

solidDB High Availability User Guide
Copyright © Solid Information Technology Ltd. 2007, 2009
Document number: SHS-6.00
Product version: 06.00.1059
Date: 2009-04-22

All rights reserved. No portion of this product may be used in any way except as expressly authorized in writing by Solid Information
Technology Ltd. or International Business Machines Corporation.

This product is protected by U.S. patents 6144941, 7136912, 6970876, 7139775, 6978396, and 7266702.

This product is assigned the U.S. Export Control Classification Number ECCN=5D992b.

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative
for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is
not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document
does not grant you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your country or
send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local
law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an en-
dorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web
sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between
independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been ex-
changed, should contact:

IBM Canada Limited
Office of the Lab Director
8200 Warden Avenue
Markham, Ontario
L6G 1C7
CANADA

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM
Customer Agreement, IBM International Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating
environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee
that these measurements will be the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other
publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any
other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without notice, and represent goals and
objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible,
the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to
the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating
platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of devel-
oping, using, marketing or distributing application programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright notice as follows:

your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
Copyright IBM Corp. _enter the year or years_.

All rights reserved.

TRADEMARKS

IBM, the IBM logo, ibm.com, Solid, and solidDB are trademarks or registered trademarks of International Business Machines Corporation
in the United States, other countries, or both. A current list of IBM trademarks is available on the Web at "http://www.ibm.com/legal/copy-
trade.shtml".

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

Table of Contents
1 Welcome ... 1

1.1 About This Guide ... 1
1.1.1 Organization ... 1
1.1.2 Audience .. 2

1.2 Conventions .. 2
1.2.1 About solidDB ... 2
1.2.2 Typographic Conventions .. 2
1.2.3 Syntax Notation ... 3

1.3 solidDB Documentation ... 4
2 Introducing the solidDB CarrierGrade Option ... 7

2.1 How HotStandby Works ... 7
2.1.1 The Transaction Log and HotStandby ... 7
2.1.2 Server HotStandby States .. 9
2.1.3 Server Diagrams .. 9
2.1.4 Combining HotStandby and SmartFlow .. 10
2.1.5 Switching the Secondary to Be the New Primary .. 11
2.1.6 Server CatchUp .. 12
2.1.7 The "Watchdog" Application ... 12
2.1.8 Replication Modes in HotStandby .. 13

2.2 Description of Server States .. 16
2.3 How Does HotStandby Affect Performance .. 18

2.3.1 Adaptive Durability ... 19
2.4 HotStandby Configuration .. 22
2.5 Implementing the CarrierGrade Option ... 22

2.5.1 HotStandby Configuration and System Design Issues .. 22
2.5.2 Watchdog Configuration .. 23

3 Getting Started with HotStandby .. 25
3.1 Before You Begin .. 25
3.2 HotStandby Demonstration ... 25
3.3 HotStandby Setup and Configuration Procedure .. 25

3.3.1 Section 1: Setup and Configuration Preparations .. 26
3.3.2 Section 2: Step-by-Step Procedure ... 26

4 Administering the CarrierGrade Option .. 29
4.1 What You Should Know ... 29

4.1.1 HotStandby and the solidDB Configuration File ... 29
4.1.2 HotStandby and Access Rights .. 30
4.1.3 solidDB Tools and the CarrierGrade Option ... 31
4.1.4 Database Migration (disk-based servers only) .. 31
4.1.5 Interoperability .. 32

v

4.2 Limitations with HotStandby ... 32
4.2.1 In-Memory Tables .. 32

4.3 Warnings ... 32
4.3.1 Network Partitions and Dual Primaries ... 32
4.3.2 Running Out of Space for Transaction Logs ... 33

4.4 Overview of Administration Tasks .. 34
4.5 Performing HotStandby Recovery and Maintenance .. 35
4.6 Switching Server States .. 35

4.6.1 Switchover and Failover .. 35
4.6.2 Performing Switchovers ... 36
4.6.3 Important Notes on Switching Servers .. 37
4.6.4 Verifying the Switch .. 38
4.6.5 Performing Failovers ... 39
4.6.6 Running the New Primary in PRIMARY ALONE State ... 39
4.6.7 Bringing the Secondary Server Back Online .. 40

4.7 Shutting Off HotStandby Operations ... 41
4.8 Synchronizing Primary and Secondary Servers ... 42

4.8.1 Catchup .. 42
4.8.2 Full Copy .. 43
4.8.3 Verifying the Copy .. 46
4.8.4 Using a Watchdog to Synchronize Servers ... 46
4.8.5 Copying a Primary Database to a Secondary Over the Network 46
4.8.6 Creating a New Database for the Secondary Server ... 47
4.8.7 Replacing an Existing Database on the Secondary Server 49
4.8.8 Verifying Netcopy Status .. 50
4.8.9 Copying a Database File from Primary Server to a Specified Directory 50

4.9 Connecting HotStandby Servers ... 52
4.10 Checking HotStandby Status ... 52

4.10.1 Displaying Switch Status Information ... 53
4.10.2 Displaying Connect Status Information ... 54
4.10.3 Displaying Communication Information .. 54
4.10.4 Displaying Role Start Time ... 55

4.11 Verifying HotStandby Server States .. 56
4.11.1 Server States Overview .. 57

4.12 Choosing Which Server to Make Primary ... 58
4.13 Changing a HotStandby Server to a Non-HotStandby Server ... 60
4.14 Special Configurations: Lower Cost vs. Higher Safety .. 60

4.14.1 Reducing Cost: N + 1 Spare and N + M Spares Scenarios 61
4.14.2 Increasing Reliability: 2N + 1 Spare and 2N + M SpareScenarios 61
4.14.3 How solidDB HSB Supports The N+1 (N+M) and 2N+1 (2N+M) Approaches 62

5 Using HotStandby with Applications ... 65
5.1 Two Ways to Connect to HotStandby Servers ... 65

vi

solidDB High Availability User Guide

5.1.1 Transparent Connectivity ... 65
5.1.2 Basic Connectivity .. 65
5.1.3 Choosing the Connectivity Type .. 66

5.2 Using the Transparent Connectivity .. 66
5.2.1 Failure Transparency in TC .. 66
5.2.2 Load Balancing in TC ... 67
5.2.3 Syntax of the TC Info .. 70
5.2.4 TC Info Attribute Combinations .. 73
5.2.5 Handling TC Info Contradictions ... 74
5.2.6 Enacting Transparent Connectivity in JDBC .. 74
5.2.7 Programming for Connection Switch .. 77

5.3 Using the Basic Connectivity .. 81
5.3.1 Reconnecting to Primary Servers from Applications .. 81
5.3.2 Re-Connecting to Secondary Servers .. 86
5.3.3 SmartFlow Data Distribution Requirements ... 87

5.4 Detecting Failures in solidDB HotStandby ... 89
5.4.1 Heartbeat .. 89

6 Configuring HotStandby ... 91
6.1 Configuring solidDB for HotStandby .. 91

6.1.1 Defining Secondary and Primary Node Configuration (Com Section) 92
6.1.2 Defining Timeouts Between Applications and Servers (Com Section) 92
6.1.3 Transaction Durability ... 94

6.2 Configuring HotStandby-Specific Parameters ... 95
6.2.1 Defining Primary and Secondary HotStandby Configuration 95
6.2.2 Setting HotStandby Server Wait Time to Help Detect Broken or Unavailable Connec-
tions .. 96
6.2.3 Defining a Name and Location for HotStandby Database Copy Operation 98
6.2.4 Defining Primary Server Behavior During a Secondary Failure 99

6.3 Performance Tuning ... 100
6.3.1 Tuning Replication Performance with Safeness and Durability Levels 100
6.3.2 Tuning Netcopy Performance (General Section) .. 100

6.4 Configuring Parameters for a Watchdog ... 101
6.4.1 Watchdog Section ... 102

6.5 Configuration File Examples ... 105
7 Monitoring HotStandby Server Pairs with a Watchdog Application .. 107

7.1 How the Watchdog Application Works ... 107
7.1.1 Failure Mode ... 108
7.1.2 Coding a Watchdog for Multiple Failures .. 109

7.2 Using the Sample Watchdog Application .. 109
7.3 HotStandby Failure Scenarios and Watchdog Actions ... 110

7.3.1 Primary is Down ... 110
7.3.2 Secondary is Down ... 112

vii

solidDB High Availability User Guide

7.3.3 Watchdog is Down .. 115
7.3.4 Communication Link Between Primary and Secondary Is Down 117
7.3.5 Communication Link Between Watchdog and Primary Is Down 119
7.3.6 Communication Link Between Watchdog and Secondary Is Down 121
7.3.7 Communication Links Between Watchdog and Primary, and Between Primary and
Secondary, Are Down .. 123
7.3.8 Communication Links Between Watchdog and Secondary, and Between Primary and
Secondary, Are Down .. 126

8 Upgrading Your Server by Using HotStandby .. 129
8.1 Cold and Hot Migration .. 129
8.2 Migration between HSB-Compatible Versions .. 129

8.2.1 Cold Migration ... 129
8.2.2 Hot Migration .. 129

8.3 Migration between HSB-Incompatible Versions .. 130
8.3.1 Preparation Steps .. 130
8.3.2 After the Upgrade ... 134

A Configuration Parameters ... 135
A.1 Ensuring that Primary and Secondary Parameter Values Are Coordinated 135
A.2 Determining Whether the Primary's Settings Take Precedence Over the Secondary's 137
A.3 Querying HotStandby Configuration Parameters ... 137
A.4 Modifying HotStandby Configuration Parameters ... 138
A.5 Access Mode ... 138

A.5.1 Access Mode Values ... 139
A.5.2 Saving Parameter Changes ... 139

A.6 Cluster Section ... 139
A.7 HotStandby Section .. 140
A.8 Watchdog Section ... 145

B Error Codes .. 151
B.1 HotStandby Errors and Status Codes .. 151
B.2 solidDB Database Errors .. 160
B.3 Solid Errors ... 162
B.4 solidDB Communication Errors ... 163

C Summary of HotStandby Administrative Commands .. 165
D Server State Transitions .. 177

D.1 HotStandby State Transition Diagram ... 177
E HSB System Events ... 183
Glossary ... 185
Index ... 189

viii

solidDB High Availability User Guide

List of Figures
2.1 HotStandby Server Scheme .. 9
2.2 Illustration Key ... 10
2.3 HotStandby with Master and Replica Server Scheme ... 11
2.4 HotStandby Switchover to New Primary (old Secondary) ... 11
2.5 Server Failover and Catchup Example ... 12
2.6 Synchronous HotStandby Configuration .. 14
2.7 Heterogeneous HotStandby Configuration with Watchdog .. 23
4.1 State Switch ... 36
4.2 Manual Full Copy Procedure ... 45
5.1 Master failover ... 88
5.2 Replica failover .. 89
7.1 Primary is Down Scenario and Remedy ... 111
7.2 Secondary is Down Scenario and Remedy .. 114
7.3 Watchdog is Down Scenario and Remedy .. 116
7.4 Broken Link Between Primary and Secondary Scenario and Remedy .. 118
7.5 Broken Link Between Watchdog and Primary Scenario and Remedy ... 120
7.6 Broken Link Between Watchdog and Secondary Scenario and Remedy 122
7.7 Broken Link Between Watchdog and Primary, and between Primary and Secondary, Scenario and
Remedy .. 124
7.8 Broken Link between Watchdog and Secondary and between Primary and Secondary Scenario and
Remedy .. 127
D.1 HotStandby Server State Transitions ... 179

ix

x

List of Tables
1.1 Typographic Conventions ... 2
1.2 Syntax Notation Conventions .. 3
2.1 Description of Server States .. 16
4.1 Administration Tasks ... 34
4.2 ADMIN COMMAND 'hotstandby status' Options ... 53
4.3 Connect Status Return Values .. 54
4.4 HotStandby Server States ... 56
4.5 Server States .. 57
5.1 Choosing the Connectivity Type .. 66
5.2 TC Info Abbreviations ... 71
5.3 Possible Combinations of TC Info Attributes .. 73
5.4 Connect Request Errors .. 75
5.5 Warnings ... 76
5.6 Connection Switch Request .. 77
5.7 Communication Link Failure ... 78
5.8 Session State Preservation .. 79
5.9 HOTSTANDBY_CONNECTSTATUS Status Values ... 84
8.1 Hot Migration ... 131
A.1 Cluster Parameters .. 139
A.2 HotStandby Parameters .. 140
A.3 Watchdog Parameters .. 145
B.1 HotStandby Errors and Status Codes .. 151
B.2 solidDB Database Errors .. 160
B.3 Solid Errors ... 162
B.4 solidDB Communication Errors ... 163
C.1 HotStandby Commands .. 165
D.1 Server State Transition Table .. 180
E.1 HotStandby Events .. 183

xi

xii

List of Examples
5.1 Client-side INI File ... 72
5.2 Connect String in ODBC .. 73
5.3 Using Transparent Connectivity in JDBC ... 75
5.4 Basic Connection without Transparency .. 81
5.5 Sample Pseudo-Code ... 85
6.1 Entry in the solid.ini File ... 92
6.2 Partial solid.ini Files ... 95
7.1 Dual Primaries .. 109

xiii

xiv

Chapter 1. Welcome
The IBM solidDB (solidDB) High Availability (CarrierGrade, or, HotStandby) option increases the reliability
of your database system, reducing downtime. The CarrierGrade option uses a "hot standby" approach, in
which a second database server runs in parallel with the primary server and keeps an exact up-to-date copy
of the data. If the primary database server fails, then your application can switch over to the secondary, with
no loss of committed transactions, and with minimal performance impact. Switchover times can be quite fast
— as short as a couple of hundred milliseconds, depending upon the characteristics of your hardware and
software environment.

1.1 About This Guide
This guide is intended only for those who have purchased the CarrierGrade option as part of their solidDB
package. It contains information specific to the CarrierGrade option only.

For general administration and maintenance information on solidDB databases, see solidDB Administration
Guide.

1.1.1 Organization

This guide includes the following information:

• Chapter 2, Introducing the solidDB CarrierGrade Option, describes the concepts, components, and
physical configuration options of the CarrierGrade option.

• Chapter 3, Getting Started with HotStandby, provides step-by-step instructions to start two solidDB Hot-
Standby servers (a Primary server and a Secondary server).

• Chapter 4, Administering the CarrierGrade Option, describes typical operations, such as synchronizing
Primary and Secondary servers, and using administrative commands to control how the servers interact.

• Chapter 5, Using HotStandby with Applications describes guidelines for coding applications that use the
CarrierGrade option.

• Chapter 6, Configuring HotStandby, describes the parameter settings in the solidDB Configuration file
(solid.ini) for implementing and maintaining HotStandby.

• Chapter 7, Monitoring HotStandby Server Pairs with a Watchdog Application, describes how a separate
"watchdog" application monitors HotStandby server pairs. This chapter also shows various possible failure
scenarios (e.g. the Primary fails, or the Secondary fails) and what actions the watchdog program (or a
human administrator) should take to recover from them.

1

• Chapter 8, Upgrading Your Server by Using HotStandby, describes how you can use the HotStandby
functionality to upgrade your server without temporarily shutting down your entire system.

• Appendix A, Configuration Parameters, provides a reference of solid.ini configuration parameters
that are used with the solidDB CarrierGrade option.

• Appendix B, Error Codes, provides detailed information about error messages related to the CarrierGrade
option.

• Appendix C, Summary of HotStandby Administrative Commands, provides a reference of commands used
to administer the solidDB CarrierGrade option.

• Appendix D, Server State Transitions, lists possible server states (Primary, Secondary, etc.) and shows
the ways that HotStandby commands affect the server state.

• Appendix E, HSB System Events, lists the system events related to HotStandby.

1.1.2 Audience

This guide assumes the reader has general DBMS knowledge, and familiarity with SQL and solidDB.

1.2 Conventions

1.2.1 About solidDB

solidDB provides advanced database solutions for mission-critical applications.

This documentation assumes that all options of solidDB are licensed for use. In some cases, however, a cus-
tomer may choose not to license certain options. These include in-memory engine, disk-based engine, Carri-
erGrade Option (also known as "HotStandby" in previous releases), and SmartFlow Option. Please refer to
your organization's contract with solidDB, or contact your solidDB account representative.

1.2.2 Typographic Conventions

This manual uses the following typographic conventions:

Table 1.1. Typographic Conventions

Used forFormat

This font is used for all ordinary text.Database table

2

1.1.2 Audience

Used forFormat

Uppercase letters on this font indicate SQL keywords
and macro names.

NOT NULL

These fonts indicate file names and path expressions.solid.ini

This font is used for program code and program output.
Example SQL statements also use this font.SET SYNC MASTER YES;

COMMIT WORK;

This font is used for sample command lines.run.sh

This font is used for function names.TRIG_COUNT()

This font is used for interface names.java.sql.Connection

This font is used for parameter names, function argu-
ments, and Windows registry entries.

LockHashSize

Words emphasised like this indicate information that
the user or the application must provide.

argument

This style is used for references to other documents,
or chapters in the same document. New terms and
emphasised issues are also written like this.

solidDB Administration Guide

File paths are presented in the Unix format. The slash
(/) character represents the installation root directory.

File path presentation

If documentation contains differences between operat-
ing systems, the Unix format is mentioned first. The

Operating systems

Microsoft Windows format is mentioned in paren-
theses after the Unix format. Other operating systems
are separately mentioned.

1.2.3 Syntax Notation

This manual uses the following syntax notation conventions:

Table 1.2. Syntax Notation Conventions

Used forFormat

Syntax descriptions are on this font. Replaceable sec-
tions are on this font.INSERT INTO table_name

3

1.2.3 Syntax Notation

Used forFormat

This font indicates file names and path expressions.solid.ini

Square brackets indicate optional items; if in bold text,
brackets must be included in the syntax.

[]

A vertical bar separates two mutually exclusive choices
in a syntax line.

|

Curly brackets delimit a set of mutually exclusive
choices in a syntax line; if in bold text, braces must
be included in the syntax.

{ }

An ellipsis indicates that arguments can be repeated
several times.

...

A column of three dots indicates continuation of pre-
vious lines of code..

.

.

1.3 solidDB Documentation
Below is a complete list of documents available for solidDB. solidDB documentation is distributed in PDF
format.

Electronic Documentation

• Release Notes. This file contains installation instructions and the most up-to-date information about the
specific product version. This file (releasenotes.txt) is copied onto your system when you install
the software.

• solidDB Getting Started Guide. This manual gives you an introduction to the solidDB.

• solidDB SQL Guide. This manual describes the SQL commands that solidDB supports. This manual also
describes some of the system tables, system views, system stored procedures, etc. that the engine makes
available to you. This manual contains some basic tutorial material on SQL for those readers who are not
already familiar with SQL. Note that some specialized material is covered in other manuals. For example,
solidDB "administrative commands" related to the High Availability (HotStandby) Option are described
in the solidDB High Availability User Guide, not the solidDB SQL Guide.

4

1.3 solidDB Documentation

• solidDB Administration Guide. This guide describes administrative procedures for solidDB servers. This
manual includes configuration information. Note that some administrative commands use an SQL-like
syntax and are documented in the solidDB SQL Guide.

• solidDB Programmer Guide. This guide explains in detail how to use features such as solidDB Stored
Procedure Language, triggers, events, and sequences. It also describes the interfaces (APIs and drivers)
available for accessing solidDB and how to use them with a solidDB database.

• solidDB In-Memory Database User Guide. This manual describes how to use the in-memory database of
solidDB In-memory Engine.

• solidDB SmartFlow Data Replication Guide. This guide describes how to use the solidDB SmartFlow
technology to synchronize data across multiple database servers.

• solidDB AcceleratorLib User Guide. Linking the client application directly to the server improves per-
formance by eliminating network communication overhead. This guide describes how to use the Acceler-
atorLib library, a database engine library that can be linked directly to the client application.

This manual also explains how to use two proprietary Application Programming Interfaces (APIs). The
first API is the solidDB SA interface, a low-level C-language interface that allows you to perform simple
single-table operations (such as inserting a row in a table) quickly. The second API is SSC API, which
allows your C-language program can control the behavior of the embedded (linked) database server

This manual also explains how to set up a solidDB to run without a disk drive.

• solidDB High Availability User Guide. solidDB CarrierGrade Option (formerly called the HotStandby
Option) allows your system to maintain an identical copy of the database in a backup server or "secondary
server". This secondary database server can continue working if the primary database server fails.

• Getting Started With solidDB For VxWorks. This guide describes how to take into use solidDB on the
VxWorks environment. It also provides guidelines for application development and performance tuning.
This manual is included only in packages for VxWorks.

5

Electronic Documentation

6

Chapter 2. Introducing the solidDB
CarrierGrade Option
This chapter describes the solidDB CarrierGrade option. The CarrierGrade option enables a secondary server
(a "hot standby server") to run in parallel with the primary server and keep an up-to-date copy of the data in
the primary server. This allows implementation of systems that have increased reliability. A failed database
server no longer brings your site to a complete halt. In as little as a few hundred milliseconds, in any engine
configuration supported by solidDB (such as solidDB master or replica), the CarrierGrade option allows the
secondary database to replace the failed one.

Note

The term "hot standby" (two words, all lower case) refers to the general technique of having a second
server ready to take over if the first server fails. "HotStandby" (one word, capitalized as shown) refers
to solidDB's specific implementation of this general technique.

2.1 How HotStandby Works
HSB performs synchronous transaction replication between two nodes:

• a primary server node (Primary) that contains the active database, and

• a secondary server node (Secondary), which contains an exact, up-to-date copy of the active database,
and which can replace the Primary if the Primary fails.

The Secondary receives updates from the primary server, and is ready to take over as the Primary if the ori-
ginal Primary fails. An additional benefit of having the Secondary is that the Secondary can also respond to
read-only requests (e.g. SELECT statements) from clients. This allows you to spread some of your workload
over two servers rather than one.

2.1.1 The Transaction Log and HotStandby

HotStandby uses the Primary server's transaction log, which contains a copy of the transactions committed
on the server. In a non-HotStandby server, this transaction log is used to recover data if the server shuts down
abnormally. In a HotStandby Primary server, the log data is also sent to the Secondary server to let it know
what data to update. The Secondary database runs a continuous roll-forward process that receives the log data
and keeps the Secondary's copy of the data synchronized with the Primary's copy.

7

Typically, if the Primary server goes down, then an independent high-availability manager application tells
the Secondary to become the Primary. For brevity, we will call such a manger a "watchdog". After a new
Primary is in operation, the clients can then connect to the new Primary and continue working. Clients will
see all data that was committed before the Primary went down. (Clients need to re-start any transactions that
were started but not finished when the original Primary server went down.)

A special type of client connectivity called Transparent Connectivity (TC) is available for clients to operate
in the HSB environment, in the presence of failovers and switchovers. See Chapter 5, Using HotStandby with
Applications for more information.

If the Secondary server goes down, the Primary can continue to operate. It continues writing data to the
transaction log and keeps that transaction log until the Primary and Secondary are re-connected to each other
and the Primary has sent the log to the Secondary. 1

Once the failed database server becomes available again, it can be configured to become the new Secondary
database server (the server that did not fail is already acting as the current Primary, of course).

If the Primary server is the server that fails, then the servers will reverse their responsibilities, with the original
Secondary taking over as the Primary, and the original Primary coming back into the system as the new Sec-
ondary after it is repaired. These reversals may happen each time there is a failure. The fact that either server
can be the Primary allows the system to survive multiple failures over time, and continue operating virtually
indefinitely.

Caution

If the Primary server is unable to contact the Secondary server for a long period of time, then the
transaction log may fill all the available disk space. This may be avoided with appropriate configuration
parameter settings. See Section 4.3.2, “Running Out of Space for Transaction Logs”

You can even use HSB to reduce downtime during hardware and software upgrades. You can leave one
server running as Primary while you upgrade the other.

1The exact length of time that the Primary keeps the log depends upon the settings of the solid.ini configuration parameters
CheckpointDeleteLog and BackupDeleteLog.

1. If CheckpointDeleteLog=Y, then the Primary keeps all transaction logs since the time that the Secondary went down or since
the most recent checkpoint, whichever is less recent. (For a detailed explanation of checkpoints, see solidDB Administration Guide.)

2. If CheckpointDeleteLog=N and BackupDeleteLog=Y, then the Primary keeps all transaction logs since the time that the
Secondary went down or since the most recent backup, whichever is less recent.

3. If CheckpointDeleteLog=N and BackupDeleteLog=N, then the server keeps the logs indefinitely.

8

2.1.1 The Transaction Log and HotStandby

HotStandby can also be used to help choose a customized balance of speed and safety. The HSB parameters
SafenessLevel and 2SafeAckPolicy control the way the Secondary server acknowledges the trans-
actions. This parameter, in combination with the logging-related DurabilityLevel parameter, lets you
specify a combination of speed and safety. Some parameter settings actually increase performance over non-
HSB servers. (For more details, see the discussion of durability level and safeness parameters in Section 6.3,
“Performance Tuning”).

On the other hand, you can allow for the safeness level to change dynamically in relation to the durability
level by using the SafenessLevel parameter "auto" value. For more information on the "auto" value, refer
to the SafenessLevel parameter description in Section A.7, “HotStandby Section”.

2.1.2 Server HotStandby States

In a HotStandby system, each server is in one of several possible "states" that describes that server's current
behavior. For example, when the Primary and Secondary are communicating and synchronizing, they are in
the PRIMARY ACTIVE and SECONDARY ACTIVE states, respectively. As another example, if the Primary
loses contact with the Secondary, then the Primary automatically switches to the PRIMARY UNCERTAIN
state. In that state, it will not accept new transactions. The user or more typically, the watchdog application
may switch the server to the PRIMARY ALONE state, in which the server acts as an independent server —
it accepts new transactions and stores them to send to the Secondary later. We describe all the states later.

2.1.3 Server Diagrams

Figure 2.1, “HotStandby Server Scheme” illustrates the basic HotStandby server scheme. In this scheme,
there are two database servers — the Primary and the Secondary, each of which has its own disk drive on
which it stores the database, and each of which has its own transaction log ("Txn Log"). The Primary writes
to its transaction log and forwards it to the Secondary so that the Secondary can make the same changes to
its copy of the database. The Secondary's transaction log is not actively involved in HSB, but it is maintained
so that the Secondary can recover data that was committed but not yet written to the main data tables. (See
solidDB Administration Guide for a more detailed explanation of logging and recovery.)

Figure 2.1. HotStandby Server Scheme

9

2.1.2 Server HotStandby States

Figure 2.2. Illustration Key

2.1.4 Combining HotStandby and SmartFlow

The solidDB CarrierGrade option can be used in combination with solidDB SmartFlow. SmartFlow provides
bi-directional, periodically occurring data synchronization that allows you to create a distributed system that
contains "master" and "replica" servers. With the CarrierGrade option, you can make any of the database
servers of the distributed system highly available.

Figure 2.3, “HotStandby with Master and Replica Server Scheme” shows a simple distributed system that
contains a master database and two replica databases. Each replica contains at least a subset of the data of the
master database. Each of the database servers has been made fault-tolerant with HotStandby replication. The
SmartFlow data synchronization occurs between the Primary servers of the database server hierarchy. In case
of a problem with any of the Primary database servers, the failed node can do a HotStandby failover making
the Secondary server of that node the new Primary. SmartFlow data synchronization can now continue with
the new Primary server.

10

2.1.4 Combining HotStandby and SmartFlow

Figure 2.3. HotStandby with Master and Replica Server Scheme

2.1.5 Switching the Secondary to Be the New Primary

When the Primary server fails, the administrator (or "watchdog" software) can use a special HotStandby ad-
ministrative command to switch the Secondary server to be the new Primary. The command is:

ADMIN COMMAND 'hotstandby set primary alone';

This command must be issued by a client program, such as the watchdog application, that is connected to the
Secondary, of course. The new Primary contains the up-to-date committed data from the old Primary database.
Everything that was committed in the Primary database, is guaranteed to be found from the Secondary database.
Applications can connect to the new Primary and resume their operations. The new Primary can operate alone
and continue to write transactions and data to its database and transaction log.

Figure 2.4. HotStandby Switchover to New Primary (old Secondary)

11

2.1.5 Switching the Secondary to Be the New Primary

2.1.6 Server CatchUp

Once the old Primary is back online, it may be told to become the new Secondary. However, the information
in the new Secondary lags behind that of the new Primary as new transactions have been committed to new
Primary database. To bring the new Secondary up to date, the new Primary's transaction log data is sent to
the new Secondary automatically after the servers are connected. All pending changes are written from the
transaction log to the new Secondary so that the Secondary can keep in sync with the Primary. Server catchup
is illustrated in Figure 2.5, “Server Failover and Catchup Example”. For more details on maintaining the
synchronization of Primary and Secondary, read Section 4.8, “Synchronizing Primary and Secondary Servers”.

Figure 2.5. Server Failover and Catchup Example

2.1.7 The "Watchdog" Application

When the servers lose contact with each other, they switch to a state such as PRIMARY UNCERTAIN or
SECONDARY ALONE. Once in this state, the servers do not normally change state again until they are
commanded to do so with a command such as

12

2.1.6 Server CatchUp

ADMIN COMMAND 'hsb set primary alone';

Such a command must be issued by an entity other than the server(s) themselves. The entity may be:

• A human administrator.

• A watchdog application, which is an external user-defined program. The product includes a simple program
that can be used as a template.

(The job of the watchdog may be taken by a high-availability manager (HA Manager) designed to manage
redundant components. Such a manager may, in turn, be integrated with a possible high-availability
framework if such is provided for the equipment in question.)

We expect that most customers will eventually build or buy watchdog software that meets their needs.
Throughout the rest of this manual, we will usually refer to the "watchdog" as though it were a piece of software,
but you should keep in mind that the watchdog functionality may be performed by a human. The ADMIN
COMMANDs are the same, whether they are issued by a human or by software.

Note also that the "watchdog" (human or software) is not the only factor that controls what happens when
servers lose contact with each other.

2.1.8 Replication Modes in HotStandby

1-Safe and 2-Safe Replication

solidDB offers various choices to tune the system to the required balance between performance and endurance.
One such choice is the choice of replication protocol used. A system parameter called Safeness Level determines
whether the replication protocol is synchronous (2-safe) or asynchronous (1-safe).

• 1-safe: the transaction is first committed at Primary and then transmitted to Secondary

• 2-safe: the transaction is not committed before it has been acknowledged by Secondary (default).

The safeness level may be controlled at three levels: global (server), session and transaction.

Synchronous HotStandby with 2-Safe Replication

To ensure that the Primary and Secondary have exactly the same data, solidDB uses, primarily, a Synchronous
HotStandby model. This means that the Primary server does not tell the user that the transaction has been
committed when the Primary has written the data; instead, the Primary waits until the Secondary server has
also committed (or at least received) the data, and only then does the Primary tell the user that the data was

13

2.1.8 Replication Modes in HotStandby

committed. (This is called a "2-safe" replication method; the data is written in two places before the user is
told that the data has been committed.) 2

Before committing changes to a transaction in the Primary database, the Primary server sends the transaction
data to the Secondary server. The Secondary server must send acknowledgement to the Primary that it has
committed (or at least received) the data. Otherwise, the Primary server times out and changes its state from
PRIMARY ACTIVE to PRIMARY UNCERTAIN (these states are discussed in more detail later). The Primary
server, in this case, can neither roll back nor commit the transaction. The watchdog may set the Primary
server to PRIMARY ALONE state, which allows the Primary to continue to receive transactions and operate
independently of the Secondary. It commits the pending transaction(s) that were sent to the Secondary and
resumes accepting new transactions

Note that the Secondary server sends acknowledgement as soon as it has committed (or at least received) the
transaction log entries. This configuration prevents lost transactions when there is a single failure. Additionally,
a file-based transaction log is optionally retained to facilitate database recovery in case a total system failure
occurs.

Figure 2.6. Synchronous HotStandby Configuration

Basic Steps in Sending Data

Below are the steps in sending data with synchronous replication:

1. The Primary server writes data (in record level format) to the transaction log at the Primary node.

2. If the Primary server encounters a commit statement, then all changed data is sent to the Secondary
server. (Note that if the Secondary server fails after the transaction starts and before the Primary sends
the data, then the Primary will roll back the transaction.)

2For more about 2-safe vs. 1-safe algorithms, see Transaction Processing: Concepts and Techniques, by Jim Gray and Andreas Reuter,
Morgan Kauffman, 1993.

14

2.1.8 Replication Modes in HotStandby

3. The Secondary acknowledges the commit message. The timing of the acknowledgement depends upon
the setting of the 2SafeAckPolicy configuration parameter. In the fastest alternative, called 2-safe
received, the Secondary sends acknowledgement to the Primary immediately upon receiving the commit
message. In the safest alternative, called 2-safe durable, the Secondary sends acknowledgement after
executing and durably writing the transaction to the Secondary's own transaction log.

When the Primary receives the Secondary's acknowledgement, the Primary notifies the user that the data
has been committed.

4. If the Primary does not receive acknowledgement from the Secondary (for example, due to network
failure or node failure), then the Primary server times out and switches to the PRIMARY UNCERTAIN
state. The Primary is unable to roll back or commit the transaction itself because it does not know the
state of recent transactions in the Secondary. The Primary does not know which of the following happened:

• the Secondary was down before the transaction was committed

• the Secondary already committed the transaction, but the Primary server did not receive acknowledge-
ment, for example because of network failure.

While the server is in PRIMARY UNCERTAIN state, the current transaction as well as new transactions
that a user tries to commit are blocked and the user may perceive that the server is unresponsive.

5. If the Watchdog detects that the Secondary is down or the network failed, then the watchdog can switch
the Primary server to the PRIMARY ALONE state. Once the Primary server is set to PRIMARY ALONE,
it commits the pending transaction(s) that were sent to the Secondary and resumes accepting new trans-
actions.

6. Changes are accumulated to the transaction log file until the Secondary server is back in operation or
until the Primary server is out of disk space. (If the server runs out of disk space for the transaction log,
then the Primary changes to read-only mode.)

7. If you think that the Secondary server will be out of operation for a long time and the server is likely to
run out of disk space for the transaction log, then you may want to switch the Primary server from
PRIMARY ALONE to STANDALONE state. This means that the transaction log will not store all
transactions since contact was lost with the Secondary, and therefore the Secondary cannot "catch up"
merely by reading the transaction logs from the Primary. If the Secondary cannot be brought up to date
with the transaction logs, the only way to synchronize the Secondary with the Primary is to copy the
Primary's database file(s) to the Secondary. This can be done with either the HotStandby copy or Hot-
Standby netcopy command. For details on copy and netcopy, read Section 4.8.5, “Copying a Primary
Database to a Secondary Over the Network” and Section 4.8.9, “Copying a Database File from Primary
Server to a Specified Directory”.

15

2.1.8 Replication Modes in HotStandby

8. To execute either copy or netcopy, the Primary must be in the PRIMARY ALONE state. After a
copy/netcopy, the Primary server remains in the PRIMARY ALONE state, regardless of whether the
command succeeds or fails.

9. In order for the Primary to again start sending its transactions to the Secondary, the Primary server must
be explicitly connected to the Secondary server by using the command hotstandby connect described in
Section 4.9, “Connecting HotStandby Servers”. After the Primary server is connected to the Secondary
server, the Primary operates in the PRIMARY ACTIVE state.

Once the servers are connected, they will start performing catchup (when all pending changes are auto-
matically written from the transaction log to the Secondary to keep in sync with the Primary). Note that
before server catchup, the Primary and Secondary exchange information and determine where to begin
the catchup so that a transaction is not committed twice on the Secondary.

Asynchronous HotStandby with 1-Safe Replication

Optionally, asynchronous replication from Primary to Secondary may be used. This is called 1-safe replication.
With 1-safe replication, the transactions are acknowledged immediately once they are committed at the
Primary. This offers significant performance gains. After the commit, the transactions are sent to the Secondary,
in an asynchronous way. The trade-off is that, when a failure occurs at Primary, a few transactions, that were
in transfer, may be lost.

Either of the two replication methods may be chosen dynamically, or even per session, or transaction. The
replication delay involved with 1-safe replication may be controlled, too.

2.2 Description of Server States
Both servers in an HSB (HotStandby) pair expose certain states that me be queried and manipulated. The full
state diagram is depicted in Appendix D, Server State Transitions. The states and their meanings are listed
below.

Table 2.1. Description of Server States

DESCRIPTIONSTATE

The servers are connected, and this server (the Primary server) is accepting read-
write transactions and sending the data to the Secondary server. The Secondary
server must be in SECONDARY ACTIVE state.

PRIMARY ACTIVE

The peer servers are not interconnected. The peer may be up, but it is not con-
nected and therefore is not accepting any transactions (that is, it may be in the
SECONDARY ALONE state).

PRIMARY ALONE

16

2.2 Description of Server States

DESCRIPTIONSTATE

This server (the Primary) is actively accepting and executing read-write transac-
tions and collecting them to be sent to the Secondary later.

The servers have disconnected abnormally and the AutoPrimaryAlone
configuration parameter is set to "No". In the PRIMARY UNCERTAIN state,

PRIMARY UNCERTAIN

any unacknowledged transactions remain in a pending status, which means that
the server will not commit or roll back the transaction until a watchdog changes
the server to another state.

The operator has three possible actions: re-connect the Primary to the Secondary,
set the Primary server to PRIMARY ALONE state, or set the Primary server to
SECONDARY ALONE state.

1. If the server is re-connected to the Secondary, then the transactions are
committed on the Primary.

2. If the state is changed to PRIMARY ALONE, then the open transactions
are committed on the Primary.

3. If the state is changed to SECONDARY ALONE, then the open transactions
remain pending. They are finally resolved after the server changes to another
state. For example, if the server is moved to the SECONDARY ACTIVE
state, the blocked transactions are aborted or committed, depending on the
catchup outcome. If the server state is changed to STANDALONE or
PRIMARY ALONE, then the blocked transactions are committed.

If you want the Primary server to automatically go to PRIMARY ALONE rather
than PRIMARY UNCERTAIN when it loses contact with the Secondary, then
read the description of the AutoPrimaryAlone configuration parameter.

Note: a watchdog can maximize safety by always switching the server from
PRIMARY UNCERTAIN to SECONDARY ALONE. This prevents the possib-
ility of dual primaries. However, it also prevents users from updating data on
the server. (See Section 4.3.1, “Network Partitions and Dual Primaries”.)

The peer servers are interconnected, and this server is accepting incoming
transaction log data from the Primary. These transactions are executed on the

SECONDARY ACTIVE

Secondary so that it has the same data as the Primary (the transactions are also
written to the Secondary's own transaction log so that the Secondary itself can
recover the data if the Secondary fails). Additionally, clients may perform read-
only transactions on a server in the SECONDARY ACTIVE state. When a

17

2.2 Description of Server States

DESCRIPTIONSTATE

server is in the SECONDARY ACTIVE state, the server's peer must be in
PRIMARY ACTIVE state.

The Secondary is disconnected from its peer server. Only read requests are ac-
cepted. The server may be connected to the peer by issuing the command "Hot-
Standby connect" on either the Secondary or the Primary.

SECONDARY ALONE

The server has no HSB state (Primary or Secondary) and operates in the way a
regular standalone server operates. Transaction logs are processed and removed

STANDALONE

in the normal way, too; they are not saved for the Secondary. To resume HSB
operation, the server must be set to either PRIMARY ALONE or SECONDARY
ALONE, and the Primary will have to do a netcopy or copy operation to send a
complete copy of the database to the Secondary.

The server was started in "netcopy listen mode" (also called "backupserver
mode"). In this mode, the server is waiting for an incoming netcopy from a

OFFLINE

server that is in PRIMARY ALONE state. When the server successfully com-
pletes netcopy, the server moves to the state SECONDARY ALONE.

You cannot directly observe the OFFLINE state because a server in OFFLINE
state does not accept client connections. A server in the OFFLINE state will re-
spond only to a netcopy operation (described later).

2.3 How Does HotStandby Affect Performance
Although you might expect that HotStandby (HSB) would reduce performance, this is not always the case.
In fact, in some configurations HSB can even increase performance significantly. The key factors in HSB
performance include:

• the use of adaptive durability when preserving transactions over single failures is needed

• the use of 1-Safe replication protocol when minor transaction loss over failures is acceptable

• the 2-Safe Acknowledgement Policy (when the 2-safe replication is used) — i.e. whether the Secondary
acknowledges receipt of transactions as soon as it receives them from the Primary, or whether the Secondary
waits until it has committed the transactions

• the possibility of performing read-only transactions on the Secondary server

• the server's internal parallelism

18

2.3 How Does HotStandby Affect Performance

2.3.1 Adaptive Durability

The solid.ini configuration file allows you to specify whether you want relaxed durability (fast), strict
durability (safe), or a third option, called "adaptive durability".

• Strict Durability: If a transaction is written to the transaction logs as soon as the transaction is committed,
we call that "strict durability". This maximizes safety.

• Relaxed Durability: If the server is permitted to defer the transaction write until the server is less busy,
or until it can write multiple transactions together, we call that "relaxed durability" (or "relaxed logging").
In a server that is not part of an HSB pair, using relaxed durability means that you risk losing the most
recent few transactions if the server terminates abnormally. If the server is part of an HSB pair, however,
then a copy of the transaction is on the other server (the Secondary), and even if the Primary server fails
before logging the transaction, the transaction is not lost. Thus, when relaxed durability is used with HSB,
relaxed durability causes very little reduction in safety. On the other hand, relaxed durability can improve
the performance of the system, especially in situations where the server load consists of a large number
of small write transactions.

• Adaptive Durability: Adaptive durability applies only to HotStandby Primary servers (and it is the default).
Adaptive Durability means simply that if the server is in Primary Active state (sending transactions to the
Secondary), then it will use relaxed durability, but in any other state it will use strict durability. This gives
you high performance (with little loss of safety) when HSB is active, yet maintains high safety if only one
server is operating. Adaptive Durability may effectively enacted only when the 2-Safe replication is used
(default).

Adaptive durability can significantly increase performance while still guaranteeing high degree of data safety
in failure situations. It can increase overall system throughput and it can reduce latency, that is, the time the
user must wait before being told that the transaction has committed.

For more details about relaxed logging and the DurabilityLevel parameter, see solidDB Administration
Guide.

1-Safe Replication

With 1-safe replication, the commit statement is acknowledged immediately once the commit processing is
completed at the Primary. The committed transaction is transmitted to the secondary asynchronously, after
the control has been returned to the application. The delay involved in transmitting the transaction may range
from few milliseconds to a few hundred milliseconds. 1-safe replication offers significant performance gains
because the latencies are reduced dramatically at Primary. The downside of 1-safe is that, in the case of a
failure, a few transactions may be lost in a failover.

The 1-safe replication may be set, for the server, with the parameter:

19

2.3.1 Adaptive Durability

[HotStandby]
SafenessLevel=1safe ;values: 1safe, 2safe, auto; default is 2safe

It is also possible to control the safeness level dynamically with the SET commands:

SET SAFENESS {1SAFE| 2SAFE| DEFAULT}

sets the safeness level for the current session, until it is changed.

SET TRANSACTION SAFENESS {1SAFE| 2SAFE| DEFAULT}

sets the safeness level for the current transaction. After commit, the safeness level returns to the value set for
the session, or the startup value, or the system default (which is 2-safe).

The option DEFAULT denotes the current setting for the session.

It is also possible to control the safeness level with the programmatic durability controls (like SET DURAB-
ILITY RELAXED) when the SafenessLevel parameter has a special value "auto" (i.e. "automatic"). In
this case, "strict" corresponds to "2-safe" and "relaxed" to "1-safe". For more information on the "auto" value
of the SafenessLevel parameter, see the SafenessLevel parameter description in Section A.7,
“HotStandby Section”.

2-Safe Acknowledgement Policy

When the 2-safe replication is enabled (default), the Primary server does not tell the client that the transaction
has been successfully committed until the Primary receives acknowledgement that the Secondary has the
transaction. solidDB currently allows three different acknowledgement policies:

• 2-safe received. The Secondary server sends acknowledgement when it receives the data (default).

• 2-safe visible. The Secondary has updated its copy of the data, and the change is now "visible". In other
words, a client application that has connected to the Secondary server will be able to see the update.

• 2-safe durable. The Secondary server acknowledges when it has made the data durable, that is, when it
has committed the data and written the data to the disk.

2-safe received is faster. 2-safe durable is safer. Note that since these acknowledgement policies apply only
when the Primary and Secondary server are both active (i.e. both are applying the transactions), even 2-safe
received is considered safe. You risk losing transactions only if both servers fail practically simultaneously
(within a second of each other).

20

2.3.1 Adaptive Durability

Using 2-safe received reduces latency, i.e. the amount of time between the start of the commit and the time
that the user receives confirmation of the commit. The 2SafeAckPolicy has little impact on overall
throughput.

For more details about the 2SafeAckPolicy parameter, see Appendix A, Configuration Parameters.

Internal Parallelism

When you use the HotStandby (HSB) feature, every transaction that contains a write operation is executed
twice — once on the Primary, and once on the Secondary. In some situations, this may mean that a single
transaction takes approximately twice as long with HSB as without HSB. However, this does not mean that
overall throughput will decrease 50%. The servers have a high degree of parallelism, and while the Secondary
is working on one transaction, the Primary will work on another transaction.

To ensure that your system takes advantage of parallelism, we suggest that you spread your transactions across
several connections rather than submitting all transactions through the same connection. Note, however, that
the more queries you run in parallel, the more memory the server needs, so adding connections and running
queries in parallel does not always increase throughput, especially in systems that do not have a large amount
of memory. You may need to experiment to find the optimal number of queries to run at a time.

Performing Read-Only Transactions on the Secondary

Clients are allowed to connect to the Secondary and perform read-only operations.

In some situations, you can "spread the load" and improve your system's overall performance by having read-
only clients connect to the Secondary and perform their reads there. This is particularly useful for work such
as report-generation or "data warehousing" queries, where you want to read a lot of records and don't want
to change any of them.

Other Performance Factors

Not surprisingly, actual throughput and response times depend on many factors, including (but not limited
to) the speed of the network, the amount of other traffic on the network, the complexity of the SQL statements,
and the number of SQL statements per transaction. The usual factors, such as amount of memory and disk
speed, also affect performance, of course.

Other Safety Factors

The hot standby approach is designed to protect you against the failure of a single part of your system. However,
it won't protect you if both servers can be affected by the same problem, such as a power failure. If you set
the DurabilityLevel to "relaxed" or "adaptive", and if your acknowledgement policy is 2-safe received,
then you may lose transactions if both servers go down nearly simultaneously. At the very least, each server
should be connected to an Uninterruptible Power Supply (UPS) to protect against power failure. Furthermore,

21

2.3.1 Adaptive Durability

as with any database system, important data should be backed up and probably should be archived at a separate
site. HotStandby is not a substitute for backing up your data. Note that you can run the backup (using ADMIN
COMMAND "backup" command) on either of the servers of the HSB pair. Often it is the secondary server
that has more resources available for creating the backup.

Summary

If you have read-only queries, for example queries that generate summary reports, you may want to run those
on the Secondary to spread the workload over both machines.

Unless you need the highest possible level of safety, you can increase performance by doing the following:

• Use adaptive logging (set DurabilityLevel=2)

• Use "2-safe received" mode (set 2SafeAckPolicy=1).

Note that even if you use the "less safe" settings specified here (AdaptiveDurability and 2-safe received mode),
you are still protected by HSB unless there are at least 2 failures. You sacrifice very little safety for much
higher performance. solidDB HotStandby gives you high performance and safety at the same time.

2.4 HotStandby Configuration
A HotStandby configuration allows for a Primary server, Secondary server, and watchdog to reside in different
machines and use different operating systems and APIs as shown in the example in Figure 2.7, “Heterogeneous
HotStandby Configuration with Watchdog”. For details on implementing heterogeneous configurations, read
Section 2.5.1, “HotStandby Configuration and System Design Issues”.

All communication between the Primary and Secondary database (including putting a failed system back in
service and re-synchronizing Primary and Secondary databases) occurs within existing communication layers,
such as TCP/IP. HotStandby requires no auxiliary storage or transfer methods, such as shared disks or ftp
transfers.

2.5 Implementing the CarrierGrade Option
This section describes how to configure a system to use the HotStandby functionality provided by the Carri-
erGrade option. This system also discusses some important design issues.

2.5.1 HotStandby Configuration and System Design Issues

How you configure HotStandby (locally or remotely, at one or more different locations, over the Internet, and
with a watchdog program) can affect the reliability and efficiency of your system. This section addresses
these issues.

22

2.4 HotStandby Configuration

The illustration below shows one example of a heterogeneous system, in which the Primary and Secondary
servers do not even use the same type of hardware and operating system.

Figure 2.7. Heterogeneous HotStandby Configuration with Watchdog

2.5.2 Watchdog Configuration

For better efficiency and more precision in monitoring the state of the servers, a watchdog is recommended
as a separate component of any HotStandby configuration.

If only two machines are available, making it impossible to run a watchdog program in a separate machine,
run the watchdog on the same machine where the Secondary server resides and set the parameter
AutoPrimaryAlone to no in the configuration file (solid.ini) of both the Primary and Secondary
server. Note that setting this parameter to "no" is extremely important, as it prevents the potential error of
having two Primary servers.

Caution

If both servers are in a state that allows writing (PRIMARY ALONE or STANDALONE), and if the
databases of both servers are independently updated, then it will not be possible to re-synchronize the
two databases. Make sure that your watchdog does not allow both servers to be put in the PRIMARY

23

2.5.2 Watchdog Configuration

ALONE or STANDALONE state at the same time. See Section 4.3.1, “Network Partitions and Dual
Primaries”.

If the Primary server does fail, then the watchdog is able to switch the Secondary to become the new Primary.

There are some disadvantages to putting the watchdog in the same machine as the Secondary. The disadvantages
include:

• If only the communication link between the watchdog and the Primary is down, this configuration may
result in a false switchover between the Primary and the Secondary.

• The communication link becomes a "single point of failure", i.e. a single failure that may disable the entire
system. (In most HotStandby configurations, the entire system is not disabled unless there are at least 2
failures.)

• If there is a network failure and the Secondary machine cannot communicate with the Primary machine,
the users and applications are still able to access the Primary server and theoretically could continue oper-
ating with the Primary server. However, the Primary server stops accepting transactions because the
watchdog cannot notify the Primary server to continue operating, for example by switching to PRIMARY
ALONE state.

Note

In some operating systems or HA (High Availability) frameworks, a reliable "heartbeat" between two
machines provides a way of detecting if two machines are running. If you have such a system, using
the "heartbeat" is the preferred way to implement the watchdog. The heartbeat mechanism significantly
improves the reliability of the HotStandby system and watchdog operations.

24

2.5.2 Watchdog Configuration

Chapter 3. Getting Started with
HotStandby
This chapter provides step-by-step instructions for setting up two solidDB HotStandby servers (a Primary
server and a Secondary server).

This chapter assumes you have already installed solidDB with the CarrierGrade option. Be sure to follow the
installation instructions that came with the product.

3.1 Before You Begin
Before you set up the CarrierGrade option, please note the following information:

1. Read Section 4.1, “What You Should Know”. This section contains important information about using
the solidDB CarrierGrade option.

2. To learn about HotStandby features, run the demonstration contained in the solidDB package. For details,
read the section below.

3. Refer to Section 3.3, “HotStandby Setup and Configuration Procedure” for step-by-step instructions on
setting up and configuring HotStandby.

4. Get acquainted with the solidDB command line SQL editor solsql or the multipurpose graphical tool
SolidConsole.

3.2 HotStandby Demonstration
The solidDB software package that you installed includes all the files that you need to run a quick demonstration
of the HotStandby feature. This demonstration is simplified, but will increase your understanding of how to
use the feature.

Detailed instructions for the demonstration are in the file:

• samples\hsb\readme.txt

3.3 HotStandby Setup and Configuration Procedure
After you have completed the demonstration and are ready to configure a HotStandby system of your own,
please follow these instructions. This section describes how to:

25

1. Prepare to set up and configure the server

2. Start the servers and connect them as a HotStandby pair

3.3.1 Section 1: Setup and Configuration Preparations

This section prepares you for using the HotStandby configuration procedures provided in Section 2. It provides
a brief overview of the setup and configuration prerequisites for using the CarrierGrade option.

Hardware

Make sure you have the appropriate hardware to support your HotStandby physical configuration. For example,
if you want to use the CarrierGrade (HotStandby) option, at minimum, you will need two computers, one for
the Primary server and one for the Secondary server. You may need a third computer for the watchdog software,
if you choose to use a watchdog to monitor the Primary and Secondary servers.

3.3.2 Section 2: Step-by-Step Procedure

This section provides initial set up and configuration instructions. solidDB CarrierGrade (HotStandby) option
requires that you initially configure one solidDB server to run as a Primary and another solidDB server to run
as a Secondary.

To set up your HotStandby servers (without any other solidDB options), follow the steps below.

Important

When executing ADMIN COMMANDs in the instructions below, make sure that you use single
quotes when single quotes are shown. Double quotes and single quotes are not interchangeable.

1. Configure the Primary and Secondary nodes

At minimum, HotStandby requires that you configure the following parameters in the [HotStandby]
section of the solid.ini configuration file:

• HSBEnabled

• Connect

If you omit the HSBEnabled parameter in a server that you intend for HotStandby, then the server will
be a non-HotStandby server when it is started. If you omit the Connect parameter, then the server will
start as a HotStandby server, but you will have to provide the connection string via an ADMIN COM-
MAND before the servers can connect.

26

3.3.1 Section 1: Setup and Configuration Preparations

The transaction logging of the HotStandby servers for local recovery purposes may be either enabled or
disabled. If the logging is disabled, the primary server keeps the necessary part of the transaction log
information in memory for replication. Disabling the transaction logging improves performance of write
transactions but reduces the degree of data safety. By default, transaction logging is enabled. You can
disable it by setting the following in your solid.ini configuration file:

[Logging]
LogEnabled=no

For more details about these parameters, read Section 6.2.1, “Defining Primary and Secondary HotStandby
Configuration”.

If you are using the TCP/IP protocol, you may want to adjust the timeout interval between your applica-
tions and the HotStandby servers. For details, read Section 6.1.2, “Defining Timeouts Between Applica-
tions and Servers (Com Section)”.

Optionally, you may change the default settings for HotStandby-specific configuration parameter options.
For details on these parameters read, Section 6.2, “Configuring HotStandby-Specific Parameters”.

2. Configure the watchdog application (optional)

The CarrierGrade option includes a sample watchdog application for monitoring Primary and Secondary
servers. You can create a custom watchdog program based on the simple sample that solidDB provides.

If you are using the watchdog application, you need to provide configuration settings for the watchdog.
For details, read Section 6.4, “Configuring Parameters for a Watchdog”.

3. Start the server that will become the Primary

Start the server the way you would start any solidDB server. The server will read the HotStandby config-
uration information from the solid.ini file.

4. Switch the state of the database server to "PRIMARY ALONE"

After the Primary database server is started, switch the Primary server's state to PRIMARY ALONE (if
the state is not already PRIMARY ALONE) by issuing the following command:

ADMIN COMMAND 'hotstandby set primary alone';

NOTE: In admin commands, you may use the abbreviation "hsb" in place of "hotstandby", for example:

ADMIN COMMAND 'hsb set primary alone';

27

3.3.2 Section 2: Step-by-Step Procedure

NOTE: In SolidConsole, you can execute any of the above commands by direct manipulation of the GUI
interface (in the Administration/HSB pane).

5. Copy the Primary database to the Secondary node

a. Start the Secondary server with the command-line parameter -x backupserver.

b. Issue the following command on the Primary:

ADMIN COMMAND 'hotstandby netcopy';

c. To verify that the netcopy was completed, issue the following command on the Primary:

ADMIN COMMAND 'hotstandby status copy';

Note that you use the keyword "copy" even though you did a "netcopy" operation.

For more details about copying a database from the Primary to the Secondary, refer to the instructions
in Section 4.8.9, “Copying a Database File from Primary Server to a Specified Directory”.

6. Connect the Primary server to the Secondary server

7. At this point, the Secondary server should be up and running.

To tell the Primary server to connect to the Secondary server, issue the following command to the Primary
server:

ADMIN COMMAND 'hotstandby connect';

To verify that the connection was successful, type the following command:

ADMIN COMMAND 'hotstandby state';

The Primary server should respond that its state is "PRIMARY ACTIVE".

8. Start using the applications and the watchdog

This completes the set up and configuration instructions.

28

3.3.2 Section 2: Step-by-Step Procedure

Chapter 4. Administering the
CarrierGrade Option
This chapter describes how to maintain your CarrierGrade (HotStandby) installation. The administration
topics included in this chapter are:

• Overview of HotStandby administration operations

• Performing HotStandby recovery and maintenance

• Shutting off HotStandby operations

• Synchronizing Primary and Secondary servers

• Connecting HotStandby servers

• Checking HotStandby status

• Verifying HotStandby server states

• Using HotStandby with applications

• Special Configurations: Higher Safety vs. Lower Cost

4.1 What You Should Know
This section describes what you need to know about HotStandby before you begin administration and main-
tenance.

4.1.1 HotStandby and the solidDB Configuration File

To enable HotStandby functionality, you must provide a special [HotStandby] section in the solidDB
configuration file (solid.ini), and your license file must allow use of the solidDB CarrierGrade (Hot-
Standby) option.

The minimum configuration information required in the [HotStandby] section is:

• Set HSBEnabled to "yes".

29

• Set the Connect parameter setting for the server. This setting defines the network name used to connect
to the other server (either Primary or Secondary). If you do not set this parameter in the solid.ini file,
then the server will not start up as a HotStandby server. Note that after the server has started, you may set
or change this parameter by using an ADMIN COMMAND.

For example, on your Primary server, your solid.ini file might look similar to the following:

[Com]
Listen="tcp 1301"
[HotStandby]
HSBEnabled=yes
Connect="tcp 188.177.166.12 1302"
[Logging]
LogEnabled=yes
[... other sections]

And your Secondary's solid.ini file might look like:

[Com]
Listen="tcp 1302"
[HotStandby]
HSBEnabled=yes
Connect="tcp 188.177.166.11 1301"
[Logging]
LogEnabled=yes
[... other sections]

Note that each server's "connect" string must match with the other server's "Listen" string.

Remember that the parameters in the solid.ini file are checked only when the server starts. If you want
to change the setting(s) of a running server, you may use ADMIN COMMANDs to do that. Refer to Ap-
pendix A, Configuration Parameters, for more details on parameter manipulation.

Read Chapter 6, Configuring HotStandby, for details on the Connect parameter and other parameter settings.
Refer to Chapter 3, Getting Started with HotStandby, if you are setting up the solidDB CarrierGrade option
for the first time.

4.1.2 HotStandby and Access Rights

Administrators require no special access rights to run HotStandby. Normal access rights apply in both the
Primary and Secondary servers. For administration purposes, SYS_ADMIN_ROLE or SYS_CONSOLE_ROLE

30

4.1.2 HotStandby and Access Rights

are required to execute the HotStandby administrative commands. These commands are executed with the
solidDB SQL command:

ADMIN COMMAND 'hotstandby command_string';

For example, if you use solidDB SQL Editor (teletype):

ADMIN COMMAND 'hotstandby status connect';

When the HotStandby command is entered using solidDB Remote Control (teletype), enter the hotstandby
command string only (without the quotes), for example:

hotstandby status connect

4.1.3 solidDB Tools and the CarrierGrade Option

All tools available for performing administration with solidDB apply also to the CarrierGrade option. You
can issue HotStandby-specific administrative commands in solidDB SQL Editor solsql (or solidDB Remote
Control solcon). In addition, solidDB Speedloader (SOLLOAD), solidDB Export (SOLEXP), and solidDB
Data Dictionary (SOLDD) can be used with the CarrierGrade option. Also, SolidConsole offers various pos-
sibilities to monitor and manage an HSB configuration. For a description of these tools, read "Using solidDB
Data Management Tools" in solidDB Administration Guide.

4.1.4 Database Migration (disk-based servers only)

solidDB 4.x databases, FlowEngine 3.x databases and solidDB Embedded Engine 3.5x databases can be
converted to the latest solidDB format by using one of the following command-line parameters:

-xconvert (to convert the database file to the new structure and shut down the server), or

-xautoconvert (to convert the database file and continue running)

All required system tables, including those for the HotStandby functionality, are created. After the conversion,
the converted databases can no longer be used with the older product versions. Therefore, you are urged to
back up your databases and files before migrating to the new release.

Note

When solidDB databases are no longer in use by HotStandby, they remain compatible with solidDB.

31

4.1.3 solidDB Tools and the CarrierGrade Option

4.1.5 Interoperability

The Primary and Secondary should be of HSB-compatible versions. Typically, adjacent versions are HSB-
compatible. See the Release Notes for information on HSB-compatibility with previous versions.

4.2 Limitations with HotStandby

4.2.1 In-Memory Tables

If you are connected to the Secondary and you are reading data from in-memory tables, the transaction isolation
level is automatically set to READ COMMITTED, even if you specified REPEATABLE READ. (In-memory
tables do not support SERIALIZABLE on either the Primary or the Secondary.)

4.3 Warnings
To use HotStandby safely, you need to avoid "dual primaries" and you need to avoid running out of transaction
log space. Both these issues are explained below.

4.3.1 Network Partitions and Dual Primaries

In some circumstances, it is possible to have both servers acting in PRIMARY ALONE state. This is a serious,
unrecoverable error because if each server commits any transactions that the other does not, then you cannot
re-synchronize the servers because there is no way to "merge" the databases to create a single database that
has correct information. In practice, the transactions committed in the "wrong primary" database during the
dual primary situation, will be lost. Having dual primaries can also lead to other errors.

This paragraph describes one way that you can accidentally wind up with two Primary servers. Suppose that
you start with a Primary and a Secondary that are operating properly. Suppose that the network fails, and
suddenly neither server is able to communicate with the other. You are the System Administrator, and you
think that the Secondary server has failed, so you switch the Primary server to PRIMARY ALONE state.
Meanwhile, your assistant, who is monitoring the Secondary server, thinks that the Primary server has failed,
and therefore switches the original Secondary into PRIMARY ALONE state. Your system now has two
servers running in PRIMARY ALONE state. Suppose further that at least one client that was connected to
the original Primary has lost contact with the original Primary and now tries to connect to the original Secondary
(which is now also in PRIMARY ALONE state). If that client performs a transaction on the original Secondary,
and another client performs a transaction on the original Primary, then neither server's data is a superset of
the other, and neither server can be said to have the "correct" version of the data. Furthermore, there is no
way to "merge" the two servers" data to get a set of data that is guaranteed to be consistent.

32

4.1.5 Interoperability

We refer to this as the "dual primaries" problem. It is most likely to be caused by a "network partition" — i.e.
a situation in which some but not all network connections are lost and your single network effectively becomes
divided into separate sub-pieces, each of which allows communication within the piece but not with other
pieces. Thus both servers lose connections with each other, but are still up and running, and in some cases
may still be able to communicate with some clients.

The dual primary situation is uncommon. Even if you do wind up with dual primaries, you won't actually
have inconsistent data unless someone is able to perform a write operation on the original Secondary (after
it has switched to PRIMARY ALONE). If the original Secondary is completely cut off from the rest of the
network, then no one can write to it, and the original Primary will be a superset of the Secondary, and you
will still be able to get a single consistent set of data (after you reconnect the servers and allow the Secondary
to catch up with the changes made on the original Primary).

Although dual primaries are rare, they are extremely dangerous when they do occur, and you must use extreme
caution to prevent your data from becoming inconsistent.

The possibility of dual primaries is higher when you have multiple watchdogs (or human administrators),
each of which also is not in contact with the "other" watchdog.

The chances of dual primaries are also higher if you have set the configuration parameter AutoPrimary-
Alone=Yes in the solid.ini files of one or both servers. Using AutoPrimaryAlone=Yes means
that your system may respond more quickly to failures, and does not need to rely on a watchdog, but it also
means that the system no longer has any independent observer (watchdog or human) to prevent dual primaries.

4.3.2 Running Out of Space for Transaction Logs

When you use HotStandby, if you put a server in PRIMARY ALONE state, you must be careful that it doesn't
run out of disk space for transaction logs.

In a non-HotStandby server, if you checkpoint frequently, then the transaction log doesn't grow very large
because after each checkpoint the server deletes the "old" transaction log(s) — i.e. the logs with the data
changes that occurred before the checkpoint. (For more information about checkpointing, see solidDB Admin-
istration Guide.)

However, in a HotStandby server that is operating in PRIMARY ALONE state, the server must keep the
transaction logs that have accumulated since the time that the Primary lost contact with the Secondary. If the
Secondary is down for a long time, the server may keep a large amount of transaction log data that it would
otherwise throw away after each checkpoint. In a worst-case situation, if the Secondary cannot be brought
back up in a reasonable time and there is not enough disk space to store all the transactions that occur, then
the Primary's transaction logs may fill up all of the available disk space. This will cause the server to switch
to read-only mode.

33

4.3.2 Running Out of Space for Transaction Logs

You can prevent this from happening by setting the appropriate value of the parameter MaxLogSize in the
[HotStandby] section. After reaching the specified total log size, the server will automatically switch to
the STANDALONE state, at the next checkpoint. (In a diskless server, the state will remain PRIMARY
ALONE, though, as there is no disk writing at all)

If the server is set to the STANDALONE state, it will not keep all transactions logs since the time that the
Primary lost contact with the Secondary. Without complete transaction logs, of course, you cannot synchronize
your system merely by connecting the Primary to the Secondary and allowing the Secondary to "catch up"
by reading old logs. You will have to copy the entire database from the Primary to the Secondary by using
the "copy" or "netcopy" command. These commands are described later.

4.4 Overview of Administration Tasks
This chapter describes administration tasks you may need to perform when using HotStandby. Topics included
in this section are:

Table 4.1. Administration Tasks

PageDescriptionTopic

Section 4.5, “Performing Hot-
Standby Recovery and Maintenance”

Describes HotStandby tasks in the
case of a system failure (resulting

Performing HotStandby Recovery
and Maintenance Tasks

from either a broken communica-
tion link or an inoperable hot-
standby server). These tasks in-
clude:

• Switching server states

• Shutting off HotStandby opera-
tions

• Synchronizing Primary and
Secondary servers

• Connecting HotStandby servers

Section 4.8.5, “Copying a Primary
Database to a Secondary Over the
Network”

Describes how to create a remote
(network) copy of a database when
the remote server is a new addition

Copying a Primary database to a
new Secondary over the network.

to the HotStandby configuration
(i.e. is a new Secondary), or the re-

34

4.4 Overview of Administration Tasks

PageDescriptionTopic

mote server's data becomes corrup-
ted and must be replaced.

Section 4.10, “Checking HotStandby
Status”

Describes how to check Hot-
Standby status information for the
Primary and Secondary servers.

Checking HotStandby Status

Section 4.11, “Verifying HotStandby
Server States”

Describes how to check the state
(Primary, Secondary, or standalone)
of a HotStandby server.

Verifying HotStandby Server States

Section 4.13, “Changing a Hot-
Standby Server to a Non-HotStandby
Server”

Describes how to set a server con-
figured for HotStandby to a normal,
non-HotStandby server.

Changing a HotStandby Server to
a non-HotStandby Server

4.5 Performing HotStandby Recovery and Maintenance
In case of a system failure or the need for server maintenance, you may be required to perform some or all of
the following operations:

• Switch the server state. This includes setting the Primary server to PRIMARY ALONE state, which con-
tinues accumulating transactions in the transaction log so that they can be sent to the Secondary later, or

Shut down HotStandby.

• Synchronize the servers to be sure the Primary and Secondary databases are identical.

• Connect the Primary server to the Secondary server if the communication link is broken for some reason.

These topics are described in following sections. For details on re-connecting applications to Secondary or
Primary databases, read Section 5.3.1, “Reconnecting to Primary Servers from Applications”.

4.6 Switching Server States
The CarrierGrade option requires that a user or an external application switch the server state when necessary.
You can set up a watchdog program (an external monitoring program) to provide state switches in case of a
Primary database failure.

4.6.1 Switchover and Failover

By switchover we mean reversing the roles of the Primary and Secondary when they are running. This may
be needed for various maintenance purposes.

35

4.5 Performing HotStandby Recovery and Maintenance

On the other hand, failover is an action of taking up the role of the Primary, by the Secondary, if Primary
fails.

4.6.2 Performing Switchovers

A watchdog program may reverse the roles of the servers by issuing the following command at the Secondary:

ADMIN COMMAND 'hotstandby switch primary';

or, at the Primary:

ADMIN COMMAND 'hotstandby switch secondary';

This command can be used whether or not the two servers are connected. If the servers are connected, the
states are simply reversed; the old Secondary becomes the new Primary, and the old Primary becomes the
new Secondary. If the servers are not connected, the old Secondary becomes the new Primary, and the other
server's state is unchanged.

The diagram below shows what happens if you issue the command "switch secondary" or "switch primary"
when the servers are connected. Note that the command "switch primary" is only issued on a server that is in
a SECONDARY state (e.g. SECONDARY ACTIVE), while the command "switch secondary" is only used
on a server that is in a PRIMARY state (e.g. PRIMARY ACTIVE).

Figure 4.1. State Switch

When executing the command hotstandby switch primary to switch the Secondary server (Srvr2) to Primary,
if the Secondary server (Srvr2) is not connected to the other server (Srvr1), then an error is returned.

If the two servers are connected, they switch states. In other words, the old Primary (Srvr1) becomes the new
Secondary and old Secondary (Srvr2) becomes the new Primary.

36

4.6.2 Performing Switchovers

If the old Secondary (Srvr2) cannot connect to the other server (Srvr1), then both servers switch to SECOND-
ARY ALONE. (Note that even if the AutoPrimaryAlone configuration parameter (described later) is set
to yes, the new Primary will switch to SECONDARY ALONE, not PRIMARY ALONE.)

When the hotstandby switch primary command is executed, it starts a process to switch the state. If the switch
process started successfully, the following message is displayed:

Started the process of switching the role to primary

During the switch, all active write transactions are aborted. You can monitor the status of the switch using
the command hotstandby status switch. For details, read Section 4.6.4, “Verifying the Switch”.

4.6.2.1 Switching Primary to Secondary

You can switch a Primary server to a SECONDARY state by issuing the command:

ADMIN COMMAND 'hotstandby switch secondary';

This is particularly useful if two servers have switched states and you want to switch them back to their ori-
ginal states. For example, continuing the example above, when the new Secondary comes back in service,
you can then switch its state back to Primary and switch the new Primary back to Secondary.

When executing hotstandby switch secondary, if the servers are not already connected to each other, then the
old Primary tries to connect to the old Secondary.

If the two servers are connected, they switch states. In other words, the old Primary becomes the new Secondary
and the old Secondary becomes the new Primary.

When the hotstandby switch secondary command is executed, it starts a process to switch the state. If the
switch process started successfully, the following message is displayed:

Started the process of switching the role to secondary

You can check the switch status of any HotStandby server to verify if a switch was performed successfully.
For details, read Section 4.10.1, “Displaying Switch Status Information”.

4.6.3 Important Notes on Switching Servers

• If you issue a COMMIT after a SWITCH command, the COMMIT fails with an error:

37

4.6.3 Important Notes on Switching Servers

'replicated transaction is aborted'.

All transactions are terminated during the switch. Note, however, that ADMIN COMMANDs (adminis-
trative commands), such as the "HSB switch" command, are not transactional commands and cannot be
rolled back. (NOTE: Administrative commands do force the start of a new transaction if one is not already
open, however. To avoid leaving an open transaction, or having a transaction's start time be different than
you expected, you may want to execute COMMIT WORK after administrative commands.)

In the event of a configuration error that causes both servers to have the state of PRIMARY (e.g. both are
PRIMARY ALONE), you can use the command hotstandby switch secondary to switch one of the servers
back to a SECONDARY state. If the servers have the same data, then normal operations on both servers
are resumed. However, if the servers do not have the same data, then the Primary server rejects the connect
operation from the Secondary and issues the following message:

14525: HotStandby databases are not properly synchronized.

HotStandby replication is not started. In this case, a full copy of the Primary database is required at the
Secondary server. You will first need to decide which database is correct. Note that if a 14525 error occurs,
the database states do not change; both servers remain in the same state they were in before the command
was issued.

• It is recommended that you use a watchdog to alert you of a Primary node failure. The watchdog can also
switch server states in case of a Primary failure. Read Chapter Chapter 7, Monitoring HotStandby Server
Pairs with a Watchdog Application for details on using a watchdog for monitoring and switching server
states.

• Client applications can continue their operations with the new Primary or Secondary (read-only) after
they have reconnected to the new server(s). The application should be written to connect to a new Primary
in the event of a database failure. For details, read Section 5.3.1, “Reconnecting to Primary Servers from
Applications”.

4.6.4 Verifying the Switch

You can check the status of the switch process at the Primary or Secondary with the following command:

ADMIN COMMAND 'hotstandby status switch';

38

4.6.4 Verifying the Switch

The command displays a status message that tells you if the switch has never occurred between the two
servers, is successful, still in progress, or if the switch has failed. Refer to Appendix B, Error Codes, for the
meaning of error messages.

4.6.5 Performing Failovers

A failover is performed by executing, at the Secondary, the command:

ADMIN COMMAND 'hotstandby set primary alone';

The server gains the new state once all the pending transactions received before, from the Primary, are pro-
cessed. This will guarantee that no transactions are lost, and the database state reflects the state at the Primary
just before the failure. However, if the safeness level used is 1-safe, some transactions may be lost in failover.

4.6.6 Running the New Primary in PRIMARY ALONE State

Although the connection to the Secondary server is broken, this state lets you run a Primary server with con-
tinuous updates to the transaction log. After the Secondary server comes back up, the server in PRIMARY
ALONE state can resume sending transactions to the Secondary server.

There are three ways to set a server to PRIMARY ALONE state:

• By issuing the following command:

ADMIN COMMAND 'hotstandby set primary alone';

or

• By doing a controlled disconnect:

ADMIN COMMAND 'hotstandby disconnect';

at either the Primary or the Secondary. Note that if you do a controlled shutdown by executing

ADMIN COMMAND 'shutdown';

on the Secondary, then the Secondary will implicitly disconnect before shutting down, and the Primary
will safely switch to the PRIMARY ALONE state.

• By setting the configuration parameter AutoPrimaryAlone in the [HotStandby] section of the
configuration file (solid.ini) to "yes", to default to the PRIMARY ALONE state.

39

4.6.5 Performing Failovers

If the PRIMARY ALONE state is the default, then the server is automatically put in PRIMARY ALONE
state when the connection to the Secondary is broken. Otherwise, after a server fails, the server's state re-
mains PRIMARY UNCERTAIN unless the command ADMIN COMMAND 'hotstandby set primary
alone' is issued by the administrator or the watchdog program. By default, the AutoPrimaryAlone
parameter in the [HotStandby] section of the solid.ini file is set to "no", which specifies that the
Primary server operating in its PRIMARY ACTIVE state is switched to PRIMARY UNCERTAIN auto-
matically if the Secondary server fails.

The PRIMARY ALONE state persists until one of the following occurs:

• A connection is successfully made to the Secondary server.

• The server runs out of space for the transaction log.

• The log size limit (MaxLogSize) is reached.

• Another command switches the server to another state, such as STANDALONE.

• The Primary server is shut down.

Caution

One should be careful not to perform shutdown of the Primary simultaneously with commanding
Secondary to the PRIMARY ALONE state. The two operations are conflicting and may result in the
Secondary gaining the SECONDARY ALONE state, instead. The coincidence hardly will happen in
a real operation. However, one may be tempted to simulate the Primary failure with a shutdown, while
testing the system. This should not be done, as shutdown is no substitute for failure. It is a complex
distributed operation involving both Primary and Secondary. Another reason for not doing that is that
a Primary server, after being shut down, and consequently started up as a new Secondary, will not be
able to catchup with the new Primary. If there is a real need to shutdown Primary, the correct sequence
is: (1) perform the switchover, and (2) shutdown the new Secondary. The new Primary will automat-
ically switch to the PRIMARY ALONE state.

4.6.7 Bringing the Secondary Server Back Online

To bring the Secondary server back online, connect the Primary with the Secondary server. For details, read
Section 4.9, “Connecting HotStandby Servers”.

Once you bring a Secondary node online, it may require catchup. Changes in the Primary have accumulated
over a period of time. While the Primary was set to PRIMARY ALONE state, the Primary wrote transactions
and data to the transaction log.

40

4.6.7 Bringing the Secondary Server Back Online

When the Secondary is connected again to the Primary, the Primary's pending changes are written from the
transaction log to the Secondary server for synchronization. While the changes are written to the Secondary,
the Secondary is in SECONDARY ALONE state and the Primary is in PRIMARY ALONE state. (If you issue
the command ADMIN COMMAND "hsb status connect', you will get a message telling you whether the
servers are performing catchup.) After the Secondary has successfully finished processing these pending
changes, the Primary and Secondary servers" states are automatically changed to PRIMARY ACTIVE and
SECONDARY ACTIVE, respectively.

Note

If the Primary server was set to the STANDALONE state using the command hotstandby set stan-
dalone, the full database must be copied from the Primary to the Secondary before the Secondary can
be put in SECONDARY ACTIVE state. Read Section 4.8, “Synchronizing Primary and Secondary
Servers”.

4.7 Shutting Off HotStandby Operations
You may occasionally need to temporarily shut off HotStandby operations in the Primary server — for example,
if you are taking the Secondary server out of service to upgrade it and the Primary does not have enough disk
space to store the transaction logs that will accumulate while the Secondary is out of service. (See Section 4.3.2,
“Running Out of Space for Transaction Logs” for more details.)

To shut off HotStandby at the Primary server, you must disconnect the servers (if they are currently connected)
and then set the Primary server to STANDALONE state, using the following sequence of commands.

ADMIN COMMAND 'hotstandby disconnect'; -- if servers are connected

ADMIN COMMAND 'hotstandby set standalone';

This allows the Primary server to continue operating as though it were a non-HotStandby server.

Note

Once you have stopped storing transaction logs to send to the Secondary, you can no longer have the
Primary and Secondary servers catch up merely by connecting them again. Instead, you will need to
manually synchronize the servers when you resume HotStandby operations. For details, read the fol-
lowing section.

If you want to permanently stop using this server as a HotStandby server, then see Section 4.13, “Changing
a HotStandby Server to a Non-HotStandby Server”.

41

4.7 Shutting Off HotStandby Operations

4.8 Synchronizing Primary and Secondary Servers
In order for the servers to start HSB replication, the servers' databases must be identical. In other words, the
secondary database must be an exact copy of the primary database. The process of making the databases of
a HotStandby system identical is called HotStandby synchronization.

Situations where the Primary and Secondary need to be synchronized include:

• the Secondary is new and does not yet have a copy of the Primary's database to start with.

• the Secondary was not running for awhile and its copy of the data is not up-to-date.

• both the "Primary" and the "Secondary" were running in Primary Alone state at the same time, and thus
have conflicting data.

• the Secondary's disk drive crashed, or the file was corrupted and must be replaced.

There are two main ways of synchronizing the data on the servers: "full copy" and "catchup".

4.8.1 Catchup

Catchup can be used if and only if the Primary server has stored a copy of all of the transactions that the
Secondary server "missed" while the servers were disconnected. If the Primary has stored all those transactions,
then when it is reconnected to the Secondary, it will automatically forward those transactions to the Secondary
so that the Secondary can "catch up" to the Primary.

A solidDB server stores transactions (to forward to the Secondary) only while it is in the PRIMARY ALONE
state, not while it is in the STANDALONE state or is operating as a non-HotStandby server. Therefore, if the
server has been in STANDALONE state or has been operating as a non-HotStandby server since it last was
connected with the Secondary, then it does not have all the transactions and cannot do catchup. Instead, you
will have to do a full copy (described later).

There is no explicit "catchup" command. The servers will automatically try to catch up when you connect
them using

ADMIN COMMAND 'hotstandby connect';

When the Primary and Secondary are connected, they automatically check to see whether the Primary server
has data in its transaction logs to send to the Secondary. If the data is there, the servers automatically attempt
to catch up.

42

4.8 Synchronizing Primary and Secondary Servers

During the catchup process, the Primary and Secondary servers stay in PRIMARY ALONE and SECONDARY
ALONE states. Clients may continue to submit queries and commit transactions. The catchup process is
transparent to the client applications.

If the servers recognize that the Primary and Secondary databases are not identical even after copying trans-
actions from the Primary to the Secondary, you will get an error message.

If catchup fails (or if you know ahead of time that it will not work because the Primary server was in STAN-
DALONE state, for example), then you will need to do a full copy.

Catchup applies only when the Secondary has already been running in SECONDARY ACTIVE state at some
point. If you have a brand new Secondary server, then even if the Primary was running in PRIMARY ALONE
state and has stored all transactions since the time that the Primary itself started, you will need to do a full
copy to give the Secondary its initial copy of the database.

There is additional information about the catchup process in Section 4.6.7, “Bringing the Secondary Server
Back Online”.

4.8.2 Full Copy

A full copy is just what its name implies: copying all the data from the Primary to the Secondary. This is done
by copying the database file(s) themselves.

Full copy is used in the following situations:

• The Secondary server is brand new and is getting its initial copy of the Primary's database.

• The Primary server has written transactions when it was not in the PRIMARY ALONE state, and therefore
catchup is not possible.

• The Secondary's database is corrupted or missing.

• The Secondary is diskless and has experienced a failure. When a Secondary diskless server is started after
a failure, the diskless server requires a complete copy of the database using the hotstandby netcopy
command. Unlike a disk-based Secondary, the Secondary diskless server cannot read the transaction log
and apply the changes that occurred while it was inoperable.

• The Primary server has all of the data needed for catchup, but catchup is expected to take longer than
simply copying the current data files.

43

4.8.2 Full Copy

Caution

If the Secondary server has old database files, a full copy will write over those old files. If for any
reason the files on the Secondary contain data that was not in the Primary (for example, if both servers
were operating in PRIMARY ALONE state at the same time), then that data will be lost.

There are two HotStandby commands that can do a full copy - i.e. that copy the database file(s) from the
Primary to the Secondary. You may use either of the following:

ADMIN COMMAND 'hotstandby netcopy';
ADMIN COMMAND 'hotstandby copy [<directory_name>]';

The netcopy operation copies the database over the network to a Secondary server that is running and can
receive the file(s) over the network. The copy operation copies the database files to a specified disk drive
directory that is visible to the Primary server. The secondary server must not be running during the copy op-
eration. The netcopy command is usually preferable to the copy command, so most of our examples will
show only netcopy, not "copy".

The copy and netcopy commands are described in Section 4.8.9, “Copying a Database File from Primary
Server to a Specified Directory” and Section 4.8.5, “Copying a Primary Database to a Secondary Over the
Network”.

44

4.8.2 Full Copy

Figure 4.2. Manual Full Copy Procedure

45

4.8.2 Full Copy

Note

The preceding diagram over-simplifies the usage of the transaction log. In the first part of the diagram,
when the Primary and Secondary are not connected, the Primary actually continues to write data to
the transaction log, but keeps only enough data to perform recovery, not enough to allow the Secondary
to catch up with all the changes since the connection was broken.

4.8.3 Verifying the Copy

You can verify the status of the copy or netcopy operation by issuing the following command at the Primary
server:

ADMIN COMMAND 'hotstandby status copy';

Note that you use the keyword "copy" (not "netcopy") even if the operation was a netcopy.

The command displays a status message that tells you whether the copy operation was successful, is still in
progress, or has failed, indicated by an error code and error message. Refer to Appendix B, Error Codes, for
the meaning of error messages.

4.8.4 Using a Watchdog to Synchronize Servers

The commands that allow you to synchronize servers manually can also be used by a watchdog program to
synchronize servers automatically. If catchup is sufficient, then all that the watchdog needs to do is monitor
the Secondary to see when it comes up, and then execute the command to connect the Primary to the Secondary.
If full copy is required, then the watchdog can instruct the Primary server to do a netcopy (or copy) operation.
Remember that a full copy will write over any data on the Secondary.

4.8.5 Copying a Primary Database to a Secondary Over the Net-
work

The netcopy command sends a copy of the database file from the Primary server to the Secondary server. The
Secondary server must already be running. The command to perform a netcopy is:

ADMIN COMMAND 'hotstandby netcopy';

When the Primary does a netcopy, the Primary uses the connect string that is specified in the [HotStandby]
section of solid.ini.

For details on the Connect parameter, which defines the connect string, see Section 6.2.1, “Defining Primary
and Secondary HotStandby Configuration”.

46

4.8.3 Verifying the Copy

When you execute the hotstandby netcopy command, it performs a database checkpoint, before it sends a
copy of the Primary database.

To execute the command, the Primary server should be in PRIMARY ALONE state.

The Primary continues accepting transactions and connections during the netcopy (however, any ADMIN
COMMAND that changes the server state will be rejected.) The Secondary does not continue accepting
transactions and connections. When the netcopy starts, if the Secondary has any open connections or transac-
tions, it will roll back the open transactions and disconnect from its clients, then it will start receiving the
netcopy. While the Secondary receives the netcopy, the Secondary will communicate only with the Primary
server.

When the netcopy is completed successfully, the Secondary's state changes to SECONDARY ALONE (if it
wasn't already in that state).

The Primary server stays in the PRIMARY ALONE state during the netcopy operation. After the netcopy has
successfully completed, the Primary server continues to stay in the same state. Before you can resume full
hot standby operations, you must connect the Primary and Secondary servers, which will set the Primary
server to PRIMARY ACTIVE state. For information about connecting the two servers, see Section 4.9,
“Connecting HotStandby Servers”.

There are two major situations in which you use netcopy to create a copy of the database for the Secondary
server:

• When creating a database for a brand-new Secondary that has never had one before. (This method is also
used when copying a database to a diskless Secondary, since after a failure it loses its entire database and
must be treated as a brand new Secondary.)

• When replacing an existing Secondary database (e.g. one that has been corrupted)

Both of these are discussed below.

4.8.6 Creating a New Database for the Secondary Server

Normally, when you start a solidDB server, it asks you if you'd like to create a new database (if there isn"t
already a database). However, if the server is a Secondary server, it should use a copy of the Primary's database
rather than create its own database. Therefore, when you start a Secondary server that does not have an existing
database, you must give it a command-line parameter to tell it to wait to receive a copy of the database from
the Primary. The command-line parameter is -x backupserver. For example, you would start the Secondary
server with the command:

solid -x backupserver

47

4.8.6 Creating a New Database for the Secondary Server

The space between the "-x" and "backupserver" is optional. The following is equivalent:

solid -xbackupserver

The -x backupserver command line parameter tells the server to go into "netcopy listening mode" (also called
"backup listening mode"). In this mode the only possible operation for the Secondary server is to receive a
database copy from the Primary server. The Secondary will not respond to any other command, and in fact
will not even accept a connection request from a client program such as solsql, your application, or a watchdog
program.

If there exists a Secondary database, you can start the server in a normal way that will result in the server
being in the SECONDARY ALONE state.

Once the Secondary has been started with -x backupserver, or is in the SECONDARY ALONE state, you
can execute the netcopy command on the Primary.

First, make sure that the Primary is in PRIMARY ALONE state. Then issue the following command on the
Primary:

ADMIN COMMAND 'hsb netcopy';

On the Primary, the hotstandby netcopy command uses the connect string defined with the connect para-
meter in the solid.ini configuration file to connect to the Secondary server. Once connected, it copies
the database files through the network link.

In netcopy listening mode, the Secondary server only attempts to open the Secondary database after it has
received a new database copy through the hotstandby netcopy command at the Primary.

Following is the procedure to create the Secondary database copy:

1. Be sure you have configured the solid.ini file so that it is valid for the HotStandby configuration.
For details on the Connect parameter, which defines the connect string, see Section 6.2.1, “Defining
Primary and Secondary HotStandby Configuration”.

This connect string will be used to connect to the Secondary server from the Primary and to copy the
database files over the network.

2. Start the Primary server.

3. Start the Secondary server in netcopy listening mode by executing the following command:

solid -x backupserver

Or, alternatively, start the Secondary server with an existing database.

48

4.8.6 Creating a New Database for the Secondary Server

4. Set the Primary server to PRIMARY ALONE state if it isn't already in that state.

ADMIN COMMAND 'hotstandby set primary alone';

5. Issue the following command at the Primary server:

ADMIN COMMAND 'hotstandby netcopy';

6. After the netcopy has completed, you can connect the two servers and start (or resume) full hot standby
operation by issuing the command:

ADMIN COMMAND 'hotstandby connect';

When the Secondary server receives a new copy of the database through the network link, it opens the Sec-
ondary database. After the servers are connected (with the "hsb connect" command), the Secondary server
runs in its normal SECONDARY ACTIVE state and is ready to accept user transactions from the Primary.

Note

If netcopy is sent to a server that is in the SECONDARY ALONE state, the existing database is
overwritten with the copied database. This option is handy if there is a need to resynchronize databases,
or to repair a corrupted Secondary database.

4.8.7 Replacing an Existing Database on the Secondary Server

Although netcopy is used primarily to send a database to a Secondary that has never had a database before,
netcopy can be used in other situations as well. For example, if the Secondary's copy of the database has been
corrupted (due to a disk drive crash, for example), then you may send the Secondary a copy of the Primary's
database by using the netcopy command.

If you are replacing an existing database, then the Secondary server does not need to be in "netcopy listening
mode"; in other words, you do not need to start the Secondary server with -x backupserver. Simply make
sure that the Primary is in PRIMARY ALONE state and the Secondary is in SECONDARY ALONE state,
then issue the following command to the Primary:

ADMIN COMMAND 'hotstandby netcopy';

Note that after the netcopy completes, the Primary server will still be in PRIMARY ALONE state and the
Secondary server will automatically be put in SECONDARY ALONE state (if it wasn't already in that state).
The servers will not automatically connect; you will still need to issue the command:

ADMIN COMMAND 'hotstandby connect';

49

4.8.7 Replacing an Existing Database on the Secondary Server

If you do a netcopy while the Secondary is in SECONDARY ALONE state, and if any clients are connected
to the Secondary (to do read-only queries), then the Secondary server rolls back any open transactions and
breaks any client connections. Once the netcopy is completed, the Secondary server will remain in the SEC-
ONDARY ALONE state.

4.8.8 Verifying Netcopy Status

When you start a netcopy command, it runs asynchronously in the background. The servers do not display a
message when the netcopy completes. In fact, the servers do not even display a message if the netcopy fails
due to a problem such as a network error. To see whether the netcopy completed successfully, you should
always verify the status of the netcopy by using the following command at the Primary server:

ADMIN COMMAND 'hotstandby status copy';

(Note that the command uses the keyword "copy", not "netcopy". The same command is used for both the
copy and netcopy operations.)

The command displays a status message that tells you if the netcopy was successful, is still in progress, or
has failed, indicated by an error code and error message. Refer to Appendix B, Error Codes, for the meaning
of error messages.

4.8.9 Copying a Database File from Primary Server to a Specified
Directory

In some cases, the Primary and Secondary servers may be able to see some of the same disk drive(s) and
therefore can read and write some of the same directories. If the directory that the Secondary will use for the
database is visible to the Primary, then you can use the "hotstandby copy" command to copy the database
from the Primary's directory to the Secondary's directory.

To copy the file using "hotstandby copy", issue the following command at the Primary server:

ADMIN COMMAND 'hotstandby copy[directory_name]';

where:

directory_name is the name of the directory that you want to copy the file to. The format of the directory
name is operating system dependent.

The directory name is optional. If you do not specify a directory name, then the server will use the value
specified by the CopyDirectory parameter in the solid.ini configuration file.

50

4.8.8 Verifying Netcopy Status

One key difference between the hotstandby copy command and the hotstandby netcopy command is that
the netcopy command can be used only when the Secondary is running, while the copy command should be
used only when the Secondary server is NOT running. Performance-wise, there is no significant difference
between the two database copy methods.

Caution

Before using the hotstandby copy command, be sure to shut down the Secondary server. The Second-
ary server must not try to access the database file while the Primary is writing that file.

When you execute the hotstandby copy command, it creates a checkpoint to the database, and then makes a
copy of the Primary database before sending that copy to the Secondary.

After a copy operation, the Secondary is still down. You must bring it back up and then issue the "hotstandby
connect" command to connect the two servers.

The Primary server should be in PRIMARY ALONE state when you issue the command, and the Primary
server will remain in that state during (and after) the command. Since the server is in PRIMARY ALONE
state, transaction processing on the Primary continues normally during the copy command, and the Primary
will store the transactions in the transaction log so that they can be forwarded to the Secondary later. When
the Primary database is connected to the Secondary using the administrative command hotstandby connect,
the Primary and Secondary servers automatically perform "catchup" to bring the Secondary up-to-date.

4.8.9.1 Starting the Secondary Server and Catching up

When the copy is completed, you must start the Secondary server with the newly copied database. To do this,
you start the server the normal way, that is, by issuing the command "solid" at your operating system prompt:

solid

After you re-start the Secondary server, use the hotstandby connect command at the Primary server to connect
the Primary server to the Secondary server.

ADMIN COMMAND 'hotstandby connect';

The hotstandby connect command is discussed in more detail in Section 4.9, “Connecting HotStandby
Servers”.

After the Primary is connected to the Secondary, the Primary server and Secondary server automatically start
performing catchup. This means that the Primary server brings the Secondary database up-to-date by copying
the Primary's transaction log to the Secondary, and then the Secondary rolls forward the transaction log and
updates its copy of the database.

51

4.8.9 Copying a Database File from Primary Server to a Specified Direct-
ory

4.9 Connecting HotStandby Servers
If the connection between the Primary and Secondary servers is broken or not yet established, you need to
issue the following command at the Primary or Secondary node:

ADMIN COMMAND 'hotstandby connect';

For example, after performing a netcopy, you normally connect the servers.

Since there is no automatic connect mechanism in the HotStandby servers, you should have the watchdog
application perform this command when the connection between the servers is broken.

After issuing this command, a confirmation message is displayed if the connection between the Primary and
Secondary servers is successful. Note that if the Primary and Secondary are connected, but the transaction
log is not yet fully copied at the Secondary, you will receive the following message from the Primary server:

Started the process of connecting the servers

If the state of the Primary server was PRIMARY UNCERTAIN or PRIMARY ALONE when you executed
the command and if the connection is successful, then the state of the Primary server changes to PRIMARY
ACTIVE. If unsuccessful, the state remains PRIMARY UNCERTAIN or PRIMARY ALONE. If you see an
error message, refer to Appendix B, Error Codes, for the meaning of the error message.

The connect string that the Primary uses to connect to the Secondary server is specified using the Connect
parameter in the [hotstandby] section of the solid.ini configuration file. You can view current
connect settings in the Primary and Secondary nodes by issuing the command:

ADMIN COMMAND 'hotstandby cominfo';

For details on querying connect status at Primary and Secondary servers, read Section 4.10.2, “Displaying
Connect Status Information”. For details on re-connecting an application to the Primary server, read Sec-
tion 5.3.1, “Reconnecting to Primary Servers from Applications”.

4.10 Checking HotStandby Status
This section describes the HotStandby status information that you can request from both the Primary and
Secondary servers.

To check status, issue the following command in the Primary or Secondary server:

ADMIN COMMAND 'hotstandby status option';

52

4.9 Connecting HotStandby Servers

where option can be one of the following:

Table 4.2. ADMIN COMMAND 'hotstandby status' Options

DescriptionOption

Indicates whether or not the server is doing catchup. Catchup occurs after the Primary
server connects to the Secondary. During catchup, the Primary sends accumulated

catchup

transaction logs so that the Secondary can apply the changes. Possible values are:
'ACTIVE' and 'NOT ACTIVE'. For more details, see hsb status catchup in Appendix C,
Summary of HotStandby Administrative Commands.

Shows whether the last attempt to connect the servers was successful. For more details,
see hsb status connect explanation in Appendix C, Summary of HotStandby Adminis-
trative Commands.

connect

Shows whether the last attempt to copy/netcopy was successful. For more details, see
hsb status copy in Appendix C, Summary of HotStandby Administrative Commands.

copy

Shows whether the last attempt to switch the server into PRIMARY ACTIVE or SEC-
ONDARY ACTIVE state was successful. For more details, see hsb status switch in
Appendix C, Summary of HotStandby Administrative Commands.

switch

In addition, the next two sections contain more details about the status of "switch" and "connect" operations.

Example

ADMIN COMMAND 'hotstandby status catchup';

4.10.1 Displaying Switch Status Information

You may need to verify if a state switch occurred between two HotStandby servers. To check HotStandby
switch status information, issue the following command in the Primary or Secondary server:

ADMIN COMMAND 'hotstandby status switch';

• When no prior switch has occurred between the two servers, the following message is displayed: NO
SERVER SWITCH OCCURRED BEFORE

• When the switch process is still active, the following message is displayed: ACTIVE

• When the most recent prior switch process has completed successfully, the following message is displayed:
SUCCESS

53

4.10.1 Displaying Switch Status Information

• When the most recent attempt to switch has failed, the following message is displayed: ERROR number,
where number identifies the type of error that occurred during the switch. Refer to Appendix B, Error
Codes, for the meaning of the error message.

4.10.2 Displaying Connect Status Information

You can query connect status information between the Primary and Secondary servers. This capability is
equivalent to the SQL function HOTSTANDBY_CONNECTSTATUS, which you can use in the application
code.

To check connect status, issue the following command in the Primary or Secondary server:

ADMIN COMMAND 'hotstandby status connect';

where the possible return values are:

Table 4.3. Connect Status Return Values

DescriptionTextError Code

Connect active. Returned from both the Primary and Secondary
server.

CONNECTED0

Primary server connecting to the Secondary server. Returned from
both the Primary and Secondary servers.

CONNECTING14007

Primary server is connected to the Secondary server, but the
transaction log is not yet fully copied. Returned from both the
Primary and Secondary server.

CATCHUP14008

The servers are in the process of disconnecting.DISCONNECTING14010

Connection is broken. Returned from both the Primary and Sec-
ondary servers.

BROKEN14537

4.10.3 Displaying Communication Information

You can query communication information used to connect to the other servers. This is the value of the
Connect parameter setting in the [HotStandby] section of the solidDB configuration file (solid.ini).
You can use this information in the client applications to connect to other servers.

To display communication information, issue the following command in the Primary or Secondary server:

ADMIN COMMAND 'hotstandby cominfo';

54

4.10.2 Displaying Connect Status Information

4.10.4 Displaying Role Start Time

Sometimes it is important to know when the server entered the current role of Primary or Secondary. This
information may be retrieved by using two corresponding options of the ADMIN COMMAND 'info':

admin command 'info primarystarttime';
 RC TEXT
 -- ----
 0 2005-06-09 14:22:18
admin command 'info secondarystarttime';
 RC TEXT
 -- ----
 0 2005-06-09 18:24:44

The reported time is the time the role has become Primary or Secondary. The STANDALONE state is con-
sidered to be a state of the Primary role.

Specifically, the primary starttime is set when the following transitions occur:

* SECONDARY ALONE => PRIMARY ALONE

* SECONDARY ALONE => STANDALONE

* SECONDARY ACTIVE => PRIMARY ACTIVE

The secondary starttime is set when:

* The server is started in the SECONDARY ALONE state

* OFFLINE (started with -x backupserver) => SECONDARY ALONE

* PRIMARY ALONE => SECONDARY ALONE

* STANDALONE => SECONDARY ALONE

* PRIMARY ACTIVE => SECONDARY ACTIVE

If the current role contradicts the query, the query returns an empty string. For example, if the role is SEC-
ONDARY and the command 'info primarystarttime' is issued, it returns an empty string.

55

4.10.4 Displaying Role Start Time

4.11 Verifying HotStandby Server States
When administering and maintaining HotStandby, it is often necessary to check the state of HotStandby
servers. Appendix D, "Server State Transitions," provides a summary of HotStandby state transitions that
occur while performing administrative and troubleshooting operations. To check the current state of a Hot-
Standby server, issue the following HotStandby command in the server:

ADMIN COMMAND 'hotstandby state';

The command returns one of the following states:

Table 4.4. HotStandby Server States

DescriptionState

The connected server is a normal Primary server. Changes to the
Primary server are sent to the Secondary server.

PRIMARY ACTIVE

The Primary server accepts transactions and stores them in the database;
however, it is not connected to the Secondary, and it also does not store
the transactions so that they could later be sent to the Secondary.

STANDALONE

The Primary server has a broken connection to the Secondary server.
The servers have disconnected abnormally and AutoPrimaryAlone

PRIMARY UNCERTAIN

is set to "No". In the PRIMARY UNCERTAIN state, any open trans-
actions are pending, i.e. the server will not commit or roll back the
transaction until a watchdog changes the server to another state.

The Primary server is working by itself. The connection to the Second-
ary is broken, but transactions are accepted. The transactions are stored
so that they can later be sent to the Secondary.

PRIMARY ALONE

The connected server is a normal Secondary server. The server acknow-
ledges transactions that are sent from the Primary server.

SECONDARY ACTIVE

The Secondary server has a broken connection to the Primary server.
The Secondary will still accept read-only requests.

SECONDARY ALONE

Note

1. If a server's solid.ini configuration file is configured to make the server a HotStandby
server, then when the server is started the server will start in the SECONDARY ALONE state.

56

4.11 Verifying HotStandby Server States

2. Note that the OFFLINE state is not listed in the preceding table; the server cannot return the state
name "OFFLINE" because when the server is in the OFFLINE state you cannot connect to it
and issue any query (such as ADMIN COMMAND 'hotstandby state').

3. If ADMIN COMMAND 'hotstandby state' is issued on a server that is not configured for Hot-
Standby, the following error message is returned:

14527: This is a non-HotStandby Server

4.11.1 Server States Overview

Not all combinations of server states are possible. For example, the Secondary can only be in SECONDARY
ACTIVE state if the Primary is in PRIMARY ACTIVE state. The following table shows possible server states
of a HotStandby server when its associated server is in a particular state.

Table 4.5. Server States

Possible state(s) of the Associated ServerState of the Server

SECONDARY ACTIVEPRIMARY ACTIVE

PRIMARY ALONE *PRIMARY ALONE

PRIMARY UNCERTAIN

SECONDARY ALONE

STANDALONE *

PRIMARY ALONEPRIMARY UNCERTAIN

PRIMARY UNCERTAIN

SECONDARY ALONE

STANDALONE

PRIMARY ACTIVESECONDARY ACTIVE

PRIMARY ALONESECONDARY ALONE

PRIMARY UNCERTAIN

57

4.11.1 Server States Overview

Possible state(s) of the Associated ServerState of the Server

SECONDARY ALONE

STANDALONE

PRIMARY ALONE *STANDALONE

PRIMARY UNCERTAIN

SECONDARY ALONE

STANDALONE *

* If one server is in the PRIMARY ALONE state or STANDALONE state, the other server should not be in
the PRIMARY ALONE or STANDALONE state. This is because if changes are made to both servers inde-
pendently, there is no way to merge the two databases into one.

4.12 Choosing Which Server to Make Primary
In some situations, when you are trying to recover from a failure where both databases have failed, you may
not know which server should be made the Primary. The server that was the Primary before the servers lost
contact with each other is not necessarily the server that should become the Primary now.

To determine which server should become the Primary, you can use the following command on each server:

ADMIN COMMAND 'hsb logpos';

This function returns a value as a string or binary value. The server that has the "greater" value (the one which
has accepted more transactions) is the server that should become the Primary.

To use the command, follow the instructions below:

1. Both servers should be up and running and in SECONDARY ALONE state.

2. Connect to both servers.

3. In each server, execute:

ADMIN COMMAND 'hsb logpos';

Successful admin commands will return error code 0, a string, and the server's previous role. For more
information and an example on the command output, refer to Appendix C, Summary of HotStandby Ad-

58

4.12 Choosing Which Server to Make Primary

ministrative Commands, table row logpos. (Note: The application should regard the string as an opaque
value, which has no defined structure.)

4. Compare the string values. For example, in C, use the strcmp() function. The server that returned the
string that was "greater" should be chosen to be the new Primary. If the strings are equal, then either
server may be switched to Primary.

5. Select the Primary by using the command below on the server that will become Primary:

ADMIN COMMAND 'hsb set primary alone';

6. Connect the HotStandby servers with each other by using the command below:

ADMIN COMMAND 'hsb connect';

7. If the previous command succeeds, the Secondary catches up with the Primary, and the HotStandby pair
is functional again. If the command fails, you must separately synchronise the nodes by issuing the
command below on the Primary server:

ADMIN COMMAND 'hsb netcopy';

The netcopy command does not give a return value when it has finished. Instead, you must observe it
actively. This can be done with the command below: ADMIN COMMAND 'hsb status copy'; The possible
return values are ACTIVE, SUCCESS or FAILED. In the case of a failure, the reason for the failure is
also output. After the synchronisation is done, issue the command:

ADMIN COMMAND 'hsb connect';

The HotStandby pair is functional again.

Caution

This procedure does not guarantee that the server with the higher string value is a superset of the
other server. It is still possible that the two servers will each have accepted transactions that the other
did not — e.g. both servers may have been running in PRIMARY ALONE state. To detect the possib-
ility that neither server is a superset of the other, the servers compare information when executing the
"connect" command. If neither server is a superset, then the Connect command will fail and give
an appropriate error message.

59

4.12 Choosing Which Server to Make Primary

4.13 Changing a HotStandby Server to a Non-Hot-
Standby Server
You can change a Primary or Secondary server to become a normal, non-HotStandby server by editing the
[HotStandby] section of the solid.ini file. remove the HSBEnabled parameter (or set it to "no").
We recommend that you also remove or comment out the Connect parameter. After changing the parameter
settings in the solid.ini file, you must re-start the server for the changes to take effect.

If you want the server to temporarily stop acting as a HotStandby server, but you would like it to resume
acting as a HotStandby server later, then you may want to leave the solid.ini file unchanged and instead
simply change the state of the server to STANDALONE. See Section 4.7, “Shutting Off HotStandby Opera-
tions”.

4.14 Special Configurations: Lower Cost vs. Higher
Safety
solidDB's HotStandby solution uses pairs of Primary and Secondary servers to provide true hot standby cap-
ability. Using pairs of servers is not optimal for every customer, however. If near-instantaneous failover is
not required, you may not be able to justify the expense of having a Secondary for every Primary server. At
the other extreme, some customers may need extra reliability and may have the money to buy "spares for the
spares", i.e. to purchase not only a Secondary for every Primary, but also 1 or more additional spare servers
so that when a Primary goes down and its Secondary replaces it, a spare can be used as the "new Secondary"
if the original Primary cannot be repaired quickly.

To allow customers to reduce costs or increase reliability, solidDB HotStandby (HSB) supports some altern-
atives to the standard hot standby model. The standard model is sometimes called the "N+N" or "2N" model,
because the number of Primary and Secondary servers is the same ("N"). The alternatives include:

• N + 1 Spare or N + M Spares: This is the Spare Node scenario for Standalone. There are N "primary"
servers and 1 or more spares. There are no Secondary servers. A failed "primary" server is replaced with
a spare. This is not a true "hot standby" scenario and is better called "warm standby", since the computer
is available but it does not have a copy of the database.

• 2N + 1 Spare or 2N + M Spares: This is the Spare Node scenario for HotStandby. There are N HotStandby
pairs, i.e. every Primary has a Secondary. In addition, there are M spares, where M is at least 1 and usually
less than N. When a Primary or Secondary fails, a spare is brought in as the new Secondary. Thus a Primary
server never operates alone for long, even if its original partner has failed.

Below, we explain the N+M (or N+1) and the 2N+M (or 2N+1) approaches and the solidDB features that
help you implement these.

60

4.13 Changing a HotStandby Server to a Non-HotStandby Server

4.14.1 Reducing Cost: N + 1 Spare and N + M Spares Scenarios

In these scenarios, there are N "primary" servers, each of which operates in Standalone state, that is, without
being connected to a Secondary. In addition, there are M spare servers, where M is at least 1 and usually less
than N. If a "primary" server goes down, one of the spares replaces it. Data is copied from the original server
to the spare, then the original server is taken offline and the spare is configured to act as the original server.
Note that any spare can replace any Primary server (no spare is dedicated to a particular Primary server). Note
also that failover is not almost instantaneous.

We refer to this approach as the "N + 1" (single-spare) or "N + M" (multiple-spare) scenario.

Because this approach requires that you have a copy of the original server's data somewhere, this approach
will not work if the original server's disk drive is damaged and there is no backup of the data. This N+M ap-
proach is most useful in the following situations:

1. You are using the spare node(s) to handle scheduled maintenance, not unexpected failures.

2. You have reliable backups that you can quickly copy to the spare server.

a. You have backups on tape or on a RAID drive or some other safe location, or

b. You are using solidDB's SmartFlow technology, and you can copy or re-create enough of the data
by reading from the SmartFlow "master" or SmartFlow "replica(s)" of the server that failed.

3. Individual pieces of data are not critical or are not unique.

a. For example, if what you really need is the "computing horsepower" (load-spreading capability)
rather than the specific data, then you may be able to meet your needs by copying a standard or
"seed" database, or getting the data from clients, and then continuing to run.

b. Similarly, if all the servers have approximately the same data and are responding almost entirely
to "read" requests with few or no "write" requests — for example, if you are running a large number
of servers that all use the same internet routing tables, or telephone directory information — then
you can copy a useful database from any one of your computers.

4.14.2 Increasing Reliability: 2N + 1 Spare and 2N + M SpareScen-
arios

Normal solidDB HotStandby operation is highly reliable. The odds of both the Primary and Secondary failing
at nearly the same time are very low, provided that they use separate reliable power supplies. But suppose
that you want to reduce even this risk, or suppose that the server that failed cannot be repaired rapidly? Ideally,
when a Primary fails and you replace it with a Secondary (or when a Secondary fails), you'd like to have a

61

4.14.1 Reducing Cost: N + 1 Spare and N + M Spares Scenarios

"new" Secondary that replaces the "old" Secondary so that you can continue to run with a complete pair of
servers.

This situation is called the 2N + 1 Spare (or 2N + M Spares) scenario. You have N Primary servers, N Sec-
ondary servers, and at least 1 spare that will replace any Secondary that has failed or has been converted to a
Primary. Spares are not dedicated to a particular server (or HSB pair of servers), and some configuration is
required before the spare can replace the failed server.

4.14.3 How solidDB HSB Supports The N+1 (N+M) and 2N+1
(2N+M) Approaches

You must make a spare server look like the server that it is replacing. Typically, this means:

1. You must copy data to the spare.

2. You must tell the spare to "listen" at the same network address as the server that it is replacing, or at
another address that the client programs know to communicate through.

3. In addition, in the 2N+1 (2N+M) scenario, you must also tell the new Secondary server and the current
Primary server how to communicate with each other, In other words, you must tell each of them the address
to use to connect to the other.

solidDB has two features to support these needs:

• solidDB allows you to copy data to the spare server without shutting down the spare server.

• solidDB allows you to dynamically set certain configuration parameters.

These are explained in more detail below:

1. Although solidDB configuration parameters are normally set by shutting down the server, updating the
solid.ini configuration file, and then re-starting the server, it is also possible to change some config-
uration parameters (such as the "com.listen" and "hotstandby.connect" parameters) by executing ADMIN
commands similar to the following:

ADMIN COMMAND 'parameter com.listen="tcp SpareServer1 1315"';

ADMIN COMMAND 'hsb parameter connect "tcp srvr27 1316"';

This means that a spare can be dynamically configured to take the place of another server without shutting
down first. Similarly, a Primary can be told the Connect string of its new Secondary.

62

4.14.3 How solidDB HSB Supports The N+1 (N+M) and 2N+1 (2N+M)
Approaches

Caution

Executing these commands does NOT write the updated parameter values to the solid.ini
file. Thus, to ensure that the server has the new values the next time it restarts, you should also
update the solid.ini file, as well as execute the commands shown above.

Important

The spare server should be started with the -x backupserver command-line option so that it is
ready to receive the netcopy from the Primary server. For more information about the -x
backupserver option, see Section 4.8.6, “Creating a New Database for the Secondary Server”,
and also see the explanation of command-line options in solidDB Administration Guide.

2. solidDB's "netcopy" command allows you to copy a database to a server that is already up and running.

a. Set the new value of the "connect" parameter:

ADMIN COMMAND 'hsb parameter connect "tcp srvr27 1316"';

b. Execute the netcopy command:

ADMIN COMMAND 'hsb netcopy';

c. Connect the current Primary with the new Secondary by executing the command:

ADMIN COMMAND 'hsb connect';

63

4.14.3 How solidDB HSB Supports The N+1 (N+M) and 2N+1 (2N+M)
Approaches

64

Chapter 5. Using HotStandby with
Applications
This chapter explains how applications should deal with failures and switchovers in HotStandby configurations.

5.1 Two Ways to Connect to HotStandby Servers
There are two ways to program applications in HotStandby environments. In addition to the Basic Connectivity,
where the Client has to connect explicitly to each of the HSB servers, the Transparent Connectivity (TC) is
offered whereby the Client enacts only one logical connection called the TC Connection. Both connectivity
types are supported in the solidDB ODBC and JDBC drivers. The connectivity type is selected by formulating
a generalized connect string (Data Source Info) accordingly.

5.1.1 Transparent Connectivity

With this connectivity type, the application does not have to deal with connecting to any specific server, or
to reconnect in the case of a failover. The application maintains a logical connection (handle) called a TC
Connection. The connection handle is maintained over failovers and switchovers for as long as there is any
server in the PRIMARY ACTIVE, PRIMARY ALONE or STANDALONE state, within the specified set of
servers. At failovers and switchovers, the driver performs an internal operation called connection switch. The
application is notified about the connection switch, because the application must reconstruct some of the
session states (depending on the failure transparency level). With TC, read-only load can be balanced between
the Primary and the Secondary server. Briefly, the Transparent Connectivity relieves the application from
taking care of multiplicity of servers and their addresses.

Important

solidDB tools, such as the solsql, do not support the TC connection.

5.1.2 Basic Connectivity

With Basic Connectivity, the application has to take care of connecting to each server of the HotStandby
configuration separately, by using specific server addresses. If a failover happens, the active connection is
lost, and the application has to reconnect to the new Primary server.

65

5.1.3 Choosing the Connectivity Type

The following compatibility matrix helps you choosing the connectivity type by indicating the supported
feature against the selected connect info:

Table 5.1. Choosing the Connectivity Type

HSB configurationStandalone config.Feature

Yes (BC Info)Yes (BC Info)Basic Connectivity

Yes (TC Info)NoTransparent Failover

Yes (TC Info)NoLoad Balancing

The principle is that TC info can be used in all configurations. The provided functionality is the highest the
server configuration supports. On the other hand, if the goal is to use explicit Basic Connectivity, it can be
used in all configurations as well.

5.2 Using the Transparent Connectivity
When using solidDB Transparent Connectivity, the driver hides the existence of two HSB servers, to some
extent, from the application. The driver offers a single logical TC Connection that is mapped to the internal
active connection. In an ideal case, when both Primary and Secondary servers are running in the active state,
the driver also maintains the standby connection, that is, the connection to Secondary. This connection will
be set to the event wait mode, where it is ready to receive HSB state change events. Those events are the
primary source of information on failovers and switchovers that the driver will use. In some cases (such as
the Primary Alone operation), the standby connection will be missing, but the driver will try to enact it
whenever possible. The standby connection is handled totally transparently to the Client. On the other hand,
any occurrence of a connection switch, that is, changing the mapping of the TC Connection to an internal
active connection, will be notified to the Client by way of a special error code.

5.2.1 Failure Transparency in TC

Failure transparency handles the masking of failures. Three levels are available:

1. NONE, which disables failure transparency. This is the default value.

2. CONNECTION, which preserves the server connection, that is, makes it unnecessary to reconnect in
the case of failover or switchover.

66

5.1.3 Choosing the Connectivity Type

3. SESSION, which preserves most of the session attributes having non-default values. Additionally, prepared
statements are preserved. However, open cursors are closed, and on-going transactions are aborted. For
the list of preserved session attributes see Section 5.2.7, “Programming for Connection Switch”.

The failure transparency level is set with the TF_LEVEL attribute of the TC Info.

5.2.2 Load Balancing in TC

The Transparent Connectivity driver uses two methods to direct the transaction load; one to handle read in-
tensive load and the other to handle write intensive load. For the sake of load balancing, the logical TC Con-
nection is mapped to a lower level server connection called Workload Connection. The workload connection
may change over time and it is, normally, of no concern to the application. However, if this is necessary, there
is a way to find out what is the current workload connection.

Static Load Balancing Configuration

The load balancing methods are:

1. PREFERRED_ACCESS=READ_MOSTLY. This method is for handling read intensive load. The read-
only transactions can be executed at both the Secondary and Primary. If the parameter
Cluster.ReadMostlyLoadPercentAtPrimary is set to zero, the read-only load is fully executed
at the Secondary server.

2. PREFERRED_ACCESS=WRITE_MOSTLY. This is the default value. This method is for handling
write intensive load. All the transactions are executed at the Primary server. This corresponds to the
typical HotStandby operation.

With setting PREFERRED_ACCESS=READ_MOSTLY, the Primary server tells the driver which server to
connect to for the workload connection. If the load is directed to Secondary, and a write operation is issued,
a hand-over happens to Primary and the transaction is executed in the Primary server. After the transaction
commit, the load is directed back to Secondary. If Secondary fails, the connection fails over from Secondary
to Primary.

Additionally, a new load balancing configuration parameter is introduced. It allows to direct a certain amount
of read-only load to Primary.

[Cluster]
ReadMostlyLoadPercentAtPrimary=<n>

where n = [0 ... 100]. The default is 50.

67

5.2.2 Load Balancing in TC

This parameter defines the percentage of the total read-mostly load directed at the Primary. Based on this
value, an Assigned Workload Server is selected. By default, half of the connections use the Primary and half
the Secondary. This is a preferable value for most mixed loads. If the value is set to zero, all the load is directed
at the Secondary. This is suitable in cases where very read-intensive (or read-only) applications use PRE-
FERRED_ACCESS=READ_MOSTLY and (in the same time) write intensive applications use PRE-
FERRED_ACCESS=WRITE_MOSTLY.

Note

Load balancing operates only at the isolation level READ COMMITTED. If the server's isolation
level (startup) default is set to a different value, the setting PREFERRED_ACCESS=READ_MOSTLY
forces the isolation level of this session to READ COMMITTED. The Isolation level may be dynam-
ically reset to a higher one, say REPEATABLE READ but then the load balancing is disabled.

Note

Load balancing is disabled if the session is set to Autocommit mode.

Dynamic Control of Load Balancing

If the assigned workload server is Secondary, it can be changed programmatically to Primary. At the session
level, the workload connection server can be changed to Primary with the statements below:

• SET WRITE

• SET ISOLATION LEVEL REPEATABLE READ

• SET ISOLATION LEVEL SERIALIZABLE

The statement takes effect immediately, if it is the first statement of a transaction, or from the next transaction,
otherwise.

At the transaction level, the following statements change the workload connection server to Primary for the
time of one transaction:

• SET TRANSACTION WRITE

• SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

68

5.2.2 Load Balancing in TC

• SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

The affected transaction is the one that is started by using the statement, or the next one, in other cases. After
the transaction has been executed at the Primary, the workload connection server is reverted to the assigned
one for the session.

The effect of the SET [TRANSACTION] WRITE statement may be reverted with the statement SET
[TRANSACTION] READ WRITE (SQL:1999). Also, the isolation level statements have the same effect:

• SET ISOLATION LEVEL READ COMMITTED

• SET TRANSACTION ISOLATION LEVEL READ COMMITTED

Failover Transparency with Load Balancing

When both Transparent Failover is set (TF_LEVEL is other than NONE) and load balancing is enabled
(PREFERRED_ACCESS=READ_MOSTLY), the applied failover policy is the following:

1. Primary failure: all the load is directed to the new Primary being in the PRIMARY ALONE state.

2. Secondary failure: all the load is directed to the Primary (PRIMARY ALONE)

3. Connection break between the servers; the servers are in the PRIMARY ALONE and SECONDARY
ALONE states: if there is an ongoing read-only transaction executing in the Secondary, it is also success-
fully committed in the Secondary. All the subsequent transactions are directed to the Primary (in
PRIMARY ALONE).

When the normal hot-standby operation is resumed (with servers being in PRIMARY ACTIVE and SECOND-
ARY ACTIVE states) the load is rebalanced between the Primary and the Secondary.

Note

Even with TF_LEVEL=NONE (no failure transparency), some rudimentary failover capability is
available: failover from Secondary to Primary when the Secondary fails. All other failures result in
a communication link failure. So, with TF_LEVEL=NONE, in most failure cases it is required that
the application reconnects (with the same TC Info). To avoid reconnection, it is recommended that
failure transparency is always enabled when load balancing is used.

69

5.2.2 Load Balancing in TC

Executing Procedures Under Load Balancing

All SQL stored procedures are executed in the Primary unless they are specified as read-only procedures by
way of the SQL standard clause SQL Data Access Indication, in the procedure declaration.

<SQL-data-access-indication> ::=
 NO SQL |
 READS SQL DATA |
 CONTAINS SQL |
 MODIFIES SQL DATA

To avoid unnecessary handovers of read-only procedures and functions, one of the following values can be
declared:

• NO SQL

• READS SQL DATA

• CONTAINS SQL

Only MODIFIES SQL DATA (which is the default) inflicts transaction handover.

The clause comes between the (optional) RETURNS clause and the procedure body. For example:

"CREATE PROCEDURE PHONEBOOK_SEARCH
(IN FIRST_NAME VARCHAR, LAST_NAME VARCHAR)
RETURNS (PHONE_NR NUMERIC, CITY VARCHAR)
READS SQL DATA
BEGIN
-- procedure_body
END";

5.2.3 Syntax of the TC Info

When using solidDB Transparent Connectivity, the Client enacts only one logical connection called the TC
Connection. This connection is specified in the TC Info explained in this chapter. TC Info enacts transparent
failover and load balancing both HSB configurations.

The full syntax of the solidDB TC Info is the following:

70

5.2.3 Syntax of the TC Info

<Solid TC Info>::= {[<failure transparency level attribute>]
[<preferred access attribute>] <connect target list>} | <cluster info>

<failure transparency level attribute> ::= TF_LEVEL={NONE |
CONNECTION | SESSION}

<preferred access attribute> ::= PREFERRED_ACCESS={WRITE_MOSTLY |
READ_MOSTLY}

<connect target list>::= [SERVERS=]<connection string>[, <connection string > ...]

<cluster info>::= CLUSTER <connect string>[, <connect string>...]

Additionally, the following abbreviations can be used.

Table 5.2. TC Info Abbreviations

Corresponding SyntaxAbbreviation

TF_LEVELTF

CONNECTIONCON

SESSIONSES

PREFERRED_ACCESSPA

READ_MOSTLYRM

WRITE_MOSTLYWM

SERVERSS

Failure transparency attribute

Failure transparency, represented by the TF_LEVEL attribute, takes care of masking of failures. Three levels
are available:

1. NONE, which disables failure transparency. This is the default value.

2. CONNECTION, which preserves the server connection, that is, makes it unnecessary to reconnect in
the case of failover or switchover.

3. SESSION, which preserves certain session attributes having non-default values. Additionally, prepared
statements are preserved. However, open cursors are closed, and on-going transactions are aborted.

71

5.2.3 Syntax of the TC Info

Load balancing attribute

The preferred access attribute (PREFERRED_ACCESS) indicates whether the load balancing is applied or
not. Two levels are available:

1. WRITE_MOSTLY, where the workload is fully directed to Primary. This is the default value.

2. READ_MOSTLY, where the workload is directed (by default) to Secondary. The write transactions are
handed over to the Primary

Finally, the solidDB TC Info includes a list of server addresses. The driver will scan the list from left to right
and try to find the Primary and Secondary servers. Therefore, the preferable configuration must be put at the
beginning of the list. The rest of the list may contain some spare addresses that might be activated at some
time, during the system lifetime. Keep the list short because, in error situations, it can take a long time before
the error is returned to the application. The addresses are tried one by one, involving the login timeouts specified.
The number of addresses in the list is unlimited.

If none of the attributes TF_LEVEL nor PREFERRED_ACCESS is specified (or TF_LEVEL=NONE), the
connection behavior falls back to Basic Connectivity. If more than one connection string is given, the connection
is established to the first server on the list that accepts the connection request.

The CLUSTER keyword can be used as a synonym for:

TF_LEVEL=SESSION PREFERRED_ACCESS=READ_MOSTLY SERVERS=

For example, the following TC Info:

 F_LEVEL=SESSION PREFERRED_ACCESS=READ_MOSTLY
 SERVERS=tcp srv1.acme.com 1315, tcp srv2.acme.com 1315

may be replaced with:

 CLUSTER tcp srv1.acme.com 1315, tcp srv2.acme.com 1315

Example 5.1. Client-side INI File

[Data Sources]
Cluster1=
 TF_LEVEL=SESSION

72

5.2.3 Syntax of the TC Info

 PREFERRED_ACCESS=READ_MOSTLY
 SERVERS=
 tcp -c 1000 srv1.dom.acme.com 1315,
 tcp srv2.dom.acme.com 1315,
 tcp srv3.dom.acme.com 1316

Example 5.2. Connect String in ODBC

rc = SQLConnect(comHandle, "CLUSTER
 tcp -c 1000 srv1.dom.acme.com 1315,
 tcp srv2.dom.acme.com 1315,
 tcp srv3.dom.acme.com 1316", ...

5.2.4 TC Info Attribute Combinations

The following table summarizes the possible combinations of the TC Info attributes and presents the resulting
connection capabilities:

Table 5.3. Possible Combinations of TC Info Attributes

TF_LEVEL: SESSIONTF_LEVEL: CONNEC-
TION

TF_LEVEL: Not specified
or NONE

PREFERRED_ AC-
CESS:

Not specified • Transparent Failover
(session state preserved)

• Transparent Failover
(session state not pre-
served)

• No failover or switchover
support

• •No load balancing Transparent Switchover
•

(Basic Connectivity)
Transparent Switchover

• Workload in Primary only
• Workload in Primary only

• No load balancing
• No load balancing

WRITE_MOSTLY • Transparent Failover
(session state preserved)

• Transparent Failover
(session state not pre-
served)

• No transparent failover
support

(default)
• •Transparent Switchover Transparent Switchover

• Transparent Switchover
• •Workload in Primary only Workload in Primary only

• Workload in Primary only
• •No load balancing No load balancing

• No load balancing

73

5.2.4 TC Info Attribute Combinations

TF_LEVEL: SESSIONTF_LEVEL: CONNEC-
TION

TF_LEVEL: Not specified
or NONE

PREFERRED_ AC-
CESS:

READ_MOSTLY • Transparent Failover
(session state preserved)

• Transparent Failover
(session state not pre-
served)

• No Transparent Failover
support

• •Transparent Switchover Transparent Switchover
• Transparent Switchover

• •Workload in Secondary
and Primary

Workload in Secondary
and Primary• Workload in Secondary

and Primary
• •Load balancing Load balancing

• Load balancing

5.2.5 Handling TC Info Contradictions

The attributes of the TC Info may contradict the actual service made available. In those situations, the connection
is granted, but the SUCCESS_WITH_INFO warning is issued. This is done in the following cases:

• PREFERRED_ACCESS is specified, but HSB is not enabled. Basic connectivity is enabled.

• TF_LEVEL is specified, but HSB is not enabled. Basic connectivity is enabled.

5.2.6 Enacting Transparent Connectivity in JDBC

In JDBC, Transparent Connectivity is enabled with two non-standard connection properties.

Failure transparency handles the masking of failures. It applies equally to both the HotStandby and Cluster
Transparency modes. Failure transparency is enabled with the solid_tf_level connection property. Three levels
are available:

1. NONE, which disables failure transparency. This is the default value.

2. CONNECTION, which preserves the server connection, that is, makes it unnecessary to reconnect in
the case of failover or switchover.

3. SESSION, which preserves all the session attributes having non-default values. Additionally, prepared
statements are preserved. However, open cursors are closed, and on-going transactions are aborted.

The preferred access attribute indicates the type node where the workload connection is made to. The preferred
access attribute is enabled with the solid_preferred_access connection property. Two levels are available:

1. WRITE_MOSTLY, where the workload connection is made to the PRIMARY.

74

5.2.5 Handling TC Info Contradictions

2. READ_MOSTLY, where the workload connection is made (by default) to the SECONDARY.

The list of server addresses is given as a part of the extended JDBC connect string:

conStr= "jdbc:solid://host_name:port [,host_name:port].../user_name/password";

The number of addresses in the address list is limited to 20.

Caution

When using Transparent Connectivity in JDBC, you have to take care of dropping the statement objects
explicitly. The garbage collector will not detect unreferenced statement objects.

Example 5.3. Using Transparent Connectivity in JDBC

...
String conStr = "jdbc:solid://srv1.acme.com:1323,srv2-acme.com:1423/dba/dba";
Properties prop = new Properties();
prop.add("solid_tf_level", "1");
...
Connection c = DriverManager.getConnection(conStr, prop);
...

Connect Error Processing

When a connect request is issued for a TC Connection, it is considered successful if at least one applicable
server is found and connected to. The server may be in one of the states: PRIMARY ACTIVE, PRIMARY
ALONE, or STANDALONE. Otherwise, the connect effort is considered failed. The address list is scanned
once.

There may be various reasons for the connect request to fail. Most of them are masked by the following error
cases:

Table 5.4. Connect Request Errors

Message text and descriptionNative codeSQLSTATE

Client unable to establish a connection2521708001

75

5.2.6 Enacting Transparent Connectivity in JDBC

Message text and descriptionNative codeSQLSTATE

Description: The driver has used the TC connect info
to find an applicable server and connect to it. The effort
has failed due to one of he following reasons:

• No host listed in the address list was found

• A host was found but the login timed out

• A host was found but the login was rejected

• Hosts found but not in the PRIMARY/STAN-
DALONE state

Invalid connect info...21307HY000

Description: a syntax error is found in an elementary
connect string or in the TC connect info (data source
info).

Protocol ... not supported.21300HY000

Description: the string "TC" in the beginning of the TC
connect info is misspelled (or, an incorrect protocol
name is given in the elementary connect string).

There are cases when the connection is accepted with a warning.

Table 5.5. Warnings

Message text and descriptionNative codeSQLSTATE

Connected to Standalone or Primary Alone server.252180100

An effort has been made to set any non-default value
of TF_LEVEL or PREFERRED_ACCESS, and there
is only one server available. On this case, neither failure
transparency nor load balancing is available.

76

5.2.6 Enacting Transparent Connectivity in JDBC

5.2.7 Programming for Connection Switch

Principles of Connection Switch Handling

A connection switch refers to a situation where the driver changes the active server connection. Generally,
the reason for a connection switch is a failover to the Secondary server or a switchover between the servers.
More specifically, a need for a connection switch is detected from one of the following events:

• Event from the Secondary server about the state change to PRIMARY ALONE (failover) or PRIMARY
ACTIVE (switchover). This is the main (and the fastest) mode of performing the connection switch.

• Indication of the state change at Primary.

• Link failure on the active connection.

• Connection timeout on the active connection.

The driver executes the connection switch in two steps:

1. The need for the connection switch is detected. The driver returns the following connection switch error
on a pending request, or the following request:

Table 5.6. Connection Switch Request

Message text and descriptionNative codeSQLSTATE

Connection switch, some session context may
be lost

25216HY000

Description: The driver has discovered the need
of the connection switch. The client is expected
to issue a transaction rollback call, to finalize
the connection switch. This error code and
message will be received at each consecutive
network request call until the rollback call is is-
sued

2. The Client program issues a rollback command (ODBC: SQLEndTran() with SQL_ROLLBACK;
JDBC: Connection.rollback()). If the rollback is successful, a new active connection has been
mapped to the TC connection that may be used.

77

5.2.7 Programming for Connection Switch

Note

The connection switch error may be returned on a few consecutive ODBC calls. Therefore, a
provision must be made to always respond with a rollback to this error, on any ODBC network
request. If this happens in the middle of a transaction, the transaction must be re-executed.

On the other hand, if a new active connection cannot be established, the following error code is returned:

Table 5.7. Communication Link Failure

Message text and descriptionNative codeSQLSTATE

Communication link failure1450308S01

Description: The driver has failed to establish a
new active connection. The TF connection is
lost and the Client has to reconnect (using a Data
Source Info) in order to continue.

After receiving the rollback call, the driver will use a few alternative ways of finding the new active connection.
In the simplest case, it will use the standby connection for the purpose. If that connection is not in the right
state, the driver will wait for two seconds for the proper event to arrive. If the event does not arrive, and in
other cases, the driver will fall back to the address list in the TC connect info and will repeat the connect se-
quence iteratively for a maximum time of 10 seconds. If all the efforts fail, the driver returns the above error.

The effect of the error is that the connection is lost, as seen by the application. Any further request issued on
that connection will result in the same error.

Preservation of Session State

When the connection switch is executed by the driver, some of the session context can be lost and the Client
must reconstruct it. The amount of the preserved state is dictated by the Transparent Failover level, expressed
with the TC Info attribute TF_LEVEL. Essentially, with the TF level CONNECTION, no state is preserved
while, at the SESSION level, most of the session state is preserved. The preservation of the session state is
implemented by caching the necessary data in the driver. The higher transparency level is achieved at the
expense of the response time of the requests requiring caching, and increased memory usage in the driver.

Regardless of the TF level, the following holds in the case of failovers:

• The updates of the current transactions are lost (because of the transaction rollback)

• Open cursors and their positions are lost.

78

5.2.7 Programming for Connection Switch

The following table summarizes the session state preservation.

Table 5.8. Session State Preservation

Preserved stateTF_LEVEL

No session state is preserved.CONNECTION

Prepared statementsSESSION

• The prepared states are preserved.

The effects of the following statements are preserved:

• SET CATALOG

• SET SQL INFO

• SET SQL SORTARRAYSIZE

• SET SQL CONVERTORSTOUNIONS

• SET SQL SORTEDGROUPBY

• SET SQL { OPTIMIZEROWS | OPTIMISEROWS }

• SET SIMPLEOPTIMIZERRULES

• SET LOCK TIMEOUT <seconds>

• SET OPTIMISTIC LOCK TIMEOUT

• LOCK_TIMEOUT

• SET IDLE TIMEOUT

• SET STATEMENT MAXTIME

• SET ISOLATION LEVEL

• SET DURABILITY

• SET SAFENESS

• SET SCHEMA

79

5.2.7 Programming for Connection Switch

Preserved stateTF_LEVEL

• SET SQL JOINPATHSPAN

• SET SYNC USER

• SET SYNC MODE

The following standard ODBC attributes are preserved

• SQL_ATTR_ACCESS_MODE

(SET READ ONLY, SET READ WRITE)

• SQL_ATTR_CURRENT_CATALOG

(duplicates SET CATALOG above)

• SQL_ATTR_AUTOCOMMIT

Additional Proprietary ODBC attributes

The following read-only ODBC attributes are available for application programmers for any format of the
TC Info.

• SQL_ATTR_PA_LEVEL

(integer, Preferred Access level: 0=WRITE_MOSTLY, 1=READ_MOSTLY)

The attribute indicating whether the load balancing is used or not.

• SQL_ATTR_TC_WORKLOAD_CONNECTION

(string, server name of the workload connection)

The current workload connection server; if queried before the Commit, the value indicates the server the
transaction will be committed on.

• SQL_ATTR_TF_LEVEL

(integer, TF level: 0=NONE, 1=CONNECTION, 3=SESSION)

The failure transparency level)

80

5.2.7 Programming for Connection Switch

• SQL_ATTR_TC_PRIMARY

(string, Primary server connection string)

There is always a value indicating the current Primary server.

• SQL_ATTR_TC_SECONDARY

(string, Secondary server connection string)

The value indicates the assigned workload sever if (i) PA=READ_MOSTLY and (ii) the Secondary is the
designated workload server (this is the default). Otherwise, an empty string is returned.

Note

The proprietary ODBC attributes cannot be used with the Windows ODBC driver manager. If you
need to use proprietary ODBC attributes in Windows, solidDB ODBC driver import library (soli-
dimpodbca.lib or solidimpodbcu.lib) has to be linked directly with the application.

5.3 Using the Basic Connectivity
With Basic Connectivity, the application has to take care of connecting to each server of the HotStandby or
Cluster configuration separately, by using specific server addresses. If a failover happens, the active connection
is lost, and the application has to reconnect to the new Primary server.

Example 5.4. Basic Connection without Transparency

Connect=tcp srv1.dom.acme.com 1315

5.3.1 Reconnecting to Primary Servers from Applications

Preparing Client Applications for HotStandby

Client programs that have lost their connection to the Primary must be able to reconnect to the new Primary
server (the old Secondary). You must code client applications to be able to:

1. Recognize that Primary is not available for write transactions any more.

2. Connect to the other server or switch to using previously created connection.

81

5.3 Using the Basic Connectivity

3. Take into account whether the current (interrupted) transaction was lost/aborted and must be re-executed
on the new Primary server.

Getting the Secondary Server Address

The easiest way to get the connection information for the Secondary database server is to use the ADMIN
COMMAND 'hotstandby cominfo' command, which gives the connection information for the other server
in the HSB pair. When your application first connects to Primary, the application can execute this command
and store the result. Later, if Primary goes down, the application can use the stored information to connect to
Secondary (new Primary).

Note that when the cominfo command returns a value, it does NOT imply that Primary and Secondary are
currently connected. The "cominfo" command simply returns the value specified in the Connect parameter
of the solid.ini configuration file, or the value most recently specified with the hsb parameter connect
command. If you need to check the connect status between Primary and Secondary servers, you can use ADMIN
COMMAND 'hotstandby status connect'.

Detecting HotStandby Server Failure in Client Applications

To use the HotStandby feature, applications must know when to switch from the failed Primary to the Secondary
(new Primary) server.

There are a couple of possible ways to do this. The best way is to simply check the return codes from the
functions that you call to see if you have received an error that indicates you should switch to the other server.

You may also monitor the states of the servers (for example, check the Primary server to see whether its state
has changed to PRIMARY UNCERTAIN).

The errors that indicate you should try switching to another server include:

10013 == transaction is read only

10041 == database is read only

10047 == replication transaction aborted

11002 == disk full

11003 == configuration exceeded

14501 == operation failed

14502 == invalid rpc parameter

82

5.3.1 Reconnecting to Primary Servers from Applications

14503 == communication error

14506 == server is closed (for example, because it is currently the target of an HSB copy/netcopy operation)

14510 == comm write failed

14511 == comm read failed

14518 == connection broken

14519 == user thrown out (for example, because of some administrative operation)

14529 == operation timed out

20009 == session error, write operation failed

21306 == server not found, connect failed

21308 == connection is broken (write failed with code ...)

21318 == operation failed (unusual return code)

ODBC Applications

The following error message is returned to ODBC applications that cannot establish a connection (for example,
due to an inoperable database server):

• SQLState = 08001 - Client unable to establish connection

In addition, the following solidDB communication error message is produced:

• 21306 - Server 'server_name' not found, connection failed.

If a connection fails (for example, due to a network failure) in between operations, such as executing queries
and fetching results, the following error message is returned:

• SQLState = 08S01 - Communication link failure

JDBC Applications

The following error message is returned to JDBC applications that cannot establish a connection (for example,
due to an inoperable database):

• SQLState = 08001 - Unable to connect to data source.

83

5.3.1 Reconnecting to Primary Servers from Applications

If a connection fails (for example, due to a network failure) in between operations, such as executing queries
and fetching results, the following error message is returned:

• SQLState = 08S01 - Communication link failure

Note

ODBC and JDBC use different error messages for the same error code (08001).

Switching the Application to the New Primary

After the application detects that it cannot send transactions to the "old Primary" server, the application must
poll the old Primary and old Secondary servers until it finds a server that is in PRIMARY ACTIVE, PRIMARY
ALONE, or STANDALONE state. Polling is accomplished by having the application attempt to connect to
the servers and check the status of the servers when the connection is established.

When the connect is successful, the client can request the server state by using SQL function HOT-
STANDBY_STATE, which is described in section Using Function HOTSTANDBY_STATE later in this
chapter.

Caution

After the switch, all open database objects, such as prepared statements, open cursors and transactions,
are no longer active. Thus, you must initialize these objects again. Also, if you were using Temporary
Tables or Transient Tables (BoostEngine features), the tables will be empty on the new Primary.

Using Function HOTSTANDBY_CONNECTSTATUS

To verify connect status information when reconnecting to a Primary server from an application, you can use
the HOTSTANDBY_CONNECTSTATUS function. This function is equivalent to the administrative command
hotstandby status connect.

The function has no arguments and returns one of the following status values:

Table 5.9. HOTSTANDBY_CONNECTSTATUS Status Values

DescriptionStatus

The connection is active. This status is returned from both the Primary and
Secondary servers.

CONNECTED

The Primary server is connecting to the Secondary server. This status is
returned from both the Primary and Secondary servers.

CONNECTING

84

5.3.1 Reconnecting to Primary Servers from Applications

DescriptionStatus

The Primary server is connected to the Secondary server, but the transaction
log is not yet fully copied. This status is returned from both the Primary
and Secondary server.

CATCHUP

The connection is broken. This status is returned from both the Primary and
Secondary servers.

BROKEN

Using Function HOTSTANDBY_STATE

To implement application polling of the Primary and Secondary servers, you can use the HOTSTANDBY_STATE
function. This function is equivalent to the administrative command hotstandby state. It allows the application
request the current HotStandby state when it is connected to the server.

Note

This function has no arguments. For a description of each possible state that this function may return,
see Section 4.11, “Verifying HotStandby Server States”.

Example 5.5. Sample Pseudo-Code

An application, whether or not it is HSB-enabled, should have error handling that allows the application to
replay a failed/aborted transaction.

In a non-HSB environment, a transaction may be aborted because of a concurrency conflict (optimistic tables)
or deadlock (pessimistic tables). The application must catch these error situations and either automatically
retry the transaction or ask interactive user to re-execute the transaction.

If your application already has code to handle failed/aborted transactions, then it is relatively easy to extend
this code to make use of HSB.

In a very simplified example, the application pseudo-code with proper error handling for a non-HA-aware
application handling looks something like this:

BEGIN TRANSACTION
EXECUTE APPLICATION LOGIC
PREPARE & EXECUTE STATEMENTS
COMMIT TRANSACTION
IF ERROR OCCURRED
 IF ERROR == concurrency conflict or deadlock
 GO TO BEGIN TRANSACTION

85

5.3.1 Reconnecting to Primary Servers from Applications

 END IF
 other error handling
END IF ;

Improving the above application to make it HA-aware is very simple. You must add code so that the application
can:

• connect to either of the two servers instead of only one; and

• in the case of an error, find the server that is currently in one of the following states: PRIMARY ACTIVE,
PRIMARY ALONE or STANDALONE.

The pseudo-code should look similar to the following:

BEGIN TRANSACTION
EXECUTE APPLICATION LOGIC
PREPARE & EXECUTE STATEMENTS
COMMIT TRANSACTION
IF ERROR OCCURRED
 IF ERROR == server unavailable for write transactions
 FIND CURRENT PRIMARY SERVER
 GO TO BEGIN TRANSACTION
 END IF
 IF ERROR == concurrency conflict or deadlock
 GO TO BEGIN TRANSACTION
 END IF
 IF ERROR == something else
 other error handling
 END IF
END IF

The logic to find the current primary server is also very simple. Just check the current state of both servers
(try to re-connect if necessary) and if either of them is PRIMARY ACTIVE, PRIMARY ALONE or STAN-
DALONE, set that server as the current primary. If neither server meets that criterion, wait awhile and retry
checking the current server states.

5.3.2 Re-Connecting to Secondary Servers

In some cases, you may want to connect to the current Secondary (if it is up). Applications can submit read-
only queries to the Secondary server; this can sometimes help you balance the workload across your servers.

86

5.3.2 Re-Connecting to Secondary Servers

An application can only connect to Secondary databases in the read-only mode. Note that a client can connect
to the Secondary server (only in read-only mode) by using the following parameter values in the HotStandby
section of the solid.ini configuration file in these servers:

• Connect parameter in the Primary server

• Listen parameter in the Secondary server

As mentioned earlier, you can also use the command

ADMIN COMMAND 'hotstandby cominfo';

to get the connection information for a server's partner. Thus, if you are connected to the current Primary
server, you can get the address of the current Secondary by using the cominfo query.

5.3.3 SmartFlow Data Distribution Requirements

Any node of a SmartFlow data distribution system can be made highly available with the solidDB CarrierGrade
option.

When the master and replica databases of a SmartFlow system are synchronizing data, the synchronization
occurs between the Primary servers of the database server pairs. In other words, the Primary of the Master
communicates with the Primary of the Replica. See Figure 2.3, “HotStandby with Master and Replica Server
Scheme”.

A database server may fail over to its Secondary server at any point of time, including when the database
server is synchronizing data with another server using SmartFlow data synchronization. If the failover occurs
during synchronization, executing the synchronization message stops and the process must be resumed after
the failover. For details about how to resume synchronization after an error has occurred, please refer to
solidDB SmartFlow Data Replication Guide.

If a server containing a SmartFlow master database is made fault tolerant with solidDB CarrierGrade, the
replicas of the master database must know the connect strings to both master servers. To do this, execute the
following statement in each of the replica databases.

SET SYNC CONNECT 'connect_string_to_server_1, connect_string_to_server_2'
TO MASTER <master_nodename>

In the diagram below, the gray arrows represent the original connections to the original Primary server, while
the black arrows represent the new connections to the new Primary (old Secondary) server. The alternate
connection is used if the synchronization with the old primary server fails.

87

5.3.3 SmartFlow Data Distribution Requirements

Figure 5.1. Master failover

If the server using solidDB CarrierGrade is a server containing a replica database AND if the master server
uses remote procedure calls (CALL procedure AT node_name) to run procedures at the replica, for example
to initiate the synchronization, the master server must be informed about the connect strings to both of the
replica servers. Typically a master server uses remote procedure calls to initiate synchronization with a replica
database. To inform the master about the connect strings to the replica server pair, execute the following
statement in the master database.

SET SYNC CONNECT 'connect_string_to_server_1,

connect_string_to_server_2' TO REPLICA <replica_nodename>

Alternatively, you can save the statement in the replica server and propagate it to master the next time that
you synchronize. In that case, use the following statement:

SAVE SET SYNC CONNECT 'connect_string_to_server_1,

connect_string_to_server_2' TO REPLICA <replica_nodename>

88

5.3.3 SmartFlow Data Distribution Requirements

Figure 5.2. Replica failover

If the master server never executes remote procedure calls in the replica, then the above statement is not
needed.

5.4 Detecting Failures in solidDB HotStandby
This chapter explains how applications can detect failures in HotStandby configurations.

5.4.1 Heartbeat

Internally, solidDB HSB uses a technique, which is referred to as heartbeat, to monitor the connection between
servers. A sequence of keepalive messages are sent between active and standby servers. Both servers continu-
ously send these unidirectional "I am here" messages to the other server. The messages are sent on a fixed
time interval. Counterwise, a message from the other server is expected to arrive within a predefinened time
window. In solidDB, the heatbeat technique is called "ping".

Important

In solidDB the heatbeat technique is called "pinging" although thare are no ping requests sent. It
should not be confused with the Ping protocol used in TCP/IP networks.

89

5.4 Detecting Failures in solidDB HotStandby

90

Chapter 6. Configuring HotStandby
This chapter describes the parameter settings for implementing and maintaining HotStandby functionality.
This description supplements the information contained in the chapter "Configuring solidDB" of solidDB
Administration Guide.

Parameters are grouped according to section categories in the solid.ini configuration file. When you are
using the solidDB CarrierGrade option, you are required to configure the [HotStandby] section of the
solid.ini configuration file. If you are using a watchdog application to monitor your HotStandby servers,
you may also include a [Watchdog] section. (The [Watchdog] section is optional.)

You can change configuration parameters in the following ways:

• Manually editing the configuration file solid.ini. Note that the server reads the solid.ini file
only when it starts, and therefore any changes to the solid.ini file do not take effect until the next
time that the server starts.

• Entering the following commands in solidDB SQL Editor solsql:

ADMIN COMMAND 'parameter <section_name.param_name>=<value>';

• For example

ADMIN COMMAND 'parameter hotstandby.2SafeAckPolicy=2';
ADMIN COMMAND 'parameter com.listen="tcp sf_server 1315"';

Caution

Note that when you use an ADMIN COMMAND to change a parameter, the changes to some, but
not all, parameters will take effect immediately. For more details, see Appendix A, Configuration
Parameters.

6.1 Configuring solidDB for HotStandby
The solid.ini file (at both the Primary and Secondary nodes) contains the parameters that are necessary
to set up a HotStandby system.

91

6.1.1 Defining Secondary and Primary Node Configuration (Com
Section)

The network name of a Primary or Secondary server consists of a communication protocol and a server name.
The network names are defined with the Listen parameter in the [Com] section of the configuration file.
The solid.ini file should be located in a solidDB program's working directory or in the directory set by
the SOLIDDIR environment variable.

A Primary or Secondary server may use one or multiple network names. Note that all components of network
names are case insensitive.

Example 6.1. Entry in the solid.ini File

Primary node:

[Com]
;The Primary server listens to the network with this name
Listen = tcp 1320

Secondary node:

[Com]
;The Secondary server listens to the network with this name
Listen = tcp 1321

For more information about the Listen parameter, see solidDB Administration Guide.

6.1.2 Defining Timeouts Between Applications and Servers (Com
Section)

This section describes how to configure Application Read Timeout and Connect Timeout settings by using
either the solid.ini Connect parameter or the connect string of the SQLConnect function for ODBC.
These timeout values apply to the server's connections with client applications, including solidDB SQL Editor
(solsql), solidDB Remote Control teletype (solcon), and the watchdog application.

92

6.1.1 Defining Secondary and Primary Node Configuration (Com Section)

Application Read TimeOut Option

This option detects failures in low level network RPC read operations. Its timeout setting applies to the read
in the physical network, which works only for the TCP/IP protocol. This RPC read timeout (called connection
timeout in ODBC and JDBC) value is configured in connect and listen strings using the following option:

TCP -rnumber_of_milliseconds [machine_name] port_number

To specify this in the solid.ini file, use the Connect parameter in the [Com] section of solid.ini.
For example:

[Com]
;Set RPC read timeout to 1000 milliseconds (one second)
Connect=TCP -r1000 1313

The default value for RPC read timeout is 60000 milliseconds (60 seconds). Value zero (0) sets an indefinite
timeout.

If you are using ODBC, you specify the timeout setting in the connect string of the SQLConnect function.
For example:

SQLConnect (hdbc, "TCP -r1000 1313", SQL_NTS,
"dba", SQL_NTS, "dba", SQL_NTS);

In the example above, the constant SQL_NTS indicates that the previous string (servername, username, or
password) was passed as a standard Null-Terminated String.

Note

For client applications, such as the watchdog, it is convenient to provide RPC read timeout (called
also connection timeout) in the connect parameter using the -r option. Otherwise certain network
failure types may cause indefinite waits.

Note

The Connect parameters in the [Com] section, [Watchdog] section, and [Hotstandby] sections
are all for different purposes. Make sure that you edit the correct one.

93

6.1.2 Defining Timeouts Between Applications and Servers (Com Section)

Specifying -C Option in the Connect Parameters

You can specify the connect timeout (called also login timeout) value in the Connect parameter used in the
[Com] and [Watchdog] sections of the solid.ini file. This connect timeout works only for the TCP/IP
protocol. The syntax is:

Parameter = tcp -cnumber-of-milliseconds [machine name] port_number

where Parameter is Connect or Listen.

For example:

Application node:

[Com]
;The server listens to port 1320, and the Connection timeout is 1000 ms.
Listen = tcpip -c1000 1320

If no value is provided for the connect timeout, the server uses the operating system-specific default value.

Note

For client applications, such as the watchdog, it is convenient to provide the connect timeout value
in the Connect parameter using the -c option. Otherwise certain network failure types may cause a
long wait before the failure is detected.

6.1.3 Transaction Durability

DurabilityLevel

The parameter DurabilityLevel applies to both HotStandby and non-HotStandby servers. This parameter
has three different values, which correspond to "relaxed", "adaptive", and "strict" durability.

Adaptive durability is used only with HotStandby. Adaptive durability means:

• If Primary and Secondary are connected and operating normally (if they are in PRIMARY ACTIVE and
SECONDARY ACTIVE states, respectively), the server uses relaxed durability;

• In all other situations (e.g. PRIMARY ALONE, STANDALONE, etc.), the server uses strict durability.

94

6.1.3 Transaction Durability

For an explanation of the differences between "strict" and "relaxed" durability, or for more information about
the DurabilityLevel parameter, see solidDB Administration Guide.

6.2 Configuring HotStandby-Specific Parameters
At both the Primary and Secondary nodes, the solid.ini file contains the [HotStandby] section to
specify HotStandby-specific configuration parameters.

6.2.1 Defining Primary and Secondary HotStandby Configuration

The minimum set of solid.ini configuration parameters that you must set to enable HotStandby is:

• HSBEnabled. This parameter turns HSB on or off.

• Connect. This parameter defines the network name used to define either the Primary or Secondary
server. The network name is the protocol and server name that the Primary server uses to connect to the
Secondary server, or vice versa. (Strictly speaking, the Connect parameter is not required to be in the
solid.ini file. You may start the server without this parameter and then use an ADMIN COMMAND
to specify the Connect string. If the Connect string is not set, then the server can run only in the states that
do not require a connection, i.e. PRIMARY ALONE, SECONDARY ALONE, and STANDALONE.)

• LogEnabled. If this parameter is set, it should be set to "yes". Note that this parameter is in the [Log-
ging] section, not the [HotStandby] section, of the solid.ini file.

Example 6.2. Partial solid.ini Files

Primary Node

[HotStandby]
HSBEnabled = yes
;The Primary server connects to the Secondary server
;using the following connect string.
Connect = tcp machine2 1321
[Logging]
LogEnabled=yes

Secondary Node

[HotStandby]
HSBEnabled = yes

95

6.2 Configuring HotStandby-Specific Parameters

;The Secondary server connects to the Primary server
;using the following connect string.
Connect = tcp machine1 1320
[Logging]
LogEnabled=yes

Note

If the solid.ini file does not contain a [HotStandby] section, or does not contain HSBEn-
abled=Yes in the [HotStandby] section, then the server starts as a non-HotStandby server and
HotStandby replication is not used.

6.2.2 Setting HotStandby Server Wait Time to Help Detect Broken
or Unavailable Connections

A HotStandby server uses timeout parameters to control how long it will wait before concluding that an existing
connection is broken or a new connection cannot be established.

These parameters are:

• HotStandby.PingTimeout

• HotStandby.PingInterval

• HotStandby.ConnectTimeout

A HotStandby server that is in the PRIMARY ACTIVE state or the SECONDARY ACTIVE state will change
to PRIMARY UNCERTAIN, PRIMARY ALONE, or SECONDARY ALONE if it tries to contact the other
server and receives no reply within a specified amount of time.

To control how long the server waits, you can:

• Set the PingTimeout parameter to specify the amount of time that the server should wait before changing
to the PRIMARY UNCERTAIN state.

• Set the PingInterval parameter to specify the interval between the "pings" the server is sending to
watch the health of the other server.

• Set the ConnectTimeout parameter to specify the amount of time that the server should wait when
trying to establish a new connection to the other server (for example, in an ADMIN COMMAND 'hot-
standby connect' operation).

Each of these parameters is described in more detail below.

96

6.2.2 Setting HotStandby Server Wait Time to Help Detect Broken or
Unavailable Connections

PingTimeout and PingInterval Parameters [HotStandby]

A "ping" operation is essentially an "Are you there?" question sent by one database server to another. (Some
networking software also has a "ping" operation, but the solidDB PingTimeout configuration parameter
in the [HotStandby] section applies only to solidDB server pings, not general network pings.) When this
parameter is set, both the Primary and Secondary HotStandby servers "ping" each other at regular intervals.
See also Section 5.4.1, “Heartbeat”.

The optional PingTimeout and PingInterval parameters in the [HotStandby] section have the
purpose to control the ping operation:

• PingTimeout specifies how long a server should wait before concluding that the other server is down
or inaccessible. Default is 4000 (4 sec.)

• PingInterval specifies the interval, in milliseconds, between two pings. Default is 1000 (1 sec.)

For example, if the PingInterval is 10 seconds, then the servers will ping each other after every 10
seconds. If PingTimeout is 20 seconds and one server (S1) does not hear from the other (S2) within 20
seconds, then S1 will conclude that S2 is down or inaccessible. Server S1 will then switch to another state,
e.g. from "PRIMARY ACTIVE" to "PRIMARY UNCERTAIN".

If the values of the above parameters are different, the precedence take values set in Primary during execution
of the "hsb connect" command. The values will not change during switchovers. However, they can be changed
dynamically with the ADMIN COMMAND "parameter" command.

If PingTimeout is set to zero, pinging is disabled.

Ping requires little overhead and a solidDB server is set up to respond quickly to pings. The server does not
need to wait until it finishes processing the current SQL query, for example, before responding to a ping. You
can set the PingInterval value to a fairly short interval, such as a second, or even less.

If it is important that you quickly detect failover when a server goes down, then set the PingTimeout value
to a relatively time. However, shorter values also mean a higher chance for "false alarms". If your network
has a lot of traffic and thus causes delays before a ping response is received, then you may need to set the
PingTimeout to a large value to avoid false alarms.

ConnectTimeout Parameter [HotStandby]

In some network implementations, a connect operation may not respond for an indefinite period of time. One
possible reason is that the remote machine is a known node, but is unavailable during the connect attempt.
By specifying a connect timeout value, you can set the maximum time in seconds that a HotStandby connect
operation waits for a connection to a remote machine.

97

6.2.2 Setting HotStandby Server Wait Time to Help Detect Broken or
Unavailable Connections

The ConnectTimeout parameter (which is useful only on certain platforms) is only used with certain ad-
ministration commands. These are:

• hotstandby connect

• hotstandby switch primary

• hotstandby switch secondary

You set the connect timeout value in milliseconds using the ConnectTimeout parameter in the [Hot-
Standby] section of the solid.ini file. The units are milliseconds. The default is 0, which means no
timeout. You can set it to a different value, for example:

[HotStandby]
 ; Set ConnectTimeout to 20 seconds (20000 milliseconds).
ConnectTimeout=20000

6.2.3 Defining a Name and Location for HotStandby Database
Copy Operation

The optional CopyDirectory parameter in the [HotStandby} section defines the name and location
of the directory that the HotStandby copy operation copies to. The HotStandby copy operation is specified
with the command:

ADMIN COMMAND 'hotstandby copy [directory_name]';

For example, on a Microsoft Windows system, the parameter and value might look like:

[HotStandby]
CopyDirectory=c:\Solid\DatabaseEngine4.1\secondary\dbfiles

This parameter has no default value, so if the directory is not specified in the solid.ini file, it must be
provided in the copy command. If you provide a relative path for the CopyDirectory parameter, the path
will be relative to the directory that holds the Primary server's solid.ini file.

This parameter is not needed if you do the HotStandby database copy operations using the ADMIN COM-
MAND 'hotstandby netcopy' command. Of these two alternatives, netcopy provides more flexible function-
ality and is thus the recommended command.

98

6.2.3 Defining a Name and Location for HotStandby Database Copy
Operation

6.2.4 Defining Primary Server Behavior During a Secondary
Failure

You can use the AutoPrimaryAlone parameter in the [HotStandby] section to control whether the
Primary server automatically switches to PRIMARY ALONE state or stays in PRIMARY UNCERTAIN
state after losing contact with the Secondary server.

If AutoPrimaryAlone is set to Yes, then when Primary loses contact with Secondary, Primary will auto-
matically switch to the PRIMARY ALONE state, which allows it to continue accepting transactions. If
AutoPrimaryAlone is set to No, then when Primary loses contact with Secondary, Primary will automat-
ically switch to the PRIMARY UNCERTAIN state.

By default, AutoPrimaryAlone is set to No.

[HotStandby]
AutoPrimaryAlone = No

The PRIMARY UNCERTAIN state prevents Primary from accepting new transactions or committing the
currently active ones. Primary will not switch to PRIMARY ALONE state until the Watchdog or System
Administrator tells it to.

If AutoPrimaryAlone is set to No, the server can be set to the PRIMARY ALONE state by executing the
ADMIN COMMAND 'hotstandby set primary alone' command. Note that this command does not change
the value of AutoPrimaryAlone in the configuration file.

If you change the default to Yes, the Primary server's state changes from PRIMARY ACTIVE to PRIMARY
ALONE rather than to PRIMARY UNCERTAIN.

Important

If you are running a watchdog program on the same machine where the Secondary server resides, be
sure to set the parameter AutoPrimaryAlone to no. In this situation, setting AutoPrimaryAlone
to no is crucial because it prevents the potential error of having two primary servers. Primary may be
in the PRIMARY ALONE state, and the watchdog at server failure could switch Secondary to a
PRIMARY ALONE state. This same error can also occur if a user happens to set the old Secondary
server to become the new Primary. For more information about dual primaries, see Section 4.3.1,
“Network Partitions and Dual Primaries”.

99

6.2.4 Defining Primary Server Behavior During a Secondary Failure

6.3 Performance Tuning

6.3.1 Tuning Replication Performance with Safeness and Durab-
ility Levels

The performance of data replication during normal operation depends on the setting of the Durability Level
and Safeness Level. Additionally, when 2-safe replication is used, the type of the 2-Safe Acknowledgment
Policy affects the latency time, as perceived by the application. For more information, see Section 2.3, “How
Does HotStandby Affect Performance”.

6.3.2 Tuning Netcopy Performance (General Section)

The hotstandby netcopy command allows the Primary's database to be copied to a remote Secondary. This
command is also used to copy a database from a Primary server to a Secondary server when one or both
servers are diskless. The connect string used to connect to the Secondary server for the netcopy is specified
in the [HotStandby] section of solid.ini.

The Primary database files are copied through the network link. For more details on netcopy, read Section 4.8.5,
“Copying a Primary Database to a Secondary Over the Network”.

The following parameters in the [General] section of the solid.ini file allow for improved netcopy
performance.

BackupBlockSize Parameter [General]

The BackupBlockSize parameter in the [General] section of the solid.ini file is used to tune the
performance of netcopy (and the performance of backup, of course) by increasing or decreasing its block size
when it copies the Primary database files to the Secondary server. As a general rule, larger block size means
faster netcopy/backup, but at the cost of possibly slowing down the server's response time to other requests
while the netcopy/backup is being done.

By default, the BackupBlockSize parameter is set to 64K. You can set it to a different value, for example:

[General]
BackupBlockSize = 32K

or

100

6.3 Performance Tuning

[General]
BackupBlockSize = 32768

Note that the minimum value for BackupBlockSize is the server block size and the maximum value is
currently 1GB ("M" and "K" suffixes are supported; for example, 32K and 1M). The value of BackupBlock-
Size should be a multiple of the server's database block size.

Tuning Database Catchup Performance

When a failed Secondary server is back in service and connected to Primary, HotStandby continues sending
the Primary's HotStandby transaction log file contents to the Secondary node in an automated process known
as HotStandby database catchup. The CatchupSpeedRate parameter in the [HotStandby] section of
the solid.ini file is used to tune the performance of the database catchup by adjusting how much of the
server's time is spent on catchup vs. servicing current client database queries.

If CatchupSpeedRate is assigned a value of 90, this means that the server will spend approximately 90%
of its time on catchup and about 10% of its time responding to user queries. For example:

[HotStandby]
CatchupSpeedRate = 50

The higher the number, the faster catchup will perform, but the more it will impact other activities, such as
user queries. By default, CatchupSpeedRate is set to 70.

6.4 Configuring Parameters for a Watchdog
A watchdog is an separate program for monitoring and controlling Primary and Secondary servers. The
watchdog monitors both HotStandby servers and switches their states when necessary. This alleviates the
need for a database administrator to monitor the servers.

solidDB provides a sample watchdog that you can use as a basis for building a custom watchdog that meets
your needs. If you are using this sample program, you need to configure a [Watchdog] section in the
solidDB configuration file (solid.ini), which resides in the current working directory of the watchdog.
If the watchdog is running in the same directory as the Primary or Secondary server, then you will have only
one solid.ini file, which will be shared by the server and the watchdog. If the watchdog is running in a
separate directory, then the watchdog will have its own solid.ini file.

Although the sample watchdog provided by solidDB uses a solid.ini file, not all watchdogs need such
a file. If you write your own watchdog, you may choose whether or not to use a configuration file, and
whether or not to name that file "solid.ini".

101

6.4 Configuring Parameters for a Watchdog

Following are the parameters for implementing the watchdog application on the Secondary server or a separate
machine. Read Chapter 7, Monitoring HotStandby Server Pairs with a Watchdog Application for more details
on using these watchdog parameters.

6.4.1 Watchdog Section

The solid.ini file for the watchdog contains a [Watchdog] configuration section to specify watchdog-
specific parameters.

The parameters that are documented here apply to the sample C-language watchdog program supplied by
solidDB, which is designed to read a solid.ini configuration file and search for the [Watchdog] section.
If you write your own watchdog program, you may create and use any parameters you wish; you are not required
to use the ones documented here, and you are not limited to the ones documented here. You may even write
a custom watchdog program that does not use a solid.ini file at all.

Note that the solidDB sample watchdog program, like the servers, does not care whether the section name
([Watchdog]) is upper case, lower case, or mixed case.

Connect1 Parameter [Watchdog]

The Connect1 parameter in the [Watchdog] section enables the watchdog application to connect to one
of the two servers. This is a required parameter that defines the protocol and network address for the Connect1
server.

For example:

[Watchdog]
;The watchdog application connects to the server using the
;TCP/IP protocol at server port 1313 with following connect
;string.
connect1 = tcp primarymachine 1313

Connect2 Parameter[Watchdog]

The Connect2 parameter in the [Watchdog] section enables the watchdog application to connect to the
other server (the one not specified by Connect1). This is a required parameter that defines the protocol and
network address for the Connect2 server.

For example:

[Watchdog]

102

6.4.1 Watchdog Section

;The watchdog application connects to the server using the
;TCP/IP protocol at server port 1313 with following connect
;string.
Connect2 = tcp secondarymachine 1313

Username1 and Password1 Parameters [Watchdog]

The Username1 and Password1 parameters in the [Watchdog] section are optional. They are used to
specify the username and password that is authorized for using the connect1 server. For example:

[Watchdog]
Username1 = dba
Password1 = dba

If (for security reasons) these parameters are not specified in the solid.ini configuration file, the watchdog
will prompt for

username1

and

password1

when the watchdog is started.

Username2 and Password2 Parameters [Watchdog]

The Username2 and Password2 parameters in the [Watchdog] section are optional. They are used to
specify the username and password that is authorized for using the connect2 server. For example:

[Watchdog] Username2 = dba
Password2 = dba

If (for security reasons) these parameters are not specified in the solid.ini configuration file, the watchdog
will prompt for

username2

and

password2

103

6.4.1 Watchdog Section

when the watchdog is started.

NumRetry Parameter [Watchdog]

The NumRetry parameter in the [Watchdog] section lets you specify the number of times that the
watchdog attempts to connect to a Secondary or Primary server before concluding that the server has failed
or become inaccessible. The default for this parameter is 0. This parameter is optional. For example:

[Watchdog]
NumRetry = 3

The retries are in addition to the original try. If number of retries is set to 3, then the total number of attempts
is 4. The retries are immediate. The watchdog does not wait a certain number of milliseconds before retrying.

PingInterval Parameter [Watchdog]

The PingInterval parameter in the [Watchdog] section lets you specify how frequently the watchdog
should check the servers to make sure that they are still accessible and are still connected to each other. To
detect server failure, the watchdog sends the hotstandby status connect command to both Primary and Secondary
servers at regular intervals. The amount of time between each check is specified by the PingInterval
parameter. The units of this parameter are milliseconds. For example:

[Watchdog]
PingInterval = 2000

This parameter is optional. The default for this parameter is 1000 milliseconds (1 second).

Note that the PingInterval parameter for the watchdog is different from the PingTimeout parameter
for the servers.

AutoSwitch Parameter [Watchdog]

If the AutoSwitch parameter is set to yes, the watchdog automatically does the following:

1. If the Secondary server fails, then the watchdog tells the Primary server to switch to PRIMARY ALONE
state (rather than stay in PRIMARY UNCERTAIN) state.

2. If the Primary server fails, then the watchdog automatically sends the command 'hsb switch primary' to
switch the original Secondary to be the new Primary and 'hsb set primary alone' to start that new Primary.

The default for this parameter is Yes. This parameter is optional. For example:

104

6.4.1 Watchdog Section

[Watchdog]
AutoSwitch = NO

WatchdogLog Parameter [Watchdog]

The WatchdogLog parameter in the [Watchdog] section lets you specify the file name of the watchdog
log. The watchdog log is created in the current working directory. It is used to record watchdog messages,
alerting administrators of the need to issue watchdog commands. The default for this parameter is Watch-
dog.log. This parameter is optional.

For example:

[Watchdog]
WatchdogLog = Watchdog.log

6.5 Configuration File Examples
Below is a sample excerpt of the solidDB Configuration file (solid.ini) for the first HotStandby server:

[Com]
; The first server listens to the network with this
; name
Listen = tcp 1320
[HotStandby]
HSBEnabled=yes
; The first server connects to the second server
; using the following connect string.
Connect = tcp machine2 1321
AutoPrimaryAlone=No

Below is a sample excerpt of the solidDB Configuration file (solid.ini) for the second HotStandby
server:

[Com]
; The second server listens to the network using the following
; connect string.
Listen = tcp 1321
[HotStandby]

105

6.5 Configuration File Examples

HSBEnabled=yes
; The second server connects to the first server
; using the following connect string.
Connect = tcp machine1 1320
AutoPrimaryAlone=No

106

6.5 Configuration File Examples

Chapter 7. Monitoring HotStandby
Server Pairs with a Watchdog
Application
In this chapter we explain possible failure scenarios and what commands should be issued to recover from
those scenarios. Although these commands may be issued by either a human administrator or a software
program, we will assume for simplicity that the commands are issued by a software program called a
"watchdog". A watchdog is an separate program that monitors Primary and Secondary servers, and gives
commands to change those servers" states when necessary. We recommend that you use a watchdog so that
you can determine when the Primary or Secondary server itself has failed or when just the communication
link between these servers is down.

solidDB Development Kit includes the C-language source code for a sample watchdog program. The sample
watchdog program uses its own separate solid.ini configuration file to store information such as the
PingInterval (described later). If you write your own watchdog, you may choose whether to use a con-
figuration file or whether to simply hard-code the values you want.

Note

The watchdog application does not use the CarrierGrade Connectivity to connect to the servers. The
reason is that the watchdog has to communicate with each server explicitly.

7.1 How the Watchdog Application Works
The sample Solid watchdog application notifies you when the Primary server is down. In normal mode, the
watchdog checks the connection status of servers using the hotstandby status connect command in both
Primary and Secondary servers. The watchdog performs this check between servers at regular intervals. The
interval time is set with the PingInterval parameter in the watchdog's solid.ini configuration file.

The watchdog reaches the conclusion that there is a problem in the HotStandby system when it receives no
response from the Primary or Secondary node or both nodes after a given number of polling attempts. The
number of attempts is set in the

NumRetry

parameter in the watchdog configuration file (solid.ini).

107

The watchdog also observes whether the Primary server and the Secondary server are connected to each other.
If the Primary or Secondary server returns a successful connect status to the watchdog, this means the Primary
and Secondary are still connected. If it returns an error, on the other hand, then the Primary and Secondary
are no longer connected.

If the AutoSwitch parameter in the watchdog configuration file is set to YES, then the watchdog is also
responsible for automatically switching server states in the event of a Primary failure. For example, when the
Primary server is down, the watchdog switches the Secondary server to make it the new Primary and put it
in PRIMARY ALONE state. If the AutoSwitch parameter is set to NO, the watchdog does not change the
server state itself, but instead writes a message to the watchdog log to notify the user to switch server states.

To continue monitoring, the watchdog switches to failure mode, which means it continuously keeps checking
failed servers for a working connection.

7.1.1 Failure Mode

When the sample watchdog program knows that HotStandby Primary and Secondary servers are connected,
the watchdog stays in normal mode. If one of the servers fails, or if the communication link between these
servers fails, then the sample watchdog program will take some course of action. If the action fails to connect
the servers, the watchdog application goes into failure mode.

In the sample C-language watchdog application provided in solidDB Development Kit, after the watchdog
enters failure mode, the watchdog waits for the system administrator to fix the problem with the Primary and
Secondary servers. If, in the meantime, a second failure occurs, the watchdog does not handle the failure.
This limitation in the watchdog sample application is deliberate. There are situations where a series of failures
and even seemingly appropriate responses can cause the error of having two Primary servers (either in
PRIMARY ALONE or STANDALONE states). This is especially true if there are brief failures in the network,
but no failures in the database servers themselves. An example that produces two Primary servers is provided
in Section 7.1.2, “Coding a Watchdog for Multiple Failures”.

During failure mode, the sample watchdog application polls both the Primary and Secondary servers. When
it is able to connect to both servers, it sends the hotstandby state command to both servers to see whether it
can communicate with them and to see which state each of them is in.

Once the sample watchdog is able to communicate with both servers, it will decide what to do next based on
the solid.ini parameter DualSecAutoSwitch. If DualSecAutoSwitch = Yes and both servers are
secondary, then the Watchdog will automatically select one of the two secondaries to be a new primary and
switch it to primary. If DualSecAutoSwitch = No then the system administrator must switch one server
to be the primary. Note that DualSecAutoSwitch applies whether the watchdog is in "normal" mode or
"failure" mode.

108

7.1.1 Failure Mode

7.1.2 Coding a Watchdog for Multiple Failures

There are two ways to handle multiple failures in your own watchdog application. You can:

• After each failure (and automatic response by the watchdog), require manual (human) intervention to
check the situation. Manual intervention may require actions, such as restarting a server, or fixing a network
problem. This is the approach that the sample watchdog application uses because it reduces the risk of
having two Primary servers.

• Write a watchdog application that can handle multiple failures over time.

This method does run the risk of having two Primary servers, as shown in the following example.

Example 7.1. Dual Primaries

In this example, Server1 is initially the Primary and Server2 is initially the Secondary.

1. A network failure occurs and Server1 becomes inaccessible.

2. The watchdog switches Server2 from SECONDARY to PRIMARY ALONE.

3. A second network failure occurs, and Server2 becomes inaccessible.

4. The first network failure is repaired, and Server1 becomes accessible again.

5. The watchdog, seeing that Server1 is accessible and Server2 is not, switches Server1 to PRIMARY
ALONE.

6. The second network failure is fixed and Server2 becomes accessible again.

7. At this point, both Server1 and Server2 are in the PRIMARY ALONE state.

For more about the dangers of dual primaries, see the warning in Section 4.3.1, “Network Partitions and Dual
Primaries”.

7.2 Using the Sample Watchdog Application
If you are using the watchdog application, be sure to configure the solid.ini file in the watchdog computer.
For details, read Section 6.4, “Configuring Parameters for a Watchdog”.

Initially, you should start the watchdog after both servers are up and connected. To start the sample watchdog,
go to the current working directory of the watchdog and at the prompt, issue the command:

109

7.1.2 Coding a Watchdog for Multiple Failures

watchdog

If you have not specified the usernames and passwords for connect1 and connect2 servers (capable of serving
as Primary and Secondary) in the solid.ini file, the watchdog prompts you for them.

Once started, the watchdog pings both servers to check which one is Primary. The watchdog remains in normal
mode unless it detects a server failure after the number of retry attempts is exceeded. If a failure occurs after
the watchdog sends the last retry attempt to the server, then the watchdog switches to failure mode. Once both
the Primary and Secondary servers are up and re-connected, the watchdog switches to normal mode.

7.3 HotStandby Failure Scenarios and Watchdog Ac-
tions
This section describes how a typical watchdog program should work in specific failure scenarios that are
commonly encountered. The scenarios are in the context of either a server failure or a broken communication
link between the Primary and Secondary server, or between one of the servers and the watchdog.

7.3.1 Primary is Down

Scenario

All connections to the Primary server are broken.

Remedy

When the Primary is down, switch the Secondary to be the new Primary and set the new Primary to the
PRIMARY ALONE state. Later, the old Primary can become a new Secondary.

110

7.3 HotStandby Failure Scenarios and Watchdog Actions

Figure 7.1. Primary is Down Scenario and Remedy

Symptoms

Applications cannot connect to the Primary. Also, the watchdog poll fails at the Primary. The HSB state of
the secondary server is SECONDARY ALONE.

How to Recover

To allow the "HotStandby" (Secondary server) to replace the Primary, do the following:

1. Set the new Primary server to PRIMARY ALONE state by using the command:

ADMIN COMMAND 'hotstandby set primary alone';

111

7.3.1 Primary is Down

2. Reconnect applications to the new Primary.

3. Start using applications.

4. Fix and start the old Primary server as new Secondary server.

5. If necessary, copy the database from the new Primary to the new Secondary using command:

ADMIN COMMAND 'hotstandby netcopy';

Read Section 4.8, “Synchronizing Primary and Secondary Servers” for details.

6. Reconnect the new Primary to the new Secondary using the command:

ADMIN COMMAND 'hotstandby connect';

Further Scenarios

None.

7.3.2 Secondary is Down

Scenario

All connections to the Secondary server are broken. This may be caused either by a failure in the Secondary,
or by a failure in the network that makes it impossible for either the Primary or the Watchdog to communicate
with the Secondary server. In this section, we will refer to the Secondary as failing, but in fact the problem
may be with either the Secondary or the network.

Remedy

The standard remedy is to switch the Primary server to the PRIMARY ALONE state. After the Secondary is
up again, synchronize it with the Primary.

Upon finding a problem with the connection to the Secondary server, the Primary server:

1. Suspends any open transactions, neither committing them nor rolling them back (the Primary does not
send an error message — or a "success" message — to the client); and

2. Automatically switches its own state from PRIMARY ACTIVE to PRIMARY UNCERTAIN.

Typically, after making sure that the secondary server is unavailable, the watchdog will switch the Primary
from PRIMARY UNCERTAIN to PRIMARY ALONE. After the Primary is switched to PRIMARY ALONE

112

7.3.2 Secondary is Down

state, it can continue accepting transactions and saving them to send to the Secondary. Later, when the Sec-
ondary is brought back up, the Secondary can be sent the transaction log so that it can "catch up" to the
Primary.

The Primary commits the open transactions after the Primary is set to PRIMARY ALONE state. To avoid
the possibility that the Primary will commit the transactions when the Secondary hasn't, the transactions are
kept in the transaction log, as though they had never been sent to the Secondary. When the Secondary is
brought back up and starts catching up, the Primary sends that transaction log, and the Secondary checks each
of the transactions. If any of the transactions are duplicates (that is, if the Secondary already committed that
transaction before the Secondary failed), then the duplicate transactions are not re-executed on the Secondary.

The watchdog or system administrator must be careful in choosing whether to bring the Primary to PRIMARY
ALONE state, or choose an alternative action. If the watchdog or system administrator chooses a different
action than switching the Primary to PRIMARY ALONE state, she must take into account that the Secondary
and Primary may not have the same data i.e. they may not both have rolled back the transaction. It is possible
that the failed Secondary actually committed the data and crashed after committing the data but before sending
the confirmation to the Primary, while the Primary never committed. In this situation, the secondary may ac-
tually be "ahead" of the Primary rather than behind it.

As always, the watchdog or administrator also must be careful not to allow both servers to go into PRIMARY
ALONE state at the same time.

The diagram below is divided into three frames. The first frame shows the scenario, which is that the Primary
and watchdog have lost contact with the Secondary. The next frame shows how to respond to keep your system
working until the problem can be completely solved. The third frame shows the final state after the problem
has been solved — that is, after the broken server has been fixed, or after communications have been restored.

113

7.3.2 Secondary is Down

Figure 7.2. Secondary is Down Scenario and Remedy

Symptoms

The watchdog poll fails at the Secondary. The state of the primary server is either PRIMARY ALONE or
PRIMARY UNCERTAIN.

How to Recover

To allow the Primary server to continue to receive transactions, operating independently of the Secondary
server, do the following:

1. If the Primary server is in the PRIMARY UNCERTAIN state, then set the Primary server to PRIMARY
ALONE using the command.

ADMIN COMMAND 'hotstandby set primary alone';

114

7.3.2 Secondary is Down

2. After the Secondary server has been repaired and re-started and/or Secondary's network connections
have been re-established, check the state of the Primary server using the command.

ADMIN COMMAND 'hotstandby state';

3. If the state of the Primary server is PRIMARY ALONE, then reconnect the Primary to the Secondary
using the command

ADMIN COMMAND 'hotstandby connect';

4. If the state of the Primary server has earlier been changed to STANDALONE, then:

1. Copy the database from the new Primary to the Secondary using

ADMIN COMMAND 'hotstandby netcopy';

2. Read Section 4.8, “Synchronizing Primary and Secondary Servers” for details.

5. Reconnect the Primary to the Secondary using the command:

ADMIN COMMAND 'hotstandby connect';

Further Scenarios

If an application receives error message 10047 or 14537 from the Primary:

• Try to connect to the Secondary to check if its state was switched to new Primary.

• If its state is not one of the Primary states (i.e. PRIMARY ACTIVE or PRIMARY ALONE), see the
scenario in Section 7.3.1, “Primary is Down”.

7.3.3 Watchdog is Down

Scenario

All connections to the watchdog are broken.

Remedy

Manual intervention is required. When the watchdog is brought up, be sure to check the Primary and Secondary
servers to confirm their states.

115

7.3.3 Watchdog is Down

Figure 7.3. Watchdog is Down Scenario and Remedy

Symptoms

The watchdog process is down or network connections from the watchdog to both servers are unavailable.

How to Recover

1. Allow the Primary and Secondary servers to continue normal operations.

2. Once the watchdog is brought up, have it check the state of each server with the command:

ADMIN COMMAND 'hotstandby state';

116

7.3.3 Watchdog is Down

Further Scenarios

If the servers have changed states and one server is no longer in service, refer to the applicable scenario in
this section for instructions.

7.3.4 Communication Link Between Primary and Secondary Is
Down

Scenario

The connection between the Primary and Secondary server is broken.

The Primary will switch itself to PRIMARY UNCERTAIN state. (If AutoPrimaryAlone is set to Yes,
then the server will switch itself to PRIMARY ALONE state.)

Note

If the Primary server sends a commit message to the Secondary and then detects the failure of the
Secondary, the Primary server relies on the watchdog or the administrator to indicate how the Primary
server is to proceed. This is because the Primary server is unable to detect whether the transaction
was committed or rolled back in the Secondary before the Secondary server failed.

Until the Primary server receives a command from the watchdog or the administrator, it no longer
accepts transactions. At this stage, in order for the Primary server to continue operations, the watchdog
or administrator can set the Primary server to PRIMARY ALONE state.

Remedy

The Primary server can continue operations even when its link to the Secondary server is down. If the Primary
is not already in PRIMARY ALONE state, then switch the Primary to the PRIMARY ALONE state. Once
the link between the Primary and Secondary is restored, synchronize the databases.

117

7.3.4 Communication Link Between Primary and Secondary Is Down

Figure 7.4. Broken Link Between Primary and Secondary Scenario and Remedy

Symptoms

The Primary server has no Secondary connected and the state is PRIMARY UNCERTAIN or PRIMARY
ALONE.

How to Recover

1. Fix the network connection between the Primary and Secondary servers.

2. Check the state of the Primary server using the command:

ADMIN COMMAND 'hotstandby state';

3. If the state of the Primary server is PRIMARY ALONE, reconnect the Primary to the Secondary using
the command:

118

7.3.4 Communication Link Between Primary and Secondary Is Down

ADMIN COMMAND 'hotstandby connect';

4. If the state of the Primary server is STANDALONE, then:

a. Copy the database from the Primary to the Secondary. Read Section 4.8, “Synchronizing Primary
and Secondary Servers” for details.

Before using the

ADMIN COMMAND 'hotstandby netcopy';

command, be sure that the Secondary is up and running and is ready to receive the netcopy. Also,
make sure that you set the Primary server's state to PRIMARY ALONE.

b. Reconnect the Primary to the Secondary using the command

ADMIN COMMAND 'hotstandby connect';

Further Scenarios

If an application receives error message 10047 or 14537 from the Primary:

• Try to connect to the Secondary to check if it is switched as the new Primary.

• If the old Secondary is not switched as the new Primary, see scenario in Section 7.3.1, “Primary is Down”.

7.3.5 Communication Link Between Watchdog and Primary Is
Down

Scenario

The connection between the watchdog and the Primary server is broken.

Remedy

The Primary and Secondary servers can continue operations even when the watchdog link to the Primary
server is down. When the watchdog link to the Primary is fixed, be sure to check the states of the Primary
and Secondary servers.

119

7.3.5 Communication Link Between Watchdog and Primary Is Down

Figure 7.5. Broken Link Between Watchdog and Primary Scenario and Remedy

Symptoms

The watchdog poll fails at the Primary server. However, the secondary server state is reported to be SECOND-
ARY ACTIVE. This means that the primary server is very probably OK and that the watchdog has merely
lost contact with the Primary.

How to Recover

1. Allow the Primary and Secondary servers to continue normal operations.

2. Fix the network connection between the watchdog and the Primary server.

3. Once the network is connected, have the watchdog check the states of each server with the command:

120

7.3.5 Communication Link Between Watchdog and Primary Is Down

ADMIN COMMAND 'hotstandby state';

Further Scenarios

If the states of the servers have changed and one server is no longer in service, refer to the applicable scenario
in this section for instructions.

7.3.6 Communication Link Between Watchdog and Secondary
Is Down

Scenario

The connection between the watchdog and the Secondary server is broken.

Remedy

The Primary and Secondary servers can continue operations even when the watchdog link to the Secondary
server is down. When the watchdog link to the Secondary is fixed, be sure to check the Primary and Secondary
servers to confirm their states.

121

7.3.6 Communication Link Between Watchdog and Secondary Is Down

Figure 7.6. Broken Link Between Watchdog and Secondary Scenario and Remedy

Symptoms

The watchdog poll fails at the Secondary server.

How to Recover

1. Allow the Primary and Secondary servers to continue normal operations.

2. Fix the network connection between the watchdog and the Secondary server.

3. Once the network is connected, have the watchdog check the state of each server with the command:

ADMIN COMMAND 'hotstandby state';

122

7.3.6 Communication Link Between Watchdog and Secondary Is Down

Further Scenarios

If the servers states have changed and one server is no longer in service, refer to the applicable scenario in
this section for instructions.

7.3.7 Communication Links Between Watchdog and Primary, and
Between Primary and Secondary, Are Down

Scenario

The connections between the watchdog and the Primary server, and between the Primary server and Secondary
server, are broken.

Remedy

For the watchdog to continue monitoring the Primary server, switch the Secondary server to be the new
Primary and set this new Primary to the PRIMARY ALONE state. Later, set up a new Secondary server and
synchronize it with the Primary.

123

7.3.7 Communication Links Between Watchdog and Primary, and Between
Primary and Secondary, Are Down

Figure 7.7. Broken Link Between Watchdog and Primary, and between Primary and
Secondary, Scenario and Remedy

Symptoms

The watchdog poll fails at the Primary server. The Secondary server and Primary server have lost their con-
nections to each other; therefore Server2 is in the state SECONDARY ALONE, and the Primary (if it can be
contacted) will report that its state is PRIMARY UNCERTAIN or PRIMARY ALONE.

The beginning of this scenario assumes that application(s) are possibly connected to the old Primary. However,
since the old Primary is in the PRIMARY UNCERTAIN state, the application(s) are unable to perform updates.
Note that it is also possible that the application(s) connected to Server1 may have lost their communication
link and no longer know that the old Primary exists.

124

7.3.7 Communication Links Between Watchdog and Primary, and Between
Primary and Secondary, Are Down

How to Recover

To allow the hot standby server (the Secondary server) to replace the Primary, do the following:

1. If the old Primary is in the PRIMARY UNCERTAIN state or is cut off from the applications as well as
the Secondary, then set the Secondary server to PRIMARY ALONE state using the command:

ADMIN COMMAND 'hotstandby set primary alone';

2. Reconnect applications to the new Primary.

3. Fix the network or the broken connections to the old Primary.

4. Check the server states. Both servers must now be running.

5. If the new Primary is in STANDALONE state (for example, because the new Primary's transaction log
filled up while the connections were being fixed):

1. Set the new primary to PRIMARY ALONE state using the command

ADMIN COMMAND 'hotstandby set primary alone';

2. Copy the database from the new Primary to the new Secondary. Read Section 4.8, “Synchronizing
Primary and Secondary Servers” for details.

6. If the new Primary is in PRIMARY ALONE state:

1. Switch the old Primary to be the new Secondary server using the command:

ADMIN COMMAND 'hotstandby switch secondary';

7. Reconnect the new Primary to the new Secondary using the command:

ADMIN COMMAND 'hotstandby connect';

Further Scenarios

If an application receives error message 10047 or 14537 from the new Primary:

• Try to connect to the old Secondary to check if it has switched to be the new Primary.

• If the old Secondary is not switched to be the new Primary, re-execute the transaction with the original
Primary in PRIMARY ALONE state.

125

7.3.7 Communication Links Between Watchdog and Primary, and Between
Primary and Secondary, Are Down

7.3.8 Communication Links Between Watchdog and Secondary,
and Between Primary and Secondary, Are Down

Scenario

The connection between the watchdog and the Secondary server, and the connection between the Primary
server and Secondary, server are broken.

Remedy

The Primary server can continue operations even when its links to the Secondary server and the watchdog
are down. Switch the Primary server to the PRIMARY ALONE state, if it is not already in PRIMARY ALONE
state. Later, when the Secondary is up again, synchronize it with the Primary.

126

7.3.8 Communication Links Between Watchdog and Secondary, and
Between Primary and Secondary, Are Down

Figure 7.8. Broken Link between Watchdog and Secondary and between Primary and
Secondary Scenario and Remedy

Symptoms

The watchdog poll fails at the Secondary; the Primary server has no Secondary connected and switches to
state PRIMARY UNCERTAIN or PRIMARY ALONE.

How to Recover

1. Try to fix the connections.

2. After the connections are fixed, check the state of the Primary server using the command ADMIN
COMMAND 'hotstandby state'.

3. If the state of the Primary is STANDALONE:

127

7.3.8 Communication Links Between Watchdog and Secondary, and
Between Primary and Secondary, Are Down

1. Ensure that both servers are running.

2. Set the state of the Primary server to PRIMARY ALONE using command:

ADMIN COMMAND 'hotstandby set primary alone';

3. Copy the database from the Primary to the secondary using command:

ADMIN COMMAND 'hotstandby netcopy';

Read Section 4.8, “Synchronizing Primary and Secondary Servers” for details.

4. Reconnect the Primary to the Secondary using the command

ADMIN COMMAND 'hotstandby connect';

Further Scenarios

If an application receives error message 10047 or 14537 from the Primary:

• Try to connect to the Secondary to check if it switched to be Primary.

• If the Secondary is not switched as the new Primary, re-execute the transaction with the original Primary
in PRIMARY ALONE state.

128

7.3.8 Communication Links Between Watchdog and Secondary, and
Between Primary and Secondary, Are Down

Chapter 8. Upgrading Your Server by
Using HotStandby
8.1 Cold and Hot Migration
When you update the version of the software, we are talking migration. For a highly-available system like
solidDB HotStandby, the migration may be "cold" or "hot".

Cold migration is the traditional way to migrate. You shut down the whole system (both servers) and restart
with new software and configuration data.

solidDB's High Availability design allows you to upgrade your solidDB servers without taking your entire
system off-line for the amount of time required to upgrade the servers. One server can keep operating while
the other server is being upgraded. We call this "hot migration".

Caution

Although your entire system will not be down, users/applications may have to disconnect from one
server and connect to the other server.

8.2 Migration between HSB-Compatible Versions
When the versions of the software are HSB-compatible, each of the servers may be a of a different version
and still they may be able to communicate with each other. For example, all releases of any major version of
solidDB are HSB-compatible.

8.2.1 Cold Migration

The cold migration is trivial. You shut down the whole system and restart the servers with the new software
with the same roles as before the shutdown.

8.2.2 Hot Migration

The basic outline for hot migration is:

1. Disconnect and shut down the Secondary, and then upgrade the Secondary.

129

2. set the old Secondary to be the new Primary (in PRIMARY ALONE state); shut down the old Primary;
and upgrade the old Primary.

3. set the old Secondary to be the new Primary (in PRIMARY ALONE state); shut down the old Primary;
and upgrade the old Primary.

4. Bring the old Primary back up as the new Secondary. Connect the new Primary and new Secondary
servers and let the new Secondary "catch up" to the new Primary.

Note that this procedure will "reverse" your servers. At the end of this sequence of steps, the server that was
originally the Primary will be the Secondary, and vice-versa.

8.3 Migration between HSB-Incompatible Versions
When the versions are incompatible, certain scenarios have to be followed in the system upgrade. Specifically
there conversion command line parameters that have to be used.

Versions migrateable but HSB- incompatible with this version are: 3.1, 3.7 and 4.0. Migration from earlier
versions than 3.1 is not supported.

A more detailed step-by-step procedure is shown below:

8.3.1 Preparation Steps

1. We assume that applications will fail over to the new Primary automatically by sensing the state of each
connection. Thus a controlled switchover of the servers will not disrupt the applications, except that open
transactions may be aborted during a switchover.

If your applications have not been designed to fail over automatically, then you may need to notify users
that they will lose their connections and will need to re-connect to the new Primary server.

2. Prepare your system and your software for upgrades. Among the tasks that you may want to do:

a. Since each of your solidDB servers will be operating alone (specifically, in PRIMARY ALONE
state) during part of the upgrade operation, you should make sure that both computers are in a
"healthy" state, e.g. they have sufficient free disk space, reliable network connections, a UPS in
case of power failure, etc.

b. Each of the servers will operate in PRIMARY ALONE state for at least a short time (while the
other server is being upgraded). While the server is in PRIMARY ALONE state, it will be storing
transactions in the transaction log. You must have enough disk space available for the log file to
store all the transactions that will occur while the other server is being upgraded (including the time
it takes that other server to "catch up" after it is restarted).

130

8.3 Migration between HSB-Incompatible Versions

c. Make sure that a copy of the upgrade software is on each computer or is readily available.

3. Caution

If you have a "watchdog" program, then you should temporarily turn off that watchdog so that
it does not issue commands that conflict with the commands that you issue during the upgrade
process.

For example, after you disconnect the Primary from the Secondary, you wouldn't want the
watchdog to try to re-connect them before you upgrade the Secondary.

Cold Migration Procedure

The migration steps are:

1. Disconnect the servers and shut them down.

2. Install the new version of the software.

3. Update the solid.ini files following the guidelines below.

4. Start Primary with the command line parameter -x autoconvert, which instructs the server to convert
existing database to the new format.

5. Set the Primary to the PRIMARY ALONE state.

6. Perform 'hsb copy' or 'hsb netcopy' from Primary to Secondary

7. Connect the servers.

Hot Migration Procedure

Note: in the table below, S1 ("OP") and S2 ("OS") represent the original Primary and Secondary servers.
Each server's state changes as you go through this process.

Table 8.1. Hot Migration

COMMENTSADMIN COMMAND

Disconnect Primary from Secondary.ADMIN COMMAND 'hsb set broken';S11

ADMIN COMMAND 'hsb status connect
ping';

131

8.3.1 Preparation Steps

COMMENTSADMIN COMMAND

Shut down server S2 (Secondary).ADMIN COMMAND 'shutdown force';S 2
OS

2

Tell server S1 (Primary) server to operate in PRIMARY
ALONE state if it has not already automatically switched
to that state.

ADMIN COMMAND 'hsb set primary
alone';

ADMIN COMMAND 'hsb state';

S 1
OP

3

Verify that server S1 (Primary) is in the PRIMARY
ALONE state.

You should update the configuration parameters in the
solid.ini file, as well as updating the software.

Upgrade server S2 (original Secondary).S 2
OS

4

Bring up server S2 (original Secondary) using the -x mi-
gratehsbg2 command-line switch. The server should come
up in Secondary Alone state.

solid -x migratehsbg2S 2
OS

5

This command-line switch has two effects. It instructs the
server to accept and convert the existing database (the
same effect as the -x autoconvert parameter). Also, it en-
ables the new Secondary to communicate with the old
Primary using the old replication protocol.

Check server S1 (Primary) server to make sure that it is
still in PRIMARY ALONE state.

ADMIN COMMAND 'hsb state';

ADMIN COMMAND 'hsb connect';

S 1
OP

6

The "hsb connect" command will connect the Primary
server to the Secondary, and will start the process by which
the Secondary "catches up" on data changes that occurred
while the Secondary was down. (Note that you cannot
connect from the Secondary if it is running a newer version
of the server.)

If the catchup fails, then you will have to do the following:Wait for the "catchup" to complete before
continuing.

S 1
OP

7

1. Shut down server S2 (the Secondary).

2. Do an "hsb copy" from S1 (the Primary) to copy the
entire database to server S2.

3. Recover the copy with the old version of the server
(S2).

4. Shut Down S2 (the Secondary).

132

8.3.1 Preparation Steps

COMMENTSADMIN COMMAND

5. Go back to the previous step.

(Note: In the secon step, you must use "hsb copy" rather
than "hsb netcopy" because "hsb netcopy" does not work
between different server versions.)

After server S2 (Secondary) has caught up, make it the
new Primary.

After the servers are connected and caught up,
perform:

S 1
OP

8

Shut down server S1 (the former Primary) to upgrade it.ADMIN COMMAND 'shutdown force';

CAUTION: The "force" option will abort any open trans-
actions.

Set the new Primary server S2 (old Secondary) to operate
in the PRIMARY ALONE state if it has not already auto-
matically switched to that state.

ADMIN COMMAND 'hsb set primary
alone';

ADMIN COMMAND 'hsb state';

S 2
OS

9

Verify that server S2 is in the PRIMARY ALONE state.

You should update the configuration parameters in the
solid.ini file, as well as updating the software.

Upgrade server S1 (your original Primary
server).

S 1
OP

10

Re-start the solidDB server on server S1 in the OFFLINE
state.

solid -x backupserverS 1
OP

11

Check the new Primary server S2 (old Secondary) to make
sure that it is still in PRIMARY ALONE state.

ADMIN COMMAND 'hsb state';

ADMIN COMMAND 'hsb netcopy';

S 2
OS

12

Netcopy the database from the new Primary (S2) to the
new Secondary (S1).

Verify that the netcopy succeed.ADMIN COMMAND 'hsb status copy';S 2
OS

13

The "hsb connect" command will connect the new Primary
server to the new Secondary, and will start the process by

ADMIN COMMAND 'hsb connect';

which the new Secondary "catches up" on data changes
that occurred while it was down.

If this step fails, then copy the entire database to the Sec-
ondary server (using "hsb copy") and then resume from
step 10.

133

8.3.1 Preparation Steps

8.3.2 After the Upgrade

After the new Secondary server "catches up" to the new Primary, your system should be completely back to
normal. Both the new Primary and the new Secondary server will be upgraded and will have the most current
data. You may want to run some test queries to make sure that everything is operating properly.

1. Test that both your Primary server and your Secondary server are working correctly. For example, you
might choose the following sequence of operations:

On the Primary:

ADMIN COMMAND 'hsb state';

ADMIN COMMAND 'hsb status catchup';

Issue some type of read-only query.

On the Secondary:

ADMIN COMMAND 'hsb state';

ADMIN COMMAND 'hsb status catchup';

Issue some type of read-only query.

2. If you had a "watchdog" program, re-start it.

Note

That this same approach works regardless of whether you want to upgrade your hardware, your oper-
ating system, or your solidDB. You can take down one machine and direct all users to connect to the
server on the other machine.

134

8.3.2 After the Upgrade

Appendix A. Configuration
Parameters
This appendix discusses the solid.ini configuration parameters that are specific to the solidDB CarrierGrade
option. These parameters are set in the [HotStandby] section of the solid.ini configuration file. For
a discussion of other solid.ini parameters, see solidDB Administration Guide.

For information about how to format parameter names and section headings, see solidDB Administration
Guide, which has an appendix on configuration parameters. That appendix explains the rules you must follow
when formatting parameter names and values, etc. The [HotStandby] section of the solid.ini file
follows those same rules.

This appendix also explains a few of the parameters that can be used in the [Watchdog] section of the
solid.ini file. These parameters are specific to the sample watchdog program that solidDB provides. If
you write your own watchdog program, you do not need to use any of these parameters.

Note that some parameters in sections other than the [HotStandby] section also affect HotStandby func-
tionality. These other parameters are documented in Chapter 6, Configuring HotStandby and in solidDB Ad-
ministration Guide.

A.1 Ensuring that Primary and Secondary Parameter
Values Are Coordinated
This section explains which parameters should be the same on the Primary and Secondary servers, and which
parameters should be different.

Certain parameters should be the same on both the Primary and the Secondary. The reason for this is that after
a failover, the original Secondary becomes the new Primary, and it should behave the same as the old Primary.
Note that using the same values is not an absolute requirement; the servers will not fail if you use different
values, but clients may see different behavior.

Some parameters that are not in the [HotStandby] section, but which are indirectly related, should also
be the same on both the Primary and Secondary servers. For example, the DurabilityLevel parameter
generally should be the same on the Primary and Secondary.

Certain parameters should be different on the Primary and Secondary servers. The reason for this is so that
the servers can be uniquely identified and can talk to each other.

The following HotStandby parameters should be the SAME on both the Primary and Secondary:

135

• [HotStandby]

• 2SafeAckPolicy

• AutoPrimaryAlone

• ConnectTimeout

• HSBEnabled

• PrimaryAlone (deprecated, but should be the same if used)

• [IndexFile]

• FileSpec should be "compatible" meaning that the number of FileSpecs should be the same
and the sizes of the corresponding FileSpecs should match.

• BlockSize

• [Logging]

• BlockSize

The following parameters should be DIFFERENT:

• [HotStandby]

• Connect

The following parameters may be the same or different, depending upon circumstances such as the disk drive
configuration on the computer:

• [General]

• BackupDirectory

• [HotStandby]

• CopyDirectory

There are also some settings of "non-HSB" parameters that affect HSB performance. For example, the Dur-
abilityLevel parameter in the [Logging] section of the solid.ini file has a setting that allows
you to optimize performance with HotStandby. See Section 2.3.1, “Adaptive Durability” and see the description
of DurabilityLevel in solidDB Administration Guide.

136

A.1 Ensuring that Primary and Secondary Parameter Values Are Coordin-
ated

A.2 Determining Whether the Primary's Settings Take
Precedence Over the Secondary's
As we described above, some parameters should be the same for both the Primary and Secondary servers. If
you do not set the values the same, you might expect that each server will use the value defined in that server's
solid.ini file. However, this is not necessarily the case.

Even for some parameters that control the Secondary's behavior, like 2SafeAckPolicy, the value on the
Primary is the value that determines the behavior. The principle is that all safeness and durability parameters
are controlled at the Primary. For example, the Primary reads its value of 2SafeAckPolicy and sends that
value to the Secondary to use. The value stored in the Secondary's solid.ini file is used only if the Secondary
becomes the Primary.

Parameters for which the Primary's value takes precedence include:

• HotStandby.SafenessLevel

• HotStandby.2SafeAckPolicy

• Logging.DurabilityLevel

• HotStandby.NetcopyRpcTimeout

At the time the command 'hsb connect' is executed, the following parameters residing at the Primary take
precedence

• HotStandby.PingTimeout

• HotStandby.PingInterval

A.3 Querying HotStandby Configuration Parameters
Standard parameter manipulation commands may be used to query the values and properties of the HotStandby
parameters. The commands are:

ADMIN COMMAND '[describe] parameter[section_name[.parameter_name]]';

For example:

ADMIN COMMAND 'parameter logging.durabilitylevel';

137

A.2 Determining Whether the Primary's Settings Take Precedence Over
the Secondary's

 RC TEXT
 -- ----
 0 Logging DurabilityLevel 3 3 2

ADMIN COMMAND 'parameter hotstandby.MaxLogSize';
 RC TEXT
 -- ----
 0 HotStandby MaxLogSize 10000000 0 0

The three values shown in the result row are, from the left:

• Current value - set dynamically or inherited from the default or factory value.

• Default value - read originally from the solid.ini file or inherited from the factory value.

• Factory value - preset in the product.

A.4 Modifying HotStandby Configuration Parameters
Normally, you change the value of a parameter by changing the value in the solid.ini configuration file
and then re-starting the server. However, most of the HotStandby parameters can also be changed with an
ADMIN COMMAND:

ADMIN COMMAND 'parameter section_name.parameter_name=value
 [temporary]';

Note

There is also a deprecated command ADMIN COMMAND "hotstandby parameter ..." that may be
used to modify the HotStandby parameters. Its syntax is the following:

ADMIN COMMAND 'hotstandby parameter parameter_name value';

A.5 Access Mode
When the value of a parameter is changed with an ADMIN command, the change may or may not apply im-
mediately, and may or may not apply the next time that the server is started. If a parameter value is written
to the solid.ini file, then it will take effect the next time that the server starts. The parameter's Access
Mode tells whether the parameter can be changed dynamically, and when the change takes effect.

138

A.4 Modifying HotStandby Configuration Parameters

A.5.1 Access Mode Values

The table later in this appendix lists the Access Mode for each parameter. The possible Access Modes are:

• RO (read-only): the value cannot be changed; the current value is always identical to the startup value.

• RW: can be changed through an ADMIN COMMAND, and the change takes effect immediately.

• RW/Startup: can be changed through an ADMIN COMMAND, and the change takes effect the next time
that the server starts.

• RW/Create: can be changed through an ADMIN COMMAND, and the change applies when a new database
is created.

A.5.2 Saving Parameter Changes

Unless the option temporary is used, all the changes made to the parameters will be saved in the solid.ini
file at the next checkpoint. The saving may be also expedited with the command:

ADMIN COMMAND 'save parameters [file_name]';

By default, the command rewrites the default solid.ini file. By using the file_name option, the output
may be directed to a different location.

A.6 Cluster Section

Table A.1. Cluster Parameters

Access
Mode

Factory
Value

Description[Cluster]

RW/Star-
tup

50Percentage of read load directed to the PrimaryReadMostlyLoadPer-
centAtPrimary

139

A.5.1 Access Mode Values

A.7 HotStandby Section

Table A.2. HotStandby Parameters

Access
Mode

Factory
Value

Description[HotStandby]

RW1000In 1-Safe replication, the maximum delay before a com-
mitted transaction is sent to the Secondary (in milli-
seconds).

1SafeMaxDelay

RW1This specifies the timing of the Secondary's acknowledge-
ment when it receives a transaction from the Primary.

2SafeAckPolicy

Valid values are:

• 1 = 2-safe received. The Secondary server acknow-
ledges when it receives the data.

• 2 = 2-safe visible. The Secondary server acknow-
ledges when the data is "visible", i.e. when the Sec-
ondary has executed the transaction.

• 3 = 2-safe durable. The Secondary server acknow-
ledges when it has made the data durable, i.e. when
it has committed the data and written the data to the
disk.

Not surprisingly, 2-safe durable is the safest approach,
and 2-safe received has the fastest response time. How-
ever, in practice, the 2-safe received mode provides in
most cases sufficient guarantees for data safety hence
providing the best compromise between safety and speed.

This parameter applies only if the server is using 2-safe
replication.

NOTE! Although this parameter controls the Secondary
server's behavior, this parameter is set on the Primary.
The value in the Secondary's solid.ini value is ig-
nored.

140

A.7 HotStandby Section

Access
Mode

Factory
Value

Description[HotStandby]

(See chapters "Determining Whether the Primary's Set-
tings Take Precedence Over the Secondary's" and "En-
suring that Primary and Secondary Parameter Values
Are Coordinated" in solidDB High Availability User
Guide.)

RWNoIf this parameter is set to Yes, then the server is automat-
ically put in PRIMARY ALONE state (rather than

AutoPrimaryAlone

PRIMARY UNCERTAIN state) when the connection to
the Secondary is broken. If you plan to set this to "yes",
please read the very important warnings in "Network
Partitions and Dual Primaries" in solidDB High Availab-
ility User Guide.

RW70While the server is performing catchup, it also continues
to service database requests from clients. You may use

CatchupSpeedRate

the CatchupSpeedRate parameter to give greater
importance to responding to application requests and
lower priority to catchup, or vice versa.

The speed rate is expressed as a percentage of the max-
imum available speed dictated by the link and Secondary
throughput. Larger numbers mean more emphasis on
catchup and less on servicing client requests. Allowed
values are 1-99. The factory value is 70.

RWNo factory
value.

The Connect parameter indicates the "address" of the
other HotStandby server in the pair.

Connect

The format of the Connect string in the HotStandby sec-
tion is the same as the format of the Listen parameter
in the [Com] section (see solidDB Administration Guide
for more details).

If you omit this parameter in a server that you intend for
HotStandby, then you can set this parameter dynamically
by using an ADMIN COMMAND. Until the server has
a Connect string, the server can only be in the states that
do not involve a connection, i.e. PRIMARY ALONE,
SECONDARY ALONE, and STANDALONE.

141

A.7 HotStandby Section

Access
Mode

Factory
Value

Description[HotStandby]

The Connect parameter is ignored unless the HSBEn-
abled parameter is set to "yes".

RW0 (no
timeout)

By specifying a connect timeout value, you can set the
maximum time in seconds that a HotStandby connect
operation waits for a connection to a remote machine.

ConnectTimeout

Unit: 1 ms
The ConnectTimeout parameter (which is useful
only on certain platforms) is only used with certain ad-
ministration commands. These are:

hotstandby connect

hotstandby switch primary

hotstandby switch secondary

For example, to set the timeout to 30 seconds (30000
milliseconds)

[HotStandby]
ConnectTimeout=30000

See also PingTimeout.

RWNo factory
value

The CopyDirectory parameter in the [Hot-
Standby] section defines a name and location for the

CopyDirectory

HotStandby copy operation that is performed when the
user executes the command:

ADMIN COMMAND 'hotstandby copy';

For example, the parameter may look like:

[HotStandby]
CopyDirectory=
C:\Solid\secondary\dbfiles

142

A.7 HotStandby Section

Access
Mode

Factory
Value

Description[HotStandby]

If you provide a relative path for the CopyDirectory
parameter, the path will be relative to the directory that
holds the Primary server's solid.ini file.

This parameter has no factory value, so if the directory
is not specified in the solid.ini file, it must be
provided in the copy command.

Please note that ADMIN COMMAND 'hotstandby
netcopy' as the more flexible solution is the recommen-
ded way to copy the database.

ROnoIf this parameter is set to yes, the server may act as a
HotStandby Primary or Secondary server. If this paramet-

HSBEnabled

er is set to no, then the server may not act as a Hot-
Standby server.

Setting this parameter to Yes will implicitly define the
default initial state of the server to be SECONDARY
ALONE when the server first starts. Valid values are
"yes" and "no".

To use HotStandby, you must also specify the Connect
parameter, either by setting it in the solid.ini file or
by using an ADMIN COMMAND to set it.

0Maximum size of the disk-based HSB log. The factory
value: unlimited

MaxLogSize

Unit: 1 byte
k=KB
m=MB

RO8MWhen the file-based logging is disabled (Logging.Lo-
gEnabled=No), the size of the in-memory log holding

MaxMemLogSize

Unit: 1 byte
k=KB
m=MB

transactions before they are sent to the Secondary. The
value affects the time the server may stay in the
PRIMARY ALONE state, before the in-memory log
becomes full.

RW30000Data transmission acknowledgment timeout for netcopy
operation (in milliseconds)

NetcopyRpcTimeout

Unit: 1 ms

143

A.7 HotStandby Section

Access
Mode

Factory
Value

Description[HotStandby]

RW1000The Primary and Secondary "ping" each other at regular
intervals to make sure that they are still connected. (These

PingInterval

Unit: 1 mspings are independent of the transaction information that
the Primary sends to the Secondary.)

The value is equal to the interval (in milliseconds)
between two consecutive pings sent by a server. The
factory value is 1000 (one second).

RW4000The parameter specifies how long a server should wait
before concluding that the other server is down or inac-
cessible.

PingTimeout

Unit: 1 ms

After the time specified (in milliseconds) has passed the
server concludes that a connection is broken and changes
the state accordingly. The factory value is 4000 (four
seconds).

See "PingTimeout and PingInterval Parameters [Hot-
Standby]" in solidDB High Availability User Guide.

See also ConnectTimeout.

RWNoThis parameter is deprecated. Use the AutoPrimary-
Alone parameter.

PrimaryAlone

RWPossible val-
ues are:

This parameter sets the safeness level of the replication
protocol.

SafenessLevel

1safe, 2safe
and autoBy using the "auto" value, you can allow the safeness

level to dynamically change in relation to the durability
level. If you set SafenessLevel to "auto" and set the
durability to relaxed by using the SET DURABILITY
command or the DurabilityLevel parameter, the
safeness level is set to 1-safe, and when you set the dur-
ability level to strict, the safeness level is set to 2-safe.
However, if DurabilityLevel is set to 2 (Adaptive
Durability), the "auto" setting has no effect - the safeness
level will always be 2-safe.

144

A.7 HotStandby Section

A.8 Watchdog Section

Important

The parameters in the [Watchdog] section of the solid.ini file are NOT all pre-defined by
solidDB. Depending upon how you write your watchdog and whether you want it to read parameter
information from the solid.ini file, you may use any mix of the parameters defined here and
parameters that you have defined. You may also ignore parameters. The parameters shown here are
for the sample C-language watchdog program that solidDB provides.

Note

Note that in solidDB's sample watchdog program, parameter names are not case-sensitive.

Table A.3. Watchdog Parameters

Factory ValueDescription[Watchdog]

YesIf the AutoSwitch parameter is set to yes, the watchdog
automatically does the following:

AutoSwitch

1) If the Secondary server fails, then the watchdog tells
the Primary server to switch to PRIMARY ALONE state
(rather than stay in PRIMARY UNCERTAIN) state.

2) If the Primary server fails, then the watchdog automat-
ically sends the commands

'hsb switch primary'
'hsb set primary alone'

to switch the original Secondary to be the new Primary.
For example:

[Watchdog]
AutoSwitch = NO

This parameter is optional.

145

A.8 Watchdog Section

Factory ValueDescription[Watchdog]

NoneThe Connect1 parameter in the [Watchdog] section
enables the watchdog application to connect to the Primary

Connect1

or Secondary server. This is a required parameter that
defines the protocol and network address for the Con-
nect1 server.

NoneThe Connect2 parameter in the [Watchdog] section
enables the watchdog application to connect to the Primary

Connect2

or Secondary server. This is a required parameter that
defines the protocol and network address for the Con-
nect2 server.

YesIf DualSecAutoSwitch = Yes and both servers are
secondary, then the Watchdog will automatically select

DualSecAuto-
Switch

one of the two secondaries to be a new primary and switch
it to primary. If DualSecAutoSwitch = No then the
system administrator must switch one server to be the
primary. Note that DualSecAutoSwitch applies
whether the Watchdog is in "normal" mode or "failure"
mode.

0The NumRetry parameter in the [Watchdog] section
lets you specify the number of watchdog attempts to con-

NumRetry

nect to a Secondary or Primary server before the connec-
tion attempt is considered a response failure or error. For
example:

[Watchdog]
NumRetry = 3

The retries are in addition to the original try. If number of
retries is set to 3, then the total number of attempts is 4.
Note that the retries are immediate. The watchdog does
not wait for an interval of time (such as PingTimeout)
in between retries when there is a failure.

This parameter is optional.

No factory value.See the description of the Username1 and Username2
parameters below.

Password1

Password2

146

A.8 Watchdog Section

Factory ValueDescription[Watchdog]

NoSetting this parameter to Yes can speed up watchdog reac-
tions.

Pessimistic

When Pessimistic = No, the watchdog checks its
connections with the servers, but does not actually act (e.g.
change the state of a server to PRIMARY ALONE) until
after one of the servers detects that there is a problem and
changes its state (e.g. to PRIMARY UNCERTAIN).

When Pessimistic = Yes, the watchdog acts as
soon as the watchdog itself loses contact with one of the
servers; the watchdog does not wait for the remaining
server to change states. This can speed up the reaction
time, but may also increase the odds of false alarms, for
example due to network problems.

When Pessimistic = Yes, the watchdog reacts as
follows: If the watchdog has lost contact with the Primary,
then the watchdog switches the Secondary to be the
Primary; if the watchdog loses contact with the Secondary,
then the watchdog sets the Primary to PRIMARY ALONE.

Caution

Setting Pessimistic = Yes may cause extra
switching or even dual primaries. This parameter
should not be set to Yes unless the network is
much less likely to fail than the server.

You can also turn on Pessimistic behavior by using the
optional command-line switch "-p".

1000The PingInterval parameter in the [Watchdog]
section lets you specify the interval in milliseconds

PingInterval

(1 second)between querying status connect information in normal
watchdog mode. To detect server failure, the watchdog
sends the hotstandby status connect command to both
Primary and Secondary servers after every PingInter-
val milliseconds. For example:

147

A.8 Watchdog Section

Factory ValueDescription[Watchdog]

[Watchdog]
PingInterval = 5000

This parameter is optional.

Caution

Previous sample watchdogs required that the
PingInterval be specified in seconds, not
milliseconds. If you are using an older sol-
id.ini file, you should update it.

No factory value.The Username and Password parameters in the
[Watchdog] section are optional. They specify the

Username1

Username2 username and password that are authorized for using the
connect1 server. For example:

[Watchdog]
Username1 = Tom
Password1 = dr17xy
Username2 = Jerry
Password2 = M89tvt

If (for security reasons) these parameters are not specified
in the solid.ini configuration file, the watchdog will
prompt for them when the watchdog is started.

Watchdog.logThe WatchdogLog parameter in the [Watchdog]
section lets you specify the file name of the watchdog log.

WatchdogLog

The watchdog log is created in the current working direct-
ory. It is used to record watchdog messages, alerting ad-
ministrators of the need to issue watchdog commands.

For example:

[Watchdog]

148

A.8 Watchdog Section

Factory ValueDescription[Watchdog]

WatchdogLog = Watchdog.log

Note that quotation marks around the file name are not
required (as long as it does not contain special characters
such as the blank or certain punctuation marks).

This parameter is optional.

Note

HotStandby is affected by other configuration parameters such as DurabilityLevel.

When using the parameter

[Logging]
DurabilityLevel

the DurabilityLevel parameter value affects only the Primary server. The logging mode of the Secondary
server is dictated by the 2SafeAckPolicy parameter in the [HotStandby] section.

149

A.8 Watchdog Section

150

Appendix B. Error Codes
This appendix documents error codes that are related to HotStandby. Most other server error codes are docu-
mented in solidDB Administration Guide.

Some of the errors documented in this chapters are values of the RC column of the ADMIN COMMAND
result set, whereas some other errors are returned as the error code of the ODBC or JDBC driver. For example,
all "solidDB HotStandby Errors" are ADMIN COMMAND result set values, whereas all "solidDB Commu-
nication Errors" are returned by the driver.

The error categories covered in the tables contained in this appendix are:

• solidDB HotStandby Errors (14009 - 147xx, 307xx)

These errors occur when using specific HotStandby commands, which are solidDB SQL extensions.

• solidDB Database Errors (10002 - 10050)

These errors are detected by solidDB and are sent to the client application. They may demand administrative
actions.

• solidDB Database Table Errors (13xxx)

These errors are caused by erroneous SQL statements and are detected by solidDB. Administrative actions
are not needed.

• Solid Communication Errors (21306, 21308)

These errors are caused by network errors. These errors demand administrative actions.

B.1 HotStandby Errors and Status Codes

Table B.1. HotStandby Errors and Status Codes

DescriptionError/Status
code

ACTIVE14003

ADMIN COMMANDs that may return this status in the result set of the command:

ADMIN COMMAND 'hotstandby status switch'

151

DescriptionError/Status
code

ADMIN COMMAND 'hotstandby status catchup'

ADMIN COMMAND 'hotstandby status copy'

Meaning: The switch process, catchup process, or copy/netcopy process is still active.

CONNECTING14007

ADMIN COMMANDs that may return this status in the result set of the command:

ADMIN COMMAND 'hotstandby status connect'

Meaning: The Primary and Secondary servers are in the process of connecting.

CATCHUP14008

ADMIN COMMANDs that may return this status in the result set of the command:

ADMIN COMMAND 'hotstandby status connect'

Meaning: The Primary server is connected to the Secondary server, but the transaction
log is not yet fully copied. This message is returned only from the Primary server.

No server switch occurred before.14009

ADMIN COMMANDs that may return this status in the result set of the command:

ADMIN COMMAND 'hotstandby status switch'

Meaning: The switch process has never happened between the servers.

Operation failed.14501

Meaning: The operation failed and the server is shutting down. Failure may be due to is-
suing the command to a non-HotStandby server, or to either a Primary or Secondary
server in which the command does not apply.

ADMIN COMMANDs that may return this status in the result set of the command:

ADMIN COMMAND 'hotstandby switch primary'

ADMIN COMMAND 'hotstandby switch secondary'

ADMIN COMMAND 'hotstandby cominfo'

152

B.1 HotStandby Errors and Status Codes

DescriptionError/Status
code

ADMIN COMMAND 'hotstandby connect'

ADMIN COMMAND 'hotstandby status switch'

ADMIN COMMAND 'hotstandby set standalone'

ADMIN COMMAND 'hotstandby copy'

ADMIN COMMAND 'hotstandby netcopy'

RPC parameter is invalid14502

Meaning: some of the connection info provided in the HSB connect string is erroneous
and the connection to another server failed.

ADMIN COMMANDs that may return this status in the result set of the command:

ADMIN COMMAND 'hotstandby status connect'

Communication error, connection lost.14503

Meaning: There was a communication error and the other server was not found. There
was a failure to connect to the other server.

ADMIN COMMANDs that may return this status in the result set of the command:

ADMIN COMMAND 'hotstandby status connect'

Server is HotStandby secondary server, no connections are allowed.14520

HotStandby copy directory not specified.14522

Meaning: No copy directory is specified.

ADMIN COMMANDs that may return this status in the result set of the command:

ADMIN COMMAND 'hotstandby copy'

To solve this problem, either specify the directory as part of the command, e.g.

ADMIN COMMAND 'hotstandby copy \Secondary\dbfiles\'

or else set the CopyDirectory parameter in the solid.ini configuration file.

Switch process is already active.14523

153

B.1 HotStandby Errors and Status Codes

DescriptionError/Status
code

Meaning: The switch process is already active in the HotStandby server. If you only need
to complete the current switch, then wait. If you are trying to switch a second time (that
is, switch back to the original configuration), then you must wait for the first switch to
complete before you can start the second switch.

ADMIN COMMANDs that may return this status in the result set of the command:

ADMIN COMMAND 'hotstandby switch primary'

ADMIN COMMAND 'hotstandby switch secondary'

ADMIN COMMAND 'hotstandby status switch'

HotStandby databases have a different base database, database time stamps are different.14524

Meaning: Databases are from a different seed database. You must synchronize databases.
You may need to perform netcopy of the Primary's database to the Secondary.

ADMIN COMMANDs that may return this status in the result set of the command:

ADMIN COMMAND 'hotstandby connect'

ADMIN COMMAND 'hotstandby status switch'

HotStandby databases are not properly synchronized.14525

Meaning: Databases are not properly synchronized. You must synchronize the databases.
You may need to start one of the database servers (the one that you intend to become the
Secondary) with the command line parameter -x backupserver and then netcopy the
Primary's database to the Secondary.

ADMIN COMMANDs that may return this status in the result set of the command:

ADMIN COMMAND 'hotstandby connect'

ADMIN COMMAND 'hotstandby status switch'

Invalid argument.14526

Meaning: An argument used in the HotStandby ADMIN COMMAND is unknown or in-
valid.

154

B.1 HotStandby Errors and Status Codes

DescriptionError/Status
code

All HotStandby commands can return this error in the result set of the ADMIN COM-
MAND.

Note: In the following HotStandby commands, the invalid argument error is a syntax error
when the specified Primary or Secondary server can not apply to the switch:

ADMIN COMMAND 'hotstandby switch primary'

ADMIN COMMAND 'hotstandby switch secondary'

This is a non-HotStandby server.14527

Meaning: The command was executed on a server that is not configured for HotStandby.

ADMIN COMMANDs that may return this status in the result set of the command:

ADMIN COMMAND 'hotstandby connect'

ADMIN COMMAND 'hotstandby status switch'

ADMIN COMMAND 'hotstandby switch primary'

ADMIN COMMAND 'hotstandby switch secondary'

ADMIN COMMAND 'hotstandby state'

Both HotStandby databases are primary databases.14528

Meaning: Both databases are Primary. This is a fatal error because there may be conflicting
changes. Both databases are automatically dropped to Secondary state by the system. You
must decide which database is the real Primary database and then synchronize the data-
bases.

ADMIN COMMANDs that may return this status in the result set of the command:

ADMIN COMMAND 'hotstandby connect'

ADMIN COMMAND 'hotstandby status switch'

Server is already a primary server.14535

Meaning: The server you are trying to switch to Primary is already in one of the PRIMARY
states.

155

B.1 HotStandby Errors and Status Codes

DescriptionError/Status
code

ADMIN COMMANDs that may return this status in the result set of the command:

ADMIN COMMAND 'hotstandby switch primary'

Server is already a secondary server.14536

Meaning: The server you are trying to switch to Secondary is already in one of the SEC-
ONDARY states.

ADMIN COMMANDs that may return this status in the result set of the command:

ADMIN COMMAND 'hotstandby switch secondary'

HotStandby connection is broken.14537

Meaning: This command is returned from both the Primary and Secondary server.

ADMIN COMMANDs that may return this status in the result set of the command:

ADMIN COMMAND 'hotstandby status connect'

One possible cause of this problem is an incorrect Connect string in the Secondary's
solid.ini file. If the netcopy operation succeeds but the connect command fails, check
the Connect string. (Netcopy does not require the Secondary to open a separate connection
to the Primary, and thus may succeed even if the Connect string on the Secondary is
wrong.)

Server is not HotStandby primary server.14538

Meaning: To issue this command, the server must be a HotStandby Primary server.

ADMIN COMMANDs that may return this status in the result set of the command:

ADMIN COMMAND 'hotstandby copy copy_directory'

ADMIN COMMAND 'hotstandby netcopy'

ADMIN COMMAND 'hotstandby connect'

ADMIN COMMAND 'hotstandby set primary alone'

ADMIN COMMAND 'hotstandby set standalone'

Operation Refused.14539

156

B.1 HotStandby Errors and Status Codes

DescriptionError/Status
code

This error code is given when one of the following situations occurs:

• The user issued a netcopy command to a Primary server, but the server that should
be Secondary is not actually in a Secondary state, or is not in "netcopy listening mode".
(Both the Primary and the "Secondary" server are probably in PRIMARY ALONE
state.)

To solve the problem, re-start the "Secondary" with the -x backupserver command-
line option, then try again to issue the netcopy command to the Primary.

Warning

If both servers were in PRIMARY ALONE state, and if both servers executed
transactions while those servers were in PRIMARY ALONE state, then they
probably each have data that the other one does not. This is a serious error,
and doing a netcopy to put them back in sync would result in writing over
some transactions that have already been committed in the "Secondary"
server.

• This message can be generated when you use a callback function(s) and the callback
function refuses to shut down or accept a backup/netcopy command.

When you use AcceleratorLib, you can provide "callback" functions by using the
SSCSetNotifier function. Your callback functions will be notified when the
server has been commanded to shut down or to do a netcopy operation. If for some
reason your application doesn't want the command to be followed, then your callback
can return a value that cancels the command. In this situation, you will see error 14539.

To solve the problem, wait until the client code finishes the operation that it does not
want to interrupt, then re-try the command (e.g. the shutdown or netcopy).

Server is already a non-HotStandby server.14540

HotStandby configuration in solid.ini conflicts with ADMIN COMMAND 'HSB
SET STANDALONE'.

14541

Server in backupserver mode. Operation refused.14542

Invalid command. The database is a hotstandby database but, hotstandby section not found
in solid.ini configuration file.

14543

157

B.1 HotStandby Errors and Status Codes

DescriptionError/Status
code

Operation failed. This command is not supported on diskless server.14544

Primary can only be set to primary alone when its role is primary broken.14545

Switch failed. The server or the remote server cannot switch from primary alone to sec-
ondary server. Catchup should be done first before switch.

14546

Meaning: This command is returned when a state switch to SECONDARY is executed
from a local or remote Primary server that is in the PRIMARY ALONE state and it is
detected that the Primary and Secondary server are not in sync. You must connect the
Primary server to the Secondary server and wait for the catchup process to complete before
switching the Secondary to the Primary.

HotStandby commands that return this error:

ADMIN COMMAND 'hotstandby switch secondary'

The value for the -R option (Read Timeout) was missing or invalid.14547

Switch failed. The server in Standalone cannot be switched to a secondary.14548

Meaning: This command is returned when a state switch to SECONDARY is executed
from a local or remote Primary server that is in the STANDALONE state and it is detected
that the Primary and Secondary server are not in sync. You must connect the Primary
server to the Secondary server and wait for the catchup to complete before switching the
Secondary to the Primary.

HotStandby commands that return this error:

ADMIN COMMAND 'hotstandby switch secondary'

HotStandby transaction is active.14549

Meaning: If the HotStandby connection is broken, Primary server must be set to alone
mode or switched to secondary mode before shutdown.

Hotstandby connect parameter can be changed only when the primary is not connected
to secondary.

14550

Maximum number of START AFTER COMMIT statements reached.14551

Server is in backup server mode, no connections are allowed.14552

Rejected connection, both servers in PRIMARY role.14700

Meaning: Command 'hsb connect' returns this error if both nodes are in same role.

158

B.1 HotStandby Errors and Status Codes

DescriptionError/Status
code

14701:Rejected connection, both servers in SECONDARY role.14701

Meaning: Command 'hsb connect' returns this error if both nodes are in same role.

14702:Operation failed, catchup is active.14702

Meaning:

While the servers are performing catchup, you will get this error if you issue any of the
following commands on the Primary: 'hsb switch secondary', 'hsb set secondary alone',
'hsb set standalone', 'hsb connect', 'hsb copy' or 'hsb netcopy'.

While the servers are performing catchup, you will get this error if you issue any of the
following commands on the Secondary: 'hsb switch primary', 'hsb set secondary alone',
'hsb set primary alone', 'hsb set standalone', or 'hsb connect'.

Operation failed, copy is active.14703

Meaning:

While the Primary is doing copy or netcopy, the following commands returns this error:

'hsb switch secondary', 'hsb set secondary alone', 'hsb set standalone', 'hsb connect',
'hsb disconnect', 'hsb copy' or 'hsb netcopy'.

HotStandby copy or netcopy is only allowed when primary is in alone state.14704

Meaning:

This error is returned if the server is in PRIMARY ACTIVE state and the command 'hsb
copy' or 'hsb netcopy' is issued.

Setting to STANDALONE is not allowed in this state.14705

Meaning:

If the server is in PRIMARY ACTIVE state and you issue the command 'hsb set stan-
dalone', then you will get this message.

Invalid read thread mode for HotStandby, only mode 2 is supported.14706

Operation not allowed in the STANDALONE state.14707

Catchup failed, catchup position was not found from log files.14708

Hot Standby enabled, but connection string is not defined.14709

159

B.1 HotStandby Errors and Status Codes

DescriptionError/Status
code

Hot Standby admin command conflict with an incoming admin command.14710

Failed because server is shutting down.14711

Server is secondary. Use primary server for this operation.14712

pri_dologskip:bad type, log pos, log size30787

This error refers to a failed operation on the HSB primary server. The error returns the
failed operation and its location in the log, and the log size. Operations in the replication
log are skipped.

pri_hsblogcopy_write:bad type, log pos, log size30788

This error refers to a failed operation on the HSB primary server. The write to the replic-
ation log file fails. The error returns the failed operation and its location in the log, and
the log size.

Failed to open hot standby replication log file30789

Failed to allocate memory for HotStandby log. Max Log size is <logsize>30790

This error concerns a diskless database using hotstandby. In these systems, the hotstandby
log is written to memory. This error is given if allocating more memory for the log file
fails.

B.2 solidDB Database Errors

Table B.2. solidDB Database Errors

DescriptionError code

Operation failed.Database Error 10002

Meaning: The connect operation failed with an unexpected error. Most likely, the
servers are not properly synchronized.

Transaction is read-only.Database Error 10013

Meaning: You have tried to write inside a transaction that is set read-only, or the
server is temporarily set to read-only mode, for example during the state switch.
Updateable transactions are not allowed.

Backup is already active.Database Error 10019

160

B.2 solidDB Database Errors

DescriptionError code

Meaning: You have tried to start a backup or copy when one is already in progress.

Illegal backup directory "directory_name".Database Error 10024

Meaning: The backup or copy directory is either an empty string or a dot indicating
that the backup or copy will be created in the current directory.

Backup or copy directory 'directory_name' does not exist.Database Error 10030

Meaning: Backup or copy directory is not found. Check the name of the backup or
copy directory.

This operation cannot be executed on a HotStandby Secondary server.Database Error 10045

Meaning: This operation cannot be executed on a HotStandby Secondary server.

In order for the requested operation to succeed, the server must be a Primary.

Operation failed, data dictionary operation is active.Database Error 10046

Meaning: A data dictionary operation is currently in progress.

Replicated transaction is aborted.Database Error 10047

Meaning: Transactions are aborted, for example, in a state switch. When the server
state is switched from Primary to Secondary, all active transactions are aborted.

Replicated transaction contains data dictionary changes, normal update operations
are not allowed.

Database Error 10048

Meaning: HotStandby mode restricts data dictionary operations; for example, CRE-
ATE TABLE cannot be mixed with normal update operations.

This message is obsolete in version 4.1 and later, which allow you to mix DML and
DDL operations within a transaction while using HSB.

The remote server is not a secondary server.Database Error 10049

Meaning: The server that you specified in the command is not in a SECONDARY
state.

Replicated operation updated BLOB columns.Database Error 10050

Meaning: BLOB columns cannot be replicated to the Secondary server.

User rolled back the transaction.Database error 10078

Cannot remove filespec. File is already in use.Database error 10079

161

B.2 solidDB Database Errors

DescriptionError code

HotStandby Secondary server can not execute operation received from Primary
server.

Database error 10080

Meaning: A possible cause for this error is that the database did not originate from
the Primary server using HotStandby copy or netcopy command.

The database file is incomplete or corrupt.Database error 10081

Meaning: If the file is on a hot standby secondary server, use the 'hotstandby copy'
or 'hotstandby netcopy' command to send the file from the primary server again.

Backup aborted.Database error 10082

Failed to abort hsb trx because commit is already sent to secondary.Database error 10083

Table is not locked.Database error 10084

Checkpointing is disabled.Database error 10085

HotStandby not allowed for main memory tables.Database error 10087

Specified lock timeout is too large.Database error 10088

Operation failed, server is in HSB primary uncertain mode.Database error 10089

B.3 Solid Errors

Table B.3. Solid Errors

DescriptionError code

Server shutdown in progressTable Error 13068

Meaning: You are unable to complete this operation because server shutdown is in
progress.

Table 'table_name' is not emptyTable Error 13123

Meaning: This operation can only be executed when a table is empty. For example,
you can only change a table from disk-based to in-memory (or vice-versa) when the
table is empty.

Only M-tables can be transientTable Error 13167

Meaning: You cannot create a transient table that is disk-based. For example, the
following SQL statement will get this error message:

162

B.3 Solid Errors

DescriptionError code

CREATE TRANSIENT TABLE t1 (i INT) STORE DISK;

Only M-tables can be temporaryTable Error 13170

Meaning: You cannot create a temporary table that is disk-based. For example, the
following SQL statement will get this error message:

CREATE TEMPORARY TABLE t1 (i INT) STORE DISK;

B.4 solidDB Communication Errors

Table B.4. solidDB Communication Errors

DescriptionError code

Server "server_name" not found, connection failed.Communication Error
21306

Meaning: The Secondary server was not found.

• Check that the server is running.

• Check that the network name is valid.

• Check that the server is listening to the specified network name.

"Connection is broken (%s '%s' operation failed with code %d)".Communication Error
21308

For example,

"Connection is broken (TCP/IP 'Write'
operation failed with code 7)."

See the recommended actions for error 21306.

163

B.4 solidDB Communication Errors

164

Appendix C. Summary of HotStandby
Administrative Commands
The chapter summarizes the administrative commands available with HotStandby.

The tool you are using (for example solidDB SQL Editor (solsql) or solidDB Remote Control (solcon)) affects
how you must enter the command.

Using solidDB SQL Editor (teletype), you enter the command using the syntax shown below:

ADMIN COMMAND 'hotstandby switch primary';

If you are entering these commands in solidDB Remote Control (teletype), be sure to specify the command
only (without quotes and without "ADMIN COMMAND"); for example:

hotstandby switch primary

Note also that you may abbreviate 'hotstandby' to 'hsb', for example

hsb switch primary

In the table below, we use the shortest possible form; we omit the "ADMIN COMMAND" and the quotes,
and we also use the abbreviation 'hsb'.

For more information about solidDB Remote Control (teletype) or solidDB SQL Editor, refer to "Using
SOLID Data Management Tools" in solidDB Administration Guide.

Note that an ADMIN COMMAND always return a success return code (0) if there is no syntax error in the
command. The actual result code of the command is included in the "RC" field of the result set.

Table C.1. HotStandby Commands

ExplanationCommand

Returns the communication information (connect string) used to connect to the other
server. This is usually the value of the Connect parameter in the HotStandby

hsb cominfo

section of the solid.ini configuration file, but might also have been set with the
command:

165

ExplanationCommand

ADMIN COMMAND 'hsb parameter connect <connect_string>';

You can use this information in an application to connect to other servers.

If the connection between the Primary and Secondary servers is broken or has not
yet been established, this command connects the Primary server to the Secondary

hsb connect

server and starts HotStandby replication. This command is always needed to connect
the servers since there is no automatic mechanism for connecting between servers.
After a successful connect, the state of the Primary server is automatically set from
PRIMARY ALONE to PRIMARY ACTIVE. If unsuccessful, the state remains
PRIMARY ALONE.

This command can be executed on either the Primary or the Secondary.

Note: When you execute this command, if the Primary server and Secondary server
are connected, but the transaction log is not yet fully copied to the Secondary, the
following message is displayed: Catchup is active

Note: This command is deprecated. It is recommended that you use the hsb netcopy
command instead.

hsb copy [direct-
ory_name]

You can use the hsb copy command to initially create the Secondary database from
the Primary. This command copies the database into a directory that is local to the
Primary node (and also local to the Secondary node, of course). After the copy is
completed, you may start the Secondary server. After you connect the Primary to the
Secondary, the Primary automatically brings the Secondary server up-to-date by
copying the transaction log to the Secondary server.

You can also use this command to synchronize the Primary database with a Secondary
database (when it has been off line for a considerable period of time) that is in a dir-
ectory local to the Primary node. Read Section 4.8, “Synchronizing Primary and
Secondary Servers”.

If the optional directory_name is specified, the database files are copied to that
directory; otherwise it is copied to the directory specified with the copydirectory
parameter in the [Hotstandby] section of the solid.ini configuration file.
Because the hsb copy command does not copy the solid.ini configuration file
or log files, it is recommended that you make this directory different from the normal
backup directory.

The Primary can execute the hsb copy command only if the Primary is in PRIMARY
ALONE state. During and after the command, the server remains in PRIMARY

166

ExplanationCommand

ALONE state. After the command has been completed, you may start the Secondary
server and then connect the two servers.

This tells the server to gracefully disconnect from the other member of the HSB pair.
This command is valid on either the Primary or the Secondary server. A typical

hsb disconnect

reason to use this command is to disconnect the servers before upgrading one of
them. (The other server can be set to PRIMARY ALONE state so that it can continue
responding to client requests.)

This command normally causes both servers to go into an "Alone" mode; i.e. the
Primary server switches from PRIMARY ACTIVE to PRIMARY ALONE, while
the Secondary server switches from SECONDARY ACTIVE to SECONDARY
ALONE.

This command is valid on both the Primary and the Secondary.

Note that using the shutdown command

ADMIN COMMAND 'shutdown';

causes the server to do a controlled disconnect before it shuts down. If the Secondary
is shut down (and disconnects), then the Primary knows that it is safe to go to
PRIMARY ALONE state, and will do so.

These two commands can be used by a Watchdog program (or a person) to determine
which of two servers should be switched to Primary and which should be switched

hsb logpos

to Secondary. (The server that was the Primary before the servers lost contact with
each other is not necessarily the server that should become the Primary now.) This
approach detects which of the servers is "ahead" (that is, which has accepted more
transactions) and thus should be made the Primary before establishing the HSB con-
nection.

For a detailed explanation of how to use this command, see Section 4.12, “Choosing
Which Server to Make Primary”.

A typical output is shown below:

ADMIN COMMAND 'hsb logpos';
RC TEXT
-- ----

167

ExplanationCommand

0 000000000000000000871:PRIMARY

The output consists of the log operation ID and the server's previous role, which in
this example was Primary.

This command is used to copy the Primary database or diskless in-memory data to
a Secondary server using the Connect parameter specified in the [HotStandby]

hsb netcopy

section of solid.ini. Once the connect string is used to connect to the Secondary
server, the database files are copied through the network link.

You can use this command to synchronize a Primary database with a Secondary
database that has been off line for a long time. Read Section 4.8, “Synchronizing
Primary and Secondary Servers”.

You can also use this command to create a new Secondary database. Reasons for this
may be a corrupt Secondary database, creation of the initial Secondary database for
a new HotStandby configuration, or the addition of a new Secondary to an existing
configuration. Read Section 4.8.5, “Copying a Primary Database to a Secondary Over
the Network” for details.

The Primary server must be in PRIMARY ALONE state to issue this command.

After the command has completed (successfully or unsuccessfully), the Primary
server remains in the same state.

If the copy is completed successfully, then the Secondary server is automatically
switched to SECONDARY ALONE state.

The netcopy command is usually followed by the "connect" command to connect the
Primary and Secondary servers. After the Primary server is connected to the Second-
ary, the Primary automatically brings the Secondary up-to-date by copying the
transaction log.

(Deprecated) This command allows you to set HSB-specific parameters such as
AutoPrimaryAlone, Connect, and PingTimeout. For a complete description
of each of these parameters, see Appendix A, Configuration Parameters.

hsb parameter

Note that when you set the value of one of some parameters, the command takes effect
immediately, but is not written to the solid.ini configuration file before a shut-
down is executed.

The syntax for this command is:

168

ExplanationCommand

ADMIN COMMAND 'hsb parameter
param_name param_value';

Note that this command does not use an equals sign. Thus it differs from the otherwise
similar command (recommended:

ADMIN COMMAND 'parameter
hotstandby.param_name = param_value';

Note: This command is deprecated. Please use hsb state instead.hsb role

Returns one of the following roles in the result set:

• PRIMARY, if the connected server is a normal Primary server. In this role, the
transactions at the Primary server are sent to the Secondary server.

• PRIMARY NOHSBLOG, indicating that the Primary server accepts transactions
and stores them in the database, however, it does not store the transactions so
that it can later send them to the Secondary. To re-synchronize the Secondary
with the Primary, the entire database at the Primary must be copied to the Second-
ary server.

• PRIMARY BROKEN, if the Primary server has a broken connection to the Sec-
ondary server. Only read-only transactions can be executed in the Primary server.

• PRIMARY ALONE, if the Primary server is working by itself. The connection
to the Secondary is broken, but transactions are accepted and added to the trans-
action log at the Primary so that later they can be sent to the Secondary.

• PRIMARY CATCHUP, if the catchup is in progress. During catchup, the Primary
automatically sends the transaction log changes to the Secondary server after the
'hsb connect' command has been issued at the Primary. After the catchup process
is completed, the role of the server is switched automatically to PRIMARY. The
Primary can continue to accept transactions if its role was PRIMARY ALONE
before the connect.

169

ExplanationCommand

• SECONDARY, if the connected server is a normal Secondary server. This means
the server receives and applies transactions from the Primary.

• SECONDARY BROKEN, if the Secondary server has a broken connection to
the Primary server.

• SECONDARY CATCHUP, if the Secondary server is catching up with the
changes from the Primary server after the 'hsb connect' command was issued at
the Primary server. After the catchup process is completed, the role of the Sec-
ondary is switched automatically to SECONDARY.

If ADMIN COMMAND 'hsb role' is issued on a server that is not configured for
HotStandby, the following error message is returned: 14527: This is a non-HotStandby
Server.

This command returns the same information as the SQL function: HOT-
STANDBY_ROLE.

Sets a HotStandby Primary server unconditionally to the PRIMARY ALONE state.
The command is legal in the following states: PRIMARY ACTIVE, SECONDARY
ACTIVE, SECONDARY ALONE and STANDALONE.

hsb set primary alone

This command can be used to implement fast failovers. When Secondary is in the
SECONDARY ACTIVE state, the server will not make any attempt to communicate
with the Primary, having received this command. Instead, it will immediately switch
to the PRIMARY ALONE state. This behavior may be utilized in cases when the
information about the Primary failure reaches the Watchdog (or other HA manager)
before the Secondary has detected the failure (the delay is dictated by the Ping-
Timeout and PingInterval parameters).

However, if it happens (e.g. because of incorrect failure detection) that the Primary
is "alive" and in the PRIMARY ACTIVE state when this command is executed in
the Secondary, the Primary will be automatically forced to PRIMARY UNCERTAIN
state. It can be then moved to the SECONDARY ALONE state and reconnected
without any loss of transactions.

NOTE: the alternative way of executing failovers is to use the "hsb switch primary"
command.

In the PRIMARY ALONE state, the connection to the Secondary server is broken,
but this state allows the Primary server to run with continuous updates to the transac-
tion log. The PRIMARY ALONE state persists until the Primary server is shut down,

170

ExplanationCommand

a connection is successfully made to the Secondary server, or the server runs out of
space for the transaction log.

Note that when you set a server to PRIMARY ALONE state, it does not automatically
make any attempt to re-establish connections with the other server.

Important: Before executing this command on a server, try to make sure that the
other server in the pair is not already in PRIMARY ALONE state (or STANDALONE
state). It is very important to avoid "dual primaries" (see Section 4.3.1, “Network
Partitions and Dual Primaries”).

See also the command 'hsb switch primary'.

This command sets the server state to SECONDARY ALONE. This command is
available if the server is currently in one of the following states: PRIMARY ALONE,
PRIMARY UNCERTAIN, STANDALONE.

hsb set secondary
alone

When this command is issued, the state of the Primary server becomes STAN-
DALONE. The server stops storing transactions for the Secondary server. The Primary

hsb set standalone

(STANDALONE) can continue accepting read/write transactions. This option is
useful in the Primary server when the Secondary server is offline for a significant
period of time and the transaction log may grow too large. This command is available
if the server is currently in one of the following states: PRIMARY ALONE or SEC-
ONDARY ALONE.

Returns one of the following states in the result set:hsb state

• PRIMARY ACTIVE, if the connected server is a normal Primary server. In this
state, transactions on the Primary server are sent to the Secondary server.

• STANDALONE, indicating that the Primary server accepts transactions and
stores them in the database, but it does not store the transactions to forward them
to the Secondary.

• PRIMARY UNCERTAIN, if the Primary server has a broken connection to the
Secondary server and has not yet been switched to another state, such as
PRIMARY ALONE. Only read-only transactions can be executed in the Primary
server.

• PRIMARY ALONE, if the Primary server is working by itself. The connection
to the Secondary is broken, but transactions are accepted and stored in the
Primary's transaction log so that they can be forwarded to the Secondary.

171

ExplanationCommand

• SECONDARY ACTIVE, if the connected server is a normal Secondary server.
This means the server receives and applies transactions from the Primary.

• SECONDARY ALONE, if the Secondary server has a broken connection to the
Primary server.

If ADMIN COMMAND 'hsb state' is issued on a server that is not configured for
HotStandby, the following error message is returned: 14527: This is a non-HotStandby
Server.

This command returns the same information as the SQL function: HOT-
STANDBY_STATE. Read section Using Function HOTSTANDBY_STATE in the
section called “Detecting HotStandby Server Failure in Client Applications” for details
on this function.

Refer to Appendix D, Server State Transitions, for an overview of HotStandby state
transitions that occur while performing administrative and troubleshooting operations.

Returns HotStandby status information. The option may be any of the following:hsb status option

• catchup

• connect

• copy

• switch

For more details, see the descriptions of the individual commands/options below,
e.g. 'hsb status catchup'.

The intention of the status command is give the information about the outcome of
operations that take a prolonged time, after they have started successfully. The com-
mand will return status of the last successfully started operation. If the starting of
operation fails (e.g. because of incorrect state) the status command will not return
the status of that operation but the one executed previously.

Indicates whether or not the server is doing catchup, i.e. when the Secondary reads
the Primary's transaction log and applies the changes.

hsb status catchup

Possible values are:

• ACTIVE

172

ExplanationCommand

• NOT ACTIVE

Status information returned:hsb status connect

• CONNECTED - Connect active. This information is returned from both the
Primary and Secondary servers.

• CONNECTING - The Primary server and Secondary server are connecting to
each other. This information is returned from both the Primary and Secondary
servers.

• CATCHUP - The Primary server is connected to the Secondary server, but the
Primary HotStandby database log is not fully copied to the Secondary server.
This information is returned from both the Primary and Secondary servers.

• BROKEN - Connection between the Primary and Secondary server is broken.
This information is returned from both the Primary and Secondary servers.

NOTE: This command returns the same information as the SQL function HOT-
STANDBY_CONNECTSTATUS. Read section Using Function HOTSTANDBY_CON-
NECTSTATUS in the section called “Switching the Application to the New Primary”
for details on this function.

This command allows you to check the result of the last hsb copy or hsb netcopy
command. Note that this status command always uses the keyword "copy", even if
you are checking the result of a netcopy rather than a copy.

hsb status copy

Status information returned:

• SUCCESS - Copy completed successfully.

• ACTIVE - Copy process is still active.

• ERROR number - Copy failed with error code number.

Returns HotStandby switch status information. Status information returned:hsb status switch

• ACTIVE - Copy process is still active.

• SUCCESS - Copy completed successfully.

• ERROR number - Copy failed with error code number.

173

ExplanationCommand

• NO SERVER SWITCH OCCURRED BEFORE - No switch has happened before.

Switches the database server to PRIMARY. The command starts a switch process,
which can be monitored using command hsb status switch.

hsb switch primary

If the servers are connected at the time that you execute this command, then the
servers simply reverse states — i.e. the old Primary changes from PRIMARY ACTIVE
to SECONDARY ACTIVE, and the Secondary server switches from SECONDARY
ACTIVE to PRIMARY ACTIVE.

If the servers are not connected and the server is in SECONDARY ALONE state,
then when you switch the server to Primary it will end up in PRIMARY ALONE
state. The new Primary server will not automatically try to connect to the other
server and switch to PRIMARY ACTIVE state.

Because the command is available both in the SECONDAR ACTIVE and SECOND-
ARY ALONE states, it can be used to perform failovers. However, because the
server will always make attempt to communicate with the Primary, the network
timeout may be involved. Thus, this method is slower than using the 'hsb set primary
alone' command. On the other hand, this method secures better against a possibility
of "dual primaries".

See also the command 'hsb set primary alone'.

Switches the database to Secondary state. All active write transactions are terminated.hsb switch secondary

Note

If the connected database server is a Primary server, it becomes a Secondary
server. If the old Secondary server is available, then the old Secondary server
is switched to Primary (see the hsb switch primary command).

Note

If the switch command is issued inside an open transaction (Microsoft Win-
dows after the transaction has started and before you execute the COMMIT
statement), then when you issue the COMMIT statement, the COMMIT fails
with an error: 'replicated transaction is aborted'. All transactions are rolled
back during the switch, including the transaction in which the switch statement
is executed. The switch itself is successful (i.e. is not rolled back) because
ADMIN COMMANDs are not transactional commands. (NOTE: Adminis-

174

ExplanationCommand

trative commands do force the start of a new transaction if one is not already
open, however.)

175

176

Appendix D. Server State Transitions
This chapter describes the possible state transitions (e.g. the transition from OFFLINE to SECONDARY
ALONE). A description of each of the server states is in Section 2.2, “Description of Server States”.

D.1 HotStandby State Transition Diagram
The diagram in this appendix shows the state transitions that can occur, and the circumstances under which
they may occur. For example, you can change the state of a server from PRIMARY UNCERTAIN to PRIMARY
ALONE by executing the command 'hsb set primary alone':

ADMIN COMMAND 'hsb Set Primary Alone';

As you use this diagram, please remember the following:

1. We do not show the complete syntax of the commands. For example, we show:

'hsb set primary alone'

rather than

ADMIN COMMAND 'hsb Set Primary Alone';

2. The state transition path(s) shown for 'hsb copy' also apply to 'hsb netcopy'.

3. Some commands may fail when they are executed. When a command might succeed or fail, we show
both possibilities. If the branch is intended to describe what happens if the command fails, it will have
the word 'failed':

'Disconnect' failed.

4. In some situations, the behavior depends upon the setting of the solid.ini configuration parameter
named AutoPrimaryAlone. We often use the abbreviation "APA" to represent this parameter.

5. When the diagram refers to "events", it refers to internally-generated notifications. These are not the
same as the "events" that users can post and wait on, as described in the SQL commands for CREATE
EVENT, etc.

177

6. Near the top left of the diagram, you will see the text "Start with '-x backupserver'". If
you want to start a new Secondary server and you want it to get a copy of the database from the Primary
via the "netcopy" command, then you start the server (from the operating system command line) with
the command-line option -x backupserver. This tells the server to wait for a netcopy from the Primary.
Note that while the server is waiting to receive the netcopy, the server will not respond to queries about
its state (or role). For example, if you issue the command:

ADMIN COMMAND 'hsb state';

the server will not respond and therefore you won't actually see it return the state "OFFLINE".

7. "rpc" stands for "Remote Procedure Call". "rpc broken" means that the Primary and Secondary lost
connection with each other without doing an explicit Disconnect. The connection may be lost if the network
fails, or if one server crashes, etc.

8. When an arrow loops back to the same state that it started from, it means that the state doesn't change.
For example, if a server is in the state PRIMARY ALONE, and if it tries to connect to the other server
but fails, then the state remains PRIMARY ALONE.

178

D.1 HotStandby State Transition Diagram

Figure D.1. HotStandby Server State Transitions

The following table shows server states and the ways in which a HotStandby command can change the server
state.

179

D.1 HotStandby State Transition Diagram

Table D.1. Server State Transition Table

If command is unsuc-
cessful, then the
state is...

Then server state
becomes...

If this condition occurs, or if this HSB
command is issued...

Server State

unchangedSECONDARY
ALONE

If the Primary server executes ADMIN
COMMAND 'hotstandby netcopy' then

OFFLINE

the Secondary's state will change to SEC-
ONDARY ALONE after the database has
been copied.

(not applicable)PRIMARY ALONEHotStandby timeout (automatic) when
AutoPrimaryAlone = Yes.

PRIMARY ACTIVE

NOTE: The HSB timeout occurs automat-
ically when the Secondary server is down
or a connection between the Primary and
Secondary is broken.

(not applicable)PRIMARY UNCER-
TAIN

HotStandby timeout (automatic) when
AutoPrimaryAlone = No.

PRIMARY ACTIVE

NOTE: The HSB timeout occurs automat-
ically when the Secondary server is down
or a connection between the Primary and
Secondary is broken.

UnchangedSTANDALONEADMIN COMMAND 'hotstandby set
standalone' at the Primary

PRIMARY ACTIVE

SECONDARY
ALONE

SECONDARY
ACTIVE

ADMIN COMMAND 'hotstandby
switch secondary' at the Primary or AD-

PRIMARY ACTIVE

MIN COMMAND 'hotstandby switch
primary' at the Secondary.

PRIMARY ALONEPRIMARY ALONEADMIN COMMAND 'hotstandby dis-
connect' at the Primary.

PRIMARY ACTIVE

PRIMARY ALONEPRIMARY ALONEADMIN COMMAND 'hotstandby copy'
or ADMIN COMMAND 'hotstandby
netcopy' at the Primary.

PRIMARY ALONE

Note that the state of the Primary server
does not change. The server stays in
PRIMARY ALONE state. To change the

180

D.1 HotStandby State Transition Diagram

If command is unsuc-
cessful, then the
state is...

Then server state
becomes...

If this condition occurs, or if this HSB
command is issued...

Server State

state to PRIMARY ACTIVE, you must
issue the "connect" command: ADMIN
COMMAND 'hotstandby connect';

NOTE: If you are using a diskless server
without file access to the Secondary serv-
er, you must use netcopy, not copy.

UnchangedPRIMARY ACTIVE
(after the catchup is
completed)

ADMIN COMMAND 'hotstandby con-
nect' at the Primary

NOTE: The above command is used to
connect to the Secondary server, which is

PRIMARY ALONE

now fixed, or a server other than the failed
Secondary.

UnchangedSTANDALONEADMIN COMMAND 'hotstandby set
standalone' at the Primary or the transac-
tion log is full.

PRIMARY ALONE

SECONDARY
ALONE

SECONDARY
ALONE

ADMIN COMMAND 'hotstandby set
secondary alone' or ADMIN COM-

PRIMARY ALONE

MAND 'hotstandby switch secondary'
at the Primary.

UnchangedPRIMARY ALONEADMIN COMMAND 'hotstandby set
primary alone' at the Primary server

PRIMARY UNCER-
TAIN

UnchangedPRIMARY ACTIVEADMIN COMMAND 'hotstandby con-
nect' at the Primary.

PRIMARY UNCER-
TAIN

Note

The above command is used to
connect to the Secondary server
(which is now fixed) or to connect
to a server other than the failed
Secondary.

UnchangedSTANDALONEADMIN COMMAND 'hotstandby set
standalone' at the Primary

PRIMARY UNCER-
TAIN (HSB timeout

181

D.1 HotStandby State Transition Diagram

If command is unsuc-
cessful, then the
state is...

Then server state
becomes...

If this condition occurs, or if this HSB
command is issued...

Server State

has occurred for con-
necting to the Sec-
ondary)

UnchangedSECONDARY
ALONE

ADMIN COMMAND 'hotstandby set
secondary alone' or ADMIN COM-

PRIMARY UNCER-
TAIN

MAND 'hotstandby switch secondary'
at the Primary.

(not applicable)SECONDARY
ALONE

HotStandby timeout (automatic)SECONDARY
ACTIVE

Note

The HSB timeout occurs automat-
ically when the Secondary server
is down or a connection between
the Primary and Secondary is
broken.

UnchangedPRIMARY ACTIVEADMIN COMMAND 'hotstandby
switch secondary' at the Primary or AD-

SECONDARY
ACTIVE

MIN COMMAND 'hotstandby switch
primary' at the Secondary.

UnchangedPRIMARY ALONEADMIN COMMAND 'hotstandby set
primary alone' at the Secondary.

SECONDARY
ACTIVE

SECONDARY
ALONE

SECONDARY
ALONE

ADMIN COMMAND 'hotstandby dis-
connect' at the Secondary or Primary.

SECONDARY
ACTIVE

UnchangedSECONDARY
ACTIVE

ADMIN COMMAND 'hotstandby con-
nect' at the Secondary or Primary

SECONDARY
ALONE

UnchangedSTANDALONEADMIN COMMAND 'hotstandby set
standalone' at the Secondary.

SECONDARY
ALONE

UnchangedPRIMARY ALONEADMIN COMMAND 'hotstandby set
primary alone' or ADMIN COMMAND

SECONDARY
ALONE

'hotstandby switch primary' at the Sec-
ondary

182

D.1 HotStandby State Transition Diagram

Appendix E. HSB System Events
This appendix covers only HSB-specific events. For a discussion of other types of events, see other manuals,
such as solidDB SQL Guide.

Each HotStandby operation generates an event. To monitor these events you can use an application, such as
a watchdog application.

Events are objects with a name that signal that a specific action occurred in the server. Special statements in
stored procedures are required to receive events. HotStandby events are no different from other events created
and supported by solidDB. They are sent to those users who are registered to receive the event in a stored
procedure. For details on posting, registering, and waiting for events, read Chapter 3, "Stored Procedures,
Events, Triggers, and Sequences", in solidDB SQL Guide, and Appendix B, solidDB SQL Syntax, also in
solidDB SQL Guide.

The following table lists the events that are currently available for HotStandby. Note that most events include
five parameters, but not all of those parameters are necessarily used.

Table E.1. HotStandby Events

Cause of EventEvent ParametersHSB Event

Change in connect status between
the Primary and Secondary server

ENAME WVARCHAR, POSTSR-
VTIME TIMESTAMP, UID IN-

SYS_EVENT_HSBCONNECT-
STATUS

TEGER, NUMDATAINFO IN-
TEGER, TEXTDATA WVARCHAR

For TEXTDATA, the possible valid
values are

TEXTDATA = {
CONNECTED |
CONNECTING |
CATCHUP |
BROKEN}

Each state switch sends a state
switch event.

ENAME WVARCHAR, POSTSR-
VTIME TIMESTAMP, UID IN-

SYS_EVENT_HSB-
STATESWITCH

183

Cause of EventEvent ParametersHSB Event

TEGER, NUMDATAINFO IN-
TEGER, TEXTDATA WVARCHAR

For TEXTDATA, the possible valid
values are

TEXTDATA = {
PRIMARY ACTIVE |
PRIMARY ALONE |
PRIMARY UNCERTAIN |
SECONDARY ACTIVE |
SECONDARY ALONE |
STANDALONE
}

HotStandby NETCOPY operation
ended.

ENAME WVARCHAR, POSTSR-
VTIME TIMESTAMP, UID IN-

SYS_EVENT_NETCOPYEND

This event can be caught by the user
only if the user is using Accelerat-
orLib.

TEGER, NUMDATAINFO IN-
TEGER, TEXTDATA WVARCHAR

None of the parameters are used.

A HotStandby NETCOPY was re-
quested.

ENAME WVARCHAR, POSTSR-
VTIME TIMESTAMP, UID IN-

SYS_EVENT_NETCOPYREQ

If the user application's callback
function returns non-zero, then net-
copy is not performed.

TEGER, NUMDATAINFO IN-
TEGER, TEXTDATA WVARCHAR

None of the parameters are used.

This event can be caught by the user
only if the user is using Accelerat-
orLib.

184

Glossary
This glossary describes some terms used in this manual.

Numeric
1-Safe Algorithm

In a 1-safe system, transactions are committed at the primary first and then later are propagated to the
Secondary. If the Primary server fails before it sends the transactions to the Secondary, then the transactions
will not be visible on the Secondary, and normally will be lost.

See also "2-safe algorithm".

2-Safe Algorithm
A 2-safe algorithm is an algorithm for making sure that transactions are not lost when a Primary and a
Secondary server are involved. Specifically, in a 2-safe algorithm, the Primary server does not consider
the transaction committed until the Secondary has committed the transaction. The primary and the Sec-
ondary are kept in lock-step; all updates to the data are applied to both copies in complete synchrony.
Thus we guarantee survival of all committed transactions in the case of failure. If, for some reason, the
Secondary cannot commit (for example, the Secondary is no longer working), then the Primary will not
commit the data; instead, the Primary will report an error to the user. The advantage of a 2-safe algorithm
is, of course, that the Primary and Secondary cannot have different data. The disadvantage is that if the
Secondary goes down, then the Primary stops accepting transactions. Furthermore, 2-safe algorithms
mean that the user experiences a longer delay before receiving confirmation that a COMMIT was suc-
cessful. Although solidDB HotStandby defaults to a 2-safe algorithm, you can change it to use a 1-safe
algorithm if the Secondary is unavailable.

See also "1-safe algorithm".

B
Binary Large Object (BLOB)

"BLOB" is an acronym for Binary Large OBject. A BLOB is a large block of information such as a picture,
video clip, sound excerpt, or a document that contains any non-printable formatting characters.

BLOB information is usually stored in a high capacity, variable-length binary data type. With solidDB
database servers, BLOB data is usually stored in VARBINARY. However, this is not always necessary.
Although BLOBs are generally Binary and Large, and are usually stored in variable-length data types,
none of these characteristics are required. Depending upon the actual data value, you might store your

185

data in a fixed-length BINARY field rather than a variable-length VARBINARY field. If your data is
composed entirely of standard characters, then you might store the data in one of the various high-capacity
character data types, such as VARCHAR. (BLOBs that are composed entirely of printable characters are
sometimes called CLOBs. Since BINARY fields can store any data that CHAR fields can store, CLOBs
can be stored in either CHAR or BINARY fields. CLOBs are a subset of BLOBs.)

For a complete list of the BINARY and CHAR data types supported by solidDB, see "Binary Data Types"
on page A-4 and "Character Data Types" on page A-1 in solidDB SQL Guide.

Note that if you are using in-memory tables, BLOB lengths are restricted to approximately the size of
the page. See the appendices in solidDB In-Memory Database User Guide for an explanation of how to
calculate the approximate maximum size of a BLOB in an in-memory table.

With the exception of the in-memory table restriction listed above, solidDB generally treats BLOB/CLOB
the same way as any other BINARY/CHAR data. You do not need to do anything special to store or retrieve
such data.

Communication Protocol
A communication protocol is a set of rules and conventions used in the communication between servers
and clients. The server and client have to use the same communication protocol in order to establish a
connection. TCP/IP is an example of a commonly-used communication protocol.

D
Database Administrator

The database administrator is a person responsible for tasks such as:

• managing users, tables, and indices

• backing up data

• allocating disk space for the database files

Diskless
A server that does not store the data on the disk drive is called a diskless server. If you are using the
HotStandby functionality in a diskless server, then the Transaction Log file (see below) is not written to
disk either.

If you run a server without storing the data on the disk drive, then if the server is shut down, the data is
lost. If you want to run diskless servers, then we recommend that you either replicate important data to
another server (using solidDB SmartFlow technology) or you use the HotStandby functionality to ensure
that a copy of the data is on another server.

186

For more information about running diskless servers, see solidDB AcceleratorLib User Guide, which has
a chapter on the topic and a description of the SSCStartDisklessServer() function.

Note that although running without a disk drive may increase performance by reducing disk I/O, solidDB's
diskless capability is not optimized to enhance performance. If you want to minimize I/O to maximize
performance, we recommend that you use solidDB In-memory Engine's in-memory tables feature.

H
High Availability

High Availability is a system design and implementation that ensures a certain absolute degree of of op-
erational continuity during a specified measurement period. In solidDB "HotStandby" is the name of the
technique used by the CarrierGrade option. See also "HotStandby".

HotStandby (HSB)
The solidDB CarrierGrade option uses an approach known as "hot standby". In this approach, a second
database server is linked to the first, and is ready to take over in case the first fails. solidDB HotStandby
technology ensures that the "secondary" server has an exact copy of all committed data that is on the
"primary" server.

Note that "hot standby" is the name of the general technique used to ensure high availability of data;
"HotStandby" is the name of the solidDB implementation of this general technique.

The HSB abbreviation can be used in some administrative commands; e.g.

ADMIN COMMAND 'hsb connect';

HotStandby Transaction Log
To ensure that the Secondary server has a copy of all data that has been committed on the Primary server,
the Primary writes data to a transaction log file, which is then read by the Secondary. Note that in version
4.1 and later, there is no separate HotStandby Transaction Log file; the server uses the regular transaction
log file.

L
Log File

See Transaction Log File.

187

N
Network Name

The network name of a server consists of a communication protocol and a server name. This combination
identifies the server in the network.

solidDB Clients support Logical Data Source Names. These names can be used to give a database a de-
scriptive name. This name is mapped to a network name using either parameter settings in the clients
solid.ini file or in Microsoft Windows operating systems' registry settings.

O
One-Safe Algorithm

See 1-Safe Algorithm

T
Transaction Log File

This file holds a log of all committed operations executed by the database server. If a system crash occurs,
the database server uses this log to recover all data inserted or modified after the latest checkpoint. In
version 4.1 and later, when the HotStandby functionality is used, this same transaction log is used to store
transactions to send to the Secondary server. For more information, see Section 2.1.1, “The Transaction
Log and HotStandby”.

Two-Safe Algorithm
See 2-Safe Algorithm

U
UPS

Uninterruptible Power Supply

188

Index
Symbols
-x autoconvert, 132
-x backupserver (command line option), 49
-x backupserver (command), 47
-x migratehsbg2, 132
1-Safe Algorithm

defined, 185
1SafeMaxDelay (parameter), 140
2-Safe Algorithm

defined, 185
2SafeAckPolicy (parameter), 140
=

use of the equals sign when setting parameter val-
ues, 91

A
Access Mode, 138

RO (read-only), 139
RW (read-write), 139
RW/Create, 139
RW/Startup, 139

access rights, 30
Adaptive Durability, 19
ADMIN COMMAND 'hotstandby cominfo'

viewing connect settings, 52
ADMIN COMMAND 'hotstandby connect'

connecting HotStandby servers, 52
ADMIN COMMAND 'hotstandby copy'

copying database contents, 50
ADMIN COMMAND 'hotstandby netcopy'

copying database contents, 49
copying to secondary, 47

ADMIN COMMAND 'hotstandby set primary alone'
Running the server in PRIMARY ALONE state,
39

ADMIN COMMAND 'hotstandby set standalone'
shutting off HotStandby operations, 41

ADMIN COMMAND 'hotstandby state'
verifying server states, 56

ADMIN COMMAND 'hotstandby status connect'
displaying connect status information, 54

ADMIN COMMAND 'hotstandby status copy'
verifying a copy procedure, 46, 50

ADMIN COMMAND 'hotstandby status switch'
verifying the switch process, 38

ADMIN COMMAND 'hotstandby status'
querying HotStandby status, 52

ADMIN COMMAND 'hotstandby switch primary'
switching server states, 36

ADMIN COMMAND 'hotstandby switch secondary'
switching server states, 36

ADMIN COMMANDs
list of available commands, 165
list of HotStandby commands, 165

administering CarrierGrade option, 53, 54
switching server states, 35

administrative commands, 165
applications

switching to the new primary, 84
using Basic Connectivity, 81
using Transparent Connectivity, 66

autoconvert, 132
AutoPrimaryAlone (parameter), 23, 39, 99, 141

and 'hotstandby switch' command, 36
AutoSwitch (parameter), 104, 145
Availability

administrative commands, 165

B
backup, 8
backup listening mode, 47

(see also netcopy listening mode)
BackupBlockSize (parameter), 100
BackupDeleteLog (parameter), 8
Basic Connectivity, 65
BLOB

defined, 185
bringing a secondary back online, 40

189

C
CarrierGrade Option

administering, 29
configuring, 91

catchup, 12, 42
CatchupSpeedRate (parameter), 101, 141
CatchupStepsToSkip (parameter), 101
checkpoint, 8
CheckpointDeleteLog (parameter), 8
Choosing Which Server to Make Primary, 58
CLUSTER, 71
Communication protocol

defined, 186
Configuration, 22

HotStandby, 22
watchdog, 23

configuration, 91
Secondary and Primary node configuration, 92
timeouts between applications and servers, 92

configuration and setup, 25
Configuration parameters, 135
Configuring CarrierGrade option

netcopy performance, 100
watchdog application, 101

Connect (parameter), 30, 60, 95, 141
connect settings

viewing, 52
Connect1 (parameter), 102, 146
Connect2 (parameter), 102, 146
connection switch, 65

in Transparent Connectivity, 77
connectivity

basic, 65
choosing connectivity type, 66
Transparent Failover, 65

ConnectTimeout (parameter), 96, 97, 142
CopyDirectory (parameter), 98, 142
copying

database contents, 49, 50
primary to local secondary, 50
verifying procedure, 46, 50

copying database contents, 49, 50
Copying Primary database to Secondary server over
the network, 46
Creating a New Database for the Secondary Server,
47
current value, 138

D
Data management tools, 31
Database

In-Memory Tables, 32
database

copying contents, 49, 50
verifying a copy procedure, 50

default value, 138
Defining Primary Server Behavior During a Second-
ary Failure, 99
Determining Whether the Primary's Settings Take
Precedence Over the Secondary's, 137
displaying communication information, 54
displaying connect status information, 54
displaying switch status information, 53
Dual Primaries, 32
DualSecAutoSwitch (parameter), 146
DurabilityLevel (parameter), 94

E
Ensuring that Primary and Secondary Parameter Val-
ues Are Coordinated, 135
equals sign

use of when setting parameter values, 91
Error Codes, 151
events, 183

F
factory value, 138
failure mode

watchdog application, 108
failure scenarios and watchdog actions, 110
Failure Transparency, 66

choosing connectivity type

190

CONNECTION, 66
NONE, 66
SESSION, 67

H
hotstadby copy, 180
HotStandby

administrative commands, 165
defined, 187
shutting off operations, 41
turning off, 60
upgrading your server, 129

HotStandby events
SYS_EVENT_HSBCONNECTSTATUS, 183
SYS_EVENT_HSBSTATESWITCH, 183
SYS_EVENT_NETCOPYEND, 184
SYS_EVENT_NETCOPYREQ, 184

hotstandby netcopy, 180
HotStandby recovery model

sending data, 14
synchronous hot standby, 13, 16

HotStandby Status, 52
HOTSTANDBY_CONNECTSTATUS

SQL function, 54
HOTSTANDBY_CONNECTSTATUS (SQL func-
tion), 84
HOTSTANDBY_STATE (SQL function), 85
hsb

abbreviation for "hotstandby" in admin commands,
27

HSB
defined, 187

hsb status catchup, 172
hsb status connect, 173
hsb status copy, 173
hsb status switch, 173
HSBEnabled (parameter), 29, 60, 95, 143

I
In-Memory Tables, 32
installation, 25

L
Listen (parameter), 92
load balancing

dynamic control of, 68
with Transparent Connectivity, 67

load balancing methods
PREFERRED_ACCESS=READ_MOSTLY, 67
PREFERRED_ACCESS=WRITE_MOSTLY, 67

LogEnabled (parameter), 95
logpos (admin command), 167
logpos (hotstandby command), 58

M
MaxLogSize (parameter), 143
MaxMemLogSize (parameter), 143
migratehsbg2, 132

N
netcopy, 100, 180

(see also netcopy listening mode)
Primary must be in PRIMARY ALONE state, 16

netcopy listening mode, 47, 49
ADMIN COMMAND 'hotstandby netcopy', 47
tuning performance, 100

NetcopyRpcTimeout (parameter), 143
Network name

defined, 188
network names, 92
Network Partitions, 32
Network Partitions and Dual Primaries, 32
NumRetry (parameter), 104, 146

O
OFFLINE (state), 180
One-Safe Algorithm

defined, 185

P
parameters

AutoPrimaryAlone, 36, 39, 99

191

AutoSwitch, 104, 145
BackupBlockSize, 100
BackupDeleteLog, 8
CatchupSpeedRate, 101
CatchupStepsToSkip, 101
CheckpointDeleteLog, 8
Connect, 30, 60, 95
Connect1, 102, 146
Connect2, 102, 146
ConnectTimeout, 96, 97
CopyDirectory, 98
DualSecAutoSwitch, 146
DurabilityLevel, 94
HSBEnabled, 29, 60, 95
Listen, 92
LogEnabled, 95
NumRetry, 104, 146
Password1, 103, 146
Password2, 103, 146
Pessimistic, 147
PingInterval, 96, 97, 104, 147
PingTimeout, 96, 97
ReadMostlyLoadPercentAtPrimary, 67
Username1, 103, 148
Username2, 103, 148
WatchdogLog, 105, 148

Partition
network, 32

Password1 (parameter), 103, 146
Password2 (parameter), 103, 146
Performing Read-Only Transactions on the Secondary,
21
performing recovery and maintenance, 35
Pessimistic (parameter), 147
ping, 97
PingInterval (parameter), 96, 97, 104, 144, 147
PingTimeout (parameter), 96, 97, 144
PRIMARY ACTIVE (state), 180
PRIMARY ALONE, 39
PRIMARY ALONE (state), 180, 181
PRIMARY ALONE state

running the new Primary in PRIMARY ALONE
state, 39

PRIMARY UNCERTAIN (state), 180
PrimaryAlone (parameter), 144

R
READ COMMITTED

transaction isolation level, 32
Read-Only Transactions on the Secondary, 21
ReadMostlyLoadPercentAtPrimary (parameter), 67,
139
Reconnecting to Primary Servers from Applications,
81
recovery

maintenance, 35
REPEATABLE READ

transaction isolation level, 32
rights

access, 30
RO

Access Mode, 139
Running out of space for transaction log, 33
Running the server in PRIMARY ALONE state, 39
RW

Access Mode, 139
RW/Create

Access Mode, 139
RW/Startup

Access Mode, 139

S
Safeness Level, 13
secondary server

bringing back online, 40
SERIALIZABLE

transaction isolation level, 32
Server state

OFFLINE, 18
PRIMARY ACTIVE, 16
PRIMARY ALONE, 16, 39
PRIMARY UNCERTAIN, 17

192

SECONDARY ACTIVE, 17
SECONDARY ALONE, 18
STANDALONE, 18

server state transitions, 177
Server states

described, 16
server states

switching server states, 35, 36
verifying, 56

servers
connecting, 52

SET TRANSACTION WRITE, 68
SET WRITE, 68
setup and configuration, 25
sever catchup, 12

(see also catchup)
sever names, 92

(see also network names)
Shutting Off HotStandby Operations, 41
SmartFlow

using solidDB CarrierGrade option with, 10
solidDB Data Dictionary

defined, 31
solidDB data management tools, 31
solidDB Export

defined, 31
solidDB SpeedLoader

defined, 31
SQL functions

HOTSTANDBY_CONNECTSTATUS, 54, 84
HOTSTANDBY_STATE, 85

STANDALONE (state), 41, 60, 180
state

OFFLINE, 180
PRIMARY ACTIVE, 180
PRIMARY ALONE, 180, 181
PRIMARY UNCERTAIN, 180
STANDALONE, 180

State switch
Secondary switch to new Primary, 11

state switch
verifying, 38

states
STANDALONE, 41, 60
transitions, 177
verifying server states, 56

status, 52
displaying communication information, 54
displaying connect status information, 54
displaying switch status information, 53
HotStandby, 52
list of, 54, 75, 77

Store Mode, 139
switching

displaying connect status information, 54
displaying switch status information, 53

switching states
verifying, 38

synchronization
using solidDB CarrierGrade option with Smart-
Flow, 10

synchronizing Primary and Secondary servers, 42
SYS_EVENT_HSBCONNECTSTATUS (event), 183
SYS_EVENT_HSBSTATESWITCH (event), 183
SYS_EVENT_NETCOPYEND (event), 184
SYS_EVENT_NETCOPYREQ (event), 184

T
TC Connection, 65
TC Info, 70

attribute combinations, 73
handling contradictions, 74
JDBC syntax, 74
proprietary ODBC attributes, 80
syntax, 70

TF Connectivity, 65
The Transaction Log and HotStandby, 7
Tools

solidDB data management tools, 31
transaction isolation level

in-memory tables, 32
transaction log, 7, 14

running out of space for, 33

193

Transaction log file
defined, 188

transitions
server state transitions, 177

Transparent Connectivity, 65
Two-Safe Algorithm

defined, 185

U
upgrading your server, 129

cold and hot migration, 129
cold migration, 129

procedure, 131
hot migration, 129

procedure, 131
migration between hsb-compatible versions, 129
migration between hsb-incompatible versions, 130
preparing, 130

UPS
defined, 188

Username1 (parameter), 103, 148
Username2 (parameter), 103, 148

V
verifying a copy procedure, 50
verifying connect status information

HOTSTANDBY_CONNECTSTATUS, 84
verifying the state switch, 38
verifying the switch process

ADMIN COMMAND 'hotstandby status switch',
38

viewing current connect settings, 52

W
watchdog, 7
Watchdog

configuration, 23
watchdog actions and failure scenarios, 110
watchdog application

configuring, 101
defined, 12

described, 107
failure mode, 108
failure scenarios, 110
monitoring HotStandby with, 107
using, 109

watchdog failure scenarios
communication link between primary and second-
ary is down, 117
communication link between watchdog and
primary is down, 119
communication link between watchdog and second-
ary is down, 121
communication links between watchdog and
primary, and between primary and secondary, are
down, 123
communication links between watchdog and sec-
ondary, and between primary and secondary, are
down, 126
primary is down, 110
secondary is down, 112
watchdog is down, 115

WatchdogLog (parameter), 105, 148

194

	Chapter 1. Welcome
	1.1 About This Guide
	1.1.1 Organization
	1.1.2 Audience

	1.2 Conventions
	1.2.1 About solidDB
	1.2.2 Typographic Conventions
	1.2.3 Syntax Notation

	1.3 solidDB Documentation

	Chapter 2. Introducing the solidDB CarrierGrade Option
	2.1 How HotStandby Works
	2.1.1 The Transaction Log and HotStandby
	2.1.2 Server HotStandby States
	2.1.3 Server Diagrams
	2.1.4 Combining HotStandby and SmartFlow
	2.1.5 Switching the Secondary to Be the New Primary
	2.1.6 Server CatchUp
	2.1.7 The "Watchdog" Application
	2.1.8 Replication Modes in HotStandby

	2.2 Description of Server States
	2.3 How Does HotStandby Affect Performance
	2.3.1 Adaptive Durability

	2.4 HotStandby Configuration
	2.5 Implementing the CarrierGrade Option
	2.5.1 HotStandby Configuration and System Design Issues
	2.5.2 Watchdog Configuration

	Chapter 3. Getting Started with HotStandby
	3.1 Before You Begin
	3.2 HotStandby Demonstration
	3.3 HotStandby Setup and Configuration Procedure
	3.3.1 Section 1: Setup and Configuration Preparations
	3.3.2 Section 2: Step-by-Step Procedure

	Chapter 4. Administering the CarrierGrade Option
	4.1 What You Should Know
	4.1.1 HotStandby and the solidDB Configuration File
	4.1.2 HotStandby and Access Rights
	4.1.3 solidDB Tools and the CarrierGrade Option
	4.1.4 Database Migration (disk-based servers only)
	4.1.5 Interoperability

	4.2 Limitations with HotStandby
	4.2.1 In-Memory Tables

	4.3 Warnings
	4.3.1 Network Partitions and Dual Primaries
	4.3.2 Running Out of Space for Transaction Logs

	4.4 Overview of Administration Tasks
	4.5 Performing HotStandby Recovery and Maintenance
	4.6 Switching Server States
	4.6.1 Switchover and Failover
	4.6.2 Performing Switchovers
	4.6.2.1 Switching Primary to Secondary

	4.6.3 Important Notes on Switching Servers
	4.6.4 Verifying the Switch
	4.6.5 Performing Failovers
	4.6.6 Running the New Primary in PRIMARY ALONE State
	4.6.7 Bringing the Secondary Server Back Online

	4.7 Shutting Off HotStandby Operations
	4.8 Synchronizing Primary and Secondary Servers
	4.8.1 Catchup
	4.8.2 Full Copy
	4.8.3 Verifying the Copy
	4.8.4 Using a Watchdog to Synchronize Servers
	4.8.5 Copying a Primary Database to a Secondary Over the Network
	4.8.6 Creating a New Database for the Secondary Server
	4.8.7 Replacing an Existing Database on the Secondary Server
	4.8.8 Verifying Netcopy Status
	4.8.9 Copying a Database File from Primary Server to a Specified Directory
	4.8.9.1 Starting the Secondary Server and Catching up

	4.9 Connecting HotStandby Servers
	4.10 Checking HotStandby Status
	4.10.1 Displaying Switch Status Information
	4.10.2 Displaying Connect Status Information
	4.10.3 Displaying Communication Information
	4.10.4 Displaying Role Start Time

	4.11 Verifying HotStandby Server States
	4.11.1 Server States Overview

	4.12 Choosing Which Server to Make Primary
	4.13 Changing a HotStandby Server to a Non-HotStandby Server
	4.14 Special Configurations: Lower Cost vs. Higher Safety
	4.14.1 Reducing Cost: N + 1 Spare and N + M Spares Scenarios
	4.14.2 Increasing Reliability: 2N + 1 Spare and 2N + M SpareScenarios
	4.14.3 How solidDB HSB Supports The N+1 (N+M) and 2N+1 (2N+M) Approaches

	Chapter 5. Using HotStandby with Applications
	5.1 Two Ways to Connect to HotStandby Servers
	5.1.1 Transparent Connectivity
	5.1.2 Basic Connectivity
	5.1.3 Choosing the Connectivity Type

	5.2 Using the Transparent Connectivity
	5.2.1 Failure Transparency in TC
	5.2.2 Load Balancing in TC
	5.2.3 Syntax of the TC Info
	5.2.4 TC Info Attribute Combinations
	5.2.5 Handling TC Info Contradictions
	5.2.6 Enacting Transparent Connectivity in JDBC
	5.2.7 Programming for Connection Switch

	5.3 Using the Basic Connectivity
	5.3.1 Reconnecting to Primary Servers from Applications
	5.3.2 Re-Connecting to Secondary Servers
	5.3.3 SmartFlow Data Distribution Requirements

	5.4 Detecting Failures in solidDB HotStandby
	5.4.1 Heartbeat

	Chapter 6. Configuring HotStandby
	6.1 Configuring solidDB for HotStandby
	6.1.1 Defining Secondary and Primary Node Configuration (Com Section)
	6.1.2 Defining Timeouts Between Applications and Servers (Com Section)
	6.1.3 Transaction Durability

	6.2 Configuring HotStandby-Specific Parameters
	6.2.1 Defining Primary and Secondary HotStandby Configuration
	6.2.2 Setting HotStandby Server Wait Time to Help Detect Broken or Unavailable Connections
	6.2.3 Defining a Name and Location for HotStandby Database Copy Operation
	6.2.4 Defining Primary Server Behavior During a Secondary Failure

	6.3 Performance Tuning
	6.3.1 Tuning Replication Performance with Safeness and Durability Levels
	6.3.2 Tuning Netcopy Performance (General Section)

	6.4 Configuring Parameters for a Watchdog
	6.4.1 Watchdog Section

	6.5 Configuration File Examples

	Chapter 7. Monitoring HotStandby Server Pairs with a Watchdog Application
	7.1 How the Watchdog Application Works
	7.1.1 Failure Mode
	7.1.2 Coding a Watchdog for Multiple Failures

	7.2 Using the Sample Watchdog Application
	7.3 HotStandby Failure Scenarios and Watchdog Actions
	7.3.1 Primary is Down
	7.3.2 Secondary is Down
	7.3.3 Watchdog is Down
	7.3.4 Communication Link Between Primary and Secondary Is Down
	7.3.5 Communication Link Between Watchdog and Primary Is Down
	7.3.6 Communication Link Between Watchdog and Secondary Is Down
	7.3.7 Communication Links Between Watchdog and Primary, and Between Primary and Secondary, Are Down
	7.3.8 Communication Links Between Watchdog and Secondary, and Between Primary and Secondary, Are Down

	Chapter 8. Upgrading Your Server by Using HotStandby
	8.1 Cold and Hot Migration
	8.2 Migration between HSB-Compatible Versions
	8.2.1 Cold Migration
	8.2.2 Hot Migration

	8.3 Migration between HSB-Incompatible Versions
	8.3.1 Preparation Steps
	8.3.2 After the Upgrade

	Appendix A. Configuration Parameters
	A.1 Ensuring that Primary and Secondary Parameter Values Are Coordinated
	A.2 Determining Whether the Primary's Settings Take Precedence Over the Secondary's
	A.3 Querying HotStandby Configuration Parameters
	A.4 Modifying HotStandby Configuration Parameters
	A.5 Access Mode
	A.5.1 Access Mode Values
	A.5.2 Saving Parameter Changes

	A.6 Cluster Section
	A.7 HotStandby Section
	A.8 Watchdog Section

	Appendix B. Error Codes
	B.1 HotStandby Errors and Status Codes
	B.2 solidDB Database Errors
	B.3 Solid Errors
	B.4 solidDB Communication Errors

	Appendix C. Summary of HotStandby Administrative Commands
	Appendix D. Server State Transitions
	D.1 HotStandby State Transition Diagram

	Appendix E. HSB System Events
	Glossary
	Index

