

Getting Started With solidDB For VxWorks
Copyright © Solid Information Technology Ltd. 2008, 2009
Document number: GVxW-6.00
Product version: 06.00.1061
Date: 2009-09-30

All rights reserved. No portion of this product may be used in any way except as expressly authorized in writing by Solid Information
Technology Ltd. or International Business Machines Corporation.

This product is protected by U.S. patents 6144941, 7136912, 6970876, 7139775, 6978396, and 7266702.

This product is assigned the U.S. Export Control Classification Number ECCN=5D992b.

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative
for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is
not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document
does not grant you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your country or
send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local
law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an en-
dorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web
sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between
independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been ex-
changed, should contact:

IBM Canada Limited
Office of the Lab Director
8200 Warden Avenue
Markham, Ontario
L6G 1C7
CANADA

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM
Customer Agreement, IBM International Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating
environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee
that these measurements will be the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other
publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any
other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without notice, and represent goals and
objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible,
the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to
the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating
platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of devel-
oping, using, marketing or distributing application programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright notice as follows:

your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
Copyright IBM Corp. _enter the year or years_.

All rights reserved.

TRADEMARKS

IBM, the IBM logo, ibm.com, Solid, and solidDB are trademarks or registered trademarks of International Business Machines Corporation
in the United States, other countries, or both. A current list of IBM trademarks is available on the Web at "http://www.ibm.com/legal/copy-
trade.shtml".

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

Table of Contents
1 Welcome ... 1

1.1 About This Guide ... 1
1.1.1 Organization ... 1
1.1.2 Audience .. 2

1.2 Conventions .. 2
1.2.1 About solidDB ... 2
1.2.2 Typographic Conventions .. 2
1.2.3 Syntax Notation ... 3

1.3 solidDB Documentation ... 4
2 Introduction ... 7

2.1 Purpose .. 7
2.2 What You Should Already Know .. 7
2.3 Software and Hardware Requirements .. 7

3 Overview ... 9
3.1 The AcceleratorLib ... 9
3.2 Overview of Building and Executing a solidDB Application on VxWorks 11

4 Configuring, Starting, and Stopping solidDB .. 13
4.1 Before You Start: solid.ini File .. 13

4.1.1 FileSpec ... 13
4.1.2 CacheSize ... 13
4.1.3 Listen ... 14
4.1.4 MergeInterval and CheckPointInterval .. 14
4.1.5 LogEnabled ... 14

4.2 Starting solidDB ... 15
4.3 Stopping solidDB .. 16

5 Incorporating the AcceleratorLib into a VxWorks Project .. 17
5.1 Development Environment .. 17

5.1.1 Directory Structure ... 17
5.1.2 VxWorks Options ... 18
5.1.3 Link solidac.a .. 19
5.1.4 Header Files .. 19

5.2 Source Code Modifications ... 19
5.3 Working Directory .. 20

6 Design Considerations and Performance Tuning Tips ... 23
6.1 Overview .. 23
6.2 Starting the Server ... 24
6.3 Tuning a Multi-threaded solidDB Server .. 26
6.4 SSCAdvanceTasks .. 27

6.4.1 SSCAdvanceTasks, and checking Server state .. 27

v

6.5 Adjusting Stack Size .. 28
6.6 Assigning Memory Partitions for solidDB .. 28
6.7 Reclaiming System Resources and Uninitializing the Server .. 29
6.8 Selecting Memory Allocator .. 29
6.9 Redirecting Server Messages ... 30

7 ODBC Client .. 31
7.1 Connection .. 32
7.2 Statement Execution .. 33
7.3 Disconnecting .. 34

8 solidDB VxWorks Development Differences (from Other Platforms) ... 35
A A Quick Overview of Developing Applications ... 37
B Different Approaches to "Building Your Image" .. 39

B.1 Abstract .. 39
B.2 Background ... 39
B.3 Possible Combinations of Images .. 40

C SSC API Functions .. 43
C.1 SSCLogHookAdd .. 43

C.1.1 Synopsis .. 43
C.1.2 Return Value ... 44

C.2 SSCSetMemoryAllocatorType .. 44
C.2.1 Synopsis .. 44

C.3 SSCSetStacksize .. 44
C.3.1 Synopsis .. 44
C.3.2 Return Value ... 44

C.4 Conversion Functions .. 45
C.4.1 Synopsis .. 45

D SsSys Utility Functions .. 47
D.1 SsSysMemGlobalInit .. 47

D.1.1 Synopsis .. 47
D.1.2 Return Value ... 47

D.2 SsSysMemGlobalDone ... 47
D.2.1 Synopsis .. 47

D.3 SsSysResGlobalDone .. 47
D.3.1 Synopsis .. 48

Glossary ... 49
Index ... 53

vi

Getting Started With solidDB For VxWorks

List of Figures
7.1 Local Clients and ODBC Driver .. 31
B.1 One image: VxWorks + solidac.a + your application .. 40
B.2 Two separate images: VxWorks, solidac.a + your application .. 41

vii

viii

List of Tables
1.1 Typographic Conventions ... 2
1.2 Syntax Notation Conventions .. 3
C.1 SSCLogHookAdd Parameters ... 43

ix

x

List of Examples
6.1 Using SSCAdvanceTasks() to Monitor the Server .. 27

xi

xii

Chapter 1. Welcome
IBM solidDB provides the advanced data management software that makes networks flow.

IBM solidDB (solidDB) ensures data consistency and integrity network wide with its Intelligent Transaction
technology and proven bi-directional, multi-point synchronization. When used with options, such as High
Availability (formerly called HotStandby), AcceleratorLib, and Diskless Edition, solidDB provides an extensible
platform that achieves an even higher level of fault tolerance, performance, and embeddability.

1.1 About This Guide
This guide is intended for developers who are using solidDB for Wind River Workbench/VxWorks. It provides
the proper procedure for installing and starting solidDB within the Workbench/VxWorks environment. Note
that this guide supplements the information contained in solidDB SmartFlow Data Replication Guide, and
solidDB SQL Guide.

1.1.1 Organization

This guide contains the following sections:

• Chapter 2, Introduction lists hardware and software requirements for this product.

• Chapter 3, Overview describes the solidDB AcceleratorLib library and gives an overview of how to use
that library to build a VxWorks process that contains the solidDB server.

• Chapter 4, Configuring, Starting, and Stopping solidDB explains how to configure your system, for example,
how to specify which disk drives and files data should be stored in.

• Chapter 5, Incorporating the AcceleratorLib into a VxWorks Project explains in more detail how to incor-
porate the solidDB AcceleratorLib into an existing VxWorks-based project.

• Chapter 6, Design Considerations and Performance Tuning Tips suggests ways to maximize performance.

• Chapter 7, ODBC Client details the requirements in order to connect an ODBC client to the solidDB
server.

• Chapter 8, solidDB VxWorks Development Differences (from Other Platforms) explains some of the dif-
ferences between developing for VxWorks and developing for other platforms. If you have worked with
solidDB on other platforms and are working with solidDB on VxWorks for the first time, you may find
this chapter helpful.

1

• Appendix A, A Quick Overview of Developing Applications lists key points to remember when developing
applications.

• Appendix B, Different Approaches to "Building Your Image" explains some details of building a VxWorks
executable "image" that includes solidDB.

• Appendix C, SSC API Functions explains the SSC API functions related to solidDB for Workbench/Vx-
Works.

Glossary

Glossary provides definitions of terms.

1.1.2 Audience

This guide assumes a working knowledge of the C programming language, general DBMS knowledge, and
familiarity with SQL and solidDB. It also assumes knowledge of Wind River Workbench and VxWorks
products.

1.2 Conventions

1.2.1 About solidDB

solidDB provides advanced database solutions for mission-critical applications.

This documentation assumes that all options of solidDB are licensed for use. In some cases, however, a cus-
tomer may choose not to license certain options. These include in-memory engine, disk-based engine, Carri-
erGrade Option (also known as "HotStandby" in previous releases), and SmartFlow Option. Please refer to
your organization's contract with solidDB, or contact your solidDB account representative.

1.2.2 Typographic Conventions

This manual uses the following typographic conventions:

Table 1.1. Typographic Conventions

Used forFormat

This font is used for all ordinary text.Database table

Uppercase letters on this font indicate SQL keywords
and macro names.

NOT NULL

2

1.1.2 Audience

Used forFormat

These fonts indicate file names and path expressions.solid.ini

This font is used for program code and program output.
Example SQL statements also use this font.SET SYNC MASTER YES;

COMMIT WORK;

This font is used for sample command lines.run.sh

This font is used for function names.TRIG_COUNT()

This font is used for interface names.java.sql.Connection

This font is used for parameter names, function argu-
ments, and Windows registry entries.

LockHashSize

Words emphasised like this indicate information that
the user or the application must provide.

argument

This style is used for references to other documents,
or chapters in the same document. New terms and
emphasised issues are also written like this.

solidDB Administration Guide

File paths are presented in the Unix format. The slash
(/) character represents the installation root directory.

File path presentation

If documentation contains differences between operat-
ing systems, the Unix format is mentioned first. The

Operating systems

Microsoft Windows format is mentioned in paren-
theses after the Unix format. Other operating systems
are separately mentioned.

1.2.3 Syntax Notation

This manual uses the following syntax notation conventions:

Table 1.2. Syntax Notation Conventions

Used forFormat

Syntax descriptions are on this font. Replaceable sec-
tions are on this font.INSERT INTO table_name

This font indicates file names and path expressions.solid.ini

3

1.2.3 Syntax Notation

Used forFormat

Square brackets indicate optional items; if in bold text,
brackets must be included in the syntax.

[]

A vertical bar separates two mutually exclusive choices
in a syntax line.

|

Curly brackets delimit a set of mutually exclusive
choices in a syntax line; if in bold text, braces must
be included in the syntax.

{ }

An ellipsis indicates that arguments can be repeated
several times.

...

A column of three dots indicates continuation of pre-
vious lines of code..

.

.

1.3 solidDB Documentation
Below is a complete list of documents available for solidDB. solidDB documentation is distributed in PDF
format.

Electronic Documentation

• Release Notes. This file contains installation instructions and the most up-to-date information about the
specific product version. This file (releasenotes.txt) is copied onto your system when you install
the software.

• solidDB Getting Started Guide. This manual gives you an introduction to the solidDB.

• solidDB SQL Guide. This manual describes the SQL commands that solidDB supports. This manual also
describes some of the system tables, system views, system stored procedures, etc. that the engine makes
available to you. This manual contains some basic tutorial material on SQL for those readers who are not
already familiar with SQL. Note that some specialized material is covered in other manuals. For example,
solidDB "administrative commands" related to the High Availability (HotStandby) Option are described
in the solidDB High Availability User Guide, not the solidDB SQL Guide.

• solidDB Administration Guide. This guide describes administrative procedures for solidDB servers. This
manual includes configuration information. Note that some administrative commands use an SQL-like
syntax and are documented in the solidDB SQL Guide.

4

1.3 solidDB Documentation

• solidDB Programmer Guide. This guide explains in detail how to use features such as solidDB Stored
Procedure Language, triggers, events, and sequences. It also describes the interfaces (APIs and drivers)
available for accessing solidDB and how to use them with a solidDB database.

• solidDB In-Memory Database User Guide. This manual describes how to use the in-memory database of
solidDB In-memory Engine.

• solidDB SmartFlow Data Replication Guide. This guide describes how to use the solidDB SmartFlow
technology to synchronize data across multiple database servers.

• solidDB AcceleratorLib User Guide. Linking the client application directly to the server improves per-
formance by eliminating network communication overhead. This guide describes how to use the Acceler-
atorLib library, a database engine library that can be linked directly to the client application.

This manual also explains how to use two proprietary Application Programming Interfaces (APIs). The
first API is the solidDB SA interface, a low-level C-language interface that allows you to perform simple
single-table operations (such as inserting a row in a table) quickly. The second API is SSC API, which
allows your C-language program can control the behavior of the embedded (linked) database server

This manual also explains how to set up a solidDB to run without a disk drive.

• solidDB High Availability User Guide. solidDB CarrierGrade Option (formerly called the HotStandby
Option) allows your system to maintain an identical copy of the database in a backup server or "secondary
server". This secondary database server can continue working if the primary database server fails.

• Getting Started With solidDB For VxWorks. This guide describes how to take into use solidDB on the
VxWorks environment. It also provides guidelines for application development and performance tuning.
This manual is included only in packages for VxWorks.

5

Electronic Documentation

6

Chapter 2. Introduction
2.1 Purpose
The purpose of this document is to describe the installation and use of solidDB under VxWorks, which is
Wind River's Real-Time Operating System (RTOS) for embedded systems. This document will also highlight
some of the differences between usage on RTOSs and non-RTOSs, and between usage on embedded systems
and non-embedded systems.

2.2 What You Should Already Know
This solidDB documentation for VxWorks assumes that you have a basic familiarity with:

1. Wind River Workbench and VxWorks products.

2. The Workbench user interface. In particular, we assume that you know how to create a VxWorks project
and modify its build properties as well as its kernel options. We also assume that you know how to create
a downloadable object on the host (development machine) and then download it to the target (execution
machine).

3. Concepts such as processes, tasks, and threads, especially as these apply to VxWorks. The output file
executed on the VxWorks target is made of one process incorporating several tasks (that is, threads).

4. The C programming language.

Most users will also have to be familiar with:

1. SQL

2. ODBC

Familiarity with solidDB AcceleratorLib option is very helpful. However, this document provides some in-
formation about the AcceleratorLib option in case you are not already familiar with it. Complete documentation
for the AcceleratorLib is in solidDB AcceleratorLib User Guide.

2.3 Software and Hardware Requirements
To develop an embedded application, you typically need two computers, the "target" and the "host". The
"target" machine is the machine where solidDB will run on (for example, the VxWorks machine). The "host"

7

machine is the machine on which you will do development work. For VxWorks development, the host system
should have

• Wind River Workbench development environment

The target system should have

• Wind River VxWorks 6.x

Note that VxWorks is available for more than one type of microprocessor. When you order the solidDB De-
velopment Kit (SDK) for VxWorks, make sure that you specify the correct processor family, for example,
x86, Power PC, StrongARM, etc.

The following must be available in the target machine:

• A Real-Time Clock

• A file system (unless you are using the diskless version of the AcceleratorLib)

• POSIX-compliant timers

• ftruncate

8

2.3 Software and Hardware Requirements

Chapter 3. Overview
This chapter provides the following:

1. A description of the solidDB AcceleratorLib, which is a library that contains the solidDB subroutines.

2. An overview of how to build and execute a solidDB application on VxWorks.

3.1 The AcceleratorLib
The solidDB AcceleratorLib library is a complete version of the solidDB database server in the form of a
callable subroutine library. This library can be linked to your client application code so that your client and
the solidDB database server are in the same executable. When your client is linked to the library, it may call
database server functions directly rather than by going through a communications protocol, such as TCP/IP.
This improves performance by eliminating network overhead. The server subroutines can also be called remotely
through an ODBC interface.

Note

A remote client refers to a client calling through the TCP/IP interface. Such a client is usually, but
not necessarily, on a separate node (VxWorks target board) from the server.

On most platforms, solidDB is provided in two forms: as an executable, or as the AcceleratorLib (which is
an option). Although on non-embedded platforms, this library file is called the "Accelerator option", on em-
bedded platforms, this library file is the ONLY form in which the server is provided, and therefore it is not
truly an "option". Thus, in this VxWorks manual we will usually refer to it as the " Accelerator library" rather
than the "Accelerator option".

The AcceleratorLib library file is named solidac.a. Like any software designed to run on VxWorks. it
must be linked to VxWorks to run.

The AcceleratorLib library contains not only a complete set of solidDB subroutines, but also the SSC-
StartServer() and SSCStartDisklessServer() functions, which you can use to start the server
running as a separate "thread" or task within the overall process.

solidDB AcceleratorLib contains three separate APIs. Two of the APIs are proprietary to solidDB: the SSC
API and the SA API. The third API is the ODBC API, which is a standard API for exchanging data with
database servers.

9

The SSC API (solidDB Control API) allows, for example, setting the priority for various tasks that run within
the server. The solidDB SA API is solidDB's proprietary low-level interface to AcceleratorLib subroutines.
Detailed documentation of the SSC and SA APIs is in solidDB AcceleratorLib User Guide.

You do not need to use the SSC and SA APIs. The database server functionality in the AcceleratorLib may
also be accessed by using ODBC calls. The ODBC API is available both to the client application linked directly
to the AcceleratorLib (that is, the "local" client) and to clients that are not linked to the AcceleratorLib and
which communicate with the library via TCP/IP protocol (that is, "remote" clients). Remote clients also have
the option to access the server by using JDBC calls.

Note that this document focuses almost exclusively on using the solidDB AcceleratorLib option with VxWorks.
This document does not cover other options such as the "Diskless" and "High Availability" ("Hot Standby")
options, although these are available on VxWorks.

If you are familiar with developing with solidDB on other platforms, you will find significant differences
when you use RTOS platforms and embedded systems. For details, see Chapter 8, solidDB VxWorks Devel-
opment Differences (from Other Platforms).

Under VxWorks, there is only one process (which includes the OS, and applications such as the solidDB
server and your client applications), so you must follow certain rules to be able to compile, link, and load
your programs. If you do not follow these rules, you may find that some required code is not loaded, or symbols
are not resolved. The simplest way to make sure that everything is linked and loaded properly is to create a
single "image" that contains:

1. The VxWorks operating system code.

2. The solidac.a (server library) code.

3. Your application code.

There are other possible approaches. Those are discussed in Appendix B, Different Approaches to "Building
Your Image".

Typically your code will be linked to the operating system, and the operating system must call the equivalent
of a main() function in each application that you want to run. Therefore, the process of developing a solidDB
based program (or any other program) requires that you follow specific rules for the embedded system. Two
of the key rules are:

1. Your application will not have a function named main(). The OS will start your application by calling
an "entry routine" in your application, but this entry routine is not called main().

10

3.1 The AcceleratorLib

2. Your application and the OS are linked into a single executable, typically called an "image". The com-
pilation and linking are done on the host, and then the image is downloaded to the target machine and
executed on the target.

3.2 Overview of Building and Executing a solidDB
Application on VxWorks
The basic process is described below. This process is consistent with the way that you build and execute any
application on VxWorks.

1. Make sure that the following requirements are met:

a. The required storage device(s), such as disk drives, must be initialized. (Storage devices are not
required if you are using the "diskless" version of AcceleratorLib.)

b. The files that solidDB requires at startup time must be present. These files are: the solid.ini
configuration file and the solid.lic license file. These files must be in the directory that the
solidDB server starts in. You specify the solidDB server's start directory by passing a parameter to
the SSCStartServer() function (described later in this manual and also in the AcceleratorLib
manual).

2. Create a VxWorks project.

3. Write the application program. This must be written so that it can be linked to the AcceleratorLib library
(solidac.a). For more details about writing an application that works with the AcceleratorLib library,
see solidDB AcceleratorLib User Guide. Make sure that you write the application program so that it has
an entry point instead of a main() function. Either the operating system will call that entry point, or
else the development shell (typically the windsh) will directly call (or spawn a task with) that entry point.

4. Your application program should have code to do the following:

a. Call the SSCStartServer() or SQLConnect() function to start solidDB before any client
application tries to connect to the server.

b. Run user applications as spawned VxWorks tasks (these are usually spawned by your application
program, but it is possible to start them independently of your application).

c. Call the SSCStopServer() function to shut down solidDB when all work by the server and
application has been completed.

5. Build your application program. Depending on your needs, you can choose to:

11

3.2 Overview of Building and Executing a solidDB Application on Vx-
Works

a. Create an application/AcceleratorLib image that is separate from the VxWorks image; or

b. Link VxWorks, application, and AcceleratorLib as one image. Typically, the compilation and
linking will be done with a Workbench project.

See Appendix B, Different Approaches to "Building Your Image" for more information about different
ways to link your application and the AcceleratorLib library.

6. Begin executing your application/AcceleratorLib.

a. If you choose to link everything as one image (OS, application, and AcceleratorLib), then usrAp-
pInit.c in your Workbench project should do a taskSpawn with your application code entry as
the task entry point. In this case, a reboot on the target will start everything (VxWorks, server, and
your application).

b. If you create separate VxWorks and application/AcceleratorLib images, then rebooting the target
will start VxWorks. After rebooting, download the application image. Then start your application
from the windsh by calling your code's entry point. This will start the AcceleratorLib server and
your application.

After you complete these steps, the target machine should be running the operating system and the Accelerated
application (solidDB along with the application code that you wrote).

Note that the accelerated application can accept both "local" and "remote" connections. A "local" connection
is a "direct" connection from the application code that is compiled and linked to the AcceleratorLib subroutine
library. A remote connection is a connection made through the TCP/IP protocol.

12

3.2 Overview of Building and Executing a solidDB Application on Vx-
Works

Chapter 4. Configuring, Starting, and
Stopping solidDB
After you have installed solidDB, you must configure it before you can start running it. To configure it, you
must set values in the solid.ini configuration file, and set VxWorks-specific options within your Work-
bench development environment.

4.1 Before You Start: solid.ini File
This section discusses some of the initialisation parameters that require special consideration in an embedded
environment such as VxWorks. None of these parameters are specific to VxWorks or even to all embedded
environments; however, it is important to set them to appropriate values.

4.1.1 FileSpec

The FileSpec parameter(s) specify the location and size of the files that hold the database.

[IndexFile]
FileSpec_1 = //path_to_working_directory/solid1.db 8388608
FileSpec_2 = //path_to_working_directory/solid2.db 8388608

The size of the database is of prime importance in an embedded system. In the above example, the database
is split into two files of equal size (8M) located in the same directory under the names solid1.db and solid2.db.
These files can be located in different directories and can have different sizes. When all the files are filled,
solidDB stops inserting new entries in the database.

Important

It is highly recommended that the FileSpec path is an absolute path. On VxWorks, it is not possible
to refer to different devices by using relative paths. It is extremely important not to use chdir() together
with relative paths after starting up the server. This can have unexpected consequences.

4.1.2 CacheSize

The CacheSize parameter defines the amount of memory available to "cache" parts of the database in RAM.

13

CacheSize = 4194304

In the above example, 25% of the database size (4 Megabytes of RAM for 16MB of database files) will be
stored in main memory. Caching the most-frequently used parts of the database increases the overall efficiency
of the solidDB server. We recommend that the size of the cache be at least 10% of the total size of all the
database files. (You can use a smaller amount, but performance is likely to be reduced.) If enough memory
is available, then you can allocate up to 30% or more of the estimated size of the database. We do not recom-
mend running solidDB with a cache that is larger than 40% of its database size because then the cache man-
agement operations may offset the speed gains of faster memory access.

4.1.3 Listen

Under VxWorks, solidDB supports remote connections through the TCP communication protocol only. The
"listen" string must contain the IP address and the port number. Note that the "local" client function calls to
the server bypass the communications protocol, so the TCP information is only needed for remote connections.

[Com]
Listen = tcp 1.2.3.4 1320

4.1.4 MergeInterval and CheckPointInterval

MergeInterval defines the number of inserts before solidDB triggers a merge operation. CheckPointInt-
erval defines the number of inserts before solidDB executes a checkpoint operation.

[General]
MergeInterval = 5000
CheckPointInterval = 10000

Smaller, more frequent, checkpoints may be preferable in real-time operating systems. However, because the
server is multi-threaded and because both the operating system and solidDB's internal "tasking" system allow
you to specify priorities, merge and checkpoint operations generally do not prevent the system from responding
quickly to high-priority tasks.

4.1.5 LogEnabled

The "Logging" section of the configuration file specifies whether the server uses logging to enable it to recover
more data after a failure. Turning on logging reduces performance and uses up more disk space, but increases
safety.

14

4.1.3 Listen

[Logging]
LogEnabled = Yes

We recommend that you turn on logging to ensure no data is lost even during a crash.

Details about each of these parameters are available in the solidDB Administration Guide.

4.2 Starting solidDB
To start solidDB, you must call the SSCStartServer() function (or the SQLConnect() function).
solidDB AcceleratorLib User Guide details the SSCStartServer function and its parameters. When
solidDB starts, it operates in the working directory specified in the parameters passed to SSCStartServer
(argv). If a solidDB database already exists in the specified working directory, then SSCStartServer
opens it. If the specified working directory does not contain a solidDB database, then SSCStartServer
creates an "empty" database and opens it.

The code sample below shows how to start solidDB on VxWorks. Note that this code contains code that applies
to all platforms, not just VxWorks.

/* Solid server handle. Most server-control functions */
/* require a handle to the server. */
SscServerT h;

/* Prepare arguments to start the server. */
argc = 5;
char *argv[5];
argv[0] = ""; /* empty string */
argv[1] = "-xpathprefix:/workingdirectory/";
argv[2] = "-Udba";
argv[3] = "-Pdba";
argv[4] = "-Cdba";

SscRetT rc = 0; /* Return Code from API calls */

/* Standard Solid. Start the server and serve */
/* the clients until shutdown. */
/* Note: SSC_STATE_OPEN means "accept remote connections". */
rc = SSCStartServer(argc, argv, 'h, SSC_STATE_OPEN);
if (rc != SSC_ERROR)
{

15

4.2 Starting solidDB

/* If rc is not SSC_ERROR, then Solid server is */
/* up and running. See solidDB AcceleratorLib */
/* User Guide for a complete definition of */
/* the parameters and return code. */
}
src = SSCStopServer(h, TRUE);
assert(src == SSC_SUCCESS);

Important

The argument for -xpathprefix must be absolute. If it is not, using chdir() after the server startup can
have unexpected consequences.

Note

-xpathprefix:/xyz is the recommended way to specify the working directory under VxWorks. /xxx
is the working directory for solidDB. The application needs to mount the working directory and ensure
it is accessible (read-write) before calling SSCStartServer.

Note

The -Cdba parameter specifies that when the database is created for the first time, the server creates
a catalogue named "dba". The parameters -Udba and -Pdba specify that the username and password
are "dba" and "dba", respectively. This user will have system administration rights (all database rights
including the right to grant equal or lesser rights to other users).

4.3 Stopping solidDB
To stop solidDB, you must call the SSCStopServer() function, passing the solidDB server's handle:

SSCStopServer(h, TRUE);

The stopping of solidDB is not specific to VxWorks. Ensure that all clients are disconnected before shutting
down solidDB. solidDB AcceleratorLib User Guide describes the SSCStopServer function, including its
input parameters and the return code.

16

4.3 Stopping solidDB

Chapter 5. Incorporating the
AcceleratorLib into a VxWorks Project
This chapter explains in more detail how to incorporate the solidDB AcceleratorLib library into an existing
VxWorks-based project.

The AcceleratorLib option is delivered in the form of a library (solidac.a) that has to be linked to the
existing project. Additionally some header files (.h) have to be included in the project.

5.1 Development Environment
This chapter describes the parameters that must be included in a VxWorks-based project in order to use the
solidDB AcceleratorLib option. These parameters can be modified through the Workbench user interface.

5.1.1 Directory Structure

Below is an outline of the files provided with the SDK for VxWorks:

• /lib

This directory contains several libraries. These libraries will already be compiled for your target platform.

• solidac.a: a linkable library which has all the functionality of the solidDB server.

• socvxw.a or socvpx.a: the odbc library (not in this release).

• /doc

This directory contains both VxWorks-specific documentation and platform-independent manuals.

• /include

This directory contains header files that are required if you want to compile a program that uses the Ac-
celeratorLib library.

Assuming an existing Workbench/VxWorks project has the following directory structure:

• //path/

• my_project.wpj (project file)

17

• Makefile (make file)

• PrjObj.lst (project object list file)

• //path/source/ (source code directory)

• //path/xyzgnu/ (output files directory)

One must include two new directories: One for the library solidac.a to be linked with the project and one
for the header files (.h) to be included. For example:

• //path/solid/lib/solidac.a

• //path/solidDb5.0/include/sscapi.h, sqltypes.h, sa.h, cli0cli.h. /in-
clude is the directory containing the header files related to:

• solidDB itself: sscapi.h

• The client APIs:

• ODBC clients - using SQL: solidodbc.h, sqltypes.h

• solidDB SA API: sa.h

• solidDB Light Client API: cli0cli.h

The header files sscapi.h and c.h are mandatory for any client application that is linked to the Accelerat-
orLib library. Depending on the application's client types (ODBC, SA or light client) you may need to incor-
porate other headers. For simplicity and consistency, we recommend that you install all the header files
mentioned above.

5.1.2 VxWorks Options

The VxWorks kernel must be configured so that it supports:

• Full access (that is, read-write), to a storage medium where at least one directory can be created in order
to hold solidDB files: database file, initialisation file, license file, log files (if any), and trace files (if any).

• Floating point unit if one exists on the target processor, or floating point emulation if the target processor
does not have a floating point unit.

To build a solidDB application, be sure to include the following as the compiler flags in the Workbench project:

18

5.1.2 VxWorks Options

-DSS_VXW -DSS_UNIX -DCPU=XXX -I$(SOLIDDIR)/include

where

XXX = PPC604, PPC403, etc.
SOLIDDIR = base directory where solidDB is installed

If software floating point support is required, be sure to include -msoft-float, and also link with
lib$(XXX)gnuvx.a. (for example, libPPC604gnuvx.a, libPPC403gnuvx.a, and so on.)

5.1.3 Link solidac.a

Through the Workbench interface, click on the build tag and display the properties of the project build spe-
cifications. Then, click on the Macros tab. In the Macros tab, select the PRJ_LIBS parameters. In the Value
field, enter the path to the solidac.a library file.

5.1.4 Header Files

Through the Workbench interface, click on the build tag and display the properties of the project build spe-
cifications. Then, click on the C/C++ compiler tab. In the option field, enter the path to the header files (.h)
directory. Example:

-I//path/solidDb5.0/include -

5.2 Source Code Modifications
In addition to the above modifications, you must also incorporate both project-related #include files and
solidDB related #include files in the project's source code.

/* Project-related includes. Note: These are examples */
/* and are not related to the Solid AcceleratorLib option. */
#include "VxWorks.h"
#include "prjParams.h"
#include "stdio.h"
#include "stdlib.h"
#include "taskLib.h"
#include "timers.h"
#include "assert.h"

19

5.1.3 Link solidac.a

#include "nfsLib.h"

/* Solid-related includes*/
#include "sscapi.h"
#include "solidodbc3.h"

Note

The sa.h and cli0cli.h header files must also be included if you intend to use solidDB SA and/or
solidDB light client in the application.

/* VxWorks specific */
#define SS_VXW

#if defined(SS_NT)
#ifndef SS_CDECL
#define SS_CDECL __cdecl
#endif
#elif defined(SS_VXW)
#define SS_CDECL
#define main embed_main
#else
#define SS_CDECL
#endif

Note

Ensure the SS_VXW compilation flag is defined before the above switch.

/* Solid start */
#define USE_XPATHPREFIX

5.3 Working Directory
The target system must include a storage medium that allows solidDB to store persistent data. Such a medium
can be a local disk, a flash RAM card, or even a remote disk accessed through a network (NFS for example).
This requirement must be fulfilled when using the solidDB AcceleratorLib option. Only the diskless option
enables designers to run solidDB on a system with no persistent storage capabilities. Throughout this document,
the storage medium is referred to as a 'disk' regardless of its actual technology.

20

5.3 Working Directory

Prior to the use of the solidDB AcceleratorLib option, create a working directory on the target machine's disk.
The directory must include:

• A valid solidDB license that includes the AcceleratorLib option (on VxWorks), in the form of a sol-
id.lic file.

• A solidDB initialisation file, in the form of a solid.ini file. This file can be edited and it should contain
all solidDB parameters. The following chapter details the tuning of some of these parameters when using
the AcceleratorLib option in a VxWorks environment.

• Enough space so that the database files, log files, trace files, and output message files can be created. To
create all these files, the minimum size required is approximately 1MB, but of course the size of the
database grows as the amount of data grows.

After solidDB starts, the working directory will also include:

• The database file: solid.db

• The log files: sol00001.log

• The output message file: solmsg.out

All these file are created and managed by solidDB and do not require any user intervention.

Note

The solid.db file can be stored in another directory that is specified in the solid.ini file. The
log files are recommended but not mandatory; they can be turned off - that is, not created when running
solidDB - when specifying appropriate parameter values in the solid.ini file. solidDB Adminis-
tration Guide details the setting of the solid.ini file in order to store database file and log files -
if enabled - in different directories and under specific names.

21

5.3 Working Directory

22

Chapter 6. Design Considerations and
Performance Tuning Tips
After solidDB has started running, you can control it through the SSC (solidDB Server Control) API. Below
are points to consider when tuning solidDB performance. Please note that such tuning is not mandatory and
that you can simply start and stop the solidDB server, as explained in the preceding chapters, if you need only
minimal control over its behavior.

6.1 Overview
On VxWorks, solidDB is composed of a number of separate but tightly coupled tasks. These tasks are one of
the following types:

iomgr_thread
SsTimerThread
com_selectthread
thread_rpcserve
thread_sqltask_thread
dnet_clientthread

You will see these tasks if you execute the "i" command in the VxWorks shell (windsh).

Each client runs as a separate task.

There is always exactly one "local" client. The local client is the client that has the ability to directly control
certain aspects of the server by using the SSC (solidDB Server Control) API. This client communicates with
the server by means of direct function calls that do not go through the network communication protocols.

In addition to the local client, there may also be zero or more "remote" clients. A remote client is a client that
communicates with the server through the network protocol, rather than by direct function calls. Note that
"remote" in this sense does not necessarily mean running on a separate target board from the server. In fact,
there may be "remote" clients on the same target as the server, and there can also be additional "remote" clients
on other target boards.

23

solidDB and Clients Running as Real-Time Processes

As a rule, solidDB server runs in the kernel mode. Client applications may run in also as Real-Time
Processes (RTP) but in this case the client and the server run in different memory space. Because of
this, only remote connections can be used when a client runs as RTP.

6.2 Starting the Server
There are two ways to start the server from inside your C program. The first way is to simply call the SSC-
StartServer()function. SSCStartServer() will start all five server tasks, and each of those tasks
will inherit the priority of the caller. If you need to control the priority more precisely (that is, you do not
want the server to have the same priority as the program that started it), then you can explicitly spawn a task
and specify the priority for that task; that task, in turn, will start the server, which inherits the priority of the
caller. Both methods are illustrated in the code below.

If you start the program by directly executing the testMain() function, then testMain() will call
SSCStartServer(), which will inherit the priority of its caller. this will start the server. The server will
inherit the priority of the task that calls SSCStartServer().

#include "solidodbc.h"
#include "stdio.h" /* header file for standard input and output */
#include "assert.h" /* header file for assert */

#include "sscapi.h" /* acceleratorLib API header */

/* VxWorks header file for spawning the task */
#include "vxworks.h"
#include "taskLib.h"

#define SOLID_TASK_PRIORITY 40

/* --*\
This function starts the server by calling SSCStartServer().
* --*/
int testMain(){
int g_argc;
char *g_argv[5];
SscServerT h; /* Returns a handle to start the server. This handle
 * is needed when referencing the server with other
 * control API functions */

24

6.2 Starting the Server

SscRetT src = SSC_SUCCESS; /* SscRetT is of type enum used to
 * catch API return code */

g_argc = 5;
g_argv[0] = "";
g_argv[1] = "-xpathprefix:/ram";
/* Changes the dir to "/ram/" to find solid.ini */
g_argv[2] = "-Udba"; /* User name = "dba" */
g_argv[3] = "-Pdba"; /* Password = "dba" */
g_argv[4] = "-Cdba"; /* Catalog name = "dba" */

/* API call to start the server */
src=SSCStartServer(g_argc, g_argv, 'h, SSC_STATE_OPEN);
printf("Return code is %d", src);
assert(src==SSC_SUCCESS); /* check the status of the server */
...
} /* End of testMain */

/* --*\
This function starts the server by first spawning a separate task at a
specified priority; that task then calls SSCStartServer(). This allows
you to indirectly specify the priority at which the server will run.
* --*/
void StartSrv()
{
taskSpawn ("tSolid", SOLID_TASK_PRIORITY, VX_FP_TASK, 20000,
 (FUNCPTR)testMain,0,0,0,0,0,0,0,0,0,0);
}

Once you have this program compiled into an object module, there are two ways to execute that object module.
From the windsh, you may execute the command:

testMain

or the command:

sp StartSrv

25

6.2 Starting the Server

If you call testMain directly, the five server tasks will get the default priority assigned by VxWorks. If
you call startSrv, the server will get the priority specified in the taskSpawn() call in the StartSrv()
function.

Although the server is composed of five separate tasks, you only need to spawn one task; the server itself will
take care of the rest. The spawner itself is a separate task. The spawner may exit as soon as it has spawned
the server; the spawner does not need to remain in memory. The spawner may, however, continue running
and may become one of the clients, if desired.

In both cases, all five tasks that comprise the server have the same priority. There is no way to give each of
the five tasks a separate priority.

In the VxWorks system, the object modules of the server and the clients may be linked directly with the OS
as a single object module, or they may be downloaded separately from the OS and then run. For more details,
see Appendix B, Different Approaches to "Building Your Image", and especially Section B.3, “Possible
Combinations of Images”.

6.3 Tuning a Multi-threaded solidDB Server
You may add additional general-purpose worker threads to solidDB. The thread parameter in the [srv]
section of the solid.ini file defines the number of these 'general purpose' internal worker threads. For
example:

[Srv]
Threads = 2

This parameter setting will provide the designer with two general purpose threads. General-purpose threads
handle the following tasks:

• checkpoint operations

• merge operations

• backup operations

• SQL operations (that is, responding to client SQL queries)

If you list all the tasks executing on VxWorks, you will see one task named "thread_sqlt" for each
general-purpose thread that you specified in the solid.ini file.

26

6.3 Tuning a Multi-threaded solidDB Server

Note

These threads are server threads. They are created automatically by the solidDB server task. They are
different from, and not related to, the client tasks.

6.4 SSCAdvanceTasks
The primary purpose of the SSCAdvanceTasks function is to allow the application to yield some of its
CPU time slice to server tasks, such as checkpointing. SSCAdvanceTasks also returns some useful status
information.

In some cases, you can improve performance by yielding the CPU when you are not using it.

Note that calls to SSCAdvanceTasks are synchronous; the server does not generally return to you immedi-
ately, since you are yielding the CPU.

6.4.1 SSCAdvanceTasks, and checking Server state

Because SSCAdvanceTasks returns a small amount of status information, the function can also be used
to monitor the server, as well as yield the CPU. The caller can choose what to do depending on the solidDB
server status it returns. Note that all calls to this function are synchronous -- in other words, the client thread
that called this function does not proceed until the function returns.

Important

All calls to the SSCAdvanceTasks function yield the CPU. Do not call this function to get status
information unless you are also willing to yield the CPU.

Example 6.1. Using SSCAdvanceTasks() to Monitor the Server

The example below illustrates the use of SSCAdvanceTasks() to monitor the server (as well as yield CPU
time):

/* In this example, runState is an application-defined flag */
/* to control how long the application runs. */
while (runState == ALL_GO)
{
 serverState = SSCAdvanceTasks(h, 100);
 if (serverState == SSC_SERVER_NOTRUNNING)
 {

27

6.4 SSCAdvanceTasks

 runState = ALL_STOP;
 printf("Server dead \n");
 }
 /* My custom function to load a table etc. */
 loadMySolidTable(scon, scur, mySaDate);
}

solidDB AcceleratorLib User Guide describes the SSCAdvanceTasks function, including its input para-
meters and return codes, in more detail.

6.5 Adjusting Stack Size
The stack size for tasks started by solidDB can be preset before starting the server. The stack size is configured
using the SSC API call SSCSetStackSize(int stackSize). If the function is called after starting
the server, the call will only change the stack size of those tasks that were started after configuring the stack
size.

Default value of the stack size is 128 KB.

For example, to set the stack size to 2 KB:

SSCSetStackSize(20*1024)

For details on SSCSetStackSize(int stackSize), see Section C.3, “SSCSetStacksize”.

6.6 Assigning Memory Partitions for solidDB
To avoid fragmentation of the whole memory of the VxWorks system, solidDB can be configured to use
memory partitions. In such a case solidDB only uses memory available in a given memory partition.

Note

Some operating system resources may cause memory allocations which claim memory from global
pool.

The memory pool is created using the SsSysMemGlobalInit(unsigned long sz) function. This
reserves memory pool of the size defined with sz.

Subsequent calls to SsSysMemGlobalInit(unsigned long sz) will cause memory pool size to be
increased by the size defined with sz.

28

6.5 Adjusting Stack Size

Memory pool is deleted using command SsSysMemGlobalDone(). This is not necessary after shutting
down the server - the server can use the previously allocated memory partition.

When memory pools are used, SsSysMemGlobalInit(unsigned long sz) must be called before
calling any other solidDB function.

By default solidDB allocates memory from global memory pool.

6.7 Reclaiming System Resources and Uninitializing
the Server
solidDB maintains a catalog of all system resources it has allocated (sockets, semaphore objects, memory).
After shutting down the server, these resources can be given back to server.

After returning the resources back to the operating system, several solidDB internal variables must be set to
their initial state. This can be done using SsSysResGlobalDone() function. In normal use, it is not ne-
cessary to call the SsSysResGlobalDone() function between the shutdown and restart of the server; if
the SsSysResGlobalDone() function is not called, solidDB continues to use the previously allocated
resources.

6.8 Selecting Memory Allocator
By default solidDB server uses its internal memory allocator which enables task level and solidDB level
memory pooling. However, if you want to use only solidDB level memory pooling or disable solidDB wide
memory pooling, you can do this by using the SSCSetMemoryAllocatorType SSC API function.

The default is to use task level and solidDB level memory pooling.

From performance perspective, the fastest option is to use the default memory allocator. However, with the
default memory allocator, the memory consumption for normal operation is the highest as each server task
has its own local freelists for memory. Additionally there are global freelists.

The global solidDB wide memory pooling is slightly slower than the local task level memory model. It also
consumes a slightly less memory because each task does not have its own freelist.

The slowest model is to disable all solidDB internal memory pooling; in this case, all allocations result always
in an allocation from the operating system and no internal freelists are maintained. This model also consumes
the least amount of memory.

For more information on the SSCSetMemoryAllocatorType function, see Section C.2, “SSCSetMemory-
AllocatorType”.

29

6.7 Reclaiming System Resources and Uninitializing the Server

6.9 Redirecting Server Messages
By default solidDB writes output messages about its operation to solmsg.out, solerror.out, soltrace.out, and
ssdebug.out.

The solidDB server can be configured to redirect these messages to a user-defined callback function instead
of the default files. This can be done using the SSCLogHookAdd(SSCLogHookT hook) function where
hook is a callback function.

The default operation is restored by setting hook to NULL.

For example:

...
#include sscapi.h

...
void hook(ss_msglog_type_t t, const char* fmt, ...)
{
 char buf[512];
 va_list ap;
 va_start(ap, fmt);
 vsnprintf(buf, 512, fmt, ap);
 va_end(ap);
 syslog(LOG_INFO, "%s", buf); /* unix like syslog facility used in example */
}
...
 SSCLogHookAdd(hook); /* set log to hook */
...
 SSCLogHookAdd(NULL); /* restore default behavior */
...

For more information on the SSCLogHookAdd function, see Section C.1, “SSCLogHookAdd”.

30

6.9 Redirecting Server Messages

Chapter 7. ODBC Client
This chapter details the requirements in order to connect an ODBC client to the solidDB server.

ODBC clients may be local or remote. A client is "local" if it is compiled and linked to the AcceleratorLib
library. Such a client runs on the same VxWorks target as the server. When a local client makes an ODBC
call, the call goes either directly or through the TCP/IP communications protocol to the server. "Remote"
clients run on a different VxWorks target board than the server runs on, and use the ODBC driver, which uses
TCP/IP rather than direct calls to communicate with the server. The figure below illustrates the use of ODBC
with one or more local clients.

Figure 7.1. Local Clients and ODBC Driver

Note that only one copy of the ODBC driver is required.

A single application can contain several independent clients, each of which has one or more connections to
the server. Each of the clients may handle different data and executes different kinds of operations using dif-
ferent statements. Each ODBC client is essentially a task spawned by the application. The paragraphs below
describe the essential steps common to all clients.

31

7.1 Connection
To start, each task using solidDB memory management must register itself. Otherwise the solidDB memory
management is not aware of the client. A client can register itself by using the call below:

/* Register a user thread */
SscRetT SSC_CALL SSCRegisterThread(
 SscServerT h);

Next, each client must instantiate three ODBC handles:

SQLHENV henv; /* ODBC ENVironment handle */
SQLHDBC hdbc; /* ODBC DataBase Connection handle */
SQLHSTMT hstmt; /* ODBC STateMenT handle */

The data types must be the ones shown above, but the variable names do not have to match.

The SQLHENV is an ODBC environment handle. It contains all information for the other two handles. It can
be a global handle, shared among several tasks, or it can be defined locally for each ODBC client. The latter
is the recommended solution in order to maintain the simplicity and portability of each client.

The SQLHDBC is an ODBC connection handle that points to an area that contains all information related to
the ODBC connection: Connect string, username, password, and so on.

The SQLHSTMT is an ODBC statement handle that points to an area that contains all information related to
the active ODBC statement.

An ODBC client uses these handles to establish a connection to solidDB and allocate resources required to
create ODBC statements. The following example illustrates this:

void client1 (void)
{
SQLHENV henv = (SQLHENV) NULL;
SQLHDBC hdbc = (SQLHDBC) NULL;
SQLHSTMT hstmt = (SQLHSTMT) NULL;

/* Allocate environment */
SQLAllocEnv('henv);
SQLAllocConnect(henv, 'hdbc);

32

7.1 Connection

/* Note that the client is local, i.e. bypasses the RPC */
/* mechanism. The connect string is "localserver". The */
/* username and password are "dba") */
SQLConnect(hdbc, "localserver", SQL_NTS, "dba", SQL_NTS, "dba", SQL_NTS);
SQLAllocStmt(hdbc, 'hstmt);
printf("\n Client1 connected, statement allocated\n\n");
}

7.2 Statement Execution
In this section, statements are defined and executed using the hstmt variable and appropriate ODBC functions.
This is usually implemented in the form of an endless loop -- that is, as long as the client is alive, it processes
statements. It can be the same identical statement but the statement handle can be closed, and its parameters
can be reset without being freed. Thus it can be reused again. The example below shows part of the client1
function to illustrate the statement execution phase. Nothing in this example is specific to VxWorks; ODBC
clients on other platforms go through these same steps.

RETCODE rc;
SQLINTEGER id;

while (runState == ALL_GO)
{
/* Prepare and execute statement */
rc = SQLExecDirect(hstmt, (SQLCHAR*)"SELECT COUNT (*) FROM SYNCDEMO", SQL_NTS);
CHECK(rc);
/* Bind the variable named "id" to the first column of the result set. */
rc = SQLBindCol(hstmt, 1, SQL_C_SLONG, 'id, 0, NULL);
CHECK(rc);
rc = SQLFetch(hstmt);
CHECK(rc);
printf("Number of rows in SYNCDEMO table is (%d) \n", id);

/* Reset statement*/
rc = SQLFreeStmt(hstmt, SQL_RESET_PARAMS);
CHECK(rc);
/* Unbind variables*/
rc = SQLFreeStmt(hstmt, SQL_UNBIND);
CHECK(rc);
/* Free statement*/
rc = SQLFreeStmt(hstmt, SQL_CLOSE);

33

7.2 Statement Execution

CHECK(rc);

/* Now feel free to add whatever logic suits your application. You may */
/* re-run the statement with the same variable or define a new statement. */

}

7.3 Disconnecting
When the application decides to close a client, it must unregister itself from solidDB memory management.
A client can unregister itself by using the call below:

/* Unregister a user thread */
SscRetT SSC_CALL SSCUnregisterThread(
 SscServerT h);

When the application decides to close a client, it must disconnect it and release the handles as shown below:

SQLDisconnect(hdbc);
SQLFreeConnect(hdbc);
SQLFreeEnv(henv);

34

7.3 Disconnecting

Chapter 8. solidDB VxWorks
Development Differences (from Other
Platforms)
If you are already familiar with developing solidDB based applications on non-embedded systems, you may
benefit from knowing some of the differences between developing on VxWorks compared to non-embedded
systems. Some of the key differences are listed below:

• Some platforms, including VxWorks, run the operating system and all applications (including solidDB)
as a single "process". Within that process, there are separate tasks. solidDB runs as a separate task(s) from
your application.

• On VxWorks, solidDB is provided not as a standalone executable program, but as a library (named sol-
idac.a), which can be linked into the operating system, and run as part of a single process.

• Because there is only one process, there is only one address space. All symbols must be unique within
that address space. Thus every task cannot have its own function named main(). Each task's "entry
routine" must have a unique name.

• Because all "programs" running under VxWorks share a global name space, every function name in the
global namespace must be unique. This means that:

• You cannot run more than one copy of the AcceleratorLib server at a time on a single VxWorks
computer. Each of the function names in the solidac.a file can only exist once in a VxWorks image.

• You should write re-entrant code for your client applications.

• Because the solidDB server subroutines (the AcceleratorLib library) and your application are all part of
the same process as the OS, a failure in your application or in the solidDB server will crash the whole
system.

• Avoid using the C-language assert() macro. It is difficult to completely avoid use of this macro (even the
solidDB solidac library uses this occasionally) but its use should be avoided as much as possible.

• solidDB does not gracefully handle "out-of-memory" errors in some situations. It is important not to
overload solidDB.

35

36

Appendix A. A Quick Overview of
Developing Applications
This chapter provides a quick overview of key things to remember when developing applications.

• The solidDB server is supported in the form of AcceleratorLib. A pure "executable" version of the server
is not provided, so you must link the AcceleratorLib library.

• solidDB is a multi-tasking server; the AcceleratorLib server runs on multiple VxWorks tasks instead of
a single big task.

• solidDB has multitasking support for user applications. User applications can be implemented and run on
multiple VxWorks tasks, all within the same context as the server.

• The solidDB server AcceleratorLib library file, solidac.a, is delivered as an archived library.

• A typical configuration for boot image would be linking VxWorks, user application, and AcceleratorLib
library together to boot VxWorks, bring up AcceleratorLib, and (or) run user applications automatically
during boot time.

We recommend that if you choose to create separate loadable modules for the VxWorks boot image and
the application image, then you link solidac.a with the application instead of with VxWorks. This
ensures that the symbols in the user applications are resolved and that the AcceleratorLib library will be
pulled in.

• You must start the AcceleratorLib server by calling SSCStartServer() or SQLConnect(), and
stop the AcceleratorLib server by calling SSCStopServer() or by using ADMIN COMMAND 'shut-
down'.

Alternatively, if there is already a valid database and license file in the startup directory, an SQLCon-
nect() call from the client will also start the server without a call to SSCStartServer(). An
SQLDisconnect() call will stop the AcceleratorLib server if no other connection to the database exists.

User applications that start and stop the server can be spawned from the usrAppInit.c, or separately
loaded and started. Correct settings, such as start-up directory, username, password, and catalog name,
are still needed before making the SSCStartServer() call.

• If the client applications run locally on the same target board as the AcceleratorLib server runs on, then
the only solidDB library that the client needs to link with is the AcceleratorLib library, solidac.a.

37

However, if the client applications were to run remotely on another VxWorks-based board and interface
with a server running somewhere else, then linking the application with the ODBC driver library would
be necessary.

You may also wish to look at the samples, such as the one in the samples/multitasking directory. This sample
demonstrates an application that starts the server by calling the SSCStartServer function.

38

Appendix B. Different Approaches to
"Building Your Image"
or

How to Resolve "UNRESOLVED SYMBOL" Errors

B.1 Abstract
This section explains how to recognize and prevent problems during the "load and resolve symbols" step of
running a program on VxWorks. This problem can occur if the solidDB server library (solidac.a) and your
application are in separate images.

This problem is most likely to occur if you are migrating from an old solidDB version and if you are are used
to downloading solfe.o separately from your application program.

B.2 Background
In general, to execute a program on VxWorks, you build an "image" that contains the code that you want to
execute, then you download that code to the target computer and execute the code on the target.

Building the image requires two major steps:

1. compiling, and

2. linking.

"Downloading" also requires two major steps:

1. Copying the code to the target computer, and

2. using the "loader" to resolve symbols as the code is copied into the target's memory to be executed.

If function A() calls function B() and if function B() is not present in the target's memory, then the loader
will be unable to resolve the symbol (translate it to an address) and therefore the loader will give an error
rather than load the image that contains function A(). Depending upon how many images you use and how
you combine code in those images, you may get error messages about unresolved symbols during the load-
and-resolve-symbols phase.

39

B.3 Possible Combinations of Images
In this section, "building" refers to compiling and linking, and "downloading" refers to copying the image
and doing loading/symbol-resolution.

There are many possible variations on this basic scenario. For example, the image can be stored in ROM so
that the target machine does not need to be connected to the host.

For the moment, we will ignore the issue of how you deploy the code and whether you put it in ROM. Instead,
we will assume that you are in development mode and that each time you want to execute your program you
will build it on the host machine, then download it to the target machine and execute it.

Even within this approach, there are several possible variations, depending upon whether you want to create
a single image that contains "everything" (your application, the solidDB AcceleratorLib library (solidac.a),
and VxWorks itself) or whether you want to create two or three separate images. Because the linker is a
"smart" linker, when it links the code it will include only the subroutines that have been called somewhere.
If you compile and link your application and the solidDB server library separately, you might find that some
code has been excluded because during the compile and link step the linker did not find any references to that
code.

We recommend that you use one of the following two approaches to creating your images:

1. One image: VxWorks + solidac.a + your application.

2. Two separate images, where your application and the AcceleratorLib library are combined in one image
and VxWorks is the other image.

Figure B.1. One image: VxWorks + solidac.a + your application

40

B.3 Possible Combinations of Images

Figure B.2. Two separate images: VxWorks, solidac.a + your application

In the case of two separate images, your application and the AcceleratorLib library are combined in one image
and VxWorks is the other image.

Creating a single image that contains all three "pieces" is the simplest approach. The compiler and linker will
create an image that contains all the subroutines that are referenced by any of the three "pieces". During the
load-and-resolve-symbols phase, there will not be any unresolved symbols. Similarly, if you put your applic-
ation and the solidac code in the same image, this prevents errors due to unresolved symbols.

There are several other theoretically possible combinations, but the two described above are usually the most
appropriate. If you create three separate images, then at the time that the complier/linker creates the image
with solidac.a, the compiler/linker does not know which routines your application is going to call. The
linker is likely to discard solidac.a subroutines that your application will need. You will be able to compile
and link correctly, but at the time that you download (load and resolve symbols), the loading process will fail.
A similar problem can occur if you create either of the following "pairs" of images:

a. VxWorks + solidac.a (one image). Your application (the other image).

b. VxWorks + your application (one image). solidac.a (the other image).

If you want to put your application and the solidac.a code in separate images, you may do so, but you
will need to create "dummy" calls to all the routines that your application needs in solidac.a, and you
will need to compile and link those dummy calls into the same image as you link solidac.a into.

41

B.3 Possible Combinations of Images

42

Appendix C. SSC API Functions
The SSC API (solidDB Control API) allows you to, for example, set the priority for various tasks that run
within the server.

C.1 SSCLogHookAdd
The SSCLogHookAdd function sets a logging hook.

C.1.1 Synopsis

SscRetT SSC_CALL SSCLogHookAdd(
 SSCLogHookT hook);

Where SSCLogHookT is of the following type:

void (*SSCLogHookT)(SscLogType log_type, const char* fmt, ...);

The SSCLogHookAdd function accepts the following parameters:

Table C.1. SSCLogHookAdd Parameters

DescriptionUsage TypeParameters

The SSCLogHookAdd function sets the SscLogType parameter
value for the callback function. The application can use the SscLog-

inSscLogType

Type parameter value to decide upon the further processing of the log
message. Possible values are:

• SSC_LOG_UNDEFINED

• SSC_LOG_SOLMSG

• SSC_LOG_SOLERROR

• SSC_LOG_SOLTRACE

• SSC_LOG_SSDEBUG

43

C.1.2 Return Value

• SSC_SUCCESS

C.2 SSCSetMemoryAllocatorType
The SSCSetMemoryAllocatorType function sets the memory allocator type. This must be done before
any other call to solidDB functions. This is a global setting and it cannot be changed after the first memory
allocation has been done within the solidDB functions.

C.2.1 Synopsis

SscRetT SSC_CALL SSCSetMemoryAllocatorType(
 SscMemoryAllocatorType type);

The memory allocator type is any of the following:

• SSC_MEMALLOC_THREADLOCAL. Use thread local memory allocator. The user must register and
unregister threads to avoid excessive memory leaks. This memory allocation method gives best performance
on multi-threaded systems.

• SSC_MEMALLOC_GLOBAL. Use global memory allocator. All threads use the same memory pools
for memory management.

• SSC_MEMALLOC_SYSMEM. Use malloc, realloc, calloc, and free functions directly. This option results
in worst performance.

C.3 SSCSetStacksize
The SSCSetStacksize function sets the stack size for the tasks spawned by solidDB server.

C.3.1 Synopsis

int SscSetStackSize(int sz)

C.3.2 Return Value

New value of the stack size.

44

C.1.2 Return Value

C.4 Conversion Functions
There are four conversion functions. The conversion function syntaxes are described below:

C.4.1 Synopsis

int SSC_CALL SSCTaskClass2Str(
 SscTaskSetT tasktype,
 char** p_strtaskclass);

int SSC_CALL SSCStr2TaskClass(
 char* strtaskclass,
 SscTaskSetT* p_tasktype);

int SSC_CALL SSCPrio2Str(
 SscTaskPrioT prio,
 char** p_strprio);

int SSC_CALL SSCStr2Prio(
 char* strprio,
 SscTaskPrioT* p_prio);

45

C.4 Conversion Functions

46

Appendix D. SsSys Utility Functions
The SsSys utility functions allows you to control solidDB memory and resource usage.

D.1 SsSysMemGlobalInit
The SsSysMemGlobalInit creates or expands the memory pool used by solidDB.

D.1.1 Synopsis

void* SsSysMemGlobalInit(unsigned long sz)

Where sz is the size of memory pool or the size of the increment of the memory pool.

D.1.2 Return Value

• Pointer to memory pool.

• NULL if operation failed.

D.2 SsSysMemGlobalDone
The SsSysMemGlobalDone function deletes the memory partition created by SsSysMemGlobalInit().
It also frees the memory in a partition.

D.2.1 Synopsis

void SsSysMemGlobalDone(void)

D.3 SsSysResGlobalDone
The SsSysResGlobalDone function frees the resources allocated from operating system and resets the
internal variables of solidDB.

47

D.3.1 Synopsis

void SsSysResGlobalDone(void)

48

D.3.1 Synopsis

Glossary
This glossary gives you a description of the terminology used in this guide.

A
Accelerated application

An "Accelerated application" is an application program that has been linked with the solidDB Accelerat-
orLib option library. The application must explicitly start the server by calling SSCStartServer().
The application and server will execute as separate tasks; however, the application has some control over
the server, such as the ability to stop and restart the server.

Application Programming Interface (API)
An API is an Application Programming Interface. In other words, it is a set of functions that you may
call. The solidDB AcceleratorLib option is an API; solidDB provides a set of C language .h files that
define the functions that you may call, and solidDB also provides a pre-compiled library of functions,
including of course the functions specified in the .h files.

C
Checkpoint

Checkpoints are used to store a consistent state of the database quickly onto the disk. After a system
crash, the database can re-start using the data that was saved at the most recent successful checkpoint.

D
Database administrator (DBA)

The database administrator is a person responsible for tasks such as:

• managing tables, and indices

• backing up data

• allocating disk space for the database files

Database management system (DBMS)
A DBMS is a system that stores information in and retrieves information from a database. A DBMS
typically consists of a database server, administration utilities, an application interface, and development
tools.

49

H
Host

When developing for embedded systems, such as VxWorks, the "host" machine is the machine on which
you will do development work. When doing development for Wind River VxWorks, for example, the
host machine contains Wind River's Workbench development environment for VxWorks developers.
The code that you build is actually executed on the "target" machine. (See also the definition of "target".)

I
Image

In the context of VxWorks, an image is a set of executable code that exists as a single entity. It is the
result of compiling and linking all the code into a single executable. During development, this executable
is usually downloaded from the host to the target and then executed. During deployment, this image may
be burned into ROM so that it is always available as soon as the computer boots. See the Wind River
documentation for more details.

O
Open Database Connectivity (ODBC)

ODBC is a programming interface standard for SQL database programs.

R
Relational database management system (RDBMS)

solidDB is an RDBMS, which stores and retrieves information that is organized into two-dimensional
tables. This name derives from the relational theory that formalizes the data manipulation requests as set
operations and allows mathematical analysis of these sets.

Relational database management system (RTOS)
Real-Time Operating System

S
solidDB Developers' Kit (SDK)

solidDB Developers' Kit. This contains the solidDB server (either as an executable program or as a sub-
routine library that can be linked), along with sample programs.

50

T
Target

When developing for VxWorks, the "target" machine is the machine that solidDB will run on (that is,
the VxWorks machine). This may be different from the "host" machine, on which the program was de-
veloped. (See also the definition of "host".)

Task
On a Real-Time Operating System (RTOS), such as VxWorks, OSE, etc., a task is a "thread" of control
running within the context of a process. A process could have one or more independent yet cooperating
"programs" running within it. Each of these programs is called a task.

In some RTOS environments, tasks have immediate, shared access to system resources, while also
keeping enough separate context to maintain individual threads of control. However, all codes of tasks
within a process execute in a single common address space. Memory protection is not pre-assumed and
is the responsibility of the programmers.

51

52

Index
A
Accelerated application, 49
Accelerator library , 9
API

defined, 49

B
boot image , 37

C
Checkpoint, 49
conversion functions , 45

D
Database administrator, 49
Database management system, 49
DBA

defined, 49
DBMS

defined, 49

H
Host

defined, 50

I
Image

defined, 50

O
ODBC

defined, 50

R
RDBMS

defined, 50

RTOS
defined, 50

S
SDK

defined, 50
solidac.a , 9, 37
SQLConnect , 37
SQLDisconnect , 37
SSC API Functions , 43
SSCLogHookAdd

defined , 43
parameters , 43
return value , 44
synopsis , 43

SSCPrio2Str
synopsis , 45

SSCSetMemoryAllocatorType
defined , 44
synopsis , 44

SSCSetStacksize
defined , 44
synopsis , 44

SSCStartServer , 37
SSCStr2Prio

synopsis , 45
SSCStr2TaskClass

synopsis , 45
SSCTaskClass2Str

synopsis , 45
SsSys Utility Functions , 47
SsSysMemGlobalDone

defined , 47
synopsis , 47

SsSysMemGlobalInit
defined , 47
return value , 47
synopsis , 47

SsSysResGlobalDone
defined , 47
synopsis , 48

53

T
Target

defined, 51
Task

defined, 51

54

	Chapter 1. Welcome
	1.1 About This Guide
	1.1.1 Organization
	1.1.2 Audience

	1.2 Conventions
	1.2.1 About solidDB
	1.2.2 Typographic Conventions
	1.2.3 Syntax Notation

	1.3 solidDB Documentation

	Chapter 2. Introduction
	2.1 Purpose
	2.2 What You Should Already Know
	2.3 Software and Hardware Requirements

	Chapter 3. Overview
	3.1 The AcceleratorLib
	3.2 Overview of Building and Executing a solidDB Application on VxWorks

	Chapter 4. Configuring, Starting, and Stopping solidDB
	4.1 Before You Start: solid.ini File
	4.1.1 FileSpec
	4.1.2 CacheSize
	4.1.3 Listen
	4.1.4 MergeInterval and CheckPointInterval
	4.1.5 LogEnabled

	4.2 Starting solidDB
	4.3 Stopping solidDB

	Chapter 5. Incorporating the AcceleratorLib into a VxWorks Project
	5.1 Development Environment
	5.1.1 Directory Structure
	5.1.2 VxWorks Options
	5.1.3 Link solidac.a
	5.1.4 Header Files

	5.2 Source Code Modifications
	5.3 Working Directory

	Chapter 6. Design Considerations and Performance Tuning Tips
	6.1 Overview
	6.2 Starting the Server
	6.3 Tuning a Multi-threaded solidDB Server
	6.4 SSCAdvanceTasks
	6.4.1 SSCAdvanceTasks, and checking Server state

	6.5 Adjusting Stack Size
	6.6 Assigning Memory Partitions for solidDB
	6.7 Reclaiming System Resources and Uninitializing the Server
	6.8 Selecting Memory Allocator
	6.9 Redirecting Server Messages

	Chapter 7. ODBC Client
	7.1 Connection
	7.2 Statement Execution
	7.3 Disconnecting

	Chapter 8. solidDB VxWorks Development Differences (from Other Platforms)
	Appendix A. A Quick Overview of Developing Applications
	Appendix B. Different Approaches to "Building Your Image"
	B.1 Abstract
	B.2 Background
	B.3 Possible Combinations of Images

	Appendix C. SSC API Functions
	C.1 SSCLogHookAdd
	C.1.1 Synopsis
	C.1.2 Return Value

	C.2 SSCSetMemoryAllocatorType
	C.2.1 Synopsis

	C.3 SSCSetStacksize
	C.3.1 Synopsis
	C.3.2 Return Value

	C.4 Conversion Functions
	C.4.1 Synopsis

	Appendix D. SsSys Utility Functions
	D.1 SsSysMemGlobalInit
	D.1.1 Synopsis
	D.1.2 Return Value

	D.2 SsSysMemGlobalDone
	D.2.1 Synopsis

	D.3 SsSysResGlobalDone
	D.3.1 Synopsis

	Glossary
	Index

