
IBM solidDB
IBM solidDB Universal Cache
Version 6.3

High Availability User Guide

SC23-9828-03

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 185.

First edition, third revision

This edition applies to version 6, release 3 of IBM solidDB (product number 5724-V17) and IBM solidDB Universal
Cache (product number 5724-W91) and to all subsequent releases and modifications until otherwise indicated in
new editions.

© Oy International Business Machines Ab 1993, 2011

Contents

Figures v

Tables vii

Summary of changes. ix

About this manual xi
Illustration conventions xi
Typographic conventions xii
Syntax notation conventions xiii

1 Introducing IBM solidDB HotStandby 1
How HotStandby works 2

HotStandby API (HSB Admin Commands) . . . 2
Basic HotStandby server scheme. 3
Heartbeat 3
The transaction log and HotStandby 4
Server HotStandby states 5
Combining HotStandby and advanced replication 5
Failover 6
Server CatchUp 7
Replication modes in HotStandby 8

Description of server states 12
How does HotStandby affect performance 14

Adaptive durability. 15
High Availability Controller (HAC) 18

Recognized failures 20
Controlling database server processes 20
External Reference Entity (ERE) 21
Networking in HAC 22
High Availability Manager 23
HAC logging 24

2 Getting started with HotStandby . . . 25
Before you begin 25
HotStandby demonstration 25
HotStandby quick start procedure 25
Starting and stopping HA Controller 27
HSB with HA Controller quick start procedure . . 28
Summary of start-up sequences. 29

3 Administering and configuring
HotStandby. 31
What you should know 31

HotStandby and the solidDB configuration file 31
HotStandby and access rights 32
solidDB tools and HotStandby 32
Database migration (disk-based servers only) . . 32
Interoperability 33

Limitations and warnings with HotStandby . . . 33
In-memory tables 33
Network partitions and dual primaries 33
Running out of space for transaction logs . . . 34

Overview of administration tasks 35

Performing HotStandby recovery and maintenance 36
Special configurations: Lower cost versus higher
safety 36

Reducing cost: N + 1 spare and N + M spares
scenarios 37
Increasing reliability: 2N + 1 spare and 2N + M
spare scenarios 38
How solidDB HSB supports the N+1 (N+M) and
2N+1 (2N+M) approaches 38
Using HAC with spares 39

Configuring solidDB for HotStandby 39
Defining secondary and primary node
configuration (Com section) 39
Defining timeouts between applications and
servers (Com Section) 40
Transaction durability 41

Configuring HotStandby-specific parameters . . . 41
Defining primary and secondary HotStandby
configuration 41
Setting HotStandby server wait time to help
detect broken or unavailable connections . . . 42
Defining a name and location for HotStandby
database copy operation 44
Defining primary server behavior during a
secondary failure 44

Performance tuning. 45
Tuning replication performance with safeness
and durability levels 45
Tuning netcopy performance (General section). . 45

Configuring HA Controller and HA Manager . . . 46
Configuration file examples 47

The solid.ini configuration file 47
The solidhac.ini configuration file 47
The HAManager.ini configuration file 50

4 Using HotStandby with applications 53
Two ways to connect to HotStandby servers . . . 53

Choosing the connectivity type 53
Using the Transparent Connectivity 54

Failure transparency in TC 54
Load balancing in Transparent Connectivity . . 54
Syntax of the Transparent Connectivity Info . . 57
TC Info attribute combinations 59
Handling TC Info contradictions 59
Enacting transparent connectivity in JDBC . . . 59
Programming for connection switch 62

Using the basic connectivity 65
Reconnecting to primary servers from
applications 65
Reconnecting to secondary servers. 69
Advanced replication requirements 69

5 Using HotStandby API commands . . 73
Switching server states 73

Performing switchovers 73

iii

Verifying the switch 75
Performing failovers 76
Running the new primary in PRIMARY ALONE
state 76
Bringing the secondary server back online . . . 77

Shutting off HotStandby operations 77
Synchronizing primary and secondary servers . . . 78

Catchup 78
Full copy 79
Verifying the copy 82
Using a watchdog to synchronize servers . . . 82
Copying a primary database to a secondary over
the network 82
Creating a new database for the secondary server 83
Replacing an existing database on the secondary
server 85
Verifying netcopy status 85
Copying a database file from the primary server
to a specified directory 86

Connecting HotStandby servers 87
Checking HotStandby status. 88

Displaying switch status information 88
Displaying connect status information 89
Displaying communication information 89
Displaying role start time. 90

Verifying HotStandby server states 90
Server state combinations. 91

Choosing which server to make primary 92
Changing a HotStandby server to a non-HotStandby
server 93

6 Behavior of High Availability
Controller in failure cases 95
Primary database fails 95
Secondary database fails 96
Primary node fails 96
Secondary node fails 97
HotStandby link fails 97
Server is unresponsive to external clients 98

7 Upgrading HotStandby servers . . . 101
Cold and hot migration 101
Migration between HSB-compatible versions . . . 101
Migration between HSB-incompatible versions . . 101

Preparation steps for migration between
HSB-incompatible versions 102
After the upgrade 104

Appendix A. HotStandby configuration
parameters 107
Ensuring that Primary and Secondary parameter
values are coordinated 107
Determining whether the Primary's settings take
precedence over the Secondary's 108
Querying HotStandby configuration parameters 109
Modifying HotStandby configuration parameters 109

Access mode 109
Cluster section 110
HotStandby section 110
High Availability Controller configuration
parameters 114
High Availability Manager configuration
parameters 118

Appendix B. Error codes 119
HotStandby errors and status codes 119
High Availability Controller errors and status codes 127
solidDB database Errors 128
solidDB table errors 130
solidDB communication errors. 131

Appendix C. Summary of HotStandby
administrative commands 133
HotStandby commands 133
High Availability Controller commands 140

Appendix D. Server state transitions 141
HotStandby state transition diagram. 141

Appendix E. HotStandby system
events 149

Appendix F. Watchdog sample 151
HotStandby configuration using Watchdog . . . 151

How the Watchdog application works 152
System design issues 153
Watchdog configuration 154
Using the sample Watchdog application . . . 155

Failure situations and Watchdog actions 155
Primary is down 156
Secondary is down 158
Watchdog is down 161
Communication link between Primary and
Secondary is down 163
Communication link between the Watchdog and
Primary is down 165
Communication link between the Watchdog and
Secondary is down 167
Communication links between the Watchdog
and Primary, and between the Primary and
Secondary, are down 169
Communication links between the Watchdog
and Secondary, and between the Primary and
Secondary, are down 172

Watchdog section of the solid.ini configuration
file 174

Index 179

Notices 185

iv IBM solidDB: High Availability User Guide

Figures

1. HotStandby architecture. 2
2. HotStandby server scheme 3
3. HotStandby with master and replica server

scheme 6
4. HotStandby switchover to new Primary (old

Secondary) 7
5. Server failover and catchup example 8
6. Synchronous HotStandby configuration 10
7. High Availability Controller architecture 19
8. External Reference Entity components. . . . 22
9. High Availability Manager 23

10. Summary of start-up sequences 30
11. Master failover 70
12. Replica failover 71
13. State switch 74
14. Manual full copy procedure 81
15. HotStandby server state transitions 143

16. Heterogeneous HotStandby configuration
with Watchdog 154

17. Primary is down scenario and remedy 157
18. Secondary is down scenario and remedy 160
19. Watchdog is down scenario and remedy 162
20. Broken link between Primary and Secondary

scenario and remedy 164
21. Broken link between Watchdog and Primary

scenario and remedy 166
22. Broken link between Watchdog and

Secondary scenario and remedy 168
23. Broken link between Watchdog and Primary,

and between Primary and Secondary, scenario
and remedy 170

24. Broken link between Watchdog and
Secondary and between Primary and
Secondary scenario and remedy 173

v

vi IBM solidDB: High Availability User Guide

Tables

1. HotStandby illustration conventions xi
2. Typographic conventions xii
3. Syntax notation conventions. xiii
4. Description of server states 12
5. Installation sequence steps 30
6. Administration Tasks 35
7. Choosing the connectivity type 53
8. TC Info abbreviations 57
9. Possible combinations of TC Info attributes 59

10. Connect request errors 61
11. Warnings 61
12. Connection switch request 62
13. Communication link failure 63
14. Session state preservation 63
15. HOTSTANDBY_CONNECTSTATUS status

values 67
16. Connect status return values 89
17. Server states 91
18. Cluster parameters 110
19. HotStandby parameters 110
20. HAC configuration parameters:

[HAController] section 114

21. HAC configuration parameters: [LocalDB]
section 116

22. HAC configuration parameters: [RemoteDB]
section 117

23. HAC configuration parameters: [ERE] section 118
24. High Availability Manager configuration

parameters 118
25. solidDB server errors for HotStandby 119
26. solidDB HotStandby errors 123
27. solidDB HSB errors and messages 124
28. High Availability Controller errors and status

codes 127
29. solidDB database errors 128
30. solidDB table errors 130
31. solidDB communication errors 131
32. High Availability Controller commands 140
33. Server state transition table 144
34. HotStandby events. 149
35. Watchdog parameters 175

vii

viii IBM solidDB: High Availability User Guide

Summary of changes

Changes for revision 03

v Missing error messages added in section “solidDB HSB errors and messages” on
page 124.

v New section for High Availability Controller failure scenarios added: “Server is
unresponsive to external clients” on page 98

Changes for revision 02

v New High Availability Controller (HAC) parameters added for enabling
application connection tests that check whether the connection the application
uses to connect to the server is working.
[HA Controller]

– ApplicationConnTestUsername

– ApplicationConnTestPassword

[LocalDB]

– EnableApplicationConnTest

– ApplicationConnTestConnect

– EnableUnresponsiveActions

– RequiredAppConnTestFailures

– ApplicationConnTestTimeout

– ApplicationConnTestInterval

– UnresponsiveActionScript

For details on these parameters, see section “High Availability Controller
configuration parameters” on page 114.

v New parameter HotStandby.TCConnect added in section “HotStandby section”
on page 110.

Changes for revision 01

v Factory value of the parameter Logging.DurabilityLevel corrected throughout
the manual; the factory value is 1 (Relaxed durability).

v Corrected factory values for High Availability Controller (HAC) parameters in
section “High Availability Controller configuration parameters” on page 114.
[HA Controller]

– Listen: no factory value
– EnableAutoNetcopy: factory value is 'Yes'
– CheckTimeout: factory value is '150'
[LocalDB]

– Connect: no factory value
– StartScript: no factory value
[RemoteDB]

– Connect: no factory value
[ERE]

– EREIP: no factory value

ix

x IBM solidDB: High Availability User Guide

About this manual

The IBM® solidDB® High Availability (HotStandby) component increases the
reliability of your database system, reducing downtime. HotStandby uses a "hot
standby" approach, in which a second database server runs in parallel with the
primary server and keeps an exact up-to-date copy of the data. If the primary
database server fails, the High Availability Controller (HAC) makes a switch over
to the secondary, transparently to applications and with no loss of committed
transactions, and with minimal performance impact. Switchover times can be quite
fast — as short as a couple of hundred milliseconds, depending upon the
characteristics of your hardware and software environment.

This guide contains information specific to the HotStandby component only. For
general administration and maintenance information on solidDB® databases, see
IBM solidDB Administrator Guide.

This guide assumes the reader has general DBMS knowledge, and familiarity with
SQL and solidDB.

Illustration conventions
This document contains several server diagrams depicting different scenarios in the
HotStandby environment.

The table below provides an illustration key for the server diagrams:.

Table 1. HotStandby illustration conventions

Symbol Description

Database
engine

The rectangle represents the executing program, that
is, the database server (engine) itself.

Database

The cylinder represents the data, generally stored on
disk. Alternatively, some or all may be stored in
memory.

Txn log

This symbol represents the transaction log (Txn Log),
which is used in both database recovery and
HotStandby.

xi

Table 1. HotStandby illustration conventions (continued)

Symbol Description

Txn log

Database
Database
engine

Secondary server
A rounded rectangle represents a complete server
with data and Txn Log. If the phrase Secondary
server or Primary server is inside the rounded
rectangle, then the server is a HotStandby server.

Secondary
server

Txn log

Database
engine

Primary server
For simplicity, in some cases the cylinder that
represents the data in the database is omitted. In
some cases, the symbol is simplified even further to
show just the rounded rectangle. Both icons are
simplified representations of a server.

Typographic conventions
solidDB documentation uses the following typographic conventions:

Table 2. Typographic conventions

Format Used for

Database table This font is used for all ordinary text.

NOT NULL Uppercase letters on this font indicate SQL keywords and
macro names.

solid.ini These fonts indicate file names and path expressions.

SET SYNC MASTER YES;
COMMIT WORK; This font is used for program code and program output.

Example SQL statements also use this font.

run.sh This font is used for sample command lines.

TRIG_COUNT() This font is used for function names.

java.sql.Connection This font is used for interface names.

LockHashSize This font is used for parameter names, function arguments,
and Windows® registry entries.

argument Words emphasized like this indicate information that the
user or the application must provide.

xii IBM solidDB: High Availability User Guide

Table 2. Typographic conventions (continued)

Format Used for

Administrator Guide This style is used for references to other documents, or
chapters in the same document. New terms and emphasized
issues are also written like this.

File path presentation Unless otherwise indicated, file paths are presented in the
UNIX® format. The slash (/) character represents the
installation root directory.

Operating systems If documentation contains differences between operating
systems, the UNIX format is mentioned first. The Microsoft®

Windows format is mentioned in parentheses after the
UNIX format. Other operating systems are separately
mentioned. There may also be different chapters for
different operating systems.

Syntax notation conventions
solidDB documentation uses the following syntax notation conventions:

Table 3. Syntax notation conventions

Format Used for

INSERT INTO table_name
Syntax descriptions are on this font. Replaceable sections are
on this font.

solid.ini This font indicates file names and path expressions.

[] Square brackets indicate optional items; if in bold text,
brackets must be included in the syntax.

| A vertical bar separates two mutually exclusive choices in a
syntax line.

{ } Curly brackets delimit a set of mutually exclusive choices in
a syntax line; if in bold text, braces must be included in the
syntax.

... An ellipsis indicates that arguments can be repeated several
times.

.

.

.

A column of three dots indicates continuation of previous
lines of code.

About this manual xiii

xiv IBM solidDB: High Availability User Guide

1 Introducing IBM solidDB HotStandby

This chapter describes the IBM® solidDB HotStandby component. HotStandby
enables a secondary server (a hot standby server) to run in parallel with the primary
server and keep an up-to-date copy of the data in the primary server.

The server states are controlled by an entity called a watchdog. The solidDB
HotStandby component contains a watchdog implementation called the solidDB
High Availability Controller (HAC).

Internally, HAC uses the HotStandby commands to control the server states. A
solution such as this allows implementation of systems that have increased
reliability. A failed database server no longer brings your site to a complete halt. In
as little as a few hundred milliseconds, in any engine configuration supported by
solidDB (such as solidDB master or replica), HotStandby allows the secondary
database to replace the failed one.

Note:

The term "hot standby" (two words, all lower case) refers to the general technique
of having a second server ready to take over if the first server fails. "HotStandby"
(one word, capitalized as shown) refers to solidDB's specific implementation of this
general technique. The abbreviation for HotStandby is HSB.

Similarly, a watchdog refers to a technology that supervises the state of two
databases and can switch the states, if necessary. HAC is the solidDB watchdog
implementation. The Watchdog sample that is presented in one of the appendixes
is a programming example that shows how to use the HSB API to program your
own watchdog application.

See below for a conceptual presentation of the HotStandby architecture:

1

Looking at the figure above, HotStandby provides:
v A watchdog application called the solidDB High Availability Controller (HAC).
v The HotStandby API (HSB admin commands)
v solidDB servers

How HotStandby works
HotStandby (HSB) performs synchronous transaction replication between two
nodes: a primary server and a secondary server.

The primary server node (Primary) contains the active database. The secondary
server node (Secondary) contains an exact, up-to-date copy of the active database,
and it can replace the Primary if the Primary fails.

The Secondary receives updates from the primary server, and is ready to take over
as the Primary if the original Primary fails. An additional benefit of having the
Secondary is that the Secondary can also respond to read-only requests (for
example, SELECT statements) from clients. This allows you to spread some of your
workload over two servers rather than one.

HotStandby API (HSB Admin Commands)
The HotStandby servers' high availability behavior is controlled with an API that is
based on a subset of solidDB admin commands.

This subset of commands is identified by the main command being hotstandby,
which can be abbreviated by hsb. These commands can be issued by using any
SQL-capable tool (like solsql) or programmatic interfaces like ODBC or JDBC. The
syntax of the HotStandby admin commands is the following:
admin command ’hotstandby hsb-command options’;

or

DatabaseDatabase

HSB

HSB API

A watchdog
application

Secondary server,
node 2

Primary server,
node 1

Figure 1. HotStandby architecture

2 IBM solidDB: High Availability User Guide

admin command ’hsb hsb-command options’;

In the sequel, it will be shown how you can use the hsb admin commands to
control the high availability state of a solidDB HSB server, or to retrieve state
information. Note that the commands can be issued manually or programmatically.
solidDB HA management tools, HA Controller and Watchdog, use the commands
programmatically.

Basic HotStandby server scheme
In the basic HotStandby server scheme, there are two database servers — the
Primary and the Secondary — each of which has its own disk drive on which it
stores the database, and each of which has its own transaction log (Txn Log).

Figure 2 illustrates the basic HotStandby server scheme. The Primary writes to its
transaction log and forwards it to the Secondary so that the Secondary can make
the same changes to its copy of the database. The Secondary's transaction log is not
actively involved in HSB, but it is maintained so that the Secondary can recover
data that was committed but not yet written to the main data tables. (See solidDB
Administration Guide for a more detailed explanation of logging and recovery.)

Heartbeat
Internally, solidDB HSB uses a technique, which is referred to as heartbeat, to
monitor the connection between servers.

A sequence of keepalive messages are sent between active and standby servers.
Both servers continuously send these unidirectional "I am here" messages to the
other server. The messages are sent on a fixed time interval. Counterwise, a
message from the other server is expected to arrive within a predefined time
window. In solidDB, the heartbeat technique is called ping.

Important: In solidDB the heartbeat technique is called ping although there are no
ping requests sent. It should not be confused with the Ping protocol used in
TCP/IP networks.

Txn log

Database
Database
engineHSB

Txn log

Database
Database
engine

Secondary serverPrimary server

Figure 2. HotStandby server scheme

1 Introducing IBM solidDB HotStandby 3

The transaction log and HotStandby
HotStandby uses the Primary server's transaction log, which contains a copy of the
transactions committed on the server. In a non-HotStandby server, this transaction
log is used to recover data if the server shuts down abnormally.

In a HotStandby Primary server, the log data is also sent to the Secondary server
to let it know what data to update. The Secondary database runs a continuous
roll-forward process that receives the log data and keeps the Secondary's copy of
the data synchronized with the Primary's copy.

If the Primary server fails, a watchdog application tells the secondary to become
the Primary. Once the new Primary is in operation, the clients can connect to it and
continue working. Clients will see all data that was committed before the Primary
went down. (Clients need to restart any transactions that were started but not
finished when the original Primary server went down.)

A special type of client connectivity called Transparent Connectivity (TC) is available
for clients to operate in the HSB environment, in the presence of failovers and
switchovers. See 4, “Using HotStandby with applications,” on page 53 for more
information.

If the Secondary server fails, the Primary can continue to operate. It continues
writing data to the transaction log and keeps that transaction log until the Primary
and Secondary are reconnected to each other and the Primary has sent the log to
the Secondary.1

Once the failed database server becomes available again, it can be configured to
become the new Secondary database server (the server that did not fail is already
acting as the current Primary).

If the Primary server is the server that fails, then the servers will reverse their
responsibilities, with the original Secondary taking over as the Primary, and the
original Primary coming back into the system as the new Secondary after it is
repaired. These reversals may happen each time there is a failure. The fact that
either server can be the Primary allows the system to survive multiple failures over
time, and continue operating virtually indefinitely.

CAUTION:
If the Primary server is unable to contact the Secondary server for a long period
of time, then the transaction log may fill all the available disk space. This may
be avoided with appropriate configuration parameter settings. See “Running out
of space for transaction logs” on page 34.

1.

The exact length of time that the Primary keeps the log depends upon the settings of the solid.ini configuration parameters
CheckpointDeleteLog and BackupDeleteLog.

1. If CheckpointDeleteLog=Y, then the Primary keeps all transaction logs since the time that the Secondary went down or since
the most recent checkpoint, whichever is less recent. (For a detailed explanation of checkpoints, see solidDB Administration
Guide.)

2. If CheckpointDeleteLog=N and BackupDeleteLog=Y, then the Primary keeps all transaction logs since the time that the
Secondary went down or since the most recent backup, whichever is less recent.

3. If CheckpointDeleteLog=N and BackupDeleteLog=N, then the server keeps the logs indefinitely.

4 IBM solidDB: High Availability User Guide

You can even use HSB to reduce downtime during hardware and software
upgrades. You can leave one server running as Primary while you upgrade the
other.

HotStandby can also be used to help choose a customized balance of speed and
safety. The HSB parameters SafenessLevel and 2SafeAckPolicy control the way
the Secondary server acknowledges the transactions. This parameter, in
combination with the logging-related DurabilityLevel parameter, lets you specify a
combination of speed and safety. Some parameter settings actually increase
performance over non-HSB servers. (For more details, see the discussion of
durability level and safeness parameters in “Performance tuning” on page 45.)

On the other hand, you can allow for the safeness level to change dynamically in
relation to the durability level by using the SafenessLevel parameter auto value.

Server HotStandby states
In a HotStandby system, each server is in one of several possible states that
describes that server's current behavior.

For example, when the Primary and Secondary are communicating and
synchronizing, they are in the PRIMARY ACTIVE and SECONDARY ACTIVE
states, respectively. As another example, if the Primary loses contact with the
Secondary, then the Primary automatically switches to the PRIMARY UNCERTAIN
state. In that state, it will not accept new transactions. The user or, more typically,
the HAC may switch the server to the PRIMARY ALONE state, in which the
server acts as an independent server–it accepts new transactions and stores them to
send to the Secondary later.

Combining HotStandby and advanced replication
The solidDB HotStandby component can be used in combination with solidDB
advanced replication. Advanced replication provides bidirectional, periodically
occurring data synchronization that allows you to create a distributed system that
contains master and replica servers. With HotStandby, you can make any of the
database servers of the distributed system highly available.

Figure 3 on page 6 shows a simple distributed system that contains a master
database and two replica databases. Each replica contains at least a subset of the
data of the master database. Each of the database servers has been made
fault-tolerant with HotStandby replication. Advanced replication occurs between
the Primary servers of the database server hierarchy. In case of a problem with any
of the Primary database servers, the failed node can do a HotStandby failover
making the Secondary server of that node the new Primary. Advanced replication
can now continue with the new Primary server.

1 Introducing IBM solidDB HotStandby 5

Failover
In a failover, the secondary is switched to be the new primary.

There are several reasons for switching the secondary to new primary:
1. when the primary fails
2. when you want to administer the primary
3. when you must choose a primary when there is no existing primary on the

system.

The secondary is switched to be the new primary by issuing the command below
on the Secondary server:
ADMIN COMMAND ’hotstandby set primary alone’;

In the case of a failover, the new Primary contains the up-to-date committed data
from the old Primary database. Everything that was committed in the Primary
database, is guaranteed to be found from the Secondary database. If Transparent
Connectivity (TC) is used, connections are not lost on the failover. However, the
ongoing transactions are aborted and must be re-executed. For more information,
see “Failure transparency in TC” on page 54. The new Primary can operate alone
and continue to write transactions and data to its database and transaction log.

Replica2

(HSB secondary)(HSB secondary)

Replica1

HSBHSB

(HSB primary)

Replica2

(HSB primary)

Replica1

Master

(HSB secondary)

SmartFlow data
synchronizationHSB

SmartFlow data
synchronization

Master

(HSB primary)

Figure 3. HotStandby with master and replica server scheme

6 IBM solidDB: High Availability User Guide

Server CatchUp
Once the old Primary is back online–assuming that there is an existing Primary–it
becomes the new Secondary. At this stage, the information in the new Secondary
lags behind that of the new Primary as new transactions have been committed to
the new Primary database. To bring the new Secondary up to date, the new
Primary's transaction log data is sent to the new Secondary automatically after the
servers are connected. All pending changes are written from the transaction log to
the new Secondary so that the Secondary can keep in sync with the Primary.
Server catchup is illustrated in Figure 5 on page 8.

1

Txn log

Database
Database
engine

Txn log

Database
Database
engine

Formerly secondary
server

Primary server

New primaryOld primary (down)

1. The server that was originally the Secondary becomes the new Primary after the old Primary server fails.

Figure 4. HotStandby switchover to new Primary (old Secondary)

1 Introducing IBM solidDB HotStandby 7

Replication modes in HotStandby

1-Safe and 2-Safe replication
solidDB offers various choices to tune the system to the required balance between
performance and endurance. One such choice is the choice of replication protocol
used. A system parameter called SafenessLevel determines whether the replication
protocol is synchronous (2-safe) or asynchronous (1-safe).
v 1-safe: the transaction is first committed at Primary and then transmitted to

Secondary
v 2-safe: the transaction is not committed before it has been acknowledged by

Secondary (default).

2

3

1

Txn log

Database
engine

HSB

Txn log

Database
engine

Txn log

Database
engine

HSB

Txn log

Database
engine

Txn log

Database
engine

Txn log

Database
engine

New primary serverNew secondary server

New primary serverPrimary server

Secondary serverPrimary server

1. Normal operation: Primary server sends data to Secondary server.

2. When Primary server fails, Secondary server takes over as the new Primary. New Primary server saves
transaction information in its transaction log so that it can send the data to the new Secondary server later.

3. After the old Primary server is brought up as the new Secondary server, the information in the new Primary's
Txn Log is sent to the new Secondary so that it can catch up.

Figure 5. Server failover and catchup example

8 IBM solidDB: High Availability User Guide

The safeness level may be controlled at three levels: global (server), session and
transaction.

Synchronous HotStandby with 2-safe replication
To ensure that the Primary and Secondary have exactly the same data, solidDB
uses, primarily, a Synchronous HotStandby model. It is called a "2–safe" replication
method; the data is written in two places before the user is told that the data has
been committed.

This means that the Primary server does not tell the user that the transaction has
been committed when the Primary has written the data; instead, the Primary waits
until the Secondary server has also committed (or at least received) the data, and
only then does the Primary tell the user that the data was committed.2

Before committing changes to a transaction in the Primary database, the Primary
server sends the transaction data to the Secondary server. The Secondary server
must send acknowledgement to the Primary that it has committed (or at least
received) the data. Otherwise, the Primary server times out and changes its state
from PRIMARY ACTIVE to PRIMARY UNCERTAIN (these states are discussed in
more detail later). The Primary server, in this case, can neither roll back nor
commit the transaction. The HAC may set the Primary server to PRIMARY
ALONE state, which allows the Primary to continue to receive transactions and
operate independently of the Secondary. It commits the pending transaction(s) that
were sent to the Secondary and resumes accepting new transactions.

Note:

The Secondary server sends an acknowledgement as soon as it has committed (or
at least received) the transaction log entries. This configuration prevents lost
transactions when there is a single failure. Additionally, a file-based transaction log
is optionally retained to facilitate database recovery in case a total system failure
occurs.

2. For more about 2-safe versus 1-safe algorithms, see Transaction Processing: Concepts and Techniques, by Jim Gray and Andreas
Reuter, Morgan Kauffman, 1993.

1 Introducing IBM solidDB HotStandby 9

Basic steps in sending data

Below are the steps in sending data with synchronous replication:
1. The Primary server writes data (in record level format) to the transaction log at

the Primary node.
2. If the Primary server encounters a commit statement, then all changed data is

sent to the Secondary server.

Note: If the Secondary server fails after the transaction starts and before the
Primary sends the data, then the Primary will roll back the transaction.

3. The Secondary acknowledges the commit message. The timing of the
acknowledgement depends upon the setting of the 2SafeAckPolicy
configuration parameter. In the fastest alternative, called 2-safe received, the
Secondary sends acknowledgement to the Primary immediately upon receiving
the commit message. In the safest alternative, called 2-safe durable, the
Secondary sends acknowledgement after executing and durably writing the
transaction to the Secondary's own transaction log.
When the Primary receives the Secondary's acknowledgement, the Primary
notifies the user that the data has been committed.

4. If the Primary does not receive acknowledgement from the Secondary (for
example, due to network failure or node failure), then the Primary server times
out and switches to the PRIMARY UNCERTAIN state. The Primary is unable to
roll back or commit the transaction itself because it does not know the state of
recent transactions in the Secondary. The Primary does not know which of the
following happened:
v The Secondary was down before the transaction was committed
v The Secondary already committed the transaction, but the Primary server did

not receive acknowledgement, for example because of network failure.
While the server is in PRIMARY UNCERTAIN state, the current transaction as
well as new transactions that a user tries to commit are blocked and the user
may perceive that the server is unresponsive.

5. If the HAC detects that the Secondary is down or the network failed, then it
can switch the Primary server to the PRIMARY ALONE state. Once the

Txn log

Commit

Client
Primary

Primary up, secondary down

Commit

Txn log

OKCommit

Client
SecondaryPrimary

Both primary and secondary are up

Figure 6. Synchronous HotStandby configuration

10 IBM solidDB: High Availability User Guide

Primary server is set to PRIMARY ALONE, it commits the pending
transaction(s) that were sent to the Secondary and resumes accepting new
transactions.

6. Changes are accumulated to the transaction log file until the Secondary server
is back in operation or until the Primary server is out of disk space. (If the
server runs out of disk space for the transaction log, then the Primary changes
to read-only mode.)

7. If you think that the Secondary server will be out of operation for a long time
and the server is likely to run out of disk space for the transaction log, then
you may want to switch the Primary server from PRIMARY ALONE to
STANDALONE state. This means that the transaction log will not store all
transactions since contact was lost with the Secondary, and therefore the
Secondary cannot "catch up" merely by reading the transaction logs from the
Primary. If the Secondary cannot be brought up to date with the transaction
logs, the only way to synchronize the Secondary with the Primary is to copy
the Primary's database file(s) to the Secondary. This can be done with either the
HotStandby copy or HotStandby netcopy command. For details on copy and
netcopy, read “Copying a primary database to a secondary over the network”
on page 82 and “Copying a database file from the primary server to a specified
directory” on page 86.

8. To execute either copy or netcopy, the Primary must be in the PRIMARY
ALONE state. After a copy/netcopy, the Primary server remains in the
PRIMARY ALONE state, regardless of whether the command succeeds or fails.

9. In order for the Primary to again start sending its transactions to the Secondary,
the Primary server must be explicitly connected to the Secondary server by
using the command hotstandby connect described in “Connecting HotStandby
servers” on page 87. After the Primary server is connected to the Secondary
server, the Primary operates in the PRIMARY ACTIVE state.
Once the servers are connected, they will start performing catchup (when all
pending changes are automatically written from the transaction log to the
Secondary to keep in sync with the Primary). Note that before server catchup,
the Primary and Secondary exchange information and determine where to
begin the catchup so that a transaction is not committed twice on the
Secondary.

Asynchronous HotStandby with 1-safe replication
Optionally, asynchronous replication from Primary to Secondary may be used. This
is called 1-safe replication.

With 1-safe replication, the transactions are acknowledged immediately once they
are committed at the Primary. This offers significant performance gains. After the
commit, the transactions are sent to the Secondary, in an asynchronous way. The
trade-off is that, when a failure occurs at Primary, a few transactions, that were in
transfer, may be lost.

Either of the two replication methods may be chosen dynamically, or even per
session, or transaction. The replication delay involved with 1-safe replication may
be controlled, too.

1 Introducing IBM solidDB HotStandby 11

Description of server states
Both servers in an HotStandby (HSB) pair expose certain states that can be queried
and manipulated.

The states and their meanings are listed below.

Table 4. Description of server states

STATE DESCRIPTION

PRIMARY ACTIVE The servers are connected, and this server
(the Primary server) is accepting read-write
transactions and sending the data to the
Secondary server. The Secondary server
must be in SECONDARY ACTIVE state.

PRIMARY ALONE The peer servers are not interconnected. The
peer may be up, but it is not connected and
therefore is not accepting any transactions
(that is, it may be in the SECONDARY
ALONE state).

This server (the Primary) is actively
accepting and executing read-write
transactions and collecting them to be sent
to the Secondary later.

12 IBM solidDB: High Availability User Guide

Table 4. Description of server states (continued)

STATE DESCRIPTION

PRIMARY UNCERTAIN The servers have disconnected abnormally
and the AutoPrimaryAlone configuration
parameter is set to "No". In the PRIMARY
UNCERTAIN state, any unacknowledged
transactions remain in a pending status,
which means that the server will not commit
or roll back the transaction until HAC
changes the server to another state.

The operator has three possible actions:
reconnect the Primary to the Secondary, set
the Primary server to PRIMARY ALONE
state, or set the Primary server to
SECONDARY ALONE state.

1. If the server is reconnected to the
Secondary, then the transactions are
committed on the Primary.

2. If the state is changed to PRIMARY
ALONE, then the open transactions are
committed on the Primary.

3. If the state is changed to SECONDARY
ALONE, then the open transactions
remain pending. They are finally
resolved after the server changes to
another state. For example, if the server
is moved to the SECONDARY ACTIVE
state, the blocked transactions are
aborted or committed, depending on the
catchup outcome. If the server state is
changed to STANDALONE or PRIMARY
ALONE, then the blocked transactions
are committed.

If you want the Primary server to
automatically go to PRIMARY ALONE
rather than PRIMARY UNCERTAIN when it
loses contact with the Secondary, then read
the description of the AutoPrimaryAlone
configuration parameter.
Note:

HAC can maximize safety by always
switching the server from PRIMARY
UNCERTAIN to SECONDARY ALONE. This
prevents the possibility of dual primaries.
However, it also prevents users from
updating data on the server. (See “Network
partitions and dual primaries” on page 33.)

1 Introducing IBM solidDB HotStandby 13

Table 4. Description of server states (continued)

STATE DESCRIPTION

SECONDARY ACTIVE The peer servers are interconnected, and this
server is accepting incoming transaction log
data from the Primary. These transactions
are executed on the Secondary so that it has
the same data as the Primary (the
transactions are also written to the
Secondary's own transaction log so that the
Secondary itself can recover the data if the
Secondary fails). Additionally, clients may
perform read-only transactions on a server
in the SECONDARY ACTIVE state. When a
server is in the SECONDARY ACTIVE state,
the server's peer must be in PRIMARY
ACTIVE state.

SECONDARY ALONE The Secondary is disconnected from its peer
server. Only read requests are accepted. The
server may be connected to the peer by
issuing the command "HotStandby connect"
on either the Secondary or the Primary.

STANDALONE The server has no HSB state (Primary or
Secondary) and operates in the way a
regular standalone server operates.
Transaction logs are processed and removed
in the normal way, too; they are not saved
for the Secondary. To resume HSB operation,
the server must be set to either PRIMARY
ALONE or SECONDARY ALONE, and the
Primary will have to do a netcopy or copy
operation to send a complete copy of the
database to the Secondary.

OFFLINE The server was started in "netcopy listen
mode" (also called "backupserver mode"). In
this mode, the server is waiting for an
incoming netcopy from a server that is in
PRIMARY ALONE state. When the server
successfully completes netcopy, the server
moves to the state SECONDARY ALONE.

You cannot directly observe the OFFLINE
state because a server in OFFLINE state does
not accept client connections. If you attempt
to connect to a server in the OFFLINE state,
error code 14552 "Server is in backup server
mode, no connections are allowed" is given.
A server in the OFFLINE state will respond
only to a netcopy operation (described later).

How does HotStandby affect performance
Although you might expect that HotStandby (HSB) would reduce performance,
this is not always the case. In fact, in some configurations HSB can even increase
performance significantly.

The key factors in HSB performance include:

14 IBM solidDB: High Availability User Guide

v The use of adaptive durability when preserving transactions over single failures
is needed

v The use of 1-Safe replication protocol when minor transaction loss over failures
is acceptable

v The 2-Safe Acknowledgement Policy (when the 2-safe replication is used) — that
is, whether the Secondary acknowledges receipt of transactions as soon as it
receives them from the Primary, or whether the Secondary waits until it has
committed the transactions

v The possibility of performing read-only transactions on the Secondary server
v The server's internal parallelism

In summary, unless you need the highest possible level of safety, you can increase
performance by doing the following:
v Use adaptive logging (set DurabilityLevel=2)
v Use "2-safe received" mode (set 2SafeAckPolicy=1)

If you have read-only queries, for example queries that generate summary reports,
you may want to run those on the Secondary to spread the workload over both
machines.

Note that even if you use the "less safe" settings specified here (adaptive durability
and 2-safe received mode), you are still protected by HSB unless there are at least
two failures. You sacrifice very little safety for much higher performance. solidDB
HotStandby gives you high performance and safety at the same time.

Not surprisingly, actual throughput and response times depend on many factors,
including (but not limited to) the speed of the network, the amount of other traffic
on the network, the complexity of the SQL statements, and the number of SQL
statements per transaction. The usual factors, such as amount of memory and disk
speed, also affect performance.

Adaptive durability
The solid.ini configuration file allows you to specify whether you want relaxed
durability (fast), strict durability (safe), or a third option, called "adaptive
durability".
v Strict Durability: If a transaction is written to the transaction logs as soon as the

transaction is committed, this is called "strict durability". This type of durability
maximizes safety.

v Relaxed Durability: If the server is permitted to defer the transaction write until
the server is less busy, or until it can write multiple transactions together, this is
called "relaxed durability" (or "relaxed logging"). In a server that is not part of
an HSB pair, using relaxed durability means that you risk losing the most recent
few transactions if the server terminates abnormally. If the server is part of an
HSB pair, however, then a copy of the transaction is on the other server (the
Secondary), and even if the Primary server fails before logging the transaction,
the transaction is not lost. Thus, when relaxed durability is used with HSB,
relaxed durability causes very little reduction in safety. On the other hand,
relaxed durability can improve the performance of the system, especially in
situations where the server load consists of a large number of small write
transactions.

v Adaptive Durability: Adaptive durability applies only to HotStandby Primary
servers. Adaptive Durability means simply that if the server is in Primary Active
state (sending transactions to the Secondary), then it will use relaxed durability,

1 Introducing IBM solidDB HotStandby 15

but in any other state it will use strict durability. This gives you high
performance (with little loss of safety) when HSB is active, yet maintains high
safety if only one server is operating. Adaptive Durability may be effectively
enacted only when the 2-Safe replication is used (default).

Adaptive durability can significantly increase performance while still guaranteeing
high degree of data safety in failure situations. It can increase overall system
throughput and it can reduce latency, that is, the time the user must wait before
being told that the transaction has committed.

For more details about relaxed logging and the DurabilityLevel parameter, see
solidDB Administration Guide.

1-Safe replication
With 1-safe replication, the commit statement is acknowledged immediately once
the commit processing is completed at the Primary. The committed transaction is
transmitted to the secondary asynchronously, after the control has been returned to
the application.

The delay involved in transmitting the transaction may range from few
milliseconds to a few hundred milliseconds. 1-safe replication offers significant
performance gains because the latencies are reduced dramatically at Primary. The
downside of 1-safe is that, in the case of a failure, a few transactions may be lost in
a failover.

The 1-safe replication may be set, for the server, with the parameter:
[HotStandby]
SafenessLevel=1safe ;values: 1safe, 2safe, auto; default is 2safe

It is also possible to control the safeness level dynamically with the SET
commands:
SET SAFENESS {1SAFE| 2SAFE| DEFAULT}

sets the safeness level for the current session, until it is changed.
SET TRANSACTION SAFENESS {1SAFE| 2SAFE| DEFAULT}

sets the safeness level for the current transaction. After commit, the safeness level
returns to the value set for the session, or the startup value, or the system default
(which is 2-safe).

The option DEFAULT denotes the current setting for the session.

It is also possible to control the safeness level with the programmatic durability
controls (like SET DURABILITY RELAXED) when the SafenessLevel parameter
has a special value "auto" (that is, "automatic"). In this case, "strict" corresponds to
"2-safe" and "relaxed" to "1-safe".

2-Safe acknowledgement policy
When the 2-safe replication is enabled (default), the Primary server does not tell
the client that the transaction has been successfully committed until the Primary
receives acknowledgement that the Secondary has the transaction.

solidDB currently allows three different acknowledgement policies:
v 2-safe received: The Secondary server sends acknowledgement when it receives

the data (default).

16 IBM solidDB: High Availability User Guide

v 2-safe visible: The Secondary has updated its copy of the data, and the change is
now "visible". In other words, a client application that has connected to the
Secondary server will be able to see the update.

v 2-safe durable: The Secondary server acknowledges when it has made the data
durable, that is, when it has committed the data and written the data to the
disk.

2-safe received is faster. 2-safe durable is safer. Note that since these
acknowledgement policies apply only when the Primary and Secondary server are
both active (that is, both are applying the transactions), even 2-safe received is
considered safe. You risk losing transactions only if both servers fail practically
simultaneously (within a second of each other).

Using 2-safe received reduces latency, which is the amount of time between the
start of the commit and the time that the user receives confirmation of the commit.
The 2SafeAckPolicy has little impact on overall throughput.

Internal parallelism
To ensure that your system takes advantage of parallelism, consider spreading
your transactions across several connections rather than submitting all transactions
through the same connection.

When you use the HotStandby (HSB) component, every transaction that contains a
write operation is executed twice — once on the Primary, and once on the
Secondary. In some situations, this may mean that a single transaction takes
approximately twice as long with HSB as without HSB. However, this does not
mean that overall throughput will decrease 50%. The servers have a high degree of
parallelism, and while the Secondary is working on one transaction, the Primary
will work on another transaction.

To ensure that your system takes advantage of parallelism, you can spread your
transactions across several connections. Note, however, that the more queries you
run in parallel, the more memory the server needs, so adding connections and
running queries in parallel does not always increase throughput, especially in
systems that do not have a large amount of memory. You may need to experiment
to find the optimal number of queries to run at a time.

Performing read-only transactions on the Secondary
Clients are allowed to connect to the Secondary and perform read-only operations.

In some situations, you can "spread the load" and improve your system's overall
performance by having read-only clients connect to the Secondary and perform
their reads there. This is particularly useful for work such as report-generation or
"data warehousing" queries, where you want to read a lot of records and don't
want to change any of them.

Other safety factors
The hot standby approach is designed to protect you against the failure of a single
part of your system. However, it won't protect you if both servers can be affected
by the same problem, such as a power failure.

If you set the DurabilityLevel to "relaxed" or "adaptive", and if your
acknowledgement policy is 2-safe received, then you may lose transactions if both
servers go down nearly simultaneously. At the very least, each server should be
connected to an Uninterruptible Power Supply (UPS) to protect against power

1 Introducing IBM solidDB HotStandby 17

failure. Furthermore, as with any database system, important data should be
backed up and probably should be archived at a separate site. HotStandby is not a
substitute for backing up your data.

Tip:

You can run the backup (using the ADMIN COMMAND backup command) on
either of the servers of the HSB pair. Often it is the secondary server that has more
resources available for creating the backup.

High Availability Controller (HAC)
High Availability Controller (HAC) is an automatic redundancy management
program for solidDB HotStandby configurations. It maintains the availability of the
database service by detecting failures, performing failovers to standby units, and
restarting failed processes when necessary.

A failure can be caused by a hardware problem in a database node, a database
process failure, or a broken HSB link. HAC monitors the HSB states of the servers,
and in the case of a failure, ensures that the server that is not affected by the
failure holds the Primary role and that the server is ready to accept the transaction
load.

In other words, HAC plays the role of a watchdog program. In its implementation,
the solidDB's event mechanism is used to monitor the server states. Every time the
state of a HSB server changes, it sends an event to HAC, which then deduces
potential needs for actions that are executed by using the HotStandby admin
command API.

The HAC architecture is shown in the figure below:

18 IBM solidDB: High Availability User Guide

HAC has two main purposes:
1. HAC can be used as a watchdog to automatically maintain the availability of

the database service. In this mode, called the AUTOMATIC mode, HAC
performs the following actions:
v Starts, restarts and terminates the database server processes (optional)
v Monitors the state of the servers and the HSB link between them
v Infers the necessary action to be performed
v Performs the action

2. HAC can also play a role of a monitor for a HSB system by monitoring the
state changes of the HSB servers (triggered by someone else) and reporting the
status of the system. This is called the ADMINISTRATIVE mode. In this mode,
HAC does not execute any HSB state transitions or otherwise modify the HSB
system.

High Availability Controller is configured through the solidhac.ini configuration
file. Before HAC is started, this file should be located in the HAC working
directory. You can specify the working directory with the command line option -c.

The solidDB package includes a HAC configuration file template which includes
all available configuration parameters with comments, and examples. The
solidhac_template.ini is located in the root of the samples\hac\ directory.

HA manager
GUI

GUI based
HA manager

JDBC

solidDB
HA controller

Secondary
server

HSB

solidDB
HA controller

Primary
server

Node 2Node 1

Figure 7. High Availability Controller architecture

1 Introducing IBM solidDB HotStandby 19

A sample Graphical User Interface (GUI) component called High Availability
Manager (HAM) is also available for HAC. It is included in the sample directory
samples\hac\. The HA Manager is configured in the same as the HA Controller.
The samples\hac\ directory contains a sample configuration file (HAManager.ini)
for the High Availability Manager.

Recognized failures
HAC monitors the health and status of the HotStandby servers. In failure
situations, such as a database process failure or a computer node failure, HAC
performs failovers and other necessary state transitions to maintain the best
possible availability of the database service.

For all failures considered, it is assumed that they happen in a normal, fully
operational state expressed by the PRIMARY ACTIVE and SECONDARY ACTIVE
states of the two HSB servers. HAC takes care of single failures only. In other
words, it is assumed that a failure cannot occur before the system has recovered
from a previous failure. There is, however, a number of predefined multiple-failure
scenarios that HAC can handle.

As far as single failures are concerned, HAC maintains an almost uninterruptible
database service. If multiple failures occur, HAC attempts to avoid an erroneous
system state (such as dual primaries).

The failures HAC can handle are:
v Single failures

– The primary (ACTIVE) database server process fails
– The secondary (ACTIVE) database server process fails
– Primary node fails
– Secondary node fails
– If an External Reference Entity is used, HAC can also handle a HotStandby

link failure, that is, a lost connection between the two HotStandby database
processes. For more information on the External Reference Entity, see
“External Reference Entity (ERE)” on page 21.

– Server is unresponsive to external clients
v Double failures

– While recovering from a previous failure, HAC recognizes an error in the
synchronization between the Primary and the Secondary database.

– HAC also takes care several less common failures, such as a server process
failure while servers are establishing HSB link after previous failure, for
example.

For detailed descriptions of the failure and recovery scenarios, see 6, “Behavior of
High Availability Controller in failure cases,” on page 95.

Controlling database server processes
HAC can be configured to start database processes, and restart failed processes.

When a HAC instance loses connection with a local database server, it calls the
start script specified in the solidhac.ini configuration file. The script is provided
by the user. An example script is provided with the package.

20 IBM solidDB: High Availability User Guide

Important: A HAC instance assumes that the server is running, and responsive at
the moment the start script terminates. Since HAC does not handle failures that
occur in server startup, the script should not exit unless the server accepts
connections.

HAC restarts the database server whenever it fails or disappears for some other
reason, except in two cases:
v If the database process has not disappeared from the process list of the operating

system, or
v If the database server was shut down by using HA Manager.

External Reference Entity (ERE)
One of the more difficult failure situations to be handled is when the
communication link between the database nodes fails, and both database servers
might assume that the other one is down. This can lead into a dual primary ("split
brain") situation and possibly losing transactions when databases are later
synchronized. To better avoid a wrong decision by solidDB HAC, it is
recommended that an External Reference Entity, ERE (that is, a network reference
device) is used for checking the health of the network. For example, in the case of
a network adapter failure in one computer, HAC can detect this situation, and is
able to set the correct database node to continue as the Primary database (while
the other one continues as Secondary).

If ERE is used, HAC checks the status of the physical link between the HotStandby
node and the ERE device by pinging ERE. If the physical link to the nearest ERE is
not operational, the local HAC sets the local server to the SECONDARY ALONE
state. If the nearest physical link is operational, and no connection is available to
the other server, the local HAC concludes that the local server is the one to
continue offering the service, and sets it to PRIMARY ALONE. Consequently, The
HotStandby node, which loses its connection to the opposite HotStandby node and
to the nearest ERE, becomes the Secondary. In this way, two Primaries (a split
brain) situation is prevented in the case of network failure.

For further information about configuring HAC for ERE, see “Configuring HA
Controller and HA Manager” on page 46.

1 Introducing IBM solidDB HotStandby 21

The figure above depicts two possible locations of ERE:
v The cluster switch
v Any computer in the network outside the cluster. If a redundant network (that

is, duplicate network controllers, cables and switches) is used in a cluster, it is
recommended to define ERE outside the cluster.

Important: If the HotStandby link is considered unreliable (including all the cases
where ERE is used), the following HotStandby server parameter must be set to its
factory value:

HotStandby.AutoPrimaryAlone=no

ERE must use the same HSB link that the keepalive messages do.

Networking in HAC
It is recommended to use a single logical network access (IP address), in each HSB
server, for all communications.

This recommendation does not preclude the use of multiple, or redundant, lower
level network components (network interface cards, cables and switches), that are
transparent at the network interface API level.

The servers can use different port numbers for different purposes.

When only one logical network access is used, HAC (with ERE) detects network
breaks that affect both the HSB transaction replication, and the database client
applications. Since HAC monitors the health of the HSB link only, failures in
database client communications will not be detected by HAC, if separate interfaces
are used.

solidDB
HA controller

Secondary
server

Switch

solidDB
HA controller

Primary
server

Ere

Node 2Node 1

External
node

Figure 8. External Reference Entity components

22 IBM solidDB: High Availability User Guide

However, regardless of the underlaying network access implementation, the ERE
feature of HAC can be used if the network access is regarded unreliable for
whatever reason.

High Availability Manager
High Availability Manager is a Java-based graphical interface tool for displaying
the state of the HotStandby servers and the state of the HACs. It also provides
basic functionality for managing the HAC, for example, by switching the roles of
HotStandby servers and to suspend and resume HAC.

High Availability Manager is configured through the HAManager.ini configuration
file.

See below for a screenshot of the High Availability Manager:

You can perform the following actions by using the GUI of the High Availability
Manager:
v Perform a switchover between the HotStandby servers
v Switch the HAC mode between AUTOMATIC and ADMINISTRATIVE

– In the ADMINISTRATIVE mode, HAC only monitors the HSB cluster, and the
user can perform administrative tasks on HSB servers

– In the AUTOMATIC mode, HAC acts as a watchdog, handles failures, and
maintains the availability of the database service.

v Shut down a HotStandby database server process
v Start up a HotStandby database server process

Figure 9. High Availability Manager

1 Introducing IBM solidDB HotStandby 23

v Suspend a High Availability Controller
v Resume a High Availability Controller

Note:

Shutting down and starting up the database server process is only possible if the
following configuration parameter is set in the solidhac.ini configuration file:

HAController.EnableDBProcessControl=Yes

HAC logging
HAC writes log records to the hacmsg.out file located in the HAC working
directory.

The log contains information on the following:
v Warnings
v Fatal errors
v Configuration-related information
v Initialization-related information
v All input events
v HotStandby state changes
v User commands, which cause changes in the system
v HAC state changes
v HAC mode changes (AUTOMATIC/ADMINISTRATIVE)
v Events, which cause state changes in the system

HAC log file has a maximum size of 64 megabytes. When the size limit exceeds,
hacmsg.out is renamed to as hacmsg.bak, and a new hacmsg.out is created. These
files contain at most 128 megabytes of the most recent logs.

24 IBM solidDB: High Availability User Guide

2 Getting started with HotStandby

This section provides step-by-step instructions for setting up two solidDB
HotStandby servers (a Primary server and a Secondary server).

It assumes you have already installed solidDB HotStandby. Be sure to follow the
installation instructions that came with the product.

Instructions for setting up the High Availability Controller (HAC) are in 3,
“Administering and configuring HotStandby,” on page 31.

Before you begin
About this task

Before you set up HotStandby, please note the following information:

Procedure
1. Read “What you should know” on page 31. This section contains important

information about using the solidDB HotStandby component.
2. To learn about HotStandby features, run the demonstration contained in the

solidDB package. For details, read the section below.
3. Refer to “HotStandby quick start procedure” for step-by-step instructions on

setting up and configuring HotStandby.
4. Get acquainted with the solidDB command line SQL editor solsql.

HotStandby demonstration
The solidDB software package that you installed includes all the files that you
need to run demonstrations of the HotStandby component using HAC or the
sample watchdog implementation. The demonstrations are simplified, but will
increase your understanding of how to use the HotStandby component.

The HAC demonstration can be found in samples\hac. Detailed information about
the HSB/HAC demonstration can be found in the file: samples\hac\readme.txt

For instructions on setting up a HAC system, refer to “HSB with HA Controller
quick start procedure” on page 28.

Detailed instructions for the Watchdog demonstration are in the file:
samples\hsb\readme.txt

HotStandby quick start procedure
This section describes a quick start procedure for HotStandby. Following the
procedure, you will reach a state where your HSB system is ready to serve
applications.

About this task

This method does not assume any other solidDB components than HSB servers.
For example HAC is not needed. A similar step-by-step procedure for HAC is

25

described in “Starting and stopping HA Controller” on page 27. There is also a
sample watchdog application included in the solidDB HotStandby package. To use
the sample watchdog, you need to provide configuration settings for it.

To setup and run an HSB server pair, you need two networked computers. To set
up your HotStandby servers (without any other solidDB components), follow the
procedure below.

Procedure
1. Configure the Primary and Secondary nodes.

At minimum, HotStandby requires that you configure the following parameters
in the [HotStandby] section of the solid.ini configuration file:
v HSBEnabled=Yes

If you omit the HSBEnabled parameter or if it has a "no" value in a server
that you intend for HotStandby, the server will be a non-HotStandby server
when it is started.

v Connect=connect string for the opposite HSB server

If you omit the Connect parameter, the server will start as a HotStandby
server, but you will have to provide the connection string by using an
ADMIN COMMAND before the servers can connect.
Transaction logging of the HotStandby servers for local recovery purposes
can be either enabled or disabled. If the logging is disabled, the primary
server keeps the necessary part of the transaction log information in memory
for replication. Disabling transaction logging improves performance of write
transactions but reduces the degree of data safety. By default, transaction
logging is enabled. You can disable it by setting the following parameter in
your solid.ini configuration file:
[Logging] LogEnabled=no

In addition to the parameters above, there are other parameters available. For
more details about these parameters, read “Defining primary and secondary
HotStandby configuration” on page 41.
If you are using the TCP/IP protocol, you may want to adjust the timeout
interval between your applications and the HotStandby servers. For details,
read “Defining timeouts between applications and servers (Com Section)” on
page 40.
Optionally, you may change the default settings for HotStandby-specific
configuration parameter options. For details on these parameters read,
“Configuring HotStandby-specific parameters” on page 41.

2. Start both HSB servers the way you would start any solidDB server.
Servers will read the HotStandby configuration information from their own
solid.ini file. The (HSB) state of both servers after start up is SECONDARY
ALONE.

3. Choose the server that will become the Primary, and switch the state of the
chosen server to PRIMARY ALONE by issuing the following command:
ADMIN COMMAND ’hotstandby set primary alone’;

Note: In admin commands, you may use the abbreviation "hsb" in place of
"hotstandby", for example:
ADMIN COMMAND ’hsb set primary alone

4. Connect the Primary to the Secondary by issuing the following command in
either server:
ADMIN COMMAND ’hsb connect’

26 IBM solidDB: High Availability User Guide

To verify that the connection was successful, type the following command:
ADMIN COMMAND ’hsb state’

The Primary server should respond that its state is "PRIMARY ACTIVE". If,
however, the state of the Primary is something else than expected, PRIMARY
ALONE, for example, the status of hsb connect can be checked by entering the
command:
ADMIN COMMAND ’hsb status connect’

If the result is ACTIVE, then connect process is still active. If, however, the
result is BROKEN, then the databases of the servers must be synchronized
before connecting them.

5. Synchronizing the databases can be done by executing the following command
in the Primary:
ADMIN COMMAND ’hsb netcopy’

The status of database copy process can be checked by entering the command:
ADMIN COMMAND ’hsb status copy’

6. As soon as the result is SUCCESS, the databases are in sync, and the servers
can be connected. Re-execute the following command in either server:
ADMIN COMMAND ’hsb connect’

Verify the success as instructed in step four.
7. Start using applications.

Starting and stopping HA Controller
Before you can start HAC, you must have a properly filled-in solidhac.ini
configuration file in the HAC working directory. See “HSB with HA Controller
quick start procedure” on page 28 for a short description of configuring HAC. A
more complete description about configuring HAC can be found in “Configuring
HA Controller and HA Manager” on page 46 and “The solidhac.ini configuration
file” on page 47.

Note:

Depending on the platform you are using, the HAC binary is named either
solidhac, or solidhac.exe. We use solidhac.exe for clarity. Similarly, the name of
the sample IBM solidDB start script is either start_solid.sh, or start_solid.bat.
In the following, we use start_solid.bat.

The HA Controller command syntax is:
solidhac.exe [-c working directory | -?]

The ? argument, or any other argument except c prints the usage message.

Starting HAC

Assume that solidhac.exe is located in c:\solid\hac, which is also the current
directory, and we use c:\solid\run\server1 as the working directory for HAC.
HA Controller is started by using the following command:
solidhac.exe -c c:\solid\run\server1

or
solidhac.exe -c ..\run\server1

2 Getting started with HotStandby 27

When HAC starts, it starts to listen to the port specified in the solidhac.ini
configuration file. That port is used for transporting commands between HAC, and
the HAManager (Java™ GUI). Additionally, HAC accepts the termination command
sent to that port by using an ADMIN COMMAND.

You can stop (terminate) HAC by executing the command below. To give the
command, use an SQL tool such as solsql, or the ODBC interface, and send the
command to HAC process. Use the port mentioned in the listen parameter in the
solidhac.ini configuration file. The command is:
ADMIN COMMAND ’hacontroller shutdown’

For further information about managing HAC, see “High Availability Manager” on
page 23.

HSB with HA Controller quick start procedure
This section describes a quick start procedure for HotStandby with HAC.

About this task

The procedure is quite similar to that in “HotStandby quick start procedure” on
page 25. However, instead of just setting up two HSB servers, this procedure
guides you to setup a highly available HSB system, where availability is
guaranteed by the HA Controller. Following the procedure below, you will get a
failure tolerant HSB system ready to serve applications.

To setup and run a Highly Available HSB system, you need two networked
computers. To set up your HotStandby servers, and HA Controller (one instance
per HSB server), follow the procedure below.

Procedure
1. Configure the HSB servers similarly regardless of whether you are using HAC.

For further information, see “HotStandby quick start procedure” on page 25.
2. Configure both HACs. HAC reads its configuration from the solidhac.ini file

located in the working directory. The lists below contains the mandatory
configuration parameters.
In the [HAController] section:
v Listen=<listen address, 'tcp' and chosen port #>

v Username

v Password

v DBUsername

v DBPassword

In the [LocalDB] section:
v Connect=<connect address, protocol, ip/hostname, port #>

v StartScript (mandatory if EnableDBProcessControl=Yes, which is the default
value)

In the [RemoteDB] section:
v Connect=<connect address, protocol, ip/hostname, port #>

For further information about configuring HA Controller, see “Configuring HA
Controller and HA Manager” on page 46 and “The solidhac.ini configuration
file” on page 47.

3. Start HA Controller in both nodes.

28 IBM solidDB: High Availability User Guide

HAC automatically finds out, which server should become the new Primary
according to their previous roles, and log positions. HAC uses the mechanism
described in “Choosing which server to make primary” on page 92. In some
special situations, for example when started with empty databases, both servers
are equally good candidates for the new Primary. In these situations HAC
chooses its local server if in the PreferredPrimary parameter in the [LocalDB]
section in solidhac.ini is set to 'Yes'.

4. After the second step, there should be one server in the PRIMARY ACTIVE
state and the other in the SECONDARY ACTIVE state. You can switch the
roles, if necessary, by pressing the Switch roles button in HAManager, or
executing the following command on the Secondary server:
ADMIN COMMAND ’hsb switch primary’

or on the Primary server:
ADMIN COMMAND ’hsb switch secondary’

After this point, HAC switches the roles of the servers when necessary. That is,
it keeps at least one server executing read and write transactions.

5. Start using applications.

Summary of start-up sequences
The following figure and table present side-by-side sequences for an installation
with HAC and for an installation without HAC. In the figure, the installation
sequence for HAC is on the left and the installation sequence without HAC is on
the right. The table after the figure explains each numbered step in the figure for
both installation types.

2 Getting started with HotStandby 29

Table 5. Installation sequence steps

Installation with HAC Installation without HAC

Step 1. Configure HSB servers

Step 2. Configure HA Controller

Step 3. Start HA Controllers in both nodes

Step 4. Switch HSB roles, if necessary

Step 2. Start HSB servers in both nodes

Step 3. Switch the state of the database
server to PRIMARY ALONE

Step 4. Connect Primary to the Secondary

Step 5. If connect failed, start db copy from
Primary to Secondary

Step 6. After netcopy, reconnect

HSB is ready. You can start using applications.

HSB
ready

Step 6

Step 5

Step 4

Step 3

Step 2

Step 1

HSB
ready

Step 4

Step 3

Step 2

Step 1

Without HACWith HAC

Figure 10. Summary of start-up sequences

30 IBM solidDB: High Availability User Guide

3 Administering and configuring HotStandby

This section describes how to maintain your HotStandby installation, including
HSB servers, HA Controller instances, and HA Manager. Furthermore, this section
describes the parameter settings for implementing and maintaining HotStandby
functionality.

This description supplements the information in the "Configuring solidDB" section
in the IBM solidDB Administrator Guide.

Parameters are grouped according to section categories in thesolid.ini
configuration file. When you are using HotStandby, you are required to configure
the [HotStandby] section of the solid.ini configuration file.

The High Availability Controller (HAC) configuration can be found in the
solidhac.ini configuration file. The parameters in the solidhac.ini configuration
file are also group according to different section categories.

The High Availability Manager configuration can be found in the HAManager.ini
configuration file. The parameters in the HAManager.ini are mainly used to identify
the HA Controller instances so that the High Availability Manager has access to
them.

You can change configuration parameters in the following ways:
v Manually editing the configuration files solid.ini, solidhac.ini and

HAManager.ini. Note that the server reads the configuration files during startup
only, and therefore any changes to any configuration file will not take effect until
the next time that the corresponding program is started.

v If you want to change the settings of a running solidDB server, you may use
ADMIN COMMANDs in solidDB SQL Editor solsql to do that. The ADMIN
COMMAND syntax is presented below:
ADMIN COMMAND ’parameter section_name.param_name=value’;

For example:
ADMIN COMMAND ’parameter hotstandby.2SafeAckPolicy=2’;
ADMIN COMMAND ’parameter com.listen="tcp sf_server 1315"’;

CAUTION:
When you use an ADMIN COMMAND to change a parameter, the changes to
some, but not all, parameters will take effect immediately.

What you should know
This section describes what you need to know about HotStandby before you begin
administration and maintenance.

HotStandby and the solidDB configuration file
To enable HotStandby functionality, you must provide a special [HotStandby]
section in the solidDB configuration file (solid.ini), and your license file must
allow use of the solidDB HotStandby component.

The minimum configuration information required in the [HotStandby] section is:

31

v Set HSBEnabled to "yes".
v Set the Connect parameter setting for the server. This setting defines the

network name used to connect to the other server (either Primary or Secondary).
If you do not set this parameter in the solid.ini file, then the server will not
start up as a HotStandby server. Note that after the server has started, you may
set or change this parameter by using an ADMIN COMMAND.

Note that each server's Connect string must match with the other server's Listen
string. Read “Configuring HotStandby-specific parameters” on page 41, for details
on the Connect parameter and other parameter settings. Refer to 2, “Getting
started with HotStandby,” on page 25, if you are setting up HotStandby for the
first time.

For examples on the solid.ini file on the Primary and Secondary server, see
“HotStandby demonstration” on page 25.

HotStandby and access rights
Administrators require no special access rights to run HotStandby, normal access
rights suffice.

For administration purposes, SYS_ADMIN_ROLE or SYS_CONSOLE_ROLE are
required to execute the HotStandby administrative commands. These commands
are executed with the solidDB SQL command:
ADMIN COMMAND ’hotstandby command_string’;

For example, if you use solidDB SQL Editor (teletype):
ADMIN COMMAND ’hotstandby status connect’;

When the HotStandby command is entered using solidDB Remote Control
(teletype), enter the hotstandby command string only (without the quotes), for
example:
hotstandby status connect

solidDB tools and HotStandby
All tools available for performing administration with solidDB apply also to
HotStandby.

You can issue HotStandby-specific administrative commands in solidDB SQL
Editor, and solidDB Remote Control, solsql and solcon), respectively. In addition,
solidDB Speed Loader (solload), solidDB Export (solexp), and solidDB Data
Dictionary (soldd) can be used with HotStandby. For a description of these tools,
read "Using solidDB data management tools" in IBM solidDB Administrator Guide.

The High Availability Manager can be used to monitor solidDB HotStandby states,
and to control HSB servers and HA Controllers. HA Manager can be used with the
HA Controller only. For a description of the High Availability Manager, see “High
Availability Manager” on page 23.

Database migration (disk-based servers only)
solidDB 4.x databases can be converted to the latest solidDB format by using one
of the following command-line parameters:
v -xconvert to convert the database file to the new structure and shut down the

server, or

32 IBM solidDB: High Availability User Guide

v -xautoconvert to convert the database file and continue running.

All required system tables, including those for the HotStandby functionality, are
created. After the conversion, the converted databases can no longer be used with
the older product versions. Therefore, you are urged to back up your databases
and files before migrating to the new release.

Note:

When solidDB databases are no longer in use by HotStandby, they remain
compatible with solidDB.

Interoperability
The servers in a HSB system should be of HSB-compatible versions. Typically,
adjacent versions are HSB-compatible.

See the Release Notes for information on HSB-compatibility with previous
versions.

Limitations and warnings with HotStandby
The following topics introduce a limitation for using in-memory tables with
HotStandby. The warnings deal with avoiding dual primaries and running out of
space for transaction logs.

In-memory tables
If you are connected to the Secondary and you are reading data from in-memory
tables, the transaction isolation level is automatically set to READ COMMITTED,
even if you specified REPEATABLE READ, or SERIALIZABLE (in-memory tables
do not support SERIALIZABLE at all on either the Primary or the Secondary.)

If load balancing is used, the isolation level is READ COMMITTED by default. For
more information about load balancing, and Transparent Connectivity, see “Using
the Transparent Connectivity” on page 54.

Network partitions and dual primaries
In some circumstances, it is possible to have both servers acting in the PRIMARY
ALONE state. Having dual primaries can lead to serious, unrecoverable errors.

In this situation, if each server commits any transactions that the other does not,
then you cannot resynchronize the servers because there is no way to "merge" the
databases to create a single database that has correct information. In practice, the
transactions committed in the "wrong primary" database during the dual primary
situation, will be lost. Having dual primaries can also lead to other errors.

The dual primaries problem is most likely to be caused by a "network partition" — a
situation in which some but not all network connections are lost and your single
network effectively becomes divided into separate sub-pieces, each of which allows
communication within the piece but not with other pieces. Thus both servers lose
connections with each other, but are still up and running, and in some cases may
still be able to communicate with some clients.

3 Administering and configuring HotStandby 33

The dual primaries scenario can be avoided by using a single-instance watchdog in
a node that is external to the HSB system. By using such a watchdog, it is easy to
decide which server should be set to Primary, and to ensure that clients see only
one Primary.

Although HAC in composed of two instances running in the same nodes with HSB
servers, the dual primary situation is virtually impossible, when HAC is used with
ERE.

Even if you do wind up with dual primaries, you won't actually have inconsistent
data unless someone is able to perform a write operation on the original Secondary
(after it has switched to PRIMARY ALONE). If the original Secondary is
completely cut off from the rest of the network, then no one can write to it, and
the original Primary will be a superset of the Secondary, and you will still be able
to get a single consistent set of data (after you reconnect the servers and allow the
Secondary to catch up with the changes made on the original Primary).

Although dual primaries are rare, they are extremely dangerous when they do
occur, and you must use extreme caution to prevent your data from becoming
inconsistent. Using ERE is highly recommended.

The chances of dual primaries increase if you have set the configuration parameter
AutoPrimaryAlone=Yes in the solid.ini files of one or both servers. Using
AutoPrimaryAlone=Yes means that your system may respond more quickly to
failures, but it also means that the system no longer has any independent observer
(HAC, watchdog or human) to prevent dual primaries. If you have any doubts on
your network reliability, keep the AutoPrimaryAlone parameter in its factory
value, that is, No.

Running out of space for transaction logs
When you use HotStandby, if you put a server in PRIMARY ALONE state, you
must be careful that it does not run out of disk space for transaction logs. In a
non-HotStandby server, if you checkpoint frequently, then the transaction log does
not grow very large because after each checkpoint the server deletes the "old"
transaction logs.

In particular, the non-HotStandby server deletes the logs with the data changes
that occurred before the checkpoint. For more information about checkpointing, see
solidDB Administration Guide.

However, in a HotStandby server that is operating in PRIMARY ALONE state, the
server must keep the transaction logs that have accumulated since the time that the
Primary lost contact with the Secondary. If the Secondary is down for a long time,
the server may keep a large amount of transaction log data that it would otherwise
throw away after each checkpoint. In a worst-case situation, if the Secondary
cannot be brought back up in a reasonable time and there is not enough disk space
to store all the transactions that occur, then the Primary's transaction logs may fill
up all of the available disk space. This will cause the server to switch to read-only
mode.

You can prevent this from happening by setting the appropriate value of the
parameter MaxLogSize in the [HotStandby] section. After reaching the specified
total log size, the server will automatically switch to the STANDALONE state, at
the next checkpoint. (In a diskless server, the state will remain PRIMARY ALONE,
though, as there is no disk writing at all.)

34 IBM solidDB: High Availability User Guide

If the server is set to the STANDALONE state, it will not keep all transactions logs
since the time that the Primary lost contact with the Secondary. Without complete
transaction logs, you cannot synchronize your system merely by connecting the
Primary to the Secondary and allowing the Secondary to "catch up" by reading old
logs. You will have to copy the entire database from the Primary to the Secondary
by using the copy or netcopy command.

If HAC is used, it identifies the situation described above, and leads the servers to
the ACTIVE state by automatically performing the necessary actions.

Overview of administration tasks
This section describes administration tasks you may need to perform when using
HotStandby.

Topics included in this section are:

Table 6. Administration Tasks

Topic Description Page

Performing HotStandby
recovery and maintenance
tasks

Describes HotStandby tasks
in the case of a system
failure (resulting from either
a broken communication link
or an inoperable hotstandby
server). These tasks include:

v Switching server states

v Shutting off HotStandby
operations

v Synchronizing Primary
and Secondary servers

v Connecting HotStandby
servers

“Performing HotStandby
recovery and maintenance”
on page 36

Copying a Primary database
to a new Secondary over the
network

Describes how to create a
remote (network) copy of a
database when the remote
server is a new addition to
the HotStandby
configuration (that is, it is a
new Secondary), or the
remote server's data becomes
corrupted and must be
replaced.

“Copying a primary database
to a secondary over the
network” on page 82

Checking HotStandby status Describes how to check
HotStandby status
information for the Primary
and Secondary servers.

“Checking HotStandby
status” on page 88

Verifying HotStandby server
states

Describes how to check the
state (Primary, Secondary, or
standalone) of a HotStandby
server.

“Verifying HotStandby server
states” on page 90

Changing a HotStandby
server to a non-HotStandby
server

Describes how to set a server
configured for HotStandby to
a normal, non-HotStandby
server.

“Changing a HotStandby
server to a non-HotStandby
server” on page 93

3 Administering and configuring HotStandby 35

Performing HotStandby recovery and maintenance
In the case of a system failure (resulting from either a broken communication link
or an inoperable hotstandby server) or server maintenance, you may be required to
perform HotStandby tasks. These tasks include switching server states, shutting off
HotStandby operations, synchronizing Primary and Secondary servers, and
connecting HotStandby servers.

Procedure
1. Perform some or all of the following operations:

a. Switch the server state.
This includes setting the Primary server to PRIMARY ALONE state, which
continues accumulating transactions in the transaction log so that they can
be sent to the Secondary later, or shutting down HotStandby.

b. Synchronize the servers to be sure the Primary and Secondary databases are
identical.

c. Connect the Primary server to the Secondary server if the communication
link is broken for some reason.

2. The same steps can be taken with HAC and HA Manager as follows:
a. Press the Switch button in HA Manager. If the server needs to be shut

down, press the Shutdown button in HA Manager.
b. Set HAC instances to the ADMINISTRATIVE mode by pressing the

Administrative buttons in HA Manager.
c. Set HAC instances to AUTOMATIC mode by pressing the Automatic

buttons in HA Manager.

What to do next

These topics are described in following sections. For details on reconnecting
applications to Secondary or Primary databases, read “Reconnecting to primary
servers from applications” on page 65.

Important:

If HAC is used, either use HA Manager to perform administrative steps, or set
HAC instances to ADMINISTRATIVE mode before starting the administration.

Special configurations: Lower cost versus higher safety
solidDB's HotStandby solution uses pairs of Primary and Secondary servers to
provide true hot standby capability. Using pairs of servers is not optimal for every
customer, however. If near-instantaneous failover is not required, you may not be
able to justify the expense of having a Secondary for every Primary server. At the
other extreme, some customers may need extra reliability and may have the money
to buy "spares for the spares", that is, to purchase not only a Secondary for every
Primary, but also one or more additional spare servers so that when a Primary fails
and its Secondary replaces it, a spare can be used as the "new Secondary" if the
original Primary cannot be repaired quickly.

To allow customers to reduce costs or increase reliability, solidDB HotStandby
(HSB) supports some alternatives to the standard hot standby model. The standard
model is sometimes called the "N+N" or "2N" model, because the number of
Primary and Secondary servers is the same ("N"). The alternatives include:

36 IBM solidDB: High Availability User Guide

v N + 1 Spare or N + M Spares: This is the Spare Node scenario for Standalone.
There are N "primary" servers and one or more spares. There are no Secondary
servers. A failed "primary" server is replaced with a spare. This is not a true "hot
standby" scenario and is better called "warm standby", since the computer is
available but it does not have a copy of the database.

v 2N + 1 Spare or 2N + M Spares: This is the Spare Node scenario for HotStandby.
There are N HotStandby pairs, that is, every Primary has a Secondary. In
addition, there are M spares, where M is at least one and usually less than N.
When a Primary or Secondary fails, a spare is brought in as the new Secondary.
Thus a Primary server never operates alone for long, even if its original partner
has failed.

Subsequent topics explain the N+M (or N+1) and the 2N+M (or 2N+1) approaches
and the solidDB features that help you implement these.

Reducing cost: N + 1 spare and N + M spares scenarios
In these scenarios, there are N "primary" servers, each of which operates in
Standalone state, that is, without being connected to a Secondary. In addition, there
are M spare servers, where M is at least 1 and usually less than N. If a "primary"
server fails, one of the spares replaces it. Data is copied from the original server to
the spare, then the original server is taken offline and the spare is configured to act
as the original server. Note that any spare can replace any Primary server (no
spare is dedicated to a particular Primary server). Note also that failover is not
almost instantaneous.

We refer to this approach as the "N + 1" (single-spare) or "N + M" (multiple-spare)
scenario.

Because this approach requires that you have a copy of the original server's data
somewhere, this approach will not work if the original server's disk drive is
damaged and there is no backup of the data. This N+M approach is most useful in
the following situations:
1. You are using the spare nodes to handle scheduled maintenance, not

unexpected failures.
2. You have reliable backups that you can quickly copy to the spare server.

a. You have backups on tape or on a RAID drive or some other safe location,
or

b. You are using solidDB's advanced replication technology, and you can copy
or recreate enough of the data by reading from the advanced replication
"master" or "replicas" of the server that failed.

3. Individual pieces of data are not critical or are not unique.
a. For example, if what you really need is the "computing horsepower"

(load-spreading capability) rather than the specific data, then you may be
able to meet your needs by copying a standard or "seed" database, or
getting the data from clients, and then continuing to run.

b. Similarly, if all the servers have approximately the same data and are
responding almost entirely to "read" requests with few or no "write"
requests—for example, if you are running a large number of servers that all
use the same internet routing tables, or telephone directory
information—then you can copy a useful database from any one of your
computers.

3 Administering and configuring HotStandby 37

Increasing reliability: 2N + 1 spare and 2N + M spare
scenarios

Normal solidDB HotStandby operation is highly reliable. The odds of both the
Primary and Secondary failing at nearly the same time are very low, provided that
they use separate reliable power supplies. But suppose that you want to reduce
even this risk, or suppose that the server that failed cannot be repaired rapidly?
Ideally, when a Primary fails and you replace it with a Secondary (or when a
Secondary fails), you'd like to have a "new" Secondary that replaces the "old"
Secondary so that you can continue to run with a complete pair of servers.

This situation is called the 2N + 1 Spare (or 2N + M Spares) scenario. You have N
Primary servers, N Secondary servers, and at least 1 spare that will replace any
Secondary that has failed or has been converted to a Primary. Spares are not
dedicated to a particular server (or HSB pair of servers), and some configuration is
required before the spare can replace the failed server.

How solidDB HSB supports the N+1 (N+M) and 2N+1 (2N+M)
approaches

You must make a spare server look like the server that it is replacing. Typically,
this means:
1. You must copy data to the spare.
2. You must tell the spare to "listen" at the same network address as the server

that it is replacing, or at another address that the client programs know to
communicate through.

3. In addition, in the 2N+1 (2N+M) scenario, you must also tell the new
Secondary server and the current Primary server how to communicate with
each other, In other words, you must tell each of them the address to use to
connect to the other.

solidDB has two features to support these needs:
v solidDB allows you to copy data to the spare server without shutting down the

spare server.
v solidDB allows you to dynamically set certain configuration parameters.

These are explained in more detail below:
1. Although solidDB configuration parameters are normally set by shutting down

the server, updating the solid.ini configuration file, and then restarting the
server, it is also possible to change some configuration parameters (such as the
"com.listen" and "hotstandby.connect" parameters) by executing ADMIN
commands similar to the following:
ADMIN COMMAND ’parameter com.listen="tcp SpareServer1 1315"’;
ADMIN COMMAND ’hsb parameter connect "tcp srvr27 1316"’;

This means that a spare can be dynamically configured to take the place of
another server without shutting down first. Similarly, a Primary can be told the
Connect string of its new Secondary.
CAUTION:

Executing these commands does NOT write the updated parameter values to
the solid.ini file. Thus, to ensure that the server has the new values the next
time it restarts, you should also update the solid.ini file, as well as execute
the commands shown above.

38 IBM solidDB: High Availability User Guide

Important:

The spare server should be started with the -x backupserver command-line
option so that it is ready to receive the netcopy from the Primary server. For
more information about the -x backupserver option, see “Creating a new
database for the secondary server” on page 83, and also see the explanation of
command-line options in solidDB Administration Guide.

2. solidDB's "netcopy" command allows you to copy a database to a server that is
already up and running.
a. Set the new value of the "connect" parameter:

ADMIN COMMAND ’hsb parameter connect "tcp srvr27 1316"’;

b. Execute the netcopy command:
ADMIN COMMAND ’hsb netcopy’;

c. Connect the current Primary with the new Secondary by executing the
command:
ADMIN COMMAND ’hsb connect’;

Using HAC with spares
HAC has limited support on spare scenarios. It can be used in a spare, but before
HAC in the Primary node is able to start monitoring the HSB state of the spare
server, the connect information of the Primary HAC, RemoteDB.Connect, must be
updated. That requires updating the solidhac.ini file and restarting the HAC in
the Primary node.

Similarly, the HAC in the spare node needs the connect information of the Primary
server. If that is not known beforehand, the information must be added in the
solidhac.ini file. After you have added the information to solidhac.ini, you
must restart HAC.

Configuring solidDB for HotStandby
The solid.ini file (at both the Primary and Secondary nodes) contains the
parameters that are necessary to set up a HotStandby system.

Defining secondary and primary node configuration (Com
section)

The network name of a Primary or Secondary server consists of a communication
protocol and a server name. The network names are defined with the Listen
parameter in the [Com] section of the configuration file. The solid.ini file should
be located in a solidDB program's working directory or in the directory set by the
SOLIDDIR environment variable.

A Primary or Secondary server may use one or multiple network names. Note that
all components of network names are case insensitive.

Entry in the solid.ini file

Primary node:
[Com]
;The Primary server listens to the network with this name
Listen = tcp 1320

Secondary node:

3 Administering and configuring HotStandby 39

[Com]
;The Secondary server listens to the network with this name
Listen = tcp 1321

For more information about the Listen parameter, see IBM solidDB Administrator
Guide.

Defining timeouts between applications and servers (Com
Section)

This section describes how to configure Application Read Timeout and Connect
Timeout settings by using either the solid.ini Connect parameter or the connect
string of the SQLConnect function for ODBC.

These timeout values apply to the server's connections with client applications,
including solidDB SQL Editor (solsql), solidDB Remote Control teletype (solcon),
and HA Manager.

Application read timeout option
This option detects failures in low level network RPC read operations. Its timeout
setting applies to the read in the physical network, which works only for the
TCP/IP protocol.

This RPC read timeout (called connection timeout in ODBC and JDBC) value is
configured in connect and listen strings using the following option:
TCP -rnumber_of_milliseconds [machine_name] port_number

To specify this in the solid.ini file, use the Connect parameter in the [Com]
section of solid.ini. For example:
[Com] ;Set RPC read timeout to 1000 milliseconds (one second)
Connect=TCP -r1000 1313

The default value for RPC read timeout is 60000 milliseconds (60 seconds). Value
zero (0) sets an indefinite timeout.

If you are using ODBC, you specify the timeout setting in the connect string of the
SQLConnect function. For example:
SQLConnect (hdbc, "TCP -r1000 1313", SQL_NTS,
"dba", SQL_NTS, "dba", SQL_NTS);

In the example above, the constant SQL_NTS indicates that the previous string
(servername, username, or password) was passed as a standard Null-Terminated
String.

Note:

For client applications, such as the watchdog, it is convenient to provide RPC read
timeout (called also connection timeout) in the connect parameter using the -r
option. Otherwise certain network failure types may cause indefinite waits.

Note:

The Connect parameters in the [Com] section, [Watchdog] section, and
[Hotstandby] section are all for different purposes. Make sure that you edit the
correct one.

40 IBM solidDB: High Availability User Guide

Specifying -C option in the connect parameters
You can specify the connect timeout (called also login timeout) value in the
Connect parameter used in the [Com] and [Watchdog] sections of the solid.ini
file. This connect timeout works only for the TCP/IP protocol.

The syntax is:
Parameter = tcp -cnumber-of-milliseconds [machine name] port_number

where Parameter is Connect or Listen.

If no value is provided for the connect timeout, the server uses the operating
system-specific default value.

Note:

For client applications, such as the watchdog, it is convenient to provide the
connect timeout value in the Connect parameter using the -c option. Otherwise
certain network failure types may cause a long wait before the failure is detected.

For example:

Application node:
[Com] ;The server listens to port 1320, and the Connection timeout is 1000 ms.
Listen = tcpip -c1000 1320

Transaction durability

DurabilityLevel
The parameter DurabilityLevel applies to both HotStandby and non-HotStandby
servers. This parameter has three different values, which correspond to "relaxed",
"adaptive", and "strict" durability.

Adaptive durability is used only with HotStandby. Adaptive durability means:
v If Primary and Secondary are connected and operating normally (if they are in

PRIMARY ACTIVE and SECONDARY ACTIVE states, respectively), the server
uses relaxed durability.

v In all other situations (for example, PRIMARY ALONE, STANDALONE), the
server uses strict durability.

For an explanation of the differences between "strict" and "relaxed" durability, or
for more information about the DurabilityLevel parameter, see IBM solidDB
Administrator Guide.

Configuring HotStandby-specific parameters
At both the Primary and Secondary nodes, the solid.ini file contains the
[HotStandby] section to specify HotStandby-specific configuration parameters.

Defining primary and secondary HotStandby configuration
The minimum set of solid.ini configuration parameters that you must set to
enable HotStandby is:
v HSBEnabled. This parameter turns HSB on or off.
v Connect. This parameter defines the network name used to define either the

Primary or Secondary server. The network name is the protocol and server name

3 Administering and configuring HotStandby 41

that the Primary server uses to connect to the Secondary server, or vice versa.
(Strictly speaking, the Connect parameter is not required to be in the solid.ini
file. You may start the server without this parameter and then use an ADMIN
COMMAND to specify the Connect string. If the Connect string is not set, then
the server can run only in the states that do not require a connection, for
example, PRIMARY ALONE, SECONDARY ALONE, and STANDALONE.)

v LogEnabled. If this parameter is set, it should be set to "yes". Note that this
parameter is in the [Logging] section, not the [HotStandby] section, of the
solid.ini file.

Note:

If the solid.ini file does not contain a [HotStandby] section, or does not contain
HSBEnabled=Yes in the [HotStandby] section, then the server starts as a
non-HotStandby server and HotStandby replication is not used.

Partial solid.ini files

Node 1
[HotStandby]
HSBEnabled = yes
;The server connects to the opposite server
;using the following connect string.
Connect = tcp machine2 1321

[Logging] LogEnabled=yes

Node 2
[HotStandby]
HSBEnabled = yes
;The server connects to the opposite server
;using the following connect string.
Connect = tcp machine1 1320

[Logging] LogEnabled=yes

Setting HotStandby server wait time to help detect broken or
unavailable connections

A HotStandby server uses timeout parameters to control how long it will wait
before concluding that an existing connection is broken or a new connection cannot
be established.

About this task

The timeout parameters are:
v HotStandby.PingTimeout

v HotStandby.PingInterval

v HotStandby.ConnectTimeout

A HotStandby server that is in the PRIMARY ACTIVE state or the SECONDARY
ACTIVE state will change to PRIMARY UNCERTAIN, PRIMARY ALONE, or
SECONDARY ALONE if it tries to contact the other server and receives no reply
within a specified amount of time.

42 IBM solidDB: High Availability User Guide

Procedure

To control how long the server waits, you can:
v Set the PingTimeout parameter to specify the amount of time that the server

should wait before changing to the PRIMARY UNCERTAIN state.
v Set the PingInterval parameter to specify the interval between the "ping"

messages the server sends to indicate that it is healthy.
v Set the ConnectTimeout parameter to specify the amount of time that the server

should wait when trying to establish a new connection to the other server (for
example, in an ADMIN COMMAND 'hotstandby connect' operation).

PingTimeout and PingInterval parameters [HotStandby]
The optional PingTimeout and PingInterval parameters in the [HotStandby]
section control the ping operation.

A "ping" operation is essentially an "I'm alive" message sent by one database server
to another. (Some networking software also has a "ping" operation, but the
solidDBPingTimeout configuration parameter in the [HotStandby] section applies
only to solidDB server pings, not general network pings.) In other words, this
refers to a passive heartbeat system. When this parameter is set, both the Primary
and Secondary HotStandby servers send "ping" messages to each other at regular
intervals. See also “Heartbeat” on page 3.
v PingTimeout specifies how long a server should wait before concluding that the

other server is down or inaccessible. Default is 4000 (4 sec.)
v PingInterval specifies the interval, in milliseconds, between two pings. Default

is 1000 (1 sec.)

For example, if the PingInterval is 10 seconds, then the servers will send ping
messages to each other after every 10 seconds. If PingTimeout is 20 seconds and
one server (S1) does not hear from the other (S2) within 20 seconds, then S1 will
conclude that S2 is down or inaccessible. Server S1 will then switch to another
state, e.g. from "PRIMARY ACTIVE" to "PRIMARY UNCERTAIN".

If the values of the above parameters are different, the precedence take values set
in Primary during execution of the "hsb connect" command. The values will not
change during switchovers. However, they can be changed dynamically with the
ADMIN COMMAND "parameter" command.

If PingTimeout is set to zero, pinging is disabled.

Ping requires little overhead and a solidDB server is set up to respond quickly to
missing ping messages. You can set the PingInterval value to a fairly short
interval, such as a second, or even less.

If it is important that you quickly detect failover when a server fails, then set the
PingTimeout value to a relatively short time. However, shorter values also mean a
higher chance for "false alarms". If your network has a lot of traffic and thus
causes delays before a ping message is received, then you may need to set the
PingTimeout to a large value to avoid false alarms.

ConnectTimeout parameter [HotStandby]
In some network implementations, a connect operation may not respond for an
indefinite period of time. One possible reason is that the remote machine is a
known node, but is unavailable during the connect attempt. By specifying a

3 Administering and configuring HotStandby 43

connect timeout value, you can set the maximum time in seconds that a
HotStandby connect operation waits for a connection to a remote machine.

The ConnectTimeout parameter (which is useful only on certain platforms) is only
used with certain administration commands. These are:
v hotstandby connect
v hotstandby switch primary
v hotstandby switch secondary

You set the connect timeout value in milliseconds using the ConnectTimeout
parameter in the [HotStandby] section of the solid.ini file. The units are
milliseconds. The default is 0, which means no timeout. You can set it to a different
value, for example:
[HotStandby]
; Set ConnectTimeout to 20 seconds (20000 milliseconds).
ConnectTimeout=20000

Defining a name and location for HotStandby database copy
operation

The optional CopyDirectory parameter in the [HotStandby] section defines the
name and location of the directory that the HotStandby copy operation copies to.

The HotStandby copy operation is specified with the command:
ADMIN COMMAND ’hotstandby copy [directory_name]’;

This parameter has no default value, so if the directory is not specified in the
solid.ini file, it must be provided in the copy command. If you provide a relative
path for the CopyDirectory parameter, the path will be relative to the directory
that holds the Primary server's solid.ini file.

This parameter is not needed if you do the HotStandby database copy operations
using the ADMIN COMMAND 'hotstandby netcopy' command. Of these two
alternatives, netcopy provides more flexible functionality and is thus the
recommended command.

Defining primary server behavior during a secondary failure
You can use the AutoPrimaryAlone parameter in the [HotStandby] section to
control whether the Primary server automatically switches to PRIMARY ALONE
state or stays in PRIMARY UNCERTAIN state after losing contact with the
Secondary server.

If AutoPrimaryAlone is set to Yes, then when Primary loses contact with
Secondary, Primary will automatically switch to the PRIMARY ALONE state,
which allows it to continue accepting transactions. If AutoPrimaryAlone is set to
No, then when Primary loses contact with Secondary, Primary will automatically
switch to the PRIMARY UNCERTAIN state.

By default, AutoPrimaryAlone is set to No.
[HotStandby]
AutoPrimaryAlone = No

44 IBM solidDB: High Availability User Guide

The PRIMARY UNCERTAIN state prevents Primary from accepting new
transactions or committing the currently active ones. Primary will not switch to
PRIMARY ALONE state until HAC, the Watchdog or System Administrator tells it
to.

If AutoPrimaryAlone is set to No, the server can be set to the PRIMARY ALONE
state by executing the ADMIN COMMAND 'hotstandby set primary alone'
command. Note that this command does not change the value of
AutoPrimaryAlone in the configuration file.

If you change the default to Yes, the Primary server's state changes from PRIMARY
ACTIVE to PRIMARY ALONE rather than to PRIMARY UNCERTAIN.

Performance tuning

Tuning replication performance with safeness and durability
levels

The performance of data replication during normal operation depends on the
setting of the durability level and safeness level. Additionally, when 2-safe
replication is used, the acknowledgement policy used in 2-safe mode affects the
latency time, as perceived by the application. For more information, see “How
does HotStandby affect performance” on page 14.

Tuning netcopy performance (General section)
The hotstandby netcopy command allows the Primary's database to be copied to a
remote Secondary. This command is also used to copy a database from a Primary
server to a Secondary server when one or both servers are diskless. The connect
string used to connect to the Secondary server for the netcopy is specified in the
[HotStandby] section of solid.ini.

The Primary database files are copied through the network link. For more details
on netcopy, read “Copying a primary database to a secondary over the network”
on page 82.

The following parameters in the [General] section of the solid.ini file allow for
improved netcopy performance.

BackupBlockSize parameter [General]
The BackupBlockSize parameter in the [General] section of the solid.ini file is
used to tune the performance of netcopy (and the performance of backup) by
increasing or decreasing its block size when it copies the Primary database files to
the Secondary server. As a general rule, larger block size means faster
netcopy/backup, but at the cost of possibly slowing down the server's response
time to other requests while the netcopy/backup is being done.

By default, the BackupBlockSize parameter is set to 64K. You can set it to a
different value, for example:
[General]
BackupBlockSize = 32K

or
[General]
BackupBlockSize = 32768

3 Administering and configuring HotStandby 45

Note that the minimum value for BackupBlockSize is the server block size and the
maximum value is currently 1GB ("M" and "K" suffixes are supported; for example,
32K and 1M). The value of BackupBlockSize should be a multiple of the server's
database block size.

Tuning database catchup performance
When a failed Secondary server is back in service and connected to Primary,
HotStandby continues sending the Primary's HotStandby transaction log file
contents to the Secondary node in an automated process known as HotStandby
database catchup.

The CatchupSpeedRate parameter in the [HotStandby] section of the solid.ini file
is used to tune the performance of the database catchup by adjusting how much of
the server's time is spent on catchup vs. servicing current client database queries.

If CatchupSpeedRate is assigned a value of 90, this means that the server will
spend approximately 90% of its time on catchup and about 10% of its time
responding to user queries. For example:
[HotStandby]
CatchupSpeedRate = 50

The higher the number, the faster catchup will perform, but the more it will impact
other activities, such as user queries. By default, CatchupSpeedRate is set to 70.

Configuring HA Controller and HA Manager
High Availability Controller (HAC) is deployed on each of the HotStandby server
nodes; it is configured through the solidhac.ini configuration file. High
Availability Manager (HAM) is configured through the HAManager.ini
configuration file.

HA Controller

The HAC configuration file solidhac.ini must be located in the HAC working
directory. Parameters in the solidhac.ini configuration file are grouped under the
following sections:
v HAController

v LocalDB

v RemoteDB

v ERE

For descriptions of the parameters, see “High Availability Controller configuration
parameters” on page 114

All the configuration parameters are shown also in the solidhac.ini example file
in “The solidhac.ini configuration file” on page 47.

HA Manager

The HAM configuration file HAManager.ini must be located in the HAM working
directory.

For descriptions of the parameters, see “High Availability Manager configuration
parameters” on page 118

46 IBM solidDB: High Availability User Guide

All the configuration parameters are shown also in the HAManager.ini example file
in “The HAManager.ini configuration file” on page 50.

Configuration file examples
The following sections give examples of different configuration files related to
solidDB.

The solid.ini configuration file

Below is a sample excerpt of the solidDB configuration file (solid.ini) for the first
HotStandby server:
[Com]
; The first server listens to the network with this
; name
Listen = tcp 1320
[HotStandby]
HSBEnabled=yes
; The first server connects to the second server
; using the following connect string.
Connect = tcp 188.177.166.12 1321
AutoPrimaryAlone=No
[Logging]
LogEnabled=yes

Below is a sample excerpt of the solidDB configuration file (solid.ini) for the
second HotStandby server:
[Com]
; The second server listens to the network using the following
; connect string.
Listen = tcp 1321
[HotStandby]
HSBEnabled=yes
; The second server connects to the first server
; using the following connect string.
Connect = tcp 188.177.166.11 1320
AutoPrimaryAlone=No
[Logging]
LogEnabled=yes

The solidhac.ini configuration file
A sample excerpt of the High Availability Controller (HAC) configuration file
(solidhac.ini).
;==
; NOTE : Copy this file as solidhac.ini
; to solidhac working directory
;
; solidDB High Availability Controller inifile
;==

[HAController]
;** HAC connect info
;** HAC clients, HA Manager, for example, use this information.
;** Mandatory
;** Listen=tcp 3135
Listen=

;** Setting StartInAutomaticMode=Yes starts HAC in AUTOMATIC mode.
;** In AUTOMATIC mode, solidhac automatically tries
;** to maximize the availability by changing the HSB states of the
;** server, and restarting the server processes when necessary.

3 Administering and configuring HotStandby 47

;** In contrast, it can be in ADMINISTRATIVE mode
;** in which HAC only monitors the health of the servers.
;**
;** This is dynamically changeable parameter.
;** Optional
;** Values : Yes/No, default = Yes
StartInAutomaticMode=

;** Setting EnableDBProcessControl=Yes allows solidhac
;** manage local db process by automatically starting
;** the db, and by providing the user with commands to
;** shutdown and restart db process.
;**
;** Optional
;** Effective only when HAC is in AUTOMATIC mode.
;** Values : Yes/No, default = No
EnableDBProcessControl=

;** Setting EnableAutoNetcopy=Yes allows solidhac to initiate
;** netcopy when HSB link cannot be established with ’hsb connect’.
;**
;** Optional
;** Effective only when HAC is in AUTOMATIC mode.
;** Values : Yes/No, default = Yes
EnableAutoNetcopy=

;** When server state is unknown, or HAC needs, for some other reason, to
;** ensure the state of server, non-blocking SQLConnect command is used.
;** If the execution of non-blocking SQLConnect in such a case fails,
;** it is repeated multiple (RequiredConnectFailures) times before
;** the server in question is considered as non-responsive.
;**
;** Optional
;** Values : 1..n, default=2
RequiredConnectFailures=

;** Timeout in milliseconds for non-blocking SQLConnect commands.
;** Too short interval can cause ’false positives’, server seems
;** to be failed because it wasn’t able to respond within the timeout period.
;**
;** Optional
;** Values : 1..n, default=150 (milliseconds)
CheckTimeout=

;** Interval between consecutive non-blocking SQLConnect commands.
;** The value doesn’t affect on failover time. Checking (polling)
;** takes place typically after failure, or during system startup.
;**
;** Optional
;** default = 1000 (milliseconds)
CheckInterval=

;** HAC user identification
;** Mandatory
Username=
Password=

;** HSB server user identification
;** Mandatory
DBUsername=
DBPassword=

;** Identification for application connection test
;** These values are used when ApplicationConnectionTest
;** thread monitors the connection, and availability of
;** the server.
;** If values are not set, and

48 IBM solidDB: High Availability User Guide

;** LocalDB.EnableApplicationConnCheck=Yes, then DBUsername, and
;** DBPassword are used.
;**
;** Optional
ApplicationConnTestUsername=
ApplicationConnTestPassword=

[LocalDB]
;** soliddb connect info
;** Mandatory
;** Connect=tcp 2125
Connect=

;** Enable periodical connection testing in the server.
;** In practice, HAC connects to the server, and executes
;** simple command(s) to ensure the responsiveness.
;**
;** Optional
;** default = No
EnableApplicationConnTest=

;** Connect info for applications, used in application connection test,
;** if it is enabled.
;**
;** Optional, if not specified, LocalDB.Connect is used.
;** ApplicationConnect=tcp 10.0.0.101 2125
ApplicationConnTestConnect=

;** Enables execution of the user-provided script when application
;** connection test fails. The script is defined with
;** UnresponsiveActionScript.
;**
;** Optional
;** default = No
EnableUnresponsiveActions=

;** Number of times the application connection test commands
;** are executed before the server is considered unresponsive.
;**
;** Optional
;** default = 3
RequiredAppConnTestFailures=

;** Timeout in milliseconds for consecutive application connection
;** test commands.
;**
;** Optional
;** default = 5000 (milliseconds)
ApplicationConnTestTimeout=

;** Interval between consecutive non-blocking application connection
;** test commands.
;**
;** Optional
;** default = 30000 (milliseconds)
ApplicationConnTestInterval=

;** The name of the script, which is used to initiate the db process.
;**
;** Optional, except if HAC controls db process (EnableDBProcessControl=Yes).
;** Value is not effective if EnableHACActions=No or EnableDBProcessControl=No
;** StartScript=/home/solid/start_solid.sh
StartScript=

;** The name and location of the script that contains the intended actions that
;** take place if application connection test fails.

3 Administering and configuring HotStandby 49

;** When calling the script, HAC needs to specify the solidDB® process
;** identifier as a parameter. If HAC does not know the solidDB process id,
;** the script cannot be executed.
;**
;** Optional, except if ApplicationConnectionTest=Yes, and
;** EnableUnresponsiveAction=Yes
;**
;** UnresponsiveActionScript=/home/solid/terminate_solid.sh
UnresponsiveActionScript=

;** Setting PreferredPrimary=Yes moves local HSB server to as Primary
;** in the case where either of the servers could start as Primary.
;** If both servers have PreferredPrimary=No, or no value, first
;** (new Primary) server wins.
;**
;** Optional
;** Value is not effective if EnableHACActions=No.
;** Values : Yes/No, default no
PreferredPrimary=

[RemoteDB]
;** soliddb connect info
;** Mandatory
;** Connect=tcp 192.168.3.123 2125
Connect=

[ERE]
;** IP address of an ERE
;** Optional
;** Connect=192.168.3.1
EREIP=

;** The number of consecutive ping calls that must
;** fail before HAC concludes that the server is
;** disconnected from ERE.
;**
;** Optional
;** Values : 1..n, default=3
;** RequiredPingFailures=10
RequiredPingFailures=

The HAManager.ini configuration file

Below is a sample excerpt of the High Availability Manager configuration file
(HAManager.ini):
;===
;solidDB High-Availability Manager
; Configuration file HAManager.ini
; V. 0.3
; 2008-21-01
;===
;** HA Controller connect info, e.g.
;Server1_name = Server 1
;Server1_host = node1.acme.com
;Server1_port = 2220
;Server2_name = Server 2
;Server2_host = node2.acme.com
;Server2_port = 2220

; All the following lines are mandatory.
Window_title = HA Manager
Header_text = SolidDB HA Manager

50 IBM solidDB: High Availability User Guide

; Display names, host addresses and port numbers
; of the SolidHAC (HA Controllers) instances
;Server 1 HA Controller
;----------------------
Server1_name = Server 1
Server1_host = localhost
Server1_port = 1234
Server1_user = foo
Server1_pass = bar
;
;Server 2 HA Controller
;-----------------------
Server2_name = Server 2
Server2_host = 192.168.0.1
Server2_port = 1234
Server2_user = foo
Server2_pass = bar

3 Administering and configuring HotStandby 51

52 IBM solidDB: High Availability User Guide

4 Using HotStandby with applications

This chapter explains how applications should deal with failures and switchovers
in HotStandby configurations.

Two ways to connect to HotStandby servers
There are two ways to program applications in HotStandby environments. In
addition to the Basic Connectivity, where the Client has to connect explicitly to
each of the HSB servers, the Transparent Connectivity (TC) is offered whereby the
Client enacts only one logical connection called the TC Connection.

Both connectivity types are supported in the solidDB ODBC and JDBC drivers. The
connectivity type is selected by formulating a generalized connect string (Data
Source Info) accordingly.

Basic Connectivity

With Basic Connectivity, the application has to take care of connecting to each
server of the HotStandby configuration separately, by using specific server
addresses. If a failover happens, the active connection is lost, and the application
has to reconnect to the new Primary server.

Transparent Connectivity

With Transparent Connectivity, the application does not have to deal with
connecting to any specific server, or to reconnect in the case of a failover. The
application maintains a logical connection (handle) called a TC Connection

The connection handle is maintained over failovers and switchovers for as long as
there is any server in the PRIMARY ACTIVE, PRIMARY ALONE or
STANDALONE state, within the specified set of servers. At failovers and
switchovers, the driver performs an internal operation called connection switch. The
application is notified about the connection switch, because the application must
reconstruct some of the session states (depending on the failure transparency
level). With TC, read-only load can be balanced between the Primary and the
Secondary server. Briefly, the Transparent Connectivity relieves the application
from taking care of multiplicity of servers and their addresses.

Important:

solidDB tools, such as the solsql, do not support the TC connection.

Choosing the connectivity type
Procedure

The following compatibility matrix helps you choose the connectivity type by
indicating the supported feature against the selected connect info:

Table 7. Choosing the connectivity type

Feature Standalone config. HSB configuration

Basic connectivity Yes (BC Info) Yes (BC Info)

53

Table 7. Choosing the connectivity type (continued)

Feature Standalone config. HSB configuration

Transparent failover No Yes (TC Info)

Load balancing No Yes (TC Info)

Using the Transparent Connectivity
When using solidDB Transparent Connectivity, the driver hides the existence of
two HSB servers, to some extent, from the application.

The driver offers a single logical TC Connection that is mapped to the internal
active connection. In an ideal case, when both Primary and Secondary servers are
running in the active state, the driver also maintains the standby connection, that is,
the connection to Secondary. This connection will be set to the event wait mode,
where it is ready to receive HSB state change events. Those events are the primary
source of information on failovers and switchovers that the driver will use. In
some cases (such as the Primary Alone operation), the standby connection will be
missing, but the driver will try to enact it whenever possible. The standby
connection is handled totally transparently to the Client. On the other hand, any
occurrence of a connection switch, that is, changing the mapping of the TC
Connection to an internal active connection, will be notified to the Client by way
of a special error code.

Important:

IBM solidDB tools, such as the solsql, do not support the TC connection.

Failure transparency in TC
Failure transparency handles the masking of failures. The failure transparency level
is set with the TF_LEVEL attribute of the TC Info.

Three levels are available:
1. NONE, which disables failure transparency. This is the default value.
2. CONNECTION, which preserves the server connection, that is, makes it

unnecessary to reconnect in the case of failover or switchover.
3. SESSION, which preserves most of the session attributes having nondefault

values. Additionally, prepared statements are preserved. However, open cursors
are closed, and ongoing transactions are aborted. For the list of preserved
session attributes see “Programming for connection switch” on page 62.

Load balancing in Transparent Connectivity
The Transparent Connectivity driver uses two methods to direct the transaction
load; one to handle read intensive load and the other to handle write intensive
load. For the sake of load balancing, the logical TC Connection is mapped to a
lower level server connection called Workload Connection. The workload
connection may change over time and it is, normally, of no concern to the
application. However, if this is necessary, there is a way to find out what is the
current workload connection.

Static load balancing configuration
The load balancing methods are:

54 IBM solidDB: High Availability User Guide

1. PREFERRED_ACCESS=READ_MOSTLY. This method is for handling read
intensive load. The read-only transactions can be executed at both the
Secondary and Primary. If the parameter
Cluster.ReadMostlyLoadPercentAtPrimary is set to zero, the read-only load is
fully executed at the Secondary server.

2. PREFERRED_ACCESS=WRITE_MOSTLY. This is the default value. This method
is for handling write intensive load. All the transactions are executed at the
Primary server. This corresponds to the typical HotStandby operation.

With setting PREFERRED_ACCESS=READ_MOSTLY, the Primary server tells the
driver which server to connect to for the workload connection. If the load is
directed to Secondary, and a write operation is issued, a hand-over happens to
Primary and the transaction is executed in the Primary server. After the transaction
commit, the load is directed back to Secondary. If Secondary fails, the connection
fails over from Secondary to Primary.

Additionally, a new load balancing configuration parameter is introduced. It allows
to direct a certain amount of read-only load to Primary.
[Cluster]
ReadMostlyLoadPercentAtPrimary=<n>

where n = [0 ... 100]. The default is 50.

This parameter defines the percentage of the total read-mostly load directed at the
Primary. Based on this value, an Assigned Workload Server is selected. By default,
half of the connections use the Primary and half the Secondary. This is a preferable
value for most mixed loads. If the value is set to zero, all the load is directed at the
Secondary. This is suitable in cases where very read-intensive (or read-only)
applications use PREFERRED_ACCESS=READ_MOSTLY and (in the same time)
write intensive applications use PREFERRED_ACCESS=WRITE_MOSTLY.

Note:

Load balancing operates only at the isolation level READ COMMITTED. If the
server's isolation level (startup) default is set to a different value, the setting
PREFERRED_ACCESS=READ_MOSTLY forces the isolation level of this session to
READ COMMITTED. The Isolation level may be dynamically reset to a higher one,
say REPEATABLE READ but then the load balancing is disabled.

Note:

Load balancing is disabled if the session is set to Autocommit mode.

Dynamic control of load balancing
If the assigned workload server is Secondary, it can be changed programmatically
to Primary.

At the session level, the workload connection server can be changed to Primary
with the statements below:
v SET WRITE

v SET ISOLATION LEVEL REPEATABLE READ

v SET ISOLATION LEVEL SERIALIZABLE

The statement takes effect immediately, if it is the first statement of a transaction,
or from the next transaction, otherwise.

4 Using HotStandby with applications 55

At the transaction level, the following statements change the workload connection
server to Primary for the time of one transaction:
v SET TRANSACTION WRITE

v SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

v SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

The affected transaction is the one that is started by using the statement, or the
next one, in other cases. After the transaction has been executed at the Primary, the
workload connection server is reverted to the assigned one for the session.

The effect of the SET [TRANSACTION] WRITE statement may be reverted with
the statement SET [TRANSACTION] READ WRITE (SQL:1999). Also, the isolation
level statements have the same effect:
v SET ISOLATION LEVEL READ COMMITTED

v SET TRANSACTION ISOLATION LEVEL READ COMMITTED

Failover transparency with load balancing
When both Transparent Failover is set (TF_LEVEL is other than NONE) and load
balancing is enabled (PREFERRED_ACCESS=READ_MOSTLY), the applied
failover policy is the following:
1. Primary failure: all the load is directed to the new Primary being in the

PRIMARY ALONE state.
2. Secondary failure: all the load is directed to the Primary (PRIMARY ALONE)
3. Connection break between the servers; the servers are in the PRIMARY ALONE

and SECONDARY ALONE states: if there is an ongoing read-only transaction
executing in the Secondary, it is also successfully committed in the Secondary.
All the subsequent transactions are directed to the Primary (in PRIMARY
ALONE).

When the normal hot-standby operation is resumed (with servers being in
PRIMARY ACTIVE and SECONDARY ACTIVE states) the load is rebalanced
between the Primary and the Secondary.

Note:

Even with TF_LEVEL=NONE (no failure transparency), some rudimentary failover
capability is available: failover from Secondary to Primary when the Secondary
fails. All other failures result in a communication link failure. So, with
TF_LEVEL=NONE, in most failure cases it is required that the application
reconnects (with the same TC Info). To avoid reconnection, it is recommended that
failure transparency is always enabled when load balancing is used.

Executing procedures under load balancing
All SQL stored procedures are executed in the Primary unless they are specified as
read-only procedures by way of the SQL standard clause SQL Data Access
Indication, in the procedure declaration.
<SQL-data-access-indication> ::=

NO SQL |
READS SQL DATA |
CONTAINS SQL |
MODIFIES SQL DATA

To avoid unnecessary hand overs of read-only procedures and functions, one of the
following values can be declared:

56 IBM solidDB: High Availability User Guide

v NO SQL
v READS SQL DATA
v CONTAINS SQL

Only MODIFIES SQL DATA (which is the default) inflicts transaction hand over.

The clause comes between the (optional) RETURNS clause and the procedure body.
For example:
"CREATE PROCEDURE PHONEBOOK_SEARCH
(IN FIRST_NAME VARCHAR, LAST_NAME VARCHAR)
RETURNS (PHONE_NR NUMERIC, CITY VARCHAR)
READS SQL DATA
BEGIN
-- procedure_body
END";

Syntax of the Transparent Connectivity Info
When using solidDB Transparent Connectivity, the client enacts only one logical
connection called the TC Connection. This connection is specified in the TC Info.
TC Info enacts transparent failover and load balancing both HSB configurations.

The full syntax of the solidDB TC Info is the following:
<solidDB TC Info>::= {[<failure transparency level attribute>]
[<preferred access attribute>] <connect target list>} | <cluster info>

<failure transparency level attribute> ::= TF_LEVEL={NONE |
CONNECTION | SESSION}

<preferred access attribute> ::= PREFERRED_ACCESS={WRITE_MOSTLY |
READ_MOSTLY}

<connect target list>::= [SERVERS=]<connection string>[, <connection string > ...]

<cluster info>::= CLUSTER <connect string>[, <connect string>...]

Additionally, the following abbreviations can be used.

Table 8. TC Info abbreviations

Abbreviation Corresponding syntax

TF TF_LEVEL

CO CONNECTION

SES SESSION

PA PREFERRED_ACCESS

RM READ_MOSTLY

WM WRITE_MOSTLY

S SERVERS

Failure transparency attribute

Failure transparency, represented by the TF_LEVEL attribute, takes care of masking
of failures. Three levels are available:
1. NONE, which disables failure transparency. This is the default value.

4 Using HotStandby with applications 57

2. CONNECTION, which preserves the server connection, that is, makes it
unnecessary to reconnect in the case of failover or switchover.

3. SESSION, which preserves certain session attributes having non-default values.
Additionally, prepared statements are preserved. However, open cursors are
closed, and ongoing transactions are aborted.

Load balancing attribute

The preferred access attribute (PREFERRED_ACCESS) indicates whether the load
balancing is applied or not. Two levels are available:
1. WRITE_MOSTLY, where the workload is fully directed to Primary. This is the

default value.
2. READ_MOSTLY, where the workload is directed (by default) to Secondary. The

write transactions are handed over to the Primary.

Finally, the solidDB TC Info includes a list of server addresses. The driver will scan
the list from left to right and try to find the Primary and Secondary servers.
Therefore, the preferable configuration must be put at the beginning of the list. The
rest of the list may contain some spare addresses that might be activated at some
time, during the system lifetime. Keep the list short because, in error situations, it
can take a long time before the error is returned to the application. The addresses
are tried one by one, involving the login timeouts specified. The number of
addresses in the list is unlimited.

If none of the attributes TF_LEVEL nor PREFERRED_ACCESS is specified (or
TF_LEVEL=NONE), the connection behavior falls back to Basic Connectivity. If
more than one connection string is given, the connection is established to the first
server on the list that accepts the connection request.

The CLUSTER keyword can be used as a synonym for:
TF_LEVEL=SESSION PREFERRED_ACCESS=READ_MOSTLY SERVERS=

For example, the following TC Info:
F_LEVEL=SESSION PREFERRED_ACCESS=READ_MOSTLY
SERVERS=tcp srv1.acme.com 1315, tcp srv2.acme.com 1315

may be replaced with:
CLUSTER tcp srv1.acme.com 1315, tcp srv2.acme.com 1315

Client-side INI file
[Data Sources]
Cluster1=

TF_LEVEL=SESSION
PREFERRED_ACCESS=READ_MOSTLY
SERVERS=

tcp -c 1000 srv1.dom.acme.com 1315,
tcp srv2.dom.acme.com 1315,
tcp srv3.dom.acme.com 1316

Connect string in ODBC
rc = SQLConnect(comHandle, "CLUSTER

tcp -c 1000 srv1.dom.acme.com 1315,
tcp srv2.dom.acme.com 1315,
tcp srv3.dom.acme.com 1316", ...

58 IBM solidDB: High Availability User Guide

TC Info attribute combinations

The following table summarizes the possible combinations of the TC Info attributes
and presents the resulting connection capabilities:

Table 9. Possible combinations of TC Info attributes

PREFERRED_
ACCESS:

TF_LEVEL: Not
specified or NONE

TF_LEVEL:
CONNECTION

TF_LEVEL:
SESSION

Not specified v No failover or
switchover support

v No load balancing

(Basic connectivity)

v Transparent
failover (session
state not
preserved)

v Transparent
switchover

v Workload in
Primary only

v No load balancing

v Transparent
failover (session
state preserved)

v Transparent
switchover

v Workload in
Primary only

v No load balancing

WRITE_MOSTLY
(default)

v No transparent
failover support

v Transparent
switchover

v Workload in
Primary only

v No load balancing

v Transparent
failover (session
state not
preserved)

v Transparent
switchover

v Workload in
Primary only

v No load balancing

v Transparent
failover (session
state preserved)

v Transparent
switchover

v Workload in
Primary only

v No load balancing

READ_MOSTLY v No transparent
failover support

v Transparent
switchover

v Workload in
Secondary and
Primary

v Load balancing

v Transparent
failover (session
state not
preserved)

v Transparent
switchover

v Workload in
Secondary and
Primary

v Load balancing

v Transparent
failover (session
state preserved)

v Transparent
switchover

v Workload in
Secondary and
Primary

v Load balancing

Handling TC Info contradictions
The attributes of the TC Info may contradict the actual service made available. In
those situations, the connection is granted, but the SUCCESS_WITH_INFO
warning is issued.

This is done in the following cases:
v PREFERRED_ACCESS is specified, but HSB is not enabled. Basic connectivity is

enabled.
v TF_LEVEL is specified, but HSB is not enabled. Basic connectivity is enabled.

Enacting transparent connectivity in JDBC
In JDBC, Transparent Connectivity is enabled with two non-standard connection
properties.

4 Using HotStandby with applications 59

Failure transparency handles the masking of failures. It applies equally to both the
HotStandby and Cluster Transparency modes. Failure transparency is enabled with
the solid_tf_level connection property. You can give the value as a mnemonic (such
as NONE) or as a number (0 for NONE). Use primarily the mnemonics. The value
must be given as a string. Three levels are available:
1. NONE. The numerical value for NONE is 0.
2. CONNECTION. The numerical value for CONNECTION is 1.
3. SESSION. The numerical value for SESSION is 3.

For more information on the values, see “Failure transparency in TC” on page 54

The preferred access attribute indicates whether the read-only load is distributed or
not. The preferred access attribute is enabled with the solid_preferred_access
connection property. You can give the value as a mnemonic or as a number. Use
primarily the mnemonics. The value must be given as a string. Two levels are
available:
1. WRITE_MOSTLY. WRITE_MOSTLY also sets the connection to the WRITE

MOSTLY mode. It is not possible to do that by specifying a numeric value. The
numeric value for WRITE_MOSTLY is 0.

2. READ_MOSTLY. The numeric value for READ_MOSTLY is 1.

There is also TC/TF specific property solid_tf1_reconnect_timeout to specify the
connection reconnect timeout in milliseconds. The default value is 10 000
milliseconds (10 seconds).

The list of server addresses is given as a part of the extended JDBC connect string:
conStr= "jdbc:solid://host_name:port [,host_name:port].../user_name/password";

The number of addresses in the address list is limited to 20.

CAUTION:
When using Transparent Connectivity in JDBC, you have to take care of
dropping the statement objects explicitly. The garbage collector will not detect
unreferenced statement objects.

Using Transparent Connectivity in JDBC
...
String conStr = "jdbc:solid://srv1.acme.com:1323,srv2-acme.com:1423/dba/dba";
Properties prop = new Properties();
prop.setProperty("solid_tf_level", "CONNECTION");
...
Connection c = DriverManager.getConnection(conStr, prop);
...

Connect error processing
When a connect request is issued for a TC Connection, it is considered successful if
at least one applicable server is found and connected to.

The server may be in one of the states: PRIMARY ACTIVE, PRIMARY ALONE, or
STANDALONE. Otherwise, the connect effort is considered failed. The address list
is scanned once.

There may be various reasons for the connect request to fail. Most of them are
masked by the following error cases:

60 IBM solidDB: High Availability User Guide

Table 10. Connect request errors

SQLSTATE Native code
Message text and
description

08001 25217 Client unable to establish
a connection

Description: The driver has
used the TC connect info to
find an applicable server and
connect to it. The effort has
failed due to one of he
following reasons:

v No host listed in the
address list was found

v A host was found but the
login timed out

v A host was found but the
login was rejected

v Hosts found but not in the
PRIMARY/
STANDALONE state

HY000 21307 Invalid connect info...

Description: a syntax error is
found in an elementary
connect string or in the TC
connect info (data source
info).

HY000 21300 Protocol ... not
supported.

Description: the string "TC"
in the beginning of the TC
connect info is misspelled
(or, an incorrect protocol
name is given in the
elementary connect string).

There are cases when the connection is accepted with a warning.

Table 11. Warnings

SQLSTATE Native code
Message text and
description

0100 25218 Connected to Standalone or
Primary Alone server.

An effort has been made to
set any non-default value of
TF_LEVEL or
PREFERRED_ACCESS, and
there is only one server
available. On this case,
neither failure transparency
nor load balancing is
available.

4 Using HotStandby with applications 61

Programming for connection switch

Principles of connection switch handling
A connection switch refers to a situation where the driver changes the active server
connection. Generally, the reason for a connection switch is a failover to the
Secondary server or a switchover between the servers.

More specifically, a need for a connection switch is detected from one of the
following events:
v Event from the Secondary server about the state change to PRIMARY ALONE

(failover) or PRIMARY ACTIVE (switchover). This is the main (and the fastest)
mode of performing the connection switch.

v Indication of the state change at Primary.
v Link failure on the active connection.
v Connection timeout on the active connection.

The driver executes the connection switch in two steps:
1. The need for the connection switch is detected. The driver returns the following

connection switch error on a pending request, or the following request:

Table 12. Connection switch request

SQLSTATE Native code
Message text and
description

HY000 25216 Connection switch, some
session context may be
lost

Description: The driver has
discovered the need of the
connection switch. The client
is expected to issue a
transaction rollback call to
finalize the connection
switch. This error code and
message will be received at
each consecutive network
request call until the rollback
call is issued

2. The Client program issues a rollback command (ODBC: SQLEndTran() with
SQL_ROLLBACK; JDBC: Connection.rollback()). If the rollback is successful, a
new active connection has been mapped to the TC connection that may be
used.

Note: The connection switch error may be returned on a few consecutive
ODBC calls. Therefore, a provision must be made to always respond with a
rollback to this error, on any ODBC network request. If this happens in the
middle of a transaction, the transaction must be re-executed.
On the other hand, if a new active connection cannot be established, the
following error code is returned:

62 IBM solidDB: High Availability User Guide

Table 13. Communication link failure

SQLSTATE Native code
Message text and
description

08S01 14503 Communication link failure

Description: The driver has
failed to establish a new
active connection. The TF
connection is lost and the
Client has to reconnect
(using a Data Source Info) in
order to continue.

After receiving the rollback call, the driver will use a few alternative ways of
finding the new active connection. In the simplest case, it will use the standby
connection for the purpose. If that connection is not in the right state, the driver
will wait for two seconds for the proper event to arrive. If the event does not
arrive, and in other cases, the driver will fall back to the address list in the TC
connect info and will repeat the connect sequence iteratively for a maximum time
of 10 seconds. If all the efforts fail, the driver returns the above error.

The effect of the error is that the connection is lost, as seen by the application. Any
further request issued on that connection will result in the same error.

Preservation of session state
When the connection switch is executed by the driver, some of the session context
can be lost and the Client must reconstruct it. The amount of the preserved state is
dictated by the Transparent Failover level, expressed with the TC Info attribute
TF_LEVEL.

Essentially, with the TF level CONNECTION, no state is preserved while, at the
SESSION level, most of the session state is preserved. The preservation of the
session state is implemented by caching the necessary data in the driver. The
higher transparency level is achieved at the expense of the response time of the
requests requiring caching, and increased memory usage in the driver.

Regardless of the TF level, the following holds in the case of failovers:
v The updates of the current transactions are lost (because of the transaction

rollback)
v Open cursors and their positions are lost.

The following table summarizes the session state preservation.

Table 14. Session state preservation

TF_LEVEL Preserved state

CONNECTION No session state is preserved.

4 Using HotStandby with applications 63

Table 14. Session state preservation (continued)

TF_LEVEL Preserved state

SESSION Prepared statements

v The prepared states are preserved.

The effects of the following statements are
preserved:

v SET CATALOG

v SET SQL INFO

v SET SQL SORTARRAYSIZE

v SET SQL CONVERTORSTOUNIONS

v SET SQL SORTEDGROUPBY

v SET SQL { OPTIMIZEROWS |
OPTIMISEROWS }

v SET SIMPLEOPTIMIZERRULES

v SET LOCK TIMEOUT <seconds>

v SET OPTIMISTIC LOCK TIMEOUT

v LOCK_TIMEOUT

v SET IDLE TIMEOUT

v SET STATEMENT MAXTIME

v SET ISOLATION LEVEL

v SET DURABILITY

v SET SAFENESS

v SET SCHEMA

v SET SQL JOINPATHSPAN

v SET SYNC USER

v SET SYNC MODE

The following standard ODBC attributes are
preserved

v SQL_ATTR_ACCESS_MODE

(SET READ ONLY, SET READ WRITE)

v SQL_ATTR_CURRENT_CATALOG

(duplicates SET CATALOG above)

v SQL_ATTR_AUTOCOMMIT

Additional proprietary ODBC attributes

The following read-only ODBC attributes are available for application
programmers for any format of the TC Info.
v SQL_ATTR_PA_LEVEL

(integer, Preferred Access level: 0=WRITE_MOSTLY, 1=READ_MOSTLY)
The attribute indicating whether the load balancing is used or not.

v SQL_ATTR_TC_WORKLOAD_CONNECTION
(string, server name of the workload connection)
The current workload connection server; if queried before the Commit, the value
indicates the server the transaction will be committed on.

v SQL_ATTR_TF_LEVEL
(integer, TF level: 0=NONE, 1=CONNECTION, 3=SESSION)

64 IBM solidDB: High Availability User Guide

The failure transparency level.
v SQL_ATTR_TC_PRIMARY

(string, Primary server connection string)
There is always a value indicating the current Primary server.

v SQL_ATTR_TC_SECONDARY
(string, Secondary server connection string)
The value indicates the assigned workload server if:
1. PA=READ_MOSTLY, and
2. the Secondary is the designated workload server (this is the default).

Otherwise, an empty string is returned.

Note: The proprietary ODBC attributes cannot be used with the Windows ODBC
driver manager. If you need to use proprietary ODBC attributes in Windows,
Solid® ODBC driver import library (solidimpodbca.lib or solidimpodbcu.lib) has
to be linked directly with the application.

Using the basic connectivity
With Basic Connectivity, the application has to take care of connecting to each
server of the HotStandby or Cluster configuration separately, by using specific
server addresses. If a failover happens, the active connection is lost, and the
application has to reconnect to the new Primary server.

Basic connection without transparency
Connect=tcp srv1.dom.acme.com 1315

Reconnecting to primary servers from applications

Preparing client applications for HotStandby
Client programs that have lost their connection to the Primary must be able to
reconnect to the new Primary server (the old Secondary). You must code client
applications to be able to:
1. Recognize that Primary is not available for write transactions any more.
2. Connect to the other server or switch to using previously created connection.
3. Take into account whether the current (interrupted) transaction was

lost/aborted and must be re-executed on the new Primary server.

Getting the secondary server address
The easiest way to get the connection information for the Secondary database
server is to use the ADMIN COMMAND 'hotstandby cominfo' command, which
gives the connection information for the other server in the HSB pair.

About this task

Procedure
1. When your application first connects to Primary, the application can execute the

ADMIN COMMAND 'hotstandby cominfo' command and store the result. Note
that when the cominfo command returns a value, it does NOT imply that
Primary and Secondary are currently connected. The "cominfo" command
simply returns the value specified in the Connect parameter of the solid.ini
configuration file, or the value most recently specified with the hsb parameter

4 Using HotStandby with applications 65

connect command. If you need to check the connect status between Primary
and Secondary servers, you can use ADMIN COMMAND 'hotstandby status
connect'.

2. Later, if Primary fails, the application can use the stored information to connect
to Secondary (new Primary).

Detecting HotStandby server failure in client applications
To use the HotStandby (HSB) component, applications must know when to switch
from the failed Primary to the Secondary (new Primary) server. There are a couple
of possible ways to do this. The best way is to simply check the return codes from
the functions that you call to see if you have received an error that indicates you
should switch to the other server.

You may also monitor the states of the servers (for example, check the Primary
server to see whether its state has changed to PRIMARY UNCERTAIN).

The errors that indicate you should try switching to another server include:
v 10013: Transaction is read only
v 10041: Database is read only
v 10047: Replication transaction aborted
v 11002: Disk full
v 11003: Configuration exceeded
v 14501: Operation failed
v 14502: Invalid rpc parameter
v 14503: Communication error
v 14506: Server is closed (for example, because it is currently the target of an HSB

copy or netcopy operation)
v 14510 Communication write operation failed
v 14511 Communication read operation failed
v 14518: Connection broken
v 14519: User thrown out (for example, because of some administrative operation)
v 14529: Operation timed out
v 20009: Session error, write operation failed
v 21306: Server not found, connect failed
v 21308: Connection is broken (write failed with code ...)
v 21318: Operation failed (unusual return code)

ODBC applications

The following error message is returned to ODBC applications that cannot
establish a connection (for example, due to an inoperable database server):
v SQLState = 08001 - Client unable to establish connection

In addition, the following solidDB communication error message is produced:
v 21306 - Server 'server_name' not found, connection failed.

If a connection fails (for example, due to a network failure) in between operations,
such as executing queries and fetching results, the following error message is
returned:
v SQLState = 08S01 - Communication link failure

66 IBM solidDB: High Availability User Guide

JDBC applications

The following error message is returned to JDBC applications that cannot establish
a connection (for example, due to an inoperable database):
v SQLState = 08001 - Unable to connect to data source.

If a connection fails (for example, due to a network failure) in between operations,
such as executing queries and fetching results, the following error message is
returned:
v SQLState = 08S01 - Communication link failure

Note:

ODBC and JDBC use different error messages for the same error code (08001).

Switching the application to the new primary
After the application detects that it cannot send transactions to the "old Primary"
server, the application must poll the old Primary and old Secondary servers until it
finds a server that is in PRIMARY ACTIVE, PRIMARY ALONE, or STANDALONE
state.

Polling is accomplished by having the application attempt to connect to the servers
and check the status of the servers when the connection is established. When the
connect is successful, the client can request the server state by using SQL function
HOTSTANDBY_STATE, which is described in section “Using the
HOTSTANDBY_STATE function” on page 68.

CAUTION:
After the switch, all open database objects, such as prepared statements, open
cursors and transactions, are no longer active. Thus, you must initialize these
objects again. Also, if you were using Temporary Tables or Transient Tables
(solidDB main memory engine features), the tables will be empty on the new
Primary.

Using the HOTSTANDBY_CONNECTSTATUS function

To verify connect status information when reconnecting to a Primary server from
an application, you can use the HOTSTANDBY_CONNECTSTATUS function. This
function is equivalent to the administrative command hotstandby status connect.

The function has no arguments and returns one of the following status values:

Table 15. HOTSTANDBY_CONNECTSTATUS status values

Status Description

CONNECTED The connection is active. This status is
returned from both the Primary and
Secondary servers.

CONNECTING The Primary server is connecting to the
Secondary server. This status is returned
from both the Primary and Secondary
servers.

4 Using HotStandby with applications 67

Table 15. HOTSTANDBY_CONNECTSTATUS status values (continued)

Status Description

CATCHUP The Primary server is connected to the
Secondary server, but the transaction log is
not yet fully copied. This status is returned
from both the Primary and Secondary
server.

BROKEN The connection is broken. This status is
returned from both the Primary and
Secondary servers.

Using the HOTSTANDBY_STATE function

To implement application polling of the Primary and Secondary servers, you can
use the HOTSTANDBY_STATE function. This function is equivalent to the
administrative command hotstandby state. It allows the application request the
current HotStandby state when it is connected to the server.

Note: This function has no arguments. For a description of each possible state that
this function may return, see “Verifying HotStandby server states” on page 90.

Sample pseudo-code

An application, whether or not it is HSB-enabled, should have error handling that
allows the application to replay a failed/aborted transaction.

In a non-HSB environment, a transaction may be aborted because of a concurrency
conflict (optimistic tables) or deadlock (pessimistic tables). The application must
catch these error situations and either automatically retry the transaction or ask
interactive user to re-execute the transaction.

If your application already has code to handle failed or aborted transactions, then
it is relatively easy to extend this code to make use of HSB.

In a very simplified example, the application pseudo-code with proper error
handling for a non-HA-aware application handling looks something like this:
BEGIN TRANSACTION
EXECUTE APPLICATION LOGIC
PREPARE & EXECUTE STATEMENTS
COMMIT TRANSACTION
IF ERROR OCCURRED

IF ERROR == concurrency conflict or deadlock
GO TO BEGIN TRANSACTION

END IF
other error handling

END IF ;

Improving the above application to make it HA-aware is very simple. You must
add code so that the application can:
v Connect to either of the two servers instead of only one; and
v In the case of an error, find the server that is currently in one of the following

states: PRIMARY ACTIVE, PRIMARY ALONE or STANDALONE.

The pseudo-code should look similar to the following:

68 IBM solidDB: High Availability User Guide

BEGIN TRANSACTION
EXECUTE APPLICATION LOGIC
PREPARE & EXECUTE STATEMENTS
COMMIT TRANSACTION
IF ERROR OCCURRED

IF ERROR == server unavailable for write transactions
FIND CURRENT PRIMARY SERVER
GO TO BEGIN TRANSACTION

END IF
IF ERROR == concurrency conflict or deadlock

GO TO BEGIN TRANSACTION
END IF
IF ERROR == something else

other error handling
END IF

END IF

The logic to find the current primary server is also very simple. Just check the
current state of both servers (try to reconnect if necessary) and if either of them is
PRIMARY ACTIVE, PRIMARY ALONE or STANDALONE, set that server as the
current primary. If neither server meets that criterion, wait awhile and retry
checking the current server states.

Reconnecting to secondary servers
In some cases, you may want to connect to the current Secondary (if it is up).
Applications can submit read-only queries to the Secondary server; this can
sometimes help you balance the workload across your servers.

An application can only connect to Secondary databases in the read-only mode.
Note that a client can connect to the Secondary server (only in read-only mode) by
using the following parameter values in the HotStandby section of the solid.ini
configuration file in these servers:
v Connect parameter in the Primary server
v Listen parameter in the Secondary server

You can also use the following command to get the connection information for a
server's partner:
ADMIN COMMAND ’hotstandby cominfo’;

Thus, if you are connected to the current Primary server, you can get the address
of the current Secondary by using the cominfo query.

Advanced replication requirements
Any node of a advanced replication system can be made highly available with the
solidDB HotStandby component.

When the master and replica databases of a advanced replication system are
synchronizing data, the synchronization occurs between the Primary servers of the
database server pairs. In other words, the Primary of the Master communicates
with the Primary of the Replica. See Figure 3 on page 6.

A database server may fail over to its Secondary server at any point of time,
including when the database server is synchronizing data with another server
using advanced replication. If the failover occurs during synchronization, executing
the synchronization message stops and the process must be resumed after the
failover. For details about how to resume synchronization after an error has
occurred, please refer to Advanced Replication Guide.

4 Using HotStandby with applications 69

If a server containing a advanced replication master database is made fault tolerant
with solidDB HotStandby, the replicas of the master database must know the
connect strings to both master servers. To do this, execute the following statement
in each of the replica databases:
SET SYNC CONNECT ’connect_string_to_server_1, connect_string_to_server_2’
TO MASTER master_nodename

In the diagram below, the gray arrows represent the original connections to the
original Primary server, while the black arrows represent the new connections to
the new Primary (old Secondary) server. The alternate connection is used if the
synchronization with the old primary server fails.

If the server using solidDB HotStandby is a server containing a replica database
and if the master server uses remote procedure calls (CALL procedure AT
node_name) to run procedures at the replica, for example to initiate the
synchronization, the master server must be informed about the connect strings to
both of the replica servers. Typically a master server uses remote procedure calls to
initiate synchronization with a replica database. To inform the master about the
connect strings to the replica server pair, execute the following statement in the
master database:
SET SYNC CONNECT ’connect_string_to_server_1,
connect_string_to_server_2’ TO REPLICA replica_nodename

Replica2

(HSB secondary)(HSB secondary)

Replica1

HSBHSB

(HSB primary)

Replica2

(HSB primary)

Replica1

SmartFlow data synchronization

MasterDB

(new HSB primary)

HSB

MasterDB

(old HSB primary)

Figure 11. Master failover

70 IBM solidDB: High Availability User Guide

Alternatively, you can save the statement in the replica server and propagate it to
master the next time that you synchronize. In that case, use the following
statement:
SAVE SET SYNC CONNECT ’connect_string_to_server_1,
connect_string_to_server_2’ TO REPLICA replica_nodename

If the master server never executes remote procedure calls in the replica, then the
above statement is not needed.

2

1

ReplicaDB2

(HSB secondary)(HSB secondary)

ReplicaDB1

HSBHSB

(HSB primary)

ReplicaDB2

(HSB primary)

ReplicaDB1

Master

(HSB secondary)

SmartFlow data
synchronization

SmartFlow data
synchronization

HSB

Master

(HSB primary)

1. Failover in ReplicaDB

2. SET SYNC CONNECT 'tcp machine4 1315' REPLICA TO replicaDB1

Figure 12. Replica failover

4 Using HotStandby with applications 71

72 IBM solidDB: High Availability User Guide

5 Using HotStandby API commands

In any software managing high-availability of solidDB HotStandby, the HotStandby
API (HSB API) is used to monitor and control the server processes. The HA
Controller included with the product is an example of such a program. Another
example is the Watchdog sample program.

The HSB API is provided as a syntax extension to SQL, taking the shape of a
nonstandard statement in the form:
ADMIN COMMAND hotstandby hsb-command options

or
ADMIN COMMAND hsb hsb-command options

The HSB commands may be issued via any SQL-capable interactive tool (like
solsql), or programmatically, through ODBC or JDBC.

This section can be used to program your own application to manage high
availability in solidDB. This may be necessary, for example, to implement an
integration to an external cluster management software.

The topics included in this section are:

Switching server states
The HotStandby component requires that the server state is switched, when
necessary, either automatically or manually by a user.

In production use, the server state is chosen by using automatic state switching,
that is, by performing failovers. This is at the responsibility of an automatic high
availability control implemented in solidDB. In solidDB, the automatic high
availability control is handled by the High Availability Controller (HAC).

Switchover means reversing the roles of the Primary and Secondary when they are
running. This may be needed for various maintenance purposes.

On the other hand, failover is an action of taking up the role of the Primary, by the
Secondary, if Primary fails.

Performing switchovers
HAC can reverse the roles of the servers by issuing the following command at the
Secondary:ADMIN COMMAND ’hotstandby switch primary’; or, at the Primary:ADMIN
COMMAND ’hotstandby switch secondary’;

This command can be used whether or not the two servers are connected. If the
servers are connected, the states are simply reversed; the old Secondary becomes
the new Primary, and the old Primary becomes the new Secondary. If the servers
are not connected, the old Secondary becomes the new Primary, and the other
server's state is unchanged.

The diagram below shows what happens if you issue the command switch
secondary or switch primary when the servers are connected. Note that the

73

command switch primary is only issued on a server that is in a SECONDARY state
(for example, SECONDARY ACTIVE), while the command switch secondary is
only used on a server that is in a PRIMARY state (for example, PRIMARY
ACTIVE).

When executing the command hotstandby switch primary to switch the Secondary
server (Srvr2) to Primary, if the Secondary server (Srvr2) is not connected to the
other server (Srvr1), then an error is returned.

If the two servers are connected, they switch states. In other words, the old
Primary (Srvr1) becomes the new Secondary and old Secondary (Srvr2) becomes
the new Primary.

If the old Secondary (Srvr2) cannot connect to the other server (Srvr1), then both
servers switch to SECONDARY ALONE. (Note that even if the AutoPrimaryAlone
configuration parameter is set to yes, the new Primary will switch to SECONDARY
ALONE, not PRIMARY ALONE.)

Switching the secondary to the primary
When the hotstandby switch primary command is executed, it starts a process to
switch the state.

If the switch process started successfully, the following message is displayed:
Started the process of switching the role to primary.

During the switch, all active write transactions are aborted. You can monitor the
status of the switch using the command hotstandby status switch. For details, read
“Verifying the switch” on page 75.

If you issue a COMMIT after a SWITCH command, the COMMIT fails with an
error: 'replicated transaction is aborted'.

All transactions are terminated during the switch. Note, however, that ADMIN
COMMANDs (administrative commands), such as the "HSB switch" command, are
not transactional commands and cannot be rolled back.

Note:

Srvr1

Admin command 'HSB switch primary'

Admin command 'HSB switch secondary'

State switch

Primary active

Srvr2

Secondary active

Figure 13. State switch

74 IBM solidDB: High Availability User Guide

Administrative commands force the start of a new transaction if one is not already
open, however. To avoid leaving an open transaction, or having a transaction's
start time be different than you expected, you may want to execute COMMIT
WORK after administrative commands.

In the event of a configuration error that causes both servers to have the state of
PRIMARY (for example, both are PRIMARY ALONE), you can use the command
hotstandby switch secondary to switch one of the servers back to a SECONDARY
state. If the servers have the same data, then normal operations on both servers are
resumed. However, if the servers do not have the same data, then the Primary
server rejects the connect operation from the Secondary and issues the following
message: 14525: HotStandby databases are not properly synchronized.

HotStandby replication is not started. In this case, a full copy of the Primary
database is required at the Secondary server. You will first need to decide which
database is correct. Note that if the 14525 error occurs, the database states do not
change; both servers remain in the same state they were in before the command
was issued.

Switching the primary to the secondary
You can switch a Primary server to a SECONDARY state by issuing the command:
ADMIN COMMAND ’hotstandby switch secondary’;

This is particularly useful if two servers have switched states and you want to
switch them back to their original states. For example, when the new Secondary
comes back in service, you can then switch its state back to Primary and switch the
new Primary back to Secondary.

When executing hotstandby switch secondary, if the servers are not already
connected to each other, then the old Primary tries to connect to the old Secondary.

If the two servers are connected, they switch states. In other words, the old
Primary becomes the new Secondary and the old Secondary becomes the new
Primary.

When the hotstandby switch secondary command is executed, it starts a process to
switch the state. If the switch process started successfully, the following message is
displayed: Started the process of switching the role to secondary.

You can check the switch status of any HotStandby server to verify if a switch was
performed successfully. For details, read “Displaying switch status information” on
page 88.

Verifying the switch
You can check the status of the switch process at the Primary or Secondary.

Procedure

Issue the following command: ADMIN COMMAND ’hotstandby status switch’;
The command displays a status message that tells you if the switch has never
occurred between the two servers, is successful, still in progress, or if the switch
has failed.

5 Using HotStandby API commands 75

Performing failovers
A failover is performed by executing, at the Secondary, the command: ADMIN
COMMAND ’hotstandby set primary alone’;

The server gains the new state once all the pending transactions received before,
from the Primary, are processed. This will guarantee that no transactions are lost,
and the database state reflects the state at the Primary just before the failure.
However, if the safeness level used is 1-safe, some transactions may be lost in
failover.

Running the new primary in PRIMARY ALONE state
Although the connection to the Secondary server is broken, this state lets you run a
Primary server with continuous updates to the transaction log. After the Secondary
server comes back up, the server in PRIMARY ALONE state can resume sending
transactions to the Secondary server.

Procedure

There are three ways to set a server to PRIMARY ALONE state:
v By issuing the following command:

ADMIN COMMAND ’hotstandby set primary alone’;

v By doing a controlled disconnect:
ADMIN COMMAND ’hotstandby disconnect’;

at either the Primary or the Secondary. Note that if you do a controlled
shutdown by executing
ADMIN COMMAND ’shutdown’;

on the Secondary, then the Secondary will implicitly disconnect before shutting
down, and the Primary will safely switch to the PRIMARY ALONE state.

v By setting the configuration parameter AutoPrimaryAlone in the [HotStandby]
section of the configuration file (solid.ini) to "yes", to default to the PRIMARY
ALONE state.
If the PRIMARY ALONE state is the default, then the server is automatically put
in PRIMARY ALONE state when the connection to the Secondary is broken.
Otherwise, after a server fails, the server's state remains PRIMARY UNCERTAIN
unless the command ADMIN COMMAND ’hotstandby set primary alone’ is issued
by the HAC, the administrator or the watchdog program. By default, the
AutoPrimaryAlone parameter in the [HotStandby] section of the solid.ini file
is set to "no", which specifies that the Primary server operating in its PRIMARY
ACTIVE state is switched to PRIMARY UNCERTAIN automatically if the
Secondary server fails.

Results

The PRIMARY ALONE state persists until one of the following occurs:
v A connection is successfully made to the Secondary server.
v The server runs out of space for the transaction log.
v The log size limit (MaxLogSize) is reached.
v Another command switches the server to another state, such as STANDALONE.
v The Primary server is shut down.

76 IBM solidDB: High Availability User Guide

CAUTION:
One should be careful not to perform shutdown of the Primary simultaneously
with commanding Secondary to the PRIMARY ALONE state. The two operations
are conflicting and may result in the Secondary gaining the SECONDARY
ALONE state, instead. The coincidence hardly will happen in a real operation.
However, one may be tempted to simulate the Primary failure with a shutdown,
while testing the system. This should not be done, as shutdown is no substitute
for failure. It is a complex distributed operation involving both Primary and
Secondary. Another reason for not doing that is that a Primary server, after being
shut down, and consequently started up as a new Secondary, will not be able to
catchup with the new Primary. If there is a real need to shutdown Primary, the
correct sequence is:

1. Perform the switchover

2. Shutdown the new Secondary

3. The new Primary will automatically switch to the PRIMARY ALONE state

Bringing the secondary server back online
Procedure

To bring the Secondary server back online, connect the Primary with the Secondary
server. For details, read “Connecting HotStandby servers” on page 87.
Once you bring a Secondary node online, it may require catchup. Changes in the
Primary have accumulated over a period of time. While the Primary was set to
PRIMARY ALONE state, the Primary wrote transactions and data to the
transaction log.
When the Secondary is connected again to the Primary, the Primary's pending
changes are written from the transaction log to the Secondary server for
synchronization. While the changes are written to the Secondary, the Secondary is
in SECONDARY ALONE state and the Primary is in PRIMARY ALONE state. (If
you issue the command ADMIN COMMAND "hsb status connect', you will get a
message telling you whether the servers are performing catchup.)

Note: If the Primary server was set to the STANDALONE state using the
command hotstandby set standalone, the full database must be copied from the
Primary to the Secondary before the Secondary can be put in SECONDARY
ACTIVE state. Read “Synchronizing primary and secondary servers” on page 78.

Results

After the Secondary has successfully finished processing these pending changes,
the Primary and Secondary servers" states are automatically changed to PRIMARY
ACTIVE and SECONDARY ACTIVE, respectively.

Shutting off HotStandby operations
You may occasionally need to temporarily shut off HotStandby operations in the
Primary server — for example, if you are taking the Secondary server out of
service to upgrade it and the Primary does not have enough disk space to store the
transaction logs that will accumulate while the Secondary is out of service.

About this task

(See “Running out of space for transaction logs” on page 34 for more details.)

To shut off HotStandby at the Primary server:

5 Using HotStandby API commands 77

Procedure
1. Disconnect the servers (if they are currently connected).
2. Set the Primary server to STANDALONE state, using the following sequence of

commands:
ADMIN COMMAND ’hotstandby disconnect’; -- if servers are connected
ADMIN COMMAND ’hotstandby set standalone’;

This allows the Primary server to continue operating as though it were a
non-HotStandby server.

Note:

Once you have stopped storing transaction logs to send to the Secondary, you
can no longer have the Primary and Secondary servers catch up merely by
connecting them again. Instead, you will need to manually synchronize the
servers when you resume HotStandby operations. For details, read the
following section.

What to do next

If you want to permanently stop using this server as a HotStandby server, then see
“Changing a HotStandby server to a non-HotStandby server” on page 93.

Synchronizing primary and secondary servers
n order for the servers to start HSB replication, the servers' databases must be
identical. In other words, the secondary database must be an exact copy of the
primary database. The process of making the databases of a HotStandby system
identical is called HotStandby synchronization.

Situations where the Primary and Secondary need to be synchronized include:
v the Secondary is new and does not yet have a copy of the Primary's database to

start with.
v the Secondary was not running for awhile and its copy of the data is not

up-to-date.
v both the "Primary" and the "Secondary" were running in Primary Alone state at

the same time, and thus have conflicting data.
v the Secondary's disk drive crashed, or the file was corrupted and must be

replaced.

There are two main ways of synchronizing the data on the servers: catchup and full
copy.

Catchup
Catchup can be used if and only if the Primary server has stored a copy of all of
the transactions that the Secondary server "missed" while the servers were
disconnected. If the Primary has stored all those transactions, then when it is
reconnected to the Secondary, it will automatically forward those transactions to
the Secondary so that the Secondary can "catch up" to the Primary.

A solidDB server stores transactions (to forward to the Secondary) only while it is
in the PRIMARY ALONE state, not while it is in the STANDALONE state or is
operating as a non-HotStandby server. Therefore, if the server has been in
STANDALONE state or has been operating as a non-HotStandby server since it

78 IBM solidDB: High Availability User Guide

last was connected with the Secondary, then it does not have all the transactions
and cannot do catchup. Instead, you will have to do a full copy (described later).

There is no explicit "catchup" command. The servers will automatically try to catch
up when you connect them using
ADMIN COMMAND ’hotstandby connect’;

When the Primary and Secondary are connected, they automatically check to see
whether the Primary server has data in its transaction logs to send to the
Secondary. If the data is there, the servers automatically attempt to catch up.

During the catchup process, the Primary and Secondary servers stay in PRIMARY
ALONE and SECONDARY ALONE states. Clients may continue to submit queries
and commit transactions. The catchup process is transparent to the client
applications.

If the servers recognize that the Primary and Secondary databases are not identical
even after copying transactions from the Primary to the Secondary, you will get an
error message.

If catchup fails (or if you know ahead of time that it will not work because the
Primary server was in STANDALONE state, for example), then you will need to
do a full copy.

Catchup applies only when the Secondary has already been running in
SECONDARY ACTIVE state at some point. If you have a brand new Secondary
server, then even if the Primary was running in PRIMARY ALONE state and has
stored all transactions since the time that the Primary itself started, you will need
to do a full copy to give the Secondary its initial copy of the database.

There is additional information about the catchup process in “Bringing the
secondary server back online” on page 77.

Full copy
A full copy is just what its name implies: copying all the data from the Primary to
the Secondary. This is done by copying the database file(s) themselves.

Full copy is used in the following situations:
v The Secondary server is brand new and is getting its initial copy of the

Primary's database.
v The Primary server has written transactions when it was not in the PRIMARY

ALONE state, and therefore catchup is not possible.
v The Secondary's database is corrupted or missing.
v The Secondary is diskless and has experienced a failure. When a Secondary

diskless server is started after a failure, the diskless server requires a complete
copy of the database using the hotstandby netcopy command. Unlike a
disk-based Secondary, the Secondary diskless server cannot read the transaction
log and apply the changes that occurred while it was inoperable.

v The Primary server has all of the data needed for catchup, but catchup is
expected to take longer than simply copying the current data files.

5 Using HotStandby API commands 79

CAUTION:
If the Secondary server has old database files, a full copy will write over those
old files. If for any reason the files on the Secondary contain data that was not
in the Primary (for example, if both servers were operating in PRIMARY
ALONE state at the same time), then that data will be lost.

There are two HotStandby commands that can do a full copy, that is to say, they
copy the database file(s) from the Primary to the Secondary. You may use either of
the following:
ADMIN COMMAND ’hotstandby netcopy’;
ADMIN COMMAND ’hotstandby copy [<directory_name>]’;

The netcopy operation copies the database over the network to a Secondary server
that is running and can receive the files over the network. The copy operation
copies the database files to a specified disk drive directory that is visible to the
Primary server. The secondary server must not be running during the copy
operation. The netcopy command is usually preferable to the copy command, so
most of the examples will show only netcopy, not copy.

The copy and netcopy commands are described in “Copying a database file from
the primary server to a specified directory” on page 86 and “Copying a primary
database to a secondary over the network” on page 82.

80 IBM solidDB: High Availability User Guide

3

2

1

Secondary

Secondary
database

Txn log

Primary
database

Primary

Secondary
(offline)

Full copy of
primary database

Txn log

Primary
database

Primary

Secondary

Txn log

Primary
database

Primary

1. Secondary is down for a long time so the primary stops using the transaction log to store data for the secondary.
The log is still used for local recovery.

2. Primary database is copied to the secondary node and the primary starts writing to the transaction log.

3. Database is copied and the primary sends transaction log file changes to the secondary.

Figure 14. Manual full copy procedure
5 Using HotStandby API commands 81

Note:

The preceding diagram oversimplifies the usage of the transaction log. In the first
part of the diagram, when the Primary and Secondary are not connected, the
Primary actually continues to write data to the transaction log, but keeps only
enough data to perform recovery, not enough to allow the Secondary to catch up
with all the changes since the connection was broken.

Verifying the copy
Procedure

To verify the status of the copy or netcopy operation, issue the following command
at the Primary server:
ADMIN COMMAND ’hotstandby status copy’;

Note that you use the keyword "copy" (not "netcopy") even if the operation was a
netcopy.
The command displays a status message that tells you whether the copy operation
was successful, is still in progress, or has failed, indicated by an error code and
error message.

Using a watchdog to synchronize servers
The commands that allow you to synchronize servers manually can also be used
by a watchdog program to synchronize servers automatically.

If catchup is sufficient, then all that the watchdog needs to do is monitor the
Secondary to see when it comes up, and then execute the command to connect the
Primary to the Secondary. If full copy is required, then the watchdog can instruct
the Primary server to do a netcopy (or copy) operation. Remember that a full copy
will write over any data on the Secondary.

Copying a primary database to a secondary over the network
To send a copy of the database file from the Primary server to the Secondary
server, use the netcopy command. The Secondary server must already be running.

Before you begin

Important: To execute the command, the Primary server must be in PRIMARY
ALONE state.

About this task

There are two major situations in which you use netcopy to create a copy of the
database for the Secondary server:
v When creating a database for a brand-new Secondary that has never had one

before. (This method is also used when copying a database to a diskless
Secondary, since after a failure it loses its entire database and must be treated as
a brand new Secondary.)

v When replacing an existing Secondary database (for example, one that has been
corrupted)

82 IBM solidDB: High Availability User Guide

Procedure

The command to perform a netcopy is:
ADMIN COMMAND ’hotstandby netcopy’;

When the Primary does a netcopy, the Primary uses the connect string that is
specified in the [HotStandby] section of solid.ini.
For details on the Connect parameter, which defines the connect string, see
“Defining primary and secondary HotStandby configuration” on page 41.
When you execute the hotstandby netcopy command, it performs a database
checkpoint, before it sends a copy of the Primary database.
The Primary continues accepting transactions and connections during the netcopy
(however, any ADMIN COMMAND that changes the server state will be rejected.)
The Secondary does not continue accepting transactions and connections. When the
netcopy starts, if the Secondary has any open connections or transactions, it will
roll back the open transactions and disconnect from its clients, then it will start
receiving the netcopy. While the Secondary receives the netcopy, the Secondary will
communicate only with the Primary server.
When the netcopy is completed successfully, the Secondary's state changes to
SECONDARY ALONE (if it wasn't already in that state).
The Primary server stays in the PRIMARY ALONE state during the netcopy
operation. After the netcopy has successfully completed, the Primary server
continues to stay in the same state. Before you can resume full hot standby
operations, you must connect the Primary and Secondary servers, which will set
the Primary server to PRIMARY ACTIVE state. For information about connecting
the two servers, see “Connecting HotStandby servers” on page 87.

Creating a new database for the secondary server
Normally, when you start the solidDB server, it asks you if you want to create a
new database (if there is not already a database). However, if the server is a
Secondary server, it should use a copy of the Primary's database rather than create
its own database. Therefore, when you start a Secondary server that does not have
an existing database, you must give it a command-line parameter to tell it to wait
to receive a copy of the database from the Primary. The command-line parameter is
-x backupserver. For example, you would start the Secondary server with the
command:
solid -x backupserver

The space between the "-x" and "backupserver" is optional. The following is
equivalent:
solid -xbackupserver

The -x backupserver command line parameter tells the server to go into "netcopy
listening mode" (also called "backup listening mode"). In this mode, the only possible
operation for the Secondary server is to receive a database copy from the Primary
server. The Secondary will not respond to any other command, and in fact will not
even accept a connection request from a client program such as solsql, your
application, or a watchdog program.

If there exists a Secondary database, you can start the server in a normal way that
will result in the server being in the SECONDARY ALONE state.

Once the Secondary has been started with -x backupserver, or is in the
SECONDARY ALONE state, you can execute the netcopy command on the
Primary.

5 Using HotStandby API commands 83

First, make sure that the Primary is in PRIMARY ALONE state. Then issue the
following command on the Primary:
ADMIN COMMAND ’hsb netcopy’;

On the Primary, the hotstandby netcopy command uses the connect string defined
with the connect parameter in the solid.ini configuration file to connect to the
Secondary server. Once connected, it copies the database files through the network
link. In netcopy listening mode, the Secondary server only attempts to open the
Secondary database after it has received a new database copy through the
hotstandby netcopy command at the Primary.

Following is the procedure to create the Secondary database copy:
1. Be sure you have configured the solid.ini file so that it is valid for the

HotStandby configuration. For details on the Connect parameter, which defines
the connect string, see “Defining primary and secondary HotStandby
configuration” on page 41.
This connect string will be used to connect to the Secondary server from the
Primary and to copy the database files over the network.

2. Start the Primary server.
3. Start the Secondary server in netcopy listening mode by executing the

following command:
solid -x backupserver

Or, alternatively, start the Secondary server with an existing database.
4. Set the Primary server to PRIMARY ALONE state if it is not already in that

state:
ADMIN COMMAND ’hotstandby set primary alone’;

5. Issue the following command at the Primary server:
ADMIN COMMAND ’hotstandby netcopy’;

6. After the netcopy has completed, you can connect the two servers and start (or
resume) full hot standby operation by issuing the command:
ADMIN COMMAND ’hotstandby connect’;

When the Secondary server receives a new copy of the database through the
network link, it opens the Secondary database. After the servers are connected
(with the hsb connect command), the Secondary server runs in its normal
SECONDARY ACTIVE state and is ready to accept user transactions from the
Primary.

If HAC is used, the procedure to get the Primary server's database copied to the
Secondary is as follows:
1. Ensure that the servers have proper connect parameters. For details on the

Connect parameter, which defines the connect string, see “Defining primary
and secondary HotStandby configuration” on page 41.

2. Ensure that the HAC in Primary node has the PreferredPrimary=Yes parameter
set in solidhac.ini, and that the HAC in the Secondary node does not. For
further information of configuring HACs see “Configuring HA Controller and
HA Manager” on page 46.

3. Start the HAC instances, or optionally set HACs to the AUTOMATIC mode.

Note:

84 IBM solidDB: High Availability User Guide

If netcopy is sent to a server that is in the SECONDARY ALONE state, the existing
database is overwritten with the copied database. This option is handy if there is a
need to resynchronize databases, or to repair a corrupted Secondary database.

Replacing an existing database on the secondary server
Although netcopy is used primarily to send a database to a Secondary that has
never had a database before, netcopy can be used in other situations as well. For
example, if the Secondary's copy of the database has been corrupted (due to a disk
drive crash, for example), then you may send the Secondary a copy of the
Primary's database by using the netcopy command.

Before you begin

If you are replacing an existing database, then the Secondary server does not need
to be in "netcopy listening mode"; in other words, you do not need to start the
Secondary server with -x backupserver.

Procedure
1. Make sure that the Primary is in PRIMARY ALONE state and the Secondary is

in SECONDARY ALONE state.
2. Issue the following command to the Primary:

ADMIN COMMAND ’hotstandby netcopy’;

Note that after the netcopy completes, the Primary server will still be in
PRIMARY ALONE state and the Secondary server will automatically be put in
SECONDARY ALONE state (if it wasn't already in that state).
If you do a netcopy while the Secondary is in SECONDARY ALONE state, and
if any clients are connected to the Secondary (to do read-only queries), then the
Secondary server rolls back any open transactions and breaks any client
connections. Once the netcopy is completed, the Secondary server will remain
in the SECONDARY ALONE state.

3. The servers will not automatically connect; you will still need to issue the
command:
ADMIN COMMAND ’hotstandby connect’;

Verifying netcopy status
When you start a netcopy command, it runs asynchronously in the background.
The servers do not display a message when the netcopy completes.

About this task

In fact, the servers do not even display a message if the netcopy fails due to a
problem such as a network error. To see whether the netcopy completed
successfully, you should always verify the status of the netcopy:

Procedure

Issue the following command at the Primary server:
ADMIN COMMAND ’hotstandby status copy’;

Note:

The command uses the keyword "copy", not "netcopy". The same command is used
for both the copy and netcopy operations.

5 Using HotStandby API commands 85

The command displays a status message that tells you if the netcopy was
successful, is still in progress, or has failed, indicated by an error code and error
message.

Copying a database file from the primary server to a specified
directory

If the directory that the Secondary will use for the database is visible to the
Primary, then you can use the hotstandby copy command to copy the database
from the Primary's directory to the Secondary's directory.

Before you begin

This task is only possible in cases where the Primary and Secondary servers are
able to see some of the same disk drives and therefore can read and write some of
the same directories.

CAUTION:
Before using the hotstandby copy command, be sure to shut down the
Secondary server. The Secondary server must not try to access the database file
while the Primary is writing that file.

Note: The Primary server should be in PRIMARY ALONE state when you issue
the hotstandby copy command, and the Primary server will remain in that state
during (and after) the command.

About this task

One key difference between the hotstandby copy command and the hotstandby
netcopy command is that the netcopy command can be used only when the
Secondary is running, while the copy command should be used only when the
Secondary server is NOT running. Performance-wise, there is no significant
difference between the two database copy methods.

Procedure
1. To copy the file using hotstandby copy, issue the following command at the

Primary server:
ADMIN COMMAND ’hotstandby copy[directory_name]’;

where directory_name is the name of the directory that you want to copy the file
to. The format of the directory name is operating system dependent. The
directory name is optional. If you do not specify a directory name, then the
server will use the value specified by the CopyDirectory parameter in the
solid.ini configuration file.
When you execute the hotstandby copy command, it creates a checkpoint to the
database, and then makes a copy of the Primary database before sending that
copy to the Secondary.
Since the server is in PRIMARY ALONE state, transaction processing on the
Primary continues normally during the copy command, and the Primary will
store the transactions in the transaction log so that they can be forwarded to
the Secondary later.

2. After a copy operation, the Secondary is still down. You must bring it back up
and then issue the hotstandby connect command to connect the two servers.

86 IBM solidDB: High Availability User Guide

When the Primary database is connected to the Secondary using the
administrative command hotstandby connect, the Primary and Secondary
servers automatically perform "catchup" to bring the Secondary up-to-date.

Starting the secondary server and catching up
When the copy is completed, you must start the Secondary server with the newly
copied database.

Procedure
1. Start the server the normal way, that is, by issuing the command "solid" at your

operating system prompt.
2. After you restart the Secondary server, use the hotstandby connect command at

the Primary server to connect the Primary server to the Secondary server.
ADMIN COMMAND ’hotstandby connect’;

The hotstandby connect command is discussed in more detail in “Connecting
HotStandby servers.”

Results

After the Primary is connected to the Secondary, the Primary server and Secondary
server automatically start performing catchup. This means that the Primary server
brings the Secondary database up-to-date by copying the Primary's transaction log
to the Secondary, and then the Secondary rolls forward the transaction log and
updates its copy of the database.

Connecting HotStandby servers
About this task

The connect string that the Primary uses to connect to the Secondary server is
specified using the Connect parameter in the [hotstandby] section of the
solid.ini configuration file.

You can view current connect settings in the Primary and Secondary nodes by
issuing the command:
ADMIN COMMAND ’hotstandby cominfo’;

Procedure

If the connection between the Primary and Secondary servers is broken or not yet
established, you need to issue the following command at the Primary or Secondary
node:
ADMIN COMMAND ’hotstandby connect’;

For example, after performing a netcopy, you normally connect the servers.
Since there is no automatic connect mechanism in the HotStandby servers, you
should have the high availability control application perform this command when
the connection between the servers is broken.
After issuing this command, a confirmation message is displayed if the connection
between the Primary and Secondary servers is successful. Note that if the Primary
and Secondary are connected, but the transaction log is not yet fully copied at the
Secondary, you will receive the following message from the Primary server:
Started the process of connecting the servers.
If the state of the Primary server was PRIMARY UNCERTAIN or PRIMARY

5 Using HotStandby API commands 87

ALONE when you executed the command and if the connection is successful, then
the state of the Primary server changes to PRIMARY ACTIVE. If unsuccessful, the
state remains PRIMARY UNCERTAIN or PRIMARY ALONE.

What to do next

For details on querying connect status at Primary and Secondary servers, read
“Displaying connect status information” on page 89. For details on reconnecting an
application to the Primary server, read “Reconnecting to primary servers from
applications” on page 65.

Checking HotStandby status
This section describes the HotStandby status information that you can request from
both the Primary and Secondary servers.

Procedure

To check status, issue the following command in the Primary or Secondary server:
ADMIN COMMAND ’hotstandby status option’;

where option can be one of the following:

Option Description

catchup Indicates whether or not the server is doing
catchup. Catchup occurs after the Primary
server connects to the Secondary. During
catchup, the Primary sends accumulated
transaction logs so that the Secondary can
apply the changes. Possible values are:
'ACTIVE' and 'NOT ACTIVE'.

connect Shows whether the last attempt to connect
the servers was successful.

copy Shows whether the last attempt to
copy/netcopy was successful.

switch Shows whether the last attempt to switch
the server into PRIMARY ACTIVE or
SECONDARY ACTIVE state was successful.

Example
ADMIN COMMAND ’hotstandby status catchup’;

Displaying switch status information
You may need to verify if a state switch occurred between two HotStandby
servers.

About this task

To check HotStandby switch status information:

Procedure

Issue the following command in the Primary or Secondary server:
ADMIN COMMAND ’hotstandby status switch’;

88 IBM solidDB: High Availability User Guide

v When no prior switch has occurred between the two servers, the following
message is displayed: NO SERVER SWITCH OCCURRED BEFORE.

v When the switch process is still active, the following message is displayed:
ACTIVE.

v When the most recent prior switch process has completed successfully, the
following message is displayed: SUCCESS.

v When the most recent attempt to switch has failed, the following message is
displayed: ERROR number, where number identifies the type of error that occurred
during the switch.

Displaying connect status information
You can query connect status information between the Primary and Secondary
servers. This capability is equivalent to the SQL function
HOTSTANDBY_CONNECTSTATUS, which you can use in the application code.

Procedure

To check connect status, issue the following command in the Primary or Secondary
server:
ADMIN COMMAND ’hotstandby status connect’;

The possible return values are:

Table 16. Connect status return values

Error Code Text Description

0 CONNECTED Connect active. Returned
from both the Primary and
Secondary server.

14007 CONNECTING Primary server connecting to
the Secondary server.
Returned from both the
Primary and Secondary
servers.

14008 CATCHUP Primary server is connected
to the Secondary server, but
the transaction log is not yet
fully copied. Returned from
both the Primary and
Secondary server.

14010 DISCONNECTING The servers are in the
process of disconnecting.

14537 BROKEN Connection is broken.
Returned from both the
Primary and Secondary
servers.

Displaying communication information
You can query communication information used to connect to the other servers.
This is the value of the Connect parameter setting in the [HotStandby] section of
the solidDB configuration file (solid.ini). You can use this information in the
client applications to connect to other servers.

5 Using HotStandby API commands 89

Procedure

To display communication information, issue the following command in the
Primary or Secondary server:
ADMIN COMMAND ’hotstandby cominfo’;

Displaying role start time
Sometimes it is important to know when the server entered the current role of
Primary or Secondary.

This information may be retrieved by using two corresponding options of the
ADMIN COMMAND 'info':
admin command ’info primarystarttime’;

RC TEXT
-- ----
0 2005-06-09 14:22:18

admin command ’info secondarystarttime’;
RC TEXT
-- ----
0 2005-06-09 18:24:44

The reported time is the time the role has become Primary or Secondary. The
STANDALONE state is considered to be a state of the Primary role.

Specifically, the primary starttime is set when the following transitions occur:
v SECONDARY ALONE => PRIMARY ALONE
v SECONDARY ALONE => STANDALONE
v SECONDARY ACTIVE => PRIMARY ACTIVE

The secondary starttime is set when:
v The server is started in the SECONDARY ALONE state
v OFFLINE (started with -x backupserver) => SECONDARY ALONE
v PRIMARY ALONE => SECONDARY ALONE
v STANDALONE => SECONDARY ALONE
v PRIMARY ACTIVE => SECONDARY ACTIVE

If the current role contradicts the query, the query returns an empty string. For
example, if the role is SECONDARY and the command 'info primarystarttime' is
issued, it returns an empty string.

Verifying HotStandby server states
When administering and maintaining HotStandby, it is often necessary to check the
state of HotStandby servers.

Procedure

To check the current state of a HotStandby server, issue the following HotStandby
command in the server:
ADMIN COMMAND ’hotstandby state’;

90 IBM solidDB: High Availability User Guide

What to do next

For descriptions of possible states the command returns, see “Description of server
states” on page 12

Note:

1. If a server's solid.ini configuration file is configured to make the server a
HotStandby server, then when the server is started the server will start in the
SECONDARY ALONE state.

2. Note that the OFFLINE state is not listed in the preceding table; the server
cannot return the state name "OFFLINE" because when the server is in the
OFFLINE state you cannot connect to it and issue any query (such as ADMIN
COMMAND 'hotstandby state').

3. If ADMIN COMMAND 'hotstandby state' is issued on a server that is not
configured for HotStandby, the following error message is returned:

14527: This is a non-HotStandby Server

If HAC, and HA Manager are used, HA Manager displays the HSB states of
both servers. The information is queried periodically every second.

For a summary of HotStandby state transitions that occur while performing
administrative and troubleshooting operations, see the section Appendix D, “Server
state transitions,” on page 141.

Server state combinations
Not all combinations of server states are possible. For example, the Secondary can
only be in SECONDARY ACTIVE state if the Primary is in PRIMARY ACTIVE
state.

The following table shows possible server states of a HotStandby server when its
associated server is in a particular state.

Table 17. Server states

State of the server Possible states of the associated server

PRIMARY ACTIVE SECONDARY ACTIVE

PRIMARY ALONE PRIMARY ALONE *
PRIMARY UNCERTAIN
SECONDARY ALONE
STANDALONE *

PRIMARY UNCERTAIN PRIMARY ALONE
PRIMARY UNCERTAIN
SECONDARY ALONE
STANDALONE

SECONDARY ACTIVE PRIMARY ACTIVE

SECONDARY ALONE PRIMARY ALONE
PRIMARY UNCERTAIN
SECONDARY ALONE
STANDALONE

STANDALONE PRIMARY ALONE *
PRIMARY UNCERTAIN
SECONDARY ALONE
STANDALONE *

5 Using HotStandby API commands 91

* If one server is in the PRIMARY ALONE state or STANDALONE state, the other
server should not be in the PRIMARY ALONE or STANDALONE state. This is
because if changes are made to both servers independently, there is no way to
merge the two databases into one.

Choosing which server to make primary
In some situations, when you are trying to recover from a failure where both
databases have failed, you may not know which server should be made the
Primary. The server that was the Primary before the servers lost contact with each
other is not necessarily the server that should become the Primary now.

About this task

To determine which server should become the Primary, you can use the following
command on each server:
ADMIN COMMAND ’hsb logpos’;

This function returns a value as a string or binary value. The server that has the
"greater" value (the one which has accepted more transactions) is the server that
should become the Primary. If the logpos values of both servers are equal, the
PreferredPrimary parameter defines whether the local server becomes the Primary.

To use the command, follow the instructions below:

Procedure
1. Both servers should be up and running and in SECONDARY ALONE state.
2. Connect to both servers.
3. In each server, execute:

ADMIN COMMAND ’hsb logpos’;

Successful admin commands will return error code 0, a string, and the server's
previous role. (Note: The application should regard the string as an opaque
value, which has no defined structure.)

4. Compare the string values.
For example, in C, use the strcmp() function. The server that returned the string
that was "greater" should be chosen to be the new Primary. If the STRINGS are
equal, the PreferredPrimary parameter defines whether the local server
becomes the Primary.

5. Select the Primary by using the command below on the server that will become
Primary:
ADMIN COMMAND ’hsb set primary alone’;

6. Connect the HotStandby servers with each other by using the command below:
ADMIN COMMAND ’hsb connect’;

7. If the previous command succeeds, the Secondary catches up with the Primary,
and the HotStandby pair is functional again. If the command fails, you must
separately synchronize the nodes by issuing the command below on the
Primary server:
ADMIN COMMAND ’hsb netcopy’;

The netcopy command does not give a return value when it has finished.
Instead, you must observe it actively. This can be done with the command
below:
ADMIN COMMAND ’hsb status copy’;

92 IBM solidDB: High Availability User Guide

The possible return values are ACTIVE, SUCCESS or FAILED. In the case of a
failure, the reason for the failure is also output. After the synchronization is
done, issue the command:
ADMIN COMMAND ’hsb connect’;

The HotStandby pair is functional again.
CAUTION:
This procedure does not guarantee that the server with the higher string
value is a superset of the other server. It is still possible that the two servers
will each have accepted transactions that the other did not — for example,
both servers may have been running in PRIMARY ALONE state. To detect
the possibility that neither server is a superset of the other, the servers
compare information when executing the "connect" command. If neither
server is a superset, then the Connect command will fail and give an
appropriate error message.

Changing a HotStandby server to a non-HotStandby server
You can change a Primary or Secondary server to become a normal,
non-HotStandby server by editing the [HotStandby] section of the solid.ini file.

Procedure
1. Remove the HSBEnabled parameter (or set it to "no").
2. (Optional) Remove or comment out the Connect parameter.
3. After changing the parameter settings in the solid.ini file, you must restart

the server for the changes to take effect.

Example

If you want the server to temporarily stop acting as a HotStandby server, but you
would like it to resume acting as a HotStandby server later, then you may want to
leave the solid.ini file unchanged and instead simply change the state of the
server to STANDALONE.

5 Using HotStandby API commands 93

94 IBM solidDB: High Availability User Guide

6 Behavior of High Availability Controller in failure cases

This section describes possible failure scenarios. The High Availability Controller
(HAC) implicitly handles failure scenarios. However, different failure or
initialization scenarios (administrative scenarios, for short) can be handled by a
human administrator, or any software program called a "watchdog".

A watchdog is a separate program that monitors Primary and Secondary servers,
and gives commands to change those servers' states when necessary. We
recommend that you use the HAC so that you can determine when the Primary or
Secondary server itself has failed or when just the communication link between
these servers is down.

The purpose of recovery is to bring the failed component back to operation.
Occasionally, further failures happen during recovery. They usually lead to a
situation where the system remains in a state of limited availability (only one
server is up) awaiting human intervention. Typical recovery-time failures that are
not automatically taken care of are:
v The failed database is corrupted to a point that it is impossible to restart it
v There is not enough free disk space to perform a catchup

Primary database fails
Scenario

The primary database (in the PRIMARY ACTIVE state) on node 1 fails.

The secondary database (in the SECONDARY ACTIVE state) on node 2 encounters
connection failure to the primary database on node 1.

Recovery

In the recovery from the Primary database failure the Secondary server replaces the
Primary server. The recovery proceeds automatically as follows:
1. Upon the connection failure, the Secondary database on node 2 moves

automatically to the SECONDARY ALONE state.
2. The HAC instance on the Secondary database on node 2 concludes that the

Primary database on node 1 has failed and sets the Secondary database on
node 2 to the PRIMARY ALONE state.

3. In parallel with the above task, the HAC instance on the Primary database on
node 1 restarts the Primary database, which enters the SECONDARY ALONE
state.

4. The HAC instance on the Secondary database on node 2 initiates the process of
connecting the Primary and Secondary database.

5. A catchup is made.
Optionally, the connection process includes a netcopy operation from the
Secondary database on node 2 to the Primary database on node 1.

95

Secondary database fails
Scenario

The secondary database (in the SECONDARY ACTIVE state) on node 2 fails.

The Primary database (in the PRIMARY ACTIVE state) on node 1 encounters
connection failure to the Secondary database on node 2.

Recovery

In the recovery from the Secondary database failure the Secondary server is
restarted. The recovery proceeds automatically as follows:
1. Upon the connection failure, the Primary database on node 1 moves

automatically to the PRIMARY UNCERTAIN state, or if the AutoPrimaryAlone
parameter is enabled, to the PRIMARY ALONE state.

2. The HAC instance on the Primary database on node 1 concludes that the
Secondary database on node 2 has failed.

3. If the Primary database was set to the PRIMARY UNCERTAIN state in step 1,
HAC sets it now to the PRIMARY ALONE state.

4. In parallel with the above task, the HAC instance on the Secondary database on
node 2 restarts the Secondary database, which enters the SECONDARY ALONE
state.

5. The HAC instance on the Primary database on node 1 initiates the process of
connecting the Primary and Secondary database.

6. A catchup is made.
Optionally, the connection process includes a netcopy operation from the
Primary database to the Secondary database.

Primary node fails

Scenario

The primary node (node 1) fails.

The Secondary database (in the SECONDARY ACTIVE state) on node 2 encounters
connection failure to the Primary database (in the PRIMARY ACTIVE state) on
node 1.

Recovery

In the recovery from the Primary node failure the Primary server is restarted. The
recovery proceeds automatically as follows:
1. Upon the connection failure, the Secondary database moves automatically to

the SECONDARY ALONE state.
2. The HAC instance on the Secondary database on node 2 concludes that the

Primary database on node 1 has failed.
3. The HAC instance on the Secondary database on node 2 sets the Secondary

database to the PRIMARY ALONE state.
4. The Primary node (node 1) is restarted.
5. The HAC instance on the Primary database (node 1) is restarted.

96 IBM solidDB: High Availability User Guide

6. The HAC instance on the Primary database (node 1) concludes that the Primary
database is not running.

7. The HAC instance on the Primary database (node 1) restarts the Primary
database and sets it to the SECONDARY ALONE state.

8. The HAC instance on the Secondary database on node 2 initiates the process of
connecting the Primary and Secondary database.

9. A catchup is made.
Optionally, the connection process includes a netcopy operation from the
Primary database to the Secondary database.

Secondary node fails
Scenario

The secondary node (node 2) fails.

The Primary database (in the PRIMARY ACTIVE state) on node 1 encounters
connection failure to the Secondary database (in the SECONDARY ACTIVE state)
on node 2.

Recovery

In the recovery from the Secondary node failure the Secondary server is restarted.
The recovery proceeds automatically as follows:
1. Upon the connection failure, the Primary database on node 1 moves

automatically to the PRIMARY UNCERTAIN state.
2. The HAC instance on the Primary database on node 1 concludes that the

Secondary database on node 2 has failed.
3. The HAC instance on the Primary database on node 1 sets the Primary

database to the PRIMARY ALONE state.
4. The Secondary node (node 2) is restarted.
5. The HAC instance on the Secondary database (node 2) is restarted.
6. The HAC instance on the Secondary database (node 2) concludes that the

Secondary database is not running.
7. The HAC instance on the Secondary database (node 2) restarts the Secondary

database and sets it to the SECONDARY ALONE state.
8. The HAC instance on the Primary database on node 1 initiates the process of

connecting the Primary and Secondary database.
9. A catchup is made.

Optionally, the connection process includes a netcopy operation from the
Primary database to the new Secondary database.

HotStandby link fails

Scenario

The HotStandby link fails.

The Primary database (in the PRIMARY ACTIVE state) on node 1 and the
Secondary database (in the SECONDARY ACTIVE state) on node 2 both encounter
connection failure to each other.

6 Behavior of High Availability Controller in failure cases 97

Recovery

In the recovery from the HotStandby link failure the HAC instances ping the
External Reference Entity (ERE) to find out if it is the network or the opposite
server that has failed. The recovery proceeds automatically as follows:
1. Upon the connection failure, both databases move automatically to the

PRIMARY UNCERTAIN (node 1) and SECONDARY ALONE state (node 2),
respectively.

2. The direct connections of both HAC instances to the remote server fail.
3. Both HAC instances ping the ERE by using the operating system's ping utility.
4. If the ping fails, the local server is retained or set to the SECONDARY ALONE

state.
5. If the ping succeeds, the successful HAC tries to connect to the remote database

server.
6. If the connect effort to the remote database server fails, the HAC concludes that

its part of the network connection is operational and sets the local server to the
PRIMARY ALONE state.

7. The HAC instance on the Primary database attempts to re-establish the
connection to the Secondary database.

8. Once the network becomes operational and the connect succeeds, the Primary
database and the Secondary database move automatically to the PRIMARY
ACTIVE and SECONDARY ACTIVE state, respectively.

Server is unresponsive to external clients
Scenario

Connection to the server fails or hangs forever. Servers are in PRIMARY ACTIVE,
and SECONDARY ACTIVE state, but clients cannot connect to them and they
cannot execute transactions.

Recovery

Regardless of the state of unresponsive server, HAC executes a script as configured
in the solidhac.ini configuration file with the LocalDB.UnresponsiveActionScript
parameter. The script is started with single parameter including the process id
(pid) of unresponsive solidDB process.

Typical solution is to terminate the process identified by the process id. In such a
case, the recovery proceeds automatically as follows:

If the unresponsive server was in Primary role:
1. Upon the connection failure, the Secondary database (node 2) moves

automatically to the SECONDARY ALONE state.
2. The HAC instance on the Secondary database (node 2) notices that the Primary

database process (node 1) has terminated and sets the Secondary database
(node 2) to the PRIMARY ALONE state.

3. In parallel with the above task, the HAC instance on the Primary database
(node 1) restarts the old Primary database, which enters the SECONDARY
ALONE state.

4. The HAC instance on the Secondary database (node 2) initiates the process of
connecting the Primary and Secondary database.

5. A catchup is made.

98 IBM solidDB: High Availability User Guide

Optionally, the connection process includes a netcopy operation from the
Secondary database (node 2) to the Primary database (node 1).

If the unresponsive server was in Secondary role:
1. Upon the connection failure, the Primary database (node 1) moves

automatically to the PRIMARY UNCERTAIN state, or if the AutoPrimaryAlone
parameter is enabled, to the PRIMARY ALONE state.

2. The HAC instance on the Primary database (node 1) notices that the Secondary
database process (node 2) has terminated.

3. If the Primary database was set to the PRIMARY UNCERTAIN state in step 1,
HAC sets it now to the PRIMARY ALONE state.

4. In parallel with the above task, the HAC instance on the Secondary database
(node 2) restarts the old Secondary database, which enters the SECONDARY
ALONE state.

5. The HAC instance on the Primary database (node 1) initiates the process of
connecting the Primary and Secondary database.

6. A catchup is made.
Optionally, the connection process includes a netcopy operation from the
Primary database to the Secondary database.

6 Behavior of High Availability Controller in failure cases 99

100 IBM solidDB: High Availability User Guide

7 Upgrading HotStandby servers

Cold and hot migration
Migration involves updating the version of the software. For a highly-available
system like solidDB HotStandby, the migration may be "cold" or "hot".

Cold migration is the traditional way to migrate. You shut down the whole system
(both servers) and restart with new software and configuration data.

solidDB High Availability design allows you to upgrade your solidDB servers
without taking your entire system offline for the amount of time required to
upgrade the servers. One server can keep operating while the other server is being
upgraded. This is called hot migration.

CAUTION:
Although your entire system will not be down, users or applications may have
to disconnect from one server and connect to the other server if you are using
basic connectivity. If you are using the transparent connectivity, you can perform
the hot migration transparently to users and applications.

Migration between HSB-compatible versions
When the versions of the software are HSB-compatible, each of the servers may be
a of a different version and still they may be able to communicate with each other.
For example, all releases of any major version of solidDB are HSB-compatible.

Cold migration

The cold migration is trivial. You shut down the whole system and restart the
servers with the new software with the same roles as before the shutdown.

Hot migration

The basic outline for hot migration is:
1. Disconnect and shut down the Secondary, and then upgrade the Secondary.
2. Set the old Secondary to be the new Primary (in PRIMARY ALONE state); shut

down the old Primary; and upgrade the old Primary.
3. Bring the old Primary back up as the new Secondary. Connect the new Primary

and new Secondary servers and let the new Secondary "catch up" to the new
Primary.

Note that this procedure will "reverse" your servers. At the end of this sequence of
steps, the server that was originally the Primary will be the Secondary, and
vice-versa.

Migration between HSB-incompatible versions
When the versions are incompatible, certain scenarios have to be followed in the
system upgrade.

Specifically there conversion command line parameters that have to be used.

101

Versions that can be migrated but are HSB- incompatible with this version are: 3.1,
3.7 and 4.0. Migration from earlier versions than 3.1 is not supported.

A more detailed step-by-step procedure is shown below:

Preparation steps for migration between HSB-incompatible
versions

This example assumes that applications will fail over to the new Primary
automatically by sensing the state of each connection. Thus a controlled switchover
of the servers will not disrupt the applications, except that open transactions may
be aborted during a switchover.
1. If your applications have not been designed to fail over automatically, then you

may need to notify users that they will lose their connections and will need to
reconnect to the new Primary server.

2. Prepare your system and your software for upgrades. Among the tasks that
you may want to do:
a. Since each of your solidDB servers will be operating alone (specifically, in

PRIMARY ALONE state) during part of the upgrade operation, you should
make sure that both computers are in a "healthy" state, for example, they
have sufficient free disk space, reliable network connections, a UPS in case
of power failure.

b. Each of the servers will operate in PRIMARY ALONE state for at least a
short time (while the other server is being upgraded). While the server is in
PRIMARY ALONE state, it will be storing transactions in the transaction
log. You must have enough disk space available for the log file to store all
the transactions that will occur while the other server is being upgraded
(including the time it takes that other server to "catch up" after it is
restarted).

c. Make sure that a copy of the upgrade software is on each computer or is
readily available.

3. CAUTION:
If you have a "watchdog" program, then you should temporarily turn off that
watchdog so that it does not issue commands that conflict with the
commands that you issue during the upgrade process.

For example, after you disconnect the Primary from the Secondary, you
would not want the watchdog to try to reconnect them before you upgrade
the Secondary.

Cold migration procedure
About this task

The migration steps are:

Procedure
1. Disconnect the servers and shut them down.
2. Install the new version of the software.
3. Update the solid.ini files.
4. Start Primary with the command line parameter -x autoconvert, which instructs

the server to convert existing database to the new format.
5. Set the Primary to the PRIMARY ALONE state.
6. Perform 'hsb copy' or 'hsb netcopy' from Primary to Secondary

102 IBM solidDB: High Availability User Guide

7. Connect the servers.

Hot migration procedure
About this task

In the steps below, S1 ("OP") and S2 ("OS") represent the original Primary and
Secondary servers. Each server's state changes as you go through this process.

Procedure
1. S1: Disconnect the Primary from the Secondary:

ADMIN COMMAND ’hsb set broken’;
ADMIN COMMAND ’hsb status connect ping’;

2. S2 OS: Shut down server S2 (Secondary):
ADMIN COMMAND ’shutdown force’;

3. S1 OP: Tell the server S1 (Primary) server to operate in PRIMARY ALONE
state if it has not already automatically switched to that state. Verify that the
server S1 (Primary) is in the PRIMARY ALONE state.
ADMIN COMMAND ’hsb set primary alone’;
ADMIN COMMAND ’hsb state’;

4. S2 OS: Upgrade the server S2 (original Secondary).
You should update the configuration parameters in the solid.ini file, as well
as updating the software.

5. S2 OS: Bring up the server S2 (original Secondary) using the -x migratehsbg2
command-line switch:
solid -x migratehsbg2

This command-line switch has two effects. It instructs the server to accept and
convert the existing database (the same effect as the -x autoconvert
parameter). Also, it enables the new Secondary to communicate with the old
Primary using the old replication protocol. The server should come up in
Secondary Alone state.

6. S1 OP: Check the server S1 (Primary) server to make sure that it is still in
PRIMARY ALONE state:
ADMIN COMMAND ’hsb state’;

7. S1 OP: Perform a hsb connect command to connect the Primary server to the
Secondary:
ADMIN COMMAND ’hsb connect’;

Note that you cannot connect from the Secondary if it is running a newer
version of the server.
This step will start the process by which the Secondary "catches up" on data
changes that occurred while the Secondary was down.

8. S1 OP: Wait for the "catchup" to complete before continuing. If the catchup
fails, then you will have to do the following:
a. Shut down server S2 (the Secondary).
b. Do an hsb copy from S1 (the Primary) to copy the entire database to server

S2.
(Note: You must use hsb copy rather than hsb netcopy because hsb
netcopy does not work between different server versions.

c. Recover the copy with the old version of the server (S2).
d. Shut down S2 (the Secondary).

7 Upgrading HotStandby servers 103

e. Go back to the previous step.
9. S1 OP: After the servers are connected and caught up, perform:

ADMIN COMMAND ’shutdown force’;

CAUTION:
The force option will abort any open transactions.
After the server S2 (Secondary) has caught up, make it the new Primary. Shut
down server S1 (the former Primary) to upgrade it.

10. S2 OS: Set the new Primary server S2 (old Secondary) to operate in the
PRIMARY ALONE state if it has not already automatically switched to that
state. Verify that server S2 is in the PRIMARY ALONE state.
ADMIN COMMAND ’hsb set primary alone’;
ADMIN COMMAND ’hsb state’;

11. S1 OP: Upgrade the server S1 (your original Primary server).
You should update the configuration parameters in the solid.ini file, as well
as updating the software.

12. S1 OP: Restart the solidDB server on server S1 in the OFFLINE state.
solid -x backupserver

13. S2 OS: Check the new Primary server S2 (old Secondary) to make sure that it
is still in PRIMARY ALONE state:
ADMIN COMMAND ’hsb state’;

14. S2 OS: Netcopy the database from the new Primary (S2) to the new Secondary
(S1):
ADMIN COMMAND ’hsb netcopy’;

15. S2 OS: Verify that the netcopy succeeded:
ADMIN COMMAND ’hsb status copy’;
ADMIN COMMAND ’hsb connect’;

The hsb connect command will connect the new Primary server to the new
Secondary, and will start the process by which the new Secondary "catches
up" on data changes that occurred while it was down.
If this step fails, then copy the entire database to the Secondary server (using
hsb copy) and then resume from step 11.

After the upgrade
After the new Secondary server "catches up" to the new Primary, your system
should be completely back to normal. Both the new Primary and the new
Secondary server will be upgraded and will have the most current data. You may
want to run some test queries to make sure that everything is operating properly.

Procedure
1. Test that both your Primary server and your Secondary server are working

correctly. For example, you might choose the following sequence of operations:
On the Primary:
ADMIN COMMAND ’hsb state’;
ADMIN COMMAND ’hsb status catchup’;

Issue some type of read-only query.
On the Secondary:
ADMIN COMMAND ’hsb state’;
ADMIN COMMAND ’hsb status catchup’;

104 IBM solidDB: High Availability User Guide

Issue some type of read-only query.
2. If you had a "watchdog" program, restart it.

Note:

That this same approach works regardless of whether you want to upgrade
your hardware, your operating system, or your solidDB.

7 Upgrading HotStandby servers 105

106 IBM solidDB: High Availability User Guide

Appendix A. HotStandby configuration parameters

This section discusses the configuration parameters used with HotStandby. There
are three types of parameters:
v Server-side parameters in the solid.ini configuration file

The server-side parameters consist of parameters in the [Cluster] and the
[HotStandby] sections in the solid.ini configuration file.

Note: Some parameters in sections other than the [HotStandby] section also
affect HotStandby functionality. These other parameters are documented in
“Configuring HotStandby-specific parameters” on page 41 and in the IBM
solidDB Administrator Guide.

v High Availability Controller (HAC) configuration parameters in the
solidhac.ini configuration file

v High Availability Manager (HAM) configuration parameters in the
HAManager.ini configuration file

For descriptions of solid.ini parameters, see IBM solidDB Administrator Guide.

For information about how to format parameter names and section headings, see
IBM solidDB Administrator Guide, Appendix Server-side configuration parameters. It
explains the rules you must follow when formatting parameter names and values,
for example. The [HotStandby] section of the solid.ini file follows those same
rules.

For information on parameters that can be used in the [Watchdog] section of the
solid.ini file, see the section Appendix F, “Watchdog sample,” on page 151.

Ensuring that Primary and Secondary parameter values are
coordinated

This section explains which parameters should be the same on the Primary and
Secondary servers, and which parameters should be different.

Certain parameters should be the same on both the Primary and the Secondary.
The reason for this is that after a failover, the original Secondary becomes the new
Primary, and it should behave the same as the old Primary. Note that using the
same values is not an absolute requirement; the servers will not fail if you use
different values, but clients may see different behavior.

Some parameters that are not in the [HotStandby] section, but which are indirectly
related, should also be the same on both the Primary and Secondary servers. For
example, the DurabilityLevel parameter generally should be the same on the
Primary and Secondary.

Certain parameters should be different on the Primary and Secondary servers. The
reason for this is so that the servers can be uniquely identified and can talk to each
other.

The following HotStandby parameters should be the same on both the Primary
and Secondary:

107

v [HotStandby]

– 2SafeAckPolicy

– AutoPrimaryAlone

– ConnectTimeout

– HSBEnabled

– PrimaryAlone (deprecated, but should be the same if used)
v [IndexFile]

– FileSpec should be "compatible" meaning that the number of FileSpec
parameters should be the same and the sizes of the corresponding FileSpec
parameters should match.

– BlockSize

v [Logging]

– BlockSize

The following parameters should be different:
v [HotStandby]

– Connect

The following parameters may be the same or different, depending upon
circumstances such as the disk drive configuration on the computer:
v [General]

– BackupDirectory

v [HotStandby]

– CopyDirectory

There are also some settings of "non-HSB" parameters that affect HSB performance.
For example, the DurabilityLevel parameter in the [Logging] section of the
solid.ini file has a setting that allows you to optimize performance with
HotStandby. See “Adaptive durability” on page 15 and see the description of
DurabilityLevel in IBM solidDB Administrator Guide.

Determining whether the Primary's settings take precedence over the
Secondary's

Some parameters should be the same for both the Primary and Secondary servers.
If you do not set the values the same, you might expect that each server will use
the value defined in that server's solid.ini file. However, this is not necessarily
the case.

Even for some parameters that control the Secondary's behavior, like
2SafeAckPolicy, the value on the Primary is the value that determines the
behavior. The principle is that all safeness and durability parameters are controlled
at the Primary. For example, the Primary reads its value of 2SafeAckPolicy and
sends that value to the Secondary to use. The value stored in the Secondary's
solid.ini file is used only if the Secondary becomes the Primary.

Parameters for which the Primary's value takes precedence include:
v HotStandby.SafenessLevel

v HotStandby.2SafeAckPolicy

v Logging.DurabilityLevel

108 IBM solidDB: High Availability User Guide

v HotStandby.NetcopyRpcTimeout

At the time the command 'hsb connect' is executed, the following parameters
residing at the Primary take precedence:
v HotStandby.PingTimeout

v HotStandby.PingInterval

Querying HotStandby configuration parameters
Standard parameter manipulation commands may be used to query the values and
properties of the HotStandby parameters.

The commands are:
ADMIN COMMAND ’[describe] parameter[section_name[.parameter_name]]’;

For example:
ADMIN COMMAND ’parameter logging.durabilitylevel’;
RC TEXT
-- ----
0 Logging DurabilityLevel 3 3 2

ADMIN COMMAND ’parameter hotstandby.MaxLogSize’;
RC TEXT
-- ----
0 HotStandby MaxLogSize 10000000 0 0

The three values shown in the result row are, from the left:
v Current value - set dynamically or inherited from the default or factory value.
v Default value - read originally from the solid.ini file or inherited from the

factory value.
v Factory value - preset in the product.

Modifying HotStandby configuration parameters
Normally, you change the value of a parameter by changing the value in the
solid.ini configuration file and then restarting the server. However, most of the
HotStandby parameters can also be changed with an ADMIN COMMAND.

About this task

The command is:
ADMIN COMMAND ’parameter section_name.parameter_name=value [temporary]’;

Note: There is also a deprecated command ADMIN COMMAND "hotstandby
parameter ..." that may be used to modify the HotStandby parameters. Its syntax is
the following:
ADMIN COMMAND ’hotstandby parameter parameter_name value’;

Access mode
A parameter's access mode tells whether the parameter can be changed
dynamically, and when the change takes effect.

When the value of a parameter is changed with an ADMIN command, the change
may or may not apply immediately, and may or may not apply the next time that

Appendix A. Configuration parameters 109

the server is started. If a parameter value is written to the solid.ini file, then it
will take effect the next time that the server starts.

Access mode values

The possible access modes are:
v RO (read-only): the value cannot be changed; the current value is always

identical to the startup value.
v RW: can be changed through an ADMIN COMMAND, and the change takes

effect immediately.
v RW/Startup: can be changed through an ADMIN COMMAND, and the change

takes effect the next time that the server starts.
v RW/Create: can be changed through an ADMIN COMMAND, and the change

applies when a new database is created.

Saving parameter changes

Unless the temporary option is used, all the changes made to the parameters will
be saved in the solid.ini file at the next checkpoint. The saving may be also
expedited with the command:
ADMIN COMMAND ’save parameters [file_name]’;

By default, the command rewrites the default solid.ini file. By using the file_name
option, the output may be directed to a different location.

Cluster section

The following configuration parameters can be set in the [Cluster] section of the
solid.ini configuration file:

Table 18. Cluster parameters

Parameter name Description Factory value Access mode

ReadMostlyLoadPercentAtPrimary Percentage of read load
directed to the Primary.

50 RW/Startup

HotStandby section

The following configuration parameters can be set in the [HotStandby] section of
the solid.ini configuration file:

Table 19. HotStandby parameters

Parameter name Description Factory value Access mode

1SafeMaxDelay In 1-Safe replication, the maximum delay before a
committed transaction is sent to the Secondary (in
milliseconds).

5000 RW

110 IBM solidDB: High Availability User Guide

Table 19. HotStandby parameters (continued)

Parameter name Description Factory value Access mode

2SafeAckPolicy This specifies the timing of the Secondary's
acknowledgement when it receives a transaction
from the Primary.

Valid values are:

v 1 = 2-safe received. The Secondary server
acknowledges when it receives the data.

v 2 = 2-safe visible. The Secondary server
acknowledges when the data is "visible", that is,
when the Secondary has executed the transaction.

v 3 = 2-safe durable. The Secondary server
acknowledges when it has made the data durable,
that is, when it has committed the data and
written the data to the disk.

Not surprisingly, 2-safe durable is the safest
approach, and 2-safe received has the fastest
response time. However, in practice, the 2-safe
received mode provides in most cases sufficient
guarantees for data safety hence providing the best
compromise between safety and speed.

This parameter applies only if the server is using
2-safe replication.
Note: Although this parameter controls the
Secondary server's behavior, this parameter is set on
the Primary. The value in the Secondary's solid.ini
value is ignored.

1 RW

AutoPrimaryAlone If this parameter is set to Yes, then the server is
automatically put in PRIMARY ALONE state (rather
than PRIMARY UNCERTAIN state) when the
connection to the Secondary is broken.

If you plan to set this to "yes", read the warnings in
Network partitions and dual primaries.

No RW

CatchupSpeedRate While the server is performing catchup, it also
continues to service database requests from clients.
You may use the CatchupSpeedRate parameter to
give greater importance to responding to application
requests and lower priority to catchup, or vice versa.

The speed rate is expressed as a percentage of the
maximum available speed dictated by the link and
Secondary throughput. Larger numbers mean more
emphasis on catchup and less on servicing client
requests. Allowed values are 1-99.

50 RW

Appendix A. Configuration parameters 111

Table 19. HotStandby parameters (continued)

Parameter name Description Factory value Access mode

Connect The Connect parameter indicates the address of the
other HotStandby server in the pair.

The format of the Connect string in the HotStandby
section is the same as the format of the Listen
parameter in the [Com] section.

If you omit this parameter in a server that you
intend for HotStandby, then you can set this
parameter dynamically by using an ADMIN
COMMAND. Until the server has a Connect string,
the server can only be in the states that do not
involve a connection, that is, PRIMARY ALONE,
SECONDARY ALONE, and STANDALONE.

The Connect parameter is ignored unless the
HSBEnabled parameter is set to "yes".

For Transparent Connectivity (TC) connections, the
Connect parameter can be overridden with the
TCConnect parameter.

No factory value. RW

ConnectTimeout By specifying a connect timeout value, you can set
the maximum time in seconds that a HotStandby
connect operation waits for a connection to a remote
machine.

The ConnectTimeout parameter (which is useful
only on certain platforms) is only used with certain
administration commands. These are:

v hotstandby connect

v hotstandby switch primary

v hotstandby switch secondary

For example, to set the timeout to 30 seconds (30000
milliseconds):

[HotStandby]
ConnectTimeout=30000

See also PingTimeout.

0 (no timeout)

Unit: 1 ms

RW

CopyDirectory The CopyDirectory parameter in the [HotStandby]
section defines a name and location for the
HotStandby copy operation that is performed when
the user executes the command:

ADMIN COMMAND ’hotstandby copy’;

For example, the parameter may look like:

[HotStandby]
CopyDirectory=C:\solidDB\secondary\dbfiles

If you provide a relative path for the CopyDirectory
parameter, the path will be relative to the directory
that holds the Primary server's solid.ini file.

This parameter has no factory value, so if the
directory is not specified in the solid.ini file, it
must be provided in the copy command.

Please note that ADMIN COMMAND 'hotstandby
netcopy' as the more flexible solution is the
recommended way to copy the database.

No factory value RW

112 IBM solidDB: High Availability User Guide

Table 19. HotStandby parameters (continued)

Parameter name Description Factory value Access mode

HSBEnabled If this parameter is set to yes, the server may act as
a HotStandby Primary or Secondary server. If this
parameter is set to no, then the server may not act
as a HotStandby server.

Setting this parameter to Yes will implicitly define
the default initial state of the server to be
SECONDARY ALONE when the server first starts.
Valid values are "yes" and "no".

To use HotStandby, you must also specify the
Connect parameter, either by setting it in the
solid.ini file or by using an ADMIN COMMAND
to set it.

no RO

MaxLogSize Maximum size of the disk-based HSB log. The
factory value: unlimited

0

Unit: 1 byte k=KB
m=MB

MaxMemLogSize When the file-based logging is disabled
(Logging.LogEnabled=No), the size of the
in-memory log holding transactions before they are
sent to the Secondary. The value affects the time the
server may stay in the PRIMARY ALONE state,
before the in-memory log becomes full.

8M

Unit: 1 byte k=KB
m=MB

RO

NetcopyRpcTimeout Data transmission acknowledgment timeout for
netcopy operation (in milliseconds)

30000

Unit: 1 ms

RW

PingInterval The Primary and Secondary send "ping" messages to
each other at regular intervals to make sure that
they are still connected. (These pings are
independent of the transaction information that the
Primary sends to the Secondary.)

The value is equal to the interval (in milliseconds)
between two consecutive pings sent by a server.

1000 (one second)

Unit: 1 ms

RW

PingTimeout The parameter specifies how long a server should
wait before concluding that the other server is down
or inaccessible.

After the time specified (in milliseconds) has passed
the server concludes that a connection is broken and
changes the state accordingly.

See also ConnectTimeout.

4000 (four seconds)

Unit: 1 ms

RW

PrimaryAlone This parameter is deprecated. Use the
AutoPrimaryAlone parameter.

No RW

SafenessLevel This parameter sets the safeness level of the
replication protocol.

By using the "auto" value, you can allow the
safeness level to dynamically change in relation to
the durability level. If you set SafenessLevel to
"auto" and set the durability to relaxed by using the
SET DURABILITY command or the DurabilityLevel
parameter, the safeness level is set to 1-safe, and
when you set the durability level to strict, the
safeness level is set to 2-safe. However, if
DurabilityLevel is set to 2 (Adaptive Durability), the
"auto" setting has no effect - the safeness level will
always be 2-safe.

Possible values are:
1safe, 2safe and auto

RW

Appendix A. Configuration parameters 113

Table 19. HotStandby parameters (continued)

Parameter name Description Factory value Access mode

TCConnect This parameter overrides the connect string defined
with the Connect parameter for the purposes of
Transparent Connectivity (TC) connections, where
the servers need to use different networks to connect
to each other.

By default, the secondary servers provide the
Connect connect string to the TC clients for
specifying the location of the primary server. If the
servers use different network to connect to each
other and TC clients cannot or are not supposed to
use the same network, the TCConnect parameter can
be used to override the Connect connect string.

No factory value. RW

High Availability Controller configuration parameters
This section describes the High Availability Controller (HAC) configuration
parameters in the solidhac.ini configuration file.

The HAC configuration file solidhac.ini is divided into different sections; the
sections are described in the following sections. The parameters are presented in
the same order as they are in the configuration file.

For an example of the solidhac.ini, see section “The solidhac.ini configuration
file” on page 47.

[HAController] section

Table 20. HAC configuration parameters: [HAController] section

Parameter name Description Mandatory Factory
value

Listen
The value of the Listen parameter specifies the protocol and the
port that the HAC uses for communication with solsql, solcon,
High Availability Manager.

For example, Listen=tcp 3135.

v The only supported protocol is TCP/IP ('tcp').

v If listening cannot be started, for example, since the port is used
by another process, the information is written to log file
(hacmsg.out), followed by the termination of HAC.

X

StartInAutomaticMode This parameter specifies the initial mode for HAC; it defines
whether the HAC starts execution in the automatic mode.

Once the HAC is running, it can be in one of the following modes:
AUTOMATIC, or ADMINISTRATIVE.

v In the AUTOMATIC mode (Yes), HAC automatically tries to
maximize the availability by changing the HSB states of the
server, and restarting the server processes when necessary.

v In the ADMINISTRATIVE mode (No), HAC only monitors the
health of the servers.

The possible values are Yes and No.
Note: See also the PreferredPrimary parameter in the LocalDB
section; the PreferredPrimary parameter is effective only if the
StartInAutomaticMode parameter has value Yes.

Yes

114 IBM solidDB: High Availability User Guide

Table 20. HAC configuration parameters: [HAController] section (continued)

Parameter name Description Mandatory Factory
value

EnableDBProcessControl
Setting EnableDBProcessControl=Yes allows HAC to manage local
server process by automatically starting the server, and by
providing the user with commands to shutdown and restart the
database process.

This value is only valid if the HAC is in the AUTOMATIC mode.

The possible values are Yes and No.
Note: Setting EnableDBProcessControl=Yes makes the StartScript
parameter in the LocalDB section mandatory.

No

EnableAutoNetcopy Setting EnableAutoNetcopy=Yes allows HAC to initiate netcopy
when a HSB link cannot be established with the hsb connect
command.

The possible values are Yes and No.

Yes

RequiredConnectFailures This parameter defines the number of consecutive failed connect
attempts that are required before the server is considered to have
failed.

When a server state is unknown, or HAC needs for some other
reason to ensure the state of the server, the non-blocking
SQLConnect (check) command is used. If the execution of
non-blocking SQLConnects in such a case fails, it is repeated
multiple times before the server in question is considered
non-responsive.

The possible values are numerical values from 1 to unlimited.

1

CheckTimeout
This parameter defines the timeout in milliseconds between
consecutive non-blocking SQLConnect commands in CHECK
mode.

Very small values tend to cause 'false positives'. That is, a server
seems to be failed, although it is running, but was not able to
respond within the timeout period.

The possible values are milliseconds from 1 to unlimited.

150

CheckInterval This parameter defines the interval between consecutive
non-blocking SQLConnect commands. This value does not affect
the failover time. Checking (polling) takes place typically after
failure or during system startup.

The possible values are milliseconds from 1 to unlimited.

1000

Username
Username for HAC.

X

Password
Password for HAC for the user identified by the Username
parameter.

X

DBUsername
Username for the local HotStandby server to which the HAC
connects.

The database user should have either SYS_ADMIN_ROLE, or
SYS_CONSOLE_ROLE.

X

DBPassword
Password for the local HotStandby server for the user identified
by the DBUsername parameter.

X

Appendix A. Configuration parameters 115

Table 20. HAC configuration parameters: [HAController] section (continued)

Parameter name Description Mandatory Factory
value

ApplicationConnTestUsername Defines the username for the connections used in application
connection tests (EnableApplicationConnCheck is set to 'Yes').

If EnableApplicationConnCheck is set to 'Yes' and the value for
this parameter is not set, the value of DBUsername is used.

ApplicationConnTestPassword Defines the password for the connections used in application
connection tests (EnableApplicationConnCheck is set to 'Yes').

If EnableApplicationConnCheck is set to 'Yes' and the value for
this parameter is not set, the value of DBPassword is used.

[LocalDB] section

Table 21. HAC configuration parameters: [LocalDB] section

Parameter name Description Mandatory
Factory
value

Connect This parameter defines connect information of the local database
server. HAC uses this information when it connects to the local
server.

The connect information consists of a communication protocol (tcp)
and the server port, for example: tcp 2125.

X

EnableApplicationConnTest If set to 'Yes', periodical testing for the application connection is
enabled. The application connection test checks whether the
connection the application uses to connect to the server is working.

To test the connection, HAC connects to the server using the same
connect information as the application and executes simple
commands to ensure the server is responsive.

The application connection test enables HAC to monitor the
external availability of solidDB server. If connection to server
cannot be established or the server does not respond to simple
queries, HAC concludes that the service provided by server is not
available. If the server process exist in the system, HAC calls the
script specified with the parameter UnresponsiveActionScript.

No

ApplicationConnTestConnect This parameter defines the connect information for application
connection test connections (EnableApplicationConnCheck is set
to 'Yes').

The value of this parameter needs to be the same as the connect
information the application uses to connect to the server. The value
consists of a communication protocol (tcp), server address, and
port number, for example: tcp 10.0.0.101 2125.

If ApplicationConnTestConnect is not specified, the value defined
with the parameter Connect is used.

EnableUnresponsiveActions If set to 'Yes', a user-provided script is executed if an application
connection test fails.

The script is defined with the parameter
UnresponsiveActionScript.

No

RequiredAppConnTestFailures This parameter defines the number of times the application
connection test commands are executed before the server is
considered unresponsive.

3

ApplicationConnTestTimeout This parameter defines timeout in milliseconds for consecutive
commands used in application connection test.

5000

116 IBM solidDB: High Availability User Guide

Table 21. HAC configuration parameters: [LocalDB] section (continued)

Parameter name Description Mandatory
Factory
value

ApplicationConnTestInterval This parameter defines the interval in milliseconds between
consecutive non-blocking commands used in application
connection test.

3000

StartScript This parameter declares the name of the script which is used to
initiate the database process, for example, /home/soliddb/
start_solid.sh.

This parameter is mandatory if HAC is configured to control the
database process with the EnableDBProcessControl parameter in
the [HAController] section:

v If EnableDBProcessControl is set to Yes, this parameter is
mandatory.

v If EnableDBProcessControl is set to No, this parameter is not
effective.

See
description

UnresponsiveActionScript This parameter defines the name and location of the script that
contains the actions to be taken if application connection test fails,
for example: /home/solid/terminate_solid.sh.

When calling the script, HAC needs to specify the solidDB process
identifier as a parameter. If HAC does not know the solidDB
process id, the script cannot be executed.

This parameter is mandatory if both EnableApplicationConnTest
and EnableUnresponsiveActions are set to Yes.

Example:

The following terminate_solid.sh script terminates the solidDB
process with id 1 in Linux® and UNIX operating systems:

#!/bin/sh
#terminate_solid.sh

ulimit -c unlimited
kill -6 $1
sleep 30
kill -9 $1

See
description

PreferredPrimary This parameter defines whether the local server becomes the
Primary when the logpos values of both servers are equal. If both
servers have the same value in PreferredPrimary, the first server
becomes the new Primary.

This parameter is effective only if the StartInAutomaticMode
parameter has value Yes.

The possible values are Yes and No.

No

[RemoteDB] section

Table 22. HAC configuration parameters: [RemoteDB] section

Parameter name Description Mandatory
Factory
value

Connect This parameter defines connect information of the remote database
server. HAC uses this information when it connects to the remote
server.

The remote database is defined by giving the communication
protocol, the remote server IP address, and its port, for example,
tcp 192.168.3.123 2125.

X

Appendix A. Configuration parameters 117

[ERE] section

Table 23. HAC configuration parameters: [ERE] section

Parameter name Description Mandatory
Factory
value

EREIP This parameter identifies the IP address of an External Reference
Entity, for example, 192.168.3.1.

See also the RequiredPingFailures parameter.

RequiredPingFailures This parameter defines the maximum number of consecutive Ping
calls that must fail before HAC concludes that the server is
disconnected from the ERE and isolated from the client network.

This parameter can only be used with ERE.

The possible values are numerical values from 1 to unlimited.

3

High Availability Manager configuration parameters
This section describes the High Availability Manager configuration parameters in
the HAManager.ini configuration file.

Table 24. High Availability Manager configuration parameters

Parameter name Description

Header_text
This parameter defines the header text for
the HA manager. This value is shown in the
user interface.

This is a mandatory parameter.

Server1_host Server2_host
These two parameters define the host names
of the HAC instances.

Server1_name Server2_name
These two parameters define the names of
the HAC instances.

Server1_pass Server2_pass
These two parameters define the passwords
of the HAC instances.

Server1_port Server2_port
These two parameters define the ports of the
HAC instances.

Server1_user Server2_user
These two parameters define the usernames
of the HAC instances.

Window_title
This parameter defines the window title for
the HA manager. This value is shown in the
user interface.

This is a mandatory parameter.

118 IBM solidDB: High Availability User Guide

Appendix B. Error codes

This section documents error codes that are related to HotStandby. Most other
server error codes are documented in solidDB Administration Guide.

Some of the errors documented in this section are values of the RC column of the
ADMIN COMMAND result set, whereas some other errors are returned as the
error code of the ODBC or JDBC driver. For example, all "solidDB HotStandby
Errors" and "solidDB High Availability Controller Errors" are ADMIN COMMAND
result set values, whereas all "solidDB Communication Errors" are returned by the
driver.

The error categories covered in the tables contained in this section are:

HotStandby errors and status codes
solidDB HotStandby errors (14009 - 147xx, 307xx) occur when using the
HotStandby commands.

solidDB server errors for HotStandby

This section lists the solidDB server errors that are related to HotStandby. A full list
of the errors in the Server class is available in section solidDB server errors in the
IBM solidDB Administrator Guide.

Table 25. solidDB server errors for HotStandby

Code Class Type Description

14003 Server Return Code ACTIVE

ADMIN COMMANDs that may return this status in the result set of the command:

v ADMIN COMMAND 'hotstandby status switch'

v ADMIN COMMAND 'hotstandby status catchup'

v ADMIN COMMAND 'hotstandby status copy'

Meaning: The switch process, catchup process, copy or netcopy process is still active.

14007 Server Return Code CONNECTING

ADMIN COMMANDs that may return this status in the result set of the command:

v ADMIN COMMAND 'hotstandby status connect'

Meaning: The Primary and Secondary servers are in the process of connecting.

14008 Server Return Code CATCHUP

ADMIN COMMANDs that may return this status in the result set of the command:

v ADMIN COMMAND 'hotstandby status connect'

Meaning: The Primary server is connected to the Secondary server, but the transaction log is not
yet fully copied. This message is returned only from the Primary server.

14009 Server Return Code No server switch occurred before.

ADMIN COMMANDs that may return this status in the result set of the command:

v ADMIN COMMAND 'hotstandby status switch'

Meaning: The switch process has never happened between the servers.

119

Table 25. solidDB server errors for HotStandby (continued)

Code Class Type Description

14501 Server Error Operation failed.

Meaning: The operation failed and the server is shutting down. Failure may be due to issuing
the command to a non-HotStandby server, or to either a Primary or Secondary server in which
the command does not apply.

ADMIN COMMANDs that may return this status in the result set of the command:

v ADMIN COMMAND 'hotstandby switch primary'

v ADMIN COMMAND 'hotstandby switch secondary'

v ADMIN COMMAND 'hotstandby cominfo'

v ADMIN COMMAND 'hotstandby connect'

v ADMIN COMMAND 'hotstandby status switch'

v ADMIN COMMAND 'hotstandby set standalone'

v ADMIN COMMAND 'hotstandby copy'

v ADMIN COMMAND 'hotstandby netcopy'

14502 Server Error RPC parameter is invalid

Meaning: some of the connection info provided in the HSB connect string is erroneous and the
connection to another server failed.

ADMIN COMMANDs that may return this status in the result set of the command:

v ADMIN COMMAND 'hotstandby status connect'

14503 Server Error Communication error, connection lost.

Meaning: There was a communication error and the other server was not found. There was a
failure to connect to the other server.

ADMIN COMMANDs that may return this status in the result set of the command:

v ADMIN COMMAND 'hotstandby status connect'

14520 Server Error Server is HotStandby secondary server, no connections are allowed.

14522 Server Error HotStandby copy directory not specified.

Meaning: No copy directory is specified.

ADMIN COMMANDs that may return this status in the result set of the command:

v ADMIN COMMAND 'hotstandby copy'

To solve this problem, either specify the directory as part of the command, for example:

ADMIN COMMAND ’hotstandby copy \Secondary\dbfiles\’

or else set the CopyDirectory parameter in the solid.ini configuration file.

14523 Server Error Switch process is already active.

Meaning: The switch process is already active in the HotStandby server. If you only need to
complete the current switch, then wait. If you are trying to switch a second time (that is, switch
back to the original configuration), then you must wait for the first switch to complete before
you can start the second switch.

ADMIN COMMANDs that may return this status in the result set of the command:

v ADMIN COMMAND 'hotstandby switch primary'

v ADMIN COMMAND 'hotstandby switch secondary'

v ADMIN COMMAND 'hotstandby status switch'

120 IBM solidDB: High Availability User Guide

Table 25. solidDB server errors for HotStandby (continued)

Code Class Type Description

14524 Server Error HotStandby databases have a different base database, database time stamps are different.

Meaning: Databases are from a different seed database. You must synchronize databases. You
may need to perform netcopy of the Primary's database to the Secondary.

ADMIN COMMANDs that may return this status in the result set of the command:

v ADMIN COMMAND 'hotstandby connect'

v ADMIN COMMAND 'hotstandby status switch'

14525 Server Error HotStandby databases are not properly synchronized.

Meaning: Databases are not properly synchronized. You must synchronize the databases. You
may need to start one of the database servers (the one that you intend to become the
Secondary) with the command line parameter -x backupserver and then netcopy the Primary's
database to the Secondary.

ADMIN COMMANDs that may return this status in the result set of the command:

v ADMIN COMMAND 'hotstandby connect'

v ADMIN COMMAND 'hotstandby status switch'

14526 Server Error Invalid argument.

Meaning: An argument used in the HotStandby ADMIN COMMAND is unknown or invalid.

All HotStandby commands can return this error in the result set of the ADMIN COMMAND.

Note: In the following HotStandby commands, the invalid argument error is a syntax error
when the specified Primary or Secondary server can not apply to the switch:

v ADMIN COMMAND 'hotstandby switch primary'

v ADMIN COMMAND 'hotstandby switch secondary'

14527 Server Error This is a non-HotStandby server.

Meaning: The command was executed on a server that is not configured for HotStandby.

ADMIN COMMANDs that may return this status in the result set of the command:

v ADMIN COMMAND 'hotstandby connect'

v ADMIN COMMAND 'hotstandby status switch'

v ADMIN COMMAND 'hotstandby switch primary'

v ADMIN COMMAND 'hotstandby switch secondary'

v ADMIN COMMAND 'hotstandby state'

14528 Server Error Both HotStandby databases are primary databases.

Meaning: Both databases are Primary. This is a fatal error because there may be conflicting
changes. Both databases are automatically dropped to Secondary state by the system. You must
decide which database is the real Primary database and then synchronize the databases.

ADMIN COMMANDs that may return this status in the result set of the command:

v ADMIN COMMAND 'hotstandby connect'

v ADMIN COMMAND 'hotstandby status switch'

14535 Server Error Server is already a primary server.

Meaning: The server you are trying to switch to Primary is already in one of the PRIMARY
states.

ADMIN COMMANDs that may return this status in the result set of the command:

v ADMIN COMMAND 'hotstandby switch primary'

Appendix B. Error codes 121

Table 25. solidDB server errors for HotStandby (continued)

Code Class Type Description

14536 Server Error Server is already a secondary server.

Meaning: The server you are trying to switch to Secondary is already in one of the
SECONDARY states.

ADMIN COMMANDs that may return this status in the result set of the command:

v ADMIN COMMAND 'hotstandby switch secondary'

14537 Server Error HotStandby connection is broken.

Meaning: This command is returned from both the Primary and Secondary server.

ADMIN COMMANDs that may return this status in the result set of the command:

v ADMIN COMMAND 'hotstandby status connect'

One possible cause of this problem is an incorrect Connect string in the Secondary's solid.ini
file. If the netcopy operation succeeds but the connect command fails, check the Connect string.
(Netcopy does not require the Secondary to open a separate connection to the Primary, and thus
may succeed even if the Connect string on the Secondary is wrong.)

14538 Server Error Server is not HotStandby primary server.

Meaning: To issue this command, the server must be a HotStandby Primary server.

ADMIN COMMANDs that may return this status in the result set of the command:

v ADMIN COMMAND 'hotstandby copy copy_directory'

v ADMIN COMMAND 'hotstandby netcopy'

v ADMIN COMMAND 'hotstandby connect'

v ADMIN COMMAND 'hotstandby set primary alone'

v ADMIN COMMAND 'hotstandby set standalone'

14539 Server Error Operation Refused.

This error code is given when one of the following situations occurs:

v The user issued a netcopy command to a Primary server, but the server that should be
Secondary is not actually in a Secondary state, or is not in "netcopy listening mode". (Both the
Primary and the "Secondary" server are probably in PRIMARY ALONE state.)

To solve the problem, restart the "Secondary" with the -x backupserver command-line option,
then try again to issue the netcopy command to the Primary.

Attention: If both servers were in PRIMARY ALONE state, and if both servers executed
transactions while those servers were in PRIMARY ALONE state, then they probably each
have data that the other one does not. This is a serious error, and doing a netcopy to put
them back in sync would result in writing over some transactions that have already been
committed in the "Secondary" server.

v This message can be generated when you use a callback function and the callback function
refuses to shut down or accept a backup or netcopy command.

When you use linked library access, you can provide "callback" functions by using the
SSCSetNotifier function. Your callback functions will be notified when the server has been
commanded to shut down or to do a netcopy operation. If for some reason your application
doesn't want the command to be followed, then your callback can return a value that cancels
the command. In this situation, you will see error 14539.

To solve the problem, wait until the client code finishes the operation that it does not want to
interrupt, then retry the command (for example, the shutdown or netcopy).

14540 Server Error Server is already a non-HotStandby server.

14541 Server Error HotStandby configuration in solid.ini conflicts with ADMIN COMMAND 'HSB SET
STANDALONE'.

14542 Server Error Server in backupserver mode. Operation refused.

14543 Server Error Invalid command. The database is a HotStandby database but, HotStandby section not found in
solid.ini configuration file.

14544 Server Error Operation failed. This command is not supported on diskless server.

122 IBM solidDB: High Availability User Guide

Table 25. solidDB server errors for HotStandby (continued)

Code Class Type Description

14545 Server Error Primary can only be set to primary alone when its role is primary broken.

14546 Server Error Switch failed. The server or the remote server cannot switch from primary alone to secondary
server. Catchup should be done first before switch.

Meaning: This command is returned when a state switch to SECONDARY is executed from a
local or remote Primary server that is in the PRIMARY ALONE state and it is detected that the
Primary and Secondary server are not in sync. You must connect the Primary server to the
Secondary server and wait for the catchup process to complete before switching the Secondary
to the Primary.

HotStandby commands that return this error:

v ADMIN COMMAND 'hotstandby switch secondary'

14547 Server Error The value for the -R option (Read Timeout) was missing or invalid.

14548 Server Error Switch failed. The server in Standalone cannot be switched to a secondary.

Meaning: This command is returned when a state switch to SECONDARY is executed from a
local or remote Primary server that is in the STANDALONE state and it is detected that the
Primary and Secondary server are not in sync. You must connect the Primary server to the
Secondary server and wait for the catchup to complete before switching the Secondary to the
Primary.

HotStandby commands that return this error:

v ADMIN COMMAND 'hotstandby switch secondary'

14549 Server Error HotStandby transaction is active.

Meaning: If the HotStandby connection is broken, Primary server must be set to alone mode or
switched to secondary mode before shutdown.

14550 Server Error Hotstandby connect parameter can be changed only when the primary is not connected to
secondary.

14551 Server Error Maximum number of START AFTER COMMIT statements reached.

14552 Server Error Server is in backup server mode, no connections are allowed.

Error 14552 is returned when a client attempts to establish a connection to a solidDB server
which is in a backup server mode (also called netcopy listening mode). The backup server mode is
a special server mode where the solidDB instance has been started with the command line
option -xbackupserver. This mode indicates that the solidDB instance is a Secondary server that
is either waiting for or in the process of receiving the database file from the Primary server due
to a netcopy command issued at the Primary server.

solidDB HotStandby errors

Table 26. solidDB HotStandby errors

Code Class Type Description

14700 HotStandby Error Rejected connection, both servers in PRIMARY role.

Meaning: Command 'hsb connect' returns this error if both nodes are in same role.

14701 HotStandby Error Rejected connection, both servers in SECONDARY role.

Meaning: Command 'hsb connect' returns this error if both nodes are in same role.

14702 HotStandby Error Operation failed, catchup is active.

Meaning: While the servers are performing catchup, you will get this error if you issue
any of the following commands on the Primary: 'hsb switch secondary', 'hsb set
secondary alone', 'hsb set standalone', 'hsb connect', 'hsb copy' or 'hsb netcopy'.

While the servers are performing catchup, you will get this error if you issue any of
the following commands on the Secondary: 'hsb switch primary', 'hsb set secondary
alone', 'hsb set primary alone', 'hsb set standalone', or 'hsb connect'.

Appendix B. Error codes 123

Table 26. solidDB HotStandby errors (continued)

Code Class Type Description

14703 HotStandby Error Operation failed, copy is active.

Meaning: While the Primary is doing copy or netcopy, the following commands
returns this error: 'hsb switch secondary', 'hsb set secondary alone', 'hsb set standalone',
'hsb connect', 'hsb disconnect', 'hsb copy' or 'hsb netcopy'.

14704 HotStandby Error HotStandby copy or netcopy is only allowed when primary is in alone state.

Meaning: This error is returned if the server is in PRIMARY ACTIVE state and the
command 'hsb copy' or 'hsb netcopy' is issued.

14705 HotStandby Error Setting to STANDALONE is not allowed in this state.

Meaning: If the server is in PRIMARY ACTIVE state and you issue the command 'hsb
set standalone', then you will get this message.

14706 HotStandby Error Invalid read thread mode for HotStandby, only mode 2 is supported.

14707 HotStandby Error Operation not allowed in the STANDALONE state.

14708 HotStandby Error Catchup failed, catchup position was not found from log files.

14709 HotStandby Error Hot Standby enabled, but connection string is not defined.

14710 HotStandby Error Hot Standby admin command conflict with an incoming admin command.

14711 HotStandby Error Failed because server is shutting down.

14712 HotStandby Error Server is secondary. Use primary server for this operation.

solidDB HSB errors and messages

Table 27. solidDB HSB errors and messages

Code Class Type Description

14007 HSB Message CONNECTING

14008 HSB Message CATCHUP

14009 HSB Message No role switches since the server startup

14010 HSB Message DISCONNECTING

14522 HSB Message HotStandby copy directory not specified.

14537 HSB Message BROKEN

14704 HSB Error HotStandby copy or netcopy is only allowed when primary is in alone state

14712 HSB Error Server is secondary. Use primary server for this operation

30500 HSB Message Started as a HotStandby primary

30501 HSB Message Started as a HotStandby secondary

30502 HSB Message
The database was not shut down properly the last time that it was used starting as a HotStandby
secondary

30503 HSB Message Forcing HotStandby primary to start as a secondary

30504 HSB Message HotStandby role switched to secondary

30505 HSB Message HotStandby role switched to primary

30506 HSB Message Primary server must be set to PRIMARY ALONE or switched to the secondary role.

30507 HSB Message HotStandby server set to PRIMARY ALONE.

30508 HSB Message HotStandby server set to SECONDARY ALONE

30509 HSB Message HotStandby switch to primary failed, error <error_code>

30510 HSB Message HotStandby switch to secondary failed, error <error_code>

30511 HSB Message Failed to start HotStandby to <server_name>, error <error_code>

30512 HSB Message Failed to switch HotStandby role to primary, error <error_code>

30513 HSB Message Failed to switch HotStandby role to secondary, error <error_code>

30514 HSB Message Both databases are primary servers starting as a secondary

124 IBM solidDB: High Availability User Guide

Table 27. solidDB HSB errors and messages (continued)

Code Class Type Description

30515 HSB Message Both HotStandby databases are primaries

30516 HSB Message Failed to start HotStandby to <server_name>, other server rejected with error <error_code>

30517 HSB Message HotStandby role in secondary switched

30518 HSB Message HotStandby role switched to standalone

30530 HSB Message Starting to send HotStandby catchup data to secondary server

30531 HSB Message HotStandby catchup completed successfully

30532 HSB Message HotStandby catchup ended abnormally

30533 HSB Message
HotStandby catchup can not be started. Secondary is not properly synchronized with primary full
synchronization is required

30534 HSB Message HotStandby catchup ended abnormally, status <error_code>

30535 HSB Message HotStandby catchup ended abnormally, error <error_code>

30536 HSB Message HotStandby catchup ended abnormally due to a communication error

30537 HSB Message HotStandby catchup ended abnormally, secondary returned error <error_code>

30538 HSB Message
HotStandby catchup size <value> greater than configured maximum size <value>, stopping
HotStandby

30539 HSB Message File error in HotStandby catchup, stopping HotStandby

30540 HSB Message Starting to receive HotStandby catchup data from primary server

30541 HSB Message
Secondary is not properly synchronized with primary due to a log file corruption. Please restart
secondary and execute a HSB netcopy.

30550 HSB Message Connection broken to HotStandby secondary server

30551 HSB Message Connected to HotStandby

30552 HSB Message HotStandby secondary connected

30553 HSB Message HotStandby primary connected

30554 HSB Message

Hot Standby connection broken to Secondary server with an open transaction waiting for the
operator to resolve transaction status. Primary server must be set to alone mode or switched to
secondary mode.

30555 HSB Message HotStandby ping timeout

30556 HSB Message Connection broken to HotStandby secondary

30557 HSB Message HotStandby databases are not properly synchronized

30558 HSB Message HotStandby connection to secondary timed out

30559 HSB Message HotStandby connection broken

30560 HSB Message HotStandby: <HotStandby_error_message>

30570 HSB Message Network backup completed.

30571 HSB Message Started to receive network backup.

30572 HSB Message Database started using a HotStandby copy/netcopy.

30573 HSB Message Network backup failed.

30574 HSB Message Hot Standby forcing threads to 1

30575 HSB Message Hot Standby replication configured but no active license found replication not started

30577 HSB Message HotStandby connect operation failed

30579 HSB Message HotStandby connection is already active.

30581 HSB Message Invalid event <event>

30582 HSB Message HotStandby cannot set the server to PRIMARY ALONE.

30583 HSB Message HotStandby copy failed.

30585 HSB Message Database starts to listen for netcopy.

30750 HSB Message HotStandby connection is already active.

30752 HSB Message Operation failed disconnect is active.

Appendix B. Error codes 125

Table 27. solidDB HSB errors and messages (continued)

Code Class Type Description

30757 HSB Message CONNECTED

30758 HSB Message Bad Hot Standby command.

30759 HSB Message HotStandby server is set to STANDALONE.

30760 HSB Message Started the process of disconnecting the servers.

30761 HSB Message Started the process of switching the role to primary.

30762 HSB Message Started the process of switching the role to secondary.

30763 HSB Message Started the process of connecting the servers.

30764 HSB Message Copy started.

30765 HSB Message Parameter AutoPrimaryAlone is set to Yes.

30766 HSB Message Parameter AutoPrimaryAlone is set to No.

30767 HSB Message Parameter Connect is set to <value>.

30768 HSB Message HotStandby connection is already broken.

30769 HSB Message Operation failed because connection between the servers is active.

30772 HSB Message Hot Standby node identifier must be defined in the ini file.

30774 HSB Message Server is already STANDALONE.

30775 HSB Message Parameter CopyDirectory is set to <value>.

30776 HSB Message Parameter ConnectTimeout is set to <value>.

30777 HSB Message Parameter PingTimeout is set to <value> milliseconds.

30779 HSB Message Hot Standby migration is active

30782 HSB Message Server is already set to primary alone.

30783 HSB Message Server is already set to secondary alone.

30784 HSB Message Parameter <parameter_name> is set to <value>.

30785 HSB Message Parameter <parameter_name> is set to <value>.

30786 HSB Message Parameter <parameter_name> is set to <value>.

30787 HSB Fatal Error

pri_dologskip:bad type, log pos, log size

This error refers to a failed operation on the HSB primary server. The error returns the failed
operation and its location in the log, and the log size. Operations in the replication log are
skipped.

30788 HSB Fatal Error

pri_hsblogcopy_write:bad type, log pos, log size

This error refers to a failed operation on the HSB primary server. The write to the replication log
file fails. The error returns the failed operation and its location in the log, and the log size.

30789 HSB Fatal Error Failed to open hot standby replication log file.

30790 HSB Fatal Error

Failed to allocate memory for HotStandby log. Max Log size is logsize.

This error concerns a diskless database using hotstandby. In these systems, the hotstandby log is
written to memory. This error is given if allocating more memory for the log file fails.

30791 HSB Fatal Error HotStandby:solhsby:bad type <type>, log pos <log_pos>, log size <log_size>

30792 HSB Message Both servers are secondary.

126 IBM solidDB: High Availability User Guide

High Availability Controller errors and status codes
solidDB High Availability Controller errors (17xxx) occur when using specific High
Availability Controller commands.

Table 28. High Availability Controller errors and status codes

Error or status code Description

17501 HAC is shutting down.

ADMIN COMMANDs that may return this
status in the result set of the command:

v ADMIN COMMAND 'hac shutdown'

Meaning: The High Availability Controller is
shutting down.

17502 Command failed, HAC is suspended.

ADMIN COMMANDs that may return this
status in the result set of the command:

v ADMIN COMMAND 'hac suspend'

v ADMIN COMMAND 'hac gethsbdstate'

v ADMIN COMMAND 'hac getdbstate'

v ADMIN COMMAND 'hac shutdowndb'

v ADMIN COMMAND 'hac restartdb'

v ADMIN COMMAND 'hac switchdb'

v ADMIN COMMAND 'hac
statemachinestate'

v ADMIN COMMAND 'hac getereip'

v ADMIN COMMAND 'hac pingere'

Meaning: The command execution failed
and the High Availability Controller is
suspended.

17503 Unknown command. Enter 'hac commands'
for help.

Meaning: Incorrect admin command syntax.

17504 HAC is already running.

ADMIN COMMANDs that may return this
status in the result set of the command:

v ADMIN COMMAND 'hac resume'

17506 HSB state does not allow for switchover.

ADMIN COMMANDs that may return this
status in the result set of the command:

v ADMIN COMMAND 'hac switchdb'

17507 Cannot execute command.

ADMIN COMMANDs that may return this
status in the result set of the command:

v ADMIN COMMAND 'hac shutdowndb'

Appendix B. Error codes 127

Table 28. High Availability Controller errors and status codes (continued)

Error or status code Description

17509 Restarting database server failed, see
solmsg.out for details.

ADMIN COMMANDs that may return this
status in the result set of the command:

v ADMIN COMMAND 'hac restartdb'

17510 Cannot connect to database server.

ADMIN COMMANDs that may return this
status in the result set of the command:

v ADMIN COMMAND 'hac switchdb'

17511 Database server was not shut down.

ADMIN COMMANDs that may return this
status in the result set of the command:

v ADMIN COMMAND 'hac restartdb'

17513 Switchover failed.

ADMIN COMMANDs that may return this
status in the result set of the command:

v ADMIN COMMAND 'hac switchdb'

17514 ERE IP is not specified in the configuration
file.

ADMIN COMMANDs that may return this
status in the result set of the command:

v ADMIN COMMAND 'hac getereip'

v ADMIN COMMAND 'hac pingere'

17516 HAC is already active.

ADMIN COMMANDs that may return this
status in the result set of the command:

v ADMIN COMMAND 'hac setactive'

v ADMIN COMMAND 'hac pingere'

17517 HAC is already passive.

ADMIN COMMANDs that may return this
status in the result set of the command:

v ADMIN COMMAND 'hac setpassive'

solidDB database Errors
solidDB database errors (10002 - 10050) are detected by solidDB and are sent to the
client application. They may demand administrative actions.

Table 29. solidDB database errors

Error code Description

Database Error 10002 Operation failed.

Meaning: The connect operation failed with
an unexpected error. Most likely, the servers
are not properly synchronized.

128 IBM solidDB: High Availability User Guide

Table 29. solidDB database errors (continued)

Error code Description

Database Error 10013 Transaction is read-only.

Meaning: You have tried to write inside a
transaction that is set read-only, or the
server is temporarily set to read-only mode,
for example during the state switch.
Updatable transactions are not allowed.

Database Error 10019 Backup is already active.

Meaning: You have tried to start a backup or
copy when one is already in progress.

Database Error 10024 Illegal backup directory "directory_name".

Meaning: The backup or copy directory is
either an empty string or a dot indicating
that the backup or copy will be created in
the current directory.

Database Error 10030 Backup or copy directory 'directory_name'
does not exist.

Meaning: Backup or copy directory is not
found. Check the name of the backup or
copy directory.

Database Error 10045 This operation cannot be executed on a
HotStandby Secondary server.

Meaning: This operation cannot be executed
on a HotStandby Secondary server.

In order for the requested operation to
succeed, the server must be a Primary.

Database Error 10046 Operation failed, data dictionary operation is
active.

Meaning: A data dictionary operation is
currently in progress.

Database Error 10047 Replicated transaction is aborted.

Meaning: Transactions are aborted, for
example, in a state switch. When the server
state is switched from Primary to Secondary,
all active transactions are aborted.

Database Error 10048 Replicated transaction contains data
dictionary changes, normal update
operations are not allowed.

Meaning: HotStandby mode restricts data
dictionary operations; for example, CREATE
TABLE cannot be mixed with normal update
operations.

This message is obsolete in version 4.1 and
later, which allow you to mix DML and
DDL operations within a transaction while
using HSB.

Appendix B. Error codes 129

Table 29. solidDB database errors (continued)

Error code Description

Database Error 10049 The remote server is not a secondary server.

Meaning: The server that you specified in
the command is not in a SECONDARY state.

Database Error 10050 Replicated operation updated BLOB
columns.

Meaning: BLOB columns cannot be
replicated to the Secondary server.

Database error 10078 User rolled back the transaction.

Database error 10079 Cannot remove filespec. File is already in
use.

Database error 10080 HotStandby Secondary server can not
execute operation received from Primary
server.

Meaning: A possible cause for this error is
that the database did not originate from the
Primary server using HotStandby copy or
netcopy command.

Database error 10081 The database file is incomplete or corrupt.

Meaning: If the file is on a hot standby
secondary server, use the hotstandby copy
or hotstandby netcopy command to send the
file from the primary server again.

Database error 10082 Backup aborted.

Database error 10083 Failed to abort HSB transaction because
commit is already sent to secondary.

Database error 10084 Table is not locked.

Database error 10085 Checkpointing is disabled.

Database error 10087 HotStandby not allowed for main memory
tables.

Database error 10088 Specified lock timeout is too large.

Database error 10089 Operation failed, server is in HSB primary
uncertain mode.

solidDB table errors
solidDB database table errors (13xxx) are caused by erroneous SQL statements and
are detected by solidDB. Administrative actions are not needed.

Table 30. solidDB table errors

Error code Description

Table Error 13068 Server shutdown in progress

Meaning: You are unable to complete this operation because server shutdown is in
progress.

130 IBM solidDB: High Availability User Guide

Table 30. solidDB table errors (continued)

Error code Description

Table Error 13123 Table 'table_name' is not empty

Meaning: This operation can only be executed when a table is empty. For example,
you can only change a table from disk-based to in-memory (or vice-versa) when
the table is empty.

Table Error 13167 Only M-tables can be transient

Meaning: You cannot create a transient table that is disk-based. For example, the
following SQL statement will get this error message:

CREATE TRANSIENT TABLE t1 (i INT) STORE DISK;

Table Error 13170 Only M-tables can be temporary

Meaning: You cannot create a temporary table that is disk-based. For example, the
following SQL statement will get this error message:

CREATE TEMPORARY TABLE t1 (i INT) STORE DISK;

solidDB communication errors
solidDB communication errors (21306, 21308) are caused by network errors. These
errors demand administrative actions.

Table 31. solidDB communication errors

Error code Description

Communication Error 21306 Server "server_name" not found, connection
failed.

Meaning: The Secondary server was not
found.

v Check that the server is running.

v Check that the network name is valid.

v Check that the server is listening to the
specified network name.

Communication Error 21308 "Connection is broken (%s '%s' operation
failed with code %d)".

For example,

"Connection is broken (TCP/IP ’Write’
operation failed with code 7)."

See the recommended actions for error
21306.

Appendix B. Error codes 131

132 IBM solidDB: High Availability User Guide

Appendix C. Summary of HotStandby administrative
commands

This section summarizes the administrative commands available with HotStandby.

The tool you are using (for example solidDB SQL Editor (solsql) or solidDB
Remote Control (solcon)) affects how you must enter the command.

Using solidDB SQL Editor (teletype), you enter the command using the syntax
shown below:
ADMIN COMMAND ’hotstandby switch primary’;

If you are entering these commands in solidDB Remote Control (teletype), be sure
to specify the command only (without quotes and without "ADMIN
COMMAND"); for example:
hotstandby switch primary

Note also that you may abbreviate 'hotstandby' to 'hsb', for example:
hsb switch primary

In the tables below, the shortest possible form is used; the "ADMIN COMMAND"
and the quotes are omitted, and the abbreviations 'hsb' and 'hac' are used.

For more information about solidDB Remote Control (teletype) or solidDB SQL
Editor, refer to "Using solidDB Data Management Tools" in solidDB Administration
Guide.

Note that an ADMIN COMMAND always return a success return code (0) if there
is no syntax error in the command. The actual result code of the command is
included in the "RC" field of the result set.

HotStandby commands

Command Explanation

hsb cominfo Returns the communication information (connect string) used to connect to
the other server. This is usually the value of the Connect parameter in the
HotStandby section of the solid.ini configuration file, but might also have
been set with the command:

ADMIN COMMAND ’hsb parameter connect connect_string’;

You can use this information in an application to connect to other servers.

133

Command Explanation

hsb connect If the connection between the Primary and Secondary servers is broken or
has not yet been established, this command connects the Primary server to
the Secondary server and starts HotStandby replication. This command is
always needed to connect the servers since there is no automatic mechanism
for connecting between servers. After a successful connect, the state of the
Primary server is automatically set from PRIMARY ALONE to PRIMARY
ACTIVE. If unsuccessful, the state remains PRIMARY ALONE.

This command can be executed on either the Primary or the Secondary.

Note: When you execute this command, if the Primary server and Secondary
server are connected, but the transaction log is not yet fully copied to the
Secondary, the following message is displayed: Catchup is active

hsb copy [directory_name] Note: This command is deprecated. It is recommended that you use the hsb
netcopy command instead.

You can use the hsb copy command to initially create the Secondary
database from the Primary. This command copies the database into a
directory that is local to the Primary node (and also local to the Secondary
node). After the copy is completed, you may start the Secondary server. After
you connect the Primary to the Secondary, the Primary automatically brings
the Secondary server up-to-date by copying the transaction log to the
Secondary server.

You can also use this command to synchronize the Primary database with a
Secondary database (when it has been off line for a considerable period of
time) that is in a directory local to the Primary node. Read “Synchronizing
primary and secondary servers” on page 78.

If the optional directory_name is specified, the database files are copied to that
directory; otherwise it is copied to the directory specified with the
copydirectory parameter in the [Hotstandby] section of the solid.ini
configuration file. Because the hsb copy command does not copy the
solid.ini configuration file or log files, it is recommended that you make
this directory different from the normal backup directory.

The Primary can execute the hsb copy command only if the Primary is in
PRIMARY ALONE state. During and after the command, the server remains
in PRIMARY ALONE state. After the command has been completed, you
may start the Secondary server and then connect the two servers.

hsb disconnect This tells the server to gracefully disconnect from the other member of the
HSB pair. This command is valid on either the Primary or the Secondary
server. A typical reason to use this command is to disconnect the servers
before upgrading one of them. (The other server can be set to PRIMARY
ALONE state so that it can continue responding to client requests.)

This command normally causes both servers to go into an "Alone" mode;
that is, the Primary server switches from PRIMARY ACTIVE to PRIMARY
ALONE, while the Secondary server switches from SECONDARY ACTIVE to
SECONDARY ALONE.

This command is valid on both the Primary and the Secondary.

Note that using the shutdown command

ADMIN COMMAND ’shutdown’;

causes the server to do a controlled disconnect before it shuts down. If the
Secondary is shut down (and disconnects), then the Primary knows that it is
safe to go to PRIMARY ALONE state, and will do so.

134 IBM solidDB: High Availability User Guide

Command Explanation

hsb logpos These two commands can be used by a Watchdog program (or a person) to
determine which of two servers should be switched to Primary and which
should be switched to Secondary. (The server that was the Primary before
the servers lost contact with each other is not necessarily the server that
should become the Primary now.) This approach detects which of the servers
is "ahead" (that is, which has accepted more transactions) and thus should be
made the Primary before establishing the HSB connection.

For a detailed explanation of how to use this command, see “Choosing
which server to make primary” on page 92.

A typical output is shown below:

ADMIN COMMAND ’hsb logpos’;
RC TEXT
-- ----
0 000000000000000000871:PRIMARY

The output consists of the log operation ID and the server's previous role,
which in this example was Primary.

hsb netcopy This command is used to copy the Primary database or diskless in-memory
data to a Secondary server using the Connect parameter specified in the
[HotStandby] section of solid.ini. Once the connect string is used to
connect to the Secondary server, the database files are copied through the
network link.

You can use this command to synchronize a Primary database with a
Secondary database that has been off line for a long time. Read
“Synchronizing primary and secondary servers” on page 78.

You can also use this command to create a new Secondary database. Reasons
for this may be a corrupt Secondary database, creation of the initial
Secondary database for a new HotStandby configuration, or the addition of a
new Secondary to an existing configuration. Read “Copying a primary
database to a secondary over the network” on page 82 for details.

The Primary server must be in PRIMARY ALONE state to issue this
command.

After the command has completed (successfully or unsuccessfully), the
Primary server remains in the same state.

If the copy is completed successfully, then the Secondary server is
automatically switched to SECONDARY ALONE state.

The netcopy command is usually followed by the "connect" command to
connect the Primary and Secondary servers. After the Primary server is
connected to the Secondary, the Primary automatically brings the Secondary
up-to-date by copying the transaction log.

Appendix C. Summary of HotStandby administrative commands 135

Command Explanation

hsb parameter (Deprecated) This command allows you to set HSB-specific parameters such
as AutoPrimaryAlone, Connect, and PingTimeout. For a complete
description of each of these parameters, see Appendix A, “HotStandby
configuration parameters,” on page 107.

Note that when you set the value of one of some parameters, the command
takes effect immediately, but is not written to the solid.ini configuration file
before a shutdown is executed.

The syntax for this command is:

ADMIN COMMAND ’hsb parameter
param_name param_value’;

Note that this command does not use an equals sign. Thus it differs from the
otherwise similar command (recommended):

ADMIN COMMAND ’parameter
hotstandby.param_name = param_value’;

hsb role Note: This command is deprecated. Use hsb state instead.

Returns one of the following roles in the result set:

v PRIMARY, if the connected server is a normal Primary server. In this role,
the transactions at the Primary server are sent to the Secondary server.

v PRIMARY NOHSBLOG, indicating that the Primary server accepts
transactions and stores them in the database. However, it does not store
the transactions in a log so that it could later send them to the Secondary.
To resynchronize the Secondary with the Primary, the entire database at
the Primary must be copied to the Secondary server.

v PRIMARY BROKEN, if the Primary server has a broken connection to the
Secondary server. Only read-only transactions can be executed in the
Primary server.

v PRIMARY ALONE, if the Primary server is working by itself. The
connection to the Secondary is broken, but transactions are accepted and
added to the transaction log at the Primary so that later they can be sent
to the Secondary.

v PRIMARY CATCHUP, if the catchup is in progress. During catchup, the
Primary automatically sends the transaction log changes to the Secondary
server after the 'hsb connect' command has been issued at the Primary.
After the catchup process is completed, the role of the server is switched
automatically to PRIMARY. The Primary can continue to accept
transactions if its role was PRIMARY ALONE before the connect.

v SECONDARY, if the connected server is a normal Secondary server. This
means the server receives and applies transactions from the Primary.

v SECONDARY BROKEN, if the Secondary server has a broken connection
to the Primary server.

v SECONDARY CATCHUP, if the Secondary server is catching up with the
changes from the Primary server after the 'hsb connect' command was
issued at the Primary server. After the catchup process is completed, the
role of the Secondary is switched automatically to SECONDARY.

If ADMIN COMMAND 'hsb role' is issued on a server that is not configured
for HotStandby, the following error message is returned: 14527: This is a
non-HotStandby Server.

This command returns the same information as the SQL function:
HOTSTANDBY_ROLE.

136 IBM solidDB: High Availability User Guide

Command Explanation

hsb set primary alone Sets a HotStandby Primary server unconditionally to the PRIMARY ALONE
state. The command is legal in the following states: PRIMARY ACTIVE,
SECONDARY ACTIVE, SECONDARY ALONE and STANDALONE.

This command can be used to implement fast failovers. When the Secondary
is in the SECONDARY ACTIVE state, the server will not make any attempt
to communicate with the Primary, having received this command. Instead, it
will immediately switch to the PRIMARY ALONE state. This behavior may
be utilized in cases when the information about the Primary failure reaches
HAC before the Secondary has detected the failure (the delay is dictated by
the PingTimeout and PingInterval parameters).

However, if it happens (for example, because of incorrect failure detection)
that the Primary is "alive" and in the PRIMARY ACTIVE state when this
command is executed in the Secondary, the Primary will be automatically
forced to PRIMARY UNCERTAIN state. It can be then moved to the
SECONDARY ALONE state and reconnected without any loss of
transactions.
Note: The alternative way of executing failovers is to use the hsb switch
primary command.

In the PRIMARY ALONE state, the connection to the Secondary server is
broken, but this state allows the Primary server to run with continuous
updates to the transaction log. The PRIMARY ALONE state persists until the
Primary server is shut down, a connection is successfully made to the
Secondary server, or the server runs out of space for the transaction log.

Note that when you set a server to PRIMARY ALONE state, it does not
automatically make any attempt to reestablish connections with the other
server.

Important: Before executing this command on a server, try to make sure that
the other server in the pair is not already in PRIMARY ALONE state (or
STANDALONE state). It is very important to avoid "dual primaries" (see
“Network partitions and dual primaries” on page 33).

See also the command 'hsb switch primary'.

hsb set secondary alone This command sets the server state to SECONDARY ALONE. This command
is available if the server is currently in one of the following states: PRIMARY
ALONE, PRIMARY UNCERTAIN, STANDALONE.

hsb set standalone When this command is issued, the state of the Primary server becomes
STANDALONE. The server stops storing transactions for the Secondary
server. The Primary (STANDALONE) can continue accepting read/write
transactions. This option is useful in the Primary server when the Secondary
server is offline for a significant period of time and the transaction log may
grow too large. This command is available if the server is currently in one of
the following states: PRIMARY ALONE or SECONDARY ALONE.

Appendix C. Summary of HotStandby administrative commands 137

Command Explanation

hsb state Returns one of the following states in the result set:

v PRIMARY ACTIVE, if the connected server is a normal Primary server. In
this state, transactions on the Primary server are sent to the Secondary
server.

v STANDALONE, indicating that the Primary server accepts transactions
and stores them in the database, but it does not store the transactions to
forward them to the Secondary.

v PRIMARY UNCERTAIN, if the Primary server has a broken connection to
the Secondary server and has not yet been switched to another state, such
as PRIMARY ALONE. Only read-only transactions can be executed in the
Primary server.

v PRIMARY ALONE, if the Primary server is working by itself. The
connection to the Secondary is broken, but transactions are accepted and
stored in the Primary's transaction log so that they can be forwarded to
the Secondary.

v SECONDARY ACTIVE, if the connected server is a normal Secondary
server. This means the server receives and applies transactions from the
Primary.

v SECONDARY ALONE, if the Secondary server has a broken connection to
the Primary server.

If ADMIN COMMAND 'hsb state' is issued on a server that is not configured
for HotStandby, the following error message is returned: 14527: This is a
non-HotStandby Server.

This command returns the same information as the SQL function:
HOTSTANDBY_STATE. Read section Using Function HOTSTANDBY_STATE
in “Switching the application to the new primary” on page 67 for details on
this function.

Refer to Appendix D, “Server state transitions,” on page 141 for an overview
of HotStandby state transitions that occur while performing administrative
and troubleshooting operations.

hsb status option Returns HotStandby status information. The option may be any of the
following:

v catchup

v connect

v copy

v switch

For more details, see the descriptions of the individual commands/options
below, for example, 'hsb status catchup'.

The intention of the status command is give the information about the
outcome of operations that take a prolonged time, after they have started
successfully. The command will return status of the last successfully started
operation. If the starting of operation fails (for example, because of incorrect
state) the status command will not return the status of that operation but the
one executed previously.

hsb status catchup Indicates whether or not the server is doing catchup, that is, when the
Secondary reads the Primary's transaction log and applies the changes.

Possible values are:

v ACTIVE

v NOT ACTIVE

138 IBM solidDB: High Availability User Guide

Command Explanation

hsb status connect Status information returned:

v CONNECTED - Connect active. This information is returned from both the
Primary and Secondary servers.

v CONNECTING - The Primary server and Secondary server are connecting
to each other. This information is returned from both the Primary and
Secondary servers.

v CATCHUP - The Primary server is connected to the Secondary server, but
the Primary HotStandby database log is not fully copied to the Secondary
server. This information is returned from both the Primary and Secondary
servers.

v BROKEN - Connection between the Primary and Secondary server is
broken. This information is returned from both the Primary and Secondary
servers.

Note: This command returns the same information as the SQL function
HOTSTANDBY_CONNECTSTATUS. Read section Using Function
HOTSTANDBY_CONNECTSTATUS in “Switching the application to the new
primary” on page 67 for details on this function.

hsb status copy This command allows you to check the result of the last hsb copy or hsb
netcopy command. Note that this status command always uses the keyword
"copy", even if you are checking the result of a netcopy rather than a copy.

Status information returned:

v SUCCESS - Copy completed successfully.

v ACTIVE - Copy process is still active.

v ERROR number - Copy failed with error code number.

hsb status switch Returns HotStandby switch status information. Status information returned:

v ACTIVE - Copy process is still active.

v SUCCESS - Copy completed successfully.

v ERROR number - Copy failed with error code number.

v NO SERVER SWITCH OCCURRED BEFORE - No switch has happened
before.

hsb switch primary Switches the database server to PRIMARY. The command starts a switch
process, which can be monitored using command hsb status switch.

If the servers are connected at the time that you execute this command, then
the servers simply reverse states — that is, the old Primary changes from
PRIMARY ACTIVE to SECONDARY ACTIVE, and the Secondary server
switches from SECONDARY ACTIVE to PRIMARY ACTIVE.

If the servers are not connected and the server is in SECONDARY ALONE
state, then when you switch the server to Primary it will end up in
PRIMARY ALONE state. The new Primary server will not automatically try
to connect to the other server and switch to PRIMARY ACTIVE state.

Because the command is available both in the SECONDARY ACTIVE and
SECONDARY ALONE states, it can be used to perform failovers. However,
because the server will always make attempt to communicate with the
Primary, the network timeout may be involved. Thus, this method is slower
than using the 'hsb set primary alone' command. On the other hand, this
method secures better against a possibility of "dual primaries".

See also the command 'hsb set primary alone'.

Appendix C. Summary of HotStandby administrative commands 139

Command Explanation

hsb switch secondary Switches the database to Secondary state. All active write transactions are
terminated.
Note: If the connected database server is a Primary server, it becomes a
Secondary server. If the old Secondary server is available, then the old
Secondary server is switched to Primary (see the hsb switch primary
command).
Note: If the switch command is issued inside an open transaction (Microsoft
Windows after the transaction has started and before you execute the
COMMIT statement), then when you issue the COMMIT statement, the
COMMIT fails with an error: 'replicated transaction is aborted'. All
transactions are rolled back during the switch, including the transaction in
which the switch statement is executed. The switch itself is successful (i.e. is
not rolled back) because ADMIN COMMANDs are not transactional
commands. (NOTE: Administrative commands do force the start of a new
transaction if one is not already open, however.)

High Availability Controller commands
Table 32. High Availability Controller commands

Command Explanation

hac shutdown

Abbreviation: hac sd
This command terminates the HAC process.

140 IBM solidDB: High Availability User Guide

Appendix D. Server state transitions

This chapter describes the possible state transitions (for example, the transition
from OFFLINE to SECONDARY ALONE).

A description of each of the server states is in “Description of server states” on
page 12.

HotStandby state transition diagram
The diagram in this section shows the state transitions that can occur, and the
circumstances under which they may occur.

For example, you can change the state of a server from PRIMARY UNCERTAIN to
PRIMARY ALONE by executing the command 'hsb set primary alone':
ADMIN COMMAND ’hsb Set Primary Alone’;

As you use this diagram, please remember the following:
1. The complete syntax of the commands is not shown. For example, it shows:

’hsb set primary alone’

rather than
ADMIN COMMAND ’hsb Set Primary Alone’;

2. The state transition paths shown for 'hsb copy' also apply to 'hsb netcopy'.
3. Some commands may fail when they are executed. When a command might

succeed or fail, both possibilities are shown. If the branch is intended to
describe what happens if the command fails, it will have the word 'failed':
'Disconnect' failed.

4. In some situations, the behavior depends upon the setting of the solid.ini
configuration parameter named AutoPrimaryAlone. The abbreviation "APA" is
often used to represent this parameter.

5. When the diagram refers to "events", it refers to internally-generated
notifications. These are not the same as the "events" that users can post and
wait on, as described in the SQL commands for CREATE EVENT, for example.

6. Near the top left of the diagram, you will see the text "Start with ’-x
backupserver’". If you want to start a new Secondary server and you want it
to get a copy of the database from the Primary via the "netcopy" command,
then you start the server (from the operating system command line) with the
command-line option -x backupserver. This tells the server to wait for a
netcopy from the Primary. Note that while the server is waiting to receive the
netcopy, the server will not respond to queries about its state (or role). For
example, if you issue the command:
ADMIN COMMAND ’hsb state’;

the server will not respond and therefore you won't actually see it return the
state "OFFLINE".

7. "rpc" stands for "Remote Procedure Call". "rpc broken" means that the Primary
and Secondary lost connection with each other without doing an explicit
Disconnect. The connection may be lost if the network fails, or if one server
crashes, for example.

141

8. When an arrow loops back to the same state that it started from, it means that
the state does not change. For example, if a server is in the state PRIMARY
ALONE, and if it tries to connect to the other server but fails, then the state
remains PRIMARY ALONE.

142 IBM solidDB: High Availability User Guide

The following table shows server states and the ways in which a HotStandby
command can change the server state.

SECONDARY
ALONE

'hsb connect'

failed
by Primary

'hsb connect'
failed

START

OFFLINE
EVENT: copy ready

Start with "-x backupserver"

'hsb connect' OK

EVENT: Connect by Primary OK

'hsb set primary alone' failed

EVENT: rpc broken

'hsb switch primary' failed

'hsb disconnect'

EVENT: disconnect by Primary

EVENT: Primary executes
'hsb set Primary Alone'

'h
sb

 s
et

se
co

nd
ar

y
al

on
e'

'h
sb

 s
et

 s
ta

nd
al

on
e'

STANDALONE

'h
sb

 s
et

st
an

da
lo

ne
'

'h
sb

 s
et

pr
im

ar
y

al
on

e'

PRIMARY
ALONE

'h
sb

 s
et

 s
ec

on
da

ry
 a

lo
ne

',
'h

sb
 s

w
itc

h
se

co
nd

ar
y'

'h
sb

 s
et

 p
rim

ar
y

al
on

e'
,

'h
sb

 s
w

itc
h

pr
im

ar
y'

'hsb switch primary' rpc broken

'hsb switch primary alone' OK

'hsb set
secondary

alone'

PRIMARY
ACTIVE

'hsb connect'
failed

'hsb set
primary
alone'

PRIMARY
UNCERTAIN

'hsb connect' OK

EVENT: rpc broken
(APA=No)

'h
sb

 s
w

itc
h

se
co

nd
ar

y'
 O

K

'h
sb

 s
w

itc
h

pr
im

ar
y'

 O
K

'h
sb

 s
w

itc
h

se
co

nd
ar

y'
 fa

ile
d

'hsb connect' OK

EVENT: Connect by Secondary OK

EVENT: rpc broken (APA=Yes)

'hsb set primary alone'

'hsb disconnect'

EVENT Secondary: disconnect by

EVENT shutdown by Secondary:

'hsb connect'

failed
by Secondary

'hsb connect'
failed

'hsb copy'

SECONDARY
ACTIVE

Figure 15. HotStandby server state transitions

Appendix D. Server state transitions 143

Table 33. Server state transition table

Server state

If this condition
occurs, or if this
HSB command is
issued...

Then server state
becomes...

If command is
unsuccessful, then
the state is...

OFFLINE If the Primary server
executes ADMIN
COMMAND
'hotstandby netcopy'
then the Secondary's
state will change to
SECONDARY
ALONE after the
database has been
copied.

SECONDARY
ALONE

Unchanged

PRIMARY ACTIVE
HotStandby timeout
(automatic) when
AutoPrimaryAlone =
Yes.

NOTE: The HSB
timeout occurs
automatically when
the Secondary server
is down or a
connection between
the Primary and
Secondary is broken.

PRIMARY ALONE (Not applicable)

PRIMARY ACTIVE
HotStandby timeout
(automatic) when
AutoPrimaryAlone =
No.

NOTE: The HSB
timeout occurs
automatically when
the Secondary server
is down or a
connection between
the Primary and
Secondary is broken.

PRIMARY
UNCERTAIN

(Not applicable)

PRIMARY ACTIVE
ADMIN COMMAND
'hotstandby set
standalone' at the
Primary

STANDALONE Unchanged

PRIMARY ACTIVE
ADMIN COMMAND
'hotstandby switch
secondary' at the
Primary or ADMIN
COMMAND
'hotstandby switch
primary' at the
Secondary.

SECONDARY
ACTIVE

SECONDARY
ALONE

PRIMARY ACTIVE
ADMIN COMMAND
'hotstandby
disconnect' at the
Primary.

PRIMARY ALONE PRIMARY ALONE

144 IBM solidDB: High Availability User Guide

Table 33. Server state transition table (continued)

Server state

If this condition
occurs, or if this
HSB command is
issued...

Then server state
becomes...

If command is
unsuccessful, then
the state is...

PRIMARY ALONE
ADMIN COMMAND
'hotstandby copy' or
ADMIN COMMAND
'hotstandby netcopy'
at the Primary.

Note that the state of
the Primary server
does not change. The
server stays in
PRIMARY ALONE
state. To change the
state to PRIMARY
ACTIVE, you must
issue the "connect"
command: ADMIN
COMMAND
'hotstandby connect';

NOTE: If you are
using a diskless
server without file
access to the
Secondary server,
you must use
netcopy, not copy.

PRIMARY ALONE PRIMARY ALONE

PRIMARY ALONE
ADMIN COMMAND
'hotstandby connect'
at the Primary

NOTE: The above
command is used to
connect to the
Secondary server,
which is now fixed,
or a server other than
the failed Secondary.

PRIMARY ACTIVE
(after the catchup is
completed)

Unchanged

PRIMARY ALONE
ADMIN COMMAND
'hotstandby set
standalone' at the
Primary or the
transaction log is full.

STANDALONE Unchanged

PRIMARY ALONE
ADMIN COMMAND
'hotstandby set
secondary alone' or
ADMIN COMMAND
'hotstandby switch
secondary' at the
Primary.

SECONDARY
ALONE

SECONDARY
ALONE

PRIMARY
UNCERTAIN

ADMIN COMMAND
'hotstandby set
primary alone' at the
Primary server

PRIMARY ALONE Unchanged

Appendix D. Server state transitions 145

Table 33. Server state transition table (continued)

Server state

If this condition
occurs, or if this
HSB command is
issued...

Then server state
becomes...

If command is
unsuccessful, then
the state is...

PRIMARY
UNCERTAIN

ADMIN COMMAND
'hotstandby connect'
at the Primary.
Note:

The above command
is used to connect to
the Secondary server
(which is now fixed)
or to connect to a
server other than the
failed Secondary.

PRIMARY ACTIVE Unchanged

PRIMARY
UNCERTAIN (HSB
timeout has occurred
for connecting to the
Secondary)

ADMIN COMMAND
'hotstandby set
standalone' at the
Primary

STANDALONE Unchanged

PRIMARY
UNCERTAIN

ADMIN COMMAND
'hotstandby set
secondary alone' or
ADMIN COMMAND
'hotstandby switch
secondary' at the
Primary.

SECONDARY
ALONE

Unchanged

SECONDARY
ACTIVE

HotStandby timeout
(automatic)
Note: The HSB
timeout occurs
automatically when
the Secondary server
is down or a
connection between
the Primary and
Secondary is broken.

SECONDARY
ALONE

(not applicable)

SECONDARY
ACTIVE

ADMIN COMMAND
'hotstandby switch
secondary' at the
Primary or ADMIN
COMMAND
'hotstandby switch
primary' at the
Secondary.

PRIMARY ACTIVE Unchanged

SECONDARY
ACTIVE

ADMIN COMMAND
'hotstandby set
primary alone' at the
Secondary.

PRIMARY ALONE Unchanged

SECONDARY
ACTIVE

ADMIN COMMAND
'hotstandby
disconnect' at the
Secondary or
Primary.

SECONDARY
ALONE

SECONDARY
ALONE

146 IBM solidDB: High Availability User Guide

Table 33. Server state transition table (continued)

Server state

If this condition
occurs, or if this
HSB command is
issued...

Then server state
becomes...

If command is
unsuccessful, then
the state is...

SECONDARY
ALONE

ADMIN COMMAND
'hotstandby connect'
at the Secondary or
Primary

SECONDARY
ACTIVE

Unchanged

SECONDARY
ALONE

ADMIN COMMAND
'hotstandby set
standalone' at the
Secondary.

STANDALONE Unchanged

SECONDARY
ALONE

ADMIN COMMAND
'hotstandby set
primary alone' or
ADMIN COMMAND
'hotstandby switch
primary' at the
Secondary

PRIMARY ALONE Unchanged

Appendix D. Server state transitions 147

148 IBM solidDB: High Availability User Guide

Appendix E. HotStandby system events

This appendix covers only HSB-specific events. For a discussion of other types of
events, see other manuals, such as IBM solidDB SQL Guide.

Each HotStandby operation generates an event. To monitor these events you can
use an application, such as a watchdog application.

Events are objects with a name that signal that a specific action occurred in the
server. Special statements in stored procedures are required to receive events.
HotStandby events are no different from other events created and supported
bysolidDB. They are sent to those users who are registered to receive the event in a
stored procedure. For details on posting, registering, and waiting for events, read
"Stored Procedures, Events, Triggers, and Sequences", in IBM solidDB SQL Guide,
and solidDB SQL Syntax, also in IBM solidDB SQL Guide.

The following table lists the events that are currently available for HotStandby.
Note that most events include five parameters, but not all of those parameters are
necessarily used.

Table 34. HotStandby events

HSB Event Event parameters Cause of event

SYS_EVENT_HSBCONNECTSTATUS
ENAME WVARCHAR,
POSTSRVTIME TIMESTAMP, UID
INTEGER, NUMDATAINFO
INTEGER, TEXTDATA WVARCHAR

For TEXTDATA, the possible valid
values are:

TEXTDATA = {
CONNECTED |
CONNECTING |
CATCHUP |
BROKEN}

Change in connect status between the
Primary and Secondary server

SYS_EVENT_HSBSTATESWITCH ENAME WVARCHAR,
POSTSRVTIME TIMESTAMP, UID
INTEGER, NUMDATAINFO
INTEGER, TEXTDATA WVARCHAR

For TEXTDATA, the possible valid
values are:

TEXTDATA = {
PRIMARY ACTIVE |
PRIMARY ALONE |
PRIMARY UNCERTAIN |
SECONDARY ACTIVE |
SECONDARY ALONE |
STANDALONE
}

Each state switch sends a state switch
event.

149

Table 34. HotStandby events (continued)

HSB Event Event parameters Cause of event

SYS_EVENT_NETCOPYEND ENAME WVARCHAR,
POSTSRVTIME TIMESTAMP, UID
INTEGER, NUMDATAINFO
INTEGER, TEXTDATA WVARCHAR

None of the parameters are used.

HotStandby NETCOPY operation
ended.

This event can be caught by the user
only if the user is using linked library
access.

SYS_EVENT_NETCOPYREQ ENAME WVARCHAR,
POSTSRVTIME TIMESTAMP, UID
INTEGER, NUMDATAINFO
INTEGER, TEXTDATA WVARCHAR

None of the parameters are used.

A HotStandby NETCOPY was
requested.

If the user application's callback
function returns non-zero, then
netcopy is not performed.

This event can be caught by the user
only if the user is using linked library
access.

150 IBM solidDB: High Availability User Guide

Appendix F. Watchdog sample

This section discusses the Watchdog sample application available in the samples
included in your solidDB installation.

A watchdog is a separate program for monitoring and controlling Primary and
Secondary servers. The watchdog monitors both hot standby servers and switches
their states when necessary. This alleviates the need for a database administrator to
monitor the servers.

solidDB provides a sample watchdog that you can use as a basis for building a
custom watchdog that meets your needs. This sample application is called the
Watchdog. Pay attention to the following features of the Watchdog sample before
you start programming.
v The Watchdog is meant to be used as an example of a watchdog
v The Watchdog uses polling to keep itself up-to-date with server states
v The Watchdog is a one-thread program
v The Watchdog uses the HSB API through ODBC. This API implementation can

be used as a model for your own watchdog application.
v The Watchdog has no user interface.

If you are using the Watchdog, you need to configure a [WatchDog] section in the
solidDB configuration file (solid.ini), which resides in the current working
directory of the Watchdog. If the Watchdog is running in the same directory as the
Primary or Secondary server, then you will have only one solid.ini file, which
will be shared by the server and the Watchdog. If the Watchdog is running in a
separate directory, then the Watchdog will have its own solid.ini file.

Furthermore, this appendix contains explanations of solid.ini configuration
parameters that are specific to the Watchdog. These parameters are set in the
[WatchDog] section of the solid.ini configuration file. If you write your own
watchdog program, you do not need to use any of these parameters.

For a discussion of other solid.ini parameters, see IBM solidDB Administrator
Guide.

HotStandby configuration using Watchdog
A HotStandby configuration allows for a Primary server, Secondary server, and the
Watchdog to reside in different machines and use different operating systems and
APIs as shown in the example in “System design issues” on page 153. For details
on implementing heterogeneous configurations, read “System design issues” on
page 153.

All communication between the Primary and Secondary database (including
putting a failed system back in service and re-synchronizing Primary and
Secondary databases) occurs within existing communication layers, such as
TCP/IP. HotStandby requires no auxiliary storage or transfer methods, such as
shared disks or ftp transfers.

151

Important: If you are running the Watchdog on the same machine where the
Secondary server resides, be sure to set the parameter AutoPrimaryAlone to no. In
this situation, setting AutoPrimaryAlone to no is crucial because it prevents the
potential error of having two primary servers. Primary may be in the PRIMARY
ALONE state, and the Watchdog at server failure could switch Secondary to a
PRIMARY ALONE state. This same error can also occur if a user happens to set
the old Secondary server to become the new Primary. For more information about
dual primaries, see “Network partitions and dual primaries” on page 33.

How the Watchdog application works
The Watchdog sample application notifies you when the Primary server is down.
In normal mode, the Watchdog checks the connection status of servers using the
hotstandby status connect command in both Primary and Secondary servers.

The Watchdog performs this check between servers at regular intervals. The
interval time is set with the PingInterval parameter in the Watchdog's solid.ini
configuration file.

The Watchdog reaches the conclusion that there is a problem in the HotStandby
system when it receives no response from the Primary or Secondary node or both
nodes after a given number of polling attempts. The number of attempts is set in
the NumRetry parameter in the Watchdog configuration file (the [Watchdog]
section in the solid.ini).

The Watchdog also observes whether the Primary server and the Secondary server
are connected to each other. If the Primary or Secondary server returns a successful
connect status to the Watchdog, this means the Primary and Secondary are still
connected. If it returns an error, on the other hand, then the Primary and
Secondary are no longer connected.

If the AutoSwitch parameter in the Watchdog configuration file is set to YES, then
the Watchdog is also responsible for automatically switching server states in the
event of a Primary failure. For example, when the Primary server is down, the
Watchdog switches the Secondary server to make it the new Primary and put it in
PRIMARY ALONE state. If the AutoSwitch parameter is set to NO, the Watchdog
does not change the server state itself, but instead writes a message to the
Watchdog log to notify the user to switch server states.

To continue monitoring, the Watchdog switches to failure mode, which means it
continuously keeps checking failed servers for a working connection.

Failure mode
When the Watchdog sample application knows that HotStandby Primary and
Secondary servers are connected, the Watchdog stays in normal mode. If one of the
servers fails, or if the communication link between these servers fails, the
Watchdog will take some course of action. If the action fails to connect the servers,
the Watchdog goes into failure mode.

After the Watchdog enters failure mode, the Watchdog waits for the system
administrator to fix the problem with the Primary and Secondary servers. If, in the
meantime, a second failure occurs, the Watchdog does not handle the failure. This
limitation in the Watchdog is deliberate. There are situations where a series of
failures and even seemingly appropriate responses can cause the error of having
two Primary servers (either in PRIMARY ALONE or STANDALONE states). This is
especially true if there are brief failures in the network, but no failures in the

152 IBM solidDB: High Availability User Guide

database servers themselves. An example that produces two Primary servers is
provided in “Coding the Watchdog for multiple failures.”

During failure mode, the Watchdog polls both the Primary and Secondary servers.
When it is able to connect to both servers, it sends the hotstandby state command
to both servers to see whether it can communicate with them and to see which
state each of them is in.

Once the Watchdog is able to communicate with both servers, it will decide what
to do next based on the solid.ini parameter DualSecAutoSwitch. If
DualSecAutoSwitch = Yes and both servers are secondary, then the Watchdog will
automatically select one of the two secondaries to be a new primary and switch it
to primary. If DualSecAutoSwitch = No then the system administrator must
switch one server to be the primary. Note that DualSecAutoSwitch applies
whether the Watchdog is in "normal" mode or "failure" mode.

Coding the Watchdog for multiple failures
There are two ways to handle multiple failures in the Watchdog. You can:
v After each failure (and automatic response by the Watchdog), require manual

(human) intervention to check the situation. Manual intervention may require
actions, such as restarting a server, or fixing a network problem. This is the
approach that the Watchdog uses because it reduces the risk of having two
Primary servers.

v Write a watchdog application that can handle multiple failures over time.
This method does run the risk of having two Primary servers, as shown in the
following example.

Dual primaries

In this example, Server1 is initially the Primary and Server2 is initially the
Secondary.
1. A network failure occurs and Server1 becomes inaccessible.
2. The Watchdog switches Server2 from SECONDARY to PRIMARY ALONE.
3. A second network failure occurs, and Server2 becomes inaccessible.
4. The first network failure is repaired, and Server1 becomes accessible again.
5. The Watchdog, seeing that Server1 is accessible and Server2 is not, switches

Server1 to PRIMARY ALONE.
6. The second network failure is fixed and Server2 becomes accessible again.
7. At this point, both Server1 and Server2 are in the PRIMARY ALONE state.

System design issues
How you configure HotStandby (locally or remotely, at one or more different
locations, over the Internet, and with the Watchdog program) can affect the
reliability and efficiency of your system. This section addresses these issues.

The illustration below shows one example of a heterogeneous system, in which the
Primary and Secondary servers do not even use the same type of hardware and
operating system.

Appendix F. Watchdog sample 153

Watchdog configuration
For better efficiency and more precision in monitoring the state of the servers, the
Watchdog is recommended as a separate component of any HotStandby
configuration.

If only two machines are available, making it impossible to run the Watchdog
program in a separate machine, run the Watchdog on the same machine where the
Secondary server resides and set the parameter AutoPrimaryAlone to no in the
configuration file (solid.ini) of both the Primary and Secondary server. Note that
setting this parameter to "no" is extremely important, as it prevents the potential
error of having two Primary servers.

CAUTION:
If both servers are in a state that allows writing (PRIMARY ALONE or
STANDALONE), and if the databases of both servers are independently
updated, then it will not be possible to resynchronize the two databases. Make
sure that the Watchdog does not allow both servers to be put in the PRIMARY
ALONE or STANDALONE state at the same time. See “Network partitions and
dual primaries” on page 33.

If the Primary server does fail, then the Watchdog is able to switch the Secondary
to become the new Primary.

Application 3

Watchdog
application

Application 2

Application 1

Secondary
server

Primary
server

ODBC API
(Read-only)

(Read-only)

TCP/IP

ODBC API

JDBC API

Windows PC

Linux PC

UNIX computer

Figure 16. Heterogeneous HotStandby configuration with Watchdog

154 IBM solidDB: High Availability User Guide

There are some disadvantages to putting the Watchdog in the same machine as the
Secondary. The disadvantages include:
v If only the communication link between the Watchdog and the Primary is down,

this configuration may result in a false switchover between the Primary and the
Secondary.

v The communication link becomes a "single point of failure", that is, a single
failure that may disable the entire system. (In most HotStandby configurations,
the entire system is not disabled unless there are at least two failures.)

v If there is a network failure and the Secondary machine cannot communicate
with the Primary machine, the users and applications are still able to access the
Primary server and theoretically could continue operating with the Primary
server. However, the Primary server stops accepting transactions because the
watchdog cannot notify the Primary server to continue operating, for example
by switching to PRIMARY ALONE state.

Using the sample Watchdog application
About this task

Initially, you should start the Watchdog after both servers are up and connected.

Procedure

To start the Watchdog, go to the current working directory of the Watchdog and at
the prompt, issue the command:
watchdog

If you have not specified the usernames and passwords for connect1 and connect2
servers (capable of serving as Primary and Secondary) in the solid.ini file, the
Watchdog prompts you for them.

Results

Once started, the Watchdog pings both servers to check which one is Primary. The
Watchdog remains in normal mode unless it detects a server failure after the
number of retry attempts is exceeded. If a failure occurs after the Watchdog sends
the last retry attempt to the server, then the Watchdog switches to failure mode.
Once both the Primary and Secondary servers are up and reconnected, the
Watchdog switches to normal mode.

Failure situations and Watchdog actions
This section describes how a typical watchdog program should work in specific
failure scenarios that are commonly encountered.

The scenarios are in the context of either a server failure or a broken
communication link between the Primary and Secondary server, or between one of
the servers and the watchdog.

Although these commands may be issued by either a human administrator or a
software program, for simplicity it is assumed that the commands are issued by
the Watchdog sample.

Appendix F. Watchdog sample 155

Primary is down
Scenario

All connections to the Primary server are broken.

Remedy

When the Primary is down, switch the Secondary to be the new Primary and set
the new Primary to the PRIMARY ALONE state. Later, the old Primary can
become a new Secondary.

156 IBM solidDB: High Availability User Guide

1. Watchdog instructs Server2:
HSB SET PRIMARY ALONE

3

Poll OK
Poll OK

Txn log

Connected

Watchdog

Server1
secondary
active

Server2
primary
active

Application(s)

Resolution

Poll OK
Poll fails

Broken

Txn log

Connected

Watchdog

Server1
(unavailable)

Server2
primary
alone

Application(s)

Failover/remedy

Poll OKPoll fails

Broken

Broken

Watchdog

Server2
secondary
alone

Server1
(unavailable)

Application(s)

Scenario

2

1

Figure 17. Primary is down scenario and remedy

Appendix F. Watchdog sample 157

Applications switch from Server1 to Server 2.
HSB SET STANDALONE

2. After server1 is fixed, server1 is brought back up as Secondary.
Watchdog instructs Server2: HSB COPY or NETCOPY HSB CONNECT

3. If the transaction log fills up, you may have to switch the PRIMARY ALONE
server to STANDALONE. In that case, you will also need to execute HSB
COPY or HSB NETCOPY before you re-connect the servers. If the transaction
log does not fill up, then you must skip the COPY/NETCOPY command.

Symptoms

Applications cannot connect to the Primary. Also, the watchdog poll fails at the
Primary. The HSB state of the secondary server is SECONDARY ALONE.

How to recover when the primary is down
About this task

To allow the "HotStandby" (Secondary server) to replace the Primary, do the
following:

Procedure
1. Set the new Primary server to PRIMARY ALONE state by using the command:

ADMIN COMMAND ’hotstandby set primary alone’;

2. Reconnect applications to the new Primary.
3. Start using applications.
4. Fix and start the old Primary server as new Secondary server.
5. If necessary, copy the database from the new Primary to the new Secondary

using command:
ADMIN COMMAND ’hotstandby netcopy’;

Read “Synchronizing primary and secondary servers” on page 78 for details.
6. Reconnect the new Primary to the new Secondary using the command:

ADMIN COMMAND ’hotstandby connect’;

Secondary is down
Scenario

All connections to the Secondary server are broken. This may be caused either by a
failure in the Secondary, or by a failure in the network that makes it impossible for
either the Primary or the Watchdog to communicate with the Secondary server. In
this section, the Secondary is referred to as failing, but in fact the problem may be
with either the Secondary or the network.

Remedy

The standard remedy is to switch the Primary server to the PRIMARY ALONE
state. After the Secondary is up again, synchronize it with the Primary.

Upon finding a problem with the connection to the Secondary server, the Primary
server:
1. Suspends any open transactions, neither committing them nor rolling them

back (the Primary does not send an error message — or a "success" message —
to the client); and

158 IBM solidDB: High Availability User Guide

2. Automatically switches its own state from PRIMARY ACTIVE to PRIMARY
UNCERTAIN.

Typically, after making sure that the secondary server is unavailable, the watchdog
will switch the Primary from PRIMARY UNCERTAIN to PRIMARY ALONE. After
the Primary is switched to PRIMARY ALONE state, it can continue accepting
transactions and saving them to send to the Secondary. Later, when the Secondary
is brought back up, the Secondary can be sent the transaction log so that it can
"catch up" to the Primary.

The Primary commits the open transactions after the Primary is set to PRIMARY
ALONE state. To avoid the possibility that the Primary will commit the
transactions when the Secondary has not, the transactions are kept in the
transaction log, as though they had never been sent to the Secondary. When the
Secondary is brought back up and starts catching up, the Primary sends that
transaction log, and the Secondary checks each of the transactions. If any of the
transactions are duplicates (that is, if the Secondary already committed that
transaction before the Secondary failed), then the duplicate transactions are not
re-executed on the Secondary.

The watchdog or system administrator must be careful in choosing whether to
bring the Primary to PRIMARY ALONE state, or choose an alternative action. If
the watchdog or system administrator chooses a different action than switching the
Primary to PRIMARY ALONE state, she must take into account that the Secondary
and Primary may not have the same data i.e. they may not both have rolled back
the transaction. It is possible that the failed Secondary actually committed the data
and crashed after committing the data but before sending the confirmation to the
Primary, while the Primary never committed. In this situation, the secondary may
actually be "ahead" of the Primary rather than behind it.

As always, the watchdog or administrator also must be careful not to allow both
servers to go into PRIMARY ALONE state at the same time.

The diagram below is divided into three frames. The first frame shows the
scenario, which is that the Primary and watchdog have lost contact with the
Secondary. The next frame shows how to respond to keep your system working
until the problem can be completely solved. The third frame shows the final state
after the problem has been solved — that is, after the broken server has been fixed,
or after communications have been restored.

Appendix F. Watchdog sample 159

1. Watchdog instructs Server1:
HSB SET PRIMARY ALONE

3

2

1

Poll OK
Poll OK

Txn log

Connected

Watchdog

Server2
secondary
active

Server1
primary
active

Application(s)

Resolution

Poll fails
Poll OK

Txn log

Connected

Watchdog

Server2
(unavailable)

Server1
primary
alone

Application(s)

Failover/remedy

Poll fails
Poll OK

Txn log

Connected

Watchdog

Server2
(unavailable)

Server1
primary
uncertain

Application(s)

Scenario

Figure 18. Secondary is down scenario and remedy

160 IBM solidDB: High Availability User Guide

HSB SET STANDALONE
2. After Server2 is brought back up, Watchdog instructs Server1:

HSB COPY or
NETCOPY HSB CONNECT

3. If the transaction log fills up, you may have to switch the PRIMARY ALONE
server to STANDALONE. In that case, you will also need to execute HSB
COPY or HSB NETCOPY before you re-connect the servers. If the transaction
log does not fill up, then you must skip the COPY/NETCOPY command.

Symptoms

The watchdog poll fails at the Secondary. The state of the primary server is either
PRIMARY ALONE or PRIMARY UNCERTAIN.

How to recover when the secondary is down
About this task

To allow the Primary server to continue to receive transactions, operating
independently of the Secondary server, do the following:

Procedure
1. If the Primary server is in the PRIMARY UNCERTAIN state, then set the

Primary server to PRIMARY ALONE using the command:
ADMIN COMMAND ’hotstandby set primary alone’;

2. After the Secondary server has been repaired and restarted and/or the
Secondary's network connections have been reestablished, check the state of the
Primary server using the command:
ADMIN COMMAND ’hotstandby state’;

3. If the state of the Primary server is PRIMARY ALONE, then reconnect the
Primary to the Secondary using the command:
ADMIN COMMAND ’hotstandby connect’;

4. If the state of the Primary server has earlier been changed to STANDALONE,
then:
a. Copy the database from the new Primary to the Secondary using the

command:
ADMIN COMMAND ’hotstandby netcopy’;

b. Read “Synchronizing primary and secondary servers” on page 78 for
details.

5. Reconnect the Primary to the Secondary using the command:
ADMIN COMMAND ’hotstandby connect’;

Further scenarios when the secondary is down
If an application receives error message 10047 or 14537 from the Primary:
v Try to connect to the Secondary to check if its state was switched to new

Primary.
v If its state is not one of the Primary states (PRIMARY ACTIVE or PRIMARY

ALONE), see the scenario in “Primary is down” on page 156.

Watchdog is down
This section explains what happens if the Watchdog fails.

Appendix F. Watchdog sample 161

Scenario

All connections to the Watchdog are broken.

Remedy

Manual intervention is required. When the Watchdog is brought up, be sure to
check the Primary and Secondary servers to confirm their states.

1

Poll OK
Poll OK

Txn log

Connected

Watchdog

Server2
secondary
active

Server1
primary
active

Application(s)

Resolution

Txn log

Connected

Watchdog (unavailable)

Server2
secondary
active

Server1
primary
active

Application(s)

Scenario

1. Bring the Watchdog back up or fix the network.

Figure 19. Watchdog is down scenario and remedy

162 IBM solidDB: High Availability User Guide

Symptoms

The Watchdog process is down or network connections from the Watchdog to both
servers are unavailable.

Further scenarios

If the servers have changed states and one server is no longer in service, refer to
the applicable scenario in this section for instructions.

How to recover when the watchdog is down
About this task

To recover from the scenario where all connections to the Watchdog are broken:

Procedure
1. Allow the Primary and Secondary servers to continue normal operations.
2. Once the Watchdog is brought up, have it check the state of each server with

the command:
ADMIN COMMAND ’hotstandby state’;

Communication link between Primary and Secondary is down
Scenario

The connection between the Primary and Secondary server is broken.

The Primary will switch itself to PRIMARY UNCERTAIN state. (If
AutoPrimaryAlone is set to Yes, then the server will switch itself to PRIMARY
ALONE state.)

Note: If the Primary server sends a commit message to the Secondary and then
detects the failure of the Secondary, the Primary server relies on the Watchdog or
the administrator to indicate how the Primary server is to proceed. This is because
the Primary server is unable to detect whether the transaction was committed or
rolled back in the Secondary before the Secondary server failed.

Until the Primary server receives a command from the Watchdog or the
administrator, it no longer accepts transactions. At this stage, in order for the
Primary server to continue operations, the Watchdog or administrator can set the
Primary server to PRIMARY ALONE state.

Remedy

The Primary server can continue operations even when its link to the Secondary
server is down. If the Primary is not already in PRIMARY ALONE state, then
switch the Primary to the PRIMARY ALONE state. Once the link between the
Primary and Secondary is restored, synchronize the databases.

Appendix F. Watchdog sample 163

1. Watchdog instructs Server1:
HSB SET PRIMARY ALONE

3

2

1

Poll OK
Poll OK

Txn log

Connected

Watchdog

Server2
secondary
active

Server1
primary
active

Application(s)

Resolution

Poll OK
Poll OK

Broken

Txn log

Connected

Watchdog

Server2
secondary
alone

Server1
primary
alone

Application(s)

Failover/remedy

Poll OK
Poll OK

Broken

Txn log

Connected

Watchdog

Server2
secondary
alone

Server1
primary
uncertain

Application(s)

Scenario

Figure 20. Broken link between Primary and Secondary scenario and remedy

164 IBM solidDB: High Availability User Guide

HSB SET STANDALONE
2. After the connection between primary and secondary is fixed, Watchdog

instructs Server1:
HSB COPY or
NETCOPY HSB CONNECT

3. If the transaction log fills up, you may have to switch the PRIMARY ALONE
server to STANDALONE. In that case, you will also need to execute HSB
COPY or HSB NETCOPY before you re-connect the servers. If the transaction
log does not fill up, then you must skip the COPY/NETCOPY command.

Symptoms

The Primary server has no Secondary connected and the state is PRIMARY
UNCERTAIN or PRIMARY ALONE.

How to recover when the communication link between the
Primary and Secondary is down
About this task

To recover from the scenario where the connection between the Primary and
Secondary server is broken:

Procedure
1. Fix the network connection between the Primary and Secondary servers.
2. Check the state of the Primary server using the command:

ADMIN COMMAND ’hotstandby state’;

3. If the state of the Primary server is PRIMARY ALONE, reconnect the Primary
to the Secondary using the command:
ADMIN COMMAND ’hotstandby connect’;

4. If the state of the Primary server is STANDALONE, then:
a. Copy the database from the Primary to the Secondary. Read “Synchronizing

primary and secondary servers” on page 78 for details.
Before using the command ADMIN COMMAND 'hotstandby netcopy'; be
sure that the Secondary is up and running and is ready to receive the
netcopy. Also, make sure that you set the Primary server's state to
PRIMARY ALONE.

b. Reconnect the Primary to the Secondary using the command:
ADMIN COMMAND ’hotstandby connect’;

Further scenarios when the communication link between the
Primary and Secondary is down
If an application receives error message 10047 or 14537 from the Primary:
v Try to connect to the Secondary to check if it is switched as the new Primary.
v If the old Secondary is not switched as the new Primary, see scenario in

“Primary is down” on page 156.

Communication link between the Watchdog and Primary is
down

Scenario

The connection between the Watchdog and the Primary server is broken.

Appendix F. Watchdog sample 165

Remedy

The Primary and Secondary servers can continue operations even when the
Watchdog link to the Primary server is down. When the Watchdog link to the
Primary is fixed, be sure to check the states of the Primary and Secondary servers.

1

Poll OK
Poll OK

Txn log

Connected

Watchdog

Server2
secondary
active

Server1
primary
active

Application(s)

Resolution

Poll OK
Poll fails

Txn log

Connected

Watchdog (unavailable)

Server2
secondary
active

Server1
primary
active

Application(s)

Scenario

1. Fix Watchdog's network connection to Server1.

Figure 21. Broken link between Watchdog and Primary scenario and remedy

166 IBM solidDB: High Availability User Guide

Symptoms

The Watchdog poll fails at the Primary server. However, the secondary server state
is reported to be SECONDARY ACTIVE. This means that the primary server is
very probably okay and that the Watchdog has merely lost contact with the
Primary.

Further scenarios

If the states of the servers have changed and one server is no longer in service,
refer to the applicable scenario in this section for instructions.

How to recover when the communication link between the
Watchdog and Primary is down
About this task

To recover from the scenario where connection between the Watchdog and the
Primary server is broken:

Procedure
1. Allow the Primary and Secondary servers to continue normal operations.
2. Fix the network connection between the Watchdog and the Primary server.
3. Once the network is connected, have the Watchdog check the states of each

server with the command:
ADMIN COMMAND ’hotstandby state’;

Communication link between the Watchdog and Secondary is
down

Scenario

The connection between the Watchdog and the Secondary server is broken.

Remedy

The Primary and Secondary servers can continue operations even when the
Watchdog link to the Secondary server is down. When the Watchdog link to the
Secondary is fixed, be sure to check the Primary and Secondary servers to confirm
their states.

Appendix F. Watchdog sample 167

Symptoms

The Watchdog poll fails at the Secondary server.

Further scenarios

If the servers states have changed and one server is no longer in service, refer to
the applicable scenario in this section for instructions.

1

Poll OK
Poll OK

Txn log

Connected

Watchdog

Server2
secondary
active

Server1
primary
active

Application(s)

Resolution

Poll fails
Poll OK

Txn log

Connected

Watchdog

Server2
secondary
active

Server1
primary
active

Application(s)

Scenario

1. Fix Watchdog's network connection to Server2.

Figure 22. Broken link between Watchdog and Secondary scenario and remedy

168 IBM solidDB: High Availability User Guide

How to recover when the communication link between the
Watchdog and Secondary is down
About this task

To recover from the scenario where the connection between the Watchdog and the
Secondary server is broken:

Procedure
1. Allow the Primary and Secondary servers to continue normal operations.
2. Fix the network connection between the Watchdog and the Secondary server.
3. Once the network is connected, have the Watchdog check the state of each

server with the command:
ADMIN COMMAND ’hotstandby state’;

Communication links between the Watchdog and Primary, and
between the Primary and Secondary, are down

Scenario

The connections between the Watchdog and the Primary server, and between the
Primary server and Secondary server, are broken.

Remedy

For the Watchdog to continue monitoring the Primary server, switch the Secondary
server to be the new Primary and set this new Primary to the PRIMARY ALONE
state. Later, set up a new Secondary server and synchronize it with the Primary.

Appendix F. Watchdog sample 169

1. Server1's role is Primary Uncertain. However, from the watchdog's point of
view, Server1 is unavailable, not Primary Uncertain.
Watchdog instructs Server2:

3

2

1

Poll OK
Poll OK

Txn log

Connected

Watchdog

Server1
secondary
active

Server2
primary
active

Application(s)

Resolution

Poll fails
Poll OK

Broken

Txn log

Connected

Watchdog

Server1
primary
uncertain
(unavailable)

Server2
primary
alone

Application(s)

Failover/remedy

Poll OKPoll fails

Broken

Possibly
connected

Watchdog

Server2
secondary
alone

Server1
primary
uncertain
(unavailable)

Application(s)

Scenario

Figure 23. Broken link between Watchdog and Primary, and between Primary and Secondary, scenario and remedy

170 IBM solidDB: High Availability User Guide

HSB SET PRIMARY ALONE
Applications switch from Server1 to Server 2.

2. Both servers believe they are primary. If a program or an administrator
(manual intervention) switches Server1 from Primary Uncertain to Primary
Alone, then there are two active primaries, both of which could be updating
data, and the differences would not be resolvable.
After network connections are fixed, Watchdog instructs Server1:
HSB SWITCH SECONDARY
Watchdog instructs Server2:
HSB COPY or
NETCOPY HSB CONNECT

3. If the transaction log fills up, you may have to switch the PRIMARY ALONE
server to STANDALONE. In that case, you will also need to execute HSB
COPY or HSB NETCOPY before you re-connect the servers. If the transaction
log does not fill up, then you must skip the COPY/NETCOPY command.

Symptoms

The Watchdog poll fails at the Primary server. The Secondary server and Primary
server have lost their connections to each other; therefore Server2 is in the state
SECONDARY ALONE, and the Primary (if it can be contacted) will report that its
state is PRIMARY UNCERTAIN or PRIMARY ALONE.

The beginning of this scenario assumes that applications are possibly connected to
the old Primary. However, since the old Primary is in the PRIMARY UNCERTAIN
state, the applications are unable to perform updates. Note that it is also possible
that the applications connected to Server1 may have lost their communication link
and no longer know that the old Primary exists.

How to recover when communication links between the
Watchdog and Primary, and between the Primary and Secondary,
are down
To recover from the scenario where the connections between the Watchdog and the
Primary server, and between the Primary server and Secondary server, are broken,
perform the steps necessary to make the hot standby server (the Secondary server)
replace the Primary.

About this task

To allow the Secondary server to replace the Primary, do the following:

Procedure
1. If the old Primary is in the PRIMARY UNCERTAIN state or is cut off from the

applications as well as the Secondary, then set the Secondary server to
PRIMARY ALONE state using the command:
ADMIN COMMAND ’hotstandby set primary alone’;

2. Reconnect applications to the new Primary.
3. Fix the network or the broken connections to the old Primary.
4. Check the server states. Both servers must now be running.
5. If the new Primary is in STANDALONE state (for example, because the new

Primary's transaction log filled up while the connections were being fixed):
a. Set the new primary to PRIMARY ALONE state using the command:

Appendix F. Watchdog sample 171

ADMIN COMMAND ’hotstandby set primary alone’;

b. Copy the database from the new Primary to the new Secondary. Read
“Synchronizing primary and secondary servers” on page 78 for details.

6. If the new Primary is in PRIMARY ALONE state:
a. Switch the old Primary to be the new Secondary server using the command:

ADMIN COMMAND ’hotstandby switch secondary’;

7. Reconnect the new Primary to the new Secondary using the command:
ADMIN COMMAND ’hotstandby connect’;

Further scenarios where communication links between the
Watchdog and Primary, and between the Primary and Secondary,
are down
If an application receives error message 10047 or 14537 from the new Primary:
v Try to connect to the old Secondary to check if it has switched to be the new

Primary.
v If the old Secondary is not switched to be the new Primary, re-execute the

transaction with the original Primary in PRIMARY ALONE state.

Communication links between the Watchdog and Secondary,
and between the Primary and Secondary, are down

Scenario

The connection between the Watchdog and the Secondary server, and the
connection between the Primary server and Secondary, server are broken.

Remedy

The Primary server can continue operations even when its links to the Secondary
server and the Watchdog are down. Switch the Primary server to the PRIMARY
ALONE state, if it is not already in PRIMARY ALONE state. Later, when the
Secondary is up again, synchronize it with the Primary.

172 IBM solidDB: High Availability User Guide

1. Server2 sees its role as Secondary Alone, but the Watchdog cannot see Server2
and therefore believes Server2 is unavailable.
Watchdog instructs Server1:

3

2

1

Poll OK
Poll OK

Txn log

Connected

Watchdog

Server2
secondary
active

Server1
primary
active

Application(s)

Resolution

Poll fails
Poll OK

Broken

Txn log

Connected

Watchdog

Server2
secondary
alone
(unavailable)

Server1
primary
alone

Application(s)

Failover/remedy

Poll failsPoll OK

Broken

Connected

Watchdog

Server2
secondary
alone
(unavailable)

Server1
primary
uncertain

Application(s)

Scenario

Figure 24. Broken link between Watchdog and Secondary and between Primary and Secondary scenario and remedy

Appendix F. Watchdog sample 173

HSB SET PRIMARY ALONE
2. After the connections to secondary are fixed, Watchdog instructs Server1:

HSB COPY
NETCOPY HSB CONNECT

3. If the transaction log fills up, you may have to switch the PRIMARY ALONE
server to STANDALONE. In that case, you will also need to execute HSB
COPY or HSB NETCOPY before you re-connect the servers. If the transaction
log does not fill up, then you must skip the COPY/NETCOPY command.

Symptoms

The Watchdog poll fails at the Secondary; the Primary server has no Secondary
connected and switches to state PRIMARY UNCERTAIN or PRIMARY ALONE.

How to recover when communication links between the
Watchdog and Secondary, and between the Primary and
Secondary, are down
About this task

To recover from the scenario where the connection between the Watchdog and the
Secondary server, and the connection between the Primary server and Secondary
server are broken:

Procedure
1. Try to fix the connections.
2. After the connections are fixed, check the state of the Primary server using the

command ADMIN COMMAND 'hotstandby state'.
3. If the state of the Primary is STANDALONE:

a. Ensure that both servers are running.
b. Set the state of the Primary server to PRIMARY ALONE using command:

ADMIN COMMAND ’hotstandby set primary alone’;

c. Copy the database from the Primary to the secondary using command:
ADMIN COMMAND ’hotstandby netcopy’;

Read “Synchronizing primary and secondary servers” on page 78 for
details.

4. Reconnect the Primary to the Secondary using the command:
ADMIN COMMAND ’hotstandby connect’;

Further scenarios where the communication links between the
Watchdog and Secondary, and between the Primary and
Secondary are down
If an application receives error message 10047 or 14537 from the Primary:
v Try to connect to the Secondary to check if it switched to be Primary.
v If the Secondary is not switched as the new Primary, re-execute the transaction

with the original Primary in PRIMARY ALONE state.

Watchdog section of the solid.ini configuration file
The solid.ini file for the Watchdog contains a [Watchdog] configuration section to
specify Watchdog-specific parameters.

174 IBM solidDB: High Availability User Guide

Important: The parameters in the [Watchdog] section of the solid.ini file are NOT
all predefined by solidDB. Depending upon how you write your Watchdog and
whether you want it to read parameter information from the solid.ini file, you
can use any mix of the parameters defined here and parameters that you have
defined. You can also ignore parameters. The parameters shown here are for the
sample C-language Watchdog program that solidDB provides.

Table 35. Watchdog parameters

[Watchdog] Description Factory value

AutoSwitch If the AutoSwitch parameter is set to yes, the Watchdog
automatically does the following:

1. If the Secondary server fails, then the Watchdog tells the
Primary server to switch to PRIMARY ALONE state (rather
than stay in PRIMARY UNCERTAIN) state.

2. If the Primary server fails, then the Watchdog
automatically sends the commands:

’hsb switch primary’
’hsb set primary alone’

to switch the original Secondary to be the new Primary.

For example:

[Watchdog]
AutoSwitch = NO

This parameter is optional.

Yes

Connect1 The Connect1 parameter in the [Watchdog] section enables the
Watchdog application to connect to the Primary or Secondary
server. This is a required parameter that defines the protocol
and network address for the Connect1 server.

For example:

connect1 = tcp primarymachine 1313

None

Connect2 The Connect2 parameter in the [Watchdog] section enables the
Watchdog application to connect to the Primary or Secondary
server. This is a required parameter that defines the protocol
and network address for the Connect2 server.

For example:

connect2 = tcp secondarymachine 1313

None

DualSecAutoSwitch If DualSecAutoSwitch = Yes and both servers are secondary,
then the Watchdog will automatically select one of the two
secondaries to be a new primary and switch it to primary. If
DualSecAutoSwitch = No then the system administrator must
switch one server to be the primary. Note that
DualSecAutoSwitch applies whether the Watchdog is in
"normal" mode or "failure" mode.

Yes

Appendix F. Watchdog sample 175

Table 35. Watchdog parameters (continued)

[Watchdog] Description Factory value

NumRetry The NumRetry parameter in the [Watchdog] section lets you
specify the number of Watchdog attempts to connect to a
Secondary or Primary server before the connection attempt is
considered a response failure or error.

For example:

[Watchdog]
NumRetry = 3

The retries are in addition to the original try. If number of
retries is set to 3, then the total number of attempts is 4. Note
that the retries are immediate. The Watchdog does not wait for
an interval of time (such as PingTimeout) in between retries
when there is a failure.

This parameter is optional.

0

Password1 Password2 See the description of the Username1 and Username2
parameters below.

No factory value.

Pessimistic Setting this parameter to Yes can speed up Watchdog
reactions.

When Pessimistic = No, the Watchdog checks its connections
with the servers, but does not actually act (for example,
change the state of a server to PRIMARY ALONE) until after
one of the servers detects that there is a problem and changes
its state (for example, to PRIMARY UNCERTAIN).

When Pessimistic = Yes, the Watchdog acts as soon as the
Watchdog itself loses contact with one of the servers; the
Watchdog does not wait for the remaining server to change
states. This can speed up the reaction time, but may also
increase the odds of false alarms, for example due to network
problems.

When Pessimistic = Yes, the Watchdog reacts as follows: If the
Watchdog has lost contact with the Primary, then the
Watchdog switches the Secondary to be the Primary; if the
Watchdog loses contact with the Secondary, then the Watchdog
sets the Primary to PRIMARY ALONE.

CAUTION:
Setting Pessimistic = Yes may cause extra switching or even
dual primaries. This parameter should not be set to Yes
unless the network is much less likely to fail than the server.

You can also turn on Pessimistic behavior by using the
optional command-line switch "-p".

No

176 IBM solidDB: High Availability User Guide

Table 35. Watchdog parameters (continued)

[Watchdog] Description Factory value

PingInterval The PingInterval parameter in the [Watchdog] section lets you
specify the interval in milliseconds between querying status
connect information in normal Watchdog mode. To detect
server failure, the Watchdog sends the hotstandby status
connect command to both Primary and Secondary servers after
every PingInterval milliseconds.

For example:

[Watchdog]
PingInterval = 5000

This parameter is optional.

Note that the PingInterval parameter for the Watchdog is
different from the PingTimeout parameter for the servers.

CAUTION:
Previous sample Watchdogs required that the PingInterval
be specified in seconds, not milliseconds. If you are using an
older solid.ini file, you should update it.

1000

(1 second)

Username1 Username2 The Username and Password parameters in the [Watchdog]
section are optional. They specify the username and password
that are authorized for using the connect1 server.

For example:

[Watchdog]
Username1 = Tom
Password1 = dr17xy
Username2 = Jerry
Password2 = M89tvt

If (for security reasons) these parameters are not specified in
the solid.ini configuration file, the Watchdog will prompt for
them when the Watchdog is started.

No factory value.

WatchdogLog The WatchdogLog parameter in the [Watchdog] section lets
you specify the file name of the Watchdog log. The Watchdog
log is created in the current working directory. It is used to
record Watchdog messages, alerting administrators of the need
to issue Watchdog commands.

For example:

[Watchdog]
WatchdogLog = Watchdog.log

Note that quotation marks around the file name are not
required (as long as it does not contain special characters such
as the blank or certain punctuation marks).

This parameter is optional.

Watchdog.log

When using the parameter
[Logging]
DurabilityLevel

the DurabilityLevel parameter value affects only the Primary server. The logging
mode of the Secondary server is dictated by the 2SafeAckPolicy parameter in the
[HotStandby] section.

Appendix F. Watchdog sample 177

178 IBM solidDB: High Availability User Guide

Index

Special characters
-x autoconvert 103
-x backupserver (command line option) 83
-x backupserver (command) 83
-x migratehsbg2 103
=

use of the equals sign when setting parameter values 31

Numerics
1SafeMaxDelay (parameter) 110
2SafeAckPolicy (parameter) 110

A
access mode

RO (read-only) 109
RW (read-write) 109
RW/Create 109
RW/Startup 109

access rights 32
ADMIN COMMAND 'hotstandby cominfo'

viewing connect settings 87
ADMIN COMMAND 'hotstandby connect'

connecting HotStandby servers 87
ADMIN COMMAND 'hotstandby copy'

copying database contents 86
ADMIN COMMAND 'hotstandby netcopy'

copying database contents 83, 85
copying to secondary 83

ADMIN COMMAND 'hotstandby set primary alone'
Running the server in PRIMARY ALONE state 76

ADMIN COMMAND 'hotstandby set standalone' 77
ADMIN COMMAND 'hotstandby state'

verifying server states 90
ADMIN COMMAND 'hotstandby status connect'

displaying connect status information 89
ADMIN COMMAND 'hotstandby status copy'

verifying a copy procedure 82, 85
ADMIN COMMAND 'hotstandby status switch'

verifying the switch process 75
ADMIN COMMAND 'hotstandby status'

querying HotStandby status 88
ADMIN COMMAND 'hotstandby switch primary'

switching server states 73
ADMIN COMMAND 'hotstandby switch secondary'

switching server states 73
administering HotStandby 88, 89, 90

switching server states 73
ApplicationConnTestConnect (HAC parameter) 114
ApplicationConnTestInterval (HAC parameter) 114
ApplicationConnTestPassword (HAC parameter) 114
ApplicationConnTestTimeout (HAC parameter) 114
ApplicationConnTestUsername (HAC parameter) 114
applications

switching to the new primary 67
using Basic Connectivity 65

autoconvert 103
AutoPrimaryAlone (parameter) 44, 76, 110, 154

'hotstandby switch' command 73

AutoSwitch (parameter) 175

B
backup 4
backup listening mode

netcopy listening mode 83
BackupBlockSize (parameter) 45
BackupDeleteLog (parameter) 4
Basic Connectivity 65
bringing a secondary back online 77

C
catchup 78
CatchupSpeedRate (parameter) 46, 110
CatchupStepsToSkip (parameter) 46
CheckInterval (parameter) 114
CheckpointDeleteLog (parameter) 4
checkpoints 4
CheckTimeout (parameter) 114
Choosing which server to make primary 92
CLUSTER 57
configuring

HotStandby 45
Secondary and Primary nodes 39
timeouts between applications and servers 40

Connect (parameter) 31, 41, 93, 110
Connect [LocalDB] (parameter) 114
Connect [RemoteDB] (parameter) 114
connect settings

viewing 87
Connect1 (parameter) 175
Connect2 (parameter) 175
connection switch

Transparent Connectivity 62
connectivity

basic 65
choosing connectivity type 53
Transparent Failover 54

ConnectTimeOut (parameter) 42, 44, 110
CopyDirectory (parameter) 44, 110
copying

database contents 83, 85, 86
Primary database to Secondary server over the

network 82
primary to local secondary 86
verifying procedure 82, 85

creating
databases

Secondary Server 83
current value 109

D
data management tools 32
database

copying contents 83, 85, 86
In-Memory Tables 33
verifying a copy procedure 85

179

DBPassword (parameter) 114
DBUsername (parameter) 114
default value 109
displaying communication information 90
displaying connect status information 89
displaying switch status information 88
Dual Primaries 33
DualSecAutoSwitch (parameter) 175
DurabilityLevel (parameter) 41

E
EnableApplicationConnTest (HAC parameter) 114
EnableAutoNetcopy (parameter) 114
EnableDBProcessControl (parameter) 114
EnableUnresponsiveActions (HAC parameter) 114
equals sign

use of when setting parameter values 31
ERE

External Reference Entity 21
EREIP (parameter) 114
External Reference Entity

configuring 114
description 21

F
factory value 109
Failure Transparency

choosing connectivity type
CONNECTION 54
NONE 54
SESSION 54

G
GUI

High Availability Manager 23

H
HA Controller 73
HA Manager parameters

Header_text 118
Server1_host 118
Server1_name 118
Server1_pass 118
Server1_port 118
Server1_user 118
Server2_host 118
Server2_name 118
Server2_pass 118
Server2_port 118
Server2_user 118
Window_title 118

HAC failure scenarios
HotStandby link fails 97
primary database fails 95
primary node fails 96
secondary database fails 96
secondary node fails 97
unresponsive server 98

HAManager.ini 107
Header_text (parameter) 118
High Availability Controller 46, 73

High Availability Controller (continued)
behaviour in failure cases 95
configuration 27
logging 24
sample 25
setup 27
solidhac.ini 27
starting 27
stopping 27

High Availability Manager
configuring 46
description 23
screenshot 23

HotStandby
administering 31
configuration 25
configuring 31, 39, 46
quick start 25
setup 25
shutting down operations 77
status 88
turning off 93

HotStandby API 73
hotstandby copy 141
HotStandby events

SYS_EVENT_HSBCONNECTSTATUS 149
SYS_EVENT_HSBSTATESWITCH 149
SYS_EVENT_NETCOPYEND 149
SYS_EVENT_NETCOPYREQ 149

hotstandby netcopy 141
HotStandby with HAC

configuration 28
quick start 28
setup 28

HOTSTANDBY_CONNECTSTATUS (SQL function) 67, 89
HOTSTANDBY_STATE (SQL function) 67
hsb status catchup 133
hsb status connect 133
hsb status copy 133
hsb status switch 133
HSBEnabled (parameter) 31, 41, 93, 110

I
In-Memory Tables 33

L
Listen (parameter) 39, 114
load balancing

dynamic control of 55
Transparent Connectivity 54

load balancing methods
PREFERRED_ACCESS=READ_MOSTLY 54
PREFERRED_ACCESS=WRITE_MOSTLY 54

LogEnabled (parameter) 41
logging

High Availability Controller 24
logpos (admin command) 133
logpos (hotstandby command) 92

M
MaxLogSize (parameter) 110
MaxMemLogSize (parameter) 110
migratehsbg2 103

180 IBM solidDB: High Availability User Guide

N
netcopy 141

Primary must be in PRIMARY ALONE state 9
netcopy listening mode 45, 83

ADMIN COMMAND 'hotstandby netcopy' 83
tuning performance 45

NetcopyRpcTimeout (parameter) 110
network names 39
network partitions 33

dual primaries 33
NumRetry (parameter) 175

O
OFFLINE (state) 141

P
parameters

AutoPrimaryAlone 44, 73, 76
AutoSwitch 175
BackupBlockSize 45
BackupDeleteLog 4
CatchupSpeedRate 46
CatchupStepsToSkip 46
CheckInterval 114
CheckpointDeleteLog 4
CheckTimeout 114
Connect 31, 41, 93
Connect [LocalDB] 114
Connect [RemoteDB] 114
Connect1 175
Connect2 175
ConnectTimeout 42, 44
CopyDirectory 44
DBPassword 114
DBUsername 114
DualSecAutoSwitch 175
DurabilityLevel 41
EnableAutoNetcopy 114
EnableDBProcessControl 114
EREIP 114
Header_text 118
High Availability Controller

CheckInterval 114
CheckTimeout 114
Connect [LocalDB] 114
Connect [RemoteDB] 114
DBPassword 114
DBUsername 114
EnableAutoNetcopy 114
EnableDBProcessControl 114
EREIP 114
Listen 114
Password 114
PreferredPrimary 114
RequiredConnectFailures 114
RequiredPingFailures 114
StartInAutomaticMode 114
StartScript 114
Username 114

HSBEnabled 31, 41, 93
Listen 39
LogEnabled 41
NumRetry 175
Password 114

parameters (continued)
Password1 175
Password2 175
Pessimistic 175
PingInterval 42, 43, 175
PingTimeout 42, 43
PreferredPrimary 114
ReadMostlyLoadPercentAtPrimary 54
RequiredConnectFailures 114
RequiredPingFailures 114
Server1_host 118
Server1_name 118
Server1_pass 118
Server1_port 118
Server1_user 118
Server2_host 118
Server2_name 118
Server2_pass 118
Server2_port 118
Server2_user 118
StartInAutomaticMode 114
StartScript 114
Username 114
Username1 175
Username2 175
WatchdogLog 175
Window_title 118

Partition
network 33

Password (parameter) 114
Password1 (parameter) 175
Password2 (parameter) 175
performing recovery and maintenance 36
Pessimistic (parameter) 175
ping 43
PingInterval (parameter) 42, 43, 110, 175
PingTimeout (parameter) 42, 43, 110
PreferredPrimary (parameter) 114
PRIMARY ACTIVE (state) 141
PRIMARY ALONE 76
PRIMARY ALONE (state) 141
PRIMARY ALONE state

running the new Primary in PRIMARY ALONEstate 76
PRIMARY UNCERTAIN (state) 141
PrimaryAlone (parameter) 110

R
READ COMMITTED

transaction isolation level 33
ReadMostlyLoadPercentAtPrimary (parameter) 54, 110
recovery

maintenance 36
REPEATABLE READ

transaction isolation level 33
RequiredAppConnTestFailures (HAC parameter) 114
RequiredConnectFailures (parameter) 114
RequiredPingFailures (parameter) 114
rights

access 32
RO

access mode 109
running the server in PRIMARY ALONE state 76
RW

access mode 109
RW/Create

access mode 109

Index 181

RW/Startup
access mode 109

S
Samples

High Availability Controller 25
Watchdog 25

secondary server
bringing back online 77

SERIALIZABLE
transaction isolation level 33

server names
network names 39

server states
OFFLINE 12
PRIMARY ACTIVE 12
PRIMARY ALONE 12, 76
PRIMARY UNCERTAIN 12
SECONDARY ACTIVE 12
SECONDARY ALONE 12
STANDALONE 12
switching server states 73
verifying 90

Server1_host (parameter) 118
Server1_name (parameter) 118
Server1_pass (parameter) 118
Server1_port (parameter) 118
Server1_user (parameter) 118
Server2_host (parameter) 118
Server2_name (parameter) 118
Server2_pass (parameter) 118
Server2_port (parameter) 118
Server2_user (parameter) 118
servers

connecting 87
SET TRANSACTION WRITE 55
SET WRITE 55
shutting down

HotStandby 77
solidDB Data Dictionary

description 32
solidDB data management tools 32
solidDB Export

description 32
solidDB Speed Loader

description 32
solidhac.ini 27, 107
SQL functions

HOTSTANDBY_CONNECTSTATUS 67, 89
HOTSTANDBY_STATE 67

STANDALONE (state) 77, 93, 141
start-up sequence 29
StartInAutomaticMode (parameter) 114
StartScript (parameter) 114
state

OFFLINE 141
PRIMARY ACTIVE 141
PRIMARY ALONE 141
PRIMARY UNCERTAIN 141
STANDALONE 141

state switch
verifying 75

states
STANDALONE 77, 93
verifying server states 90

status 88

status (continued)
displaying communication information 90
displaying connect status information 89
displaying switch status information 88
HotStandby 88
list of 60, 62, 89

store mode 109
switching

displaying connect status information 89
displaying switch status information 88
states, verifying 75

synchronizing
Primary and Secondary servers 78

SYS_EVENT_HSBCONNECTSTATUS (event) 149
SYS_EVENT_HSBSTATESWITCH (event) 149
SYS_EVENT_NETCOPYEND (event) 149
SYS_EVENT_NETCOPYREQ (event) 149

T
TC Connection 54
TC Info 57

attribute combinations 59
handling contradictions 59
JDBC syntax 60
proprietary ODBC attributes 64
syntax 57

TCConnect (parameter) 110
TF Connectivity 54
Tools

solidDB data management tools 32
transaction isolation

in-memory tables 33
transaction log

running out of space 34
Transparent Connectivity 54

U
UnresponsiveActionScript (HAC parameter) 114
upgrading

cold and hot migration 101
cold migration 102
hot migration 103
migration between hsb-compatible versions 101
migration between hsb-incompatible versions 101
preparing 102

Username (parameter) 114
Username1 (parameter) 175
Username2 (parameter) 175

V
verifying a copy procedure 85
verifying connect status information

HOTSTANDBY_CONNECTSTATUS 67
verifying the state switch 75
verifying the switch process

ADMIN COMMAND 'hotstandby status switch' 75
viewing current connect settings 87

W
Watchdog sample 25
WatchdogLog (parameter) 175

182 IBM solidDB: High Availability User Guide

Window_title (parameter) 118

Index 183

184 IBM solidDB: High Availability User Guide

Notices

© Copyright Oy International Business Machines Ab 1993, 2011.

All rights reserved.

No portion of this product may be used in any way except as expressly authorized
in writing by Oy International Business Machines Ab.

This product is protected by U.S. patents 6144941, 7136912, 6970876, 7139775,
6978396, 7266702, 7406489, 7502796, and 7587429.

This product is assigned the U.S. Export Control Classification Number
ECCN=5D992b.

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

185

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Canada Limited
Office of the Lab Director
8200 Warden Avenue
Markham, Ontario
L6G 1C7
CANADA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the

186 IBM solidDB: High Availability User Guide

names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

IBM, the IBM logo, ibm.com®, Solid, solidDB, InfoSphere™, DB2®, Informix®, and
WebSphere® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and
service names might be trademarks of IBM or other companies. A current list of
IBM trademarks is available on the Web at “Copyright and trademark information”
at www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other product and service names might be trademarks of IBM or other companies.

Notices 187

http://www.ibm.com/legal/copytrade.shtml

188 IBM solidDB: High Availability User Guide

����

Printed in USA

SC23-9828-03

	Contents
	Figures
	Tables
	Summary of changes
	About this manual
	Illustration conventions
	Typographic conventions
	Syntax notation conventions

	1 Introducing IBM solidDB HotStandby
	How HotStandby works
	HotStandby API (HSB Admin Commands)
	Basic HotStandby server scheme
	Heartbeat
	The transaction log and HotStandby
	Server HotStandby states
	Combining HotStandby and advanced replication
	Failover
	Server CatchUp
	Replication modes in HotStandby
	1-Safe and 2-Safe replication
	Synchronous HotStandby with 2-safe replication
	Asynchronous HotStandby with 1-safe replication

	Description of server states
	How does HotStandby affect performance
	Adaptive durability
	1-Safe replication
	2-Safe acknowledgement policy
	Internal parallelism
	Performing read-only transactions on the Secondary
	Other safety factors

	High Availability Controller (HAC)
	Recognized failures
	Controlling database server processes
	External Reference Entity (ERE)
	Networking in HAC
	High Availability Manager
	HAC logging

	2 Getting started with HotStandby
	Before you begin
	HotStandby demonstration
	HotStandby quick start procedure
	Starting and stopping HA Controller
	HSB with HA Controller quick start procedure
	Summary of start-up sequences

	3 Administering and configuring HotStandby
	What you should know
	HotStandby and the solidDB configuration file
	HotStandby and access rights
	solidDB tools and HotStandby
	Database migration (disk-based servers only)
	Interoperability

	Limitations and warnings with HotStandby
	In-memory tables
	Network partitions and dual primaries
	Running out of space for transaction logs

	Overview of administration tasks
	Performing HotStandby recovery and maintenance
	Special configurations: Lower cost versus higher safety
	Reducing cost: N + 1 spare and N + M spares scenarios
	Increasing reliability: 2N + 1 spare and 2N + M spare scenarios
	How solidDB HSB supports the N+1 (N+M) and 2N+1 (2N+M) approaches
	Using HAC with spares

	Configuring solidDB for HotStandby
	Defining secondary and primary node configuration (Com section)
	Defining timeouts between applications and servers (Com Section)
	Application read timeout option
	Specifying -C option in the connect parameters

	Transaction durability
	DurabilityLevel

	Configuring HotStandby-specific parameters
	Defining primary and secondary HotStandby configuration
	Setting HotStandby server wait time to help detect broken or unavailable connections
	PingTimeout and PingInterval parameters [HotStandby]
	ConnectTimeout parameter [HotStandby]

	Defining a name and location for HotStandby database copy operation
	Defining primary server behavior during a secondary failure

	Performance tuning
	Tuning replication performance with safeness and durability levels
	Tuning netcopy performance (General section)
	BackupBlockSize parameter [General]
	Tuning database catchup performance

	Configuring HA Controller and HA Manager
	Configuration file examples
	The solid.ini configuration file
	The solidhac.ini configuration file
	The HAManager.ini configuration file

	4 Using HotStandby with applications
	Two ways to connect to HotStandby servers
	Choosing the connectivity type

	Using the Transparent Connectivity
	Failure transparency in TC
	Load balancing in Transparent Connectivity
	Static load balancing configuration
	Dynamic control of load balancing
	Failover transparency with load balancing
	Executing procedures under load balancing

	Syntax of the Transparent Connectivity Info
	TC Info attribute combinations
	Handling TC Info contradictions
	Enacting transparent connectivity in JDBC
	Connect error processing

	Programming for connection switch
	Principles of connection switch handling
	Preservation of session state
	Additional proprietary ODBC attributes

	Using the basic connectivity
	Reconnecting to primary servers from applications
	Preparing client applications for HotStandby
	Getting the secondary server address
	Detecting HotStandby server failure in client applications
	Switching the application to the new primary

	Reconnecting to secondary servers
	Advanced replication requirements

	5 Using HotStandby API commands
	Switching server states
	Performing switchovers
	Switching the secondary to the primary
	Switching the primary to the secondary

	Verifying the switch
	Performing failovers
	Running the new primary in PRIMARY ALONE state
	Bringing the secondary server back online

	Shutting off HotStandby operations
	Synchronizing primary and secondary servers
	Catchup
	Full copy
	Verifying the copy
	Using a watchdog to synchronize servers
	Copying a primary database to a secondary over the network
	Creating a new database for the secondary server
	Replacing an existing database on the secondary server
	Verifying netcopy status
	Copying a database file from the primary server to a specified directory
	Starting the secondary server and catching up

	Connecting HotStandby servers
	Checking HotStandby status
	Displaying switch status information
	Displaying connect status information
	Displaying communication information
	Displaying role start time

	Verifying HotStandby server states
	Server state combinations

	Choosing which server to make primary
	Changing a HotStandby server to a non-HotStandby server

	6 Behavior of High Availability Controller in failure cases
	Primary database fails
	Secondary database fails
	Primary node fails
	Secondary node fails
	HotStandby link fails
	Server is unresponsive to external clients

	7 Upgrading HotStandby servers
	Cold and hot migration
	Migration between HSB-compatible versions
	Migration between HSB-incompatible versions
	Preparation steps for migration between HSB-incompatible versions
	Cold migration procedure
	Hot migration procedure

	After the upgrade

	Appendix A. HotStandby configuration parameters
	Ensuring that Primary and Secondary parameter values are coordinated
	Determining whether the Primary's settings take precedence over the Secondary's
	Querying HotStandby configuration parameters
	Modifying HotStandby configuration parameters
	Access mode
	Cluster section
	HotStandby section
	High Availability Controller configuration parameters
	High Availability Manager configuration parameters

	Appendix B. Error codes
	HotStandby errors and status codes
	High Availability Controller errors and status codes
	solidDB database Errors
	solidDB table errors
	solidDB communication errors

	Appendix C. Summary of HotStandby administrative commands
	HotStandby commands
	High Availability Controller commands

	Appendix D. Server state transitions
	HotStandby state transition diagram

	Appendix E. HotStandby system events
	Appendix F. Watchdog sample
	HotStandby configuration using Watchdog
	How the Watchdog application works
	Failure mode
	Coding the Watchdog for multiple failures

	System design issues
	Watchdog configuration
	Using the sample Watchdog application

	Failure situations and Watchdog actions
	Primary is down
	How to recover when the primary is down

	Secondary is down
	How to recover when the secondary is down
	Further scenarios when the secondary is down

	Watchdog is down
	How to recover when the watchdog is down

	Communication link between Primary and Secondary is down
	How to recover when the communication link between the Primary and Secondary is down
	Further scenarios when the communication link between the Primary and Secondary is down

	Communication link between the Watchdog and Primary is down
	How to recover when the communication link between the Watchdog and Primary is down

	Communication link between the Watchdog and Secondary is down
	How to recover when the communication link between the Watchdog and Secondary is down

	Communication links between the Watchdog and Primary, and between the Primary and Secondary, are down
	How to recover when communication links between the Watchdog and Primary, and between the Primary and Secondary, are down
	Further scenarios where communication links between the Watchdog and Primary, and between the Primary and Secondary, are down

	Communication links between the Watchdog and Secondary, and between the Primary and Secondary, are down
	How to recover when communication links between the Watchdog and Secondary, and between the Primary and Secondary, are down
	Further scenarios where the communication links between the Watchdog and Secondary, and between the Primary and Secondary are

	Watchdog section of the solid.ini configuration file

	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

	Notices

