

solidDB AcceleratorLib User Guide
Copyright © Solid Information Technology Ltd. 2007, 2009
Document number: SAC-6.0
Product version: 06.00.1059
Date: 2009-04-22

All rights reserved. No portion of this product may be used in any way except as expressly authorized in writing by Solid Information
Technology Ltd. or International Business Machines Corporation.

This product is protected by U.S. patents 6144941, 7136912, 6970876, 7139775, 6978396, and 7266702.

This product is assigned the U.S. Export Control Classification Number ECCN=5D992b.

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative
for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is
not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document
does not grant you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your country or
send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local
law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an en-
dorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web
sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between
independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been ex-
changed, should contact:

IBM Canada Limited
Office of the Lab Director
8200 Warden Avenue
Markham, Ontario
L6G 1C7
CANADA

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM
Customer Agreement, IBM International Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating
environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee
that these measurements will be the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other
publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any
other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without notice, and represent goals and
objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible,
the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to
the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating
platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of devel-
oping, using, marketing or distributing application programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright notice as follows:

your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
Copyright IBM Corp. _enter the year or years_.

All rights reserved.

TRADEMARKS

IBM, the IBM logo, ibm.com, Solid, and solidDB are trademarks or registered trademarks of International Business Machines Corporation
in the United States, other countries, or both. A current list of IBM trademarks is available on the Web at "http://www.ibm.com/legal/copy-
trade.shtml".

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

Table of Contents
1 Welcome ... 1

1.1 About This Guide ... 1
1.1.1 Organization ... 1
1.1.2 Audience .. 2

1.2 Conventions .. 2
1.2.1 About solidDB ... 2
1.2.2 Typographic Conventions .. 2
1.2.3 Syntax Notation ... 3

1.3 solidDB Documentation ... 4
2 Introducing AcceleratorLib ... 7

2.1 AcceleratorLib Library .. 9
2.1.1 Disk-based vs. Diskless Servers .. 9
2.1.2 Library Contents .. 9
2.1.3 Application Types Used with AcceleratorLib .. 11

2.2 solidDB Client APIs and Drivers for the AcceleratorLib ... 13
2.2.1 solidDB SA API ... 13
2.2.2 solidDB ODBC API .. 13
2.2.3 solidDB JDBC API ... 14
2.2.4 solidDB Control API (SSC API) .. 14

3 Creating and Running an AcceleratorLib Application ... 17
3.1 Downloading the AcceleratorLib Library ... 17

3.1.1 Libraries for Remote Applications ... 18
3.1.2 Sample C Applications .. 18
3.1.3 Using Data Synchronization ... 19

3.2 Linking Applications for the AcceleratorLib ... 20
3.2.1 Preparing User Applications for the AcceleratorLib ... 21
3.2.2 Establishing a Local or Remote Connection to solidDB with the AcceleratorLib 24

3.3 Starting and Shutting Down solidDB AcceleratorLib ... 25
3.3.1 Explicit Start up with the Control API Function SSCStartServer 26
3.3.2 Implicit Start Up with ODBC API Function Call SQLConnect 30
3.3.3 Implicit Start Up with SA API Function Call SaConnect 32
3.3.4 Shutting Down solidDB AcceleratorLib .. 33
3.3.5 Implicit Start Configuration Parameter ... 33

4 Description of Control API .. 35
4.1 Retrieving Task Information .. 35
4.2 Notifying Functions of a Special Event ... 35

4.2.1 Obtaining solidDB Status and Server Information ... 35
4.3 Summary of Control API Functions .. 36
4.4 Control API and Equivalent ADMIN COMMANDs ... 37

v

4.5 Control API Reference ... 37
4.5.1 Function Synopsis .. 37
4.5.2 Return Value .. 39
4.5.3 Control API Error Codes and Messages .. 40

4.6 SSCGetServerHandle .. 40
4.7 SSCGetStatusNum .. 41
4.8 SSCIsRunning .. 42
4.9 SSCIsThisLocalServer ... 43
4.10 SSCRegisterThread ... 43
4.11 SSCSetCipher ... 44
4.12 SSCSetNotifier ... 47
4.13 SSCSetState ... 51
4.14 SSCStartDisklessServer .. 53
4.15 SSCStartServer ... 56
4.16 SSCStopServer ... 59
4.17 SSCUnregisterThread .. 61

5 Using the Diskless Capability .. 63
5.1 Configuration Parameters for a Diskless Server ... 63

5.1.1 Parameters Used in Diskless Servers .. 63
5.1.2 Configuration Parameters that Do Not Apply to Diskless Engines 66

6 Using solidDB AcceleratorLib With Java ... 69
6.1 Overview of solidDB JDBC Accelerator (SJA) ... 69
6.2 How the Accelerator Works ... 70
6.3 System Requirements .. 71
6.4 Basic Usage ... 72

6.4.1 Installation .. 72
6.4.2 Compiling and Running a Program .. 72
6.4.3 Making JDBC Connections .. 73

6.5 Limitations .. 74
6.6 solidDB Server Control (SSC) API ... 75

A AcceleratorLib Parameters .. 79
A.1 Accelerator Section ... 79

Glossary ... 81
Index ... 83

vi

solidDB AcceleratorLib User Guide

List of Figures
2.1 solidDB with AcceleratorLib .. 8
2.2 Linking to solidDB .. 11
2.3 solidDB with AccleratorLib - APIs ... 15

vii

viii

List of Tables
1.1 Typographic Conventions ... 2
1.2 Syntax Notation Conventions .. 3
3.1 AcceleratorLib System Libraries .. 20
3.2 Library Files .. 21
3.3 SSCStartServer Parameters .. 26
3.4 SSCStartServer argv Options ... 28
4.1 Summary of Control API Functions .. 36
4.2 Control API Parameter Usage Types ... 38
4.3 Error Codes and Messages for Control API Functions .. 40
4.4 SSCGetStatusNum Parameters .. 41
4.5 SSCIsRunning Parameters .. 42
4.6 SCCRegisterThread Parameters .. 44
4.7 SSCSetCipher Parameters .. 44
4.8 SSCSetNotifier Function Parameters ... 48
4.9 SSCSetState Function Parameters ... 52
4.10 SSCStartDisklessServer Parameters .. 53
4.11 Command Line Options for the argv Parameter ... 54
4.12 SSCStartServer Parameters .. 57
4.13 SSCStopServer Parameters .. 60
4.14 SCCUnregisterThread Parameters .. 61
5.1 Configuration Parameters not Applicable to Diskless Engines .. 66
6.1 Layers in the Executable Process ... 70
A.1 Accelerator Parameters .. 79

ix

x

List of Examples
2.1 Dual Mode Application .. 12
3.1 Microsoft Windows MakeFile Example ... 22
3.2 VxWorks MakeFile Example ... 23
3.3 Starting up SSCStartServer .. 29
4.1 Using the AcceleratorKib Encryption API .. 46
4.2 Calling a Function upon Shutdown ... 51
4.3 SSCStartDisklessServer .. 55

xi

xii

Chapter 1. Welcome
The IBM solidDB (solidDB) Accelerator Library ("AcceleratorLib") is a higher performance version of
solidDB's data management solution. To avoid network delays, the solidDB executable and the user application
are linked in the same program space to produce a single executable. By replacing the network connection
and Remote Procedure Calls (RPCs) with local function calls, performance is improved significantly.

1.1 About This Guide
This guide contains information specific to the AcceleratorLib.

This guide supplements the information contained in the solidDB Administration Guide, which contains details
on administration and maintenance of solidDB.

1.1.1 Organization

AcceleratorLib has some usage differences from standard solidDB. This manual highlights the main areas of
difference and includes the following chapters:

• Chapter 2, Introducing AcceleratorLib, familiarizes you with the background, concepts, components, and
physical configuration options for using the feature.

• Chapter 3, Creating and Running an AcceleratorLib Application, covers the steps required to implement
AcceleratorLib at your solidDB site.

• Chapter 4, Description of Control API, describes how to use solidDB SSC API, a low level C-language
client library, to start and stop the server, and to perform operations such as setting the priority level for
various server internal tasks. The AcceleratorLib supports the use of solidDB SSC API for local connections.

• Chapter 5, Using the Diskless Capability, explains how to use the SSCStartDisklessServer()
function call in the AcceleratorLib library to start a server that will run without a disk drive.

• Chapter 6, Using solidDB AcceleratorLib With Java, describes how to use solidDB AcceleratorLib from
a Java program.

• Appendix A, AcceleratorLib Parameters, describes configuration parameters that are specific to the Ac-
celeratorLib. These parameters, like other solidDB configuration parameters, are set in the solid.ini
file.

1

1.1.2 Audience

This guide assumes a working knowledge of the C programming language, general DBMS knowledge, famili-
arity with SQL, and knowledge of a solidDB data management product, such as solidDB, solidDB In-memory
Engine, or solidDB Disk-based Engine. If you are going to work with the solidDB Java Accelerator, then this
manual also assumes a working knowledge of Java.

1.2 Conventions

1.2.1 About solidDB

solidDB provides advanced database solutions for mission-critical applications.

This documentation assumes that all options of solidDB are licensed for use. In some cases, however, a cus-
tomer may choose not to license certain options. These include in-memory engine, disk-based engine, Carri-
erGrade Option (also known as "HotStandby" in previous releases), and SmartFlow Option. Please refer to
your organization's contract with solidDB, or contact your solidDB account representative.

1.2.2 Typographic Conventions

This manual uses the following typographic conventions:

Table 1.1. Typographic Conventions

Used forFormat

This font is used for all ordinary text.Database table

Uppercase letters on this font indicate SQL keywords
and macro names.

NOT NULL

These fonts indicate file names and path expressions.solid.ini

This font is used for program code and program output.
Example SQL statements also use this font.SET SYNC MASTER YES;

COMMIT WORK;

This font is used for sample command lines.run.sh

This font is used for function names.TRIG_COUNT()

This font is used for interface names.java.sql.Connection

This font is used for parameter names, function argu-
ments, and Windows registry entries.

LockHashSize

2

1.1.2 Audience

Used forFormat

Words emphasised like this indicate information that
the user or the application must provide.

argument

This style is used for references to other documents,
or chapters in the same document. New terms and
emphasised issues are also written like this.

solidDB Administration Guide

File paths are presented in the Unix format. The slash
(/) character represents the installation root directory.

File path presentation

If documentation contains differences between operat-
ing systems, the Unix format is mentioned first. The

Operating systems

Microsoft Windows format is mentioned in paren-
theses after the Unix format. Other operating systems
are separately mentioned.

1.2.3 Syntax Notation

This manual uses the following syntax notation conventions:

Table 1.2. Syntax Notation Conventions

Used forFormat

Syntax descriptions are on this font. Replaceable sec-
tions are on this font.INSERT INTO table_name

This font indicates file names and path expressions.solid.ini

Square brackets indicate optional items; if in bold text,
brackets must be included in the syntax.

[]

A vertical bar separates two mutually exclusive choices
in a syntax line.

|

Curly brackets delimit a set of mutually exclusive
choices in a syntax line; if in bold text, braces must
be included in the syntax.

{ }

An ellipsis indicates that arguments can be repeated
several times.

...

A column of three dots indicates continuation of pre-
vious lines of code..

3

1.2.3 Syntax Notation

Used forFormat

.

.

1.3 solidDB Documentation
Below is a complete list of documents available for solidDB. solidDB documentation is distributed in PDF
format.

Electronic Documentation

• Release Notes. This file contains installation instructions and the most up-to-date information about the
specific product version. This file (releasenotes.txt) is copied onto your system when you install
the software.

• solidDB Getting Started Guide. This manual gives you an introduction to the solidDB.

• solidDB SQL Guide. This manual describes the SQL commands that solidDB supports. This manual also
describes some of the system tables, system views, system stored procedures, etc. that the engine makes
available to you. This manual contains some basic tutorial material on SQL for those readers who are not
already familiar with SQL. Note that some specialized material is covered in other manuals. For example,
solidDB "administrative commands" related to the High Availability (HotStandby) Option are described
in the solidDB High Availability User Guide, not the solidDB SQL Guide.

• solidDB Administration Guide. This guide describes administrative procedures for solidDB servers. This
manual includes configuration information. Note that some administrative commands use an SQL-like
syntax and are documented in the solidDB SQL Guide.

• solidDB Programmer Guide. This guide explains in detail how to use features such as solidDB Stored
Procedure Language, triggers, events, and sequences. It also describes the interfaces (APIs and drivers)
available for accessing solidDB and how to use them with a solidDB database.

• solidDB In-Memory Database User Guide. This manual describes how to use the in-memory database of
solidDB In-memory Engine.

• solidDB SmartFlow Data Replication Guide. This guide describes how to use the solidDB SmartFlow
technology to synchronize data across multiple database servers.

4

1.3 solidDB Documentation

• solidDB AcceleratorLib User Guide. Linking the client application directly to the server improves per-
formance by eliminating network communication overhead. This guide describes how to use the Acceler-
atorLib library, a database engine library that can be linked directly to the client application.

This manual also explains how to use two proprietary Application Programming Interfaces (APIs). The
first API is the solidDB SA interface, a low-level C-language interface that allows you to perform simple
single-table operations (such as inserting a row in a table) quickly. The second API is SSC API, which
allows your C-language program can control the behavior of the embedded (linked) database server

This manual also explains how to set up a solidDB to run without a disk drive.

• solidDB High Availability User Guide. solidDB CarrierGrade Option (formerly called the HotStandby
Option) allows your system to maintain an identical copy of the database in a backup server or "secondary
server". This secondary database server can continue working if the primary database server fails.

• Getting Started With solidDB For VxWorks. This guide describes how to take into use solidDB on the
VxWorks environment. It also provides guidelines for application development and performance tuning.
This manual is included only in packages for VxWorks.

5

Electronic Documentation

6

Chapter 2. Introducing AcceleratorLib
The solidDB AcceleratorLib is a function library that provides the same functionality and interfaces available
with the solidDB. A user application may be linked to this library. The linked application communicates with
the server by using direct function calls, thus skipping the overhead required when the client and server
communicate through network protocols such as TCP/IP. Linking the application and server into a single
executable provides higher performance.

Your application does not have to be re-written to use the AcceleratorLib library. For example, you do not
need to call proprietary functions (except a few to start and stop the database server). Instead, your application
may continue to use the same ODBC function calls that it has always used. When the AcceleratorLib library
is linked to your application, these ODBC function calls go directly to the server, bypassing the network.

Your application also has access to some additional AcceleratorLib function calls to do things such as
scheduling tasks within the server. However, you are not required to use these function calls unless you want
to.

The fact that your server is linked to your application does not mean that your linked application is the only
client that can use the server. A solidDB server that is executing as an AcceleratorLib function library is ac-
cessible not only to the "local" client application (the application that is linked directly to the library), but
also to "remote" client applications (which connect to the server through communications protocols such as
TCP/IP). Your remote clients see the AcceleratorLib server as similar to any other solidDB server, while your
local client sees a faster, more precisely controllable version of the solidDB server.

Note

Although "remote" applications usually run on a different computer from the one that the server is
running on, an application is also considered "remote" if it uses a network communication protocol
to communicate with the server, even if that client runs on the same computer as the database server
runs on.

7

Figure 2.1. solidDB with AcceleratorLib

The figure above shows a sample solidDB that uses the AcceleratorLib library.

Note

Local application requests are handled through solidDB SA API or ODBC API direct function calls.
For the local application, AcceleratorLib also provides a Control API which handles local requests
for controlling solidDB background processes and client tasks. You may also use JDBC calls with
the AcceleratorLib. See Chapter 6, Using solidDB AcceleratorLib With Java.

8

As you can see in the illustration, remote clients communicate through an ODBC or JDBC driver that is linked
to the client application, while the local client application does not need any remote communication driver.

2.1 AcceleratorLib Library
In a standard (non-AcceleratorLib) solidDB configuration, the application (the "client") and the database engine
(the 'server") are separate processes that communicate through a network protocol. The client must link to a
communications driver (such as an ODBC or JDBC driver) that communicates with the database server through
the network.

With the AcceleratorLib, an application links to a static library (for example, .lib or .a for UNIX) that contains
the full database server functionality. This means solidDB runs in the same executable with the application,
eliminating the need to transfer data through the network. The application that links to the AcceleratorLib
library can also have multiple connections, using both ODBC API and SA API. Both of these APIs are
reentrant, allowing simultaneous connections from separate threads.

A user application that links directly to the AcceleratorLib library can also create remote connections to other
database servers. The connect string that is passed to the ODBC API or SA API connect function defines
whether the connection type is local or remote.

For details on linking an application, read Section 3.2, “Linking Applications for the AcceleratorLib”.

When you start your application, only the code in your application starts running automatically. The server
code is largely independent of your application code, and you must explicitly start the server by calling a
function. (In most or all implementations, the server runs on threads that are separate from the thread(s) used
by the application. Calling the function to start a server will perform any initialization steps required by the
server code, create the appropriate additional threads if necessary, and start the server running on those threads.)

2.1.1 Disk-based vs. Diskless Servers

The accelerator library contains two different function calls to start the server. One of the function calls starts
a normal (that is, disk-based) server, while the other starts a server that does not use the disk drive. For more
information, see Chapter 5, Using the Diskless Capability and the descriptions of the SSCStartServer
and SSCStartDisklessServer functions.

2.1.2 Library Contents

The accelerator library includes functions for three separate APIs:

• solidDB Control API (SSC API) library that contains functions to control task scheduling.

9

2.1 AcceleratorLib Library

• solidDB ODBC Driver functions that allows for direct communication with the server library, without
going through the network.

• solidDB SA API library which may be required for additional functionality using the AcceleratorLib. For
example, this library allows you to insert, delete, and select records from a table.

Because your application gets linked to a library with all three of these APIs (SSC, SA, and ODBC), your
application program may call functions from any combination of these APIs. For details on each of these
APIs, read Section 2.2, “solidDB Client APIs and Drivers for the AcceleratorLib”.

Note

Remote applications have access to the same three APIs (SSC, SA, and ODBC). However, the functions
for these three APIs are not all in the same file for remote applications. For details on remote and dual
role applications, read Section 2.1.3, “Application Types Used with AcceleratorLib”. For information
on API files for remote applications, read Section 2.2, “solidDB Client APIs and Drivers for the Ac-
celeratorLib”.

10

2.1.2 Library Contents

Figure 2.2. Linking to solidDB

2.1.3 Application Types Used with AcceleratorLib

The AcceleratorLib application is "local" to the server; the server and the application are combined into a
single program. Calls to ODBC functions actually go directly to the server, rather than going through an
ODBC driver and the communications protocol (such as TCP/IP).

In addition to handling requests from the local application that is linked to the AcceleratorLib library, the
server also handles requests from remote applications.

11

2.1.3 Application Types Used with AcceleratorLib

A remote application is not linked to the AcceleratorLib library. It is a separate executable that must commu-
nicate with the server using a network connection (such as TCP/IP) or other connection (for example shared
memory). Remote applications are usually, but not always, run on a different computer from the one that is
running the server. However, a single computer can run an AcceleratorLib local application, while running
one or more remote applications as separate processes.

Most applications are either local (that is linked to the AcceleratorLib library in a single executable) or remote
(never linked to the AcceleratorLib library). However, it is also possible to write an application that can be
either local and remote; it switches modes, depending upon how it is compiled and linked. Such a dual mode
application uses, for example, the same C-language application code in either local or remote mode; but it is
linked to a different library when in local mode than when in remote mode.

Using Dual-Mode Applications with the AcceleratorLib

In the case of AcceleratorLib, for example, a dual mode application must be linked to the local AcceleratorLib
library when it is run locally. However, when it is run remotely, the dual mode application must be linked to
the Accelerator Control API stub library (for example, solidctrlstub.lib in Windows), so that it can
be compiled, linked, and executed without link-time errors.

The "Control API stub library" is required for remote applications because the AcceleratorLib's own Control
API (which is provided in the local AcceleratorLib library) cannot be used with remote applications. For ex-
ample, assume you have a local application (containing Control API functions) that links to a standard ODBC
library. You want to run the same application remotely. By linking to the Control API stub library, you avoid
having to remove the Control API function calls from your code. In this way, you can easily turn your Accel-
eratorLib local application into a normal remote client application.

Note

The Control API stub library contains "do-nothing" functions; if you call them in a remote application,
they have no effect on the server.

A dual mode application is useful for other reasons as well:

• You may want to test your local application first before linking it with the AcceleratorLib library.

• You may want all users/processes to have the same application logic whether they are local or remote.

Example 2.1. Dual Mode Application

Assume there are two users who are running the same application. User1 runs the application locally (benefiting
from higher performance). User2 runs the same application remotely.

12

2.1.3 Application Types Used with AcceleratorLib

User1 (local user) compiles and links with the server library (solidac.a, for example) and is responsible
for starting and stopping the server and performing other scheduling tasks using the AcceleratorLib's Control
API. User2 (remote user) runs the same application, but is not able to connect to the server until User1 has
started the server. Thus, only User1 is able to control the tasking system.

2.2 solidDB Client APIs and Drivers for the Accelerat-
orLib
Below is a brief description of the APIs available for use with the AcceleratorLib.

Note

These descriptions use the term "local" and "remote" applications as defined in Section 2.1.3, “Ap-
plication Types Used with AcceleratorLib”.

2.2.1 solidDB SA API

SA API is a low-level proprietary C-language API to solidDB data management services. It is included in the
AcceleratorLib library (for example, ssolidacxx.dll for Windows or solidac.a for UNIX). The
AcceleratorLib library includes the SA-API library that provides support for local applications using SA API
function calls.

The SA API library is used internally in solidDB products and provides access to data in solidDB database
tables. The library contains 90 functions providing low-level mechanisms for connecting the database and
running cursor-based operations. solidDB SA API can enhance performance significantly. You can use SA
API to optimize the performance of batch insert operations, for example.

For remote applications, the AcceleratorLib library also provides support for the SA API function calls.
However, you must link to a separate SA API library file (for example, solidimpsa.lib for Windows).

For details on the solidDB SA API, see solidDB Programmer Guide.

2.2.2 solidDB ODBC API

solidDB ODBC API provides a standards-compliant way to access data of a local or remote solidDB database
through SQL. It provides functions for controlling database connections, executing SQL statements, retrieving
result sets, committing transactions, and other data management functionality.

ODBC API, a Call Level Interface (CLI) for solidDB databases, is compliant with ANSI X3H2 SQL CLI,
and is included in the AcceleratorLib library (for example, ssolidacxx.dll for Windows or solidac.a
for UNIX).

13

2.2 solidDB Client APIs and Drivers for the AcceleratorLib

AcceleratorLib supports the ODBC 3.51 standard. The AcceleratorLib library includes solidDB ODBC 3.x,
which provides support for local applications that require direct function calls to the server.

For local applications, the AcceleratorLib library provides support for ODBC function calls. For remote ap-
plications (or for a dual-mode application that is to be run remotely), you must link the ODBC Driver to get
the same functionality.

If your application is a dual mode application (i.e. can be run either locally or remotely), and if it uses Accel-
eratorLib's Control API and ODBC, then you will need two different executables, one to be run locally and
one to be run remotely. When you link your application to run it locally, you will link it to the AcceleratorLib
library, which provides support for both the ODBC functions and the Control API library. When you link
your application to run it remotely, you must link it to both the ODBC driver and to the Control API stub
library (for example, solidctrlstub.lib for Windows). This stub library does not actually give your
remote application any control over the server; it simply allows you to compile and link your program without
getting errors about "unresolved symbols".

Note

When ODBC functions (in a dual mode application) are called remotely, then the calls go through
the network from the client to the server. When ODBC functions are called locally (in accelerated
applications), then the ODBC subroutine library bypasses the network and directly connects the local
application to the server.

Read solidDB Programmer Guide for more details on ODBC API.

2.2.3 solidDB JDBC API

JDBC API is used by remote applications only. As the core API for JDK 1.2, it defines Java classes to represent
database connections, SQL statements, result sets, database metadata, etc. It allows you to issue SQL statements
and process the results. JDBC is the primary API for database access in Java. AcceleratorLib supports both
JDBC 1.x and 2.x. Read solidDB Programmer Guide for more details.

2.2.4 solidDB Control API (SSC API)

solidDB Control API (SSC API) is a C-language, thread-safe interface to control the server behavior in
solidDB database products.

The Control API is included in the AcceleratorLib library (for example, ssolidacxx.dll for Windows
or solidac.a for UNIX). The AcceleratorLib library provides support for local applications using Control
API function calls and a separate library is available for remote-only applications.

14

2.2.3 solidDB JDBC API

If your application will run remotely and contains Control API function calls, then you must link the Control
API Stub library (for example, solidctrlstub.lib for Windows). This library does not actually give
your remote application control of the server; it merely allows you to compile and link your application as a
remote application without getting link-time errors solidDB with AcceleratorLib.

Figure 2.3. solidDB with AccleratorLib - APIs

15

2.2.4 solidDB Control API (SSC API)

16

Chapter 3. Creating and Running an
AcceleratorLib Application
This chapter describes how to create and run the AcceleratorLib application. It includes the following topics:

• Downloading the AcceleratorLib library

• Linking Applications to the AcceleratorLib library

• Creating or using an existing database

• Starting and stopping solidDB with the AcceleratorLib

Note

This chapter provides AcceleratorLib-specific additions, supplements, and AcceleratorLib usage dif-
ferences from solidDB without the AcceleratorLib. For information on solidDB SQL, solidDB data
management tools, general solidDB administration and maintenance, and database error codes, refer
to the solidDB Administration Guide. Read Chapter 4, Description of Control API and solidDB Pro-
grammer Guide for details on developing applications with an AcceleratorLib supported API.

3.1 Downloading the AcceleratorLib Library
The solidDB with AcceleratorLib is a library file that is included in the solidDB Development Kit.

For example, if you are using solidDB with HP-UX, the AcceleratorLib library file is solidac.a. Refer to
Section 3.2, “Linking Applications for the AcceleratorLib” for a list of platform-specific libraries.

The AcceleratorLib library for all platforms contains the following:

• solidDB data management functionality

• SA API header (sa.h) for local user applications

• solidDB Control API interface header (sscapi.h) for local user applications

For details on linking a user application to the AcceleratorLib library, read Section 3.2, “Linking Applications
for the AcceleratorLib”.

17

3.1.1 Libraries for Remote Applications

For the purposes of this AcceleratorLib guide, a "remote" application is any application that is not linked to
the server - that is, any application that is not using the AcceleratorLib library. Thus an application that is
running on the same node as the database server, but that is not linked to it, is considered to be a "remote"
application. A remote application communicates with the server through a network communications protocol
such as TCP/IP. A "local" application, on the other hand, is linked to the AcceleratorLib library, and can call
functions in that library directly, without going through a network protocol.

Because a remote application goes through the network communications protocol, the AcceleratorLib does
not improve performance for remote applications. Only the local application (the one that is directly linked
to the accelerator library) has higher performance.

In some cases, however, remote applications can benefit from improved performance by using the SA API,
which allows low-level operations to read from and write to the database.

If you are using a remote application, you may need to link to the following libraries in the solidDB SDK into
your application.

• Link to the solidDB Control API stub library (solidctrlstub.lib for Windows platforms), when
you have Control API function calls in your application and you want to run your application remotely.
(Note that if your application is a local rather than remote application —i.e. if it is directly linked to the
AcceleratorLib library - then you do not need solidctrlstub.lib.)

For more details on the Control API Stub library (solidctrlstub.lib), read the section called “Using
Dual-Mode Applications with the AcceleratorLib”.

• Link to solidDB SA API (solidimpsa.lib for Windows platforms) if you are running a remote
solidDB SA API application (without AcceleratorLib).

If you are using ODBC, SA API, or JDBC as remote applications only (that do not use Control API function
calls), then you do not need to link to solidctrlstub.lib.

3.1.2 Sample C Applications

For Accelerator Control API usage samples (available in C programming language), refer to samples/aclib,
samples/aclib_smartflow and samples/control_api under the installation directory. These C
samples reflect linked applications that use ODBC API functions to connect to solidDB servers.

18

3.1.1 Libraries for Remote Applications

3.1.3 Using Data Synchronization

If you are new to solidDB data synchronization, solidDB SmartFlow Data Replication Guide contains sample
scripts.

Before you run the sample C application acsnet.c (under directory samples/aclib_smartflow), it
is recommended that you become familiar with solidDB functionality by doing at least one of the following:

• Using solidDB (without the AcceleratorLib) to run the SQL scripts contained in solidDB SmartFlow Data
Replication Guide. These scripts are found in samples/smartflow.

• Running the SQL scripts locally, using the solidDB AcceleratorLib. As a prerequisite, you are required
to set up an application to start the server according to the instructions in this chapter. For details, read
Section 3.2, “Linking Applications for the AcceleratorLib” and Section 3.3, “Starting and Shutting Down
solidDB AcceleratorLib”.

Note

You cannot use the SA API to run synchronization commands.

• Running the implementation sample file aclibstandalone.c, which with the AcceleratorLib library,
emulates a normal server. The sample file is located in directory samples/aclib.

After using any of these methods, it is possible to run all the steps in solidDB SmartFlow Data Replication
Guide's chapter titled Getting Started with Data Synchronization using solidDB SQL Editor (solsql) or
SolidConsole.

Setting up Your ODBC Application with the SmartFlow Synchronization Scripts

You can build an ODBC application, similar to the sample C application acsNet.c, to execute all statements
required to set up, configure, and run a synchronizing environment. You can find acsNet.c under directory
samples/aclib_smartflow.

To set up sample databases for use with an ODBC client application, you can execute sample scripts rep-
lica3.sql, replica4.sql, replica5.sql, and replica6.sql, all of which you can find in the
samples/smartflow/eval_setup directory. These sample scripts contain SQL statements that write new data to
replica(s) and control the execution of synchronization messages. These scripts may be run independently
through the solidDB SQL Editor (solsql) or SolidConsole.

Alternatively, you can embed the SQL statements into a C/ODBC application, compile, and link it directly
to the AcceleratorLib library. When linked with the AcceleratorLib, the sample scripts allow you to get the
performance benefit inherent in AcceleratorLib's architecture.

19

3.1.3 Using Data Synchronization

The sample program embed.c in the samples/odbc directory illustrates how to set up databases with an
ODBC client application using AcceleratorLib. You can insert the SQL commands from the sample scripts,
such as replica3.sql, etc., into the embed.c application.

3.2 Linking Applications for the AcceleratorLib
The solidDB AcceleratorLib is a library that must be linked to a user application. As long as the application
is running, local and remote application requests for solidDB data management services are available through
the library.

Note

If you are writing remote user applications that use solidDB Control API, you will need to link your
remote application to the solidDB Control API stub library (for example, solidctrlstub.lib
for Windows). If you are using solidDB SA API remotely (without AcceleratorLib) then you need to
link to a separate solidDB API library (solidimpsa.lib for Windows). If you are only using
ODBC, SA API, or JDBC remotely, without Control API, then there is no need to link to the solidDB
Control API stub library.

You link only one application directly to the AcceleratorLib library at one time. However, once the linked
application is up and running, and the server started, any network client can connect to the server using any
of the protocols supported by the server, which depends on the operating system. These are for example,
TCP/IP, shared memory and named pipes. Remote clients cannot use direct function calls.

When linking an application to solidDB with the AcceleratorLib, use one of the following libraries required
for your operating system. Refer to your operating system documentation.

Table 3.1. AcceleratorLib System Libraries

solidDB with AcceleratorLib LibraryPlatforms

solidimpac.lib (this is an import library file that gives you access to the real
library file, which is ssolidacxx.dll)

Windows

solidac.aSolaris

solidac.aHP-UX

solidac.aLinux

solidac.aVxWorks

20

3.2 Linking Applications for the AcceleratorLib

3.2.1 Preparing User Applications for the AcceleratorLib

To allow your application to use the solidDB with AcceleratorLib, be sure to:

• Link to the AcceleratorLib library instead of to the driver libraries.

If you are using remote applications, you may need to link to other libraries. For details, read Section 3.1.1,
“Libraries for Remote Applications”.

• Change the connect string to the local or remote server name. For details, read Section 3.2.2, “Establishing
a Local or Remote Connection to solidDB with the AcceleratorLib”.

• If needed, add calls to SSCStartServer and SSCStopServer or other Control API calls. For details,
read Section 4.5, “Control API Reference”.

Signal Handlers

Signal handlers are used to report the occurrence of an exceptional event to the application, for example division
by zero. You must not set signal handlers in user applications because they would override the signal handlers
that are set by the AcceleratorLib. For example, if the user application sets a signal handler for floating point
exceptions, that setting overrides the handler set by the AcceleratorLib. Thus the server is unable to catch,
for example, division by zero.

Dynamic Link Library

solidDB provides both a "static" and a "dynamic" version of the AcceleratorLib library. The names of the
dynamic link library files are shown below for some major platforms. (For the names of the static libraries,
see Section 3.2, “Linking Applications for the AcceleratorLib”.

Table 3.2. Library Files

solidDB with AcceleratorLib LibraryPlatforms

ssolidacxx.dllWindows

ssolidacxx.soSolaris

ssolidacxx.slHP-UX

ssolidacxx.soLinux

Both the static and dynamic library files contain a complete copy of the solidDB server, in library format.
When you use a static library file (e.g. lib/solidac.a), you link your program directly to it, and of course
both your code and the library code are written to the resulting executable file. If you link to a dynamic library

21

3.2.1 Preparing User Applications for the AcceleratorLib

file, the code from the library is not included in the output file that contains your executable program. Instead,
the code is loaded from the dynamic link library separately when your program runs.

Other than changing the size of your executable, there is very little difference between linking to the static
library file vs. the dynamic library file. The total amount of code in memory at any one time is, of course,
similar (assuming that you are executing a single client and a single server on your computer). Performance
is also similar, although there is a slight amount of extra overhead if you use the dynamic library.

The main advantage of using the dynamic link library file is that you can save memory IF you execute more
than one copy of the server in the same computer. For example, if you are doing development work on a single
computer and you want to have both a SmartFlow Master and SmartFlow Replica on the computer at the same
time, or you'd like to have a HotStandby Primary and a HotStandby Secondary at the same time, then you
may prefer to use the dynamic library so that you don't have multiple copies of the AcceleratorLib library in
memory at the same time.

On Microsoft Windows, the solidDB AcceleratorLib includes the additional file lib/solidimpac.lib.
On Microsoft Windows, if you want to use a dynamic link library, you do not link directly to the ssol-
idacxx.dll dynamic link library itself; instead you link to solidimpac.lib, which is an import library.
This links only a small amount of code to your client executable. At the time that your client program actually
executes, the ssolidacxx.dll file will automatically be loaded by the Microsoft Windows operating
system, and your client will be able to call the usual AcceleratorLib functions in that .dll file. The .dll file
must be in your load path when you run the program that references that .dll.

Note

Using the dynamic link library file does not mean that you can have multiple "local" clients linked
to the solidDB server. Even with the dynamic library approach, you are still limited to a single local
client; all other clients must be remote clients, which means that they will communicate with the
solidDB server by using TCP or some other network protocol, rather than the direct function calls
available to the local client.

MakeFile Examples

Following are examples for providing the library name in Windows and Vxworks.

Example 3.1. Microsoft Windows MakeFile Example

For the Microsoft Windows makefile example below, the solidDB library name for the AcceleratorLib is
used, solidimpac.lib.

compiler

22

3.2.1 Preparing User Applications for the AcceleratorLib

CC = cl
compiler flags
CFLAGS = -I. -DSS_WINDOWS -DSS_WINNT
linker flags and directives
SYSLIBS = libcmt.lib kernel32.lib advapi32.lib netapi32.lib wsock32.lib
user32.lib oldnames.lib gdi32.lib
LFLAGS = ..\solidimpac.lib
OUTFILE = -Fe

MyApp building
all: myapp

myapp: myapp.c
 $(CC) $(CFLAGS) $(OUTFILE)myapp myapp.c /link$(LFLAGS)
/NODEFAULTLIB:libc.lib

Example 3.2. VxWorks MakeFile Example

For the VxWorks makefile example below, the solidDB library name for the AcceleratorLib is used, sol-
idac.a. Note that the example uses backslashes. If your makefile program does not support backslashes in
pathnames, then change the backslashes to slashes.

CC = ccppc
CFLAGS = -DSS_UNIX -DSS_VXW -I. -I..\..\include -I$(WIND_BASE)
\target\h \
 -DCPU=PPC603 -DMV2600
LFLAGS = -nostartfiles -s -r ..\..\lib\solidac.a
OUTFILE = -o

solidDB with AcceleratorLib samples building

all: acsNet acsrv

acsNet: acsNet.c
 $(CC) $(CFLAGS) $(OUTFILE)acsNet acsNet.c $(LFLAGS)

acsrv: acsrv.c
 $(CC) $(CFLAGS) $(OUTFILE)acsrv acsrv.c $(LFLAGS)

23

3.2.1 Preparing User Applications for the AcceleratorLib

3.2.2 Establishing a Local or Remote Connection to solidDB with
the AcceleratorLib

Once an application is linked to the AcceleratorLib library, it can use ODBC API or SA API to establish a
local or remote connection directly to the local server. An application can also establish remote connections
to other solidDB servers, including others using the AcceleratorLib.

Establishing a Local Connection

When you establish a local connection, the client's calls to the server are direct function calls to the Acceler-
atorLib library; they do not go through the network.

In the ODBC API, to establish a connection to a local server (i.e. to the server that was linked to the application),
the user application calls the SQLConnect function with the literal string "localserver". Note that for the
local server connection you can also specify an empty source name "". You can also specify a local server
name, but this will cause AcceleratorLib to use a "remote" connection (to go through the network rather than
to use the direct function calls to the AcceleratorLib library).

The following ODBC API code examples connect directly to a local solidDB server with username dba and
password dba :

rc = SQLConnect(hdbc, "localserver", (SWORD)SQL_NTS, "dba", 3, "dba", 3);

or

rc = SQLConnect(hdbc, "", (SWORD)SQL_NTS, "dba", 3, "dba", 3);

In the SA API, to establish a connection, the user application calls the SaConnect function with the literal
string "localserver" (not the server name). Note that for the local server connection you can also specify an
empty source name "". You can also specify a local server name, but this will cause AcceleratorLib to use a
"remote" connection (to go through the network rather than to use the direct function calls to the AcceleratorLib
library).

The following SA API example code connects directly to a solidDB server with username dba and password
dba :

SaConnectT* sc = SaConnect("localserver", "dba", "dba");

or

24

3.2.2 Establishing a Local or Remote Connection to solidDB with the
AcceleratorLib

SaConnectT* sc = SaConnect("", "dba", "dba");

Establishing a Remote Connection

When you establish a remote connection, the client's calls to the server will go through the network rather
than use the direct function calls to the AcceleratorLib library.

In the ODBC API, to establish a remote connection, the user application calls the SQLConnect function
with the name of the remote server. The following ODBC API code example connects to a remote solidDB
server with username dba and password dba. In this example, the network protocol that the client and server
use is "tcp" (TCP/IP). The server is named "remote_server1" and the port that it listens on is 1313.

rc = SQLConnect(hdbc, "tcp remote_server1 1313",
(SWORD)SQL_NTS, "dba", 3, "dba", 3);

In the SA API, to establish a remote connection, the user application calls the SaConnect function with the
name of the remote server. In this example, the network protocol that the client and server use is "tcp" (TCP/IP).
The server is named "remote_server1" and the port that it listens on is 1313.

SaConnectT* sc = SaConnect("tcp remote_server1 1313", "dba", "dba");

3.3 Starting and Shutting Down solidDB AcceleratorLib
You can start up, restart, and shut down the solidDB server from the following APIs:

• Explicitly, from local (linked) user application by calling the Control API function SSCStartServer
to start solidDB and SSCStopServer to shut it down.

When you start a new solidDB server that does not already have a database, you must explicitly specify
that solidDB create a new database with the function SSCStartServer() with the

 -Uusername
 -Ppassword
 -Ccatalogname (the default database catalog name)

parameters. For details, read Section 3.3.1, “Explicit Start up with the Control API Function SSCStartServ-
er”.

25

3.3 Starting and Shutting Down solidDB AcceleratorLib

• Implicitly, when connecting locally to solidDB for the first time, either using ODBC API function SQL-
Connect or SA API function SaConnect. In this case, shut down occurs when the last local connection
disconnects from solidDB using either function SQLDisconnect or SaDisconnect.

When solidDB engine/server is started implicitly from the application, it checks if a database already exists
in the solidDB directory. If a database file is found, solidDB will automatically open that database. If a
database file is not found, then solidDB will give an error. (solidDB will not create a new database during
implicit startup. To create a new database, you must use an explicit startup function, such as SSC-
StartServer, and pass the appropriate parameters.)

For details, read Section 3.3.2, “Implicit Start Up with ODBC API Function Call SQLConnect” and
Section 3.3.3, “Implicit Start Up with SA API Function Call SaConnect”.

Note

1. At server start up, recovery is performed if needed before control returns to the application.
Therefore, if the server is successfully started, it is ready to serve application requests. For the
duration of the application process, the server can be started or stopped as needed.

2. If you want to start a diskless server, you must start the server with Control API function SSC-
StartDisklessServer.

3.3.1 Explicit Start up with the Control API Function SSCStartServ-
er

To start solidDB explicitly, have the user application call the following Control API function:

SSCStartServer (int argc, char* argv [],
SscServerT* h, SscStateT runflags)

where parameters are:

Table 3.3. SSCStartServer Parameters

DescriptionParameter

The number of command line arguments.argc

Array of command line arguments that are used during the function call. The argu-
ment argv[0] is reserved for the path and filename of the user application only
and must be present. For valid options, see SSCStartServer options below.

argv

26

3.3.1 Explicit Start up with the Control API Function SSCStartServer

DescriptionParameter

Each server has a "handle" (a pointer to a data structure) that identifies that server
and indicates where information about that server is stored. This handle is required

h

when referencing the server with other Control API functions. The handle of the
server is provided to you when you call the SSCStartServer function. To get
the handle of the server, you create a variable that is of type pointer-to-server-
handle (i.e. you create an SSCServerT *, which is a pointer to a handle — es-
sentially a pointer to a pointer) and you pass that when you call SSCStartServ-
er. If the server is created successfully, then the SSCStartServer function
will write the handle (pointer) of the new server into the variable whose address
you passed.

The options for this parameter are SSC_STATE_OPEN (remote connections are
allowed) and SSC_STATE_PREFETCH (the server performs a prefetch if needed).

runflags

Prefetch refers to the memory and/or disk cache that provides read-ahead capability
for table content. See below for a runflags parameter entry:

runflags = SSC_STATE_OPEN | SSC_STATE_PREFETCH;

When you start the server for the first time, solidDB creates a new database only if you have specified the
database administrator's username, password, and a name for the default database catalog. For details on the
database catalog, read the section "Managing Database Objects" in chapter "Using solidDB SQL for Data
Management" in solidDB Administration Guide.

For example:

SscServerT h; char* argv[4];
argv[0] = "appname"; /* path and filename of the user app. */
argv[1] = "-UDBA"; /* user name */
argv[2] = "-PDBA"; /* user's password */
argv[3] = "-CDBA"; /* catalog name */
/* Start the server */
rc = SSCStartServer(argc, argv, &h, run_flags);

If you start the server without an existing database and do not specify a database catalog name, solidDB returns
an error that the database is not found.

27

3.3.1 Explicit Start up with the Control API Function SSCStartServer

Note

If you already have an existing database, you do not need to specify the username and password, or
the catalog name.

By default, the database will be created as one file (with the default name, solid.db, or the name you
specified in the solid.ini file) in the solidDB working directory, where the current working directory is
located. An empty database containing only the system tables and views uses approximately 850 KB of disk
space. The time it takes to create the database depends on the hardware platform you are using.

After the database has been created, solidDB starts listening to the network for remote client connection re-
quests.

SSCStartServer argv Parameter Options

Following are the command line options for the argv parameter. Note that all options are case sensitive.

Table 3.4. SSCStartServer argv Options

DescriptionOption

Changes working directory.-c dir

Monitors users' messages and SQL statements.-m

Set server name.-n name

Specifies the username of the administrator for the database being created. The
username is case insensitive. The username requires at least two characters. For

-U username

username, the maximum number of characters is 80. A user name must begin with
a letter or an underscore. Use lower case letters from a to z, upper case letters from
A to Z, the underscore character '_', and digits from 0 to 9.

Caution

You must remember your username to be able to connect to solidDB. There
are no default usernames; the username you enter when creating the data-
base is the only username available for connecting to the new database.

Specifies the password of the administrator for the database being created. The
password is case insensitive. The password requires at least three characters.

-P password

Passwords can begin with a letter, an underscore, or a digit. Use lower case letters
from a to z, upper case letters from A to Z, the underscore character '_', and digits
from 0 to 9.

28

3.3.1 Explicit Start up with the Control API Function SSCStartServer

DescriptionOption

Specifies the name of the default catalog of the database, which is required if you
are starting the server for the first time. For details on catalogs, read the section

-C catalogname

"Managing Database Objects" in chapter "Using solidDB SQL for Data Manage-
ment" in solidDB Administration Guide.

Converts database format to current version and starts server process.-xautoconvert

Does a forced roll-forward recovery.-xforcerecovery

Ignores index errors.-xignoreerrors

Tests database blocks.-xtestblocks

Tests database index.-xtestindex

Example 3.3. Starting up SSCStartServer

Start up SSCStartServer with the servername, the catalog name, and the administrator's username and
password:

SscStateT runflags = SSC_STATE_OPEN; SscServerT h; char* argv[5];
argv[0] = "appname"; /* path and filename of the user app. */
argv[1] = "-nsolid1"; argv[2] = "-UDBA" argv[3] = "-PDBA";
argv[4] = "-CDBA"; /* Start the server */ rc =
SSCStartServer(argc, argv, &h, run_flags);

Note

If you already have an existing database, you do not need to specify the username and password, or
the catalog name.

Shut Down with SSCStopServer

If the server is started by SSCStartServer, then it must be shut down with the following function call in
the embedded application:

SSCStopServer()

For example:

/* Stop the server * /
SSCStopServer (h, TRUE);

29

3.3.1 Explicit Start up with the Control API Function SSCStartServer

3.3.2 Implicit Start Up with ODBC API Function Call SQLConnect

When function SQLConnect is called for the first time, the server is implicitly started. The server is shut
down implicitly when the user application calls function SQLDisconnect and this is the last open local
connection. Note that the server will shut down regardless of currently existing remote connections.

Note

When you start the server for the first time, you must create a solidDB database by using function
SSCStartServer() and specifying the default database catalog, along with the administrator's
username and password. For a description and example, read Section 3.3.1, “Explicit Start up with
the Control API Function SSCStartServer”.

Following is an example of implicit start up and shut down with SQLConnect and SQLDisconnect:

/* Connection #1 */
rc = SQLConnect (hdbc1, "", SQL_NTS, "dba", SQL_NTS, "dba",
SQL_NTS); //Server Started Here
... odbc calls

/* Disconnect #1 */
SQLDisconnect (hdbc1); //Server Shut Down Here

/* Connection #2 */
rc = SQLConnect (hdbc2, "", SQL_NTS, "dba", SQL_NTS, "dba",
SQL_NTS); //Server Started Here
... odbc calls

/* Disconnect #2 * /
SQLDisconnect (hdbc2); //Server Shut Down Here

OR

/* Connection #1*/
rc = SQLConnect (hdbc1, "", SQL_NTS, "dba",
SQL_NTS, "dba", SQL_NTS); // Server Started Here

/* Connection #2*/
rc = SQLConnect (hdbc2, "", SQL_NTS, "dba", SQL_NTS, "dba", SQL_NTS);

30

3.3.2 Implicit Start Up with ODBC API Function Call SQLConnect

... odbc calls

/* Disconnect #1 */
SQLDisconnect (hdbc1);
/* Disconnect #2 * /
SQLDisconnect (hdbc2); // Server Shut Down Here

Note

If the server is started with an SSCStartServer function call, then SQLDisconnect does not
do implicit shut down. The server must be shut down explicitly, either by SSCStopServer, ADMIN
COMMAND 'shutdown', or other explicit shutdown methods.

SscStateT runflags = SSC_STATE_OPEN;
SscServerT server;
SQLHDBC hdbc;
SQLHENV henv;
SQLHSTMT hstmt;

/* Start the server */
SSCStartServer (argc, argv, &server, runflags); // Server Started Here

/* Alloc environment */
rc = SQLAllocEnv (&henv);

/* Connect to the database */
rc = SQLAllocConnect (henv, &hdbc);
rc = SQLConnect (hdbc, "", SQL_NTS, "dba", SQL_NTS, "dba", SQL_NTS);

/* Delete all the rows from table foo */
rc = SQLAllocStmt (hdbc, &hstmt):
rc = SQLExecDirect (hsmt, (SQLCHAR *) "DELETE FROM FOO", SQL_NTS);

/* Commit */
rc = SQLTransact (henv, hdbc, SQL_COMMIT);
rc = SQLFreeStmt (hstmt, SQL_DROP);

/* Disconnect */
SQLDisconnect (hdbc);
SQLFreeConnect (hdbc);

31

3.3.2 Implicit Start Up with ODBC API Function Call SQLConnect

/* Free the environment */
SQLFreeEnv(henv);

/* Stop the server */
SSCStopServer (server, TRUE); // Server Shut Down Here

3.3.3 Implicit Start Up with SA API Function Call SaConnect

When function SaConnect is called for the first time, the server is implicitly started. The server is shut
down implicitly when the user application calls function SaDisconnect and there are no more subsequent
connections.

Note

When you start the server for the first time, you must create a solidDB database by using function
SSCStartServer() and specifying the default database catalog, along with the username and
password. For a description and example, read Section 3.3.1, “Explicit Start up with the Control API
Function SSCStartServer”.

Following is an example of implicit start up and shut down with SaConnect and SaDisconnect:

/* Open Connection */
SaConnect(...);

Server Started Here
... sa calls

/* Close Connection */
SaDisconnect(...);

Server Shut Down Here

Note

If the server is started with an SSCStartServer function call, then it must be shut down only with
an SSCStopServer function call.

32

3.3.3 Implicit Start Up with SA API Function Call SaConnect

3.3.4 Shutting Down solidDB AcceleratorLib

From solidDB client interfaces and even from another remote solidDB connection, you can shut down the
solidDB server as long as you have SYS_ADMIN_ROLE privileges.

Programmatically, you can perform the shut down from an application such as SolidConsole (Query window
or command line), solidDB SQL Editor (solsql), or solidDB Remote Control1 .

To do this, perform the following steps:

1. To prevent new connections to solidDB, close the database(s) by entering the following command:

ADMIN COMMAND 'close'

2. Exit all solidDB users by entering the following command:

ADMIN COMMAND 'throwout all'

3. Stop solidDB by entering the following command:

ADMIN COMMAND 'shutdown'

All the shutdown mechanisms will start the same routine, which writes all buffered data to the database file,
frees cache memory, and finally terminates the server program. Shutting down a server may take awhile since
the server must write all buffered data from main memory to the disk.

Note

You can use explicit methods (e.g. SSCStopServer) to shut down a server that was started with
implicit methods (e.g. SQLConnect). The converse is not true; for example, you cannot use
SQLDisconnect to stop a server that was started with SSCStartServer.

3.3.5 Implicit Start Configuration Parameter

solidDB implicitly starts up the server only when a local connection is established. In the Accelerator
section of the solid.ini configuration file, the parameter ImplicitStart, by default, is set to Yes.
This default setting starts the server automatically when you use the function SQLConnect which is required
for any ODBC connection. The function SaConnect behaves similarly. When it is called for the first time,
the server is implicitly started.

1When using solidDB Remote Control for steps 1-3, you enter the command name only without quotes (for example, close).

33

3.3.4 Shutting Down solidDB AcceleratorLib

34

Chapter 4. Description of Control API
The Control API (also called the SSC API) is a set of functions that provide a simple and efficient means to
control the tasking system of a solidDB.

4.1 Retrieving Task Information
To retrieve a list of all active tasks, use the SSCGetActiveTaskClass function. To retrieve a list of all
suspended tasks, use the SSCGetSuspendedTaskClass function. To get the priority of a task class, use
the SSCGetTaskClassPrio function.

4.2 Notifying Functions of a Special Event
The AcceleratorLib provides fine tuning of priority tasks. You can use the SSCSetNotifier() function
to establish that solidDB calls a specified user-defined function whenever a special event occurs. Special
events that the function detects are:

• solidDB server shutdown

• Bonsai merge from the index to the storage tree

• Bonsai merge interval maximum

• Backup or checkpoint request

• Idle server state

• Netcopy request (which is a request to send a network copy of the Primary database to the Secondary
server) received from the Primary server.

• Completion of a netcopy request, which occurs when the server is started up with the new database received
through the network copy (netcopy).

4.2.1 Obtaining solidDB Status and Server Information

You can use the function SSCGetStatusNum to view current status information of the solidDB database
server. The following information is displayed:

• Number of rows that are not merged from the Bonsai Tree to the Storage Tree

• Number of server threads

35

The SSCGetServerHandle function returns the solidDB server handle if the server is running.

You can also use the function SSCIsRunning to verify if the server is running and the function SSCIs-
ThisLocalServer to verify whether an application is linked to the local AcceleratorLib server library
(for example, ssolidacxx.dll for Windows platforms) or a "dummy" server library (for example,
solidctrlstub.lib for Windows platforms) used to test remote applications that are using Control API.

4.3 Summary of Control API Functions
The following is a brief summary of Control API functions and where the function is described in the Control
API Function Reference section.

Table 4.1. Summary of Control API Functions

For more details, seeDescriptionFunction

See Section 4.11, “SSC-
SetCipher”.

Sets an application-provided encryption library.SSCSetCipher

See Section 4.15, “SSC-
StartServer”.

Starts a solidDB AcceleratorLib Server.SSCStartServer

See Section 4.14, “SSC-
StartDisklessServer”.

Starts a solidDB AcceleratorLib diskless server.SSCStartDisklessServer

See Section 4.13, “SSC-
SetState”.

Sets the state of a solidDB server (for example,
SSC_STATE_OPEN indicates if subsequent

SSCSetState

connections are allowed). Setting the state to
~SSC_STATE_OPEN will block local, as well
as remote, connections.

See Section 4.10,
“SSCRegisterThread”.

Registers an AcceleratorLib application thread
for the server. Registration is required in every

SSCRegisterThread

thread in the user application before any Accel-
erator API function can be called.

See Section 4.17, “SS-
CUnregisterThread”.

Unregisters an AcceleratorLib application thread
for the server. Registration removal is required

SSCUnregisterThread

in every thread that is registered before terminat-
ing.

See Section 4.16, “SSC-
StopServer”.

Stops solidDB server.SSCStopServer

36

4.3 Summary of Control API Functions

For more details, seeDescriptionFunction

See Section 4.12, “SSC-
SetNotifier”.

Specifies a user-defined function which solidDB
calls at a specified event, such as merge, backup,
shutdown, etc.

SSCSetNotifier

See Section 4.8, “SSCIs-
Running”.

Returns non-zero if the server is running.SSCIsRunning

See Section 4.9, “SSCIs-
ThisLocalServer”.

Indicates whether the application is linked to the
solidDB server with the AcceleratorLib or the

SSCIsThisLocalServer

"dummy" (solidctrlstub) library to test
solidDB remote applications using the Accelerat-
orLib's Control API.

See Section 4.6, “SSCGet-
ServerHandle”.

Returns the solidDB server handle if the server
is running.

SSCGetServerHandle

See Section 4.7, “SSCGet-
StatusNum”.

Gets solidDB status information.SSCGetStatusNum

4.4 Control API and Equivalent ADMIN COMMANDs
Control API functions have equivalent solidDB SQL extension ADMIN COMMANDs. You can execute
these commands from both remote and local sites through solidDB tools, such as SolidConsole, solidDB Remote
Control (solcon), and solidDB SQL Editor (solsql).

Refer to Appendix A, AcceleratorLib Parameters for details on Control API equivalent ADMIN Commands.

4.5 Control API Reference
The following pages describe each Control API function in alphabetic order. Each description includes the
purpose, synopsis, parameters, return value, and comments.

4.5.1 Function Synopsis

The declaration synopsis for the function is:

ReturnType SSC_CALL function(modifier parameter[,...]);

The ReturnType varies, but is usually a value that indicates success or failure of the call. Return values are
described in more detail later in this section.

37

4.4 Control API and Equivalent ADMIN COMMANDs

SSC_CALL is required for portability. SSC_CALL specifies the calling convention of the function. It is
defined appropriately for each platform in the sscapi.h file.

Parameters are in italics and are described below.

Parameter Description

In each function description, parameters are described in a table format. Included in the table is the general
usage type of the parameter (described below), as well as the use of the parameter variable in the specific
function.

Parameter Usage Type

The table below shows the possible usage type for Control API parameters. Note that if a parameter is used
as a pointer, it contains a second category of usage to specify the ownership of the parameter variable after
the call.

Table 4.2. Control API Parameter Usage Types

MeaningUsage Type

Indicates the parameter is input.in

Indicates the parameter is output.output

Indicates the parameter is input/outputin out

Applies only to a pointer parameter. It means that the parameter is just used during
the function call. The caller can do whatever it wants with the parameter after the
function call. This is the most common type of parameter passing.

use

Applies only to a pointer parameter. It means that the parameter value is taken by
the function. The caller cannot reference the parameter after the function call. The

take

function or an object created in the function is responsible for releasing the para-
meter when it is no longer needed.

Applies only to a pointer parameter. It means that the function holds the parameter
value even after the function call. The caller can continue to reference the parameter
value after the function call and is responsible for releasing the parameter.

hold

Warning

Because this parameter is shared by the user and the server, you must not
release it until the server is finished with it. In general, you can free the
held object after you free the object that is holding it. For example:

38

4.5.1 Function Synopsis

MeaningUsage Type

conn = SaConnect("", "dba", "dba");
/* Connection is held until cursor is freed */
scur = SaCursorCreate(conn, "mytable");
...
SaCursorFree(scur);
/* After we free the cursor, it is safe to free */
/* the connection (or, as in this case, call a */
/* server function that frees the connection). */
SaDisconnect(conn);

4.5.2 Return Value

Each function description indicates if the function returns a value and the type of value that is returned.

SscTaskSetT

When functions return a value of type SscTaskSetT, this definition is used as a bit mask. SScTaskSetT
is defined in sscapi.h with the following possible values:

SSC_TASK_NONE
SSC_TASK_CHECKPOINT
SSC_TASK_BACKUP
SSC_TASK_MERGE
SSC_TASK_LOCALUSERS
SSC_TASK_REMOTEUSERS
SSC_TASK_SYNC_HISTCLEAN
SSC_TASK_SYNC_MESSAGE
SSC_TASK_HOTSTANDBY
SSC_TASK_HOTSTANDBY_CATCHUP
SSC_TASK_ALL (all of the above tasks)

Note that the HotStandby "netcopy" and HotStandby "copy" operations are performed by the task
"SSC_TASK_BACKUP"; there is no separate task "SSC_TASK_NETCOPY".

39

4.5.2 Return Value

4.5.3 Control API Error Codes and Messages

Control API functions may return the following error codes and messages:

Table 4.3. Error Codes and Messages for Control API Functions

DescriptionError Code/Message

Operation is successful.SSC_SUCCESS

Generic error.SSC_ERROR

Operation aborted.SSC_ABORT

SSCAdvanceTasks returns this message if all tasks
are executed.

SSC_FINISHED

SSCAdvanceTasks returns this message if there are
still more tasks to execute.

SSC_CONT

There are open connections.SSC_CONNECTIONS_EXIST

There are unfinished tasks.SSC_UNFINISHED_TASKS

The server is already running.SSC_INFO_SERVER_RUNNING

Invalid local server handle given. This server does not
match the one started through SSCStartServer.

SSC_INVALID_HANDLE

No license or invalid license file found.SSC_INVALID_LICENSE

No database file found.SSC_NODATABASEFILE

The server is not running.SSC_SERVER_NOTRUNNING

The server is in netcopy mode (applies only with High
Availability/HotStandby).

SSC_SERVER_INNETCOPYMODE

These constants (SSC_SUCCESS, etc.) are defined in the sscapi.h file.

4.6 SSCGetServerHandle
SSCGetServerHandle returns the solidDB server handle if the server is running.

Synopsis

SscServerT SSC_CALL SSCGetServerHandle(void)

40

4.5.3 Control API Error Codes and Messages

Comments

This function has no corresponding solidDB SQL extension ADMIN COMMAND.

Return value

• NULL if the server is not running.

• The server handle if the server is running.

4.7 SSCGetStatusNum
SSCGetStatusNum gets the status information of solidDB.

Synopsis

SscRetT SSC_CALL SSCGetStatusNum(SscServerT h, SscStatusT stat,
 long * num)

The SSCGetStatusNum function accepts the following parameters:

Table 4.4. SSCGetStatusNum Parameters

DescriptionUsage TypeParameters

Handle to server.in, useh

Specifies the status identifier for retrieval:instat

If the function was successful, then when it returns this parameter's
value will be set to either the number of writes not merged, or the

outnum

number of server threads, depending upon which information was
requested.

Comments

This function has no corresponding solidDB SQL extension ADMIN COMMAND.

If you call SSCGetStatusNum and pass it an unrecognized value for the stat parameter, then the function
will return SSC_SUCCESS.

41

Comments

Return value

• SSC_SUCCESS - Operation is successful. This value is also returned if you pass an invalid value for the
stat parameter.

• SSC_ERROR - Operation failed.

• SSC_SERVER_INNETCOPYMODE - The server is in netcopy mode (CarrierGrade/HotStandby option
only)

• SSC_SERVER_NOTRUNNING - The server is not running.

4.8 SSCIsRunning
SSCIsRunning returns non-zero if the server is running.

Synopsis

int SSC_CALL SSCIsRunning(SscServerT h)

The SSCIsRunning function accepts the following parameters:

Table 4.5. SSCIsRunning Parameters

DescriptionUsage TypeParameters

Handle to serverin, useh

Return value

• 0 - The server is not running.

• nonzero - The server is running.

Comments

This function has no corresponding solidDB SQL extension ADMIN COMMAND.

42

Return value

4.9 SSCIsThisLocalServer
SSCIsThisLocalServer indicates whether the application is linked to a solidDB server or the "dummy"
(solidctrlstub) library. The solidctrlstub library allows developers to test solidDB remote applic-
ations using Control API without linking the AcceleratorLib library and modifying the source code.

Synopsis

int SSC_CALL SSCIsThisLocalServer(void)

Return value

• 0 - The application is not linked to the solidDB server.

• 1 - The application is linked to the solidDB server.

Comments

This function has no corresponding solidDB SQL extension ADMIN COMMAND.

4.10 SSCRegisterThread
SSCRegisterThread registers a solidDB application thread for the server. Every thread that uses Control
API, ODBC API, or SA API must be registered. The SSCRegisterThread function must be called by
the thread before any other AcceleratorLib API function can be used.

If the application has only one (main) thread, that is, if the application creates no threads itself, then registration
is not required.

Before a thread terminates, it must unregister itself by calling the function SSCUnregisterThread.

Synopsis

SscRetT SSC_CALL SSCRegisterThread(SscServerT h)

The SCCRegisterThread function accepts the following parameters:

43

4.9 SSCIsThisLocalServer

Table 4.6. SCCRegisterThread Parameters

DescriptionUsage TypeParameters

Handle to serverIn, Useh

Return value

• SSC_SUCCESS

• SSC_INVALID_HANDLE

Comments

This function has no corresponding solidDB SQL extension ADMIN COMMAND.

See also

SSCUnregisterThread

4.11 SSCSetCipher
SSCSetCipher function sets application-provided cipher and encryption/decryption functions. The provided
cipher will be automatically used when the related database encryption command line arguments are used in
SSCStartServer.

Synopsis

void SSC_CALL SSCSetCipher(
 void* cipher,
 char* (SSC_CALL *encrypt)(void *cipher, int page_no, char *page,
 int n, size_t pagesize),
 int (SSC_CALL *decrypt)(void *cipher, int page_no, char *page,
 int n, size_t pagesize));

Table 4.7. SSCSetCipher Parameters

DescriptionUsage TypeParameters

A pointer to an application-specific cipher object, for example, an
encryption password. solidDB server does not use or otherwise in-

incipher

44

Return value

DescriptionUsage TypeParameters

terpret this pointer. It only passes it to the application-provided en-
cryption/decryption functions.

A pointer to the application-provided encryption function. This
function is called from the server when it must encrypt the database
file or log file pages. The function parameters are:

inencrypt

• cipher - A pointer to the application provided cipher object.

• page_no - A server-provided page number. The encryption
algorithm can safely ignore it, or use it as part of the encryption
key.

• n - The number of pages to encrypt.

• pagesize - The size of page to encrypt.

• page - A pointer to the data buffer to be encrypted. The size
of the data buffer is:

n*pagesize

The function must return the pointer to the encrypted data buffer
to be written to the file of size (n*pagesize).

The server does not free the pointer to the encrypted data buffer.

The data buffer passed to the function as 'page' parameter can
be overwritten or manipulated by the encryption function in any
way. For example, the encryption function can encrypt the data
"in place" and return the 'page' pointer.

A pointer to the application-provided decryption function. This
function is called from the server when it has read part of the encryp-

indecrypt

ted database or log file and has to decrypt it. The function parameters
are:

• cipher - A pointer to the application provided cipher object.

45

Synopsis

DescriptionUsage TypeParameters

• page_no - A server-provided page number. The decryption
algorithm can safely ignore it, or use it as part of the decryption
key.

• n - The number of pages to decrypt.

• pagesize - The size of page to decrypt.

• page - A pointer to the data buffer to be decrypted. The size
of the data buffer is:

n*pagesize

Return value

The SSCSetCipher function does not return any value. It is supposed to be invoked before the AcceleratorLib
server is started by using the SSCStartServer function.

Comments

The decryption function is supposed to return a non-zero value if it has successfully decrypted the pages and
the 0 value if decryption has failed for one reason or another. In the latter case, the server makes an emergency
shutdown since it is not able to continue. The function is supposed to return the encrypted data in the same
buffer as given with the parameter 'page'.

Example 4.1. Using the AcceleratorKib Encryption API

The following code illustrates the usage of the AcceleratorLib encryption API. The encryption method is
trivial, namely the XOR obfuscation.

char* SS_CALLBACK encrypt(void *cipher, int page_no, char *page, int np,
size_t pagesize)
{
 size_t n = np*pagesize;
 int *key = cipher;
 size_t i;

46

Return value

 for (i=0; i<n; i++) {
 page[i] ^= (i+*key);
 }
 return page;
}

bool SS_CALLBACK decrypt(void *cipher, int page_no, char *page, int np,
size_t pagesize)
{
 size_t n = np*pagesize;
 int *key = cipher;
 size_t i;

 for (i=0; i<n; i++) {
 page[i] ^= (i+*key);
 }

 return TRUE;
}
...

int main(int argc, char** argv)
{
 int key = 17;
...
 SSCSetCipher(&key, encrypt, decrypt);
 sscret = SSCStartServer(argsc, args, &h, SSC_STATE_OPEN);

 SSCStopServer(h, FALSE);
...

}

4.12 SSCSetNotifier
SSCSetNotifier sets the callback functions that an AcceleratorLib server calls when it is started or
stopped. The function does not have a corresponding ADMIN COMMAND.

47

4.12 SSCSetNotifier

Synopsis

SscRetT SSC_CALL SSCSetNotifier(SscServerT h, SscNotFunT what,
 notify_fun handler, void* userdata
)

The SSCSetNotifier function accepts the following parameters:

Table 4.8. SSCSetNotifier Function Parameters

DescriptionUsage TypeParameters

Handle to server.inh

Specifies event for notification. Options are:inwhat

• SSC_NOTIFY_EMERGENCY_EXIT

This function is called if a server crashes after it has been activ-
ated with SSCStartServer(). The notifier call SSCSetNo-
tifier() has to be issued before SSCStartServer()

• SSC_NOTIFY_SHUTDOWN

Function is called at shutdown.

• SSC_NOTIFY_SHUTDOWN_REQUEST

Function is called when the server receives the shutdown request
and may shut down if the user-defined function accepts the re-
quest. You can refuse the shut down by returning SSC_ABORT
from the notified function, or proceed with the request by return-
ing SSC_CONTINUE.

• SSC_NOTIFY_ROWSTOMERGE

Function is called when there is data in the bonsai index tree
that needs to be merged to the storage server.

• SSC_NOTIFY_MERGE_REQUEST

48

Synopsis

DescriptionUsage TypeParameters

Function is called when the MergeInterval parameter setting
in the solid.ini configuration file is exceeded and the merge
has to start.

• SSC_NOTIFY_BACKUP_REQUEST

Function is called when a backup is requested. You can refuse
the backup by returning SSC_ABORT from the notified func-
tion.

• SSC_NOTIFY_CHECKPOINT_REQUEST

Function is called when a checkpoint is requested. You can re-
fuse the checkpoint by returning SSC_ABORT from the notified
function.

• SSC_NOTIFY_IDLE

Function is called when the server switches to the idle state.

• SSC_NOTIFY_NETCOPY_REQUEST

This callback function applies to the CarrierGrade/HotStandby
option only. The function is called when a netcopy request
(which is a request to send a network copy of the Primary data-
base to the Secondary server) is received from the Primary
server. For details on the netcopy command, refer to solidDB
High Availability User Guide.

• SSC_NOTIFY_NETCOPY_FINISHED

This callback function applies to the CarrierGrade/HotStandby
option only. The function is called when a netcopy request is
finished. When finished, the server is started up with the new
database received through the network copy (netcopy) and
SSC_NOTIFY_FINISHED is called to inform the application
that the server is again available.

User function to call.in, holdnoti-
fy_fun_hand-
ler

49

Synopsis

DescriptionUsage TypeParameters

User data to be passed to the notify function.in, holduserdata

Be sure to read the warning on releasing a parameter of usage type
hold under the section called “Parameter Description”.

Return value

• SSC_SUCCESS - Request from the server accepted.

CarrierGrade (HotStandby) option only :

If SSC_NOTIFY_NETCOPY_FINISHED returns SSC_SUCCESS, then all other application connections
are terminated and the server is set to "netcopy listening mode". In this mode the server accepts the con-
nection from the Primary server and the only possible operation for the Secondary server is to receive the
data from the hotstandby netcopy command. For more details on "netcopy listening mode", read solidDB
High Availability User Guide. (Note that in the past, "netcopy listening mode" was also called "backup
listening mode".)

• SSC_ABORT - Request from the server denied.

CarrierGrade (HotStandby) option only:

If the SSC_NOTIFY_NETCOPY_REQUEST returns SSC_ABORT, then the netcopy is not started and
an error code (SRV_ERR_OPERATIONREFUSED) is returned to the Primary server.

• SSC_INNETCOPYMODE - The server is in netcopy mode (CarrierGrade/HotStandby option only).

SSC_SERVER_NOTRUNNING - The server is not running.

Comments

This function has no corresponding solidDB SQL extension ADMIN COMMAND.

Releasing a parameter of usage type hold should be done with caution. Read the warning for hold the section
called “Parameter Description”.

The user-defined notifier function should not call any SA, SSC, or ODBC function.

When creating a user-defined notifier function, you must conform to the following prototype:

int SSC_CALL mynotifyfun(SscServerT h, SscNotFunT what ,void* userdata);

50

Return value

Once you have used SSC_CALL to explicitly define the convention for your user function, then you use the
SSCSetNotifier function to register the function so that it is called during the specified event; for example:

SscRetT SSCSetNotifier(h, SSC_NOTIFY_IDLE, mynotifyfun, NULL);

Example

Example 4.2. Calling a Function upon Shutdown

Assume a user creates the function user_own_shutdownrequest, which is called every time a shut
down is requested:

int user_own_shutdownrequest(SscServerT * handle, int reason, void
 *udata);
{
 if (shutdown not needed) {
 return SSC_ABORT;
 }
 return SSC_SUCCESS; /*Proceed with shutdown*/
}

The SSCSetNotifier function can then be called as follows to specify that user_own_shutdownre-
quest gets called before the server is shut down.

SSCSetNotifier(handle, SSC_NOTIFY_SHUTDOWN, user_own_shutdownrequest, NULL);

Note

If function user_own_shutdownrequest returns SSC_ABORT, the shut down is not allowed and if the
function returns SSC_SUCCESS, the shut down can proceed.

4.13 SSCSetState
SSCSetState sets the state of an AcceleratorLib server. This allows you to control whether the server accepts
subsequent connections, and whether the server uses prefetch.

If the server is set to "open", then the server will accept connections. If the server is set to "closed", then it
will not accept any further connections (this applies to both local connections and remote connections);
however, any connections that have already been made are allowed to continue.

51

Example

Turning on prefetch tells the server to "read ahead" to fetch data that is likely to be referenced soon. Prefetch
requires more memory or disk cache space. When prefetch is on, performance is generally higher. When
prefetch is off, less memory is required. Turning on prefetch is most useful if you have queries that involve
large sequential scans of the server. For example, if you use reports or aggregate functions to get values for
the entire database (or large portions of it), then prefetch may help. Prefetch is generally not useful if all your
queries involve only one or a few records. Because prefetch uses up memory, prefetch may actually reduce
performance in systems with little available memory.

The following guidelines may help you decide when to use prefetch.

DO use prefetch when: you have a lot of available memory (or disk cache space) and your queries require
large sequential scans.

DO NOT use prefetch when: you have little available memory and your queries generally read unrelated records
one at a time.

Synopsis

SscRetT SSC_CALL SSCSetState(ssc_serverhandle_t h,SscStateT runflags)

The SSCSetState function accepts the following parameters:

Table 4.9. SSCSetState Function Parameters

DescriptionUsage TypeParameter

Handle to the server.in, useh

Options can be a combination of the flags SSC_STATE_OPEN,
which means new remote connections are allowed and

inrunflags

SSC_STATE_PREFETCH, which means the user allows the server
to do a prefetch if needed. Following is an example of the possible
combinations:

• set server open: state = state | SSC_STATE_OPEN;

• set server closed: state = state & ~SSC_STATE_OPEN;

• set prefetch on: state = state | SSC_STATE_PREFETCH;

• set prefetch off: state = state & ~SSC_STATE_PREFETCH;

52

Synopsis

Return value

• SSC_SUCCESS - Operation is successful.

• SSC_ERROR - Operation failed.

• SSC_SERVER_INNETCOPYMODE - The server is in netcopy mode (HotStandby only).

• SSC_SERVER_NOTRUNNING - The server is not running.

Comments

This function has a corresponding solidDB SQL extension ADMIN COMMAND. The command is:

ADMIN COMMAND 'close';

4.14 SSCStartDisklessServer
SSCStartDisklessServer starts a diskless server using the AcceleratorLib.

Synopsis

SscRetT SSC_CALL SSCStartDisklessServer (int argc, char* argv[],
 SscServerT * h, SscStateT runflags, char* lic_string, char* ini_string);

The SSCStartDisklessServer function accepts the following parameters:

Table 4.10. SSCStartDisklessServer Parameters

DescriptionUsage TypeParameters

The number of command line arguments.inargc

Array of command line arguments that are used during the function
call. The argument argv[0] is reserved only for the path and filename

in, useargv

of the user application and must be present. For a list of valid argu-
ments, refer to the SSCStartDisklessServer Parameter Op-
tions listed below.

Returns a handle to the started server. This handle is needed when
referencing the server with other Control API functions.

outh

The only option for this parameter is:inrunflags

53

Return value

DescriptionUsage TypeParameters

SSC_STATE_OPEN - Remote connections are allowed.

runflags = SSC_STATE_OPEN

Specifies the string containing the solidDB license file.inlic_string

Specifies the string containing the solidDB configuration file.inini_string

SSCStartDisklessServer Parameter Options

Following are the command line options for the argv parameter.

Table 4.11. Command Line Options for the argv Parameter

DescriptionOption

Displays help.-h

Sets server name.-nname

Specifies the username for the data. The username is case insensitive.
The username requires at least two characters. For username, the maxim-

-Uusername

um number of characters is 80. A user name must begin with a letter or
an underscore. Use lower case letters from a to z, upper case letters from
A to Z and the underscore character '_', and digits from 0 to 9.

Note

You must remember your username to be able to connect to
solidDB. There are no default usernames ; the username you enter
when creating the database is the only username available for
connecting to the new database.

Specifies the given password for the data. The password is case insensit-
ive. The password requires at least three characters. Passwords can begin

-Ppassword

with a letter, underscore, or a number. Use lower case letters from a to
z, upper case letters from A to Z and the underscore character '_', and
digits from 0 to 9.

Specifies the catalog name for the data, required if you are starting the
server for the first time. When specifying this parameter, be sure to use

-Ccatalogname

uppercase C. For details on catalogs, read the section "Managing Database

54

SSCStartDisklessServer Parameter Options

DescriptionOption

Objects" in chapter "Using solidDB SQL for Data Management" in
solidDB Administration Guide.

Ignores index errors.-x ignoreerrors

Return value

• SSC_SUCCESS - The server is started.

• SSC_ERROR - The server failed to start.

• SSC_SERVER_INNETCOPYMODE - The server is netcopy mode (CarrierGrade/HotStandby option
only).

• SSC_INFO_SERVER_RUNNING - The server is already running.

• SSC_INVALID_HANDLE - Invalid local server handle given.

• SSC_INVALID_LICENSE - No license or invalid license file found.

Comments

By default, the state is set to SSC_STATE_OPEN.

This function has no corresponding solidDB SQL extension ADMIN COMMAND.

Example

Example 4.3. SSCStartDisklessServer

SscStateT runflags = SSC_STATE_OPEN;
SscServerT h;
char* argv[4]; /* pointers to four parameter strings */
int argc = 4;
char* lic = get_lic(); /* get the license */
char* ini = get_ini(); /* get the solid.ini */
SscRetT rc;
argv[0] = "appname"; /* path and filename of the user app. */
argv[1] = "-Udba"; /* user name */
argv[2] = "-Pdba"; /* user's password */

55

Return value

argv[3] = "-Cdba"; /* catalog name */
/* Start the diskless server */
rc = SSCStartDisklessServer(argc, argv, &h, runflags, lic, ini);

Note

In the example, get_ini() and get_lic() are functions that a user must write. Each must return
a string that contains the solid.ini file text or the solid.lic license file.

If you do not specify a catalog name, solidDB returns an error.

See also

SSCStopServer

See also Chapter 5, Using the Diskless Capability.

4.15 SSCStartServer
SSCStartServer starts the AcceleratorLib. In multi-thread environments, the server runs in a separate
thread(s) from the client. For the duration of the application, the application can start or stop the server sub-
routines as needed.

Note that the third parameter is an "out" parameter. If the server is started successfully, then the SSC-
StartServer routine will set this parameter to point to the handle for this server.

Note

If you are starting a diskless server, you must start the server with Control API function SSC-
StartDisklessServer. Read Section 4.14, “SSCStartDisklessServer”.

Synopsis

SscRetT SSC_CALL SSCStartServer(int argc, char* argv[], SscServerT* h
 SscStateT runflags)

The SSCStartServer function accepts the following parameters:

56

See also

Table 4.12. SSCStartServer Parameters

DescriptionUsage TypeParameters

Number of command line arguments.inargc

Array of command line arguments. For a list of valid arguments,
refer to Section 4.15, “SSCStartServer”.

in, useargv

Returns a handle to the started server. This handle is needed when
referencing the server with other Control API functions.

outh

Options can be one or both of the following:inrunflags

• SSC_STATE_OPEN - Remote connections are allowed.

• SSC_STATE_PREFETCH - Server will do a prefetch if needed.

For example:

runflags = SSC_STATE_OPEN &
SSC_STATE_PREFETCH

Return value

• SSC_SUCCESS - The server started.

• SSC_ERROR - The server failed to start.

• SSC_ABORT

• SSC_BROKENNETCOPY - Database corrupted because of incomplete netcopy.

• SSC_FINISHED

• SSC_CONT

• SSC_CONNECTIONS_EXIST

• SSC_UNFINISHED_TASKS

• SSC_INVALID_HANDLE - Invalid local server handle given.

57

Return value

• SSC_INVALID_LICENSE - No license or invalid license file found.

• SSC_NODATABASEFILE - No database file found.

• SSC_SERVER_NOTRUNNING

• SSC_INFO_SERVER_RUNNING - The server is already running.

• SSC_SERVER_INNETCOPYMODE - The server is in netcopy mode (CarrierGrade/HotStandby option
only).

• SSC_DBOPENFAIL - Failed to open database.

• SSC_DBCONNFAIL - Failed to connect to database.

• SSC_DBTESTFAIL - Database test failed.

• SSC_DBFIXFAIL - Database fix failed.

• SSC_MUSTCONVERT - Database must be converted.

• SSC_DBEXIST - Database exists.

• SSC_DBNOTCREATED - Database not created.

• SSC_DBCREATEFAIL - Database create failed.

• SSC_COMINITFAIL - Communication init failed.

• SSC_COMLISTENFAIL - Communication listen failed.

• SSC_SERVICEFAIL - Service operation failed.

• SSC_ILLARGUMENT - Illegal command line argument.

• SSC_CHDIRFAIL - Failed to change directory.

• SSC_INFILEOPENFAIL - Input file open failed.

• SSC_OUTFILEOPENFAIL - Output file open failed.

• SSC_SRVCONNFAIL - Server connect failed.

• SSC_INITERROR - Operation init failed.

58

Return value

• SSC_CORRUPTED_DBFILE - Assert or other fatal error.

• SSC_CORRUPTED_LOGFILE - Assert or other fatal error.

Comments

By default, the state is set to SSC_STATE_OPEN.

This function has no corresponding solidDB SQL extension ADMIN COMMAND.

When you start a new solidDB server, you must explicitly specify that solidDB create a new database with
the function SSCStartServer() with the -Uusername -Ppassword -Ccatalogname (the default
database catalog name) parameters. For details, read Section 3.3.1, “Explicit Start up with the Control API
Function SSCStartServer”.

If you are restarting a database server (i.e. a database already exists in the directory), then SSCStartServer
will use the existing database.

The SSCStartServer function may spawn multiple threads to run the server tasks. The server tasks include
processing local and remote client requests, as well as running various background tasks, such as checkpoints,
merges, etc.

See also

SSCStopServer

4.16 SSCStopServer
SSCStopServer stops an AcceleratorLib server.

Note that you can use explicit methods (e.g. SSCStopServer) to shut down a server that was started with
implicit methods (e.g. SQLConnect). The converse is not true; for example, you cannot use SQLDisconnect
to stop a server that was started with SSCStartServer.

An application is not limited to starting and stopping the server once each time that the application is run.
After the server has been stopped, the application can re-start the server by using SSCStartServer.

Synopsis

SscRetT SSC_CALL SSCStopServer(SscServerT h, bool force)

59

Comments

The SSCStopServer function accepts the following parameters:

Table 4.13. SSCStopServer Parameters

DescriptionUsage TypeParameter

Handle to serverin, useh

Options are:inforce

• TRUE - stop server in all cases.

• FALSE - stop server if there are no open connections. Otherwise,
stop fails.

Return value

• SSC_SUCCESS - The server is stopped.

• SSC_CONNECTIONS_EXIT - There are open connections.

• SSC_UNFINISHED_TASKS - Tasks that are executing.

• SSC_ABORT

• SSC_ERROR

Comments

Remote users can stop solidDB by using ADMIN COMMAND ' shutdown'. Refer to Appendix A, Acceler-
atorLib Parameters for details.

The FALSE option does not permit shut down if there are open connections to the database or existing users.
This option is equivalent to solidDB SQL extension ADMIN COMMAND 'shutdown'.

The SSCSetState() with the &~SSC_STATE_OPEN option prevents new connections to solidDB.

See also

SSCStartServer

SSCSetState

60

Return value

4.17 SSCUnregisterThread
SSCUnregisterThread unregisters a solidDB application thread for the server. The SSCUnregister-
Thread function must be called by every thread that has registered itself with the function SSCRegister-
Thread. The function is called before the thread terminates.

Synopsis

SscRetT SSC_CALL SSCUnregisterThread(SscServerT h)

The SCCUnregisterThread function accepts the following parameters:

Table 4.14. SCCUnregisterThread Parameters

DescriptionUsage TypeParameter

Handle to serverin, useh

Return value

• SSC_SUCCESS

• SSC_INVALID_HANDLE

Comments

SSC_CALL is required to explicitly define the calling convention of your user function. It is defined in the
sscapi.h file appropriately for each platform.

This function has no corresponding solidDB SQL extension ADMIN COMMAND.

See also

SSCRegisterThread

61

4.17 SSCUnregisterThread

62

Chapter 5. Using the Diskless
Capability
solidDB AcceleratorLib allows you to create a database engine that runs without any disk storage space. This
is useful in embedded systems that do not have hard disks, such as line cards in a network router or switch.

There are two main ways to run a diskless server: alone, and as a replica in a SmartFlow system. In each case,
you will start the server by using the AcceleratorLib function call SSCStartDisklessServer().

Diskless Server Alone

If you run a diskless server alone, then of course it has no way to read data when it starts up and no way to
write data when it shuts down. This means that each time the server starts, it starts without any previous data.

Furthermore, since the server has no way to write data to disk, if the server is shut down abnormally (due to
a power failure, for example), then any data in the server is lost and cannot be recovered. You can reduce the
risk of data loss by using the solidDB CarrierGrade option to create a "hot standby" machine that contains a
copy of the data. For more information about this hot standby capability, see solidDB High Availability User
Guide.

Diskless Server as Part of a SmartFlow System

A diskless server may be a replica in a SmartFlow system. In this situation, the replica may send data to the
master server and may download data from that master server. Thus, even though the replica has no disk
storage or other permanent storage of its own, it may make some or all of its data persistent within the
SmartFlow system.

5.1 Configuration Parameters for a Diskless Server
This section describes the parameter settings for implementing and maintaining a diskless server.

5.1.1 Parameters Used in Diskless Servers

The following sections of the configuration file contain parameters that have specific settings for diskless
servers.

Index File Section

Following are the configuration parameters that affect the index file.

63

FileSpec_[1...N] parameter

The FileSpec parameter describes the name and the maximum size of the database file. To define the
maximum size in bytes for the in-memory capacity of the diskless server, the FileSpec parameter accepts
the following arguments:

• database file name - Since the diskless server does not create a physical database file, this parameter is
not used; however, a dummy value must be provided for this argument.

• maximum file size - This setting is required. You need to specify the size in bytes that is large enough to
store all the data in the diskless server. Note that the maximum file size must be smaller than the cache
size, which is set with the CacheSize parameter.

The default value for the FileSpec parameter is solidr.db, 5000000 bytes. For example:

FileSpec_1=SOLIDR.db 5000000

Note

If you specify multiple files, then the maximum file size setting must be the sum of all the FileSpec
parameter settings.

Not surprisingly, the maximum size is limited by the physical memory available, since a diskless machine
has no disk to use as swap space for virtual memory. Note that on some platforms, the amount of physical
memory available to the applications may be less than the amount of physical memory in the machine. For
example, in some versions of Linux on 32-bit systems, the amount of memory available to applications is
limited to one half or one quarter of the theoretical address space (4GB) because Linux reserves the 1 or 2
most significant bits of the address for its own memory manager.

If the data in memory exceeds the maximum file size, the error message 11003 is displayed:

File write failed, configuration exceeded

CacheSize

The CacheSize parameter defines the amount of main memory in bytes that the server allocates for the
buffer cache. For example:

CacheSize=10000000

64

5.1.1 Parameters Used in Diskless Servers

The setting for this value depends on the following criteria for diskless servers:

• For disk based tables, the cache size (in bytes) should be at least 20% larger than the maximum file size
(that is, the amount of data) set with the FileSpec parameter since this data is held in the buffer cache.
The 20% overhead is an estimate that may vary depending on the usage of the database. For example:

[IndexFile]
FileSpec_1=solid.db 10MB
CacheSize=12MB

• Even if no disk-based tables are used (the database is created by using in-memory tables), the cache is
necessary to hold system tables. In that case, the minimum cache size is 1-2 MB. The space occupied by
the system tables depends of the number and complexity of database objects and whether SmartFlow is
used or not.

• The cache size must be less than the physical memory available for running the diskless server.

Total memory used by the diskless server can be estimated as follows. (Note that the TOTAL of all of
these must fit within the amount of physical memory available, which means that the cache size must in
fact be significantly smaller than the amount of physical memory available to the server:)

CacheSize
+ 5MB
+ (100K * number of users * number of active statements per user)
+ in-memory table space
+ (HSB operations to be sent to the Secondary) [1][2]

[1] This term of the equation applies to HotStandby users only. An HSB Primary server needs some
memory to store HotStandby operations that are to be sent to the Secondary server. During a temporary
network failure between the Primary server and the Secondary diskless server, the Primary may continue
to accept transactions from an application. When the network connection is restored between the servers,
updates from the Primary server are sent to the Secondary server. (HotStandby uses the transaction log
to store these operations. A diskless server cannot write the transaction log to disk, of course, so the in-
formation must be stored in memory.) This memory is separate from the Cache.

[2] For this term of the equation, the maximum limit is currently 1 MB or 512 operations, whichever is
lower. Unlike on a disk-based server, the transaction log is not allowed to keep growing until it uses up
all available space.

65

5.1.1 Parameters Used in Diskless Servers

The exact amount required also depends on other factors, including the nature of the queries executed
against the server. Naturally, the amount of memory available to the server is less than the total physical
memory, since the operating system etc. will use up some of the physical memory.

Com Section

Following are the configuration parameters that affect communication between the master and the diskless
replica server (if you are using the diskless server as a SmartFlow replica server).

Listen parameter [Com]

This is the protocol and name that the diskless server uses when it starts listening to the network. Its default
is Operating System dependent. Refer to "Managing Network Connections" in solidDB Administration Guide.

5.1.2 Configuration Parameters that Do Not Apply to Diskless
Engines

The following configuration file parameters (grouped by section) are disabled or inoperable for diskless
servers. These parameters affect behaviors that do not apply to diskless engines.

Table 5.1. Configuration Parameters not Applicable to Diskless Engines

DescriptionParameter

[General] Section

This parameter is disabled since checkpoints do not apply to diskless
servers.

CheckpointInterval

[IndexFile] Section

No physical read from the database file, so this parameter is inoperableReadAhead

No physical write to the database file, so this parameter is inoperablePreFlushPercent

[Logging] Section

This parameter is disabled since transaction logging is always disabled
for diskless servers.

LogEnabled

Note

Diskless mode supports transaction rollback only. Transaction
rollbacks are typically used when some failure interrupts a half-

66

5.1.2 Configuration Parameters that Do Not Apply to Diskless Engines

DescriptionParameter

completed transaction. The diskless mode does not support roll-
forward recovery.

67

5.1.2 Configuration Parameters that Do Not Apply to Diskless Engines

68

Chapter 6. Using solidDB
AcceleratorLib With Java

Note

This chapter assumes that you are already familiar with the material in the preceding chapters. If you
jumped straight to this chapter because you are interested only in Java/JDBC, not C/ODBC, you will
have missed too much material to understand this entire chapter.

6.1 Overview of solidDB JDBC Accelerator (SJA)
A Java/JDBC program, like a C/ODBC program, may use the solidDB AcceleratorLib to get higher performance
and greater control over the server. SJA enables a Java application to start a local solidDB server, which will
be loaded into the Java Virtual Machine context from a dynamic library called 'ssolidacxx'. The Java application
will then be able to connect to the solidDB server and use the services solidDB DBMS provides through a
standard JDBC API.

The client application program will get higher performance because it is directly linked to the server library,
so calls to server functions do not have the overhead of network (RPC) calls. The application will have
greater control because it can call functions (methods) in the solidDB Server Control (SSC) library to do
things such as assign priorities to certain types of tasks. For example, the application might give itself a high
priority and might give remote client applications a low priority.

solidDB JDBC Accelerator (SJA) can only be used when the server and client are linked together; thus, if the
Java application and the solidDB server are to be run in separate hosts, SJA cannot be used.

Not surprisingly, only the "local" client (the one that is linked to the AcceleratorLib library) can bypass the
network and get the higher performance of the AcceleratorLib. Other client programs may also use the server,
but they must connect through the network, and are treated as "remote" programs even if they are running on
the same computer as the solidDB server. You may only have one "local" client; the rest are "remote". The
remote programs may be a mix of C and Java programs.

The language in which the local client is written does not restrict which languages the remote clients can be
written in. For example, if you use JDBC Accelerator, the remote client programs may use C, Java, or both.

69

6.2 How the Accelerator Works
As with C programs, Java/JDBC programs that want to use the AcceleratorLib must link to the solidDB Ac-
celeratorLib library (ssolidacxx). This library contains the entire solidDB server, except that it is in the form
of a callable library instead of a standalone executable program. The ssolidacxx used with Java/JDBC is the
same as the ssolidacxx that was explained in previous chapters; there are not separate versions for Java and
C clients. Linking to the library allows a client program to avoid the overhead of RPC (Remote Procedure
Calls) through the network.

When you use the AcceleratorLib with Java/JDBC, you link the following into a single executable process:

• solidDB AcceleratorLib library,

• your Java-language client program, and

• the JVM.

The table below shows the different "layers" in the executable process.

Table 6.1. Layers in the Executable Process

Local Java/JDBC client application

JVM (Java Virtual Machine)

solidDB Accelerator Library (ssolidacxx)

Java commands in your client are executed by the JVM. If the command is a JDBC function call, then the
JVM calls the appropriate function in ssolidacxx. The function call is "direct", rather than going through
the network (through RPC). The calls are made using JNI (Java Native Interface). Note that you do not need
to know about these low-level details. You do not need to write any JNI code yourself; you simply have to
call the same JDBC functions that you would call if you were a remote client program.

Accessing a solidDB database from Java Accelerator is identical to accessing a solidDB database through
RPC — with one exception: in order to access the database services, the application using Java Accelerator
must first start the solidDB accelerator server. This is done with a proprietary API called SolidServer-
Control (SSC). SSC API calls are used to start, as well as to stop, the solidDB DBMS. The actual database
connections are done with normal JDBC API. Both the SolidServerControlAPI and solidDB's JDBC
driver can be found in a .jar file named SolidDriver2.0.jar.

When the local solidDB server is started, it will be loaded into the Java Virtual Machine context from a dy-
namic library called ssolidacxx. The Java application will then be able to connect to the solidDB server
and use the services solidDB DBMS provides through a standard JDBC API.

70

6.2 How the Accelerator Works

Every local client program that uses solidDB Java Accelerator follows the same basic three-step pattern:

1. Start the accelerator server with SolidServerControl

2. Access the database by using normal JDBC API

3. When database processing is done, stop the accelerator server again with SolidServerControl

The SolidServerControl classes for accessing solidDB accelerator server have been embedded inside
solidDB JDBC driver file, inside the solid.ssc package. The solidDB JDBC driver jar file (Solid-
Driver2.0.jar) contains the following packages:

• solid.jdbc.* solidDB JDBC driver classes

• solid.ssc.* solidDB Server Control classes (proprietary interface)

The classes inside the solidDB Server Control (solid.ssc) package are:

• SolidServerControl (for starting and stopping solidDB server from Java)

• SolidServerControlInitializationError (for reporting errors)

For detailed information on SolidServerControl (SSC) class interface, see Section 6.6, “solidDB
Server Control (SSC) API”.

To start a solidDB server from a Java application, you must instantiate the class SolidServerControl
in the beginning of your application and call the startServer method with correct parameters (examples
are given below). After you've started the server, you should be ready to make a JDBC connection to the
server.

6.3 System Requirements
You need the following to use the solidDB Java Accelerator:

• The solidDB AcceleratorLib library itself. This is a file named ssolidacxx. The filename extension varies
depending upon the platform; some common names and platforms are listed below:

• Microsoft Windows: ssolidacxx.dll and the import library solidimpac.lib

• Solaris and Linux: ssolidacxx.so

• HP-UX: ssolidacxx.sl

• A valid license file for using the solidDB server and the AcceleratorLib

71

6.3 System Requirements

• solidDB JDBC2 driver file (SolidDriver2.0.jar)

• solidDB communication libraries for your platform (these are normally installed when you install the
solidDB Development Kit).

• To compile the program, you must have JDK Version 1.3.1_03-b03 or later (JDK 1.4 or later on HP-UX),
and an appropriate JDK/JRE to run the program. The JDK/JRE that you use MUST have a HotSpot
runtime/compiler. SJA has been tested ONLY with HotSpot JREs.

6.4 Basic Usage

6.4.1 Installation

If you have installed a Java Development Kit (such as JDK 1.3), then you do not need to do any further install-
ation. When solidDB is installed, it includes the library(s) that are needed when using the solidDB Java Ac-
celerator.

Note

You may need to set PATH and CLASSPATH environment variables to appropriate values so that
you can access the Java compiler, etc.

6.4.2 Compiling and Running a Program

In order for the server startup to succeed, you need to have at least a valid license for using solidDB and Ac-
celeratorLib.

The ssolidacxx dynamic link library must be in the system search path. Proceed as follows:

1. Set the paths (examples from Microsoft Windows command prompt)

set PATH=<path to your ssolidacxx DLL>;%PATH%

Make sure you have the directory containing solidDB communication libraries in your path too.

2. Set your path environment variable to include JDK's HOTSPOT runtime environment in (SJA has only
been tested in hotspot JRE's). For example,

set PATH=<your JDK directory>\jre\bin\hotspot;%PATH%

3. Save the example file included in the end of this chapter into a file named SJASample.java and
compile it with the following command:

72

6.4 Basic Usage

javac -classpath <solidDB JDBC driver directory>/SolidDriver2.0.jar;. \ SJASample.java

4. Run your application with a command line resembling the next one:

java -Djava.library.path=<path to ssolidacxx DLL> \ -classpath <solidDB JDBC driver direct-
ory>/SolidDriver2.0.jar;. \ <your application name>

For example, on Microsoft Windows, if you installed the server to C:\solid and would like to run
the SJASample program, then your command line would look like:

java -Djava.library.path=C:\solid\bin -classpath C:\solid\jdbc\SolidDriver2.0.jar;. SJASample

(On Microsoft Windows, the ssolidacxx.dll dynamic library is in the bin subdirectory of the
solidDB root installation directory.)

As in the example class SJASample, you must pass the solidDB server at least the following parameters
with SolidServerControl's startServer method:

-c<directory containing solidDB license file>
-U<username>
-P<password>
-C<catalog>

Note that upper and lower case "C" are both used, and they mean different things.

Assuming you have all the necessary files (ssolidacxx library, communication libraries, JDBC driver
and solid.lic) in your current working directory, you can start SJASample with a command line
like the following one:

java -Djava.library.path=. -classpath SolidDriver2.0.jar;. <your application>

If all things went as they were supposed to go, you should now have a solidDB accelerator server up and
running.

6.4.3 Making JDBC Connections

solidDB Java accelerator supports both local database connections as well as RPC based connections.

In order to make a local (non RPC-based) JDBC connection, you need to specify the JDBC driver that you
are using 'localserver' at port 0. Thus, if you are making the database connection by using, for example, JDBC
class DriverManager, connect by using the following statement (as also presented in the example code
SJASample further below)

73

6.4.3 Making JDBC Connections

DriverManager.getConnection("jdbc:solid://localserver:0", myLogin, myPwd);

As you can see, the DriverManager uses the URL "jdbc:solid://localserver:0" for making a connection to the
local server. If the getConnection subroutine is given another URL, the driver will probably try to connect
with RPC.

So remember the URL -

jdbc:solid://localserver:0

when making java accelerator connections.

Note

Note! If you are using multiple threads (java.lang.Thread objects) that access solidDB Accelerator
server inside your Java application, you must register each thread separately with the solidDB Accel-
erator server before you start any JDBC-related activities using that thread. The thread registration is
done by calling SolidServerControlAPI's registerThread method in the thread's context.
The thread registration must be done explicitly for each user thread (except the main thread) using
solidDB's JDBC driver.

The user must also explicitly unregister each thread that has been registered to the solidDB Acceler-
ator server. To unregister a thread, call SolidServerControlAPI's 'unregisterThread'.

6.5 Limitations

Note

solidDB 'admin commands' do not work in the Java accelerator context.

Caution

Java doesn't behave consistently if something fails outside the VM context (for example, inside a
native method call). If something should assert (or even crash) in the solidDB server native code, Java
either exits (when it notices an unexpected exception) or hangs up completely. In the latter case, you
may have to kill the dangling java process manually.

74

6.5 Limitations

6.6 solidDB Server Control (SSC) API
Below is the complete public interface for the SolidServerControl class. For an example of a program that
uses some of the methods in this class, see the file samples/accelerator_java/SJASample.java

 /**
 * See solidDB AcceleratorLib User Guide
 * for the following constants
 */
 public final static int SSC_SUCCESS = 0;
 public final static int SSC_ERROR = 1;
 public final static int SSC_ABORT = 2;
 public final static int SSC_FINISHED = 3;
 public final static int SSC_CONT = 4;
 public final static int SSC_CONNECTIONS_EXIST = 5;
 public final static int SSC_UNFINISHED_TASKS = 6;
 public final static int SSC_INVALID_HANDLE = 7;
 public final static int SSC_INVALID_LICENSE = 8;
 public final static int SSC_NODATABASEFILE = 9;
 public final static int SSC_SERVER_NOTRUNNING = 10;
 public final static int SSC_INFO_SERVER_RUNNING = 11;
 public final static int SSC_SERVER_INNETCOPYMODE = 12;

 public final static int SSC_STATE_OPEN = (1 << 0);
 public final static int SSC_STATE_PREFETCH = (1 << 1);

/**
 * Initiates a SolidServerControl class. Output is not directed to any
 * PrintStream.
 *
 * @return SolidServerControl instance
 */
public static SolidServerControl instance()
 throws SolidServerInitializationError;

/**
 * Initiates a SolidServerControl class. Output is being directed
 * to a PrintStream object given in parameter 'os'.

75

6.6 solidDB Server Control (SSC) API

 *
 * @param os the PrintStream for output
 * @return SolidServerControl instance
 *
 */
public static SolidServerControl instance(PrintStream os)
 throws SolidServerInitializationError;

/**
 * setOutStream method sets the output to the given PrintStream
 *
 * @param os the PrintStream for output
 */
public void setOutStream(PrintStream os);

/**
 * getOutStream returns the stream used for output in class
 * SolidServerControl
 *
 * @return returns the outputstream of this object
 */
public PrintStream getOutStream();

/**
 * startServer starts the solidDB Accelerator server
 *
 * @param argv parameter vector for the accelerator server
 * (be sure to give the working directory containing
 * solidDB license file (f.ex. -c\tmp) first, in front
 * of other parameters.) See solidDB AcceleratorLib
 * User Guide for details of parameters that can
 * be passed to the Accelerator server.
 *
 * @param runflags Options for this parameter are SSC_STATE_OPEN
 * (remote connections are allowed) and
 * SSC_STATE_PREFETCH (server will do a "prefetch"
 * if needed). Prefetch refers to the memory
 * and/or disk cache that provides read-ahead
 * capability for table content. Following is
 * a runflags parameter entry:

76

6.6 solidDB Server Control (SSC) API

 * runflags |= SSC_STATE_OPEN & SSC_STATE_PREFETCH
 *
 * @return the return value from the server :
 * SSC_SUCCESS
 * SSC_ERROR
 * SSC_INVALID_LICENSE - No license or license file found.
 * SSC_NODATABASEFILE - No database file found.
 */
public long startServer(String[] argv, long runflags);

/**
 * stopServer stops the solidDB Accelerator server
 *
 * @param runflags Runflags for stopping the solidDB Accelerator server.
 * See solidDB AcceleratorLib User Guide for more
 * details.
 *
 * @return the return value from the server
 * SSC_SUCCESS if server is stopped.
 * SSC_CONNECTIONS_EXIT if there are open connections.
 * SSC_UNFINISHED_TASKS if there are still tasks that are
 * executing.
 * SSC_SERVER_NOTRUNNING if the server is not running.
 */
public long stopServer(int runflags);

/**
 * returns the state of the server, i.e. is the server running or not
 *
 * @return SSC_STATE_OPEN if server is up and running
 */
public int getState();

/**
* registerThread registers this user thread to solidDB Accelerator server

77

6.6 solidDB Server Control (SSC) API

*
*
* @return the return value from the server
* SSC_SUCCESS Registration succeeded.
* SSC_ERROR Registration failed.
* SSC_INVALID_HANDLE Invalid local server handle
given.
* SSC_SERVER_NOTRUNNING Server is not running.
*/
public long registerThread();

/**
* unregisterThread unregisters this user thread from the
* solidDB Accelerator server
*
*
* @return the return value from the server
* SSC_SUCCESS Registration succeeded.
* SSC_ERROR Registration failed.
* SSC_INVALID_HANDLE Invalid local server handle given.
* SSC_SERVER_NOTRUNNING Server is not running.
*/
public long unregisterThread();

78

6.6 solidDB Server Control (SSC) API

Appendix A. AcceleratorLib
Parameters
This appendix provides a list of all parameters for the AcceleratorLib. Accelerator parameters appear in the
[Accelerator] section of the solidDB configuration file (solid.ini).

For a description of all other solidDB parameters, refer to the appropriate Appendix in solidDB Administration
Guide.

Note that you can change solidDB parameters in the following ways:

• Using the SolidConsole Configuration page.

• Entering the ADMIN COMMAND 'parameter' command in solidDB solsql or SolidConsole.

• Manually editing the solid.ini configuration file.

Note that any changes to the solid.ini file using the methods above do not take effect until the next time
that the server starts.

A.1 Accelerator Section

Table A.1. Accelerator Parameters

Factory ValueDescription[Accelerator]

yesIf set to yes, this parameter starts solidDB automatically as
soon as the ODBC API function SQLConnect is called in

ImplicitStart

a user application. If set to no, solidDB must be explicitly
started with a call to the Control API function SSC-
StartServer.

79

80

Glossary
A
Accelerated Application

solidDB AcceleratorLib is implemented as a subroutine library. This library can be linked to your client
application to create a single executable program, which we call an Accelerated Application. This single
executable is both a server and a client of that server.

ASCIIZ
The normal format for strings in the C programming language is ASCIIZ. A string is an ASCIIZ string
if the last byte stores the value 0 ('\0', not the ASCII character for the digit '0') to mark the end of the
string. Such a string is also sometimes referred to as a "null-terminated string", although strictly speaking
this is incorrect because "NULL" is a pointer value and is multiple bytes on most platforms, while the
'\0' is a single-byte character.

L
Local sort

A "local sort" is a sort that is done on the client side by the SA library rather than on the server side by
the server.

Lost update
A "lost update" occurs when one user's update writes over another user's update without seeing the
earlier update. For example, user1 starts a transaction, then user2 updates a column, then user1 updates
that same column and commits her transaction. User2's update was "lost". Note that this is different from
the "normal" case where one user makes a change and then commits it, and then another user starts a
transaction, sees the result of the earlier change by the other user. The difference is that when there is a
"lost" update, the first changes was not visible to the user who made the second change. Most modern
database software prevents lost updates by using record locking or optimistic concurrency control.

T
Task

On a Real-Time Operating System (RTOS), such as VxWorks, OSE, etc., a task is a "thread" of control
running within the context of a process. A process could have one or more independent yet cooperating
"programs" running within it. Each of these programs is called a task.

81

In a typical RTOS environment, tasks have immediate, shared access to system resources, while also
keeping enough separate context to maintain individual threads of control. However, all codes of tasks
within a process execute in a single common address space. Memory protection is not pre-assumed and
is the responsibility of the programmers.

82

Index
A
AcceleratorLib

Components, 7
Described, 7
downloading, 17
library, 20
linking applications for, 20
shutting down, 33
starting, 25

administering diskless servers
defining solidDB configuration file options, 63

application
preparing for the AcceleratorLib, 21

B
backup listening mode, 50

(see also netcopy listening mode)

C
C applications

samples, 18
CacheSize parameter

configuring for diskless, 64
client APIs and drivers, 13
Com section

configuring for diskless, 66
connection

establishing for AcceleratorLib, 24
ODBC remote without server startup, 33

Control API
ADMIN COMMAND equivalents, 37
SSCGetActiveTaskClass (function), 35
SSCGetServerHandle (function), 35
SSCGetStatusNum (function), 35
SSCGetTaskClassState (function), 35
SSCIsRunning (function), 35
SSCIsThisLocalServer (function), 35

SSCSetNotifier (function), 35
summary of scheduling functions, 36

D
database, 63

(see also Index file section)
size, 28

diskless
parameter setting fordiskless engines, 63

downloading AcceleratorLib
defined, 17

drivers and client APIs, 13
dual mode application

defined, 12

E
events

notifying function of, 35

F
FileSpec

(parameter), 63
FileSpec_1 parameter

configuring for diskless, 63

I
implicit startup, 33
ImplicitStart (parameter), 33, 79
Index file section

configuring for diskless, 63

L
library

AcceleratorLib, 20
contents of AcceleratorLib, 17
for remote user applications, 18
solidimpac, 22

linking applications
for AcceleratorLib, 20

Linux

83

memory limitations with, 64
Listen parameter

configuring for diskless, 66
local application

defined, 11
Local sort, 81
Lost update, 81

M
makefile examples, 22
memory

CacheSize (for diskless server), 64
total used by diskless server, 65

N
netcopy listening mode, 50

O
ODBC application

building with SmartFlow scripts, 19

P
parameters

FileSpec, 63
passwords

criteria, 28, 54

R
remote application

defined, 12

S
SaConnect

implicit start up with, 32
server information

retrieving, 35
shutting down

AcceleratorLib, 33
solidctrlstub, 12, 14, 15, 18, 37
solidDB configuration file

CacheSize (parameter), 64
configuring, 63
FileSpec (parameter), 63
Listen (parameter), 66
parameter settings, 63

solidDB Control API
defined, 14

(see also Control API)
solidDB JDBC API

defined, 14
solidDB ODBC API

defined, 13
solidDB SA

defined, 13
solidDB Server Control (SSC) API, 75

SSC API, 75
solidimpac, 22
SQLConnect

implicit start up with, 30
SSC_ABORT, 40
SSC_CALL, 37
SSC_CONNECTIONS_EXIST, 40
SSC_CONT, 40
SSC_ERROR, 40
SSC_FINISHED, 40
SSC_INFO_SERVER_RUNNING, 40
SSC_INVALID_HANDLE, 40
SSC_INVALID_LICENSE, 40
SSC_NODATABASEFILE, 40
SSC_SERVER_INNETCOPYMODE, 40
SSC_SERVER_NOTRUNNING, 40
SSC_STATE_OPEN, 52, 53, 57
SSC_STATE_PREFETCH, 52, 57
SSC_SUCCESS, 40
SSC_TASK_ALL, 39
SSC_TASK_BACKUP, 39
SSC_TASK_CHECKPOINT, 39
SSC_TASK_HOTSTANDBY, 39
SSC_TASK_HOTSTANDBY_CATCHUP, 39
SSC_TASK_LOCALUSERS, 39
SSC_TASK_MERGE, 39
SSC_TASK_NONE, 39

84

SSC_TASK_REMOTEUSERS, 39
SSC_TASK_SYNC_HISTCLEAN, 39
SSC_TASK_SYNC_MESSAGE, 39
SSC_UNFINISHED_TASKS, 40
sscapi.h, 39, 40
SSCGetServerHandle

function description, 40
SSCGetStatusNum

function description, 41
SSCIsRunning

function description, 42
SSCIsThisLocalServer

function description, 43
SSCRegisterThread

function description, 43
SSCServerT, 27
SSCSetCipher

function description, 44
SSCSetNotifier

function description, 47
SSCSetState

function description, 51
SSCStartDisklessServer

function description, 53
SSCStartServer

explicit Start up with, 26
function description, 56

SSCStopServer
function description, 59
shut down with, 29

SscTaskSetT, 39
SSCUnregisterThread

function description, 61
starting solidDB

with AcceleratorLib, 25
status information

retrieving, 35
synchronization

using, 19

T
Task

defined, 81
task information

retrieving, 35

U
usernames

default, 28, 54

85

86

	Chapter 1. Welcome
	1.1 About This Guide
	1.1.1 Organization
	1.1.2 Audience

	1.2 Conventions
	1.2.1 About solidDB
	1.2.2 Typographic Conventions
	1.2.3 Syntax Notation

	1.3 solidDB Documentation

	Chapter 2. Introducing AcceleratorLib
	2.1 AcceleratorLib Library
	2.1.1 Disk-based vs. Diskless Servers
	2.1.2 Library Contents
	2.1.3 Application Types Used with AcceleratorLib

	2.2 solidDB Client APIs and Drivers for the AcceleratorLib
	2.2.1 solidDB SA API
	2.2.2 solidDB ODBC API
	2.2.3 solidDB JDBC API
	2.2.4 solidDB Control API (SSC API)

	Chapter 3. Creating and Running an AcceleratorLib Application
	3.1 Downloading the AcceleratorLib Library
	3.1.1 Libraries for Remote Applications
	3.1.2 Sample C Applications
	3.1.3 Using Data Synchronization

	3.2 Linking Applications for the AcceleratorLib
	3.2.1 Preparing User Applications for the AcceleratorLib
	3.2.2 Establishing a Local or Remote Connection to solidDB with the AcceleratorLib

	3.3 Starting and Shutting Down solidDB AcceleratorLib
	3.3.1 Explicit Start up with the Control API Function SSCStartServer
	3.3.2 Implicit Start Up with ODBC API Function Call SQLConnect
	3.3.3 Implicit Start Up with SA API Function Call SaConnect
	3.3.4 Shutting Down solidDB AcceleratorLib
	3.3.5 Implicit Start Configuration Parameter

	Chapter 4. Description of Control API
	4.1 Retrieving Task Information
	4.2 Notifying Functions of a Special Event
	4.2.1 Obtaining solidDB Status and Server Information

	4.3 Summary of Control API Functions
	4.4 Control API and Equivalent ADMIN COMMANDs
	4.5 Control API Reference
	4.5.1 Function Synopsis
	4.5.2 Return Value
	4.5.3 Control API Error Codes and Messages

	4.6 SSCGetServerHandle
	4.7 SSCGetStatusNum
	4.8 SSCIsRunning
	4.9 SSCIsThisLocalServer
	4.10 SSCRegisterThread
	4.11 SSCSetCipher
	4.12 SSCSetNotifier
	4.13 SSCSetState
	4.14 SSCStartDisklessServer
	4.15 SSCStartServer
	4.16 SSCStopServer
	4.17 SSCUnregisterThread

	Chapter 5. Using the Diskless Capability
	5.1 Configuration Parameters for a Diskless Server
	5.1.1 Parameters Used in Diskless Servers
	5.1.2 Configuration Parameters that Do Not Apply to Diskless Engines

	Chapter 6. Using solidDB AcceleratorLib With Java
	6.1 Overview of solidDB JDBC Accelerator (SJA)
	6.2 How the Accelerator Works
	6.3 System Requirements
	6.4 Basic Usage
	6.4.1 Installation
	6.4.2 Compiling and Running a Program
	6.4.3 Making JDBC Connections

	6.5 Limitations
	6.6 solidDB Server Control (SSC) API

	Appendix A. AcceleratorLib Parameters
	A.1 Accelerator Section

	Glossary
	Index

