

IBM solidDB Linked Library Access User Guide
Copyright © Solid Information Technology Ltd. 1993, 2008
Document number: SAC-6.1
Product version: 06.10.0014
Date: 2008-06-13

All rights reserved. No portion of this product may be used in any way except as expressly authorized in writing by Solid Information
Technology Ltd. or International Business Machines Corporation.

"IBM", the IBM logo, "DB2", "Informix", "Solid" and "solidDB" are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both.

All other products, services, companies and publications are trademarks or registered trademarks of their respective owners.

This product is protected by U.S. patents 6144941, 7136912, 6970876, 7139775, 6978396, and 7266702.

This product contains lexical analyzer Flex. Copyright (c) 1990 The Regents of the University of California. All rights reserved.

This code is derived from software contributed to Berkeley by Vern Paxson. The United States Government has
rights in this work pursuant to contract no. DE-AC03-76SF00098 between the United States Department of Energy
and the University of California. Redistribution and use in source and binary forms are permitted provided that:
(1) source distributions retain this entire copyright notice and comment, and (2) distributions including binaries
display the following acknowledgement: "This product includes software developed by the University of California,
Berkeley and its contributors'" in the documentation or other materials provided with the distribution and in all
advertising materials mentioning features or use of this software. Neither the name of the University nor the names
of its contributors may be used to endorse or promote products derived from this software without specific prior
written permission. THIS SOFTWARE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

This product contains zlib general purpose compression library version 1.1.4, March 11th, 2002. Copyright (C) 1995-2002 Jean-loup
Gailly and Mark Adler.

This software is provided "as-is", without any express or implied warranty. In no event will the authors be held
liable for any damages arising from the use of this software. Permission is granted to anyone to use this software
for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following
restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the ori-
ginal software. If you use this software in a product, an acknowledgment in the product documentation would be
appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be mis-
represented as being the original software. 3. This notice may not be removed or altered from any source distribution.

This product contains the Qsort routine in the external sorter, Copyright (c) 1980, 1983, 1990 The Regents of the University of California.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the fol-
lowing disclaimer in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following acknowledge-
ment: This product includes software developed by the University of California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ̀ `AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

This product contains the DES cipher (in ECB mode), parts of this code are Copyright (C) 1996 Geoffrey Keating. All rights reserved.

Its use is FREE FOR COMMERCIAL AND NON-COMMERCIAL USE as long as the following conditions are
adhered to.

Copyright remains Geoffrey Keating's, and as such any Copyright notices in the code are not to be removed. If
this code is used in a product, Geoffrey Keating should be given attribution as the author of the parts used. This
can be in the form of a textual message at program startup or in documentation (online or textual) provided with
the package.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the copyright notice, this list of conditions and the following dis-
claimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the fol-
lowing disclaimer in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following acknowledge-
ment: This product includes software developed by Eric Young (eay@mincom.oz.au)

THIS SOFTWARE IS PROVIDED BY GEOFFREY KEATING ``AS IS'' AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTAB-
ILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUP-
TION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Parts of this code (in particular, the string representing SPtrans below) are Copyright (C) 1995 Eric Young (eay@mincom.oz.au). All
rights reserved.

Its use is FREE FOR COMMERCIAL AND NON-COMMERCIAL USE as long as the following conditions are
adhered to.

Copyright remains Eric Young's, and as such any Copyright notices in the code are not to be removed. If this code
is used in a product, Eric Young should be given attribution as the author of the parts used. This can be in the form
of a textual message at program startup or in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the copyright notice, this list of conditions and the following dis-
claimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the fol-
lowing disclaimer in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following acknowledge-
ment: This product includes software developed by Eric Young (eay@mincom.oz.au)

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTI-
TUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIAB-
ILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This product is assigned the U.S. Export Control Classification Number ECCN=5D992b.

Table of Contents
1 Welcome ... 1

1.1 About This Guide ... 1
1.1.1 Organization ... 1
1.1.2 Audience .. 2

1.2 Conventions .. 2
1.2.1 Typographic Conventions .. 2
1.2.2 Syntax Notation ... 3

1.3 IBM solidDB Documentation .. 3
2 Introducing Linked Library Access ... 7

2.1 Linked Library Access Library .. 9
2.1.1 Disk-based vs. Diskless Servers .. 9
2.1.2 Library Contents .. 9
2.1.3 Application Types Used with Linked Library Access ... 11

2.2 IBM solidDB Client APIs and Drivers for Linked Library Access 13
2.2.1 IBM solidDB SA API .. 13
2.2.2 IBM solidDB ODBC API ... 13
2.2.3 IBM solidDB JDBC API .. 14
2.2.4 IBM solidDB Control API (SSC API) ... 14

3 Creating and Running an Linked Library Access Application ... 17
3.1 Downloading the Linked Library Access Library ... 17

3.1.1 Libraries for Remote Applications ... 18
3.1.2 Sample C Applications .. 18
3.1.3 Using Data Synchronization ... 19

3.2 Linking Applications for the Linked Library Access .. 20
3.2.1 Preparing User Applications for the Linked Library Access 21
3.2.2 Establishing a Local or Remote Connection to IBM solidDB with the Linked Library
Access ... 24

3.3 Starting and Shutting Down IBM solidDB Linked Library Access 25
3.3.1 Explicit Start up with the Control API Function SSCStartServer 26
3.3.2 Implicit Start Up with ODBC API Function Call SQLConnect 30
3.3.3 Implicit Start Up with SA API Function Call SaConnect 32
3.3.4 Shutting Down IBM solidDB Linked Library Access ... 33
3.3.5 Implicit Start Configuration Parameter ... 34

4 Description of Control API .. 35
4.1 Retrieving Task Information .. 35
4.2 Notifying Functions of a Special Event ... 35

4.2.1 Obtaining IBM solidDB Status and Server Information .. 35
4.3 Summary of Control API Functions .. 36
4.4 Control API and Equivalent ADMIN COMMANDs ... 37

v

4.5 Control API Reference ... 37
4.5.1 Function Synopsis .. 37
4.5.2 Return Value .. 39
4.5.3 Control API Error Codes and Messages .. 40

4.6 SSCGetServerHandle .. 40
4.7 SSCGetStatusNum .. 41
4.8 SSCIsRunning .. 42
4.9 SSCIsThisLocalServer ... 43
4.10 SSCRegisterThread ... 43
4.11 SSCSetCipher ... 44
4.12 SSCSetNotifier ... 48
4.13 SSCSetState ... 52
4.14 SSCStartDisklessServer .. 53
4.15 SSCStartServer ... 56
4.16 SSCStopServer ... 59
4.17 SSCUnregisterThread .. 61

5 Using the Diskless Capability .. 63
5.1 Configuration Parameters for a Diskless Server ... 63

5.1.1 Parameters Used in Diskless Servers .. 63
5.1.2 Configuration Parameters that Do Not Apply to Diskless Engines 66

6 Using IBM solidDB Linked Library Access With Java .. 69
6.1 Overview of IBM solidDB JDBC Accelerator (SJA) .. 69
6.2 How the Accelerator Works ... 70
6.3 System Requirements .. 71
6.4 Basic Usage ... 72

6.4.1 Installation .. 72
6.4.2 Compiling and Running a Program .. 72
6.4.3 Making JDBC Connections .. 73

6.5 Limitations .. 74
6.6 IBM solidDB Server Control (SSC) API .. 75

A Linked Library Access Parameters ... 79
A.1 Accelerator Section ... 79

Glossary ... 81
Index ... 83

vi

IBM solidDB Linked Library Access User Guide

List of Figures
2.1 IBM solidDB with Linked Library Access ... 8
2.2 Linking to IBM solidDB .. 11
2.3 IBM solidDB with Linked Library Access - APIs .. 15

vii

viii

List of Tables
1.1 Typographic Conventions ... 2
1.2 Syntax Notation Conventions .. 3
3.1 Linked Library Access System Libraries .. 20
3.2 Library Files .. 21
3.3 SSCStartServer Parameters .. 27
3.4 SSCStartServer argv Options ... 28
4.1 Summary of Control API Functions .. 36
4.2 Control API Parameter Usage Types ... 38
4.3 Error Codes and Messages for Control API Functions .. 40
4.4 SSCGetStatusNum Parameters .. 41
4.5 SSCIsRunning Parameters .. 42
4.6 SCCRegisterThread Parameters .. 44
4.7 SSCSetCipher Parameters .. 45
4.8 SSCSetNotifier Function Parameters ... 48
4.9 SSCSetState Function Parameters ... 52
4.10 SSCStartDisklessServer Parameters .. 54
4.11 Command Line Options for the argv Parameter ... 54
4.12 SSCStartServer Parameters .. 57
4.13 SSCStopServer Parameters .. 60
4.14 SCCUnregisterThread Parameters .. 61
5.1 Configuration Parameters not Applicable to Diskless Engines .. 66
A.1 Accelerator Parameters .. 79

ix

x

List of Examples
2.1 Dual Mode Application .. 12
3.1 Microsoft Windows MakeFile Example ... 22
3.2 VxWorks MakeFile Example ... 23
3.3 Starting up SSCStartServer .. 29
4.1 Using the Linked Library Access Encryption API .. 46
4.2 Calling a Function upon Shutdown ... 51
4.3 SSCStartDisklessServer .. 56

xi

xii

Chapter 1. Welcome
The IBM solidDB linked library access is a higher performance version of IBM solidDB data management
solution. To avoid network delays, the IBM solidDB executable and the user application are linked in the
same program space to produce a single executable. By replacing the network connection and Remote Procedure
Calls (RPCs) with local function calls, performance is improved significantly.

1.1 About This Guide
This guide contains information specific to the linked library access.

This guide supplements the information contained in the IBM solidDB Administration Guide, which contains
details on administration and maintenance of IBM solidDB.

1.1.1 Organization

Linked library access has some usage differences from standard IBM solidDB. This manual highlights the
main areas of difference and includes the following chapters:

• Chapter 2, Introducing Linked Library Access, familiarizes you with the background, concepts, components,
and physical configuration options for using the component.

• Chapter 3, Creating and Running an Linked Library Access Application, covers the steps required to im-
plement linked library access at your IBM solidDB site.

• Chapter 4, Description of Control API, describes how to use IBM solidDB SSC API, a low level C-language
client library, to start and stop the server, and to perform operations such as setting the priority level for
various server internal tasks. Linked library access supports the use of IBM solidDB SSC API for local
connections.

• Chapter 5, Using the Diskless Capability, explains how to use the SSCStartDisklessServer()
function call in the linked library access library to start a server that will run without a disk drive.

• Chapter 6, Using IBM solidDB Linked Library Access With Java, describes how to use IBM solidDB
linked library access from a Java program.

• Appendix A, Linked Library Access Parameters, describes configuration parameters that are specific to
linked library access. These parameters, like other IBM solidDB configuration parameters, are set in the
solid.ini file.

1

1.1.2 Audience

This guide assumes a working knowledge of the C programming language, general DBMS knowledge, famili-
arity with SQL, and knowledge of a IBM solidDB data management product, such as IBM solidDB, IBM
solidDB in-memory database, or IBM solidDB disk-based engine. If you are going to work with the IBM
solidDB Java Accelerator, then this manual also assumes a working knowledge of Java.

1.2 Conventions

1.2.1 Typographic Conventions

This manual uses the following typographic conventions:

Table 1.1. Typographic Conventions

Used forFormat

This font is used for all ordinary text.Database table

Uppercase letters on this font indicate SQL keywords and macro names.NOT NULL

These fonts indicate file names and path expressions.solid.ini

This font is used for program code and program output. Example SQL
statements also use this font.SET SYNC MASTER YES;

COMMIT WORK;

This font is used for sample command lines.run.sh

This font is used for function names.TRIG_COUNT()

This font is used for interface names.java.sql.Connection

This font is used for parameter names, function arguments, and Windows
registry entries.

LockHashSize

Words emphasised like this indicate information that the user or the applic-
ation must provide.

argument

This style is used for references to other documents, or chapters in the same
document. New terms and emphasised issues are also written like this.

IBM solidDB Administration Guide

File paths are presented in the Unix format. The slash (/) character represents
the installation root directory.

File path presentation

If documentation contains differences between operating systems, the Unix
format is mentioned first. The Microsoft Windows format is mentioned in

Operating systems

2

1.1.2 Audience

Used forFormat

parentheses after the Unix format. Other operating systems are separately
mentioned.

1.2.2 Syntax Notation

This manual uses the following syntax notation conventions:

Table 1.2. Syntax Notation Conventions

Used forFormat

Syntax descriptions are on this font. Replaceable sections are on this font.
INSERT INTO table_name

This font indicates file names and path expressions.solid.ini

Square brackets indicate optional items; if in bold text, brackets must be
included in the syntax.

[]

A vertical bar separates two mutually exclusive choices in a syntax line.|

Curly brackets delimit a set of mutually exclusive choices in a syntax line;
if in bold text, braces must be included in the syntax.

{ }

An ellipsis indicates that arguments can be repeated several times....

A column of three dots indicates continuation of previous lines of code.
.
.
.

1.3 IBM solidDB Documentation
Below is a complete list of documents available for IBM solidDB. IBM solidDB documentation is distributed
in an electronic format, usually PDF files and web pages.

• Release Notes. This file contains installation instructions and the most up-to-date information about the
specific product version. This file (releasenotes.txt) is copied onto your system when you install
the software.

3

1.2.2 Syntax Notation

• IBM solidDB Getting Started Guide. This manual gives you an introduction to IBM solidDB.

• IBM solidDB SQL Guide. This manual describes the SQL commands that IBM solidDB supports. This
manual also describes some of the system tables, system views, system stored procedures, etc. that the
engine makes available to you. This manual contains some basic tutorial material on SQL for those readers
who are not already familiar with SQL. Note that some specialized material is covered in other manuals.
For example, the IBM solidDB "administrative commands" related to the High Availability (HotStandby)
component are described in the IBM solidDB High Availability User Guide, not the IBM solidDB SQL
Guide.

• IBM solidDB Administration Guide. This guide describes administrative procedures for IBM solidDB
servers. This manual includes configuration information. Note that some administrative commands use
an SQL-like syntax and are documented in the IBM solidDB SQL Guide.

• IBM solidDB Programmer Guide. This guide explains in detail how to use features such as IBM solidDB
Stored Procedure Language, triggers, events, and sequences. It also describes the interfaces (APIs and
drivers) available for accessing IBM solidDB and how to use them with a IBM solidDB database.

• IBM solidDB In-Memory Database User Guide. This manual describes how to use the IBM solidDB in-
memory database and main memory engine (MME).

• IBM solidDB Advanced Replication Guide. This guide describes how to use the IBM solidDB advanced
replication technology to synchronize data across multiple database servers.

• IBM solidDB Linked Library Access User Guide. Linking the client application directly to the server im-
proves performance by eliminating network communication overhead. This guide describes how to use
the linked library access, a database engine library that can be linked directly to the client application.

This manual also explains how to use two proprietary Application Programming Interfaces (APIs). The
first API is the IBM solidDB SA interface, a low-level C-language interface that allows you to perform
simple single-table operations (such as inserting a row in a table) quickly. The second API is SSC API,
which allows your C-language program can control the behavior of the embedded (linked) database
server

This manual also explains how to set up a IBM solidDB to run without a disk drive.

• IBM solidDB High Availability User Guide. IBM solidDB HotStandby allows your system to maintain
an identical copy of the database in a backup server or "secondary server". This secondary database
server can continue working if the primary database server fails.

• IBM solidDB Connector Guide. This guide explains in detail how to use the IBM solidDB Cache solution.
IBM solidDB Cache provides a high-performance, low-latency database front-end solution for IBM Data
Servers, namely DB2™ and Informix™. IBM solidDB Cache solution uses a number of in-memory front-

4

1.3 IBM solidDB Documentation

end databases to handle high-volume traffic from the applications. The connectors are applications that
manage data between the back-end and the front-ends in IBM solidDB Cache.

5

1.3 IBM solidDB Documentation

6

Chapter 2. Introducing Linked Library
Access
The IBM solidDB linked library access is a function library that provides the same functionality and interfaces
available with the IBM solidDB. A user application may be linked to this library. The linked application
communicates with the server by using direct function calls, thus skipping the overhead required when the
client and server communicate through network protocols such as TCP/IP. Linking the application and server
into a single executable provides higher performance.

Your application does not have to be re-written to use the linked library access library. For example, you do
not need to call proprietary functions (except a few to start and stop the database server). Instead, your applic-
ation may continue to use the same ODBC function calls that it has always used. When the linked library access
library is linked to your application, these ODBC function calls go directly to the server, bypassing the network.

Your application also has access to some additional linked library access function calls to do things such as
scheduling tasks within the server. However, you are not required to use these function calls unless you want
to.

The fact that your server is linked to your application does not mean that your linked application is the only
client that can use the server. A IBM solidDB server that is executing as an linked library access function
library is accessible not only to the "local" client application (the application that is linked directly to the library),
but also to "remote" client applications (which connect to the server through communications protocols such
as TCP/IP). Your remote clients see the linked library access server as similar to any other IBM solidDB
server, while your local client sees a faster, more precisely controllable version of the IBM solidDB server.

Note

Although "remote" applications usually run on a different computer from the one that the server is
running on, an application is also considered "remote" if it uses a network communication protocol
to communicate with the server, even if that client runs on the same computer as the database server
runs on.

7

Figure 2.1. IBM solidDB with Linked Library Access

The figure above shows a sample IBM solidDB that uses the linked library access library.

Note

Local application requests are handled through IBM solidDB SA API or ODBC API direct function
calls. For the local application, linked library access also provides a Control API which handles local
requests for controlling IBM solidDB background processes and client tasks. You may also use JDBC
calls with the linked library access. See Chapter 6, Using IBM solidDB Linked Library Access With
Java.

8

As you can see in the illustration, remote clients communicate through an ODBC or JDBC driver that is linked
to the client application, while the local client application does not need any remote communication driver.

2.1 Linked Library Access Library
In a standard (non-linked library access) IBM solidDB configuration, the application (the "client") and the
database engine (the 'server") are separate processes that communicate through a network protocol. The client
must link to a communications driver (such as an ODBC or JDBC driver) that communicates with the database
server through the network.

With the linked library access, an application links to a static library (for example, .lib or .a for UNIX) that
contains the full database server functionality. This means IBM solidDB runs in the same executable with the
application, eliminating the need to transfer data through the network. The application that links to the linked
library access library can also have multiple connections, using both ODBC API and SA API. Both of these
APIs are reentrant, allowing simultaneous connections from separate threads.

A user application that links directly to the linked library access library can also create remote connections
to other database servers. The connect string that is passed to the ODBC API or SA API connect function
defines whether the connection type is local or remote.

For details on linking an application, read Section 3.2, “Linking Applications for the Linked Library Access”.

When you start your application, only the code in your application starts running automatically. The server
code is largely independent of your application code, and you must explicitly start the server by calling a
function. (In most or all implementations, the server runs on threads that are separate from the thread(s) used
by the application. Calling the function to start a server will perform any initialization steps required by the
server code, create the appropriate additional threads if necessary, and start the server running on those threads.)

2.1.1 Disk-based vs. Diskless Servers

Linked library access library contains two different function calls to start the server. One of the function calls
starts a normal (that is, disk-based) server, while the other starts a server that does not use the disk drive. For
more information, see Chapter 5, Using the Diskless Capability and the descriptions of the SSCStartServer
and SSCStartDisklessServer functions.

2.1.2 Library Contents

Linked library access library includes functions for three separate APIs:

• IBM solidDB Control API (SSC API) library that contains functions to control task scheduling.

9

2.1 Linked Library Access Library

• IBM solidDB ODBC Driver functions that allows for direct communication with the server library, without
going through the network.

• IBM solidDB SA API library which may be required for additional functionality using the linked library
access. For example, this library allows you to insert, delete, and select records from a table.

Because your application gets linked to a library with all three of these APIs (SSC, SA, and ODBC), your
application program may call functions from any combination of these APIs. For details on each of these
APIs, read Section 2.2, “IBM solidDB Client APIs and Drivers for Linked Library Access”.

Note

Remote applications have access to the same three APIs (SSC, SA, and ODBC). However, the functions
for these three APIs are not all in the same file for remote applications. For details on remote and dual
role applications, read Section 2.1.3, “Application Types Used with Linked Library Access”. For in-
formation on API files for remote applications, read Section 2.2, “IBM solidDB Client APIs and
Drivers for Linked Library Access”.

10

2.1.2 Library Contents

Figure 2.2. Linking to IBM solidDB

2.1.3 Application Types Used with Linked Library Access

The linked library access application is "local" to the server; the server and the application are combined into
a single program. Calls to ODBC functions actually go directly to the server, rather than going through an
ODBC driver and the communications protocol (such as TCP/IP).

In addition to handling requests from the local application that is linked to the linked library access library,
the server also handles requests from remote applications.

11

2.1.3 Application Types Used with Linked Library Access

A remote application is not linked to the linked library access library. It is a separate executable that must
communicate with the server using a network connection (such as TCP/IP) or other connection (for example
shared memory). Remote applications are usually, but not always, run on a different computer from the one
that is running the server. However, a single computer can run an linked library access local application, while
running one or more remote applications as separate processes.

Most applications are either local (that is linked to the linked library access library in a single executable) or
remote (never linked to the linked library access library). However, it is also possible to write an application
that can be either local and remote; it switches modes, depending upon how it is compiled and linked. Such
a dual mode application uses, for example, the same C-language application code in either local or remote
mode; but it is linked to a different library when in local mode than when in remote mode.

Using Dual-Mode Applications with the Linked Library Access

In the case of linked library access, for example, a dual mode application must be linked to the local linked
library access library when it is run locally. However, when it is run remotely, the dual mode application must
be linked to the linked library access control API stub library (for example, solidctrlstub.lib in
Windows), so that it can be compiled, linked, and executed without link-time errors.

The "Control API stub library" is required for remote applications because the linked library access's own
Control API (which is provided in the local linked library access library) cannot be used with remote applic-
ations. For example, assume you have a local application (containing Control API functions) that links to a
standard ODBC library. You want to run the same application remotely. By linking to the Control API stub
library, you avoid having to remove the Control API function calls from your code. In this way, you can
easily turn your linked library access local application into a normal remote client application.

Note

The Control API stub library contains "do-nothing" functions; if you call them in a remote application,
they have no effect on the server.

A dual mode application is useful for other reasons as well:

• You may want to test your local application first before linking it with the linked library access library.

• You may want all users/processes to have the same application logic whether they are local or remote.

Example 2.1. Dual Mode Application

Assume there are two users who are running the same application. User1 runs the application locally (benefiting
from higher performance). User2 runs the same application remotely.

12

2.1.3 Application Types Used with Linked Library Access

User1 (local user) compiles and links with the server library (solidac.a, for example) and is responsible
for starting and stopping the server and performing other scheduling tasks using the linked library access's
Control API. User2 (remote user) runs the same application, but is not able to connect to the server until User1
has started the server. Thus, only User1 is able to control the tasking system.

2.2 IBM solidDB Client APIs and Drivers for Linked
Library Access
Below is a brief description of the APIs available for use with the linked library access.

Note

These descriptions use the term "local" and "remote" applications as defined in Section 2.1.3, “Ap-
plication Types Used with Linked Library Access”.

2.2.1 IBM solidDB SA API

SA API is a low-level proprietary C-language API to IBM solidDB data management services. It is included
in the linked library access library (for example, ssolidacxx.dll for Windows or solidac.a for
UNIX). The linked library access library includes the SA-API library that provides support for local applications
using SA API function calls.

The SA API library is used internally in IBM solidDB products and provides access to data in IBM solidDB
database tables. The library contains 90 functions providing low-level mechanisms for connecting the database
and running cursor-based operations. IBM solidDB SA API can enhance performance significantly. You can
use SA API to optimize the performance of batch insert operations, for example.

For remote applications, the linked library access library also provides support for the SA API function calls.
However, you must link to a separate SA API library file (for example, solidimpsa.lib for Windows).

For details on the IBM solidDB SA API, see IBM solidDB Programmer Guide.

2.2.2 IBM solidDB ODBC API

IBM solidDB ODBC API provides a standards-compliant way to access data of a local or remote IBM solidDB
database through SQL. It provides functions for controlling database connections, executing SQL statements,
retrieving result sets, committing transactions, and other data management functionality.

ODBC API, a Call Level Interface (CLI) for IBM solidDB databases, is compliant with ANSI X3H2 SQL
CLI, and is included in the linked library access library (for example, ssolidacxx.dll for Windows or
solidac.a for UNIX).

13

2.2 IBM solidDB Client APIs and Drivers for Linked Library Access

Linked library access supports the ODBC 3.51 standard. The linked library access library includes IBM
solidDB ODBC 3.x, which provides support for local applications that require direct function calls to the
server.

For local applications, the linked library access library provides support for ODBC function calls. For remote
applications (or for a dual-mode application that is to be run remotely), you must link the ODBC Driver to
get the same functionality.

If your application is a dual mode application (i.e. can be run either locally or remotely), and if it uses linked
library access's Control API and ODBC, then you will need two different executables, one to be run locally
and one to be run remotely. When you link your application to run it locally, you will link it to the linked
library access library, which provides support for both the ODBC functions and the Control API library. When
you link your application to run it remotely, you must link it to both the ODBC driver and to the Control API
stub library (for example, solidctrlstub.lib for Windows). This stub library does not actually give
your remote application any control over the server; it simply allows you to compile and link your program
without getting errors about "unresolved symbols".

Note

When ODBC functions (in a dual mode application) are called remotely, then the calls go through
the network from the client to the server. When ODBC functions are called locally (in accelerated
applications), then the ODBC subroutine library bypasses the network and directly connects the local
application to the server.

Read IBM solidDB Programmer Guide for more details on ODBC API.

2.2.3 IBM solidDB JDBC API

JDBC API is used by remote applications only. As the core API for JDK 1.2, it defines Java classes to represent
database connections, SQL statements, result sets, database metadata, etc. It allows you to issue SQL statements
and process the results. JDBC is the primary API for database access in Java. Linked Library Access supports
both JDBC 1.x and 2.x. Read IBM solidDB Programmer Guide for more details.

2.2.4 IBM solidDB Control API (SSC API)

IBM solidDB Control API (SSC API) is a C-language, thread-safe interface to control the server behavior in
IBM solidDB database products.

The Control API is included in the linked library access library (for example, ssolidacxx.dll for Windows
or solidac.a for UNIX). The linked library access library provides support for local applications using
Control API function calls and a separate library is available for remote-only applications.

14

2.2.3 IBM solidDB JDBC API

If your application will run remotely and contains Control API function calls, then you must link the Control
API Stub library (for example, solidctrlstub.lib for Windows). This library does not actually give
your remote application control of the server; it merely allows you to compile and link your application as a
remote application without getting link-time errors IBM solidDB with linked library access.

Figure 2.3. IBM solidDB with Linked Library Access - APIs

15

2.2.4 IBM solidDB Control API (SSC API)

16

Chapter 3. Creating and Running an
Linked Library Access Application
This chapter describes how to create and run the linked library access application. It includes the following
topics:

• Downloading the linked library access library

• Linking Applications to the linked library access library

• Creating or using an existing database

• Starting and stopping IBM solidDB with the linked library access

Note

This chapter provides linked library access-specific additions, supplements, and linked library access
usage differences from IBM solidDB without the linked library access. For information on IBM
solidDB SQL, IBM solidDB data management tools, general IBM solidDB administration and
maintenance, and database error codes, refer to the IBM solidDB Administration Guide. Read Chapter 4,
Description of Control API and IBM solidDB Programmer Guide for details on developing applications
with an linked library access supported API.

3.1 Downloading the Linked Library Access Library
The IBM solidDB with linked library access is a library file that is included in the IBM solidDB Development
Kit. You may request the SDK from the IBM Corporation Website at:

http://www.ibm.com/software/data/soliddb

For example, if you are using IBM solidDB with HP-UX, the linked library access library file is solidac.a.
Refer to Section 3.2, “Linking Applications for the Linked Library Access” for a list of platform-specific
libraries.

The linked library access library for all platforms contains the following:

• IBM solidDB data management functionality

• SA API header (sa.h) for local user applications

17

http://www.ibm.com/software/data/soliddb

• IBM solidDB Control API interface header (sscapi.h) for local user applications

For details on linking a user application to the linked library access library, read Section 3.2, “Linking Applic-
ations for the Linked Library Access”.

3.1.1 Libraries for Remote Applications

For the purposes of this linked library access guide, a "remote" application is any application that is not linked
to the server - that is, any application that is not using the linked library access library. Thus an application
that is running on the same node as the database server, but that is not linked to it, is considered to be a "remote"
application. A remote application communicates with the server through a network communications protocol
such as TCP/IP. A "local" application, on the other hand, is linked to the linked library access library, and
can call functions in that library directly, without going through a network protocol.

Because a remote application goes through the network communications protocol, the linked library access
does not improve performance for remote applications. Only the local application (the one that is directly
linked to the accelerator library) has higher performance.

In some cases, however, remote applications can benefit from improved performance by using the SA API,
which allows low-level operations to read from and write to the database.

If you are using a remote application, you may need to link to the following libraries in the IBM solidDB
SDK into your application.

• Link to the IBM solidDB Control API stub library (solidctrlstub.lib for Windows platforms),
when you have Control API function calls in your application and you want to run your application remotely.
(Note that if your application is a local rather than remote application —i.e. if it is directly linked to the
linked library access library - then you do not need solidctrlstub.lib.)

For more details on the Control API Stub library (solidctrlstub.lib), read the section called “Using
Dual-Mode Applications with the Linked Library Access”.

• Link to IBM solidDB SA API (solidimpsa.lib for Windows platforms) if you are running a remote
IBM solidDB SA API application (without linked library access).

If you are using ODBC, SA API, or JDBC as remote applications only (that do not use Control API function
calls), then you do not need to link to solidctrlstub.lib.

3.1.2 Sample C Applications

For Accelerator Control API usage samples (available in C programming language), refer to samples/aclib,
samples/aclib_smartflow and samples/control_api under the installation directory. These C
samples reflect linked applications that use ODBC API functions to connect to IBM solidDB servers.

18

3.1.1 Libraries for Remote Applications

3.1.3 Using Data Synchronization

If you are new to IBM solidDB data synchronization, IBM solidDB Advanced Replication Guide contains
sample scripts.

Before you run the sample C application acsnet.c (under directory samples/aclib_smartflow), it
is recommended that you become familiar with IBM solidDB functionality by doing at least one of the follow-
ing:

• Using IBM solidDB (without the linked library access) to run the SQL scripts contained in IBM solidDB
Advanced Replication Guide. These scripts are found in samples/smartflow.

• Running the SQL scripts locally, using the IBM solidDB linked library access. As a prerequisite, you are
required to set up an application to start the server according to the instructions in this chapter. For details,
read Section 3.2, “Linking Applications for the Linked Library Access” and Section 3.3, “Starting and
Shutting Down IBM solidDB Linked Library Access”.

Note

You cannot use the SA API to run synchronization commands.

• Running the implementation sample file aclibstandalone.c, which with the linked library access
library, emulates a normal server. The sample file is located in directory samples/aclib.

After using any of these methods, it is possible to run all the steps in IBM solidDB Advanced Replication
Guide's chapter titled Getting Started with Data Synchronization using IBM solidDB SQL Editor (solsql).

Setting up Your ODBC Application with the Advanced Replication Scripts

You can build an ODBC application, similar to the sample C application acsNet.c, to execute all statements
required to set up, configure, and run a synchronizing environment. You can find acsNet.c under directory
samples/aclib_smartflow.

To set up sample databases for use with an ODBC client application, you can execute sample scripts rep-
lica3.sql, replica4.sql, replica5.sql, and replica6.sql, all of which you can find in the
samples/smartflow/eval_setup directory. These sample scripts contain SQL statements that write new data to
replica(s) and control the execution of synchronization messages. These scripts may be run independently
through the IBM solidDB SQL Editor (solsql).

Alternatively, you can embed the SQL statements into a C/ODBC application, compile, and link it directly
to the linked library access library. When linked with the linked library access, the sample scripts allow you
to get the performance benefit inherent in linked library access's architecture.

19

3.1.3 Using Data Synchronization

The sample program embed.c in the samples/odbc directory illustrates how to set up databases with an
ODBC client application using linked library access. You can insert the SQL commands from the sample
scripts, such as replica3.sql, etc., into the embed.c application.

3.2 Linking Applications for the Linked Library Access
The IBM solidDB linked library access is a library that must be linked to a user application. As long as the
application is running, local and remote application requests for IBM solidDB data management services are
available through the library.

Note

If you are writing remote user applications that use IBM solidDB Control API, you will need to link
your remote application to the IBM solidDB Control API stub library (for example, solidctrl-
stub.lib for Windows). If you are using IBM solidDB SA API remotely (without linked library
access) then you need to link to a separate IBM solidDB API library (solidimpsa.lib for Win-
dows). If you are only using ODBC, SA API, or JDBC remotely, without Control API, then there is
no need to link to the IBM solidDB Control API stub library.

You link only one application directly to the linked library access library at one time. However, once the
linked application is up and running, and the server started, any network client can connect to the server using
any of the protocols supported by the server, which depends on the operating system. These are for example,
TCP/IP, shared memory and named pipes. Remote clients cannot use direct function calls.

When linking an application to IBM solidDB with the linked library access, use one of the following libraries
required for your operating system. Refer to your operating system documentation.

Table 3.1. Linked Library Access System Libraries

IBM solidDB with linked library access libraryPlatforms

solidimpac.lib (this is an import library file that gives you access to the real
library file, which is ssolidacxx.dll)

Windows

solidac.aSolaris

solidac.aHP-UX

solidac.aLinux

solidac.aVxWorks

20

3.2 Linking Applications for the Linked Library Access

3.2.1 Preparing User Applications for the Linked Library Access

To allow your application to use the IBM solidDB with linked library access, be sure to:

• Link to the linked library access library instead of to the driver libraries.

If you are using remote applications, you may need to link to other libraries. For details, read Section 3.1.1,
“Libraries for Remote Applications”.

• Change the connect string to the local or remote server name. For details, read Section 3.2.2, “Establishing
a Local or Remote Connection to IBM solidDB with the Linked Library Access”.

• If needed, add calls to SSCStartServer and SSCStopServer or other Control API calls. For details,
read Section 4.5, “Control API Reference”.

Signal Handlers

Signal handlers are used to report the occurrence of an exceptional event to the application, for example division
by zero. You must not set signal handlers in user applications because they would override the signal handlers
that are set by the linked library access. For example, if the user application sets a signal handler for floating
point exceptions, that setting overrides the handler set by the linked library access. Thus the server is unable
to catch, for example, division by zero.

Dynamic Link Library

IBM solidDB provides both a "static" and a "dynamic" version of the linked library access library. The names
of the dynamic link library files are shown below for some major platforms. (For the names of the static lib-
raries, see Section 3.2, “Linking Applications for the Linked Library Access”.

Table 3.2. Library Files

IBM solidDB with Linked Library Access LibraryPlatforms

ssolidacxx.dllWindows

ssolidacxx.soSolaris

ssolidacxx.slHP-UX

ssolidacxx.soLinux

Both the static and dynamic library files contain a complete copy of the IBM solidDB server, in library format.
When you use a static library file (e.g. lib/solidac.a), you link your program directly to it, and of course
both your code and the library code are written to the resulting executable file. If you link to a dynamic library

21

3.2.1 Preparing User Applications for the Linked Library Access

file, the code from the library is not included in the output file that contains your executable program. Instead,
the code is loaded from the dynamic link library separately when your program runs.

Other than changing the size of your executable, there is very little difference between linking to the static
library file vs. the dynamic library file. The total amount of code in memory at any one time is, of course,
similar (assuming that you are executing a single client and a single server on your computer). Performance
is also similar, although there is a slight amount of extra overhead if you use the dynamic library.

The main advantage of using the dynamic link library file is that you can save memory IF you execute more
than one copy of the server in the same computer. For example, if you are doing development work on a single
computer and you want to have both a advanced replication Master and advanced replication Replica on the
computer at the same time, or you'd like to have a HotStandby Primary and a HotStandby Secondary at the
same time, then you may prefer to use the dynamic library so that you don't have multiple copies of the linked
library access library in memory at the same time.

On Microsoft Windows, the IBM solidDB linked library access includes the additional file lib/solidim-
pac.lib. On Microsoft Windows, if you want to use a dynamic link library, you do not link directly to the
ssolidacxx.dll dynamic link library itself; instead you link to solidimpac.lib, which is an import
library. This links only a small amount of code to your client executable. At the time that your client program
actually executes, the ssolidacxx.dll file will automatically be loaded by the Microsoft Windows oper-
ating system, and your client will be able to call the usual linked library access functions in that .dll file. The
.dll file must be in your load path when you run the program that references that .dll.

Note

Using the dynamic link library file does not mean that you can have multiple "local" clients linked
to the IBM solidDB server. Even with the dynamic library approach, you are still limited to a single
local client; all other clients must be remote clients, which means that they will communicate with
the IBM solidDB server by using TCP or some other network protocol, rather than the direct function
calls available to the local client.

MakeFile Examples

Following are examples for providing the library name in Windows and Vxworks.

Example 3.1. Microsoft Windows MakeFile Example

For the Microsoft Windows makefile example below, the IBM solidDB library name for the linked library
access is used, solidimpac.lib.

compiler

22

3.2.1 Preparing User Applications for the Linked Library Access

CC = cl
compiler flags
CFLAGS = -I. -DSS_WINDOWS -DSS_WINNT
linker flags and directives
SYSLIBS = libcmt.lib kernel32.lib advapi32.lib netapi32.lib wsock32.lib
user32.lib oldnames.lib gdi32.lib
LFLAGS = ..\solidimpac.lib
OUTFILE = -Fe

MyApp building
all: myapp

myapp: myapp.c
 $(CC) $(CFLAGS) $(OUTFILE)myapp myapp.c /link$(LFLAGS)
/NODEFAULTLIB:libc.lib

Example 3.2. VxWorks MakeFile Example

For the VxWorks makefile example below, the IBM solidDB library name for the linked library access is
used, solidac.a. Note that the example uses backslashes. If your makefile program does not support
backslashes in pathnames, then change the backslashes to slashes.

CC = ccppc
CFLAGS = -DSS_UNIX -DSS_VXW -I. -I..\..\include -I$(WIND_BASE)
\target\h \
 -DCPU=PPC603 -DMV2600
LFLAGS = -nostartfiles -s -r ..\..\lib\solidac.a
OUTFILE = -o

solidDB with AcceleratorLib samples building

all: acsNet acsrv

acsNet: acsNet.c
 $(CC) $(CFLAGS) $(OUTFILE)acsNet acsNet.c $(LFLAGS)

23

3.2.1 Preparing User Applications for the Linked Library Access

acsrv: acsrv.c
 $(CC) $(CFLAGS) $(OUTFILE)acsrv acsrv.c $(LFLAGS)

3.2.2 Establishing a Local or Remote Connection to IBM solidDB
with the Linked Library Access

Once an application is linked to the linked library access library, it can use ODBC API or SA API to establish
a local or remote connection directly to the local server. An application can also establish remote connections
to other IBM solidDB servers, including others using the linked library access.

Establishing a Local Connection

When you establish a local connection, the client's calls to the server are direct function calls to the linked
library access library; they do not go through the network.

In the ODBC API, to establish a connection to a local server (i.e. to the server that was linked to the application),
the user application calls the SQLConnect function with the literal string "localserver". Note that for the
local server connection you can also specify an empty source name "". You can also specify a local server
name, but this will cause linked library access to use a "remote" connection (to go through the network rather
than to use the direct function calls to the linked library access library).

The following ODBC API code examples connect directly to a local IBM solidDB server with username dba
and password dba :

rc = SQLConnect(hdbc, "localserver", (SWORD)SQL_NTS, "dba", 3, "dba", 3);

or

rc = SQLConnect(hdbc, "", (SWORD)SQL_NTS, "dba", 3, "dba", 3);

In the SA API, to establish a connection, the user application calls the SaConnect function with the literal
string "localserver" (not the server name). Note that for the local server connection you can also specify an
empty source name "". You can also specify a local server name, but this will cause linked library access to
use a "remote" connection (to go through the network rather than to use the direct function calls to the linked
library access library).

The following SA API example code connects directly to a IBM solidDB server with username dba and
password dba :

24

3.2.2 Establishing a Local or Remote Connection to IBM solidDB with
the Linked Library Access

SaConnectT* sc = SaConnect("localserver", "dba", "dba");

or

SaConnectT* sc = SaConnect("", "dba", "dba");

Establishing a Remote Connection

When you establish a remote connection, the client's calls to the server will go through the network rather
than use the direct function calls to the linked library access library.

In the ODBC API, to establish a remote connection, the user application calls the SQLConnect function
with the name of the remote server. The following ODBC API code example connects to a remote IBM
solidDB server with username dba and password dba. In this example, the network protocol that the client
and server use is "tcp" (TCP/IP). The server is named "remote_server1" and the port that it listens on is 1313.

rc = SQLConnect(hdbc, "tcp remote_server1 1313",
(SWORD)SQL_NTS, "dba", 3, "dba", 3);

In the SA API, to establish a remote connection, the user application calls the SaConnect function with the
name of the remote server. In this example, the network protocol that the client and server use is "tcp" (TCP/IP).
The server is named "remote_server1" and the port that it listens on is 1313.

SaConnectT* sc = SaConnect("tcp remote_server1 1313", "dba", "dba");

3.3 Starting and Shutting Down IBM solidDB Linked
Library Access
You can start up, restart, and shut down the IBM solidDB server from the following APIs:

• Explicitly, from local (linked) user application by calling the Control API function SSCStartServer
to start IBM solidDB and SSCStopServer to shut it down.

When you start a new IBM solidDB server that does not already have a database, you must explicitly
specify that IBM solidDB create a new database with the function SSCStartServer() with the

 -Uusername

25

3.3 Starting and Shutting Down IBM solidDB Linked Library Access

 -Ppassword
 -Ccatalogname (the default database catalog name)

parameters. For details, read Section 3.3.1, “Explicit Start up with the Control API Function SSCStartServ-
er”.

• Implicitly, when connecting locally to IBM solidDB for the first time, either using ODBC API function
SQLConnect or SA API function SaConnect. In this case, shut down occurs when the last local con-
nection disconnects from IBM solidDB using either function SQLDisconnect or SaDisconnect.

When IBM solidDB engine/server is started implicitly from the application, it checks if a database already
exists in the IBM solidDB directory. If a database file is found, IBM solidDB will automatically open that
database. If a database file is not found, then IBM solidDB will give an error. (IBM solidDB will not
create a new database during implicit startup. To create a new database, you must use an explicit startup
function, such as SSCStartServer, and pass the appropriate parameters.)

For details, read Section 3.3.2, “Implicit Start Up with ODBC API Function Call SQLConnect” and
Section 3.3.3, “Implicit Start Up with SA API Function Call SaConnect”.

Note

1. At server start up, recovery is performed if needed before control returns to the application.
Therefore, if the server is successfully started, it is ready to serve application requests. For the
duration of the application process, the server can be started or stopped as needed.

2. If you want to start a diskless server, you must start the server with Control API function SSC-
StartDisklessServer.

3.3.1 Explicit Start up with the Control API Function SSCStartServ-
er

To start IBM solidDB explicitly, have the user application call the following Control API function:

SSCStartServer (int argc, char* argv [],
SscServerT* h, SscStateT runflags)

where parameters are:

26

3.3.1 Explicit Start up with the Control API Function SSCStartServer

Table 3.3. SSCStartServer Parameters

DescriptionParameter

The number of command line arguments.argc

Array of command line arguments that are used during the function call. The argu-
ment argv[0] is reserved for the path and filename of the user application only
and must be present. For valid options, see SSCStartServer options below.

argv

Each server has a "handle" (a pointer to a data structure) that identifies that server
and indicates where information about that server is stored. This handle is required

h

when referencing the server with other Control API functions. The handle of the
server is provided to you when you call the SSCStartServer function. To get
the handle of the server, you create a variable that is of type pointer-to-server-
handle (i.e. you create an SSCServerT *, which is a pointer to a handle — es-
sentially a pointer to a pointer) and you pass that when you call SSCStartServ-
er. If the server is created successfully, then the SSCStartServer function
will write the handle (pointer) of the new server into the variable whose address
you passed.

The options for this parameter are SSC_STATE_OPEN (remote connections are
allowed) and SSC_STATE_PREFETCH (the server performs a prefetch if needed).

runflags

Prefetch refers to the memory and/or disk cache that provides read-ahead capability
for table content. See below for a runflags parameter entry:

runflags = SSC_STATE_OPEN | SSC_STATE_PREFETCH;

When you start the server for the first time, IBM solidDB creates a new database only if you have specified
the database administrator's username, password, and a name for the default database catalog. For details on
the database catalog, read the section "Managing Database Objects" in chapter "Using IBM solidDB SQL for
Data Management" in IBM solidDB Administration Guide.

For example:

SscServerT h; char* argv[4];
argv[0] = "appname"; /* path and filename of the user app. */
argv[1] = "-UDBA"; /* user name */
argv[2] = "-PDBA"; /* user's password */
argv[3] = "-CDBA"; /* catalog name */

27

3.3.1 Explicit Start up with the Control API Function SSCStartServer

/* Start the server */
rc = SSCStartServer(argc, argv, &h, run_flags);

If you start the server without an existing database and do not specify a database catalog name, IBM solidDB
returns an error that the database is not found.

Note

If you already have an existing database, you do not need to specify the username and password, or
the catalog name.

By default, the database will be created as one file (with the default name, solid.db, or the name you
specified in the solid.ini file) in the IBM solidDB working directory, where the current working directory
is located. An empty database containing only the system tables and views uses approximately 850 KB of
disk space. The time it takes to create the database depends on the hardware platform you are using.

After the database has been created, IBM solidDB starts listening to the network for remote client connection
requests.

SSCStartServer argv Parameter Options

Following are the command line options for the argv parameter. Note that all options are case sensitive.

Table 3.4. SSCStartServer argv Options

DescriptionOption

Changes the working directory.-c dir

Monitors users' messages and SQL statements.-m

Sets the server name.-n name

Specifies the user name of the administrator for the database being created. The
user name is case insensitive and it requires at least two characters. For user name,

-U username

the maximum number of characters is 80. A user name must begin with a letter or
an underscore. Use lower case letters from a to z, upper case letters from A to Z,
the underscore character '_', and digits from 0 to 9.

Caution

You must remember your user name to be able to connect to IBM solidDB.
There are no default user names; the user name you enter when creating

28

3.3.1 Explicit Start up with the Control API Function SSCStartServer

DescriptionOption

the database is the only user name available for connecting to the new
database.

Specifies the password of the administrator for the database being created. The
password is case insensitive and it requires at least three characters. Passwords can

-P password

begin with a letter, an underscore, or a digit. Use lower case letters from a to z,
upper case letters from A to Z, the underscore character '_', and digits from 0 to 9.

Specifies the name of the default catalog of the database, which is required if you
are starting the server for the first time. For details on catalogs, read the section

-C catalogname

"Managing Database Objects" in chapter "Using IBM solidDB SQL for Data
Management" in IBM solidDB Administration Guide.

Converts database format to current version and starts server process.-xautoconvert

Does a forced roll-forward recovery.-xforcerecovery

Ignores index errors.-xignoreerrors

Tests database blocks.-xtestblocks

Tests database index.-xtestindex

Example 3.3. Starting up SSCStartServer

Start up SSCStartServer with the servername, the catalog name, and the administrator's username and
password:

SscStateT runflags = SSC_STATE_OPEN; SscServerT h; char* argv[5];
argv[0] = "appname"; /* path and filename of the user app. */
argv[1] = "-nsolid1"; argv[2] = "-UDBA" argv[3] = "-PDBA";
argv[4] = "-CDBA"; /* Start the server */ rc =
SSCStartServer(argc, argv, &h, run_flags);

Note

If you already have an existing database, you do not need to specify the username and password, or
the catalog name.

Shut Down with SSCStopServer

If the server is started by SSCStartServer, then it must be shut down with the following function call in
the embedded application:

29

3.3.1 Explicit Start up with the Control API Function SSCStartServer

SSCStopServer()

For example:

/* Stop the server * /
SSCStopServer (h, TRUE);

3.3.2 Implicit Start Up with ODBC API Function Call SQLConnect

When function SQLConnect is called for the first time, the server is implicitly started. The server is shut
down implicitly when the user application calls function SQLDisconnect and this is the last open local
connection. Note that the server will shut down regardless of currently existing remote connections.

Note

When you start the server for the first time, you must create a IBM solidDB database by using function
SSCStartServer() and specifying the default database catalog, along with the administrator's
username and password. For a description and example, read Section 3.3.1, “Explicit Start up with
the Control API Function SSCStartServer”.

Following is an example of implicit start up and shut down with SQLConnect and SQLDisconnect:

/* Connection #1 */
rc = SQLConnect (hdbc1, "", SQL_NTS, "dba", SQL_NTS, "dba",
SQL_NTS); //Server Started Here
... odbc calls

/* Disconnect #1 */
SQLDisconnect (hdbc1); //Server Shut Down Here

/* Connection #2 */
rc = SQLConnect (hdbc2, "", SQL_NTS, "dba", SQL_NTS, "dba",
SQL_NTS); //Server Started Here
... odbc calls

/* Disconnect #2 * /
SQLDisconnect (hdbc2); //Server Shut Down Here

OR

30

3.3.2 Implicit Start Up with ODBC API Function Call SQLConnect

/* Connection #1*/
rc = SQLConnect (hdbc1, "", SQL_NTS, "dba",
SQL_NTS, "dba", SQL_NTS); // Server Started Here

/* Connection #2*/
rc = SQLConnect (hdbc2, "", SQL_NTS, "dba", SQL_NTS, "dba", SQL_NTS);

... odbc calls

/* Disconnect #1 */
SQLDisconnect (hdbc1);
/* Disconnect #2 * /
SQLDisconnect (hdbc2); // Server Shut Down Here

Note

If the server is started with an SSCStartServer function call, then SQLDisconnect does not
do implicit shut down. The server must be shut down explicitly, either by SSCStopServer, ADMIN
COMMAND 'shutdown', or other explicit shutdown methods.

SscStateT runflags = SSC_STATE_OPEN;
SscServerT server;
SQLHDBC hdbc;
SQLHENV henv;
SQLHSTMT hstmt;

/* Start the server */
SSCStartServer (argc, argv, &server, runflags); // Server Started Here

/* Alloc environment */
rc = SQLAllocEnv (&henv);

/* Connect to the database */
rc = SQLAllocConnect (henv, &hdbc);
rc = SQLConnect (hdbc, "", SQL_NTS, "dba", SQL_NTS, "dba", SQL_NTS);

/* Delete all the rows from table foo */
rc = SQLAllocStmt (hdbc, &hstmt):
rc = SQLExecDirect (hsmt, (SQLCHAR *) "DELETE FROM FOO", SQL_NTS);

31

3.3.2 Implicit Start Up with ODBC API Function Call SQLConnect

/* Commit */
rc = SQLTransact (henv, hdbc, SQL_COMMIT);
rc = SQLFreeStmt (hstmt, SQL_DROP);

/* Disconnect */
SQLDisconnect (hdbc);
SQLFreeConnect (hdbc);

/* Free the environment */
SQLFreeEnv(henv);

/* Stop the server */
SSCStopServer (server, TRUE); // Server Shut Down Here

3.3.3 Implicit Start Up with SA API Function Call SaConnect

When function SaConnect is called for the first time, the server is implicitly started. The server is shut
down implicitly when the user application calls function SaDisconnect and there are no more subsequent
connections.

Note

When you start the server for the first time, you must create a IBM solidDB database by using function
SSCStartServer() and specifying the default database catalog, along with the username and
password. For a description and example, read Section 3.3.1, “Explicit Start up with the Control API
Function SSCStartServer”.

Following is an example of implicit start up and shut down with SaConnect and SaDisconnect:

/* Open Connection */
SaConnect(...);

Server Started Here
... sa calls

/* Close Connection */
SaDisconnect(...);

32

3.3.3 Implicit Start Up with SA API Function Call SaConnect

Server Shut Down Here

Note

If the server is started with an SSCStartServer function call, then it must be shut down only with
an SSCStopServer function call.

3.3.4 Shutting Down IBM solidDB Linked Library Access

From IBM solidDB client interfaces and even from another remote IBM solidDB connection, you can shut
down the IBM solidDB server as long as you have SYS_ADMIN_ROLE privileges.

Programmatically, you can perform the shut down from an application such as IBM solidDB SQL Editor
(solsql), or IBM solidDB Remote Control1 .

To do this, perform the following steps:

1. To prevent new connections to IBM solidDB, close the database(s) by entering the following command:

ADMIN COMMAND 'close'

2. Exit all IBM solidDB users by entering the following command:

ADMIN COMMAND 'throwout all'

3. Stop IBM solidDB by entering the following command:

ADMIN COMMAND 'shutdown'

All the shutdown mechanisms will start the same routine, which writes all buffered data to the database file,
frees cache memory, and finally terminates the server program. Shutting down a server may take awhile since
the server must write all buffered data from main memory to the disk.

Note

You can use explicit methods (e.g. SSCStopServer) to shut down a server that was started with
implicit methods (e.g. SQLConnect). The converse is not true; for example, you cannot use
SQLDisconnect to stop a server that was started with SSCStartServer.

1When using IBM solidDB Remote Control for steps 1-3, you enter the command name only without quotes (for example, close).

33

3.3.4 Shutting Down IBM solidDB Linked Library Access

3.3.5 Implicit Start Configuration Parameter

IBM solidDB implicitly starts up the server only when a local connection is established. In the Accelerator
section of the solid.ini configuration file, the parameter ImplicitStart, by default, is set to Yes.
This default setting starts the server automatically when you use the function SQLConnect which is required
for any ODBC connection. The function SaConnect behaves similarly. When it is called for the first time,
the server is implicitly started.

34

3.3.5 Implicit Start Configuration Parameter

Chapter 4. Description of Control API
The Control API (also called the SSC API) is a set of functions that provide a simple and efficient means to
control the tasking system of a IBM solidDB.

4.1 Retrieving Task Information
To retrieve a list of all active tasks, use the SSCGetActiveTaskClass function. To retrieve a list of all
suspended tasks, use the SSCGetSuspendedTaskClass function. To get the priority of a task class, use
the SSCGetTaskClassPrio function.

4.2 Notifying Functions of a Special Event
The linked library access provides fine tuning of priority tasks. You can use the SSCSetNotifier()
function to establish that IBM solidDB calls a specified user-defined function whenever a special event occurs.
Special events that the function detects are:

• IBM solidDB server shutdown

• Bonsai merge from the index to the storage tree

• Bonsai merge interval maximum

• Backup or checkpoint request

• Idle server state

• Netcopy request (which is a request to send a network copy of the Primary database to the Secondary
server) received from the Primary server.

• Completion of a netcopy request, which occurs when the server is started up with the new database received
through the network copy (netcopy).

4.2.1 Obtaining IBM solidDB Status and Server Information

You can use the function SSCGetStatusNum to view current status information of the IBM solidDB
database server. The following information is displayed:

• Number of rows that are not merged from the Bonsai Tree to the Storage Tree

• Number of server threads

35

The SSCGetServerHandle function returns the IBM solidDB server handle if the server is running.

You can also use the function SSCIsRunning to verify if the server is running and the function SSCIs-
ThisLocalServer to verify whether an application is linked to the local linked library access server library
(for example, ssolidacxx.dll for Windows platforms) or a "dummy" server library (for example,
solidctrlstub.lib for Windows platforms) used to test remote applications that are using Control API.

4.3 Summary of Control API Functions
The following is a brief summary of Control API functions and where the function is described in the Control
API Function Reference section.

Table 4.1. Summary of Control API Functions

For more details, seeDescriptionFunction

See Section 4.11, “SSC-
SetCipher”.

Sets an application-provided encryption library.SSCSetCipher

See Section 4.15, “SSC-
StartServer”.

Starts a IBM solidDB linked library access
Server.

SSCStartServer

See Section 4.14, “SSC-
StartDisklessServer”.

Starts a IBM solidDB linked library access
diskless server.

SSCStartDisklessServer

See Section 4.13, “SSC-
SetState”.

Sets the state of a IBM solidDB server (for ex-
ample, SSC_STATE_OPEN indicates if sub-

SSCSetState

sequent connections are allowed). Setting the
state to ~SSC_STATE_OPEN will block local,
as well as remote, connections.

See Section 4.10,
“SSCRegisterThread”.

Registers an linked library access application
thread for the server. Registration is required in

SSCRegisterThread

every thread in the user application before any
Accelerator API function can be called.

See Section 4.17, “SS-
CUnregisterThread”.

Unregisters an linked library access application
thread for the server. Registration removal is re-

SSCUnregisterThread

quired in every thread that is registered before
terminating.

See Section 4.16, “SSC-
StopServer”.

Stops IBM solidDB server.SSCStopServer

36

4.3 Summary of Control API Functions

For more details, seeDescriptionFunction

See Section 4.12, “SSC-
SetNotifier”.

Specifies a user-defined function which IBM
solidDB calls at a specified event, such as merge,
backup, shutdown, etc.

SSCSetNotifier

See Section 4.8, “SSCIs-
Running”.

Returns non-zero if the server is running.SSCIsRunning

See Section 4.9, “SSCIs-
ThisLocalServer”.

Indicates whether the application is linked to the
IBM solidDB server with the linked library ac-

SSCIsThisLocalServer

cess or the "dummy" (solidctrlstub) library
to test IBM solidDB remote applications using
the linked library access's Control API.

See Section 4.6, “SSCGet-
ServerHandle”.

Returns the IBM solidDB server handle if the
server is running.

SSCGetServerHandle

See Section 4.7, “SSCGet-
StatusNum”.

Gets IBM solidDB status information.SSCGetStatusNum

4.4 Control API and Equivalent ADMIN COMMANDs
Control API functions have equivalent IBM solidDB SQL extension ADMIN COMMANDs. You can execute
these commands from both remote and local sites through IBM solidDB tools, such as IBM solidDB Remote
Control (solcon), and IBM solidDB SQL Editor (solsql).

Refer to Appendix A, Linked Library Access Parameters for details on Control API equivalent ADMIN
Commands.

4.5 Control API Reference
The following pages describe each Control API function in alphabetic order. Each description includes the
purpose, synopsis, parameters, return value, and comments.

4.5.1 Function Synopsis

The declaration synopsis for the function is:

ReturnType SSC_CALL function(modifier parameter[,...]);

The ReturnType varies, but is usually a value that indicates success or failure of the call. Return values are
described in more detail later in this section.

37

4.4 Control API and Equivalent ADMIN COMMANDs

SSC_CALL is required for portability. SSC_CALL specifies the calling convention of the function. It is
defined appropriately for each platform in the sscapi.h file.

Parameters are in italics and are described below.

Parameter Description

In each function description, parameters are described in a table format. Included in the table is the general
usage type of the parameter (described below), as well as the use of the parameter variable in the specific
function.

Parameter Usage Type

The table below shows the possible usage type for Control API parameters. Note that if a parameter is used
as a pointer, it contains a second category of usage to specify the ownership of the parameter variable after
the call.

Table 4.2. Control API Parameter Usage Types

MeaningUsage Type

Indicates the parameter is input.in

Indicates the parameter is output.output

Indicates the parameter is input/outputin out

Applies only to a pointer parameter. It means that the parameter is just used during
the function call. The caller can do whatever it wants with the parameter after the
function call. This is the most common type of parameter passing.

use

Applies only to a pointer parameter. It means that the parameter value is taken by
the function. The caller cannot reference the parameter after the function call. The

take

function or an object created in the function is responsible for releasing the para-
meter when it is no longer needed.

Applies only to a pointer parameter. It means that the function holds the parameter
value even after the function call. The caller can continue to reference the parameter
value after the function call and is responsible for releasing the parameter.

hold

Warning

Because this parameter is shared by the user and the server, you must not
release it until the server is finished with it. In general, you can free the
held object after you free the object that is holding it. For example:

38

4.5.1 Function Synopsis

MeaningUsage Type

conn = SaConnect("", "dba", "dba");
/* Connection is held until cursor is freed */
scur = SaCursorCreate(conn, "mytable");
...
SaCursorFree(scur);
/* After we free the cursor, it is safe to free */
/* the connection (or, as in this case, call a */
/* server function that frees the connection). */
SaDisconnect(conn);

4.5.2 Return Value

Each function description indicates if the function returns a value and the type of value that is returned.

SscTaskSetT

When functions return a value of type SscTaskSetT, this definition is used as a bit mask. SScTaskSetT
is defined in sscapi.h with the following possible values:

SSC_TASK_NONE
SSC_TASK_CHECKPOINT
SSC_TASK_BACKUP
SSC_TASK_MERGE
SSC_TASK_LOCALUSERS
SSC_TASK_REMOTEUSERS
SSC_TASK_SYNC_HISTCLEAN
SSC_TASK_SYNC_MESSAGE
SSC_TASK_HOTSTANDBY
SSC_TASK_HOTSTANDBY_CATCHUP
SSC_TASK_ALL (all of the above tasks)

Note that the HotStandby "netcopy" and HotStandby "copy" operations are performed by the task
"SSC_TASK_BACKUP"; there is no separate task "SSC_TASK_NETCOPY".

39

4.5.2 Return Value

4.5.3 Control API Error Codes and Messages

Control API functions may return the following error codes and messages:

Table 4.3. Error Codes and Messages for Control API Functions

DescriptionError Code/Message

Operation is successful.SSC_SUCCESS

Generic error.SSC_ERROR

Operation aborted.SSC_ABORT

SSCAdvanceTasks returns this message if all tasks
are executed.

SSC_FINISHED

SSCAdvanceTasks returns this message if there are
still more tasks to execute.

SSC_CONT

There are open connections.SSC_CONNECTIONS_EXIST

There are unfinished tasks.SSC_UNFINISHED_TASKS

The server is already running.SSC_INFO_SERVER_RUNNING

Invalid local server handle given. This server does not
match the one started through SSCStartServer.

SSC_INVALID_HANDLE

No license or invalid license file found.SSC_INVALID_LICENSE

No database file found.SSC_NODATABASEFILE

The server is not running.SSC_SERVER_NOTRUNNING

The server is in netcopy mode (applies only with High
Availability/HotStandby).

SSC_SERVER_INNETCOPYMODE

These constants (SSC_SUCCESS, etc.) are defined in the sscapi.h file.

4.6 SSCGetServerHandle
SSCGetServerHandle returns the IBM solidDB server handle if the server is running.

40

4.5.3 Control API Error Codes and Messages

Synopsis

SscServerT SSC_CALL SSCGetServerHandle(void)

Comments

This function has no corresponding IBM solidDB SQL extension ADMIN COMMAND.

Return value

• NULL if the server is not running.

• The server handle if the server is running.

4.7 SSCGetStatusNum
SSCGetStatusNum gets the status information of IBM solidDB.

Synopsis

SscRetT SSC_CALL SSCGetStatusNum(SscServerT h, SscStatusT stat,
 long * num)

The SSCGetStatusNum function accepts the following parameters:

Table 4.4. SSCGetStatusNum Parameters

DescriptionUsage TypeParameters

Handle to server.in, useh

Specifies the status identifier for retrieval:instat

If the function was successful, then when it returns this parameter's
value will be set to either the number of writes not merged, or the

outnum

number of server threads, depending upon which information was
requested.

41

Synopsis

Comments

This function has no corresponding IBM solidDB SQL extension ADMIN COMMAND.

If you call SSCGetStatusNum and pass it an unrecognized value for the stat parameter, then the function
will return SSC_SUCCESS.

Return value

• SSC_SUCCESS - Operation is successful. This value is also returned if you pass an invalid value for the
stat parameter.

• SSC_ERROR - Operation failed.

• SSC_SERVER_INNETCOPYMODE - The server is in netcopy mode (HotStandby only)

• SSC_SERVER_NOTRUNNING - The server is not running.

4.8 SSCIsRunning
SSCIsRunning returns non-zero if the server is running.

Synopsis

int SSC_CALL SSCIsRunning(SscServerT h)

The SSCIsRunning function accepts the following parameters:

Table 4.5. SSCIsRunning Parameters

DescriptionUsage TypeParameters

Handle to serverin, useh

Return value

• 0 - The server is not running.

• nonzero - The server is running.

42

Comments

Comments

This function has no corresponding IBM solidDB SQL extension ADMIN COMMAND.

4.9 SSCIsThisLocalServer
SSCIsThisLocalServer indicates whether the application is linked to a IBM solidDB server or the
"dummy" (solidctrlstub) library. The solidctrlstub library allows developers to test IBM solidDB
remote applications using Control API without linking the linked library access library and modifying the
source code.

Synopsis

int SSC_CALL SSCIsThisLocalServer(void)

Return value

• 0 - The application is not linked to the IBM solidDB server.

• 1 - The application is linked to the IBM solidDB server.

Comments

This function has no corresponding IBM solidDB SQL extension ADMIN COMMAND.

4.10 SSCRegisterThread
SSCRegisterThread registers a IBM solidDB application thread for the server. Every thread that uses
Control API, ODBC API, or SA API must be registered. The SSCRegisterThread function must be
called by the thread before any other linked library access API function can be used.

If the application has only one (main) thread, that is, if the application creates no threads itself, then registration
is not required.

Before a thread terminates, it must unregister itself by calling the function SSCUnregisterThread.

43

Comments

Synopsis

SscRetT SSC_CALL SSCRegisterThread(SscServerT h)

The SCCRegisterThread function accepts the following parameters:

Table 4.6. SCCRegisterThread Parameters

DescriptionUsage TypeParameters

Handle to serverIn, Useh

Return value

• SSC_SUCCESS

• SSC_INVALID_HANDLE

Comments

This function has no corresponding IBM solidDB SQL extension ADMIN COMMAND.

See also

SSCUnregisterThread

4.11 SSCSetCipher
SSCSetCipher function sets application-provided cipher and encryption/decryption functions. The provided
cipher will be automatically used when the related database encryption command line arguments are used in
SSCStartServer.

Synopsis

void SSC_CALL SSCSetCipher(
 void* cipher,
 char* (SSC_CALL *encrypt)(void *cipher, int page_no, char *page,
 int n, size_t pagesize),

44

Synopsis

 int (SSC_CALL *decrypt)(void *cipher, int page_no, char *page,
 int n, size_t pagesize));

Table 4.7. SSCSetCipher Parameters

DescriptionUsage TypeParameters

A pointer to an application-specific cipher object, for example, an
encryption password. IBM solidDB server does not use or otherwise

incipher

interpret this pointer. It only passes it to the application-provided
encryption/decryption functions.

A pointer to the application-provided encryption function. This
function is called from the server when it must encrypt the database
file or log file pages. The function parameters are:

inencrypt

• cipher - A pointer to the application provided cipher object.

• page_no - A server-provided page number. The encryption
algorithm can safely ignore it, or use it as part of the encryption
key.

• n - The number of pages to encrypt.

• pagesize - The size of page to encrypt.

• page - A pointer to the data buffer to be encrypted. The size
of the data buffer is:

n*pagesize

The function must return the pointer to the encrypted data buffer
to be written to the file of size (n*pagesize).

The server does not free the pointer to the encrypted data buffer.

The data buffer passed to the function as 'page' parameter can
be overwritten or manipulated by the encryption function in any
way. For example, the encryption function can encrypt the data
"in place" and return the 'page' pointer.

45

Synopsis

DescriptionUsage TypeParameters

A pointer to the application-provided decryption function. This
function is called from the server when it has read part of the encryp-

indecrypt

ted database or log file and has to decrypt it. The function parameters
are:

• cipher - A pointer to the application provided cipher object.

• page_no - A server-provided page number. The decryption
algorithm can safely ignore it, or use it as part of the decryption
key.

• n - The number of pages to decrypt.

• pagesize - The size of page to decrypt.

• page - A pointer to the data buffer to be decrypted. The size
of the data buffer is:

n*pagesize

Return value

The SSCSetCipher function does not return any value. It is supposed to be invoked before the linked library
access server is started by using the SSCStartServer function.

Comments

The decryption function is supposed to return a non-zero value if it has successfully decrypted the pages and
the 0 value if decryption has failed for one reason or another. In the latter case, the server makes an emergency
shutdown since it is not able to continue. The function is supposed to return the encrypted data in the same
buffer as given with the parameter 'page'.

Example 4.1. Using the Linked Library Access Encryption API

The following code illustrates the usage of the AcceleratorLib encryption API. The encryption method is
trivial, namely the XOR obfuscation.

46

Return value

char* SS_CALLBACK encrypt(void *cipher, int page_no, char *page, int np,
size_t pagesize)
{
 size_t n = np*pagesize;
 int *key = cipher;
 size_t i;

 for (i=0; i<n; i++) {
 page[i] ^= (i+*key);
 }
 return page;
}

bool SS_CALLBACK decrypt(void *cipher, int page_no, char *page, int np,
size_t pagesize)
{
 size_t n = np*pagesize;
 int *key = cipher;
 size_t i;

 for (i=0; i<n; i++) {
 page[i] ^= (i+*key);
 }

 return TRUE;
}
...

int main(int argc, char** argv)
{
 int key = 17;
...
 SSCSetCipher(&key, encrypt, decrypt);
 sscret = SSCStartServer(argsc, args, &h, SSC_STATE_OPEN);

 SSCStopServer(h, FALSE);
...

}

47

Comments

4.12 SSCSetNotifier
SSCSetNotifier sets the callback functions that an linked library access server calls when it is started or
stopped. The function does not have a corresponding ADMIN COMMAND.

Synopsis

SscRetT SSC_CALL SSCSetNotifier(SscServerT h, SscNotFunT what,
 notify_fun handler, void* userdata
)

The SSCSetNotifier function accepts the following parameters:

Table 4.8. SSCSetNotifier Function Parameters

DescriptionUsage TypeParameters

Handle to the server.inh

Specifies the event for notification. Options are:inwhat

• SSC_NOTIFY_EMERGENCY_EXIT

This function is called if a server crashes after it has been activ-
ated with SSCStartServer(). The notifier call SSCSetNo-
tifier() has to be issued before SSCStartServer()

• SSC_NOTIFY_SHUTDOWN

Function is called at shutdown.

• SSC_NOTIFY_SHUTDOWN_REQUEST

Function is called when the server receives the shutdown request
and may shut down if the user-defined function accepts the re-
quest. You can refuse the shut down by returning SSC_ABORT
from the notified function, or proceed with the request by return-
ing SSC_CONTINUE.

• SSC_NOTIFY_ROWSTOMERGE

48

4.12 SSCSetNotifier

DescriptionUsage TypeParameters

Function is called when there is data in the bonsai index tree
that needs to be merged to the storage server.

• SSC_NOTIFY_MERGE_REQUEST

Function is called when the MergeInterval parameter setting
in the solid.ini configuration file is exceeded and the merge
has to start.

• SSC_NOTIFY_BACKUP_REQUEST

Function is called when a backup is requested. You can refuse
the backup by returning SSC_ABORT from the notified func-
tion.

• SSC_NOTIFY_CHECKPOINT_REQUEST

Function is called when a checkpoint is requested. You can re-
fuse the checkpoint by returning SSC_ABORT from the notified
function.

• SSC_NOTIFY_IDLE

Function is called when the server switches to the idle state.

• SSC_NOTIFY_NETCOPY_REQUEST

This callback function applies to the HotStandby component
only. The function is called when a netcopy request (which is
a request to send a network copy of the Primary database to the
Secondary server) is received from the Primary server. For de-
tails on the netcopy command, refer to IBM solidDB High
Availability User Guide.

• SSC_NOTIFY_NETCOPY_FINISHED

This callback function applies to the HotStandby component
only. The function is called when a netcopy request is finished.
When finished, the server is started up with the new database
received through the network copy (netcopy) and SSC_NOTI-
FY_FINISHED is called to inform the application that the
server is again available.

49

Synopsis

DescriptionUsage TypeParameters

User function to call.in, holdnoti-
fy_fun_hand-
ler

User data to be passed to the notify function.in, holduserdata

Be sure to read the warning on releasing a parameter of usage type
hold under the section called “Parameter Description”.

Return value

• SSC_SUCCESS - Request from the server accepted.

HotStandby only:

If SSC_NOTIFY_NETCOPY_FINISHED returns SSC_SUCCESS, then all other application connections
are terminated and the server is set to "netcopy listening mode". In this mode the server accepts the con-
nection from the Primary server and the only possible operation for the Secondary server is to receive the
data from the hotstandby netcopy command. For more details on "netcopy listening mode", read IBM
solidDB High Availability User Guide. (Note that in the past, "netcopy listening mode" was also called
"backup listening mode".)

• SSC_ABORT - Request from the server denied.

HotStandby only:

If the SSC_NOTIFY_NETCOPY_REQUEST returns SSC_ABORT, then the netcopy is not started and
an error code (SRV_ERR_OPERATIONREFUSED) is returned to the Primary server.

• SSC_INNETCOPYMODE - The server is in netcopy mode (HotStandby only).

SSC_SERVER_NOTRUNNING - The server is not running.

Comments

This function has no corresponding IBM solidDB SQL extension ADMIN COMMAND.

Releasing a parameter of usage type hold should be done with caution. Read the warning for hold the section
called “Parameter Description”.

The user-defined notifier function should not call any SA, SSC, or ODBC function.

50

Return value

When creating a user-defined notifier function, you must conform to the following prototype:

int SSC_CALL mynotifyfun(SscServerT h, SscNotFunT what ,void* userdata);

Once you have used SSC_CALL to explicitly define the convention for your user function, then you use the
SSCSetNotifier function to register the function so that it is called during the specified event; for example:

SscRetT SSCSetNotifier(h, SSC_NOTIFY_IDLE, mynotifyfun, NULL);

Example

Example 4.2. Calling a Function upon Shutdown

Assume a user creates the function user_own_shutdownrequest, which is called every time a shut
down is requested:

int user_own_shutdownrequest(SscServerT * handle, int reason, void
 *udata);
{
 if (shutdown not needed) {
 return SSC_ABORT;
 }
 return SSC_SUCCESS; /*Proceed with shutdown*/
}

The SSCSetNotifier function can then be called as follows to specify that user_own_shutdownre-
quest gets called before the server is shut down.

SSCSetNotifier(handle, SSC_NOTIFY_SHUTDOWN, user_own_shutdownrequest, NULL);

Note

If function user_own_shutdownrequest returns SSC_ABORT, the shut down is not allowed and if the
function returns SSC_SUCCESS, the shut down can proceed.

51

Example

4.13 SSCSetState
SSCSetState sets the state of an linked library access server. This allows you to control whether the server
accepts subsequent connections, and whether the server uses prefetch.

If the server is set to "open", then the server will accept connections. If the server is set to "closed", then it
will not accept any further connections (this applies to both local connections and remote connections);
however, any connections that have already been made are allowed to continue.

Turning on prefetch tells the server to "read ahead" to fetch data that is likely to be referenced soon. Prefetch
requires more memory or disk cache space. When prefetch is on, performance is generally higher. When
prefetch is off, less memory is required. Turning on prefetch is most useful if you have queries that involve
large sequential scans of the server. For example, if you use reports or aggregate functions to get values for
the entire database (or large portions of it), then prefetch may help. Prefetch is generally not useful if all your
queries involve only one or a few records. Because prefetch uses up memory, prefetch may actually reduce
performance in systems with little available memory.

The following guidelines may help you decide when to use prefetch.

DO use prefetch when: you have a lot of available memory (or disk cache space) and your queries require
large sequential scans.

DO NOT use prefetch when: you have little available memory and your queries generally read unrelated records
one at a time.

Synopsis

SscRetT SSC_CALL SSCSetState(ssc_serverhandle_t h,SscStateT runflags)

The SSCSetState function accepts the following parameters:

Table 4.9. SSCSetState Function Parameters

DescriptionUsage TypeParameter

Handle to the server.in, useh

Options can be a combination of the flags SSC_STATE_OPEN,
which means new remote connections are allowed and

inrunflags

SSC_STATE_PREFETCH, which means the user allows the server
to do a prefetch if needed. Following is an example of the possible
combinations:

52

4.13 SSCSetState

DescriptionUsage TypeParameter

• set server open: state = state | SSC_STATE_OPEN;

• set server closed: state = state & ~SSC_STATE_OPEN;

• set prefetch on: state = state | SSC_STATE_PREFETCH;

• set prefetch off: state = state & ~SSC_STATE_PREFETCH;

Return value

• SSC_SUCCESS - Operation is successful.

• SSC_ERROR - Operation failed.

• SSC_SERVER_INNETCOPYMODE - The server is in netcopy mode (HotStandby only).

• SSC_SERVER_NOTRUNNING - The server is not running.

Comments

This function has a corresponding IBM solidDB SQL extension ADMIN COMMAND. The command is:

ADMIN COMMAND 'close';

4.14 SSCStartDisklessServer
SSCStartDisklessServer starts a diskless server using the linked library access.

Synopsis

SscRetT SSC_CALL SSCStartDisklessServer (int argc, char* argv[],
 SscServerT * h, SscStateT runflags, char* lic_string, char* ini_string);

The SSCStartDisklessServer function accepts the following parameters:

53

Return value

Table 4.10. SSCStartDisklessServer Parameters

DescriptionUsage TypeParameters

The number of command line arguments.inargc

Array of command line arguments that are used during the function
call. The argument argv[0] is reserved only for the path and filename

in, useargv

of the user application and must be present. For a list of valid argu-
ments, refer to the SSCStartDisklessServer parameter op-
tions listed below.

Returns a handle to the started server. This handle is needed when
referencing the server with other Control API functions.

outh

The only option for this parameter is:inrunflags

SSC_STATE_OPEN - Remote connections are allowed.

runflags = SSC_STATE_OPEN

Specifies the string containing the IBM solidDB license file.inlic_string

Specifies the string containing the IBM solidDB configuration file.inini_string

SSCStartDisklessServer Parameter Options

Following are the command line options for the argv parameter.

Table 4.11. Command Line Options for the argv Parameter

DescriptionOption

Displays help.-h

Sets server name.-nname

Specifies the username for the data. The username is case insensitive.
The username requires at least two characters. For username, the maxim-

-Uusername

um number of characters is 80. A user name must begin with a letter or
an underscore. Use lower case letters from a to z, upper case letters from
A to Z and the underscore character '_', and digits from 0 to 9.

Note

You must remember your username to be able to connect to IBM
solidDB. There are no default usernames ; the username you enter

54

SSCStartDisklessServer Parameter Options

DescriptionOption

when creating the database is the only username available for
connecting to the new database.

Specifies the given password for the data. The password is case insensit-
ive. The password requires at least three characters. Passwords can begin

-Ppassword

with a letter, underscore, or a number. Use lower case letters from a to
z, upper case letters from A to Z and the underscore character '_', and
digits from 0 to 9.

Specifies the catalog name for the data, required if you are starting the
server for the first time. When specifying this parameter, be sure to use

-Ccatalogname

uppercase C. For details on catalogs, read the section "Managing Database
Objects" in chapter "Using IBM solidDB SQL for Data Management" in
IBM solidDB Administration Guide.

Ignores index errors.-x ignoreerrors

Return value

• SSC_SUCCESS - The server is started.

• SSC_ERROR - The server failed to start.

• SSC_SERVER_INNETCOPYMODE - The server is netcopy mode (HotStandby only).

• SSC_INFO_SERVER_RUNNING - The server is already running.

• SSC_INVALID_HANDLE - Invalid local server handle given.

• SSC_INVALID_LICENSE - No license or invalid license file found.

Comments

By default, the state is set to SSC_STATE_OPEN.

This function has no corresponding IBM solidDB SQL extension ADMIN COMMAND.

55

Return value

Example

Example 4.3. SSCStartDisklessServer

SscStateT runflags = SSC_STATE_OPEN;
SscServerT h;
char* argv[4]; /* pointers to four parameter strings */
int argc = 4;
char* lic = get_lic(); /* get the license */
char* ini = get_ini(); /* get the solid.ini */
SscRetT rc;
argv[0] = "appname"; /* path and filename of the user app. */
argv[1] = "-Udba"; /* user name */
argv[2] = "-Pdba"; /* user's password */
argv[3] = "-Cdba"; /* catalog name */
/* Start the diskless server */
rc = SSCStartDisklessServer(argc, argv, &h, runflags, lic, ini);

Note

In the example, get_ini() and get_lic() are functions that a user must write. Each must return
a string that contains the solid.ini file text or the solid.lic license file.

If you do not specify a catalog name, IBM solidDB returns an error.

See also

SSCStopServer

See also Chapter 5, Using the Diskless Capability.

4.15 SSCStartServer
SSCStartServer starts the linked library access. In multi-thread environments, the server runs in a separate
thread(s) from the client. For the duration of the application, the application can start or stop the server sub-
routines as needed.

Note that the third parameter is an "out" parameter. If the server is started successfully, then the SSC-
StartServer routine will set this parameter to point to the handle for this server.

56

Example

Note

If you are starting a diskless server, you must start the server with Control API function SSC-
StartDisklessServer. Read Section 4.14, “SSCStartDisklessServer”.

Synopsis

SscRetT SSC_CALL SSCStartServer(int argc, char* argv[], SscServerT* h
 SscStateT runflags)

The SSCStartServer function accepts the following parameters:

Table 4.12. SSCStartServer Parameters

DescriptionUsage TypeParameters

Number of command line arguments.inargc

Array of command line arguments. For a list of valid arguments,
refer to Section 4.15, “SSCStartServer”.

in, useargv

Returns a handle to the started server. This handle is needed when
referencing the server with other Control API functions.

outh

Options can be one or both of the following:inrunflags

• SSC_STATE_OPEN - Remote connections are allowed.

• SSC_STATE_PREFETCH - Server will do a prefetch if needed.

For example:

runflags = SSC_STATE_OPEN &
SSC_STATE_PREFETCH

Return value

• SSC_SUCCESS - The server started.

• SSC_ERROR - The server failed to start.

57

Synopsis

• SSC_ABORT

• SSC_BROKENNETCOPY - Database corrupted because of incomplete netcopy.

• SSC_FINISHED

• SSC_CONT

• SSC_CONNECTIONS_EXIST

• SSC_UNFINISHED_TASKS

• SSC_INVALID_HANDLE - Invalid local server handle given.

• SSC_INVALID_LICENSE - No license or invalid license file found.

• SSC_NODATABASEFILE - No database file found.

• SSC_SERVER_NOTRUNNING

• SSC_INFO_SERVER_RUNNING - The server is already running.

• SSC_SERVER_INNETCOPYMODE - The server is in netcopy mode (HotStandby only).

• SSC_DBOPENFAIL - Failed to open database.

• SSC_DBCONNFAIL - Failed to connect to database.

• SSC_DBTESTFAIL - Database test failed.

• SSC_DBFIXFAIL - Database fix failed.

• SSC_MUSTCONVERT - Database must be converted.

• SSC_DBEXIST - Database exists.

• SSC_DBNOTCREATED - Database not created.

• SSC_DBCREATEFAIL - Database create failed.

• SSC_COMINITFAIL - Communication init failed.

• SSC_COMLISTENFAIL - Communication listen failed.

• SSC_SERVICEFAIL - Service operation failed.

58

Return value

• SSC_ILLARGUMENT - Illegal command line argument.

• SSC_CHDIRFAIL - Failed to change directory.

• SSC_INFILEOPENFAIL - Input file open failed.

• SSC_OUTFILEOPENFAIL - Output file open failed.

• SSC_SRVCONNFAIL - Server connect failed.

• SSC_INITERROR - Operation init failed.

• SSC_CORRUPTED_DBFILE - Assert or other fatal error.

• SSC_CORRUPTED_LOGFILE - Assert or other fatal error.

Comments

By default, the state is set to SSC_STATE_OPEN.

This function has no corresponding IBM solidDB SQL extension ADMIN COMMAND.

When you start a new IBM solidDB server, you must explicitly specify that IBM solidDB create a new database
with the function SSCStartServer() with the -Uusername -Ppassword -Ccatalogname (the default
database catalog name) parameters. For details, read Section 3.3.1, “Explicit Start up with the Control API
Function SSCStartServer”.

If you are restarting a database server (i.e. a database already exists in the directory), then SSCStartServer
will use the existing database.

The SSCStartServer function may spawn multiple threads to run the server tasks. The server tasks include
processing local and remote client requests, as well as running various background tasks, such as checkpoints,
merges, etc.

See also

SSCStopServer

4.16 SSCStopServer
SSCStopServer stops an linked library access server.

59

Comments

Note that you can use explicit methods (e.g. SSCStopServer) to shut down a server that was started with
implicit methods (e.g. SQLConnect). The converse is not true; for example, you cannot use SQLDisconnect
to stop a server that was started with SSCStartServer.

An application is not limited to starting and stopping the server once each time that the application is run.
After the server has been stopped, the application can re-start the server by using SSCStartServer.

Synopsis

SscRetT SSC_CALL SSCStopServer(SscServerT h, bool force)

The SSCStopServer function accepts the following parameters:

Table 4.13. SSCStopServer Parameters

DescriptionUsage TypeParameter

Handle to serverin, useh

Options are:inforce

• TRUE - stop server in all cases.

• FALSE - stop server if there are no open connections. Otherwise,
stop fails.

Return value

• SSC_SUCCESS - The server is stopped.

• SSC_CONNECTIONS_EXIT - There are open connections.

• SSC_UNFINISHED_TASKS - Tasks that are executing.

• SSC_ABORT

• SSC_ERROR

Comments

Remote users can stop IBM solidDB by using ADMIN COMMAND 'shutdown'. Refer to Appendix A,
Linked Library Access Parameters for details.

60

Synopsis

The FALSE option does not permit shut down if there are open connections to the database or existing users.
This option is equivalent to IBM solidDB SQL extension ADMIN COMMAND 'shutdown'.

The SSCSetState() with the &~SSC_STATE_OPEN option prevents new connections to IBM solidDB.

See also

SSCStartServer

SSCSetState

4.17 SSCUnregisterThread
SSCUnregisterThread unregisters a IBM solidDB application thread for the server. The SSCUnre-
gisterThread function must be called by every thread that has registered itself with the function
SSCRegisterThread. The function is called before the thread terminates.

Synopsis

SscRetT SSC_CALL SSCUnregisterThread(SscServerT h)

The SCCUnregisterThread function accepts the following parameters:

Table 4.14. SCCUnregisterThread Parameters

DescriptionUsage TypeParameter

Handle to serverin, useh

Return value

• SSC_SUCCESS

• SSC_INVALID_HANDLE

Comments

SSC_CALL is required to explicitly define the calling convention of your user function. It is defined in the
sscapi.h file appropriately for each platform.

This function has no corresponding IBM solidDB SQL extension ADMIN COMMAND.

61

See also

See also

SSCRegisterThread

62

See also

Chapter 5. Using the Diskless
Capability
IBM solidDB linked library access allows you to create a database engine that runs without any disk storage
space. This is useful in embedded systems that do not have hard disks, such as line cards in a network router
or switch.

There are two main ways to run a diskless server: alone, and as a replica in a advanced replication system. In
each case, you will start the server by using the linked library access function call SSCStartDisklessServ-
er().

Diskless Server Alone

If you run a diskless server alone, then of course it has no way to read data when it starts up and no way to
write data when it shuts down. This means that each time the server starts, it starts without any previous data.

Furthermore, since the server has no way to write data to disk, if the server is shut down abnormally (due to
a power failure, for example), then any data in the server is lost and cannot be recovered. You can reduce the
risk of data loss by using the IBM solidDB HotStandby component to create a "hot standby" machine that
contains a copy of the data. For more information about this hot standby capability, see IBM solidDB High
Availability User Guide.

Diskless Server as Part of a Advanced Replication System

A diskless server may be a replica in a advanced replication system. In this situation, the replica may send
data to the master server and may download data from that master server. Thus, even though the replica has
no disk storage or other permanent storage of its own, it may make some or all of its data persistent within
the advanced replication system.

5.1 Configuration Parameters for a Diskless Server
This section describes the parameter settings for implementing and maintaining a diskless server.

5.1.1 Parameters Used in Diskless Servers

The following sections of the configuration file contain parameters that have specific settings for diskless
servers.

63

Index File Section

Following are the configuration parameters that affect the index file.

FileSpec_[1...N] parameter

The FileSpec parameter describes the name and the maximum size of the database file. To define the
maximum size in bytes for the main memory engine, the FileSpec parameter accepts the following argu-
ments:

• database file name - Since the diskless server does not create a physical database file, this parameter is
not used; however, a dummy value must be provided for this argument.

• maximum file size - This setting is required. You need to specify the size in bytes that is large enough to
store all the data in the diskless server. Note that the maximum file size must be smaller than the cache
size, which is set with the CacheSize parameter.

The default value for the FileSpec parameter is solidr.db, 5000000 bytes. For example:

FileSpec_1=SOLIDR.db 5000000

Note

If you specify multiple files, then the maximum file size setting must be the sum of all the FileSpec
parameter settings.

Not surprisingly, the maximum size is limited by the physical memory available, since a diskless machine
has no disk to use as swap space for virtual memory. Note that on some platforms, the amount of physical
memory available to the applications may be less than the amount of physical memory in the machine. For
example, in some versions of Linux on 32-bit systems, the amount of memory available to applications is
limited to one half or one quarter of the theoretical address space (4GB) because Linux reserves the 1 or 2
most significant bits of the address for its own memory manager.

If the data in memory exceeds the maximum file size, the error message 11003 is displayed:

File write failed, configuration exceeded

CacheSize

The CacheSize parameter defines the amount of main memory in bytes that the server allocates for the
buffer cache. For example:

64

5.1.1 Parameters Used in Diskless Servers

CacheSize=10000000

The setting for this value depends on the following criteria for diskless servers:

• For disk based tables, the cache size (in bytes) should be at least 20% larger than the maximum file size
(that is, the amount of data) set with the FileSpec parameter since this data is held in the buffer cache.
The 20% overhead is an estimate that may vary depending on the usage of the database. For example:

[IndexFile]
FileSpec_1=solid.db 10MB
CacheSize=12MB

• Even if no disk-based tables are used (the database is created by using in-memory tables), the cache is
necessary to hold system tables. In that case, the minimum cache size is 1-2 MB. The space occupied by
the system tables depends of the number and complexity of database objects and whether advanced rep-
lication is used or not.

• The cache size must be less than the physical memory available for running the diskless server.

Total memory used by the diskless server can be estimated as follows. (Note that the TOTAL of all of
these must fit within the amount of physical memory available, which means that the cache size must in
fact be significantly smaller than the amount of physical memory available to the server:)

CacheSize
+ 5MB
+ (100K * number of users * number of active statements per user)
+ in-memory table space
+ (HSB operations to be sent to the Secondary) [1][2]

[1] This term of the equation applies to HotStandby users only. An HSB Primary server needs some
memory to store HotStandby operations that are to be sent to the Secondary server. During a temporary
network failure between the Primary server and the Secondary diskless server, the Primary may continue
to accept transactions from an application. When the network connection is restored between the servers,
updates from the Primary server are sent to the Secondary server. (HotStandby uses the transaction log
to store these operations. A diskless server cannot write the transaction log to disk, of course, so the in-
formation must be stored in memory.) This memory is separate from the Cache.

65

5.1.1 Parameters Used in Diskless Servers

[2] For this term of the equation, the maximum limit is currently 1 MB or 512 operations, whichever is
lower. Unlike on a disk-based server, the transaction log is not allowed to keep growing until it uses up
all available space.

The exact amount required also depends on other factors, including the nature of the queries executed
against the server. Naturally, the amount of memory available to the server is less than the total physical
memory, since the operating system etc. will use up some of the physical memory.

Com Section

Following are the configuration parameters that affect communication between the master and the diskless
replica server (if you are using the diskless server as a advanced replication replica server).

Listen parameter [Com]

This is the protocol and name that the diskless server uses when it starts listening to the network. Its default
is Operating System dependent. Refer to "Managing Network Connections" in IBM solidDB Administration
Guide.

5.1.2 Configuration Parameters that Do Not Apply to Diskless
Engines

The following configuration file parameters (grouped by section) are disabled or inoperable for diskless
servers. These parameters affect behaviors that do not apply to diskless engines.

Table 5.1. Configuration Parameters not Applicable to Diskless Engines

DescriptionParameter

[General] Section

This parameter is disabled since checkpoints do not apply to diskless
servers.

CheckpointInterval

[IndexFile] Section

No physical read from the database file, so this parameter is inoperableReadAhead

No physical write to the database file, so this parameter is inoperablePreFlushPercent

[Logging] Section

This parameter is disabled since transaction logging is always disabled
for diskless servers.

LogEnabled

66

5.1.2 Configuration Parameters that Do Not Apply to Diskless Engines

DescriptionParameter

Note

Diskless mode supports transaction rollback only. Transaction
rollbacks are typically used when some failure interrupts a half-
completed transaction. The diskless mode does not support roll-
forward recovery.

67

5.1.2 Configuration Parameters that Do Not Apply to Diskless Engines

68

Chapter 6. Using IBM solidDB Linked
Library Access With Java

Note

This chapter assumes that you are already familiar with the material in the preceding chapters. If you
jumped straight to this chapter because you are interested only in Java/JDBC, not C/ODBC, you will
have missed too much material to understand this entire chapter.

6.1 Overview of IBM solidDB JDBC Accelerator (SJA)
A Java/JDBC program, like a C/ODBC program, may use the IBM solidDB linked library access to get
higher performance and greater control over the server. SJA enables a Java application to start a local IBM
solidDB server, which will be loaded into the Java Virtual Machine context from a dynamic library called
'ssolidacxx'. The Java application will then be able to connect to the IBM solidDB server and use the services
IBM solidDB DBMS provides through a standard JDBC API.

The client application program will get higher performance because it is directly linked to the server library,
so calls to server functions do not have the overhead of network (RPC) calls. The application will have
greater control because it can call functions (methods) in the IBM solidDB Server Control (SSC) library to
do things such as assign priorities to certain types of tasks. For example, the application might give itself a
high priority and might give remote client applications a low priority.

IBM solidDB JDBC Accelerator (SJA) can only be used when the server and client are linked together; thus,
if the Java application and the IBM solidDB server are to be run in separate hosts, SJA cannot be used.

Not surprisingly, only the "local" client (the one that is linked to the linked library access library) can bypass
the network and get the higher performance of the linked library access. Other client programs may also use
the server, but they must connect through the network, and are treated as "remote" programs even if they are
running on the same computer as the IBM solidDB server. You may only have one "local" client; the rest are
"remote". The remote programs may be a mix of C and Java programs.

The language in which the local client is written does not restrict which languages the remote clients can be
written in. For example, if you use JDBC Accelerator, the remote client programs may use C, Java, or both.

69

6.2 How the Accelerator Works
As with C programs, Java/JDBC programs that want to use the linked library access must link to the IBM
solidDB linked library access library (ssolidacxx). This library contains the entire IBM solidDB server, except
that it is in the form of a callable library instead of a standalone executable program. The ssolidacxx used
with Java/JDBC is the same as the ssolidacxx that was explained in previous chapters; there are not separate
versions for Java and C clients. Linking to the library allows a client program to avoid the overhead of RPC
(Remote Procedure Calls) through the network.

When you use the linked library access with Java/JDBC, you link the following into a single executable process:

• IBM solidDB linked library access library,

• your Java-language client program, and

• the JVM.

The "layers" in the executable process are, from top to bottom:

• Local Java/JDBC client application

• JVM (Java Virtual Machine)

• IBM solidDB Accelerator Library (ssolidacxx)

Java commands in your client are executed by the JVM. If the command is a JDBC function call, then the
JVM calls the appropriate function in ssolidacxx. The function call is "direct", rather than going through
the network (through RPC). The calls are made using JNI (Java Native Interface). Note that you do not need
to know about these low-level details. You do not need to write any JNI code yourself; you simply have to
call the same JDBC functions that you would call if you were a remote client program.

Accessing a IBM solidDB database from Java Accelerator is identical to accessing a IBM solidDB database
through RPC — with one exception: in order to access the database services, the application using Java Ac-
celerator must first start the IBM solidDB linked library access server. This is done with a proprietary API
called SolidServerControl (SSC). SSC API calls are used to start, as well as to stop, the IBM solidDB
DBMS. The actual database connections are done with normal JDBC API. Both the SolidServerControl
API and IBM solidDB's JDBC driver can be found in a .jar file named SolidDriver2.0.jar.

When the local IBM solidDB server is started, it will be loaded into the Java Virtual Machine context from
a dynamic library called ssolidacxx. The Java application will then be able to connect to the IBM solidDB
server and use the services IBM solidDB DBMS provides through a standard JDBC API.

Every local client program that uses IBM solidDB Java Accelerator follows the same basic three-step pattern:

70

6.2 How the Accelerator Works

1. Start the accelerator server with SolidServerControl

2. Access the database by using normal JDBC API

3. When database processing is done, stop the accelerator server again with SolidServerControl

The SolidServerControl classes for accessing IBM solidDB accelerator server have been embedded
inside IBM solidDB JDBC driver file, inside the solid.ssc package. The IBM solidDB JDBC driver jar
file (SolidDriver2.0.jar) contains the following packages:

• solid.jdbc.* IBM solidDB JDBC driver classes

• solid.ssc.* IBM solidDB Server Control classes (proprietary interface)

The classes inside the IBM solidDB Server Control (solid.ssc) package are:

• SolidServerControl (for starting and stopping IBM solidDB server from Java)

• SolidServerControlInitializationError (for reporting errors)

For detailed information on SolidServerControl (SSC) class interface, see Section 6.6, “IBM solidDB
Server Control (SSC) API”.

To start a IBM solidDB server from a Java application, you must instantiate the class SolidServerControl
in the beginning of your application and call the startServer method with correct parameters (examples
are given below). After you've started the server, you should be ready to make a JDBC connection to the
server.

6.3 System Requirements
You need the following to use the IBM solidDB Java Accelerator:

• The IBM solidDB linked library access library itself. This is a file named ssolidacxx. The filename extension
varies depending upon the platform; some common names and platforms are listed below:

• Microsoft Windows: ssolidacxx.dll and the import library solidimpac.lib

• Solaris and Linux: ssolidacxx.so

• HP-UX: ssolidacxx.sl

• A valid license file for using the IBM solidDB server and the linked library access

• IBM solidDB JDBC2 driver file (SolidDriver2.0.jar)

71

6.3 System Requirements

• IBM solidDB communication libraries for your platform (these are normally installed when you install
the IBM solidDB Development Kit).

• To compile the program, you must have JDK Version 1.3.1_03-b03 or later (JDK 1.4 or later on HP-UX),
and an appropriate JDK/JRE to run the program. The JDK/JRE that you use MUST have a HotSpot
runtime/compiler. SJA has been tested ONLY with HotSpot JREs.

6.4 Basic Usage

6.4.1 Installation

If you have installed a Java Development Kit (such as JDK 1.3), then you do not need to do any further install-
ation. When IBM solidDB is installed, it includes the library(s) that are needed when using the IBM solidDB
Java Accelerator.

Note

You may need to set PATH and CLASSPATH environment variables to appropriate values so that
you can access the Java compiler, etc.

6.4.2 Compiling and Running a Program

In order for the server startup to succeed, you need to have at least a valid license for using IBM solidDB and
linked library access.

The ssolidacxx dynamic link library must be in the system search path. Proceed as follows:

1. Set the paths (examples from Microsoft Windows command prompt)

set PATH=<path to your ssolidacxx DLL>;%PATH%

Make sure you have the directory containing IBM solidDB communication libraries in your path too.

2. Set your path environment variable to include JDK's HOTSPOT runtime environment in (SJA has only
been tested in hotspot JRE's). For example,

set PATH=<your JDK directory>\jre\bin\hotspot;%PATH%

3. Save the example file included in the end of this chapter into a file named SJASample.java and
compile it with the following command:

javac -classpath <IBM solidDB JDBC driver directory>/SolidDriver2.0.jar;. \ SJASample.java

72

6.4 Basic Usage

4. Run your application with a command line resembling the next one:

java -Djava.library.path=<path to ssolidacxx DLL> \ -classpath <IBM solidDB JDBC driver dir-
ectory>/SolidDriver2.0.jar;. \ <your application name>

For example, on Microsoft Windows, if you installed the server to C:\soliddb and would like to run
the SJASample program, then your command line would look like:

java -Djava.library.path=C:\soliddb\bin -classpath C:\soliddb\jdbc\SolidDriver2.0.jar;. SJASample

(On Microsoft Windows, the ssolidacxx.dll dynamic library is in the bin subdirectory of the
IBM solidDB root installation directory.)

As in the example class SJASample, you must pass the IBM solidDB server at least the following para-
meters with SolidServerControl's startServer method:

-c<directory containing IBM solidDB license file>
-U<username>
-P<password>
-C<catalog>

Note that upper and lower case "C" are both used, and they mean different things.

Assuming you have all the necessary files (ssolidacxx library, communication libraries, JDBC driver
and solid.lic) in your current working directory, you can start SJASample with a command line
like the following one:

java -Djava.library.path=. -classpath SolidDriver2.0.jar;. <your application>

If all things went as they were supposed to go, you should now have a IBM solidDB accelerator server
up and running.

6.4.3 Making JDBC Connections

IBM solidDB Java accelerator supports both local database connections as well as RPC based connections.

In order to make a local (non RPC-based) JDBC connection, you need to specify the JDBC driver that you
are using 'localserver' at port 0. Thus, if you are making the database connection by using, for example, JDBC
class DriverManager, connect by using the following statement (as also presented in the example code
SJASample further below)

73

6.4.3 Making JDBC Connections

DriverManager.getConnection("jdbc:solid://localserver:0", myLogin, myPwd);

As you can see, the DriverManager uses the URL "jdbc:solid://localserver:0" for making a connection to the
local server. If the getConnection subroutine is given another URL, the driver will probably try to connect
with RPC.

So remember the URL -

jdbc:solid://localserver:0

when making java accelerator connections.

Note

If you are using multiple threads (java.lang.Thread objects) that access IBM solidDB linked
library access server inside your Java application, you must register each thread separately with the
IBM solidDB linked library access server before you start any JDBC-related activities using that
thread. The thread registration is done by calling SolidServerControlAPI's registerThread
method in the thread's context. The thread registration must be done explicitly for each user thread
(except the main thread) using IBM solidDB's JDBC driver.

The user must also explicitly unregister each thread that has been registered to the IBM solidDB
linked library access server. To unregister a thread, call SolidServerControl API's unre-
gisterThread function.

6.5 Limitations

Note

IBM solidDB 'admin commands' do not work in the Java accelerator context.

Caution

Java doesn't behave consistently if something fails outside the VM context (for example, inside a
native method call). If something should assert (or even crash) in the IBM solidDB server native code,
Java either exits (when it notices an unexpected exception) or hangs up completely. In the latter case,
you may have to kill the dangling java process manually.

74

6.5 Limitations

6.6 IBM solidDB Server Control (SSC) API
Below is the complete public interface for the SolidServerControl class. For an example of a program that
uses some of the methods in this class, see the file samples/accelerator_java/SJASample.java

 /**
 * See solidDB Linked Library Access User Guide
 * for the following constants
 */
 public final static int SSC_SUCCESS = 0;
 public final static int SSC_ERROR = 1;
 public final static int SSC_ABORT = 2;
 public final static int SSC_FINISHED = 3;
 public final static int SSC_CONT = 4;
 public final static int SSC_CONNECTIONS_EXIST = 5;
 public final static int SSC_UNFINISHED_TASKS = 6;
 public final static int SSC_INVALID_HANDLE = 7;
 public final static int SSC_INVALID_LICENSE = 8;
 public final static int SSC_NODATABASEFILE = 9;
 public final static int SSC_SERVER_NOTRUNNING = 10;
 public final static int SSC_INFO_SERVER_RUNNING = 11;
 public final static int SSC_SERVER_INNETCOPYMODE = 12;

 public final static int SSC_STATE_OPEN = (1 << 0);
 public final static int SSC_STATE_PREFETCH = (1 << 1);

/**
 * Initiates a SolidServerControl class. Output is not directed to any
 * PrintStream.
 *
 * @return SolidServerControl instance
 */
public static SolidServerControl instance()
 throws SolidServerInitializationError;

/**
 * Initiates a SolidServerControl class. Output is being directed
 * to a PrintStream object given in parameter 'os'.

75

6.6 IBM solidDB Server Control (SSC) API

 *
 * @param os the PrintStream for output
 * @return SolidServerControl instance
 *
 */
public static SolidServerControl instance(PrintStream os)
 throws SolidServerInitializationError;

/**
 * setOutStream method sets the output to the given PrintStream
 *
 * @param os the PrintStream for output
 */
public void setOutStream(PrintStream os);

/**
 * getOutStream returns the stream used for output in class
 * SolidServerControl
 *
 * @return returns the outputstream of this object
 */
public PrintStream getOutStream();

/**
 * startServer starts the solidSB Linked Library Access server
 *
 * @param argv parameter vector for the accelerator server
 * (be sure to give the working directory containing
 * solidDB license file (f.ex. -c\tmp) first, in front
 * of other parameters.) See solidDB Linked Library
 * Access User Guide for details of parameters that can
 * be passed to the Linked Library Access server.
 *
 * @param runflags Options for this parameter are SSC_STATE_OPEN
 * (remote connections are allowed) and
 * SSC_STATE_PREFETCH (server will do a "prefetch"
 * if needed). Prefetch refers to the memory
 * and/or disk cache that provides read-ahead
 * capability for table content. Following is
 * a runflags parameter entry:

76

6.6 IBM solidDB Server Control (SSC) API

 * runflags |= SSC_STATE_OPEN & SSC_STATE_PREFETCH
 *
 * @return the return value from the server :
 * SSC_SUCCESS
 * SSC_ERROR
 * SSC_INVALID_LICENSE - No license or license file found.
 * SSC_NODATABASEFILE - No database file found.
 */
public long startServer(String[] argv, long runflags);

/**
 * stopServer stops the solidDB Linked Library Access server
 *
 * @param runflags Runflags for stopping solidDB Linked Library Access server.
 * See solidDB Linked Library Access User Guide for more
 * details.
 *
 * @return the return value from the server
 * SSC_SUCCESS if server is stopped.
 * SSC_CONNECTIONS_EXIT if there are open connections.
 * SSC_UNFINISHED_TASKS if there are still tasks that are
 * executing.
 * SSC_SERVER_NOTRUNNING if the server is not running.
 */
public long stopServer(int runflags);

/**
 * returns the state of the server, i.e. is the server running or not
 *
 * @return SSC_STATE_OPEN if server is up and running
 */
public int getState();

/**
* registerThread registers this user thread to Solid Linked Library Access server

77

6.6 IBM solidDB Server Control (SSC) API

*
*
* @return the return value from the server
* SSC_SUCCESS Registration succeeded.
* SSC_ERROR Registration failed.
* SSC_INVALID_HANDLE Invalid local server handle
given.
* SSC_SERVER_NOTRUNNING Server is not running.
*/
public long registerThread();

/**
* unregisterThread unregisters this user thread from the
* Solid Linked Library Access server
*
*
* @return the return value from the server
* SSC_SUCCESS Registration succeeded.
* SSC_ERROR Registration failed.
* SSC_INVALID_HANDLE Invalid local server handle given.
* SSC_SERVER_NOTRUNNING Server is not running.
*/
public long unregisterThread();

78

6.6 IBM solidDB Server Control (SSC) API

Appendix A. Linked Library Access
Parameters
This appendix provides a list of all parameters for the linked library access. Linked library access parameters
appear in the [Accelerator] section of the IBM solidDB configuration file (solid.ini).

For a description of all other IBM solidDB parameters, refer to the appropriate Appendix in IBM solidDB
Administration Guide.

Note that you can change IBM solidDB parameters in the following ways:

• Entering the ADMIN COMMAND 'parameter' command in IBM solidDB solsql.

• Manually editing the solid.ini configuration file.

Note that any changes to the solid.ini file using the methods above do not take effect until the next time
that the server starts.

A.1 Accelerator Section

Table A.1. Accelerator Parameters

Factory ValueDescription[Accelerat-
or]

yesIf set to yes, this parameter starts IBM solidDB automatically as soon as
the ODBC API function SQLConnect is called in a user application. If

Implicit-
Start

set to no, IBM solidDB must be explicitly started with a call to the Control
API function SSCStartServer.

79

80

Glossary
A
Accelerated Application

IBM solidDB linked library access is implemented as a subroutine library. This library can be linked to
your client application to create a single executable program, which we call an Accelerated Application.
This single executable is both a server and a client of that server.

ASCIIZ
The normal format for strings in the C programming language is ASCIIZ. A string is an ASCIIZ string
if the last byte stores the value 0 ('\0', not the ASCII character for the digit '0') to mark the end of the
string. Such a string is also sometimes referred to as a "null-terminated string", although strictly speaking
this is incorrect because "NULL" is a pointer value and is multiple bytes on most platforms, while the
'\0' is a single-byte character.

L
Local sort

A "local sort" is a sort that is done on the client side by the SA library rather than on the server side by
the server.

Lost update
A "lost update" occurs when one user's update writes over another user's update without seeing the
earlier update. For example, user1 starts a transaction, then user2 updates a column, then user1 updates
that same column and commits her transaction. User2's update was "lost". Note that this is different from
the "normal" case where one user makes a change and then commits it, and then another user starts a
transaction, sees the result of the earlier change by the other user. The difference is that when there is a
"lost" update, the first changes was not visible to the user who made the second change. Most modern
database software prevents lost updates by using record locking or optimistic concurrency control.

T
Task

On a Real-Time Operating System (RTOS), such as VxWorks, OSE, etc., a task is a "thread" of control
running within the context of a process. A process could have one or more independent yet cooperating
"programs" running within it. Each of these programs is called a task.

81

In a typical RTOS environment, tasks have immediate, shared access to system resources, while also
keeping enough separate context to maintain individual threads of control. However, all codes of tasks
within a process execute in a single common address space. Memory protection is not pre-assumed and
is the responsibility of the programmers.

82

Index
A
administering diskless servers

defining IBM solidDB configuration file options,
63

application
preparing for the linked library access, 21

B
backup listening mode, 50

(see also netcopy listening mode)

C
C applications

samples, 18
CacheSize parameter

configuring for diskless, 64
client APIs and drivers, 13
Com section

configuring for diskless, 66
connection

establishing for linked library access, 24
ODBC remote without server startup, 34

Control API
ADMIN COMMAND equivalents, 37
SSCGetActiveTaskClass (function), 35
SSCGetServerHandle (function), 35
SSCGetStatusNum (function), 35
SSCGetTaskClassState (function), 35
SSCIsRunning (function), 35
SSCIsThisLocalServer (function), 35
SSCSetNotifier (function), 35
summary of scheduling functions, 36

D
database, 64

(see also Index file section)
size, 28

diskless
parameter setting for diskless engines, 63

downloading linked library access
defined, 17

drivers and client APIs, 13
dual mode application

defined, 12

E
events

notifying function of, 35

F
FileSpec

(parameter), 64
FileSpec_1 parameter

configuring for diskless, 64

I
IBM Corporation configuration file

configuring, 63
IBM solidDB configuration file

CacheSize (parameter), 64
FileSpec (parameter), 64
Listen (parameter), 66
parameter settings, 63

IBM solidDB Control API
defined, 14

(see also Control API)
IBM solidDB JDBC API

defined, 14
IBM solidDB ODBC API

defined, 13
IBM solidDB SA

defined, 13
IBM solidDB Server Control (SSC) API, 75

SSC API, 75
implicit startup, 34
ImplicitStart (parameter), 34, 79
Index file section

configuring for diskless, 64

83

L
library

contents of linked library access, 17
for remote user applications, 18
linked library access, 20
solidimpac, 22

linked library access
Components, 7
Described, 7
downloading, 17
library, 20
linking applications for, 20
shutting down, 33
starting, 25

linking applications
for linked library access, 20

Linux
memory limitations with, 64

Listen parameter
configuring for diskless, 66

local application
defined, 11

Local sort, 81
Lost update, 81

M
makefile examples, 22
memory

CacheSize (for diskless server), 64
total used by diskless server, 65

N
netcopy listening mode, 50

O
ODBC application

building with advanced replication scripts, 19

P
parameters

FileSpec, 64
passwords

criteria, 29, 55

R
remote application

defined, 12

S
SaConnect

implicit start up with, 32
server information

retrieving, 35
shutting down

linked library access, 33
solidctrlstub, 12, 14, 15, 18, 37
solidimpac, 22
SQLConnect

implicit start up with, 30
SSC_ABORT, 40
SSC_CALL, 37
SSC_CONNECTIONS_EXIST, 40
SSC_CONT, 40
SSC_ERROR, 40
SSC_FINISHED, 40
SSC_INFO_SERVER_RUNNING, 40
SSC_INVALID_HANDLE, 40
SSC_INVALID_LICENSE, 40
SSC_NODATABASEFILE, 40
SSC_SERVER_INNETCOPYMODE, 40
SSC_SERVER_NOTRUNNING, 40
SSC_STATE_OPEN, 53, 54, 57
SSC_STATE_PREFETCH, 53, 57
SSC_SUCCESS, 40
SSC_TASK_ALL, 39
SSC_TASK_BACKUP, 39
SSC_TASK_CHECKPOINT, 39
SSC_TASK_HOTSTANDBY, 39
SSC_TASK_HOTSTANDBY_CATCHUP, 39
SSC_TASK_LOCALUSERS, 39
SSC_TASK_MERGE, 39

84

SSC_TASK_NONE, 39
SSC_TASK_REMOTEUSERS, 39
SSC_TASK_SYNC_HISTCLEAN, 39
SSC_TASK_SYNC_MESSAGE, 39
SSC_UNFINISHED_TASKS, 40
sscapi.h, 39, 40
SSCGetServerHandle

function description, 40
SSCGetStatusNum

function description, 41
SSCIsRunning

function description, 42
SSCIsThisLocalServer

function description, 43
SSCRegisterThread

function description, 43
SSCServerT, 27
SSCSetCipher

function description, 44
SSCSetNotifier

function description, 48
SSCSetState

function description, 52
SSCStartDisklessServer

function description, 53
SSCStartServer

explicit Start up with, 26
function description, 56

SSCStopServer
function description, 59
shut down with, 29

SscTaskSetT, 39
SSCUnregisterThread

function description, 61
starting IBM solidDB

with linked library access, 25
status information

retrieving, 35
synchronization

using, 19

T
Task

defined, 81
task information

retrieving, 35

U
usernames

default, 28, 54

85

86

	Chapter 1. Welcome
	1.1 About This Guide
	1.1.1 Organization
	1.1.2 Audience

	1.2 Conventions
	1.2.1 Typographic Conventions
	1.2.2 Syntax Notation

	1.3 IBM solidDB Documentation

	Chapter 2. Introducing Linked Library Access
	2.1 Linked Library Access Library
	2.1.1 Disk-based vs. Diskless Servers
	2.1.2 Library Contents
	2.1.3 Application Types Used with Linked Library Access

	2.2 IBM solidDB Client APIs and Drivers for Linked Library Access
	2.2.1 IBM solidDB SA API
	2.2.2 IBM solidDB ODBC API
	2.2.3 IBM solidDB JDBC API
	2.2.4 IBM solidDB Control API (SSC API)

	Chapter 3. Creating and Running an Linked Library Access Application
	3.1 Downloading the Linked Library Access Library
	3.1.1 Libraries for Remote Applications
	3.1.2 Sample C Applications
	3.1.3 Using Data Synchronization

	3.2 Linking Applications for the Linked Library Access
	3.2.1 Preparing User Applications for the Linked Library Access
	3.2.2 Establishing a Local or Remote Connection to IBM solidDB with the Linked Library Access

	3.3 Starting and Shutting Down IBM solidDB Linked Library Access
	3.3.1 Explicit Start up with the Control API Function SSCStartServer
	3.3.2 Implicit Start Up with ODBC API Function Call SQLConnect
	3.3.3 Implicit Start Up with SA API Function Call SaConnect
	3.3.4 Shutting Down IBM solidDB Linked Library Access
	3.3.5 Implicit Start Configuration Parameter

	Chapter 4. Description of Control API
	4.1 Retrieving Task Information
	4.2 Notifying Functions of a Special Event
	4.2.1 Obtaining IBM solidDB Status and Server Information

	4.3 Summary of Control API Functions
	4.4 Control API and Equivalent ADMIN COMMANDs
	4.5 Control API Reference
	4.5.1 Function Synopsis
	4.5.2 Return Value
	4.5.3 Control API Error Codes and Messages

	4.6 SSCGetServerHandle
	4.7 SSCGetStatusNum
	4.8 SSCIsRunning
	4.9 SSCIsThisLocalServer
	4.10 SSCRegisterThread
	4.11 SSCSetCipher
	4.12 SSCSetNotifier
	4.13 SSCSetState
	4.14 SSCStartDisklessServer
	4.15 SSCStartServer
	4.16 SSCStopServer
	4.17 SSCUnregisterThread

	Chapter 5. Using the Diskless Capability
	5.1 Configuration Parameters for a Diskless Server
	5.1.1 Parameters Used in Diskless Servers
	5.1.2 Configuration Parameters that Do Not Apply to Diskless Engines

	Chapter 6. Using IBM solidDB Linked Library Access With Java
	6.1 Overview of IBM solidDB JDBC Accelerator (SJA)
	6.2 How the Accelerator Works
	6.3 System Requirements
	6.4 Basic Usage
	6.4.1 Installation
	6.4.2 Compiling and Running a Program
	6.4.3 Making JDBC Connections

	6.5 Limitations
	6.6 IBM solidDB Server Control (SSC) API

	Appendix A. Linked Library Access Parameters
	A.1 Accelerator Section

	Glossary
	Index

