> is not equal to

< is less than

> is greater than

<= is less than or equal to

3 Stored procedures, events, triggers, and sequences 29

Table 6. Comparison operators (continued)

Operator Meaning

>= is greater than or equal to

Note that the != notation cannot be used inside a stored procedure, use the
ANSI-SQL compliant <> instead.

Logical operators
The logical operators can be used to build more complex queries. The logical
operators AND, OR, and NOT operate according to the tri-state logic illustrated by
the truth tables shown below. AND and OR are binary operators; NOT is a unary
operator.

Table 7. Logical operators: NOT

NOT true false null

false true null

Table 8. Logical operators: AND

AND true false null

true true false null

false false false false

null null false null

Table 9. Logical operatORs: or

OR true false null

true true true true

false true false null

null true null null

As the truth tables show, AND returns the value TRUE only if both its operands
are true. On the other hand, OR returns the value TRUE if either of its operands is
true. NOT returns the opposite value (logical negation) of its operand. For
example, NOT TRUE returns FALSE.

NOT NULL returns NULL because nulls are indeterminate.

When not using parentheses to specify the order of evaluation, operator
precedence determines the order.

Note that 'true' and 'false' are not literals accepted by SQL parser but values.
Logical expression value can be interpreted as a numeric variable:

false = 0 or NULL

30 IBM solidDB: SQL Guide

true = 1 or any other numeric value

Example:
IF expression = TRUE THEN

can be simply written
IF expression THEN

IS NULL operator
The IS NULL operator returns the Boolean value TRUE if its operand is null, or
FALSE if it is not null. Comparisons involving nulls always yield NULL. To test
whether a value is NULL, do not use the expression,
IF variable = NULL THEN...

because it never evaluates to TRUE.

Instead, use the following statement:
IF variable IS NULL THEN...

Note that when using multiple logical operators in solidDB stored procedures the
individual logical expressions should be enclosed in parentheses like:
((A >= B) AND (C = 2)) OR (A = 3)

Control structures
The following sections describe the statements that can be used in the procedure
body, including branch and loop statements.

IF statement
Often, it is necessary to take alternative actions depending on circumstances. The
IF statement executes a sequence of statements conditionally. There are three forms
of IF statements: IF-THEN, IF-THEN-ELSE, and IF-THEN-ELSEIF.

IF-THEN
The simplest form of IF statement associates a condition with a statement list
enclosed by the keywords THEN and END IF (not ENDIF), as follows:
IF condition THEN
statement_list;
END IF

The sequence of statements is executed only if the condition evaluates to TRUE. If
the condition evaluates to FALSE or NULL, the IF statement does nothing. In
either case, control passes to the next statement. An example follows:
IF sales > quota THEN
SET pay = pay + bonus;
END IF

IF-THEN-ELSE
The second form of IF statement adds the keyword ELSE followed by an
alternative statement list, as follows:
IF condition THEN
statement_list1;

ELSE
statement_list2;
END IF

3 Stored procedures, events, triggers, and sequences 31

The statement list in the ELSE clause is executed only if the condition evaluates to
FALSE or NULL. Thus, the ELSE clause ensures that a statement list is executed. In
the following example, the first or second assignment statement is executed when
the condition is true or false, respectively:
IF trans_type = ’CR’ THEN

SET balance = balance + credit;
ELSE

SET balance = balance - debit;
END IF

THEN and ELSE clauses can include IF statements. That is, IF statements can be
nested, as the following example shows:
IF trans_type = ’CR’ THEN

SET balance = balance + credit ;
ELSE

IF balance >= minimum_balance THEN
SET balance = balance - debit ;

ELSE
SET balance = minimum_balance;

END IF
END IF

IF-THEN-ELSEIF
Occasionally it is necessary to select an action from several mutually exclusive
alternatives. The third form of IF statement uses the keyword ELSEIF to introduce
additional conditions, as follows:
IF condition1 THEN
statement_list1;
ELSEIF condition2 THEN
statement_list2;
ELSE
statement_list3;
END IF

If the first condition evaluates to FALSE or NULL, the ELSEIF clause tests another
condition. An IF statement can have any number of ELSEIF clauses; the final ELSE
clause is optional. Conditions are evaluated one by one from top to bottom. If any
condition evaluates to TRUE, its associated statement list is executed and the rest
of the statements (inside the IF-THEN-ELSEIF) are skipped. If all conditions
evaluate to FALSE or NULL, the sequence in the ELSE clause is executed. Consider
the following example:
IF sales > 50000 THEN

bonus := 1500;
ELSEIF sales > 35000 THEN

bonus := 500;
ELSE

bonus := 100;
END IF

If the value of "sales" is more than 50000, the first and second conditions are true.
Nevertheless, "bonus" is assigned the proper value of 1500 since the second
condition is never tested. When the first condition evaluates to TRUE, its
associated statement is executed and control passes to the next statement following
the IF-THEN-ELSEIF.

When possible, use the ELSEIF clause instead of nested IF statements. That way,
the code will be easier to read and understand. Compare the following IF
statements:

32 IBM solidDB: SQL Guide

IF condition1 THEN IF condition1 THEN
statement_list1; statement_list1;

ELSE ELSEIF condition2 THEN
IF condition2 THEN statement_list2;

statement_list2; ELSEIF condition3 THEN
ELSE statement_list3;

IF condition3 THEN END IF
statement_list3;

END IF
END IF

END IF

These statements are logically equivalent, but the first statement obscures the flow
of logic, whereas the second statement reveals it.

Use of parentheses in IF-THEN statements
The following code illustrates the rules for using parentheses in IF-THEN
statements. Refer also to the release notes for additional information on using
parentheses in IF-THEN statements.
--- This piece of code shows examples of valid logical conditions in IF
--- statements.
"CREATE PROCEDURE sample_if_conditions
BEGIN
DECLARE x INT;
DECLARE y INT;
x := 2;
y := 2;

--- As shown below, a single logical expression in an IF condition may
--- use parentheses.
IF (x > 0) THEN
x := x - 1;
END IF;

--- As shown below, although a single logical expression in an IF
--- condition may use parentheses, the parentheses are not required.
IF x > 0 THEN
x := x - 1;
END IF;

--- As shown below, if there are multiple expressions inside a
--- logical condition, parentheses are allowed (and in fact are
--- required) around each subexpression.
IF (x > 0) AND (y > 0) THEN
x := x - 1;
END IF;

--- The example below is the same as the preceding example,
--- except that this has additional parentheses around the
--- entire expression.
IF ((x > 0) AND (y > 0)) THEN
x := x - 1;
END IF;

WHILE-LOOP
The WHILE-LOOP statement associates a condition with a sequence of statements
enclosed by the keywords LOOP and END LOOP, as follows:
WHILE condition LOOP

statement_list;
END LOOP

Before each iteration of the loop, the condition is evaluated. If the condition
evaluates to TRUE, the statement list is executed, then control resumes at the top

3 Stored procedures, events, triggers, and sequences 33

of the loop. If the condition evaluates to FALSE or NULL, the loop is bypassed and
control passes to the next statement. An example follows:
WHILE total <= 25000 LOOP

...
total := total + salary;

END LOOP

The number of iterations depends on the condition and is unknown until the loop
completes. Since the condition is tested at the top of the loop, the sequence might
execute zero times. In the latter example, if the initial value of "total" is greater
than 25000, the condition evaluates to FALSE and the loop is bypassed altogether.

Loops can be nested. When an inner loop is finished, control is returned to the
next loop. The procedure continues from the next statement after END LOOP.

Leaving loops
It may be necessary to force the procedure to leave a loop prematurely. This can be
implemented using the LEAVE keyword:
WHILE total < 25000 LOOP
total := total + salary;
IF exit_condition THEN

LEAVE;
END IF
END LOOP
statement_list2

Upon successful evaluation of the exit_condition the loop is left, and the procedure
continues at the statement_list2.

Note:

Although solidDB databases support the ANSI-SQL CASE syntax, the CASE
construct cannot be used inside a stored procedure as a control structure.

Use of parentheses in WHILE loops
The following code illustrates the rules for using parentheses in WHILE loops.
Refer also to the release notes for additional information on using parentheses in
WHILE loops.
--- This piece of code shows examples of valid logical conditions in
--- WHILE loops.
"CREATE PROCEDURE sample_while_conditions
BEGIN
DECLARE x INT;
DECLARE y INT;
x := 2;
y := 2;

--- As shown below, a single logical expression in a WHILE condition
--- may use parentheses.
WHILE (x > 0) LOOP
x := x - 1;
END LOOP;

--- As shown below, although a single logical expression in a WHILE
--- condition may use parentheses, the parentheses are not required.
WHILE x > 0 LOOP
x := x - 1;
END LOOP;

--- As shown below, if there are multiple expressions inside a
--- logical condition, then you need parentheses around EACH

34 IBM solidDB: SQL Guide

--- individual expression.
WHILE (x > 0) AND (y > 0) LOOP
x := x - 1;
y := y - 1;
END LOOP;

--- The example below is the same as the preceding example,
--- except that this has additional parentheses around the
--- entire expression.
WHILE ((x > 0) AND (y > 0)) LOOP
x := x - 1;
y := y - 1;
END LOOP;

Handling nulls
Nulls can cause confusing behavior. To avoid some common errors, observe the
following rules:
v comparisons involving nulls always yield NULL
v applying the logical operator NOT to a null yields NULL
v in conditional control statements, if the condition evaluates to NULL, its

associated sequence of statements is not executed

In the example below, you might expect the statement list to execute because "x"
and "y" seem unequal. Remember though that nulls are indeterminate. Whether "x"
is equal to "y" or not is unknown. Therefore, the IF condition evaluates to NULL
and the statement list is bypassed.
x := 5;

y := NULL;
...
IF x <> y THEN -- evaluates to NULL, not TRUE

statement_list; -- not executed
END IF

In the next example, one might expect the statement list to execute because "a" and
"b" seem equal. But, again, this is unknown, so the IF condition evaluates to NULL
and the statement list is bypassed.
a := NULL;

b := NULL;
...
IF a = b THEN -- evaluates to NULL, not TRUE

statement_list; -- not executed
END IF

NOT operator
Applying the logical operator NOT to a null yields NULL. Thus, the following two
statements are not always equivalent:
IF x > y THEN IF NOT (x > y) THEN

high := x; high := y;
ELSE ELSE

high := y; high := x;
END IF END IF

The sequence of statements in the ELSE clause is executed when the IF condition
evaluates to FALSE or NULL. If either or both "x" and "y" are NULL, the first IF
statement assigns the value of "y" to "high", but the second IF statement assigns
the value of "x" to "high". If neither "x" nor "y" is NULL, both IF statements assign
the corresponding value to "high".

3 Stored procedures, events, triggers, and sequences 35

Zero-length strings
Zero length strings are treated by a solidDB server like they are a string of zero
length, instead of a null. NULL values should be specifically assigned as in the
following:
SET a = NULL;

This also means that checking for NULL values will return FALSE when applied to
a zero-length string.

Example stored procedure
Following is an example of a simple procedure that determines whether a person
is an adult on the basis of a birthday as input parameter.

Note the usage of {fn ...} on scalar functions, and semicolons to end assignments.
"CREATE PROCEDURE grown_up
(birth_date DATE)
RETURNS (description VARCHAR)
BEGIN
DECLARE age INTEGER;
-- determine the number of years since the day of birth
age := {fn TIMESTAMPDIFF(SQL_TSI_YEAR, birth_date, now())};
IF age >= 18 THEN
-- If age is at least 18, then it’s an adult
description := ’ADULT’;
ELSE
-- otherwise it’s still a minor
description := ’MINOR’;
END IF
END";

Exiting a procedure
A procedure may be exited prematurely by issuing the keyword
RETURN;

at any location. After this keyword, control is directly handed to the program
calling the procedure returning the values bound to the result set column names as
indicated in the RETURNS section of the procedure definition.

Returning data
You can return data with the OUT parameter mode, which is a standard SQL-99
method of returning data. This method allows you to pass data back to the
program from the procedure. For syntax information, refer to Appendix B,
“solidDB SQL syntax,” on page 155.

The OUT parameter mode has the following characteristics:
v The OUT parameter mode allows you to pass data back to the calling program

from the procedure. Inside the calling program, the OUT parameter acts like a
variable. That means you can use an OUT parameter as if it were a local
variable. You can change its value or reference the value in any way.

v The actual parameter that corresponds to an OUT parameter must be a variable;
it cannot be a constant or an expression.

v Like variables, OUT parameters are initialized to NULL.

Before exiting a procedure, you must explicitly assign values to all OUT
parameters. Otherwise, the corresponding actual parameters will be null. If you

36 IBM solidDB: SQL Guide

exit successfully, solidDB assigns values to the actual parameters. However, if you
exit with an unhandled exception, solidDB does not assign values to the actual
parameters.

For a solidDB proprietary method of returning data, see “Using RETURNS” on
page 25.

Remote stored procedures
Stored procedures may be called locally or remotely. By "remotely", we mean that
one database server may call a stored procedure on another database server.
Remote stored procedure calls use a syntax like the following:
CALL procedure_name AT node-ref;

where node-ref indicates which database server the remote stored procedure is on.

Remote stored procedures calls can only be made between two solidDB servers
that have a master/replica relationship. The calls can be made in either "direction";
i.e. the master may call a stored procedure on the replica, or the replica may call a
stored procedure on the master. A remote stored procedure may be called from any
context that allows a local procedure call. Thus, for example, you may call a
remote stored procedure directly by using a CALL statement, or you may call the
remote procedure from within a trigger, or another stored procedure, or a Start
After Commit statement.

A remotely-called stored procedure may contain any command that any other
stored procedure may contain. All stored procedures are created using the same
syntax rules. A single stored procedure may be called both locally and remotely at
different times.

The stored procedure, when called remotely, accepts parameters from the caller,
just as if the call was local. However, a remote stored procedure cannot return a
result set; it can only return an error code.

Both local and remote stored procedure calls are synchronous; in other words,
whether the procedure is called locally or remotely, the caller waits until the value
is returned; the caller does not continue on while the stored procedure executes in
the background. (Note that if the stored procedure is called from inside a START
AFTER COMMIT, then the stored procedure call itself is synchronous, but the
START AFTER COMMIT was not synchronous, so the stored procedure will
execute as an asynchronous background process.)

Important:

Transaction handling for remote stored procedures is different from transaction
handling for local stored procedures. When a stored procedure is called remotely,
the execution of the stored procedure is NOT a part of the transaction that
contained the call. Therefore, you cannot roll back a stored procedure call by
rolling back the transaction that called it.

The full syntax of the command to call a remote stored procedure is:
CALL <proc-name>[(param [, param...])] AT node-def;
node-def ::= DEFAULT | ’replica name’ | ’master name’

For example:

3 Stored procedures, events, triggers, and sequences 37

CALL MyProc(’Smith’, 750) AT replica1;
CALL MyProcWithoutParameters AT replica2;

See “CALL” on page 174, for more details about the CALL statement.

The node definition "DEFAULT" is used only with the START AFTER COMMIT
statement. See the section on START AFTER COMMIT for more details.

Note:

You can only list one node definition per CALL. If you want to notify multiple
replicas, for example, then you must call each of them separately. You can,
however, create a stored procedure that contains multiple CALL statements, and
then simply make a single call to that procedure.

The remote stored procedure is always created on the server that executes the
procedure, not on the server that calls the procedure. For example, if the master is
going to call procedure foo() to execute on replica1, then procedure foo() must
have been created on replica1. The master does not know the "content" of the
stored procedure that it calls remotely. In fact, the master does not know anything
at all about the stored procedure other than the information specified in the CALL
statement itself, for example:
CALL foo(param1, param2) AT replica1

which includes the procedure's name, some parameter values, and the name of the
replica on which the procedure is to be executed. The stored procedure is not
registered with the caller. This means that the caller in some sense calls the
procedure "blindly", without even knowing if it's there. If the caller tries to call a
procedure that doesn't exist, then the caller will get an error message that says that
the procedure doesn't exist.

Dynamic parameter binding is supported. For example, the following is legal:
CALL MYPROC(?, ?) AT MYREPLICA1;

Calls to the stored procedure are not buffered or queued. If you call the stored
procedure and the procedure does not exist, the call does not "persist", waiting
until the stored procedure appears. Similarly, if the procedure does exist but the
server that has that procedure is shut down or is disconnected from the network is
not accessible for any other reason, then the call is not held "open" and retried
when the server becomes accessible again. This is important to know when using
the "Sync Pull Notify" (push synchronization) feature.

Access rights
To call a stored procedure, the caller must have EXECUTE privilege on that
procedure. (This is true for any stored procedure, whether it is called locally or
remotely.)

When a procedure is called locally, it is executed with the privileges of the caller.
When a procedure is called remotely, it may be executed either with the privileges
of a specified user on the remote server, or with the privileges of the remote user
who corresponds to the local caller. (The replica and master users must already be
mapped to each other before the stored procedure is called. For more information
about mapping replica users to master users, see IBM solidDB Advanced Replication
User Guide.)

38 IBM solidDB: SQL Guide

If a remote stored procedure was called from the replica (and is to be executed on
the master), then you have the option of specifying which master user's privileges
you would like the procedure to be executed with.

If the remote stored procedure was called from the master (and is to be executed
on the replica), or if you do not specify which user's privileges to use, then the
calling server will figure out which user's privileges should be used, based on
which user called the stored procedure and the mapping between replica and
master users.

These possibilities are explained in more detail below.
1. If the procedure was called from a replica (and will be executed on the master),

then you may execute the SET SYNC USER statement to specify which master
user's privileges to use. You must execute SET SYNC USER on the local server
before calling the remote stored procedure. Once the sync user has been
specified on the calling server, the calling server will send the user name and
password to the remote server (the master server) each time a remote stored
procedure is called. The remote server will try to execute the procedure using
the user id and password that were sent with the procedure call. The user id
and password must exist in the remote server, and the specified user must have
appropriate access rights to the database and EXECUTE privilege on the called
procedure.
The SET SYNC USER statement is valid only on a replica, so you can only
specify the sync user when a replica calls a stored procedure on a master.

2. If the caller is a master, or if the call was made from a replica and you did not
specify a sync user before the call, then the servers will attempt to determine
which user on the remote server corresponds to the user on the local server.
If the calling server is a replica (R → M)

The calling server sends the following information to the remote server when
calling a remote procedure:
Name of the master (SYS_SYNC_MASTERS.NAME).
Replica id (SYS_SYNC_MASTERS.REPLICA_ID).
Master user id (This master user id is the master user id that corresponds to
the user id of the local user who called the procedure. Obviously, this local user
must already be mapped to the corresponding master user.)
Note that this method of selecting the master user id is the same as the method
used when a replica refreshes data — the replica looks up in the
SYS_SYNC_USERS table to find the master user who is mapped to the current
local replica user.
If the calling server is a master (M → R)

The calling server sends the following information to the remote server when
calling a remote procedure:
Name of the master (SYS_SYNC_REPLICAS.MASTER_NAME).
Replica id (SYS_SYNC_REPLICAS.ID).
User name of the caller.
User id of the caller.
When the replica receives the master user id, the replica looks up the local user
who is mapped to that master id. Since more than one replica user may be
mapped to a single master user, the server will use the first local user it finds
who is mapped to the specified master user and who has the privileges
required to execute this stored procedure.

3 Stored procedures, events, triggers, and sequences 39

Before a master server can call a stored procedure on a replica server, the master
must know the connect string of the replica. If a replica allows calls from a master,
then the replica should define its own connect string information in the solid.ini
file. This information is provided to the master (the replica includes a copy when it
forwards any message to master). When the master receives the connect string
from the replica, the master replaces the previous value (if the new value differs).

Example:
[Synchronizer]
ConnectStrForMaster=tcp replicahost 1316

It is also possible to inform the master of the replica's connect string by using the
statement:

SET SYNC CONNECT <connect-info> TO REPLICA <replica-name>

This is useful if the master needs to call the replica but the replica has not yet
provided its connect string to the master (i.e. has not yet forwarded any message
to the master).

Using SQL in a stored procedure
Using SQL statements inside a stored procedure is somewhat different from issuing
SQL directly from tools like solsql.

A special syntax is required when using SQL statements inside a stored procedure.
There are two ways to execute SQL statements inside a procedure: you may use
the EXECDIRECT syntax to execute a statement, or you may treat the SQL
statement as a "cursor". Both possibilities are explained below.

EXECDIRECT
The EXECDIRECT syntax is particularly appropriate for statements where there is
no result set, and where you do not have to use any variable to specify a
parameter value. For example, the following statement inserts a single row of data:
EXEC SQL EXECDIRECT insert into table1 (id, name) values (1, ’Smith’);

For more information about EXECDIRECT, see “EXECDIRECT.”

Using a cursor
Cursors are appropriate for statements where there is a result set, or where you
want to repeat a single basic statement but use different values from a local
variable as a parameter (e.g. in a loop).

A cursor is a specific allocated part of the server process memory that keeps track
of the statement being processed. Memory space is allocated for holding one row
of the underlying statement, together with some status information on the current
row (in SELECTS) or the number of rows affected by the statement (in UPDATES,
INSERTS and DELETES).

In this way query results are processed one row at a time. The stored procedure
logic should take care of the actual handling of the rows, and the positioning of
the cursor on the required row(s).

There are five basic steps in handling a cursor:

40 IBM solidDB: SQL Guide

1. Preparing the cursor - the definition
2. Executing the cursor - executing the statement
3. Fetching on the cursor (for select procedure calls) - getting the results row by

row
4. Closing the cursor after use - still enabling it to re-execute
5. Dropping the cursor from memory - removing it

1. Preparing the cursor
A cursor is defined (prepared) using the following syntax:
EXEC SQL PREPARE cursor_name SQL_statement;

By preparing a cursor, memory space is allocated to accommodate one row of the
result set of the statement, and the statement is parsed and optimized.

A cursor name given for the statement must be unique within the connection. This
means procedures that contain cursors cannot be called recursively (at least not
from a statement that is after a PREPARE CURSOR and before the corresponding
DROP CURSOR). When a cursor is prepared, a solidDB server checks that no other
cursor of this name is currently open. If there is one, error number 14504 is
returned.

Note that statement cursors can also be opened using the ODBC API. These cursor
names need to be different from the cursors opened from procedures.

Example:
EXEC SQL PREPARE sel_tables
SELECT table_name
FROM sys_tables
WHERE table_name LIKE ’SYS%’;

This statement will prepare the cursor named sel_tables, but will not execute the
statement that it contains.

2. Executing the cursor
After a statement has been successfully prepared it can be executed. An execute
binds possible input and output variables to it and runs the actual statement.

Syntax of the execute statement is:
EXEC SQL EXECUTE cursor_name

[INTO (var1 [, var2...])];

The optional section INTO binds result data of the statement to variables.

Variables listed in parentheses after the INTO keyword are used when running a
SELECT or CALL statement. The resulting columns of the SELECT or CALL
statement are bound to these variables when the statement is executed. The
variables are bound starting from the left-most column listed in the statement.
Binding of variables continues to the following column until all variables in the list
of variables have been bound. For example to extend the sequence for the cursor
sel_tables that was prepared earlier we need to run the following statements:
EXEC SQL PREPARE sel_tables
SELECT table_name
FROM sys_tables
WHERE table_name LIKE ’SYS%’

EXEC SQL EXECUTE sel_tables INTO (tab);

3 Stored procedures, events, triggers, and sequences 41

The statement is now executed and the resulting table names will be returned into
variable tab in the subsequent Fetch statements.

3. Fetching on the cursor
When a SELECT or CALL statement has been prepared and executed, it is ready
for fetching data from it. Other statements (UPDATE, INSERT, DELETE, DDL) do
not require fetching as there will be no result set. Fetching results is done using the
fetch syntax:
EXEC SQL FETCH cursor_name;

This command fetches a single row from the cursor to the variables that were
bound with INTO keyword when the statement was executed.

To complete the previous example to actually get result rows back, the statements
will look like:
EXEC SQL PREPARE sel_tables
SELECT table_name
FROM sys_tables
WHERE table_name LIKE ’SYS%’
EXEC SQL EXECUTE sel_tables INTO (tab);
EXEC SQL FETCH sel_tables;

After this the variable tab will contain the table name of the first table found
conforming to the WHERE clause.

Subsequent calls to fetch on the cursor sel_tables will get the next row(s) if the
select found more than one.

To fetch all table names a loop construct may be used:
WHILE expression LOOP
EXEC SQL FETCH sel_tables;
END LOOP

Note that after the completion of the loop, the variable tab will contain the last
fetched table name.

4. Closing the cursor
Cursors may be closed by issuing the statement
EXEC SQL CLOSE cursor_name;

This will not remove the actual cursor definition from memory; it may be
re-executed when the need arises.

5. Dropping the cursor
Cursors may be dropped from memory, releasing all resources by the statement:
EXEC SQL DROP cursor_name;

Example stored procedure
Here is an example of a stored procedure that uses EXECDIRECT in one place and
uses a cursor in another place.
"CREATE PROCEDURE p2
BEGIN

-- This variable holds an ID that we insert into the table.
DECLARE id INT;

-- Here are simple examples of EXECDIRECT.
EXEC SQL EXECDIRECT create table table1 (id_col INT);

42 IBM solidDB: SQL Guide

EXEC SQL EXECDIRECT insert into table1 (id_col) values (1);

-- Here is an example of a cursor.
EXEC SQL PREPARE cursor1 INSERT INTO table1 (id_col) values (?);
id := 2;
WHILE id <= 10 LOOP

EXEC SQL EXECUTE cursor1 USING (id);
id := id + 1;

END LOOP;
EXEC SQL CLOSE cursor1;
EXEC SQL DROP cursor1;

END";

Error handling

SQLSUCCESS
The return value of the latest EXEC SQL statement executed inside a procedure
body is stored into variable SQLSUCCESS. This variable is automatically generated
for every procedure. If the previous SQL statement was successful, the value 1 is
stored into SQLSUCCESS. After a failed SQL statement, a value 0 is stored into
SQLSUCCESS.

The value of SQLSUCCESS may be used, for instance, to determine when the
cursor has reached the end of the result set as in the following example:
EXEC SQL FETCH sel_tab;
-- loop as long as last statement in loop is successful
WHILE SQLSUCCESS LOOP

-- do something with the results, for example, return a row
EXEC SQL FETCH sel_tab;

END LOOP

SQLERRNUM
This variable contains the error code of the latest SQL statement executed. It is
automatically generated for every procedure. After successful execution,
SQLERRNUM contains zero (0).

SQLERRSTR
This variable contains the error string from the last failed SQL statement.

SQLROWCOUNT
After the execution of UPDATE, INSERT and DELETE statements, an additional
variable is available to check the result of the statement. Variable SQLROWCOUNT
contains the number of rows affected by the last statement.

SQLERROR
To generate user errors from procedures, the SQLERROR variable may be used to
return an actual error string that caused the statement to fail to the calling
application. The syntax is:
RETURN SQLERROR ’error string’
RETURN SQLERROR char_variable

The error is returned in the following format:

User error: error_string

3 Stored procedures, events, triggers, and sequences 43

SQLERROR OF cursorname
For error checking of EXEC SQL statements, the SQLSUCCESS variable may be
used as described under SQLSUCCESS in the beginning of this section. To return
the actual error that caused the statement to fail to the calling application, the
following syntax may be used:
EXEC SQL PREPARE cursorname sql_statement;
EXEC SQL EXECUTE cursorname;
IF NOT SQLSUCCESS THEN
RETURN SQLERROR OF cursorname;

END IF

END IF

Processing will stop immediately when this statement is executed and the
procedure return code is SQLERROR. The actual database error can be returned
using the SQLError function:
Solid Database error 10033: Primary key unique constraint violation

The generic error handling method for a procedure can be declared with:
EXEC SQL WHENEVER SQLERROR [ROLLBACK [WORK],] ABORT;

When this statement is included in a stored procedure, all return values of
executed SQL statements are checked for errors. If a statement execution returns an
error, the procedure is automatically aborted and SQLERROR of the last cursor is
returned. Optionally the transaction can also be rolled back.

The statement should be included before any EXEC SQL statements, directly
following the DECLARE section of variables.

Below is an example of a complete procedure returning all table names from
SYS_TABLES that start with 'SYS':
"CREATE PROCEDURE sys_tabs
RETURNS (tab VARCHAR)
BEGIN
-- abort on errors
EXEC SQL WHENEVER SQLERROR ROLLBACK, ABORT;
-- prepare the cursor
EXEC SQL PREPARE sel_tables
SELECT table_name
FROM sys_tables
WHERE table_name LIKE ’SYS%’;
-- execute the cursor
EXEC SQL EXECUTE sel_tables INTO (tab);
-- loop through rows
EXEC SQL FETCH sel_tables;
WHILE sqlsuccess LOOP

RETURN ROW;
EXEC SQL FETCH sel_tables;

END LOOP
-- close and drop the used cursors
EXEC SQL CLOSE sel_tables;
EXEC SQL DROP sel_tables;
END";

Parameter markers in cursors
In order to make a cursor more dynamic, a SQL statement can contain parameter
markers that indicate values that are bound to the actual parameter values at
execute time. The '?' symbol is used as a parameter marker.

Syntax example:

44 IBM solidDB: SQL Guide

EXEC SQL PREPARE sel_tabs
SELECT table_name
FROM sys_tables
WHERE table_name LIKE ?
AND table_schema LIKE ?;

The execution statement is adapted by including a USING keyword to
accommodate the binding of a variable to the parameter marker.
EXEC SQL EXECUTE sel_tabs USING (var1, var2) INTO (tabs);

In this way a single cursor can be used multiple times without having to
re-prepare the cursor. As preparing a cursor involves also the parsing and
optimizing of the statement, significant performance gains can be achieved by
using re-usable cursors.

Note that the USING list only accepts variables; data can not be directly passed in
this way. So if for example an insert into a table should be made, one column
value of which should always be the same (status = 'NEW') then the following
syntax would be wrong:
EXEC SQL EXECUTE ins_tab USING (nr, desc, dat, ’NEW’);

The correct way would be to define the constant value in the prepare section:
EXEC SQL PREPARE ins_tab
INSERT INTO my_tab (id, descript, in_date, status)
VALUES (?, ?, ?,’NEW’);
EXEC SQL EXECUTE ins_tab USING (nr, desc, dat);

Note that variables can be used multiple times in the using list.

The parameters in a SQL statement have no intrinsic data type or explicit
declaration. Therefore, parameter markers can be included in a SQL statement only
if their data types can be inferred from another operand in the statement.

For example, in an arithmetic expression such as ? + COLUMN1, the data type of
the parameter can be inferred from the data type of the named column represented
by COLUMN1. A procedure cannot use a parameter marker if the data type cannot
be determined.

The following table describes how a data type is determined for several types of
parameters.

Table 10. Determining data type from parameters

Location of Parameter Assumed Data Type

One operand of a binary arithmetic or comparison operator Same as the other operand

The first operand in a BETWEEN clause Same as the other operand

The second or third operand in a BETWEEN clause Same as the first operand

An expression used with IN Same as the first value or the result column of the subquery

A value used with IN Same as the expression

A pattern value used with LIKE VARCHAR

3 Stored procedures, events, triggers, and sequences 45

Table 10. Determining data type from parameters (continued)

Location of Parameter Assumed Data Type

An update value used with UPDATE Same as the update column

An application cannot place parameter markers in the following locations:
v As a SQL identifier (name of a table, name of a column etc.)
v In a SELECT list.
v As both expressions in a comparison-predicate.
v As both operands of a binary operator.
v As both the first and second operands of a BETWEEN operation.
v As both the first and third operands of a BETWEEN operation.
v As both the expression and the first value of an IN operation.
v As the operand of a unary + or - operation.
v As the argument of a set-function-reference.

For more information, see the ANSI SQL-92 specification.

In the following example, a stored procedure will read rows from one table and
insert parts of them in another, using multiple cursors:
"CREATE PROCEDURE tabs_in_schema (schema_nm VARCHAR)
RETURNS (nr_of_rows INTEGER)
BEGIN
DECLARE tab_nm VARCHAR;
EXEC SQL PREPARE sel_tab
SELECT table_name
FROM sys_tables
WHERE table_schema = ?;
EXEC SQL PREPARE ins_tab
INSERT INTO my_table (table_name, schema) VALUES (?,?);

nr_of_rows := 0;

EXEC SQL EXECUTE sel_tab USING (schema_nm) INTO (tab_nm);
EXEC SQL FETCH sel_tab;
WHILE SQLSUCCESS LOOP
nr_of_rows := nr_of_rows + 1;
EXEC SQL EXECUTE ins_tab USING(tab_nm, schema_nm);
IF SQLROWCOUNT <> 1 THEN
RETURN SQLERROR OF ins_tab;
END IF
EXEC SQL FETCH sel_tab;
END LOOP
END";

Calling other procedures
As calling a procedure forms a part of the supported SQL syntax, a stored
procedure may be called from within another stored procedure. The default limit
for levels of nested procedures is 16. When the maximum is exceeded, the
transaction fails. The maximum nesting level is set in the MaxNestedProcedures
parameter in the solid.ini configuration file. For details, see appendix
"Configuration Parameters" in solidDB Administration Guide.

Like all SQL statements, a cursor should be prepared and executed like:

46 IBM solidDB: SQL Guide

EXEC SQL PREPARE cp CALL myproc(?, ?);
EXEC SQL EXECUTE cp USING (var1, var2);

If procedure myproc returns one or more values, then subsequently a fetch should
be done on the cursor cp to retrieve those values:
EXEC SQL PREPARE cp call myproc(?,?);
EXEC SQL EXECUTE cp USING (var1, var2) INTO
(ret_var1, ret_var2);
EXEC SQL FETCH cp;

Note that if the called procedure uses a return row statement, the calling procedure
should utilize a WHILE LOOP construct to fetch all results.

Recursive calls are possible, but discouraged because cursor names are unique at
connection level.

Positioned updates and deletes
In solidDB procedures it is possible to use positioned updates and deletes. This
means that an update or delete will be done to a row where a given cursor is
currently positioned. The positioned updates and deletes can also be used within
stored procedures using the cursor names used within the procedure.

The following syntax is used for positioned updates:
UPDATE table_name
SET column = value
WHERE CURRENT OF cursor_name

and for deletes
DELETE FROM table_name
WHERE CURRENT OF cursor_name

In both cases the cursor_name refers to a statement doing a SELECT on the table
that is to be updated/deleted from.

Positioned cursor update is a semantically suspicious concept in SQL standard that
may cause peculiarities also with a solidDB server. Please note the following
restriction when using positioned updates.

Below is an example written with pseudo code that will cause an endless loop
with a solidDB server (error handling, binding variables and other important tasks
omitted for brevity and clarity):
"CREATE PROCEDURE ENDLESS_LOOP
BEGIN
EXEC SQL PREPARE MYCURSOR SELECT * FROM TABLE1;
EXEC SQL PREPARE MYCURSOR_UPDATE
UPDATE TABLE1 SET COLUMN2 = ’new data’;
WHERE CURRENT OF MYCURSOR;"
EXEC SQL EXECUTE MYCURSOR;
EXEC SQL FETCH MYCURSOR;
WHILE SQLSUCCESS LOOP
EXEC SQL EXECUTE MYCURSOR_UPDATE;
EXEC SQL COMMIT WORK;
EXEC SQL FETCH MYCURSOR;
END LOOP
END";

The endless loop is caused by the fact that when the update is committed, a new
version of the row becomes visible in the cursor and it is accessed in the next

3 Stored procedures, events, triggers, and sequences 47

FETCH statement. This happens because the incremented row version number is
included in the key value and the cursor finds the changed row as the next greater
key value after the current position. The row gets updated again, the key value is
changed and again it will be the next row found.

In the above example, the updated COLUMN2 is not assumed to be part of the
primary key for the table, and the row version number was the only part of the
index entry that changed. However, if a column value is changed that is part of the
index through which the cursor has searched the data, the changed row may jump
further forward or backward in the search set.

For these reasons, using positioned update is not recommended in general and
searched update should be used instead whenever possible. However, sometimes
the update logic may be too complex to be expressed in SQL WHERE clause and
in such cases positioned update can be used as follows:

Positioned cursor update works deterministically in solidDB, when the WHERE
clause is such that the updated row does not match the criteria and therefore does
not reappear in the fetch loop. Constructing such a search criteria may require
using additional column only for this purpose.

Note that in an open cursor, user changes do not become visible unless they are
committed within the same database session.

Transactions
Stored procedures use transactions like any other interface to the database uses
transactions. A transaction may be committed or rolled back either inside the
procedure or outside the procedure. Inside the procedure a commit or roll back is
done using the following syntax:
EXEC SQL COMMIT WORK;
EXEC SQL ROLLBACK WORK;

These statements end the previous transaction and start a new one.

If a transaction is not committed inside the procedure, it may be ended externally
using:
v solidDB SA
v Another stored procedure
v By autocommit, if the connection has AUTOCOMMIT switch set to ON

Note that when a connection has autocommit activated it does not force
autocommit inside a procedure. The commit is done when the procedure exits.

Default cursor management
By default, when a procedure exits, all cursors opened in a procedure are closed.
Closing cursors means that cursors are left in a prepared state and can be
re-executed.

After exiting, the procedure is put in the procedure cache. When the procedure is
dropped from the cache, all cursors are finally dropped.

The number of procedures kept in cache is determined by the solid.ini file
setting:

48 IBM solidDB: SQL Guide

[SQL]
ProcedureCache = nbr_of_procedures

This means that, as long as the procedure is in the procedure cache, all cursors can
be re-used as long as they are not dropped. A solidDB server itself manages the
procedure cache by keeping track of the cursors declared, and notices if the
statement a cursor contains has been prepared.

As cursor management, especially in a heavy multi-user environment, can use a
considerable amount of server resources, it is good practice to always close cursors
immediately and preferably also drop all cursors that are no longer used. Only the
most frequently used cursors may be left non-dropped to reduce the cursor
preparation effort.

Note that transactions are not related to procedures or other statements. Commit or
rollback therefore does NOT release any resources in a procedure.

Notes on SQL
v There is no restriction on the SQL statements used. Any valid SQL statement can

be used inside a stored procedure, including DDL and DML statements.
v Cursors may be declared anywhere in a stored procedure. Cursors that are

certainly going to be used are best prepared directly following the declare
section.

v Cursors that are used inside control structures, and are therefore not always
necessary, are best declared at the point where they are activated, to limit the
amount of open cursors and hence the memory usage.

v The cursor name is an undeclared identifier, not a variable; it is used only to
reference the query. You cannot assign values to a cursor name or use it in an
expression.

v Cursors may be re-executed repeatedly without having to re-prepare them. Note
that this can have a serious influence on performance; repetitively preparing
cursors on similar statements may decrease the performance by around 40% in
comparison to re-executing already prepared cursors!

v Any SQL statement will have to be preceded by the keywords EXEC SQL.

Functions for procedure stack viewing
The following functions may be included in stored procedures to analyze the
current contents of the procedure stack:
v PROC_COUNT ()

This function returns the number of procedures in the procedure stack, including
the current procedure.

v PROC_NAME (N)
This function returns the Nth procedure name in the stack. The first procedure is
in position zero.

v PROC_SCHEMA (N)
This function returns the schema name of the Nth procedure in the procedure
stack.

These functions allow for stored procedures that behave differently depending on
whether they are called from an application or from a procedure.

3 Stored procedures, events, triggers, and sequences 49

Procedure privileges
Stored procedures are owned by the creator, and are part of the creator's schema.
Users who need to run stored procedures in other schemas need to be granted
EXECUTE privilege on the procedure:
GRANT EXECUTE ON Proc_name TO { USER | ROLE };

This function returns the schema name of the Nth procedure in the procedure
stack.

All database objects accessed within the granted procedure, even subsequently
called procedures, are accessed according to the rights of the owner of the
procedure. No special grants are necessary.

Since the procedure is run with the privileges of the creator, the procedure not only
has the creator's rights to access objects such as tables, but also uses the creator's
schema and catalog. For example, suppose that user 'Sally' runs a procedure
named 'Proc1' created by user 'Jasmine'. Suppose also that both Sally and Jasmine
have a table named 'table1'. By default, the stored procedure Proc1 will use the
table1 that is in Jasmine's schema, even if Proc1 was called by user Sally.

See also “Access rights” on page 38 for more information about privileges and
remote stored procedure calls.

Using triggers
A trigger activates stored procedure code, which a solidDB server automatically
executes when a user attempts to change the data in a table. You may create one or
more triggers on a table, with each trigger defined to activate on a specific INSERT,
UPDATE, or DELETE command. When a user modifies data within the table, the
trigger that corresponds to the command is activated.

Triggers enable you to:
v Implement referential integrity constraints, such as ensuring that a foreign key

value matches an existing primary key value.
v Prevent users from making incorrect or inconsistent data changes by ensuring

that intended modifications do not compromise a database's integrity.
v Take action based on the value of a row before or after modification.
v Transfer much of the logic processing to the back-end, reducing the amount of

work that your application needs to do as well as reducing network traffic.

How triggers work
The order in which a data manipulation statement is executed when triggers are
enabled is the key to understanding how triggers work in solidDB databases.

In solidDB's DML Execution Model, a solidDB server performs a number of
validation checks before executing data manipulation statements (INSERT,
UPDATE, or DELETE). Following is the execution order for data validation, trigger
execution, and integrity constraint checking for a single DML statement.
1. Validate values if they are part of the statement (that is, not bound). This

includes null value checking, data type checking (such as numeric), etc.
2. Perform table level security checks.
3.

50 IBM solidDB: SQL Guide

Loop for each row affected by the SQL statement. For each row perform these
actions in this order:
a. Perform column level security checks.
b. Fire BEFORE row trigger.
c. Validate values if they are bound in. This includes null value checks, data

type checking, and size checking (for example, checking if the character
string is too long).
Note that size checking is performed even for values that are not bound.

d. Execute INSERT/UPDATE/DELETE
e. Fire AFTER ROW trigger

4. Commit statement
a. Perform concurrency conflict checks.
b. Perform checks for duplicate values.
c. Perform referential integrity checks on invoking DML.

Note: A trigger itself can cause the DML to be executed, which applies to the
steps shown in the above model.

Creating triggers
Use the CREATE TRIGGER statement (described below) to create a trigger. You can
disable an existing trigger or all triggers defined on a table by using the ALTER
TRIGGER statement. For details, read “Altering trigger attributes” on page 70. The
ALTER TRIGGER statement causes a solidDB server to ignore the trigger when an
activating DML statement is issued. With this statement, you can also enable a
trigger that is currently inactive.

To drop a trigger from the system catalog, use DROP TRIGGER. For details, read
“Dropping triggers” on page 69.

CREATE TRIGGER statement
The CREATE TRIGGER statement creates a trigger. To create a trigger you must be
a DBA or owner of the table on which the trigger is being defined. To create a
trigger, provide the catalog, schema/owner and name of the table on which a
trigger is being defined. For an example of the CREATE TRIGGER statement, see
“Trigger example” on page 66.

The syntax of the CREATE TRIGGER statement is:
create_trigger ::=
CREATE TRIGGER trigger_name ON table_name time_of_operation
triggering_event [REFERENCING column_reference] trigger_body
where:
trigger_name ::= literal
table_name ::= literal
time_of_operation ::= BEFORE | AFTER
triggering_event :: = INSERT | UPDATE | DELETE
column_reference ::= {OLD | NEW} column_name [AS] col_identifier

[, REFERENCING column_reference]

trigger_body ::= [declare_statement;...]trigger_statement;[trigger_statement;...]

old_column_name ::= literal
new_column_name ::= literal
old_col_identifier ::= literal
new_col_identifier ::= literal
new_col_identifier ::= literal

3 Stored procedures, events, triggers, and sequences 51

Keywords and clauses
Following is a summary of keywords and clauses.

Trigger_name
The trigger_name can contain up to 254 characters.

BEFORE | AFTER clause
The BEFORE | AFTER clause specifies whether to execute the trigger before or
after the invoking DML statement, which modifies data. In some circumstances,
the BEFORE and AFTER clauses are interchangeable. However, there are some
situations where one clause is preferred over the other.
v It is more efficient to use the BEFORE clause when performing data validation,

such as domain constraint and referential integrity checking.
v When you use the AFTER clause, table rows which become available due to the

invoking DML statement are processed. Conversely, the AFTER clause also
confirms data deletion after the invoking DELETE statement.

You can define up to six triggers per table, one for each combination of table, event
(INSERT, UPDATE, DELETE), and time (BEFORE and AFTER). For example, you
can define one trigger for each BEFORE and AFTER clause, providing two triggers
per DML operation. In addition, if you provide INSERT, UPDATE, and DELETE
triggers to these combinations, you have a total maximum of six triggers.

The following example shows trigger trig01 defined BEFORE INSERT ON table t1.
"CREATE TRIGGER TRIG01 ON T1
BEFORE INSERT
REFERENCING NEW COL1 AS NEW_COL1
BEGIN
EXEC SQL PREPARE CUR1
INSERT INTO T2 VALUES (?);
EXEC SQL EXECUTE CUR1 USING (NEW_COL1);
END"

Following are examples (including implications and advantages) of using the
BEFORE and AFTER clause of the CREATE TRIGGER command for each DML
operation:
v UPDATE Operation

The BEFORE clause can verify that modified data follows integrity constraint
rules before processing the UPDATE. If the REFERENCING NEW AS
new_col_identifier clause is used with the BEFORE UPDATE clause, then the
updated values are available to the triggered SQL statements. In the trigger, you
can set the default column values or derived column values before performing
an UPDATE.
The AFTER clause can perform operations on newly modified data. For example,
after a branch address update, the sales for the branch can be computed.
If the REFERENCING OLD AS old_col_identifier clause is used with the AFTER
UPDATE clause, then the values that existed prior to the invoking update are
accessible to the triggered SQL statements.

v INSERT Operation
The BEFORE clause can verify that new data follows integrity constraint rules
before performing an INSERT. Column values passed as parameters are visible
to the triggered SQL statements but the inserted rows are not. In the trigger, you
can set default column values or derived column values before performing an
INSERT.

52 IBM solidDB: SQL Guide

The AFTER clause can perform operations on newly inserted data. For example,
after insertion of a sales order, the total order can be computed to see if a
customer is eligible for a discount.
Column values are passed as parameters and inserted rows are visible to the
triggered SQL statements.

v DELETE Operation
The BEFORE clause can perform operations on data about to be deleted.
Column values passed as parameters and inserted rows that are about to be
deleted are visible to the triggered SQL statements.
The AFTER clause can be used to confirm the deletion of data. Column values
passed as parameters are visible to the triggered SQL statements. Please note
that the deleted rows are visible to the triggering SQL statement.

INSERT | UPDATE | DELETE clause
The INSERT | UPDATE | DELETE clause indicates the trigger action when a user
action (INSERT, UPDATE, DELETE) is attempted.

Statements related to processing a trigger occur first before commits and
autocommits from the invoking DML (INSERT, UPDATE, DELETE) statements on
tables. If a trigger body or a procedure called within the trigger body attempts to
execute a COMMIT or ROLLBACK, a solidDB server returns an appropriate
run-time error.

INSERT specifies that the trigger is activated by an INSERT on the table. Loading n
rows of data is considered as n inserts.

Note: There may be some performance impact if you try to load the data with
triggers enabled. Depending on your business need, you may want to disable the
triggers before loading and enable them after loading. For details, see “Altering
trigger attributes” on page 70.

DELETE specifies that the trigger is activated by a DELETE on the table.

UPDATE specifies that the trigger is activated by an UPDATE on the table. Note
the following rules for using the UPDATE clause:
v Within the REFERENCES clause of a trigger, a column may be referenced

(aliased) no more than once in the BEFORE sub-clause and once in the AFTER
sub-clause. Also, if the column is referenced in both the BEFORE and AFTER
sub-clauses, the column's alias must be different in each sub-clause.

v A solidDB server allows for recursive update to the same table and does not
prohibit recursive updates to the same row.

A solidDB server does not detect situations where the actions of different triggers
cause the same data to be updated. For example, assume there are two update
triggers (one that is a BEFORE trigger and one that is an AFTER trigger) on table1.
When an update is attempted on Table1, the two triggers are activated. Both
triggers call stored procedures which update the same column, Col3, of a second
table, Table2. The first trigger updates Table2.Col3 to 10 and the second trigger
updates Table2.Col3 to 20.

Likewise, a solidDB server does not detect situations where the result of an
UPDATE which activates a trigger conflicts with the actions of the trigger itself.
For example, consider the following SQL statement:
UPDATE t1 SET c1 = 20 WHERE c3 = 10;

3 Stored procedures, events, triggers, and sequences 53

If the trigger activated by this UPDATE then calls a procedure that contains the
following SQL statement, the procedure overwrites the result of the UPDATE that
activated the trigger:
UPDATE t1 SET c1 = 17 WHERE c1 = 20;

Note: The above example can lead to recursive trigger execution, which you
should try to avoid.

Table_name
The table_name is the name of the table on which the trigger is created. solidDB
server allows you to drop a table that has dependent triggers defined on it. When
you drop a table all dependent objects including triggers are dropped. Be aware
that you may still get run-time errors. For example, assume you create two tables
A and B. If a procedure SP-B inserts data into table A, and table A is then dropped,
a user will receive a run-time error if table B has a trigger which invokes SP-B.

Trigger_body
The trigger_body contains the statement(s) to be executed when a trigger fires. The
rules for defining the body of a trigger are the same as the rules for defining the
body of a stored procedure. Read “Stored procedures” on page 23 for details on
creating a stored procedure body.

A trigger body may also invoke any procedure registered with a solidDB server.
solidDB procedure invocation rules follow standard procedure invocation practices.

You must explicitly check for business logic errors and raise an error.

REFERENCING clause
This clause is optional when creating a trigger on an INSERT/UPDATE/DELETE
operation. It provides a way to reference the current column identifiers in the case
of INSERT and DELETE operations, and both the old column identifier and the
new updated column identifier by aliasing the column(s) on which an UPDATE
operation occurs.

You must specify the OLD or NEW col_identifier to access it. A solidDB server does
not provide access to the col_identifier unless you define it using the
REFERENCING subclause.

{OLD | NEW} column_name AS col_identifier
This subclause of the REFERENCING clause allow you to reference the values of
columns both before and after an UPDATE operation. It produces a set of old and
new column values which can be passed to a stored procedure; once passed, the
procedure contains logic (for example, domain constraint checking) used to
determine these parameter values.

Use the OLD AS clause to alias the table's old identifier as it exists before the
UPDATE. Use the NEW AS clause to alias the table's new identifier as it exists
after the UPDATE.

If you reference both the old and new values of the same column, you must use a
different col_identifier.

Each column that is referenced as NEW or OLD should have a separate
REFERENCING subclause.

54 IBM solidDB: SQL Guide

The statement atomicity in a trigger is such that operations made in a trigger are
visible to the subsequent SQL statements inside the trigger. For example, if you
execute an INSERT statement in a trigger and then also perform a select in the
same trigger, then the inserted row is visible.

In the case of AFTER trigger, an inserted row or an updated row is visible in the
AFTER insert trigger, but a deleted row cannot be seen for a select performed
within the trigger. In the case of a BEFORE trigger, an inserted or updated row is
invisible within the trigger and a deleted row is visible. In the case of an UPDATE,
the pre-update values are available in a BEFORE trigger.

The table below summarizes the statement atomicity in a trigger, indicating
whether the row is visible to the SELECT statement in the trigger body.

Table 11. Statement atomicity in a trigger

Operation BEFORE TRIGGER AFTER TRIGGER

INSERT row is invisible row is visible

UPDATE previous value is visible new value is visible

DELETE row is visible row is invisible

Triggers comments and restrictions
v To use the stored procedure that a trigger calls, provide the catalog,

schema/owner and name of the table on which the trigger is defined and
specify whether to enable or disable the triggers on the table. For more details
on stored procedures, read “Triggers and procedures” on page 56.

v To create a trigger on a table, you must have DBA authority or be the owner of
the table on which the trigger is being defined.

v You can define, by default, up to one trigger for each combination of table, event
(INSERT, UPDATE, DELETE) and time (BEFORE and AFTER). This means there
can be a maximum of six triggers per table.

Note: The triggers are applied to each row. This means that if there are ten
inserts, a trigger is executed ten times.
v You cannot define triggers on a view (even if the view is based on a single

table).
v You cannot alter a table that has a trigger defined on it when the dependent

columns are affected.
v You cannot create a trigger on a system table.
v You cannot execute triggers that reference dropped or altered objects. To prevent

this error:
– Recreate any referenced object that you drop.
– Restore any referenced object you changed back to its original state (known

by the trigger).
v You can use reserved words in trigger statements if they are enclosed in double

quotes. For example, the following CREATE TRIGGER statement references a
column named "data", which is a reserved word.

3 Stored procedures, events, triggers, and sequences 55

"CREATE TRIGGER TRIG1 ON TMPT BEFORE INSERT
REFERENCING NEW "DATA" AS NEW_DATA
BEGIN
END"

Triggers and procedures
Triggers can call stored procedures and cause a solidDB server to execute other
triggers. You can invoke procedures within a trigger body. In fact, you can define a
trigger body that contains only procedure calls. A procedure invoked from a
trigger body can invoke other triggers.

When using stored procedures within the trigger body, you must first store the
procedure with the CREATE PROCEDURE statement.

In a procedure definition, you can use COMMIT and ROLLBACK statements. But
in a trigger body, you cannot use COMMIT (including AUTOCOMMIT and
COMMIT WORK) and ROLLBACK statements. You can use only the WHENEVER
SQLERROR ABORT statement.

You can nest triggers up to 16 levels deep (the limit can be changed using a
configuration parameter). If a trigger gets into an infinite loop, a solidDB server
detects this recursive action when the 16-level nesting (or system parameter)
maximum is reached and returns an error to the user. For example, you could
activate a trigger by attempting to insert into the table T1 and the trigger could call
a stored procedure which also attempts to insert into T1, recursively activating the
trigger.

If a set of nested triggers fails at any time, a solidDB server rolls back the
statement which originally activated the triggers.

Setting default or derived columns
You can create triggers to set up default or derived column values in INSERT and
UPDATE operations. When you create the trigger for this purpose using the
CREATE TRIGGER command, the trigger must follow these rules:
v The trigger must be executed BEFORE the INSERT or UPDATE operation.

Column values are modified with only a BEFORE trigger. Because the column
value must be set before the INSERT or UPDATE operation, using the AFTER
trigger to set column values is meaningless. Note also that the DELETE
operation does not apply to modifying column values.

v For an INSERT and UPDATE operation, the REFERENCING clause must contain
a NEW column value for modification. Note that modifying the OLD column
value is meaningless.

v New column values can be set by simply changing the values of variables
defined in the referencing section.

Using parameters and variables
When we update a record and that update invokes a trigger, the trigger itself may
change the value of some columns within that record. In some situations, you may
want to refer to both the "old" value and the "new" value within the trigger.

The REFERENCING clause allows you to create "aliases" for old and new values so
that you can refer to either one within the same trigger. For example, assume there
are two tables, one that holds customer information and one that holds invoice
information. In addition to storing the amount of money billed for each invoice,

56 IBM solidDB: SQL Guide

the table contains a "total_bought" field for each customer; this "total_bought" field
contains the cumulative total for all invoices ever sent to this customer. (This field
might be used to identify high-volume customers.)

Any time the total_amount on an invoice is updated, the "total_bought" value for
that customer's record in the customer table is also updated. To do this, the
amount of the old value stored in the invoice is subtracted and the amount of the
new value in the invoice is added. For example, if a customer's invoice used to be
for $100 and it is changed to $150, then $100 is subtracted and $150 is added to the
"total_bought" field. By properly using the REFERENCING clause, the trigger can
"see" both the old value and the price column, thereby allowing the update of the
total_bought column.

Note that the column aliases created by the REFERENCING clause are valid only
within the trigger. Let's look at a pseudo-code example below:
CREATE TRIGGER pseudo_code_to_add_tax ON invoices

AFTER UPDATE
REFERENCING OLD total_price AS old_total_price,
REFERENCING NEW total_price AS new_total_price
BEGIN

EXEC SQL PREPARE update_cursor
UPDATE customers
SET total_bought = total_bought - old_total_price

+ new_total_price;
END

This example is "pseudo-code"; a real trigger would require some changes and
additions (such as code to execute, close, and drop the cursor). A complete, valid
SQL script for this example is provided below.

Trigger with Referencing Clause Example
-- This SQL sample demonstrates how to use the clause
-- "REFERENCING OLD AS old_col, REFERENCING NEW AS new_col"
-- to have simultaneous access to both the "OLD" and "NEW"
-- column values of the field while inside a trigger.
-- In this scenario, we have customers and invoices.
-- For each customer, we keep track of the cumulative total of
-- all purchases by that customer.
-- Each invoice stores the total amount of all purchases on
-- that invoice. If an total price on an invoice must be
-- adjusted, then the cumulative value of that customer’s
-- purchases must also be adjusted.
-- Therefore, we update the cumulative total by subtracting
-- the "old" price on the invoice and adding the "new" price.
-- For example, if the amount on a customer’s invoice was
-- changed from $100 to $150 (an increase of $50), then we
-- would update the customer’s cumulative total by
-- subtracting $100 and adding $150 (a net increase of $50).
-- Drop the sample tables if they already exist.
DROP TABLE customers;
DROP TABLE invoices;
CREATE TABLE customers (

customer_id INTEGER, -- ID for each customer.
total_bought FLOAT -- The cumulative total price of

-- all this customer’s purchases.
);

-- Each customer may have 0 or more invoices.
CREATE TABLE invoices (

customer_id INTEGER,
invoice_id INTEGER, -- unique ID for each invoice
invoice_total FLOAT -- total price for this invoice
);

3 Stored procedures, events, triggers, and sequences 57

-- If the total_price on an invoice changes, then
-- update customers.total_bought to take into account
-- the change. Subtract the old invoice price and add the
-- new invoice price.
"CREATE TRIGGER old_and_new ON invoices

AFTER UPDATE
REFERENCING OLD invoice_total AS old_invoice_total,
REFERENCING NEW invoice_total AS new_invoice_total,
-- If the customer_id doesn’t change, we could use
-- either the NEW or OLD customer_id.
REFERENCING NEW customer_id AS new_customer_id
BEGIN

EXEC SQL PREPARE upd_curs
UPDATE customers
SET total_bought = total_bought - ? + ?
WHERE customers.customer_id = ?;

EXEC SQL EXECUTE upd_curs
USING (old_invoice_total, new_invoice_total,

new_customer_id);
EXEC SQL CLOSE upd_curs;
EXEC SQL DROP upd_curs;

END";
-- When a new invoice is created, we update the total_bought
-- in the customers table.
"CREATE TRIGGER update_total_bought ON invoices
AFTER INSERT
REFERENCING NEW invoice_total AS new_invoice_total,
REFERENCING NEW customer_id AS new_customer_id
BEGIN

EXEC SQL PREPARE ins_curs
UPDATE customers
SET total_bought = total_bought + ?
WHERE customers.customer_id = ?;

EXEC SQL EXECUTE ins_curs
USING (new_invoice_total, new_customer_id);
EXEC SQL CLOSE ins_curs;
EXEC SQL DROP ins_curs;

END";
-- Insert a sample customer.
INSERT INTO customers (customer_id, total_bought)
VALUES (1000, 0.0);
-- Insert invoices for a customer; the INSERT trigger will
-- update the total_bought in the customers table.
INSERT INTO invoices (customer_id, invoice_id, invoice_total)

VALUES (1000, 5555, 234.00);
INSERT INTO invoices (customer_id, invoice_id, invoice_total)

VALUES (1000, 5789, 199.0);
-- Make sure that the INSERT trigger worked.
SELECT * FROM customers;
-- Now update an invoice; the total_bought in the customers
-- table will also be updated and the trigger that does
-- this will use the REFERENCING clauses
-- REFERENCING NEW invoice_total AS new_invoice_total,
-- REFERENCING OLD invoice_total AS old_invoice_total
UPDATE invoices SET invoice_total = 235.00
WHERE invoice_id = 5555;
-- Make sure that the UPDATE trigger worked.
SELECT * FROM customers;
COMMIT WORK;

Triggers and transactions
Triggers require no commit from the invoking transaction in order to fire; DML
statements alone cause triggers to fire. COMMIT WORK is also disallowed in a
trigger body.

58 IBM solidDB: SQL Guide

In a procedure definition, you can use COMMIT and ROLLBACK statements. But
in a trigger body, you cannot use COMMIT and ROLLBACK statements. You can
use only the WHENEVER SQLERROR ABORT statement. Note that if autocommit
is on, then each statement inside the trigger is not treated as a separate statement
and is not committed when it is executed; instead, the entire trigger body is
executed as part of the INSERT, UPDATE, or DELETE statement that fired the
trigger. Either the entire trigger (and the statement that fired it) is committed, or
else the entire trigger (and the statement that fired it) is rolled back.

Recursion and concurrency conflict errors
If a DML statement updates/deletes a row that causes a trigger to be fired, you
cannot update/delete the same row again within that trigger. In such cases an
AFTER trigger event can cause a recursion error and a BEFORE trigger event can
cause a concurrency conflict error.

The following sections explain these terms, provide some examples of triggers that
create these problems, and provide a table (shown in “Summary of trigger cases”
on page 60), that indicates the trigger situations that will and will not cause
recursion errors or concurrency conflict errors.

Triggers and recursion
A piece of code is "recursive" if the code causes itself to execute again. For
example, a stored procedure that calls itself is recursive. Recursion in stored
procedures is occasionally useful. On the other hand, triggers can create a slightly
more subtle type of recursion, which is invalid and prohibited by the solidDB
server. A trigger that contains a statement that causes the same trigger to execute
again on the same record is recursive. For example, a delete trigger would be
recursive if it tries to delete the same record whose deletion fired the trigger.

If the database server were to allow recursion in triggers, then the server might go
into an "infinite loop" and never finish executing the statement that fired the
trigger. A concurrency conflict error occurs when a trigger executes an operation
that "competes with" the statement that fired the trigger by trying to do the same
type of action (for example, delete) within the same SQL statement. For example, if
you create a trigger that is supposed to be fired when a record is deleted, and if
that trigger tries to delete the same record whose deletion fired the trigger, then
there are in essence two different "simultaneous" delete statements "competing" to
delete the record; this results in a concurrency conflict. The following section
provides an example of a defective delete trigger.

Examples of Defective Triggers Causing Recursion

The examples in this section explain just a few of the many restrictions and rules
involving triggers.

In this scenario, an employee has resigned from a job and his or her medical
coverage requires cancellation. The medical coverage also requires cancellation for
the employee's dependents. A business rule for this situation is implemented by
creating a trigger; the trigger is executed when an employee's record is deleted and
the statements inside the trigger then delete the employee's dependents. (This
example assumes that the employees and their dependents are stored in the same
table; in the real world, dependents are normally kept in a separate table. This
example also assumes that each family has a unique last name.)
CREATE TRIGGER do_not_try_this ON employees_and_dependents
AFTER DELETE
REFERENCING OLD last_name AS old_last_name

3 Stored procedures, events, triggers, and sequences 59

BEGIN
EXEC SQL PREPARE del_cursor
DELETE FROM employees_and_dependents
WHERE last_name = ?;
EXEC SQL EXECUTE del_cursor USING (old_last_name);
-- ... close and drop the cursor.
END;

Assume that an employee "John Smith" resigns and his medical coverage is
deleted. When you delete "John Smith", the trigger is invoked immediately after
John Smith is deleted and the trigger will try to delete ALL people named "John
Smith", including not only the employee's dependents, but also the employee
himself, since his name meets the criteria in the WHERE clause.

Every time an attempt is made to delete the employee's record, this action fires the
trigger again. The code then recursively keeps trying to delete the employee by
again firing the trigger, and again trying to delete. If the database server did not
prohibit this or detect the situation, the server could go into an infinite loop. If the
server detects this situation, it will give you an appropriate error, such as "Too
many nested triggers."

A similar situation can happen with UPDATE. Assume that a trigger adds sales tax
every time that a record is updated. Here's an example that causes a recursion
error:
CREATE TRIGGER do_not_do_this_either ON invoice

AFTER UPDATE
REFERENCING NEW total_price AS new_total_price
BEGIN

-- Add 8% sales tax.
EXEC SQL PREPARE upd_curs1
UPDATE invoice SET total_price = 1.08 * total_price
WHERE ...;

-- ... execute, close, and drop the cursor...
END;

In this scenario, customer Ann Jones calls up to change her order; the new price
(with sales tax) is calculated by multiplying the new subtotal by 1.08. The record is
updated with the new total price; each time the record is updated, the trigger is
fired, so updating the record once, causes the trigger to update it again and
updates are repeated in an infinite loop.

If AFTER triggers can cause recursion or looping, what happens with BEFORE
triggers? The answer is that, in some cases, BEFORE triggers can cause
concurrency problems. Let's return to the first example of the trigger that deleted
medical coverage for employees and their dependents. If the trigger were a
BEFORE trigger (rather than an AFTER trigger), then just before the employee is
deleted, we would execute the trigger, which in this case deletes everyone named
John Smith. After the trigger is executed, the engine resumes its original task of
dropping employee John Smith himself, but the server finds either he isn't there or
that his record cannot be deleted because it has already been marked for deletion
— in other words, there is a concurrency conflict because there are two separate
efforts to delete the same record.

Summary of trigger cases
In addition to the examples described in the previous section, the following table
summarizes a number of additional cases, including those involving INSERTs, as
well as UPDATEs and DELETEs.

60 IBM solidDB: SQL Guide

The table is divided into the following five columns:
v Trigger Mode (that is, BEFORE or AFTER)
v Operation (INSERT, DELETE, or UPDATE)
v Trigger Action (what the trigger itself attempts to do, such as update the record

that was just inserted)
v Lock Type ("optimistic" or "pessimistic")
v Result that you will see (for example, that the trigger action was successful, or

that the trigger failed for a reason such as a recursion error like the one
discussed in the previous section).

For details on interpreting a trigger entry in this table, see Example Entry 1 later in
this chapter.

Table 12. INSERT/UPDATE/DELETE operations for BEFORE/AFTER triggers

Trigger Mode Operation Trigger Action Lock Type Result

AFTER INSERT UPDATE the same row
by adding a number to
the value

Optimistic Record is updated.

AFTER INSERT UPDATE the same row
by adding a number to
the value

Pessimistic Record is updated.

BEFORE INSERT UPDATE the same row
by adding a number to
the value

Optimistic Record is not updated
since the WHERE
condition of the
UPDATE within the
trigger body returns a
NULL resultset (as the
desired row is not yet
inserted in the table).

BEFORE INSERT UPDATE the same row
by adding a number to
the value

Pessimistic Record is not updated
since the WHERE
condition of the
UPDATE within the
trigger body returns a
NULL resultset (as the
desired row is not yet
inserted in the table).

AFTER INSERT DELETE the same row
that is being inserted

Optimistic Record is deleted.

AFTER INSERT DELETE the same row
that is being inserted

Pessimistic Record is deleted.

BEFORE INSERT DELETE the same row
that is being inserted

Optimistic Record is not deleted
since the WHERE
condition of the
DELETE within the
trigger body returns a
NULL resultset (as the
desired row is not yet
inserted in the table).

3 Stored procedures, events, triggers, and sequences 61

Table 12. INSERT/UPDATE/DELETE operations for BEFORE/AFTER triggers (continued)

Trigger Mode Operation Trigger Action Lock Type Result

BEFORE INSERT DELETE the same row
that is being inserted

Pessimistic Record is not updated
since the WHERE
condition of the
UPDATE within the
trigger body returns a
NULL resultset (as the
desired row is not yet
inserted in the table).

AFTER INSERT INSERT a row Optimistic Too many nested
triggers.

AFTER INSERT INSERT a row Pessimistic Too many nested
triggers.

BEFORE INSERT INSERT a row Optimistic Too many nested
triggers.

BEFORE INSERT INSERT a row Pessimistic Too many nested
triggers.

AFTER UPDATE UPDATE the same row
by adding a number to
the value

Optimistic Generates Solid® Table
Error: Too many nested
triggers.

AFTER UPDATE UPDATE the same row
by adding a number to
the value

Pessimistic Generates Solid Table
Error: Too many nested
triggers.

BEFORE UPDATE UPDATE the same row
by adding a number to
the value.

Optimistic Record is updated, but
does not get into a
nested loop because the
WHERE condition in the
trigger body returns a
NULL resultset and no
rows are updated to fire
the trigger recursively.

BEFORE UPDATE UPDATE the same row
by adding a number to
the value.

Pessimistic Record is updated, but
does not get into a
nested loop because the
WHERE condition in the
trigger body returns a
NULL resultset and no
rows are updated to fire
the trigger recursively.

AFTER UPDATE DELETE the same row
that is being updated.

Optimistic Record is deleted.

AFTER UPDATE DELETE the same row
that is being updated.

Pessimistic Record is deleted.

BEFORE UPDATE DELETE the same row
that is being updated.

Optimistic Concurrency conflict
error.

BEFORE UPDATE DELETE the same row
that is being updated.

Pessimistic Concurrency conflict
error.

62 IBM solidDB: SQL Guide

Table 12. INSERT/UPDATE/DELETE operations for BEFORE/AFTER triggers (continued)

Trigger Mode Operation Trigger Action Lock Type Result

AFTER DELETE INSERT a row with the
same value.

Optimistic Same record is inserted
after deleting.

AFTER DELETE INSERT a row with the
same value.

Pessimistic Hangs at the time of
firing the trigger.

BEFORE DELETE INSERT a row with the
same value.

Optimistic Same record is inserted
after deleting

BEFORE DELETE INSERT a row with the
same value.

Pessimistic Hangs at the time of
firing the trigger.

AFTER DELETE INSERT a row with the
same value.

Optimistic Record is deleted.

AFTER DELETE UPDATE the same row
by adding a number to
the value.

Pessimistic Record is deleted.

BEFORE DELETE UPDATE the same row
by adding a number to
the value.

Optimistic Record is deleted.

BEFORE DELETE UPDATE the same row
by adding a number to
the value

Pessimistic Record is deleted.

AFTER DELETE DELETE same row Optimistic Too many nested
triggers.

AFTER DELETE DELETE same record Pessimistic Too many nested
triggers

BEFORE DELETE DELETE same record Optimistic Concurrency conflict
error.

BEFORE DELETE DELETE same record Pessimistic Concurrency conflict
error.

Here's an example entry from the table and an explanation of that entry:

Table 13. Example Entry 1

Trigger Operation Trigger Action Lock Type Result

AFTER INSERT UPDATE the same row
by adding a number to
the value

Optimistic Record is updated.

In this situation, we have a trigger that fires AFTER an INSERT operation is done.
The body of the trigger contains statements that update the same row as was
inserted (that is, the same row as the one that fired the trigger). If the lock type is
"optimistic", then the result will be that the record gets updated. (Because there is
no conflict, the locking [optimistic versus pessimistic] does not make a difference).

3 Stored procedures, events, triggers, and sequences 63

Note that in this case there is no recursion issue, even though we update the same
row that we just inserted. The action that "fires" the trigger is not the same as the
action taken inside the trigger, and so we do not create a recursive/looping
situation.

Here's another example from the table:

Table 14. Example entry 2

Trigger Operation Trigger Action Lock Type Result

BEFORE INSERT UPDATE the same row
by adding a number to
the value

Optimistic Record is not updated
since the WHERE
condition of the
UPDATE within the
trigger body returns a
NULL resultset (as the
desired row is not yet
inserted in the table).

In this case, we try to insert a record, but before the insertion takes place the
trigger is run. In this case, the trigger tries to update the record (for example, to
add sales tax to it). Since the record is not yet inserted, however, the UPDATE
command inside the trigger does not find the record, and never adds the sales tax.
Thus the result is the same as if the trigger had never fired. There is no error
message, so you may not realize immediately that your trigger does not do what
you intended.

Flawed trigger
Flawed trigger logic occurs in the following example in which the same row is
deleted in a BEFORE UPDATE trigger; this causes solidDB to generate a
concurrency conflict error.

Flawed Trigger
DROP EMP;
COMMIT WORK;

CREATE TABLE EMP(C1 INTEGER);
INSERT INTO EMP VALUES (1);
COMMIT WORK;

"CREATE TRIGGER TRIG1 ON EMP
BEFORE UPDATE
REFERENCING OLD C1 AS OLD_C1
BEGIN
EXEC SQL WHENEVER SQLERROR ABORT;
EXEC SQL PREPARE CUR1 DELETE FROM EMP WHERE C1 = ?;
EXEC SQL EXECUTE CUR1 USING (OLD_C1);
END";

UPDATE EMP SET C1=200 WHERE C1 = 1;
SELECT * FROM EMP;

ROLLBACK WORK;

Note:

If the row that is updated/deleted were based on a unique key, instead of an
ordinary column (as in the example above), solidDB generates the following error
message: 1001: key value not found.

64 IBM solidDB: SQL Guide

To avoid recursion and concurrency conflict errors, be sure to check the application
logic and take precautions to ensure the application does not cause two
transactions to update or delete the same row.

Error handling
If a procedure returns an error to a trigger, the trigger causes its invoking DML
command to fail with an error. To automatically return errors during the execution
of a DML statement, you must use WHENEVER SQLERROR ABORT statement in
the trigger body. Otherwise, errors must be checked explicitly within the trigger
body after each procedure call or SQL statement.

For any errors in the user written business logic as part of the trigger body, users
must use the RETURN SQLERROR statement. For details, see “Raising errors from
inside triggers” on page 66.

If RETURN SQLERROR is not specified, then the system returns a default error
message when the SQL statement execution fails. Any changes to the database due
to the current DML statement are undone and the transaction is still active. In
effect, transactions are not rolled back if a trigger execution fails, but the current
executing statement is rolled back.

Note:

Triggered SQL statements are a part of the invoking transaction. If the invoking
DML statement fails due to either the trigger or another error that is generated
outside the trigger, all SQL statements within the trigger are rolled back along with
the failed invoking DML command.

It is the responsibility of the invoking transaction to commit or rollback any DML
statements executed within the trigger's procedure. However, this rule does not
apply if the DML command invoking the trigger fails as a result of the associated
trigger. In this case, any DML statements executed within that trigger's procedure
are automatically rolled back.

The COMMIT and ROLLBACK statements must be executed outside the trigger
body and cannot be executed within the trigger body. If one executes COMMIT or
ROLLBACK within the trigger body or within a procedure called from the trigger
body or another trigger, the user will get a run-time error.

Nested and recursive triggers
If a trigger gets into an infinite loop, a solidDB server detects this recursive action
when the 16-level nesting (or MaxNestedTriggers system parameter maximum is
reached). For example, an insert attempt on table T1 activates a trigger and the
trigger could call a stored procedure which also attempts to insert into Table T1,
recursively activating the trigger. A solidDB server returns an error on a user's
insert attempt.

If a set of nested triggers fails at any time, a solidDB server rolls back the
command which originally activated the triggers.

Trigger privileges and security
Because triggers can be activated by a user's attempt to INSERT, UPDATE, or
DELETE data, no privileges are required to execute them.

When a user invokes a trigger, the user assumes the privileges of the owner of the
table on which the trigger is defined. The action statements are executed on behalf

3 Stored procedures, events, triggers, and sequences 65

of the table owner, not the user who activates the trigger. However, to create a
trigger which uses a stored procedure requires that the creator of the trigger meet
one of the following conditions:
v You have DBA privileges.
v You are the owner of the table on which the trigger is being defined.
v You were granted all privileges on the table.

If the creator has DBA authority and creates a table for another user, a solidDB
server assumes that unqualified names specified in the TRIGGER command belong
to the user. For example, the following command is executed under DBA authority:
CREATE TRIGGER A.TRIG ON EMP BEFORE UPDATE

Since the EMP table is unqualified, the solidDB server assumes that the qualified
table name is A.EMP, not DBA.EMP.

Raising errors from inside triggers
At times, it is possible to receive an error in executing a trigger. The error may be
due to execution of SQL statements or business logic.

Users can receive any errors in a procedure variable using the SQL statement:
RETURN SQLERROR error_string

or
RETURN SQLERROR char_variable

The error is returned in the following format:
User error: error_string

If a user does not specify the RETURN SQLERROR statement in the trigger body,
then all trapped SQL errors are raised with a default error_string determined by
the system. For details, see the appendix, "Error Codes" in the documentation for
your solidDB product.

Trigger example
Trigger Example

This example shows how simple triggers work. It contains some triggers that work
correctly and some triggers that contain errors. For the successful triggers in the
example, a table (named trigger_test) is created and six triggers are created on that
table. Each trigger, when fired, inserts a record into another table (named
trigger_output). After performing the DML statements (INSERT, UPDATE, and
DELETE) that fire the triggers, the results of the triggers are displayed by selecting
all records from the trigger_output table.
DROP TABLE TRIGGER_TEST;
DROP TABLE TRIGGER_ERR_TEST;
DROP TABLE TRIGGER_ERR_B_TEST;
DROP TABLE TRIGGER_ERR_A_TEST;
DROP TABLE TRIGGER_OUTPUT;
COMMIT WORK;
-- Create a table that has a column for each of the possible trigger
-- types (for example, BI = a trigger that is on Insert
-- operations and that executes as a "Before" trigger).
CREATE TABLE TRIGGER_TEST(

XX VARCHAR,
BI VARCHAR, -- BI = Before Insert

66 IBM solidDB: SQL Guide

AI VARCHAR, -- AI = After Insert
BU VARCHAR, -- BU = Before Update
AU VARCHAR, -- AU = After Update
BD VARCHAR, -- BD = Before Delete
AD VARCHAR -- AD = After Delete

);
COMMIT WORK;

-- Table for ’before’ trigger errors
CREATE TABLE TRIGGER_ERR_B_TEST(

XX VARCHAR,
BI VARCHAR,
AI VARCHAR,
BU VARCHAR,
AU VARCHAR,
BD VARCHAR,
AD VARCHAR

);

INSERT INTO TRIGGER_ERR_B_TEST VALUES(’x’,’x’,’x’,’x’,’x’,
’x’,’x’);

COMMIT WORK;

-- Table for ’after X’ trigger errors
CREATE TABLE TRIGGER_ERR_A_TEST(

XX VARCHAR,
BI VARCHAR, -- Before Insert
AI VARCHAR, -- After Insert
BU VARCHAR, -- Before Update
AU VARCHAR, -- After Update
BD VARCHAR, -- Before Delete
AD VARCHAR -- After Delete

);

INSERT INTO TRIGGER_ERR_A_TEST VALUES(’x’,’x’,’x’,’x’,’x’,
’x’,’x’);

COMMIT WORK;

CREATE TABLE TRIGGER_OUTPUT(
TEXT VARCHAR,
NAME VARCHAR,
SCHEMA VARCHAR

);
COMMIT WORK;

--
-- Successful triggers
--
-- Create a "Before" trigger on insert operations. When a record is
-- inserted into the table named trigger_test, then this trigger is
-- fired. When this trigger is fired, it inserts a record into the
-- "trigger_output" table to show that the trigger actually executed.

"CREATE TRIGGER TRIGGER_BI ON TRIGGER_TEST
BEFORE INSERT
REFERENCING NEW BI AS NEW_BI

BEGIN
EXEC SQL PREPARE BI INSERT INTO TRIGGER_OUTPUT VALUES(

’BI’, TRIG_NAME(0), TRIG_SCHEMA(0));
EXEC SQL EXECUTE BI;
SET NEW_BI = ’TRIGGER_BI’;

END";
COMMIT WORK;

"CREATE TRIGGER TRIGGER_AI ON TRIGGER_TEST
AFTER INSERT
REFERENCING NEW AI AS NEW_AI

3 Stored procedures, events, triggers, and sequences 67

BEGIN
EXEC SQL PREPARE AI INSERT INTO TRIGGER_OUTPUT VALUES(

’AI’, TRIG_NAME(0), TRIG_SCHEMA(0));
EXEC SQL EXECUTE AI;
SET NEW_AI = ’TRIGGER_AI’;

END";
COMMIT WORK;

"CREATE TRIGGER TRIGGER_BU ON TRIGGER_TEST
BEFORE UPDATE
REFERENCING NEW BU AS NEW_BU

BEGIN
EXEC SQL PREPARE BU INSERT INTO TRIGGER_OUTPUT VALUES(

’BU’, TRIG_NAME(0), TRIG_SCHEMA(0));
EXEC SQL EXECUTE BU;
SET NEW_BU = ’TRIGGER_BU’;

END";
COMMIT WORK;

"CREATE TRIGGER TRIGGER_AU ON TRIGGER_TEST
AFTER UPDATE
REFERENCING NEW AU AS NEW_AU

BEGIN
EXEC SQL PREPARE AU INSERT INTO TRIGGER_OUTPUT VALUES(

’AU’, TRIG_NAME(0), TRIG_SCHEMA(0));
EXEC SQL EXECUTE AU;
SET NEW_AU = ’TRIGGER_AU’;

END";
COMMIT WORK;

"CREATE TRIGGER TRIGGER_BD ON TRIGGER_TEST
BEFORE DELETE
REFERENCING OLD BD AS OLD_BD

BEGIN
EXEC SQL PREPARE BD INSERT INTO TRIGGER_OUTPUT VALUES(

’BD’, TRIG_NAME(0), TRIG_SCHEMA(0));
EXEC SQL EXECUTE BD;
SET OLD_BD = ’TRIGGER_BD’;

END";
COMMIT WORK;

"CREATE TRIGGER TRIGGER_AD ON TRIGGER_TEST
AFTER DELETE
REFERENCING OLD AD AS OLD_AD

BEGIN
EXEC SQL PREPARE AD INSERT INTO TRIGGER_OUTPUT VALUES(

’AD’, TRIG_NAME(0), TRIG_SCHEMA(0));
EXEC SQL EXECUTE AD;
SET OLD_AD = ’TRIGGER_AD’;

END";
COMMIT WORK;

-- This attempt to create a trigger will fail. The statement
-- specifies the wrong data type for the error variable named
-- ERRSTR.

"CREATE TRIGGER TRIGGER_ERR_AU ON TRIGGER_ERR_A_TEST
AFTER UPDATE
REFERENCING NEW AU AS NEW_AU

BEGIN
-- The following line is incorrect; ERRSTR must be declared
-- as VARCHAR, not INTEGER;

DECLARE ERRSTR INTEGER;
-- ...

RETURN SQLERROR ERRSTR;

68 IBM solidDB: SQL Guide

END";
COMMIT WORK;

-- Trigger that returns an error message.

"CREATE TRIGGER TRIGGER_ERR_BI ON TRIGGER_ERR_B_TEST

BEFORE INSERT
REFERENCING NEW BI AS NEW_BI

BEGIN
-- ...
RETURN SQLERROR ’Error in TRIGGER_ERR_BI’;

END";
COMMIT WORK;

-- Success trigger tests. These Insert, Update, and Delete
-- statements will force the triggers to fire. The SELECT
-- statements will show you the records in the trigger_test and
-- trigger_output tables.

INSERT INTO TRIGGER_TEST(XX) VALUES (’XX’);
COMMIT WORK;

-- Show the records that were inserted into the trigger_test
-- table. (The records for trigger_output are shown later.)

SELECT * FROM TRIGGER_TEST;
COMMIT WORK;

UPDATE TRIGGER_TEST SET XX = ’XX updated’;
COMMIT WORK;

-- Show the records that were inserted into the trigger_test
-- table. (The records for trigger_output are shown later.)

SELECT * FROM TRIGGER_TEST;
COMMIT WORK;

DELETE FROM TRIGGER_TEST;
COMMIT WORK;

SELECT * FROM TRIGGER_TEST;

-- Show that the triggers did run and did add values to the
-- trigger_output table. You should see 6 records one for
-- each of the triggers that executed. The 6 triggers are:
-- BI, AI, BU, AU, BD, AD.

SELECT * FROM TRIGGER_OUTPUT;
COMMIT WORK;

-- Error trigger test

INSERT INTO TRIGGER_ERR_B_TEST(XX) VALUES (’XX’);
COMMIT WORK;

Dropping triggers
To drop a trigger defined on a table, use the DROP TRIGGER command. This
command drops the trigger from the system catalog.

3 Stored procedures, events, triggers, and sequences 69

You must be the owner of a table, or a user with DBA authority, to drop a trigger
from the table.

The syntax is:
DROP TRIGGER [[catalog_name.]schema_name.]trigger_name
DROP TRIGGER trigger_name
DROP TRIGGER schema_name.trigger_name
DROP TRIGGER catalog_name.schema_name.trigger_name

The trigger_name is the name of the trigger on which the table is defined.

If the trigger is part of a schema, indicate the schema name as in:
schema_name.trigger_name

If the trigger is part of a catalog, indicate the catalog name as in:
catalog_name.schema_name.trigger_name

Dropping and Recreating a Trigger
DROP TRIGGER TRIGGER_BI;
COMMIT WORK;

"CREATE TRIGGER TRIGGER_BI ON TRIGGER_TEST
BEFORE INSERT
REFERENCING NEW BI AS NEW_BI

BEGIN
EXEC SQL PREPARE BI INSERT INTO TRIGGER_OUTPUT VALUES(
’BI_NEW’, TRIG_NAME(0), TRIG_SCHEMA(0));
EXEC SQL EXECUTE BI;
SET NEW_BI = ’TRIGGER_BI_NEW’;

END";
COMMIT WORK;

INSERT INTO TRIGGER_TEST(XX) VALUES (’XX’);
COMMIT WORK;

SELECT * FROM TRIGGER_TEST;
SELECT * FROM TRIGGER_OUTPUT;
COMMIT WORK;

Altering trigger attributes
You can alter trigger attributes using the ALTER TRIGGER command. The valid
attributes are ENABLED and DISABLED trigger.

The ALTER TRIGGER SET DISABLED command causes a solidDB server to ignore
the trigger when an activating DML statement is issued. With ALTER TRIGGER
SET ENABLED statement, you can enable a trigger that is currently inactive.

You must be the owner of a table, or a user with DBA authority to alter a trigger
from the table.
alter_trigger ::=

ALTER TRIGGER trigger_name_att SET ENABLED | DISABLED
trigger_name_attr ::= [catalog_name.[schema_name]]trigger_name

For example:
ALTER TRIGGER trig_on_employee SET ENABLED;

70 IBM solidDB: SQL Guide

Obtaining trigger information
You obtain trigger information by using trigger functions that return specific
information and performing a query on the trigger system table. Each of these
sources is described in this section.

Trigger functions
The following system supported triggers stack functions are useful for analyzing
and debugging purposes.

Note: The trigger stack refer to those triggers that are cached, regardless of
whether they are executed or detected for execution. Trigger stack functions can be
used in the application program like any other function.

The functions are:
v TRIG_COUNT()

This function returns the number of triggers in the trigger stack, including the
current trigger. The return value is an integer.

v TRIG_NAME(n)
This function returns the nth trigger name in the trigger stack. The first trigger
position or offset is zero.

v TRIG_SCHEMA(n)
This function returns the nth trigger schema name in the trigger stack. The first
trigger position or offset is zero. The return value is a string.

SYS_TRIGGERS system table
Triggers are stored in a system table called SYS_TRIGGERS. The following is the
meta data for the SYS_TRIGGERS system table:

Table 15. Metadata for the SYS_TRIGGERS system table

Column Name Data Type Description

ID INTEGER unique table identifier (primary key)

TRIGGER_NAME WVARCHAR trigger name (unique with schema)

TRIGGER_TEXT LONG WVARCHAR trigger body

TRIGGER_BIN LONG VARBINARY compiled form of the trigger

TRIGGER_SCHEMA WVARCHAR the schema in which the trigger was
created

TRIGGER_CATALOG WVARCHAR the catalog in which the trigger was
created

CREATIME TIMESTAMP the creation time of the trigger

TYPE INTEGER reserved for future use

REL_ID INTEGER the relation id (unique with type)

TRIGGER_ENABLED WVARCHAR 'YES' if the trigger is enabled; 'NO' if the
trigger is disabled.

3 Stored procedures, events, triggers, and sequences 71

Trigger parameter settings

Setting nested trigger maximum
Triggers can invoke other triggers or a trigger can invoke itself (recursive trigger).
The maximum number of nested or recursive triggers can be configured by the
MaxNestedTriggers system parameter in the SQL section of solid.ini.
[SQL]
MaxNestedTriggers = n;

where n is the maximum number of nested triggers.

The default number for nested triggers is 16.

Setting the trigger cache
In a solidDB server, triggers are cached in a separate cache. Each user has a
separate cache for triggers. As the triggers are executed, the trigger procedure logic
is cached in the trigger cache and is reused when the trigger is executed again.

You can set the size of the trigger cache using the TriggerCache system parameter
in the SQL section of solid.ini.
[SQL]
TriggerCache = n;

where n is the number of triggers being reserved for the cache.

Deferred procedure calls
At the end of a committed transaction, you may want to perform a specific action.
For example, if the transaction updated some data in a "master" publication, then
you may want to notify a replica that the master data was updated. solidDB allows
the START AFTER COMMIT statement to specify an SQL statement that will be
executed when the current transaction is committed. The specified SQL statement
is called the "body" of the START AFTER COMMIT. The body is executed
asynchronously in a separate connection.

For example, if you would like to call a stored procedure named my_proc() when
the transaction commits, then you would write:
START AFTER COMMIT NONUNIQUE CALL

my_proc;

This statement may appear anywhere inside the transaction; it may be the first
statement, the last statement, or any statement in between. Regardless of where the
START AFTER COMMIT statement itself appears within the transaction, the "body"
(the call to my_proc) will be executed only when the transaction is committed. In
the example above, we put the body on a separate line, but that is not required
syntactically.

Because the body of the statement is not executed at the same time as the START
AFTER COMMIT statement itself, we say that there are two different phases to the
START AFTER COMMIT command: the "definition" phase and the "execution"
phase. In the definition phase of START AFTER COMMIT, you specify the body
but don't execute it. The creation phase may occur anywhere inside a transaction;
in other words, the statement "START AFTER COMMIT ..." may be placed in any
order relative to other SQL statements in the same transaction.

72 IBM solidDB: SQL Guide

In the execution phase, the body of the START AFTER COMMIT statement is
actually executed. The execution phase occurs when the COMMIT WORK
statement for the transaction is executed. (It is also possible to execute a START
AFTER COMMIT in autocommit mode, but there is rarely a reason to do this.)

Below is an example that shows the use of a START AFTER COMMIT statement
inside a transaction.
-- Any valid SQL statement(s)...
...
-- Creation phase. The function my_proc() is not actually called here.
START AFTER COMMIT NONUNIQUE CALL my_proc(x, y);
...
-- Any valid SQL statement(s)...

-- Execution phase: This ends the transaction and starts execution
-- of the call to my_proc().
COMMIT WORK;

A START AFTER COMMIT does not execute unless and until the transaction is
successfully committed. If the transaction containing the START AFTER COMMIT
is rolled back, then the body of the START AFTER COMMIT is not executed. If
you want to propagate the updated data from a replica to a master, then this is an
advantage because you only want the data propagated if it is committed. If you
were to use triggers to start the propagation, the data would be propagated before
it was committed.

The START AFTER COMMIT command applies only to the current transaction, i.e.
the one that the START AFTER COMMIT command was issued inside. It does not
apply to subsequent transactions, or to any other transactions that are currently
open in other connections.

The START AFTER COMMIT command allows you to specify only one SQL
statement to be executed when the COMMIT occurs. However, that one SQL
statement may be a call to a stored procedure, and that stored procedure may have
many statements, including calls to other stored procedures. Furthermore, you may
have more than one START AFTER COMMIT command per transaction. The body
of each of these START AFTER COMMIT statements will be executed when the
transaction is committed. However, these bodies will run independently and
asynchronously; they will not necessarily execute in the same order as their
corresponding START AFTER COMMIT statements, and they are likely to have
overlapping execution (there is no guarantee that one will finish before the next
one starts).

A common use of START AFTER COMMIT is to help implement "Sync Pull
Notify" ("Push Synchronization"), which is discussed in IBM solidDB Advanced
Replication User Guide.

If the body of your START AFTER COMMIT is a call to a stored procedure, that
procedure may be local or it may be remote on one remote replica (or master).

If you are using Sync Pull Notify, then you may want to call the same procedure
on many replicas. To do this, you must use a slightly indirect method. The simplest
method is to write one local procedure that calls many procedures on replicas. For
example, if the body of the START AFTER COMMIT statement is "CALL my_proc",
then you could write my_proc to be similar to the following:

3 Stored procedures, events, triggers, and sequences 73

CREATE PROCEDURE my_proc
BEGIN
CALL update_inventory(x) AT replica1;
CALL update_inventory(x) AT replica2;
CALL update_inventory(x) AT replica3;
END;

This approach works fine if your list of replicas is static. However, if you expect to
add new replicas in the future, you may find it more convenient to update
"groups" of replicas based on their properties. This allows you to add new replicas
with specific properties and then have existing stored procedures operate on those
new replicas. This is done by making use of two features: the FOR EACH
REPLICA clause in START AFTER COMMIT, and the DEFAULT clause in remote
stored procedure calls.

If the FOR EACH REPLICA clause is used in START AFTER COMMIT, the
statement will be executed once for each replica that meets the conditions in the
WHERE clause. Note that the statement is executed once FOR each replica, not
once ON each replica. If there is no "AT node-ref" clause in the CALL statement,
then the stored procedure is called locally, i.e. on the same server as the START
AFTER COMMIT was executed on. To make sure that a stored procedure is called
once ON each replica, you must use the DEFAULT clause. The typical way to do
this is to create a local stored procedure that contains a remote procedure calling
that uses the DEFAULT clause. For example, suppose that my_local_proc contains
the following:
CALL update_sales_statistics AT DEFAULT;

and suppose that the START AFTER COMMIT statement is
START AFTER COMMIT FOR EACH REPLICA
WHERE region = ’north’
UNIQUE
CALL my_local_proc;

The WHERE clause is
WHERE region = ’north’

Therefore, for each replica that has the properties
region = ’north’

we will call the stored procedure named my_local_proc. That local procedure, in
turn, executes
CALL update_sales_statistics() AT DEFAULT

The keyword DEFAULT is resolved as the name of the replica. Each time that
my_local_proc is called from inside the body of the START AFTER COMMIT, the
DEFAULT keyword is the name of a different replica that has the property "region
= 'north'".

For more information about property/value pairs such as "region = 'north'", see the
section Replica Property Names in the IBM solidDB Advanced Replication User Guide.

Note that it's possible that not all replicas will have a procedure named
update_sales_statistics(). If this is the case, then the procedure will only be
executed on those replicas that have the procedure. (The master will not send each
replica a copy of the procedure; the master only calls existing procedures.)

74 IBM solidDB: SQL Guide

Note also that it's possible that not all replicas that have a procedure named
update_sales_statistics() will have the SAME procedure. Each replica may have its
own custom version of the procedure.

Naturally, before executing each statement on each replica, a connection to the
replica is established.

When the START AFTER COMMIT command is used to call multiple replicas, this
enables the use of the optional keyword "DEFAULT" in the syntax of the CALL
command. For example, suppose that you use the following:
START AFTER COMMIT

FOR EACH REPLICA
WHERE location = ’India’
UNIQUE CALL push;

Then in the local procedure 'push' you can use the keyword "DEFAULT", which
acts as a variable that contains the name of the replica in question.
CREATE PROCEDURE push
BEGIN
EXEC SQL EXECDIRECT CALL remoteproc AT DEFAULT;
END

Procedure 'push' will be called once for each replica that has a property named
'location' with value 'India'. Each time the procedure is called, "DEFAULT" will be
set to the name of that replica. Thus
CALL remoteproc AT DEFAULT;

will call the procedure on that particular replica.

You can set the replica properties in the master with the statement:
SET SYNC PROPERTY propname = ’value’ FOR REPLICA replica_name;

for example
SET SYNC PROPERTY location = ’India’ FOR REPLICA asia_hq;

The statement specified in START AFTER COMMIT is executed as an independent
transaction. It is not part of the transaction that contained the START AFTER
COMMIT command. This independent transaction is run as though autocommit
mode were on; in other words, you do not need an explicit COMMIT WORK to
commit the work done in this statement.

In other respects, however, the execution of the statement is not much like a
transaction. First, there is no guarantee that the statement will execute to
completion. The statement is launched as an independent background task. If the
server crashes, or if for some other reason the statement cannot be executed, then
the statement disappears without being completely executed.

Second, because the statement is executed as a background task, there is no
mechanism for returning an error. Third, there is no way to roll back the statement;
if the statement execution is completed, the "transaction" statement is
autocommitted regardless of whether any errors were detected. (Note that if the
statement is a procedure call, then the procedure itself may contain COMMIT and
ROLLBACK commands.)

3 Stored procedures, events, triggers, and sequences 75

You may use the "RETRY" clause to try executing the statement more than once if
it fails. The RETRY clause allows you to specify the number of times the server
should attempt to retry the failed statement. You must specify the number of
seconds to wait between each retry.

If you do not use the RETRY clause, the server attempts only once execute the
statement, then the statement is discarded. If, for example, the statement tries to
call a remote procedure, and if the remote server is down (or cannot be contacted
due to a network problem), then the statement will not be executed and you will
not get any error message.

Any statement, including the statement specified in a START AFTER COMMIT,
executes in a certain "context". The context includes such factors as the default
catalog, the default schema, etc. For a statement executed from within a START
AFTER COMMIT, the statement's context is based on the context at the time that
the START AFTER COMMIT is executed, not on the context at the time of the
COMMIT WORK that actually causes the statement inside START AFTER
COMMIT to run. In the example below, 'CALL FOO_PROC' is executed in the
catalog foo_cat and schema foo_schema, not bar_cat and bar_schema.
SET CATALOG FOO_CAT;
SET SCHEMA FOO_SCHEMA;
START AFTER COMMIT UNIQUE CALL FOO_PROC;
...
SET CATALOG BAR_CAT;
SET SCHEMA BAR_SCHEMA;
COMMIT WORK;

The UNIQUE/NONUNIQUE keywords determine whether the server tries to
avoid issuing the same command twice.

The UNIQUE keyword before <stmt> defines that the statement is executed only if
there isn't identical statement under execution or "pending" for execution.
Statements are compared with simple string compare. So for example 'call foo(1)' is
different from 'call foo(2)'. Replicas are also taken into account in the comparison;
in other words, UNIQUE does not prevent the server from executing the same
trigger call on different replicas. Note that "unique" only blocks overlapping
execution of statements; it does not prevent the same statement from being
executed again later if it is called again after the current invocation has finished
running.

NONUNIQUE means that duplicate statements can be executed simultaneously in
the background.

Examples: The following statements are all considered different and are thus
executed even though each contains the UNIQUE keyword. (Name is a unique
property of replica.)
START AFTER COMMIT UNIQUE call myproc;
START AFTER COMMIT FOR EACH REPLICA WHERE name=’R1’ UNIQUE call myproc;
START AFTER COMMIT FOR EACH REPLICA WHERE name=’R2’ UNIQUE call myproc;
START AFTER COMMIT FOR EACH REPLICA WHERE name=’R3’ UNIQUE call myproc;

But if the following statement is executed in the same transaction as the previous
ones and if some of the replicas R1, R2, and R3 have the property "color='blue'",
then the call is not executed for those replicas again.
START AFTER COMMIT FOR EACH REPLICA WHERE color=’blue’
UNIQUE call myproc;

76 IBM solidDB: SQL Guide

Note that uniqueness also does not prevent "automatic" execution from
overlapping "manual" execution. For example, if you manually execute a command
to refresh from a particular publication, and if the master also calls a remote stored
procedure to refresh from that publication, the master won't "skip" the call because
a manual refresh is already running. Uniqueness applies only to statements started
by START AFTER COMMIT.

The START AFTER COMMIT statement can be used inside a stored procedure. For
example, suppose that you want to post an event if and only if a transaction
completed successfully. You could write a stored procedure that would execute a
START AFTER COMMIT statement that would post the event if the transaction
was committed (but not if it was rolled back). Your code might look similar to the
following:

This sample also contains an example of "receiving" and then using an event
parameter. See the stored procedure named "wait_on_event_e" in script #1.
-- To run this demo properly, you will need two users/connections.
-- This demo contains 5 separate "scripts", which must be executed
-- in the order shown below:
-- User1 executes the first script.
-- User2 executes the second script.
-- User1 executes the third script.
-- User2 executes the fourth script.
-- User1 executes the fifth script.
-- You may notice that there are some COMMIT WORK statements
-- in surprising places. These are to ensure that each user sees the
-- most recent changes of the other user. Without the COMMIT WORK
-- statements, in some cases one user would see an out-of-date
-- "snapshot" of the database.
--
-- Please set autocommit off for both users/connections!

-------------------- SCRIPT 1 (USER 1) --------------------
CREATE EVENT e (i int);
CREATE TABLE table1 (a int);

-- This inserts a row into table1. The value inserted into the is copied
-- from the parameter to the procedure.
"CREATE PROCEDURE inserter(i integer)
BEGIN
EXEC SQL PREPARE c_inserter INSERT INTO table1 (a) VALUES (?);
EXEC SQL EXECUTE c_inserter USING (i);
EXEC SQL CLOSE c_inserter;
EXEC SQL DROP c_inserter;
END";

-- This posts the event named "e".
"CREATE PROCEDURE post_event(i integer)
BEGIN
POST EVENT e(i);
END";

-- This demonstrates the use of START AFTER COMMIT inside a
-- stored procedure. After you call this procedure and
-- call COMMIT WORK, the server will post the event.
"CREATE PROCEDURE sac_demo
BEGIN
DECLARE MyVar INT;
MyVar := 97;
EXEC SQL PREPARE c_sacdemo START AFTER COMMIT NONUNIQUE CALL
post_event(?);

3 Stored procedures, events, triggers, and sequences 77

EXEC SQL EXECUTE c_sacdemo USING (MyVar);
EXEC SQL CLOSE c_sacdemo;
EXEC SQL DROP c_sacdemo;
END";

-- When user2 calls this procedure, the procedure will wait until
-- the event named "e" is posted, and then it will call the
-- stored procedure that inserts a record into table1.
"CREATE PROCEDURE wait_on_event_e
BEGIN
-- Declare the variable that will be used to hold the event parameter.
-- Although the parameter was declared when the event was created, you
-- still need to declare it as a variable in the procedure that receives
-- that event.
DECLARE i INT;
WAIT EVENT

WHEN e (i) BEGIN
-- After we receive the event, insert a row into the table.
EXEC SQL PREPARE c_call_inserter CALL inserter(?);
EXEC SQL EXECUTE c_call_inserter USING (i);
EXEC SQL CLOSE c_call_inserter;
EXEC SQL DROP c_call_inserter;

END EVENT
END WAIT
END";

COMMIT WORK;

-------------------- SCRIPT 2 (USER 2) --------------------
-- Make sure that user2 sees the changes that user1 made.
COMMIT WORK;

-- Wait until user1 posts the event.
CALL wait_on_event_e;
-- Don’t commit work again (yet).

-------------------- SCRIPT 3 (USER 1) --------------------
COMMIT WORK;

-- User2 should be waiting on event e, and should see the event after
-- we execute the stored procedure named sac_demo and then commit work.
-- Note that since START AFTER COMMIT statements are executed
-- asynchronously, there may be a slight delay between the COMMIT WORK
-- and the associated POST EVENT.
CALL sac_demo;
COMMIT WORK;

-------------------- SCRIPT 4 (USER 2) --------------------
-- Commit the INSERT that we did earlier when we called inserter()
-- after receiving the event.
COMMIT WORK;

--------------------SCRIPT 5 (USER 1) --------------------
-- Ensure that we see the data that user2 inserted.
COMMIT WORK;

-- Show the record that user2 inserted.
SELECT * FROM table1;

COMMIT WORK;

There are several important things that you should know about START AFTER
COMMIT.

78 IBM solidDB: SQL Guide

v When the body of the deferred procedure call (START AFTER COMMIT) is
executed, it runs asynchronously in the background. This allows the server to
immediately start executing the next SQL command in your program without
waiting for the deferred procedure call statement to finish. It also means that
you do not have to wait for completion before disconnecting from the server. In
most situations, this is an advantage. However, in a few situations this may be a
disadvantage. For example, if the body of the deferred procedure call locks
records that are needed by subsequent SQL commands in your program, you
may not appreciate having the body of the deferred procedure call run in the
background while your next SQL command runs in the foreground and has to
wait to access those same records.

v The statement to be executed will only be executed if the transaction is
completed with a COMMIT, not a ROLLBACK. If the entire transaction is
explicitly rolled back, or if the transaction is aborted and thus implicitly rolled
back (due to a failed connection, for example), then the body of the START
AFTER COMMIT will not be executed.

v Although the transaction in which the deferred procedure call occurs can be
rolled back (thus preventing the body of the deferred procedure call from
running), the body of the deferred procedure call cannot itself be rolled back if it
has executed. Because it runs asynchronously in the background, there is no
mechanism for cancelling or rolling back the body once it starts executing.

v The statement in the deferred procedure call is not guaranteed to run until
completion or to be run as an "atomic" transaction. For example, if your server
crashes, then the statement will not resume executing the next time that the
server starts, and any actions that were completed before the server crashed may
be kept. To prevent inconsistent data in this type of situation, you must program
carefully and make proper use of features like referential constraints to ensure
data integrity.

v If you execute a START AFTER COMMIT statement in autocommit mode, then
the body of the START AFTER COMMIT will be executed "immediately" (i.e. as
soon as the START AFTER COMMIT is executed and automatically committed).
At first, this might seem useless — why not just execute the body of the START
AFTER COMMIT directly? There are a few subtle differences, however. First, a
direct call to my_proc is synchronous; the server will not return control to you
until the stored procedure has finished executing. If you call my_proc as the
body of a START AFTER COMMIT, however, then the call is asynchronous; the
server does not wait for the end of my_proc before allowing you to execute the
next SQL statement. In addition, because START AFTER COMMIT statements
are not truly executed "immediately" (i.e. at the time that the transaction is
committed) but may instead be delayed briefly if the server is busy, you might
or might not actually start running your next SQL statement before my_proc
even starts executing. It is rare for this to be desirable behavior. However, if you
truly want to launch an asynchronous stored procedure that will run in the
background while you continue onward with your program, it is valid to do
START AFTER COMMIT in autocommit mode.

v If more than one deferred procedure call was executed in the same transaction,
then the bodies of all the START AFTER COMMIT statements will run
asynchronously. This means that they will not necessarily run in the same order
as you executed the START AFTER COMMIT statements within the transaction.

v The body of a START AFTER COMMIT must contain only one SQL statement.
That one statement may be a procedure call, however, and the procedure may
contain multiple SQL statements, including other procedure calls.

v The START AFTER COMMIT statement applies only to the transaction in which
it is defined. If you execute START AFTER COMMIT in the current transaction,

3 Stored procedures, events, triggers, and sequences 79

the body of the deferred procedure call will be executed only when the current
transaction is committed; it will not be executed in subsequent transactions, nor
will it be executed for transactions done by any other connections. START
AFTER COMMIT statements do not create "persistent" behavior. If you would
like the same body to be called at the end of multiple transactions, then you will
have to execute a "START AFTER COMMIT ... CALL my_proc" statement in each
of those transactions.

v The "result" of the execution of the body of the deferred procedure call (START
AFTER COMMIT) statement is not returned in any way to the connection that
ran the deferred procedure call. For example, if the body of the deferred
procedure call returns a value that indicates whether an error occurred, that
value will be discarded.

v Almost any SQL statement may be used as the body of a START AFTER
COMMIT statement. Although calls to stored procedures are typical, you may
also use UPDATE, CREATE TABLE, or almost anything else. (We don't advise
putting another START AFTER COMMIT statements inside a START AFTER
COMMIT, however.) Note that a statement like SELECT is generally useless
inside an deferred procedure call because the result is not returned.

v Because the body is not executed at the time that the START AFTER COMMIT
statement is executed inside the transaction, START AFTER COMMIT statements
rarely fail unless the deferred procedure call itself or the body contains a syntax
error or some other error that can be detected without actually executing the
body.

What if you don't want the next SQL statement in your program to run until
deferred procedure call statement has finished running? Here's a workaround:
1. At the end of the deferred procedure call statement (e.g. at the end of the

stored procedure called by the deferred procedure call statement), post an
Event. (See IBM solidDB Programmer Guide for a description of events.)

2. Immediately after you commit the transaction that specified the deferred
procedure call, call a stored procedure that waits on the event.

3. After the stored procedure call (to wait on the event), put the next SQL
statement that your program wants to execute.

For example, your program might look like the following:
...

START AFTER COMMIT ... CALL myproc;
...
COMMIT WORK;
CALL wait_for_sac_completion;
UPDATE ...;

The stored procedure wait_for_sac_completion would wait for the event that
myproc will post. Therefore, the UPDATE statement won't run until after the
deferred procedure call statement finishes.

Note that this workaround is slightly risky. Since deferred procedure call
statements are not guaranteed to execute until completion, there is a chance that
the stored procedure wait_for_sac_completion will never get the event that it is
waiting for.

Why would anyone design a command that may or may not run to completion?
The answer is that the primary purpose of the START AFTER COMMIT feature is
to support "Sync Pull Notify". The Sync Pull Notify feature allows a master server
to notify its replica(s) that data has been updated and that the replicas may request

80 IBM solidDB: SQL Guide

refreshes to get the new data. If this notification process fails for some reason, it
would not result in data corruption; it would simply mean that there would be a
longer delay before the replica refreshes the data. Since a replica is always given all
the data since its last successful refresh operation, a delay in receipt of data does
not cause the replica to permanently miss any data. For more details, see the
section Introduction to Sync Pull Notify in the IBM solidDB Advanced Replication User
Guide.

Note: The statement inside the body of the START AFTER COMMIT may be any
statement, including SELECT. Remember, however, that the body of the START
AFTER COMMIT does not return its results anywhere, so a SELECT statement is
generally not useful inside a START AFTER COMMIT.

Note: If you are in auto-commit mode and execute START AFTER COMMIT...,
then the given statement is started immediately in the background. "Immediately"
here actually means "as soon as possible", because it's still executed
asynchronously when the server has time to do it.

Sync Pull Notify ("Push Synchronization") Example
To implement Sync Pull Notify (i.e. Master notifying all relevant Replicas that there
is new data that they can request a refresh of), users can use the START and CALL
statements as defined earlier. This particular example also uses triggers.

Let us consider a scenario where there is a Master M1 and Replicas R1 and R2.

To carry out Sync Pull Notify, follow the steps listed below:
1. Define a Procedure Pm1 in Master M1. In Procedure Pm1, include the

statements:
EXECDIRECT CALL Pr1 AT R1;
EXECDIRECT CALL Pr1 AT R2;

(You will have one call for each interested Replica. Note that the replica name
changes, but typically the procedure name is the same on each replica.)

2. Define a Procedure Pr1 in Replica R1. If a master is to invoke the Pr1 in more
than one replica, then Pr1 should be defined for every replica that is of interest.
See the replica procedure example in the example section below.

3. Define a Trigger for all relevant DML operations, such as
v INSERT
v UPDATE and
v DELETE

4. In each trigger body, embed the statement

R2R1

M1

Figure 1. Sync pull notify

3 Stored procedures, events, triggers, and sequences 81

EXECDIRECT START [UNIQUE] CALL Pm1;

5. Grant EXECUTE authority to the appropriate user on each replica. (A user Ur1
on the replica should already be mapped to a corresponding user Um1 on the
master. The user Um1 must execute the
EXECDIRECT START [UNIQUE] CALL Pm1;

When Um1 calls the procedure remotely, the call will actually execute with the
privileges of Ur1 when the call is executed on the replica.)

Sliced Replicas

A sales application has a table named CUSTOMER, which has a column named
SALESMAN. The master database contains information for all salespersons. Each
salesperson has her own replica database, and that replica has only a "slice" of the
master's data; specifically, each salesperson's replica has the slice of data for that
salesperson. For example, salesperson Smith's replica has only the data for
salesperson Smith. If the salesperson assigned to a particular customer changes,
then the correct replicas should be notified. If XYZ corporation is reassigned from
salesperson Smith to salesperson Jones, then salesperson Jones's replica database
should add the data related to XYZ corporation, and salesperson Smith's replica
should delete the data related to XYZ corporation. Here is the code to update both
replica databases:
-- If a customer is reassigned to a different salesman, then we
-- must notify both the old and new salesmen.
-- NOTE: This sample shows only the "UPDATE" trigger, but in
-- reality, you’d also need to define INSERT and DELETE triggers.
CREATE TRIGGER T_CUST_AFTERUPDATE ON CUSTOMER
AFTER UPDATE
REFERENCING NEW SALESMAN AS NEW_SALESMAN,
REFERENCING OLD SALESMAN AS OLD_SALESMAN
BEGIN
IF NEW_SALESMAN <> OLD_SALESMAN THEN
EXEC SQL EXECDIRECT
START AFTER COMMIT
FOR EACH REPLICA WHERE NAME=OLD_SALESMAN
UNIQUE CALL CUST(OLD_SALESMAN);

EXEC SQL EXECDIRECT
START AFTER COMMIT
FOR EACH REPLICA WHERE NAME=NEW_SALESMAN
UNIQUE CALL CUST(NEW_SALESMAN);

ENDIF
END;

Suppose that in the application, the user assigns all customers in sales area 'CA' to
salesperson Mike.
UPDATE CUSTOMER SET SALESMAN=’Mike’ WHERE SALES_AREA=’CA’;
COMMIT WORK;

The Master server has the following procedure:
CREATE PROCEDURE CUST(salesman VARCHAR)
BEGIN
EXEC SQL EXECDIRECT CALL CUST(salesman) AT salesman;
COMMIT WORK;
END

Each replica has the following procedure:
CREATE PROCEDURE CUST(salesman VARCHAR)
BEGIN
MESSAGE s BEGIN;
MESSAGE s APPEND REFRESH CUSTS(salesman);

82 IBM solidDB: SQL Guide

MESSAGE s END;
COMMIT WORK;
MESSAGE s FORWARD TIMEOUT FOREVER;
COMMIT WORK;
END

In the procedure CUST(), we force the salesperson's replica to refresh from the data
in the master. This procedure CUST() is defined on all the replicas. If we call the
procedure on both the replica that the customer was reassigned to, and the replica
that the customer was reassigned from, then the procedure updates both those
replicas. Effectively, this will delete the out-of-date data from the replica that no
longer has this customer, and will insert the data to the replica that is now
responsible for this customer. If the publication and its parameters are properly
defined, we don't need to write additional detailed logic to handle each possible
operation, such as reassigning a customer from one salesperson to another; instead,
we simply tell each replica to refresh from the most current data.

NOTES:

It is possible to implement a Sync Pull Notify without triggers. The application
may call appropriate procedures to implement SyncPull. Triggers are a way to
achieve Sync Pull Notify in conjunction with the statement START AFTER
COMMIT and remote procedure calls.

Sometimes, in the Sync Pull Notify process, it is possible that a replica may have to
exchange one extra round trip of messages unnecessarily. This could happen if the
master invoked procedure tries to send a message to the replica that just sent the
changes to the master, and that causes a change in the "hot data" in the master. But
this can be avoided with careful usage of the START AFTER COMMIT statement.
Be careful not to create an "infinite loop", where each update on the master leads
to an immediate update on the replica, which leads to an immediate update on the
master... The best way to avoid this is to be careful when creating triggers on the
replica that might "immediately" send updated data to the master, which in turn
"immediately" notifies the replica to refresh again.

Tracing the execution of background jobs
The START AFTER COMMIT statement returns a result-set with one INTEGER
column. This integer is a unique "job" id that can be used to query the status of
statements that failed to start for one reason or another (invalid SQL statement, no
access rights, replica not available, etc.).

If a maximum number of uncommitted deferred procedure call statements is
reached, then an error is returned when the deferred procedure call is issued. The
maximum number is configurable in solid.ini. See IBM solidDB Administrator
Guide.

If a statement cannot be started, the reason is logged to the system table
SYS_BACKGROUNDJOB_INFO.
SYS_BACKGROUNDJOB_INFO
(
ID INTEGER NOT NULL,
STMT WVARCHAR NOT NULL,
USER_ID INTEGER NOT NULL,
ERROR_CODE INTEGER NOT NULL,
ERROR_TEXT WVARCHAR NOT NULL,
PRIMARY KEY(ID)
);

3 Stored procedures, events, triggers, and sequences 83

Only failed START AFTER COMMIT statements are logged into this table. If the
statement (e.g. a procedure call) starts successfully, no information is stored into
the system tables.

User can retrieve the information from the table SYS_BACKGROUNDJOB_INFO
using either SQL SELECT-query or calling a system procedure
SYS_GETBACKGROUNDJOB_INFO. The input parameters is the jobID. The
returned values are: ID INTEGER, STMT WVARCHAR, USER_ID INTEGER,
ERROR_CODE INTEGER, ERROR_TEXT INTEGER.

Also an event SYS_EVENT_SACFAILED is posted when a statement fails to start.
CREATE EVENT SYS_EVENT_SACFAILED (ENAME WVARCHAR,
POSTSRVTIME TIMESTAMP,
UID INTEGER,
NUMDATAINFO INTEGER,
TEXTDATA WVARCHAR);

The NUMDATAINFO field contains the jobID. The application can wait for this
event and use the jobID to retrieve the reason from the system table
SYS_BACKGROUNDJOB_INFO.

The system table SYS_BACKGROUNDJOB_INFO can be emptied with the admin
command cleanbgjobinfo. You need DBA privileges to execute this command,
which means that only a DBA can delete the rows from the table.

Controlling background tasks
Background tasks can be controlled with the SSC API and admin commands (see
the linked library access manual for details on the SSC API). The server uses the
task type SSC_TASK_BACKGROUND for the tasks that execute statements started
with START AFTER COMMIT. Note that there may be several of these tasks, but
you cannot control them individually.

Using sequences
A sequence object is used to get sequence numbers in an efficient manner. The
syntax is:
CREATE [DENSE] SEQUENCE sequence_name

Depending on how the sequence is created, there may or may not be holes in the
sequence (the sequence can be sparse or dense). Dense sequences guarantee that
there are no holes in the sequence numbers. The sequence number allocation is
bound to the current transaction. If the transaction rolls back, the sequence number
allocations are also rolled back. The drawback of dense sequences is that the
sequence is locked out from other transactions until the current transaction ends.

If there is no need for dense sequences, a sparse sequence can be used. A sparse
sequence guarantees uniqueness of the returned values, but it is not bound to the
current transaction. If a transaction allocates a sparse sequence number and later
rolls back, the sequence number is simply lost.

A sequence object can be used, for example, to generate primary key numbers. The
advantage of using a sequence object instead of a separate table is that the
sequence object is specifically fine-tuned for fast execution and requires less
overhead than normal update statements.

Both dense and sparse sequence numbers start from 1.

84 IBM solidDB: SQL Guide

After creating the sequence with the CREATE SEQUENCE statement, you can
access the Sequence object values by using the following constructs in SQL
statements:
v sequencename.CURRVAL which returns the current value of the sequence
v sequencename.NEXTVAL which increments the sequence by one and returns the

next value.

An example of creating unique identifiers automatically for a table is given below:
INSERT INTO ORDERS (id, ...) VALUES (order_seq.NEXTVAL, ...);

Sequences can also be used inside stored procedures. The current sequence value
can be retrieved using the following statement:
EXEC SEQUENCE sequence_name.CURRENT INTO variable;

New sequence values can be retrieved using the following syntax:
EXEC SEQUENCE sequence_name.NEXT INTO variable;

It is also possible to set the current value of a sequence to a predefined value by
using the following syntax:
EXEC SEQUENCE sequence_name SET VALUE USING variable;

An example of using a stored procedure to retrieve a new sequence number is
given below:
"CREATE PROCEDURE get_my_seq
RETURNS (val INTEGER)
BEGIN
EXEC SEQUENCE my_sequence.NEXT INTO (val);
END";

Using events
Event alerts are special objects in solidDB databases. Events are used primarily to
coordinate timing, but may also be used to send a small amount of information.
One connection "waits" on an event until another connection "posts" that event.

More than one connection may wait on the same event. If multiple connections
wait on the same event, then all waiting connections are notified when the event is
posted. A connection may also wait on multiple events, in which case it will be
notified when any of those events are posted.

Events generally consume a much smaller amount of resources than polling
consumes.

Users may create their own events. The server also has some built-in system
events.

The server does not automatically post user-defined events; they must be posted
by a stored procedure. Similarly, the events are received (waited on) in a stored
procedure. (You may also wait on an event outside a stored procedure by using the
ADMIN EVENT command.) When an application calls a stored procedure that
waits for a specific event to happen, the application is blocked until the event is
posted and received. In multi-threaded environments, separate threads and
connections can be used to access the database during the event wait.

3 Stored procedures, events, triggers, and sequences 85

An event has a name that identifies it and a set of parameters. The name can be
any user-specified alphanumeric string. An event object is created with the SQL
statement:
CREATE EVENT event_name

[(parameter_name datatype
[parameter_name datatype...])]

The parameter list specifies parameter names and parameter types. The parameter
types are normal SQL types. Events are dropped with the SQL statement:
DROP EVENT event_name

Events are always posted inside stored procedures. Events are usually received
inside stored procedures. Special stored procedure statements are used to post and
receive events.

The event is posted with the stored procedure statement
post_statement ::= POST EVENT event_name [(parameters)]

Event parameters must be local variables or parameters in the stored procedure
where the event is triggered. All clients that are waiting for the posted event will
receive the event.

Each connection has its own event queue. The events to be collected in the event
queue are specified with the stored procedure statement
wait_register-statement ::=
REGISTER EVENT event_name

Events are removed from the event queue with the stored procedure statement
UNREGISTER EVENT event_name

Event parameters must be local variables or parameters in the stored procedure
where the event is triggered.

To make a procedure wait for an event to happen, the WAIT EVENT construct is
used in the stored procedure:
wait_event_statement::=
WAIT EVENT
[event_specification...]
END WAIT
event_specification::=
WHEN event_name [(parameters)] BEGIN
statements
END EVENT

You may also wait on an event by using the ADMIN EVENT command. You may
use this at the solsql command line, for example. Below is an example of the code
required to register for and wait on an event using ADMIN EVENT commands:
ADMIN EVENT ’register sys_event_hsbstateswitch’;
ADMIN EVENT ’wait’;

You may wait on either system-defined events or user-defined events. Note that
you cannot post events using ADMIN EVENT. For more details about ADMIN
EVENT, see “ADMIN EVENT” on page 167.

86 IBM solidDB: SQL Guide

Event Example 1

This section includes two examples for using events. Example 1 is a pair of SQL
scripts that when used together show how to use events. Example 2 is a pair of
SQL scripts, including a stored procedure, that when used together waits for
multiple events.

In this first example of using events, we have two scripts. One script waits on an
event and the other script posts the event. Once the event has been posted, the
event that is waiting will finish waiting and move on to the next command.

To execute this example code, you will need two consoles so that you can start the
WaitOnEvent.sql script and then run the PostEvent.sql script while
WaitOnEvent.sql is waiting.

In this particular example, the stored procedure that waits does not actually do
anything after the event has posted; the script merely finishes the wait and returns
to the caller. The caller can then proceed to do whatever it wants, which in this
case is to SELECT the record that was inserted while we were waiting.

This example waits for only a single event, which is called "record_was_inserted".
Later in this chapter we will have another script that waits for multiple events
using a single"WAIT".
============================= SCRIPT 1=============================
-- SCRIPT NAME: WaitOnEvent.sql
-- PURPOSE:
-- This is one of a set of scripts that demonstrates posting events
-- and waiting on events. The sequence of steps is shown below:
--
-- THIS SCRIPT (WaitOnEvent.sql) PostEvent.sql script
-- --
-- CREATE EVENT.
-- CREATE TABLE.
-- WAIT ON EVENT.
-- Insert a record into table.
-- Post event.
-- SELECT * FROM TABLE.
--
-- To perform these steps in the proper order, start running this
-- script FIRST, but remember that this script does not finish running
-- until after the post_event script runs and posts the event.
-- Therefore, you will need two open consoles so that you can leave
-- this running/waiting in one window while you run the other script
-- post_event) in the other window.
-- Create a simple event that has no parameters.
-- Note that this event (like any event) does not have any
-- commands or data; the event is just a label that allows both the
-- posting process and the waiting process to identify which event has
-- been posted (more than one event may be registered at a time).
-- As part of our demonstration of events, this particular event
-- will be posted by the other user after he or she inserted a record.
CREATE EVENT record_was_inserted;
-- Create a table that the other script will insert into.
CREATE TABLE table1 (int_col INTEGER);
-- Create a procedure that will wait on an event
-- named "record_was_inserted".
-- The other script (PostEvent.sql) will post this event.
"CREATE PROCEDURE wait_for_event
BEGIN
-- If possible, avoid holding open a transaction. Note that in most
-- cases it’s better to do the COMMIT WORK before the procedure,
-- not inside it. See "Waiting on Events" at the end of this example.

3 Stored procedures, events, triggers, and sequences 87

EXEC SQL COMMIT WORK;
-- Now wait for the event to be posted.
WAIT EVENT
WHEN record_was_inserted BEGIN
-- In this demo, we simply fall through and return from the
-- procedure call, and then we continue on to the next
-- statement after the procedure call.
END EVENT
END WAIT;
END";
-- Call the procedure to wait. Note that this script will not
-- continue on to the next step (the SELECT) until after the
-- event is posted.
CALL wait_for_event();
COMMIT WORK;
-- Display the record inserted by the other script.
SELECT * FROM table1;

Guidelines for Committing Transaction in Script 1 (Wait0nEvent.sql)

Whenever possible, complete any current transaction before waiting on an event. If
you execute a WAIT inside a transaction, then the transaction will be held open
until the event occurs and the next COMMIT or ROLLBACK is executed. This
means that during the wait, the server will hold locks, which may lead to excessive
bonsai tree growth. For details on the Bonsai Tree and preventing its growth, read
the section "Reducing Bonsai Tree Size by Committing Transactions," in solidDB
Administration Guide.

In this example, we have put COMMIT WORK inside the procedure immediately
before the WAIT. However, this is not usually a good solution; putting the
COMMIT or ROLLBACK inside the "wait" procedure means that if the procedure
is called as part of another transaction, then the COMMIT or ROLLBACK will
terminate that enclosing transaction and start a new transaction, which is probably
not what you want. If, for example, you were entering data into a "child" table
with a referential constraint and you are waiting for the referenced data to be
entered into the "parent" table, then breaking the transaction into two transactions
would simply cause the insert of the "child" record to fail because the parent
would not have been inserted yet.

The best strategy is to design your program so that you do not need to WAIT
inside a transaction; instead, your "wait" procedure should be called between
transactions if that is possible. By using events/waits, you have some control over
the order in which things are done and you can use this to help ensure that
dependencies are met without actually putting everything into a single transaction.
For example, in an "asynchronous" situation you might be waiting for both a child
and a parent record to be inserted, and if your database server did not have the
"events" feature, then you might require that both records be inserted in the same
transaction so that you could ensure referential integrity.

By using events/waits, you can ensure that the insertion of the parent is done first;
you can then put the insertion of the child record in a second transaction because
you can guarantee that the parent will always be present when the child is
inserted. (To be more precise, you can ALMOST guarantee that the parent will be
present when the child is inserted. If you break up the insertions into two different
transactions, then even if you ensure that the parent is inserted before the child,
there is a slight chance that the parent would be deleted before the program tried
to insert the child record.)

88 IBM solidDB: SQL Guide

============================= SCRIPT 2=============================
-- SCRIPT NAME: PostEvent.sql
-- PURPOSE:
-- This script is one of a set of scripts that demonstrates posting
-- events and waiting on events. The sequence of steps is shown below:
--
-- WaitOnEvent.sql THIS SCRIPT (PostEvent.sql)
-- ---
-- Create event.
-- Create table.
-- Wait on event.
-- INSERT A RECORD INTO TABLE.
-- POST THE EVENT.
-- Select * from table.
-- Insert a record into the table.
INSERT INTO table1 (int_col) VALUES (99);
COMMIT WORK;
-- Create a stored procedure to post the event.
"CREATE PROCEDURE post_event
BEGIN
-- Post the event.
POST EVENT record_was_inserted;
END";
-- Call the procedure that posts the event.
CALL post_event();
DROP PROCEDURE post_event;
COMMIT WORK;

Event Example 2

The previous example showed how to wait on a single event. The next example
shows how to write a stored procedure that will wait on multiple events and that
will finish the wait when any one of those events is posted.
============================= SCRIPT 1=============================

-- SCRIPT NAME: MultiWaitExamplePart1.sql
-- PURPOSE:
-- This code shows how to wait on more than one event.
-- If you run this demonstration, you will see that a "wait" lasts only
-- until one of the events is received. Thus a wait on multiple events
-- is like an "OR" (rather than an "AND"); you wait until event1 OR
-- event2 OR ... occurs.
--
-- This demo uses 2 scripts, one of which waits for an event(s) and one
-- of which posts an event.
-- To run this example, you will need 2 consoles.
-- 1) Run this script (MultiWaitExamplePart1.sql) in one window. After
-- this script reaches the point where it is waiting for the event, then
-- start Step 2.
-- 2) Run the script MultiWaitExamplePart2.sql in the other window.
-- This will post one of the events.
-- After the event is posted, the first script will finish.
-- Create the 3 different events on which we will wait.
CREATE EVENT event1;
CREATE EVENT event2(i INTEGER);
CREATE EVENT event3(i INTEGER, c CHAR(4));
-- When an event is received, the process that is waiting on the event
-- will insert a record into this table. That lets us see which events
-- were received.
CREATE TABLE event_records(event_name CHAR(10));
-- This procedure inserts a record into the event_records table.
-- This procedure is called when an event is received.
"CREATE PROCEDURE insert_a_record(event_name_param CHAR(10))
BEGIN
EXEC SQL PREPARE insert_cursor
INSERT INTO event_records (event_name) VALUES (?);
EXEC SQL EXECUTE insert_cursor USING (event_name_param);

3 Stored procedures, events, triggers, and sequences 89

EXEC SQL CLOSE insert_cursor;
EXEC SQL DROP insert_cursor;
END";
-- This procedure has a single "WAIT" command that has 3 subsections;
-- each subsection waits on a different event.
-- The "WAIT" is finished when ANY of the events occur, and so the
-- event_records table will hold only one of the following:
-- "event1",
-- "event2", or
-- "event3".
"CREATE PROCEDURE event_wait(i1 INTEGER)
RETURNS (eventresult CHAR(10))
BEGIN
DECLARE i INTEGER;
DECLARE c CHAR(4);
-- The specific values of i and c are irrelevant in this example.
i := i1;
c := ’mark’;
-- Set eventresult to an empty string.
eventresult := ’’;
-- Will we exit after any of these 3 events are posted, or must
-- we wait until all of them are posted? The answer is that
-- we will exit after any one event is posted and received.
WAIT EVENT
-- When the event named "event1" is received...
WHEN event1 BEGIN
eventresult := ’event1’;
-- Insert a record into the event_records table showing that
-- this event was posted and received.
EXEC SQL PREPARE call_cursor
CALL insert_a_record(?);
EXEC SQL EXECUTE call_cursor USING (eventresult);
EXEC SQL CLOSE call_cursor;
EXEC SQL DROP call_cursor;
RETURN;
END EVENT
WHEN event2(i) BEGIN
eventresult := ’event2’;
EXEC SQL PREPARE call_cursor2
CALL insert_a_record(?);
EXEC SQL EXECUTE call_cursor2 USING (eventresult);
EXEC SQL CLOSE call_cursor2;
EXEC SQL DROP call_cursor2;
RETURN;
END EVENT
WHEN event3(i, c) BEGIN
eventresult := ’event3’;
EXEC SQL PREPARE call_cursor3
CALL insert_a_record(?);
EXEC SQL EXECUTE call_cursor3 USING (eventresult);
EXEC SQL CLOSE call_cursor3;
EXEC SQL DROP call_cursor3;
RETURN;
END EVENT
END WAIT

END";
COMMIT WORK;
-- Call the procedure that waits until one of the events is posted.
CALL event_wait(1);
-- See which event was posted.
SELECT * FROM event_records;
=========================== SCRIPT 2 ===================================
-- SCRIPT NAME: MultiWaitExamplePart2.sql
-- PURPOSE:
-- This is script 2 of 2 scripts that show how to wait for multiple
-- events. See the instructions at the top of MultiWaitExamplePart1.sql.
-- Create a stored procedure to post an event.

90 IBM solidDB: SQL Guide

"CREATE PROCEDURE post_event1
BEGIN
-- Post the event.
POST EVENT event1;
END";
--Create a stored procedure to post the event.
"CREATE PROCEDURE post_event2(param INTEGER)
BEGIN
-- Post the event.
POST EVENT event2(param);
END";
--Create a stored procedure to post the event.
"CREATE PROCEDURE post_event3(param INTEGER, s CHAR(4))
BEGIN
-- Post the event.
POST EVENT event3(param, s);
END";
COMMIT WORK;
-- Notice that to finish the "wait", only one event needs to be posted.
-- You may execute any one of the following 3 CALL commands to post an
-- event.
-- We’ve commented out 2 of them; you may change which one is de
-- commented.
CALL post_event1();
--CALL post_event2(2);
--CALL post_event3(3, ’mark’);

Event Example 3

This example shows very simple usage of the REGISTER EVENT and
UNREGISTER EVENT commands. You might notice that the previous scripts did
not use REGISTER EVENT, yet their WAIT commands succeeded anyway. The
reason for this is that when you wait on an event, you will be registered implicitly
for that event if you did not already explicitly register for it. Thus you only need
to explicitly register events if you want them to start being queued now but you
don't want to start WAITing for them until later.
CREATE EVENT e0;
CREATE EVENT e1 (param1 int);
COMMIT WORK;

-- Create a procedure to register the events to that when they occur
-- they are put in this connection’s event queue.
"CREATE PROCEDURE eeregister
BEGIN
REGISTER event e0;
REGISTER EVENT e1;
END";

CALL eeregister;
COMMIT WORK;

-- Create a procedure to post the events.
"CREATE PROCEDURE eepost
BEGIN
DECLARE x int;
x := 1;
POST EVENT e0;
POST EVENT e1(x);
END";

COMMIT WORK;

-- Post the events. Even though we haven’t yet waited on the events,
-- they will be stored in our queue because we registered for them.
CALL eepost;

3 Stored procedures, events, triggers, and sequences 91

COMMIT WORK;

-- Now create a procedure to wait for the events.
"CREATE PROCEDURE eewait
RETURNS (whichEvent VARCHAR(100))
BEGIN
DECLARE i INT;

WAIT EVENT
WHEN e0 BEGIN

whichEvent := ’event0’;
END EVENT

WHEN e1(i) BEGIN
whichEvent := ’event1’;

END EVENT

END WAIT

END";

COMMIT WORK;

-- Since we already registered for the 2 events and we already
-- posted the 2 events, when we call the eewait procedure twice
-- it should return immediately, rather than waiting.
CALL eewait;
CALL eewait;
COMMIT WORK;

-- Unregister for the events.
"CREATE PROCEDURE eeunregister
BEGIN
UNREGISTER event e0;
UNREGISTER EVENT e1;
END";

CALL eeunregister;
COMMIT WORK;
CREATE EVENT e0;
CREATE EVENT e1 (param1 int);
COMMIT WORK;

-- Create a procedure to register the events to that when they occur
-- they are put in this connection’s event queue.
"CREATE PROCEDURE eeregister
BEGIN
REGISTER event e0;
REGISTER EVENT e1;
END";

CALL eeregister;
COMMIT WORK;

-- Create a procedure to post the events.
"CREATE PROCEDURE eepost
BEGIN
DECLARE x int;
x := 1;
POST EVENT e0;
POST EVENT e1(x);
END";

COMMIT WORK;

-- Post the events. Even though we haven’t yet waited on the events,

92 IBM solidDB: SQL Guide

-- they will be stored in our queue because we registered for them.
CALL eepost;
COMMIT WORK;

-- Now create a procedure to wait for the events.
"CREATE PROCEDURE eewait
RETURNS (whichEvent VARCHAR(100))
BEGIN
DECLARE i INT;

WAIT EVENT
WHEN e0 BEGIN

whichEvent := ’event0’;
END EVENT

WHEN e1(i) BEGIN
whichEvent := ’event1’;

END EVENT

END WAIT

END";

COMMIT WORK;

-- Since we already registered for the 2 events and we already
-- posted the 2 events, when we call the eewait procedure twice
-- it should return immediately, rather than waiting.
CALL eewait;
CALL eewait;
COMMIT WORK;

-- Unregister for the events.
"CREATE PROCEDURE eeunregister
BEGIN
UNREGISTER event e0;
UNREGISTER EVENT e1;
END";

CALL eeunregister;
COMMIT WORK;

3 Stored procedures, events, triggers, and sequences 93

94 IBM solidDB: SQL Guide

4 Using solidDB SQL for database administration

You manage a solidDB database, as well as its users and schema, using solidDB
SQL statements. This chapter describes the management tasks you perform with
solidDB SQL. These tasks include managing roles and privileges, tables, indexes,
transactions, catalogs, and schemas.

Using solidDB SQL syntax
The SQL syntax is based on the ANSI X3H2-1989 (SQL-89) level 2 standard
including important SQL-92 and SQL-99 extensions. Refer to Appendix B, “solidDB
SQL syntax,” on page 155, for a more formal definition of the syntax.

SQL statements must be terminated with a semicolon (;) only when using solidDB
SQL Editor. Otherwise, terminating SQL statements with a semicolon leads to a
syntax error.

You can use solidDB SQL Editor (or third-party ODBC or JDBC compliant tools) to
execute SQL statements. To automate the tasks, you may want to save the SQL
statements to a file. You can use these files for rerunning your SQL statements later
or as a document of your users, tables, and indexes.

solidDB SQL data types
solidDB SQL supports data types specified in the SQL-92 Standard Entry Level
specifications, as well as important Intermediate Level enhancements. Refer to
Appendix A, “Data types,” on page 147, for a complete description of the
supported data types.

You can also define some data types with the optional length, scale, and precision
parameters. In that case, the default properties of the corresponding data type are
not used.

solidDB ADMIN COMMAND
solidDB SQL provides the extension ADMIN COMMAND ' command
[command_args]' to perform basic administrative tasks, such as backups,
performance monitoring, and shutdown.

You can use solidDB SQL Editor (teletype) to execute the command options
provided by ADMIN COMMAND. To access a short description of available
ADMIN COMMANDs, execute ADMIN COMMAND 'help'. For a formal definition
of the syntax of these statements, refer to Appendix B, “solidDB SQL syntax,” on
page 155, in this guide.

Note:

ADMIN COMMAND tasks are also available as administrative commands in
solidDB Remote Control (teletype). For details, read the section of solidDB
Administration Guide titled "solidDB Remote Control (teletype)".

solidDB also provides SQL extensions that implement the data synchronization
capability.

95

Using functions
All solidDB proprietary scalar functions can be used in a normal way, e.g.:

select substring(line, 1,4) from test;

On the other hand, functions whose name match reserved words, have to be used
with escape characters. For example:

select "left"(line,4) from test;

or:
select {fn left(line,4)} from test;

The latter one corresponds to the ODBC implementation-independent syntax. It
can be used in all API and GUI interfaces.

Managing user privileges and roles
You can use solidDB teletype tools, and many ODBC compliant SQL tools to
modify user privileges. Users and roles are created and deleted using SQL
statements or commands. A file consisting of several SQL statements is called a
SQL script.

In the Solid/solidDB6.0/samples/sql directory, you will find the SQL script
sample.sql, which gives an example of creating users and roles. You can run it by
using solsql. To create your own users and roles, you can make your own script
describing your user environment.

User privileges
When using solidDB databases in a multi-user environment, you may want to
apply user privileges to hide certain tables from some users. For example, you may
not want an employee to see the table in which employee salaries are listed, or you
may not want other users to change your test tables.

You can apply five different kinds of user privileges. A user may be able to view,
delete, insert, update or reference information in a table or view. Any combination
of these privileges may also be applied. A user who has none of these privileges to
a table is not able to use the table at all.

Note: Once user privileges are granted, they take effect when the user who is
granted the privileges logs on to the database. If the user is already logged on to
the database when the privileges are granted, they take effect only if the user:
v accesses for the first time the table or object on which the privileges are set, or
v disconnects and then reconnects to the database.

User roles
Privileges can also be granted to an entity called a role. A role is a group of
privileges that can be granted to users as one unit. You can create roles and assign
users to certain roles. A single user may have more than one role assigned, and a
single role may have more than one user assigned.

Note:

1. The same string cannot be used both as a user name and a role name.

96 IBM solidDB: SQL Guide

2. Once a user role is granted, it takes effect when the user who is granted the
role logs on to the database. If the user is already logged on to the database
when the role is granted, the role takes effect when the user disconnects and
then reconnects to the database.

The following user names and roles are reserved:

Table 16. Reserved user names and roles

Reserved Names Description

PUBLIC This role grants privileges to all users. When user privileges to a
certain table are granted to the role PUBLIC, all current and
future users have the specified user privileges to this table. This
role is granted automatically to all users.

SYS_ADMIN_ROLE This is the default role for the database administrator. This role
has administration privileges to all tables, indexes and users, as
well as the right to use solidDB Remote Control. This is also the
database creator role.

_SYSTEM This is the schema name of all system tables and views.

SYS_CONSOLE_ROLE This role has the right to use solidDB Remote Control, but does
not have other administration privileges.

SYS_SYNC_ADMIN_ROLE This is the administrator role for data synchronization functions.

SYS_SYNC_REGISTER_ROLE This role is only for registering and unregistering a replica
database to the master.

Examples of SQL statements
Below are some examples of SQL statements for administering users, roles, and
user privileges.

Creating users
CREATE USER username IDENTIFIED BY password;

Only an administrator has the privilege to execute this statement. The following
example creates a new user named CALVIN with the password HOBBES.
CREATE USER CALVIN IDENTIFIED BY HOBBES;

Deleting users
DROP USER username;

Only an administrator has the privilege to execute this statement. The following
example deletes the user named CALVIN.
DROP USER CALVIN;

Changing a password
ALTER USER username IDENTIFIED BY new password;

The user username and the administrator have the privilege to execute this
command. The following example changes CALVIN's password to GUBBES.
ALTER USER CALVIN IDENTIFIED BY GUBBES;

4 Using solidDB SQL for database administration 97

Creating roles
CREATE ROLE rolename;

The following example creates a new user role named GUEST_USERS.
CREATE ROLE GUEST_USERS;

Deleting roles
DROP ROLE role_name;

The following example deletes the user role named GUEST_USERS.
DROP ROLE GUEST_USERS;

Granting privileges to a user or a role
GRANT user_privilege ON table_name TO username or role_name ;

The possible user privileges on tables are SELECT, INSERT, DELETE, UPDATE,
REFERENCES and ALL. ALL provides a user or a role all five privileges
mentioned above. A new user has no privileges until they are granted.

The following example grants INSERT and DELETE privileges on a table named
TEST_TABLE to the GUEST_USERS role.
GRANT INSERT, DELETE ON TEST_TABLE TO GUEST_USERS;

The EXECUTE privilege provides a user the right to execute a stored procedure:
GRANT EXECUTE ON procedure_name TO username or role_name ;

The following example grants EXECUTE privilege on a stored procedure named
SP_TEST to user CALVIN.
GRANT EXECUTE ON SP_TEST TO CALVIN;

Granting privileges to a user by giving the user a role
GRANT role_name TO username ;

The following example gives the user CALVIN the privileges that are defined for
the GUEST_USERS role.
GRANT GUEST_USERS TO CALVIN;

Revoking privileges from a user or a role
REVOKE user_privilege ON table_name FROM username or role_name ;

The following example revokes the INSERT privilege on the table named
TEST_TABLE from the GUEST_USERS role.
REVOKE INSERT ON TEST_TABLE FROM GUEST_USERS;

Revoking privileges by revoking the role of a user
REVOKE role_name FROM username ;

The following example revokes the privileges that are defined for the
GUEST_USERS role from CALVIN.
REVOKE GUEST_USERS FROM CALVIN;

Granting administrator privileges to a user
GRANT SYS_ADMIN_ROLE TO username ;

98 IBM solidDB: SQL Guide

The following example grants administrator privileges to CALVIN, who now has
all privileges to all tables.
GRANT SYS_ADMIN_ROLE TO CALVIN;

You may also want to grant a user the right to perform data synchronization
operations. To do this, execute the command:
GRANT SYS_SYNC_ADMIN_ROLE TO HOBBES

Note:

If the autocommit mode is set OFF, you need to commit your work. To commit
your work use the following SQL statement: COMMIT WORK; If the autocommit
mode is set ON, the transactions are committed automatically.

Managing tables
solidDB has a dynamic data dictionary that allows you to create, delete and alter
tables on-line. solidDB database tables are managed using SQL commands.

In the solidDB directory, you can find a SQL script named sample.sql, which gives
an example of managing tables. You can run the script using solsql.

Below are some examples of SQL statements for managing tables. Refer to
Appendix B, “solidDB SQL syntax,” on page 155 for a formal definition of the
solidDB SQL statements.

If you want to see the names of all tables in your database, issue the SQL
statement SELECT * FROM TABLES. ("TABLES" is a system-defined view.) The
table names can be found in the column TABLE_NAME.

Accessing system tables
The solidDB system tables store solidDB server information, including user
information. Your ability to access specific system tables depends on your user's
role and access rights. For example, DBAs can view all information about all stored
procedures, including the procedure definition text (i.e. the CREATE PROCEDURE
statement). Normal users can see the stored procedures, including the procedure
definition text, for procedures that they have created. Normal users who have
execute access on a stored procedure, but who did not create that stored
procedure, may look at some information about that stored procedure but may not
see the procedure definition text. For a list of system tables, refer to Appendix D,
“Database system tables and system views,” on page 319.

The table below provides the viewing access and/or object granting privileges for
specific system tables and their data by user role and user access rights.

Note that a "User with access rights" in this table refers to a normal user who has
any one of the following rights: INSERT, UPDATE, DELETE, or SELECT access.*

Table 17. Viewing tables and granting access

Tasks DBA Owner User with access rights*
User with no access
rights

Viewing SYS_TABLES All (no restrictions) All (no restrictions) All (no restrictions) All (no restrictions)

4 Using solidDB SQL for database administration 99

Table 17. Viewing tables and granting access (continued)

Tasks DBA Owner User with access rights*
User with no access
rights

Viewing User tables in
SYS_TABLES

All (no restrictions) Restricted to the owners'
tables only

All tables to which the
user has INSERT,
UPDATE, DELETE,
SELECT, or
REFERENCES access
rights.

No tables can be
viewed.

Viewing
SYS_COLUMNS

All (no restrictions) Columns in the owner's
tables

Columns in tables to
which the user has
INSERT, UPDATE,
DELETE, SELECT, or
REFERENCES access
rights.

No columns can be
viewed.

Viewing
SYS_PROCEDURES
(excluding the procedure
definition text — i.e. the
text of the CREATE
PROCEDURE statement)

All (no restrictions) Those procedures
created by the user
(owner).

Those procedures in
which the user has
execute access.

No procedures can be
viewed.

Viewing Procedure
definition text in
SYS_PROCEDURES

All (no restrictions) Those procedures
created by the user
(owner)

Note that execute access
does not allow the user
to see the procedure
definition text.

No procedures or
procedure definition text
can be viewed.

Ability to Grant Access
rights on procedures

Yes Yes No No

Viewing SYS_TRIGGERS All (no restrictions) Those triggers created
by the user (owner)

None No triggers can be
viewed.

Viewing Trigger
definition text in
SYS_TRIGGERS

All (no restrictions) Those triggers created
by the user (owner)

None No triggers can be
viewed.

Examples of SQL statements
Below are some examples of SQL statements for administering tables.

Creating tables
CREATE TABLE table_name (column_name column_type

[, column_name column_type]...);

All users have privileges to create tables.

The following example creates a new table named TEST with the column I of the
column type INTEGER and the column TEXT of the column type VARCHAR.
CREATE TABLE TEST (I INTEGER, TEXT VARCHAR);

Removing tables
DROP TABLE table_name;

Only the creator of the particular table or users having SYS_ADMIN_ROLE have
privileges to remove tables.

100 IBM solidDB: SQL Guide

The following example removes the table named TEST.
DROP TABLE TEST;

Note:

For catalogs and schemas: The ANSI standard for SQL defines the keywords
RESTRICT and CASCADE. When dropping a catalog or a schema, if you use the
keyword RESTRICT, then you cannot drop a catalog or schema if it contains other
database objects (e.g. tables). Using the keyword CASCADE allows you to drop a
catalog or schema that still contains database objects — the database objects that it
contains will automatically be dropped. The default behavior (if you don't specify
either RESTRICT or CASCADE) is RESTRICT.

For database objects other than Catalogs and Schemas: The keywords RESTRICT
and CASCADE are not accepted as part of most DROP statements in solidDB SQL.
Furthermore, for these database objects, the rules are more complex than simply
"pure CASCADE" or "pure RESTRICT" behavior, but generally objects are dropped
with drop behavior RESTRICT. For example, if you try to drop table1 but table2
has a foreign key dependency on table1, or if there are publications that reference
table1, then you will not be able to drop table1 without first dropping the
dependent table or publication. However, the server does not use RESTRICT
behavior for all possible types of dependency. For example, if a view or a stored
procedure references a table, the referenced table can still be dropped, and the
view or stored procedure will fail the next time that it tries to reference that table.
Also, if a table has a corresponding synchronization history table, that
synchronization history table will be dropped automatically. For more information
about synchronization history tables, see solidDB Advanced Replication Guide.

Adding columns to a table
ALTER TABLE table_name ADD COLUMN column_name column_type;

Only the creator of the particular table or users having SYS_ADMIN_ROLE have
privileges to add or delete columns in a table.

The following example adds the column C of the column type CHAR(1) to the
table TEST.
ALTER TABLE TEST ADD COLUMN C CHAR(1);

Deleting columns from a table
ALTER TABLE table_name DROP COLUMN column_name;

A column cannot be dropped if it is part of a unique constraint or primary key. For
details on primary keys, read “Managing indexes” on page 102.

The following example statement deletes the column C from the table TEST.
ALTER TABLE TEST DROP COLUMN C;

Note:

If the autocommit mode is set OFF, you need to commit your work before you can
modify the data in the table you altered. To commit your work after altering a
table, use the following SQL statement:
COMMIT WORK;

4 Using solidDB SQL for database administration 101

If the autocommit mode is set ON, then all statements, including DDL (Data
Definition Language) statements, are committed automatically.

Managing indexes
Indexes are used to speed up access to tables. The database engine uses indexes to
access the rows in a table directly. Without indexes, the engine would have to
search the whole contents of a table to find the desired row. You can create as
many indexes as you like on a single table; however, adding indexes does slow
down write operations, such as inserts, deletes, and updates on that table. For
details on creating indexes to improve performance, read “Using indexes to
improve query performance” on page 141.

There are two kinds of indexes: non-unique indexes and unique indexes. A unique
index is an index where all key values are unique. A unique index is always
created, when the UNIQUE restraint is used when creating an index.

You can create and delete indexes using SQL statements.

Examples of SQL statements
Below are some examples of SQL commands for administering indexes.

Creating an index on a table
CREATE [UNIQUE] INDEX index_name ON base_table_name
column_identifier [ASC | DESC]
[, column_identifier [ASC | DESC]] ...

Only the creator of the particular table or users having SYS_ADMIN_ROLE have
privileges to create or drop indexes.

The following example creates an index named X_TEST on column I of the table
TEST.
CREATE INDEX X_TEST ON TEST (I);

Creating a unique index on a table
CREATE UNIQUE INDEX index_name ON table_name (column_name);

The following example creates a unique index named UX_TEST on column I of the
table TEST.
CREATE UNIQUE INDEX UX_TEST ON TEST (I);

Deleting an index
DROP INDEX index_name;

The following example deletes the index named X_TEST.
DROP INDEX X_TEST;

Note:

After creating or dropping an index, you must commit (or roll back) your work
before you can modify the data in the table on which you created or dropped the
index.

102 IBM solidDB: SQL Guide

Primary key indexes
To retrieve a single specific record from a table, we must be able to uniquely
identify that record. solidDB uses "primary keys" to uniquely identify each record
in each table. A primary key is a column or combination of columns that contains a
unique value or combination of values. Each table has a primary key — either
explicit or implicit.

solidDB automatically creates a "primary key index" based on the field(s) of that
primary key. A primary key index, like any index, speeds up access to data in the
table. Unlike other indexes, however, a primary key index also controls the order
in which records are stored in the database. (This is called "clustering".) Records
are stored in ascending order based on the primary key values.

If the creator of the table does not specify a primary key, then solidDB
automatically creates a primary key for the table. To ensure uniqueness in that
primary key, the server uses a hidden internal row identifier. The value of that row
identifier may be retrieved and used in queries by way of a symbolic pseudo
column name "ROWID".

Note:

In solidDB, it is not possible to add an explicit primary key after the table has been
created. If a primary key is not specified by a user, the most efficient query method
is not available (unless ROWID is used) for that table. Also, such a table cannot be
used in referential integrity constraints as a referenced table. For those reasons, it is
strongly recommended that a primary key is always defined at table creation.

Once a primary key is defined (whether by the table creator or by the server), the
server will prevent rows with duplicate primary key values from being inserted
into the table.

Secondary key indexes
Since indexes speed up searches, it is often helpful for a table to have one index
for each attribute (or combination of attributes) that is used frequently in searches.
All indexes other than the primary index are called "secondary indexes".

A table may have as many indexes as you like, as long as each index has a unique
combination of columns, order of columns, and order of values (ASCending,
DESCending). For example, in the code shown below, the third index duplicates
the first and will either generate an error message or will waste disk space with
duplicate information.
CREATE INDEX i1 ON TABLE t1 (col1, col2);
-- The following is ok because although the columns are the same as in
-- index i1, the order of the columns is different.
CREATE INDEX i2 ON TABLE t1 (col2, col1);
-- The following is not ok because index i3 would be exactly the
-- same as index i1.
CREATE INDEX i3 ON TABLE t1 (col1, col2); -- ERROR.
-- The following is ok because although the columns and
-- column order are the same, the order of the index values
-- (ASCending vs. DESCending) is different.
CREATE INDEX i3b ON TABLE t1 (col1, col2) DESC;

Note that if one index is a "leading subset" of another (meaning that the columns,
column order, and value order of all N columns in index2 are exactly the same as
the first N column(s) of index1), then you only need to create the index that is the

4 Using solidDB SQL for database administration 103

superset. For example, suppose that you have an index on the combination of
DEPARTMENT + OFFICE + EMP_NAME. This index can be used not only for
searches by department, office and emp_name together, but also for searches of
just the department, or just the department and office together. So there is no need
to create a separate index on the department name alone, or on the department
and office alone. The same is true for ORDER BY operations; if the ORDER BY
criterion matches a subset of an existing index, then the server can use that index.

Keep in mind that if you defined a primary key or unique constraint, that key or
constraint is implemented as an index. Thus you never need to create an index that
is a "leading subset" of the primary key or of an existing unique constraint; such
an index would be redundant.

Note that when searching using a secondary index, if the server finds all the
requested data in the index key, the server doesn't need to look up the complete
row in the table. (This applies only to "read" operations, i.e. SELECT statements. If
the user updates values in the table, then the data rows in the table as well as the
values in the index(es) must be updated.)

Protection against duplicate indexes
solidDB contains a protection against duplicate indexes. Occasionally, the recreation
of an index (DROP/CREATE) can fail if other indexes were created whereby the
original index became a duplicate index. To understand what duplicate indexes
are, see the example below:

Let's assume we have created a table containing five columns, named A, B, C, D, E.
The following indexes have been created on the table:
v A
v AB
v BCE
v ABC

As you can see, index B is used for searching or filtering column B. Index BCE
starts with column B. Therefore, queries that use an index for locating column B
can use index BCE. The same is the case with indexes AB and ABC. Thus, indexes
B and AB are duplicate indexes.

Duplicate indexes have, for example, the following adverse effects:
v The storage space required increases
v The update performance decreases
v Backup time increases

If you attempt to create duplicate indexes, index creation fails and solidDB issues
error:

SOLID Table Error 13199: Duplicate index definition

For more information, see Appendix, Error Codes, in IBM solidDB Administrator
Guide.

Referential integrity
Referential integrity is a concept for ensuring that relationships between database
tables remain consistent. In other words, references to data must be valid.

104 IBM solidDB: SQL Guide

A relationship between two database tables, called a referenced table and a
referencing table, is created by using a foreign key. A foreign key is a field in the
referencing table that matches the primary key column (or other similar unique
column) of the referenced table. In other words, the foreign key can be used to
represent a conceptual relationship of type 1:n such as "an employee belongs to a
department". Now, when the referencing table has a foreign key to the referenced
table, the concept of referential integrity states that you cannot add a record to the
referencing table (containing the foreign key) unless there is a corresponding
record in the referenced table.

As explained above, referential integrity is enforced by using the foreign keys.
Foreign keys are maintained with referential constraint definitions. The constraints
also specify what referential actions solidDB must take when the constraint is
violated. This can happen, for example, when a row with a referenced primary key
is deleted from the referenced table. Foreign keys and constraints are explained
into more detail in the following chapters.

Primary keys and candidate keys
In order for a table to participate in referential constraints as a referenced table, a
primary key (preferable) or candidate keys have to be defined. A primary key is
defined with the primary key constraint syntax in the CREATE TABLE statement,
e.g.:
CREATE TABLE customers (
cust_id INTEGER PRIMARY KEY,
name CHAR(24),
city CHAR(40));

Another possibility is to define a unique index on a column or a group of columns
and enact the NOT NULL constraint for them. Effectively, this will produce a
"candidate key". Using an explicit primary key is preferable because of the
involved performance gain while deriving joins.

Foreign keys
A foreign key is a column (or group of columns) within a table that refers to (or
"relates to") a unique value in a referenced table. Each value in the foreign key
column must have a matching value in the referenced table.

To ensure that each record in the referencing table references exactly one record in
the referenced table, the referenced column(s) in the referenced table must have a
primary key constraint or have both unique and not-null constraints. Having a
unique index is not sufficient.

Example 1:

In a banking environment, one table might hold customer information
(Customers), and another table might hold account information (Accounts). Each
account is related to a particular customer, and each customer is identified with a
unique ID (CUST_ID). Some customers can have more than one account. The
CUST_ID can then serve as the primary key of the Customers table. The Accounts
table also contains the CUST_ID information to identify which customer owns a
particular account; this makes it possible to look up customer information based
on account information. The copy of the CUST_ID in the Accounts table is a
foreign key; it references the matching value in the primary key of the Customers
table.

4 Using solidDB SQL for database administration 105

In the above example, the referencing table Accounts can be created with the
following statement:
CREATE TABLE accounts (

acct_id INTEGER PRIMARY KEY,
balance FLOAT,
cust_id INTEGER REFERENCES customers);

In the REFERENCES clause, only the referenced table is specified, with no
referenced column. By default, the primary key is assumed. This is a preferred way
that helps avoiding errors while specifying the referenced columns.

In the above example, the primary key and foreign key use a single column.
However, primary and foreign keys can be composed of more than one column.
Since each foreign key value must exactly match the corresponding primary key
value, the foreign key must contain the same number and data type of columns as
the primary key, and these key columns must be in the same order.

A foreign key can also have different column names than the primary key. The
foreign key and primary key can also have different default values. However, since
values in the referenced table must be unique, default values are not much used
and are rarely used for columns that are part of a primary key. Default values are
also not used very often for foreign key columns.

Although primary key values must be unique, foreign key values are not required
to be unique. For example, a single customer at a bank might have multiple
accounts. The account ID (ACCT_ID) that appears in the primary key column in
the Customers table must be unique; however, the same CUST_ID might occur
multiple times in the foreign key column in the ACCOUNTS table. As you can see
in the illustration above, customer SMITH has more than one account, and
therefore her CUST_ID appears more than once in the foreign key column of the
ACCOUNTS table.

Example 2:

In some cases, a foreign key in a table can refer to a primary key in the same table
– in such a case, the same table is the referenced table and the referencing table.
For example, in a table of employees, each employee record might have a field that
contains the ID of the manager (MGR_ID) of that employee. The managers
themselves might be stored in the same table. Thus the MGR_ID of that table can
be a foreign key that refers to the employee ID (EMP_ID) of that same table. The
following diagram illustrates this.

3 ATLANTAWONG

OAKLANDJONES2

CHICAGOSMITH1

CITYNAMECUST_ID

1800.00103

3224.19102

2347.00101

1100.00100

CUST_IDBALANCEACCT_ID

Referenced table: CustomersReferencing table: Accounts

Figure 2. Example: Tables with referential constraints

106 IBM solidDB: SQL Guide

In this example, Rama's manager is Smith (Rama's MGR_ID is 20, and Smith's
EMP_ID is 20). Smith reports to Annan (Smith's MGR_ID is 1, and Annan's
EMP_ID is 1.) Jones' manager is Wong, and Wong's manager is Annan. If Annan is
the president of the company, she does not have a manager, and the value of the
foreign key (MGR_ID) is NULL.

If a primary key is composed of more than one column, it should be defined after
the columns. For example:
CREATE TABLE DEPT (

DIVNO INTEGER,
DEPTNO INTEGER,
DNAME VARCHAR,
PRIMARY KEY (DIVNO, DEPTNO));

A similar syntax may be used for foreign keys. However, foreign keys should
always be defined with the CONSTRAINT syntax that also includes a constraint
name. If you have defined a constraint name, you can remove the constraint
dynamically with ALTER TABLE statements after tables have been created.

Example of creating a table with a CONSTRAINT name (emp_fk1):
CREATE TABLE EMP (

EMPNO INTEGER PRIMARY KEY,
DIVNO INTEGER,
DEPTNO INTEGER,
ENAME VARCHAR,
CONSTRAINT emp_fk1 FOREIGN KEY (DIVNO, DEPTNO) REFERENCES DEPT);

Note: Similarly to other integrity constraints, you can name referential integrity
constraints (foreign keys) and manipulate them (drop or add) dynamically, with
the ALTER TABLE statement. For more information, see “Dynamic constraint
management” on page 108.

Defining a foreign key always creates an index on the foreign key column(s). Each
time when a referenced record is updated or deleted, the server checks that there
are no referencing records that are left without a reference. Foreign key indexes
improve the performance of foreign key checking.

RAMA20162

JONES10147

SMITH120

WONG110

ANNANNULL1

EMP_NAMEMGR_IDEMP_ID

A self-referential table

Figure 3. Self-referential constraint

4 Using solidDB SQL for database administration 107

Related information

“CREATE TABLE” on page 201
“ALTER TABLE” on page 168

Referential actions
Referential integrity is maintained by the system, by taking certain actions when
referential constraints are violated, for example, in one of the following ways:
v when a row containing an invalid foreign key value is inserted in the referencing

table
v when a foreign key in the referencing table is updated to an invalid value
v when a row with a referenced primary key is deleted from the referenced table
v when a referenced primary key is updated in the referenced table

The following actions are available when the constraint is violated:
v No action. This option restricts the operation, or rolls back the operation that

violates the referential integrity constraint.
v Cascade. In the case of operations performed on the referenced table, cascades the

operations on the referenced table down to the referencing tables. This includes
deleting all the referencing rows (a cascading delete) and updating all the
referencing foreign-key values (a cascading update).

v Set default. In the case of operations performed on the referenced table, sets the
referencing columns to a predefined default value.

v Set null. In the case of operations performed on the referenced table, sets the
referencing columns to null.

v Restrict. Referential integrity actions sometimes allow changes to a table that
temporarily violate a referential constraint. The No action allows such violations.
If you have a requirement that the table state must never violate any constraint
even temporarily, use the Restrict referential action.

If no action is specified, the default 'No action' is assumed.

No cycles are allowed in cascading referential actions. An effort to create a cycle
composed of foreign keys having cascading actions results in an error.

Note: For any two tables, at most one CASCADE UPDATE path between them
can be defined. The restriction does not apply to CASCADE DELETE.

Dynamic constraint management
Constraints can be managed dynamically with the ALTER TABLE clause. The
sub-clauses that can be used are:
v ADD CONSTRAINT. This clause adds a named constraint to a table.
v DROP CONSTRAINT. This clause removes a named constraint from a table.

Note:

In solidDB, when the keyword CONSTRAINT is used, the constraint name is
mandatory.
v CHECK. This constraint allows you to specify rules to your tables or table

columns. Each rule is a condition that must not be false for any row in the table
on which it is defined. Otherwise the table cannot be updated.

108 IBM solidDB: SQL Guide

The rules are Boolean expressions. The rule can check, for example, a range of
values, equity, or the rule can be a simple comparison. You can use several
checks in one statement. The following expressions and operators are available:

Table 18. Expressions and operators

Expression Explanation

< less than

> greater than

= equal to

<= less than or equal to

>= greater than or equal to

<> not equal to

AND conjunction

ANY in the list that follows or in the table specified

BETWEEN between

IN in the list that follows or in the table specified

MAX maximum value

MIN minimum value

NOT negation

OR disjunction

XOR exclusive or

v UNIQUE. The UNIQUE constraint requires that no two rows in a table contain
the same value in a given column or list of columns. You can create a unique
constraint at either the table level or the column level. Note: primary keys
contain the unique constraint.

v FOREIGN KEY. The FOREIGN KEY constraint requires that each value in the
foreign key column must have a matching value in the referenced table.

Note:

solidDB automatically generates names for unnamed constraints. If you want to
view the names, use the command soldd -x hiddennames.

For constraint syntax information and examples, see the CREATE TABLE and
ALTER TABLE sections in Appendix B, “solidDB SQL syntax,” on page 155.

4 Using solidDB SQL for database administration 109

Managing database objects

Introduction
solidDB allows you to use catalogs and schemas to organize your data. (Catalogs
also have other uses, which we will explain later.) solidDB's use of schemas
conforms to the SQL standard, while solidDB's use of catalogs is an extension to
the SQL standard.

Catalogs and schemas allow you to group database objects (e.g. tables, sequences,
etc.) in a hierarchical way. This allows you to put related items into the same
group. For example, all the tables related to the accounting system might be in one
group (e.g. a catalog), while all the tables related to the human resources system
might be in another group. You can also group database objects by user. For
example, all of the tables used by Jane Smith might be in a single schema.

Catalogs are the highest (broadest) level of the hierarchy. Schema names are the
mid-level. Specific database objects, such as tables, are the lowest (narrowest) level
of the hierarchy. Thus, a single catalog may contain multiple schemas, and each of
those schemas may contain multiple tables.

Object names must be unique within a group, but do not have to be unique across
groups. Thus, for example, Jane Smith's schema and Robin Trower's schema might
each have a table named "bills". These two tables have nothing to do with each
other. They may have different structures and different data, even though they
have the same name. Similarly, the catalog "accounting_catalog" and the catalog
"human_resources_catalog" might each have a schema named "david_jones". Those
schemas are unrelated to each other, even though they have the same name.

Not surprisingly, if you want to specify a particular table and that table name is
not unique in the database, you can identify it by specifying the catalog, schema,
and table name, e.g.
accounting_catalog.david_jones.bills

The syntax is discussed in more detail later.

If you don't specify the complete name (i.e. if you omit the schema, or the schema
and the catalog), then the server uses the current/default catalog and schema name
to determine which table to use.

In general, a catalog can be thought of as a logical database. A schema typically
corresponds to a user. This is discussed in more detail below.

Catalogs
A physical database file may contain more than one logical database. Each logical
database is a complete, independent group of database objects, such as tables,
indexes, procedures, triggers, etc. Each logical database is a catalog. Note that a
solidDB catalog is not just limited to indexes (as in the traditional sense of a
library card catalog, which serves to locate an item without containing the full
contents of the item).

Catalogs allow you to logically partition databases so you can:
v Organize your data to meet the needs of your business, users, and, applications.
v Specify multiple master or replica databases (by using logical databases) for

synchronization within one physical database server. For more details on

110 IBM solidDB: SQL Guide

implementing synchronization in multi-master environments, read "Multi-master
synchronization model" in IBM solidDB Advanced Replication User Guide.

Schemas
A catalog may contain one or more schemas. A schema is a persistent database
object that provides a definition for part or all of the database. It represents a
collection of database objects associated with a specific schema name. These objects
include tables, views, indexes, stored procedures, triggers, and sequences. Schemas
allow you to provide each user with his or her own database objects (such as
tables) within the same logical database (that is, a single catalog). If no schema is
specified with a database object, the default schema is the user id of the user
creating the object.

Uniquely identifying objects within catalogs and schemas
Schemas make it possible for two different users to create tables with the same
names in the same physical database or even in the same logical database. For
example, assume in a single physical database, there are two separate catalogs,
employee_catalog and inventory_catalog. Assume also that each catalog contains
two separate schemas, named smith and jones, and that the same Smith owns both
"smith" schemas and the same Jones owns both "jones" schemas. If Smith and Jones
create a table named books in each of their schemas, then we have a total of 4
tables named "books", and these tables are accessible as:
employee_catalog.smith.books
employee_catalog.jones.books
inventory_catalog.smith.books
inventory_catalog.jones.books

As you can see, the catalog name and schema name can be used to "qualify"
(uniquely identify) the name of a database object such as a table. Object names can
be qualified in all DML statements by using the syntax:
catalog_name.schema_name.database_object

or
catalog_name.user_id.database_object

For example:
SELECT cust_name FROM accounting_dept.smith.overdue_bills;

You can qualify one or more database objects with a schema name, whether or not
you specify a catalog name. The syntax is:
schema_name.database_object_name

or
user_id.database_object_name

For example,
SELECT SUM(sales_tax) FROM jones.invoices;

To use a schema name with a database object, you must have already created the
schema.

By default, database objects that are created without schema names are qualified
using the user ID of the database object's creator. For example:
user_id.table_name

4 Using solidDB SQL for database administration 111

Catalog and schema contexts are set using the SET CATALOG or SET SCHEMA
statement.

If a catalog context is not set using SET CATALOG, then all database object names
are resolved by using the default catalog name.

Note: When creating a new database or converting an old database to a new
format, the user is prompted to specify a default catalog name for the database
system catalog. Users can access the default catalog name without knowing this
specified default catalog name. For example, users can specify the following syntax
to access the system catalog:
""._SYSTEM.table

solidDB translates the empty string ("") specified as a catalog name to the default
catalog name. solidDB also provides for automatic resolution of _SYSTEM schema
to the system catalog, even when users provide no catalog name.

The following SQL statements provide examples of creating catalogs and schemas.
Refer to Appendix B, “solidDB SQL syntax,” on page 155, for a formal definition of
the solidDB SQL statements.

Examples of SQL statements
Below are some examples of SQL statements for managing database objects.

Creating a catalog
CREATE CATALOG catalog_name

Only the creator of the database or users having SYS_ADMIN_ROLE have
privileges to create or drop catalogs.

The following example creates a catalog named C and assumes the userid is
SMITH
CREATE CATALOG C;
SET CATALOG C;
CREATE TABLE T (i INTEGER);
SELECT * FROM T;
--The name T is resolved to C.SMITH.T

Setting a catalog and schema context
The following example sets a catalog context to C
and the schema context to S.

SET CATALOG C;
SET SCHEMA S;
CREATE TABLE T (i INTEGER);
SELECT * FROM T;
-- The name T is resolved to C.S.T

Deleting a catalog
DROP CATALOG catalog_name

The following example deletes the catalog named C.
DROP CATALOG C;

Creating a schema
CREATE SCHEMA schema_name

112 IBM solidDB: SQL Guide

Any database user can create a schema; however, the user must have permission to
create the objects that pertain to the schema (for example, CREATE PROCEDURE,
CREATE TABLE, etc.).

Note that creating a schema does not implicitly make that new schema the
current/default schema. You must explicitly set that schema with the SET
SCHEMA statement if you want the new schema to become the current schema.

The following example creates a schema named FINANCE and assumes the user
id is SMITH:
CREATE SCHEMA FINANCE;
CREATE TABLE EMPLOYEE (EMP_ID INTEGER);
-- NOTE: The employee table is qualified to SMITH.EMPLOYEE, not
-- FINANCE.EMPLOYEE. Creating a schema does not implicitly make that
-- new schema the current/default schema.
SET SCHEMA FINANCE;
CREATE TABLE EMPLOYEE (ID INTEGER);
SELECT ID FROM EMPLOYEE;
-- In this case, the table is qualified to FINANCE.EMPLOYEE

Deleting a schema
DROP SCHEMA schema_name

The following example deletes the schema named FINANCE.
DROP SCHEMA FINANCE;

4 Using solidDB SQL for database administration 113

114 IBM solidDB: SQL Guide

5 Managing transactions

This section explains how to manage transactions, how to deal with concurrency
control and locking, and how to choose the durability level.

Defining read-only and read-write transactions
To define a transaction to be read-only or read-write, use the following SQL
commands:
SET TRANSACTION { READ ONLY | READ WRITE }

The following options are available with this command.
v READ ONLY

Use this option for a read only transaction.
v READ WRITE

Use this option for a read and write transaction. This option is the default.

Note: To detect conflicts between transactions, use the standard ANSI SQL
command SET TRANSACTION ISOLATION LEVEL to define the transaction with
a Repeatable Read or Serializable isolation level. For details, read section Choosing
transaction isolation levels in IBM solidDB Administrator Guide.

Transactions must be ended with the COMMIT WORK or ROLLBACK WORK
commands unless autocommit is used.

Concurrency control and locking
The purpose of concurrency control is to prevent two different users (or two
different connections by the same user) from trying to update the same data at the
same time. Concurrency control can also prevent one user from seeing out-of-date
data while another user is updating the same data.

The following examples explain why concurrency control is needed. For both
examples, suppose that your checking account contains $1,000. During the day you
deposit $300 and spend $200 from that account. At the end of the day your
account should have $1,100.
v Example 1: No concurrency control

1. At 11:00 AM, bank teller #1 looks up your account and sees that you have
$1,000. The teller subtracts the $200 check, but is not able to save the
updated account balance ($800) immediately.

2. At 11:01 AM, another teller #2 looks up your account and still sees the $1,000
balance. Teller #2 then adds your $300 deposit and saves your new account
balance as $1,300.

3. At 11:09 AM, bank teller #1 returns to the terminal, finishes entering and
saving the updated value that is calculated to be $800. That $800 value writes
over the $1300.

4. At the end of the day, your account has $800 when it should have had $1,100
($1000 + 300 - 200).

v Example 2: Concurrency control

115

1. When teller #1 starts working on your account, a lock is placed on the
account.

2. When teller #2 tries to read or update your account while teller #1 is
updating your account, teller #2 will not be given access and gets an error
message.

3. After teller #1 has finished the update, teller #2 can proceed.
4. At the end of the day, your account has $1,100 ($1000 - 200 + 300).

In Example 1, the account updates are done simultaneously rather than in
sequence and one update write overwrites another update. In Example 2, to
prevent two users from updating the data simultaneously (and potentially writing
over each other's updates), the system uses a concurrency control mechanism.

solidDB offers two different concurrency control mechanisms, pessimistic
concurrency control and optimistic concurrency control.

The pessimistic concurrency control mechanism is based on locking. A lock is a
mechanism for limiting other users' access to a piece of data. When one user has a
lock on a record, the lock prevents other users from changing (and in some cases
reading) that record. Optimistic concurrency control mechanism does not place
locks but prevents the overwriting of data by using timestamps.

PESSIMISTIC vs. OPTIMISTIC concurrency control
solidDB offers two different concurrency control mechanisms, pessimistic and
optimistic.
v Pessimistic concurrency control (or pessimistic locking) is called "pessimistic"

because the system assumes the worst — it assumes that two or more users will
want to update the same record at the same time, and then prevents that
possibility by locking the record, no matter how unlikely conflicts actually are.
The locks are placed as soon as any piece of the row is accessed, making it
impossible for two or more users to update the row at the same time.
Depending on the lock mode (shared, exclusive, or update), other users might be
able to read the data even though a lock has been placed. For more details on
the lock modes, see “Lock modes: shared, exclusive, and update” on page 119.

v Optimistic concurrency control (or optimistic locking) assumes that although
conflicts are possible, they will be very rare. Instead of locking every record
every time that it is used, the system merely looks for indications that two users
actually did try to update the same record at the same time. If that evidence is
found, then one user's updates are discarded and the user is informed.
For example, if User1 updates a record and User2 only wants to read it, then
User2 simply reads whatever data is on the disk and then proceeds, without
checking whether the data is locked. User2 might see slightly out-of-date
information if User1 has read the data and updated it, but has not yet
committed the transaction.
Optimistic locking is available on disk-based tables (D-tables) only.
The solidDB implementation of optimistic concurrency control uses
multiversioning.
1. Each time that the server reads a record to try to update it, the server makes

a copy of the version number of the record and stores that copy for later
reference.

2. When it is time to write the updated data back to the disk, the server
compares the original version number that it read against the version
number that the disk drive now contains.

116 IBM solidDB: SQL Guide

– If the version numbers are the same, then no one else changed the record
and the system can write the updated value.

– If the originally read value and the current value on the disk are not the
same, then someone has changed the data since it was read, and the
current operation is probably out-of-date. Thus the system discards the
version of the data and gives the user an error message.

Each time a record is updated, the version number is updated as well.
solidDB can store multiple versions of each data row temporarily, rather than
giving each user the version of data is on the disk at the moment it is read. Each
user's transaction sees the database as it was at the time that the transaction
started. This way the data that each user sees is consistent throughout the
transaction, and users are able to concurrently access the database. For more
details about multiversioning, see solidDB Bonsai Tree multiversioning and
concurrency control in the IBM solidDB Administrator Guide.

Note: Even though the optimistic concurrency control mechanism is sometimes
called optimistic locking, it is not a true locking scheme—the system does not
place any locks when optimistic concurrency control is used. The term locking is
used because optimistic concurrency control serves the same purpose as
pessimistic locking by preventing overlapping updates.

When you use optimistic locking, you do not find out that there is a conflict until
just before you write the updated data. In pessimistic locking, you find out there is
a conflict as soon as you try to read the data.

To use an analogy with banks, pessimistic locking is like having a guard at the
bank door who checks your account number when you try to enter; if someone
else (a spouse, or a merchant to whom you wrote a check) is already in the bank
accessing your account, then you cannot enter until that other person finishes her
transaction and leaves. Optimistic locking, on the other hand, allows you to walk
into the bank at any time and try to do your business, but at the risk that as you
are walking out the door the bank guard will tell you that your transaction
conflicted with someone else's and you will have to go back and do the transaction
again.

With pessimistic locking, the first user to request a lock, gets it. Once you have the
lock, no other user or connection can override your lock. In solidDB, the lock lasts
until the end of the transaction or in the case of long table locks, the lock lasts
until you explicitly release it.

Default concurrency control mechanisms

The default concurrency control mechanism depends on the table type:
v Disk-based tables (D-tables) are by default optimistic.
v Main-memory tables (M-tables) are always pessimistic.

You can override optimistic locking and specify pessimistic locking instead. You
can do this at the level of individual tables. One table might follow the rules of
optimistic locking while another table follows the rules of pessimistic locking. Both
tables can be used within the same transaction and even the same statement;
solidDB handles this internally.

5 Managing transactions 117

Locking and performance

Optimistic locking allows fast performance and high concurrency (access by
multiple users), at the cost of occasionally refusing to write data that was initially
accepted but was found at the last second to conflict with another user's changes.

Pessimistic locking requires overhead for every operation, whether or not two or
more users are actually trying to access the same record. The overhead is small but
adds up because every row that is updated requires a lock. Furthermore, every
time that a user tries to access a row, the system must also check whether the
requested row(s) are already locked by another user or connection.

For example, if two bank tellers are accessing the same record around the same
time and bank teller #1 gets a lock, teller #2 must check for that lock, no matter
how unlikely it is that teller #2 will want to work on the same record exactly at the
same time as teller #1. Checking every record that is used will take time.
Furthermore, it is important that during the checking, no other teller tries to run
the same check as teller #2 (otherwise they might both see at 10:59:59 that record X
is not in use, and then they might both try to lock it at 11:00:00). Thus even
checking a lock can itself require another lock to prevent two users from changing
the locks at the time.

Choosing concurrency control mechanism

In most scenarios, optimistic concurrency control is more efficient and offers higher
performance. When choosing between pessimistic and optimistic locking, consider
the following:
v Pessimistic locking is useful if there are a lot of updates and relatively high

chances of users trying to update data at the same time.
For example, if each operation can update a large number of records at a time
(the bank might add interest earnings to every account at the end of each
month), and two applications are running such operations at the same time, they
will have conflicts.
Pessimistic concurrency control is also more appropriate in applications that
contain small tables that are frequently updated. In the case of these so-called
hotspots, conflicts are so probable that optimistic concurrency control wastes
effort in rolling back conflicting transactions.

v Optimistic locking is useful if the possibility for conflicts is very low – there are
many records but relatively few users, or very few updates and mostly
read-type operations.

Locks and lock modes
A lock is a mechanism for preventing two or more users from doing conflicting
operations at the same time. Operations conflict if at least one of the operations
involves updating the data (via UPDATE, DELETE, INSERT, ALTER TABLE, and
so on). If all the operations are read-only operations (such as SELECT), then there
is no conflict.

solidDB does not allow users to specify row-level locks explicitly. There is no
LOCK RECORD command; the server does all row-level locking for you. The
server also does table-level locking for you. If you need to set table-level locks
explicitly, you may do so using the LOCK TABLE command.

Table-level vs. row-level locks
solidDB allows both table-level locks and row-level locks.

118 IBM solidDB: SQL Guide

Row-level locks

Row-level locks are placed on single records (rows) that the statements in a
transaction define. The locks are placed as soon as any piece of the row is
accessed.

Row-level locks are always implicit, solidDB sets the locks when necessary. You
cannot lock or unlock row-level locks manually.

Table-level locks

Table-level locks can be thought of as metadata locks; they prevent concurrent
users from making schema changes (DDL operations) simultaneously or while
records within the table are being changed.

For example, if you are updating a customer's home phone number, you do not
want another user to drop the telephone number column at the same time. If the
other user was allowed to drop the telephone number column before you were
finished, your transaction would try to write an updated telephone number to a
column that no longer exists, thus resulting in data corruption.

Most table-level locks are implicit; the server itself sets those locks when necessary.
For example, when the server recognizes that a particular operation (such as an
UPDATE statement without a where clause) will affect every record in the table,
the server itself can lock the entire table if it thinks that would be most efficient,
and if no conflicting locks on the table already exist. Also, when you acquire a lock
on a record in a table, you also implicitly acquire a lock (usually a shared lock) on
the entire table. This prevents prevent one user from dropping the table or
modifying the structure of the table while another user is updating data in the
table.

You can also lock and unlock table-level locks manually using the LOCK TABLE
and UNLOCK TABLE commands.

Table-level locks are always pessimistic; the server puts a real lock on the table
rather than just looking at versioning information. This is true even if the table is
set to optimistic locking.

In setups using advanced replication, table-level locks are typically used with
Maintenance Mode operations. For more details, see Introduction to Maintenance Mode
in the IBM solidDB Advanced Replication User Guide.

Lock modes: shared, exclusive, and update
Depending on the lock mode, when one user has a lock on a record, the lock
prevents other users from changing or even reading that record.

There are three lock modes:
v SHARED

Row-level shared locks allow multiple users to read data, but do not allow any
users to change that data.
Table-level shared locks allow multiple users to perform read and write
operations on the table, but do not allow any users to perform DDL operations.
Multiple users can hold shared locks simultaneously.

v EXCLUSIVE

5 Managing transactions 119

An exclusive lock allows only one user/connection to update a particular piece
of data (insert, update, and delete). When one user has an exclusive lock on a
row or table, no other lock of any type may be placed on it.

v UPDATE
Update locks are always row-level locks. When a user accesses a row with the
SELECT... FOR UPDATE statement, the row is locked with an update mode lock.
This means that no other user can read or update the row and ensures the
current user can later update the row.
Update locks are similar to exclusive locks. The main difference between the two
is that you can acquire an update lock when another user already has a shared
lock on the same record. This lets the holder of the update lock read data
without excluding other users. However, once the holder of the update lock
changes the data, the update lock is converted into an exclusive lock.
Also, update locks are asymmetric with respect to shared locks. You can acquire
an update lock on a record that already has a shared lock, but you cannot
acquire a shared lock on a record that already has an update lock. Because an
update lock prevents subsequent read locks, it is easier to convert the update
lock to an exclusive lock.

Shared and exclusive locks cannot be mixed. If User1 has an exclusive lock on a
record, User2 cannot get a shared lock or an exclusive lock on that same record.

All locks within a particular category (such as shared locks) are equal.
v All users regardless the user privileges are equal: locks placed by a DBA are no

more and no less strong than locks placed by any other user.
v All ways of executing statements that place locks are equal: the lock can be

executed as part of ,
v It does not matter whether the lock was executed as part of an interactively

typed statement, called from a compiled remote application, or called from
within the local application when using solidDB with shared memory access or
linked library access, or if the lock was placed as a result of a statement inside a
stored procedure or trigger.

Some locks can be escalated. For example, if you are using a scroll cursor and you
acquire a shared lock on a record, and then later within that same transaction you
update that record, your shared lock may be upgraded to an exclusive lock.
Getting an exclusive lock is only possible if there are no other locks (shared or
exclusive) on the table; if you and another user both have shared locks on the
same record, then the server cannot upgrade your shared lock to an exclusive lock
until the other user drops her shared lock.

Lock modes for table-level locks

The EXCLUSIVE and SHARED lock modes are used for both pessimistic and
optimistic tables. By default, optimistic and pessimistic tables are locked in shared
mode; unless you are altering the table, the locks on tables are usually shared
locks.

When you execute an ALTER TABLE operation, you get a shared lock on that
table. That allows other users to continue to read data from the table, but prevents
them from making changes to the table. If other users want to do DDL operations
(such as ALTER TABLE) on the same table at the same time, they will either have
to wait or will get an error message.

120 IBM solidDB: SQL Guide

Also, in advanced replication setups, some solidDB statements (such as REFRESH
or MESSAGE EXECUTE) that can be run with the optional PESSIMISTIC keyword,
use EXCLUSIVE table-level locks even when the tables are optimistic.

Lock duration and timeout
By default, a lock is held from the time it is acquired until the end of the
transaction (completed with commit or rollback). If you try to get an exclusive lock
on a record that another user has already locked (shared or exclusive), you cannot
get a lock; instead, your transaction will fail with an error. You can define whether
solidDB should fail your transaction immediately or, before failing, wait and try
again for a specified number of seconds. This is controlled with a lock timeout
setting.

The lock timeout setting is the time in seconds that the engine waits for a lock to be
released. By default, solidDB lock timeout is set to 30 seconds. If transactions tend
to be very short, a brief wait allows you to continue activities that otherwise
would have been blocked by locks.

When the lock timeout interval is reached, solidDB terminates the timed-out
statement. For example, if User1 is querying a specific row in a table and User2
tries to update data in the same row, the update will not go through until the
User1's query is completed (or times out). If the query of User1 is completed and
the User2 query has not timed out yet, a lock is issued for the update transaction
of User2. If User1 does not finish before the query of User2 times out, the server
terminates User2's statement.

The default lock timeout is controlled with the General.LockWaitTimeOut
parameter. In advanced replication setups, you might also want to set the default
lock time for table-level locks with the General.TableLockWaitTimeout parameter.

The default timeout can be overridden with the following transaction or section
specific commands:
v LOCK TABLE WAIT – sets the timeout for table-level locks for specific tables

(D-tables only)
v SET LOCK TIMEOUT – sets the timeout for both table-level and row-level locks

SET LOCK TIMEOUT does not change the timeout for those tables for which the
table-level timeout has been set with LOCK TABLE WAIT.

Note: The LOCK TABLE WAIT mechanism does not apply to M-tables. For
example, if in Session1 you lock table DEPARTMENT (LOCK TABLE DEPARTMENT IN
EXCLUSIVE MODE, an attempt to insert values into the table in Session2 (INSERT INTO
DEPARTMENT VALUES ...) will return error 10014 Resource is locked.
immediately.

The wait mechanism in lock timeout applies only to pessimistic locking. There is
no such thing as "waiting for an optimistic lock". If someone else changed the data
since the time that you read it, no amount of waiting will prevent a conflict that
has already occurred. In fact, since optimistic concurrency methods do not place
locks, there is no "optimistic lock" to wait on.

LONG exclusive locks

solidDB allows you to prevent exclusive locks from being released when the
locking transaction commits. These type of long exclusive locks are set with the
LONG option in the LOCK TABLE command.

5 Managing transactions 121

For example:
LOCK TABLE emp IN LONG EXCLUSIVE MODE

If the locking transaction aborts or is rolled back, all locks are released, including
LONG locks. You must unlock long locks explicitly using the UNLOCK command.
LONG duration locks are allowed only in EXCLUSIVE mode. LONG shared locks
are not supported.

Transaction isolation levels and lock duration

Update locks and exclusive locks are always held until the time that the
transaction completes. Shared locks ("read locks") are also held until the end of the
transaction but the transaction isolation level can affect how shared locks behave.
For example, SERIALIZABLE isolation level does additional checks. It checks also
that no new rows are added to the result set that the transaction should have seen.
In other words, it prevents other users from inserting rows that would have
qualified for the result set that is in the transaction.

Example:

If a SERIALIZABLE transaction has an update command like UPDATE customers
SET x = y WHERE area_code = 415;, solidDB does not allow other users to enter
records with area_code=415 until the serializable transaction is committed.

Note: solidDB's implementation of holding shared locks until the end of
transaction differs from some other servers. Some servers will release shared locks
before the end of a transaction, if the transaction isolation level is low enough.
Other database servers might also allow you to extend the duration of read/shared
locks to ensure that within a single transaction, data looks the same every time you
view it.

Also, in other servers, transaction isolation level might affect not only how long
you lock a record, but also what you see. For example, on systems that allow both
READ COMMITTED (sometimes called "dirty read") and READ COMMITTED,
your isolation level affects what you see, not just what other users can or cannot
see because you have locked certain records.

Setting concurrency control
The concurrency control method and lock modes can be controlled with solidDB
SQL statements and configuration parameters.

Setting the concurrency (locking) mode to optimistic or
pessimistic
The concurrency mode of disk-based tables can be set to optimistic or pessimistic
for all tables or for specific tables. In-memory tables are always pessimistic.

By default D-tables use optimistic locking.
v To set the concurrency mode for a specific table, use the ALTER TABLE

<table_name> SET OPTIMISTIC|PESSIMISTIC command.
For example:
ALTER TABLE MyTable1 SET PESSIMISTIC;
ALTER TABLE MyTable2 SET OPTIMISTIC;

v To control the default concurrency mode for all tables, set the
General.Pessimistic parameter to 'yes' or 'no' (default is 'no').

122 IBM solidDB: SQL Guide

For example:
[General]
Pessimistic=yes

The General.Pessimistic parameter takes effect only at the time that the server
starts. If you edit the solid.ini file manually, the change will not be visible until
the server restarts.

Since the value of the General.Pessimistic can change, the concurrency control for
a table may change. It is possible for a table to use optimistic concurrency control
during one instance of the server and pessimistic during another.

When you set the General.Pessimistic parameter to 'yes', the server defaults to
pessimistic locking for
v any new tables that are created, and
v for any existing tables whose concurrency control method has never been set

explicitly with the ALTER TABLE command.

If you set a table's locking mode by using the ALTER TABLE command, the
ALTER TABLE command takes precedence.

Related topics
v “Setting mixed concurrency control”

Setting mixed concurrency control
With D-tables, you can use mixed concurrency control methods. Mixed
concurrency control is available by setting individual tables to optimistic or
pessimistic.

By default, solidDB uses optimistic concurrency control for D-tables. M-tables are
always pessimistic.

Mixed concurrency control is a combination of row-level pessimistic locking and
optimistic concurrency control. By turning on row-level locking table-by-table, you
can specify that a single transaction use both concurrency control methods
simultaneously. This can be set for both read-only and read-write transactions.

To set individual tables for optimistic or pessimistic concurrency, use the following
command:
ALTER TABLE base_table_name SET {OPTIMISTIC | PESSIMISTIC}

Note:

When using solidDB with advanced replication, pessimistic table-level locks in
shared mode are possible with tables that are synchronized. This functionality
provides users with the option to run some operations for synchronization in
pessimistic mode even with optimistic tables. For example, when a REFRESH is
executed in pessimistic mode in a replica, solidDB locks all tables in shared mode;
later, if necessary, the server can "promote" these locks to exclusive table locks. This
is done in a few synchronization statements when optional keyword PESSIMISTIC
is specified. Read operations do not use any locks.

Reading the concurrency mode
The method for reading the concurrency mode of a table depends on how the
concurrency mode has been set.

5 Managing transactions 123

v If the concurrency mode of the table has been set explicitly with the ALTER
TABLE command, the concurrency mode is recorded in a SYS_TABLEMODES
system table.
Check the values in the SYS_TABLEMODES with the following command:
SELECT SYS_TABLEMODES.ID, SYS_TABLEMODES.MODE, SYS_TABLES.TABLE_NAME
FROM SYS_TABLEMODES, SYS_TABLES
WHERE SYS_TABLEMODES.ID = SYS_TABLES.ID
AND SYS_TABLES.TABLE_NAME = ’<table_name>’;

For example:
SELECT SYS_TABLEMODES.ID, SYS_TABLEMODES.MODE, SYS_TABLES.TABLE_NAME
FROM SYS_TABLEMODES, SYS_TABLES
WHERE SYS_TABLEMODES.ID = SYS_TABLES.ID
AND SYS_TABLES.TABLE_NAME = ’TESTTABLE2’;

ID MODE TABLE_NAME
-- ---- ----------

10002 PESSIMISTIC TESTTABLE2

1 rows fetched.

If the concurrency mode has not been set using the ALTER TABLE command,
the SYS_TABLEMODES system table does not contain information on the
concurrency mode of the table.

v If the concurrency mode of the table has not been set with the ALTER TABLE
command, check the setting of the General.Pessimistic parameter with the
following command:
ADMIN COMMAND ’describe parameter General.Pessimistic’;

If the value in the solid.ini file has not been changed since the server started,
and if the value has not been overridden by an ADMIN COMMAND, you can
also check the parameter setting in the solid.ini file.

Setting lock timeout
The lock timeout setting can be modified with the SET LOCK TIMEOUT and
LOCK TABLE WAIT commands. By default, lock timeout is set to 30 seconds.
v Use LOCK TABLE WAIT <timeout_in_seconds> to set timeout for table-level locks.

Note: The LOCK TABLE WAIT command is effective on disk-based tables only.
v Use SET LOCK TIMEOUT <timeout_in_seconds> to set the lock timeout for both

table-level and row-level locks in a session.

Note: SET LOCK TIMEOUT does not change the timeout for those tables for which
the table-level timeout has been set with LOCK TABLE WAIT.

By default, the granularity for the timeout is in seconds. The lock timeout can be
set at millisecond granularity by adding "MS" after the value, for example:
LOCK TABLE emp,dept IN SHARED MODE WAIT 10MS;

or
SET LOCK TIMEOUT 10MS;

Without the "MS", the lock timeout is in seconds.

Note: The maximum timeout is 1000 seconds (a little over 15 minutes). The server
will not accept a longer value.

124 IBM solidDB: SQL Guide

Setting lock timeout for optimistic tables
When you use SELECT FOR UPDATE, the selected rows are locked even if the
table's locking mode is optimistic. The rows must be locked to ensure that the
update will be successful. By default, the lock timeout with SELECT FOR UPDATE
is 0 seconds — either you immediately get the lock, or you get an error message.

If you want the server to wait and try again before giving up, set the lock timeout
for optimistic tables using the following command:
SET OPTIMISTIC LOCK TIMEOUT seconds

Choosing the transaction durability
If you can afford to lose a small amount of recent data, and if performance is
crucial to you, then you may want to use relaxed durability. Relaxed durability is
appropriate when each individual transaction is not crucial. For example, if you are
monitoring system performance and you want to store data on response times, you
may only be interested in average response times, which will not be significantly
affected if you are missing a few pieces of data. In fact, since measuring
performance will itself affect performance (by using up resources such as CPU
time and I/O bandwidth), you probably want your performance tracking
operations themselves to have high performance (low cost) rather than high
precision. Relaxed durability is appropriate in this situation.

On the other hand, if you are tracking financial data, such as bill payments, then
you probably want to ensure that 100% of your committed data is stored and
recoverable. In this situation, you will want strict durability.

You should use relaxed durability ONLY when you can afford to lose a few of the
most recent transactions. Otherwise, use strict durability. If you are not sure
whether strict or relaxed durability is appropriate, use strict durability.

Setting the transaction durability level
There are four ways to set the transaction durability level. These are listed below
in descending order of precedence:
1. SET TRANSACTION DURABILITY

SET TRANSACTION DURABILITY { RELAXED | STRICT }

For example
SET TRANSACTION DURABILITY RELAXED;
SET TRANSACTION DURABILITY STRICT;

If you use the SET TRANSACTION DURABILITY command, then you specify
the transaction durability on a per-transaction basis. The command affects only
the current transaction.

2. SET DURABILITY
SET DURABILITY { RELAXED | STRICT }

For example
SET DURABILITY RELAXED;
SET DURABILITY STRICT;

If you use the SET DURABILITY command, then you specify the transaction
durability on a per-session basis. A session is the time between connecting and
disconnecting to the server. Each user has a separate session, even if the
sessions overlap in time. In fact, a single user may establish more than one
session (for example, by running multiple copies of solsql, or by writing a
program that makes multiple connections to the same server). When you

5 Managing transactions 125

specify the transaction durability level by using the SET DURABILITY
statement, you are specifying it only for the session in which the command is
issued. Your choice will not affect any other user, any other open session that
you yourself currently have, or any future session that you may have. Each
user session may set its own transaction durability level, based on how
important it is for the session not to lose any data.
The effect of this statement lasts until the end of the session, or until another
SET DURABILITY command is issued.

3. Setting the DurabilityLevel parameter in the solid.ini configuration file.
[Logging]
DurabilityLevel=3

See chapter DurabilityLevel in IBM solidDB Advanced Replication User Guide.
This setting affects all users.
This parameter can be changed dynamically. If you want to change the default
setting while the server is running, you may do so by using the following
command:
ADMIN COMMAND ’parameter Logging.DurabilityLevel={1 | 2 | 3}’

If you execute this command, it will take effect immediately.
4. By default, if you do not set the transaction durability level using any of the

methods above, the server will use relaxed durability
(Logging.DurabilityLevel=1).

If you are using strict durability, you may also set an additional configuration
parameter (LogWriteMode), which also influences performance. For details about
LogWriteMode, see its description in IBM solidDB Administrator Guide.

126 IBM solidDB: SQL Guide

6 Diagnostics and troubleshooting

This chapter provides information on the following solidDB diagnostic tools:
v SQL info facility and the EXPLAIN PLAN FOR statement used to tune your

application and identify inefficient SQL statements in your application.
v Tracing facilities for stored procedures and triggers

You can use these facilities to observe performance, troubleshoot problems, and
produce high quality problem reports. These reports let you pinpoint the source of
your problems by isolating them under product categories (such as solidDB ODBC
API, solidDB ODBC Driver, solidDB JDBC Driver, etc.).

Observing performance
You can use the SQL Info facility to provide information on a SQL statement and
the SQL statement EXPLAIN PLAN FOR to show the execution graph that the SQL
optimizer selected for a given SQL statement. Typically, if you need to contact IBM
Corporation technical support, you will be asked to provide the SQL statement,
EXPLAIN PLAN output, and SQL Info output from the EXPLAIN PLAN run with
info level 8 for more extensive trace output.

SQL Info facility
Run your application with the SQL Info facility enabled. The SQL Info facility
generates information for each SQL statement processed by solidDB.

The Info parameter in the [SQL] section specifies the tracing level on the SQL
parser and optimizer as an integer between 0 (no tracing) and 8 (solidDB info from
every fetched row). Trace information will be output to the file named
soltrace.out in the solidDB directory.

Example:
[SQL]
info = 1

Table 19. SQL Info levels

Info value Information

0 no output

1 table, index, and view info in SQL format

2 SQL execution graphs (for IBM Corporation technical support
use only)

3 some SQL estimate info, solidDB selected key name

4 all SQL estimate info, solidDB selected key info

5 solidDB info also from discarded keys

6 solidDB table level info

127

Table 19. SQL Info levels (continued)

Info value Information

7 SQL info from every fetched row

8 solidDB info from every fetched row

The SQL Info facility can also be turned on with the following SQL statement (this
sets SQL Info on only for the client that executes the statement):
SET SQL INFO ON LEVEL info_value FILE file_name

and turned off with the following SQL statement:
SET SQL INFO OFF

Example:
SET SQL INFO ON LEVEL 1 FILE ’my_query.txt’

EXPLAIN PLAN FOR statement
The syntax of the EXPLAIN PLAN FOR statement is:
EXPLAIN PLAN FOR sql_statement

The EXPLAIN PLAN FOR statement is used to show the execution plan that the
SQL optimizer has selected for a given SQL statement. An execution plan is a
series of primitive operations, and an ordering of these operations, that solidDB
performs to execute the statement. Each operation in the execution plan is called a
unit.

Table 20. EXPLAIN PLAN FOR units

Unit Description

JOIN UNIT* Join unit joins two or more tables. The join can be done by
using loop join or merge join.

TABLE UNIT The table unit is used to fetch the data rows from a table or
index.

ORDER UNIT Order unit is used to order rows for grouping or to satisfy
ORDER BY. The ordering can be done in memory or using an
external disk sorter.

GROUP UNIT Group unit is used to do grouping and aggregate calculation
(SUM, MIN, etc.).

UNION UNIT* Union unit performs the UNION operation. The unit can be
done by using loop join or merge join.

INTERSECT UNIT* Intersect unit performs the INTERSECT operation. The unit can
be done by using loop join or merge join.

EXCEPT UNIT* Except unit performs the EXCEPT operation. The unit can be
done by using loop join or merge join.

128 IBM solidDB: SQL Guide

*This unit is generated also for queries that reference only a single table. In that
case no join is executed in the unit; it simply passes the rows without
manipulating them.

The table returned by the EXPLAIN PLAN FOR statement contains the following
columns.

Table 21. Explain Plan table columns

Column Name Description

ID The output row number, used only to guarantee that the rows
are unique.

UNIT_ID This is the internal unit id in the SQL interpreter. Each unit has
a different id. The unit id is a sparse sequence of numbers,
because the SQL interpreter generates unit ids also for those
units that are removed during the optimization phase. If more
than one row has the same unit id it means that those rows
belong to the same unit. For formatting reasons the info from
one unit may be divided into several different rows.

PAR_ID Parent unit id for the unit. The parent id number refers to the id
in the UNIT_ID column.

JOIN_PATH For join, union, intersect, and except units there is a join path
which specifies which tables are joined in the unit and the join
order for tables. The join path number refers to the unit id in
the UNIT_ID column. It means that the input to the unit comes
from that unit. The order in which the tables are joined is the
order in which the join path is listed. The first listed table is the
outermost table in a loop join.

UNIT_TYPE Unit type is the execution graph unit type.

INFO Info column is reserved for additional information. It may
contain, for example, index usage, the database table name and
constraints used in solidDB to select rows. Note that the
constraints listed here may not match those constraints given in
the SQL statement.

The following texts may exist in the INFO column for different types of units.

Table 22. Texts in the unit INFO column

Unit type Text in Info column Description

TABLE UNIT tablename The table unit refers to table tablename.

TABLE UNIT constraints The constraints that are passed to the
database engine are listed. If for example
in joins the constraint value is not known
in advance, the constraint value is
displayed as NULL.

TABLE UNIT SCAN TABLE Full table scan is used to search for rows.

6 Diagnostics and troubleshooting 129

Table 22. Texts in the unit INFO column (continued)

Unit type Text in Info column Description

TABLE UNIT SCAN indexname Index indexname is used to search for
rows. If all selected columns are found
from an index, sometimes it is faster to
scan the index instead of the entire table
because the index has fewer disk blocks.

TABLE UNIT PRIMARY KEY The primary key is used to search rows.
This differs from SCAN in that the whole
table is not scanned because there is a
limiting constraint to the primary key
attributes.

TABLE UNIT INDEX indexname Index indexname is used to search for
rows. For every matching index row, the
actual data row is fetched separately.

TABLE UNIT INDEX ONLY indexname Index indexname is used to search for
rows. All selected columns are in the
index, so the actual data rows are not
fetched separately by reading from the
table.

JOIN UNIT MERGE JOIN Merge join is used to join the tables.

JOIN UNIT 3-MERGE JOIN A 3-merge join is used to merge the
tables.

JOIN UNIT LOOP JOIN Loop join is used to join the tables.

ORDER UNIT NO ORDERING REQUIRED No ordering is required, the rows are
retrieved in correct order from solidDB.

ORDER UNIT EXTERNAL SORT External sorter is used to sort the rows. To
enable external sorter, the temporary
directory name must be specified in the
Sorter section of the configuration file.

ORDER UNIT FIELD n USED AS PARTIAL ORDER For distinct result sets, an internal sorter
(in-memory sorter) is used for sorting and
the rows retrieved from solidDB are
partially sorted with column number n.
The partial ordering helps the internal
sorter avoid multiple passes over the data.

ORDER UNIT n FIELDS USED FOR PARTIAL SORT An internal sorter (in-memory sorter) is
used for sorting and the rows retrieved
from solidDB are partially sorted with n
fields. The partial ordering helps the
internal sorter to avoid multiple passes
over the data.

ORDER UNIT NO PARTIAL SORT Internal sorter is used for sorting. The
rows are retrieved in random order from
solidDB to the sorter.

UNION UNIT MERGE JOIN Merge join is used to join the tables.

130 IBM solidDB: SQL Guide

Table 22. Texts in the unit INFO column (continued)

Unit type Text in Info column Description

UNION UNIT 3-MERGE JOIN A 3-merge join is used to merge the
tables.

UNION UNIT LOOP JOIN Loop join is used to join the tables.

INTERSECT UNIT MERGE JOIN Merge join is used to join the tables.

INTERSECT UNIT 3-MERGE JOIN A 3-merge join is used to merge the
tables.

INTERSECT UNIT LOOP JOIN Loop join is used to join the tables.

EXCEPT UNIT MERGE JOIN Merge join is used to join the tables.

EXCEPT UNIT 3-MERGE JOIN A 3-merge join is used to merge the
tables.

EXCEPT UNIT LOOP JOIN Loop join is used to join the tables.

Example 1
EXPLAIN PLAN FOR SELECT * FROM TENKTUP1 WHERE
UNIQUE2_NI BETWEEN 0 AND 99;

Table 23. EXPLAIN PLAN FOR, Example 1

ID UNIT_ID PAR_ID JOIN_PATH UNIT_TYPE INFO

1 2 1 3 JOIN UNIT

2 3 2 0 TABLE UNIT TENKTUP1

3 3 2 0 FULL SCAN

4 3 2 0 UNIQUE2_NI <= 99

5 3 2 0 UNIQUE2_NI >= 0

6 3 2 0

Execution graph:
JOIN UNIT 2 gets input from TABLE UNIT 3

TABLE UNIT 3 for table TENKTUP1 does a full table scan with constraints
UNIQUE2_NI <= 99 and UNIQUE2_NI >= 0

6 Diagnostics and troubleshooting 131

Example 2
EXPLAIN PLAN FOR SELECT * FROM TENKTUP1, TENKTUP2
WHERE TENKTUP1.UNIQUE2 > 4000 AND TENKTUP1.UNIQUE2 < 4500
AND TENKTUP1.UNIQUE2 = TENKTUP2.UNIQUE2;

Table 24. EXPLAIN PLAN FOR, Example 2

ID UNIT_ID PAR_ID JOIN_PATH UNIT_TYPE INFO

1 6 1 9 JOIN UNIT MERGE JOIN

2 6 1 10

3 9 6 0 ORDER UNIT NO ORDERING
REQUIRED

4 8 9 0 TABLE UNIT TENKTUP2

5 8 9 0 PRIMARY KEY

6 8 9 0 UNIQUE2 < 4500

7 8 9 0 UNIQUE2 > 4000

8 8 9 0

9 10 6 0 ORDER UNIT NO ORDERING
REQUIRED

10 7 10 0 TABLE UNIT TENKTUP1

11 7 10 0 PRIMARY KEY

12 7 10 0 UNIQUE2 < 4500

13 7 10 0 UNIQUE2 > 4000

14 7 10 0

Execution graph:
JOIN UNIT 6 the input from order units 9 and 10 are joined using merge join
algorithm

TABLE UNIT 3

JOIN PATH 3

JOIN UNIT 2

Figure 4. Execution graph 1

132 IBM solidDB: SQL Guide

ORDER UNIT 9 orders the input from TABLE UNIT 8. Since the data is retrieved
in correct order, no real ordering is needed

ORDER UNIT 10 orders the input from TABLE UNIT 7. Since the data is retrieved
in correct order, no real ordering is needed

TABLE UNIT 8: rows are fetched from table TENKTUP2 using primary key.
Constraints UNIQUE2 < 4500 and UNIQUE2 > 4000 are used to select the rows

TABLE UNIT 7: rows are fetched from table TENKTUP1 using primary key.
Constraints UNIQUE2 < 4500 and UNIQUE2 > 4000 are used to select the rows

Problem reporting
solidDB offers sophisticated diagnostic tools and methods for producing high
quality problem reports with very limited effort. Use the diagnostic tools to
capture all the relevant information about the problem.

All problem reports should contain the following files and information:
v solid.ini

v license number
v solmsg.out

v solerror.out

v soltrace.out

v problem description
v steps to reproduce the problem
v all error messages and codes
v contact information, preferably email address of the contact person

Problem categories
Most problems can be divided into the following categories:
v solidDB ODBC API
v solidDB ODBC or JDBC Driver

TABLE UNIT 7TABLE UNIT 8

ORDER UNIT 10ORDER UNIT 9

JOIN PATH 10JOIN PATH 9

JOIN UNIT 6

Figure 5. Execution graph 2

6 Diagnostics and troubleshooting 133

v Communication problems between the application or an external application (if
using the linked library access) and solidDB.

The following pages include detailed instructions to produce a proper problem
report for each problem type. Please follow the guidelines carefully.

solidDB ODBC API problems
If the problem concerns the performance of a specific solidDB ODBC API or SQL
statement, you should run SQL info facility at level 4 and include the generated
soltrace.out file into your problem report. This file contains the following
information:
v create table statements
v create view statements
v create index statements
v SQL statement(s)

solidDB ODBC driver problems
If the problem concerns the performance of solidDB ODBC Driver, please include
the following information:
v solidDB ODBC Driver name, version, and size
v

ODBC Driver Manager version and size

If the problem concerns the cooperation of solidDB and any third party standard
software package, please include the following information:
v Full name of the software
v Version and language
v Manufacturer
v Error messages from the third party software package

Use ODBC trace option to get a log of the ODBC statements and include it in your
problem report.

solidDB JDBC driver problems
If the problem is related to the solidDB JDBC Driver, please include the following
information in your problem report:
v Exact version of JDK or JRE used
v Name, size, and date of the SOLIDDriver class package
v Contents of DriverManager.setLogStream(someOutputStream) output, if

available
v Call stack (that is, Exception.printStackTract() output) of the application, if an

exception has occurred in the application

Communication between a client and server
If the problem concerns the performance of the communication between a client
and server use the Network trace facility and include the generated trace files into
your problem report. Please include the following information:
v solidDB communication DLLs used: version and size
v other communication DLLs used: version and size

134 IBM solidDB: SQL Guide

v description of the network configuration

Tracing facilities for stored procedures and triggers
When debugging a stored procedure or a trigger, you may want to add "trace"
commands to see which parts of the code are executing. Or you may want to trace
every statement within the procedure or trigger. The following two sections
explain how to do these things.

User-definable trace output from procedure code
From inside your stored procedure or trigger, you can send "trace" output to the
soltrace.out file by using the following command:
WRITETRACE (entry VARCHAR)

You can turn the output on or off by using the command:
ADMIN COMMAND ’usertrace { on | off }
user username { procedure | trigger | table } entity_name’

The "entity_name" is the name of the procedure, trigger, or table for which you
want to turn tracing on or off. If the keyword "table" is specified, then all triggers
on that table are traced.

You may turn on (or off) tracing for a specified procedure, a specified trigger, or
for all triggers on a specified table.

Trace is activated only when the specified user calls the procedure / trigger. This is
useful, for example, when tracing propagated procedure calls in a advanced
replication master.

Turning on tracing turns it on in all procedure/trigger calls by this user, not just
calls from the connection that switched the trace on. If you have multiple
connections that use the same username, then all of the calls in all of those
connections will be traced. Furthermore, the tracing will be done on calls
propagated to (executed on) the master, as well as the calls executed on the replica.

Procedure execution trace
If you must trace EVERY statement in your stored procedure or trigger, then you
don't want to spend time to write a WRITETRACE statement for every SQL
statement. Instead, you can simply turn on "PROCTRACE", which traces every
statement inside the specified stored procedure or trigger. As with USERTRACE,
you can turn proctrace on for a specified procedure, a specified trigger, or for all
triggers associated with a particular table. The syntax is:
ADMIN COMMAND ’proctrace { on | off }
user username { procedure | trigger | table } entity_name’

The "entity_name" is the name of the procedure, trigger, or table for which you
want to turn tracing on or off.

Trace is activated only when the specified user calls the procedure / trigger. This is
useful, for example, when tracing propagated procedure calls in a advanced
replication master.

Turning on tracing turns it on in all procedure/trigger calls by this user, not just
calls from the connection that switched the trace on. If you have multiple
connections that use the same username, then all of the calls in all of those

6 Diagnostics and troubleshooting 135

connections will be traced. Furthermore, the tracing will be done on calls
propagated to (executed on) the master, as well as the calls executed on the replica.

If the keyword "table" is specified, then all triggers on that table are traced.

Example:
"create procedure trace_sample(i integer)
returns(j integer)
begin

j := 2*i;
return row;

end";
commit work;

admin command ’proctrace on user DBA procedure TRACE_SAMPLE’;
call trace_sample(2);

OUTPUT FROM EXAMPLE:
23.01 17:25:17 ---- PROCEDURE ’DBA.DBA.TRACE_SAMPLE’ TRACE BEGIN ----
0001:CREATE PROCEDURE TRACE_SAMPLE(I INTEGER)
0002:RETURNS(J INTEGER)
0003:BEGIN

--> I:=2
--> J:=NULL
--> SQLSUCCESS:=1
--> SQLERRNUM:=NULL
--> SQLERRSTR:=NULL
--> SQLROWCOUNT:=NULL

0004: J := 2*I;
--> J:=4

0005: RETURN ROW;
0006:END
23.01 17:25:17 ---- PROCEDURE ’DBA.DBA.TRACE_SAMPLE’ TRACE END ----

Measuring and improving performance of START AFTER COMMIT
statements

Tuning performance of START AFTER COMMIT statements
Background tasks can be controlled with SSC-API and admin commands (see IBM
solidDB Linked Library Access User Guide for details). The task type
SSC_TASK_BACKGROUND is used for the tasks that execute statements started
with START AFTER COMMIT. You can give this task type higher priority or lower
priority, or you may suspend this task type.

Note that there may be more than one of these tasks, but you cannot control them
individually. In other words, if you call SSCSuspendTaskClass for
SSC_TASK_BACKGROUND, it will suspend all the background tasks.

Analyzing failures in START AFTER COMMIT statements
There is a limit on the number of uncommitted START AFTER COMMIT
statements that may exist simultaneously. (By "uncommitted", we mean that the
transaction in which the START AFTER COMMIT statement was executed has not
yet been committed. At this point, the body of the START AFTER COMMIT
statement — e.g. the procedure call — has not yet even started to execute.) If the
maximum is reached, then an error is returned when the next START AFTER
COMMIT is issued. The maximum number is configurable in solid.ini using the

136 IBM solidDB: SQL Guide

parameter named MaxStartStatements (for details, see the description of this
parameter in IBM solidDB Administrator Guide).

If a statement cannot be started, the reason for it is logged into the system table
SYS_BACKGROUNDJOB_INFO. Only failed START AFTER COMMIT statements
are logged into this table. For more details about this table, see
“SYS_BACKGROUNDJOB_INFO” on page 320.

The user can retrieve the information from the table
SYS_BACKGROUNDJOB_INFO using either an SQL SELECT statement or by
calling the system procedure SYS_GETBACKGROUNDJOB_INFO. The stored
procedure SYS_GETBACKGROUNDJOB_INFO returns the row that matches the
given jobid of the START AFTER COMMIT statement. For more details about
SYS_GETBACKGROUNDJOB_INFO, see “SYS_GETBACKGROUNDJOB_INFO” on
page 365.

If you want to be notified when a statement fails to start, you can wait on the
system event SYS_EVENT_SACFAILED. See its description in “Miscellaneous
events” on page 367 for details about this event. The application can wait for this
event and use the jobid to retrieve the error message from the system table
SYS_BACKGROUNDJOB_INFO.

6 Diagnostics and troubleshooting 137

138 IBM solidDB: SQL Guide

7 Performance tuning

This chapter discusses techniques that you can use to improve the performance of
solidDB. The topics included in this chapter are:
v Tuning SQL statements and applications
v Optimizing single-table SQL queries
v Using indexes to improve query performance
v Waiting on events
v Optimizing batch inserts and updates
v Using Optimizer hints for performance
v Diagnosing poor performance

For tips on optimizing advanced replication data synchronization, see IBM solidDB
Advanced Replication User Guide.

Tuning SQL statements and applications
Tuning the SQL statements, especially in applications where complex queries are
involved, is generally the most efficient means of improving the database
performance.

Be sure to tune your application before tuning the RDBMS because:
v during application design you have control over the SQL statements and data to

be processed
v you can improve performance even if you are unfamiliar with the internal

working of the RDBMS you are going to use
v if your application is not tuned well, it will not run well even on a well-tuned

RDBMS

You should know what data your application processes, what are the SQL
statements used, and what operations the application performs on the data. For
example, you can improve query performance when you keep SELECT statements
simple, avoiding unnecessary clauses and predicates.

Evaluating application performance
To isolate areas where performance is lacking in your application, the solidDB
provides the following diagnostic tools for observing database performance:
v SQL info facility
v EXPLAIN PLAN FOR statement

These tools are helpful in tuning your application and identifying any inefficient
SQL statements in it. Read 6, “Diagnostics and troubleshooting,” on page 127 for
additional information on how to use these tools.

In addition, the following commands provide useful information for evaluating
performance.
v ADMIN COMMAND 'status'

This command returns statistics information from the server. For details, read
about this command in IBM solidDB Administrator Guide.

139

v ADMIN COMMAND 'perfmon'
The command returns detailed performance statistics from the server. For more
information, see Performance counters (perfmon) in the IBM solidDB Administrator
Guide.

v ADMIN COMMAND 'trace'
This command switches tracing on for SQL statements and network
communication. For complete syntax, see the trace option syntax under
“ADMIN COMMAND” on page 155.

Using stored procedure language
Using stored procedures can speed up some operations in two ways:
v Statements in stored procedures are parsed and compiled once and then stored

in compiled form. Statements outside stored procedures are re-parsed and
compiled every time that they are executed. Thus, putting statements in stored
procedures reduces overhead (parsing and compiling) if the statements are
executed more than once.

v If you have multiple statements inside a single stored procedure, calling that
stored procedure once may use fewer network "trips" than passing each
statement individually from the client to the server.

Optimizing single-table SQL queries
solidDB provides a Simple SQL Optimization feature that increases performance
with specific types of single-table SQL queries. Performance improvements apply
to SELECT, DELETE, and UPDATE statements. The feature does not apply to
INSERT statements.

Simple SQL Optimization is enabled/disabled by the SimpleSQLOpt parameter in
the [SQL] section of the solid.ini file. By default, this feature is turned on and the
SimpleSQLOpt parameter does not appear in the solid.ini file. To disable the
feature, you must add the following lines to the solid.ini file:
[SQL]
SimpleSQLOpt=No

Once you have added these lines to the file, you can always enable the feature by
specifying SimpleSQLOpt=Yes or removing the parameter from the [SQL] section.
As always, remember that any changes to the solid.ini file do not take effect until
the server restarts.

When simple SQL optimization is turned on, solidDB automatically optimizes
single-table SQL queries that meet the following conditions:
v The statement accesses only a single table.
v The statement does not contain a view, subquery, UNION, INTERSECT, etc.
v The statement does not use ROWNUM.
v The statement does not use a solidDB sequence object that is used to retrieve

sequence numbers.

Note that like other optimization techniques, the Simple SQL Optimization feature
speeds up most queries, but reduces performance for a few types of queries. If you
find your particular queries run more slowly when you are using simple SQL
optimization, you can turn off the feature.

140 IBM solidDB: SQL Guide

Using indexes to improve query performance
You can use indexes to improve the performance of queries. A query that
references an indexed column in its WHERE clause can use the index. If the query
selects only the indexed column, the query can read the indexed column value
directly from the index, rather than from the table.

If all the fields in the SELECT list of a query are in an index, then the solidDB
optimizer can simply use that index, rather than doing an extra lookup to read the
complete record. Similarly, if all the fields of a WHERE clause are in an index, then
the optimizer can use that index — if the information in the index is enough to
prove that the record won't qualify for the WHERE clause, then the optimizer can
avoid looking up the complete record.

For example, suppose that we have a WHERE clause that refers to two or more
columns, e.g.
WHERE col1 = x AND col2 >= a AND col2 <=b

Suppose further that we have an index that contains both col1 and col2, and that
has either col1 or col2 as the leading column of the key. For example, if we have
an index on col2 + col3 + col1 then this index contains both columns, and one of
those columns (col2) is the leading column in the key. If the user's query is
SELECT col1, col4

FROM table1
WHERE col1 = x AND col2 >= a AND col2 <=b;

then we do not need to look up the complete record unless the search criteria are
met. After all, if the search criteria are not met, then we don't care what value col4
has and so we don't need to look up the full record.

If a table has a primary key, solidDB orders the rows on disk in the order of the
values of the primary key. Since the rows are physically in order by the primary
key, the primary key itself serves as an index, and optimization tips that apply to
indexes also apply to the primary key.

If the table does not have a user-specified primary key, then the rows are ordered
using the ROWID. The ROWID is assigned to each row when it is inserted, and
each record gets a larger ROWID than the record inserted before it. Thus, in tables
without user-specified primary keys, the records are stored in the order in which
those rows were inserted. For more information about primary keys, read “Primary
key indexes” on page 103.

Searches with row value constructor constraints are optimized to use an index if an
index is available. For efficiency, solidDB uses an index to resolve row value
constructor constraints of the form (A, B, C) >= (1, 2, 3), where the operator may
be any of the following: <, <=, >= and >. (The server does not use an index to
resolve row value constructor constraints that contain the operators =, !=, or <>.
The server may use an index to resolve other types of constraints that use =, !=, or
<>.) For more information about row value constructors, see “Row value
constructors” on page 19.

Indexes improve the performance of queries that select a small percentage of rows
from a table. You should consider using indexes for queries that select less than
15% of table rows.

7 Performance tuning 141

Full table scan
If a query cannot use an index, solidDB must perform a full table scan to execute
the query. This involves reading all rows of a table sequentially. Each row is
examined to determine whether it meets the criteria of the query's WHERE clause.
Finding a single row with an indexed query can be substantially faster than
finding the row with a full table scan. On the other hand, a query that selects more
than 15% of a table's rows may be performed faster by a full table scan than by an
indexed query.

You should check every query using the EXPLAIN PLAN statement. (You should
use your real data when doing this, since the best plan will depend upon the
actual amount of data and the characteristics of that data.) The output from the
EXPLAIN PLAN statement allows you to detect whether an index is really used
and if necessary you can redo the query or the index. Full table scans often cause
slow response time for SELECT queries, as well as excessive disk activity. To
diagnose performance degradation problems, you can request statistics on file
operations using ADMIN COMMAND ’perfmon’ as described in section Performance
counters (perfmon) in the IBM solidDB Administrator Guide.

To perform a full table scan, every block in the table is read. For each block, every
row stored in the block is read. To perform an indexed query, the rows are read in
the order in which they appear in the index, regardless of which blocks contain
them. If a block contains more than one selected row it may be read more than
once. So, there are cases when a full table scan requires less I/O than an indexed
query, if the result set is relatively large.

Concatenated indexes
An index can be made up of more than one column. Such an index is called a
concatenated index. We recommend using concatenated indexes when possible.

Whether or not a SQL statement uses a concatenated index is determined by the
columns contained in the WHERE clause of the SQL statement. A query can use a
concatenated index if it references a leading portion of the index in the WHERE
clause. A leading portion of an index refers to the first column or columns
specified in the CREATE INDEX statement.

Example:
CREATE INDEX job_sal_deptno ON emp(job, sal, deptno);

This index can be used by these queries:
SELECT * FROM emp WHERE job = ’clerk’ and sal =
800 and deptno = 20;
SELECT * FROM emp WHERE sal = 1250 and job = salesman;
SELECT job, sal FROM emp WHERE job = ’manager’;

The following query does not contain the first column of the index in its WHERE
clause and therefore cannot use the index:
SELECT * FROM emp WHERE sal = 6000;

Choosing columns to index
The following list gives guidelines in choosing columns to index:
v You should create indexes on columns that are used frequently in WHERE

clauses.
v You should create indexes on columns that are used frequently to join tables.

142 IBM solidDB: SQL Guide

v You should create indexes on columns that are used frequently in ORDER BY
clauses.

v You should create indexes on columns that have few of the same values or
unique values in the table.

v You should not create indexes on small tables (tables that use only a few blocks)
because a full table scan may be faster than an indexed query.

v If possible, choose a primary key that orders the rows in the most appropriate
order.

v If only one column of the concatenated index is used frequently in WHERE
clauses, place that column first in the CREATE INDEX statement.

v If more than one column in a concatenated index is used frequently in WHERE
clauses, place the most selective column first in the CREATE INDEX statement.

Waiting on events
In many programs, you may have to wait for a particular condition to occur before
you can perform a certain task. In some cases, you may use a "while" loop to check
whether the condition has occurred. solidDB provides Events, which in some cases
allow you to avoid wasting CPU time spinning in a loop waiting for a condition.

One (or more) clients or threads can wait on an event, and another client or thread
can post that event. For example, several threads might wait for a sensor to get a
new piece of data. Another thread (working with that sensor) can post an event
indicating that the data is available. For more information about events, see “Using
events” on page 85 and various sections of Appendix B, “solidDB SQL syntax,” on
page 155, including “CREATE EVENT” on page 180.

Optimizing batch inserts and updates
It is highly recommended that you design a database schema that supports
running a batch insert in primary key order. Data in the database file is stored
physically in the order defined by the primary key of the table. If no primary key
is defined, data is stored in the database file in the order it is written to the
database. Database operations (that is, reads and writes) always access data at the
page level. The default page size of the database is 8 KB.

If the batch write operations are performed in the order that supports the primary
key, the caching algorithms of the server are able to group the database file write
operations. In this way, a larger number of rows are written to the disk in one
physical disk I/O operation. In the worst case, if the insert order is different from
the primary key order, each insert or delete operation requires re-writing a
database page where only one row has changed.

For these reasons, it makes sense to ensure that tables of a batch write operation
have primary keys that match the access order of the batch write operation. This
type of database schema can make a significant difference in the performance of
the operation.

For example, assume you have the following kind of table:
CREATE TABLE USAGE_EVENT (
EVENT_ID INTEGER NOT NULL PRIMARY KEY,
DEVICE_ID INTEGER NOT NULL,
EVENT_DATA VARCHAR NOT NULL);

7 Performance tuning 143

In this table, EVENT_ID is a sequence number. The insert and delete operations are
done in the order specified by the EVENT_ID column, allowing for maximum
efficiency.

Note that performance of batch write operations on this same table can be
significantly worse if the first column of the primary key were DEVICE_ID, but
data was written to the database in the EVENT_ID order. In this scenario, the
number of file-I/O operations needed to complete the batch write operation
increases when the size of the table grows.

Increasing speed of batch inserts and updates
You can optimize the speed for large batch inserts and updates to solidDB.
Following are guidelines for increasing speed:
1. Check that you are running the application with the AUTOCOMMIT mode set

off.
solidDB ODBC Driver's default setting is AUTOCOMMIT. This is the standard
setting according to the ODBC specification. To set your application with
AUTOCOMMIT off, call the SQLSetConnectOption function as in the following
example:
rc = SQLSetConnectOption
(hdbc, SQL_AUTOCOMMIT, SQL_AUTOCOMMIT_OFF);

2. Do not use large transactions. Five hundred (500) rows is recommended as the
initial transaction size. The optimal value for the transaction size is dependent
on the particular application; you may need to experiment.

3. To make batch inserts faster, you can turn logging off. This, however, increases
the risk of data loss during system failure. In some environments, this trade-off
is tolerable.

Number 1 and 2 of these guidelines are the most important actions you can take to
increase the speed of batch inserts. The actual rate of insertions also depends on
your hardware, on the amount of data per row, and on the existing indices for the
table.

Using optimizer hints
Due to various conditions with the data, user query, and database, the SQL
Optimizer is not always able to choose the best possible execution plan. For
example, for more efficiency, you may want to force a merge join because you
know, unlike the Optimizer, that your data is already sorted.

Or sometimes specific predicates in queries cause performance problems that the
Optimizer cannot eliminate. The Optimizer may be using an index that you know
is not optimal. In this case, you may want to force the Optimizer to use one that
produces faster results.

Optimizer hints provide a way to have better control over response times to meet
your performance needs. Within a query, you can specify directives or hints to the
Optimizer, which it then uses to determine its query execution plan. Hints are
detected through a pseudo comment syntax from SQL-92.

Hints are available for:
v Selecting merge or nested loop join
v Using a fixed join order as given in the from list
v Selecting internal or external sort

144 IBM solidDB: SQL Guide

v Selecting a particular index
v Selecting a table scan over an index scan
v Selecting sorting before or after grouping

You can place a hint(s) in a SQL statement as a static string, just after a SELECT,
UPDATE, or DELETE keyword. Hints are not allowed after the INSERT keyword.

Table name resolution in optimizer hints is the same as in any table name in a SQL
statement. This means that if there is a table alias name in the query, then you
must use the alias, not the table name, in the optimizer hints. For example:
SELECT
--(* vendor(SOLID), product(Engine), option(hint)
-- FULL SCAN emp_alias *)--
emp_alias.emp_id, employee_name, dependent_name
FROM employee_table AS emp_alias LEFT OUTER JOIN dependent_table
AS dep_alias
ON (dep_alias.emp_id = emp_alias.emp_id)
ORDER BY emp_alias.emp_id;

If you specify the table name when you should have specified the alias name, you
will get the following error message:
102: Unused optimizer hint.

If you are not using an alias and you are using a table that is in another schema
and/or another catalog, then make sure that in the hint you precede the table
name with the schema and/or catalog name. For example:
SELECT
--(* vendor(SOLID), product(Engine), option(hint)
-- FULL SCAN sally_schema.employee_table *)--
emp_id, employee_name
FROM sally_schema.employee_table;

When there is an error in a hint specification, then the whole SQL statement fails
with an error message.

Hints are enabled and disabled using the following configuration parameter in
solid.ini:
[Hints]
EnableHints=YES | NO

The default is set to YES.

For more details on Optimizer Hints, including a description of possible hints and
examples, refer to “HINT” on page 230.

Diagnosing poor performance
There are different areas in solidDB that can result in performance degradation. In
order to remedy performance problems, you need to determine the underlying
cause. Following is a table that lists common symptoms of poor performance,
possible causes, and directs you to the section in this chapter for the remedy.

7 Performance tuning 145

Table 25. Diagnosing poor performance

Symptoms Diagnosis Solution

Slow response time for a single query.
Other concurrent access to the database is
affected. Disk may be busy.

v Inefficient usage of indexes in the
query.

v Non-optimal decision from the
Optimizer.

v External sorting is not defined and a
large internal sorting is causing
excessive swapping to disk.

If index definitions are missing, create
new indices or modify existing ones to
match the indexing requirements of the
slow query. For more details, read “Using
indexes to improve query performance”
on page 141.

Run the EXPLAIN PLAN FOR statement
for the slow query and verify whether the
query optimizer is using the indices. For
more details, read “EXPLAIN PLAN FOR
statement” on page 128.

If the Optimizer is not choosing the
optimal query execution plan, override
the Optimizer decision by using optimizer
hints. For more details, read “Using
optimizer hints” on page 144.

Make sure the external sorter is enabled
by defining the Sorter.TmpDir
configuration parameter. For more details,
see the description of "TmpDir_[1...N]" in
IBM solidDB Administrator Guide.

Slow response time is experienced for all
queries. An increase in the number of
concurrent users deteriorates the
performance more than linearly. When all
users are thrown out and then
reconnected, performance still does not
improve.

Insufficient cache size. Increase the cache size. Allocate for cache
at least 0.5 MB per concurrent user or
2-5% of the database size. For more
details, read the section Defining database
cache size in IBM solidDB Administrator
Guide.

Slow response time is experienced for all
queries and write operations. When all
users are thrown out and are connected,
performance only improves temporarily.
The disk is very busy.

The Bonsai Tree is too large to fit into the
cache.

Make sure that there are no
unintentionally long-running transactions.
Verify that all transactions (also read-only
transactions) are committed in a timely
manner. For more details, read Reducing
Bonsai Tree size by committing transactions"
in IBM solidDB Administrator Guide.

Slow performance during batch write
operation as the database size increases.
There is an excessive amount of disk I/O.

v The data is committed to the database
in batches that are too small.

v Data is written to disk in an order that
is not supported by the primary key of
the table.

Make sure that the autocommit is
switched off and the write operations are
committed in batches of at least 100 rows
per transaction.

Modify the primary keys or batch write
processes so that write operations occur in
the primary key order. For more details,
read “Optimizing batch inserts and
updates” on page 143.

The server process footprint grows
excessively and causes the operating
system to swap. The disk is very busy.
The ADMIN COMMAND 'report' output
shows a long list of currently active
statements.

SQL statements have not been closed and
dropped after use.

Make sure that the statements that are no
longer in use by the client application are
closed and dropped in a timely manner.

146 IBM solidDB: SQL Guide

Appendix A. Data types

Supported data types
The tables in this appendix list the supported data types by category. The
following abbreviations are used in each table.

Table 26. Supported data types

Abbreviation Description

DEFLEN the defined length of the column; for example, for CHAR(24)
the precision and length is 24

DEFPREC the defined precision; for example, for NUMERIC(10,3) it is 10

DEFSCALE the defined scale; for example, for NUMERIC(10,3), it is 3

MAXLEN the maximum length of column

N/A not applicable

Character data types
Table 27. Character Data Types

Data Type Size Precision Scale Length Display Size

CHARACTER

CHAR

2 G - 1*

(2147483647)

DEFLEN N/A DEFLEN DEFLEN

WCHAR

NATIONAL
CHARACTER

NATIONAL CHAR

NCHAR

2 G - 1*

(2147483647)

DEFLEN N/A DEFLEN DEFLEN

VARCHAR

CHARACTER
VARYING

CHAR VARYING

2 G - 1**

(2147483647)

DEFLEN N/A DEFLEN DEFLEN

WVARCHAR

NATIONAL
VARCHAR

NCHAR VARYING

NVARCHAR

2 G - 1**

(2147483647)

DEFLEN N/A DEFLEN DEFLEN

147

Table 27. Character Data Types (continued)

Data Type Size Precision Scale Length Display Size

LONG VARCHAR

CHARACTER
LARGE OBJECT

CHAR LARGE
OBJECT

CLOB

2 G - 1

(2147483647)

MAXLEN N/A MAXLEN MAXLEN

LONG
WVARCHAR

LONG NATIONAL
VARCHAR

NCHAR LARGE
OBJECT

NCLOB

2 G - 1

(2147483647)

MAXLEN N/A MAXLEN MAXLEN

* default is 1

** default is 254

Numeric data types
Table 28. Numeric Data Types

Data Type Size Precision Scale Length Display Size

TINYINT [-128, 255] 3 0 1 (bytes) 4 (signed)

3 (unsigned)

SMALLINT [-32768, 65535] 5 0 2 (bytes) 6 (signed)

5 (unsigned)

INTEGER

INT

[-231, 231- 1] 10 0 4 (bytes) 11 (signed)

10 (unsigned)

BIGINT [-263, 263- 1] 19 0 8 (bytes) 20 (signed)

REAL Positive numbers:

1.175494351e-38 to

1.7014117e+38

Negative numbers:

-1.7014117e+38 to

-1.175494351e-38

You can also use value zero
(0) with this data type.

7 N/A 4 (bytes) 13

148 IBM solidDB: SQL Guide

Table 28. Numeric Data Types (continued)

Data Type Size Precision Scale Length Display Size

FLOAT Positive numbers:

2.2250738585072014e-308 -

8.98846567431157854e+307

Negative numbers:

-8.98846567431157854e+307
to

-2.2250738585072014e-308

You can also use value zero
(0) with this data type.

15 N/A 8 (bytes) 22

DOUBLE

PRECISION

Positive numbers:

2.2250738585072014e-308 -

8.98846567431157854e+307

Negative numbers:

-8.98846567431157854e+307
to

-2.2250738585072014e-308

You can also use value zero
(0) with this data type.

15 N/A 8 (bytes) 22

DECIMAL* ±1.0e254 DEFPREC

Max 52

Default 52

DEFSCALE

Default 0

2-27 (bytes) Variable

NUMERIC ±1.0e254 DEFPREC

Max 52

Default 52

DEFSCALE

Default 0

2-27 (bytes) Variable

* If neither precision nor scale is specified for DECIMAL, the values are represented as (exact) decimal floating point numbers of
precision 52 and range ±1.0e254.

Note:

Although integer data types (TINYINT, SMALLINT, INT, and BIGINT) may be
interpreted by the client program as either signed or unsigned, solidDB stores and
orders them as signed integers. There is no way to tell the server to order the
integer data types as though they were unsigned.

Appendix A. Data types 149

CAUTION:

BIGINT has approximately 19 significant digits. This means that you may lose
least significant digits when storing BIGINT into non-integer data types such as
FLOAT (which has approximately 15 significant digits), SMALLFLOAT (which
has approximately 7 significant digits), DECIMAL (which has 16 significant
digits).

Binary data types
Table 29. Binary Data Types

Data Type Size Precision Scale Length Display Size

BINARY 2 G* DEFLEN N/A DEFLEN DEFLEN x 2

VARBINARY 2 G** DEFLEN N/A DEFLEN DEFLEN x 2

LONG VARBINARY

BLOB

2 G MAXLEN N/A MAXLEN MAXLEN x 2

* default is 1

** default is 254

Tip:

To insert values into BINARY, VARBINARY, and LONG VARBINARY fields, you
may express the value as hexadecimal and use the CAST operator, e.g.:
INSERT INTO table1 VALUES (CAST(’FF00AA55’ AS VARBINARY));

Similarly, you may use CAST() expressions in WHERE clauses:
CREATE TABLE t1 (x VARBINARY);
INSERT INTO t1 (x) VALUES (CAST(’000000A512’ AS VARBINARY));
INSERT INTO t1 (x) VALUES (CAST(’000000FF12’ AS VARBINARY));

-- To compare the VARBINARY value(s) using LIKE, cast the
-- VARBINARY to VARCHAR.
SELECT * FROM t1 WHERE CAST(x AS VARCHAR) LIKE ’000000A5%’;
SELECT * FROM t1 WHERE CAST(x AS VARCHAR) LIKE ’000000A5__’;

-- NOTE: If you want to use "=" rather than "LIKE" then you
-- can cast either operand.
SELECT * FROM t1 WHERE CAST(x AS VARCHAR) = ’000000A512’;
SELECT * FROM t1 WHERE x = CAST(’000000A512’ AS VARBINARY);

WARNING: this kind of query cannot use indexed search for the LIKE predicate
and results in poor query performance in many cases.

Date data type
Table 30. Date Data Type

Data Type Size Precision Scale Length Display Size

DATE N/A 10* N/A 6** 10*

150 IBM solidDB: SQL Guide

Table 30. Date Data Type (continued)

Data Type Size Precision Scale Length Display Size

* the number of characters in the yyyy-mm-dd format

** the size of the DATE_STRUCT structure

Time data type
Table 31. Time data type

Data Type Size Precision Scale Length Display Size

TIME N/A 8* N/A 6** 8*

* the number of characters in the hh:mm:ss format

** the size of the TIME_STRUCT structure

Timestamp data type
Table 32. Timestamp data type

Data Type Size Precision Scale Length Display Size

TIMESTAMP N/A 19* 9 16** 19/29***

* the number of characters in the 'yyyy-mm-dd hh:mm:ss.fffffffff' format

** the size of the TIMESTAMP_STRUCT structure

*** size is 29 with a decimal fraction part

Smallest possible non-zero numbers
Table 33. Smallest possible non-zero numbers

Data Type Value

DOUBLE PRECISION 2.2250738585072014e-308

REAL 1.175494351e-38

Description of different column values in the tables
The range of a numeric column refers to the minimum and maximum values the
column can store. The size of character columns refers to the maximum length of
data that can be stored in the column of that data type.

The precision of a numeric column refers to the maximum number of digits used
by the data type of the column. The precision of a non-numeric column refers to
the defined length of the column.

Appendix A. Data types 151

The scale of a numeric column refers to the maximum number of digits to the right
of the decimal point. Note that for the approximate floating point number
columns, the scale is undefined, since the number of digits to the right of the
decimal point is not fixed.

The length of a column is the maximum number of bytes returned to the
application when data is transferred to its default C type. For character data, the
length does not include the null termination byte. Note that the length of a column
may differ from the number of bytes needed to store the data on the data source.

The display size of a column is the maximum number of bytes needed to display
data in character form.

BLOBs and CLOBs
solidDB can store binary and character data up to 2147483647 (2G - 1) bytes long.
When such data exceeds a certain length, the data is called a BLOB (Binary Large
OBject) or CLOB (Character Large OBject), depending upon the data type that
stores the information. CLOBS contain only "plain text" and can be stored in any of
the following data types:

CHAR, WCHAR

VARCHAR, WVARCHAR

LONG VARCHAR (mapped to standard type CLOB),

LONG WVARCHAR (mapped to standard type NCLOB)

BLOBs can store any type of data that can be represented as a sequence of bytes,
such as a digitized picture, video, audio, a formatted text document. (They can also
store plain text, but you'll have more flexibility if you store plain text in CLOBs).
BLOBs are stored in any of the following data types:

BINARY

VARBINARY

LONG VARBINARY (mapped to standard type BLOB)

Since character data is a sequence of bytes, character data can be stored in BINARY
fields, as well as in CHAR fields. CLOBs can be considered a subset of BLOBs.

For convenience, we will use the term BLOBs to refer to both CLOBs and BLOBs.

For most non-BLOB data types, such as integer, float, date, etc., there is a rich set
of valid operations that you can do on that data type. For example, you can add,
subtract, multiply, divide, and do other operations with FLOAT values. Because a
BLOB is a sequence of bytes and the database server does not know the "meaning"
of that sequence of bytes (i.e. it doesn't know whether the bytes represent a movie,
a song, or the design of the space shuttle), the operations that you can do on
BLOBs are very limited.

solidDB does allow you to perform some string operations on CLOBs. For
example, you can search for a particular substring (e.g. a person's name) inside a
CLOB by using the LOCATE() function. Because such operations require a lot of

152 IBM solidDB: SQL Guide

the server's resources (memory and/or CPU time), solidDB allows you to limit the
number of bytes of the CLOB that are processed. For example, you might specify
that only the first 1 megabyte of each CLOB be searched when doing a string
search. For more information, see the description of the MaxBlobExpressionSize
configuration parameter in solidDB Administration Guide.

Although it is theoretically possible to store the entire blob "inside" a typical table,
if the blob is large, then the server usually performs better if most or all of the blob
is not stored in the table. In solidDB, if a blob is no more than N bytes long, then
the blob is stored in the table. If the blob is longer than N bytes, then the first N
bytes are stored in the table, and the rest of the blob is stored outside the table as
disk blocks in the physical database file. The exact value of "N" depends in part
upon the structure of the table, the disk page size that you specified when you
created the database, etc., but is always at least 256. (Data 256 bytes or shorter is
always stored in the table.)

If a data row size is larger than one third of the disk block size of the database file,
you must store it partly as a BLOB.

The SYS_BLOBS system table is used as a directory for all BLOB data in the
physical database file. One SYS_BLOB entry can accommodate 50 BLOB parts. If
the BLOB size exceeds 50 parts, several SYS_BLOB entries per BLOB are needed.

The query below returns an estimate on the total size of BLOBs in the database.
select sum(totalsize) from sys_blobs

The estimate is not accurate, because the info is only maintained at checkpoints.
After two empty checkpoints, this query should return an accurate response.

Appendix A. Data types 153

154 IBM solidDB: SQL Guide

Appendix B. solidDB SQL syntax

This appendix presents a simplified description of the SQL statements, including
some examples.

Note that earlier versions of this manual put the sync-related SQL commands in a
separate chapter. This version of the manual puts all the SQL commands into this
one appendix.

solidDB SQL syntax is based on the ANSI X3H2-1989 level 2 standard including
important ANSI X3H2-1992 (SQL-92) extensions. User and role management
services missing from previous standards are based on the ANSI SQL-99 draft.

Most commands listed here are available in solidDB disk-based engine and
solidDB main memory engine. Some commands related to advanced replication
synchronization are not available if you have not licensed advanced replication.

ADMIN COMMAND
ADMIN COMMAND ’command_name’

command_name ::= ABORT | ASSERTEXIT | BACKUP |
BACKGROUNDJOB | BACKUPLIST | CHECKPOINTING | CLEANBGJOBINFO |
CLOSE | DESCRIBE | ERRORCODE | ERROREXIT | ERRORMESSAGE | FILESPEC |
HELP | HOTSTANDBY | INDEXUSAGE | INFO | LOGMESSAGE | MAKECP | MEMORY |
MESSAGES | MONITOR | NETBACKUP | NETBACKUPLIST | NETSTAT | NOTIFY |
OPEN | PARAMETER | PERFMON | PERFMON DIFF | PID | PROCTRACE |
PROTOCOLS | REPORT | RUNMERGE | SAVE | SHUTDOWN | SQLLIST | STARTMERGE |
STATUS | THROWOUT | TID | TRACE | TRACEMESSAGE | USERID | USERLIST |
USERTRACE | VERSION

Usage

The ADMIN COMMAND is a solidDB-specific SQL extension that executes administrative
commands.

Using ADMIN COMMAND with solidDB SQL Editor (solsql)

When used with the solidDB SQL Editor (solsql), the command_name must be given
with quotes. For example:
ADMIN COMMAND ’backup’

Using ADMIN COMMAND with solidDB Remote Control (solcon)

When used with the solidDB Remote Control (solcon), the ADMIN COMMAND
syntax includes the command_name only, without the quotes. For example:
backup

Abbreviations

Abbreviations for ADMIN COMMANDs are also available. For example:
ADMIN COMMAND ’bak’

To access a list of abbreviated commands, execute

155

ADMIN COMMAND ’help’

The result set contains two columns: RC and TEXT:
v The RC (return code) column is a command return code. If the execution of the

command was successful, value 0 is returned.
v The TEXT column is the command reply.

Important usage notes

v All options of the ADMIN COMMAND are not transactional and cannot be
rolled back.

v ADMIN COMMANDs and starting transactions

Although ADMIN COMMANDs are not transactional, they will start a new
transaction if one is not already open. (They do not commit or roll back any
open transaction.) This effect is usually insignificant. However, it may affect the
'start time" of a transaction, and that may occasionally have unexpected effects.
solidDB's concurrency control is based on a versioning system; you see a
database as it was at the time that your transaction started.
For example, if you issue an ADMIN COMMAND without another commit and
then leave for an hour; when you return, your next SQL command may see the
database as it was an hour ago, that is, when you first started the transaction
with the ADMIN COMMAND.

v Error codes

Error codes in ADMIN COMMANDS return an error only if the command
syntax or parameter values are incorrect. If only the requested operation may be
started, the command returns SQLSUCCESS (0). The outcome of the operation
itself is written into a result set. The result set has two columns: RC and TEXT.
The RC (return code) column contains the return code of the operation: it is "0"
for success, and different numeric values for errors. It is thus necessary to check
both the codes of the ADMIN COMMAND statement and of the operation.

Following is a description of the syntax for each ADMIN COMMAND command
option:

Table 34. ADMIN COMMAND syntax and options

Option syntax Description

ADMIN COMMAND ’abort
[backup | netbackup]’ Aborts the active local or network backup process. The backup operation is not

guaranteed to be atomic, therefore the cancelled operation may produce an incomplete
backup file to the backup directory until the next backup takes place.

If the option is not entered, the command defaults to ADMIN COMMAND ’abort backup’.

ADMIN COMMAND ’assertexit’
Abbreviation: asex Terminates the server immediately without a proper shut down.

ADMIN COMMAND ’backgroundjob’
[LIST [-l] [user]] |
[ABORT {jobid | user | ALL }] |
[DELETE ERRORINFO
{jobid | user | ALL }]’

user ::= USER {username|userid}

Abbreviation: bgjob

Lists and possibly aborts running background jobs, that is, SQL statements that have
been started by using the START AFTER COMMIT statement.

v LIST option lists running jobs for all users or a specified user.

v -l option refers to a long list (similar to ADMIN COMMAND ’userlist -l’).

v ABORT option aborts either jobs by job identification number or all jobs by user
identification number. If you give the ABORT without arguments, it aborts all jobs
from all users.

v DELETE ERRORINFO option deletes error information from the
SYS_BACKGROUNDJOB_INFO system table, where the errors encountered by
background jobs are stored. This option performs the same operation as the
deprecated ADMIN COMMAND ’CLEANBGJOBINFO’ command.

156 IBM solidDB: SQL Guide

Table 34. ADMIN COMMAND syntax and options (continued)

Option syntax Description

ADMIN COMMAND ’backup [-s]
[backup_directory]’
Abbreviation: bak

Makes a backup of the database. The operation can be performed as a synchronized
or an asynchronic (default) manner. The synchronized operation is specified by using
the optional -s option.

The default backup directory is defined with the General.BackupDirectory. The
backup directory may also be given as an argument. For example, backup abc creates
a backup in directory abc. All directory definitions are relative to the solidDB working
directory.

ADMIN COMMAND ’backuplist’
Abbreviation: bls

Displays a status list of last local backups.

ADMIN COMMAND ’checkpointing {ON|OFF}’
Abbreviation: cp

Turns checkpointing on or off.

ADMIN COMMAND ’cleanbgjobinfo’
Abbreviation: cleanbgi

Note: This command has been deprecated. Use ADMIN COMMAND ’backgroundjob’
instead.

Cleans the table SYS_BACKGROUNDJOB_INFO containing status data of background
procedures.

ADMIN COMMAND ’close’
Abbreviation: clo

Closes the server to new connections; no new connections are allowed.

ADMIN COMMAND ’describe
parameter param’
Abbreviation: des

Returns a description of all parameters or a parameter specified with param.

param must be given in the format section_name.param_name. The section and
parameter names are case-insensitive.

The following example describes parameter Com.Trace = y/n:

ADMIN COMMAND ’des parameter com.trace’ RC TEXT
-- ----
0 Trace
0 If set to ’yes’, trace information of the network messages

is written to a file
0 BOOL
0 RW/STARTUP
0
0
0 No

7 rows fetched.

ADMIN COMMAND ’errorcode
{all | SOLID_error_code}’
Abbreviation: ec

Returns a description of all error codes or a specific error code.

SOLID_error_code is the code number, for example 10034.

ADMIN COMMAND ’errorcode 10034’;
RC TEXT
-- ----
0 Code: DBE_ERR_SEQEXIST (10034)
0 Class: Database
0 Type: Error
0 Text: Sequence already exists

4 rows fetched.

ADMIN COMMAND ’errorexit <number>’
Abbreviation: erex

Forces the server into an immediate process exit with the given process exit code.

ADMIN COMMAND ’errormessage <string>’
Abbreviation: errmsg

Outputs the user-defined <string> to the error message log (solerror.out).

ADMIN COMMAND ’filespec’
Abbreviation: fs Displays database file specifications defined with the IndexFile.FileSpec parameter as

well file sizes and current fill ratios (percentage).

ADMIN COMMAND ’help’
Abbreviation: ?

Displays available commands.

Appendix B. solidDB SQL syntax 157

Table 34. ADMIN COMMAND syntax and options (continued)

Option syntax Description

ADMIN COMMAND
’hotstandby [option]’
Abbreviation: hsb

A HotStandby command.

For a list of options, see the IBM solidDB High Availability User Guide.

For a list of options, see HotStandby ADMIN COMMANDs in the IBM solidDB High
Availability User Guide.

ADMIN COMMAND ’indexusage’
Abbreviation: idxu

Displays the indexes, showing the number of times each index has been used.

158 IBM solidDB: SQL Guide

Table 34. ADMIN COMMAND syntax and options (continued)

Option syntax Description

ADMIN COMMAND ’info [options]’
Abbreviation: info

Returns server information.

The output consists of 25 rows of data.

options are as follows:

v numusers - Number of current users.

v maxusers - Maximum number of users.

v sernum - Server serial number.

v dbsize - Database size.

v logsize - Size of log files.

v uptime - Server up since.

v bcktime - Timestamp of last successfully completed local backup.

v cptime - Timestamp of last successfully completed checkpoint.

v tracestate - Current trace state.

v monitorstate - Current monitor state, shown as the number of users who have SQL
monitoring currently enabled (see ADMIN COMMAND ’monitor’ for information on SQL
monitoring).

If all users have SQL monitoring enabled, the value is -1.

v openstate - Current open or close state — that is, whether the database server
accepts new connections or not. Open means that the database server accepts new
connections.

v nummerges - Number of merges.

v numlocks - Number of locks.

v numcursors - Number of open cursors.

v numtransactions - Number of open transactions.

v memtotal - Total amount of memory allocated bytes.

v dbfreesize - Amount of free space remaining in database.

v dbpagesize - Database page size.

v imdbsize - Amount of space used by in-memory tables (including temporary tables
and transient tables) and the indexes on those tables. The return value is in
kilobytes (KB) and is in the form of a VARCHAR.

v name - Server name.

v primarystarttime - The time the Primary role has started.

v secondarystarttime- The time the Secondary role has started.

v dbconfigsize - The configured database size.

v dbcreatetime - This option prints out the database creation timestamp. The
abbreviation dbcreationtime can also be used.

v processsize - This option prints out the system-level virtual process size in
kilobytes. The abbreviation psize can also be used.

More than one option can be used per command. Values are returned in the same
order as requested, one row for each value.

Example:

ADMIN COMMAND ’info dbsize logsize’;
RC TEXT
-- ----
0 851968
0 573440

2 rows fetched.

ADMIN COMMAND ’logmessage <string>’
Abbreviation: logmsg

Outputs the user-defined <string> to the message log (solmsg.out).

Appendix B. solidDB SQL syntax 159

Table 34. ADMIN COMMAND syntax and options (continued)

Option syntax Description

ADMIN COMMAND ’makecp [-s]’
Abbreviation: mcp Makes a checkpoint.

Only users with SYS_ADMIN_ROLE privilege can execute this command.

By default, the checkpoint is asynchronous. With the option -s, the command returns
only after the checkpoint has completed.

ADMIN COMMAND ’memory’
Abbreviation: mem Returns the server process memory size. The reported process memory size can differ

from the process size reported by your operating system.

ADMIN COMMAND ’messages
[{ warnings | errors}] [count]’
Abbreviation: mes

Displays server messages. Optional severity and message numbers can also be
defined. For example:

ADMIN COMMAND 'messages warnings 100' displays last 100 warnings.

ADMIN COMMAND ’monitor
{on | off} [user
{username | userid}]’
Abbreviation: mon

Sets server monitoring on and off.

When set to on, user activity and SQL calls are logged into the soltrace.out file.

ADMIN COMMAND ’netbackup
[options] [DELETE_LOGS |
KEEP_LOGS] [connect
connect str] [dir
backup dir]’
Abbreviation: nbak

Makes a network backup of the database. The operation can be performed as a
synchronized or an asynchronic (default) manner. The synchronized operation is
specified by using the -s option.

DELETE_LOGS means that backed-up log files in the source server are deleted. This
is sometimes referred to as full backup. This is the default value.

KEEP_LOGS means that backed-up log files are kept in the source server. This is
sometimes referred to as copy backup. Using KEEP_LOGS corresponds to setting the
General.NetbackupDeleteLog parameter to no.

The default connect string and the default netbackup directory are defined with the
General.NetBackupConnect and the General.NetBackupDirectory parameters.

The options that are entered with this command override the values specified in the
configuration file.

Directory definitions are relative to the solidDB working directory.

ADMIN COMMAND ’netbackuplist’
Abbreviation: nbls Displays a status list of the most recently made network backups of the database

server.

ADMIN COMMAND ’netstat’
Abbreviation: net

Displays server settings and the network status.

ADMIN COMMAND ’notify
user {username | user id | ALL }
message’
Abbreviation: not

This command sends an event to a given user with event identifier NOTIFY. This
identifier is used to cancel an event-waiting thread when the statement timeout is not
long enough for a disconnect or to change the event registration.

The following example sends a notify message to a user with user id 5 ; the event
then gets the value of the message parameter.

ADMIN COMMAND ’notify user 5 Canceled by admin’

ADMIN COMMAND ’open’
Abbreviation: ope

Opens server for new connections; new connections are allowed.

160 IBM solidDB: SQL Guide

Table 34. ADMIN COMMAND syntax and options (continued)

Option syntax Description

ADMIN COMMAND ’parameter
[-r][name[=
[*|value][temporary]]’
Abbreviation: par

Displays and sets server parameter values.

If you run the command without any options, all parameters are displayed.

The output can contain three columns. For example:

0 PassThrough SqlPassthroughRead Force Conditional None

v First column shows the current value (Force) that might have been changed
dynamically.

v Second column shows the value set in the .ini file at startup. (Conditional)

v Third column shows the factory value. (None)

v -r means that only the current parameter values are returned.

v name may be a section name or a parameter name prefaced by a section name
(section_name.parameter_name). There must be a period between the section name
and the parameter name.

v = [*|value][temporary]

– If you assign a parameter value with an asterisk (*), the parameter will be set to
its factory value.

– If value is not specified, the parameter will be set to its startup value.

– temporary means that the changed value is not stored in the solid.ini file.

For example:

v ’parameter general’ displays all parameters from section [General].

v ’parameter general.readonly’ displays the parameter Readonly in the [General]
section.

v ’parameter com.trace=yes’ sets communication trace on.

v ’parameter com.trace=’ sets communication trace to its startup value.

v ’parameter com.trace=*’ sets communication trace to its factory value.

ADMIN COMMAND ’perfmon
[- c | - r] [print_options]
[name_prefix_list]’
Abbreviation: pmon

Returns server performance counters for the past few minutes at approximately one
minute intervals. Most values are shown as the average number of events per second.
Counters that cannot be expressed as events per second (for example, database size)
are expressed in absolute values.

v -c - prints actual counter values for each snapshot.

v -r - prints counter values in raw mode, which includes only the latest counter
values without any formatting. The counter names are not printed. This option is
useful if actual monitoring is performed using some other external program that
retrieves the counter values from the server. You can retrieve the counter names
with the --xnames option.

v print_options

– -xtime - prints the time in seconds

– -xtimediff - prints the difference to the last pmon call in milliseconds

– -xnames - prints out the column names for the output

– -xdiff - indicates the difference to the last ADMIN COMMAND 'perfmon'
execution instead of the absolute value

v name_prefix_list - limits the output to specific counter types, as indicated by the first
word in the counter name. For example, to print all File related counters, the
name_prefix_list should be file. You can also specify multiple prefixes.

The following example returns all information:

ADMIN COMMAND 'perfmon'

The following example returns all values for counters whose name starts with prefix
File and Cache.

ADMIN COMMAND 'perfmon -c file cache'

Appendix B. solidDB SQL syntax 161

Table 34. ADMIN COMMAND syntax and options (continued)

Option syntax Description

ADMIN COMMAND ’perfmon diff
[start | stop]
[filename][interval]’
Abbreviation: pmon diff

Starts a server task that prints out all perfmon counters with specified intervals to a
file.

v filename is the name of the output file. The performance data is output in
comma-separated value format; the first row contains the counter names, and each
subsequent row contains the performance data per each sampling time.

The default file name is pmondiff.out.

v interval is the interval in milliseconds at which performance data is collected.

The default interval is 1000 milliseconds.

The following command starts a task that outputs performance data to myd.csv file on
500 milliseconds interval:

ADMIN COMMAND 'pmon diff start myd.csv 500'

ADMIN COMMAND ’pid’
Abbreviation: pid

Returns server process id.

ADMIN COMMAND ’proctrace
{ on | off } user username
{ procedure | trigger | table }
entity_name’
Abbreviation: ptrc

This turns on tracing in stored procedures and triggers.

username is the name of the user whose procedure calls (or triggers) you want to trace.
If multiple connections are using the same username, calls from all of those
connections will be traced. Furthermore, if you are using advanced replication, the
tracing will be done not only for calls on the replica, but also calls that are propagated
to the master and then executed on the master.

entity_nameis the name of the procedure, trigger, or table for which you want to turn
tracing on or off. If you specify a procedure or trigger name, then it will generate
output for every statement in the specified procedure or trigger. If you specify a table
name, then it will generate output for all triggers on that table. Trace is activated only
when the specified username calls the procedure / trigger.

For more details about proctrace, see section Tracing facilities for stored procedures
and triggers in IBM solidDB SQL Guide.

See also ADMIN COMMAND ’usertrace’.

ADMIN COMMAND ’protocols’
Abbreviation: prot Returns a list of available communication protocols, one row for each protocol.

Example (Windows environments):

ADMIN COMMAND ’protocols’;
RC TEXT
-- ----
0 NmPipe np
0 TCP/IP tc

2 rows fetched.

ADMIN COMMAND ’report filename’
Abbreviation: rep

Generates a report of server information to a file defined with filename.

ADMIN COMMAND ’runmerge’
Abbreviation: rm

Runs an index merge.

ADMIN COMMAND ’save parameters
[filename]’
Abbreviation: save

Saves the set of current configuration parameter values to a file. If no file name is
given, the default solid.ini file is rewritten. This operation is performed implicitly at
each checkpoint.

ADMIN COMMAND
’shutdown [force]’
Abbreviation: sd

Stops solidDB.

If the force option is used, the active transactions are aborted and the users are
disconnected forcefully.

ADMIN COMMAND ’sqllist
top number_of_statements’

This command prints out a list of the longest running SQL statements among the
currently running statements. The list contains the selected number of statements.

ADMIN COMMAND ’startmerge’
Abbrevation: sm Starts and waits for completion of merge.

162 IBM solidDB: SQL Guide

Table 34. ADMIN COMMAND syntax and options (continued)

Option syntax Description

ADMIN COMMAND ’status’
Abbreviation: sta

Displays server statistics.

ADMIN COMMAND ’status
backup | netbackup’
Abbreviation: sta backup | netbackup

Displays status of the last started local or network backup. The status can be one of
the following:

v If the last backup was successful or no backups have been requested, the output is
0 SUCCESS.

v If the backup is in process (for example, started but not ready yet), then the output
is 14003 ACTIVE.

v If the backup is being finalized, the output is 14003 STOPPING.

v If the last backup failed, the output is: errorcode ERROR where the errorcode shows
the reason for the failure.

ADMIN COMMAND ’throwout
{username |
userid | all}’

Abbreviation: to

Exits all or specific users from solidDB. To exit a specified user, give the username or
user id as an argument. To throw out all users, use the keyword ALL as an argument.

ADMIN COMMAND ’tid’
Abbreviation: tid This command returns the ID (4-digit code) of the current user thread (in the server).

ADMIN COMMAND ’trace
{ on | off } sql | est |
estplans | rpc |
sync | flowplans |
rexec | batch | logreader |
info <level> |
all | active’
Abbreviation: tra

Sets server trace on or off.

The name of the default trace file is soltrace.out.

The tracing options are:

v sql - SQL messages

v est - SQL estimator information

v estplans - SQL execution plan

v rpc - Network communications

v sync - synchronization messages

v flowplans - plans of SQL statements related to advanced replication

v rexec - remote procedure call information

v batch - background job and deferred procedure call information

v logreader - logs the following information into the trace file soltrace.out.

– Logreader read started.

– Errors in logreader cursor start. Total of 14 different error conditions are printed.

– Logreader read stopped.

– Abnormal read stop after certain system changes.

– High level information of number of returned log records and read progress.

Each information is tagged with user id so operations from different users can be
separated.

v info <level> - SQL execution trace (level can be 0...8)

v all - both SQL messages and network communications messages are written to the
trace file.

v active - lists all active traces

ADMIN COMMAND ’tracemessage <string>’
Abbreviation: trcmsg

Outputs the user-defined <string> to the trace message log (soltrace.out).

Appendix B. solidDB SQL syntax 163

Table 34. ADMIN COMMAND syntax and options (continued)

Option syntax Description

ADMIN COMMAND ’userid’
Abbreviation: uid

Returns the user identification number of the current connection.

The lifetime of an Id is that of the user session. After a user logs out, the number may
be reused.

ADMIN COMMAND ’userid’
RC TEXT
-- ----
0 8

1 rows fetched.

For example, the userid can be used in the ADMIN COMMAND ''throwout'
command to disconnect a specific user.

164 IBM solidDB: SQL Guide

Table 34. ADMIN COMMAND syntax and options (continued)

Option syntax Description

ADMIN COMMAND ’userlist [-l]
[name | id]’
Abbreviation: ul

This command displays a list of users that are currently logged into the database, as
well as information about various database operations and settings for each user. The
option -l (long) displays a more detailed output.

Without the -l option, the following information is displayed: User name, User Id,
Type, Machine Id, Login time, and Appinfo (if available).

With the -l option, the following information is displayed:

v Id - The user session identification number (userid) within the database. The
lifetime of the userid is that of the user session. After a user logs out, the number
may be reused.

v Type - Client type. Possible values are:

– Java, which refers to a client using JDBC

– ODBC, which refers to a client using ODBC

– SQL, which refers to solidDB SQL Editor (solsql)

v Machine - The client computer name (host name) and its IP address, if available

v Login tile - The client computer login timestamp

v Appinfo - The value of the client computer's environmental variable SOLAPPINFO
(ODBC), or the value of JDBC connection property solid_appinfo.

v Last activity - The time when the client last time sent a request to the server.

v Autocommit - Value 0 means that the autocommit mode is switched off; the current
transaction is open until a COMMIT or ROLLBACK statement is issued.

Value 1 means that the autocommit mode is switched on; each statement is
automatically committed.

v RPC compression - Indicates whether the data transmission compression is on or off.

v Transparent failover - This field indicates if Transparent Failover (TF) is in use
(HotStandby configurations). Because solidDB tools do not support TF, you will
only see a "no" value in this field when using solsql or solcon.

v Transparent cluster - Transparent cluster indicates whether the load balancing feature
(in HSB) is enabled for this connection or not.

v Transaction active - This field indicates whether there is an open, uncommitted
transaction on the connections (value 1) or not (value 0). When the connection is set
for Autocommit, the value is, most of the time, 0.

v Transaction duration - This field indicates the duration of the currently open
transaction. After COMMIT or ROLLBACK, the value becomes 0.

v Transaction isolation - This field indicates the transaction isolation level for the
transactions. The isolation level decides how data which is a part of an ongoing
transaction is made visible to other transactions.

v Transaction durability - This field indicates the durability of the currently open
transaction.

v Transaction safeness - This field indicates the safeness of the currently open
transaction (set with HotStandby.SafenessLevel).

v Transaction autocommit - This field indicates whether the currently open transaction
is automatically committed. If the transaction autocommit for the current
transaction is switched off (value 0), the current transaction is open until a
COMMIT or ROLLBACK statement is issued. After that, a new statement starts a
new transaction.

If the autocommit mode is switched on for the current transaction (value 1), each
statement is automatically committed.

Appendix B. solidDB SQL syntax 165

Table 34. ADMIN COMMAND syntax and options (continued)

Option syntax Description

..continued..

ADMIN COMMAND ’userlist [-l]
[name | id]’
Abbreviation: ul

v Current catalog - Indicates the current catalog name.

v Current schema - Indicates the current schema name.

v Sortgroubby - Indicates how the GROUP BY statement is performed if explicit
information about the number of result groups is not available. There are two
possible values:

– ADAPTIVE - GROUP BY input is pre-sorted if the real number of result groups
exceeds the number of rows that fit into the central memory array for GROUP BY.

–

STATIC - GROUP BY input is pre-sorted whenever there are at least two items in
the GROUP BY list. Otherwise, the GROUP BY input is not pre-sorted.

v Simple optimizer rules - Indicates whether simple optimizer rules are in use
(SQL.SimpleOptimizerRules) Possible values are Yes/No/Default.

v Statement max time - Indicates the connection-specific statement maximum
execution time in seconds. This setting is effective until a new maximum time is
given. Zero time indicates that there is no maximum time. This is the default value.

v Lock timeout - Indicates the timeout set by using the SET LOCK TIMEOUT statement.

v Optimistic lock timeout - Indicates the timeout set by using the SET OPTIMISTIC LOCK
TIMEOUT statement.

v Idle timeout - Indicates the timeout set by using the SET IDLE TIMEOUT
statement.

v Join Path Span - Indicates the join path span value set by using the SET SQL
JOINPATHSPAN statement.

v RPC seqno - Internal protocol message sequence number.

v SQL sortarray - The size of user-specific internal sort array.

v SQL unionsfromors - The value tells how many (at most) OR operators may be
converted to UNIONs. Unions are faster but require more memory to execute.

v EVENT QUEUE LENGTH - Indicates the number of posted events in the event
queue.

v Connection idle timeout - Indicates the connection idle timeout setting

v Stmt id - The current statement identification number. The numbers are session
specific and they are assigned for each different statement.

v Stmt state - An internal statement execution state.

v Stmt rowcount - The number of rows retrieved or inserted in the current statement.

v Stmt start time - The current statement start date and time.

v Stmt last activity time -

v Stmt duration - Internal statement duration in seconds. Note: this value has no
relevance to the externally visible statement latency. Typically, the statement
duration is much longer than latency.

v Stmt SQL str - The current SQL statement string.

166 IBM solidDB: SQL Guide

Table 34. ADMIN COMMAND syntax and options (continued)

Option syntax Description

ADMIN COMMAND ’usertrace
{ on | off } user username
{ procedure | trigger | table }
entity_name’
Abbreviation: utrc

This turns on user tracing in stored procedures and triggers. This command will
generate output for every WRITETRACE statement in the specified procedure or
trigger.

v username is the name of the user whose procedure calls (or triggers) you want to
trace. If multiple connections are using the same username, then calls from all of
those connections will be traced. Furthermore, if you are using advanced
replication, the tracing will be done not only for calls on the replica, but also calls
that are propagated to the master and then executed on the master.

v entity_name is the name of the procedure, trigger, or table for which you want to
turn tracing on or off. If you specify a table name, it will generate output for all
triggers on that table. Trace is activated only when the specified user calls the
procedure / trigger.

For more details about usertrace, see section Tracing facilities for stored procedures
and triggers in IBM solidDB SQL Guide.

See also ADMIN COMMAND 'proctrace'.

ADMIN COMMAND ’version’
Abbreviation: ver

Displays server version information and information related to the solidDB software
licence in use.

ADMIN EVENT
ADMIN EVENT ’command’
command_name ::=

REGISTER { event_name [, event_name ...] | ALL } |
UNREGISTER { event_name [, event_name ...] | ALL } |
WAIT

event_name ::= the name of a system event

Usage
This is a solidDB-specific extension to SQL that allows you to register for and wait
for system-generated events without writing and calling a stored procedure.

You must explicitly register for and wait for the event. For example
ADMIN EVENT ’register sys_event_hsbstateswitch’;
ADMIN EVENT ’wait’;

After the event is posted by the system, you will see something similar to the
following:
ENAME POSTSRVTIME UID NUMDATAINFO TEXTDATA
----- ----------- --- ----------- --------
SYS_EVENT_HSBSTATESWITCH 2003-10-28 18:10:14 -1 NULL PRIMARY ACTIVE

1 rows fetched.

You must register for the event before you wait for it. (This is different from the
way that WAIT works in stored procedures. In stored procedures, explicit
registration is optional.)

Note:

You cannot register to synchronization events (starting with "SYNC_") with this
command. You may the use the procedure language command WAIT EVENT for
that purpose.

Appendix B. solidDB SQL syntax 167

Once the connection starts to wait for an event, the connection will not be able to
do anything else until the event is posted.

You may register for multiple events. When you wait, you cannot specify which
type of event to wait for. The wait will continue until you have received any of the
events for which you have registered.

You may only wait for system events, not user events, using ADMIN EVENT. If
you want to wait for user events, then you must write and call a stored procedure.

The ADMIN EVENT command does not provide an option to post an event.

To use ADMIN EVENT, you must have DBA privileges or be granted the role
SYS_ADMIN_ROLE.

Examples
ADMIN EVENT ’register sys_event_hsbstateswitch’;
ADMIN EVENT ’wait’;
ADMIN EVENT ’unregister sys_event_hsbstateswitch’;

ALTER TABLE
ALTER TABLE base_table_name
{
ADD [COLUMN] column_identifier data_type
[DEFAULT literal | NULL] [NOT NULL] |
ADD CONSTRAINT constraint_name dynamic_table_constraint |
DROP CONSTRAINT constraint_name |
ALTER [COLUMN] column_name
{DROP DEFAULT | {SET DEFAULT literal | NULL} } |
{{ADD | DROP} NOT NULL }

DROP [COLUMN] column_identifier |
RENAME [COLUMN]

column_identifier column_identifier |
MODIFY [COLUMN] column_identifier data-type |

MODIFY SCHEMA schema_name} |
SET HISTORY COLUMNS (c1, c2, c3) |
SET {OPTIMISTIC | PESSIMISTIC} |
SET STORE {DISK | MEMORY} |
SET [NO]SYNCHHISTORY |
SET TABLE NAME new_base_table_name

}
dynamic_table_constraint::=
{FOREIGN KEY (column_identifier [, column_identifier] ...)
REFERENCES table_name [(column_identifier [, column_identifier]] ...)}
[referential_triggered_action] |
CHECK (check_condition) | UNIQUE (column_identifier)

referential_triggered_action::=
ON {UPDATE | DELETE} {CASCADE | SET NULL | SET DEFAULT |
RESTRICT |NO ACTION}

Usage
The structure of a table may be modified through the ALTER TABLE statement.
Columns may be added, removed, modified, or renamed. You may change whether
the table uses optimistic or pessimistic concurrency control. You may change
whether the table is stored in memory or on disk. You may change which schema
the table is part of.

The server allows users to change the width of a column using the ALTER TABLE
command. A column width can be increased at any time (that is, whether a table is

168 IBM solidDB: SQL Guide

empty [no rows] or non-empty). However, the ALTER TABLE command disallows
decreasing the column width when the table is non-empty; a table must be empty
to decrease the column width.

Note that a column cannot be dropped if it is part of a unique or primary key.

The owner of a table can be changed using the ALTER TABLE base_table_name
MODIFY SCHEMA schema_name statement. This statement gives all rights,
including creator rights, to the new owner. The old owner's access rights to the
table, excluding the creator rights, are preserved.

For information about the SET HISTORY COLUMNS clause, see “ALTER TABLE ...
SET HISTORY COLUMNS.”

For information about the SET [NO]SYNCHISTORY clause, see “ALTER TABLE ...
SET SYNCHISTORY” on page 170.

Individual tables can be set to optimistic or pessimistic with the statement ALTER
TABLE base_table_name SET {OPTIMISTIC | PESSIMISTIC}. By default, all tables
are optimistic. A database-wide default can be set in the General section of the
configuration file with the parameter Pessimistic = yes.

A table may be changed from disk-based to in-memory or vice-versa. (This is only
allowed with solidDB main memory engine.) This may be done only if the table is
empty. If you try to change a table to the same storage mode that it already uses
(e.g. if you try to change an in-memory table to use in-memory storage), then the
command has no effect, and no error message is issued.

Example
ALTER TABLE table1 ADD x INTEGER;
ALTER TABLE table1 RENAME COLUMN old_name new_name;
ALTER TABLE table1 MODIFY COLUMN xyz SMALLINT;
ALTER TABLE table1 DROP COLUMN xyz;
ALTER TABLE table1 SET STORE MEMORY;
ALTER TABLE table1 SET PESSIMISTIC;
ALTER TABLE table2 ADD COLUMN col_new CHAR(8) DEFAULT ’VACANT’ NOT NULL;
ALTER TABLE table2 ALTER COLUMN col_new SET DEFAULT ’EMPTY’;
ALTER TABLE table2 ALTER COLUMN col_new DROP DEFAULT;
ALTER TABLE dept_tabl ADD CONSTRAINT div_check CHECK(division_id < 12);
ALTER TABLE dept_tabl DROP CONSTRAINT div_check;

ALTER TABLE ... SET HISTORY COLUMNS
ALTER TABLE table_name SET HISTORY COLUMNS (col1, col2, colN ...)

Usage
To further optimize the synchronization history process, after you set tables for
synchronization history, you can use the SET HISTORY COLUMNS statement to
specify which column updates in the master and its corresponding synchronized
table cause entries to the history table. If you do not use this statement to specify
particular columns, then all update operations (on all columns) in the master
database cause a new entry to the history table when the corresponding
synchronized table is updated. Generally, we recommend using ALTER TABLE ...
SET HISTORY COLUMNS for columns that are used for search criteria or for
joining.

Appendix B. solidDB SQL syntax 169

Usage in master
Use SET SYNCHISTORY and SET HISTORY COLUMNS in the master to enable
incremental publications on a table.

Usage in replica
Use SET SYNCHISTORY and SET HISTORY COLUMNS in the replica to enable
incremental REFRESH on a table.

Note:

In order for ALTER TABLE ... SET HISTORY COLUMNS to succeed, the statement
ALTER TABLE ... SET SYNCHISTORY has to be executed first. Executing ALTER
TABLE ... SET NOSYNCHISTORY removes also the effect of ALTER TABLE ... SET
HISTORY COLUMNS.

Example
ALTER TABLE myLargeTable SET HISTORY COLUMNS (accountid);

Return values
For details on each error code, see the appendix titled Error Codes in solidDB
Administration Guide.

Table 35. ALTER TABLE SET HISTORY COLUMNS return values

Error code Description

13047 No privilege for operation

13100 Illegal table mode combination

13134 Table is not a base table

25038 Table is referenced in publication publication_name; drop or alter
operations are not allowed

25039 Table is referenced in subscription to publication
publication_name; drop or alter operations are not allowed.

See also
ALTER TABLE ... SET SYNCHISTORY

ALTER TABLE ... SET SYNCHISTORY
ALTER TABLE table_name SET {SYNCHISTORY | NOSYNCHISTORY}

Usage
SET [NO]SYNCHISTORY

The "SET SYNCHISTORY / NOSYNCHISTORY" clause tells the server to use the
incremental publications mechanism of solidDB architecture for this table. By
default, SYNCHISTORY is not on. When this statement is set to SYNCHISTORY for
a specified table, a shadow table is automatically created to store old versions of

170 IBM solidDB: SQL Guide

updated or deleted rows of the main table. The shadow table is called a
"synchronization history table" or simply a "history table".

The data in a history table is referred to when a replica gets an incremental
REFRESH from a publication in the master. For example, let's suppose that the
record with Ms. Smith's telephone bill is deleted from the main table. A copy of
her record is stored in the synchronization history table. When the replica
refreshes, the master checks the history table and tells the replica that Ms. Smith's
record was deleted. The replica can then delete that record, also. If the percentage
of records that were deleted or changed is fairly small, then an incremental update
is faster than downloading the entire table from the master. (When the user does a
full REFRESH, rather than an incremental REFRESH, the history table is not used.
The data in the table on the master is simply copied to the replica.)

Versioned data is automatically deleted from the database when there are no
longer any replicas that need the data to fulfill REFRESH requests.

You must use this command to turn on synchronization history before a table can
participate in master/replica synchronization. You can use this command on a
table even if data currently exists in that table; however ALTER TABLE SET
SYNCHISTORY can only be used if the specified table is not referenced by an
existing publication.

SET SYNCHISTORY must be specified in the tables of both master and replica
databases.

You can check if SYNCHISTORY is on for a table from the SYS_TABLEMODES
system table. The MODE column contains the SYNCHISTORY information.

You can use, for example, the query below:
SELECT mode
FROM SYS_TABLES, SYS_TABLEMODES
WHERE table_name = ’MY_TABLE’ AND SYS_TABLEMODES.ID = SYS_TABLES.ID;
MODE

SYNCHISTORY
1 rows fetched.

SYS_TABLEMODES only shows the mode of tables for which the mode was
explicitly set. In other words, SYS_TABLEMODES doesn't show the mode of tables
that were left at the default mode. If SYNCHISTORY (or NOSYNCHISTORY) is not
set for the table, the query returns an empty resultset.

Usage in master
Use SET SYNCHISTORY in the master to enable incremental publications on a
table.

Usage in replica
Use SET SYNCHISTORY in the replica to enable incremental REFRESHES on a
table.

Note:

If the Replica is read only (no changes are done to the replicated parts of the
publication), the statement ALTER TABLE ... SET SYNCHISTORY is not needed. In
the same time, the following Flow Replica-resident parameter should be set:

Appendix B. solidDB SQL syntax 171

set sync parameter SYS_SYNC_KEEPLOCALCHANGES ’Yes’;

Example
ALTER TABLE myLargeTable SET SYNCHISTORY;
ALTER TABLE myVerySmallTable SET NOSYNCHISTORY;

Return values
For details on each error code, see the appendix titled Error Codes in the solidDB
Administration Guide.

Table 36. ALTER TABLE SET SYNCHISTORY return values

Error code Description

13047 No privilege for operation

13100 Illegal table mode combination

13134 Table is not a base table

25038 Table is referenced in publication publication_name ; drop or
alter operations are not allowed

25039 Table is referenced in subscription to publication
publication_name ; drop or alter operations are not allowed.

See also
ALTER TABLE ... SET HISTORY COLUMNS

ALTER TRIGGER
ALTER TRIGGER trigger_name_attr SET {ENABLED | DISABLED}
trigger_name_attr ::= [catalog_name.[schema_name.]] trigger_name

Usage
You can alter trigger attributes using the ALTER TRIGGER statement. The valid
attributes are ENABLED and DISABLED trigger.

The ALTER TRIGGER DISABLED statement causes solidDB to ignore the trigger
when an activating DML statement is issued. With this command, you can also
enable a trigger that is currently inactive or disable a trigger that is currently
active.

You must be the owner of the table, or a user with DBA authority, to alter a trigger
on the table.

Example
ALTER TRIGGER trig_on_employee SET ENABLED;

ALTER USER
ALTER USER user_name IDENTIFIED BY password

172 IBM solidDB: SQL Guide

Usage
The password of a user may be modified through the ALTER USER statement.

Example
ALTER USER MANAGER IDENTIFIED BY O2CPTG;

ALTER USER (replica)
ALTER USER replica_user SET MASTER master_name USER user_specification

where:
user_specification ::= { master_user IDENTIFIED BY master_password | NONE}

ALTER USER user_name SET {PUBLIC | PRIVATE}

Usage
The following statement is used to map replica user ids to specified master user
ids.
ALTER USER replica_user SET MASTER master_name USER user_specification

Mapping user ids is used for implementing security in a multi-master or multi-tier
synchronization environment. In such environments, it is difficult to maintain the
same username and passwords in separate, geographically dispersed databases.
For this reason mapping is effective.

Only a user with DBA authority or SYS_SYNC_ADMIN_ROLE can map users. To
implement mapping, an administrator must know the master user name and
password. Note that it is always a replica user id that is mapped to a master user
id. If NONE is specified, the mapping is removed.

All replica databases are responsible for subscribing to the SYNC_CONFIG system
publication to update user information. Public master user names and passwords
are downloaded, during this process, to a replica database using the MESSAGE
APPEND SYNC_CONFIG command. Through mapping of the replica user id with
the master user id, the system determines the currently active master user based
on the local user id that is logged to the replica database. Note that if during
SYNC_CONFIG loading, the system does not detect mapping, it determines the
currently active master user through the matching user id and password in the
master and the replica.

For more details on using mapping for security, read "Implementing Security
Through Access Rights And Roles" in solidDB Advanced Replication Guide.

It is also possible to limit what master users are downloaded to the replica during
SYNC_CONFIG loading. This is done by altering users as private or public with
the following command:
ALTER USER user_name SET PRIVATE | PUBLIC

Note that the default is PUBLIC. If the PRIVATE option is set for the user, that
user's information is not included in a SYNC_CONFIG subscription, even if they
are specified in a SYNC_CONFIG request. Only a user with DBA authority or
SYS_SYNC_ADMIN_ROLE can alter a user's status.

Appendix B. solidDB SQL syntax 173

This allows administrators to ensure no user ids with administration rights are sent
to a replica. For security reasons, administrators may want to ensure that DBA
passwords are never public, for example.

Usage in master
You set user ids to PUBLIC or PRIVATE in a master database.

Usage in replica
You map a replica user id to a master user id in a replica database.

Example
The following example maps a replica user id smith_1 to a master user id dba with
a password of dba.
ALTER USER SMITH_1 SET MASTER MASTER_1 USER DBA IDENTIFIED BY DBA

The following example shows how users are set to PRIVATE and PUBLIC.
-- this master user should not be downloaded to any replica
ALTER USER dba SET PRIVATE;

-- this master user should be downloaded to every replica
ALTER USER salesman SET PUBLIC;

Return values
For details on each error code, see the appendix titled Error Codes in the solidDB
Administration Guide.

Table 37. ALTER USER return values

Error code Description

13047 No privilege for operation

13060 User name xxx not found

25020 Database is not a master database

25062 User user_id is not mapped to master user_id

25063 User user_id is already mapped to master user_id

CALL
CALL procedure_name [(parameter [, parameter ...])] [AT node-def]
node-def ::= DEFAULT | <replica name> | <master name>

Supported in
solidDB disk-based engine, solidDB (Note that remote procedure calls are allowed
only with solidDB with the advanced replication component)

Usage
Stored procedures are called with statement CALL.

174 IBM solidDB: SQL Guide

You may call a stored procedure on another node by using the AT node_ref clause.
This is valid only if the call is made from a master node to one of its replica nodes
or vice-versa.

DEFAULT means that the "current replica context" is used. The "current replica
context" is only defined when the procedure call is started in the background using
the START AFTER COMMIT statement with the FOR EACH REPLICA option. If
the default is not set, then an error 'Default node not defined' is returned.
DEFAULT can be used inside stored procedures and in a statement started with
START AFTER COMMIT.

A remote stored procedure cannot return a result set; it can only return an error
code.

A single call statement can only call a single procedure on a single node. If you
want to call more than one procedure on a single node, you must execute multiple
CALL statements. If you want to execute the same procedure (i.e. the same
procedure name) on more than one node, then you have to either

1) Use
START AFTER COMMIT FOR EACH REPLICA.

For example:
START AFTER COMMIT FOR EACH REPLICA WHERE NAME LIKE ’REPLICA%’
UNIQUE CALL MYPROC AT DEFAULT.

2) Execute multiple calls.

A procedure call is executed synchronously; it returns after the call is executed.

Note: The procedure call is executed asynchronously in the background if the
procedure call is executed using START AFTER COMMIT (e.g. START AFTER
COMMIT UNIQUE CALL FOO AT REPLICA1). That is due to the nature of the
START AFTER COMMIT command, not the nature of procedure calls.

Transactions
A remote procedure call (whether or not it was started by a START AFTER
COMMIT) is executed in a separate transaction from the transaction that it was
called from. The caller cannot roll back or commit the remote procedure call. The
procedure that is executing in the called node is responsible for issuing its own
commit or rollback statement.

Return values from the remote procedure
When you call a remote stored procedure, you cannot get a complete result set
returned. All that you get is the return value of the stored procedure (a single
value) or an error code.

Note:

If the remote procedure is executed in the background (using START AFTER
COMMIT), then no return value is returned to the user. Even error codes are not
returned.

Appendix B. solidDB SQL syntax 175

Access rights for remote stored procedure calls
When a stored procedure is called remotely, you must take into account the access
rights — i.e. does the caller have the right to execute this procedure on the remote
server?

CASE 1. If the Sync user is set with the command SET SYNC USER.

The caller sends the user name and password of the "sync user" to the remote
server, and the remote server tries to execute the procedure using that user name
and password. In this case, the username and password must exist in the remote
server (i.e. the server that the stored procedure will be executed on) and the user
must have appropriate access rights to the database and the called procedure.

CASE 2. If the Sync user is not set:

The caller sends the following information to the remote server when calling a
remote procedure:

If the caller is the master and the remote server is the replica (M → R):
v

Name of the master (SYS_SYNC_REPLICAS.MASTER_NAME).
v

Replica id (SYS_SYNC_REPLICAS.ID).
v

User name of the caller.
v

User id of the caller.

If the caller is the replica and the remote procedure is the master (R → M):
v

Name of the master (SYS_SYNC_MASTERS.NAME).
v

Replica id (SYS_SYNC_MASTERS.REPLICA_ID).
v

Master user id (The same user id is used as when a replica refreshes data. There
has to be a mapping from the local replica user to a master user in
SYS_SYNC_USERS table.)

The following actions are performed in the called node:

If the remote node is a replica (M → R):
v

Get the master id from table SYS_SYNC_MASTERS according to the master
name received from the caller (master itself doesn't know it's id in the replica).
From the table SYS_SYNC_USERMAPS get the replica user ids according to
master user name and master id. Select the first user that has access rights to the
procedure.

v

If there are no matching rows in SYS_SYNC_USERMAPS, then get NAME and
PASSWD from the table SYS_SYNC_USERS according to master id and master
user name received from the caller and try to execute the procedure using them.

176 IBM solidDB: SQL Guide

If the remote node is a master (R → M)
v

Try to execute the procedure using the user id received from the replica.

If the replica allows calls from any master it should define its own connect string
information in the solid.ini file, for example:
[Synchronizer]
ConnectStrForMaster=tcp replicahost 1316

The replica sends that connect string automatically to the master when it forwards
any message to the master. When the master receives the connect string from the
replica, it replaces any previous value (if it differs).

The master can set the connect string to the replica (if the replica has not done any
messaging and the master needs to call it and knows that the connect string has
changed) using the following statement:
SET SYNC CONNECT <connect-info> TO REPLICA <replica-name>

Durability
Remote procedure calls are not durable. If the server goes down right after issuing
the remote procedure call, then the call is lost. It will not be executed in recovery
phase.

Example
CALL proctest;
CALL proctest(’some string’, 14);
CALL remote_proc AT replica2;
CALL RemoteProc(?,?) AT MyReplica1;

COMMIT WORK
COMMIT WORK

Usage
The changes made in the database are made permanent by the COMMIT
statement. It terminates the transaction. To discard the changes, use the
ROLLBACK command. Note that if you do not explicitly COMMIT a transaction,
and if the program (for example solsql) does not COMMIT for you, then the
transaction will be rolled back.

Example
COMMIT WORK;

See also
ROLLBACK WORK

CREATE CATALOG
CREATE CATALOG catalog_name

Appendix B. solidDB SQL syntax 177

Usage
Catalogs allow you to logically partition databases so you can organize your data
to meet the needs of your business or application. solidDB's use of catalogs is an
extension to the SQL standard.

A solidDB physical database file may contain more than one logical database. Each
logical database is a complete, independent group of database objects, such as
tables, indexes, triggers, stored procedures, etc. Each logical database is
implemented as a database catalog. Thus, solidDB can have one or more catalogs.

When creating a new database or converting an old database to a new format,
users are prompted for a default catalog name. This default catalog name allows
for backward compatibility of solidDB databases prior to version 3.x.

A catalog can have zero or more schema_names. The default schema name is the
user ID of the user who creates the catalog.

A schema can have zero or more database object names. A database object can be
qualified by a schema or user ID.

The catalog name is used to qualify a database object name.

CAUTION:

The catalog name must not contain spaces.

Database object names can be qualified in all DML statements as:
catalog_name.schema_name.database_object

or
catalog_name.user_id.database_object

Note that if you use the catalog name, then you must also use the schema name.
The converse is not true; you may use the schema name without using the catalog
name (if you have already done an appropriate SET CATALOG statement to
specify the default catalog).
catalog_name.database_object -- Illegal
schema_name.database_object -- Legal

Only a user with DBA authority (SYS_ADMIN_ROLE) can create a catalog for a
database.

Note that creating a catalog does not automatically make that catalog the current
default catalog. If you have created a new catalog and want your subsequent
commands to execute within that catalog, then you must also execute the SET
CATALOG statement. For example:
CREATE CATALOG MyCatalog;
CREATE SCHEMA smith; -- not in MyCatalog
SET CATALOG MyCatalog;
CREATE SCHEMA jones; -- in MyCatalog

For more information about SET CATALOG, see the description of the command
"SET" in “SET” on page 272.

178 IBM solidDB: SQL Guide

To use schemas, a schema name must be created before creating the database
object name. However, a database object name can be created without a schema
name. In such cases, database objects are qualified using user_id only. For details
on creating schemas, read “CREATE SCHEMA” on page 197.

A catalog context can be set in a program using:

SET CATALOG catalog_name

A catalog can be dropped from a database using:

DROP CATALOG catalog_name

When dropping a catalog name, all objects associated with the catalog name must
be dropped prior to dropping the catalog.

Following are the rules for resolving catalog names:
v A fully qualified name (catalog_name.schema_name.database_object_name) does not

need any name resolution, but will be validated.
v If a catalog context is not set using SET CATALOG, then all database object

names are resolved always using the default catalog name as the catalog name.
The database object name is resolved using schema name resolution rules. For
details on these rules, read “CREATE SCHEMA” on page 197.

v If a catalog context is set and the catalog name cannot be resolved using the
catalog_name in the context, then database_object_name resolution fails.

v To access a database system catalog, users do not need to know the system
catalog name. Users can specify ""._SYSTEM.table". solidDB translates the empty
string " used as a catalog name to the default catalog name. solidDB also
provides automatic resolution of _SYSTEM schema to the system catalog, even
when the catalog name is not provided.

Examples
CREATE CATALOG C;
SET CATALOG C;
CREATE SCHEMA S;
SET SCHEMA S;
CREATE TABLE T (i INTEGER);
SELECT * FROM T;
-- the name T is resolved to C.S.T

-- Assume the userid is SMITH
CREATE CATALOG C;
SET CATALOG C;
CREATE TABLE T (i INTEGER);
SELECT * FROM T;
--The name T is resolved to C.SMITH.T

-- Assume there is no Catalog context set.
-- Meaning the default catalog name is BASE or the setting
-- of the base catalog.
CREATE SCHEMA S;
SET SCHEMA S;
CREATE TABLE T (i INTEGER);
SELECT * FROM T;
--The name T is resolved to <BASE>.S.T

CREATE CATALOG C1;
SET CATALOG C1;
CREATE SCHEMA S1;

Appendix B. solidDB SQL syntax 179

SET SCHEMA S1;
CREATE TABLE T1 (c1 INTEGER);

CREATE CATALOG C2;
SET CATALOG C2;
CREATE SCHEMA S2;
SET SCHEMA S2;
CREATE TABLE T1 (c2 INTEGER)

SET CATALOG BASE;
SET SCHEMA USER;
SELECT * FROM T1;
-- This select will give an error as it
-- cannot resolve the T1.

CREATE EVENT
CREATE EVENT event_name [(parameter_definition

[,parameter_definition ...])]

Usage
Event alerts are used to signal an event in the database. Events are simple objects
with a name. Applications can use event alerts instead of polling, which uses more
resources.

An event object is created with the SQL statement
CREATE EVENT event_name [parameter_list]

The name can be any user-specified alphanumeric string. The parameter list
specifies parameter names and parameter types. The parameter types are normal
SQL types.

Events are dropped with the SQL statement
DROP EVENT event_name

Events are sent and received inside stored procedures. Special stored procedure
statements are used to send and receive events.

The event is sent with the stored procedure statement
post_statement ::= POST EVENT event_name

[(parameters)] [UNIQUE | DATA UNIQUE]

Event parameters must be local variables, constant values, or parameters in the
stored procedure from which the event is sent.

The keyword UNIQUE means that only last post is kept in event queue for each
user and for each event. For example after POST EVENT EV(1) and POST EVENT
EV(2) only EV(2) is in event queue if EV(1) is not processed before EV(2) is posted.
Event EV(1) is discarded. The keyword DATA UNIQUE means that also event
parameters must be unique. So after calls POST EVENT EV(1), POST EVENT EV(2)
and POST EVENT EV(2) events EV(1) and EV(2) are kept in event queue. First
EV(2) is discarded.

All clients that are waiting for the posted event will receive the event. Each
connection has its own event queue. The events to be collected in the event queue
are specified with the stored procedure statement:
wait_register_statement ::= REGISTER EVENT event_name

180 IBM solidDB: SQL Guide

Events are removed from the event queue with the stored procedure statement:
wait_register_statement ::= UNREGISTER EVENT event_name

Note that you do not need to register for every event before waiting for it. When
you wait on an event, you will be registered implicitly for that event if you did not
already explicitly register for it. Thus you only need to explicitly register events if
you want them to start being queued now but you don't want to start WAITing for
them until later.

To make a procedure wait for an event to happen, the WAIT EVENT construct is
used in a stored procedure:
wait_event_statement ::=

WAIT EVENT
[event_specification ...]

END WAIT

event_specification ::=
WHEN event_name [(parameters)] BEGIN

statements
END EVENT

Each connection has its own event queue. To specify the events to be collected in
the event queue, use the command REGISTER EVENT event_name. Events are
removed from the event queue by the command UNREGISTER EVENT event_name.
"CREATE PROCEDURE register_event
begin

register event test_event
end";

"CREATE PROCEDURE unregister_event
begin

unregister event test_event
end";

The creator of an event or the database administrator can grant and revoke access
rights on that event. Access rights can be granted to users and roles. If a user has
"SELECT" access right on an event, then the user has the right to wait on that
event. If a user has the INSERT access right on an event, then the user may post
that event.

If you want to stop the stored procedure waiting for an event, you can use ODBC
function SQLCancel() called from a separate thread in the client application. This
function cancels executing statements. Alternatively, you can create a specific user
event and send it. The waiting stored procedure must be modified to wait for this
additional event. The client application recognises this event and exits the waiting
loop.

For in-depth examples of events usage, refer to the section “Using events” on page
85. The example includes a pair of SQL scripts that when used together post and
wait for multiple events.

Example
CREATE EVENT ALERT1(I INTEGER, C CHAR(4));

See also
CREATE PROCEDURE

Appendix B. solidDB SQL syntax 181

CREATE INDEX
CREATE [UNIQUE] INDEX index_name

ON base_table_name
(column_identifier [ASC | DESC]

[, column_identifier [ASC | DESC]] ...)

Usage
Creates an index for a table based on the given columns.

The keyword UNIQUE specifies that the column(s) being indexed must contain
unique values. If more than one column is specified, then the combination of
columns must have a unique value, but the individual columns do not need to
have unique values. For example, if you create an index on the combination of
LAST_NAME and FIRST_NAME, then the following data values are acceptable
because although there are duplicate first names and duplicate last names, no 2
rows have the same value for both first name and last name.
SMITH, PATTI
SMITH, DAVID
JONES, DAVID

Keywords ASC and DESC specify whether the given columns should be indexed in
ascending or descending order. If neither ASC nor DESC is specified, then
ascending order is used.

Example
CREATE UNIQUE INDEX UX_TEST ON TEST (I);
CREATE INDEX X_TEST ON TEST (I DESC, J DESC);

See also
“CREATE [OR REPLACE] PUBLICATION” on page 194.

CREATE PROCEDURE
CREATE PROCEDURE procedure_name [(parameter_definition
[, parameter_definition ...])]
[RETURNS (output_column_definition [, output_column_definition ...])]
BEGIN procedure_body END;
parameter_definition ::= [parameter_mode] parameter_name data_type
output_column_definition::= column_name column_type
procedure_body ::= [declare_statement; ...][procedure_statement; ...]

parameter_mode ::= IN | OUT | INOUT

declare_statement ::= DECLARE variable_name data_type

procedure_statement ::= prepare_statement | execute_statement |
fetch_statement | control_statement | post_statement |
wait_event_statement | wait_register_statement | exec_direct_statement |
writetrace_statement | sql_dml_or_ddl_statement
prepare_statement ::= EXEC SQL PREPARE
{ cursor_name | CURSORNAME({ string_literal | variable }) }
sql_statement

execute_statement ::=
EXEC SQL EXECUTE cursor_name
[USING (variable [, variable ...])]
[INTO (variable [, variable ...])] |
EXEC SQL CLOSE cursor_name |
EXEC SQL DROP cursor_name |

182 IBM solidDB: SQL Guide

EXEC SQL {COMMIT | ROLLBACK} WORK |
EXEC SQL SET TRANSACTION {READ ONLY | READ WRITE} |
EXEC SQL WHENEVER SQLERROR {ABORT | ROLLBACK [WORK], ABORT}
EXEC SEQUENCE sequence_name.CURRENT INTO variable |
EXEC SEQUENCE sequence_name.NEXT INTO variable |
EXEC SEQUENCE sequence_name SET VALUE USING variable

fetch_statement ::= EXEC SQL FETCH cursor_name

cursor_name ::=
literal

post_statement ::= POST EVENT event_name [(parameters)]

wait_event_statement ::=
WAIT EVENT
[event_specification ...]
END WAIT

event_specification ::=
WHEN event_name [(parameters)] BEGIN

statements
END EVENT

wait_register_statement ::=
REGISTER EVENT event_name |
UNREGISTER EVENT event_name
writetrace_statement ::=
WRITETRACE(string)
control_statement ::=
SET variable_name = value | variable_name ::= value |

WHILE expression
LOOP procedure_statement... END LOOP |

LEAVE |
IF expression THEN procedure_statement ...

[ELSEIF procedure_statement ... THEN] ...
ELSE procedure_statement ... END IF |

RETURN | RETURN SQLERROR OF cursor_name | RETURN ROW |
RETURN NO ROW
exec_direct_statement ::=

EXEC SQL [USING (variable [, variable ...])]
[CURSORNAME(variable)]
EXECDIRECT sql_dml_or_ddl_statement |

EXEC SQL cursor_name
[USING (variable [, variable ...])]

[INTO (variable [, variable ...])]
[CURSORNAME(variable)]
EXECDIRECT sql_dml_or_ddl_statement

Usage
Stored procedures are simple programs, or procedures, that are executed in the
server. The user can create a procedure that contains several SQL statements or a
whole transaction and execute it with a single call statement. Usage of stored
procedures reduces network traffic and allows more strict control to access rights
and database operations.

Procedures are created with the statement
CREATE PROCEDURE name body

and dropped with the statement
DROP PROCEDURE name

Procedures are called with the statement

Appendix B. solidDB SQL syntax 183

CALL name [parameter ...]

All SQL stored procedures are executed in the Primary unless they are specified as
read-only procedures by way of the SQL standard clause SQL Data Access
Indication, in the procedure declaration.
<SQL-data-access-indication> ::=

NO SQL |
READS SQL DATA |
CONTAINS SQL |
MODIFIES SQL DATA

To avoid unnecessary handovers of read-only procedures and functions, one of the
following values can be declared:
v NO SQL
v READS SQL DATA
v CONTAINS SQL

Only MODIFIES SQL DATA (which is the default) inflicts transaction handover.

The clause comes between the (optional) RETURNS clause and the procedure body.
For example:
"CREATE PROCEDURE PHONEBOOK_SEARCH
(IN FIRST_NAME VARCHAR, LAST_NAME VARCHAR)
RETURNS (PHONE_NR NUMERIC, CITY VARCHAR)
READS SQL DATA
BEGIN
-- procedure_body
END";

Stored procedures provide for three different parameter modes: input parameters,
output parameters, and input/output parameters. The parameter modes are:
1. Input parameters are passed to the stored procedure from the calling program.

The parameter_mode value is IN. This is the default behaviour.
2. Output parameters are returned to the calling program from the stored

procedure. The parameter_mode value is OUT.
3. Input/output parameters pass values into the procedure and return a value

back to the calling procedure. The parameter_mode is INOUT.

See the table below for a comparison of the parameter modes:

Table 38. Comparison of the parameter modes

Feature IN OUT INOUT

Default/specified Default. Must be specified. Must be specified.

Operation Passes values to a subprogram. Returns values to the caller. Passes initial values to a
subprogram; returns updated
values to the caller.

Action Formal parameter, acts like a
constant.

Formal parameter, acts like an
uninitialised variable.

Formal parameter, acts like an
initialised variable.

Value assignation Formal parameter, cannot be
assigned a value.

Formal parameter, cannot be
used in an expression; must be
assigned a value.

Formal parameter, should be
assigned a value.

184 IBM solidDB: SQL Guide

Table 38. Comparison of the parameter modes (continued)

Feature IN OUT INOUT

Parameter type Actual parameter, can be a
constant, initialised variable,
literal, or expression.

Actual parameter, must be a
variable.

Actual parameter, must be a
variable.

At programming interfaces, the output parameters are bound to variables as
follows:

In JDBC, with the method CallableStatement.registerOutParameter().

In ODBC, with the function SQLBindParameter(), where the third argument,
InputOutputType, may be of type:

SQL_PARAM_INPUT

SQL_PARAM_OUTPUT

SQL_PARAM_INPUT_OUTPUT

For more information on binding parameters to variables, refer to solidDB
Programmer Guide.

Note that it is syntactically valid, although not useful, to create a stored procedure
with an empty body.

Procedures are owned by the creator of the procedure. Specified access rights can
be granted to other users. When the procedure is run, it has the creator's access
rights to database objects.

The stored procedure syntax is a proprietary syntax modeled from SQL-99
specifications and dynamic SQL. Procedures contain control statements and SQL
statements.

The following control statements are available in the procedures:

Table 39. Control statements

Control Statement Description

set variable = expression
Assigns a value to a variable. The value can be either a literal
value (e.g., 10 or 'text') or another variable. Parameters are
considered as normal variables.

variable ::= expression
Alternate syntax for assigning values to variables.

while
expr

loop
statement-list

end loop

Loops while expression is true.

leave
Leaves the innermost while loop and continues executing the
procedure from the next statement after the keyword end loop.

Appendix B. solidDB SQL syntax 185

Table 39. Control statements (continued)

Control Statement Description

if
expr

then
statement-list1

else
statement-list2

end if

Executes statements-list1 if expression expr is true; otherwise,
executes statement-list2.

if
expr1

then
statement-list1

elseif
expr2

then
statement-list2

end if

If expr1 is true, executes statement-list1. If expr2 is true, executes
statement-list2. The statement can optionally contain multiple
elseif statements and also an else statement.

return
Returns the current values of output parameters and exits the
procedure. If a procedure has a return row statement, return
behaves like return norow.

return sqlerror of cursor-name
Returns the sqlerror associated with the cursor and exits the
procedure.

return row
Returns the current values of output parameters and continues
execution of the procedure. Return row does not exit the
procedure and return control to the caller.

return norow
Returns the end of the set and exits the procedure.

All SQL DML and DDL statements can be used in procedures. Thus the procedure
can, for example, create tables or commit a transaction. Each SQL statement in the
procedure is atomic.

The "autocommit" functionality works differently for statements inside a stored
procedure than for statements outside a stored procedure. For SQL statements
outside a stored procedure, each individual statement is implicitly followed by a
COMMIT WORK operation when autocommit is on. For a stored procedure,
however, the implicit COMMIT WORK is executed after the stored procedure has
returned to the caller. Note that this does not imply that a stored procedure is
"atomic". As indicated above, a stored procedure may contain its own COMMIT
and ROLLBACK commands. The implicit COMMIT WORK executed after the
procedure returns will commit only that portion of the stored procedure statements
that were executed since:
v the last COMMIT WORK inside the procedure
v the last ROLLBACK WORK inside the procedure
v the start of the procedure (if no COMMIT or ROLLBACK commands were

executed during the procedure)

Note that if one stored procedure is called from inside another, the implicit
COMMIT WORK is done only after the end of the OUTERMOST procedure call.
There is no implicit COMMIT WORK done after "nested" procedure calls.

186 IBM solidDB: SQL Guide

For example, in the following script, the implicit COMMIT WORK is executed only
after the CALL outer_proc(); statement:
"CREATE PROCEDURE inner_proc
BEGIN

...
END";
CREATE PROCEDURE outer_proc
BEGIN

...
EXEC SQL PREPARE cursor1 CALL inner_proc();
EXEC SQL EXECUTE cursor1;
...

END";
CALL outer_proc();

Preparing SQL statements
The SQL statements are first prepared with the statement
EXEC SQL PREPARE cursor sql_statement

The cursor specification is a cursor name that must be given. It can be any unique
cursor name inside the transaction. Note that if the procedure is not a complete
transaction, other open cursors outside the procedure may have conflicting cursor
names.

Executing prepared SQL statements
The SQL statement is executed with the statement
EXEC SQL EXECUTE cursor [opt_using] [opt_into]

The optional opt-using specification has the syntax
USING (variable_list)

where variable_list contains a list of procedure variables or parameters separated by
a comma. These variables are input parameters for the SQL statement. The SQL
input parameters are marked with the standard question mark syntax in the
prepare statement. If the SQL statement has no input parameters, the USING
specification is ignored.

The optional opt_into specification has the syntax
INTO (variable_list)

where variable_list contains the variables that the column values of the SQL
SELECT statement are stored into. The INTO specification is effective only for SQL
SELECT statements.

After the execution of UPDATE, INSERT and DELETE statements an additional
variable is available to check the result of the statement. Variable SQLROWCOUNT
contains the number of rows affected by the last statement.

Fetching results
Rows are fetched with the statement
EXEC SQL FETCH cursor_name

If the fetch completed successfully, then the column values are stored into the
variables defined in the opt_into specification of the EXECUTE or EXECDIRECT
statement.

Appendix B. solidDB SQL syntax 187

Closing and dropping cursors
When you are finished using a cursor, you can either CLOSE the cursor or CLOSE
and DROP the cursor.

If you are likely to reuse the cursor and want to improve performance, you should
only CLOSE the cursor. When you close a cursor, all the memory allocated during
the execute phase is released but the cursor is kept in prepared state.

Dropping a cursor frees all allocated resources. The next time you use the dropped
cursor, it needs to prepared.

Checking for errors
The result of each EXEC SQL statement executed inside a procedure body is stored
into the variable SQLSUCCESS. This variable is automatically generated for every
procedure. If the previous SQL statement was successful, a value one is stored into
SQLSUCCESS. After a failed SQL statement, a value zero is stored into
SQLSUCCESS.
EXEC SQL WHENEVER SQLERROR {ABORT | [ROLLBACK [WORK], ABORT}

is used to decrease the need for IF NOT SQLSUCCESS THEN tests after every
executed SQL statement in a procedure. When this statement is included in a
stored procedure all return values of executed statements are checked for errors. If
statement execution returns an error, the procedure is automatically aborted.
Optionally the transaction can be rolled back.

The error string of latest failed SQL statement is stored into variable SQLERRSTR.

Using transactions
EXEC SQL {COMMIT | ROLLBACK} WORK

is used to terminate transactions.
EXEC SQL SET TRANSACTION {READ ONLY | READ WRITE}

is used to control the type of transactions.

Using sequencer objects and event alerts
Refer to the usage of the CREATE SEQUENCE and CREATE EVENT statements.

Writetrace
The writetrace() function allows you to send a string to the soltrace.out trace file.
This can be useful when debugging problems in stored procedures.

The output will only be written if you turn tracing on.

For more information about writetrace and how to turn on tracing, see “Tracing
facilities for stored procedures and triggers” on page 135.

Procedure stack functions
The following functions may be used to analyze the current contents of the
procedure stack: PROC_COUNT(), PROC_NAME(N), PROC_SCHEMA(N).

PROC_COUNT() returns the number of procedures in the procedure stack. This
includes the current procedure.

188 IBM solidDB: SQL Guide

PROC_NAME(N) returns the Nth procedure name is the stack. First procedure
position is zero.

PROC_SCHEMA(N) returns the schema name of the Nth procedure in procedure
stack.

Dynamic cursor names
CURSORNAME(

prefix -- VARCHAR
)

The CURSORNAME() function allows you to dynamically generate a cursor name
rather than hard-coding the cursor name.

Note:

Strictly speaking, CURSORNAME() is not a function, despite the syntactic
similarity. CURSORNAME(arg) does not actually return anything; instead it sets
the name of the current statement's cursor based on the given argument. However,
it is convenient to refer to it as a function, and therefore we will do so.

Cursor names must be unique within a connection. This causes problems in
recursive stored procedures because each invocation uses the same cursor name(s).
When the recursive procedure calls itself, the second invocation will find that the
first invocation has already created a cursor with the same name as the second
invocation wants to use.

To get around this problem, we must generate unique cursor names dynamically,
and we must be able to use those names when we declare and use cursors. To
enable us to generate unique names and use them as cursors, we use 2 functions:
v GET_UNIQUE_STRING
v CURSORNAME

The GET_UNIQUE_STRING function does just what it's name suggests — it
generates a unique string. The CURSORNAME function (actually a
pseudo-function) allows you to use a dynamically generated string as part of a
cursor name.

Note that GET_UNIQUE_STRING returns a different output each time it is called,
even if the input is the same. CURSORNAME, on the other hand, returns the same
output each time if the input is the same each time.

Below is an example of using GET_UNIQUE_STRING and CURSORNAME to
dynamically generate a cursor name. The dynamically generated cursorname is
assigned to the placeholder "cname", which is then used in each statement after the
PREPARE.
DECLARE autoname VARCHAR;
Autoname := GET_UNIQUE_STRING(’CUR_’);
EXEC SQL PREPARE cname CURSORNAME(autoname) SELECT * FROM TABLES;
EXEC SQL EXECUTE cname USING(...) INTO(...);
EXEC SQL FETCH cname;
EXEC SQL CLOSE cname;
EXEC SQL DROP cname;

CURSORNAME() can only be used in PREPARE statements and EXECDIRECT
statements. It cannot be used in EXECUTE, FETCH, CLOSE, DROP, etc.

Appendix B. solidDB SQL syntax 189

By using the CURSORNAME() feature and the GET_UNIQUE_STRING() function,
you can generate unique cursor names in recursive stored procedures. If the
procedure calls itself, then each time that this function is called within the stored
procedure, this function will return a unique string that can be used as the cursor
name in a PREPARE statement. See below for some examples of code that you
could use inside a stored procedure.

Note that each call to CURSORNAME(autoname) returns the same value — i.e. the
same cursor name, as long as the input (autoname) does not change.

EXECDIRECT
The EXECDIRECT statement allows you to execute statements inside stored
procedures without first "preparing" those statements. This reduces the amount of
code required. Note that if the statement is a cursor, you still need to close and
drop it; only the PREPARE statement can be skipped.

When using
EXEC SQL [USING(var_list)] [CURSORNAME(variable)]
EXECDIRECT <statement>

or
EXEC SQL <cursor_name> [USING(var_list)] [INTO (var_list)]
[CURSORNAME(variable)] EXECDIRECT <statement>

remember the following rules:
v If the statement specifies a cursor name, then the cursor must be dropped with

the EXEC SQL DROP statement.
v If a cursor name is not specified, then you don't need to drop the statement.
v If the statement is a fetch cursor, then the INTO... clause must be specified.
v If the INTO clause is specified, then the cursor_name must be specified;

otherwise the FETCH statement won't be able to specify which cursor name the
row should be fetched from. (You may have more than one open cursor at a
time.)

Below are several examples of CREATE PROCEDURE statements. Some use the
PREPARE and EXECUTE commands, while others use EXECDIRECT.

CREATE PROCEDURE
"create procedure test2(tableid integer)

returns (cnt integer)
begin

exec sql prepare c1 select count(*) from sys_tables where id > ?;
exec sql execute c1 using (tableid) into (cnt);
exec sql fetch c1;
exec sql close c1;
exec sql drop c1;

end";

Using the explicit RETURN statement
This example uses the explicit RETURN statement to return multiple rows, one at a
time.
"create procedure return_tables

returns (name varchar)
begin

exec sql execdirect create table table_name (lname char (20));

190 IBM solidDB: SQL Guide

exec sql whenever sqlerror rollback, abort;
exec sql prepare c1 select table_name from sys_tables;
exec sql execute c1 into (name);
while sqlsuccess loop

exec sql fetch c1;
if not sqlsuccess

then leave;
end if
return row;

end loop;
exec sql close c1;
exec sql drop c1;

end";

Using EXECDIRECT
-- This example shows how to use "execdirect".
"CREATE PROCEDURE p
BEGIN

DECLARE host_x INT;
DECLARE host_y INT;

-- Examples of execdirect without a cursor. Here we create a table
-- and insert a row into that table.
EXEC SQL EXECDIRECT create table foo (x int, y int);
EXEC SQL EXECDIRECT insert into foo(x, y) values (1, 2);

SET host_x = 1;

-- Example of execdirect with cursor name.
-- In this example, "c1" is the cursor name; "host_x" is the
-- variable whose value will be substituted for the "?";
-- "host_y" is the variable into which we will store the value of the
-- column y (when we fetch it).
-- Note: although you don’t need a "prepare" statement, you still
-- need close/drop.
EXEC SQL c1 USING(host_x) INTO(host_y) EXECDIRECT

SELECT y from foo where x=?;
EXEC SQL FETCH c1;
EXEC SQL CLOSE c1;
EXEC SQL DROP c1;

END";

Using CURSORNAME
This example shows the usage of the CURSORNAME() pseudo-function. This
shows only part of the body of a stored procedure, not a complete stored
procedure.
-- Declare a variable that will hold a unique string that we can use
-- as a cursor name.
DECLARE autoname VARCHAR ;
Autoname := GET_UNIQUE_STRING(’CUR_’) ;
EXEC SQL PREPARE curs_name CURSORNAME(autoname) SELECT * FROM TABLES;
EXEC SQL EXECUTE curs_name USING(...) INTO(...);
EXEC SQL FETCH curs_name;
EXEC SQL CLOSE curs_name;
EXEC SQL DROP curs_name;

Using GET_UNIQUE_STRING and CURSORNAME
Here is a more complete example that actually uses the GET_UNIQUE_STRING
and CURSORNAME functions in a recursive stored procedure.

Appendix B. solidDB SQL syntax 191

The stored procedure below demonstrates the use of these two functions in a
recursive procedure. Note that the cursor name "curs1" appears to be hard-coded,
but in fact has been mapped to the dynamically generated name.
-- Demonstrate GET_UNIQUE_STRING and CURSORNAME functions in a
-- recursive stored procedure.
-- Given a number N greater than or equal to 1, this procedure
-- returns the sum of the numbers 1 - N. (This can also be done in a loop,
-- but the purpose of the example is to show the use of the
-- CURSORNAME function in a recursive procedure.)
"CREATE PROCEDURE Sum1ToN(n INT)
RETURNS (SumSoFar INT)
BEGIN

DECLARE SumOfRemainingItems INT;
DECLARE nMinusOne INT;
DECLARE autoname VARCHAR;

SumSoFar := 0;
SumOfRemainingItems := 0;
nMinusOne := n - 1;

IF (nMinusOne > 0) THEN
Autoname := GET_UNIQUE_STRING(’CURSOR_NAME_PREFIX_’) ;
EXEC SQL PREPARE curs1 CURSORNAME(autoname) CALL Sum1ToN(?);
EXEC SQL EXECUTE curs1 USING(nMinusOne) INTO(SumOfRemainingItems);
EXEC SQL FETCH curs1;
EXEC SQL CLOSE curs1;
EXEC SQL DROP curs1;

END IF;

SumSoFar := n + SumOfRemainingItems;
END";

Example 6
Using EXECDIRECT in CREATE PROCEDURE
CREATE TABLE table1 (x INT, y INT);
INSERT INTO table1 (x, y) VALUES (1, 2);

"CREATE PROCEDURE FOO
RETURNS (r INT)
BEGIN
DECLARE autoname VARCHAR;
Autoname := GET_UNIQUE_STRING(’CUR_’);
EXEC SQL curs_name INTO(r) CURSORNAME(autoname) EXECDIRECT

SELECT y FROM TABLE1 WHERE x = 1;
EXEC SQL FETCH curs_name;
EXEC SQL CLOSE curs_name;
EXEC SQL DROP curs_name;
END";

CALL foo();
SELECT * FROM table1;

Creating a unique name for a synchronization message
Creating a unique name for a synchronization message:
DECLARE Autoname VARCHAR;
DECLARE Sqlstr VARCHAR;
Autoname := get_unique_string(’MSG_’) ;
Sqlstr := ’MESSAGE’ + autoname + ’BEGIN’;
EXEC SQL EXECDIRECT Sqlstr;
...
Sqlstr := ’MESSAGE’ + autoname + ’FORWARD’;
EXEC SQL EXECDIRECT Sqlstr;

192 IBM solidDB: SQL Guide

Using GET_UNIQUE_STRING
-- This demonstrates how to use the GET_UNIQUE_STRING() function
-- to generate unique message names from within a recursive stored
-- procedure.

CREATE TABLE table1 (i int, beginMsg VARCHAR, endMsg VARCHAR);

-- This is a simplified example of recursion.
-- Note that the messages I compose are not actually used! This is
-- not a true example of synchronization; it’s only an example of
-- generating unique message names. The "count" parameter is the
-- number of times that you want this function to call
-- itself (not including the initial call).
"CREATE PROCEDURE repeater(count INT)

BEGIN

DECLARE Autoname VARCHAR;
DECLARE MsgBeginStr VARCHAR;
DECLARE MsgEndStr VARCHAR;

Autoname := GET_UNIQUE_STRING(’MSG_’);
MsgBeginStr := ’MESSAGE ’ + Autoname + ’ BEGIN’;
MsgEndStr := ’MESSAGE ’ + Autoname + ’ END’;

EXEC SQL c1 USING (count, MsgBeginStr, MsgEndStr) EXECDIRECT
INSERT INTO table1 (i, beginMsg, endMsg) VALUES (?,?,?);

EXEC SQL CLOSE c1;
EXEC SQL DROP c1;

-- Once you have composed the SQL statement as a string,
-- you can execute it one of two ways:
-- 1) by using the EXECDIRECT feature or
-- 2) by preparing and executing the SQL statement.
-- In this example, we use EXECDIRECT.
EXEC SQL EXECDIRECT MsgBeginStr;
EXEC SQL EXECDIRECT MsgEndStr;
-- Do something useful here.

-- The recursive portion of the function.
IF (count > 1) THEN

SET count = count - 1;
-- Note that we can also use our unique name as a cursor name,
-- as shown below.
EXEC SQL Autoname USING (count) EXECDIRECT CALL repeater(?);
EXEC SQL CLOSE Autoname;
EXEC SQL DROP Autoname;

END IF

RETURN;
END";

CALL repeater(3);

-- Show the message names that we composed.
SELECT * FROM table1;

The output from this SELECT statement would look similar to the following:
I BEGINMSG ENDMSG
-- -------------------- ------------------
1 MESSAGE MSG_019 BEGIN MESSAGE MSG_019 END
2 MESSAGE MSG_020 BEGIN MESSAGE MSG_020 END
3 MESSAGE MSG_021 BEGIN MESSAGE MSG_021 END

Appendix B. solidDB SQL syntax 193

CREATE [OR REPLACE] PUBLICATION
“CREATE [OR REPLACE] PUBLICATION publication_name

[(parameter_definition [,parameter_definition...])]
BEGIN

main_result_set_definition...
END”;

main_result_set_definition ::=
RESULT SET FOR main_replica_table_name

BEGIN
SELECT select_list
FROM master_table_name
[WHERE search_condition] ;
[[DISTINCT] result_set_definition...]

END

result_set_definition ::=
RESULT SET FOR replica_table_name

BEGIN
SELECT select_list
FROM master_table_name
[WHERE search_condition] ;
[[DISTINCT] result_set_definition...]

END

NOTE: Search_condition can reference parameter_definitions and/or columns of
replica tables defined on previous (higher) levels.

Usage
Publications define the sets of data that can be REFRESHed from the master to the
replica database. A publication is always transactionally consistent, that is, its data
has been read from the master database in one transaction and the data is written
to the replica database in one transaction.

CAUTION:

The data read from the publication is internally consistent unless the master is
using the READ COMMITTED isolation level.

Search conditions of a SELECT clause can contain input arguments of the
publication as parameters. The parameter name must have a colon as a prefix.

Publications can contain data from multiple tables. The tables of the publication
can be independent or there can be relations between the tables. If there is a
relation between tables, the result sets must be nested. The WHERE clause of the
SELECT statement of the inner result set of the publication must refer to a column
of the table of the outer result set.

If the relation between outer and inner result set of the publication is a N-1
relationship, then the keyword DISTINCT must be used in the result set definition.

The replica_table_name can be different from the master_table_name. The publication
definition provides the mapping between the master and replica tables. (If you
have multiple replicas, all the replicas should use the same name, even if that
name is different from the name used in the master.) Column names in the master
and replica tables must be the same.

194 IBM solidDB: SQL Guide

Note that the initial download is always a full publication, which means that all
data contained in the publication is sent to the replica database. Subsequent
downloads (refreshes) for the same publication may be incremental publications,
which means that they contain only the data that has been changed since the prior
REFRESH. To enable usage of incremental publications, SYNCHISTORY has to be
set ON for tables included in the publication in both the master and replica
databases. For details, read “ALTER TABLE ... SET SYNCHISTORY” on page 170
and “DROP PUBLICATION REGISTRATION” on page 216.

If the optional keywords "OR REPLACE" are used, then if the publication already
exists it will be replaced with the new definition. Since the publication was not
dropped and recreated, replicas do not need to re-register, and subsequent
REFRESHes from that publication can be incremental rather than full, depending
upon exactly what changes were made to the publication.

To avoid having a replica refresh from a publication while you are updating that
publication, you may temporarily set the catalog's sync mode to Maintenance
mode. However, using maintenance mode is not absolutely required when
replacing a publication.

If you replace an existing publication, the new definition of the publication will be
sent to each replica the next time that replica requests a refresh. The replica does
not need to explicitly re-register itself to the publication.

When you replace an existing publication with a new definition, you may change
the resultset definitions. You cannot change the parameters of the publication. The
only way to change the parameters is to drop the publication and create a new
one, which also means that the replicas must re-register and the replicas will get a
full refresh rather than an incremental refresh the next time that they request a
refresh.

When you replace an existing publication, the privileges related to that publication
are left unchanged. (You do not need to re-create them.)

The CREATE OR REPLACE PUBLICATION command can be executed in any
situation where it is valid to execute the CREATE PUBLICATION command.

CAUTION:

If you use CREATE OR REPLACE PUBLICATION to alter the contents of an
existing advanced replication publication, you have to take care of removing
invalid rows from Replica.

Usage in master
You define the publication in the master database to enable the replicas to get
refrehses from it.

Usage in replica
There is no need to define the publications in the replicas. Publication subscription
functionality depends on the definitions only at the master database. If this
command is executed in a replica, it will store the publication definition to the
replica, but the publication definition is not used for anything.

Note: If a database is both a replica (for a master above it) and a master (to a
replica below it), you may want to create a publication definition in the database.

Appendix B. solidDB SQL syntax 195

Example
The following sample publication retrieves data from the customer table using the
area code of the customer as search criterion. For each customer, the orders and
invoices of the customer (1-N relation) as well as the dedicated salesman of the
customer (1-1 relation) are also retrieved.
"CREATE PUBLICATION PUB_CUSTOMERS_BY_AREA

(IN_AREA_CODE VARCHAR)
BEGIN

RESULT SET FOR CUSTOMER
BEGIN

SELECT * FROM CUSTOMER
WHERE AREA_CODE = :IN_AREA_CODE;
RESULT SET FOR CUST_ORDER
BEGIN
SELECT * FROM CUST_ORDER
WHERE CUSTOMER_ID = CUSTOMER.ID;
END
RESULT SET FOR INVOICE

BEGIN
SELECT * FROM INVOICE
WHERE CUSTOMER_ID = CUSTOMER.ID;

END
DISTINCT RESULT SET FOR SALESMAN
BEGIN

SELECT * FROM SALESMAN
WHERE ID = CUSTOMER.SALESMAN_ID;

END
END

END";

Note:

The colon (:) in :IN_AREA_CODE is used to designate a reference to a publication
parameter with the same name.

EXAMPLE 2:

Developers decided to add a new column C in table T, which is referenced in
publication P. The modification must be made to the master database and all
replica databases.

The tasks to execute in the master database are:
-- Prevent other users from doing concurrent synchronization operations
-- to this catalog.
SET SYNC MAINTENANCE MODE ON;
ALTER TABLE T ADD COLUMN C INTEGER;
COMMIT WORK;
CREATE OR REPLACE PUBLICATION P ... (column C added also to publication)
COMMIT WORK;
SET SYNC MAINTENANCE MODE OFF;

The tasks to execute in all replica databases are:
-- Prevent other users from doing concurrent synchronization operations
-- to this catalog.
SET SYNC MAINTENANCE MODE ON;
ALTER TABLE T ADD COLUMN C INTEGER;
COMMIT WORK;
SET SYNC MAINTENANCE MODE OFF;

196 IBM solidDB: SQL Guide

Return values
For details on each error code, see the appendix titled Error Codes in the solidDB
Administration Guide.

Table 40. CREATE PUBLICATION Return Values

Error Code Description

13047 No privilege for operation. You do not have the privileges
required to drop this publication or create a publication.

13120 The name is too long for the publication

25015 Syntax error: error_message, line line_number

25021 Database is not master or replica database. Publications can be
created only in a master or replica database. (As a practical
matter, they should only be created in a master database.)

25033 Publication publication_name already exists

25049 Referenced table table_name not found in subscription hierarchy

25061 Where condition for table table_name must refer to an outer table
of the publication

CREATE ROLE
CREATE ROLE role_name

Usage
Creates a new user role.

Example
CREATE ROLE GUEST_USERS;

CREATE SCHEMA
CREATE SCHEMA schema_name

Usage
Schemas are a collection of database objects, such as tables, views, indexes, events,
triggers, sequences, and stored procedures for a database user. The default schema
name is the user id. Note that with schemas, there is one default for each user.
solidDB's use of schemas conforms to the SQL standard.

The schema name is used to qualify a database object name. Database object names
are qualified in all DML statements as:
catalog_name.schema_name.database_object_name

or
user_id.database_object_name

To logically partition a database, users can create a catalog before they create a
schema. For details on creating a catalog, read “CREATE CATALOG” on page 177.

Appendix B. solidDB SQL syntax 197

Note that when creating a new database or converting an old database to a new
format, users are prompted for a default catalog name.

To use schemas, a schema name must be created before creating the database
object name (such as a table name or procedure name). However, a database object
name can be created without a schema name. In such cases, database objects are
qualified using user_id only.

You can specify the database object names in a DML statement explicitly by fully
qualifying them or implicitly by setting the schema name context using:
SET SCHEMA schema_name

Creating a schema does not automatically make that schema the current default
schema. If you have created a new schema and want your subsequent commands
to execute within that schema, then you must also execute the SET SCHEMA
statement. For example:
CREATE SCHEMA MySchema;
CREATE TABLE t1; -- not in MySchema
SET SCHEMA MySchema;
CREATE TABLE t2; -- in MySchema

For more information about SET SCHEMA, see the description of the SET
SCHEMA command in “SET” on page 272.

A schema can be dropped from a database using:
DROP SCHEMA schema_name

When dropping a schema name, all objects associated with the schema name must
be dropped prior to dropping the schema.

A schema context can be removed using:
SET SCHEMA USER

Below are the rules for resolving schema names:
v A fully qualified name (schema_name.database_object_name) does not need any

name resolution, but will be validated.
v If a schema context is not set using SET SCHEMA, then all database object

names are resolved always using the user id as the schema name.
v If the database object name cannot be resolved from the schema name, then the

database object name is resolved from all existing schema names.
v If name resolution finds either zero matching or more than one matching

database object name, then a solidDB server issues a name resolution conflict
error.

Examples
-- Assume the userID is SMITH.
CREATE SCHEMA FINANCE;
CREATE TABLE EMPLOYEE (EMP_ID INTEGER);
SET SCHEMA FINANCE;
CREATE TABLE EMPLOYEE (ID INTEGER);
SELECT ID FROM EMPLOYEE;
-- In this case, the table is qualified to FINANCE.EMPLOYEE
SELECT EMP_ID FROM EMPLOYEE;
-- This will give an error as the context is with FINANCE and
-- table is resolved to FINANCE.EMPLOYEE

198 IBM solidDB: SQL Guide

--The following are valid schema statements: one with a schema context,
--the other without.
SELECT ID FROM FINANCE.EMPLOYEE;
SELECT EMP_ID FROM SMITH.EMPLOYEE
--The following statement will resolve to schema SMITH without a schema
--context
SELECT EMP_ID FROM EMPLOYEE;

CREATE SEQUENCE
CREATE [DENSE] SEQUENCE sequence_name

Usage
Sequencer objects are objects that are used to get sequence numbers.

Using a dense sequence guarantees that there are no holes in the sequence
numbers. The sequence number allocation is bound to the current transaction. If
the transaction rolls back, then the sequence number allocations are also rolled
back. The drawback of dense sequences is that the sequence is locked out from
other transactions until the current transaction ends.

Using a sparse sequence guarantees uniqueness of the returned values, but they
are not bound to the current transaction. If a transaction allocates a sparse
sequence number and later rolls back, the sequence number is simply lost.

Sequence numbers are 8-byte values. Sequence values can be stored in BIGINT,
INT, or BINARY data types. BIGINT is recommended. Sequence values stored in
INT variables lose information because an 8-byte sequence number will not fit in a
4-byte INT. 8-byte BINARY values can store a complete sequence number, but
BINARY values are not always as convenient to work with as integer data types.

Note:

Because a sequence number is an 8-byte number, storing it in a 4-byte integer (in a
stored procedure or in an application program) will omit the highest four bytes.
This will lead possibly to unwanted behavior after the sequence number goes
beyond 2^31 - 1 (=2147483647). Below is some sample code and the output that
demonstrates this behavior:
CREATE SEQUENCE seq1;

-- Set the sequence number to 2^31 - 1,
-- then return that value and the "next" value (2^31).
"CREATE PROCEDURE set_seq1_to_2G
RETURNS (x INT, y INT)
BEGIN
DECLARE int1 INTEGER;
int1 := 2147483647;
EXEC SEQUENCE seq1 SET VALUE USING int1;
EXEC SEQUENCE seq1 CURRENT INTO x;
EXEC SEQUENCE seq1 NEXT INTO y;
END";

COMMIT WORK;

CALL set_seq1_to_2G();

The return values from the call are:
x y

2147483647 -2147483648

Appendix B. solidDB SQL syntax 199

The value for x is correct, but the value for y is a negative number instead of the
correct positive number.

The advantage of using a sequencer object instead of a separate table is that the
sequencer object is specifically fine-tuned for fast execution and requires less
overhead than normal update statements.

Sequence values can be incremented and used within SQL statements. These
constructs can be used in SQL:
sequence_name.CURRVAL
sequence_name.NEXTVAL

Sequences can also be used inside stored procedures. The current sequence value
can be retrieved using the following stored procedure statement:
EXEC SEQUENCE sequence_name.CURRENT INTO variable

The new sequence value can be retrieved using the following stored procedure
statement:
EXEC SEQUENCE sequence_name.NEXT INTO variable

Sequence values can be set with the following stored procedure statement:
EXEC SEQUENCE sequence_name SET VALUE USING variable

Select access rights are required to retrieve the current sequence value. Update
access rights are required to allocate new sequence values. These access rights are
granted and revoked in the same way as table access rights.

Examples
CREATE DENSE SEQUENCE SEQ1;
INSERT INTO ORDER (id) VALUES (SEQ1.NEXTVAL);

CREATE SYNC BOOKMARK
CREATE SYNC BOOKMARK bookmark_name

Supported in
This requires solidDB advanced replication.

Usage
This statement creates a bookmark in a master database. Bookmarks represent a
user-defined version of the database. It is a persistent snapshot of a solidDB
database, which provides a reference for performing specific synchronization tasks.
Bookmarks are used typically to export data from a master for import into a
replica using the EXPORT SUBSCRIPTION command. Exporting and importing
data allows you to create a replica from a master more efficiently if you have
databases larger than 2GB.

To create a bookmark, you must have administrative DBA privileges or
SYS_SYNC_ADMIN_ROLE. There is no limit to the number of bookmarks you can
create in a database. A bookmark is created only in a master database. The system
issues an error if you attempt to create a bookmark in a replica database.

If a table is set up for synchronization history with the ALTER TABLE SET
SYNCHISTORY command, a bookmark retains history information for the table.

200 IBM solidDB: SQL Guide

For this reason, use the DROP SYNC BOOKMARK statement to drop bookmarks
when they are not longer needed. Otherwise, extra history data will increase disk
space usage.

When you create a new bookmark, the system associates other attributes, such as
creator of the bookmark, creation data and time, and a unique bookmark ID. This
metadata is maintained in the system table SYS_SYNC_BOOKMARKS. For a
description of this table, refer to “SYS_SYNC_BOOKMARKS” on page 338.

Usage in master
Use the CREATE SYNC BOOKMARK statement to create a bookmark in a master
database.

Usage in replica
The CREATE SYNC BOOKMARK statement cannot be used in a replica database.

Example
CREATE SYNC BOOKMARK BOOKMARK_AFTER_DATALOAD;

Return values
For details on each error code, see the appendix titled Error Codes in the solidDB
Administration Guide.

Table 41. CREATE SYNC BOOKMARK Return Values

Error Code Description

25066 Bookmark already exists

13047 No privilege for operation

CREATE TABLE
CREATE [{ [GLOBAL] TEMPORARY | TRANSIENT }] TABLE base_table_name
(column_element [, column_element] ...) [STORE {MEMORY | DISK}]

base_table_name ::= base_table_identifier | schema_name.base_table_identifier |
catalog_name.schema_name.base_table_identifier

column_element ::= column_definition | table_constraint_definition

column_definition ::= column_identifier
data_type [DEFAULT literal | NULL] [NOT NULL]
[column_constraint_definition [column_constraint_definition] ...]

column_constraint_definition ::= [CONSTRAINT constraint_name]
UNIQUE | PRIMARY KEY |
REFERENCES ref_table_name [(referenced_columns)] |
CHECK (check_condition)

table_constraint_definition ::= [CONSTRAINT constraint_name]
UNIQUE (column_identifier [, column_identifier] ...) |
PRIMARY KEY (column_identifier [, column_identifier] ...) |
CHECK (check_condition) |
{FOREIGN KEY (column_identifier [, column_identifier] ...)
REFERENCES table_name [(referenced_columns)]

Appendix B. solidDB SQL syntax 201

[referential_triggered_action] }
referential_triggered_action:: =

ON {UPDATE | DELETE} {CASCADE | SET NULL | SET DEFAULT |
RESTRICT | NO ACTION}

Usage
Tables are created through the CREATE TABLE statement. The CREATE TABLE
statement requires a list of the columns created, the data types, and, if applicable,
sizes of values within each column, in addition to other options, such as creating
primary keys.

Important:

Always define a primary key when you create a table. If you do not define a
primary key, solidDB will create one automatically. This will lead to unexpected
data order on the disk and may cause performance degradation. An appropriate
primary key speeds up queries using the primary key.

Constraint definitions are available for both the column and table level. For the
column level, constraints defined with NOT NULL specify that a non-null value is
required for a column insertion. UNIQUE specifies that no two rows are allowed
to have the same value. PRIMARY KEY ensures that the column(s), which is (are) a
primary key, does not permit two rows to have the same value and does not
permit any NULL values; PRIMARY KEY is thus equivalent to the combination of
UNIQUE and NOT NULL. The REFERENCES clause with FOREIGN KEY specifies
a table name and a list of columns for a referential integrity constraint. This means
that when data is inserted or updated in this table, the data must match the values
in the referenced tables and columns.

The CHECK keyword restricts the values that can be inserted into a column (for
example, restricting the values with a specific integer range). When defined, the
check constraint performs a validation check for any data that is inserted or
updated in that column. If the data violates the constraint, then the modification is
prohibited. For example:
CREATE TABLE table1 (salary DECIMAL CHECK (salary >= 0.0));

The check_condition is a boolean expression that specifies the check constraints for
the column. Check constraints are defined with the predicates >, <, =, <>, <=, >=
and the keywords BETWEEN, IN, LIKE (which may contain wildcard characters),
and IS [NOT] NULL. The expression (similar to the syntax of a WHERE clause)
can be qualified with keywords AND and OR. For example:
...CHECK (col1 = ’Y’ OR col1 = ’N’)...
...CHECK (last_name IS NOT NULL)...

Note that UNIQUE and PRIMARY KEY constraints can be defined at the column
level or the table level. They also automatically create a unique index on the
specified columns.

A foreign key is a column or group of columns within a table that refers to, or
relates to, some other table through its values. The FOREIGN KEY is used to
specify that the column(s) listed are foreign keys in this table. The REFERENCES
keyword in the statement specifies the table and those column(s) that are
references of the foreign key(s). Note that although column-level constraints can
use a REFERENCES clause, only table-level constraints can use the FOREIGN KEY
... REFERENCES clause.

202 IBM solidDB: SQL Guide

To use the REFERENCES constraint with FOREIGN keys, a foreign key must
always include enough columns in its definition to uniquely identify a row in the
referenced table. A foreign key must contain the same number and type (data type)
of columns as the primary key in the referenced table as well as be in the same
order; however, a foreign key can have different column names and default values
than the primary key.

Note the following rules about constraints:
v The check_condition cannot contain subqueries, aggregate functions, host

variables, or parameters.
v Column check constraints can reference only the columns on which they are

defined.
v Table check constraints can reference any columns in the table, that is if all

columns in the table have been defined earlier in the statement.
v A table may have only one primary key constraint, but may have multiple

unique constraints.
v The UNIQUE and PRIMARY KEY constraints in the CREATE TABLE statement

can be used to create indexes. However, if you use the ALTER TABLE statement,
keep in mind that a column cannot be dropped if it is part of a unique or
primary key. You may want to use the CREATE INDEX statement to create an
index instead because the index will have a name and you can drop it. The
CREATE INDEX statement also offers some additional features, such as the
ability to create non-unique indexes and to specify if the indexes are sorted in
ascending or descending order.

v The referential integrity rules for persistent, transient, and temporary table types
are different.
– A temporary table may reference another temporary table, but may not

reference any other type of table (i.e. transient or persistent). No other type of
table may reference a temporary table.

– Transient tables may reference other transient tables and may reference
persistent tables. They may not reference temporary tables. Neither temporary
tables nor persistent tables may reference a transient table.

In a disk-based table, the maximum size of a row (excluding BLOBs) is
approximately 1/3 of the page size. In an in-memory table, the maximum size of a
row (including BLOBs) is approximately the page size. (There is a small amount of
overhead used in both disk-based and in-memory pages, so not quite all of the
page is available for user data.) The default page size is 8kB. For more information
about page size, see the description of the solid.ini configuration parameter
BlockSize in IBM solidDB Administrator Guide.

The server does not use simple rules to determine BLOB storage, but as a general
rule each BLOB occupies 256 bytes from the page where the row resides, and the
rest of the BLOB goes to separate BLOB pages. If the BLOB is shorter than 256
bytes, then it is stored entirely in the main disk page, not BLOB pages.

Each row is limited to 1000 columns.

The STORE clause indicates whether the table should be stored in memory or on
disk. (This clause is only available in solidDB main memory engine.) For more
information about the STORE clause, see IBM solidDB In-Memory Database User
Guide.

Appendix B. solidDB SQL syntax 203

In-memory tables may be persistent (normal) tables, temporary tables, or transient
tables. For a detailed discussion of temporary tables and transient tables, see IBM
solidDB In-Memory Database User Guide.

All temporary tables and transient tables must be in-memory tables. You do not
need to specify the "STORE MEMORY" clause; temporary tables and transient
tables will automatically be created as in-memory tables if you omit the STORE
clause. (For temporary tables and transient tables, the solid.ini configuration
parameter DefaultStoreIsMemory is ignored.) You will get an error if you try to
explicitly create temporary tables or transient tables as disk-based tables, e.g. if you
execute a command similar to the following:
CREATE TEMPORARY TABLE t1 (i INT) STORE DISK; --Wrong!

The keyword "GLOBAL" is included to comply with the SQL:1999 standard for
temporary tables. In solidDB, all temporary tables are global, whether or not the
GLOBAL keyword is used.

Interactions with configuration parameters
The storage location (disk or memory) in the CREATE TABLE statement takes
precedence over the storage location specified by the DefaultStoreIsMemory
parameter in the solid.ini configuration file.

Example
CREATE TABLE DEPT (DEPTNO INTEGER NOT NULL, DNAME VARCHAR, PRIMARY KEY(DEPTNO));
CREATE TABLE DEPT2 (DEPTNO INTEGER NOT NULL PRIMARY KEY, DNAME VARCHAR);
CREATE TABLE DEPT3 (DEPTNO INTEGER NOT NULL UNIQUE, DNAME VARCHAR);
CREATE TABLE DEPT4 (DEPTNO INTEGER NOT NULL, DNAME VARCHAR, UNIQUE(DEPTNO));
CREATE TABLE EMP (DEPTNO INTEGER, ENAME VARCHAR, FOREIGN KEY (DEPTNO)
REFERENCES DEPT (DEPTNO)) STORE DISK;
CREATE TABLE EMP2 (DEPTNO INTEGER, ENAME VARCHAR, CHECK (ENAME IS NOT NULL),
FOREIGN KEY (DEPTNO) REFERENCES DEPT (DEPTNO)) STORE MEMORY;
CREATE GLOBAL TEMPORARY TABLE T1 (C1 INT);
CREATE TRANSIENT TABLE T2 (C1 INT);

CREATE TRIGGER
CREATE TRIGGER trigger_name ON table_name time_of_operation

triggering_event [REFERENCING column_reference]
BEGIN trigger_body END

where:
trigger_name ::= literal
table_name ::= literal
time_of_operation ::= BEFORE | AFTER
triggering_event ::= INSERT | UPDATE | DELETE
column_reference ::= {OLD | NEW} column_name [AS] col_identifier

[, REFERENCING column_reference]

trigger_body ::=
[declare_statement;...]
[trigger_statement;...]

old_column_name ::= literal
new_column_name ::= literal
col_identifier ::= literal

Note:

204 IBM solidDB: SQL Guide

This appendix is intended to provide a quick reference to using solidDB SQL
commands. For details on when and how to use triggers, read “Triggers and
procedures” on page 56.

Usage
A trigger provides a mechanism for executing a series of SQL statements when a
particular action (an INSERT, UPDATE, or DELETE) occurs. The "body" of the
trigger contains the SQL statement(s) that the user wants to execute. The body of
the trigger is written using the Stored Procedure Language (which is described in
more detail in section about the CREATE PROCEDURE statement).

You may create one or more triggers on a table, with each trigger defined to
activate on a specific INSERT, UPDATE, or DELETE command. When a user
modifies data within the table, the trigger that corresponds to the command is
activated.

You can only use inline SQL or stored procedures with triggers. If you use a stored
procedure in the trigger, then the procedure must be created with the CREATE
PROCEDURE command. A procedure invoked from a trigger body can invoke
other triggers.

To create a trigger, you must be a DBA or owner of the table on which the trigger
is being defined.

Triggers are created with the statement
CREATE TRIGGER name body

and dropped from the system catalog with the statement
DROP TRIGGER name

Triggers are disabled by using the statement
ALTER TRIGGER name

When you disable a trigger defined on a table, a solidDB server ignores the trigger
when an activating DML statement is issued. With this command, you can also
enable a trigger that is currently inactive.

Note:

Following is a brief summary of the keywords and clauses used in the CREATE
TRIGGER command. For more information on usage, read 3, “Stored procedures,
events, triggers, and sequences,” on page 23.

Trigger name
The trigger_name identifies the trigger and can contain up to 254 characters.

BEFORE | AFTER clause
The BEFORE | AFTER clause specifies whether to execute the trigger before or
after the invoking DML statement. In some circumstances, the BEFORE and AFTER
clauses are interchangeable. However, there are some situations where one clause
is preferred over the other.
v

Appendix B. solidDB SQL syntax 205

It is more efficient to use the BEFORE clause when performing data validation,
such as domain constraint and referential integrity checking.

v

When you use the AFTER clause, table rows which become available due to the
invoking DML statement are processed. Conversely, the AFTER clause also
confirms data deletion after the invoking DELETE statement.

You can define up to six triggers per table, one for each combination of action
(INSERT, UPDATE, DELETE) and time (BEFORE and AFTER):
v

BEFORE INSERT
v

BEFORE UPDATE
v

BEFORE DELETE
v

AFTER INSERT
v

AFTER UPDATE
v

AFTER DELETE

The following example shows trigger trig01 defined BEFORE INSERT ON table1.
"CREATE TRIGGER TRIG01 ON table1

BEFORE INSERT
REFERENCING NEW COL1 AS NEW_COL1

BEGIN
EXEC SQL PREPARE CUR1

INSERT INTO T2 VALUES (?);
EXEC SQL EXECUTE CUR1 USING (NEW_COL1);
EXEC SQL CLOSE CUR1;
EXEC SQL DROP CUR1;

END"

Following are examples (including implications and advantages) of using the
BEFORE and AFTER clause of the CREATE TRIGGER command for each DML
operation:
v

UPDATE Operation
The BEFORE clause can verify that modified data follows integrity constraint
rules before processing the UPDATE. If the REFERENCING NEW AS
new_column_identifier clause is used with the BEFORE UPDATE clause, then the
updated values are available to the triggered SQL statements. In the trigger, you
can set the default column values or derived column values before performing
an UPDATE.
The AFTER clause can perform operations on newly modified data. For example,
after a branch address update, the sales for the branch can be computed.
If the REFERENCING OLD AS old_column_identifier clause is used with the
AFTER UPDATE clause, then the values that existed prior to the invoking
update are accessible to the triggered SQL statements.

v

INSERT Operation

206 IBM solidDB: SQL Guide

The BEFORE clause can verify that new data follows integrity constraint rules
before performing an INSERT. Column values passed as parameters are visible
to the triggered SQL statements but the inserted rows are not. In the trigger, you
can set default column values or derived column values before performing an
INSERT.
The AFTER clause can perform operations on newly inserted data. For example,
after insertion of a sales order, the total order can be computed to see if a
customer is eligible for a discount.
Column values are passed as parameters and inserted rows are visible to the
triggered SQL statements.

v

DELETE Operation
The BEFORE clause can perform operations on data about to be deleted.
Column values passed as parameters and inserted rows that are about to be
deleted are visible to the triggered SQL statements.
The AFTER clause can be used to confirm the deletion of data. Column values
passed as parameters are visible to the triggered SQL statements. Please note
that the deleted rows are visible to the triggering SQL statement.

INSERT | UPDATE | DELETE clause
The INSERT | UPDATE | DELETE clause indicates the trigger action when a user
action (INSERT, UPDATE, DELETE) is attempted.

Statements related to processing a trigger occur first before commits and
autocommits from the invoking DML (INSERT, UPDATE, DELETE) statements on
tables. If a trigger body or a procedure called within the trigger body attempts to
execute a COMMIT or ROLLBACK, a solidDB server returns an appropriate
run-time error.

INSERT specifies that the trigger is activated by an INSERT on the table. Loading n
rows of data is considered as n inserts.

Note:

There may be some performance impact if you try to load the data with triggers
enabled. Depending on your business need, you may want to disable the triggers
before loading and enable them after loading. For details, For details, see “ALTER
TRIGGER” on page 172.

DELETE specifies that the trigger is activated by a DELETE on the table.

UPDATE specifies that the trigger is activated by an UPDATE on the table. Note
the following rules for using the UPDATE clause:
v

Within the REFERENCES clause of a trigger, a column may be referenced
(aliased) no more than once in the BEFORE sub-clause and once in the AFTER
sub-clause. Also, if the column is referenced in both the BEFORE and AFTER
sub-clauses, the column's alias must be different in each sub-clause.

v

A solidDB server allows for recursive update to the same table and does not
prohibit recursive updates to the same row.

Appendix B. solidDB SQL syntax 207

A solidDB server does not detect situations where the actions of different triggers
cause the same data to be updated. For example, assume there are two update
triggers (one that is a BEFORE trigger and one that is an AFTER trigger) on
different columns, Col1 and Col2, of table Table1. When an update is attempted on
all the columns of Table1, the two triggers are activated. Both triggers call stored
procedures which update the same column, Col3, of a second table, Table2. The
first trigger updates Table2.Col3 to 10 and the second trigger updates Table2.Col3
to 20.

Likewise, a solidDB server does not detect situations where the result of an
UPDATE which activates a trigger conflicts with the actions of the trigger itself.
For example, consider the following SQL statement:
UPDATE t1 SET c1 = 20 WHERE c3 = 10;

If the trigger is activated by this UPDATE then calls a procedure that contains the
following SQL statement, the procedure overwrites the result of the UPDATE that
activated the trigger:
UPDATE t1 SET c1 = 17 WHERE c1 = 20;

Note:

The above example can lead to recursive trigger execution, which you should try
to avoid.

Table_name
The table_name is the name of the table on which the trigger is created. solidDB
server allows you to drop a table that has dependent triggers defined on it. When
you drop a table all dependent objects including triggers are dropped. Be aware
that you may still get run-time errors. For example, assume you create two tables
A and B. If a procedure SP-B inserts data into table A, and table A is then dropped,
a user will receive a run-time error if table B has a trigger which invokes SP-B.

Trigger_body
The trigger_body contains the statement(s) to be executed when a trigger fires. The
trigger_body definition is identical to the stored procedure definition. Read
“CREATE PROCEDURE” on page 182 for details on creating a stored procedure
body.

Note that it is syntactically valid, although not useful, to create a trigger with an
empty body.

A trigger body may also invoke any procedure registered with a solidDB server.
solidDB procedure invocation rules follow standard procedure invocation practices.

You must explicitly check for business logic errors and raise an error.

REFERENCING clause
This clause is optional when creating a trigger on an INSERT/UPDATE/DELETE
operation. It provides a way to reference the current column identifiers in the case
of INSERT and DELETE operations, and both the old column identifier and the
new updated column identifier by aliasing the column(s) on which an UPDATE
operation occurs.

208 IBM solidDB: SQL Guide

You must specify the OLD or NEW column_identifier to access it. A solidDB server
does not provide access to the column_identifier unless you define it using the
REFERENCING subclause.

{OLD | NEW} column_name AS col_identifier
This subclause of the REFERENCING clause allow you to reference the values of
columns both before and after an UPDATE operation. It produces a set of old and
new column values which can be passed to a stored procedure; once passed, the
procedure contains logic (for example, domain constraint checking) used to
determine these parameter values.

Use the OLD AS clause to alias the table's old identifier as it exists before the
UPDATE. Use the NEW AS clause to alias the table's new identifier as it exists
after the UPDATE.

If you reference both the old and new values of the same column, you must use
different column_identifiers.

Each column that is referenced as NEW or OLD should have a separate
REFERENCING subclause.

The statement atomicity in a trigger is such that operations made in a trigger are
visible to the subsequent SQL statements inside the trigger. For example, if you
execute an INSERT statement in a trigger and then also perform a select in the
same trigger, then the inserted row is visible.

In the case of AFTER trigger, an inserted row or an updated row is visible in the
AFTER insert trigger, but a deleted row cannot be seen for a select performed
within the trigger. In the case of a BEFORE trigger, an inserted or updated row is
invisible within the trigger and a deleted row is visible. In the case of an UPDATE,
the pre-update values are available in a BEFORE trigger.

The table below summarizes the statement atomicity in a trigger, indicating
whether the row is visible to the SELECT statement in the trigger body.

Table 42. Statement Atomicity in a Trigger

Operation BEFORE TRIGGER AFTER TRIGGER

INSERT row is invisible row is visible

UPDATE previous value is visible new value is visible

DELETE row is visible row is invisible

Triggers comments and restrictions
v

To use the stored procedure that a trigger calls, provide the catalog,
schema/owner and name of the table on which the trigger is defined and
specify whether to enable or disable the triggers on the table. For more details
on stored procedures, read 3, “Stored procedures, events, triggers, and
sequences,” on page 23.

v

Appendix B. solidDB SQL syntax 209

To create a trigger on a table, you must have DBA authority or be the owner of
the table on which the trigger is being defined.

v

You can define, by default, up to one trigger for each combination of table,
action (INSERT, UPDATE, DELETE) and time (BEFORE and AFTER). This means
there can be a maximum of six triggers per table.

Note:

The triggers are applied to each row. This means that if there are ten inserts, a
trigger is executed ten times.
v

You cannot define triggers on a view (even if the view is based on a single
table).

v

You cannot alter a table that has a trigger defined on it when the dependent
columns are affected.

v

You cannot create a trigger on a system table.
v

You cannot execute triggers that reference dropped or altered objects. To prevent
this error:
–

Recreate any referenced object that you drop.
–

Restore any referenced object you changed back to its original state (known
by the trigger).

v

You can use reserved words in trigger statements if they are enclosed in double
quotes. For example, the following CREATE TRIGGER statement references a
column named "data" which is a reserved word.

"CREATE TRIGGER TRIG1 ON TMPT BEFORE INSERT
REFERENCING NEW "DATA" AS NEW_DATA
BEGIN
END"

Setting the maximum number of nested triggers
Triggers can invoke other triggers or a trigger can invoke itself (or recursive
triggers). You can nest triggers up to 16 levels deep. The maximum number of
nested triggers is set in the MaxNestedTriggers parameter in the SQL section of the
solid.ini configuration file:
[SQL]
MaxNestedTriggers=n

where n is the maximum number of nested triggers.

The default is 16 triggers.

Setting the triggers cache
Triggers are cached in a separate cache in the solidDB server; each user has a
separate cache for triggers. As the triggers are executed, the trigger procedure logic
is cached in the trigger cache and is resumed when the trigger is executed again.

210 IBM solidDB: SQL Guide

The cache size is set in the TriggerCache parameter in the SQL section of the
solid.ini configuration file:
[SQL]
TriggerCache=n

where n is the number of triggers that is reserved for the cache.

Checking for errors
At times, it is possible to receive an error in executing a trigger. The error may be
due to execution of SQL statements or business logic. If a trigger returns an error,
it causes its invoking DML command to fail. To automatically return errors during
the execution of a DML statement, you must use the WHENEVER SQLERROR
ABORT statement in the trigger body. Otherwise, errors must be checked explicitly
within the trigger body after each procedure call or SQL statement.

For any errors in the user-written business logic as part of the trigger body, users
can receive errors in a procedure variable using the SQL statement:
RETURN SQLERROR error_string

or
RETURN SQLERROR char_variable

The error is returned in the following format:
User error: error_string

If a user does not specify the RETURN SQLERROR statement in the trigger body,
then all trapped SQL errors are raised with a default error_string determined by
the system. For details, see the appendix on Error Codes in solidDB Administration
Guide.

Note:

Triggered SQL statements are a part of the invoking transaction. If the invoking
DML statement fails due to either the trigger or another error that is generated
outside the trigger, all SQL statements within the trigger are rolled back along with
the failed invoking DML command.

Below is an example of using WHENEVER SQLERROR ABORT to make sure that
the trigger catches an error in a stored procedure that it calls.
-- If you return an SQLERROR from a stored procedure, the error is
-- displayed. However, if the stored procedure is called from inside
-- a trigger, then the error is not displayed unless you use the
-- SQL statement WHENEVER SQLERROR ABORT.

CREATE TABLE table1 (x INT);
CREATE TABLE table2 (x INT);

"CREATE PROCEDURE stproc1
BEGIN

RETURN SQLERROR ’Here is an error!’;
END";
COMMIT WORK;

"CREATE TRIGGER displays_error ON table1 BEFORE INSERT
BEGIN

EXEC SQL WHENEVER SQLERROR ABORT;
EXEC SQL EXECDIRECT CALL stproc1();

END";
COMMIT WORK;

Appendix B. solidDB SQL syntax 211

"CREATE TRIGGER does_not_display_error ON table2 BEFORE INSERT
BEGIN

EXEC SQL EXECDIRECT CALL stproc1();
END";
COMMIT WORK;

-- This shows that the error is returned if you execute the stored procedure.
CALL stproc1();

-- Displays an error because the trigger had WHENEVER SQL ERROR ABORT.
INSERT INTO table1 (x) values (1);
-- Does not display an error.
INSERT INTO table2 (x) values (1);

Triggers stack functions
The following functions may be used to analyze the current contents of the trigger
stack:

TRIG_COUNT() returns the number of triggers in the trigger stack. This includes
the current trigger. The return value is an integer.

TRIG_NAME(n) returns the nth trigger name in the trigger stack. The first trigger
position or offset is zero.

TRIG_SCHEMA(n) returns the nth trigger schema name in the trigger stack. The
first trigger position or offset is zero. The return value is a string.

Example
"CREATE TRIGGER TRIGGER_BI ON TRIGGER_TEST

BEFORE INSERT
REFERENCING NEW BI AS NEW_BI

BEGIN
EXEC SQL PREPARE BI INSERT INTO TRIGGER_OUTPUT VALUES (
’BI’, TRIG_NAME(0), TRIG_SCHEMA(0));
EXEC SQL EXECUTE BI;
SET NEW_BI = ’TRIGGER_BI’;

END";

CREATE USER
CREATE USER user_name IDENTIFIED BY password

Usage
Creates a new user with a given password.

Example
CREATE USER HOBBES IDENTIFIED BY CALVIN;

CREATE VIEW
CREATE VIEW viewed_table_name [(column_identifier

[,column_identifier]...)]
AS query-specification

Usage
A view can be viewed as a virtual table; that is, a table that does not physically
exist, but rather is formed by a query specification against one or more tables.

212 IBM solidDB: SQL Guide

Example
CREATE VIEW TEST_VIEW

(VIEW_I, VIEW_C, VIEW_ID)
AS SELECT I, C, ID FROM TEST;

DELETE
DELETE FROM table_name [WHERE search_condition]

Usage
Depending on your search condition, the specified row(s) will be deleted from a
given table.

Example
DELETE FROM TEST WHERE ID = 5;
DELETE FROM TEST;

DELETE (positioned)
DELETE FROM table_name WHERE CURRENT OF cursor_name

Usage
The positioned DELETE statement deletes the current row of the cursor.

Example
DELETE FROM TEST WHERE CURRENT OF MY_CURSOR;

DROP CATALOG
DROP CATALOG catalog_name [CASCADE | RESTRICT]

Usage
The DROP CATALOG statement drops the specified catalog from the database.

If you use the RESTRICT keyword, or if you do not specify either RESTRICT or
CASCADE, then you must drop all database objects in the catalog before you drop
the catalog itself.

If you use the CASCADE keyword, then if the catalog contains database objects
(such as tables), those will automatically be dropped. If you use the CASCADE
keyword, and if objects in other catalogs reference an object in the catalog being
dropped, then the references will automatically be resolved by dropping those
referencing objects or updating them to eliminate the reference.

Only the creator of the database or users having SYS_ADMIN_ROLE (i.e. DBA)
have privileges to create or drop a catalog. Even the creator of a catalog cannot
drop that catalog if she loses SYS_ADMIN_ROLE privileges.

Example
DROP CATALOG C1;
DROP CATALOG C2 CASCADE;
DROP CATALOG C3 RESTRICT;

Appendix B. solidDB SQL syntax 213

DROP EVENT
DROP EVENT event_name
DROP EVENT [[catalog_name.]schema_name.]event_name

Usage
The DROP EVENT statement removes the specified event from the database.

Example
DROP EVENT EVENT_TEST;
-- Using catalog, schema, and event name
DROP EVENT
HR_database.smith_schema.event1;

DROP INDEX
DROP INDEX index_name
DROP INDEX[[catalog_name.]schema_name.]index_name

Usage
The DROP INDEX statement removes the specified index from the database.

Example
DROP INDEX test_index;
-- Using catalog, schema, and index name
DROP INDEX bank_accounts.bankteller.first_name_index;

DROP MASTER
DROP MASTER master_name

Usage
This statement drops the master database definitions from a replica database. After
this operation, the replica cannot synchronize with the master database.

Note:

1. Unregistering the replica is the preferred way to quit using a master database.
The DROP MASTER statement is used only when the MESSAGE APPEND
UNREGISTER REPLICA statement is unable to be executed. For details on
unregistering a replica, see “MESSAGE APPEND” on page 241.

2. solidDB requires that autocommit be set OFF when using the DROP MASTER
command.

3. If master_name is a reserved word, it must be enclosed in double quotes.

Usage in master
This statement can not be used in a master.

Usage in replica
This statement is used in replica to drop a master from replica.

Examples
DROP MASTER "MASTER";
DROP MASTER MY_MASTER;

214 IBM solidDB: SQL Guide

Return values
For details on each error code, see the appendix titled Error Codes in solidDB
Administration Guide.

Table 43. DROP MASTER return values

Error code Description

13047 No privilege for operation

25007 Master master_name not found

25019 Database is not a replica database

25056 Autocommit not allowed

25065 Unfinished message message_name found for master master_name

DROP PROCEDURE
DROP PROCEDURE procedure_name
DROP PROCEDURE [[catalog_name.]schema_name.]procedure_name

Usage
The DROP PROCEDURE statement removes the specified procedure from the
database.

Example
DROP PROCEDURE PROCTEST;
-- Using catalog, schema, and procedure name
DROP PROCEDURE telecomm_database.technician1.add_new_IP_address;

DROP PUBLICATION
DROP PUBLICATION publication_name

Usage
This statement drops a publication definition in the master database. All
subscriptions to the dropped publication are automatically dropped as well.

Usage in master
Dropping a publication from the master will remove it and replicas will not be
able to refresh from it.

Usage in replica
Using this statement in a replica will drop the publication definition from the
replica if you defined a publication on the replica. (However, it is not necessary or
useful to define publications in replica databases, so you should not need to use
either CREATE PUBLICATION or DROP PUBLICATION in a replica.)

Example
DROP PUBLICATION customers_by_area;

Appendix B. solidDB SQL syntax 215

Return values
For details on each error code, see the appendix titled Error Codes in solidDB
Administration Guide.

Table 44. DROP PUBLICATION Return Values

Error Code Description

25010 Publication publication_name not found.

13111 Ambiguous entity name name

DROP PUBLICATION REGISTRATION
DROP PUBLICATION publication_name REGISTRATION

Supported in
This requires solidDB advanced replication.

Usage
This statement drops a registration for a publication in the replica database. The
publication definition remains on the master database, but a user will be unable to
refresh from the publication. All subscriptions to the registered publication are
automatically dropped as well.

Usage in master
This statement is not used in a master database.

Usage in replica
Using this statement in a replica will drop the registration for the publication in
the replica. All subscriptions and their data to this publication are dropped
automatically.

Example
DROP PUBLICATION customers_by_area REGISTRATION;

Return values
For details on each error code, see the appendix titled Error Codes in solidDB
Administration Guide.

Table 45. DROP PUBLICATION REGISTRATION Return Values

Error Code Description

13047 No privilege for operation

25019 Database is not a replica database

25025 Node name not defined

25071 Not registered to publication publication_name

216 IBM solidDB: SQL Guide

DROP REPLICA
DROP REPLICA replica_name

Supported in
This requires solidDB advanced replication.

Usage
This statement drops a replica database from the master database. After this
operation, the dropped replica cannot synchronize with the master database.

Note:

1. Unregistering the replica is the preferred way to quit using a replica database.
The DROP REPLICA statement is used only when the MESSAGE APPEND
UNREGISTER REPLICA statement is unable to be executed. For details on
unregistering a replica, see “MESSAGE APPEND” on page 241.

2. solidDB requires that autocommit be set OFF when using the DROP REPLICA
statement.

3. If replica_name is a reserved word, it should be enclosed in double quotes.

Usage in master
Use this statement in the master to drop a replica from master.

Usage in replica
This statement cannot be used in replica.

Example
DROP REPLICA salesman_smith ;
DROP REPLICA "REPLICA";

Return values
For details on each error code, see the appendix titled Error Codes in solidDB
Administration Guide.

Table 46. DROP REPLICA return values

Error code Description

13047 No privilege for operation

25009 Replica replica_name not found

25020 Database is not a master database

25056 Autocommit not allowed

25064 Unfinished message message_name found for replica replica_name

DROP ROLE
DROP ROLE role_name

Appendix B. solidDB SQL syntax 217

Usage
The DROP ROLE statement removes the specified role from the database.

Example
DROP ROLE GUEST_USERS;

DROP SCHEMA
DROP SCHEMA schema_name [CASCADE | RESTRICT]
DROP SCHEMA [catalog_name.] schema_name [CASCADE | RESTRICT]

Usage
The DROP SCHEMA statement drops the specified schema from the database. If
you use the keyword RESTRICT, or if you do not specify either RESTRICT or
CASCADE, then all the objects associated with the specified schema_name must be
dropped prior to using this statement. If you use the keyword CASCADE, then all
the database objects (such as tables) within the specified schema will be dropped
automatically.

If you use the CASCADE keyword, and if objects in other schemas reference an
object in the schema being dropped, those references will automatically be resolved
by dropping those referencing objects or updating them to eliminate the reference.

Examples
DROP SCHEMA finance;
DROP SCHEMA finance CASCADE;
DROP SCHEMA finance RESTRICT;
DROP SCHEMA forecasting_db.securities_schema CASCADE;

DROP SEQUENCE
DROP SEQUENCE sequence_name
DROP SEQUENCE [[catalog_name.]schema_name.]sequence_name

Usage
The DROP SEQUENCE statement removes the specified sequence from the
database.

Examples
DROP SEQUENCE SEQ1;
-- Using catalog, schema, and sequence name
DROP SEQUENCE bank_db.checking_acct_schema.account_num_seq;

DROP SUBSCRIPTION
In replica:
DROP SUBSCRIPTION publication_name [{(parameter_list) | ALL}]

[COMMITBLOCK number_of_rows] [OPTIMISTIC | PESSIMISTIC]

In master:
DROP SUBSCRIPTION publication_name [{(parameter_list) | ALL}]

REPLICA replica_name

218 IBM solidDB: SQL Guide

Supported in
This command requires solidDB advanced replication.

Usage
Data that is no longer needed in a replica database can be deleted from the replica
database by dropping the subscription that was used to retrieve the data from the
master database.

Note:

solidDB requires that autocommit be set OFF when dropping subscriptions.

By default, the data of a subscription is deleted in one transaction. If the amount of
data is large, for example, tens of thousands of rows, it is recommended that the
COMMITBLOCK be defined. When using the COMMITBLOCK option the data is
deleted in more than one transaction. This ensures good performance for the
operation.

In a replica, you can define the DROP SUBSCRIPTION statement to use table-level
pessimistic locking when it is initially executed. If the PESSIMISTIC mode is
specified, all other concurrent access to the table affected is blocked until the drop
has completed. Otherwise, if the optimistic mode is used, the DROP
SUBSCRIPTION may fail due to a concurrency conflict.

A subscription can be dropped also from the master database. In this case, the
replica name is included in the command. Names of all replicates that have been
registered in the master database can be found in the SYS_SYNC_REPLICAS table.
This operation deletes only the internal information about the subscription for this
replica. The actual data in the replica is kept.

Dropping a subscription from the master is useful when a replica is no longer
using the subscription and the replica has not dropped the subscription itself.
Dropping old subscriptions releases old history data from the database. This
history data is automatically deleted from the master databases after dropping the
subscription.

If a replica's subscription has been dropped in the master database, the replica will
receive the full data in the next refresh.

If a subscription is dropped in this case, DROP SUBSCRIPTION also drops the
publication registration if the last subscription to the publication was dropped.
Otherwise, registration must be dropped explicitly using the DROP PUBLICATION
REGISTRATION statement or MESSAGE APPEND UNREGISTER PUBLICATION.

You can define the DROP SUBSCRIPTION statement to use table-level pessimistic
locking when it is initially executed. If the PESSIMISTIC mode is specified, all
other concurrent access to the tables affected is blocked until the import has
completed. Otherwise, if the optimistic mode is used, the DROP SUBSCRIPTION
may fail due to a concurrency conflict.

When a transaction acquires an exclusive lock to a table, the TableLockWaitTimeout
parameter setting in the [General] section of the solid.ini configuration file
determines the transaction's wait period until the exclusive or shared lock is
released. For details, see the description of this parameter in solidDB Administration
Guide.

Appendix B. solidDB SQL syntax 219

Usage in master
Use this statement to drop a subscription for a specified replica.

Usage in replica
Use this statement to drop a subscription from this replica.

Example
Drop subscription from a master database
DROP SUBSCRIPTION customers_by_area(’south’)

FROM REPLICA salesman_joe

Return Values

For details on each error code, see the appendix titled Error Codes in IBM solidDB
Administrator Guide.

Table 47. DROP SUBSCRIPTION return values

Error Code Description

13047 No privileges for operation

25004 Dynamic parameters are not supported

25009 Replica replica_name not found

25010 Publication publication_name not found

25019 Database is not a replica database

25020 Database is not a master database

25041 Subscription to publication publication_name not found

25056 Autocommit not allowed

DROP SYNC BOOKMARK
DROP SYNC BOOKMARK bookmark_name

Supported in
This command requires solidDB advanced replication.

Usage
This statement drops a bookmark defined on a master database. To drop a
bookmark, you must have administrative privileges DBA or
SYS_SYNC_ADMIN_ROLE. Bookmarks are typically used when exporting data to
a file. After a file is successfully imported to a replica from the master database, it
is recommended that you drop the bookmark that you used to export the data to a
file.

If a bookmark remains, then all subsequent changes to data on the master
including deletes and updates are tracked on the master database for each
bookmark to facilitate incremental refreshes.

220 IBM solidDB: SQL Guide

If you do not drop bookmarks, the history information takes up disk space and
unwanted disk I/O is incurred, as well, for each bookmark registered in the master
database. This may result in performance degradation.

CAUTION:
Bookmarks should only be dropped after the exported data is imported into all
intended replicas and after all the replicas have synchronized at least once. Be
sure to drop a bookmark only when you no longer have replicas to import and
those replicas have refreshed once from the publication after the import.

When dropping bookmarks, solidDB uses the following rules to delete history
records:
v Finds the oldest REFRESH delivered to any replica on that table
v Finds the oldest bookmark
v Determines which is older, the oldest REFRESH or oldest bookmark
v Deletes all rows from history up to what it determines is older, the oldest

REFRESH or oldest bookmark.

Usage in master
Use the DROP SYNC BOOKMARK statement to drop a bookmark in a master
database.

Usage in replica
The DROP SYNC BOOKMARK statement cannot be used in a replica database.

Example
DROP SYNC BOOKMARK new_database;
DROP SYNC BOOKMARK database_after_dataload;

Return values
For details on each error code, see the appendix titled Error Codes in IBM solidDB
Administrator Guide.

Table 48. DROP SYNC BOOKMARK return values

Error Code Description

25067 Synchronizer bookmark bookmark_name not found

13047 No privilege for operation

DROP TABLE
DROP TABLE base_table_name [CASCADE [CONSTRAINTS]]
DROP TABLE [[catalog_name.]schema_name.]table_name [CASCADE
[CONSTRAINTS]]

Note:

Objects are usually dropped with drop behavior RESTRICT. There are some
exceptions, however, including:
1. If your table has a synchronization history table, that synchronization history

table will be dropped automatically. (solidDB 3.7 and later.)

Appendix B. solidDB SQL syntax 221

2. If a table has indexes on it, you do not need to drop the indexes first; they will
be dropped automatically when the table is dropped.

Usage
The DROP TABLE statement removes the specified table from the database.

Examples
DROP TABLE table1;
-- Using catalog, schema, and table name
DROP TABLE domains_db.demand_schema.bad_address_table;
--remove foreign key constraints in referencing tables
DROP TABLE table2 CASCADE CONSTRAINTS;

DROP TRIGGER
DROP TRIGGER trigger_name
DROP TRIGGER [[catalog_name.]schema_name.]trigger_name

Usage
Drops (or deletes) a trigger defined on a table from the system catalog.

You must be the owner of a table, or a user with DBA authority, to delete a trigger
from the table.

Examples
DROP TRIGGER update_acct_balance;
-- Using schema and trigger name
DROP TRIGGER savings_accounts.update_acct_balance;
-- Using catalog, schema, and trigger name
DROP TRIGGER accounts.savings_accounts.update_acct_balance;

DROP USER
DROP USER user_name

Usage
The DROP USER statement removes the specified user from the database. All the
objects associated with the specified user_name must be dropped prior to using this
statement; the DROP USER statement is not a cascaded operation.

Example
DROP USER HOBBES;

DROP VIEW
DROP VIEW view_name
DROP VIEW [[catalog_name.]schema_name.]view_name

Usage
The DROP VIEW statement removes the specified view from the database.

222 IBM solidDB: SQL Guide

Examples
DROP VIEW sum_of_acct_balances;
-- Using schema and view name
DROP VIEW acct_manager_schema.sum_of_acct_balances;
-- Using catalog, schema, and view name
DROP VIEW account_db.acct_manager_schema.sum_of_acct_balances;

EXPLAIN PLAN FOR
EXPLAIN PLAN FOR sql_statement

Usage
The EXPLAIN PLAN FOR statement shows the selected search plan for the
specified SQL statement.

Example
EXPLAIN PLAN FOR select * from tables;

EXPORT SUBSCRIPTION
EXPORT SUBSCRIPTION publication_name [(publication_parameters)]

TO ’filename’
USING BOOKMARK bookmark_name;
[WITH [NO] DATA];

Supported in
This command requires solidDB advanced replication.

Usage
This EXPORT SUBSCRIPTION statement allows you export a version of the data
from a master database to a file. You can then use the IMPORT statement to import
the data in the file into a replica database.

There are several uses for the EXPORT SUBSCRIPTION statement. Among them
are:
v Creating a large replica database (greater than 2GB) from an existing master.

This procedure requires that you export a subscription with or without data to a
file first, then import the subscription to the replica. For details, read "Creating A
Replica By Exporting A Subscription With Data" or "Creating A Replica By
Exporting A Subscription Without Data" in IBM solidDB Advanced Replication User
Guide.

v Exporting specific versions of the data to a replica.
For performance reasons, you may choose to "export" the data rather then to use
the MESSAGE APPEND REFRESH to send the data to a replica.

v Export metadata information without the actual row data.
You may want to create a replica that already contains existing data and only
needs the schema and version information associated with a publication.

Unlike the MESSAGE APPEND REFRESH statement where a REFRESH is
requested from a replica, you request an export directly from the master database.
The export output is saved to a user-specified file rather than a solidDB message.

Appendix B. solidDB SQL syntax 223

Keywords and clauses
The publication_name and bookmark_name are identifiers that must exist in the
database. For details on creating a publication, read “CREATE [OR REPLACE]
PUBLICATION” on page 194. For details on creating bookmarks, see “CREATE
SYNC BOOKMARK” on page 200. The filename represents a literal value enclosed
in single quotes. You can export several publications to a single file by specifying
the same file name.

Publication data is exported from the master database as a REFRESH with a set of
input parameter values (if they are used in the publication).

The EXPORT SUBSCRIPTION statement is based on a given bookmark, which
means that export data is consistent up to this bookmark. When you export data,
the EXPORT SUBSCRIPTION statement includes all rows as in a full publication
up to the bookmark. However, since export is based on a given bookmark, the
subsequent REFRESHes are incremental.

If a bookmark is created in a master for the purpose of exporting and importing
data, then the bookmark must exist when:
v The EXPORT SUBSCRIPTION statement is executed on the master database.

If the bookmark does not exist at this point, error message 25067 is generated,
indicating the bookmark cannot be found.

v The IMPORT statement is executed on all intended replicas and replicas receive
their first set of data ("REFRESH").
During a file import, a connection to a master database is not needed and the
existence of the bookmark is not checked. However, if the bookmark does not
exist at the time a replica receives its first REFRESH, the REFRESH fails with
error message 25067 and the import data is unusable. The remedy is to create a
new bookmark on the master, re-export the data, and re-import the data.

An export file can contain more than one publication. You can export subscriptions
using either the WITH DATA or WITH NO DATA options:
v Use the WITH DATA option to create a replica when data is exported to an

existing database that does not contain master data and requires a subset of
data. For details, read "Creating A Replica By Exporting A Subscription With
Data" in IBM solidDB Advanced Replication User Guide.

v Use the WITH NO DATA option to create a replica when a subscription is
imported to a database that already contains the data (for example, using a
backup copy of an existing master). For details, read "Creating A Replica By
Exporting A Subscription Without Data" in IBM solidDB Advanced Replication User
Guide.

By default, the export file is created using the WITH DATA option and includes all
rows. If there is more than one publication specified, the exported file can have a
combination of "WITH DATA" and "WITH NO DATA."

Usage rules
Note the following rules when using the EXPORT SUBSCRIPTION statement:
v Only one file per subscription is allowed for export. You can use the same file

name to include multiple subscriptions on the same file.
v The file size of an export file is dependent upon the underlying operating

system. If a respective platform (such as SUN, or HP) allows more than 2 GB,
you can write files greater than 2 GB. This means that replica (recipient) should
also have a compatible platform and file system. Otherwise, the replica is not

224 IBM solidDB: SQL Guide

able to accept the export file. If both the operating system on a master and
replica support file sizes greater than 2 GB, then export files greater than 2 GB
are permitted.

v An export file can contain more than one subscription. Subscriptions can be
exported using either the WITH DATA or WITH NO DATA options. An
exported file with multiple subscriptions can have a combination of WITH
DATA and WITH NO DATA included.

v When a subscription is exported to a file using the WITH NO DATA option,
only metadata (that is, schema and version information corresponding to that
publication) is exported to the file.

v solidDB requires that autocommit be set OFF when using the EXPORT
SUBSCRIPTION statement.

Usage in master
Use this statement to request master data for export to a file.

Usage in replica
This statement is not available in a replica database.

Example
EXPORT SUBSCRIPTION FINANCE_PUBLICATION(2004) TO ’FINANCE.EXP’
USING BOOKMARK BOOKMARK_FOR_FINANCE_DB WITH NO DATA;

Return values
For details on each error code, see the appendix titled Error Codes in solidDB
Administration Guide.

Table 49. EXPORT SUBSCRIPTION return values

Error Code Description

25056 Autocommit not allowed

25067 Bookmark is not found.

25068 Export file file_name open failure.

25010 Publication name not found.

EXPORT SUBSCRIPTION TO REPLICA
EXPORT SUBSCRIPTION publication_name [(publication_parameters)]

TO REPLICA replica_node_name
USING BOOKMARK bookmark_name
[COMMITBLOCK number_of_rows]

Supported in
This command requires solidDB advanced replication.

Usage
The EXPORT SUBSCRIPTION TO REPLICA statement allows you to send large
volume of data specified by a publication from master database to a replica

Appendix B. solidDB SQL syntax 225

database. After the EXPORT operation has completed, the replica may use
MESSAGE APPEND REFRESH statement to refresh the data of the subscription in
an incremental manner.

Because the EXPORT SUBSCRIPTION TO REPLICA statement does not use the
disk-based advanced replication MESSAGEs to send data from master to replica, it
provides a significantly more efficient way to send large volumes of data from
master to replica as the usage of disk during the operation is minimized.

Keywords and clauses
The publication_name and bookmark_name are identifiers that must exist in the
database. For details on creating a publication, read “CREATE [OR REPLACE]
PUBLICATION” on page 194. For details on creating bookmarks, see “CREATE
SYNC BOOKMARK” on page 200.

Publication data is exported from the master database as a REFRESH with a set of
input parameter values (if they are used in the publication).

The EXPORT SUBSCRIPTION TO REPLICA statement is based on a given
bookmark, which means that export data is consistent up to this bookmark. When
you export data, the EXPORT SUBSCRIPTION statement includes all rows as in a
full publication up to the bookmark. However, since export is based on a given
bookmark, the subsequent REFRESHes are incremental.

If a bookmark is created in a master for the purpose of exporting data, then the
bookmark must exist when the EXPORT SUBSCRIPTION statement is executed on
the master database. If the bookmark does not exist at this point, error message
25067 is generated, indicating the bookmark cannot be found.

The COMMIT BLOCK keywords specify how many rows of the exported data are
committed in the replica database in one transaction. Specifying a commit block
when a large number of rows are to be exported improves the performance of the
operation. However, it is recommended that the replica database is not used by
other applications when export operation with commit block is active.

Usage in master
Use this statement to request master data for export to a replica database.

Usage in replica
This statement is not available in a replica database.

Example
EXPORT SUBSCRIPTION FINANCE_PUBLICATION(2004) TO REPLICA replica_1
USING BOOKMARK BOOKMARK_FOR_FINANCE_DB COMMITBLOCK 10000 ;

Return values
For details on each error code, see the appendix titled Error Codes in solidDB
Administration Guide.

Table 50. EXPORT SUBSCRIPTION TO REPLICA return values

Error Code Description

25056 Autocommit not allowed

226 IBM solidDB: SQL Guide

Table 50. EXPORT SUBSCRIPTION TO REPLICA return values (continued)

Error Code Description

25067 Bookmark is not found.

25010 Publication name not found.

GET_PARAM()
get_param(’param_name’)

Supported in
This command requires solidDB advanced replication.

Usage
The get_param() function retrieves a parameter that was placed on the transaction
bulletin board using the PUT_PARAM() function or with commands SAVE
PROPERTY, SAVE DEFAULT PROPERTY, and SET SYNC PARAMETER. The
parameter that is retrieved is specific to a catalog and each catalog has a different
set of parameters. This function returns the VARCHAR value of the parameter or
NULL, if the parameter does not exist in the bulletin board.

Because get_param() is an SQL function, it can be used only in a procedure or as
part of a SELECT statement.

The parameter name must be enclosed in single quotes.

Usage in master
Use the get_param() function in the master for retrieving parameter values.

Usage in replica
Use the get_param() function in replicas for retrieving parameter values.

solidDB system parameters
solidDB system parameters are divided into the following categories:
v Read only system parameters that are maintained by solidDB and can only be read

by using GET_PARAM(parameter_name) syntax.
The life cycle of parameters in this category is one transaction, that is, values of
these parameters will always be initialized at the beginning of the transaction.

v Updatable system parameters that can be set and updated by the user through
PUT_PARAM(parameter_name, value). Updatable system parameters are used by
solidDB.
Like the category above, the life cycle of these parameters is also one
transaction.

v Database catalog level system parameters that are set using SET SYNC PARAMETER
parameter_name value syntax.
Parameters in this category are database catalog level parameters that are valid
until changed or removed. They are specified as bulletin board parameters.

Appendix B. solidDB SQL syntax 227

Full syntax and examples of usage of GET_PARAM(), PUT_PARAM() and SET
SYNC PARAMETER functions are described earlier in this chapter.

For more information about specific bulletin board parameters, see IBM solidDB
Advanced Replication User Guide.

Example
SELECT put_param(’myparam’, ’123abc’);
SELECT get_param(’myparam’);

Return values
For details on each error code, see the appendix titled Error Codes in solidDB
Administration Guide.

Table 51. GET_PARAM return values

Error Code Description

13086 Invalid data type in a parameter.

When executed successfully get_param() returns the value of the assigned
parameter.

See also
PUT_PARAM

SAVE PROPERTY

SET SYNC PARAMETER

GRANT
GRANT {ALL | grant_privilege [, grant_privilege]...}

ON table_name
TO {PUBLIC | user_name [, user_name]... |

role_name [, role_name]... }
[WITH GRANT OPTION]

GRANT role_name TO user_name

grant_privilege ::= DELETE | INSERT | SELECT |
UPDATE [(column_identifier [, column_identifier]...)] |

REFERENCES [(column_identifier [, column_identifier]...)]

GRANT EXECUTE ON procedure_name
TO {PUBLIC | user_name [, user_name]... | role_name [, role_name]... }

GRANT {SELECT | INSERT} ON event_name
TO {PUBLIC | user_name [, user_name]... | role_name [, role_name]... }

GRANT {SELECT | UPDATE} ON sequence_name
TO {PUBLIC | user_name [, user_name]... | role_name [, role_name]... }

Usage
The GRANT statement is used to
1. grant privileges to the specified user or role.

228 IBM solidDB: SQL Guide

2. grant privileges to the specified user by giving the user the privileges of the
specified role.

When you grant a role to a user, the role may be one that you have created, or it
may be a system-defined role, such as SYS_SYNC_ADMIN_ROLE or
SYS_ADMIN_ROLE.

The role SYS_SYNC_ADMIN_ROLE gives the specified user the privileges to
execute data synchronization administration operations, including:
v dropping or re-executing stopped synchronization messages,
v dropping a replica database from master database,
v creating a bookmark.

The role SYS_ADMIN_ROLE is the role given to the creator of the database. This
role has privileges to all tables, indexes, and users, as well as the right to use
solidDB Remote Control (teletype).

If you use the optional WITH GRANT OPTION, then the user who receives the
privilege may grant the privilege to other users.

Example
GRANT GUEST_USERS TO CALVIN;
GRANT INSERT, DELETE ON TEST TO GUEST_USERS;

See also
For more information about user privileges, see also:
v “REVOKE (privilege from role or user)” on page 266 and
v “Managing user privileges and roles” on page 96.

For more information about pre-defined roles, see chapter Special roles for database
administration in IBM solidDB Administrator Guide.

GRANT REFRESH
GRANT { REFRESH | SUBSCRIBE } ON publication_name TO {PUBLIC |
user_name,

[user_name] ... | role_name , [role_name] ...}

Supported in
This command requires solidDB advanced replication.

Usage
This statement grants access rights on a publication to a user or role defined in the
master database.

Note:

The keywords "SUBSCRIBE" and "REFRESH" are equivalent. However, the
keyword "SUBSCRIBE" is deprecated in the GRANT statement.

Usage in master
Use this statement to grant user or role access rights to a publication.

Appendix B. solidDB SQL syntax 229

Usage in replica
This statement is not available in a replica database.

Example
GRANT REFRESH ON customers_by_area TO salesman_jones;
GRANT REFRESH ON customers_by_area TO all_salesmen;

Return values
For details on each error code, see the appendix titled Error Codes in solidDB
Administration Guide.

Table 52. GRANT REFRESH return values

Error Code Description

13137 Illegal grant/revoke mode

13048 No grant option privilege

25010 Publication name not found

HINT
--(* vendor (SOLID), product (Engine), option(hint)
--hint *)--

hint::=
[MERGE JOIN |
TRIPLE MERGE JOIN |
LOOP JOIN |
JOIN ORDER FIXED |
INTERNAL SORT |
EXTERNAL SORT |
INDEX [REVERSE] table_name.index_name |
PRIMARY KEY [REVERSE] table_name |
FULL SCAN table_name |
[NO] SORT BEFORE GROUP BY |
UNION FOR OR |
OR FOR OR |
LOOP FOR OR]

The keywords and clauses used in the syntax are described in the sections that
follow.

Pseudo comment identifier
The pseudo comment prefix is followed by identifying information. You must
specify the vendor as SOLID, product as Engine, and the option, which is the
pseudo comment class name, as hint.

Note:

In the pseudo comment prefix --(* and *)-- ,there must be no space between the
parenthesis and the asterisk.

Hint

Hints always follow the SELECT, UPDATE, or DELETE keyword that applies to it.

230 IBM solidDB: SQL Guide

Note:

Hints are not allowed after the INSERT keyword.

CAUTION:

If you are using hints and you compose a query as a string and then submit that
string using ODBC or JDBC, you MUST ensure that appropriate newline
characters are embedded within that string to mark the end of the comments.
Otherwise, you will get a syntax error. If you don't include any newlines, then
all of the statement after the start of the first comment will look like a comment.
For example, suppose that your code looks like the following:
strcpy(s, "SELECT --(* hint... *)-- col_name FROM table;");

Everything after the first "--" looks like a comment, and therefore your statement
looks incomplete. You must do something like the following:
strcpy(s, "SELECT --(* hint... *)-- \n col_name FROM table;");

Note the embedded newline "\n" character to terminate the comment. A useful
technique for debugging is to print out the strings to make sure that they look
correct. They should look like:
SELECT --(* hint ... *)--
column_name FROM table_name...;

or
SELECT --(* hint ... *)--
column_name FROM table_name...;

Each subselect requires its own hint; for example, the following are valid uses of
hints syntax:
INSERT INTO ... SELECT hint FROM ...
UPDATE hint TABLE ... WHERE column = (SELECT hint ... FROM ...)
DELETE hint TABLE ... WHERE column = (SELECT hint ... FROM ...)

Be sure to specify multiple hints in one pseudo comment separated by commas as
shown in the following examples:

Example 1
SELECT
--(* vendor(SOLID), product(Engine), option(hint)
--MERGE JOIN
--JOIN ORDER FIXED *)--
*
FROM TAB1 A, TAB2 B;
WHERE A.INTF = B.INTF;

Example 2
SELECT
--(* vendor(SOLID), product(Engine), option(hint)
--INDEX TAB1.INDEX1
--INDEX TAB1.INDEX1 FULL SCAN TAB2 *)--
*
FROM TAB1, TAB2
WHERE TAB1.INTF = TAB2.INTF;

Hint is a specific semantic, corresponding to a specific behavior. Following is a list
of possible hints:

Appendix B. solidDB SQL syntax 231

Table 53. solidDB-supported hints

Hint Definition

MERGE JOIN Directs the Optimizer to choose the merge join access plan
in a select query for all tables listed in the FROM clause.
The MERGE JOIN option is used when two tables are
approximately equal in size and the data is distributed
equally. It is faster than a LOOP JOIN when an equal
amount of rows are joined. For joining data, MERGE JOIN
supports a maximum of three tables. The joining table is
ordered by joining columns and combining the results of
the columns.

You can use this hint when the data is sorted by a join
key and the nested loop join performance is not adequate.
The Optimizer selects the merge join only where there is
an equal predicate between tables (e.g. "table1.col1 =
table2.col1"). Otherwise, the Optimizer selects LOOP JOIN
even if the MERGE JOIN hint is specified.

Note that when data is not sorted before performing the
merge operation, the solidDB query executor sorts the
data.

Keep in mind that the merge join with a sort is more
resource intensive than the merge join without the sort.

TRIPLE MERGE JOIN TRIPLE MERGE JOIN is a variant of MERGE JOIN. It has
three table sources which are merged on equal basis
instead of the two in MERGE JOIN. The TRIPLE MERGE
JOIN hint instructs the SQL interpreter to use the triple
merge join algorithm whenever possible. The triple merge
join algorithm can only be used in situations where in all
three table sources there is one single field that should be
equal in all the resulting rows after evaluating the
WHERE condition.

LOOP JOIN Directs the Optimizer to pick the nested loop join in a
select query for all tables listed in the FROM clause. By
default, the Optimizer does not pick the nested loop join.

The LOOP JOIN loops through both inner and outer
tables to find matches between columns in the inner and
outer tables. For better performance, the joining columns
should be indexed.

Using the loop join when tables are small and fit in
memory may offer greater efficiency than using other join
algorithms.

JOIN ORDER FIXED Specifies that the Optimizer use tables in a join in the
order listed in the FROM clause of the query. This means
that the Optimizer does not attempt to rearrange the join
order and does not try to find alternate access paths to
complete the join.

We recommend that you "test" the hint by running the
EXPLAIN PLAN output to ensure that the plan generated
is optimal for the given query.

232 IBM solidDB: SQL Guide

Table 53. solidDB-supported hints (continued)

Hint Definition

INTERNAL SORT Specifies that the query executor use the internal sorter.
Use this hint if the expected resultset is small (hundreds
of rows as opposed to thousands of rows); for example, if
you are performing some aggregates, ORDER BY with
small resultsets, or GROUP BY with small resultsets, etc.

This hint avoids the use of the more expensive external
sorter.

EXTERNAL SORT Specifies that the query executor use the external sorter.
Use this hint when the expected resultset is large and
does not fit in memory; for example, if the expected
resultset has thousands of rows.

In addition, specify the SORT working directory in the
solid.ini before using the external sort hint. If a working
directory is not specified, you will receive a run-time
error. The working directory is specified in the [sorter]
section of the solid.ini configuration file. For example:

[sorter]
TmpDir_1=c:\soldb\temp1

INDEX [REVERSE]
table_name.index_name

Forces a given index scan for a given table. In this case,
the Optimizer does not proceed to evaluate if there are
any other indexes that can be used to build the access
plan or whether a table scan is better for the given query.

We recommend that you "test" the hint by running the
EXPLAIN PLAN output to ensure that the plan generated
is optimal for the given query.

The optional keyword REVERSE returns the rows in the
reverse order. In this case, the query executor begins with
the last page of the index and starts returning the rows in
the descending (reverse) key order of the index.

Note that in tablename.indexname, the tablename is a fully
qualified table name which can include the catalogname
and schemaname.

PRIMARY KEY [REVERSE]
table_name

Forces a primary key scan for a given table.

The optional keyword REVERSE returns the rows in the
reverse order.

If the primary key is not available for the given table, then
you will receive a run-time error.

FULL SCAN table_name Forces a table scan for a given table. In this case, the
optimizer does not proceed to evaluate if there are any
other indexes that can be used to build the access plan or
whether a table scan is better for the given query.

Before using this hint, it is recommended that you "test"
the hint by running the EXPLAIN PLAN output to ensure
that the plan generated is optimal for the given query.

Appendix B. solidDB SQL syntax 233

Table 53. solidDB-supported hints (continued)

Hint Definition

[NO] SORT BEFORE GROUP
BY

Indicates whether the SORT operation occurs before the
resultset is grouped by the GROUP BY columns.

If the grouped items are few (hundreds of rows) then use
NO SORT BEFORE. On the other hand, if the grouped
items are large (thousands of rows), then use SORT
BEFORE.

UNION FOR OR The UNION FOR OR hint instructs the SQL interpreter to
replace an OR condition of style A = 1 OR A = 2 with a
construction of the following type:

SELECT ... WHERE A = 1
UNION ALL

SELECT ... WHERE A = 2

In most cases the SQL interpreter performs the
replacement automatically; the UNION FOR OR hint
ensures the UNION-type execution is used always.
Note: Conditions of type A = 1 OR B = 2 can also be
handled, but this may be problematic since the conditions
are not mutually exclusive. Because of this, the
construction for A = 1 OR B = 2 is the following:

SELECT ... WHERE A = 1
UNION ALL

SELECT ... WHERE B = 2 AND UtoT NOT (A = 1)

where UtoT stands for UNKNOWN TO TRUE.

The UtoT operator is needed for handling cases with
NULL values. Without the UtoT operator, a row which has
values A = NULL and B = 2 would not appear correctly in
the UNION variant.

OR FOR OR The OR FOR OR hint is the opposite for UNION FOR OR.
It prevents the interpreter from using the UNION-type
solution.

LOOP FOR OR The LOOP FOR OR hint is an alternative query execution
plan that falls between UNION FOR OR and OR FOR OR.
With LOOP FOR OR the OR values are passed
individually to the data table level, but conditions like A =
1 OR B = 2 cannot be handled (see description of UNION
FOR OR for details on A = 1 OR B = 2).

Usage
Due to various conditions with the data, user query, and database, the SQL
Optimizer is not always able to choose the best possible execution plan. For more
efficiency, you may want to force a merge join because you, unlike the Optimizer,
know that your data is already sorted.

Or sometimes specific predicates in queries cause performance problems that the
Optimizer cannot eliminate. The Optimizer may be using an index that you know
is not optimal. In this case, you may want to force the Optimizer to use one that
produces faster results.

234 IBM solidDB: SQL Guide

Optimizer hints is a way to have better control over response times to meet your
performance needs. Within a query, you can specify directives or hints to the
Optimizer, which it then uses to determine its query execution plan. Hints are
detected through a pseudo comment syntax from SQL-92.

You can place a hint(s) in a SQL statement as a static string, just after a SELECT,
INSERT, UPDATE, or DELETE keyword. The hint always follows the SQL
statement that applies to it.

Table name resolution in optimizer hints is the same as in any table name in a SQL
statement. When there is an error in a hint specification, then the whole SQL
statement fails with an error message.

Hints are enabled and disabled using the following configuration parameter in the
solid.ini:
[Hints]
EnableHints = YES | NO

The default is YES.

Example
SELECT
--(* vendor(SOLID), product(Engine), option(hint)
-- INDEX TAB1.IDX1 *)--
* FROM TAB1 WHERE I > 100

SELECT
--(* vendor(SOLID), product(Engine), option(hint)
-- INDEX MyCatalog.mySchema.TAB1.IDX1 *)--
* FROM TAB1 WHERE I > 100

SELECT
--(* vendor(SOLID), product(Engine), option(hint)
-- JOIN ORDER FIXED *)--
* FROM TAB1, TAB2 WHERE TAB1.I >= TAB2.I

SELECT
--(* vendor(SOLID), product(Engine), option(hint)
-- LOOP JOIN *)--
* FROM TAB1, TAB2 WHERE TAB1.I >= TAB2.I

SELECT
--(* vendor(SOLID), product(Engine), option(hint)
-- INDEX REVERSE MyCatalog.mySchema.TAB1.IDX1 *)--
* FROM TAB1 WHERE I > 100

SELECT
--(* vendor(SOLID), product(Engine), option(hint)
-- SORT BEFORE GROUP BY *)--
AVG(I) FROM TAB1 WHERE I > 10 GROUP BY I2

SELECT
--(* vendor(SOLID), product(Engine), option(hint)
-- INTERNAL SORT *)--
* FROM TAB1 WHERE I > 10 ORDER BY I2

IMPORT
IMPORT ’file_name’ [COMMITBLOCK number_of_rows]
[{OPTIMISTIC | PESSIMISTIC}]

Appendix B. solidDB SQL syntax 235

Usage
This IMPORT command allows you to import data to a replica from a data file
created by the EXPORT SUBSCRIPTION command.

The file_name represents a literal value enclosed in single quotes. The import
command can accept a single filename only. Therefore, all the data to be imported
to a replica must be contained in one file.

The COMMITBLOCK option indicates the number of rows processed before the
data is committed. The number_of_rows is an integer value used with the optional
COMMITBLOCK clause to indicate the commitblock size. The use of the
COMMITBLOCK option improves the performance of the import and releases the
internal transaction resources frequently.

The optimal value for the COMMITBLOCK size varies depending on various
resources at the server. A good example is a COMMITBLOCK size of 1000 for
10,000 rows. If you do not specify the COMMITBLOCK option, the IMPORT
command uses all rows in the publication as one transaction. This may work well
for a small number of rows, but is problematic for thousands and millions of rows.

You can define the import to use table-level pessimistic locking when it is initially
executed. If the PESSIMISTIC mode is specified, all other concurrent access to the
table affected is blocked until the import has completed. Otherwise, if the
optimistic mode is used, the IMPORT may fail due to a concurrency conflict.

When a transaction acquires an exclusive lock to a table, the
TableLockWaitTimeout parameter setting in the [General] section of the solid.ini
configuration file determines the transaction's wait period until the exclusive or
shared lock is released. For details, see the description of this parameter in IBM
solidDB Administrator Guide.

Imported data is not valid in a replica until it is refreshed once after the import. At
the time a replica makes its first REFRESH, the bookmark used to export the file
must exist in the master database. If it does not exist, then the REFRESH fails. This
means that you are required to create a new bookmark on the master database,
re-export the data, and re-import the data on the replica.

Usage rules
Note the following rules when using the IMPORT command:
v Only one file per subscription is allowed for import.
v The file size of an export file is dependent upon the underlying operating

system. If a respective platform (such as SUN, or HP) allows more than 2 GB,
you can write files greater than 2 GB. This means that a replica (recipient)
should also have a compatible platform and file system. Otherwise, the replica is
not able to accept the export file. If both the operating system on a master and
replica support file sizes greater than 2 GB, then export files greater than 2 GB
are permitted.

v Back up replica databases before using the IMPORT command. If a
COMMITBLOCK option is used and fails, then the imported data is only
partially committed; you will need to restore the replica with a backup file.

v solidDB requires that autocommit be set OFF when using the IMPORT
command.

236 IBM solidDB: SQL Guide

Usage in master
This statement is not available in a master database.

Usage in replica
Use this statement in a replica to import data from a data file created by the
EXPORT SUBSCRIPTION statement in a master database.

Example
IMPORT ’FINANCE.EXP’;

Return values
For details on each error code, see the appendix titled Error codes in IBM solidDB
Administrator Guide.

Table 54. IMPORT return values

Error Code Description

25007 Master master_name not found.

25019 Database is not a replica database.

25069 Import file file_name open failure.

13XXX Table level error

13124 User id num not found

This message is generated, for example, if the user has been
dropped.

10006 Concurrency conflict (simultaneous other operation)

13047 No privilege for operation

13056 Insert not allowed for pseudo column

21XXX Communication error

25024 Master not defined

25026 Not a valid master user

25031 Transaction is active, operation failed

25036 Publication publication_name not found or publication version
mismatch

25040 User id user_id is not found

While executing a message reply an attempt to map a master
user to a local replica id failed.

25041 Subscription to publication publication_name not found

25048 Publication publication_name request info not found

Appendix B. solidDB SQL syntax 237

Table 54. IMPORT return values (continued)

Error Code Description

25054 Table table_name is not set for synchronization history

25056 Autocommit not allowed

25060 Column column_name does not exist on publication
publication_name resultset in table table_name

INSERT
INSERT INTO table_name insert_columns_and_source

insert_columns_and_source::=
from_subquery
| from_constructor
| from_default

from subquery ::=
[insert_column_name_list] query expression

insert_column_name_list ::=
([column name [, column name]...])

from constructor ::=
[insert_column_name_list] VALUES row_constructor[, row_constructor]...]

row_constructor ::= ([insert_item[, insert_item]...])

insert_item ::= insert_value | DEFAULT | NULL

from default ::= DEFAULT VALUES

Usage
There are several variations of the INSERT statement. In the simplest instance, a
value is provided for each column of the new row in the order specified at the
time the table was defined (or altered). In the preferable form of the INSERT
statement, the columns are specified as part of the statement and they do not need
to be in any specific order as long as the orders of the column list matches the
order of the value list.

<insert_value> can be a literal, a scalar function, or a variable (in a procedure).

Example
INSERT INTO TEST (C, ID) VALUES (0.22, 5);
INSERT INTO TEST VALUES (0.35, 9);

Multirow inserts can also be done. For example, to insert three rows in one
statement, you can use the following command:
INSERT INTO employees VALUES
(10021, ’Peter’, ’Humlaut’),
(10543, ’John’, ’Wilson’),
(10556, ’Bunba’, ’Olo’);

You can insert default values by using the DEFAULT VALUES statement as shown
in the second example below. An equivalent form is "INSERT INTO TEST()

238 IBM solidDB: SQL Guide

VALUES()". You can also assign a specific value for one column and use the
default value for another column. These methods as shown in the examples below:
INSERT INTO TEST () VALUES ();
INSERT INTO TEST DEFAULT VALUES;
INSERT INTO TEST (C, ID) VALUES (0.35, DEFAULT);

INSERT INTO TEST (C, ID) SELECT A, B FROM INPUT_TO_TEST;

LOCK TABLE
LOCK lock-definition [lock-definition] [wait-option]
lock-definition ::= TABLE tablename [,tablename]
IN { SHARED | [LONG] EXCLUSIVE } MODE
wait-option ::= NOWAIT | WAIT <#seconds>

v tablename: The name of the table to lock. You can also specify the catalog and
schema of the table by qualifying the table name. You may only lock tables, not
views.

v SHARED: Shared mode allows others to perform read and write operations on the
table. DDL operations are not allowed. Also, shared mode prohibits others from
issuing an EXCLUSIVE lock on the same table.

v EXCLUSIVE: If a D-table uses pessimistic locking, then an exclusive lock prevents
other user from accessing the table in any way (for example, inserting or
deleting data, DDL operations, acquiring a lock), except for SELECT statements.
If the case of M-tables (always pessimistic) and optimistic D-tables, an exclusive
lock allows other users to perform SELECT and SELECT FOR UPDATE
statements on the locked table but prohibits any other activity (inserting or
deleting data, DDL operations, acquiring a lock) on that table.

v LONG: By default, locks are released at the end of a transaction. If the LONG
option is specified, then the lock is not released when the locking transaction
commits. If the locking transaction aborts or is rolled back, then all locks,
including LONG locks, are released. You must unlock long locks explicitly using
the UNLOCK command. LONG duration locks are allowed only in EXCLUSIVE
mode. LONG shared locks are not supported.

v NOWAIT: Specifies that control is returned to you immediately even if any
specified table is locked by another user. If requested lock is not granted, an
error is returned.

v WAIT: Specifies a timeout (in seconds) for how long system should wait to get
requested locks. If requested lock is not granted within that time, an error is
returned.

Note: The WAIT option is effective on disk-based tables only.

Usage
The LOCK and UNLOCK commands allow you to manually lock and unlock
tables. Putting a lock on a table limits access to that object. The LONG option
allows you to extend the duration of a manual exclusive lock past the end of the
current transaction; in other words, you can keep the table exclusively locked
through a series of multiple transactions.

Manual locking is not needed very often. The server's automatic locking is usually
sufficient. For a detailed discussion of locking in general, and the server's
automatic locking in particular, see “Concurrency control and locking” on page
115.

Appendix B. solidDB SQL syntax 239

Explicit locking of tables is primarily intended to help database administrators
execute maintenance operations in a database without being disturbed by other
users. For example, manual locking is typically used in advanced replication setups
when making schema changes. For more details, see Upgrading the schema of a
distributed system in the IBM solidDB Advanced Replication User Guide.

Table locks can be either SHARED or EXCLUSIVE.

An EXCLUSIVE lock on a table prohibits any other user or connection from
changing the table or any records within the table. If you have an exclusive lock on
a table, then other users/connections cannot do any of the following on that table
until your exclusive lock is released:
v INSERT, UPDATE, DELETE
v ALTER TABLE
v DROP TABLE
v LOCK TABLE (in shared or exclusive mode)

Furthermore, if a D-table uses pessimistic locking, then an exclusive lock also
prevents others users/connections from doing the following:
v SELECT FOR UPDATE

Exclusive locks do not prevent other users from SELECTing records from that
table. Most other database servers behave differently – they do not allow SELECTs
on a table that is locked exclusively.

A SHARED lock is less restrictive than an exclusive lock. If you have a shared lock
on a table, then other users/connections cannot do any of the following on that
table until your shared lock is released:
v ALTER TABLE
v DROP TABLE
v LOCK TABLE (in exclusive mode)

If you use a shared lock on a table, other users/connections may insert, update,
delete, and select from the table.

Shared locks on a table are somewhat different from shared locks on a record. If
you have a shared lock on a record, then no other user may change data in the
record. If you have a shared lock on a table, then other users may still change data
in that table.

More than one user at a time may have shared locks on a table. If you have a
shared lock on the table, other users may also get shared locks on the table.
However, no user may get an exclusive lock on a table when another user has a
shared lock (or exclusive lock) on that table.

The LOCK command takes effect at the time it is executed. If you do not use the
LONG option, then the lock will be released at the end of the transaction. If you
use the LONG option, the table lock lasts until you explicitly unlock the table. The
table lock will also be released if you roll back the transaction in which the lock
was placed – LONG locks only persist across transactions if you commit the
transaction in which you placed the LONG lock.

The LOCK/UNLOCK TABLE commands apply only to tables. There is no
command to manually lock or unlock individual records within a table.

240 IBM solidDB: SQL Guide

You can lock more than one table and specify different modes within one LOCK
command. If the lock command fails, then none of the tables are locked. If the lock
command was successful, then all requested locks are granted.

If the user does not specify a wait option (NOWAIT or WAIT seconds), then the
default wait time is used. That is the same as the deadlock detection timeout. The
WAIT option is effective on disk-based tables only.

To use the LOCK TABLE command to issue a lock on a table, you must have
insert, delete or update privileges on that table. There is no GRANT command to
give other users LOCK and UNLOCK privileges on a table.

Examples
LOCK TABLE emp IN SHARED MODE;
LOCK TABLE emp IN SHARED MODE TABLE dept IN EXCLUSIVE MODE;
LOCK TABLE emp,dept IN SHARED MODE NOWAIT;
LOCK TABLE emp IN LONG EXCLUSIVE MODE;

Return values
For details on each error code, see the appendix titled Error Codes in solidDB
Administration Guide.

Table 55. LOCK TABLE return values

Error code Description

10014 Resource is locked.

13047 No privilege for operation.

13011 Table <tablename> is not found.

See also
UNLOCK TABLE

SET SYNC MODE { MAINTENANCE | NORMAL }

MESSAGE APPEND
MESSAGE unique_message_name APPEND

[
PROPAGATE TRANSACTIONS
[{ IGNORE_ERRORS | LOG_ERRORS | FAIL_ERRORS }]
[WHERE { property_name {=|<|<=|>|>=|<>} ’value_string’ | ALL }]
]

[{ REFRESH | SUBSCRIBE }
publication_name[(publication_parameters)]
timeout[(timeout_in_seconds)]
[FULL]
]
[REGISTER PUBLICATION publication_name]
[UNREGISTER PUBLICATION publication_name]
[REGISTER REPLICA]
[UNREGISTER REPLICA]
[SYNC_CONFIG (’sync_config_arg’)]

Appendix B. solidDB SQL syntax 241

Supported in
This command requires solidDB advanced replication.

Usage
Once a message has been created in the replica database with the MESSAGE
BEGIN command, you can append the following tasks to that message:
v Propagate transactions to the master database
v Refresh a publication from the master database
v Register or unregister a publication for replica subscription
v Register or unregister a replica database to the master
v Download master user information (list of user names and passwords) from the

master database

The PROPAGATE TRANSACTIONS task may contain a WHERE clause that is
used to propagate only those transactions where a transaction property defined
with the SAVE PROPERTY statement meets specific criteria. Using the keyword
ALL overrides any default propagation condition set earlier with the statement
SAVE DEFAULT PROPAGATE PROPERTY
WHERE property_name {=|<|<=|>|>=|<>} ’value’.

This enables you to propagate transactions that do not contain any properties.

The REGISTER REPLICA task adds a new replica database to the list of replicas in
the master database. Replicas must be registered with the master database before
any other synchronization functions can be performed in the replica database.

Synchronizing each master database to the replica in a multi-master environment
requires registration of a replica to each master database by setting up catalogs.
One replica catalog can register only to one master catalog. This statement
performs the actual registration once catalogs are created in a synchronization
environment. For synchronization to the replica, a new catalog for each master
database is required. Read the section titled "Guidelines for multi-master topology"
in IBM solidDB Advanced Replication User Guide for details on catalogs.

Note:

A single-master environment does not require the use of catalogs. By default, when
catalogs are not used, registration of the replica occurs automatically with a base
catalog that maps to a master base catalog, whose name is given when the
database is created.

Note:

A single replica node may have multiple masters, but only if the node has a
separate replica catalog for each master catalog. A single replica catalog may not
have multiple masters.

The UNREGISTER REPLICA option removes an existing replica database from the
list of replicas in the master database.

The REFRESH task may contain arguments to the publication (if used in the
publication). The parameters must be literals; you cannot use stored procedure
variables, for example. Using keyword FULL with REFRESH forces fetching full
data to the replica. The publication requested must be registered. Note that the

242 IBM solidDB: SQL Guide

keywords REFRESH and SUBSCRIBE are synonymous; however, SUBSCRIBE is
deprecated in the MESSAGE APPEND statement.

The REGISTER PUBLICATION task registers a publication in the replica so that it
can be refreshed from. Users can only refresh from publications that are registered.
In this way, publication parameters are validated, preventing users from
accidentally subscribing to unwanted subscriptions or requesting ad hoc
subscriptions. All tables that the registered publication refers to must exist in the
replica.

The UNREGISTER PUBLICATION option removes an existing registered
publication from the list of registered publications in the master database.

The input argument of the SYNC_CONFIG task defines the search pattern of the
user names that are returned from the master database to the replica. SQL
wildcards (such as the symbol %) that follow the conventions of the LIKE keyword
are used in this argument with a match_string, which is a character string. For
details on using the LIKE keyword, see “Wildcard characters” on page 302.

Usage in master
The MESSAGE APPEND statement cannot be used in a master database.

Usage in replica
Use MESSAGE APPEND in replicas to append tasks to a message that has been
created with MESSAGE BEGIN.

Example
MESSAGE MyMsg0001 APPEND PROPAGATE TRANSACTIONS;
MESSAGE MyMsg0001 APPEND REFRESH PUB_CUSTOMERS_BY_AREA(’SOUTH’);
MESSAGE MyMsg0001 APPEND REGISTER REPLICA;
MESSAGE MyMsg0001 APPEND SYNC_CONFIG (’S%’);
MESSAGE MyMsg0001 APPEND REGISTER PUBLICATION publ_customer;

Return values
For details on each error code, see the appendix titled Error Codes in solidDB
Administration Guide.

Table 56. MESSAGE APPEND return values

Error Code Description

13133 Not a valid license for this product

25004 Dynamic parameters are not supported

25005 Message message_name is already active.

25006 Message message_name not active

25015 Syntax error: error_message, line line_number

25018 Illegal message state.

An appending message in the replica must be placed between
the MESSAGE BEGIN and MESSAGE END statements.

Appendix B. solidDB SQL syntax 243

Table 56. MESSAGE APPEND return values (continued)

Error Code Description

25024 Master not defined

25025 Node name not defined

25026 Not a valid master user

25028 Message message_name can include only one system subscription

25035 Message message_name is in use.

A user is currently creating or forwarding this message.

25044 SYNC_CONFIG system publication takes only character
arguments

25056 Autocommit not allowed

25071 Not registered to publication publication_name

25072 Already registered to publication publication_name

MESSAGE BEGIN
MESSAGE unique_message_name BEGIN [TO master_node_name]

Supported in
This command requires solidDB advanced replication.

Usage
Each message that is sent from a replica to the master database must explicitly
begin with the MESSAGE BEGIN statement.

Each message must have a name that is unique within a replica. To construct
unique message names, you may use the GET_UNIQUE_STRING() function, which
is documented in “String functions” on page 296. After a message has been
processed, that message name may be reused. However, if the message fails for
any reason, the master will keep a copy of the failed message, and if you try to
reuse the message name before you delete the failed message, then the name will
not be unique. You may want to use a new message name even in situations where
you might be able to re-use an existing name. Note that it is possible for two
replicas of the same master to have the same message name.

When registering a replica to a master catalog, other than the master system
catalog, you must provide the master node name in the MESSAGE BEGIN
command. The master node name is used to resolve the correct catalog at the
master database. Note that specifying a master node name only applies when
using the REGISTER REPLICA statement. Later messages are automatically sent to
the correct master node.

If you use the optional "TO master_node_name" clause, then you must put double
quotes around the master_node_name.

244 IBM solidDB: SQL Guide

Note:

When working with messages, be sure the autocommit mode is always switched
off.

Usage in master
The MESSAGE BEGIN statement cannot be used in a master database.

Usage in replica
Use MESSAGE BEGIN to start building a new message in a replica.

Example
MESSAGE MyMsg0001 BEGIN ;
MESSAGE MyMsg0002 BEGIN TO "BerkeleyMaster";

Return Values from Replica

For details on each error code, see the appendix titled Error Codes in solidDB
Administration Guide.

Table 57. MESSAGE BEGIN return values from replica

Error Code Description

25005 Message message_name is already active.

A message of the specified name was created and appears to
still be active. The message is automatically deleted when the
reply of the message has been successfully executed in the
replica.

25035 Message message_name is in use.

A user is currently creating or forwarding this message.

25056 Autocommit not allowed

Return values from master
For details on each error code, see the appendix titled Error Codes in solidDB
Administration Guide.

Table 58. MESSAGE BEGIN return values from master

Error Code Description

25019 Database is not a replica database.

25025 Node name not defined.

25056 Autocommit not allowed

MESSAGE DELETE
MESSAGE message_name [FROM REPLICA replica_name] DELETE

Appendix B. solidDB SQL syntax 245

Supported in
This command requires solidDB advanced replication.

Usage
If the execution of a message is terminated because of an error, this command lets
you explicitly delete the message from the database to recover from the error. Note
that the current transaction and all subsequent transactions that were propagated
to the master in this message are permanently lost when the message is deleted. To
use this statement, you must have SYS_SYNC_ADMIN_ROLE access.

Note:

As an alternative, the MESSAGE DELETE CURRENT TRANSACTION command
provides better recovery since it lets you delete only the offending transaction.

If the message needs to be deleted from the master database, then the node name
of the replica database that forwarded the message needs to also be provided.

When deleting messages, be sure the autocommit mode is always switched off.

Usage in master
Use this statement in the master to delete a failed message. Be sure to specify the
replica in the syntax: 'FROM REPLICA replica_name'.

Usage in replica
This statement is used in the replica to delete a message.

Example
MESSAGE MyMsg0000 DELETE ;
MESSAGE MyMsg0001 FROM REPLICA bills_laptop DELETE ;

Return Values from replica

For details on each error code, see the appendix titled Error Codes in solidDB
Administration Guide.

Table 59. MESSAGE DELETE Return Values from Replica

Error code Description

25005 Message message_name is already active

25013 Message message_name not found

25035 Message message_name is in use.

A user is currently creating or forwarding this message.

25056 Autocommit not allowed

For details on each error code, see the appendix titled Error Codes in solidDB
Administration Guide.

246 IBM solidDB: SQL Guide

Table 60. MESSAGE DELETE Return Values from Master

Error code Description

13047 No privilege for operation

25009 Replica replica_name not found

25013 Message message_name not found

25020 Database is not a master database

25035 Message message_name is in use.

A user is currently executing this message.

25056 Autocommit not allowed

MESSAGE DELETE CURRENT TRANSACTION
MESSAGE message_name FROM REPLICA replica_name
DELETE CURRENT TRANSACTION

Supported in
This command requires solidDB advanced replication.

Usage
This statement deletes the current transaction from a given message in the master
database. To use this statement requires SYS_SYNC_ADMIN_ROLE privilege.

The execution of a message stops, if a DBMS level error such as a duplicate insert
occurs during the execution. This kind of error can be resolved by deleting the
offending transaction from the message. Once deleted with the MESSAGE FROM
REPLICA DELETE CURRENT TRANSACTION, an administrator can proceed with
the synchronization process.

When deleting the current transaction, be sure the autocommit mode is always
switched off.

This statement is used only when the message is in an error state; if used
otherwise, an error message is returned. This statement is a transactional operation
and must be committed before message execution may continue. To restart the
message after the deletion is committed, use the following statement:
MESSAGE msgname FROM REPLICA replicaname EXECUTE

Note that the deletion is completed first before the MESSAGE FROM REPLICA
EXECUTE statement is executed; that is, the statement starts the message from
replica, but waits until the active statement is completed before actually executing
the message. Thus the statement performs asynchronous message execution.

Appendix B. solidDB SQL syntax 247

CAUTION:

Delete a transaction only as a last resort; normally transactions should be written
to prevent unresolved conflicts in a master database. MESSAGE FROM
REPLICA DELETE CURRENT TRANSACTION is intended for use in the
development phase, when unresolved conflicts occur more frequently.

Use caution when deleting a transaction. Because subsequent transactions may
be dependent on the results of a deleted transaction, the risk incurred is more
transaction errors.

Usage in master
Use this statement in the master to delete a failed transaction.

Usage in replica
This statement is not available in the replica.

Example
MESSAGE somefailures FROM REPLICA laptop1 DELETE
CURRENT TRANSACTION;
COMMIT WORK;
MESSAGE somefailures FROM REPLICA laptop1 EXECUTE;
COMMIT WORK;

Return values
For details on each error code, see the appendix titled Error Codes in solidDB
Administration Guide.

Table 61. MESSAGE DELETE CURRENT TRANSACTION Return Values

Error code Description

13047 No privilege for operation

25009 Replica replica_name not found

25013 Message name message_name not found

25018 Illegal message state.

An attempt was made to delete a transaction from a message
that is not in error.

25056 Autocommit not allowed

MESSAGE END
MESSAGE unique_message_name END

Supported in
This command requires solidDB advanced replication.

248 IBM solidDB: SQL Guide

Usage
A message must be "wrapped up" and made persistent before it can be sent to the
master database. Ending the message with the MESSAGE END command closes
the message, i.e. you can no longer append anything to it. Committing the
transaction makes the message persistent.

Note:

When working with messages, be sure the autocommit mode is switched off.

Usage in master
The MESSAGE END statement cannot be used in a master database.

Usage in replica
Use the MESSAGE END statement in replicas to end a message.

Example
MESSAGE MyMsg001 END ;
COMMIT WORK ;

The following example shows a complete message that propagates transactions and
refreshes from publication PUB_CUSTOMERS_BY_AREA.
MESSAGE MyMsg001 BEGIN ;
MESSAGE MyMsg001 APPEND PROPAGATE TRANSACTIONS;
MESSAGE MyMsg001 APPEND REFRESH PUB_CUSTOMERS_BY_AREA("�SOUTH’);
MESSAGE MyMsg001 END ;
COMMIT WORK ;

Return values from replica
For details on each error code, see the appendix titled Error Codes in solidDB
Administration Guide.

Table 62. MESSAGE END return values from replica

Error Code Description

13133 Not a valid license for this product

25005 Message message_name is already active

25013 Message message_name not found

25018 Illegal message state.

The MESSAGE BEGIN statement must exist to begin a
transaction and the MESSAGE END statement can be executed
only once per message.

25026 Not a valid master user

25035 Message message_name is in use

A user is currently creating or forwarding this message.

25056 Autocommit not allowed

Appendix B. solidDB SQL syntax 249

Return values from master
For details on each error code, see the appendix titled Error Codes in solidDB
Administration Guide.

Table 63. MESSAGE END return values from master

Error Code Description

25019 Database is not a replica database

25056 Autocommit not allowed

MESSAGE EXECUTE
MESSAGE message_name EXECUTE [{OPTIMISTIC | PESSIMISTIC}]

Supported in
This command requires solidDB advanced replication.

Usage
This statement allows a message to be re-executed if the execution of a reply
message fails in a replica. This can occur, for example, if the database server
detects a concurrency conflict between a REFRESH and an ongoing user
transaction.

If you anticipate concurrency conflicts to happen often and the re-execution of the
message fails because of a concurrency conflict, you can execute the message using
the PESSIMISTIC option for table-level locking; this ensures the message execution
is successful.

In this mode, all other concurrent access to the table affected is blocked until the
synchronization message has completed. Otherwise, if the optimistic mode is used,
the MESSAGE EXECUTE statement may fail due to a concurrency conflict.

When a transaction acquires an exclusive lock to a table, the TableLockWaitTimeout
parameter setting in the General section of the solid.ini configuration file
determines the transaction's wait period until the exclusive or shared lock is
released. For details, see the description of this parameter in solidDB Administration
Guide.

Note:

When working with messages, be sure the autocommit mode is always switched
off.

Usage in master
This statement is not available in the master. See “MESSAGE FROM REPLICA
EXECUTE” on page 255.

Usage in replica
Use this statement in the replica to re-execute a failed message execution in the
replica.

250 IBM solidDB: SQL Guide

Result set
MESSAGE EXECUTE returns a result set. The returned result set is the same as
with command MESSAGE GET REPLY.

Example
MESSAGE MyMsg0002 EXECUTE;

Return values
For details on each error code, see the appendix titled Error Codes in solidDB
Administration Guide.

Table 64. MESSAGE EXECUTE return values

Error code Description

13XXX Table level error

10006 Concurrency conflict (simultaneous other operation)

13047 No privilege for operation

13056 Insert not allowed for pseudo column

25005 Message message_name is already active

25013 Message name message_name not found

25018 Illegal message state

25024 Master not defined

25026 Not a valid master user

25031 Transaction is active, operation failed

25035 Message message_name is in use

A user is currently creating or forwarding this message.

25040 User id user_id is not found

While executing a message reply an attempt to map a master
user to a local replica id failed.

25041 Subscription to publication publication_name not found

25048 Publication publication_name request info not found

25056 Autocommit not allowed

MESSAGE FORWARD
MESSAGE unique_message_name FORWARD
[TO {’connect_string’ | node_name | "node_name"}]
[TIMEOUT {number_of_seconds | FOREVER}]
[COMMITBLOCK block_size_in_rows]
[{OPTIMISTIC | PESSIMISTIC}]

Appendix B. solidDB SQL syntax 251

Supported in
This command requires solidDB advanced replication.

Usage
After a message has been completed and made persistent with the MESSAGE END
statement, it can be sent to the master database using the MESSAGE FORWARD
statement.

It is only necessary to specify the recipient of the message with keyword TO when
a new replica is being registered with the master database; that is, when the first
message from a replica to the master server is sent.

The connect_string is a valid connect string, such as:
tcp [host_computer_name] server_port_number

For more information about connect strings, read the section of solidDB
Administration Guide titled "Communication Protocols".

In the context of a MESSAGE FORWARD command, a connect string must be
delimited in single quotes.

The node_name (without quotes) is a valid alphanumeric sequence that is not a
reserved word. The "node_name" (in double quote marks) is used if the node name
is a reserved word; in this case, the double quotes ensure that the node name is
treated as a delimited identifier. For example, since the word "master" is a reserved
word, the word is placed in double quotes when it is used as a node name:
-- On master
SET SYNC NODE "master";
--On replica
MESSAGE refresh_severe_bugs2 FORWARD TO "master" TIMEOUT FOREVER;

Each sent message has a reply message. The TIMEOUT property defines how long
the replica server will wait for the reply message.

If a TIMEOUT is not defined, the message is forwarded to the master and the
replica does not fetch the reply. In this case the reply can be retrieved with a
separate MESSAGE GET REPLY call.

If the reply of the sent message contains REFRESHes of large publications, the size
of the REFRESH's commit block, that is, the number of rows that are committed in
one transaction, can be defined using the COMMITBLOCK property. This has a
positive impact on the performance of the replica database. It is recommended that
there are no on-line users accessing the database when the COMMITBLOCK
property is being used.

As part of the MESSAGE FORWARD operation, you can specify table-level
pessimistic locking when the reply message is initially executed in the replica. If
the PESSIMISTIC mode is specified, all other concurrent access to the table affected
is blocked until the synchronization message has completed. Otherwise, if the
optimistic mode is used, the MESSAGE FORWARD operation may fail due to a
concurrency conflict.

When a transaction acquires an exclusive lock to a table, the TableLockWaitTimeout
parameter setting in the General section of the solid.ini configuration file

252 IBM solidDB: SQL Guide

determines the transaction's wait period until the exclusive or shared lock is
released. For details, see the description of this parameter in solidDB Administration
Guide.

If a forwarded message fails in delivery due to a communication error, you must
explicitly use the MESSAGE FORWARD to resend the message. Once re-sent,
MESSAGE FORWARD re-executes the message.

Note:

When working with the messages, be sure the autocommit mode is always
switched off.

Example
Forward message, wait for the reply for 60 seconds
MESSAGE MyMsg001 FORWARD TIMEOUT 60 ;

Forward message to a master server that runs on the "mastermachine.acme.com"
machine. Do not wait for the reply message.
MESSAGE MyRegistrationMsg FORWARD TO
’tcp mastermachine.acme.com 1313’;

Forward message, wait for the reply for 5 minutes (300 seconds) and commit the
data of the refreshed publications to replica database in transactions of max. 1000
rows.
MESSAGE MyMsg001 FORWARD TIMEOUT 300 COMMITBLOCK 1000 ;

Return values from replica
For details on each error code, see the appendix titled Error Codes in solidDB
Administration Guide.

Table 65. MESSAGE FORWARD return values from replica

Error Code Description

13XXX Table level error

21XXX Communication error

10006 Concurrency conflict (simultaneous other operation)

13047 No privilege for operation

13056 Insert not allowed for pseudo column

25005 Message message_name is already active

25013 Message name message_name not found

25018 Illegal message state

In the replica, the message can only be executed using the
MESSAGE FORWARD statement if the message is ended and
the ending transaction is committed.

Appendix B. solidDB SQL syntax 253

Table 65. MESSAGE FORWARD return values from replica (continued)

Error Code Description

25024 Master not defined

This message is produced if double quotes, rather than single
quotes, are used around the connect_string in a MESSAGE
FORWARD statement.

For example, if the master node is given the node name
"master" (which is a reserved word and therefore should be
delimited by double quotes), and if that node's connect string is:

tcp localhost 1315

then the MESSAGE statements shown below are correct:

--On the replica
...
--double quotes
MESSAGE msg1 BEGIN TO "master";
...
--single quotes
MESSAGE msg2 FORWARD TO ’tcp localhost 1315’;

Note that the MESSAGE BEGIN statement defines (within the
replica server) what the node name of the master is. The
MESSAGE FORWARD statement may contain the connect string
to the server.

25026 Not a valid master user

25031 Transaction is active, operation failed

25035 Message message_name is in use.

A user is currently creating or forwarding this message.

25040 User id user_id is not found.

While executing a message reply an attempt to map a master
user to a local replica id failed.

25041 Subscription to publication publication_name not found

25048 Publication publication_name request info not found

25052 Failed to set node name to node_name.

25054 Table table_name is not set for synchronization history

25055 Connect information is allowed only when not registered

The connect info in MESSAGE message_name FORWARD TO
connect_info options is allowed only if the replica has not yet
been registered to the master database.

25056 Autocommit not allowed

25057 The replica database has already been registered to a master
database

25060 Column column_name does not exist on publication
publication_name resultset in table table_name

254 IBM solidDB: SQL Guide

Return values from master
For details on each error code, see the appendix titled Error Codes in solidDB
Administration Guide.

Table 66. MESSAGE FORWARD return values from master

Error code Description

13XXX Table level error

13124 User id num not found

This message is generated, for example, if the user has been
dropped.

25016 Message not found, replica ID replica_id, message ID message_id

25056 Autocommit not allowed

Result Set

If the MESSAGE FORWARD also retrieves the reply, the statement returns a result
set. The result set returned is the same as the one returned with the statement
MESSAGE GET REPLY. See “MESSAGE GET REPLY” on page 256.

MESSAGE FROM REPLICA DELETE
MESSAGE msgid FROM REPLICA replicaname DELETE;
MESSAGE msgid FROM REPLICA replicaname DELETE CURRENT TRANSACTION;

This command can only be executed on the master.

MESSAGE FROM REPLICA EXECUTE
MESSAGE message_name FROM REPLICA replica_name EXECUTE

Supported in
This command requires solidDB advanced replication.

Usage
The execution of a message stops if a DBMS level error such as a duplicate insert
occurs during the execution or if an error is raised from a procedure by putting the
SYS_ROLLBACK parameter to the transactions bulletin board. This kind of error is
recoverable by fixing the reason for the error, for example, by removing the
duplicate row from the database, and then executing the message.

When the transaction in error is deleted with MESSAGE DELETE CURRENT
TRANSACTION, the deletion is completed first before the MESSAGE FROM
REPLICA EXECUTE command is executed; that is, the statement starts the
message from replica, but waits until the active statement is completed before
actually executing the message. Thus the command performs asynchronous
message execution.

Note:

Appendix B. solidDB SQL syntax 255

When working with the messages, be sure the autocommit mode is always
switched off.

Usage in master
Use this command in the master to execute a failed message.

Usage in replica
This command is not available in the replica. See “MESSAGE EXECUTE” on page
250 for an alternative.

Example
MESSAGE MyMsg0002 FROM REPLICA bills_laptop EXECUTE;

Return values
For details on each error code, see the appendix titled Error Codes in solidDB
Administration Guide.

Table 67. MESSAGE FROM REPLICA EXECUTE return values

Error code Description

13047 No privilege for operation

25009 Replica replica_name not found

25013 Message name message_name not found

25018 Illegal message state.

An attempt was made to delete a transaction from a message
that is not in error.

25056 Autocommit not allowed

MESSAGE FROM REPLICA RESTART
MESSAGE msgid FROM REPLICA replicaname RESTART <err-options>;

Where <err-options> can be IGNORE_ERRORS or LOG_ERRORS or FAIL_ERRORS

This command can only be executed on the master.

This command allows you to re-execute a failed transaction that has been stored in
the system tables and that can be retrieved using the SYNC_FAILED_MESSAGES
view.

MESSAGE GET REPLY
MESSAGE unique_message_name GET REPLY
[TIMEOUT {FOREVER | seconds}]
[COMMITBLOCK block_size_in_rows]
[NO EXECUTE]
[{OPTIMISTIC | PESSIMISTIC}]

256 IBM solidDB: SQL Guide

Supported in
This command requires solidDB advanced replication.

Usage
If the reply to a sent message has not been received by the MESSAGE FORWARD
statement, it can be requested separately from the master database by using the
MESSAGE GET REPLY statement in the replica database.

If the reply message contains REFRESHes of large publications, the size of the
REFRESH's commit block, that is, the number of rows that are committed in one
transaction, can be limited using the COMMITBLOCK property. This has a positive
impact on the performance of the replica database. It is recommended that there
are no on-line users in the database when the COMMITBLOCK property is in use.

If the execution of a reply message with the COMMITBLOCK property fails in the
replica database, it cannot be re-executed. The failed message must be deleted from
the replica database and refreshed from the master database.

If NO EXECUTE is specified, when the reply message is available at the master, it
is only read and stored for later execution. Otherwise, the reply message is
downloaded from the master and executed in the same statement. Using NO
EXECUTE reduces bottlenecks in communication lines by allowing reply messages
for later execution in different transactions.

You can define the reply message to use table-level pessimistic locking when it is
initially executed. If the PESSIMISTIC mode is specified, all other concurrent access
to the table affected is blocked until the synchronization message has completed.
Otherwise, if the optimistic mode is used, the MESSAGE GET REPLY operation
may fail due to a concurrency conflict.

When a transaction acquires an exclusive lock to a table, the TableLockWaitTimeout
parameter setting in the General section of the solid.ini configuration file
determines the transaction's wait period until the exclusive or shared lock is
released. For details, see the description of this parameter in solidDB Administration
Guide.

If a reply message fails in delivery due to a communication error (without
COMMITBLOCK), you must explicitly use the MESSAGE GET REPLY to resend
the message. Once resent, MESSAGE GET REPLY re-executes the message.

Note:

When working with the messages, be sure the autocommit mode is always
switched off.

Usage in master
MESSAGE GET REPLY cannot be used in the master.

Usage in replica
Use MESSAGE GET REPLY in the replica to fetch a reply of a message from the
master.

Appendix B. solidDB SQL syntax 257

Example
MESSAGE MyMessage001 GET REPLY TIMEOUT 120
MESSAGE MyMessage001 GET REPLY TIMEOUT 300 COMMITBLOCK 1000

Return values from replica
Fatal errors in transaction propagation abort the message and return an error code
to the replica. To propagate the aborted message you need to correct the fatal
errors and restart the message with command MESSAGE FROM REPLICA
EXECUTE.

If a REFRESH fails in the master, an error message about the failed REFRESH is
added to the result set. Other parts of the message are executed normally. The
failed REFRESH must be REFRESHed from the master in a separate
synchronization message.

If a REFRESH (that is, the execution of the reply message) fails in the replica, the
message is still available in the replica database and can be restarted with the
MESSAGE msg_name EXECUTE command.

For details on each error code, see the appendix titled Error Codes in solidDB
Administration Guide.

Table 68. MESSAGE GET REPLY return values from replica

Error code Description

13XXX Table level error

13124 User id num not found

This message is generated, for example, if the user has been
dropped.

10006 Concurrency conflict (simultaneous other operation)

13047 No privilege for operation

13056 Insert not allowed for pseudo column

21XXX Communication error

25005 Message message_name is already active

25013 Message name message_name not found

25018 Illegal message state

In the replica, the message can only be executed using the
MESSAGE GET REPLY statement if the message is forwarded to
the master.

25024 Master not defined

25026 Not a valid master user

25031 Transaction is active, operation failed

258 IBM solidDB: SQL Guide

Table 68. MESSAGE GET REPLY return values from replica (continued)

Error code Description

25035 Message message_name is in use. A user is currently creating or
forwarding this message.

25036 Publication publication_name not found or publication version
mismatch

25040 User id user_id is not found

While executing a message reply, an attempt to map a master
user to a local replica id failed.

25041 Subscription to publication publication_name not found

25048 Publication publication_name request info not found

25054 Table table_name is not set for synchronization history

25056 Autocommit not allowed

25057 Already registered to master master_name

25060 Column column_name does not exist on publication
publication_name resultset in table table_name

Return values from master
For details on each error code, see the appendix titled Error Codes in solidDB
Administration Guide.

Table 69. MESSAGE GET REPLY return values from master

Error code Description

13XXX Table level error

13124 User id num not found

This message is generated, for example, if the user has been
dropped.

25012 Message reply timed out

25016 Message not found, replica id replica-id, message id message-id

25043 Reply message is too long (size_of_messages bytes). Maximum is
set to max_message_size bytes.

25056 Autocommit not allowed

Result set
MESSAGE GET REPLY returns a result set table. The columns of the result set are
as follows:

Appendix B. solidDB SQL syntax 259

Table 70. MESSAGE GET REPLY Result Set Table

Column Name Description

Partno Message part number

Type The type of result set row. Possible types are:

0: Message part start

1: This type is not in use

2: The message was a propagation message and the status of
that operation is stored in the return message

3: Task

4: Subscription task

5: Type of refresh (FULL or INCREMENTAL)

6: MESSAGE DELETE status

Masterid Master ID

Msgid Message ID

Errcode Message error code. Zero if successful.

Errstr Message error string. NULL is successful.

Insertcount Number of inserted rows to replica.

Type=3: Total number of insert

Type=4: Row inserts restored from replica history to replica base
table

Type=5: Insert operations received from master

Deletecount Type = 3: Total number of deletes

Type = 4: Row deletes restored from replica base table

Type = 5: Delete operations received from master

Bytecount Size of message in bytes. Indicated in result received from
command MESSAGE END. Otherwise 0.

Info Information of the current task.

Type = 0: then Message name

Type = 3: Publication name

Type = 4: Table name

Type = 5: FULL/INCREMENTAL

POST EVENT
The POST EVENT command is allowed only inside stored procedures. See
“CREATE PROCEDURE” on page 182 for more details.

260 IBM solidDB: SQL Guide

PUT_PARAM()
put_param(param_name, param_value)

Supported in
This command requires solidDB advanced replication.

Usage
With solidDB Intelligent Transaction, SQL statements or procedures of a transaction
can communicate with each other by passing parameters to each other using a
parameter bulletin board. The bulletin board is a storage of parameters that is
visible to all statements of a transaction.

Parameters are specific to a catalog. Different replica and master catalogs have
their own set of bulletin board parameters that are not visible to each other.

Use the put_param() function to place a parameter on the bulletin board. If the
parameter already exists, the new value overwrites the previous one.

These parameters are not propagated to the master. You can use the SAVE
PROPERTY statement to propagate properties from the replica to the master. For
details, read “SAVE PROPERTY” on page 269.

Because put_param() is a SQL function, it can be used only within a procedure or
in a SQL statement.

Both the parameter name and value are of type VARCHAR.

Usage in master
Put_param() function can be used in the master for setting parameters to the
parameter bulletin board of the current transaction.

Usage in replica
Put_param() function can be used in replicas for setting parameters to the
parameter bulletin board of the current transaction.

Differences between "PUT_PARAM()" and "SAVE PROPERTY
property_name VALUE property_value;"

You typically use put_param inside the (running) transaction to pass parameters
between procedures. These parameter values disappear from the bulletin board
when the transaction terminates (commits or rolls back).

You typically use the SAVE PROPERTY statement in the replica to set properties
for the entire transaction. These properties can be used in the WHERE clause of the
PROPAGATE TRANSACTIONS statement. When the transaction is executed in the
master, the properties of the transaction are put to the parameter bulletin board of
the transaction in the beginning of the transaction. Hence, they can be accessed by
all procedures of the transaction by using the GET_PARAM(param_name) function.

Example
Select put_param(’myparam’, ’123abc’);

Appendix B. solidDB SQL syntax 261

Return values
For details on each error code, see the appendix titled Error Codes in solidDB
Administration Guide.

Table 71. PUT_PARAM() return values

Error Code Description

13086 Invalid data type in a parameter.

When executed successfully, put_param() returns the new value of the assigned
parameter.

See also
GET_PARAM

SAVE PROPERTY

SET SYNC PARAMETER

REFRESH
REFRESH publication [parameters] [FULL]
[OPTIMISTIC|PESSIMISTIC]
[COMMITBLOCK number_of_rows]
[TIMEOUT {DEFAULT | FOREVER | timeout_ms}]

Usage
The REFRESH statement is a storageless refresh command. It conserves memory by
streaming the associated data. It also saves I/O bandwidth because no messages
are written to disk. Each command blocks until it is successfully executed.

The optional properties OPTIMISTIC|PESSIMISTIC define the way the replica table is
being locked.
v The OPTIMISTIC mode (the default value) defines that the concurrency control

method depends on the table type and the isolation level. For D-tables in the
OPTIMISTIC mode, the REFRESH will always succeed. For M-tables in general,
and for D-tables in the PESSIMISTIC mode, row-level locking will be used. If a
lock cannot be obtained, PESSIMISTIC fails and returns an error.

v PESSIMISTIC defines that the table is exclusively locked, regardless of the table
type and isolation level chosen, for the time of refresh. If the lock cannot be
obtained, the refresh request fails and returns an error.

If the reply to the REFRESH request contains REFRESHes of large publications, the
size of the REFRESH's commit block, that is, the number of rows that are
committed in one transaction, can be defined using the COMMITBLOCK property.
This has a positive impact on the performance of the replica database. It is
recommended that there are no on-line users accessing the database when the
COMMITBLOCK property is being used.

If COMMITBLOCK is not used, the execution of REFRESH is a part of the current
transaction. The effect of REFRESH can be revoked by issuing the ROLLBACK
command. In order to make the effect of REFRESH durable, COMMIT WORK has

262 IBM solidDB: SQL Guide

to be issued. REFRESH is idempotent in the sense that it can be issued repeatably,
over the rollbacks and commits, and the effects are (in the quiescent state of the
database) always the same.

If the COMMITBLOCK clause is used, each transfer part (of the specified size) is
committed in Replica implicitly. The ROLLBACK statement removes the effect of
the latest transfer part only. COMMIT WORK commits the last transfer part.

The TIMEOUT property defines how long the replica server will wait for the reply
message. If TIMEOUT is not defined, then FOREVER is used.

Example
Synchronous, messageless refresh:
REFRESH publ_states;
PESSIMISTIC;
COMMITBLOCK 1000;
COMMIT WORK;

Return values
For details on each error code, see the appendix titled Error Codes in solidDB
Administration Guide.

Table 72. REFRESH return values

Error Code Description

13133 Not a valid license for this product

25004 Dynamic parameters are not supported

25015 Syntax error: error_message, line line_number

25024 Master not defined

25025 Node name not defined

25026 Not a valid master user

25044 SYNC_CONFIG system publication takes only character
arguments

25056 Autocommit not allowed

25071 Not registered to publication publication_name

25072 Already registered to publication publication_name

13XXX Table level error

21XXX Communication error

10006 Concurrency conflict (simultaneous other operation)

13047 No privilege for operation

13056 Insert not allowed for pseudo column

Appendix B. solidDB SQL syntax 263

Table 72. REFRESH return values (continued)

Error Code Description

25005 Message message_name is already active

25018 Illegal message state

In the replica, the message can only be executed using the
MESSAGE FORWARD statement if the message is ended and
the ending transaction is committed.

25024 Master not defined

This message is produced if double quotes, rather than single
quotes, are used around the connect_string in a MESSAGE
FORWARD statement.

For example, if the master node is given the node name
"master" (which is a reserved word and therefore should be
delimited by double quotes), and if that node's connect string is:

tcp localhost 1315

then the MESSAGE statements shown below are correct:

--On the replica
...
--double quotes
MESSAGE msg1 BEGIN TO "master";
...
--single quotes
MESSAGE msg2 FORWARD TO ’tcp localhost 1315’;

Note that the MESSAGE BEGIN statement defines (within the
replica server) what the node name of the master is. The
MESSAGE FORWARD statement may contain the connect string
to the server.

25026 Not a valid master user

25031 Transaction is active, operation failed

25035 Message message_name is in use.

A user is currently creating or forwarding this message.

25040 User id user_id is not found.

While executing a message reply an attempt to map a master
user to a local replica id failed.

25041 Subscription to publication publication_name not found

25048 Publication publication_name request info not found

25052 Failed to set node name to node_name.

25054 Table table_name is not set for synchronization history

25055 Connect information is allowed only when not registered

The connect info in MESSAGE message_name FORWARD TO
connect_info options is allowed only if the replica has not yet
been registered to the master database.

264 IBM solidDB: SQL Guide

Table 72. REFRESH return values (continued)

Error Code Description

25056 Autocommit not allowed

25057 The replica database has already been registered to a master
database

25060 Column column_name does not exist on publication
publication_name resultset in table table_name

13XXX Table level error

13124 User id num not found

This message is generated, for example, if the user has been
dropped.

25056 Autocommit not allowed

REGISTER EVENT
Registering an event tells the server that you would like to be notified of all future
occurrences of this event, even if you are not yet waiting for it. By separating the
"register" and "wait" commands, you can start queuing events immediately, while
waiting until later to actually start processing them.

Note that you do not need to register for every event before waiting for it. When
you wait on an event, you will be registered implicitly for that event if you did not
already explicitly register for it. Thus you only need to explicitly register events if
you want them to start being queued now but you don't want to start WAITing for
them until later.

You cannot register to synchronization events, because the ADMIN EVENT 'wait'
command is not able to return variable resultsets. Instead, you must use stored
procedures to handle synchronization events.

The REGISTER EVENT command is allowed only inside stored procedures. See the
CREATE PROCEDURE statement and the CREATE EVENT statement for more
details.

REVOKE (role from user)
REVOKE { role_name [, role_name]... }

FROM {PUBLIC | user_name [, user_name]... }

Usage
The REVOKE statement is used to take a role away from users.

Example
REVOKE GUEST_USERS FROM HOBBES;

Appendix B. solidDB SQL syntax 265

REVOKE (privilege from role or user)
REVOKE

{ALL | revoke_privilege [, revoke_privilege]... } ON table-name
FROM {PUBLIC | user_name [, user_name]... | role_name [, role_name]... }

revoke-privilege ::= DELETE | INSERT | SELECT |
UPDATE [(column_identifier [, column_identifier]...)] |
REFERENCES

REVOKE EXECUTE ON procedure_name
FROM {PUBLIC | user_name [, user_name]... | role_name [, role_name]... }

REVOKE {SELECT | INSERT} ON event_name FROM
{PUBLIC | user_name [, user_name]... | role_name [, role_name]... }

REVOKE {SELECT | INSERT} ON sequence_name
FROM {PUBLIC | user_name [, user_name]... | role_name [, role_name]... }

Note:

solidDB does not support the keywords CASCADE and RESTRICT in REVOKE
statements.

Usage
The REVOKE statement is used to take privileges away from users and roles.

Example
REVOKE INSERT ON TEST FROM GUEST_USERS;

See also
For more information about user privileges, see also:
v “GRANT” on page 228, and
v “Managing user privileges and roles” on page 96.

REVOKE REFRESH
REVOKE { REFRESH | SUBSCRIBE} ON publication_name FROM {PUBLIC |

user_name, [user_name] ... |
role_name , [role_name] ...}

Supported in
This command requires solidDB advanced replication.

Usage
This statement revokes access rights to a publication from a user or role defined in
the master database.

Note:

The keywords "REFRESH" and "SUBSCRIBE" are synonymous. However,
"SUBSCRIBE" is deprecated in the REVOKE statement.

Usage in master
Use this statement to revoke access rights to a publication from a user or role.

266 IBM solidDB: SQL Guide

Usage in replica
This statement is not available in a replica database.

Example
REVOKE REFRESH ON customers_by_area FROM joe_smith;
REVOKE REFRESH ON customers_by_area FROM all_salesmen;

Return values
Table 73. REVOKE REFRESH return values

Error Code Description

13137 Illegal grant/revoke mode

13048 No grant option privilege

25010 Publication name not found

ROLLBACK WORK
ROLLBACK WORK

Usage
The changes made in the database by the current transaction are discarded by the
ROLLBACK WORK statement. It terminates the transaction.

Example
ROLLBACK WORK;

SAVE
SAVE [NO CHECK] [{ IGNORE_ERRORS | LOG_ERRORS | FAIL_ERRORS }]
[{ AUTOSAVE | AUTOSAVEONLY }] sql_statement

Supported in
This command requires solidDB advanced replication.

Usage
The statements of a transaction that need to be propagated to the master database
must be explicitly saved to the transaction queue of the replica database. Adding a
SAVE statement before the transaction statements does this.

Only master users are allowed to save statements. This is because when the saved
statements are executed on the master, they must be executed using the
appropriate access rights of a user on the master. The saved statements are
executed in the master database using the access rights of the master user that was
active in the replica when the statement was saved. If a user in the replica was
mapped to a user in the master, the SAVE statement uses the access rights of the
user in the master.

The default behavior for error handling with transaction propagation is that a
failed transaction halts execution of the message; this aborts the

Appendix B. solidDB SQL syntax 267

currently-executing transaction and prevents execution of any subsequent
transactions that are in that same message. However, you may choose a different
error-handling behavior.

The options for the SAVE command are explained below:

NO CHECK: This option means that the statement is not prepared in the replica.
This option is useful if the command would not make sense on the replica. For
example, if the SQL command calls a stored procedure that exists on the master
but not on the replica, then you don't want the replica to try to prepare the
statement. If you use this option, then the statement can not have parameter
markers.

IGNORE_ERRORS: This option means that if a statement fails while executing on
the master, then the failed statement is ignored and the transaction is aborted.
However, only the transaction, not the entire message, is aborted. The master
continues executing the message, resuming with the first transaction after the
failed one.

LOG_ERRORS: This means that if a statement failed while executing on the master,
then the failed statement is ignored and the current transaction is aborted. The
failed transaction's statements are saved in SYS_SYNC_RECEIVED_STMTS system
table for later execution or investigation. The failed transactions can be examined
using SYNC_FAILED_MESSAGES system view and they can be re-executed from
there using MESSAGE <msg_id> FROM REPLICA <replica_name> RESTART
-statement.

Note that, as with the IGNORE_ERROR option, aborting the transaction does not
abort the entire message. The master continues executing the message, resuming
with the first transaction after the failed one.

FAIL_ERRORS: This option means that if a statement fails, the master stops
executing the message. This is the default behavior.

AUTOSAVE: This option means that the statement is executed in the master and
automatically saved for further propagation if the master is also a replica to some
other master (i.e. a middle-tier node)

AUTOSAVEONLY: This option means that the statement is NOT executed in the
master but instead is automatically saved for further propagation if the master is
also a replica to some other master (i.e. is a middle-tier node)

Usage in master
This statement cannot be used in the master.

Usage in replica
Use this statement in the replica to save statements for propagation to the master.

Example
SAVE INSERT INTO mytbl (col1, col2) VALUES (’calvin’, ’hobbes’)
SAVE CALL SP_UPDATE_MYTBL(’calvin_1’, ’hobbes’)
SAVE CALL SP_DELETE_MYTBL(’calvin’)
SAVE NO CHECK IGNORE_ERRORS insert into mytab values(1,2)

268 IBM solidDB: SQL Guide

Return values
For details on each error code, see the appendix titled Error Codes in solidDB
Administration Guide.

Table 74. SAVE return values

Error Code Description

25001 Internal error

Master database has exceeded the database size limit required to
save the statement.

25003 Cannot save SAVE statements

25070 Statement can be saved only for one master in transaction.

SAVE PROPERTY
SAVE PROPERTY property_name VALUE ’value_string’
SAVE PROPERTY property_name VALUE NONE
SAVE DEFAULT PROPERTY property_name VALUE ’value_string’
SAVE DEFAULT PROPERTY property_name VALUE NONE
SAVE DEFAULT PROPAGATE PROPERTY WHERE name {=|<|<=|>|>=|<>}’value’
SAVE DEFAULT PROPAGATE PROPERTY NONE

Supported in
This command requires solidDB advanced replication.

Usage
It is possible to assign properties to the current active transaction with the
following command:
SAVE PROPERTY property_name VALUE ’value_string’

The statements of the transaction in the master database can access these
properties by calling the GET_PARAM() function. Properties are only available in
the replica database that apply to the command
MESSAGE APPEND unique_message_name PROPAGATE TRANSACTIONS
WHERE property > ’value_string’

When the transaction is executed in the master database, the saved properties are
placed on the parameter bulletin board of the transaction. If the saved property
already exists, the new value overwrites the previous one.

It is also possible to define default properties that are saved to all transactions of
the current connection. The statement for this is:
SAVE DEFAULT PROPERTY property_name VALUE ’value_string’

A SAVE DEFAULT PROPAGATE PROPERTY WHERE statement can be used to
save default transaction propagation criteria. This can be used for example to set
the propagation priority of transactions created in the current connection.

SAVE DEFAULT PROPAGATE PROPERTY WHERE property > 'value' can be used
in a connection level to append all MESSAGE unique_message_name APPEND
PROPAGATE TRANSACTIONS statements to have the default WHERE statement.

Appendix B. solidDB SQL syntax 269

If the WHERE statement is entered also in the PROPAGATE statement, it will
override the statement set with the DEFAULT PROPAGATE PROPERTY.

A property or a default property can be removed by re-saving the property with
value string NONE.

Usage in master
This statement cannot be used in the master database.

Usage in replica
You can use these statements in the replica to set properties for a transaction that is
saved for propagation to the master. The property's value can be read in the master
database.

Differences between "PUT_PARAM()" and "SAVE PROPERTY
property_name VALUE property_value;"

See the description of the PUT_PARAM() function for a discussion of the
differences between "SAVE PROPERTY" and "PUT_PARAM()".

Example
SAVE PROPERTY conflict_rule VALUE ’override’
SAVE DEFAULT PROPERTY userid VALUE ’scott’
SAVE DEFAULT PROPERTY userid VALUE NONE
SAVE DEFAULT PROPAGATE PROPERTY WHERE priority > ’2’

Return values
For details on each error code, see the appendix titled Error Codes in solidDB
Administration Guide.

Table 75. SAVE PROPERTY return values

Error Code Description

13086 Invalid data type in a parameter.

Result set
SAVE PROPERTY does not return a result set.

SELECT
SELECT [ALL | DISTINCT] select-list

LEVEL
FROM table_reference_list
[WHERE search_condition]
[GROUP BY column_name [, column_name]...]
[HAVING search_condition]
[hierarchical_condition]
[[UNION | INTERSECT | EXCEPT] [ALL] select_statement]...
[ORDER BY expression]
[ASC | DESC]]
[LIMIT row_count [OFFSET skipped_rows] | LIMIT skipped_rows,row_count]

hierarchical_condition ::=
START WITH search_condition CONNECT BY [PRIOR] search_condition

270 IBM solidDB: SQL Guide

Usage
The SELECT statement allows you to select 0 or more records from one or more
tables.

The non-standard clause LIMIT row_count OFFSET skipped_rows allows to mask out
a portion of a result set with a sliding window having the size of row_count and
positioned at the skipped_rows+1 row. A negative value of skipped_rows results in an
error, while the negative value of row_count results in the whole result set
produced. Note that two forms are available: for example LIMIT 24 OFFSET 10 is
equal to LIMIT 10, 24.

If your table contains hierarchical data, you can select rows in a hierarchical order
using a hierarchical query clause. In a hierarchical query clause, START WITH
specifies the root row(s) of the hierarchy and CONNECT BY specifies the
relationship between parent rows and child rows of the hierarchy. The CONNECT
BY condition cannot contain a subquery.

LEVEL is a pseudocolumn valid in the context of the hierarchical query only. If the
result set is viewed as a tree of interreferenced rows, the LEVEL column produces
the tree level number, assigning "1" to the top-level row.

ORDER SIBLINGS BY causes the rows at any level to be ordered accordingly.

In a hierarchical query, one expression in the condition must be qualified with the
PRIOR operator to refer to the parent row. PRIOR is a unary operator and has the
same precedence as the unary + and - arithmetic operators. It evaluates the
immediately following expression for the parent row of the current row in a
hierarchical query. PRIOR is most commonly used when comparing column values
with the equality operator. The PRIOR keyword can be on either side of the
operator.

Examples
SELECT ID FROM TEST;
SELECT DISTINCT ID, C FROM TEST WHERE ID = 5;
SELECT DISTINCT ID FROM TEST ORDER BY ID ASC;
SELECT NAME, ADDRESS FROM CUSTOMERS
UNION
SELECT NAME, DEP FROM PERSONNEL;
SELECT dept, count(*) FROM person
GROUP BY dept
ORDER BY dept
LIMIT 20 OFFSET 10

START WITH example
SELECT last_name, employee_id, manager_id, LEVEL

FROM employees
START WITH employee_id = 100
CONNECT BY PRIOR employee_id = manager_id
ORDER SIBLINGS BY last_name;

LAST_NAME EMPLOYEE_ID MANAGER_ID
------------------------- ----------- ----------
King 100
Cambrault 148 100
Bates 172 148
Bloom 169 148
Fox 170 148

Appendix B. solidDB SQL syntax 271

Kumar 173 148
Ozer 168 148
Smith 171 148
De Haan 102 100
Hunold 103 102
Austin 105 103
Ernst 104 103
Lorentz 107 103
Pataballa 106 103
Errazuriz 147 100
Ande 166 147
Banda 167 147

LEVEL and ORDER SIBLINGS BY example
SELECT last_name, employee_id, manager_id, LEVEL

FROM employees
START WITH last_name = ’King’
CONNECT BY PRIOR employee_id = manager_id
ORDER SIBLINGS BY last_name
ORDER BY LEVEL;

LAST_NAME EMPLOYEE_ID MANAGER_ID LEVEL
--------- ----------- ---------- -----
King 100 NULL 1
Cambrault 148 100 2
De Haan 102 100 2
Bates 172 148 3
Bloom 169 148 3
Gates 104 148 3
Hunold 103 102 3
Hope 202 172 4
Smith 201 172 4

SET

Usage
SET commands apply to the user session (connection) in which they are executed.
They do not affect other user sessions.

SET statements may be issued at any time; however, they do not all take effect
immediately. The following statements take effect immediately:
v SET CATALOG
v SET IDLE TIMEOUT
v SET SCHEMA
v SET STATEMENT MAXTIME

The following statements take effect after the next COMMIT WORK:
v SET DURABILITY
v SET OPTIMISTIC LOCK TIMEOUT
v SET LOCK TIMEOUT
v SET ISOLATION LEVEL
v SET { READ ONLY | READ WRITE | WRITE}

SET statements are not subject to rollback, i.e. they remain in force even if the
transaction they have been issued in has been aborted or rolled back. It is a good
practice to issue them before any DDL/DML SQL statement in a transaction.

272 IBM solidDB: SQL Guide

The settings continue in effect until the end of the session (connection) or until
another SET command changes the settings, or in some cases until a
higher-precedence command (e.g. SET TRANSACTION) is executed.

Differences between SET and SET TRANSACTION
solidDB SQL gives you two different commands to set the transaction isolation
level, the read level, and the durability level. In addition to the SET command
described in this section
SET { READ ONLY | READ WRITE | WRITE};
SET ISOLATION LEVEL {READ COMMITTED...};
SET DURABILITY ...;

there is also the SET TRANSACTION command described in “SET
TRANSACTION” on page 284.
SET TRANSACTION { READ ONLY | READ WRITE | WRITE};
SET TRANSACTION ISOLATION LEVEL {READ COMMITTED ...};
SET TRANSACTION DURABILITY ...;

For information about the differences between these commands, see “Differences
between SET and SET TRANSACTION” on page 284.

SET Examples
SET CATALOG myCatalog;
SET DURABILITY STRICT;
SET IDLE TIMEOUT 30;
SET ISOLATION LEVEL REPEATABLE READ;
SET OPTIMISTIC LOCK TIMEOUT 30;
SET LOCK TIMEOUT 30;
SET LOCK TIMEOUT 500MS;
SET READ ONLY;
SET SCHEMA ’accounting_info’;
SET SCHEMA ’john_smith’;
SET STATEMENT MAXTIME 180;

SET (read/write level)
SET {READ ONLY | READ WRITE | WRITE}

SET {READ ONLY | READ WRITE | WRITE} allows you to specify whether the
connection be allowed only to read, read and write, or whether it be allowed to
write only.

See also “SET ISOLATION LEVEL” on page 274.

SET CATALOG
SET CATALOG catalog_name

SET CATALOG sets the current catalog context in a connection.

SET DURABILITY
SET DURABILITY { RELAXED | STRICT | DEFAULT}

SET DURABILITY sets the transaction durability level. For details about the
possible settings, see the discussion of "Logging and Transaction Durability" in
solidDB Administration Guide.

Appendix B. solidDB SQL syntax 273

SET ISOLATION LEVEL
SET ISOLATION LEVEL {

READ COMMITTED |
REPEATABLE READ |
SERIALIZABLE }

SET ISOLATION LEVEL allows you to specify the isolation level.

If the assigned workload server is Secondary, it can be changed programmatically
to the Primary. At the session level, the following statements change the workload
connection server to the Primary:
SET WRITE (nonstandard)
SET ISOLATION LEVEL REPEATABLE READ
SET ISOLATION LEVEL SERIALIZABLE

The statement takes effect immediately, if it is a first statement of a transaction, or
from the next transaction otherwise.

If the above statement is not applicable, it returns SQL_SUCCESS, with no action
performed. For example, such is a the case when SET WRITE is applied to a
standalone server. In that case the semantics of SET WRITE is equal to that of SET
READ WRITE.

The effect of the SET WRITE statement may be reverted with the statement SET
READ WRITE or ... READ ONLY (SQL:1999). Also, the isolation level statement
has the same effect:
SET ISOLATION LEVEL READ COMMITTED

SET SAFENESS
SET SAFENESS {1SAFE | 2SAFE | DEFAULT}

SET SAFENESS determines whether the replication protocol is synchronous (2-safe)
or asynchronous (1-safe).
v 1-safe: the transaction is first committed at Primary and then transmitted to

Secondary
v 2-safe: the transaction is not committed before it has been acknowledged by

Secondary (default).

SET SAFENESS sets the safeness level for the current session.

SET SCHEMA
SET SCHEMA {’schema_name’ | USER | ’user_name’}

Usage
solidDB supports SQL89 style schemas. Schemas are used to help uniquely identify
entities (tables, views, etc.) within a database. By using schemas, each user may
create entities without worrying about whether her names overlap the names
chosen by other users/schemas.

To uniquely identify an entity (such as a table), you "qualify" it by specifying the
catalog name and schema name. Below is an example of a fully-qualified table
name:
FinanceCatalog.AccounstReceivableSchema.CustomersTable

274 IBM solidDB: SQL Guide

In keeping with the ANSI SQL-92 standard, the user_name or schema_name may
be enclosed in single quotes.

The default schema can be changed with the SET SCHEMA statement. The schema
can be changed to the current user name by using the SET SCHEMA USER
statement. Alternatively, the schema can be set to 'user_name' which must be a valid
user name in the database.

The algorithm to resolve entity names [schema_name.]table_identifier is the following:
1. If schema_name is given, then table_identifier is searched only from that schema.
2. If schema_name is not given, then

a. First table_identifier is searched from default schema. Default schema is
initially the same as user name, but can be changed with SET SCHEMA
statement

b. Then table_identifier is searched from all schemas in the database. If more
than one entity with same identifier and type (table, stored procedure, ...) is
found, a new error code 13110 (Ambiguous entity name table_identifier) is
returned.

The SET SCHEMA statement affects only the default entity name resolution and it
does not change any access rights to database entities. It sets the default schema
name for unqualified names in statements that are prepared in the current session
by an EXECDIRECT statement or a prepare statement.

Example
SET SCHEMA ’CUSTOMERS’;

See also
Catalogs are also used to quality (uniquely identify) the names of tables and other
database entities, so you may also want to read about the SET CATALOG
command.

SET SQL
SET SQL INFO {ON | OFF} [FILE {file_name | "{file_name" | ’{file_name’}]

[LEVEL info_level]
SET SQL SORTARRAYSIZE {array-size | DEFAULT}
SET SQL JOINPATHSPAN { | DEFAULT}
SET SQL CONVERTORSTOUNIONS

{YES [COUNT] | NO | DEFAULT}

Usage
All the settings are read per user session (unlike the settings in the solid.ini file,
which are automatically read each time solidDB is started).

SET SQL INFO The SET SQL INFO command allows you to turn on trace
information that may allow you to debug problems or tune queries. For SQL
INFO, the default file is a global soltrace.out shared by all users. If the file name
is given, all future INFO ON settings will use that file unless a new file is set. It is
recommended that the file name is given in single quotes, because otherwise the
file name is converted to uppercase. The info output is appended to the file and
the file is never truncated, so after the info file is not needed anymore, the user
must manually delete the file. If the file open fails, the info output is silently
discarded.

The default SQL INFO LEVEL is 4. A good way to generate useful info output is to
set info on with a new file name and then execute the SQL statement using

Appendix B. solidDB SQL syntax 275

EXPLAIN PLAN FOR syntax. This method gives all necessary estimator
information but does not generate output from the fetches (which may generate a
huge output file).

SET SQL SORTARRAYSIZE This command sets the size of the array that SQL uses
when ordering the result set of a query. The units are "rows" — e.g. if you specify
a value of 1000, then the server will create an array big enough to sort 1000 rows.

SET SQL JOINPATHSPAN This command is obsolete. The syntax is accepted, but
the command has no effect.

SET SQL CONVERTORSTOUNIONS allows you to convert a query that contains
"OR" operations into an equivalent query that uses "UNION" operations. The
following operations are logically equivalent:
select ... where x = 1 OR y = 1;
select ... where x = 1 UNION select... where y = 1;

By setting CONVERTORSTOUNIONS, you tell the optimizer that it may use
equivalent UNION operations instead of OR operations if the UNIONs seem more
efficient based on the volume and distribution of data. The COUNT parameter in
SQL CONVERTORSTOUNIONS ("Convert ORs to UNIONs") specifies the
maximum number of OR operations that may be converted to UNION operations.
Note that you can also specify CONVERTORSTOUNIONS by using the solid.ini
configuration parameter named ConvertORsToUNIONs (for details, see the
description of this parameter in solidDB Administration Guide). The default value is
100, which should be enough in almost all cases.

Example
SET SQL INFO ON FILE ’sqlinfo.txt’ LEVEL 5

SET STATEMENT MAXTIME
SET STATEMENT MAXTIME minutes

SET STATEMENT MAXTIME sets connection-specific maximum execution time in
minutes. The setting is effective until a new maximum time is set. Zero time means
no maximum time, which is also the default.

SET SYNC
The following chapters describe different SET SYNC commands.

SET SYNC master_or_replica
SET SYNC master_or_replica yes_or_no

where:
master_or_replica ::= MASTER | REPLICA
yes_or_no ::= YES | NO

Supported in: This command requires solidDB advanced replication.

Usage: When a database catalog is created and configured for synchronization
use, you must use this command to specify whether the database is a master,
replica, or both. Only a DBA or a user with SYS_SYNC_ADMIN_ROLE can set the
database role.

276 IBM solidDB: SQL Guide

The database catalog is a master database if there are replicas in the domain that
refresh from publications from this database and/or propagate transactions to it.
The database catalog is a replica catalog if it can refresh from publications that are
in a master database. In multi-tier synchronization, intermediate level databases
serve a dual role, as both master and replica databases.

Note that to use this command requires that you have already set the node name
for the master or replica using the SET SYNC NODE command. For details, read
“SET SYNC NODE” on page 280.

When you set the database for a dual role, you can use the statement once or
twice. For example:
SET SYNC MASTER YES;
SET SYNC REPLICA YES;

Note that when you set the database for dual roles, SET SYNC REPLICA YES does
not override SET SYNC MASTER YES. Only the following explicit statement can
override the status of the master database:
SET SYNC MASTER NO;

Once overridden, the current database is set as replica only.

Examples:
-- configure as replica
SET SYNC REPLICA YES;
-- configure as master
SET SYNC MASTER YES;

Return values: For details on each error code, see the appendix titled Error Codes
in solidDB Administration Guide.

Table 76. SET SYNC return values

Error code Description

13047 No privilege for operation

13107 Illegal set operation

13133 Not a valid license for this product

25051 Unfinished messages found

SET SYNC CONNECT
SET SYNC CONNECT ’connect_string [,connect_string]’ TO MASTER
master_name
SET SYNC CONNECT ’connect_string’ TO REPLICA replica_name

Supported in: This command requires solidDB advanced replication.

Usage: This statement changes the network name associated with the database
name. Use this statement in a replica (or master) whenever you have changed
network names in databases that a replica (or master) connects to. Network names
are defined in the Listen parameter of the solid.ini configuration file.

The second connect string in SET SYNC CONNECT ... TO MASTER facilitates
transparent failover of a Replica server to a standby Master server, should the

Appendix B. solidDB SQL syntax 277

Primary Master server fail. The order of the connect strings is not significant. The
connection is automatically maintained to the currently active Primary server.

Usage in master: Use this statement in a master to change the replica's network
name.

Usage in replica: Use this statement in a replica to change the master's network
name.

Example:
SET SYNC CONNECT ’tcp server.company.com 1313’ TO MASTER hq_master;

Return values: For details on each error code, see the appendix titled Error Codes
in solidDB Administration Guide.

Table 77. SET SYNC CONNECT return values

Error code Description

13047 No privilege for operation

13107 Illegal set operation

21300 Illegal network protocol

25007 Master master_name not found

25019 Database is not a replica database

SET SYNC MODE
SET SYNC MODE { MAINTENANCE | NORMAL }

Supported in: This command requires solidDB advanced replication.

Usage: This command sets the current catalog's sync mode to either Maintenance
mode or Normal mode.

This command applies only to catalogs that are involved in synchronization (i.e.
are "master" catalogs or "replica" catalogs, or are both master and replica in a
hierarchy with 3 or more levels).

This command applies only to the current catalog. If you want to set more than
one catalog's sync mode to Maintenance, then you will have to switch to each
catalog (by using the SET CATALOG command) and then issue the SET SYNC
MODE MAINTENANCE command for that catalog.

While a catalog's sync mode is Maintenance, the following rules apply:
v The catalog will not send or receive synchronization messages and therefore will

not engage in synchronization activities (e.g. refresh or respond to a refresh
request).

v DDL commands (e.g. ALTER TABLE) will be allowed on tables that are
referenced by publications.

v When the sync mode changes, the server will send the system event
SYNC_MAINTENANCEMODE_BEGIN or SYNC_MAINTENANCEMODE_END.

278 IBM solidDB: SQL Guide

v If the master catalog's publications are altered (dropped and recreated) by using
the REPLACE option, then the publication's metadata (internal publication
definition data) is refreshed automatically to each replica the next time that
replica refreshes from the changed publication. (This is true whether or not the
database was in Maintenance sync mode when the publication was REPLACEd.)

v Each catalog has a read-only parameter named SYNC_MODE in the parameter
bulletin board so that applications can check the catalog's mode. Values for that
parameter are either 'MAINTENANCE' if the catalog is in maintenance sync
mode or 'NORMAL' if the catalog is not in maintenance sync mode. The value is
NULL if the catalog is not a master or a replica.

v The user must have DBA or synchronization administrations privileges to set
sync mode to Maintenance or Normal.

v A user may have more than one catalog in Maintenance sync mode at a time.
v If the session that set the mode ON disconnects, then mode is set off.
v The normal synchronization history operations are disabled. For example, when

a delete or update operation is done on a table that has synchronization history
on, the synchronization history tables will not store the "original" rows (i.e. the
rows before they were deleted or updated). Note, however, that deletes and
updates apply to the synchronization history table; e.g.
DELETE * FROM T WHERE c = 5

will delete rows from the history table as well as from the base table. The table
below shows how various operations (INSERT, DELETE, etc.) apply to the
synchronization history tables in master and replica when sync mode is set to
Maintenance.

Table 78. How different operations apply to synchronization history tables

Operation Master Replica

INSERT Rows are inserted to base table. Rows are inserted to base table and
marked as official.

UPDATE Both base table and history is updated. Both base table and history is updated.
Tentative/official status is not updated so
tentative rows remains tentative and
official rows remains official.

DELETE Rows are deleted from base table and
from history.

Rows are deleted from base table and
from history.

Add, alter, drop column Same operation is done to history also. Same operation is done to history also.

Altering table mode History mode is not altered History mode is not altered

Create index Same index is created to history also Same index is created to history also

Create triggers Triggers are not created on history Triggers are not created on history

Example:
SET SYNC MODE MAINTENANCE SET SYNC MODE NORMAL

Return values: For details on each error code, see the appendix titled Error Codes
in IBM solidDB Administrator Guide.

Appendix B. solidDB SQL syntax 279

Table 79. SET SYNC MODE return values

Error code Description

13047 No privilege for operation.

13133 Not a valid license for this product.

25021 Database is not master or replica database. This operation only
applies to master and replica databases.

25088 Catalog already in maintenance mode. You have set the mode
on already.

25089 Not allowed to set maintenance mode off. Someone else has set
the mode on so you can not set it off.

25090 Catalog is already in maintenance mode. Someone else has set
the mode on so you can not set it on.

25091 Catalog is not in maintenance mode. You tried to set mode off
and it is not currently on.

SET SYNC NODE
SET SYNC NODE {unique_node_name | NONE}

Supported in: This command requires solidDB advanced replication.

Usage: Assigning the node name is part of the registration process of a replica
database. Each catalog of a solidDB environment must have a node name that is
unique within the domain. One catalog can have only one node name. Two
catalogs cannot have the same node name.

You can use the SET SYNC NODE unique_node_name option to rename a node
name if:
v If the node is a replica database and it is not registered to a master

and/or
v If the node is a master database and there are no replicas registered in the

master database

Following are examples for renaming a node name:
SET SYNC NODE A; -- Now the node name is A.
SET SYNC NODE B; -- Now the node name is B.
COMMIT WORK;
SET SYNC NODE C; -- Now the node name is C.
ROLLBACK WORK; -- Now the node name is rolled back to B.
SET SYNC NODE NONE; -- Now the node has no name.
COMMIT WORK;

The unique_node_name must conform to the rules that are used for naming other
objects (such as tables) in the database. Do not put single quotes around the node
name.

If you specify NONE, then this command will remove the current node name.

280 IBM solidDB: SQL Guide

If you want to use a reserved word, such as "NONE", as a node name, then you
must put the keyword in double quote marks to ensure that it is treated as a
delimited identifier. For example:
SET SYNC NODE "NONE"; -- Now the node name is "NONE"

You can verify the node name assignment with the following statement:
SELECT GET_PARAM(’SYNC NODE’)

The SET SYNC NODE NONE option removes the node name from the current
catalog. This option is used when you are dropping a synchronized database and
removing its registration.

Note:

When using the SET SYNC NODE NONE option, be sure the catalog associated
with the node name is not defined as a master, replica, or both. To remove the
node name, the catalog must be defined as SET SYNC MASTER NO and/or SET
SYNC REPLICA NO. If you do try to set the node name to NONE on a master
and/or replica catalog, solidDB returns error message 25082.

Usage in master: Use this statement in the master to set or remove the node
name from the current catalog.

Usage in replica: Use this statement in the replica to set or remove the node
name from the current catalog.

Example:
SET SYNC NODE SalesmanJones;

Return values: For details on each error code, see the appendix titled Error Codes
in solidDB Administration Guide.

Table 80. SET SYNC NODE return values

Error code Description

13047 No privilege for operation

13107 Illegal set operation

25059 After registration nodename cannot be changed

25082 Node name can not be removed if node is master or replica.

SET SYNC PARAMETER
SET SYNC PARAMETER parameter_name ’value_as_string’;
SET SYNC PARAMETER parameter_name NONE;

Supported in: This command requires solidDB advanced replication.

Usage: This statement defines persistent catalog-level parameters that are visible
via the parameter bulletin board to all transactions that are executed in that
catalog. Each catalog has a different set of parameters.

Appendix B. solidDB SQL syntax 281

If the parameter already exists, the new value overwrites the previous one. An
existing parameter can be deleted by setting its value to NONE. All parameters are
stored in the SYS_BULLETIN_BOARD system table.

These parameters are not propagated to the master.

In addition to system specific-parameters, you can also store in the system table a
number of system parameters that configure the synchronization functionality.
Available system parameters are listed at the end of the SQL reference.

Usage in master: Use the SET SYNC PARAMETER in the master for setting
database parameters.

Usage in replica: Use the SET SYNC PARAMETER in replicas for setting database
parameters.

Example:
SET SYNC PARAMETER db_type ’REPLICA’
SET SYNC PARAMETER db_type NONE

Return values: For details on each error code, see the appendix titled Error Codes
in solidDB Administration Guide.

Table 81. SET SYNC PARAMETER Return Values

Error Code Description

13086 Invalid data type in a parameter

See also: GET_PARAM

PUT_PARAM

SET SYNC PROPERTY
Syntax in Master:
SET SYNC PROPERTY <propertyname> = { ’value’ | NONE } FOR REPLICA
<replicaname>

Syntax in Replica:
SAVE SET SYNC PROPERTY <propertyname> = {’value’ | NONE }

Supported in: This command requires solidDB advanced replication.

Usage: This command allows you to specify a property name and value for a
replica. Replicas that have properties may be grouped, and a group may be
specified when using the START AFTER COMMIT statement. For example, you
might have some replicas that are related to the bicycle industry and others that
are related to the surfboard industry, and you may want to update each of those
groups of replicas separately. You can use Property Names to group these replicas.
All members of a group have the same property and have the same value for that
property.

For more information, see the section titled "Replica Property Names" in solidDB
Advanced Replication Guide.

Examples: Master:

282 IBM solidDB: SQL Guide

SET SYNC PROPERTY color = ’red’ FOR REPLICA replica1;
SET SYNC PROPERTY color = NONE FOR REPLICA replica1;

Replica:
SAVE SET SYNC PROPERTY color = ’red’;
SAVE SET SYNC PROPERTY color = NONE;

SET SYNC USER
SET SYNC USER master_username IDENTIFIED BY password
SET SYNC USER NONE

Supported in: This command requires solidDB advanced replication.

Usage: This statement is used to define the username and password for the
registration process when the replica database is being registered in the master
database. To use this command, you are required to have
SYS_SYNC_ADMIN_ROLE access.

Note:

The SET SYNC USER statement is used for replica registration only. Aside from
registration, all other synchronization operations require a valid master user ID in
a replica database. If you want to designate a different master user for a replica,
you must map the replica ID on the replica database with the master ID on the
master database. For details, read the section titled "Mapping Replica User ID With
Master User ID" in solidDB Advanced Replication Guide.

You define the registration username in the master database. The name you specify
must have sufficient rights to execute the replica registration tasks. You can
provide registration rights for a master user in the master database by designating
the user with the SYS_SYNC_REGISTER_ROLE or the SYS_SYNC_ADMIN_ROLE
using the GRANT rolename TO user statement.

After the registration has been successfully completed, you must reset the sync
user to NONE; otherwise, if a master user saves statements, propagates messages,
or refreshes from or registers to publications, the following error message is
returned:
User definition not allowed for this operation.

Usage in master: This statement is not available in the master database.

Usage in replica: Use this statement in the replica to set the user name.

Example:
SET SYNC USER homer IDENTIFIED BY marge;
SET SYNC USER NONE;

SET TIMEOUT
SET IDLE TIMEOUT { timeout_in_seconds |

timout_in_millisecondsMS | DEFAULT }
SET LOCK TIMEOUT { timeout_in_seconds |

timeout_in_millisecondsMS}
SET OPTIMISTIC LOCK TIMEOUT { timeout_in_seconds |

timeout_in_millisecondsMS}

Appendix B. solidDB SQL syntax 283

SET IDLE TIMEOUT sets the connection-specific maximum timeout in seconds.
The setting is effective until a new timeout is given. If the timeout is set to
DEFAULT, it means no maximum time.

SET LOCK TIMEOUT sets the time in seconds that the engine waits for a lock to
be released. By default, lock timeout is set to 30 seconds. The maximum lock
timeout is 1000 seconds. SET LOCK TIMEOUT of more than 1000 seconds fails.

By default, the granularity is in seconds. The lock timeout can be set at millisecond
granularity by adding "MS" after the value, e.g.
SET LOCK TIMEOUT 500MS;
SET LOCK TIMEOUT 1500 MS;

Spacing of the "MS" is not significant, and you may use upper or lower case.
Without the "MS", the lock timeout will be in seconds. When the timeout interval
is reached, solidDB terminates the timed-out statement. For more information, see
“Setting lock timeout” on page 124.

SET TRANSACTION

Usage
The settings apply only to the current transaction.

Background information on transaction logging and durability
The server uses transaction logging to ensure that it can recover data in the event
of an abnormal shutdown. "Strict" durability means that as soon as a transaction is
committed, the server writes the information to the transaction log file. "Relaxed"
durability means that the server may not write the information as soon as the
transaction is committed; instead, the server may wait, for example, until it is less
busy, or until it can write multiple transactions in a single write operation. If you
use relaxed durability, then if the server shuts down abnormally, you may lose a
few of the most recent transactions. For more information about durability, see
solidDB In-Memory Database User Guide.

If the SET TRANSACTION DURABILITY statement matches the level of durability
already set for the session, the statement has no effect, and status "SUCCESS" is
returned.

Differences between SET and SET TRANSACTION
solidDB SQL gives you two different commands to set the transaction isolation
level, the read level, and the transaction durability level. In addition to the SET
TRANSACTION command described in this section:
SET TRANSACTION { READ ONLY | READ WRITE | WRITE}
SET TRANSACTION ISOLATION LEVEL {READ COMMITTED ...}
SET TRANSACTION DURABILITY ...;

there are also the SET commands described in “SET” on page 272.
SET { READ ONLY | READ WRITE | WRITE}
SET ISOLATION LEVEL {READ COMMITTED ...}
SET DURABILITY ...;

The commands that have the "TRANSACTION" keyword are called
transaction-level commands, while the commands that do not have the
"TRANSACTION" keyword are sometimes called session-level commands.

284 IBM solidDB: SQL Guide

The transaction-level commands follow different rules from the session-level
commands. These differences are listed below.
v The transaction-level commands take effect in the transaction in which they are

issued; the session-level commands take effect in the next transaction, that is,
after the next COMMIT WORK.

v The transaction-level commands apply to only the current transaction; the
session-level commands apply to all subsequent transactions — that is, until the
end of the session (connection) or until another SET command changes them.

v The transaction-level commands must be executed at the beginning of a
transaction, that is, before any DML or DDL statements. (They may be executed
after other SET statements, however.) If this rule is violated, an error is returned.
The session-level commands may be executed at any point in a transaction.

v The transaction-level commands take precedence over the session-level
commands. However, the transaction-level commands apply only to the current
transaction. After the current transaction is finished, the settings will return to
the value set by the most recent previous SET command (if any). For example:

COMMIT WORK; -- Finish previous transaction;
SET ISOLATION LEVEL SERIALIZABLE;
COMMIT WORK;
-- Isolation level is now SERIALIZABLE
...
COMMIT WORK;
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;
-- Isolation level is now REPEATABLE READ because
-- transaction-level settings take precedence
-- over session-level settings.
COMMIT WORK;
-- Isolation level is now back to SERIALIZABLE, since the
-- transaction-level settings applied only to that
-- transaction.

The complete precedence hierarchy for isolation level and read level settings is
below. Items closer to the top of the list have higher precedence.
1. SET TRANSACTION... (i.e. transaction-level settings)
2. SET ... (session-level settings)
3. The server-level settings specified by the value in solid.ini configuration

parameter (for example, IsolationLevel or DurabilityLevel (there is no
solid.ini parameter for the READ ONLY / READ WRITE setting)). You may
change these settings by editing the solid.ini file, or by issuing a command
like the following:
ADMIN COMMAND ’parameter Logging.DurabilityLevel = 2’;

Note that if you change the solid.ini parameter, the new setting will not take
effect until the next time that the server starts.

4. The server's default setting. See section Appendixes, Server-side configuration
parameters in the IBM solidDB Administrator Guide.

Warnings regarding durability
v Unless you can afford to lose some transactions if the server is shut down

unexpectedly, you should use strict durability.
v There is no "DEFAULT" option to set the value to whatever value the

DurabilityLevel parameter has specified. Also, there is no way to read the
durability level that applies to the current session. Therefore, once you have
explicitly set the durability by executing the SET DURABILITY statement, you
cannot restore the "default" durability level specified by the DurabilityLevel
parameter. You can switch from RELAXED to STRICT durability and back

Appendix B. solidDB SQL syntax 285

whenever you wish, but you cannot "undo" your change and restore the default
level without actually knowing what that default level was.

The SET TRANSACTION command is based on ANSI SQL. However, the solidDB
implementation has some differences from the ANSI definition. The ANSI
definition allows the two ANSI-defined "clauses" (isolation level and read level) to
be combined, for example:
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE, READ WRITE;

solidDB does not support this syntax. solidDB does, however, support multiple
SET statements in a single transaction, for example:
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
SET TRANSACTION READ WRITE;

SET TRANSACTION examples
SET TRANSACTION DURABILITY RELAXED;
SET TRANSACTION ISOLATION REPEATABLE READ;
SET TRANSACTION READ WRITE;

See also
“SET” on page 272.

SET TRANSACTION (read/write level)
SET TRANSACTION {READ ONLY | READ WRITE | WRITE}

The command SET TRANSACTION { READ ONLY | READ WRITE | WRITE} is
based on ANSI SQL. It allows the user to specify whether the transaction is
allowed to make any changes to data.

SET TRANSACTION DURABILITY
SET TRANSACTION DURABILITY {RELAXED | STRICT}

The command SET TRANSACTION DURABILITY { RELAXED | STRICT }
controls whether the server uses "strict" or "relaxed" durability for transaction
logging. This command is a solidDB extension to SQL; it is not part of the ANSI
standard.

Your choice will not affect any other user, any other open session that you yourself
currently have, or any future session that you may have. Each user session may set
its own durability level, based on how important it is for the session not to lose
any data.

Note that if the new transaction durability setting is STRICT, then any previous
transactions that have not yet been written to disk will be written at the time that
the current transaction is committed. (Note that those transactions are not written
to disk as soon as the transaction durability level is changed to STRICT; the writes
wait until the current transaction is committed.)

If the assigned workload server is Secondary, it can be changed programmatically
to the Primary for the time of one transaction. At the transaction level, the
following statements change the workload connection server to Primary for the
time of one transaction:
SET TRANSACTION WRITE (nonstandard)
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

286 IBM solidDB: SQL Guide

The affected transaction is the one that is started with the statement, or the next
one, in other cases. After the transaction has been executed at the Primary, the
workload connection server is reverted to the default one, for the session.

If the above statement is not applicable, it returns SQL_SUCCESS, with no action
performed. For example, such is a the case when SET TRANSACTION WRITE is
applied to a standalone server. In that case the semantics of SET TRANSACTION
WRITE is equal to that of SET TRANSACTION READ WRITE.

The effect of the SET TRANSACTION WRITE statement may be reverted with the
statement SET TRANSACTION READ WRITE or ... READ ONLY (SQL:1999). Also,
the isolation level statement has the same effect:
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

SET TRANSACTION ISOLATION LEVEL
SET TRANSACTION ISOLATION LEVEL {

READ COMMITTED |
REPEATABLE READ |
SERIALIZABLE}

The command SET TRANSACTION ISOLATION is based on ANSI SQL. It sets the
transaction isolation level (READ COMMITTED, REPEATABLE READ, or
SERIALIZABLE) and the read level (READ ONLY or READ WRITE). For more
information about isolation levels, see TRANSACTION ISOLATION levels.

SET TRANSACTION SAFENESS
SET TRANSACTION SAFENESS {1SAFE | 2SAFE | DEFAULT}

SET TRANSACTION SAFENESS determines whether the replication protocol is
synchronous (2-safe) or asynchronous (1-safe).
v 1-safe: the transaction is first committed at Primary and then transmitted to

Secondary
v 2-safe: the transaction is not committed before it has been acknowledged by

Secondary (default).

SET TRANSACTION SAFENESS sets the safeness level for the current transaction.

START AFTER COMMIT
START AFTER COMMIT
[FOR EACH REPLICA WHERE search_condition [RETRY retry_spec]]
{UNIQUE | NONUNIQUE} stmt;

stmt ::= any SQL statement.
search_condition ::= search_item | search_item {AND|OR } search_item
search_item ::= {search_test | (search_condition)}
search_test ::= comparison_test | like_test
comparison_test ::= property_name { = | >> | > | >= | > | >= } value
property_name ::= name of a replica property
like_test ::= property_name [NOT] LIKE value [ESCAPE value]
value ::= literal
retry_spec ::= seconds,count

Usage
The START AFTER COMMIT statement specifies an SQL statement (such as a call
to a stored procedure) that will be executed when the current transaction commits.
(If the transaction is rolled back, then the specified SQL statement will not be
executed.)

Appendix B. solidDB SQL syntax 287

The START AFTER COMMIT statement returns a result set with one INTEGER
column. This integer is a unique "job" id and can be used to query the status of a
statement that failed to start due to an invalid SQL statement, insufficient access
rights, replica not available etc.

If you use the UNIQUE keyword before the <stmt> then that the statement will be
executed only if there isn't already an identical statement executing or "pending".
Statements are compared using simple string compare. For example 'call foo(1)' is
different from 'call foo(2)'. The server also takes into account whether the statement
already being executed (or pending for execution) is on the same replica or a
different replica; only identical statements on the same replica are discarded.

Important:

Remember that when duplicate statements are discarded by using the UNIQUE
keyword, the most recent statements are the ones thrown out, and the oldest one is
the one that keeps running. It is quite possible to create a situation where you do
multiple updates, for example, and you trigger multiple START AFTER COMMIT
operations, but only the oldest one executes and thus the newest updated data
may not get sent to the replicas immediately.

NONUNIQUE means that duplicate statements can be executed simultaneously in
the background.

FOR EACH REPLICA specifies that the statement is executed for each replica that
fulfills the property conditions given in the search_condition part of the WHERE
clause. Before executing the statement, a connection to the replica is established. If
a procedure call is started, then the procedure can get the "current" replica name
using the keyword "DEFAULT".

If RETRY is specified, then the operation is re-executed after N seconds (defined by
seconds in the retry_spec) if the replica is not reached on the first attempt. The
count specifies how many times a retry is attempted.

See 3, “Stored procedures, events, triggers, and sequences,” on page 23 for a more
detailed description of the START AFTER COMMIT command.

Transactions
A statement started in the background using START AFTER COMMIT is executed
in a separate transaction. That transaction is executed in autocommit mode, i.e. it
cannot be rolled back once it has started.

Context of the background statements
Statements started in the background are executed in the context of the user who
issued the START AFTER COMMIT statement, and are executed in the catalog and
schema in which the START AFTER COMMIT statement executed.

In the example below, 'CALL FOO' is executed in the catalog 'katmandu' and the
schema 'steinbeck'.
SET CATALOG katmandu;
SET SCHEMA steinbeck;
START AFTER COMMIT UNIQUE CALL FOO;
COMMIT WORK;
SET CATALOG irrelevant_catalog;
SET SCHEMA irrelevant_schema

288 IBM solidDB: SQL Guide

Durability
Background statements are NOT durable. In other words, the execution of
statements started with START AFTER COMMIT is not guaranteed.

Rollback
Background statements cannot be rolled back after they have been started. So after
a statement that has been started with START AFTER COMMIT has executed
successfully, there is no way to roll it back.

The START AFTER COMMIT statement itself can be rolled back, and this will
prevent the specified statement from executing. For example,
START AFTER COMMIT UNIQUE INSERT INTO MyTable VALUES (1);
ROLLBACK;

In the example above, the transaction rolls back and thus "INSERT INTO MyTable
VALUES (1)" will not be executed.

Order of execution
Background statements are executed asynchronously and they don't have any
guaranteed order even inside a transaction.

Examples
Start local procedure in the background.
START AFTER COMMIT NONUNIQUE CALL myproc;

Start the call if "CALL myproc" is not running in the background already.
START AFTER COMMIT UNIQUE call myproc;

Start procedure in the background using replicas which have property "color" =
"blue".
START AFTER COMMIT FOR EACH REPLICA WHERE color=’blue’ UNIQUE CALL myproc;

The following statements are all considered different and therefore each is
executed, despite the presence of the keyword UNIQUE. (Note that "name" is a
unique property of each replica.)
START AFTER COMMIT UNIQUE call myproc;
START AFTER COMMIT FOR EACH REPLICA WHERE name=’R1’ UNIQUE call myproc;
START AFTER COMMIT FOR EACH REPLICA WHERE name=’R2’ UNIQUE call myproc;
START AFTER COMMIT FOR EACH REPLICA WHERE name=’R3’ UNIQUE call myproc;

But if the following statement is executed in the same transaction as the previous
ones and the condition "color='blue'" matches some of the replicas R1, R2 or R3,
then the call is not executed for those replicas again.
START AFTER COMMIT FOR EACH REPLICA WHERE color=’blue’ UNIQUE call myproc;

For additional examples, see 3, “Stored procedures, events, triggers, and
sequences,” on page 23.

TRUNCATE TABLE
TRUNCATE TABLE tablename

Appendix B. solidDB SQL syntax 289

Usage
This statement is, from the caller's point of view, semantically equivalent to
"DELETE FROM tablename". However, it is much more efficient thanks to relaxed
isolation. During the execution of this statement, the defined isolation level is not
maintained in concurrent transactions. The effect of removing the rows will be
immediately seen in all concurrent transactions. Therefore this statement is
recommended for maintenance purposes only.

UNLOCK TABLE
UNLOCK TABLE { ALL | tablename [,tablename]}
tablename ::= The name of the table to unlock

The keyword ALL releases all table-level locks on all tables.

You can also specify the catalog and schema of the table by qualifying the table
name.

Usage
This command allows you to unlock tables that you manually locked (using the
LOCK TABLE command) with the LONG option. The LONG option allows you to
hold a lock past the end of the transaction in which the lock was placed. Since
there is no natural endpoint for the lock (other than the end of the transaction),
you must explicitly release a LONG lock by using the UNLOCK command.

The UNLOCK TABLE command does not apply to the server's automatic locks, or
to manual locks that were not locked with the LONG option. If a lock is automatic,
or if it is manual and not LONG, then the server will automatically release the lock
at the end of the transaction in which the lock was placed. Thus there is no need
to manually unlock those locks.

When the UNLOCK TABLE command is used, it does not take effect immediately;
instead, the locks are released when the current transaction is committed.

CAUTION:

If the current transaction (the one in which the UNLOCK TABLE command was
executed) is not committed (e.g. if it is rolled back), then the tables are not
unlocked; they will remain locked until another UNLOCK TABLE command is
successfully executed and committed.

The LOCK/UNLOCK commands apply only to tables. There is no command to
manually lock or unlock individual records.

Note that if you have a table named "ALL", then you should use the delimited
identifier feature to specify the table name. (See the examples at the end of this
section.)

Examples of using LOCK and UNLOCK
LOCK TABLE emp IN SHARED MODE;
LOCK TABLE emp IN SHARED MODE TABLE dept IN EXCLUSIVE MODE;
LOCK TABLE emp,dept IN SHARED MODE NOWAIT;

-- Get an exclusive lock that will persist past the end of the current
-- transaction. If you can’t get an exclusive lock immediately, then
-- wait up to 60 seconds to get it.

290 IBM solidDB: SQL Guide

LOCK TABLE emp, dept IN LONG EXCLUSIVE MODE WAIT 60;
-- Make the schema changes (or do whatever you needed the exclusive
-- lock for).
CALL DO_SCHEMA_CHANGES_1;
COMMIT WORK;
CALL DO_SCHEMA_CHANGES_2;
UNLOCK TABLE ALL; -- at the end of this transaction, release locks.
...
COMMIT WORK;
...
UNLOCK TABLE “ALL”; -- Unlock the table named “ALL”.

Return values
For details on each error code, see the appendix titled Error Codes in solidDB
Administration Guide.

Table 82. LOCK TABLE return values

Error code Description

10083 Table <table_name> not locked.

13011 Table <tablename> not found.

See also
LOCK TABLE

SET SYNC MODE { MAINTENANCE | NORMAL }

UNREGISTER EVENT
The UNREGISTER EVENT command is allowed only inside stored procedures. See
the CREATE PROCEDURE statement and the CREATE EVENT statement for more
details.

UPDATE (positioned)
UPDATE table_name

SET [table_name.]column_identifier = {expression | NULL}
[, [table_name.]column_identifier = {expression | NULL}]...
WHERE CURRENT OF cursor_name

Usage
The positioned UPDATE statement updates the current row of the cursor. The
name of the cursor is defined using ODBC API function named
SQLSetCursorName.

Example
UPDATE TEST SET C = 0.33
WHERE CURRENT OF MYCURSOR

UPDATE (searched)
UPDATE table-name

SET [table_name.]column_identifier = {expression | NULL}
[, [table_name.]column_identifier = {expression | NULL}]...
[WHERE search_condition]

Appendix B. solidDB SQL syntax 291

Usage
The UPDATE statement is used to modify the values of one or more columns in
one or more rows, according the search conditions.

Example
UPDATE TEST SET C = 0.44
WHERE ID = 5

WAIT EVENT
The WAIT EVENT command is allowed only inside stored procedures. See the
CREATE PROCEDURE and CREATE EVENT statements for more details.

Table_reference
Table 83. Table_reference

Table_reference

table_reference_list
::= table_reference [, table-reference ...]

table_reference
::= table_name [[AS] correlation_name] |
derived_table [[AS] correlation_name
[(derived_column_list)]] | joined_table

table_name
::= table_identifier | schema_name.table_identifier

derived_table
::= subquery

derived_column_list
::= column_name_list

joined_table
::= cross_join | qualified_join | (joined_table)

cross_join
::= table_reference CROSS JOIN table_reference

qualified_join
::= table_reference [NATURAL] [join_type] JOIN
table_reference [join_specification]

join_type
::= INNER | outer_join_type [OUTER] | UNION

outer_join_type
::= LEFT | RIGHT | FULL

join_specification
::= join_condition | named_columns_join

join_condition
::= ON search_condition

named_columns_join
::= USING (column_name_list)

column_name_list
::= column_identifier [{ , column_identifier } ...]

292 IBM solidDB: SQL Guide

Query_specification
Table 84. Query_specification

Query_specification

query_specification ::= SELECT [DISTINCT | ALL] select_list
table_expression

select_list ::= * | select_sublist
[{, select_sublist } ...]

select_sublist
::= derived_column |
[table_name | table_identifier].*

derived_column
::= expression [[AS] column_alias]]

table_expression
::= FROM table_reference_list
[WHERE search_condition]
[GROUP BY column_name_list
[[UNION | INTERSECT | EXCEPT] [ALL]
[CORRESPONDING [BY (column_name_list)]]
query_specification]
[HAVING search_condition]

Search_condition
Table 85. Search_condition

Search_condition

search_condition
::= search_item | search_item { AND | OR }
search_item

search_item
::= [NOT] { search_test |
(search_condition)}

search_test
::= comparison_test | between_test |
like_test | null_test | set_test |
quantified_test | existence_test

comparison_test
::= expression { = | <> | < | <= | > | >= }
{ expression | subquery }

Note: Spaces on each side of the operator are optional.

between_test
::= column_identifier [NOT] BETWEEN
expression AND expression

like_test
::= column_identifier [NOT] LIKE value [ESCAPE value]

null_test
::= column_identifier IS [NOT] NULL

Appendix B. solidDB SQL syntax 293

Table 85. Search_condition (continued)

Search_condition

set_test
::= expression [NOT] IN ({ value
[, value]... | subquery })

quantified_test
::= expression { = | <> | < | <= | > | >= }
[ALL | ANY | SOME] subquery

existence_test
::= EXISTS subquery

Check_condition
Table 86. Check_condition

Check_condition

check_condition
::= check_item | check_item { AND | OR }
check_item

check_item
::= [NOT] { check_test |
(check_condition) }

check_test
::= comparison_test | between_test |
like_test | null_test | list_test

comparison_test
::= expression { = | <> | < | <= | > | >= }
{ expression | subquery }

between_test
::= column_identifier [NOT] BETWEEN
expression AND expression

like_test
::= column_identifier [NOT] LIKE value
[ESCAPE value]

null_test
::= column_identifier IS [NOT] NULL

list_test
::= expression [NOT] IN ({ value
[, value]...})

Expression
Table 87. Expression

Expression

expression
::= expression_item | expression_item
{ + | - | * | / } expression_item

Note: Spaces on each side of the operator are optional.

expression_item
::= [+ | -] { value | column_identifier | function |
case_expression | cast_expression | (expression) }

294 IBM solidDB: SQL Guide

Table 87. Expression (continued)

Expression

value
::= literal | USER | variable

function
::= set_function | null_function | string_function |
numeric_function |
datetime_function | system_function |
datatypeconversion_function

NOTE: The string, numeric, datetime, and datatypeconversion
functions are scalar functions, in which an operation denoted by a
function name is followed by a pair of parenthesis enclosing zero or
more specified arguments. Each scalar function returns a single value.

set_function
::= COUNT (*) |
{ AVG | MAX | MIN | SUM | COUNT }
({ ALL | DISTINCT } expression)

null_function
::= { NULLVAL_CHAR() | NULLVAL_INT() }

datatypeconversion_function
::= CONVERT_CHAR(value_exp) |
CONVERT_DATE(value_exp) |
CONVERT_DECIMAL(value_exp) |
CONVERT_DOUBLE(value_exp) |
CONVERT_FLOAT(value_exp) |
CONVERT_INTEGER(value_exp) |
CONVERT_LONGVARCHAR(value_exp) |
CONVERT_NUMERIC(value_exp) |
CONVERT_REAL(value_exp) |
CONVERT_SMALLINT(value_exp) |
CONVERT_TIME(value_exp) |
CONVERT_TIMESTAMP(value_exp) |
CONVERT_TINYINT(value_exp) |
CONVERT_VARCHAR(value_exp)

Note: These functions are used to implement the {fn CONVERT(value,
odbc_typename)} escape clauses defined by ODBC. The preferred way,
however, is to use CAST(value AS sql_typename) which is defined in
SQL-92 and fully supported by solidDB. For details, see Appendix F
of solidDB Programmer Guide.

case_expression
::= case_abbreviation | case_specification

case_abbreviation
::= NULLIF(value_exp, value_exp) |
COALESCE(value_exp {, value_exp }...)

The NULLIF function returns NULL if the first parameter is equal to
the second parameter; otherwise, it returns the first parameter. It is
equivalent to IF (p1 = p2) THEN RETURN NULL ELSE RETURN p1;
The NULLIF function is useful if you have a special value that serves
as a flag to indicate NULL. You can use NULLIF to convert that
special value to NULL. In other words, it behaves like IF (p1 =
NullFlag) THEN RETURN NULL ELSE RETURN p1;

COALESCE returns the first non-NULL argument. The list of
arguments may be of almost any length. All arguments should be of
the same (or compatible) data types.

Appendix B. solidDB SQL syntax 295

Table 87. Expression (continued)

Expression

case_specification
::= CASE [value_exp]
WHEN value_exp
THEN {value_exp }
[WHEN value_exp
THEN { value_exp } ...]
[ELSE { value_exp }]
END

cast_expression
::= CAST (value_exp AS -data-type)

row value constructor expression A row value constructor (RVC) is an ordered sequence of values
delimited by parentheses, for example:

(1, 4, 9)

('Smith', 'Lisa')

You can think of this as constructing a row based on a series of
elements/values, just like a row of a table is composed of a series of
fields.

For more information about row value constructors, see “Row value
constructors” on page 19.

String functions
Table 88. String Functions

Function Purpose

ASCII(str) Returns the integer equivalent of string str

CHAR(code) Returns the character equivalent of code

CONCAT(str1, str2) Concatenates str2 to str1

str1 { + | || } str2 Concatenates str2 to str1.

For example:

SELECT str1 + str2, col1 ...

SELECT str1 || str2, col1 ...

GET_UNIQUE_STRING(str) This function generates a unique string, based on a "prefix" (the input
string, which may be any string you choose) and a sequence number
(which is created and used internally). If the input is NULL, then the
function still returns a string based on the unique sequence number.

INSERT(str1, start, length, str2) Merges strings by deleting length characters from str1 and inserting str2

LCASE(str) Converts string str to lowercase

LEFT(str, count) Returns leftmost count characters of string str

296 IBM solidDB: SQL Guide

Table 88. String Functions (continued)

Function Purpose

LENGTH(str) Returns the number of characters in str

LOCATE(str1, str2 [, start]) Returns the starting position of str1 within str2. If the optional argument,
start, is specified, the search begins with the character position indicated by
the value of start. If string_exp1 is not found within string_exp2, the
function returns 0. For both the return value and the input parameter start,
string positions are numbered starting from 1 (not 0).

LTRIM(str) Removes leading spaces of str

POSITION (str1 IN str2) Returns starting position of str1 within str2

REPEAT(str, count) Returns characters of str repeated count times

REPLACE(str1, str2, str3) Replaces occurrences of str2 in str1 with str3

RIGHT(str, count) Returns the rightmost count characters of string str

RTRIM(str) Removes trailing spaces in str

SOUNDEX(str) Calculate 4-character soundex (phonetic) code

SPACE(count) Returns a string of count spaces

SUBSTRING(str, start, length) Derives substring length bytes long from str beginning at start. For example,
if str="First Second Third", then SUBSTRING(str, 7, 6) would return
"Second".

Note that string positions are numbered starting from 1 (not 0).

TRIM(str) Removes leading and trailing spaces in str

UCASE(str) Converts str to uppercase

If you are using wildcard characters in your string operations, then see also
“Wildcard characters” on page 302.

Numeric functions
Table 89. Numeric Functions

Function Purpose

ABS(numeric) Absolute value of numeric

ACOS(float) Arccosine of float, where float is expressed in radians

ASIN(float) Arcsine of float, where float is expressed in radians

ATAN(float) Arctangent of float, where float is expressed in radians

ATAN2(float1, float2) Arctangent of the x and y coordinates, specified by float1 and
float2, respectively, as an angle, expressed in radians

Appendix B. solidDB SQL syntax 297

Table 89. Numeric Functions (continued)

Function Purpose

CEILING(numeric) Smallest integer greater than or equal to numeric

COS(float) Cosine of float, where float is expressed in radians

COT(float) Cotangent of float, where float is expressed in radians

DEGREES(numeric) Converts numeric radians to degrees

DIFFERENCE(str1, str2) Return the value of phonetic difference: 0 - 4

EXP(float) Exponential value of float

FLOOR(numeric) Largest integer less than or equal to numeric

LOG(float) Natural logarithm of float

LOG10(float) Base 10 log of float

MOD(integer1, integer2) Modulus of integer1 divided by integer2

PI() Pi as a floating point number

POWER(numeric, integer) Value of numeric raised to the power of integer

RADIANS(numeric) Converts from numeric degrees to radians

ROUND(numeric, integer) Numeric rounded to integer

SIGN(numeric) Sign of numeric

SIN(float) Sine of float, where float is expressed in radians

SQRT(float) Square root of float

TAN(float) Tangent of float, where float is expressed in radians

TRUNCATE(numeric, integer) Numeric truncated to integer

Date time functions
Table 90. Date Time Functions

Function Purpose

CURDATE() Returns the current date

CURTIME() Returns the current time

DAYNAME(date) Returns a string with the day of the week

DAYOFMONTH(date) Returns the day of the month as an integer between 1 and 31

298 IBM solidDB: SQL Guide

Table 90. Date Time Functions (continued)

Function Purpose

DAYOFWEEK(date) Returns the day of the week as an integer between 1 and 7,
where 1 represents Sunday

DAYOFYEAR(date) Returns the day of the year as an integer between 1 and 366

EXTRACT (date field FROM date_exp) Isolates a single field of a datetime or a interval and converts it
to a number.

HOUR(time_exp) Returns the hour as an integer between 0 and 23

MINUTE(time_exp) Returns the minute as an integer between 0 and 59

MONTH(date) Returns the month as an integer between 1 and 12

MONTHNAME(date) Returns the month name as a string

NOW() Returns the current date and time as a timestamp

QUARTER(date) Returns the quarter as an integer between 1 and 4

SECOND(time_exp) Returns the second as an integer between 0 and 59

TIMESTAMPADD(interval, integer_exp, timestamp_exp) Calculates a timestamp by adding integer_exp intervals of type
interval to timestamp_exp

Keywords used to express valid TIMESTAMPADD interval
values are:

SQL_TSI_FRAC_SECOND

SQL_TSI_SECOND

SQL_TSI_MINUTE

SQL_TSI_HOUR

SQL_TSI_DAY

SQL_TSI_WEEK

SQL_TSI_MONTH

SQL_TSI_QUARTER

SQL_TSI_YEAR

Appendix B. solidDB SQL syntax 299

Table 90. Date Time Functions (continued)

Function Purpose

TIMESTAMPDIFF(interval, timestamp-exp1, timestamp-exp2) Returns the integer number of intervals by which timestamp-exp2
is greater than timestamp-exp1

Keywords used to express valid TIMESTAMPDIFF interval
values are:

SQL_TSI_FRAC_SECOND

SQL_TSI_SECOND

SQL_TSI_MINUTE

SQL_TSI_HOUR

SQL_TSI_DAY

SQL_TSI_WEEK

SQL_TSI_MONTH

SQL_TSI_QUARTER

SQL_TSI_YEAR

WEEK(date) Returns the week of the year as an integer between 1 and 52

YEAR(date) Returns the year as an integer

System functions
The system functions return special information about the solidDB database.

Table 91. System Functions

Function Purpose

UIC() Returns the connection id associated with the connection

CURRENT_USERID () Returns the current user id

LOGIN_USERID () Returns the login userid

CURRENT_CATALOG () Returns the current catalog

LOGIN_CATALOG () Returns the login catalog

CURRENT_SCHEMA () Returns the current schema

LOGIN_SCHEMA () Returns the login schema

300 IBM solidDB: SQL Guide

Miscellaneous functions
Table 92. Miscellaneous functions

Function Purpose

BIT_AND(integer1, integer2) Returns the result of the bit-wise AND operation.

IFNULL(exp, value) If exp is null, returns value; if not, returns exp

(if value is returned, it is converted to type of exp)

SLEEP(milliseconds) This can only be called from a stored procedure or a trigger.
This causes the stored procedure or trigger to "sleep"
(temporarily suspend activity) for the specified number of
milliseconds. Resolution is accurate to approximately 1 second
(i.e. 1000 milliseconds). The exact length of the sleep also
depends upon how busy the computer is with other processes
and threads. The value must be a literal, not a variable or
expression.

Data_type
Table 93. Data_type

Variable name Data type

data_type ::= {BIGINT |
BINARY |
BLOB |
CHAR [length] |
CHARACTER LARGE OBJECT |
CHAR LARGE OBJECT |
CLOB |
DATE |
DECIMAL [(precision [, scale])] |
DOUBLE PRECISION |
FLOAT [(precision)] |
INTEGER |
LONG NATIONAL VARCHAR |
LONG VARBINARY |
LONG VARCHAR |
LONG WVARCHAR |
NCHAR LARGE OBJECT |
NUMERIC [(precision [, scale])] |
NATIONAL CHAR |
NATIONAL CHARACTER |
NATIONAL VARCHAR |
NCHAR |
NCHAR VARYING |
NCLOB |
NVARCHAR |
REAL |
SMALLINT |
TIME |
TIMESTAMP [(timestamp precision)] |
TINYINT |
VARBINARY |
VARCHAR [(length)] } |
WCHAR |
WVARCHAR [length]

Appendix B. solidDB SQL syntax 301

Date and time literals
Table 94. Date and time literals

Date/time literal

date_literal 'YYYY-MM-DD'

time_literal 'HH:MM:SS'

timestamp_literal 'YYYY-MM-DD HH:MM:SS'

Pseudo columns
The following pseudo columns may also be used in the select-list of a SELECT
statement:

Table 95. Pseudo columns

Pseudo column Type Explanation

ROWVER VARBINARY(10) Version of the row in a table.

ROWID VARBINARY(254) Persistent id for a row in a table.

ROWNUM DECIMAL(16,2) Row number indicates the sequence in
which a row was selected from a table or
set of joined rows. The first row selected
has a ROWNUM of 1, the second row has
2, etc.

Because ROWNUM is given to a row
before the order by clause is evaluated,
ROWNUM should not be used to identify
sorted rows.

ROWNUM is chiefly useful for limiting
the number of rows returned by a query
for example, WHERE ROWNUM < 10).

Note:

Since ROWID and ROWVER refer to a single row, they may only be used with
queries that return rows from a single table.

Wildcard characters
The following may be used as wildcard characters in certain expressions, such as
LIKE '<string>'.

Table 96. Wildcard characters

Character Explanation

_ (underscore) The underscore character matches any single character. For
example, 'J_NE' matches 'JANE' and 'JUNE'.

302 IBM solidDB: SQL Guide

Table 96. Wildcard characters (continued)

Character Explanation

% (percent sign) The percent sign character matches any group of 0 or more
characters. For example 'ED%' matches 'EDWARD' and
'EDITOR'. As another example, '%ED%' matches 'EDWARD',
'TEDDY', and 'FRED'.

Using SQL wildcards
Exact match searches are conducted by specifying literal values, as in:
SELECT * FROM table1 WHERE name = ’SMITH’;

The string 'SMITH' is a literal value.

Similar match searches are conducted by specifying a SQL wildcard that represents
a character string that is similar to another character string. Logical expressions
(such as those used in WHERE clauses and CHECK constraints) may use the
"wildcard" characters and the keyword LIKE to match strings that are similar.

The underscore character (_) is a wildcard character that matches any single
character. For example, the following query:
SELECT * FROM table1 WHERE first_name LIKE ’J_NE’;

returns both JANE and JUNE (as well as any other four-character name where the
first letter is J and the last two letters are NE).

The percent character (%) is a wildcard character that matches any occurrence of
0 or more characters. For example, the following query:
SELECT * FROM table1 WHERE first_name LIKE ’JOHN%’;

could return JOHN, JOHNNY, JOHNATHAN, etc.

The % wildcard is used most often at the end of strings, but it can be used
anywhere. For example, the following search pattern:
LIKE ’%JO%’

returns all people who have JO somewhere in their name, included but not limited
to:

JOANNE, BILLY JO, and LONG JOHN SILVER

Multiple wildcards are allowed in a single string. For example, the string J_V_
matches JAVA and JIVE and any other four-character words or names that start
with J and have V as the third character. Note that because the underscore (_) only
matches exactly one character, the string J_V_ does not match the string JOVIAL,
which has more than four characters.

Wildcard characters as literals
A wildcard character may be used in one part of a string while the literal character
% (percent) or underscore (_) may be used in another part of the same string. To
use a wildcard character as a literal, the wildcard character is prefaced with an

Appendix B. solidDB SQL syntax 303

escape character; the escape character itself must be specified as part of the query.
For example, the expression below uses the backslash character (\) as the escape
character:
LIKE ’MY_EXPRESSION_’ ESCAPE ’\’;

matches the following:

MY_EXPRESSION1 MY_EXPRESSIONA MY_EXPRESSION_

but not:

MY#EXPRESSION1

ANSI standard SQL specifies that character strings must be delimited by single
quotes. For example:
...LIKE ’ J_N_’; -- CORRECT
...LIKE "J_N_"; --WRONG

Double quotes are used for delimited identifiers, not data. (C and Java
programmers may find this confusing because the C language uses double quotes
to delimit strings as in "C-language string" and single quotes 'C' to delimit single
characters.

304 IBM solidDB: SQL Guide

Appendix C. Reserved words

This appendix contains reserved words in several SQL standards: ODBC 3.0,
X/Open and SQL Access Group SQL CAE specification, Database Language - SQL:
ANSI X3H2 (SQL-92). Some words are used by solidDB SQL. Applications should
avoid using any of these keywords for other purposes. The following table
contains also potential reserved words; these markings are enclosed in parenthesis.

Some of the reserved words in this appendix can be used as identifiers (such as
table name, column name, etc.) by surrounding the word in double quotes ("").
Identifiers in double quote marks are known as delimited identifiers and conform
to the ANSI standard for SQL. In the following SQL statement example, the
reserved word "NULL" is used as a table name identifier:
CREATE TABLE "NULL" (column_1 INTEGER);

Note: solidDB SQL allows some reserved words to be used as identifiers even if
those words are not in double quotes. However, we strongly recommend that you
use double quotes around any reserved word that you want to use as an identifier;
this will increase portability.

Table 97. Reserved Words List

Reserved word ODBC X/Open SQL ANSI SQL-92 Solid SQL

ABSOLUTE v v

ACTION v v

ADA v

ADD v v v v

ADMIN v

AFTER (v) v

ALIAS (v)

ALL v v v v

ALLOCATE v v v

ALTER v v v v

AND v v v v

ANY v v v v

APPEND v

ARE v v

AS v v v v

305

Table 97. Reserved Words List (continued)

Reserved word ODBC X/Open SQL ANSI SQL-92 Solid SQL

ASC v v v v

ASSERTION v v

ASYNC (v) v

AT v v

AUTHORIZATION v v v

AVG v v v

BEFORE (v) v

BEGIN v v v v

BETWEEN v v v v

BINARY v

BIT v v

BIT_LENGTH v v

BOOKMARK v

BOOLEAN (v)

BOTH v v

BREADTH (v)

BY v v v v

CALL (v) v

CASCADE v v v v

CASCADED v v v

CASE v v v

CAST v v v

CATALOG v v v

CHAR v v v v

CHAR_LENGTH v v

CHARACTER v v v v

CHARACTER_LENGTH v v

306 IBM solidDB: SQL Guide

Table 97. Reserved Words List (continued)

Reserved word ODBC X/Open SQL ANSI SQL-92 Solid SQL

CHECK v v v v

CLOSE v v v v

COALESCE

COLLATE v v

COLLATION v v

COLUMN v v v

COMMIT v v v v

COMMITBLOCK v

COMMITTED v

COMPLETION (v)

CONNECT v v v v

CONNECTION v v v

CONSTRAINT v v v

CONSTRAINTS v v

CONTINUE v v v

CONVERT v v

CORRESPONDING v v v

COUNT v v v

CREATE v v v v

CROSS v v v

CURRENT v v v

CURRENT_DATE v v

CURRENT_TIME v v

CURRENT_TIMESTAMP v v

CURRENT_USER v v

CURSOR v v v v

CYCLE (v)

Appendix C. Reserved words 307

Table 97. Reserved Words List (continued)

Reserved word ODBC X/Open SQL ANSI SQL-92 Solid SQL

DATA (v) v

DATE

DAY

DEALLOCATE

DEC v v v v

DECIMAL v v v v

DECLARE v v v v

DEFAULT v v v v

DEFERRABLE v v

DEFERRED v v

DELETE v v v v

DENSE v

DEPTH (v)

DESC v v v v

DESCRIBE v v v

DESCRIPTOR v v v

DIAGNOSTICS v v v

DICTIONARY (v)

DISCONNECT v v v

DISTINCT v v v v

DOMAIN v v v

DOUBLE v v v v

DROP v v v v

EACH (v)

ELSE v v v

ELSEIF (v) v

ENABLE v

308 IBM solidDB: SQL Guide

Table 97. Reserved Words List (continued)

Reserved word ODBC X/Open SQL ANSI SQL-92 Solid SQL

END v v v v

END-EXEC v v

EQUALS (v)

ESCAPE v v v

EVENT v

EXCEPT v v v

EXCEPTION

EXEC v v v v

EXECUTE v v v v

EXISTS v v v v

EXPLAIN v

EXPORT v

EXTERNAL v v v

EXTRACT v v v

FALSE v v

FETCH v v v v

FIRST v v

FIXED v

FLOAT v v v v

FOR v v v v

FOREIGN v v v v

FOREVER v

FORTRAN v

FORWARD v

FOUND v v v

FROM v v v v

FROMFIXED v

Appendix C. Reserved words 309

Table 97. Reserved Words List (continued)

Reserved word ODBC X/Open SQL ANSI SQL-92 Solid SQL

FULL v v v

GENERAL (v)

GET v v v v

GLOBAL v v

GO v v

GOTO v v v

GRANT v v v v

GROUP v v v v

HAVING v v v v

HINT v

HOUR v v

IDENTIFIED v

IDENTITY v v

IF (v) v

IGNORE v (v)

IMMEDIATE v v v

IMPORT v

IN v v v v

INCLUDE v v

INDEX v v v

INDICATOR v v

INITIALLY v v

INNER v v v

INPUT v v

INSENSITIVE v v

INSERT v v v v

INT v v v v

310 IBM solidDB: SQL Guide

Table 97. Reserved Words List (continued)

Reserved word ODBC X/Open SQL ANSI SQL-92 Solid SQL

INTEGER v v v v

INTERNAL v

INTERSECT v v v

INTERVAL v v

INTO v v v v

IS v v v v

ISOLATION v v v

JAVA v

JOIN v v v

KEY v v v v

LANGUAGE v v

LAST v v

LEADING v v

LEAVE (v) v

LEFT v v v

LESS (v)

LEVEL v v v

LIKE v v v v

LIMIT (v)

LOCAL v v v

LOCK v

LONG v

LOOP (v) v

LOWER v v

MAINMEMORY v

MASTER v

MATCH v v

Appendix C. Reserved words 311

Table 97. Reserved Words List (continued)

Reserved word ODBC X/Open SQL ANSI SQL-92 Solid SQL

MAX v v v

MERGE v

MESSAGE v

MIN v v v

MINUTE v v

MODIFY (v) v

MODULE v v

MONTH v v

NAMES v v

NATIONAL v v

NATURAL v v v

NCHAR v v

NEW (v) v

NEXT v v v

NO v v v

NONE v (v)

NOT v v v v

NULL v v v v

NULLIF v v v

NUMERIC v v v v

OBJECT (v)

OCTET_LENGTH v v

OF v v v v

OFF

OID (v)

OLD (v) v

ON v v v v

312 IBM solidDB: SQL Guide

Table 97. Reserved Words List (continued)

Reserved word ODBC X/Open SQL ANSI SQL-92 Solid SQL

ONLY v v v

OPEN v v v

OPERATION (v)

OPERATORS (v)

OPTIMISTIC v

OPTION

OR v

ORDER

OTHERS

OUTER v

OUTPUT v v

OVERLAPS v v

PARAMETERS (v)

PARTIAL v v

PASCAL v

PENDANT (v)

PESSIMISTIC v

PLAN v

PLI v

POSITION v v

POST v

PRECISION v v v v

PREORDER (v)

PREPARE

PRESERVE

PRIMARY v v v v

PRIOR v v

Appendix C. Reserved words 313

Table 97. Reserved Words List (continued)

Reserved word ODBC X/Open SQL ANSI SQL-92 Solid SQL

PRIVATE (v)

PRIVILEGES v v v

PROCEDURE v v v

PROPAGATE v

PROTECTED (v)

PUBLIC v v v v

PUBLICATION v

READ v v

REAL v v v

RECURSIVE (v)

REF (v)

REFERENCES v v v v

REFERENCING (v) v

REFRESH v

REGISTER v

RELATIVE v v

RENAME v

REPEATABLE v

REPLACE (v)

REPLICA v

REPLY v

RESIGNAL (v)

RESTART v

RESTRICT v v v v

RESULT v

RETURN (v) v

RETURNS (v) v

314 IBM solidDB: SQL Guide

Table 97. Reserved Words List (continued)

Reserved word ODBC X/Open SQL ANSI SQL-92 Solid SQL

REVERSE v

REVOKE v v v v

RIGHT v v v

ROLE (v) v

ROLLBACK v v v v

ROUTINE (v)

ROW (v)

ROWID v

ROWNUM v

ROWSPERMESSAGE v

ROWVER v

ROWS v v

SAVEPOINT (v) v

SCAN v

SCHEMA v v v

SCROLL v v

SEARCH (v)

SECOND v v

SECTION v v v

SELECT v v v v

SENSITIVE (v)

SEQUENCE (v) v

SERIALIZABLE v

SESSION v v

SESSION_USER v v

SET v v v v

SIGNAL (v)

Appendix C. Reserved words 315

Table 97. Reserved Words List (continued)

Reserved word ODBC X/Open SQL ANSI SQL-92 Solid SQL

SIMILAR (v)

SIZE v v

SMALLINT v v v v

SOME v v v

SORT v

SPACE v

SQL v v v v

SQLCA v v

SQLCODE v v

SQLERROR v v v v

SQLEXCEPTION (v)

SQLSTATE

SQLWARNING v (v)

START v

STRUCTURE (v)

SUBSCRIBE v

SUBSCRIPTION v

SUBSTRING v v

SUM v v v

SYNC_CONFIG v

SYSTEM v

SYSTEM_USER v

TABLE v v v v

TEMPORARY v v

TEST (v)

THEN v v v

THERE (v)

316 IBM solidDB: SQL Guide

Table 97. Reserved Words List (continued)

Reserved word ODBC X/Open SQL ANSI SQL-92 Solid SQL

TIME v v v

TIMEOUT v

TIMESTAMP v v v

TIMEZONE_HOUR v v

TIMEZONE_MINUTE v v

TINYINT v

TO v v v v

TRAILING v

TRANSACTION v v v

TRANSACTIONS v

TRANSLATE v v

TRANSLATION v v

TRIGGER (v) v

TRIM v v

TRUE v v

TRUNCATE v

TYPE (v)

UNDER (v)

UNION v v v v

UNIQUE v v v v

UNKNOWN v v

UNREGISTER v

UPDATE v v v v

UPPER v v

USAGE v v

USER v v v v

USING v v v v

Appendix C. Reserved words 317

Table 97. Reserved Words List (continued)

Reserved word ODBC X/Open SQL ANSI SQL-92 Solid SQL

VALUE v v v v

VALUES v v v v

VARBINARY v

VARCHAR v v v v

VARIABLE (v)

VARWCHAR v

VARYING v v v

VIEW v v v v

VIRTUAL (v)

VISIBLE (v)

WAIT (v) v

WCHAR v

WHEN v v v

WHENEVER v v v

WHERE v v v v

WHILE (v) v

WITH v v v v

WITHOUT (v)

WORK v v v v

WRITE v v

WVARCHAR v

YEAR v v

ZONE v

Note:

CASCADED: The word CASCADED is reserved in solidDB; however, the word is
not currently used in any solidDB SQL statements.

318 IBM solidDB: SQL Guide

Appendix D. Database system tables and system views

System tables

SQL_LANGUAGES
The SQL_LANGUAGES system table lists the SQL standards and SQL dialects
which are supported.

Table 98. SQL_LANGUAGES

Column name Data type Description

SOURCE WVARCHAR The organization that defined this specific
SQL version.

SOURCE_YEAR WVARCHAR The year the relevant standard was
approved.

CONFORMANCE WVARCHAR The conformance level at which
conformance to the relevant standard.

INTEGRITY WVARCHAR Indicates whether the Integrity
Enhancement Feature is supported.

IMPLEMENTATION WVARCHAR Identifies uniquely the vendor's SQL
language; NULL if SOURCE is 'ISO'.

BINDING_STYLE WVARCHAR The binding style 'DIRECT', *EMBED' or
'MODULE'.

PROGRAMMING_LANG WVARCHAR The host language used.

SYS_ATTAUTH
Table 99. SYS_ATTAUTH

Column name Data type Description

REL_ID INTEGER Table identifier.

UR_ID INTEGER User or role identifier.

ATTR_ID INTEGER Column identifier.

PRIV INTEGER Privilege info.

GRANT_ID INTEGER Grantor identifier.

GRANT_TIM TIMESTAMP Grant time.

319

SYS_BACKGROUNDJOB_INFO
If the body of a START AFTER COMMIT statement cannot be started, the reason is
logged in the system table SYS_BACKGROUNDJOB_INFO. Only failed START
AFTER COMMIT statements are logged in this table. If the statement (e.g. a
procedure call) starts successfully, no information is stored in this system table.
Statements that start successfully but do not finish executing are not stored in this
system table either.

The user can retrieve information from the table SYS_BACKGROUNDJOB_INFO
by using either an SQL SELECT statement or by calling a system procedure
SYS_GETBACKGROUNDJOB_INFO. See “SYS_BACKGROUNDJOB_INFO” for
more details.

Also a system-defined event SYS_EVENT_SACFAILED is posted when a START
AFTER COMMIT statement fails to start. See its description “Miscellaneous
events” on page 367 for more details. The application can wait for this event and
use the jobid to retrieve the error message from the system table
SYS_BACKGROUNDJOB_INFO.

The system table SYS_BACKGROUNDJOB_INFO can be emptied with the admin
command:

ADMIN COMMAND 'cleanbgjobinfo';

Only a DBA can execute the 'cleanbgjobinfo' command.

Table 100. SYS_BACKGROUNDJOB_INFO

Column name Data type Description

ID INTEGER Job identifier.

STMT WVARCHAR The statement that could not be executed.

USER_ID INTEGER User or role identifier.

ERROR_CODE INTEGER The error that occurred when we tried to
execute the statement.

ERROR_TEXT WVARCHAR A description of the error.

SYS_BLOBS
This table includes information about the blobs stored into the database.
Furthermore, this table sees to it that the BLOB is physically saved on disk once
only even if it is logically saved several times.

Table 101. SYS_BLOBS

Column name Data type Description

ID BIGINT Blob identifier.

STARTPOS BIGINT Byte offset from the beginning of the blob
— the start position of the pages.

ENDSIZE BIGINT Byte offset of the end of the last page +1.

320 IBM solidDB: SQL Guide

Table 101. SYS_BLOBS (continued)

Column name Data type Description

TOTALSIZE BIGINT Total size of the blob.

REFCOUNT INTEGER The number of references, that is, the
number of existing instances of the same
blob.

COMPLETE INTEGER Indicates whether the write to the blob is
ready or not.

STARTCPNUM INTEGER Indicates on what checkpoint level the
writing of the blob started.

NUMPAGES INTEGER The number of pages the blob consist of.

P01_ADDR INTEGER First page's byte offset from the beginning
of the blob.

P01_ENDSIZE BIGINT Last byte of the first page + 1.

P[02...50]_ADDR INTEGER Byte offset of pages [2...50] from the
beginning of the blob.

P[02...50]_ENDSIZE BIGINT Last byte of the pages [2...50] +1.

SYS_CARDINAL
The data in this table is refreshed within every checkpoint, not at another time.

Table 102. SYS_CARDINAL

Column name Data type Description

REL_ID INTEGER The relation identifier as in SYS_TABLES.

CARDIN INTEGER The number of rows in the table.

SIZE INTEGER The size of the data in the table.

LAST_UPD TIMESTAMP The timestamp of the last update in the
table.

SYS_CATALOGS
The SYS_CATALOGS lists available catalogs.

Table 103. SYS_CATALOGS

Column name Data type Description

ID INTEGER Catalog identifier.

NAME WVARCHAR Catalog name.

CREATIME TIMESTAMP Create date and time.

Appendix D. Database system tables and system views 321

Table 103. SYS_CATALOGS (continued)

Column name Data type Description

CREATOR WVARCHAR Creator name.

SYS_CHECKSTRINGS
The SYS_CHECKSTRINGS lists CHECK constraints of the tables.

Table 104. SYS_CHECKSTRINGS

Column name Data type Description

ID INTEGER Table identifier referring to SYS_TABLES.

CONSTRAINT_NAME WVARCHAR Name of the CHECK constraint (unique
for the table) or an empty string for
unnamed constraints (one string for all
unnamed CHECK constraints. They are
AND- concatenated).

CONSTRAINT WVARCHAR The constraint string itself. It is checked
by the SQL interpreter while performing
inserts/updates to the given table.

SYS_COLUMNS
This table lists all system table columns.

There are no owner or user viewing restrictions for viewing the system columns,
which means owners can view columns other than those they have created in this
table and users with no access rights or with specific access rights can still view
any system column in this table.

Table 105. SYS_COLUMNS

Column name Data type Description

ID INTEGER Unique column identifier.

REL_ID INTEGER The relation identifier as in SYS_TABLES.

COLUMN_NAME WVARCHAR The name of the column.

COLUMN_NUMBER INTEGER The number of the column in the table (in
creation order).

DATA_TYPE WVARCHAR The data type of the column.

SQL_DATA_TYPE_NUM SMALLINT ODBC compliant data type number.

DATA_TYPE_NUMBER INTEGER Internal data type number.

CHAR_MAX_LENGTH INTEGER Maximum length for a CHAR field.

NUMERIC_PRECISION INTEGER Numeric precision.

322 IBM solidDB: SQL Guide

Table 105. SYS_COLUMNS (continued)

Column name Data type Description

NUMERIC_PREC_RADIX SMALLINT Numeric precision radix.

NUMERIC_SCALE SMALLINT Numeric scale.

NULLABLE CHAR Are NULL values allowed (Yes, No).

NULLABLE_ODBC SMALLINT ODBC, are NULL values allowed (1,0).

FORMAT WVARCHAR Reserved for future use.

DEFAULT_VAL WVARCHAR Current® default value (if set).

ATTR_TYPE INTEGER User defined (0) or internal (>0).

REMARKS LONG WVARCHAR Reserved for future use.

SYS_COLUMNS_AUX
If you insert a column with a default value to a table that has existing rows, the
column default value is not appended to the existing rows. Instead, the default
value defined in the column insert statement is written to the
SYS_COLUMNS_AUX table. If an SQL query is targeted at a row that was inserted
to the table before the column, the column value is read from the
SYS_COLUMNS_AUX table unless the new column value on the row has been
changed after it was inserted. Only the original default value is saved in the
SYS_COLUMNS_AUX table.

Table 106. SYS_COLUMNS_AUX

Column name Data type Description

ID INTEGER Table identifier.

ORIGINAL_DEFAULT WVARCHAR The original default value.

SYS_DL_REPLICA_CONFIG
This table contains the diskless configurations in the master. This table is intended
for updates only through the soldlsetup command. Users should not modify this
table directly. Doing so can have adverse repercussions.

Table 107. SYS_DL_REPLICA_CONFIG

Column name Data type Description

CFG_NAME WVARCHAR (254)

PRIMARY KEY NOT NULL

The name of the diskless replica
configuration.

INI_FILE LONG WVARCHAR The name of the replica configuration file.
The solid.ini file contents are inserted
into this column as a blob.

Appendix D. Database system tables and system views 323

Table 107. SYS_DL_REPLICA_CONFIG (continued)

Column name Data type Description

LIC_FILE LONG WVARCHAR The name of the replica license file. The
solid.lic file contents are inserted into
this column as a blob.

SCHEMA_FILE LONG WVARCHAR The name of the replica schema. The
schema file contents are inserted into this
column as a blob.

SYS_DL_REPLICA_DEFAULT
This table contains the diskless default configurations in the master. This table is
intended for updates only through the soldlsetup command. Users should not
modify this table directly. Doing so can have adverse repercussions.

Table 108. SYS_DL_REPLICA_DEFAULT

Column name Data type Description

REPLICA_NAME VARCHAR(254)

NOT NULL PRIMARY KEY

The name of the replica.

INI_CFG VARCHAR(254) REFERENCE

SYS_DL_REPLICA_CONFIG(CFG_NAME)

The name of the replica configuration file.

LIC_CFG VARCHAR(254) REFERENCE

SYS_DL_REPLICA_CONFIG(CFG_NAME)

The name of the replica license file.

SCHEMA_CFG VARCHAR(254) REFERENCE

SYS_DL_REPLICA_CONFIG(CFG_NAME)

The name of the replica schema.

SYS_EVENTS
Table 109. SYS_EVENTS

Column name Data type Description

ID INTEGER Unique event identifier.

EVENT_NAME WVARCHAR The name of the event.

EVENT_PARAMCOUNT INTEGER Number of parameters.

EVENT_PARAMTYPES LONG VARBINARY Types of parameters.

EVENT_TEXT WVARCHAR The body of the event.

EVENT_SCHEMA WVARCHAR The owner of the event.

EVENT_CATALOG WVARCHAR The owner of the event.

324 IBM solidDB: SQL Guide

Table 109. SYS_EVENTS (continued)

Column name Data type Description

CREATIME TIMESTAMP Creation time.

TYPE INTEGER Reserved for future use.

SYS_FORKEYPARTS
Table 110. SYS_FORKEYPARTS

Column name Data type Description

KEY_CATALOG INTEGER Creator name or the owner of the key.

ID INTEGER Foreign key identifier.

KEYP_NO INTEGER Keypart number.

ATTR_NO INTEGER Column number.

ATTR_ID INTEGER Column identifier.

ATTR_TYPE INTEGER Column type.

CONST_VALUE VARBINARY Possible internal constant value; otherwise
NULL.

SYS_FORKEYS
Table 111. SYS_FORKEYS

Column name Data type Description

ID INTEGER Foreign key identifier.

REF_REL_ID INTEGER Referenced table identifier.

CREATE_REL_ID INTEGER Creator table identifier.

REF_KEY_ID INTEGER Referenced key identifier.

REF_TYPE INTEGER Reference type.

KEY_SCHEMA WVARCHAR Creator name.

KEY_CATALOG WVARCHAR Creator name or the owner of the key.

KEY_NREF INTEGER Number of referenced key parts.

SYS_HOTSTANDBY
Deprecated. Relevant to versions before 4.0.

Appendix D. Database system tables and system views 325

SYS_INFO
Table 112. SYS_INFO

Column name Data type Description

PROPERTY WVARCHAR The name of the property.

VALUE_STR WVARCHAR Value as a string.

VALUE_INT INTEGER Value as an integer.

SYS_KEYPARTS
Table 113. SYS_KEYPARTS

Column name Data type Description

ID INTEGER This column is a foreign key reference to
sys_keys.id, so that you can determine
which key each keypart is part of.

REL_ID INTEGER The relation identifier as in SYS_TABLES.

KEYP_NO INTEGER Keypart identifier.

ATTR_ID INTEGER Column identifier.

ATTR_NO INTEGER The number of the column in the table (in
creation order).

ATTR_TYPE INTEGER The type of the column.

CONST_VALUE VARBINARY Constant value or NULL.

ASCENDING CHAR Is the key ascending (Yes) or descending
(No).

SYS_KEYS
All database tables must have one clustering key. This key defines the physical
sorting order of the data. It has no capacity impact. If a primary key is defined, the
primary key is used as the clustering key. If no primary key is defined, an entry
with key_name "$CLUSTKEY_xxxxx" will be automatically created in SYS_KEYS.

If there is a primary key definition for the table, there will be an entry in
SYS_KEYS with a key_name like "$PRIMARYKEY_xxxx" for this entry. The
key_primary and key_clustering columns will have a value YES.

If there is no primary key definition for the table, there will be an entry in
SYS_KEYS with a key_name like "$CLUSTKEY_xxxxx". The key_primary column
will have a value NO and key_clustering column will have a value YES.

326 IBM solidDB: SQL Guide

Table 114. SYS_KEYS

Column name Data type Description

ID INTEGER Unique key identifier.

REL_ID INTEGER The relation identifier as in SYS_TABLES.

KEY_NAME WVARCHAR The name of the key.

KEY_UNIQUE CHAR Is the key unique (Yes, No).

KEY_NONUNIQUE_ODBC SMALLINT ODBC, is the key NOT unique (1, 0).

KEY_CLUSTERING CHAR Is the key a clustering key (Yes, No).

KEY_PRIMARY CHAR Is the key a primary key (Yes, No).

KEY_PREJOINED CHAR Reserved for future use.

KEY_SCHEMA WVARCHAR The owner of the key.

KEY_NREF INTEGER When creating a primary key, the server
uses ALL fields of the table, even if the
user specified N fields (the N fields
specified by the user become the first N
fields of the key). KEY_NREF = N, i.e. the
number of fields specified by the user.

SYS_PROCEDURES
This system table lists procedures.

Specific users are restricted from viewing procedures. Owners are restricted to
viewing procedures they have created. Users can only view procedures to which
they have execute access to see the procedure definition. If users have no access
rights, they are restricted from viewing all procedures. Note that execute access
does not allow users to see procedure definitions. No restrictions apply to DBAs.

Table 115. SYS_PROCEDURES

Column name Data type Description

ID INTEGER Unique procedure identifier.

PROCEDURE_NAME WVARCHAR Procedure name.

PROCEDURE_TEXT LONG WVARCHAR Procedure body.

PROCEDURE_BIN LONG VARBINARY Compiled form of the procedure.

PROCEDURE_SCHEMA WVARCHAR The name of the schema containing
PROCEDURE_NAME.

PROCEDURE_CATALOG WVARCHAR The name of the catalog containing
PROCEDURE_NAME.

CREATIME TIMESTAMP Creation time.

Appendix D. Database system tables and system views 327

Table 115. SYS_PROCEDURES (continued)

Column name Data type Description

TYPE INTEGER Reserved for future use.

SYS_PROCEDURE_COLUMNS
The SYS_PROCEDURE_COLUMNS defines input parameters and result set
columns.

Table 116. SYS_PROCEDURE_COLUMNS

Column name Data type Description

PROCEDURE_ID INTEGER Procedure identifier.

COLUMN_NAME WVARCHAR Procedure column name.

COLUMN_TYPE SMALLINT Procedure column type
(SQL_PARAM_INPUT or
SQL_RESULT_COL).

DATA_TYPE SMALLINT Column's SQL data type.

TYPE_NAME WVARCHAR Column's SQL data type name.

COLUMN_SIZE INTEGER Size of the procedure column.

BUFFER_LENGTH INTEGER Column size in bytes.

DECIMAL_DIGITS SMALLINT Decimal digits of the procedure column.

NUM_PREC_RADIX SMALLINT Radix for numeric data types (2, 10, or
NULL if not applicable).

NULLABLE SMALLINT Whether the procedure column accepts a
NULL value.

REMARKS WVARCHAR A description of the procedure column.

COLUMN_DEF WVARCHAR Column's default value. Always NULL,
that is, no default value is specified.

SQL_DATA_TYPE SMALLINT SQL data type.

SQL_DATETIME_SUB SMALLINT Subtype code for datetime. Always NULL.

CHAR_OCTET_LENGTH INTEGER Maximum length in bytes of a character
or binary data type column.

ORDINAL_POSITION INTEGER Ordinal position of the column.

IS_NULLABLE WVARCHAR Always "YES".

328 IBM solidDB: SQL Guide

SYS_PROPERTIES
This table is for internal use of HSB only.

Table 117. SYS_PROPERTIES

Column name Data type Description

KEY WVARCHAR Property identifier.

VALUE WVARCHAR Value of a property.

MODTIME TIMESTAMP Creation time for the property.

SYS_RELAUTH
This table contains GRANT privileges issued for each table name and user name
combination. When a database is created with no GRANT statements executed, this
table is empty.

Table 118. SYS_RELAUTH

Column Name Description

REL_ID Table or object identifier.

UR_ID User or role identifier.

PRIV Information about privileges of a user or a role. Each privilege
is related to someone (GRANT_ID) who has granted it.

GRANT_ID Grantor identifier.

GRANT_TIM Grant time.

GRANT_OPT If set to "Yes", the user who receives the privilege may grant the
privilege to other users. The possible values are "Yes" or "No".

SYS_SCHEMAS
The SYS_SCHEMAS lists available schemas.

Table 119. SYS_SCHEMAS

Column name Data type Description

ID INTEGER Schema identifier.

NAME WVARCHAR Schema name.

OWNER WVARCHAR Schema owner name.

CREATIME TIMESTAMP Create date and time.

SCHEMA_CATALOG WVARCHAR Schema catalog.

Appendix D. Database system tables and system views 329

SYS_SEQUENCES
Table 120. SYS_SEQUENCES

Column name Data type Description

SEQUENCE_NAME WVARCHAR Sequence name.

ID INTEGER Unique identifier.

DENSE CHAR Is the sequence dense or sparse.

SEQUENCE_SCHEMA WVARCHAR The name of the schema containing
SEQUENCE_NAME.

SEQUENCE_CATALOG WVARCHAR The name of the catalog containing
SEQUENCE_NAME.

CREATIME TIMESTAMP Creation time.

SYS_SYNC_REPLICA_PROPERTIES
Table 121. SYS_SYNC_REPLICA_PROPERTIES

Column name Data type Description

ID INTEGER Replica ID.

NAME VARCHAR Property name.

VALUE VARCHAR Property value.

The primary key is on the ID and NAME fields.

SYS_SYNONYM
Table 122. SYS_SYNONYM

Column name Data type Description

TARGET_ID INTEGER Reserved for future use.

SYNON INTEGER Reserved for future use.

SYS_TABLEMODES
Table 123. SYS_TABLEMODES

Column name Data type Description

ID INTEGER Relation identifier.

MODE WVARCHAR Concurrency control mode (allowed
values: OPTIMISTIC, PESSIMISTIC,
MAINMEMORY, or MAINMEMORY
PESSIMISTIC).

330 IBM solidDB: SQL Guide

Table 123. SYS_TABLEMODES (continued)

Column name Data type Description

MODIFY_TIME TIMESTAMP Last modify time.

MODIFY_USER WVARCHAR Last user that modified.

SYS_TABLEMODES shows the mode only of tables for which the mode was
explicitly set. SYS_TABLEMODES doesn't show the mode of tables that were left at
the default mode. (The default mode is "optimistic" unless you set the solid.ini
configuration parameter Pessimistic=Yes.)

To list the names and modes of tables that were explicitly set to optimistic or
pessimistic, execute the command:
SELECT SYS_TABLEMODES.ID, table_name, mode
FROM SYS_TABLES, SYS_TABLEMODES
WHERE SYS_TABLEMODES.ID = SYS_TABLES.ID;

The output will look like:
ID TABLE_NAME MODE
-- ---------- ----

10054 TABLE2 OPTIMISTIC
10056 TABLE3 PESSIMISTIC

For more information about setting the concurrency control mode, see “Setting the
concurrency (locking) mode to optimistic or pessimistic” on page 122.

SYS_TABLES
This table lists all the system tables.

There are no restrictions for viewing the system tables, which means even users
with no access rights can view them. However, specific users are restricted from
viewing the user table information. Owners are restricted to viewing user tables
they have created and users can only view tables to which they have INSERT,
UPDATE, DELETE, or SELECT access. Users are restricted from viewing any user
tables if they have no access rights. No restrictions apply to DBAs.

Table 124. SYS_TABLES

Column name Data type Description

ID INTEGER Unique table identifier.

TABLE_NAME WVARCHAR The name of the table.

TABLE_TYPE WVARCHAR The type of the table (BASE TABLE or
VIEW).

TABLE_SCHEMA WVARCHAR The name of the schema containing
TABLE_NAME

TABLE_CATALOG WVARCHAR The name of the catalog containing
TABLE_NAME.

CREATIME TIMESTAMP The creation time of the table.

Appendix D. Database system tables and system views 331

Table 124. SYS_TABLES (continued)

Column name Data type Description

CHECKSTRING LONG WVARCHAR Possible check option defined for the
table.

REMARKS LONG WVARCHAR Reserved for future use.

SYS_TRIGGERS
This system table lists triggers.

Specific users are restricted from viewing triggers. Owners are restricted to viewing
only those triggers that they have created. Normal users are restricted from
viewing triggers. No restrictions apply to DBAs.

Table 125. SYS_TRIGGERS

Column name Data type Description

ID INTEGER Unique table identifier.

TRIGGER_NAME WVARCHAR Trigger name.

TRIGGER_TEXT LONG WVARCHAR Trigger body.

TRIGGER_BIN LONG VARBINARY Compiled form of the trigger.

TRIGGER_SCHEMA WVARCHAR The name of the schema containing
TRIGGER_NAME.

TRIGGER_CATALOG WVARCHAR The name of the catalog containing
TRIGGER_NAME.

TRIGGER_ENABLED CHAR If triggers are enabled "YES"; otherwise
"NO".

CREATIME TIMESTAMP The creation time of the trigger.

TYPE INTEGER Reserved for future use.

REL_ID INTEGER The relation identifier.

SYS_TYPES
Table 126. SYS_TYPES

Column name Data type Description

TYPE_NAME WVARCHAR The name of the data type.

DATA_TYPE SMALLINT ODBC, data type number.

PRECISION INTEGER ODBC, the precision of the data type.

LITERAL_PREFIX WVARCHAR ODBC, possible prefix for literal values.

332 IBM solidDB: SQL Guide

Table 126. SYS_TYPES (continued)

Column name Data type Description

LITERAL_SUFFIX WVARCHAR ODBC, possible suffix for literal values.

CREATE_PARAMS WVARCHAR ODBC, the parameters needed to create a
column of the data type.

NULLABLE SMALLINT ODBC, can the data type contain NULL
values.

CASE_SENSITIVE SMALLINT ODBC, is the data type case sensitive.

SEARCHABLE SMALLINT ODBC, the supported search operations.

UNSIGNED_ATTRIBUTE SMALLINT ODBC, is the data type unsigned.

MONEY SMALLINT ODBC, whether the data is a money data
type.

AUTO_INCREMENT SMALLINT ODBC, whether the data type is
autoincrementing.

LOCAL_TYPE_NAME WVARCHAR ODBC, has the data type another
implementation defined name.

MINIMUM_SCALE SMALLINT ODBC, the minimum scale of the data
type.

MAXIMUM_SCALE SMALLINT ODBC, the maximum scale of the data
type.

SYS_UROLE
The SYS_UROLE contains mapping of users to roles.

Table 127. SYS_UROLE

Column name Data type Description

U_ID INTEGER User identifier.

R_ID INTEGER Role identifier.

SYS_USERS
The SYS_USERS list information about users and roles.

Table 128. SYS_USERS

Column name Data type Description

ID INTEGER User or role identifier.

NAME WVARCHAR User or role name.

TYPE WVARCHAR User type, either USER or ROLE.

Appendix D. Database system tables and system views 333

Table 128. SYS_USERS (continued)

Column name Data type Description

PRIV INTEGER Privilege information.

PASSW VARBINARY Password in encrypted format.

PRIORITY INTEGER Reserved for future use.

PRIVATE INTEGER Specifies whether user is private or public.

LOGIN_CATALOG WVARCHAR Reserved for future use.

SYS_VIEWS
Table 129. SYS_VIEWS

Column name Data type Description

V_ID INTEGER Unique identifier for this view.

TEXT LONG WVARCHAR View definition.

CHECKSTRING LONG WVARCHAR Possible CHECK OPTION defined for the
view.

REMARKS LONG WVARCHAR Reserved for future use.

System tables for data synchronization
solidDB contains a number of system tables that are used for implementing
synchronization functionality. In general, these tables are for internal use only.
However, you may need to know the contents of these tables when developing
and troubleshooting a new application.

Note that the tables are presented in alphabetical order.

SYS_BULLETIN_BOARD
This table contains persistent parameters that are always available in the parameter
bulletin board when transactions are executed in this database catalog.

Table 130. SYS_BULLETIN_BOARD

Column Name Description

PARAM_NAME Name of the persistent parameter.

PARAM_VALUE Value of the parameter.

PARAM_CATALOG Defines the master/replica catalog.

334 IBM solidDB: SQL Guide

SYS_PUBLICATION_ARGS
This table contains the publication input arguments in this master database

Table 131. SYS_PUBLICATION_ARGS

Column Name Description

PUBL_ID Internal ID of the publication.

ARG_NUMBER Sequence number of the argument.

NAME Name of the argument.

TYPE Type of the argument.

LENGTH_OR_PRECISION Length or precision of the argument.

SCALE Scale of the argument.

SYS_PUBLICATION_REPLICA_ARGS
This table contains the definition of the publication arguments in a replica
database.

Table 132. SYS_PUBLICATION_REPLICA_ARGS

Column Name Description

MASTER_ID Internal ID of the master from which the data is refreshed.

PUBL_ID Internal ID of the publication.

ARG_NUMBER Sequence number of the argument.

NAME Name of the argument.

LENGTH_OR_PRECISION Length or precision of the argument.

SCALE Scale of the argument.

SYS_PUBLICATION_REPLICA_STMTARGS
This table contains the mapping between the publication arguments and the
statements in the replica.

Table 133. SYS_PUBLICATION_REPLICA_STMTARGS

Column Name Description

MASTER_ID Internal ID of the master from which the data is refreshed.

PUBL_ID Internal ID of the publication.

STMT_NUMBER Sequence number of the statement.

STMT_ARG_NUMBER Sequence number of the statement argument.

Appendix D. Database system tables and system views 335

Table 133. SYS_PUBLICATION_REPLICA_STMTARGS (continued)

Column Name Description

PUBL_ARG_NUMBER Sequence number of the publication argument.

SYS_PUBLICATION_REPLICA_STMTS
This table contains the definition of the publication statements in a replica
database.

Table 134. SYS_PUBLICATION_REPLICA_STMTS

Column Name Description

MASTER_ID Internal ID of the master from which the data is refreshed.

PUBL_ID Internal ID of the publication.

STMT_NUMBER Sequence number of the statement.

REPLICA_CATALOG Name of the target catalog in the replica database.

REPLICA_SCHEMA Name of the target schema in the replica database.

REPLICA_TABLE Name of the target table in the replica database.

TABLE_ALIAS Alias name of the target table.

REPLICA_FROM_STR SQL FROM tables as string.

WHERE STR SQL WHERE arguments as string.

LEVEL Level of this SQL statement in this publication hierarchy.

SYS_PUBLICATION_STMTARGS
This table contains mapping between the publication arguments and the statements
in the master database.

Table 135. SYS_PUBLICATION_STMTARGS

Column Name Description

PUBL_ID Internal ID of the publication.

STMT_NUMBER Sequence number of the statement.

STMT_ARG_NUMBER Sequence number of the statement argument.

PUBL_ARG_NUMBER Sequence number of the publication argument.

336 IBM solidDB: SQL Guide

SYS_PUBLICATION_STMTS
This table contains the publication statements in the master database.

Table 136. SYS_PUBLICATION_STMTS

Column Name Description

PUBL_ID Internal ID of the publication.

MASTER_SCHEMA Name of the publication schema in the master database.

MASTER_TABLE Name of the table in the master database.

REPLICA_SCHEMA Name of the schema in the replica database.

REPLICA_TABLE Name of the table in the replica database.

TABLE_ALIAS The alias name of the target table.

MASTER_SELECT_STR SQL SELECT INTO columns as string.

REPLICA_SELECT_STR SQL SELECT INTO columns as string.

MASTER_FROM_STR SQL SELECT FROM tables as string.

REPLICA_FROM_STR SQL SELECT FROM tables as string.

WHERE_STR SQL WHERE arguments as a string.

DELETEFLAG_STR For internal use.

LEVEL Level of this SQL statement in the publication hierarchy.

SYS_PUBLICATIONS
This table contains the publications that have been defined in this master database.

Table 137. SYS_PUBLICATIONS

Column Name Description

ID Internal ID of the publication.

NAME Name of the publication.

CREATOR User ID of the creator of the publication.

CREATTIME Date and time when the publication was created.

ARGCOUNT Number of input arguments for this publication.

STMTCOUNT Number of statement contained in this publication.

TIMEOUT N/A.

TEXT Contents of the CREATE PUBLICATION statement.

Appendix D. Database system tables and system views 337

Table 137. SYS_PUBLICATIONS (continued)

Column Name Description

PUBL_CATALOG Defines the master catalog.

SYS_PUBLICATIONS_REPLICA
This table contains publications that are being used in this replica database.

Table 138. SYS_PUBLICATIONS_REPLICA

Column Name Description

MASTER_ID Internal ID of the master from which the data is refreshed.

ID Internal ID of the publication.

NAME Name of the publication.

CREATOR User ID of the creator of the publication.

ARGCOUNT Number of input arguments for this publication.

STMTCOUNT Number of statements contained by this publication.

SYS_SYNC_BOOKMARKS
This table contains bookmarks that are being used in a master database.

Table 139. SYS_SYNC_BOOKMARKS

Column Name Description

BM_ID Internal ID of the bookmark.

BM_CATALOG Reserved for future use.

BM_NAME Name of the bookmark.

BM_VERSION Internal version information of the bookmark in the master.

BM_CREATOR User ID of the creator of the bookmark.

BM_CREATIME Create time of the bookmark.

SYS_SYNC_HISTORY_COLUMNS
If you turn on synchronization history for a table, you may turn it on for all
columns, or only for a subset of columns. If you turn it on for a subset of columns,
then the SYS_SYNC_HISTORY_COLUMNS table records which columns you are
keeping synchronization history information for. There is one row in
SYS_SYNC_HISTORY_COLUMNS for each column that you keep synchronization
history for.

338 IBM solidDB: SQL Guide

Table 140. SYS_SYNC_HISTORY_COLUMNS

Column Name Description

REL_ID The ID of the table to keep sync history for.

COLUMN_NUMBER The ordinal number of the column in that table that we keep
sync history for. (E.g. if we keep sync history for the second
column in the table, then this field will hold the number 2.

SYS_SYNC_INFO
This table contains synchronization information, one row for each node.

Table 141. SYS_SYNC_INFO

Column Name Description

NODE_NAME Master or replica node.

NODE_CATALOG Catalog where node belongs.

IS_MASTER IF YES, this node is a master.

IS_REPLICA If YES, this node is a replica.

CREATIME Node create data and time.

CREATOR Node creator user name.

SYS_SYNC_MASTER_MSGINFO
This table contains information about the currently active message in the master
database.

Data in this table is used to control the synchronization process between the replica
and master database. This table also contains information that is useful for
troubleshooting purposes. If the execution of a message halts in the master
database due to an error, you can query this table to obtain the reason for the
problem, as well as the transaction and statement that caused the error.

Table 142. SYS_SYNC_MASTER_MSGINFO

Column Name Description

STATE Current state of the message. The following values are possible:

v 0 = DELETED N/A (internal non-persistent state)

v 1 = ERROR - Error has occurred during message processing;
the reason for the error was recorded in the error-columns of
the row.

v 10 = RECEIVED - master has received a message from the
replica

v 11 = SAVED - message has been saved in the master database
and is being processed

v 12 = READY - master has processed the message

v 13 = SENT - N/A (internal non-persistent state)

Appendix D. Database system tables and system views 339

Table 142. SYS_SYNC_MASTER_MSGINFO (continued)

Column Name Description

REPLICA_ID ID of the replica database from which the message was sent.

MASTER_ID ID of the database to which the master is sent.

MSG_ID Internal ID of the message.

MSG_NAME Name of the message given by the user.

MSG_TIME Create time of the message.

MSG_BYTE_COUNT Size of the message in bytes.

CREATE_UID ID of the user who created the message.

FORWARD_UID ID of the user who forwarded the message.

ERROR_CODE Code of the error that caused the termination of the message
execution. You can determine the transaction and statement that
caused the error from the TRX_ID and STMT_ID information.

ERROR_TEXT Description of the error that caused the termination of the
message execution.

TRX_ID Sequence number of the transaction that caused the error.

STMT_ID Sequence number of the statement of a transaction that caused
an error.

ORD_ID_COUNT N/A (internal use only).

ORD_ID N/A (internal use only).

FLAGS NULL or 0 = Normal message.

1 = Message is deleted when reply is sent to replica.

FAILED_MSG_ID This is an INTEGER column which is part of the primary key.
The value is zero for normal messages. The value is msg_id if
LOG_ERRORS option is ON and any errors exists.

SYS_SYNC_MASTER_RECEIVED_BLOB_REFS
The received BLOBs are stored in this table on the master. The implementation sees
to it that the BLOB is physically saved on disk once only even if it is logically
saved several times.

Table 143. SYS_SYNC_MASTER_ RECEIVED_BLOB_REFS

Column Name Description

REPLICA_ID Internal ID of the replica database from which the message was
received.

MSG_ID Internal ID of the message.

340 IBM solidDB: SQL Guide

Table 143. SYS_SYNC_MASTER_ RECEIVED_BLOB_REFS (continued)

Column Name Description

BLOB_NUM The number that identifies the BLOB.

DATA A reference to the BLOB.

SYS_SYNC_MASTER_RECEIVED_MSGPARTS
This table contains parts of the messages that were received in the master database
from a replica database, but not yet processed in the master database.

Table 144. SYS_SYNC_MASTER_RECEIVED _MSGPARTS

Column Name Description

REPLICA_ID Internal ID of the replica database from which the message was
received.

MSG_ID Internal ID of the message.

PART_NUMBER Sequence number of the message part.

DATA_LENGTH Length of the data in the message part.

DATA Data of the message part.

SYS_SYNC_MASTER_RECEIVED_MSGS
This table contains messages that were received in the master database from a
replica database, but are not yet processed in the master database.

Table 145. SYS_SYNC_MASTER_RECEIVED_MSGS

Column Name Description

REPLICA_ID Internal ID of the replica database from which the message has
been received.

MSG_ID Internal ID of the message.

CREATIME Create time of the message.

CREATOR User ID of the user who created the message.

SYS_SYNC_MASTER_STORED_BLOB_REFS
The BLOBs to be sent are stored in this table on the master. The implementation
sees to it that the BLOB is physically saved on disk once only even if it is logically
saved several times.

Appendix D. Database system tables and system views 341

Table 146. SYS_SYNC_MASTER_STORED_BLOB_REFS

Column Name Description

REPLICA_ID Internal ID of the replica database to which the message will be
sent.

MSG_ID Internal ID of the message.

BLOB_NUM The number that identifies the BLOB.

DATA A reference to the BLOB.

SYS_SYNC_MASTER_STORED_MSGPARTS
This table contains parts of the message result sets that were created in the master
database, but not yet sent to the replica database.

Table 147. SYS_SYNC_MASTER_STORED_MSGPARTS

Column Name Description

REPLICA_ID Internal ID of the replica database to which the message will be
sent.

MSG_ID Internal ID of the message.

ORDER_ID Sequence number of the result set.

RESULT_SET_ID Internal ID of the result set.

RESULT_SET_TYPE Type of the result set.

PART_NUMBER Sequence number of the message part in the result set.

DATA_LENGTH Length of the data in the message part in the result set.

DATA Data of the message part.

SYS_SYNC_MASTER_STORED_MSGS
This table contains messages that were created in the master database, but not yet
sent to the replica database.

Table 148. SYS_SYNC_MASTER_STORED_MSGS

Column Name Description

REPLICA_ID Internal ID of the replica database to which the message will be
sent.

MSG_ID Internal ID of the message.

CREATIME Create time of the message.

CREATOR User ID of the user who created the message.

342 IBM solidDB: SQL Guide

SYS_SYNC_MASTER_SUBSC_REQ
This table contains the list of requested subscriptions waiting to be executed in the
master.

Table 149. SYS_SYNC_MASTER_SUBSC_REQ

Column Name Description

REPLICA_ID Internal ID of the replica from which the statement has arrived.

MSG_ID Internal ID of the message in which the statement has arrived.

ORD_ID Sequence number of the subscription.

TRX_ID Internal ID of the transaction to which the subscription belongs.

STMT_ID Internal ID of the statement in the subscription.

REQUEST_ID N/A.

PUBL_ID Internal ID of the subscribed/refreshed publication.

VERSION Internal version information of the subscription in the master.

REPLICA_VERSION Internal version information of the subscription in the replica.

FULLSUBSC Indicates if the subscription is full or incremental.

SYS_SYNC_MASTER_VERSIONS
This table contains the list of subscriptions (that have been subscribed) to replica
databases from the master database.

Table 150. SYS_SYNC_MASTER_VERSIONS

Column Name Description

REPLICA_ID Internal ID of the replica database.

REQUEST_ID Sequence number of the subscription.

VERS_TIME Create time of the subscription.

PUBL_ID ID of the publication.

TABNAME Name of the table of the publication.

TABSCHEMA Name of the schema of the table.

PARAM_CRC N/A (for internal use only).

PARAM Parameters of the publication in binary format.

VERSION Version of the data that has been requested from the replica
database.

Appendix D. Database system tables and system views 343

SYS_SYNC_MASTERS
This table contains the list of master databases accessed by the replica.

Table 151. SYS_SYNC_MASTERS

Column Name Description

NAME Given name of the master database.

ID Internal ID of the master database.

REMOTE_NAME N/A.

REPLICA_NAME Given name of the replica database.

REPLICA_ID Surrogate identifier for the replica database.

REPLICA_CATALOG Defines the replica catalog which is registered to this master.

CONNECT Connect string of the master database.

CREATOR ID of the user who set the database as a master.

ISDEFAULT Reserved for future use.

SYS_SYNC_RECEIVED_BLOB_ARGS
This table is on the master. The BLOB parameters are saved in this table when the
message from the replica is extracted. The rows only exist until the transaction in
the message has been executed.

Table 152. SYS_SYNC_RECEIVED_BLOB_ARGS

Column Name Description

REPLICA Internal ID of the replica from which the BLOB parameters have
arrived.

MSG Internal ID of the message.

ORD_ID Sequence number of the BLOB part.

TRX_ID The transaction ID identifies the transaction.

ID Internal ID of the user.

ARGNO Number of the parameter.

ARG_VALUE Value of the parameter in binary format.

SYS_SYNC_RECEIVED_STMTS
This table contains the propagated statements that have been received in the
master database.

344 IBM solidDB: SQL Guide

Table 153. SYS_SYNC_RECEIVED_STMTS

Column Name Description

REPLICA Internal ID of the replica from which the statement has arrived.

MSG Internal ID of the message in which the statement has arrived.

ORD_ID N/A.

TXN_ID Internal ID of the transaction to which the statement belongs.

ID Sequence number of the statement within the transaction.

CLASS Type of the constant.

STRING the SQL statement as a string.

ARG_COUNT Number of parameters bound to the statement.

ARG_TYPES Types of the parameters bound to the statement.

ARG_VALUES Values of the parameters in binary format.

USER_ID ID of the user who has saved the statement.

REQUEST_ID N/A.

FLAGS This indicates the error-handling mode (e.g. IGNORE_ERRORS,
LOG_ERRORS, etc.).

ERRCODE This has the error code if a statement failed while executing on
the master.

ERR_STR This has a description of the error that occurred if a statement
failed while executing on the master.

SYS_SYNC_REPLICA_MSGINFO
This table contains information about currently active messages in the replica
database.

Data in this table is used to control the synchronization process between the replica
and master database. This table also contains information that is useful for
troubleshooting purposes. If the execution of a message halts in the replica
database due to an error, you can query this table to obtain the reason for the
problem, as well as the transaction and statement that caused the error.

Appendix D. Database system tables and system views 345

Table 154. SYS_SYNC_REPLICA_MSGINFO

Column Name Description

STATE Current state of the message. The following values are possible:

v 0 = DELETED N/A (internal non-persistent state)

v 1 = ERROR - Internal error has occurred during message
processing; the reason for the error was recorded in the
error-columns of the row.

v 20 = R_INIT - N/A (internal non-persistent state)

v 21 = R_INITEND - N/A (internal non-persistent state)

v 22 = R_SAVED - Replica has saved an outgoing message

v 23 = R_SENT - Replica has sent a message to the master

v 24 = R_RECEIVED - Replica has received a reply message
from the master

v 25 = R_EXECUTE - The reply message in a replica is ready
for execution

v 26 = R_EXECUTE_NOTIFYMASTER - Replica has received a
reply, but not yet confirmed it with the master

MASTER_ID ID of the master database to which the message is sent.

MASTER_NAME Name of the master database to which the message is sent.

MSG_ID Internal ID of the message.

MSG_NAME Name of the message given by the user.

MSG_TIME Create time of the message.

MSG_BYTE_COUNT Size of the message in bytes.

CREATE_UID ID of the user who created the message.

FORWARD_UID ID of the user who sent the message.

ERROR_CODE Code of the error that caused the message execution to
terminate.

ERROR_TEXT Description of the error that caused the message execution to
terminate.

FLAGS NULL or 0 = Normal message.

1 = Message is deleted when a reply is received from master.

3 = Message is a registration message.

SYS_SYNC_REPLICA_RECEIVED_BLOB_REFS
The received BLOBs are stored in this table. The implementation sees to it that the
BLOB is physically saved on disk once only even if it is logically saved several
times.

346 IBM solidDB: SQL Guide

Table 155. SYS_SYNC_REPLICA_RECEIVED_ BLOB_REFS

Column Name Description

MASTER_ID Internal ID of the master database from which the message has
been received.

MSG_ID Internal ID of the message.

BLOB_NUM The number that identifies the BLOB.

DATA A reference to the BLOB.

SYS_SYNC_REPLICA_RECEIVED_MSGPARTS
This table contains parts of the reply messages that have been received into the
replica database from the master database, but are not yet processed in the replica
database.

Table 156. SYS_SYNC_REPLICA_RECEIVED_ MSGPARTS

Column Name Description

MASTER_ID Internal ID of the master database from which the message has
been received.

MSG_ID Internal ID of the message.

PART_NUMBER Sequence number of the message part.

DATA_LENGTH Length of the data in the message part.

RESULT_SET_TYPE Type of the result set.

DATA Data of the message part.

SYS_SYNC_REPLICA_RECEIVED_MSGS
This table contains reply messages that were received in the replica database from
the master database, but not yet processed in the replica database.

Table 157. SYS_SYNC_REPLICA_RECEIVED_MSGS

Column Name Description

MASTER_ID Internal ID of the master database from which the message has
been received.

MSG_ID Internal ID of the message.

CREATIME Create time of the message.

CREATOR User ID of the user who created the message.

Appendix D. Database system tables and system views 347

SYS_SYNC_REPLICA_STORED_BLOB_REFS
The BLOBs in the flow message are stored in this table. The implementation sees
to it that the BLOB is physically saved on disk once only even if it is logically
saved several times.

Table 158. SYS_SYNC_REPLICA_STORED_BLOB_REFS

Column Name Description

MASTER_ID Internal ID of the master database from which the message has
been received.

MSG_ID Internal ID of the message.

BLOB_NUM The number that identifies the BLOB.

DATA A reference to the BLOB.

SYS_SYNC_REPLICA_STORED_MSGS
This table contains messages that were created in the replica database, but not yet
sent to the master database.

Table 159. SYS_SYNC_REPLICA_STORED_MSGS

Column Name Description

MASTER_ID Internal ID of the master database to which the message will be
sent.

MSG_ID Internal ID of the message.

CREATIME Create time of the message.

CREATOR User ID of the user who has created the message.

SYS_SYNC_REPLICA_STORED_MSGPARTS
This table contains parts of the messages that were created in the replica database,
but not yet sent to the master database.

Table 160. SYS_SYNC_REPLICA_STORED_MSGPARTS

Column Name Description

MASTER_ID Internal ID of the master database to which the message will be
sent.

MSG_ID Internal ID of the message.

PART_NUMBER Sequence number of the message part.

DATA_LENGTH Length of the data in the message part.

DATA Data of the message part.

348 IBM solidDB: SQL Guide

SYS_SYNC_REPLICA_VERSIONS
This table contains the list of subscriptions (that have been subscribed) to this
replica database from the master database.

Table 161. SYS_SYNC_REPLICA_VERSIONS

Column Name Description

BOOKMARK_ID Internal ID of the bookmark in the subscription.

REQUEST_ID Internal ID of the publication request in the subscription.

VERS_TIME Create time of the subscription.

PUBL_ID ID of the subscribed publication.

MASTER_ID ID of the master database from which the publication has been
subscribed.

PARAM_CRC Internal use only.

PARAM Parameters of the subscription.

VERSION Version number of subscribed publication in the master
database.

LOCAL VERSION Version number of subscribed publication in the replica
database.

PUBL_NAME Name of the publication.

REPLY_ID ID of the publication reply.

SYS_SYNC_REPLICAS
This table contains the list of replica databases registered with the master.

Table 162. SYS_SYNC_REPLICAS

Column Name Description

NAME Given name of the replica database.

ID Internal ID of the replica database.

MASTER_NAME N/A.

MASTER_CATALOG Defines the catalog where the replica is registered

CONNECT This contains the connect string (e.g. 'tcp MyWorkstation 1315')
of the replica.

SYS_SYNC_SAVED_BLOB_ARGS
If the user saves a transaction with a BLOB parameter at the replica, a reference to
the BLOB is saved in the SYS_SYNC_SAVED_BLOB_ARGS table. The reference
points to the SYS_SYNC_REPLICA_STORED_BLOB_REFS table. The rows only
exist until the sent message has been prepared.

Appendix D. Database system tables and system views 349

Table 163. SYS_SYNC_SAVED_BLOB_ARGS

Column Name Description

MASTER ID of the master database to which the parameters are sent.

TRX_ID The transaction ID identifies the transaction.

ID Internal ID of the user.

ARGNO Number of the parameter.

ARG_VALUE Value of the parameter in binary format.

SYS_SYNC_SAVED_STMTS
This table contains statements that have been saved in replica database for later
propagation.

Table 164. SYS_SYNC_SAVED_STMTS

Column Name Description

MASTER Internal ID of the master database to which the statement will
be propagated.

TRX_ID Internal ID of the transaction to which the statement belongs.

ID Sequence number of the statement within the transaction.

CLASS Type of the constant.

STRING The SQL statement as a string.

ARG_COUNT Number of parameters bound to the statement.

ARG_TYPES Types of parameters bound to the statement.

ARG_VALUES Values of the parameters in binary format.

USER_ID ID of the user who has saved the statement.

REQUEST_ID N/A.

FLAGS This indicates the error-handling mode (e.g. IGNORE_ERRORS,
LOG_ERRORS, etc.).

SYS_SYNC_TRX_PROPERTIES
When you save transactions, you can assign properties for them. These properties
can later be used to select transactions for propagation. The properties are saved in
the SYS_SYNC_TRX_PROPERTIES table.

350 IBM solidDB: SQL Guide

Table 165. SYS_SYNC_TRX_PROPERTIES

Column Name Description

TRX_ID The transaction ID identifies the transaction.

NAME The transaction property name (for example, COLOR).

VALUE_STR The transaction property value (for example, RED).

SYS_SYNC_USERMAPS
This table maps replica user ids to master users in the SYS_SYNC_USERS table.

Table 166. SYS_SYNC_USERMAPS

Column Name Description

REPLICA_UID Replica user ID mapped to master user.

MASTER_ID Master ID.

REPLICA_USERNAME Replica user name.

MASTER_USERNAME Master user name.

PASSW Encrypted password for master user name.

SYS_SYNC_USERS
This table contains a list of users that have access to the synchronization functions
of the replica database. These functions include saving transactions and creating
synchronization messages.

In a replica the data of this table is downloaded from the master in a message with
the command:
MESSAGE unique-message-name APPEND SYNC_CONFIG
[’sync-config-arg’]

Table 167. SYS_SYNC_USERS

Column Name Description

MASTER_ID Internal ID of the master database.

ID Internal ID of the user.

NAME User name.

PASSW Encrypted password of the user.

System views
solidDB supports views as specified in the X/Open SQL Standard.

Appendix D. Database system tables and system views 351

COLUMNS
The COLUMNS system view identifies the columns which are accessible to the
current user.

Table 168. COLUMNS

Column name Data type Description

TABLE_CATALOG WVARCHAR The name of the catalog containing
TABLE_NAME.

TABLE_SCHEMA WVARCHAR The name of the schema containing
TABLE_NAME.

TABLE_NAME WVARCHAR The name of the table or view.

COLUMN_NAME WVARCHAR The name of the column of the specified
table or view.

DATA_TYPE WVARCHAR The data type of the column.

SQL_DATA_TYPE_NUM SMALLINT ODBC compliant data type number.

CHAR_MAX_LENGTH INTEGER Maximum length for a character data type
column; for others NULL.

NUMERIC_PRECISION INTEGER The number of digits of mantissa
precision of the column, if DATA_TYPE is
approximate numeric data type,
NUMERIC_PREC_RADIX indicates the
units of measurement; for other numeric
types contains the total number of
decimal digits allowed in the column; for
character data types NULL.

NUMERIC_PREC_RADIX SMALLINT The radix of numeric precision if
DATA_TYPE is one of the approximate
numeric data types; otherwise NULL.

NUMERIC_SCALE SMALLINT Total number of significant digits to the
right of the decimal point; for INTEGER
and SMALLINT 0; for others NULL.

NULLABLE CHAR If column is known to be not nullable
'NO'; otherwise 'YES'.

NULLABLE_ODBC SMALLINT ODBC, if column is known to be not
nullable '0'; otherwise '1'.

REMARKS LONG WVARCHAR Reserved for future use.

SERVER_INFO
The SERVER_INFO system view provides attributes of the current database system
or server.

352 IBM solidDB: SQL Guide

Table 169. SERVER_INFO

Column name Data type Description

SERVER_ATTRIBUTE WVARCHAR Identifies an attribute of the server.

ATTRIBUTE_VALUE WVARCHAR The value of the attribute.

TABLES
The TABLES system view identifies the tables accessible to the current user.

Table 170. TABLES

Column name Data type Description

TABLE_CATALOG WVARCHAR The name of the catalog containing
TABLE_NAME.

TABLE_SCHEMA WVARCHAR The name of the schema containing
TABLE_NAME.

TABLE_NAME WVARCHAR The name of the table or view.

TABLE_TYPE WVARCHAR The type of the table.

REMARKS LONG WVARCHAR Reserved for future use.

USERS
The USERS system view identifies users and roles.

Table 171. USERS

Column name Data type Description

ID INTEGER User or role identifier.

NAME WVARCHAR User or role name.

TYPE WVARCHAR User type, either USER or ROLE.

PRIV INTEGER Privilege information.

PRIORITY INTEGER Reserved for future use.

PRIVATE INTEGER Specifies whether user is private or public.

Synchronization-related views
solidDB provides four views that show information about synchronization
messages between masters and replicas. One pair of views
(SYNC_FAILED_MESSAGES and SYNC_FAILED_MASTER_MESSAGES) shows
failed messages. The other pair (SYNC_ACTIVE_MESSAGES and
SYNC_ACTIVE_MASTER_MESSAGES) shows active messages.

Appendix D. Database system tables and system views 353

SYNC_FAILED_MESSAGES
This table is on the master and holds information about messages received from
the replica. It is possible to view all necessary information about failed messages
using one simple view:
SELECT * FROM SYNC_FAILED_MESSAGES.

This returns the following columns:

Table 172. SYNC_FAILED_MESSAGES

Column name Data type Description

REPLICA_NAME WVARCHAR Given node name of the replica from
which the message was sent.

MESSAGE_NAME WVARCHAR Name of the message given by the user.

TRANSACTION_ID BINARY Internal ID of the replica transaction that
has failed.

STATEMENT_ID INTEGER Sequence number of the statement within
the transaction.

STATEMENT_STRING WVARCHAR SQL statement as a string.

ERROR_CODE INTEGER Code of the error that caused the
termination of the message execution.

ERROR_MESSAGE VARCHAR Description of the error.

All users have access to this view; no particular privileges are required.

SYNC_FAILED_MASTER_MESSAGES
This table is on the replica and holds information about messages sent to the
master. It is possible to view all necessary information about failed messages using
one simple view:
SELECT * FROM SYNC_FAILED_MASTER_MESSAGES.

This returns the following columns:

Table 173. SYNC_FAILED_MASTER_MESSAGES

Column name Data type Description

MASTER_NAME WVARCHAR Given node name of the master.

MESSAGE_NAME WVARCHAR Name of the message given by user.

ERROR_CODE INTEGER Code of the error that caused the
termination of the message execution.

ERROR_MESSAGE VARCHAR Description of the error.

All users have access to this view; no particular privileges are required.

354 IBM solidDB: SQL Guide

SYNC_ACTIVE_MESSAGES
This table is on the master and holds information about messages received from
the replica. This returns the following columns:

Table 174. SYNC_ACTIVE_MESSAGES

Column name Data type Description

REPLICA_NAME WVARCHAR Given node name of the replica.

MESSAGE_NAME WVARCHAR Name of the message given by user.

MESSAGE STATE VARCHAR Current state of the message as a string.
See details in system table
SYS_SYNC_MASTER_MSGINFO.

All users have access to this view; no particular privileges are required.

SYNC_ACTIVE_MASTER_MESSAGES
This table is on the replica and holds information about messages sent to the
master. It is possible to view all necessary information about failed messages using
one simple view:
SELECT * FROM SYNC_FAILED_MASTER_MESSAGES.

This returns the following columns:

Table 175. SYNC_ACTIVE_MASTER_MESSAGES

Column name Data type Description

MASTER_NAME WVARCHAR Given node name of the master.

MESSAGE_NAME WVARCHAR Name of the message given by user.

MESSAGE STATE VARCHAR Current state of the message as a string.
See details in system table
SYS_SYNC_REPLICA_MSGINFO.

All users have access to this view; no particular privileges are required.

Appendix D. Database system tables and system views 355

356 IBM solidDB: SQL Guide

Appendix E. System stored procedures

This chapter documents stored procedures that are provided with the solidDB to
help simplify tasks. These stored procedures are built into the server and can be
thought of as a library for you to use.

Synchronization-related stored procedures
These system procedures simplify routine sync tasks. To maintain this ease of use,
"unnecessary" error situations should be avoided.

To execute synchronization system procedures, you must have administrator or
sync administrator access rights.

SYNC_SETUP_CATALOG
CALL SYNC_SETUP_CATALOG (

catalog_name, -- WVARCHAR
node_name, -- WVARCHAR
is_master, -- INTEGER
is_replica -- INTEGER

)

EXECUTES ON: master or replica.

The SYNC_SETUP_CATALOG() procedure creates a catalog, assigns it a node
name, and sets the role of the catalog to be master, replica, or both.

If the catalog_name parameter is NULL, then the current catalog is assigned the
specified node name and role(s).

For is_master and is_replica, a value of 0 means "no"; any other value means "yes".
At least one of these should be non-zero. Note that because a single catalog can be
both a replica and a master, it is legal to set both is_master and is_replica to
non-zero values.

Table 176. SYNC_SETUP_CATALOG error codes

RC Text Description

13047 No privilege for operation

13110 NULL not allowed Only the catalog name can be NULL; all
other parameters must be non-NULL.

13133 Not a valid license for this product.

25031 Transaction is active, operation failed. The user has made some changes that
have not yet been committed.

25052 Failed to set node name to node_name. The node_name may be invalid.

25059 After registration nodename cannot be
changed.

Catalog has a name already and has one
or more replicas.

357

SYNC_REGISTER_REPLICA
CALL SYNC_REGISTER_REPLICA (

replica_node_name, -- WVARCHAR
replica_catalog_name, -- WVARCHAR
master_network_name, -- WVARCHAR
master_node_name, -- WVARCHAR
user_id, -- WVARCHAR
password -- WVARCHAR

)

EXECUTES ON: replica.

The SYNC_REGISTER_REPLICA() system procedure creates a new catalog and
registers the replica with the specified master. User must have Administrator or
Synchronization Administrator access rights.

The master_network_name is the connect string of the master database server.

If the specified catalog does not exist, then it is created automatically.

If the specified replica catalog name is NULL, then the current catalog is used.
Also, the master nodename can be NULL. No other parameter may be NULL.

If registration fails, both master and replica end are reset back to their original
status. If any of the parameters have illegal values, then an error is returned.

If there are any open transactions that have modified data, then this function
returns an error.

This system procedure does not return a resultset.

Table 177. SYNC_REGISTER_REPLICA error codes

RC Text Description

13047 No privilege for operation

13110 NULL not allowed Only the catalog name and master node
name can be NULL; all other parameters
must be non-NULL.

13133 Not a valid license for this product.

21xxx Communication error Was not able to connect to master. For
more details about 21xxx errors, see the
appendix of solidDB Administration Guide
titled "Error Codes".

25005 Message is already active.

25031 Transaction is active, operation failed. The user has made some changes that
have not yet been committed.

25035 Message is in use.

25051 Unfinished messages found.

25052 Failed to set node name to node_name. The node_name may be invalid.

358 IBM solidDB: SQL Guide

Table 177. SYNC_REGISTER_REPLICA error codes (continued)

RC Text Description

25056 Autocommit not allowed. You must run this stored procedure with
autocommit off.

25057 The replica database has already been
registered to a master database.

25059 After registration nodename cannot be
changed.

SYNC_UNREGISTER_REPLICA
CALL SYNC_UNREGISTER_REPLICA (

replica_catalog_name, -- WVARCHAR
drop_catalog, -- INTEGER
force -- INTEGER

)

EXECUTES ON: replica.

The SYNC_UNREGISTER_REPLICA() system procedure unregisters the specified
replica catalog from the master and optionally drops the replica catalog if the
drop_catalog parameter has nonzero value. Any possibly hanging messages for this
replica are deleted in both ends of the system. User must have Administrator or
Synchronization Administrator access rights.

If the replica catalog name is NULL, then the current catalog is used. If force is
non-zero, then the master accepts unregistration even if messages for this replica
exist in the master. In that case, those messages are deleted.

If the user has any uncommitted changes (i.e. open transactions), then the call will
fail with an error.

This system procedure does not return a resultset.

Table 178. SYNC_UNREGISTER_REPLICA error codes

RC Text Description

13047 No privilege for operation

13110 NULL not allowed Catalog name cannot be NULL if
drop_catalog is non-zero.

13133 Not a valid license for this product.

21xxx Communication error Was not able to connect to master. For
more details about 21xxx errors, see the
appendix of solidDB Administration Guide
titled "Error Codes".

25005 Message is already active.

25019 Database is not a replica database.

Appendix E. System stored procedures 359

Table 178. SYNC_UNREGISTER_REPLICA error codes (continued)

RC Text Description

25020 Database is not a master database.

25023 Replica not registered.

25031 Transaction is active, operation failed. The user has made some changes that
have not yet been committed.

25035 Message is in use.

25051 Unfinished messages found.

25056 Autocommit not allowed. You must run this stored procedure with
autocommit off.

25079

25093

SYNC_REGISTER_PUBLICATION
CALL SYNC_REGISTER_PUBLICATION (

replica_catalog_name, -- WVARCHAR
publication_name -- WVARCHAR

)

EXECUTES ON: replica.

The SYNC_REGISTER_PUBLICATION() system procedure registers a publication
from the master database.

If the replica catalog name is NULL, then the current catalog is used.

If the user has uncommitted changes, then the call will fail with an error.

This system procedure does not return a resultset.

Table 179. SYNC_REGISTER_PUBLICATION error codes

RC Text Description

13047 No privilege for operation

13110 NULL not allowed Only the catalog name can be NULL; all
other parameters must be non-NULL.

13133 Not a valid license for this product.

21xxx Communication error Was not able to connect to master. For
more details about 21xxx errors, see the
appendix of solidDB Administration Guide
titled "Error Codes".

25005 Message is already active.

360 IBM solidDB: SQL Guide

Table 179. SYNC_REGISTER_PUBLICATION error codes (continued)

RC Text Description

25010 Publication not found

25019 Database is not a replica database

25020 Database is not a master database.

25023 Replica not registered.

25035 Message is in use.

25056 Autocommit not allowed. You must run this stored procedure with
autocommit off.

25072 Already registered to publication.

SYNC_UNREGISTER_PUBLICATION
CALL SYNC_UNREGISTER_PUBLICATION (

replica_catalog_name, -- WVARCHAR
publication_name, -- WVARCHAR
drop_data -- INTEGER

)

EXECUTES ON: replica.

The SYNC_UNREGISTER_PUBLICATION() system procedure unregisters a
publication. If the drop_data flag is set to a non-zero value, then all subscriptions to
the publication are automatically dropped.

If the replica catalog name is NULL, then the current catalog is used.

If the user has uncommitted changes, then the call will fail with an error.

This system procedure does not return a resultset.

Table 180. SYNC_UNREGISTER_PUBLICATION error codes

RC Text Description

13047 No privilege for operation

13110 NULL not allowed Only the catalog name can be NULL; all
other parameters must be non-NULL.

13133 Not a valid license for this product.

21xxx Communication error Was not able to connect to master. For
more details about 21xxx errors, see the
appendix of solidDB Administration Guide
titled "Error Codes".

25005 Message is already active.

25010 Publication not found.

Appendix E. System stored procedures 361

Table 180. SYNC_UNREGISTER_PUBLICATION error codes (continued)

RC Text Description

25019 Database is not a replica database.

25020 Database is not a master database.

25023 Replica not registered.

25031 Transaction is active, operation failed. User has made some changes that are not
yet committed.

25035 Message is in use.

25056 Autocommit not allowed. You must run this stored procedure with
autocommit off.

25071 Not registered to publication.

SYNC_SHOW_SUBSCRIPTIONS
CREATE PROCEDURE SYNC_SHOW_SUBSCRIPTIONS (
publication_name -- WVARCHAR
)

EXECUTES ON: replica.

Often it is useful for the application to know which subscriptions (i.e. publication
name and parameters as string representation) of a publication are active in replica
or master database(s). This functionality is available in both master and replica
catalogs. Use this function (SYNC_SHOW_SUBSCRIPTIONS) in the replica catalog.
Use the function SYNC_SHOW_REPLICA_SUBSCRIPTIONS in the master catalog.

The resultset of this procedure call is:

Table 181. CREATE PROCEDURE SYNC_SHOW_SUBSCRIPTIONS result set

Column Name Data Type Description

SUBSCRIPTION WVARCHAR Publication name and parameters as a
string

SUBSCRIPTION_TIME TIMESTAMP Time of last subscription.

Table 182. SYNC_SHOW_SUBSCRIPTIONS error codes

RC Text Description

13047 No privilege for operation

13133 Not a valid license for this product.

25009 Replica not found.

25010 Publication not found

362 IBM solidDB: SQL Guide

Table 182. SYNC_SHOW_SUBSCRIPTIONS error codes (continued)

RC Text Description

25019 Database is not a replica database

25020 Database is not a master database.

25023 Replica not registered.

25071 Not registered to publication.

See Also:

“SYNC_SHOW_REPLICA_SUBSCRIPTIONS.”

SYNC_SHOW_REPLICA_SUBSCRIPTIONS
Syntax in master:
CREATE PROCEDURE SYNC_SHOW_REPLICA_SUBSCRIPTIONS (

replica_name, -- WVARCHAR
publication_name -- WVARCHAR

)

EXECUTES ON: master.

Often it is useful for the application to know which subscriptions (i.e. publication
name and parameters as string representation) of a publication are active in a
specified replica database(s). This functionality is available in both master and
replica catalogs.

If the publication name is NULL, then subscriptions to all publications are listed.

The resultset of this procedure call is:

Table 183. SYNC_SHOW_REPLICA_SUBSCRIPTIONS result set

Column Name Data Type Description

REPLICA_NAME WVARCHAR Replica name.

SUBSCRIPTION WVARCHAR Publication name and parameters as a
string

SUBSCRIPTION_TIME TIMESTAMP Time of last subscription.

Table 184. SYNC_SHOW_REPLICA_SUBSCRIPTIONS error codes

RC Text Description

13047 No privilege for operation

13133 Not a valid license for this product.

25009 Replica not found.

25010 Publication not found

Appendix E. System stored procedures 363

Table 184. SYNC_SHOW_REPLICA_SUBSCRIPTIONS error codes (continued)

RC Text Description

25019 Database is not a replica database

25020 Database is not a master database.

25023 Replica not registered.

25071 Not registered to publication.

See Also:

“SYNC_SHOW_SUBSCRIPTIONS” on page 362.

SYNC_DELETE_MESSAGES
CALL SYNC_DELETE_MESSAGES (

replica_catalog_name, -- WVARCHAR
)

EXECUTES ON: replica.

If the replica catalog name is NULL, then the current catalog is used.

If a replica application creates lots of messages and does not check / handle errors
properly, then there may be lots of messages hanging. Sometimes, the right way to
recover is to delete all of them, regardless of the state of the messages, in both
master and replica ends. This procedure deletes the messages in the replica
database.

This procedure does not return a resultset.

Table 185. SYNC_DELETE_MESSAGES error codes

RC Text Description

13047 No privilege for operation

13133 Not a valid license for this product.

25005 Message is already active.

25009 Replica not found.

25019 Database is not a replica database

25020 Database is not a master database.

25035 Message is in use.

See Also:

“SYNC_DELETE_REPLICA_MESSAGES” on page 365.

364 IBM solidDB: SQL Guide

SYNC_DELETE_REPLICA_MESSAGES
CALL SYNC_DELETE_REPLICA_MESSAGES(

master_catalog_name -- WVARCHAR,
replica_name -- WVARCHAR

)

EXECUTES ON: master.

If a replica application creates lots of messages and does not check / handle errors
properly, then there are lots of messages hanging. Sometimes, the right way to
recover is to delete all of them, regardless of the state of the messages, in both
master and replica ends. This procedure deletes the messages of a specified replica
in the master database. The master_catalog_name parameter specifies the catalog in
the master database from which the messages of the specified replica are searched.
If the master_catalog_name is set to NULL, the current catalog is used.

This procedure does not return a resultset.

Table 186. SYNC_DELETE_REPLICA_MESSAGES error codes

RC Text Description

13047 No privilege for operation

13133 Not a valid license for this product.

25005 Message is already active.

25009 Replica not found.

25019 Database is not a replica database

25020 Database is not a master database.

25035 Message is in use.

See Also:

“SYNC_DELETE_MESSAGES” on page 364.

Miscellaneous stored procedures

SYS_GETBACKGROUNDJOB_INFO
CREATE PROCEDURE SYS_GETBACKGROUNDJOB_INFO(

jobid INTEGER)
RETURNS(

ID INTEGER,
STMT WVARCHAR,
USER_ID INTEGER,
ERROR_CODE INTEGER,
ERROR_TEXT INTEGER)

The user can retrieve information from the table SYS_BACKGROUNDJOB_INFO
using either an SQL SELECT statement or by calling the system stored procedure
SYS_GETBACKGROUNDJOB_INFO. The procedure
SYS_GETBACKGROUNDJOB_INFO returns the row that matches the given jobid.

Appendix E. System stored procedures 365

The jobid is the job ID of the START AFTER COMMIT statement that was
executed. (The job ID is returned by the server when the START AFTER COMMIT
statement is executed.)

366 IBM solidDB: SQL Guide

Appendix F. System events

This chapter documents System Events. These events are provided with the
solidDB to allow programs to be notified when certain actions occur. You can use
these events to monitor the progress of activities such as synchronization between
master and replica databases.

These events follow most of the same rules as any other events. For information
about events in general, see
v “CREATE EVENT” on page 180
v “CREATE EVENT” on page 180, which describes how to post events and wait

on events.
v 3, “Stored procedures, events, triggers, and sequences,” on page 23, which

discusses events extensively.

Because these events are pre-defined, you do not create them. Furthermore, you
should not post any system event. You should only wait on system events.

Many, although not all, system events have the same five parameters:
v ename: The event name.
v postsrvtime: The time that the server posted the event.
v uid: The user ID (if applicable).
v numdatainfo: Miscellaneous numeric data — the exact meaning depends upon

the event. For example, the event SYS_EVENT_BACKUP is posted both when a
backup is started and when a backup is completed. The value in the
numdatainfo parameter indicates which case applies — i.e. whether the backup
has just started or has just completed. This parameter may be NULL if there is
no numeric data.

v textdata: Miscellaneous text data — the exact meaning depends upon the event.
This parameter may be NULL if there is no numeric data.

This appendix contains the following tables:
1. Miscellaneous Events
2. Errors that cause the SYS_EVENT_ERROR event to be posted.
3. Conditions or warnings that cause the SYS_EVENT_MESSAGES event to be

posted.

Miscellaneous events
The following events are mostly related to the server's internal scheduling and
"housekeeping". For example, there are events related to backups, checkpoints, and
merges. Although users do not post these events, in many cases users may
indirectly cause events, for example when requesting a backup, or when turning
on "Maintenance Mode". You can monitor these events if you want.

367

Table 187. Miscellaneous events

EVENT NAME EVENT DESCRIPTION PARAMETERS

SYS_EVENT_BACKUP The system has started or completed a
backup operation. The "state" parameter
(NUMDATAINFO) indicates:

0: backup completed.

1: backup started.

Note that the server also posts a second
event (SYS_EVENT_MESSAGES) when it
starts or completes a backup.

ENAME WVARCHAR,

POSTSRVTIME TIMESTAMP,

UID INTEGER,

NUMDATAINFO INTEGER,

TEXTDATA WVARCHAR

SYS_EVENT_BACKUPREQ A backup operation has been requested
(but has not yet started).

If the user application's callback function
returns non-zero, then backup is not
performed.

This event can be caught by the user only
if the user is using the linked library
access.

None of the parameters are used.

ENAME WVARCHAR,

POSTSRVTIME TIMESTAMP,

UID INTEGER,

NUMDATAINFO INTEGER,

TEXTDATA WVARCHAR

SYS_EVENT_CHECKPOINT The system has started or completed a
checkpoint operation.

If the system started a checkpoint, then
the "state" parameter (NUMDATAINFO)
is 1, and the message (TEXTDATA)
parameter is "started".

If the system completed a checkpoint,
then the "state" parameter
(NUMDATAINFO) is 0, and the message
(TEXTDATA) parameter is "completed".

ENAME WVARCHAR,

POSTSRVTIME TIMESTAMP,

UID INTEGER,

NUMDATAINFO INTEGER,

TEXTDATA WVARCHAR

SYS_EVENT_CHECKPOINTREQ A checkpoint operation has been
requested (but has not yet started).
Checkpoints are typically executed each
time a certain number of log writes has
completed.

If the user application's callback function
returns non-zero, then the merge is not
performed.

This event can be caught by the user only
if the user is using the linked library
access.

None of the parameters are used.

ENAME WVARCHAR,

POSTSRVTIME TIMESTAMP,

UID INTEGER,

NUMDATAINFO INTEGER,

TEXTDATA WVARCHAR

SYS_EVENT_ERROR Some type of server error has occurred.
The message parameter (TEXTDATA)
contains the error text. See “Errors that
cause SYS_EVENT_ERROR” on page 374
for a list of server errors that can cause
this event to be posted.

ENAME WVARCHAR,

POSTSRVTIME TIMESTAMP,

UID INTEGER,

NUMDATAINFO INTEGER,

TEXTDATA WVARCHAR

368 IBM solidDB: SQL Guide

Table 187. Miscellaneous events (continued)

EVENT NAME EVENT DESCRIPTION PARAMETERS

SYS_EVENT_IDLE The system is idle. (Note that some tasks
have a priority of "idle" and are only run
when the system is not running any other
tasks. Because very low priority tasks may
be running in an "idle" system, the system
is not necessarily truly idle in the sense of
not doing anything.)

This event can be caught by the user only
if the user is using the linked library
access.

None of the parameters are used.

ENAME WVARCHAR,

POSTSRVTIME TIMESTAMP,

UID INTEGER,

NUMDATAINFO INTEGER,

TEXTDATA WVARCHAR

SYS_EVENT_IMDB_MEMORY The system has encountered an event
related to in-memory database memory
limits.

The NUMDATAINFO parameter indicates
the current memory allocation in
Kilobytes.

The TEXTDATA parameter can have one
of the following values:

v IMDB_LIMIT_ABOVE - The amount of
available virtual memory is above the
limit specified by using the
ImdbMemoryLimit parameter

v IMDB_LIMIT_BELOW - The amount of
available virtual memory is below the
limit specified by using the
ImdbMemoryLimit parameter

v IMDB_LOW_LEVEL_ABOVE - The amount of
available virtual memory is above the
limit specified by using the
ImdbMemoryLowPercentage
parameter

v IMDB_LOW_LEVEL_BELOW - The amount of
available virtual memory is below the
limit specified by using the
ImdbMemoryLowPercentage
parameter

v IMDB_WARNING_LEVEL_ABOVE - The
amount of available virtual memory is
above the limit specified by using the
ImdbMemoryLowPercentage
parameter

v IMDB_WARNING_LEVEL_BELOW- The amount
of available virtual memory is below
the limit specified by using the
ImdbMemoryLowPercentage
parameter

ENAME WVARCHAR,

POSTSRVTIME TIMESTAMP,

UID INTEGER,

NUMDATAINFO INTEGER,

TEXTDATA WVARCHAR

Appendix F. System events 369

Table 187. Miscellaneous events (continued)

EVENT NAME EVENT DESCRIPTION PARAMETERS

SYS_EVENT_ILL_LOGIN There has been an illegal login attempt.
The username (TEXTDATA) and userid
(NUMDATAINFO) indicate the user who
tried to log in.

ENAME WVARCHAR,

POSTSRVTIME TIMESTAMP,

UID INTEGER,

NUMDATAINFO INTEGER,

TEXTDATA WVARCHAR

SYNC_MAINTENANCEMODE_BEGIN When the sync mode changes from
NORMAL to MAINTENANCE, the server
will send this system event. The
node_name is the name of the node in
which maintenance mode started.
(Remember that a single solidDB server
can have multiple "nodes" (catalogs).) For
more details about sync mode, see “SET
SYNC MODE” on page 278.

node_name WVARCHAR.

SYNC_MAINTENANCEMODE_END When the sync mode changes from
MAINTENANCE to NORMAL, the server
will send this system event. The
node_name is the name of the node in
which maintenance mode started.
(Remember that a single solidDB server
can have multiple "nodes" (catalogs).) For
more details about sync mode, see “SET
SYNC MODE” on page 278.

node_name WVARCHAR

SYS_EVENT_MERGE An event associated with the "merge"
operation (merging data from the Bonsai
Tree to the main storage tree) has
occurred. The parameter STATE
(NUMDATAINFO) gives more details:

0: stop the merge

1: start the merge

2: merge progressing

3: merge accelerated.

ENAME WVARCHAR,

POSTSRVTIME TIMESTAMP,

UID INTEGER,

NUMDATAINFO INTEGER,

TEXTDATA WVARCHAR

SYS_EVENT_MERGEREQ A merge operation has been requested
(but has not yet started).

If the user application's callback function
returns non-zero, then the merge is not
performed.

This event can be caught by the user only
if the user is using the linked library
access.

None of the parameters are used.

ENAME WVARCHAR,

POSTSRVTIME TIMESTAMP,

UID INTEGER,

NUMDATAINFO INTEGER,

TEXTDATA WVARCHAR

370 IBM solidDB: SQL Guide

Table 187. Miscellaneous events (continued)

EVENT NAME EVENT DESCRIPTION PARAMETERS

SYS_EVENT_MESSAGES This event is posted when the server has
a message (error message or warning
message) to log to solerror.out or
solmsg.out. In this case, the TEXTDATA
contains the message text and
NUMDATAINFO the code. If the message
to be written is an error, then both
SYS_EVENT_ERROR and
SYS_EVENT_MESSAGES will be posted.
If the message is only a warning, then
only SYS_EVENT_MESSAGES is posted.
For a list of the warnings that can cause
SYS_EVENT_MESSAGES, see “Conditions
or warnings that cause
SYS_EVENT_MESSAGES” on page 375.

ENAME WVARCHAR,

POSTSRVTIME TIMESTAMP,

UID INTEGER,

NUMDATAINFO INTEGER,

MESSAGE WVARCHAR

SYS_EVENT_NOTIFY Event sent with the admin command
'notify'.

ENAME WVARCHAR,

POSTSRVTIME TIMESTAMP,

UID INTEGER,

NUMDATAINFO INTEGER,

TEXTDATA WVARCHAR

SYS_EVENT_PARAMETER This event is posted if a configuration
parameter is changed with the command

ADMIN COMMAND 'parameter...';

The parameter MESSAGE (TEXTDATA)
contains the section name (e.g. SRV) and
the parameter name.

ENAME WVARCHAR,

POSTSRVTIME TIMESTAMP,

UID INTEGER,

NUMDATAINFO INTEGER,

TEXTDATA WVARCHAR

Appendix F. System events 371

Table 187. Miscellaneous events (continued)

EVENT NAME EVENT DESCRIPTION PARAMETERS

SYS_EVENT_PROCESS_MEMORY The system has encountered an event
related to process size memory limits.

The NUMDATAINFO parameter indicates
the current memory allocation in
Kilobytes.

The TEXTDATA parameter can have one
of the following values:

v PROCESS_LIMIT_ABOVE - The amount of
available virtual memory is above the
limit specified by using the
ProcessMemoryLimit parameter

v PROCESS_LIMIT_BELOW - The amount of
available virtual memory is below the
limit specified by using the
ProcessMemoryLimit parameter

v PROCESS_LOW_LEVEL_ABOVE - The amount
of available virtual memory is above
the limit specified by using the
ProcessMemoryLowPercentage
parameter

v PROCESS_LOW_LEVEL_BELOW - The amount
of available virtual memory is below
the limit specified by using the
ProcessMemoryLowPercentage
parameter

v PROCESS_WARNING_LEVEL_ABOVE - The
amount of available virtual memory is
above the limit specified by using the
ProcessMemoryWarningPercentage
parameter

v PROCESS_WARNING_LEVEL_BELOW- The
amount of available virtual memory is
below the limit specified by using the
ProcessMemoryWarningPercentage
parameter

ENAME WVARCHAR,

POSTSRVTIME TIMESTAMP,

UID INTEGER,

NUMDATAINFO INTEGER,

TEXTDATA WVARCHAR

SYS_EVENT_ROWS2MERGE This event indicates that there are rows
that need to be merged from the Bonsai
Tree to the main storage tree. The rows
parameter (NUMDATAINFO) indicates
the number of non-merged rows in the
Bonsai Tree.

ENAME WVARCHAR,

POSTSRVTIME TIMESTAMP,

UID INTEGER,

NUMDATAINFO INTEGER,

TEXTDATA WVARCHAR

SYS_EVENT_SACFAILED This event is posted when a START
AFTER COMMIT (SAC) fails. The
application can wait for this event and
use the job ID (which is in the
NUMDATAINFO field) to retrieve the
error message from the system table
SYS_BACKGROUNDJOB_INFO. (The job
ID in NUMDATAINFO matches the job
ID that is returned when the START
AFTER COMMIT statement is executed.)

ENAME WVARCHAR,

POSTSRVTIME TIMESTAMP,

UID INTEGER,

NUMDATAINFO INTEGER,

TEXTDATA WVARCHAR

372 IBM solidDB: SQL Guide

Table 187. Miscellaneous events (continued)

EVENT NAME EVENT DESCRIPTION PARAMETERS

SYS_EVENT_SHUTDOWNREQ A shutdown request has been received. If
the user application's callback function
returns non-zero, then shutdown is not
performed.

This event can be caught by the user only
if the user is using the linked library
access.

None of the parameters are used.

ENAME WVARCHAR,

POSTSRVTIME TIMESTAMP,

UID INTEGER,

NUMDATAINFO INTEGER,

TEXTDATA WVARCHAR

SYS_EVENT_STATE_MONITOR This event is posted when monitoring
settings are changed.

State (NUMDATAINFO) is one of the
following:

0: monitoring off.

1: monitoring on.

UID is the user ID of the user for whom
monitoring was turned on or off.

ENAME WVARCHAR,

POSTSRVTIME TIMESTAMP,

UID INTEGER,

NUMDATAINFO INTEGER,

TEXTDATA WVARCHAR

SYS_EVENT_STATE_OPEN This event is posted when the "state" of
the database is changed. The parameter
STATE (NUMDATAINFO) indicates the
new state:

0: Closed. No new connections allowed.

1: Opened: New connections allowed.

ENAME WVARCHAR,

POSTSRVTIME TIMESTAMP,

UID INTEGER,

NUMDATAINFO INTEGER,

TEXTDATA WVARCHAR

SYS_EVENT_STATE_SHUTDOWN This event is posted when a server
shutdown is started. Note that the
NUMDATAINFO and TEXTDATA
parameters have no useful information.

ENAME WVARCHAR,

POSTSRVTIME TIMESTAMP,

UID INTEGER,

NUMDATAINFO INTEGER,

TEXTDATA WVARCHAR

SYS_EVENT_STATE_TRACE Server trace is turned on or off with

ADMIN COMMAND 'trace';

The parameter STATE (NUMDATAINFO)
indicates the new trace state:

0: tracing off.

1: tracing on.

ENAME WVARCHAR,

POSTSRVTIME TIMESTAMP,

UID INTEGER,

NUMDATAINFO INTEGER,

TEXTDATA WVARCHAR

Appendix F. System events 373

Table 187. Miscellaneous events (continued)

EVENT NAME EVENT DESCRIPTION PARAMETERS

SYS_EVENT_TMCMD This event is posted when an "AT"
command (i.e. a timed command) is
executed. The message parameter
(TEXTDATA) contains the command.

ENAME WVARCHAR,

POSTSRVTIME TIMESTAMP,

UID INTEGER,

NUMDATAINFO INTEGER,

TEXTDATA WVARCHAR

SYS_EVENT_TRX_TIMEOUT This event is currently not used. ENAME WVARCHAR,

POSTSRVTIME TIMESTAMP,

UID INTEGER,

NUMDATAINFO INTEGER,

TEXTDATA WVARCHAR

SYS_EVENT_USERS The parameter REASON
(NUMDATAINFO) contains the reason for
the event:

0: User connected.

1: User disconnected.

2: User disconnected abnormally.

4: User disconnected because of timeout.

ENAME WVARCHAR,

POSTSRVTIME TIMESTAMP,

UID INTEGER,

NUMDATAINFO INTEGER,

TEXTDATA WVARCHAR

Errors that cause SYS_EVENT_ERROR
The table below shows the errors that can cause the server to post the event
SYS_EVENT_ERROR.

The numbers in the "Error Code" column match the error code numbers in the
appendix "Error Codes" in the solidDB Administration Guide. These values get
passed in the NUMDATAINFO event parameter.

Table 188. Errors that cause SYS_EVENT_ERROR

Error code Error description

30104 Shutdown aborted; denied by user callback

30208 Merge not started; denied by user callback

30284 Checkpoint not started; denied by user callback

30302 Backup start failed. Shutdown is in progress

30302 Backup start failed. Backup is already active

30303 Backup aborted

374 IBM solidDB: SQL Guide

Table 188. Errors that cause SYS_EVENT_ERROR (continued)

Error code Error description

30304 Backup failed. <error description>

30305 Backup not started; denied by user callback

30306 Backup not started; Backup is not supported on diskless server.

30307 Backup not started, index check failed. Errors written to file
ssdebug.log.

30360 AT command failed. <reason>

30403 Log file write failure.

30454 Failed to save configuration file <file name>

30573 Network backup failed. <reason>

30640 <Server RPC error message>

Conditions or warnings that cause SYS_EVENT_MESSAGES
The table below shows the warning messages that can cause the server to post the
event SYS_EVENT_MESSAGES.

Table 189. Warnings that cause SYS_EVENT_MESSAGES

Error code Error description

30010 User '<username>' failed to connect, version mismatch. Client
version <version>, server version <version>.

30011 User '<username>' failed to connect, collation version mismatch.

30012 User '<username>' failed to connect, there are too many
connected clients.

30020 Server is in fatal state, no new connections are allowed

30282 Checkpoint creation not started because shutdown is in
progress.

30283 Checkpoint creation not started because it's disabled.

30300 Backup completed successfully.

Note that the server also posts a second event
(SYS_EVENT_BACKUP) when it starts or completes a backup.

30301 Backup started to <directory path>.

Note that the server also posts a second event
(SYS_EVENT_BACKUP) when it starts or completes a backup.

Appendix F. System events 375

Table 189. Warnings that cause SYS_EVENT_MESSAGES (continued)

Error code Error description

30359 Server noticed time inconsistency during at-command execution.
If the system time has been changed, please restart server.

30361 Illegal at command <command> ignored.

30362 Illegal immediate at command <command> ignored.

30405 Unable to open message log file 'file name'

30800 Unable to reserve requested <number> memory blocks for
external sorter.

Only <number> memory blocks were available. SQL: <sql
statement>

30801 Unable to reserve requested <number> memory blocks for
external sorter.

Only <number> memory blocks were available.

HotStandby events
For a description of events related to HotStandby, see solidDB High Availability User
Guide.

Advanced replication synchronization events
For a description of events related to advanced replication, see solidDB Advanced
Replication Guide.

376 IBM solidDB: SQL Guide

Index

Special characters
_ (underscore) 302
- (minus) 294
/ (slash) 294
* (asterisk) 294
% 303
> (greater than) 293
>= (greater than or equal to) 293
< (less than) 293
<> (not equal to) 293
<= (less than or equal to) 293
|| (concatenation operator) 296
+ (plus) 294, 296
= (equal to) 293

A
ABS (function) 297
access rights

publications 229, 266
registration user 283
remote stored procedures 38

ACOS (function) 297
ADD CONSTRAINT 108
ADMIN COMMAND

abort 156
assertexit 156
backgroundjob 156
backup 157
backuplist 157
checkpointing 157
cleanbgjobinfo 157
close 157
commands 155
describe 157
errorcode 157
errorexit 157
filespec 157
help 157
hotstandby 158
indexusage 158
info 159
makecp 160
memory 160
messages 160
monitor 160
netbackup 160
netbackuplist 160
netstat 160
notify 160
open 160
parameter 161
perfmon 161
perfmon diff 162
pid 162
proctrace 162
protocols 162
runmerge 162
save parameters 162
shutdown 162

ADMIN COMMAND (continued)
sqllist 162
startmerge 162
status 163
throwout 163
tid 163
trace 163
userid 164
userlist 165, 166
usertrace 167
version 167

ADMIN EVENT 167
ALL (keyword)

PROPAGATE TRANSACTIONS 242
ALTER TABLE SET HISTORY COLUMNS 169
ALTER TABLE SET NOSYNCHISTORY

described 170
ALTER TABLE SET SYNCHISTORY

described 170
ALTER TABLE statement 168
ALTER TRIGGER statement 70, 172
ALTER USER statement 172
amount of memory used by in-memory tables and

indexes 159
AND (operator) 30, 294
APPEND (keyword) 241
AS clause in SELECT statement 17
ASCending 103
ASCII (function) 296
ASIN (function) 297
ATAN (function) 297
ATAN2 (function) 297
autocommit 183
AVG (function) 295

B
backup

and SYS_EVENT_BACKUP 368
batch inserts and updates

optimizing 143
bcktime ADMIN COMMAND 159
BEGIN 182
BIGINT data type 148
BINARY

using CAST to enter values 150
BINARY data type 150
Binary Data Types 150
BIT_AND function (bit-wise AND operator) 301
BLOB 14, 152

using CAST to enter values 150
BLOBs and CLOBs 152
bookmarks

dropping 200, 220
Bulletin board parameters 227

C
CALL statement 174

example of using with EXECDIRECT and parameter 193

377

CALL statement (continued)
invoking procedures 23

candidate key 105
CASCADE 100, 213, 218
CASCADE keyword in REVOKE statements 266
CASCADED

reserved word 305
CASE 17, 296
CAST (function) 17, 295, 296

entering binary values 150
catalogs

creating 112, 177
deleting 112
described 110

CEILING (function) 298
CHAR (function) 296
CHAR data type 147
CHAR LARGE OBJECT data type 148
CHAR VARYING data type 147
CHARACTER data type 147, 148
CHARACTER LARGE OBJECT data type 148
CHARACTER VARYING data type 147
CHECK 108
checkpoint

'makecp' command 160
checkpoints

and SYS_EVENT_CHECKPOINT 368
Client-Server architecture

multi-user capability 4
overview 4

CLOB data type 148, 152
clustering 103
clustering key 326
COALESCE 295
columns 1, 7

adding to a table 101
deleting from a table 101

COLUMNS system view 352
commit block

defining refresh size 252, 257
COMMIT statements

stored procedures 48
COMMIT WORK 5, 21, 177
COMMITBLOCK (keyword)

DROP SUBSCRIPTION 219
MESSAGE FORWARD 252
MESSAGE GET REPLY 257
REFRESH 262

committing work
after altering table 101
after altering users and roles 98

Comparison operators
described 29

CONCAT (function) 296
concatenated indexes 142
CONCURRENCY 115
concurrency (locking) mode

optimistic or pessimistic 122
concurrency control

mixed 123
mode

PESSIMISTIC vs. OPTIMISTIC 116
optimistic 116
pessimistic 116
purpose 115
setting 122, 123

concurrency control mode
displaying 330
MAINMEMORY 330
MAINMEMORY PESSIMISTIC 330
OPTIMISTIC 330
PESSIMISTIC 330

Conditions or warnings that cause SYS_EVENT_ERROR 375
configuring

synchronization 281
connect string

changing to master name 277
ConnectStrForMaster (parameter) 176
constraints

foreign key 203
control structures

stored procedures 31
CONVERT_CHAR 295
CONVERT_DATE 295
CONVERT_DECIMAL 295
CONVERT_DOUBLE 295
CONVERT_FLOAT 295
CONVERT_INTEGER 295
CONVERT_LONGVARCHAR 295
CONVERT_NUMERIC 295
CONVERT_REAL 295
CONVERT_SMALLINT 295
CONVERT_TIME 295
CONVERT_TIMESTAMP 295
CONVERT_TINYINT 295
CONVERT_VARCHAR 295
CONVERTORSTOUNIONS 275
COS (function) 298
COT (function) 298
COUNT (function) 295
cptime ADMIN COMMAND 159
CREATE CATALOG statement 177
CREATE catalogs statement 112
CREATE EVENT statement 85, 180
CREATE INDEX statement 182
CREATE PROCEDURE statement 182

declare section 27
parameter section 24

CREATE PUBLICATION
described 194

CREATE ROLE statement 197
CREATE SCHEMA statement 197
CREATE SEQUENCE statement 84, 199
CREATE SYNC BOOKMARK

described 200
CREATE TABLE statement 201
CREATE TRIGGER statement 51, 204
CREATE USER statement 212
CREATE VIEW statement 212
creating

publications 194
CURDATE (function) 298
CURRENT_CATALOG (system function) 300
CURRENT_SCHEMA (system function) 300
CURRENT_USERID (system function) 300
CURSORNAME 182, 189, 190

example usage 189, 191
cursors

closing in stored procedures 42
default management in stored procedures 48
dropping in stored procedures 42
executing in stored procedures 41
fetching in stored procedures 42

378 IBM solidDB: SQL Guide

cursors (continued)
handling in stored procedures 40
in stored procedures 49
parameter markers 44
preparing in stored procedures 41

CURTIME (function) 298

D
data

exporting to file 223
importing from a file 235
returning in a stored procedure 36

data management
solidDB SQL 115

data types 9, 301
solidDB SQL 95
supported 147

database
columns 1, 7
creation time 159
free space in 159
objects 110
relational 1
row 1, 7
table 1, 7

date and time literals 302
DATE data type 150
date time functions 298
DAYNAME (function) 298
DAYOFMONTH (function) 298
DAYOFWEEK (function) 299
DAYOFYEAR (function) 299
dbconfigsize ADMIN COMMAND 159
dbcreatetime ADMIN COMMAND 159
dbfreesize ADMIN COMMAND 159
DBMS level errors

recovering 247, 255
dbpagesize ADMIN COMMAND 159
dbsize ADMIN COMMAND 159
DECIMAL data type 149
DEFAULT 37
DEFAULT (in START AFTER COMMIT) 287
deferred procedure calls 72
DEGREES (function) 298
DELETE (positioned) statement 213
DELETE statement 213
deleting

failed messages 247
messages 245

DESCending 103
diagnosing poor performance

diagnosis 145
solutions 145
symptoms 145

DIFFERENCE (function) 298
Differences between SET and SET TRANSACTION 284
DOUBLE data type 149
DOUBLE PRECISION data type 151
DROP BOOKMARK

described 200
DROP CATALOG statement 213
DROP CONSTRAINT 108
DROP EVENT statement 85, 214
DROP INDEX statement 214
DROP MASTER

described 214

DROP PROCEDURE statement 215
DROP PUBLICATION

described 215
DROP PUBLICATION REGISTRATION

described 216
DROP REPLICA

described 217
DROP ROLE statement 217
DROP SCHEMA statement 218
DROP SEQUENCE statement 218
DROP SUBSCRIPTION

described 218
DROP SYNC BOOKMARK

described 220
DROP TABLE statement 221
DROP TRIGGER statement 69, 222
DROP USER statement 222
DROP VIEW statement 222
dropping

bookmarks 200, 220
master database 214
publications 215, 216
replica databases 217
subscriptions 218

duplicate inserts
fixing 255

E
EnableHints (parameter) 144
END 182
END LOOP 185
ending

messages 248
error handling

stored procedures 43
errors

causing SYS_EVENT_ERROR 374
DBMS 247, 255
fatal synchronization errors 258
problem reporting 133

escape character 303
escape sequencefn 29
evaluating application performance 139
EVENT

dropping an event 214
posting an event 182
registering for an event 182
unregistering for an event 182
waiting on an event 182

events
ADMIN EVENT command 167
code example 85
HotStandby 376
using 85
waiting on 143

EXCLUSIVE (lock mode) 119
exclusive locks 119
EXECDIRECT 190

example usage 192
using an SQL statement in a VARCHAR variable 192

executing
failed messages 255
messages 250

EXP (function) 298
EXPLAIN PLAN FOR statement 128, 146, 223

Index 379

EXPORT SUBSCRIPTION
described 223

expressions 294
in stored procedures 29

EXTRACT FROM 299

F
fatal errors

recovery 258
FLOAT data type 149
FLOOR (function) 298
fn

usage in {fn func_name} 28, 36
FOR EACH REPLICA 72
foreign key 104

constraints 203
FOREIGN KEY 109
foreign keys 105
free space in database 159
FULL (keyword) 241
full table scan 142
functions

AVG 295
COUNT 295
for triggers 71
MAX 295
MIN 295
scalar 27, 28
SET_PARAM() 227
SQL functions 261
stack viewing in stored procedures 49
SUM 295

G
GET_PARAM()

described 227
GET_UNIQUE_STRING 189, 296

example usage 189, 191, 192
GLOBAL

keyword in CREATE TABLE command 202
GRANT EXECUTE ON statement 50
GRANT REFRESH ON

described 229
GRANT statement 228

H
HINT statement 230
history tables 170
HotStandby events 376
HOUR (function) 299

I
IF statement

described 31
IF-THEN construct

described 31
IF-THEN-ELSE construct

described 31
IF-THEN-ELSEIF construct

described 32
IFNULL (system function) 301

imdbsize ADMIN COMMAND 159
IMPORT

described 235
incremental publications

specifying 170
indexes 140, 141

concatenated 142
creating 102
creating a unique index 102
deleting 102
foreign key 105
managing 102
multi-column 142
primary key index 103
primary key indexes 103
secondary key index 103
secondary key indexes 103

indexing
columns 142

INSERT 296
multirow 238
using default values 238

INSERT statement 238
INT data type 148
INTEGER data type 148
Intelligent Transaction

parameter bulletin board 269
using saved properties 269

IS NULL (operator)
described 31

L
large replicas

creating 223
LCASE (function) 296
LEFT (function) 296
LENGTH (function) 297
LIKE 202, 293, 294, 303
LIKE (in START AFTER COMMIT) 287
listing users 166
LOCATE (function) 297
LOCK TABLE statement 239
Lock timeout

setting 124
setting, optimistic tables 125

locking
description 122
optimistic 116
pessimistic 116

locking modes
mixed 123

locks
duration 121
exclusive 119
EXCLUSIVE LOCK 119
modes

displaying 330
EXCLUSIVE 119
SHARED 119
UPDATE 120

shared 119
SHARED LOCK 119
update 119
UPDATE LOCK 119

LOG (function) 298
LOG10 (function) 298

380 IBM solidDB: SQL Guide

Logical conditions
described 31

logical database 178
Logical operators

AND 30
described 30
IS NULL 31
NOT 30, 35
OR 30

LOGIN_CATALOG (system function) 300
LOGIN_SCHEMA (system function) 300
LOGIN_USERID (system function) 300
logsize ADMIN COMMAND 159
LONG NATIONAL VARCHAR data type 148
LONG VARBINARY

using CAST to enter values 150
LONG VARBINARY data type 150
LONG VARCHAR data type 148
LONG WVARCHAR data type 148
LOOP 185
Loops

in stored procedures 33
LTRIM (function) 297

M
MAINTENANCE

set sync mode maintenance 278
Maintenance mode 278
managing

indexes 102
master database 242

changing network name 277
dropping 214
granting access to publications 229
propagating transactions to 242
properties 269
requesting reply messages from 256
retrieving parameter values 227
revoking access to publications 266
setting node name 280
setting parameters 261
setting parameters in 281
user information 242

master users
downloading list of 242

MAX (function) 295
MaxStartStatements (parameter) 136
maxusers ADMIN COMMAND 159
memtotal ADMIN COMMAND 159
MESSAGE APPEND PROPAGATE TRANSACTIONS

described 241
MESSAGE APPEND PROPAGATE WHERE

using properties 269
MESSAGE APPEND REFRESH

described 241
MESSAGE APPEND REGISTER PUBLICATION

described 241
MESSAGE APPEND REGISTER REPLICA

described 241
MESSAGE APPEND SUBSCRIBE 241
MESSAGE APPEND SYNC_CONFIG

described 241
MESSAGE APPEND UNREGISTER PUBLICATION

described 241
MESSAGE APPEND UNREGISTER REPLICA

described 241

MESSAGE BEGIN
described 244

MESSAGE DELETE
described 245

MESSAGE END
described 248

MESSAGE EXECUTE
described 250

MESSAGE FORWARD
described 251

MESSAGE FROM REPLICA DELETE 255
described 247

MESSAGE FROM REPLICA EXECUTE
described 255

MESSAGE FROM REPLICA RESTART 256
MESSAGE GET REPLY

described 256
messages

beginning 244
deleting 245
ending 248
error messages, failed messages, reply messages 247, 255
executing 250
re-executing 250
requesting replies from the master database 256
saving 248
sending 251

metadata
exporting 223

MIN (function) 295
MINUTE (function) 299
miscellaneous functions 301
MOD (function) 298
monitorstate ADMIN COMMAND 159
MONTH (function) 299
MONTHNAME (function) 299
multi-column indexes 142

N
name ADMIN COMMAND 159
NATIONAL CHAR data type 147
NATIONAL CHARACTER data type 147
NATIONAL VARCHAR data type 147
NCHAR data type 147
NCHAR LARGE OBJECT data type 148
NCHAR VARYING data type 147
NCLOB data type 148
network communications

troubleshooting 134
node

setting 280
node-def 37
NONUNIQUE 72
NORMAL

set sync mode normal 278
NOT (operator) 30, 294
NOT NULL 17
NOTUNIQUE 287
NOW (function) 299
NULL 15
NULLIF 295
Nulls

handling 35
numcursors ADMIN COMMAND 159
NUMERIC data type 149
numeric functions 297

Index 381

numlocks ADMIN COMMAND 159
nummerges ADMIN COMMAND 159
numtransactions ADMIN COMMAND 159
numusers ADMIN COMMAND 159
NVARCHAR data type 147

O
openstate ADMIN COMMAND 159
optimistic locking 116
optimizer hints

using 144
optimizing

batch inserts and updates 143
OR (operator) 30, 294

P
parameter bulletin board

defining database-level parameters 281
described 261
Intelligent Transaction 269

parameter modes 183
Input parameters 184
Input/output parameters 184
Output parameters 184

parameters
database-level 227
defining persistent database-level 281
deleting 281
EnableHints 144
get_param() 227
GET_PARAM() 227
MaxStartStatements 136
placing on bulletin board 261
put_param() 227
PUT_PARAM() 261
read-only 227
retrieving from bulletin board 227
SimpleSQLOpt 140
updatable 227
using in triggers 56

passwords
changing 97
entering 97

percent sign character 303
performance

diagnosing problems 145
indexes 141
observing 127
single-table SQL queries 140
tuning 139
using indexes to improve 141

pessimistic locking 116
PI (function) 298
POSITION (function) 297
POWER (function) 298
PRECISION data type 149
primary key 101, 105

indexes 103
primarystarttime ADMIN COMMAND 159
Privileges

managing 96
stored procedures 50

problem reporting 133

PROC_COUNT function
stored procedure stack 49

PROC_NAME (N) function
stored procedure stack 49

PROC_SCHEMA (N) function
stored procedure 49

procedures
stored procedures 24

processsize ADMIN COMMAND 159
proctrace 135
propagating

terminated messages 258
propagating transactions 242

SAVE command 267
setting default properties 269
setting priority 269

properties
assigning 269
saving as default 269
saving default transaction propagation criteria 269

pseudo columns 302
psize ADMIN COMMAND 159
publications

creating 194
dropping 215, 216
granting access 229
refreshing 242
revoking access 266

Push Synchronization 72
Example 81

PUT_PARAM()
descriptions 261

Q
QUARTER (function) 299

R
RADIANS (function) 298
re-executing

messages 250
READ COMMITTED 272
REAL data type 148, 151
recovery

and transaction logging 5
DBMS level error 247, 255

referenced table 104
REFERENCES (keyword) 202, 228, 266
referencing table 104
Referential actions

Cascade 108
No action 108
Restrict 108
Set default 108
Set null 108

Referential Integrity 104, 203
and transient tables 203
constraints 108
dynamic constraint management 108

REFRESH
defining commit block 252

REFRESH statement 262
refreshes

handling failure in the master database 258
handling failure in the replica database 258

382 IBM solidDB: SQL Guide

refreshing
publications 242

REGISTER EVENT statement 265
registering

databases, registration user 283
replica databases 242
setting replica node names 280

relational databases 1
Remote Stored Procedures 37
REPEAT (function) 297
REPEATABLE READ 272
REPLACE (function) 297
replica databases

deleting messages 245
dropping 217
properties in 269
refreshing from publications 242
registering 242, 280, 283
requesting reply messages from the master database 256
retrieving parameter values 227
saving transactions 267
setting parameters in 261, 281
unregistering 242

Replica Property Names 72
reply messages

requesting from the master database 256
setting timeout 252

RESTRICT 100, 213, 218, 221
RESTRICT keyword in REVOKE statements 266
RETURN keyword 36
REVOKE (Privilege from Role or User) statement 266
REVOKE (Role from User) statement 265
REVOKE REFRESH ON

described 266
REVOKE SUBSCRIBE Revoke Refresh 266
RIGHT (function) 297
roles

_SYSTEM 97
PUBLIC 97
SYS_ADMIN_ROLE 97
SYS_CONSOLE_ROLE 97
SYS_SYNC_ADMIN_ROLE 97
SYS_SYNC_REGISTER_ROLE 97

ROLLBACK statement 5
stored procedures 48

ROLLBACK WORK statement 267
ROUND (function) 298
row 1, 7
Row Value Constructors 19
ROWID 141
ROWNUM 140, 302, 315
RTRIM (function) 297
RVC Row Value Constructors 19

S
SAVE

described 267
SAVE DEFAULT PROPAGATE PROPERTY WHERE

described 269
SAVE DEFAULT PROPERTY

described 269
SAVE PROPERTY

described 269
SAVE PROPERTY statement 269
saving

messages 248

Scalar functions 27
described 28, 295

schemas
creating 112
deleting 113
described 111, 197

SECOND (function) 299
secondary key

indexes 103
secondarystarttime ADMIN COMMAND 159
SELECT statement 270
sending

messages 251
Sequences

Using 84
SERIALIZABLE 272
sernum ADMIN COMMAND 159
SERVER_INFO system view 352
SET

differences between SET and SET TRANSACTION 284
SET CATALOG catalog_name 272
SET CATALOG statement 111
SET DURABILITY 125, 272
SET HISTORY COLUMNS

described 170
SET IDLE TIMEOUT 272
SET ISOLATION LEVEL 272
SET LOCK TIMEOUT 272
SET NOSYNCHISTORY

described 170
SET OPTIMISTIC LOCK TIMEOUT 272
SET READ-ONLY 272
SET READ-WRITE 272
SET SAFENESS 272
SET SCHEMA 272
SET SCHEMA statement 111, 274
SET SCHEMA USER statement 274
SET SQL statement 275
SET statement 272

in stored procedures 27
SET STATEMENT MAXTIME 272
SET SYNC CONNECT 176

described 277
SET SYNC MODE statement 278
SET SYNC NODE

described 280
SET SYNC PARAMETER

described 281
SET SYNC USER IDENTIFIED BY

described 283
SET SYNCHISTORY 169

described 170
set theory 9
SET TRANSACTION

differences between SET and SET TRANSACTION 284
SET TRANSACTION DURABILITY 125
SET TRANSACTION statement 284
SET TRANSACTION WRITE 284
SET WRITE 272
SHARED (lock mode) 119
shared locks 119
SIGN (function) 298
Simple SQL Optimization 140
SimpleSQLOpt (parameter) 140
SIN (function) 298
SLEEP 301
SMALLINT data type 148

Index 383

solidDB
data management 115

solidDB JDBC Driver
troubleshooting 134

solidDB ODBC API
troubleshooting 134

solidDB ODBC Driver
troubleshooting 134

solidDB SQL
data management 115
data types 95
extensions 95
functions 96
using for database administration 95

solidDB SQL Syntax
compliance 95
using 95

soltrace.out 135
SOUNDEX (function) 297
SPACE (function) 297
space ADMIN COMMAND 159
SQL

getting started 7
mathematical origins of 9
subqueries 12
using in stored procedures 49

SQL functions
GET_PARAM() 227
PUT_PARAM() 261

SQL in stored procedures 40
SQL Info facility 127
SQL scripts 96

sample.sql 99
users.sql 96

SQL statements
examples for administering indexes 102
examples for managing database objects 112
examples for managing indexes 102
examples for managing users, roles, and user

privileges 97
examples of 99
tuning 139
using 95

SQL wildcards 303
SQL_LANGUAGES system table 319
SQL_TSI_DAY 299, 300
SQL_TSI_FRAC_SECOND 299, 300
SQL_TSI_HOUR 299, 300
SQL_TSI_MINUTE 299, 300
SQL_TSI_MONTH 299, 300
SQL_TSI_QUARTER 299, 300
SQL_TSI_SECOND 299, 300
SQL_TSI_WEEK 299, 300
SQL_TSI_YEAR 299, 300
SQL-92 95
SQL-99 95
SQLERRNUM (variable)

error code 43
SQLERROR (variable)

error string 43
SQLERROR OF cursorname (variable) 44
SQLERRSTR (variable)

error string 43
SQLROWCOUNT (variable)

row count 43
SQLSUCCESS (variable)

stored procedure 43

SQRT (function) 298
SSC_TASK_BACKGROUND 136
START AFTER COMMIT statement 287

analyzing failures in 136
tuning performance of 136

STORE
STORE clause of the CREATE TABLE command 202

Stored procedures
assigning values to variables 27
autocommit 183
CREATE PROCEDURE statement 23
cursors 49
declaring local variables 27
default cursor management 48
default values 24
described 23
error handling 43
exiting 36
input parameters 24
input/output parameters 24
loops 33
nesting procedures 46
output parameters 24
parameter markers in cursors 44
positioned updates and deletes 47
privileges 50
procedure body 27
procedure stack viewing 49
remote 37
tracing facilities for 135
transactions 48
triggers 56
using events 85
using parameters 24
using SQL 49
using SQL in 40

string functions 296
zero-length 36

SUBSCRIBE 241
subscriptions

defining commit block 257
dropping 218
exporting 223
importing 235

SUBSTRING (function) 297
SUM (function) 295
Sync Pull Notify 72

Example 81
SYNC_CONFIG 242
SYNC_DELETE_MESSAGES 364
SYNC_DELETE_REPLICA_MESSAGES 365
SYNC_MAINTENANCEMODE_BEGIN (event) 278, 370
SYNC_MAINTENANCEMODE_END (event) 278, 370
SYNC_REGISTER_PUBLICATION 360
SYNC_REGISTER_REPLICA 358
SYNC_SETUP_CATALOG 357
SYNC_SHOW_REPLICA_SUBSCRIPTIONS 363
SYNC_SHOW_SUBSCRIPTIONS 362
SYNC_UNREGISTER_PUBLICATION 361
SYNC_UNREGISTER_REPLICA 359
SYNCHISTORY 169
synchronization

history table 170
messages 261

SYS_ADMIN_ROLE 228
SYS_ATTAUTH system table 319
SYS_BACKGROUNDJOB_INFO system table 136, 320

384 IBM solidDB: SQL Guide

SYS_BLOBS system table 320
SYS_BULLETIN_BOARD system table 334
SYS_CARDINAL system table 321
SYS_CATALOGS system table 321
SYS_CHECKSTRINGS system table 322
SYS_COLUMNS system table 322
SYS_COLUMNS_AUX system table 323
SYS_DL_REPLICA_CONFIG system table 323
SYS_DL_REPLICA_DEFAULT system table 324
SYS_EVENT_BACKUP 368
SYS_EVENT_BACKUPREQ 368
SYS_EVENT_CHECKPOINT (event) 368
SYS_EVENT_CHECKPOINTREQ 368
SYS_EVENT_ERROR 368, 374
SYS_EVENT_IDLE 369
SYS_EVENT_ILL_LOGIN 370
SYS_EVENT_IMDB_MEMORY 369
SYS_EVENT_MERGE 370
SYS_EVENT_MERGEREQ 370
SYS_EVENT_MESSAGES 371
SYS_EVENT_NOTIFY 371
SYS_EVENT_PARAMETER 371
SYS_EVENT_PROCESS_MEMORY 372
SYS_EVENT_ROWS2MERGE 372
SYS_EVENT_SACFAILED 136, 372
SYS_EVENT_SHUTDOWNREQ 373
SYS_EVENT_STATE_MONITOR 373
SYS_EVENT_STATE_OPEN 373
SYS_EVENT_STATE_SHUTDOWN 373
SYS_EVENT_STATE_TRACE 373
SYS_EVENT_TMCMD 374
SYS_EVENT_TRX_TIMEOUT 374
SYS_EVENT_USERS 374
SYS_EVENTS system table 324
SYS_FORKEYPARTS system table 325
SYS_FORKEYS system table 325
SYS_GETBACKGROUNDJOB_INFO 136, 365
SYS_HOTSTANDBY system table 325
SYS_KEYPARTS system table 326
SYS_KEYS system table 326
SYS_PROCEDURE_COLUMNS system table 328
SYS_PROCEDURES system table 327
SYS_PROPERTIES system table 329
SYS_PUBLICATION_ARGS system table 335
SYS_PUBLICATION_REPLICA_ARGS system table 335
SYS_PUBLICATION_REPLICA_STMTARGS system table 335
SYS_PUBLICATION_REPLICA_STMTS system table 336
SYS_PUBLICATION_STMTARGS system table 336
SYS_PUBLICATION_STMTS system table 337
SYS_PUBLICATIONS system table 337
SYS_PUBLICATIONS_REPLICA system table 338
SYS_RELAUTH system table 329
SYS_SCHEMAS system table 329
SYS_SEQUENCES system table 330
SYS_SYNC_ADMIN_ROLE 228
SYS_SYNC_BOOKMARKS system table 338
SYS_SYNC_HISTORY_COLUMNS system table 338
SYS_SYNC_INFO system table 339
SYS_SYNC_MASTER_MSGINFO system table 339
SYS_SYNC_MASTER_RECEIVED_BLOB_REFS system

table 340
SYS_SYNC_MASTER_RECEIVED_MSGPARTS system

table 341
SYS_SYNC_MASTER_RECEIVED_MSGS system table 341
SYS_SYNC_MASTER_STORED_BLOB_REFS system table 341
SYS_SYNC_MASTER_STORED_MSGPARTS system table 342
SYS_SYNC_MASTER_STORED_MSGS system table 342

SYS_SYNC_MASTER_SUBSC_REQ system table 343
SYS_SYNC_MASTER_VERSIONS system table 343
SYS_SYNC_MASTERS system table 344
SYS_SYNC_RECEIVED_BLOB_ARGS system table 344
SYS_SYNC_RECEIVED_STMTS system table 344
SYS_SYNC_REPLICA_MSGINFO system table 345
SYS_SYNC_REPLICA_PROPERTIES system table 330
SYS_SYNC_REPLICA_RECEIVED_BLOB_REFS system

table 346
SYS_SYNC_REPLICA_RECEIVED_MSGPARTS system

table 347
SYS_SYNC_REPLICA_RECEIVED_MSGS system table 347
SYS_SYNC_REPLICA_STORED_BLOB_REFS system

table 348
SYS_SYNC_REPLICA_STORED_MSGPARTS system table 348
SYS_SYNC_REPLICA_STORED_MSGS system table 348
SYS_SYNC_REPLICA_VERSIONS system table 349
SYS_SYNC_REPLICAS system table 349
SYS_SYNC_SAVED_BLOB_ARGS system table 349
SYS_SYNC_SAVED_STMTS system table 350
SYS_SYNC_TRX_PROPERTIES system table 350
SYS_SYNC_USERMAPS system table 351
SYS_SYNC_USERS system table 351
SYS_SYNONYM system table 330
SYS_TABLEMODES system table 330
SYS_TABLES system table 331
SYS_TRIGGERS (system table) 71
SYS_TRIGGERS system table 332
SYS_TYPES system table 332
SYS_UROLE system table 333
SYS_USERS system table 333
SYS_VIEWS system table 334
system functions 300
system parameters 227
system tables 319

described 99
granting access 99
triggers 71
viewing 99

system views 351

T
table locks 119
tables 1, 7

adding columns to 101
aliases 12
committing work after altering 101
creating 100
deleting columns from 101
managing 99
removing 100

TABLES system view 353
TAN (function) 298
temporary tables 202
THEN

keyword in CASE statement 296
TIME data type 151
timeout

setting for reply messages 252
TIMEOUT (keyword)

MESSAGE FORWARD 251
MESSAGE GET REPLY 252

TIMESTAMP data type 151
TIMESTAMPADD (function) 299
TIMESTAMPDIFF (function) 300
TINYINT data type 148

Index 385

TO (keyword)
MESSAGE FORWARD 251

tracestate ADMIN COMMAND 159
tracing facilities for stored procedures and triggers 135
transaction bulletin board parameter bulletin board 227
Transaction durability level

choosing 125
improving performance with 125
setting 125

transaction log 5
transactions 21

assigning properties 269
COMMIT WORK 5
defining 115
described 5
description 121
Intelligent Transactions 242, 267
propagating 242
propagation 241
read-only 115
read-write 115
ROLLBACK 5
saving 267
saving default properties 269
setting default properties for propagation 269
setting propagation priority 269
stored procedures 48
transaction log 5
using triggers in 58

transient tables 202
Triggers

altering attributes 70
code example 66
comments and restrictions 55, 209
creating 51
dropping 69
error handling 65
functions for analyzing and debugging 71
how they work 50
nested triggers 65
obtaining information 71
parameter settings 72
privileges and security 65
procedures 56
recursive triggers 65
setting cache 72
setting default or derived columns 56
setting nested maximum 72
tracing facilities for 135
transactions 58
using 50
using parameters and variables 56

TRIM (function) 297
troubleshooting

Network communication 134
problem reporting 133
solidDB JDBC Driver 134
solidDB ODBC API 134
solidDB ODBC Driver 134

TRUNCATE (function) 298
TRUNCATE TABLE statement 289
tuning

SQL statements 139

U
UCASE (function) 297
UIC (system function) 300
underline 302
underscore 302
UNIQUE 72, 109, 287
unique constraint 101
UNLOCK TABLE statement 290
unregistering

replica databases 242
UPDATE (lock mode) 120
UPDATE (Positioned) statement 291
UPDATE (Searched) statement 291
update locks 119
uptime ADMIN COMMAND 159
user privileges 96

granting 98
granting administrator privileges 98
revoking 98

user roles 96
administrator 97, 98
changing password 97
creating 98
deleting 98
giving a user a role 98
granting privileges to 98
reserved role names 96
revoking privileges from 98
revoking the role of a user 98
system console role 97

userlist ADMIN COMMAND 165, 166
usernames

reserved names 96
users

creating 97
deleting 97

users and roles
committing work after altering 98

USERS system view 353
usertrace 135

V
VARBINARY data type 150
VARCHAR data type 147
Variables

assigning in stored procedures 27
SQLERRNUM 43
SQLERROR 43
SQLERROR OF cursorname 44
SQLERRSTR 43
SQLROWCOUNT 43
SQLSUCCESS 43
using in triggers 56

W
WCHAR data type 147
WEEK (function) 300
WHEN

in case_specification 296
keyword in event specification 180

WHERE (keyword)
PROPAGATE TRANSACTIONS 242

WHILE-LOOP statement
described 33

386 IBM solidDB: SQL Guide

wildcard characters 302
WRITETRACE 135
WVARCHAR data type 147

Y
YEAR (function) 300

Z
zero-length strings 36

Index 387

388 IBM solidDB: SQL Guide

Notices

© Copyright Oy International Business Machines Ab 1993, 2011.

All rights reserved.

No portion of this product may be used in any way except as expressly authorized
in writing by Oy International Business Machines Ab.

This product is protected by U.S. patents 6144941, 7136912, 6970876, 7139775,
6978396, 7266702, 7406489, 7502796, and 7587429.

This product is assigned the U.S. Export Control Classification Number
ECCN=5D992b.

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

389

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Canada Limited
Office of the Lab Director
8200 Warden Avenue
Markham, Ontario
L6G 1C7
CANADA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the

390 IBM solidDB: SQL Guide

names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

IBM, the IBM logo, ibm.com®, Solid, solidDB, InfoSphere™, DB2®, Informix®, and
WebSphere® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and
service names might be trademarks of IBM or other companies. A current list of
IBM trademarks is available on the Web at “Copyright and trademark information”
at www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux® is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other product and service names might be trademarks of IBM or other companies.

Notices 391

http://www.ibm.com/legal/copytrade.shtml

392 IBM solidDB: SQL Guide

����

Printed in USA

SC23-9826-03

	Contents
	Figures
	Tables
	Summary of changes
	About this manual
	Typographic conventions
	Syntax notation conventions

	1 Database concepts
	Relational databases
	Tables, rows, and columns
	Relating data in different tables

	Client-Server architecture
	Multi-user capability
	Transactions
	Transaction logging and recovery
	Background

	Summary

	2 Getting started with SQL
	Tables, rows, and columns
	SQL
	The mathematical origins of SQL
	Creating tables with related data
	Table aliases
	Subqueries

	Which formats are used for each data type
	BLOBs (or binary data types)
	NULL IS NOT NULL (or "how to say 'none of the above' in SQL")
	NOT NULL
	Expressions and casts
	Row value constructors

	More about transactions
	Summary
	Where to find additional information about SQL

	3 Stored procedures, events, triggers, and sequences
	Stored procedures
	Basic procedure structure
	Naming procedures
	Parameter section
	Using parameters
	Using RETURNS

	Declare section
	Procedure body
	Assignments
	Scalar functions with assignments
	Variables, constants, and parameters in assignments
	Single quotes and apostrophes in string assignments

	Expressions
	Comparison operators
	Logical operators
	IS NULL operator

	Control structures
	IF statement
	IF-THEN
	IF-THEN-ELSE
	IF-THEN-ELSEIF
	Use of parentheses in IF-THEN statements
	WHILE-LOOP
	Leaving loops
	Use of parentheses in WHILE loops
	Handling nulls
	NOT operator
	Zero-length strings
	Example stored procedure
	Exiting a procedure
	Returning data

	Remote stored procedures
	Access rights

	Using SQL in a stored procedure
	EXECDIRECT
	Using a cursor
	1. Preparing the cursor
	2. Executing the cursor
	3. Fetching on the cursor
	4. Closing the cursor
	5. Dropping the cursor
	Example stored procedure

	Error handling
	SQLSUCCESS
	SQLERRNUM
	SQLERRSTR
	SQLROWCOUNT
	SQLERROR
	SQLERROR OF cursorname

	Parameter markers in cursors

	Calling other procedures
	Positioned updates and deletes
	Transactions
	Default cursor management
	Notes on SQL
	Functions for procedure stack viewing

	Procedure privileges
	Using triggers
	How triggers work
	Creating triggers
	CREATE TRIGGER statement

	Keywords and clauses
	Trigger_name
	BEFORE | AFTER clause
	INSERT | UPDATE | DELETE clause
	Table_name
	Trigger_body
	REFERENCING clause
	{OLD | NEW} column_name AS col_identifier

	Triggers comments and restrictions

	Triggers and procedures
	Setting default or derived columns
	Using parameters and variables

	Triggers and transactions
	Recursion and concurrency conflict errors
	Triggers and recursion
	Summary of trigger cases
	Flawed trigger
	Error handling
	Nested and recursive triggers

	Trigger privileges and security
	Raising errors from inside triggers
	Trigger example
	Dropping triggers
	Altering trigger attributes
	Obtaining trigger information
	Trigger functions
	SYS_TRIGGERS system table
	Trigger parameter settings
	Setting nested trigger maximum
	Setting the trigger cache

	Deferred procedure calls
	Sync Pull Notify ("Push Synchronization") Example
	Tracing the execution of background jobs
	Controlling background tasks

	Using sequences
	Using events

	4 Using solidDB SQL for database administration
	Using solidDB SQL syntax
	solidDB SQL data types
	solidDB ADMIN COMMAND
	Using functions

	Managing user privileges and roles
	User privileges
	User roles
	Examples of SQL statements
	Creating users
	Deleting users
	Changing a password
	Creating roles
	Deleting roles
	Granting privileges to a user or a role
	Granting privileges to a user by giving the user a role
	Revoking privileges from a user or a role
	Revoking privileges by revoking the role of a user
	Granting administrator privileges to a user

	Managing tables
	Accessing system tables
	Examples of SQL statements
	Creating tables
	Removing tables
	Adding columns to a table
	Deleting columns from a table

	Managing indexes
	Examples of SQL statements
	Creating an index on a table
	Creating a unique index on a table
	Deleting an index

	Primary key indexes
	Secondary key indexes
	Protection against duplicate indexes

	Referential integrity
	Primary keys and candidate keys
	Foreign keys
	Referential actions
	Dynamic constraint management

	Managing database objects
	Introduction
	Catalogs
	Schemas
	Uniquely identifying objects within catalogs and schemas
	Examples of SQL statements
	Creating a catalog
	Setting a catalog and schema context
	Deleting a catalog
	Creating a schema
	Deleting a schema

	5 Managing transactions
	Defining read-only and read-write transactions
	Concurrency control and locking
	PESSIMISTIC vs. OPTIMISTIC concurrency control
	Locks and lock modes
	Table-level vs. row-level locks
	Lock modes: shared, exclusive, and update
	Lock duration and timeout

	Setting concurrency control
	Setting the concurrency (locking) mode to optimistic or pessimistic
	Setting mixed concurrency control
	Reading the concurrency mode
	Setting lock timeout
	Setting lock timeout for optimistic tables

	Choosing the transaction durability
	Setting the transaction durability level

	6 Diagnostics and troubleshooting
	Observing performance
	SQL Info facility
	EXPLAIN PLAN FOR statement
	Example 1
	Execution graph:
	Example 2
	Execution graph:

	Problem reporting
	Problem categories
	solidDB ODBC API problems
	solidDB ODBC driver problems
	solidDB JDBC driver problems
	Communication between a client and server

	Tracing facilities for stored procedures and triggers
	User-definable trace output from procedure code
	Procedure execution trace

	Measuring and improving performance of START AFTER COMMIT statements
	Tuning performance of START AFTER COMMIT statements
	Analyzing failures in START AFTER COMMIT statements

	7 Performance tuning
	Tuning SQL statements and applications
	Evaluating application performance
	Using stored procedure language

	Optimizing single-table SQL queries
	Using indexes to improve query performance
	Full table scan
	Concatenated indexes
	Choosing columns to index

	Waiting on events
	Optimizing batch inserts and updates
	Increasing speed of batch inserts and updates

	Using optimizer hints
	Diagnosing poor performance

	Appendix A. Data types
	Supported data types
	Character data types
	Numeric data types
	Binary data types
	Date data type
	Time data type
	Timestamp data type
	Smallest possible non-zero numbers
	Description of different column values in the tables

	BLOBs and CLOBs

	Appendix B. solidDB SQL syntax
	ADMIN COMMAND
	ADMIN EVENT
	Usage
	Examples

	ALTER TABLE
	Usage
	Example

	ALTER TABLE ... SET HISTORY COLUMNS
	Usage
	Usage in master
	Usage in replica
	Example
	Return values
	See also

	ALTER TABLE ... SET SYNCHISTORY
	Usage
	Usage in master
	Usage in replica
	Example
	Return values
	See also

	ALTER TRIGGER
	Usage
	Example

	ALTER USER
	Usage
	Example

	ALTER USER (replica)
	Usage
	Usage in master
	Usage in replica
	Example
	Return values

	CALL
	Supported in
	Usage
	Transactions
	Return values from the remote procedure
	Access rights for remote stored procedure calls
	Durability
	Example

	COMMIT WORK
	Usage
	Example
	See also

	CREATE CATALOG
	Usage
	Examples

	CREATE EVENT
	Usage
	Example
	See also

	CREATE INDEX
	Usage
	Example
	See also

	CREATE PROCEDURE
	Usage
	Preparing SQL statements
	Executing prepared SQL statements
	Fetching results
	Closing and dropping cursors
	Checking for errors
	Using transactions
	Using sequencer objects and event alerts
	Writetrace
	Procedure stack functions
	Dynamic cursor names
	EXECDIRECT
	CREATE PROCEDURE
	Using the explicit RETURN statement
	Using EXECDIRECT
	Using CURSORNAME
	Using GET_UNIQUE_STRING and CURSORNAME
	Example 6
	Creating a unique name for a synchronization message
	Using GET_UNIQUE_STRING

	CREATE [OR REPLACE] PUBLICATION
	Usage
	Usage in master
	Usage in replica
	Example
	Return values

	CREATE ROLE
	Usage
	Example

	CREATE SCHEMA
	Usage
	Examples

	CREATE SEQUENCE
	Usage
	Examples

	CREATE SYNC BOOKMARK
	Supported in
	Usage
	Usage in master
	Usage in replica
	Example
	Return values

	CREATE TABLE
	Usage
	Interactions with configuration parameters

	Example

	CREATE TRIGGER
	Usage
	Trigger name
	BEFORE | AFTER clause
	INSERT | UPDATE | DELETE clause
	Table_name
	Trigger_body
	REFERENCING clause
	{OLD | NEW} column_name AS col_identifier
	Triggers comments and restrictions
	Setting the maximum number of nested triggers
	Setting the triggers cache
	Checking for errors
	Triggers stack functions
	Example

	CREATE USER
	Usage
	Example

	CREATE VIEW
	Usage
	Example

	DELETE
	Usage
	Example

	DELETE (positioned)
	Usage
	Example

	DROP CATALOG
	Usage
	Example

	DROP EVENT
	Usage
	Example

	DROP INDEX
	Usage
	Example

	DROP MASTER
	Usage
	Usage in master
	Usage in replica
	Examples
	Return values

	DROP PROCEDURE
	Usage
	Example

	DROP PUBLICATION
	Usage
	Usage in master
	Usage in replica
	Example
	Return values

	DROP PUBLICATION REGISTRATION
	Supported in
	Usage
	Usage in master
	Usage in replica
	Example
	Return values

	DROP REPLICA
	Supported in
	Usage
	Usage in master
	Usage in replica
	Example
	Return values

	DROP ROLE
	Usage
	Example

	DROP SCHEMA
	Usage
	Examples

	DROP SEQUENCE
	Usage
	Examples

	DROP SUBSCRIPTION
	Supported in
	Usage
	Usage in master
	Usage in replica
	Example

	DROP SYNC BOOKMARK
	Supported in
	Usage
	Usage in master
	Usage in replica
	Example
	Return values

	DROP TABLE
	Usage
	Examples

	DROP TRIGGER
	Usage
	Examples

	DROP USER
	Usage
	Example

	DROP VIEW
	Usage
	Examples

	EXPLAIN PLAN FOR
	Usage
	Example

	EXPORT SUBSCRIPTION
	Supported in
	Usage
	Keywords and clauses
	Usage rules

	Usage in master
	Usage in replica
	Example
	Return values

	EXPORT SUBSCRIPTION TO REPLICA
	Supported in
	Usage
	Keywords and clauses

	Usage in master
	Usage in replica
	Example
	Return values

	GET_PARAM()
	Supported in
	Usage
	Usage in master
	Usage in replica
	solidDB system parameters
	Example
	Return values
	See also

	GRANT
	Usage
	Example
	See also

	GRANT REFRESH
	Supported in
	Usage
	Usage in master
	Usage in replica
	Example
	Return values

	HINT
	Pseudo comment identifier
	Example 1
	Example 2
	Usage
	Example

	IMPORT
	Usage
	Usage rules

	Usage in master
	Usage in replica
	Example
	Return values

	INSERT
	Usage
	Example

	LOCK TABLE
	Usage
	Examples
	Return values
	See also

	MESSAGE APPEND
	Supported in
	Usage
	Usage in master
	Usage in replica
	Example
	Return values

	MESSAGE BEGIN
	Supported in
	Usage
	Usage in master
	Usage in replica
	Example
	Return values from master

	MESSAGE DELETE
	Supported in
	Usage
	Usage in master
	Usage in replica
	Example

	MESSAGE DELETE CURRENT TRANSACTION
	Supported in
	Usage
	Usage in master
	Usage in replica
	Example
	Return values

	MESSAGE END
	Supported in
	Usage
	Usage in master
	Usage in replica
	Return values from replica
	Return values from master

	MESSAGE EXECUTE
	Supported in
	Usage
	Usage in master
	Usage in replica
	Result set
	Example
	Return values

	MESSAGE FORWARD
	Supported in
	Usage
	Example
	Return values from replica
	Return values from master

	MESSAGE FROM REPLICA DELETE
	MESSAGE FROM REPLICA EXECUTE
	Supported in
	Usage
	Usage in master
	Usage in replica
	Example
	Return values

	MESSAGE FROM REPLICA RESTART
	MESSAGE GET REPLY
	Supported in
	Usage
	Usage in master
	Usage in replica
	Example
	Return values from replica
	Return values from master
	Result set

	POST EVENT
	PUT_PARAM()
	Supported in
	Usage
	Usage in master
	Usage in replica
	Differences between "PUT_PARAM()" and "SAVE PROPERTY property_name VALUE property_value;"
	Example
	Return values
	See also

	REFRESH
	Usage
	Example
	Return values

	REGISTER EVENT
	REVOKE (role from user)
	Usage
	Example

	REVOKE (privilege from role or user)
	Usage
	Example
	See also

	REVOKE REFRESH
	Supported in
	Usage
	Usage in master
	Usage in replica
	Example
	Return values

	ROLLBACK WORK
	Usage
	Example

	SAVE
	Supported in
	Usage
	Usage in master
	Usage in replica
	Example
	Return values

	SAVE PROPERTY
	Supported in
	Usage
	Usage in master
	Usage in replica
	Differences between "PUT_PARAM()" and "SAVE PROPERTY property_name VALUE property_value;"
	Example
	Return values
	Result set

	SELECT
	Usage
	Examples
	START WITH example
	LEVEL and ORDER SIBLINGS BY example

	SET
	Usage
	Differences between SET and SET TRANSACTION
	SET (read/write level)
	SET CATALOG
	SET DURABILITY
	SET ISOLATION LEVEL
	SET SAFENESS
	SET SCHEMA
	Usage
	Example
	See also

	SET SQL
	Usage
	Example

	SET STATEMENT MAXTIME
	SET SYNC
	SET SYNC master_or_replica
	SET SYNC CONNECT
	SET SYNC MODE
	SET SYNC NODE
	SET SYNC PARAMETER
	SET SYNC PROPERTY
	SET SYNC USER

	SET TIMEOUT
	SET TRANSACTION
	Usage
	Background information on transaction logging and durability
	Differences between SET and SET TRANSACTION
	Warnings regarding durability
	SET TRANSACTION examples
	See also
	SET TRANSACTION (read/write level)
	SET TRANSACTION DURABILITY
	SET TRANSACTION ISOLATION LEVEL
	SET TRANSACTION SAFENESS

	START AFTER COMMIT
	Usage
	Transactions
	Context of the background statements
	Durability
	Rollback
	Order of execution
	Examples

	TRUNCATE TABLE
	Usage

	UNLOCK TABLE
	Usage
	Examples of using LOCK and UNLOCK
	Return values
	See also

	UNREGISTER EVENT
	UPDATE (positioned)
	Usage
	Example

	UPDATE (searched)
	Usage
	Example

	WAIT EVENT
	Table_reference
	Query_specification
	Search_condition
	Check_condition
	Expression
	String functions
	Numeric functions
	Date time functions
	System functions
	Miscellaneous functions
	Data_type
	Date and time literals
	Pseudo columns
	Wildcard characters
	Using SQL wildcards
	Wildcard characters as literals

	Appendix C. Reserved words
	Appendix D. Database system tables and system views
	System tables
	SQL_LANGUAGES
	SYS_ATTAUTH
	SYS_BACKGROUNDJOB_INFO
	SYS_BLOBS
	SYS_CARDINAL
	SYS_CATALOGS
	SYS_CHECKSTRINGS
	SYS_COLUMNS
	SYS_COLUMNS_AUX
	SYS_DL_REPLICA_CONFIG
	SYS_DL_REPLICA_DEFAULT
	SYS_EVENTS
	SYS_FORKEYPARTS
	SYS_FORKEYS
	SYS_HOTSTANDBY
	SYS_INFO
	SYS_KEYPARTS
	SYS_KEYS
	SYS_PROCEDURES
	SYS_PROCEDURE_COLUMNS
	SYS_PROPERTIES
	SYS_RELAUTH
	SYS_SCHEMAS
	SYS_SEQUENCES
	SYS_SYNC_REPLICA_PROPERTIES
	SYS_SYNONYM
	SYS_TABLEMODES
	SYS_TABLES
	SYS_TRIGGERS
	SYS_TYPES
	SYS_UROLE
	SYS_USERS
	SYS_VIEWS

	System tables for data synchronization
	SYS_BULLETIN_BOARD
	SYS_PUBLICATION_ARGS
	SYS_PUBLICATION_REPLICA_ARGS
	SYS_PUBLICATION_REPLICA_STMTARGS
	SYS_PUBLICATION_REPLICA_STMTS
	SYS_PUBLICATION_STMTARGS
	SYS_PUBLICATION_STMTS
	SYS_PUBLICATIONS
	SYS_PUBLICATIONS_REPLICA
	SYS_SYNC_BOOKMARKS
	SYS_SYNC_HISTORY_COLUMNS
	SYS_SYNC_INFO
	SYS_SYNC_MASTER_MSGINFO
	SYS_SYNC_MASTER_RECEIVED_BLOB_REFS
	SYS_SYNC_MASTER_RECEIVED_MSGPARTS
	SYS_SYNC_MASTER_RECEIVED_MSGS
	SYS_SYNC_MASTER_STORED_BLOB_REFS
	SYS_SYNC_MASTER_STORED_MSGPARTS
	SYS_SYNC_MASTER_STORED_MSGS
	SYS_SYNC_MASTER_SUBSC_REQ
	SYS_SYNC_MASTER_VERSIONS
	SYS_SYNC_MASTERS
	SYS_SYNC_RECEIVED_BLOB_ARGS
	SYS_SYNC_RECEIVED_STMTS
	SYS_SYNC_REPLICA_MSGINFO
	SYS_SYNC_REPLICA_RECEIVED_BLOB_REFS
	SYS_SYNC_REPLICA_RECEIVED_MSGPARTS
	SYS_SYNC_REPLICA_RECEIVED_MSGS
	SYS_SYNC_REPLICA_STORED_BLOB_REFS
	SYS_SYNC_REPLICA_STORED_MSGS
	SYS_SYNC_REPLICA_STORED_MSGPARTS
	SYS_SYNC_REPLICA_VERSIONS
	SYS_SYNC_REPLICAS
	SYS_SYNC_SAVED_BLOB_ARGS
	SYS_SYNC_SAVED_STMTS
	SYS_SYNC_TRX_PROPERTIES
	SYS_SYNC_USERMAPS
	SYS_SYNC_USERS

	System views
	COLUMNS
	SERVER_INFO
	TABLES
	USERS

	Synchronization-related views
	SYNC_FAILED_MESSAGES
	SYNC_FAILED_MASTER_MESSAGES
	SYNC_ACTIVE_MESSAGES
	SYNC_ACTIVE_MASTER_MESSAGES

	Appendix E. System stored procedures
	Synchronization-related stored procedures
	SYNC_SETUP_CATALOG
	SYNC_REGISTER_REPLICA
	SYNC_UNREGISTER_REPLICA
	SYNC_REGISTER_PUBLICATION
	SYNC_UNREGISTER_PUBLICATION
	SYNC_SHOW_SUBSCRIPTIONS
	SYNC_SHOW_REPLICA_SUBSCRIPTIONS
	SYNC_DELETE_MESSAGES
	SYNC_DELETE_REPLICA_MESSAGES

	Miscellaneous stored procedures
	SYS_GETBACKGROUNDJOB_INFO

	Appendix F. System events
	Miscellaneous events
	Errors that cause SYS_EVENT_ERROR
	Conditions or warnings that cause SYS_EVENT_MESSAGES
	HotStandby events
	Advanced replication synchronization events

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

	Notices

