www.ibm.com/software/data/soliddb

IBM solidDB
In-Memory
Database

User Guide

Version 6.1 June 2008

solid)2

IBM solidDB In-Memory Database User Guide

Copyright © Solid Information Technology Ltd. 1993, 2008
Document number: IMDB61

Product version: 06.10.0014

Date: 2008-06-13

All rights reserved. No portion of this product may be used in any way except as expressly authorized in writing by Solid Information
Technology Ltd. or International Business Machines Corporation.

"IBM", the IBM logo, "DB2", "Informix", "Solid" and “solidDB" are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both.

All other products, services, companies and publications are trademarks or registered trademarks of their respective owners.
This product is protected by U.S. patents 6144941, 7136912, 6970876, 7139775, 6978396, and 7266702.
This product contains lexical analyzer Flex. Copyright (c) 1990 The Regents of the University of California. All rights reserved.

This code is derived from software contributed to Berkeley by Vern Paxson. The United States Government has
rights in this work pursuant to contract no. DE-AC03-76SF00098 between the United States Department of Energy
and the University of California. Redistribution and use in source and binary forms are permitted provided that:
(1) source distributions retain this entire copyright notice and comment, and (2) distributions including binaries
display the following acknowledgement: ""This product includes software developed by the University of California,
Berkeley and its contributors™ in the documentation or other materials provided with the distribution and in all
advertising materials mentioning features or use of this software. Neither the name of the University nor the names
of its contributors may be used to endorse or promote products derived from this software without specific prior
written permission. THIS SOFTWARE IS PROVIDED "AS 1S" AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

This product contains zlib general purpose compression library version 1.1.4, March 11th, 2002. Copyright (C) 1995-2002 Jean-loup
Gailly and Mark Adler.

This software is provided "as-is", without any express or implied warranty. In no event will the authors be held
liable for any damages arising from the use of this software. Permission is granted to anyone to use this software
for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following
restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the ori-
ginal software. If you use this software in a product, an acknowledgment in the product documentation would be
appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be mis-
represented as being the original software. 3. This notice may not be removed or altered from any source distribution.

This product contains the Qsort routine in the external sorter, Copyright (c) 1980, 1983, 1990 The Regents of the University of California.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the fol-
lowing disclaimer in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following acknowledge-
ment: This product includes software developed by the University of California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS"AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

This product contains the DES cipher (in ECB mode), parts of this code are Copyright (C) 1996 Geoffrey Keating. All rights reserved.

Its use is FREE FOR COMMERCIAL AND NON-COMMERCIAL USE as long as the following conditions are
adhered to.

Copyright remains Geoffrey Keating's, and as such any Copyright notices in the code are not to be removed. If
this code is used in a product, Geoffrey Keating should be given attribution as the author of the parts used. This
can be in the form of a textual message at program startup or in documentation (online or textual) provided with
the package.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the copyright notice, this list of conditions and the following dis-
claimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the fol-
lowing disclaimer in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following acknowledge-
ment: This product includes software developed by Eric Young (eay@mincom.oz.au)

THIS SOFTWARE IS PROVIDED BY GEOFFREY KEATING “"AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTAB-
ILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUP-
TION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Parts of this code (in particular, the string representing SPtrans below) are Copyright (C) 1995 Eric Young (eay@mincom.oz.au). All
rights reserved.

Its use is FREE FOR COMMERCIAL AND NON-COMMERCIAL USE as long as the following conditions are
adhered to.

Copyright remains Eric Young's, and as such any Copyright notices in the code are not to be removed. If this code
is used in a product, Eric Young should be given attribution as the author of the parts used. This can be in the form
of a textual message at program startup or in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the copyright notice, this list of conditions and the following dis-
claimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the fol-
lowing disclaimer in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following acknowledge-
ment: This product includes software developed by Eric Young (eay@mincom.oz.au)

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG AS IS" AND ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THEAUTHOR
OR CONTRIBUTORS BE LIABLE FORANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTI-
TUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIAB-
ILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This product is assigned the U.S. Export Control Classification Number ECCN=5D992b.

Table of Contents

LV BICOIMIE e e 1
1.2 ABOUE THIS GUITE ...ttt e e 1
1,01 OFQANIZALION ...eieiit ettt 1
L.0.2 AUGIBNCE ..ottt 2
1.2 CONVENTIONS ..evttieeeitt ettt et ettt ettt ettt ettt e et et e e e et e e e eent e eeeee 2
1.2.1 Typographic CONVENTIONSiiiiriieiiiii ettt 2
1.2.2 SYNEAX NOTATIONceieieeee et 3
1.3 IBM SOlIdDB DOCUMENTALIONvvteiiiiieeeeii ettt ettt et e et e e e e eeees 4
2 BASIC FRAIUIES ...ttt et ettt et ettt 7
2.1 IN-MEMOTY TADIES ...t 7
2.1.1 In-Memory vs. Disk-Based Tables ... 7
2.1.2 Types of IN-Memory TaDIESoiiiiiie e 7
2.1.3 How In-Memory Tables Improve Performanceccoooevviiiiiiiinneiiiiieecii e 9
2.1.4 How to Decide Which Tables to Designate as In-Memory Tablescccceeveees 10
2.1.5 How to Specify that a Table Is Stored in MEMOIYooooviiiiiiiiiii e 11
2.1.6 Memory CONSUMPLIONueiiiii ettt e e ettt ettt et e e e et e e et e eeeea e eeees 12
2.1.7 Calculating Disk Space ReqQUIFEMENESuieiiiiiieeiiiiiieeei e 19
2.1.8 Standards COMPIIANCEeiiiiiieei e 19
2.1.9 Limitations of In-Memory TabIes ..o 19
2.2 Other In-memory Engine ENhanCementscoouuviiiiiiiiiii e 20
2.3 Using IBM solidDB Linked Library Access and HotStandby with IBM solidDB In-memory
BN e e 21
2.3.1 LiNKed LIDIary ACCESSceeiiiieeiii et e et 21
2.3.2 HOESTANADY ..cevvieeei et 21
2.4 Incompatibilities with Previous IBM solidDB Productsocevvviieiiiiinieiiiiinneeiiiee, 21
3 Temporary Tables and TranSient TADIEScoouuiiiiiii e e 23
3.1 TEMPOTArY TADIES «.ovtceiie e e e ettt et e e 24
3.1.1 Limited VISIDITITY .ooovenii 24
3.1.2 LIMIted DUFALION ...ttt et e e e e e e eees 24
3.1.3 Additional LIMITatioNScoevutieiiiiiieeiii et 25
B2 TranSieNt TaDIES ...t e 26
3.3 Differences Between Temporary Tables and Transient Tablescccovviiiiiiiiiiiiiiineennnnn. 28
4 Optimizing and TUNING The SEIVELui et 31
4.1 Algorithm for Choosing Which Tables to Store in Memorycccooveviiiiiiiiiiiiieceees 31
4.2 Performance Tuning Information for Temporary and Transient Tablescc.occoveiniiinnnn. 33
A3 INUEXES ..ttt 33
5 Configuring IN-Memory Databaseoooiiiiiiiii e 35
5.1 Configuration Files and Parameter SEtiNGSvviiiieiiiiiiie e 35
5.2 Managing Server-Side ParameTersiiiiiii e 36

IBM solidDB In-Memory Database User Guide

5.2.1 Viewing and Setting Parameters with ADMIN COMMANDccooocciiiiiiineiinennn, 37

5.2.2 Viewing and Setting Parameters in SOLTA_INT ..o 40

5.2.3 Constant Parameter ValUESiiiuniiiiiiiii e 41

A Calculating Maximum BLOB SIZEiiuiiiiiiaii et 43
AL PUIPOSE e et a e 43

A2 BACKGIOUNG ..ttt et et e e e 43

A3 CAlCUIBLING .ot e 44

B Calculating Storage REQUITEIMENTSci.uuiiiiiii et et e e e 47
B.1 DiSK-Based TaADIEScouuiiiiii e 47

B.2 IN-MeMOTY TabIESot e e 48

B.3 Table of COIUMN SIZESo e 49

B.4 Measuring Memory CONSUMPLIONiiutiiiiieiie e e 50

B.5 DLAIIS ...t e 50
B.5.1 DisK-Based TaDIEScc.uuiiiiiiiiie e 50

B.5.2 IN-MEMOTY TaADIES ... 52

C ConfigUration PArAMELEISo ui ettt ettt e e et et e et e e bt e e e eaeens 55
C.L GENEIAl SECLION ...t ettt et e e e 55

C.2 IMIMIE SECLION ...ttt ettt et e e e et e e eeaans 56

(€] (01557 TP PPPTRPT 61
[0 1= PP UTPTPTRPN 63

Vi

List of Tables

1.1 TypographiC CONVENTIONSu.eiiiii ettt ettt e et et e e e ae s 2
1.2 Syntax NOtation CONVENTIONSuuueiiitiee ittt e e e et e e 3
3.1 Referential CONSLIAINTSeeiiit ettt et ettt et e ettt e ettt e e et e e e ent e eeee 28
A.1 Calculating the Space Available for BLOB Datacccuuuiiiiiiiiiiiiieece e 44
A.2 Number of Bytes Required t0 StOre ValUEScoouuiiiiiiiiiiii e 45
B.1 HEAAET BYLES ...ttt 50
C.1 MME PAFAMETEIS ...euuiitieeeie ettt ettt ettt et et et e e e e e e 55
C.2 MIME PATMELETS ... eeteetti ettt ettt ettt et e e et e e et et e e e e e eae s 56

vii

viii

Chapter 1. Welcome

IBM solidDB in-memory database allows you to choose the optimal balance of maximum performance and
the ability to handle large volumes of data by providing a unique dual-engine Database Management System
(DBMYS) architecture. Inside the database server, there are two engines: a main memory engine (MME) for
fastest possible access to performance-critical data and a "traditional” on-disk engine for efficiently handling
virtually any volume of data.

IBM solidDB main memory engine is built on IBM solidDB disk-based engine and IBM solidDB capabilities,
which means that IBM solidDB main memory engine inherits all functionality of these products. IBM solidDB
main memory engine can be used in embedded systems, requiring virtually no administration or maintenance.
You can make IBM solidDB main memory engine suitable for highly available systems by purchasing the
HotStandby component. You may also purchase the advanced replication component, which enables multiple
IBM solidDB main memory engine and IBM solidDB disk-based engine servers to share and synchronize
data with each other.

IBM solidDB provides other components, as well. These are described in IBM solidDB Administration Guide.

1.1 About This Guide

IBM solidDB In-Memory Database User Guide introduces you to the features that allow you to optimize your
database server's performance by using in-memory database technology.

1.1.1 Organization

Chapter 2, Basic Features, describes the basics of in-memory tables vs. disk-based tables. It also contains
some information about compatibility and migration with respect to other IBM solidDB servers.

Chapter 3, Temporary Tables and Transient Tables, explains two specialized types of in-memory tables:
Temporary Tables and Transient Tables.

Chapter 4, Optimizing and Tuning the Server, gives you some tips on getting the best performance from IBM
solidDB in-memory engine.

Appendix A, Calculating Maximum BLOB Size, shows how to calculate the maximum size of a character or
binary column value that will fit in your in-memory tables.

Appendix B, Calculating Storage Requirements, explains how to calculate the approximate maximum amount
of storage space (memory or disk) required for in-memory tables and disk-based tables.

1.1.2 Audience

Appendix C, Configuration Parameters, gives a brief introduction of how to modify the configuration para-
meters related to in-memory database.

Glossary provides definitions of IBM solidDB terminology.

1.1.2 Audience

This guide assumes the reader has general knowledge of relational database management systems and famili-
arity with SQL. This guide also assumes that the reader has basic familiarity with the IBM solidDB product
family. We recommend that you read IBM solidDB Administration Guide prior to reading this IBM solidDB
In-Memory Database User Guide. If you are not already familiar with relational databases, we recommend
that you read the IBM solidDB Getting Sarted Guide and IBM solidDB SQL Guide first.

1.2 Conventions

1.2.1 Typographic Conventions

This manual uses the following typographic conventions:

Table 1.1. Typographic Conventions

Format Used for

Database table This font is used for all ordinary text.

NOT NULL Uppercase letters on this font indicate SQL keywords and macro names.
solid.ini These fonts indicate file names and path expressions.

This font is used for program code and program output. Example SQL
SET SYNC MASTER YES; statements also use this font.
COMMIT WORK;

run.sh This font is used for sample command lines.

TRIG_COUNTQO This font is used for function names.

jJjava.sqgl.Connection This font is used for interface names.

LockHashsSi ze This font is used for parameter names, function arguments, and Windows
registry entries.

ar gunent Words emphasised like this indicate information that the user or the applic-

ation must provide.

1.2.2 Syntax Notation

Format

Used for

IBM solidDB Administration Guide

This style is used for references to other documents, or chapters in the same
document. New terms and emphasised issues are also written like this.

File path presentation

File paths are presented in the Unix format. The slash (/) character represents
the installation root directory.

Operating systems

If documentation contains differences between operating systems, the Unix
format is mentioned first. The Microsoft Windows format is mentioned in
parentheses after the Unix format. Other operating systems are separately
mentioned.

1.2.2 Syntax Notation

This manual uses the following syntax notation conventions:

Table 1.2. Syntax Notation Conventions

Format

Used for

INSERT INTO tabl e nane

Syntax descriptions are on this font. Replaceable sections are ont hi s font.

solid.ini This font indicates file names and path expressions.

[1 Square brackets indicate optional items; if in bold text, brackets must be
included in the syntax.

| A vertical bar separates two mutually exclusive choices in a syntax line.

{} Curly brackets delimit a set of mutually exclusive choices in a syntax line;

if in bold text, braces must be included in the syntax.

An ellipsis indicates that arguments can be repeated several times.

A column of three dots indicates continuation of previous lines of code.

1.3 IBM solidDB Documentation

1.3 IBM solidDB Documentation

Below is a complete list of documents available for IBM solidDB. IBM solidDB documentation is distributed
in an electronic format, usually PDF files and web pages.

Release Notes. This file contains installation instructions and the most up-to-date information about the
specific product version. This file (releasenotes. txt) is copied onto your system when you install
the software.

IBM solidDB Getting Sarted Guide. This manual gives you an introduction to IBM solidDB.

IBM solidDB SQL Guide. This manual describes the SQL commands that IBM solidDB supports. This
manual also describes some of the system tables, system views, system stored procedures, etc. that the
engine makes available to you. This manual contains some basic tutorial material on SQL for those readers
who are not already familiar with SQL. Note that some specialized material is covered in other manuals.
For example, the IBM solidDB "administrative commands" related to the High Availability (HotStandby)
component are described in the IBM solidDB High Availability User Guide, not the IBM solidDB SQL
Guide.

IBM solidDB Administration Guide. This guide describes administrative procedures for IBM solidDB
servers. This manual includes configuration information. Note that some administrative commands use
an SQL-like syntax and are documented in the IBM solidDB SQL Guide.

IBM solidDB Programmer Guide. This guide explains in detail how to use features such as IBM solidDB
Stored Procedure Language, triggers, events, and sequences. It also describes the interfaces (APIs and
drivers) available for accessing IBM solidDB and how to use them with a IBM solidDB database.

IBM solidDB In-Memory Database User Guide. This manual describes how to use the IBM solidDB in-
memory database and main memory engine (MME).

IBM solidDB Advanced Replication Guide. This guide describes how to use the IBM solidDB advanced
replication technology to synchronize data across multiple database servers.

IBM solidDB Linked Library Access User Guide. Linking the client application directly to the server im-
proves performance by eliminating network communication overhead. This guide describes how to use
the linked library access, a database engine library that can be linked directly to the client application.

This manual also explains how to use two proprietary Application Programming Interfaces (APIs). The
first API is the IBM solidDB SA interface, a low-level C-language interface that allows you to perform
simple single-table operations (such as inserting a row in a table) quickly. The second API is SSC API,
which allows your C-language program can control the behavior of the embedded (linked) database
server

1.3 IBM solidDB Documentation

This manual also explains how to set up a IBM solidDB to run without a disk drive.

IBM solidDB High Availability User Guide. IBM solidDB HotStandby allows your system to maintain
an identical copy of the database in a backup server or "secondary server". This secondary database
server can continue working if the primary database server fails.

IBM solidDB Connector Guide. This guide explains in detail how to use the IBM solidDB Cache solution.
IBM solidDB Cache provides a high-performance, low-latency database front-end solution for IBM Data
Servers, namely DB2™ and Informix™. IBM solidDB Cache solution uses a number of in-memory front-
end databases to handle high-volume traffic from the applications. The connectors are applications that
manage data between the back-end and the front-ends in IBM solidDB Cache.

Chapter 2. Basic Features

IBM solidDB main memory engine combines the high performance of in-memory tables along with the nearly
unlimited capacity of disk-based tables. This is something that other solutions on the market are not capable
of. Pure in-memory databases are fast, but strictly limited by the size of memory. Pure disk-based databases
allow nearly unlimited amounts of storage, but their performance is dominated by disk access. Even if the
computer has enough memory to store the entire database in memory buffers, database servers designed for
disk-based tables were slow because the data structures that are optimal for disk-based tables are far from
being optimal for in-memory tables.

IBM solidDB's solution is to provide a single database server that contains two optimized servers inside it:
one server is optimized for disk-based access and the other is optimized for in-memory access. Both servers
co-exist inside the same process, and a single SQL statement may access data from both engines.

2.1 In-Memory Tables
2.1.1 In-Memory vs. Disk-Based Tables

If a table is designated as an in-memory table, then the entire contents of that table are stored in memory so
that the data can be accessed as quickly as possible. If, on the other hand, a table is disk-based, then the data
is stored primarily on disk, and usually the server copies only small pieces of data at a time into memory.

In most respects, in-memory tables are similar to disk-based tables. Most importantly, both table types provide
full persistence of data unless specified differently. You may perform the same types of queries on each of
them. You may combine disk-based and in-memory tables in the same SQL query. You may combine in-
memory and disk-based tables in the same transaction. You may query both types of tables when using the
SA API (part of the linked library access). In addition, in-memory tables may be used with indexes, triggers,
stored procedures, etc. In-memory tables also allow constraints, including primary key and foreign key con-
straints, although there are some limitations on foreign key constraints with non-persistent tables. (This topic
is discussed in more detail later.)

With IBM solidDB, the user may decide which tables will be in-memory tables and which tables will be disk-
based tables. You may put heavily used tables in main memory so that they can be accessed more quickly. If
you have enough memory, you may put all of your tables in main memory.

2.1.2 Types of In-Memory Tables

IBM solidDB provides two different categories of in-memory tables: persistent and non-persistent. These are
described below.

2.1.2 Types of In-Memory Tables

Persistent In-Memory Tables

As their name suggests, persistent in-memory tables persist indefinitely. Although client queries access the
copy of the data in memory, the server stores the in-memory tables on disk when it shuts down, and therefore
the data is available each time that the server starts. In-memory tables also use transaction logging, so that if
the server is shut down unexpectedly (due to a power failure, for example), the server has a record of the
transactions that have occurred and can update the tables to ensure that they have all the data from all the
committed transactions. In-memory tables, like disk-based tables, have their data copied to the hard disk drive
during checkpoints (for a description of checkpoints, see IBM solidDB Administration Guide).

In-memory tables may also be used with IBM solidDB's HotStandby component; data in in-memory tables
is copied to the Secondary server from where it is available if the Primary server fails.

There are a few differences between in-memory and on-disk tables that should be taken into consideration
when designing an application that uses in-memory tables. Most importantly, in-memory tables use always
pessimistic row-level concurrency control (locking) whereas disk-based tables use optimistic (versioning)
concurrency control by default. Therefore, in in-memory tables read operations block write operations for the
duration of the read transaction. Moreover, deadlocks are possible with in-memory tables whereas they cannot
occur on versioning disk-based tables. On the other hand, concurrency conflicts may occur when optimistic
concurrency control is in use.

It is important to keep these considerations in mind when designing the error handling of your application.
Depending on the type of table used, the error handling needs to take different error codes into account.

Another significant difference is the checkpointing algorithm used. The checkpointing of in-memory tables
is entirely different from the algorithm used on disk-based tables. The major benefit is that checkpointing in-
memory tables doesn't block the transactions' access to the tables in any way during the checkpoint. Thus,
the predictability of response times is better with in-memory tables than with disk-based tables.

The third major difference between in-memory and disk tables is that with in-memory tables, the secondary
indices are never written to the disk. Instead, they are maintained in-memory only and re-built when the
server is started. Hence, their impact on write performance is significantly smaller than with disk-based tables.
Moreover, all indices of in-memory tables are equally fast whereas on disk-based tables, the primary key is
significantly faster than the other indices.

For all other practical purposes, in-memory tables are indistinguishable from disk-based tables, except that
in-memory tables are generally significantly faster.

Non-Persistent In-Memory Tables
Non-persistent in-memory tables are not written to disk when the server shuts down. Therefore, any time that

the server shuts down, whether normally or abnormally, the data in non-persistent tables is lost. Their data is
not logged or checkpointed. That makes them irrecoverable but remarkably faster than persistent tables.

2.1.3 How In-Memory Tables Improve Performance

Non-persistent tables are useful primarily as "scratchpad" tables. For example, you might copy data from a
persistent table and then run a series of analyses and then discard the non-persistent copy. Or you might do
a long series of transformations and then copy the final results back to persistent tables.

There are two different types of non-persistent in-memory tables: Transient Tables and Temporary Tables.
The differences between the two are discussed in detail in Chapter 3, Temporary Tables and Transient Tables.
We will give only a brief overview here.

Transient Tables

Transient Tables last until the database server shuts down. Multiple users may use the same Transient Table,
and each user will see all other users' data.

Transient Tables have some limitations compared to persistent in-memory tables. For example, there are some
limitations on using foreign keys (referential constraints) with Transient Tables. Also, Transient Tables are
not copied to a HotStandby Secondary.

Temporary Tables

The data in Temporary Tables is visible only to the connection that inserted the data, and the data is retained
only for the duration of the connection. Temporary Tables are like private scratchpads that no one else can
see.

In addition to avoidance of logging they also do not use any type of concurrency control mechanism (such as
record locking), which makes them even faster than transient tables.

2.1.3 How In-Memory Tables Improve Performance

If data is stored in a disk-based table, then the data must be read into memory before it can be used, and must
be written back to the disk after it has been used. In-memory tables provide higher performance because all
the data resides always in the main memory and hence the server may use more efficient techniques to provide
the maximum performance for accessing and manipulating data.

Of course, almost any database server will perform faster if it has more memory and can store a larger per-
centage of its data in the cache memory of the server. However, IBM solidDB main memory engine's high-
performance in-memory technology does much more than merely copy data into memory. IBM solidDB main
memory engine also uses index structures that are optimized to work with data that is stored entirely in memory.
IBM solidDB main memory engine also takes into account issues that arise with in-memory tables, such as
memory "fragmentation" when tables grow or shrink.

2.1.4 How to Decide Which Tables to Designate as In-Memory Tables

2.1.4 How to Decide Which Tables to Designate as In-Memory
Tables

Ideally, your computer will have enough memory to store all of your tables in memory and thus provide the
best possible performance for database transactions. However, in the real world, most users will have to choose
a subset of tables to store in memory, while the remaining tables will be disk-based.

Not surprisingly, if you can't fit all the tables in memory, then you want to try to put the most-frequently-used
data in memory. It's easy to see that small, frequently-used tables should go into memory, and large, rarely-
used tables can be left on disk. But how about the other possible combinations, such as large tables that are
heavily used, or small tables that aren't heavily used?

The best way to think about this is to think about the "density" of access to a table. The higher the number of
accesses per megabyte per second, the better off you are putting that table in memory. For a more detailed
algorithm, see Section 4.1, “Algorithm for Choosing Which Tables to Store in Memory”.

Once you've decided to store a table in memory, you must choose whether to store the data in a persistent
table, a Transient Table, or a Temporary Table. The basic rules are as shown below. Note that these rules are
guidelines, not rigid rules. You should read the detailed descriptions of Transient Tables and Temporary
Tables before making a final decision.

Note that when we use the term "server session”, we mean a single "run" of the server, from the time that it
starts until the time that it is either deliberately shut down or it goes down for an unexpected reason (such as
a power failure). A "connection” lasts from the time that a single user connects to the server until the time
that user disconnects the same connection. (A user may establish multiple connections, but each of these is
independent.)

You can decide on the most appropriate type of table by asking yourself the questions below until you reach
the first question for which you answer "Yes".

1. Do you need the data to be available again the next time that the server starts? If so, then use a persistent
table.

2. Do you need the data to be copied to the Secondary HotStandby server? If so, then use a persistent table.

3. Do you need the data only during the current server session, but the data must be available to multiple
users (or multiple connections from the same user)? If so, then use a Transient Table.

4. If none of the above rules applied, then use a Temporary Table.

10

2.1.5 How to Specify that a Table Is Stored in Memory

Again, you should read the details about Temporary and Transient Tables before making a final decision.
Temporary and Transient Tables have a few restrictions, such as limits on foreign keys (referential constraints)
that may affect your decision.

2.1.5 How to Specify that aTable Is Stored in Memory

There are two ways to explicitly specify whether tables are to be located in-memory or on disk. The system
creates disk-based tables by default.

1. Use the STORE clause of the CREATE TABLE or ALTER TABLE command. E.g.

CREATE TABLE employees (name CHAR(20)) STORE MEMORY;
CREATE TABLE ... STORE DISK;
ALTER TABLE network_addresses SET STORE MEMORY;

(For more information about the syntax of the CREATE TABLE and ALTER TABLE statement, see
IBM solidDB SQL Guide.)

2. Specify the default in the solid. ini file. For convenience, if most or all of the new tables that you
create should be of the same type (e.g. in-memory), then you may tell the server to automatically use
this storage type unless otherwise specified. To specify the default type for new tables, set the following
parameter in the solid. ini configuration file:

[General]
DefaultStorelsMemory=yes

If this parameter is set to 'yes', new tables will be created as in-memory tables unless specified otherwise
in the CREATE TABLE statement. If this parameter is set to 'no’, then new tables will be created as disk-
based tables unless specified otherwise in the CREATE TABLE statement. As with other parameters in
the solid. ini file, if this parameter is changed, the new value will not take effect until the next time
that the server is started. See IBM solidDB Administration Guide for more information about the De-
faul t St or el sMenory parameter.

< Note

These instructions apply to persistent tables only. Tables that are declared to be Temporary Tables
or Transient Tables are automatically stored in memory, even if you don't use the STORE MEMORY
clause.

11

2.1.6 Memory Consumption

2.1.6 Memory Consumption

Understanding and controlling memory consumption is important, because if the in-memory database or the
server process uses up all of the available virtual memory in the system, you will be unable to add or update
data. If the server uses up all of the physical memory and starts to use virtual memory, the server will continue
to operate, but performance will be greatly reduced.

The in-memory database main memory usage differs from the standard IBM solidDB. The in-memory database
resides in its own memory pool. For more information on IBM solidDB memory consumption, refer to IBM
solidDB Administration Guide.

IBM solidDB main memory engine provides commands and configuration parameters to help you monitor
and control memory consumption of the in-memory database and the server process. These commands and
parameters focus on the server's in-memory database feature, not the server as a whole.

Monitoring Memory Consumption

There are several admin commands available for monitoring memory consumption. In short, they are:
+ ADMIN COMMAND ‘info imdbsize";

« ADMIN COMMAND ‘info processsize;

« ADMIN COMMAND 'pmon mme';

* ADMIN COMMAND "memory’;

These commands are explained below.

The command

ADMIN COMMAND ‘info imdbsize';

returns the current amount of memory allocated to use by in-memory database tables and indexes. The value
returned is a VARCHAR, and it indicates the number of kilobytes used by the server. Note that this returns
the amount of virtual memory used, not the amount of physical memory used.

In time, the imdbsize can grow, because returning data back to operating system can only be done in allocation
units which need to be completely unused before they can be returned back to the operating system.

Transient memory allocations (such as SQL execution graphs) are excluded from the ADMIN COMMAND
'info imdbsize"; report.

The command

12

2.1.6 Memory Consumption

ADMIN COMMAND ‘info processsize';

returns the virtual memory process size, that is, the full address space size of the database server that the in-
memory database process uses. The value returned is a VARCHAR, and it indicates the number of kilobytes
used by the process. Note that this returns the amount of virtual memory used, not the amount of physical
memory used.

There are also several performance counters available, which include the run-time information related to the
in-memory database server. Entering the command

ADMIN COMMAND 'pmon mme"*;

produces the following list of current values of counters.

Performance statistics:

Time (sec) 3
MME current number of locks

MME maximum number of locks

MME current number of lock chains
MME maximum number of lock chains
MME longest lock chain path

MME memory used by tuples

MME memory used by indexes

MME memory used by page structures
rows fetched.

Total

[eNeoNoNoNeoNoNoNoNe
[eNeoNoNoNeoNoNoNol
[eNeoNoNoNoNoNoNe

eNoNoNoNeoNolNolNoNoNeNe]

=

In the performance statistics listing, the amount of memory used by tuples, indexes, and page structures is
given in Kilobytes.

The command
ADMIN COMMAND "'memory";

only reports the amount of dynamically allocated heap memory. In heap-based memory allocation, memory
is allocated from a large pool of unused memory area called the heap. The size of the heap memory allocation
can be determined at run-time. Transient memory allocations (such as SQL execution graphs) are included
in the ADMIN COMMAND "mem’; report.

13

2.1.6 Memory Consumption

Controlling Memory Consumption

There are three configuration parameters, | ndbMenor yLi mi t, | ndbLowPer cent age and | ndbMenor y-
War ni ngPer cent age to control in-memory database memory consumption. These parameters are in the
[MVE] section of the solid. ini file.

Furthermore, there are four configuration parameters, Pr ocessMenor yLi ni t, ProcessMenor yLow
Per cent age, ProcessMenor yWar ni ngPer cent age and Pr ocessMenor yCheckl nt erval to
control the process memory consumption. These parameters are in the [SRV] section of the solid. ini
file.

The violations of IMDB and process limits are logged in the solmsg . out log file.

As listed above, there are two memory size limits, the | ndbMenor yLi mi t and ProcessMenoryLinit.
Every time the memory limit is crossed, a system event is posted. These system events are described in IBM
solidDB SQL Guide.

ImdbMemoryLimit

The | mdbMenor yLi m t parameter specifies the maximum amount of virtual memory that can be allocated
to in-memory tables (including Temporary Tables, Transient Tables, and "normal* in-memory tables) and
the indexes on those in-memory tables.

The default value for | rdbMenor yLi mi t is 0, which means "no limit". We strongly recommend that you
not use the default value. You should set the parameter to a value that will ensure that the in-memory data
will fit entirely within physical memory. Naturally, you must take into account the following factors:

» the amount of physical memory in the computer
» the amount of memory used by the operating system
 the amount of memory used by IBM solidDB (the program itself)

» the amount of memory set aside for the IBM solidDB server's cache (the CacheSi ze solid. ini
configuration parameter)

» the amount of memory required by the connections, transactions and statements running concurrently in
the server. The more concurrent connections and active statements there are in the server, the more
working memory the server requires. Typically, you should allocate at least 0.5MB of memory for each
client connection in the server.

« the memory used by other processes (programs and data) that are running in the computer

14

2.1.6 Memory Consumption

When the limit is reached, i.e. when the in-memory tables are using up 100% of the memory specified by
| mdbMenor yLi mi t, the server will prohibit UPDATE operations on in-memory tables. (Before the limit
is reached, the server will prohibit creation of new in-memory tables and INSERT operations on those tables.
See the description of the | mdbLowPer cent age parameter for more details.)

Example:

[MME]
ImdbMemoryLimit=1000MB

ImdbLowPercentage

The ImdbLowPercentage variable sets a "low water mark", expressed as a percentage of the memory (i.e. as
a percentage of the | ndbMenor yLi mi t). When the server has consumed the specified percentage of the
memory, the server will start to limit activities in order to prevent memory consumption from continuing to
grow. For example, if | mdbMenor yLi mi t is 1000 megabytes, and if ImdbLowPercentage is 90%, then if
the memory allocated to the in-memory tables exceeds 900 megabytes, then the server will start limiting
activities. Specifically, the server will:

» Prohibit further creation of in-memory tables (including Temporary Tables and Transient Tables) and in-
dexes on in-memory tables.

* Prohibit INSERTS into in-memory tables.

When the upper limit itself (i.e. | mdbMenor yLi mi t) is reached, the server will also prohibit UPDATE
operations on records in in-memory tables.

Valid values for | ndbLowPer cent age range from 60-99 (percent).

ImdbMemoryWarningPercentage

The | mdbMenor yWar ni ngPer cent age parameter sets a warning limit for the IMDB memory size. The
warning limit is expressed as a percentage of the | ndbMenor yLi mi t parameter value. When the | mdb-
Menor yWar ni ngPer cent age limit is exceeded, a system event is given.

What to Do If You Reach the ImdbMemoryLimit

If you get an error message indicating that this limit has been reached, you will need to take strong action
immediately. You must address both the immediate problems and the long term problem. The immediate
problems are to prevent users from experiencing serious errors, and to free up some memory before shutting
down the server so that you are not in the same situation (out of memory) when you restart the server. The
long term problem is to make sure that you do not get back into this situation in the future as tables expand.

15

2.1.6 Memory Consumption

To address the immediate problem, you should typically do the following:

1. Notify users that they should disconnect from the server. This will accomplish two things: it will minimize
the number of people who will be impacted if the situation deteriorates; and, if any of the users who
disconnect were using Temporary Tables, then disconnecting will free up memory. You may wish to
have a policy or error-checking code to ensure that users and/or programs will attempt to disconnect
gracefully if they see this error.

2. If there were not enough Temporary Tables to make much difference in memory consumption, then drop
some Transient Table indexes or Transient Tables themselves if any exist.

If there were not enough Temporary Tables and Transient Tables to make much difference in memory con-
sumption, then you will have to take more drastic action.

1. Drop one or more indexes on in-memory tables.
2. Shut down the server.

3. Ifthere was absolutely nothing in memory that you could discard (e.g. you had only "normal" in-memory
tables, none of which had indexes, and all of which had valuable data), then increase the | mdb-
Memor yLi mi t slightly before re-starting the server. This may force the server to start paging virtual
memory which will greatly reduce performance, but it will allow you to continue using the server and
address the long-term problems. If you previously set the | nrdbMenor yLi i t a little bit lower than
the maximum, you will be able to raise it slightly now without forcing the system to start paging virtual
memory.

4, Re-start the server.

5. Minimize the number of people using the system until you have had time to address the long-term
problem. Ensure that users do not create Temporary Tables or Transient Tables until the long-term
problem has been addressed.

If you have solved the immediate problem and have ensured that the server has at least a little bit of free
memory, then you are ready to address the long-term problem.

To address the long-term problem, you will need to reduce the amount of data stored in in-memory tables.
The ways to do this are to reduce the number or size of in-memory tables (including Temporary Tables and
Transient Tables), or reduce the number of indexes on in-memory tables.

If the problem was caused solely by heavy usage of Temporary Tables (or Transient Tables), then you may
merely need to ensure that not too many sessions create too many large Temporary Tables (or Transient
Tables) at the same time.

16

2.1.6 Memory Consumption

If the problem was caused by using too much memory for "normal™ in-memory tables, and if you cannot increase
the amount of memory available to the server, then you will have to move one or more tables out of main
memory and onto the disk. Fortunately, this is not very difficult. To move a table from memory to disk, do
the following:

1. Create an empty disk-based table with the same structure (but a different name) as one of the tables in
memory.

2. Copy the information from the in-memory table to the disk-based table.
3. Drop the in-memory table.
4. Rename the disk-based table to have the original name of the now dropped in-memory table.

Itis a good precaution to deliberately set the | ndbMeror yLi mi t to aslightly lower value than the maximum
you really have available. This way, if you run out of memory and have no unnecessary in-memory tables or
indexes that you can get rid of, you can increase the | ndbMenor yLi mi t slightly, then re-start the server
with enough free memory that you can address the long-term need.

Remember also that you can use the | ndbMenor yWar ni ngPer cent age to warn you about increasing
memory consumption.

Not all situations require you to reduce the number of in-memory tables. In some cases, the most practical
solution may be to simply install more memory in the computer.

Also, keep in mind that it is better to prevent the problem than to solve it. We very strongly recommend that
you set the | rdbMenor yLowPer cent age parameter to an appropriate value so that you get a reliable
warning before you use up all the memory available to your in-memory tables.

ProcessMemoryLimit

Process memory limit is enabled and disabled by the Pr ocessMenor yCheckl nt er val parameter. If the
ProcessMenor yCheckl nt er val parameter value is 0, there is no process memory limit. If there is a
need to control the total virtual size of the server process, you can use this limit after you have defined the
Pr ocessMenor yCheckl nt er val parameter.

Lt you try to copy a big table's records to another table using a single SQL statement (INSERT INTO ...\VALUES SELECT FROM),
please keep in mind that the entire operation occurs in one transaction. Such an operation is efficient only if the entire amount of data
fits in the cache memory of the server. If transaction size outgrows the cache size, the performance degrades significantly. Therefore, it
is strongly recommended that copying data of a large table to another table is done in smaller transactions (e.g. few thousands of rows
per transaction) using a simple stored procedure or application.

Note also that the intermediate table does not need indices. The indices should be recreated in the new "actual table" after the data has
been successfully copied.

17

2.1.6 Memory Consumption

The ProcessMenor yLi m t parameter specifies the maximum amount of virtual memory that can be al-
located to the in-memory database process. The factory value for Pr ocessMenor yLi mi t is 1G, which
means one Gigabyte. Set the parameter to a value that will ensure that the in-memory database process will
fit entirely within physical memory. Naturally, you must take into account the following factors:

 the amount of physical memory in the computer
» the amount of memory used by the operating system

» the amount of memory used by in-memory tables (including Temporary Tables, Transient Tables, and
"normal™ in-memory tables) and the indexes on those in-memory tables

» the amount of memory set aside for the IBM solidDB server's cache (the CacheSi ze solid. ini
configuration parameter)

» the amount of memory required by the connections, transactions and statements running concurrently in
the server. The more concurrent connections and active statements there are in the server, the more
working memory the server requires. Typically, you should allocate at least 0.5MB of memory for each
client connection in the server.

» the memory used by other processes (programs and data) that are running in the computer

When the limit is reached, i.e. when the in-memory database process uses up 100% of the memory specified
by ProcessMenor yLi m t, the server will accept admin commands only. You can use the Pr ocess-
Menor yWar ni ngPer cent age parameter to warn you about increasing memory consumption.

ProcessMemoryLowPercentage

This parameter sets a limit for the total process size. The limit is expresses as percentage of the Pr ocess-
Menor yLi m t parameter value. Prior to exceeding this limit, you have exceeded the warning limit defined
by using the ProcessMenor yWar ni ngPer cent age parameter and received a warning. When the
Pr ocessMenor yLowPer cent age limit is exceeded, a system event is given.

ProcessMemoryWarningPercentage

This parameter sets a warning limit for the total process size. The warning limit is expresses as percentage of
the Pr ocessMenor yLi m t parameter value. When the Pr ocessMenor yWar ni ngPer cent age limit
is exceeded, a system event is given.

ProcessMemoryChecklinterval

The process size limits are checked periodically. The check interval is set bu using the Process-
Menor yCheckl nt er val parameter. The interval is given in milliseconds.

18

2.1.7 Calculating Disk Space Requirements

The minimum non-zero value is 1000 (ms). Only values 0 or 1000 or above 1000 (1 second) are allowed. If
a given value is above 0 but below 1000, an error message is given.

The factory value is O (that is, process size checking is disabled).

2.1.7 Calculating Disk Space Requirements

When calculating the amount of disk space required to store your database, you must take into account the
amount of space required to store the in-memory tables as well as the disk-based tables. The reason for this
is that when the server shuts down, it stores the in-memory data to the disk drive. (When the server re-starts,
it reads this information back into memory.)

Note also that because the server must write in-memory data to the disk drive when the server shuts down, a
server with in-memory tables usually requires more time to shut down than a server that has only disk-based
tables. Similarly, because the server must reload data from the disk drive into memory when the server starts,
the server usually requires extra time to start up if it has in-memory tables.

2.1.8 Standards Compliance

The in-memory tables feature is not part of the ANSI standard for SQL-99.
2.1.9 Limitations of In-Memory Tables

Physical Memory and Virtual Memory

The most obvious limitation is that the total size of the in-memory database tables cannot exceed the amount
of virtual memory available.

1) Important

Since virtual memory is swapped to disk frequently, using virtual memory negates part of the advantage
of in-memory tables. We strongly recommend that you limit your in-memory tables to less than the
size of the available physical memory, not the size of the available virtual memory.

When calculating the amount of space required for tables, don't forget to take into account "BLOb" data.
Generally, BLOb data should be kept on disk-based tables as the maximum size of a BLOb column is signi-
ficantly reduced on main-memory tables.

Keep in mind that the amount of space required to store a table includes the space not only for the data that
is in the table, but also for any indexes on that table, including any indexes created in support of primary key
and foreign key constraints. Also, tables occupy significantly more space in memory than on disk.

19

2.2 Other In-memory Engine Enhancements

If the server runs out of virtual memory when it tries to allocate memory (e.g. to expand a table during an
INSERT or ALTER TABLE operation), you will get an error message.

Changing aTable from In-Memory to Disk-Based or Vice-Versa

It is possible to alter the type of a table from in-memory table to disk-based table or vice versa, if the table is
empty. To do this, use the

ALTER TABLE table_name SET STORE MEMORY | DISK

command. If the table contains data, you need to create a new table (with different name) to which you copy
the data. After copying the data to the new table, you can drop the old table and rename the new table with

ALTER TABLE current_tabl e_nane SET TABLE NAME new_t abl e_nane

command.

Transaction Isolation
Serializable Isolation Level 1s Not Supported

In-memory tables may not be used in transactions where the transaction isolation level is SERIALIZABLE.
The levels of transaction isolation that are supported for in-memory tables are REPEATABLE READ and
READ COMMITTED.

On HotStandby Secondary, Transaction Isolation Is Always Read Committed

If you are using HotStandby and you connected to the HotStandby Secondary server, then when you read
data from in-memory tables, the transaction isolation level is automatically set to READ COMMITTED, even
if you specified REPEATABLE READ. (In-memory tables do not support SERIALIZABLE on either the
Primary or the Secondary.)

2.2 Other In-memory Engine Enhancements

In addition to in-memory tables, IBM solidDB main memory engine has two more characteristics that enhance
performance. First, read operations do not wait for disk access, even when the system is engaged in activities
such as checkpointing and transaction logging. Second, with relaxed transaction logging, write operations
will not wait for disk access. (See IBM solidDB Administration Guide for a discussion of relaxed vs. strict
transaction logging.)

20

2.3 Using IBM solidDB Linked Library Access and HotStandby with
IBM solidDB In-memory Engine

2.3 Using IBM solidDB Linked Library Access and
HotStandby with IBM solidDB In-memory Engine

2.3.1 Linked Library Access

Linked library access provides the server in the form of a linkable library. A user may link her application
directly to this library and access it via function calls without going through a network communications protocol.

The linked library access is compatible with IBM solidDB main memory engine's in-memory table feature.
You may create in-memory tables in a linked library access server.

For more information about linked library access, see IBM solidDB Linked Library Access User Guide.

2.3.2 HotStandby

IBM solidDB High Availability component provides "hot standby" capability. This means that your database
server is paired with a second server, and the data on the two is automatically kept synchronized. If one
server fails, the other can still be used.

IBM solidDB main memory engine's in-memory feature is compatible with the IBM solidDB HotStandby.

Persistent in-memory tables (i.e. in-memory tables that are not specifically designated TEMPORARY or
TRANSIENT) will be replicated from the HotStandby Primary server to the Secondary server.

Note that Temporary Tables and Transient Tables are NOT replicated to the Secondary.

2.4 Incompatibilities with Previous IBM solidDB
Products

IBM solidDB main memory engine is almost 100% compatible with previous versions of IBM solidDB
products. However, there are a few exceptions. See the releasenotes. txt file for information about
compatibility issues.

21

22

Chapter 3. Temporary Tables and
Transient Tables

Temporary and Transient tables offer higher performance than standard in-memory tables. The data in Tem-
porary and Transient tables is not permanent, however, and therefore you may need to copy data from the
Temporary or Transient table to another table if you want to store it permanently.

By default, when you create an in-memory table, that table is "persistent”. The table is written to disk when
the server shuts down, and is read back from disk when the server starts up again. However, IBM solidDB
main memory engine offers two types of in-memory tables that are not persistent: Temporary Tables, and
Transient Tables. Both of these types of tables are intended for use with "temporary" data.

Temporary Tables and Transient Tables provide higher performance for the following reasons:

» Data in Temporary Tables and Transient Tables is stored solely in memory; it is never written to disk. (If
you shut down and re-start the server, or if the server terminates abnormally, the data is lost. In the case
of Temporary Tables, the data is discarded at the end of the user session -- it does not even remain until
the server is shut down.)

» Temporary and Transient Tables do not log transaction data to disk. (The data is not recoverable after an
abnormal server termination.)

» When the server does its periodic "checkpoint” operations, which write database data to the disk drive,
the data in Temporary Tables and Transient Tables is not written to the disk. (For a more detailed explan-
ation of checkpoints, see IBM solidDB Administration Guide.)

» Temporary Tables and Transient Tables not only use IBM solidDB's high-performance technology for
in-memory tables, but also use a more efficient data storage structure than regular in-memory tables use.

» Temporary Tables have a further performance advantage. Sessions (connections) do not see each other's
records in a Temporary Table, and therefore Temporary Tables do not need sophisticated concurrency
control (e.g. there is no need to check for locking conflicts on records within the table).

Temporary Tables and Transient Tables are especially useful as "scratchpads". For example, you can copy
data from a persistent table, do a series of intensive operations on the data while it's in the Temporary Table,
and then store the results back in a persistent table. This allows you to maximize performance, yet still keep
part or all of the data when you are done. If, for some reason, your work is interrupted, the original data is
still safe in the persistent table, and you can re-start the processing.

23

3.1 Temporary Tables

The main difference between Temporary Tables and Transient Tables is that the data of a Temporary table
is visible to a single connection whereas data of a Transient table is visible to all users.

Below is more specific information about each of these two types of tables. Temporary Tables and Transient
Tables have a lot in common, and therefore you will find some repetition in the following two sections. We
describe each of these two types of table separately and completely, then we highlight the differences between
them. We discuss the differences further in Section 4.2, “Performance Tuning Information for Temporary
and Transient Tables”.

3.1 Temporary Tables

The data in Temporary Tables has very limited visibility and very limited duration.

3.1.1 Limited Visibility

The data has limited visibility because only the session (connection) that inserted the data can see it. If your
session creates a temporary table and inserts data into it, then even if you grant privileges on that table, no
other user session will be able to see your data. Note that multiple sessions may use the same table simultan-
eously, but each session will see only its own data. (Note that since each session will see only its own data,
you do not need to coordinate with other sessions to make sure that you insert unique values into the table,
even if the table has a unique constraint. For example, if you create a Temporary Table that has a unique
constraint on the ID column, you and another session might both insert records that have the 1D set to the
value 1.) Since each session sees only its own data, operations such as UPDATE and DELETE affect only
the session's own data.

3.1.2 Limited Duration

The data has limited duration because as soon as you exit your current session (i.e. as soon as you disconnect
from the server), the data is discarded. If you connect again, you will not see your data.

It is important to understand that the word "Temporary" in the name "Temporary Tables" refers to the data,
not the table itself. The server actually stores the definition of the Temporary Table (but not the data) in the
server's system tables and keeps that definition even after you disconnect. Thus, if you reconnect to the server
later, you will find that the table still exists, but is empty. Thus, once you create the table, you do not need to
create it again in future sessions. In fact, if you or another user try to create a Temporary Table with the same
name as an existing Temporary Table, you will get an error message. This behavior may be unexpected if
you think that a "Temporary Table" means that the table (not just the data) will disappear as soon as you dis-
connect.

Naturally, since the tables persist (even though the data does not), you should use the DROP TABLE command
to drop the table definition after you no longer need it.

24

3.1.3 Additional Limitations

Because the table persists, if you export a database schema definition, the output will include the commands
to re-create the Temporary Tables.

Because a session's temporary tables are cleared when the user disconnects, the server's CPU usage may seem
high for some time after a session with a lot of temporary table data disconnects.

3.1.3 Additional Limitations

Below are some additional limitations with Temporary Tables.

data of Temporary Tables is not replicated to the Secondary server when you use the HotStandby compon-
ent. Note that the Temporary Table definitions themselves are replicated to the HotStandby Secondary
server. Thus, if you have to fail over to your Secondary, you do not need to re-create any Temporary
Tables that you've already created. You will, however, have to re-create any data in them.

Temporary Tables cannot be used as "master" tables in a advanced replication system. (They may be used
as replica tables in a advanced replication system, however.)

Temporary Tables have restrictions on how they can be used with referential constraints. A Temporary
Table may reference another Temporary Table, but may not reference any other type of table (i.e. Transient
or persistent). No other type of table may reference a Temporary Table. See table Referential Constraints
in this chapter.

With the exceptions of the limitations listed in this section, Temporary Tables behave like normal (persistent)
in-memory tables. For example,

Temporary Tables may have indexes on them.
Temporary Tables may be used in Views.
Temporary Tables may have triggers on them.

Temporary Tables may contain BLOb columns (but the length of those columns is limited to a couple of
kilobytes).

Temporary tables reside in a specific catalog and schema.

Privileges apply to Temporary Tables; in other words, the creator of the Temporary Table may grant and
revoke privileges on the table. The DBA may also grant and revoke privileges on the table. Remember,
however, that when a session puts data into a Temporary Table, the data cannot be seen by any other
session, even if that session is by a DBA or by a user that has been granted SELECT privilege on the
Temporary Table. Therefore, granting privileges on a table merely grants the other user the right to use

25

3.2 Transient Tables

your table, not your data. Note that the default privileges on Temporary Tables are the same as the default
privileges on persistent tables.

To create a Temporary Table, use the syntax shown below, where "<...>" denotes syntax that is the same as
for any other type of table.

CREATE [GLOBAL] TEMPORARY TABLE <...>;
(For the complete syntax of the CREATE TABLE command, see IBM solidDB SQL Guide)

A Temporary Table is always an in-memory table. If you use the STORE DISK clause, the server will give
you an error. If you use STORE MEMORY, or if you omit the STORE clause altogether, the server will create
the Temporary Table as an in-memory table.

IBM solidDB's implementation of Temporary Tables fully complies with the ANSI SQL:1999 standard for
"Global Temporary Tables". All Temporary Tables of IBM solidDB are global tables regardless of whether
the keyword GLOBAL is specified or not. IBM solidDB does not support "Local Temporary Tables", as
defined by ANSI.

3.2 Transient Tables

The data in Transient Tables has limited duration. The server keeps the data only until the server shuts down.

Data in Transient Tables has the same "scope" or visibility as data in persistent tables. The data that you insert
into a Transient Table can be seen by other users' sessions if those users have appropriate privileges.

Transient Tables have some limitations:

» Transient Table data is not replicated to the Secondary server when you use the HotStandby component.
Note that the Transient Tables themselves (but not their data) are replicated to the HotStandby Secondary
server. Thus, if you have to fail over to your Secondary, you do not need to re-create any Transient Tables
that you've already created. You will, however, have to re-create any data in them.

» Transient Tables have restrictions on how they can be used with referential constraints. Transient Tables
may reference other Transient Tables and may reference persistent tables. They may not reference Tem-
porary Tables. Neither Temporary Tables nor persistent tables may reference a Transient Table. See table
Referential Constraints in this chapter.

» Transient Tables cannot be used as "master" tables in a advanced replication system. (They may be used
as replica tables in a advanced replication system, however.)

26

3.2 Transient Tables

With the exception of the limitations listed in this section, Transient Tables behave like "normal™ (persistent)
in-memory tables. For example:

» Transient Tables may be used in Views.

Transient Tables may have indexes on them.
e Transient Tables may have triggers on them.

» Transient Tables may contain BLOb columns (but the length of those columns is limited to a couple of
kilobytes as is the case with all in-memory tables).

» Privileges apply to Transient Tables.
« Transient tables reside in a specific catalog and schema.

If you export a database with a Transient Table, the data in the Transient Tables will be exported (as will the
structure of the tables).

To create a Transient Table, use the syntax shown below, where "<...>" denotes syntax that is the same as for
any other type of table.

CREATE TRANSIENT TABLE <...>;
(For the complete syntax of the CREATE TABLE command, see IBM solidDB SQL Guide)

Transient Tables are always in-memory tables. If you use the STORE DISK clause, the server will give you
an error. If you use STORE MEMORY, or if you omit the STORE clause altogether, the server will create
the Transient Table as an in-memory table.

Note that the server actually stores the definition of the Transient Table (but not the data) in the server's system
tables and keeps that definition even after the server is shut down. If you restart the server later, you will find
that the table is still there, but the data is not. Thus, once you create the table, you do not need to create it
again. In fact, if you or another user try to create a Transient Table with the same name as an existing Transient
Table, you will get an error message, even if the server has been shut down and restarted since the time that
the table with that name was originally created. This behavior may be unexpected if you think that a "Transient
Table" will disappear as soon as you shut down the server.

Naturally, since a Transient Table persists (even though the data does not), you can use the DROP TABLE
command to drop the table after you no longer need it.

You can import data into Transient Tables using the solload utility.

27

3.3 Differences Between Temporary Tables and Transient Tables

Transient Tables are not defined by the ANSI standard for SQL. Transient Tables are a IBM solidDB extension
to the SQL standard.

3.3 Differences Between Temporary Tables and Tran-
sient Tables

The main differences between Transient Tables and Temporary Tables are:

» Transient Tables allow all sessions (connections) in the system to see the same data. Temporary Tables
allow only the user who created a piece of data to see that data.

Because users may access the same data, Transient Tables do use concurrency control. Currently, Transient
tables support only pessimistic concurrency control ("locking™).

Because Temporary Tables do not use concurrency control, Temporary Tables are faster than Transient
Tables.

» The data in Transient Tables lasts until the server is shut down, while data in Temporary Tables lasts only
until the user logs out of the session. This means that if one session inserts data into a Transient Table,
then other sessions may see that data even after the creator of the data disconnects.

» Data in Transient Tables is exportable using solexp tool. Data in Temporary Tables is not.
» The referential integrity rules for the two table types are different.

The table below shows which table types are allowed to refer to other types. For example, if a transient
table is allowed to have a foreign key that references a persistent table, then you will see "YES" in the
cell at the intersection of the row "Transient Child" and the column "Persistent Parent". If the foreign key
constraint is not allowed, you will see a dash ("-").

Table 3.1. Referential Constraints

REFERENCED|Persistent Disk-|Persistent In-| Transient Table Temporary Table
TABLE based Table Memory Table

REFERENCING

TABLE

Persistent YES YES - -

Disk-Based Table
Persistent YES YES - -

28

3.3 Differences Between Temporary Tables and Transient Tables

REFERENCED
TABLE

REFERENCING
TABLE

Persistent
based Table

Disk-

Persistent
Memory Table

In

Transient Table

Temporary Table

In-Memory Table

Transient

Table

YES

YES

YES

Temporary

Table

Yes

Every type of table may reference itself. In addition, Transient Tables may reference Persistent Tables (but
not vice-versa). All other combinations are invalid.

29

30

Chapter 4. Optimizing and Tuning the
Server

This chapter gives more details about how to optimize and tune the server by using the features available in
IBM solidDB main memory engine.

4.1 Algorithm for Choosing Which Tables to Store in
Memory

If you have enough memory to put some, but not all, tables in memory, here is a strategy that will guide you
in choosing which tables to put in memory.

The principle is to take into account the "density" of access. Obviously, the higher the frequency of access,
the higher the access "density". Similarly, the larger the table, the lower the access "density” for a given
number of accesses per second.

The access density is measured in units of accesses per megabyte per second, which we'll write as rows/MBY/s.
(For simplicity, we assume one access per row.) For example, if you have a 1 megabyte table, and you access
300 rows in a 10-second period, then the density is

30 rows/MB/s = 300 rows / 1 MB / 10 seconds

As a second example, suppose that you have a 500KB table and you access 300 rows per second. The access
density is

600 rows/MB/s = 300 rows / 0.5 MB / second

Clearly, the second table has a higher access density than the first one, and if you can only fit one of these
tables into memory than you should put the second one into memory.

This formula is somewhat simplified.

1. You may want to take into account the number of bytes accessed each time. This is typically the average
row size, although it may be different if you are using binary large objects, or if the server can find all
the information that it needs by reading just an index rather than the entire table.

Note that because the server normally reads data from the disk in multiples of a "block™ (where a block
is typically 8KB), the number of bytes per access or the number of bytes per row gives you only slightly

31

4.1 Algorithm for Choosing Which Tables to Store in Memory

more precise figures than the formula without these. Whether you read a 10-byte row or a 2000 byte
row, the server does approximately the same amount of work.

2. Remember that when taking into account the size of the table, you must also take into account the size
of any indexes on that table. Each time that you add an index, you add more data that is stored about that
table. Furthermore, when you add a foreign key constraint to a table, the server will create an appropriate
index (if there isn't already one) to speed up certain types of lookup operations on that table. When you
calculate the size of your table in memory, you must take into account the table, all its indexes, and all
its BLOB:s.

Once you have calculated the access density of all your tables, you rank order those tables from highest to
lowest. Then, starting with the table that has the highest density, you work your way down the list, designating
tables as in-memory tables until you use up all of the available physical memory.

Unfortunately, the process is not this simple because this description assumes that you have perfect information
and that you can change a table from disk-based to in-memory (or vice-versa) at any time. In fact, you may
not know the total amount of free memory in your computer. You might accidentally designate more in-
memory tables than the computer has room in physical memory for. The result may be that tables are swapped
to disk. This may substantially reduce performance. Also, you may not really know how frequently each table
is accessed until that table has a substantial amount of data in it. Yet the current version of this IBM solidDB
server requires that you designate a table as in-memory or disk-based at the time that you create the table,
before you have put any data into it. Thus your calculations are going to have to be based on estimates of the
amount of usage each table gets, estimates of the size of each table, and estimates of the amount of free
memory. It also assumes that the average access density does not change over time.

This approach also assumes that you aren't planning to add still more tables in the future, and it assumes that
your tables do not grow in size. In a typical situation, you should not use up all the memory that you have -
you should leave enough space to take into account that your tables are likely to grow in size, and you should
leave a little bit of a margin for error so that you don't run out of memory.

Nonetheless, this algorithm gives you a basic guide to selecting which tables to put in memory.
1) Important
Since virtual memory may be swapped to disk frequently, using virtual memory negates the advantage

of in-memory tables. Always make sure that the entire DBMS process fits into the physical memory
of the computer.

32

4.2 Performance Tuning Information for Temporary and Transient Tables

4.2 Performance Tuning Information for Temporary
and Transient Tables

4 Caution

When deciding whether to use Temporary Tables or Transient Tables, keep in mind that data in
Temporary and Transient tables is temporary data, not persistent data. The data is not stored to disk.
If you are using HotStandby, the data is not copied to the HotStandby Secondary server. The data is
also not written to the transaction log and therefore cannot be recovered if the server terminates ab-
normally. Do not use Temporary Tables or Transient Tables if you cannot afford to lose the data in
them and re-start your work.

If you are trying to decide between Temporary Tables and Transient Tables, the main things to remember
are:

» Data in Temporary Tables does not last past the end of the session; data in Transient Tables lasts until the
server is shut down.

» Data in Temporary Tables is not visible to other sessions/connections.

» Temporary Tables are faster than Transient Tables because they do very little checking for concurrency
conflicts.

If you don't want to "share" your data and you don't need your data after you disconnect from the current
session, then choose Temporary Tables because they have less overhead and higher performance.

4.3 Indexes

If a table is stored in memory, then all indexes on that table are also stored in memory. Not surprisingly, this
speeds up performance, but also consumes memory space.

In general, in-memory indexes can be extremely fast, and we recommend that you use them to ensure fast
access to the data of the tables.

If you do not have enough memory to store all your tables and indexes in memory, then in some cases adding
a particular index may not be the best choice because even though it will speed up some queries, it will slow
up other queries by using memory that otherwise could be used to put other tables in memory.

33

34

Chapter 5. Configuring In-Memory
Database

This chapter describes how to configure IBM solidDB in-memory database to meet your environment, per-
formance and operational needs. This description is a subset of the information contained in Chapter 3,
"Configuring IBM solidDB," of IBM solidDB Administration Guide.

See Appendix C, Configuration Parameters for an overview for the full list of available parameters relevant
to IBM solidDB main memory engine.

5.1 Configuration Files and Parameter Settings

IBM solidDB gets most of its configuration information from the solid. ini file. To be more specific,
there are two different solid. ini configuration files, one on the server and one on the client. Neither
configuration file is obligatory. If there is no configuration file, the factory values are used. The solid. ini
configuration files contain configuration parameters for the client and for the server, respectively. The client-
side configuration file is used if the ODBC driver is used and the file must be located in the working directory
of the application.

- Note

In IBM solidDB documentation, references to sol id. ini file are usually for the server-side sol -
id.ini file.

When IBM solidDB starts, it attempts to open solid. ini first from the directory set by the SOLI DDI R
environment variable. If the file is not found from the path specified by this variable or if the variable is not
set, the server or client attempts to open the file from the current working directory. (The current working
directory is normally the same as the directory from which you started the IBM solidDB server, or a client
application. You may specify a different working directory by using the —c server command-line option. For
more information about command-line options, see Appendix B, IBM solidDB Command Line Optionsin IBM
solidDB Administration Guide.

The configuration files contain settings for the IBM solidDB parameters. If a value for a specific parameter
isnot setin the solid. ini file, IBM solidDB will use a factory value for the parameter. The factory values
may depend on the operating system you are using.

Generally, factory values offer good performance and operability, but in some cases modifying some parameter
values can improve performance.

35

5.2 Managing Server-Side Parameters

You can modify the configuration by setting parameter name/value pairs in the solid. ini file. For example,
to specify the network address of the server, you use the parameter name Li st en and an appropriate value,
for example,

Listen=tcp 192.168.255.1 1315

This specifies that when the server listens for client requests, it should listen using the TCP/IP protocol, the
network address 192.168.255.1, and the port number 1315.

Parameters are grouped according to section categories in the configuration file. See Appendix A, Server-Sde
Configuration Parameters and Appendix B, Client-Sde Configuration Parametersin IBM solidDB Adminis-
tration Guide. for an overview of the section categories and all available parameters

Each section category starts with a section name inside square braces, for example:

[com]

The[con section lists communication information. Note that section names are case insensitive. The section
names "[COM ", "[Conj ", and "[conj " are equivalent.

Below is a sample section from a server-side solid. ini configuration file:

[IndexFile]
FileSpec_1=C:\soldb\solidl.db 1000M
CacheSize=64M

5.2 Managing Server-Side Parameters

You can view and modify IBM solidDB parameters and their values in the following ways:
» Entering the commands:

ADMIN COMMAND 'parameter’

and

ADMIN COMMAND ‘describe parameter’

in IBM solidDB SQL Editor (teletype).

36

5.2.1 Viewing and Setting Parameters with ADMIN COMMAND

» Directly, by editing the solid. ini file in the IBM solidDB directory.

The sections below contain instructions for managing parameters with ADMIN COMMAND and solid. ini.

< Note

For details on viewing and setting server communication protocol parameters only, read Chapter 6,
"Managing Network Connections™ in IBM solidDB Administration Guide.

5.2.1 Viewing and Setting Parameters with ADMIN COMMAND

With ADMIN COMMAND, you can change the parameters remotely through a IBM solidDB server without
restarting it. All parameters are accessible even if they are not present in the solid. ini configuration file.
If the parameter is not present, the factory value is used.

Viewing Parameters

A summary view of many parameters of one parameters may be obtained with the command

ADMIN COMMAND "parameter [-r] [section_nane[.paraneter_nane]]";
where:

» —r option specifies that only the current value is required

e section_nane is the category name where the parameter is located in solid. ini

To view all parameters, enter the following command in IBM solidDB SQL Editor (teletype):
ADMIN COMMAND ‘'parameter’;

A list of all parameters with current, default, and factory values is returned. You can restrict the viewed
parameters to a specific section by adding a section name, e.g.:

ADMIN COMMAND *"parameter logging”;

You can view the values related a single parameter by giving a full parameter name, like in:

admin command “parameter logging.durabilitylevel*®;
RC TEXT

37

5.2.1 Viewing and Setting Parameters with ADMIN COMMAND

0 Logging DurabilitylLevel 3 2 2
1 rows fetched.

The three values shown are (in this order):

e current value

» startup value that was used when the server was started up

» factory value preset in the product

If desired, you can also qualify this command with a —r option to display only the current values. For example:

ADMIN COMMAND 'parameter -r';

Viewing the Description of a Specific Parameter

You can also view a more detailed description of a specific parameter, which includes valid parameter types
and access modes. This is useful information, especially because parameters may need to be handled dynam-
ically; parameter support may vary between products, platforms, or releases.

To view a parameter's description, enter the following command using IBM solidDB SQL Editor (teletype):

ADMIN COMMAND "describe parameter [section_nane[.paraneter_name]] *;

A result set for a single parameter looks like this:

admin command “describe parameter logging.durabilitylevel”;
RC TEXT

O DurabilitylLevel

0 Default transaction durability level

0 LONG

0 RW

0

0

0

N WN

38

5.2.1 Viewing and Setting Parameters with ADMIN COMMAND

7

rows fetched.

The rows of the resultset are:

Parameter name is the name of the parameter, for example CacheSi ze.

Description of the parameter

Data type

Access mode that may be one of the following:

¢ RO: read-only, the value cannot be changed dynamically

< RW: read/write, the value may be changed dynamically and the change takes effect immediately

* RWI/STARTUP: the value may be changed dynamically but the change takes effect upon next server
startup.

* RWI/CREATE: the value may be changed dynamically but the change takes effect when a new database
is created

Sartup value displays the parameter's startup value
Current value displays the parameter's current value

Factory value displays the value preset in the product.

Setting a Parameter Value

To set a value for a specific parameter, enter the following command using IBM solidDB SQL Editor (teletype):

ADMIN COMMAND *"parameter section_namne. par aneter _nane=val ue [tenporary] *;

where:

val ue is a valid parameter value.

Note

If no value is specified, this sets the parameter with a factory (or unset) value. Furthermore, if you
assign a parameter value with an asterisk (*), the parameter will be set to its factory value.

39

5.2.2 Viewing and Setting Parameters in solid.ini

When temporary is set, the changed value is not stored in the sol id. ini file.
Note that, optionally, you can provide blanks around the equal sign.

Example:

--set communication trace on
ADMIN COMMAND "parameter com.trace = yes";

@ Note

Parameter management operations are not part of a transaction and cannot be rolled back.

The commands return the new value as the resultset. If the parameter's access mode is RO (read-only) or the
value entered is invalid, the ADMIN COMMAND statement returns an error.

Persistence of Parameter Modifications

All the changes made to parameters having the access mode RW™ are stored in the solid. ini file at the
next checkpoint. This does not apply to values set with the t enpor ar y option.

It is also possible to request an immediate storing of changed values, with the command:

ADMIN COMMAND "save parameters [ini _file_name]";
Wheni ni _fil e_name is not specified, the current solid. ini file is re-written. Otherwise, a full con-

figuration file is written to a new location. This is a convenient way to save configuration file checkpoints
for later use.

5.2.2Viewing and Setting Parameters in sol i d. i ni

1. Openthe solid. ini file located in the working directory of your IBM solidDB process.

2. View the value of the parameter.
The parameters displayed are the parameters currently active in the server. If you have not set a parameter
value, the factory value is used at start-up. The factory value may depend on the operating system that

IBM solidDB runs on.

3. If necessary, add the section, the parameter, and the parameter's value.

40

5.2.3 Constant Parameter Values

4. Save the changes.

You must restart the server to activate the changes.

5.2.3 Constant Parameter Values

The parameter access mode for the Bl ocksi ze parameter in the | ndexFi | e section of the configuration
file is RO. The parameter is set when the database is created and cannot be modified afterwards.

If you want to use a different constant value, you have to create a new database. Before creating a new database,
set the new parameter constant value by editing the solid. ini file in the IBM solidDB directory.

The following example sets a new block size for the index file by adding the following linesto the solid. ini
file :

[IndexFile]

Blocksize = 4096

After editing and saving the soli1d. ini file, move or delete the old database and log files, and start IBM
solidDB.

& Note

The log block size can be changed between startups of the server.

41

42

Appendix A. Calculating Maximum
BLOB Size

A.1 Purpose

One important difference between in-memory tables and disk-based tables is that column values in in-memory
tables must fit into a single "page" (the page size is specified in the solid. ini configuration file, and its
maximum is 32kB). Therefore, in-memory tables cannot store character or binary files larger than the page
size. Smaller binary files, however, are supported.

This appendix shows how to calculate the maximum size of a character or binary column value that will fit
in your in-memory tables.

A.2 Background

Many applications today use data that cannot be easily stored in the standard data types INT, CHAR, etc. In-
stead, a long character or binary format may be better suitable. In these cases, the data may be stored as CLOBs
and BLOBs, Character and Binary Large OBjects, respectively. A CLOB includes interpretable characters
whose number may be up to 2 billion. A BLOB data type can hold virtually any data that can be stored as a
series of binary numbers (8-bit bytes). Typically, BLOBs are used to store large, variable-length data that
cannot be easily interpreted as numbers or characters. For example, BLOBs may hold digitized sound (e.g.
the music on a Compact Disc), multi-media files, or time-series data read from sensors.

In IBM solidDB BLOBs are widely supported and there are several different data types to choose from:
BINARY, VARBINARY and LONG VARBINARY, of which the latest is mapped to standard data type
BLOB.

CLOB is implemented with six data types, CHAR, WCHAR, VARCHAR, WVARCHAR, LONG VARCHAR
and LONG WVARCHAR. The two latest data types are mapped to standard data types CLOB and NCLOB.
For detailed information about CLOB and BLOB data types see chapters "Character Data Types" and "Binary
Data Types" in Appendix A in IBM solidDB SQL Guide.

For disk-based tables, IBM solidDB's implementation of BLOB storage balances speed of access with the
need to be able to store large amounts of data. Regardless of the data type (VARCHAR, VARBINARY, etc.),
short values are generally stored in the table, while longer values have part or all of their data stored in a
separate area in the database storage tree. This is entirely transparent to the user; the user simply decides on
the data type, and IBM solidDB takes care of the rest. Your data will always be accessed the same way, and

43

A.3 Calculating

will appear to be stored in the table, regardless of the actual physical location of the data. In disk-based tables,
the maximum length of a VARCHAR or VARBINARY field is 2 gigabytes.

For in-memory tables, BLOB data is stored entirely in the table itself, and the maximum length of a BLOB
is limited by the "block size" (no row of an in-memory table may exceed the length of a page or "block™). In
this appendix, we give you some information to help you estimate the largest size VARCHAR or VARBINARY
data that you can store in an in-memory table.

A.3 Calculating

Please note that the algorithm for calculating the space available for BLOBs is approximate. Make a photocopy
of the table below, then fill it in with the values appropriate for your table. Follow the steps to calculate the
remaining space available for BLOB data.

Table A.1. Calculating the Space Available for BLOB Data

VALUE

WHAT TO ENTER IN VALUE

WHAT THE VALUE MEANS

In the space to the left, enter either your block
size or 32767 (whichever is smaller). The block
size will be either the value that you set in the
[ndexFile] Bl ockSize solid.ini
configuration file, or the default documented in
IBM solidDB Administration Guide.

The block size (page size) is the number of bytes in
a "block", analogous to a disk block. Since each
row must fit within a block, this represents the
maximum size of a row.

17

Use the hard-coded value shown to the left.

This is the number of bytes of overhead per page.

10

Use the hard-coded value shown to the left.

This is the number of bytes of overhead per row.
WEe'll assume that you have only 1 row per page if
you have large BLOBs.

If you have declared an explicit primary key for
your table, enter the value 10. Otherwise, enter
20.

This represents bytes used for columns that the
server automatically adds to each table.

Enter the number of columns in your table,
multiplied by 2.

This is the number of bytes of overhead for the
columns.

Enter the sum of the sizes of the fixed-size
columns of data in your table. (See table #2 be-
low for the size of each fixed-size data type.)

This represents space taken up by fixed-size
columns.

Enter the number of blob columns.

This is the number of bytes used to terminate BLOB
values (1 byte per value).

44

A.3 Calculating

VALUE |WHAT TO ENTER IN VALUE WHAT THE VALUE MEANS

8 Sum the values in rows 2 through 7. This is the total space used by everything except
the BLOB values.

9 Subtract row 8 from row 1. This is the approximate number of bytes available
for BLOB data. If you have a single BLOB column
in your table, then this is the approximate maximum
size of that BLOB value.

< Note

NOTE: The maximum block size is 64K; however, the maximum row size (and thus the maximum
blob size) is only 32K (actually 32K-1, or 32767). If your block size is 64K or 32K, please enter

32767 instead of the block size in row 1 of the table.

The table below indicates the number of bytes required to store a value of each fixed-size data type. For ex-

ample, it takes 8 bytes to store a value of type SQL FLOAT.

Table A.2. Number of Bytes Required to Store Values

Data Type Storage Size (in bytes)
TINYINT 1

SMALLINT 2

INT 4

BIGINT 8
DATE/TIME/TIMESTAMP 11

FLOAT / DOUBLE PRECISION

REAL

NUMERIC / DECIMAL 11

CHAR /VARCHAR / LONG VARCHAR

char_length(column_value) + 1

WCHAR / WVARCHAR / LONG WVARCHAR

char_length(column_value) * 2 + 1

BINARY /VARBINARY / LONG VARBINARY

octet_length(column_value) + 1

45

46

Appendix B. Calculating Storage
Requirements

This appendix gives you information that will allow you to estimate how much memory or disk space is required
to store a table and its indexes in memory or on disk.

Please note that the formulae given here are not precise for several reasons, including the following:
» IBM solidDB compresses some data.

» \Variable-length data (e.g. VARCHAR) requires different amounts of space, depending upon the actual
lengths of the values stored.

» The in-memory data structures do not necessarily store the same number of "pointers"” for every record.
In most of this discussion, we assume that the data is not compressed, and we assume the maximum number
of pointers. Thus the results that you get by using these formulae will usually be somewhat conservative - i.e.
the formulae will usually over-estimate the amount of space required.

In the formulae below, the notation

sum_of(x)

means to take the sum of the sizes of each "x". For example,

sum_of(col_size)

means to take the sum of the sizes of each of the columns in the table or index, and

sum_of(index_sizes)

means to take the sum of the sizes of all of the indexes on the table.

B.1 Disk-Based Tables

The general formula for the space required for a disk-based table is:

47

B.2 In-Memory Tables

chkpt_factor x (table_size + sum_of(index_sizes))

where
chkpt_factor is between 1.0 and 3.0 (explained below), and
table_size =
1.4 x rows x (sum_of(col_size + 1) + 12)
where

rows is the number of rows; and
sum_of(col_size + 1) is the sum of the sizes of the columns
plus one byte per column.
The column sizes are shown in a table later.

For each disk-based index, the index_size is

1.4 x rows x (pkey_size + idx_size)

where pkey_size is the sum of the sizes of the columns in the primary key, and idx_size is the sum of the sizes
of the columns in the index.

The chkpt_factor is needed to take into account that "checkpoint” operations may briefly require up to three
times the size of the database. During a checkpoint operation, a copy of each of the changed pages in the
database is copied from memory to the disk. If every page in the database has been updated, then it's possible
to copy as many pages from memory as there already are on disk. Furthermore, the most recent successful
checkpoint is not deleted until the current checkpoint is successfully completed. Therefore, during a checkpoint
the disk may simultaneously have up to 3 copies of each page (1 copy for the page in the database, 1 copy in
the most recent successful checkpoint, and 1 copy for the current checkpoint while it is executing). The
checkpoint factor therefore can be between 1.0 and 3.0. Values approaching 3.0 are rare in most databases.
A value of 1.5 is usually well sufficient even for small databases that have high levels of activity. Note that
the less frequent the checkpoint, the larger the chkpt_factor may need to be

@ Note

In a disk-based index, if you do not explicitly define a primary key, then the server uses a server-
generated "row number" as the primary key. This forces the primary key index to store records in the
same order that they were inserted.

B.2 In-Memory Tables

The general formula for an in-memory table is

48

B.3 Table of Column Sizes

tabl e_size + sum_of(i ndex_si zes)

tabl e_size=

1.3 x rows x (sum_of(col _sizes) + (3 x word_size) + (2 * numcols) + 2)
where: rows is the number of rows;

wor d_si ze is the machine word size (e.g. 4 bytes for 32-bit OS and 8 bytes for 64-bit OS);

num_col s is the number of columns; and

sum_of(col _si zes) is the sum of the sizes of the columns.

For each in-memory index, the index size is

1.3 x rows x ((dist_factor x sum_of(col _sizes + 1)) + (8 x word_size) + 4)

where "dist_factor" is a value between 1.0 and 2.0 that depends upon the distribution of the key values. If key
values are highly dissimilar, then use a value closer to 2.0. If key values are highly similar, then use a value
closer to 1.0.

B.3 Table of Column Sizes

TINYINT: 2 bytes

SMALLINT: 2 bytes

INT: 4 bytes

BIGINT: 8 bytes
DATE/TIME/TIMESTAMP: 11 bytes
FLOAT / DOUBLE PRECISION: 8 bytes
REAL: 4 bytes

NUMERIC / DECIMAL: 12 bytes

CHAR /VARCHAR / LONG VARCHAR: char_length(column_value) + 5

49

B.4 Measuring Memory Consumption

WCHAR / WVARCHAR / LONG WVARCHAR: char_length(column_value) * 2 + 5

BINARY / VARBINARY / LONG VARBINARY: octet_length(column_value) + 5

B.4 Measuring Memory Consumption

After you have created your tables and indexes, you can measure the actual amount of memory consumed by
using the command:

ADMIN COMMAND ‘info imdbsize;

This command gives the total memory consumption of in-memory tables and indexes. The units are kilobytes.

B.5 Details

This chapter contains some detailed information about how the data is stored in the different storage trees.
You may find this helpful, if you would like a better understanding of the basis for the preceding formulae.

B.5.1 Disk-Based Tables

On disk-based tables, data and indexes are stored in a B-tree. Each entry in the tree consumes space for the
header and the data.

The space used by the actual data can be calculated using the table of column sizes shown earlier. The values
in that table are the maximum lengths. Variable-length data (e.g. VARCHAR) or compressible data may require
fewer bytes.

In addition, in disk-based tables, the server requires 1 additional byte per column; this byte is used as part of
the length indicator (which also serves as a null indicator).

The header for each row uses 12 bytes:

Table B.1. Header Bytes

Number of Bytes Used for...

3 bytes Row header
3 bytes Table id

6 bytes Row version

If a disk-based table contains indexes (other than the primary key), the size of the entries in those indexes
must be estimated separately using the same guideline. An index entry contains the following components:

50

B.5.1 Disk-Based Tables

+ columns that are defined in the index
» columns of the primary key of the table
» arow header (12 bytes)

Additionally, there is usually some empty space (e.g. 20 - 40%) in the database pages. This is why the formulae
include a multiplier of 1.4 for both tables and indexes.

For example: We have a disk-based table:

CREATE TABLE subscriber (
id INTEGER NOT NULL PRIMARY KEY,
name VARCHAR(50),
salary FLOAT) ;

Additionally, we have created a secondary index:

CREATE INDEX subscriber_idx _name ON subscriber (name);

The index entry contains the NAME column; it also contains the primary key column, which in this case is
ID. The space required by that index should be estimated separately. The total size of the disk-based table,
assuming the "empty space factor" is 1.4, would be:

rows x 1.4 // 1.4 = the empty space estimate.
x ((12 + 4 + (50+5) + 8 + 3) // size of the table entry,
+ (12 + 4 + (50+5) + 2)) // size of the secondary index entry

Representing this differently,

51

B.5.2 In-Memory Tables

space required for space required for
one row in table one row in index

VARCHAR overhead <---—----—-——-

size of FLOAT <-----————mmmmmmmmoo
length indicators (1 byte per col) <----
row header size (in index) <--------————--————-
size of INT <--------
size of VARCHAR(50) <----—--———-———-mmmmmmmmm - |
VARCHAR overhead — <-----------———————o -
length indicator bytes (1 per column) <--—-———-—————-o—————

rows x 1.4 x ((12 + 4 + (50+5) + 8 3 2 0+5) + 2))
1 | I | |

row header size <-- | | 1 | | |
size of INT <—-————————- | 1 | | |
size of VARCHAR(50) <-----—-—- | | | |
1 |
| |
|

————————— (]

B.5.2 In-Memory Tables

The space required by in-memory tables is estimated differently.

The size of each entry is the combined size of the data of the table plus three memory pointers (4 bytes each
in 32-bit OS or 8 bytes each in 64-bit OS) of overhead per row. Additionally, there is overhead of two bytes
per row and two bytes per each column of the row. Note that you do not need to add 1 byte per column to
take into account the length indicator; that is included in the 2 bytes per row.

In addition, the main memory tables may have indexes, which are populated upon server startup. Each index
entry contains the data of the columns defined in the index. Additionally, each index entry contains up to
eight memory pointers. (Note that a copy of the primary key is NOT required for an in-memory index.)

Furthermore, there is some other overhead that depends on the actual data values of the index. This is a per-
centage of the data size of the index. An exact value cannot be given exactly because it depends on the key
value distribution, but the multiplier ranges between 1.0 and 2.0.

Additionally, the index structure itself needs an average of 4 bytes per index entry (i.e. per row).

For the above example table and index, the memory consumption in a 32-bit operating system can be estimated
to be:

52

B.5.2 In-Memory Tables

rows * 1.3

(
+(
+ (

3 x 4)
(B8 x 4)
(B8 x 4)

-2 x 4))

+ + + X
2R NA
+ + +
PR

+ 1.2 x 4))

4
| | (|
|
|
|

4 + 2) + (50+5+2) + (8+2)) // Size of data in table
// Size of the primary key index
-2 x (50+5))) // Size of the secondary index.

// Size of data in the table.
2 bytes
8 bytes
2 bytes per col

5 bytes overhead per VARCHAR

50 bytes for VARCHAR(50)

2 bytes per col

4 bytes for INT (ID)

2 bytes per row

pointer size (4 bytes on 32-bit 0S)
3 pointers

per col
for FLOAT (Salary)

// Size of the primary key index

4 bytes for INT

1.2 index value distribution factor
4 bytes per index entry

pointer size (4 bytes on 32-bit 0S)
8: up to 8 pointers

of the secondary index.

4 bytes for VARCHAR overhead

50 bytes for VARCHAR(50)

1.2 index value distribution factor
4 bytes per index entry

pointer size (4 bytes on 32-bit 0S)
8 up to 8 pointers

In a 64-bit operating system, use a memory pointer size of 8 bytes rather than 4 bytes.

53

B.5.2 In-Memory Tables

The factor 1.2 in the above estimate is the "TRIE index value distribution factor" whose exact value depends
on the actual values of the indexed column. Its value is typically between 1 and 2. With random value distri-
bution, the value is closer to 2.0 and with sequential value distribution, it is closer to 1.0. The 4 bytes is the
data overhead needed by an index entry on average.

The factor of 1.3 is to take into account the internal overhead of the memory allocator.

@ Note

Indexes of main memory tables are created dynamically each time that the server starts; they are
never written to disk and therefore they don't occupy any disk space. However, the tables themselves
are written to disk when the server shuts down (and during checkpoints), so the total amount of disk
space that you have must be enough to store both the disk-based tables and the in-memory tables.

54

Appendix C. Configuration
Parameters

Parameters are grouped according to section categories in the sol id . ini configuration file. The parameters
related to the IBM solidDB in-memory database are stored into the [MVE] section of the configuration file.
Additionally one parameter, Def aul t St or el sMenor y, is stored into the [Gener al] section.

You can change configuration parameters in either by manually editing the solid. ini configuration file
or by entering the following command in IBM solidDB SQL Editor:

ADMIN COMMAND “"paraneter section_namne. param nanme=val ue”

For example:

ADMIN COMMAND *'parameter mme.imdbmemorylimit=1gb";

& Note

The server reads the configuration file only when it starts, and therefore changes to the configuration
file do not take effect until the next time that the server starts.

The complete list of IMDB-related configuration parameters is presented below.

C.1 General Section

Table C.1. MME Parameters

[General] Description Factory Access
Value Mode

Def aul t St or e- |If set to Yes, new tables are created as in-memory tables if |No RW

| sMenory they are created without an explicit STORE clause in the

CREATE TABLE statement. If set to No, then by default
new tables are stored on disk. You can override the default
value by using the STORE clause in the CREATE TABLE
statement.

This parameter only applies to products that support IBM
solidDB in-memory database.

55

C.2 MME Section

[General] Description Factory

Value

Access
Mode

Note that system tables are stored on disk, even if this para-
meter is set to Yes.

C.2 MME Section

= Note

The Def aul t St or el sMenory parameter (in the [Gener al] section of the solid. ini file)
is also related to IBM solidDB in-memory database. For more information, see Section C.1, “General

Section”.

Table C.2. MME parameters

[MVE]

Description Factory |Access

Value

Mode

| mdbMenor yLi mi t

This sets an upper limit on the amount of memory (virtual |0
memory) that the server will allocate for in-memory tables

and indexes on in-memory tables. Note that “in-memory | Unit: 1
tables" includes Temporary Tables and Transient Tables, | byte

as well as "normal™ (persistent) in-memory tables. k=KB
m=MB
The limit may be specified in bytes, kilobytes (kb), g=GB

megabytes (mb), or gigabytes (gb). For example:

ImdbMemoryLimit=1073741824
ImdbMemoryLimit=1048576kb
ImdbMemoryLimit=1024MB
ImdbMemoryLimit=1GB

If you use the value 0, it means "no limit".

As a general rule, for servers with 1GB or less of memory,
the maximum amount that you should allocate to in-
memory tables is usually 30% - 70% of the system's
physical memory. The more memory the system has, the

RW

56

C.2 MME Section

[MVE]

Description

Factory
Value

Access
Mode

larger the percentage of it you may use for in-memory
tables.

For more details about controlling memory usage of in-
memory tables, see IBM solidDB In-Memory Database
User Guide.

Note: This parameter only applies only to IBM solidDB
main memory engine tables. It does not apply to other
versions of IBM solidDB or to disk-based tables.

You can change this with the command:

ADMIN COMMAND *parameter
MME . ImdbMemoryLimit=n[kb|mb]gb]";

where 'n' is a positive integer. You may only increase, not
decrease, this value while the server is running. The
command takes effect immediately. The new value is
written back to the solid. ini file at shutdown.

% Caution

We strongly recommend that you ensure that your
in-memory tables will fit within the available
physical memory. If you exceed the amount of
physical memory available, performance will de-
crease significantly. If you use up all of the
available virtual memory, the server will abruptly
limit inserts, updates, etc. and will return error
codes.

| mdbMenor yLowPer -
cent age

Once you have set | rdbMenor yLi i t, you may set
this additional parameter to give you advance warning
before you use up all of memory. This | ndbMenor yLow
Per cent age parameter allows you to indicate what
percentage of memory you may use before the server

90

RW/Star-

tup

57

C.2 MME Section

[MVE]

Description

Factory
Value

Access
Mode

starts limiting your ability to insert rows into in-memory
tables, etc. For example, if | mdbMenor yLi mi t is
1000MB and | rdbMenor yLowPer cent age is 90
(percent), then the server will stop accepting inserts when
you've used up 900 megabytes of memory for your in-
memory tables.

Valid values are between 60 and 99 (percent).

For more details about controlling memory usage of in-
memory tables, see IBM solidDB In-Memory Database
User Guide.

& Note

This parameter only applies to IBM solidDB main
memory engine tables. It does not apply to other
versions of IBM solidDB or to disk-based tables.

| mdbMenor yWar ni ng-
Per cent age

This parameter sets a warning limit for the IMDB memory
size. The warning limit is expressed as a percentage of
the | mdbMenor yLi m t parameter value. When the

| mdbMenor yWar ni ngPer cent age limitis exceeded,
a system event is given.

The | mdbMenor yWar ni ngPer cent age parameter
value is automatically checked for consistency. It must
be lower than the | ndbMenor yLi mi t parameter value.

For more details about controlling memory usage of in-
memory tables, see IBM solidDB In-Memory Database
User Guide.

- Note

This parameter only applies to IBM solidDB main
memory engine tables. It does not apply to other
versions of IBM solidDB or to disk-based tables.

RW/Star-
tup

58

C.2 MME Section

[MVE]

Description

Factory
Value

Access
Mode

LockEscal ati onEn-
abl ed

Typically, when the server needs to use locks to prevent
concurrency conflicts, the server locks individual rows.
This means that each user affects only those other users
who want to use the same row(s). However, the more
rows are locked, the more time the server must spend
checking for conflicting locks. In some cases, it is
worthwhile to lock an entire table rather than a large
number of the rows in that table. When LockEscal a-
ti onEnabl ed is set to yes, the lock level is escalated
from row-level to table-level after a specified number of
rows (in the same table) have been locked within the
current transaction. Lock escalation improves perform-
ance, but reduces concurrency, because it means that
other users are temporarily unable to use the same table,
even if they want to use different rows within that table.
See the parameter LockEscal ati onLimnit.

The value may be "yes" or "no".

& Note

This parameter applies to in-memory tables only.

yes

RW/Star-
tup

LockEscal ati onLi m t

If LockEscal ati onEnabl ed is set to yes, then this
parameter indicates how many rows must be locked
(within a single table) before the server will escalate lock
level from row-level to table-level. (See LockEscal a-
ti onEnabl ed for more details.)

The value may be any number from 1 to 2,147,483,647
(2732-1).

F Note

This parameter applies to in-memory tables only.

1000

RW/Star-
tup

LockHashSi ze

The server uses a hash table (array) to store lock informa-
tion. If the size of the array is remarkably underestimated
the performance degrades. Too large hash table doesn't

1000000

RW/Star-
tup

59

C.2 MME Section

[MVE]

Description

Factory
Value

Access
Mode

affect directly to the performance although it causes
memory overhead. The LockHashSi ze determines the
number of elements in hash table.

This information is needed when the server is using
pessimistic concurrency control (i.e. locking). The server
uses separate arrays for in-memory tables and disk-based
tables. This parameter applies to in-memory tables.

In general, the more locks you need, the larger this array
should be. However, it is difficult to calculate the number
of locks that you need, so you will probably need to ex-

periment to find the best value for your applications.

The value that you enter is the number of hash table
entries. Each table entry has a size of one pointer (4 bytes
in 32-bit architectures). Thus, for example, if you choose
a hash table size of 1,000,000, then the amount of memory
required is 4,000,000 bytes (assuming 32-bit pointers).

MaxCacheUsage

The value of MaxCacheUsage limits the amount of D-
table cache used while checkpointing M-tables. The value
is expected to be given in bytes. Regardless of the value
of the MaxCacheUsage at most half of the D-table cache
(I ndexFi | e. CacheSi ze) is used for checkpointing
M-tables. Value Max CacheUsage=0 sets the value
unlimited, which means that the cache usage is | ndex-
Fi l e. CacheSi ze/ 2.

8MB

RW/Star-
tup

Rel easeMenor yAt Shut -
down

When set to "yes", this tells the server that when it shuts
down it should explicitly release memory used by in-
memory tables, rather than relying on the operating system
to clean up all memory associated with this process. Some
operating systems (like VxWorks) may require you to set
this to "yes" to ensure that all memory is released.

The possible values are yes and no.

The factory value is no because shutting down the server
is faster that way.

No

RW/Star-
tup

60

Glossary

This glossary gives you a description of terms used in this document. Note that IBM solidDB Administration
Guide contains a more extensive glossary.

D

D-table
In some error messages, the term "D-table" is used as shorthand for "disk-based table".

Isolation Level
See Transaction Isolation Level.

L

Log file (Transaction log)
This file holds a log of committed operations executed by the database server. If a system crash occurs,
the database server uses this log to recover all data inserted or modified after the latest checkpoint.

M

M-table
In some error messages, the term "M-table" is used as shorthand for "in-memory table".

T

Transaction Isolation Level

When multiple users are using a database at the same time, one user's changes should only be visible to
other users in controlled ways. For example, you might choose the "COMMITTED READ" isolation
level, which means that you do not want to see any other user's changes (e.g. new records) that have not
yet been committed yet. Or you might choose an isolation level that guarantees that if you look at the
same table repeatedly in the same transaction, then you will see the same records each time. The ANSI
standard for SQL defines 4 different levels of isolation. These are discussed in IBM solidDB Administration
Guide and are defined in the ANSI standard for SQL.

61

62

Index

Symbols

use of the equals sign when setting parameter val-
ues, 55

A

ADMIN COMMANDSs

info imdbsize, 12

pmon mme, 13
algorithm for choosing which tables to store in
memory, 31

B

BLOB
calculating maximum size, 43
Blocksize (parameter), 41

C

CacheSize (parameter), 14
CLOB, 43
configuration file
on the client, 35
on the server, 35
configuring
client-side configuration file, 35
configuration file, 35
default settings, 35
factory values, 35
in-memory database, 35
managing parameters, 36
setting parameters, 37, 39
viewing parameter descriptions, 38
viewing parameters, 36, 37
parameter settings, 35
server-side configuration file, 35
solid.ini, 35
example, 36

D

D-table, 61
database
disk space requirements, 19
in-memory
changing tables types, 20
configuring, 35, 36
non-persistent tables, 8
persistent tables, 8
table types, 7
tables, 7
tables improving performance, 9
which tables to choose, 10, 31
temporary tables, 9, 24
performance tuning, 33
transient tables, 9, 26
performance tuning, 33
DefaultStorelsMemory (parameter), 11

E

equals sign
use of when setting parameter values, 55

H
HotStandby, 20

ImdbLowPercentage (parameter), 14, 15
ImdbMemoryLimit (parameter), 14, 15, 56
ImdbMemoryLowPercentage (parameter), 57
ImdbMemoryWarningPercentage (parameter), 14,
15,58
indexes

in in-memory tables, 33
info imdbsize

ADMIN COMMAND, 12
isolation level, 61

(see also transaction isolation level)

63

L

limitations of in-memory tables, 19
linked library access, 21
LockEscalationEnabled (parameter), 59
LockEscalationLimit (parameter), 59
LockHashSize (parameter), 59

M
M-table, 61
MaxCacheUsage (parameter), 60
memory
physical, 19
virtual, 19
memory consumption
controlling, 12, 14
measuring, 50
monitoring, 12

P

parameters

Blocksize, 41

CacheSize, 14

DefaultStorelsMemory, 11

ImdbLowPercentage, 14, 15

ImdbMemoryLimit, 14

reaching, 15

ImdbMemoryWarningPercentage, 14, 15

ProcessMemoryChecklInterval, 14, 18

ProcessMemoryLimit, 14, 17

ProcessMemoryLowPercentage, 14, 18

ProcessMemoryWarningPercentage, 14, 18
pmon mme

ADMIN COMMAND, 13
ProcessMemoryCheckInterval (parameter), 14, 18
ProcessMemoryLimit (parameter), 14, 17
ProcessMemoryL owPercentage (parameter), 14, 18
ProcessMemoryWarningPercentage (parameter), 14,
18

R

READ COMMITTED, 20
ReleaseMemoryAtShutdown (parameter), 60
REPEATABLE READ, 20

S
SERIALIZABLE, 20
restrictions on using, 20
solid.ini
MME section, 14
SRV section, 14
storage requirements
calculating, 47
for disk-based tables, 47
for in-memory tables, 48

T

table
in-memory
indexes, 33
tables
in-memory, 7
indexes, 33
limitations, 19
specifying, 11
in-memory table types, 7
non-persistent in-memory tables, 8
persistent in-memory tables, 8
temporary, 9, 14, 24, 33
transient, 9, 14, 26, 33
temporary tables
limitations
cannot be used as master, 25
duration, 24
using with referential constraints, 25
visibility, 24
relationship to ImdbMemoryLimit, 14
transaction isolation, 20
transaction isolation level, 61
transaction isolation levels
READ COMMITTED, 20

64

REPEATABLE READ, 20
SERIALIZABLE, 20
restrictions on using, 20
transient tables
limitations
cannot be used as master, 26
duration, 26
using with referential constraints, 26
relationship to ImdbMemoryLimit, 14

65

66

	Chapter 1. Welcome
	1.1 About This Guide
	1.1.1 Organization
	1.1.2 Audience

	1.2 Conventions
	1.2.1 Typographic Conventions
	1.2.2 Syntax Notation

	1.3 IBM solidDB Documentation

	Chapter 2. Basic Features
	2.1 In-Memory Tables
	2.1.1 In-Memory vs. Disk-Based Tables
	2.1.2 Types of In-Memory Tables
	2.1.3 How In-Memory Tables Improve Performance
	2.1.4 How to Decide Which Tables to Designate as In-Memory Tables
	2.1.5 How to Specify that a Table Is Stored in Memory
	2.1.6 Memory Consumption
	2.1.7 Calculating Disk Space Requirements
	2.1.8 Standards Compliance
	2.1.9 Limitations of In-Memory Tables

	2.2 Other In-memory Engine Enhancements
	2.3 Using IBM solidDB Linked Library Access and HotStandby with IBM solidDB In-memory Engine
	2.3.1 Linked Library Access
	2.3.2 HotStandby

	2.4 Incompatibilities with Previous IBM solidDB Products

	Chapter 3. Temporary Tables and Transient Tables
	3.1 Temporary Tables
	3.1.1 Limited Visibility
	3.1.2 Limited Duration
	3.1.3 Additional Limitations

	3.2 Transient Tables
	3.3 Differences Between Temporary Tables and Transient Tables

	Chapter 4. Optimizing and Tuning the Server
	4.1 Algorithm for Choosing Which Tables to Store in Memory
	4.2 Performance Tuning Information for Temporary and Transient Tables
	4.3 Indexes

	Chapter 5. Configuring In-Memory Database
	5.1 Configuration Files and Parameter Settings
	5.2 Managing Server-Side Parameters
	5.2.1 Viewing and Setting Parameters with ADMIN COMMAND
	5.2.2 Viewing and Setting Parameters in solid.ini
	5.2.3 Constant Parameter Values

	Appendix A. Calculating Maximum BLOB Size
	A.1 Purpose
	A.2 Background
	A.3 Calculating

	Appendix B. Calculating Storage Requirements
	B.1 Disk-Based Tables
	B.2 In-Memory Tables
	B.3 Table of Column Sizes
	B.4 Measuring Memory Consumption
	B.5 Details
	B.5.1 Disk-Based Tables
	B.5.2 In-Memory Tables

	Appendix C. Configuration Parameters
	C.1 General Section
	C.2 MME Section

	Glossary
	Index

