
Query Management Facility™

Installing and Managing QMF

Version 7 Release 2

GC27-0720-01

���

Query Management Facility™

Installing and Managing QMF

Version 7 Release 2

GC27-0720-01

���

Note
Before using this information and the product it supports, be sure to read the general information in
Appendix F, “Notices” on page 759.

Third Edition (March 2002)

This edition applies to Query Management Facility, a feature of Version 7 Release 1 of DB2 Universal Database Server
for OS/390 (DB2 UDB for OS/390), Version 7 Release 1, 5675-DB2, a feature of DB2 Server for VSE and VM Version 7
Release 1, 5697-F42, and to all subsequent releases and modifications until otherwise indicated in new editions.

This edition replaces GC27-0719-01.

© Copyright International Business Machines Corporation 1983, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

The QMF library ix

About this book xi
Who should read this book xi
What you should know before you begin . . xi
How to use this book xiii
Prerequisite and related information. . . . xiv
How National Language Feature information
is represented xiv
How to send your comments xv
How to order QMF books xvi
Where to next? xvi

Part 1. Installing QMF on z/OS and
OS/390 1

Chapter 1. Introducing QMF and the Install
Process 5
Introducing QMF 5
How QMF can access data in other databases 6
Overview of the database installation process 8
DB2 UDB for OS/390 requirements for QMF . 8

Chapter 2. Planning for QMF 15
Hardware requirements 15
Prerequisite software 15
Planning your storage requirements 21
Moving modules to enhance performance . . 22
Estimating SMP/E storage 23
Estimating space for user data sets 24
Planning for QMF under CICS 25
Planning for QMF for DB2 UDB for OS/390
for AIX. 26
Complete the worksheets 27

Chapter 3. Submitting QMF Batch Install
Jobs 31
Step 4—Install QMF panels 31
Step 5—Install QMF/GDDM map groups . . 31
Step 6—Install QMF/GDDM sample chart
forms 31
Step 7—Convert REXX exec and CLIST
records. 32

Preparing QMF as a DB2 universal database
for OS/390 application 34
Step 8—Binding QMF install programs to
DB2 UDB for OS/390 34
Step 9—Create QMF control tables 35
Step 10— Create a table space for the QMF
IVP 41
Establishing the QMF sample tables 42
Step 11—Delete earlier sample tables. . . . 42
Step 12—Create the QMF sample tables . . . 42
Step 13—Bind QMF packages 43
Step 14—Bind communications package to
DB2 UDB for OS/390 44
Step 15—Bind QMF application plan to DB2
UDB for OS/390 44

Chapter 4. Tailoring QMF for TSO 47
Step 16—Create a TSO logon procedure. . . 47
Step 17—Start QMF 51
Step 18—Set up QMF batch job to run batch
IVP (optional) 54

Chapter 5. Providing Input Parameters . . 55
Step 1—Provide QMF installation parameters 55
Step 2—Tailor the jobs 66
Step 3—Install QMF in the foreground . . . 67

Chapter 6. Tailoring QMF for CICS 69
Step 19—Describe QMF to DB2 UDB for
OS/390 in CICS 69
Step 20—Link-edit QMF with DFHEAI and
DFHEAI0 69
Step 21—Define and load QMF/GDDM data
sets 70
Step 22—Update CICS control tables (CICS
version 3 or later) 72
Step 23—Tailor the QMF profile 73
Step 24—Update CICS startup job stream . . 73

Chapter 7. Tailoring QMF for Workstation
Database Servers. 75
Step 25—Bind QMF install programs to DB2
DRDA AS 76

© Copyright IBM Corp. 1983, 2002 iii

Step 26—Create QMF control tables in a DB2
DRDA AS 76
Step 27—Bind QMF application programs to a
DB2 DRDA AS 77
Step 28—Create QMF sample tables in a DB2
DRDA AS 77
Deleting QMF from a DB2 DRDA AS . . . 78
Starting QMF against a DB2 DRDA AS . . . 79

Chapter 8. Tailoring QMF for DB2 Universal
Database for iSeries® Servers 81
Step 29—Bind QMF install programs to DB2
UDB for iSeries 81
Step 30—Create QMF control tables in a DB2
UDB for iSeries server 82
Step 31—Bind QMF application programs to a
DB2 UDB for iSeries server 82
Step 32—Create QMF sample tables in a DB2
UDB for iSeries server 83
Starting QMF against a DB2 UDB for iSeries
server 83

Chapter 9. Testing Your QMF Install . . . 85
Step 33 (for TSO)—run the IVP 85
Step 33 (for CICS)—Run the IVP 87
Step 34—Install the QMF application queries
and application objects (TSO) 90
Step 35—Run the batch-mode IVP (optional) 91
Step 36—Clean up after install 92
Step 37—Accept the permanent libraries . . 96
Step 38—Clean up security 96

Chapter 10. Planning and Installing a QMF
NLF 97
Profile table and NLF 97
Planning for QMF NLF 97
QMF NLF user data sets 99
IBM software distribution (ISD) tape 99
The installation process 100

Chapter 11. Binding QMF Version 7.2
Packages at a Remote Server 141

Part 2. Installing QMF on VM/ESA 143

Chapter 12. Introduction 145
Overview of QMF 145
Terminology 147
Overview of the installation process . . . 147

Chapter 13. Planning for Installation. . . 149
Hardware requirements 149
Prerequisite software. 149
Virtual storage requirements 153
Required DB2 for VM knowledge 154
DB2 for VM requirements 154
Before you begin 159

Chapter 14. Installing QMF Version 7.2
into the DB2 for VM Database 163
QMF installation flow diagram 163
The installation steps 166

Chapter 15. Installing a QMF Version 7.2
National Language Feature (NLF). . . . 185
NLF installation execs 185
Installing a National Language Feature . . 185
Hardware and program product
requirements 186
The installation steps 186

Part 3. Installing QMF on
VSE/ESA 193

Chapter 16. Before You Begin 195
Hardware 195
Prerequisite software. 195
QMF storage requirements 196
Apply service 198
Check space requirements 198
The planning considerations 199
Installation overview. 200

Chapter 17. Tailoring Your Installation 205
Punch members to an editor 205
install QMF base 205
Tailor QMF for NLF 209
Link-edit jobs for QMF 211
Tailor CICS 212
Install QMF for VSE/ESA into a second
CICS system 216

Chapter 18. Installing QMF into Remote
Database Servers 219
Installing QMF V7.2 into a DB2 Universal
Database remote server 219
Installing QMF Version 7.2 for an iSeries
server 220

iv Installing and Managing QMF

|
||

Chapter 19. Run the Installation
Verification Procedure 221
Before starting QMF 221
Start and test QMF 221
Run an IVP for NLF 224
What if it did not work? 224

Chapter 20. How to Maintain QMF . . . 227
Adding new components 227
Replacing existing components 228

Part 4. Managing QMF 231

Chapter 21. Starting QMF 237
Setting up and starting QMF on OS/390 . . 237
Setting up QMF to run on VM 249
Setting up and starting QMF on VSE . . . 255

Chapter 22. Customizing Your Start
Procedure 259
Choosing the right amount of virtual storage
for each session 259
Customizing your start procedure on VM 273
Customizing your start procedure on VSE 289
Summary of program parameters 306

Chapter 23. The QMF Session Control
Facility 307
Installing Q.SYSTEM_INI 307
When does the Q.SYSTEM_INI procedure
run? 307
When does the Q.SYSTEM_INI procedure
run? 307
Using Q.SYSTEM_INI 308
User session procedure example 309
Procedure that displays an object list . . . 309
Security and sharing session procedure . . 310
Diagnosis considerations 310
Importing the default system initialization
procedure on OS/390 311
Importing the default system initialization
procedure on VM 311
Importing the default system initialization
procedure on VSE. 311

Chapter 24. QMF Installation User Exit
(DSQUOPTS) 313
OS/390 313
VM 313

VSE 314

Chapter 25. Establishing QMF Support for
End Users 315
Creating user profiles to enable user access
to QMF on OS/390 315
Establishing QMF support on VM 324
Establishing QMF support on VSE 333
Granting and revoking SQL privileges . . . 342
Controlling access to QMF and database
objects 344
Customizing a user’s database object list . . 366
Enabling users to create tables in the
database 374
Enabling users to support a chart 381
Maintaining QMF objects using QMF control
tables 383
Maintaining a DB2 subsystem on OS/390 395
Maintaining tables and views using DB2
tables 398
Supporting locally defined date/time
formats 400
Accessing the DXT end user dialogs (ISPF
only) 401
Customizing the document editing interface
for users 408
Customizing the QMF EDIT command. . . 418
Enabling English support in an NLF
environment 421
Using global variables to define the currency
symbol 422

Chapter 26. Enabling Users to Print
Objects 423
Deciding whether to use QMF or GDDM
services for printing 423
Using GDDM services to handle printing 424
Using QMF services to handle printing . . 442
Defining a synonym for the print function
key 452
Printing objects 454

Chapter 27. Customizing QMF Commands 457
Using the default synonyms provided with
QMF 457
Creating a command synonym table . . . 462
Entering command synonym definitions into
the table 465
Activating the synonyms 474

Contents v

||
||

||

Minimizing maintenance of command
synonym tables 476

Chapter 28. Customizing QMF Function
Keys 479
Choosing the keys that you want to
customize 479
Creating the function key table 482
Entering your function key definitions into
the table 484
Identifying the panel that you want to
customize 488
Activating new function key definitions . . 491
Testing and problem diagnosis for the
function key table. 494

Chapter 29. Creating Your Own Edit
Codes for QMF Forms 497
QMF forms 497
Choosing an edit code 497
Handling DATE, TIME, and TIMESTAMP
information 498
Calling your exit routine to format the data 499
Passing information to and from the exit
routine 504
Passing control to the exit routine when
QMF terminates 509
Writing an edit routine in HLASM (high
level assembler) 509
Writing an edit routine in PL/I without
language environment (LE) 522
Writing an edit routine in PL/I with
language environment (LE) 527
Writing an edit routine in PL/I for CICS on
OS/390 531
Writing an edit routine in PL/I for
CICS/VSE 534
Writing an edit routine in COBOL without
language environment (LE) 539
Writing an edit routine in COBOL with
language environment (LE) 546
Writing an edit routine in COBOL for CICS
on OS/390 550
Writing an edit routine in COBOL for
CICS/VSE 554
Handling double-byte character set data . . 559

Chapter 30. Controlling QMF Resources
using a Governor Exit Routine. 563
Using a governor exit routine on OS/390 563

Using a governor exit routine on VM . . . 574
Using a governor exit routine on VSE . . . 584
Modifying the IBM-supplied governor exit
routine or writing your own 591
How and when QMF calls the governor exit
routine 599
Passing resource control information to the
governor exit 615
Storing resource control information for the
duration of a QMF session 628
Canceling user activity 629
Providing messages for canceled activities 630
Assembling and generating your governor
exit routine in CMS 634
Assembling and link-editing your governor
exit routine in TSO, ISPF, and native OS/390
batch 635
Assembling and generating your governor
exit routine in CMS 637
Assembling, translating, and link-editing
your governor exit routine in CICS on
OS/390 638
Assembling, translating, and link-editing
your governor exit routine in CICS on VSE . 639
Using the DB2 governor on OS/390. . . . 642

Chapter 31. Running QMF as a Batch
Program 645
Running QMF as batch a batch program on
OS/390 645
Running QMF as a non-interactive
transaction on CICS 663
Running QMF as a batch program on CMS 665

Chapter 32. Troubleshooting and Problem
Diagnosis 675
Troubleshooting common problems 675
Determining the problem using diagnosis
aids 687
Reporting a problem to IBM 715

Part 5. Appendixes 719

Appendix A. Miscellaneous 721
What if it did not work? (OS/390) 721
Error messages you might see 721
QMF for CICS on VSE/ESA and OS/390
Version 7.2 product limitations 725

vi Installing and Managing QMF

Appendix B. QMF Objects Residing in
DB2 727
QMF plans 727
QMF packages 727
QMF control tables and table spaces on
OS/390 727
QMF views 731
VSAM clusters for OS/390 732
QMF sample tables for OS/390 733

Appendix C. QMF User Defined Functions 735
APPL_AUTHNAMES 735
CALL DSQAB1E 736
DSQABA1E 736

Appendix D. Migration and Fallback
between QMF Releases 737
What is meant by migration? 737
Multiple releases of QMF 737
Granting access to the QMF V7R2
application plan and packages 737
DB2 subsystems and migration 738
Migrating QMF objects 743
Migrating applications 743
Other migration considerations 745
Global variables and the governor on VM 748
Fallback 749

Appendix E. How QMF and GDDM
Programs are Defined to CICS. 753
How QMF programs are defined to
CICS/MVS and CICS/VSE. 753
Loading QMF to the 31-Bit shared virtual
area on VSE. 754

How GDDM definitions are loaded during
QMF installation 756
Using transaction routing to control resource
use. 756

Appendix F. Notices 759
Trademarks 762

Appendix G. Glossary of Terms and
Acronyms 763

Appendix H. Bibliography 773
CICS publications 773
COBOL publications 773
DB2 Universal Database Server for OS/390
and z/OS publications 773
Document Composition Facility (DCF)
publications. 774
Distributed Relational Database Architecture
(DRDA) publications. 774
DXT publications 774
Graphical Data Display Manager (GDDM)
publications. 775
HIgh Level Assembler (HLASM)
publications. 775
Interactive System Productivity Facility
(ISPF) publications 775
OS/390 publications 775
OS PL/I publications 776
REXX publications 776
VM/ESA publications 776
VSE/ESA publications 776

Index 777

Contents vii

||
||
||

viii Installing and Managing QMF

The QMF library

You can order manuals either through an IBM representative or by calling
1-800-879-2755 in the United States or any of its territories.

© Copyright IBM Corp. 1983, 2002 ix

x Installing and Managing QMF

About this book

This book is intended to help database administrators and systems
programmers install and manage the Query Management Facility (QMF)
product under Operating System for the Z Architecture (z/OS™) and
Operating System/390 (OS/390)®, Virtual Machine/Enterprise Systems
Architecture (VM/ESA)®, and Virtual Storage Extended/Enterprise Systems
Architecture (VSE/ESA)™.

The three Installing and Managing QMF books have been combined into one
for Version 7.2. The Installing sections have been kept separate by operating
system (z/OS and OS/390, VM, and VSE), while the Managing chapters have
been merged. The three Installing sections and the Managing portion each
have their own table of contents.

Who should read this book

This book is written for system programmers responsible for installing and
managing QMF for use with the IBM DB2 Universal Database for z/OS and
OS/390, DB2 for VM, and DB2 for VSE relational databases. It is also
designed for network administrators responsible for installing and managing
network applications. References to "Workstation Database Servers" in this
book apply to:
v DB2 Common Server Version 2
v DB2 Parallel Edition for AIX® Version 1.2
v DataJoiner® Version 1.2.1 and Version 2
v DB2 Universal Database Version 5 and higher

What you should know before you begin

You should be familiar with the components that make up your specific
environment.

z/OS or OS/390
On z/OS or OS/390, these components can include:
v Operating systems z/OS or OS/390
v Multiple Virtual Storage/Enterprise System Architecture (MVS/ESA)™

operating system.
v Time Sharing Option (TSO), an environment that supports QMF and its

related products.
v Interactive System Productivity Facility (ISPF), a dialog manager for QMF.

© Copyright IBM Corp. 1983, 2002 xi

v Customer Information Control System (CICS)®, a general-purpose data
communication and online transaction processing system. CICS/MVS®

provides the interface between QMF and MVS/ESA.
v Graphical Data Display Manager (GDDM)®, which makes it possible for

QMF to display panels on the user’s screen and create charts.
v DB2, the database manager for QMF.

DB2 also provides a number of utilities that can run in batch mode or
through DB2I (the DB2 interactive facility) on OS/390.

v Data Extract (DXT)™, a facility that can supply the DB2 load utility with
data.

v SMP/E (System Modification Program Extended)
v High-level assembly language (HLASM), needed in order to modify or

create a new governor exit routine. HLASM can also be used to create your
own edit codes for QMF forms.

v PL/I, used to create your own edit codes in PL/I for QMF forms.
v VS COBOL II and COBOL, used to create your own edit codes in COBOL

for QMF forms.
v REXX used to create execs that install QMF.

VM
On VM, these components can include:
v The VM/ESA operating system
v Conversational Monitoring System (CMS), an environment that supports

QMF and its related products.
v Interactive System Productivity Facility (ISPF), a dialog manager for QMF.
v Graphical Data Display Manager (GDDM), which makes it possible for

QMF to display panels on the user’s screen and create charts.
v DB2, the database manager for QMF.

DB2 also provides a number of utilities that can run in batch mode or
through ISQL.

v Data Extract (DXT), a facility that can supply the DB2 load utility with data.
v VMSES/E (System Modification Program Extended)
v High-level assembly language (HLASM), needed in order to modify or

create a new governor exit routine. HLASM can also be used to create your
own edit codes for QMF forms.

v PL/I, used to create your own edit codes in PL/I for QMF forms.
v VS COBOL II and COBOL, used to create your own edit codes in COBOL

for QMF forms.
v REXX used to create execs that install QMF.

xii Installing and Managing QMF

VSE
On VSE, these components can include:
v Operating system VSE/ESA
v Customer Information Control System (CICS), a general-purpose data

communication and online transaction processing system. CICS/VSE
provides the interface between QMF and VSE/ESA.

v Graphical Data Display Manager (GDDM), which makes it possible for
QMF to display panels on the user’s screen and create charts.

v DB2, the database manager for QMF.
v MSHP (System Modification Program)
v High-level assembly language (HLASM), needed in order to modify or

create a new governor exit routine. HLASM can also be used to create your
own edit codes for QMF forms.

v PL/I, used to create your own edit codes in PL/I for QMF forms.
v VS COBOL II and COBOL, used to create your own edit codes in COBOL

for QMF forms.

Publications that discuss these products are listed in Appendix H,
“Bibliography” on page 773.

How to use this book

The administration and customizing tasks in this book assume that QMF was
installed according to the procedures described in this book. Most of the
administration and customizing tasks are done using the QMF product itself.
Before you begin the tasks in this book, ensure that the installation verification
procedure (IVP) has been run. If not, run the IVP to ensure that QMF is
properly installed and configured for your site’s needs. The IVP is the final
step of the QMF installation process.

Most of these tasks require that you have DB2 database administrator (DBA)
authority. If the program installer follows the default procedure in this book,
the user ID Q is defined for you during QMF installation; this user ID has
DBA authority.

To keep the installation task as simple as possible, many of the full IBM
product names and titles are shortened. Each product is referred to by its
generic, rather than specific, name. For example, DB2 for OS/390, VM/ESA or
VSE/ESA is DB2.

About this book xiii

Prerequisite and related information

In addition to this guide, keep the following documents ready during the
installation:
v QMF Program Directory
v QMF Preventive Service Planning (PSP) bucket

The QMF PSP bucket documents late-breaking information about the
installation.

For a list of QMF publications, see “The QMF library” on page ix. Publications
from other IBM product families are found in Appendix H, “Bibliography” on
page 773.

How National Language Feature information is represented

QMF is available in several different languages, each of which is provided by
a National Language Feature (NLF).

NLFs let users enter QMF commands, view help, and perform QMF tasks in
languages other than English; they are installed as separate features of QMF.
For more information about installing an NLF, see the NLF installation
information in the appropriate operating system installation section in this
book.

All tasks described in this book can be performed for the base QMF product
(English language) and for any NLF. The procedures for both the base and
NLF sessions are the same; however, any special considerations for NLF users
are preceded by the phrase: If you are using an NLF.

Some names of programs and phases shown in this book have a n in them,
indicating that the name can vary. If you are using an NLF, replace any n
symbols you see in this book with the one-character national language
identifier (NLID) from Table 1 that matches the NLF that you installed. The
table also shows the names by which QMF recognizes each language.

Table 1. NLIDs representing QMF base (English) and National Language Features
(NLFs)

NLF NLID Name that QMF uses for this NLF

Brazilian Portuguese P PORTUGUES

Canadian French C FRANCAIS CANADIEN

Danish Q DANSK

English E ENGLISH

French F FRANCAIS

xiv Installing and Managing QMF

Table 1. NLIDs representing QMF base (English) and National Language Features
(NLFs) (continued)

NLF NLID Name that QMF uses for this NLF

German D DEUTSCH

Italian I ITALIANO

Japanese K NIHONGO

Korean H HANGEUL

Spanish S ESPANOL

Swedish V SVENSKA

Swiss French Y FRANCAIS (SUISSE)

Swiss German Z DEUTSCH (SCHWEIZ)

Uppercase English U UPPERCASE

The uppercase feature (UCF) uses the English language, but converts all text
to uppercase characters. The uppercase characters allow users working with
Katakana terminals to use the product and get English online help and
messages. Terminals equipped with Katakana support include IBM 3277, 3278,
and 3279 terminals, as well as IBM 5550 Multistations.

How to send your comments

Your feedback helps IBM to provide the most accurate and high-quality
information.

Send your comments from the Internet
Visit the QMF Web site at:
http://www.ibm.com/qmf

The Web site has a feedback page that you can use to enter and send
comments.

Send your comments by e-mail
To comments@vnet.ibm.com. Be sure to include the name of the
product, the version number of the product, the name and part
number of the book (if applicable). If you are commenting on specific
text, include the location of the text (for example, a chapter and
section title, a table number, a page number, or a help topic title).

Complete the readers’ comment form
At the back of the book and return it by mail, by fax (800-426-7773 for
the United States and Canada), or by giving it to an IBM
representative.

About this book xv

How to order QMF books

You can order QMF documentation either through an IBM representative or
by calling 1-800-879-2755 in the United States or any of its territories.

For a list of QMF books, see “The QMF library” on page ix.

Where to next?

To quickly turn to the section for your system’s installation, go to the
following pages:
v Installing QMF on z/OS and OS/390 Part 1, “Installing QMF on z/OS and

OS/390” on page 1
v Installing QMF on VM/ESA Part 2, “Installing QMF on VM/ESA” on

page 143
v Installing QMF on VSE/ESA Part 3, “Installing QMF on VSE/ESA” on

page 193
v Managing QMF on z/OS and OS/390, VM, and VSE Part 4, “Managing

QMF” on page 231

xvi Installing and Managing QMF

Part 1. Installing QMF on z/OS and OS/390

Chapter 1. Introducing QMF and the Install
Process 5
Introducing QMF 5
How QMF can access data in other databases 6

Remote unit of work 6
DB2 UDB for OS/390-to-DB2 UDB for
OS/390 distributed unit of work 7

Overview of the database installation process 8
DB2 UDB for OS/390 requirements for QMF . 8

Prerequisite DB2 UDB for OS/390
knowledge 8
DB2 UDB for OS/390 objects created by
QMF install 9
Database authorization ID Q 10
Road maps for the QMF installation
process. 10
Setting up QMF for remote unit of work 12
Setting up QMF for DB2 UDB for
OS/390-to-DB2 UDB for OS/390
distributed unit of work 12
Example 12

Chapter 2. Planning for QMF 15
Hardware requirements 15
Prerequisite software 15
Planning your storage requirements 21

OS/390 storage 21
CICS/ESA region 21

Moving modules to enhance performance . . 22
In CICS 23

Estimating SMP/E storage 23
Estimating space for distribution libraries 23
Estimating target library size 24

Estimating space for user data sets 24
Read the program directory and apply
service 25

Planning for QMF under CICS 25
Tailoring CICS for QMF 25
Tailoring GDDM for QMF 26

Planning for QMF for DB2 UDB for OS/390
for AIX. 26
Complete the worksheets 27

Chapter 3. Submitting QMF Batch Install
Jobs 31

Step 4—Install QMF panels 31
Step 5—Install QMF/GDDM map groups . . 31
Step 6—Install QMF/GDDM sample chart
forms 31
Step 7—Convert REXX exec and CLIST
records. 32

Converting REXX exec records 32
Converting CLIST records 33

Preparing QMF as a DB2 universal database
for OS/390 application 34
Step 8—Binding QMF install programs to
DB2 UDB for OS/390 34
Step 9—Create QMF control tables 35

Converting QMF control table indexes to
type 2: 35
Tips for remote unit of work 35
Migrating from QMF Version 7.1, Version
6, and Version 3 Release 3.0, 2.0, 1.1, 1.0. . 36
Migrating from QMF Version 2.4 37
Recover indexes converted to type 2 . . . 38
Creating control tables without a previous
QMF release 39

Step 10— Create a table space for the QMF
IVP 41
Establishing the QMF sample tables 42
Step 11—Delete earlier sample tables. . . . 42
Step 12—Create the QMF sample tables . . . 42
Step 13—Bind QMF packages 43
Step 14—Bind communications package to
DB2 UDB for OS/390 44
Step 15—Bind QMF application plan to DB2
UDB for OS/390 44

Chapter 4. Tailoring QMF for TSO 47
Step 16—Create a TSO logon procedure. . . 47

Starting QMF in TSO 47
Preparing the TSO logon procedure . . . 48
Data Extract (DXT) considerations . . . 51

Step 17—Start QMF 51
Starting QMF with ISPF 51
Starting QMF in TSO 53

Step 18—Set up QMF batch job to run batch
IVP (optional) 54

Chapter 5. Providing Input Parameters . . 55

© Copyright IBM Corp. 1983, 2002 1

Step 1—Provide QMF installation parameters 55
Before you start 55
Starting the installation panels 55
Specifying local DB2 UDB for OS/390
parameters 57
Specifying the scope of database install . . 58
Specifying remote server location 60
Specifying DB2 UDB for OS/390 and QMF
parameters 61
Specifying remote server parameters . . . 62
Specifying space parameters for QMF table
spaces 64
Specifying parameters for QMF index
spaces 65
Specifying the job card 65

Step 2—Tailor the jobs 66
Step 3—Install QMF in the foreground . . . 67

Chapter 6. Tailoring QMF for CICS 69
Step 19—Describe QMF to DB2 UDB for
OS/390 in CICS 69
Step 20—Link-edit QMF with DFHEAI and
DFHEAI0 69

Link-edit QMF with CICS command
interface modules 70
Translate, assemble, and link-edit the
QMF-supplied governor 70

Step 21—Define and load QMF/GDDM data
sets 70

Load QMF/GDDM map sets to the GDDM
ADMF data set 71
Create QMF/GDDM charts and the QMF
trace data set. 71

Step 22—Update CICS control tables (CICS
version 3 or later) 72

DCT (destination control table). 72
Step 23—Tailor the QMF profile 73
Step 24—Update CICS startup job stream . . 73

Chapter 7. Tailoring QMF for Workstation
Database Servers. 75
Step 25—Bind QMF install programs to DB2
DRDA AS 76
Step 26—Create QMF control tables in a DB2
DRDA AS 76
Step 27—Bind QMF application programs to a
DB2 DRDA AS 77
Step 28—Create QMF sample tables in a DB2
DRDA AS 77
Deleting QMF from a DB2 DRDA AS . . . 78

Deleting QMF 78
Deleting QMF sample tables from a DB2
DRDA AS 78

Starting QMF against a DB2 DRDA AS . . . 79

Chapter 8. Tailoring QMF for DB2 Universal
Database for iSeries® Servers 81
Step 29—Bind QMF install programs to DB2
UDB for iSeries 81
Step 30—Create QMF control tables in a DB2
UDB for iSeries server 82
Step 31—Bind QMF application programs to a
DB2 UDB for iSeries server 82
Step 32—Create QMF sample tables in a DB2
UDB for iSeries server 83
Starting QMF against a DB2 UDB for iSeries
server 83

Chapter 9. Testing Your QMF Install . . . 85
Step 33 (for TSO)—run the IVP 85
Step 33 (for CICS)—Run the IVP 87

Before you start QMF 87
Start and test QMF. 88

Step 34—Install the QMF application queries
and application objects (TSO) 90
Step 35—Run the batch-mode IVP (optional) 91
Step 36—Clean up after install 92

Freeing an earlier application plan . . . 93
QMF Version 7.2 and a previous release
are in different DB2 UDB for OS/390
subsystems 94

Step 37—Accept the permanent libraries . . 96
Step 38—Clean up security 96

Chapter 10. Planning and Installing a QMF
NLF 97
Profile table and NLF 97
Planning for QMF NLF 97

Hardware and program product
requirements 97
SMP/E requirements 98

QMF NLF user data sets 99
IBM software distribution (ISD) tape 99

FMID 99
The installation process 100

Preliminary: read the program directory
and complete the NLF worksheet . . . 106
Step 1—Provide QMF NLF installation
parameters 108
Step 2—Tailor the jobs 116

2 Installing and Managing QMF

Step 3—Install QMF NLF in the
foreground 117
Steps 4-8—Submit jobs manually. . . . 117
Step 4—Install QMF panels 117
Step 5—Install NLF/GDDM map groups 118
Step 6—Converting REXX EXEC or CLIST
records 119
Step 7A—Update QMF control tables . . 120
Step 7B and 7C—Establish the QMF NLF
sample tables 124
Step 7B—Delete earlier QMF NLF sample
tables 125
Step 7C—Create the NLF sample tables 126
Step 8—Tailor NLF/QMF for TSO . . . 127
Step 9—Tailor NLF/QMF for CICS . . . 128
Step 10—Tailoring QMF NLF for a
Workstation Database Server (optional) . 131
Step 11—Tailoring QMF NLF for a DB2
UDB for iSeries server (optional) 134
Step 12—Set Up NLF batch job to run
batch IVP (optional) 135
Step 13—Running the IVP for QMF
interactive mode 135
Step 14—Installing the national language
sample queries and procedures 135
Step 15—Running the batch-mode IVP
(optional) 137
Step 16—Post-installation cleanup . . . 137
Step 17—Accept the permanent libraries 138
Step 18—Create a cross-CDS environment 138

Chapter 11. Binding QMF Version 7.2
Packages at a Remote Server 141

Part 1. Installing QMF on z/OS and OS/390 3

|
||

4 Installing and Managing QMF

Chapter 1. Introducing QMF and the Install Process

This chapter introduces the QMF host product. It also provides an overview
of how QMF connects to the DB2 Universal Database for OS/390, DB2
Universal Database for z/OS, DB2 Universal Database, Database2 for VM or
VSE, Database2 for iSeries databases, and of how QMF is installed.

Introducing QMF

QMF is a query and report writing program that lets users access databases
and generate reports or charts based on the data they contain.

QMF runs under MVS/Enterprise System Architecture (MVS/ESA), and
primarily accesses data through DB2 UDB for OS/390. QMF works with both
the Time-Sharing Option Extensions (TSO/E) and the online transaction
manager under the control of the Customer Information Control System
(CICS). CICS users can start QMF from within CICS and access data through
the CICS/DB2 attachment.

In a host environment, QMF uses the IBM Graphical Data Display Manager
(GDDM) to display panels. Display application panels can also be viewed
with Interactive System Productivity Facility (ISPF). Figure 1 shows how these
products relate to QMF in a host-only configuration.

QMF works with the following objects:

Data Information represented by alphanumeric characters contained in
tables and formatted in reports.

Query Specifies the data you want and the action you want to perform.

Figure 1. QMF in a Host-Only configuration.

© Copyright IBM Corp. 1983, 2002 5

Form Describes how retrieved data should be tailored into a report or chart.

Procedure
Contains one or more QMF commands that can be run as a group.

Profile
Contains information about how to process the user’s session.

How QMF can access data in other databases

You can use QMF to connect to any of the DB2 UDB for OS/390, DB2 for VSE
or VM, DB2 for iSeries, or DB2 Universal Database databases within a
distributed network during QMF initialization or from within a QMF session.
After successfully connecting to a location, you can access the data and QMF
objects in that database in the same way you would access data and objects
locally. For more information on the SQL CONNECT command, see the DB2
UDB for OS390 SQL Reference

QMF supports two methods of data access:
v Distributed Relational Database Architecture (DRDA) remote unit of work
v DB2 UDB for OS/390-to-DB2 UDB for OS/390 distributed unit of work

DRDA is IBM’s approach to distributed technology. Within DRDA there are
different types of support such as remote unit of work, distributed unit of
work, and distributed request. In the DRDA environment, QMF supports only
remote unit of work.

DB2 UDB for OS/390-to-DB2 UDB for OS/390 distributed unit of work allows
you to access other DB2 UDB for OS/390 subsystems using a communications
method specific to DB2 UDB for OS/390. DB2 UDB for OS/390 refers to this
type of connection as system-directed access.

Both types of access are based on the definition of a unit of work, which is a
single logical transaction. A logical transaction consists of a sequence of SQL
statements in which either all of the operations are successfully performed or
the sequence as a whole is considered unsuccessful.

Remote unit of work
This type of distributed access allows for reading or updating data at one
remote location per unit of work.

DB2 UDB for OS/390 Distributed Data Facility (DDF) adopted DRDA’s data
structure beginning with DB2 UDB for OS/390 Version 2.3, DB2 for VSE or
VM adopted DRDA’s structure in Version 7.1. With remote unit of work, DB2
UDB for OS/390 can act as a server or requester (depending on the level of
support from the partner system) for any remote database management
system that implements DRDA.

Introduction

6 Installing and Managing QMF

If the startup program parameter DSQSDBNM or the QMF CONNECT
command is used to specify a remote location to connect to, all subsequent
QMF commands that access the database are directed to that location. (The
CONNECT TO message appears on the QMF Home panel if DDF is installed.)

Figure 2 illustrates QMF with remote unit of work.

DB2 UDB for OS/390-to-DB2 UDB for OS/390 distributed unit of work
This is an early version of distributed unit of work, first introduced in DB2
UDB for OS/390 Version 2.2. It allows access to other DB2 UDB for OS/390
subsystems using a communications method that is private to DB2 UDB for
OS/390. With this method you can connect to one location and run one query
per unit of work. DB2 UDB for OS/390-to-DB2 UDB for OS/390 distributed
unit of work uses an alias or a three-part name to determine the location of
the subsystem and to connect to it. QMF, however, requires a minimum level
of DB2 UDB for OS/390 Version 2.3 to support this type of data access.
Figure 3 on page 8 shows a DB2 UDB for OS/390-to-DB2 UDB for OS/390

access connection.

Figure 2. QMF using remote unit of work

Introduction

Chapter 1. Introducing QMF and the Install Process 7

Overview of the database installation process

Installing QMF on OS/390 involves these object groups:
v QMF target and distribution libraries
v QMF application plan and packages
v QMF control tables, catalog views, and sample tables

DB2 UDB for OS/390 requirements for QMF

QMF is a DB2 UDB for OS/390 application program that uses standard
interfaces to the database. QMF must be installed into at least one DB2 UDB
for OS/390 subsystem. Depending on the design of your data network, you
may need to install QMF into additional DB2 UDB for OS/390 subsystems.

Prerequisite DB2 UDB for OS/390 knowledge
Because QMF is a DB2 UDB for OS/390 application, you need to understand
many of the same concepts as you would to perform a DB2 UDB for OS/390
install. For example, you need to understand:
v CREATE, INSERT, and GRANT SQL statements

You will use these statements during the QMF installation. These
statements are described in more detail in DB2 UDB for OS390 SQL
Reference

v The terms application plan, DBRM, package, and bind

Figure 3. DB2 UDB for OS/390-to-DB2 UDB for OS/390 connection

Introduction

8 Installing and Managing QMF

These terms are described in the DB2 UDB for OS390 Application
Programming and SQL Guide

v Databases, table spaces, tables, and views
You need to understand the basic relationships among these terms. For
information about these terms, see the DB2 UDB for OS390 Administration
Guide , Volume 2.

v The DB2 UDB for OS/390 security mechanism
You need to understand what SYSADM and DBADM authority is and how
to grant and revoke authority. You also need to understand the meaning of
granting authority to PUBLIC. These topics are described in the DB2 UDB
for OS390 Administration Guide , Volume 2.

v The ID of the DB2 subsystem where you plan to install QMF
For information on subsystems IDs, see the DB2 UDB for OS390
Administration Guide , Volume 2.

Install QMF to access distributed data
You should be familiar with the terms:
v Application requester
v Application server
v Current location (current server)
v Distributed unit of work
v Local DB2 UDB for OS/390
v Location name
v Remote unit of work

For definitions and MORE information about these terms, see the DB2 UDB
for OS390 SQL Reference

DB2 UDB for OS/390 objects created by QMF install
A DB2 UDB for OS/390 system that is accessed by QMF contains a number of
object types that are created for QMF during installation.

If you do not plan to install QMF into a distributed data environment, or if
you plan to install QMF into a DB2 UDB for OS/390-to-DB2 UDB for OS/390
distribution unit of work environment, you must install all of the following
objects on each of the subsystems accessed by QMF:
v QMF installation plans and packages
v QMF control tables
v QMF catalog views
v Table space for QMF SAVE DATA and IMPORT TABLE commands
v QMF sample tables
v QMF packages
v QMF application plan

Introduction

Chapter 1. Introducing QMF and the Install Process 9

For more information about these object types, see Appendix B, “QMF Objects
Residing in DB2” on page 727.

Database authorization ID Q
Although the DB2 UDB for OS/390 authorization ID of Q owns all control
tables, sample tables, and catalog views in QMF, you do not need this
authorization ID to install QMF. Without it, however, you need SYSADM
authority.

If your authority (as installer) is revoked, the authorities granted during the
installation process are also revoked, unless those privileges are also granted
by some other authority.

Road maps for the QMF installation process
This section lists the QMF install options types and the DB2 UDB for OS/390
objects created under each install option. For more information about these
objects, see Appendix B, “QMF Objects Residing in DB2” on page 727.
v Initial installation or migration

– Preliminary: Read the program directory and complete the worksheets.
– Complete the SMPE installation as described in the program directory.
– Begin a full database install.

v Full database installation
– Do STEPS 1 and 2.
– To install in BATCH mode, proceed to STEPS 3 through 16, or
– To install in FOREGROUND mode, do STEP 3.

This type of installation creates the following at the local DB2 UDB for
OS/390, which is the subsystem where the QMF application plan is bound:
– QMF target and distribution libraries
– Two installation packages
– One QMF installation plan
– QMF control tables
– QMF catalog views
– Table space for QMF SAVE DATA and IMPORT TABLE commands
– QMF sample tables
– QMF application packages
– One QMF application plan

You need to perform a full install when:
– It is the initial installation of QMF.
– It is the only installation of QMF.
– You need to access more than one local DB2 UDB for OS/390 subsystem

from QMF. Perform this type of installation for each additional local DB2
UDB for OS/390 installation.

Introduction

10 Installing and Managing QMF

v Server database installation
– Do STEPS 1 and 2.
– To install in BATCH mode, proceed to steps 8 through 16, or
– To install in FOREGROUND mode, do step 3.

This type of installation creates:
– Two installation packages at the DB2 UDB for OS/390 application server
– One QMF installation plan (using the application server name as the

CURRENTSERVER location) at the local DB2 UDB for OS/390 subsystem
– QMF control tables
– QMF catalog views
– Table space for QMF SAVE DATA and IMPORT TABLE commands
– QMF sample tables
– QMF application packages

You need to perform a server database install when you plan to access data
that is defined in a different DB2 UDB for OS/390 database. You can run
this type of installation on any DB2 UDB for OS/390 subsystem that is
accessible from your local DB2 UDB for OS/390 subsystem. Perform the
installation from the local DB2 UDB for OS/390 subsystem.

For information about installing QMF for a Workstation Database Server,
see Chapter 7, “Tailoring QMF for Workstation Database Servers” on
page 75.

v Requester database installation
– Do steps 1 and 2.
– To install in BATCH mode, run steps 8, 15, and 16, or
– To install in FOREGROUND mode, run step 3.

This type of installation creates:
– Two installation packages at the local DB2 UDB for OS/390 subsystem
– One QMF installation plan
– One QMF package (DSQIRDBR)
– One QMF application plan
– QMF run-time libraries

You need to perform a requester database install when you need to access
other databases using remote unit of work and you are planning to use this
DB2 UDB for OS/390 subsystem as the local DB2 UDB for OS/390
subsystem when running QMF. You can establish a QMF application
requester on a DB2 UDB for OS/390 subsystem that is defined on the same
OS/390 system where the QMF run-time libraries are installed.

Introduction

Chapter 1. Introducing QMF and the Install Process 11

Setting up QMF for remote unit of work
The simplest way to set up DB2 UDB for OS/390 subsystems to use remote
unit of work from QMF is to first run a full QMF installation, and then run a
full database installation for each additional DB2 UDB for OS/390 subsystem
on the same OS/390 system. After a DB2 subsystem (that supports remote
unit of work) receives a full database installation, use that subsystem as either
an application requester or application server for QMF. However, if you plan
to use a particular DB2 UDB for OS/390 subsystem as either an application
requester or as an application server, install only those objects that are
required.

Attention: The QMF CONNECT command works only when the instances
of QMF being connected are of the same release.

Accessing data using remote unit of work
If you plan to use the DSQSDBNM startup program parameter or the QMF
CONNECT command (both of these imply remote unit of work access) to
connect to a remote location from QMF, you must first determine which DB2
UDB for OS/390 subsystems function as application requesters and
application servers for QMF.
v A subsystem that functions only as an application requester for QMF

requires the QMF plan, one of the QMF packages (DSQIRDBR), and one of
the QMF installation programs bound into that subsystem. These objects are
created by the requester or full database installation option.

v A subsystem that functions as an application server for QMF requires the
QMF packages, installation programs, control tables, catalog views, table
space for SAVE DATA, and sample tables. Use the full or server database
installation options to create these objects.

v A subsystem that functions as both an application requester and an
application server requires the same objects as an application server alone.
Use the full database installation option to create these objects.

Setting up QMF for DB2 UDB for OS/390-to-DB2 UDB for OS/390
distributed unit of work

DB2 UDB for OS/390-to-DB2 UDB for OS/390 distributed unit of work access
to remote data is mostly transparent to QMF. Therefore, the install process
you choose depends on whether you also plan to use remote unit of work.
When using both remote unit of work and DB2 UDB for OS/390-to-DB2 UDB
for OS/390 distributed unit of work, the locations that you can access using
three-part names are those that are accessible to the current server (if the
current server is a DB2 location).

Example
The following example shows how to use the requester and server database
installation options to install QMF in a remote unit of work environment:

Introduction

12 Installing and Managing QMF

Sample system configuration and requirements
v The OS/390 operating system MVS1 has two DB2 UDB for OS/390 Version

2.3 subsystems: DB2A and DB2B. This system is a TSO system; DB2A is an
application requester, and DB2B is an application server.

v The OS/390 operating system MVS2 has one DB2 UDB for OS/390 Version
2.3 subsystem, DB2C. This system is the BATCH; DB2C is an application
server, which is accessible to the TSO users on MVS1.

v QMF must be installed into DB2A as an application requester, and into
DB2B and DB2C as application servers. Authorized users on DB2A can
access data stored at DB2B and DB2C without logging on to different
OS/390 operating systems.

QMF objects are control tables, sample tables, views, and application
packages.

Installation sequence for the sample configuration:

1. On MVS1, install QMF target and distribution libraries.
2. On MVS1, use the requester database install option to install QMF into

DB2A and customize the QMF run-time libraries.
3. On MVS1, use the server database install option to install QMF into DB2B.

Use DB2A as the local DB2 and DB2B as the application server.
4. On MVS1, use the server database install option to install QMF into DB2C.

Use DB2A as the local DB2 UDB for OS/390 and DB2B as the application
server. You do not need to log on to MVS2, since the remote installation is
run at MVS1.

Introduction

Chapter 1. Introducing QMF and the Install Process 13

Introduction

14 Installing and Managing QMF

Chapter 2. Planning for QMF

This chapter describes the hardware, program products, and direct access
storage device (DASD) required to install and run QMF. It provides planning
worksheets for easy reference during the install.

Hardware requirements

QMF runs on any processor supported by the operating system. QMF can
access all the DASD devices supported by OS/390 and DB2 UDB for OS/390
and all terminals supported by GDDM.

If you plan to use the national language character set, you need a workstation
that supports the national language characters.

Prerequisite software

The following table lists the program products with the minimum release
levels required to support QMF for MVS Version 7.2. Later releases that are
not available at the QMF Version 7.2 announcement time are not supported
unless specifically stated otherwise.

Table 2. Prerequisite software for QMF for OS/390 Version 7.2

Prerequisite software for QMF for OS/390

Required software Version and release Number

MVS/ESA SP JES2 or Version 4 Release 2 5695–047

MVS/ESA SP JES3 Version 4 Release 2 5695–048

MVS/Data Facility Product (DFP) Version 3 Release 1 5665-XA3

Database 2(DB2) Version 3 Release 1 5685–DB2

GDDM-MVS Version 2 Release 3 5665-356

For installation only:

Interactive System Product
Facility (ISPF)-MVS

Version 3 Release 5 5685–504

System Modification Program
Extended (SMP/E)

Version 1 Release 8 5668-949

For the TSO environment:

TSO/Extensions (TSO/E) Version 2 Release 4 5685-025

For the CICS environment:

© Copyright IBM Corp. 1983, 2002 15

Table 2. Prerequisite software for QMF for OS/390 Version 7.2 (continued)

Prerequisite software for QMF for OS/390

Required software Version and release Number

CICS/ESA or Version 4 Release 1.1 5655-018

CICS/ESA or Version 3 Release 1 5683-083

CICS/MVS Version 2 Release 1.1 5665–403

Table 2. Prerequisite software for QMF for OS/390 Version 7.2

Prerequisite software for QMF for OS/390

Required software Version and release Number

MVS/ ESA SP JES2 or Version 5 Release 2 5645–001

MVS/ESA SP JES3 Version 5 Release 2.1 5645-001

DFSMSdfp Version 1 Release 3 5645-001

Database2 (DB2) Version 3 Release 1 5685-DB2

GDDM/MVS Version 3 Release 1.1 5645-001

For installation only:

Interactive System Product
Facility (ISPF)-MVS

Version 4 Release 2.0 5645-001

System Modification Program
Extended (SMP/E)

Version 1 Release 8.1 5645-001

For the TSO environment:

TSO/Extensions (TSO/E) Version 2 Release 5 5645-001

For the CICS environment:

CICS/ESA or Version 3 Release 3 5683–083

CICS/ESA Version 4 Release 1.1 5655–018

Table 2. Prerequisite software for QMF for OS/390 Version 7.2

Prerequisite software for QMF for MVS/XA

Required software Version and release Number

MVS/SP-JES2 or Version 2 Release 2 5740–XC6

MVS/SP-JES3 Version 2 Release 2.1 5665-291

MVS/XA Data Facility Product
(DFP)

Version 2 Release 1 5665-XA2

GDDM/MVS Version 2 Release 1 5665-403

For installation only:

Interactive System Product
Facility (ISPF)-MVS

Version 2 Release 3 5665-319

Planning for QMF

16 Installing and Managing QMF

Table 2. Prerequisite software for QMF for OS/390 Version 7.2 (continued)

Prerequisite software for QMF for MVS/XA

Required software Version and release Number

System Modification Program
Extended (SMP/E)

Version 1 Release 8 5668-949

For the TSO environment:

TSO/Extensions (TSO/E) Version 2 Release 1 5685-025

For the CICS environment:

CICS/MVS Version 2 Release 1 5665–403

The following table lists the program products with the minimum release
levels required to support optional functions for QMF for OS/390 Version 7.2.
Later releases that are not available at the QMF Version 7.2 announcement
time are not supported unless specifically stated otherwise.

Table 3. Prerequisite software for optional functions for QMF for OS/390 Version 7.2

Product Version and release Number

ISPF-related functions — QMF Document Interface, default editor for QMF EDIT
command, display printed report application (DPRE), ISPF command, and DXT/End
User Dialogs bridge support:

ISPF for MVS Version 3 Release 5 5685-054

Logic in procedures, report calculations and conditions, form column definition, and
use of the IBM-supplied command synonyms (DPRE, ISPF, BATCH, LAYOUT):

TSO/Extensions (TSO/E) Version 2 Release 4 5685-025

Charts (Interactive Chart Utility:

GDDM Presentation Graphics
Facility (PGF)

Version 2 Release 1.1 5668–812

QMF Document Interface. The following editor is required:

Personal Services/TSO (PS/TSO) Release 1 5665–346

Data Extract (DXT). End User Dialogs and the QMF EXTRACT COMMAND:

Data Extract (DXT) Version 2 Release 5 5668–788

QMF High Performance Option (HPO):

ISPF for MVS Version 3 5685–054

QMF for Windows:

Microsoft Windows 95 or 98

Microsoft Windows ME

Microsoft Windows 2000

Planning for QMF

Chapter 2. Planning for QMF 17

Table 3. Prerequisite software for optional functions for QMF for OS/390 Version
7.2 (continued)

Product Version and release Number

Microsoft Windows XP

Microsoft Windows NT Version 4.0

IBM APPC Networking Services
for Windows, or

Version 1

Microsoft SNA Server, or Version 2

Novell Netware for SAA, or Version 2

Attachmate EXTRA! APPC
Client

Version 3 Release 11

Callable Interface Programs written in the callable interface can be written in:

IBM C/370 Compiler and Version 2 5688–187

C/370 Library Version 2 5688–188

IBM HLASM Version 1 Release 1 or Release 2 5696–234

VS COBOL II Compiler and
Library

Version 1 Release 4 5688–023

VS COBOL II Compiler, Library
and Debugging Facility

Version 1 Release 4 5668–958

AD/Cycle COBOL/370 Version 1 Release 1 5688–197

IBM COBOL for MVS and VM Version 1 Release 2 5688–197

AD/Cycle C/370 Compiler Version 1 Release 1 5688–216

VS FORTRAN

(REXX and the SAA callable
interface for FORTRAN are not
supported in the QMF/CICS
environment.)

Version 2 Release 5 5668–806

OS PL/I Version 2 Release 3 5668–909

IBM PL/I for MVS and VM Version 1 Release 1.1 5688-265

REXX: TSO Extensions (TSO/E)
(REXX and the SAA callable
interface for FORTRAN are not
supported in the QMF/CICS
environment.)

Version 2 Release 1 5685–025

REXX(REXX and the SAA
callable interface for FORTRAN
are not supported in the
QMF/CICS environment.)

In VM/ESA

Assembler H Version 2 Release 1 5668–962

Planning for QMF

18 Installing and Managing QMF

Table 3. Prerequisite software for optional functions for QMF for OS/390 Version
7.2 (continued)

Product Version and release Number

IBM C/C++ for MVS/ESA (In
conjunction with Language
Environment for MVS and VM
(MVS feature)).

Version 3 5655–121

User Edit Routines can be written in:

IBM HLASM Version 1 5696–234

VS COBOL II Compiler and
Library

Version 1 Release 4 5688–023

COBOL/370 Compiler and
Library

Version 1 Release 1 5688–197

IBM COBOL for MVS and VM Version 1 Release 2 5688–197

VS COBOL II Compiler and
Library

Version 1 Release 3.1 5688–023

VS COBOL II Compiler, Library
and Debugging Facility

Version 1 Release 3.1 5668–958

OS PL/I Version 2 Release 3 5668–909

IBM PL/I for MVS and VM Version 1 Release 1.1 5688-265

Assembler H or standard
assembler

Version 2 Release 1 5668–962

Governor Exit Routine

IBM HLASM Version 1 5696–234

Assembler H or standard
assembler

Version 2 Release 1 5668–962

Remote Unit of Work (OS/390)

Connection to remote DB2 on OS/390 DRDA Application Server:

At the local DB2 for OS/390
location:

DB2 for MVS Version 3 Release 1 5685–DB2

QMF for OS/390 Version 7 Release 2 5675-DB2

At the remote DB2 database:

DB2 for MVS Version 3 Release 1 5685–DB2

QMF for OS/390 Version 7 Release 2 5675-DB2

Connection to remote DB2 on VM DRDA Application Server:

At the local DB2 for MVS/ESA
location:

Planning for QMF

Chapter 2. Planning for QMF 19

Table 3. Prerequisite software for optional functions for QMF for OS/390 Version
7.2 (continued)

Product Version and release Number

DB2 for MVS Version 3 Release 1 5685–DB2

QMF for OS/390 Version 7 Release 2 5675-DB2

At the remote DB2 for VM/ESA
or VSE/ESA database:

SQL/DS for VM Version 3 Release 5 5688–103

SQL/DS for VM Version 3 Release 3 5706–255

Connection to remote DB2 on VSE DRDA Application Server:

At the local DB2 for OS/390
location:

DB2 for MVS Version 3 Release 1 5685–DB2

QMF for OS/390 Version 7 Release 2 5675-DB2

At the remote DB2 for VM or VSE database:

SQL/DS Version 3 Release 5 5688–103

DB2 for VSE Version 6 5648–061

Connection to DB2 PE, DataJoiner, Common Server:

At the local DB2 for OS/390
location:

DB2 for MVS Version 3 Release 1 with PTF
UP75959 and PTF UN54601

5685–DB2

QMF for OS/390 Version 7 Release 2 5675-DB2

At the remote database
configured for APPC
communications:

DB2 Parallel Edition for AIX or Version 1 Release 2 5765–328

DataJoiner for AIX or Version 1 Release 2 84H1212

DB2 for Windows NT Version 2 Release 1 53H7474

DB2 for AIX or Version 2 Release 1 41H2128

DB2 for HP-UX or Version 2 Release 1 10H2366

DB2 for Solaris or Version 2 Release 1

DB2 for SCO OpenServer or Version 2 Release 1 79H5359

DB2 for SINIX Version 2 Release 1 79H4133

Planning for QMF

20 Installing and Managing QMF

Planning your storage requirements

Make sure that there is enough storage to accommodate QMF programs and
the QMF reports that users create. QMF storage requirements are as follows:
v QMF modules that can run in a 31-bit addressing mode require 2.8 MB.
v QMF modules that must run in a 24-bit addressing mode require 52 KB.
v Minimum storage for users to execute QMF queries and hold QMF report

data is between 0.5 and 1.0 MB. Your specific requirements can be larger
depending on the size of your report and the report formatting options
used.

As an example, if you run in a standard TSO environment with ISPF and
GDDM, you need approximately 6.0 MB of storage.

You might require more than 1 MB of storage if you use competing options
for a report, or if a query returns a large amount of data. You can allocate
storage for both purposes above 16 MB.

You can further reduce the size of the region by placing ISPF and GDDM into
the pageable link pack area (PLPA), which increases the common area
accordingly.

OS/390 storage
You need 0.5 to 1 MB of storage to run QMF. Additional storage is required
for other applications. For example, if you run QMF in a standard TSO
environment with ISPF and GDDM, you need approximately 6 MB of storage.

Most of the QMF modules are reentrant and can be loaded into EPLPA. One
52 KB module must run in 24-bit mode below 16 MB. This module is also
reentrant and can be loaded into PLPA.

CICS/ESA region
In CICS Version 3.1, dynamic storage area (DSA) can be allocated above and
below 16 MB. The DSA above 16 MB is called extended DSA (EDSA). The
DSA size is specified in the CICS system initialization table parameters
DSASZE and EDSASZE. The CICS default value for EDSASZE, 1,536 KB,
might be too small to support QMF users. Increase EDSASZE to the range of
16 to 50 MB, depending on the number of concurrent QMF users. You might
use 16 MB plus 1 MB for each QMF concurrent user. For more information on
this subject, see the appropriate CICS System Definition and Operations Guide.

Planning for QMF

Chapter 2. Planning for QMF 21

Moving modules to enhance performance

After installation, the library QMF720.SDSQLOAD contains the load modules
for the QMF program.Table 4 shows the modules you can move into link pack
area libraries to enhance performance.

Table 4. Modules that can reside in the PLPA or EPLPA

Module Description

DSQQMFE
DSQQMF
DSQCSUB
DSQCTOPX
DSQCCI
DSQCCISW
DSQCBST
DSQCELTT
DSQCEBLT
DSQCIX

QMF uses the modules in this set when you invoke
QMF. DSQCTOPX and DSQCCI can be placed only in
the PLPA.

DSQUEDIT
DSQUXIA
DSQUXIC
DSQUXILE
DSQUXIP

These modules are related to the user EDIT routines.
Unless you expect heavy use, do not move them into the
link pack area.

DSQCIB COBOL
DSQCICX C/370
DSQCIA assembler
DSQCIFE FORTRAN
DSQCIF FORTRAN
DSQCIPX PL/1
DSQCIPL PL/1
DSQCIR RPG
DSQCIX REXX

The QMF callable interface uses the modules in this set,
which are reentrant and can be placed in the EPLPA.
However, callable interface modules are small and are
normally link-edited with the user’s application module.

DSQUEGV3 This is a governor module.

Table 5 describes the modules that cannot be placed in the PLPA or EPLPA.

Table 5. TSO Modules that can’t reside in the PLPA or EPLPA

Module Description

DSQCI QMF uses this module when QMF is invoked.

Planning for QMF

22 Installing and Managing QMF

Table 5. TSO Modules that can’t reside in the PLPA or EPLPA (continued)

Module Description

DSQUEGV1 This module is a governor routine.

DSQCMAPB
DSQ0BINS
DSQ0BSQL
DSQCTO80
DSQCFR80

These modules are QMF installation and service updates.

In CICS
QMF runs as a conversational transaction in CICS where there are multiple
users of QMF in the same CICS address space. Each user that runs a QMF
transaction requires at least 1.0 MB of storage from the CICS region. You can
allocate all but 24 KB to storage above 16 MB. You can place a single copy of
the QMF module, up to 2.7 MB, in the EPLPA or within the CICS region
above 16 MB, and you can place 52 KB in PLPA or within the CICS region
below 16 MB.

Estimating SMP/E storage

System Modification Program Extended (SMP/E) is the basic tool that you use
to install QMF. With SMP/E, you install into two types of libraries:
v Target libraries, which contain the executable code making up the running

system.
v Distribution libraries, which contain the master copy of all the system

elements.

Estimated DASD space (in cylinders) for the SMP/E data sets is shown in
Table 6.

Table 6. DASD space for SMP/E data sets

DDname 3380 3390 9345

SMPSCDS 1 1 1

SMPCSI 8 8 8

SMPLOG 1 1 1

SMPMTS 1 1 1

SMPPTS 1 1 1

SMPSTS 1 1 1

Estimating space for distribution libraries
The QMF distribution libraries and their estimated DASD space (in tracks) are
shown in Table 7 on page 24.

Planning for QMF

Chapter 2. Planning for QMF 23

Table 7. DASD space for QMF distribution libraries

DSNAME Content 3380 3390 9345

QMF720ADSQOBJ QMF object modules 11 11 9

QMF720.ADSQMACE QMF install procedures 15 15 13

QMF720.ADSQDBMD Database request modules 1 1 1

QMF720.ADSQPMSE QMF ISPF panels 1 1 1

Estimating target library size
Table 8 shows estimates for your required DASD space (in cylinders) for the
target libraries.

Table 8. DASD space for QMF target libraries

DSNAME Content 3380 3390 9345

QMF720.SDSQLOAD QMF load modules 8 8 7

QMF720.SDSQEXIT QMF user exits 1 1 1

QMF720.SDSQSAPE IVP, sample queries 17 17 15

QMF720.SDSQDBRM QMF DBRMs 1 1 1

QMF720.SDSQPLBE ISPF panels for QMF 1 1 1

QMF720.SDSQCLTE Sample QMF CLIST 2 2 2

QMF720.SDSQSLBE Sample ISPF skeletons 1 1 1

QMF720.SDSQMLBE Sample ISPF messages 1 1 1

QMF720.SDSQEXCE TSO/E REXX procs 1 1 1

QMF720.SDSQUSRE Sample user exit routines 1 1 1

After you allocate space for your libraries, you can use SMP/E to install QMF.

Estimating space for user data sets

Estimated DASD space required (in cylinders) for the QMF user libraries is
shown in Table 9.

Table 9. DASD space for QMF user data sets

DSNAME Content 3380 3390 9345

QMF720.DSQMAPE GDDM map group files 1 1 1

QMF720.DSQCHART GDDM samples chart files 1 1 1

QMF720.DSQUCFRM GDDM/CICS samples chart
forms files (expanded in VSAM
format)

1 1 1

Planning for QMF

24 Installing and Managing QMF

Table 9. DASD space for QMF user data sets (continued)

DSNAME Content 3380 3390 9345

QMF720.DSQPVARE QMF message help panels
(expanded in sequential format)

N/A 6 6

QMF720.DSQPNLE QMF message help panels
(expanded in VSAM format)

N/A 10 9

QMF720.GDDM.ADMF GDDM/CICS data set (in VSAM
format)

1 1 1

Read the program directory and apply service
Before beginning the installation process, read the QMF Program Directory for
supplementary data. Because the Program Directory is updated between
releases of QMF, it contains useful information, including descriptions of
program temporary fixes (PTFs) and authorized program analysis reports
(APARs), as well as modifications to this book.

Ensure that the service level of your system is current. Call your IBM
Software Service Support, or use IBMLink (ServiceLink) in the United States
or EMEA DIAL in Europe, to request the latest PTFs for QMF and its
prerequisite products. Additionally, request QMF’s preventive service
planning (PSP) bucket, SUBSET: QMFMVS under UPGRADE QMF720. The
PSP bucket contains general hints, HIPER APARs, and documentation
changes. Subscribers who have access to either Information/Access or
ServiceLink can download the information.

Planning for QMF under CICS

You need to complete installation, tailoring, and testing of CICS and GDDM
before you install QMF.

Tailoring CICS for QMF
Because QMF is a large conversational transaction, QMF processing takes
longer than the average CICS transaction. You might want to isolate QMF
transaction processing in a CICS region dedicated to QMF transactions.

Depending on the amount of storage available below 16 MB, there is an upper
limit on the number of users that can run QMF in the same CICS region. To
support additional QMF users, use multiple CICS regions and the Multiple
Region Option.

You might want to route the QMF transaction from one CICS system (for
example, Terminal Owning Region) to the CICS system designated to process
QMF transactions (for example, Application Owning Region). If you do, use
either multiple transaction IDs or dynamic transaction routing. Both methods
are described in the CICS/OS390 Intercommunication Guide.

Planning for QMF

Chapter 2. Planning for QMF 25

Tailoring GDDM for QMF
During QMF installation, QMF modifies GDDM’s ADMF file. Additionally,
you must define GDDM resources, such as programs and transactions, to
CICS. For details on how to install and tailor GDDM, see the GDDM
Installation and System Management and GDDM/MVS Installation, Testing, and
Servicingguides.

Changing GDDM default parameters
If you are using GDDM Version 2.3, ensure that the IOSYNCH parameter in
the ADMADFC external defaults module is set to YES.

Run the installation verification procedure (IVP) for GDDM
Run the IVP for GDDM. The IVP minimizes QMF installation problems and
ensures that you are installing QMF onto a clean system.

Planning for QMF for DB2 UDB for OS/390 for AIX

Customizing QMF to work with a DB2 UDB for OS/390 for AIX server
requires some changes both on the host and the server.

From OS/390, QMF uses the distributed data facility (DDF) of DB2 UDB for
OS/390 to access distributed data that resides in a DB2 UDB for OS/390 for
AIX database. The DDF of DB2 UDB for OS/390 is a VTAM application that
uses LU 6.2 communications protocols to communicate with other database
management systems or applications that support Distributed Relational
Database Architecture (DRDA). Information about connecting distributed
database systems for access to data from QMF on OS/390 is in DB2 UDB for
OS390 Administration Guide , Volume 1.

From DB2 UDB for OS/390, the communications database (CDB) tables are
used to control access between remote database management systems. If you
plan to use DB2 UDB for OS/390 as a server only, you do not need to
populate the CDB; default values are used. However, if you intend to request
data from remote databases, you must update the CDB tables. These topics
are described in the DB2 UDB for OS390 Administration Guide , Volume 2 and
DB2 UDB for OS390 SQL Reference.

At the DB2 UDB for OS/390 for AIX server, you must issue a CREATE
DATABASE command before installing QMF into that database. Verify that
APPC communications are defined and operational between the DB2 UDB for
OS/390 for OS/390 DRDA application requester and the DB2 UDB for
OS/390 for AIX DRDA application server. For more information about
installing your DB2 UDB for OS/390 for AIX server, refer to the installation
instructions for that DB2 UDB for OS/390 for AIX server.

Planning for QMF

26 Installing and Managing QMF

For more information about the installation from OS/390, of QMF objects into
DB2 UDB for OS/390 for AIX, and about the prerequisites for the installation,
see Chapter 7, “Tailoring QMF for Workstation Database Servers” on page 75.

Complete the worksheets

Table 10, displays the parameters you need to provide values for during the
QMF installation. Use them as worksheets.

Table 10. QMF Installation Parameters (Version 7 Worksheet part 1

PARAMETER VALUE

Location name

Target Library Prefix
(Default = QMF720)

Distribution Library Prefix
(Default = QMF720)

Target Library Volume
(Default = xxxxxx)

Distribution Library Volume
(Default = xxxxxx)

SMP/E Data Set Prefix
(Default = IMSVS)

Local DB2 UDB for OS/390 Subsystem ID
(Default=DSN)

Local DB2 UDB for OS/390 Release Level
(Default=V3R1)

Local DB2 UDB for OS/390 Exit Library
(Default=DSN710.SDSNEXIT)

Local DB2 UDB for OS/390 Load Library
(Default=DSN710.SDSNLOAD)

Communications database installed
at local DB2 UDB for OS/390

yes or no

Gather the following information if the communications database is installed at the
local DB2 UDB for OS/390 subsystem:

Scope of installation F (Full database),
S (Server database),

or R (Requester database)

Gather the following information, if the scope of the database install is not “S”(Server
database):

Customize QMF runtime libraries yes or no

Planning for QMF

Chapter 2. Planning for QMF 27

Table 10. QMF Installation Parameters (Version 7 Worksheet part 1 (continued)

PARAMETER VALUE

QMF application plan ID
(Default=QMF720)

PARAMETER VALUE

Gather the following information if the scope of the database
install is “S” (Server database):

DB2 UDB for OS/390 server location in remote DB2 UDB for
OS/390 subsystem? (Default=NO)

yes or no

Gather the following information, if the scope of the database install is “F”(Full database), or the scope
of the database install is “S”(Server database), and the server database is the same as the local
subsystem.

DB2 UDB for OS/390 user catalog (ICF)
(Default=DSNC7101.USER.CATALOG)

DB2 UDB for OS/390 user catalog password

QMF tablespace catalog alias
(Default=QMFDSN)

QMF tablespace catalog password (for QMF control tables)

QMF tables volume

DB2 UDB for OS/390 default punctuation , (comma) or . (period)

Previous QMF level
(migration installs only)

V3R1,V3R1M1,
,V3R2, V3R3, V6R1 or NONE

Gather the following information when the scope of the database install is “S” (Server database) and the
server database is different from the local DB2 UDB for OS/390 subsystem.

DB2 UDB for OS/390 server location name

DB2 UDB for OS/390 server in another operating system? yes or no

DB2 UDB for OS/390 user catalog (ICF) for server
(Default=DSNC7101.USER.CATALOG)

DB2 UDB for OS/390 user catalog password

QMF tablespace catalog alias at server (Default=QMFDSN)

QMF tablespace catalog password
(for QMF control tables)

QMF tables volume at server

DB2 UDB for OS/390 default punctuation at server , (comma) or . (period)

Planning for QMF

28 Installing and Managing QMF

PARAMETER VALUE

Previous QMF level at server
(migration installs Only)

Version 3 Release 1,Version 3 Release 1 Modification1,
Version 3 Release 2, Version 3 Release3, Version 6 Release 1 or NONE

PARAMETER PRIMARY SECONDARY

Gather the following information, if the previous QMF level is
not NONE, and the scope of the database install is not “R”.

QMF control table tablespace

Sizes: (in 1K units)
Table Space name Default size

(primary, secondary)

- Q.OBJECT_DIRECTORY (see Note) (200,20)
- Q.OBJECT_REMARKS " (200,20)
- Q.OBJECT_DATA " (5000,200)
- Q.PROFILES " (100,20)
- Q.ERROR_LOG " (100,20)
- Q.COMMAND_SYNONYMS " (100,20)
- Q.RESOURCE_TABLE " (100,20)
- Q.DSQ_RESERVED (100,20)
- SAVE DATA (Optional) " (100,20)

100_________

_20________

Table Index

Sizes: (in 1K units)
Table Index name Default size

(primary, secondary)

- Q.OBJECT_DIRECTORYX (see Note) (100,20)
- Q.OBJECT_REMARKSX " (100,20)
- Q.OBJECT_OBJDATAX " (100,20)
- Q.PROFILEX (100,20)
- Q.COMMAND_SYNONYMSX " (100,20)

Determine the following, if applicable:

Install QMF jobs in the foreground or tailor the JCL files yourself
and run each job in batch?

foreground or
batch

Do you have fixed or variable-length CLIST libraries? variable or fixed

Do you have fixed or variable-length EXEC libraries? variable or fixed

Do you want SAVE DATA table space created? yes or no

Note: Control tables and indexes are provided only on the initial installation
of QMF.

Planning for QMF

Chapter 2. Planning for QMF 29

30 Installing and Managing QMF

Chapter 3. Submitting QMF Batch Install Jobs

This chapter describes how to install QMF in a batch environment.

Step 4—Install QMF panels

DSQ1EPNL uses two data sets (DSQPVARE and DSQPNLE) that were created
in Chapter 2, “Planning for QMF” on page 15 when DSQ1EJAL was run.

DSQ1EPNL copies expanded versions of QMF panels to the panel file
QMF720.DSQPNLE.
1. Edit QMF720.SDSQSAPE(DSQ1EPNL).
2. Verify or change the following values in the instream procedure of the job:

//DSQ1PNL PROC RGN=’2048K’, Job-step region size
// QMFTPRE=’QMF720 ’ Prefix for QMF target libraries
// LKEY=’E’ Language identifier

3. Submit job QMF720.SDSQSAPE(DSQ1EPNL).
4. Check for a return code of 0.

Step 5—Install QMF/GDDM map groups

DSQ1EMAP copies expanded versions of certain GDDM map groups to a
map group library named QMF720.DSQMAPE. The map groups are copied
from the source library QMF720.SDSQSAPE.
1. Edit DSQ1EMAP.
2. Verify and change if necessary these parameters in the instream procedure

of the job:
//DSQ1MAP PROC RGN=’2048K’, Job-step region size
// QMFTPRE=’QMF720 ’, Prefix for QMF target libraries
// MAPID=

3. Submit job QMF720.SDSQSAPE(DSQ1EMAP).
4. Check for a return code of 0.

Step 6—Install QMF/GDDM sample chart forms

DSQ1CHRT copies expanded versions of GDDM chart-form files from the
library QMF720.SDSQSAPE to the library QMF720.DSQCHART.
1. Edit DSQ1CHRT.
2. Verify or change the default values for the input parameters in the job’s

instream procedure.

© Copyright IBM Corp. 1983, 2002 31

//DSQCHRT PROC RGN=’2048K’, Job-step region size
// QMFTPRE=’QMF720 ’, Prefix for QMF target libraries
// CHART=

3. Submit job QMF720.SDSQSAPE(DSQ1CHRT).
4. Check for a return code of 0.

Step 7—Convert REXX exec and CLIST records

This step converts REXX exec and CLIST records from fixed to variable
length. Two jobs are used for the conversion. The first, DSQ1EJVE, converts
QMF REXX exec records from fixed length to variable length. The second,
DSQ1EJVC, converts QMF CLIST records from fixed length to variable length.

Converting REXX exec records
The QMF EXEC library contains fixed-length records. It can be concatenated
only to other exec libraries that have fixed-length records. If the library
contains variable-length records, you must create a copy of the QMF library
with variable-length records.
1. Check the following:

v If other exec libraries have fixed-length records, skip this step.

Later in the install, you will allocate the QMF exec library
(QMF720.SDSQEXCE.VB) as a SYSEXEC data set by concantenating the
library to other exec libraries.

Example
In the following JCL (from DSQ1EINV), the library
QMF720.SDSQEXCE is concatenated to an exec library named
SYS2.EXEC:

//SYSEXEC DD DSN=SYS2.EXEC,DISP=SHR
// DD DSN=QMF720.SDSQEXCE,DISP=SHR

For more information, see the Developing QMF Applications manual.
2. Edit QMF720.SDSQSAPE(DSQ1EJVE).

Change the serial number of the volume for the copy of the library.
//DSQTEVB.SYSUT2 DD DISP=(NEW,CATLG),UNIT=SYSDA,
// SPACE=(8800,(400,50,25)),VOL=SER=XXXXXX,
// DCB=(RECFM=VB,LRECL=84,BLKSIZE=8800)

3. Change the job statement to conform to your installation.
//DSQ1EJVE JOB (ACCT),NAME,
// CLASS=A,MSGCLASS=A,MSGLEVEL=(1,1),
// USER=Q,PASSWORD=Q

4. Verify and change, if necessary, the value of the QMFTPRE parameter in
the instream procedure of the job.

Submitting QMF Batch Install Jobs

32 Installing and Managing QMF

|
|
|

|
|

//DSQTEVB PROC RGN=’2048K’,
// QMFTPRE=’QMF720 ’, Prefix for QMF libraries
// CLIST= Leave blank;
//* used when the procedure is called

5. Submit job QMF720.SDSQSAPE(DSQ1EJVE).
6. Check for a return code of 0.

If the job fails, correct the error and rerun the job.

Converting CLIST records
The QMF CLIST library contains fixed-length records. It can be concatenated
to only other CLIST libraries that have fixed-length records. If they contain
variable-length records, you must create a copy of the QMF library with
variable-length records.
1. Check the following:

v If other CLIST libraries have fixed-length records, skip this step.
v If your installation uses variable-length records CLIST libraries, continue

with this step. It creates a CLIST library that contains variable-length
records named QMF720.SDSQCLTE.VB. Use this new CLIST for your
SYSPROC concatenation. (QMF720.SDSQCLTE should remain
fixed-block because both the QMF install process and SMP/E require a
fixed-block CLIST for processing updates.)

Later in the install, you must allocate the QMF CLIST library
(QMF720.SDSQCLTE) as a SYSPROC data set. To do this, concantenate the
library to other CLIST libraries.

Example
In the following JCL (from DSQ1EINV), the library
QMF720.SDSQCLTE is concatenated to a CLIST library named
SYS2.CLIST:
//SYSPROC DD DSN=SYS2.CLIST,DISP=SHR
// DD DSN=QMF720.SDSQCLTE,DISP=SHR

2. Edit QMF720.SDSQSAPE(DSQ1EJVC).
3. Verify or change the job statement to conform to your installation.

//DSQ1EJVC JOB (ACCT),NAME,
// CLASS=A,MSGCLASS=A,MSGLEVEL=(1,1),
// USER=Q,PASSWORD=Q

4. Verify or change the value of the QMFTPRE parameter in the job’s
instream procedure.
//DSQTIVB PROC RGN=’2048K’,
// QMFTPRE=’QMF720 ’, Prefix for QMF libraries
// EXEC= Leave blank;
//* used when the procedure is called

Submitting QMF Batch Install Jobs

Chapter 3. Submitting QMF Batch Install Jobs 33

|
|
|

|
|

5. Change the serial number of the volume for the copy of the library.
//DSQTIVB.SYSUT2 DD DISP=(NEW,CATLG),UNIT=SYSDA,
// SPACE=(8800,(400,50,25)),VOL=SER=XXXXXX,
// DCB=(RECFM=VB,LRECL=84,BLKSIZE=8800)

6. Submit job QMF720.SDSQSAPE(DSQ1EJVC).
7. Check for a return code of 0.

Preparing QMF as a DB2 universal database for OS/390 application

In this series of steps, you:
v Create DB2 UDB for OS/390 resources.
v Make these resources available to DB2 UDB for OS/390.
v Bind QMF to DB2 UDB for OS/390.

If you have an earlier release of QMF installed in the DB2 UDB for OS/390
subsystem, some of these resources are already available.

If you are installing QMF into a DB2 for OS/390 Version 7 (or higher)
database, be sure that the database Application Encoding installation
parameter for bind of plans and packages is set to either EBCDIC or an
EBCDIC ccsid.

In “Step 8—Binding QMF install programs to DB2 UDB for OS/390” you edit
and bind two DB2 UDB for OS/390 application programs. In the remaining
steps, you run TSO batch jobs (through the program IKJEFT01) and use the
output of “Step 8—Binding QMF install programs to DB2 UDB for OS/390” to
run DB2 UDB for OS/390 statements. Most of the components for these steps
are members of the library QMF720.SDSQSAPE or QMF720.SDSQLOAD. For
these steps that run TSO batch, check the step completion codes in the system
messages. Completion messages can be found in the SYSTSPRT or the
SYSTERM output, as indicated.

Each substep can be restarted, since all of the changes to the DB2 UDB for
OS/390 database remain uncommitted until the end of the job.

Step 8—Binding QMF install programs to DB2 UDB for OS/390

This step binds programs DSQDBSQL and DSQDBINS to DB2 UDB for
OS/390. The paralleling application plan from the bind is named DSQIN720.
1. Edit QMF720.SDSQSAPE(DSQ1BSQL).
2. Verify and change, if necessary, the default values for the installation

parameters in the job’s instream procedure:

Submitting QMF Batch Install Jobs

34 Installing and Managing QMF

//DSQ1BSQL PROC RGN=’2048K’, Job-step region size
// QMFTPRE=’QMF720 ’, Prefix for QMF target libraries
// DB2EXIT=’DSN710 .SDSNEXIT’, Exit DB2 UDB for OS/390 library name
// DB2LOAD=’DSN710 .SDSNLOAD’ DB2 UDB for OS/390 program

library name

The job does its work through a series of DB2 UDB for OS/390 statements.
The statements are members of the library QMF720.SDSQSAPE.

3. Submit job QMF720.SDSQSAPE(DSQ1BSQL).
4. Check that you received a return code of 0.

Do not proceed if the return code is other than zero. Examine SYSTSPRT
for error messages. Perform corrective actions and then rerun the job.
If you are doing a Requester database installation, go to “Step 15—Bind
QMF application plan to DB2 UDB for OS/390” on page 44; otherwise,
continue to the next step.

Step 9—Create QMF control tables

This step creates eight QMF control tables and six catalog views. For more
information about these tables and views, see Appendix B, “QMF Objects
Residing in DB2” on page 727.

Converting QMF control table indexes to type 2:
If you are running DB2 for MVS/ESA Version 4 or above, the QMF control
table indexes will be migrated or created as TYPE 2 indexes. Run the
following query to determine the TYPE of your QMF indexes.
SELECT NAME,CREATOR,TBNAME,TBCREATOR,INDEXTYPE FROM SYSIBM.SYSINDEXES

WHERE CREATOR = ’Q’

If INDEXTYPE is equal to ’ ’ (blank), the migration jobs will alter the indexes
to change them to TYPE 2. After migration, the indexes are left in recover
pending state. The index changes do not take place until the indexes are
recovered, loaded, or reorganized. Run the DB2 utility REBUILD INDEX (or
RECOVER INDEX if you are using DB2 Version 5 or earlier) to complete
conversion of the QMF indexes.

If you want to fall back to DB2 R310, you must to convert the indexes back to
TYPE 1 prior to falling back. Use the ’ALTER INDEX’ SQL statement. Refer to
DB2 UDB for OS390 SQL Reference for the syntax.

Tips for remote unit of work
If you want to access tables and views at remote DB2 UDB for OS/390
locations, you must run the install job to create the QMF catalog views at each
remote location.

Submitting QMF Batch Install Jobs

Chapter 3. Submitting QMF Batch Install Jobs 35

Which job you run depends upon whether you are migrating from an earlier
QMF version or not. It also varies according to what QMF version and release
is in the DB2 UDB for OS/390 subsystem you have selected for QMF Version
7.2.

QMF level in DB2 UDB for OS/390 subsystem
Follow this procedure

QMF Version 7.2
“Step 10— Create a table space for the QMF IVP” on page 41 Skip this
step; none of the control tables must be altered.

QMF Version 3.x, QMF Version 6
“Migrating from QMF Version 7.1, Version 6, and Version 3 Release
3.0, 2.0, 1.1, 1.0”

QMF Version 2.4
“Migrating from QMF Version 2.4” on page 37

QMF is new
“Creating control tables without a previous QMF release” on page 39

Migrating from QMF Version 7.1, Version 6, and Version 3 Release 3.0, 2.0,
1.1, 1.0

Run this step if the DB2 UDB for OS/390 subsystem you selected for QMF
Version 7.2 currently contains any of the following QMF versions, releases,
and migrates: Version 7.1, Version 6.1, all releases of Version 3, DSQ1TBJ0
migrates for Version 7.1, Version 6.1, and all releases of Version 3 control
tables to Version 7.2.

Skip this step if you are not migrating from Version 7.1, Version 6, or Version
3.
1. Edit QMF710.SDSQSAPE(DSQ1TBJ0).
2. Verify that the installation parameters in the instream procedure of the job

match your tailoring specifications. If they do not, return to “Step
2—Tailor the jobs” on page 66 and correct your installation parameters.
//DSQ1TBJ0 PROC RGN=’2048K’, Job-step region size
// QMFTPRE=’QMF720 ’, Prefix for QMF target libraries
// DB2EXIT=’DSN710 .SDSNEXIT’, Exit DB2 UDB for OS/390 library name
// DB2LOAD=’DSN710 .SDSNLOAD’ DB2 UDB for OS/390 program

library name

3. Submit job QMF710.SDSQSAPE(DSQ1TBJ0).
4. Check that you received a return code of 0 or 4. Review SYSTERM for

completion messages.
Do not proceed if the return code is other than zero or four. Examine
SYSTSPRT or SYSPRINT for error messages. Perform corrective actions
and then rerun this job.

Submitting QMF Batch Install Jobs

36 Installing and Managing QMF

Migrating from QMF Version 2.4
Run this step if the DB2 UDB for OS/390 subsystem you selected for QMF
Version 7.2 currently contains QMF Version 2.4.

This install step contains three jobs:
v DSQ1TBD1 stops the index space
v DSQ1TBA1 allocates VSAM files
v DSQ1TBJ0 recreates Control Tables

Stopping the index space (DSQ1TBD1)
This job stops the QMF profile index space so that it can be redefined in the
next step.
1. Determine whether the server is in the local DB2 UDB for OS/390. Run

this job only if the server is in the local DB2 UDB for OS/390.
Issue the STOP command in QMF720.SDSQSAPE(DSQ1TBD1) to stop the
index space at the server.

2. Edit QMF720.SDSQSAPE(DSQ1TBD1).
3. Verify the installation parameters in the instream procedure of the job

match your tailoring specifications. If they do not, return to “Step
2—Tailor the jobs” on page 66 and correct your installation parameters.
//DSQ1TBD1 PROC RGN=’2048K’, Job-step region size
// QMFTPRE=’QMF720 ’, Prefix for QMF target libraries
// DB2EXIT=’DSN710 .SDSNEXIT’, Exit DB2 UDB for OS/390 library name
// DB2LOAD=’DSN710 .SDSNLOAD’ DB2 UDB for OS/390 program

library name

4. Submit QMF720.SDSQSAPE(DSQ1TBD1).
5. Check that you received a return code of 0. Review SYSTERM for

completion messages.
Do not proceed if the return code is other than zero. Examine SYSTSPRT
or SYSPRINT for error messages. Perform corrective actions and then
rerun this job.

Allocating the VSAM Files (DSQ1TBA1)
This job allocates VSAM files for the QMF index space for Q.PROFILEX. The
job works through a series of IDCAMS statements.
1. Tailor DSQ1TBA1 for distributed data.

If DB2 UDB for OS/390 is Version 2 Release 3 and the server system is
remote (not in local system), you must insert a /*ROUTE XEQ JCL
statement for JES2 and //*ROUTE XEQ JCL statement for JES3 after the
jobcard. These statements are required. You must allocate the alias and
VSAM data sets at the remote server system by executing this job through
the ROUTE card at the remote server system.

2. Edit QMF720.SDSQSAPE(DSQ1TBA1).

Submitting QMF Batch Install Jobs

Chapter 3. Submitting QMF Batch Install Jobs 37

3. Verify the installation parameters in the instream procedure of the job
match your tailoring specifications. If they do not, return to “Step
2—Tailor the jobs” on page 66 and correct your installation parameters.
//DSQ1TBA1 PROC RGN=’2048K’, Job-step region size
// QMFTPRE=’QMF720 ’ Prefix for the target libraries

4. Submit QMF720.SDSQSAPE(DSQ1TBA1).
5. Check for a return code of 0.

Examine SYSPRINT for error messages. You can ignore the following
message if you receive it on the DELETE and PURGE of the cluster:
IDG3012I Entry QMFDSN.DSNDBC.DSQDBCTL.PROFILEX I001,A001.

Recreating control tables
DSQ1TBJ0 alters a control table, drops and recreates a control table index,
creates the Q.DSQ_RESERVED table space and control table, and creates the
QMF catalog views. The job works through a series of DB2 UDB for OS/390
statements and has several members.
1. Edit QMF720.SDSQSAPE(DSQ1TBJ0).
2. Verify the installation parameters in the instream procedure of the job

matches your tailoring specifications. If they do not, return to “Step
2—Tailor the jobs” on page 66 and correct your installation parameters.
//DSQ1TBD1 PROC RGN=’2048K’, Job-step region size
// QMFTPRE=’QMF720 ’, Prefix for QMF target libraries
// DB2EXIT=’DSN710 .SDSNEXIT’, Exit DB2 UDB for OS/390 library name
// DB2LOAD=’DSN710 .SDSNLOAD’ DB2 UDB for OS/390 program

library name

3. Determine whether your user catalog is password protected. If it is, add
the password clause to the STOGROUP statement in member DSQ1VSTB.
CREATE STOGROUP PASSWORD(password)

4. Submit QMF720.SDSQSAPE(DSQ1TBJ0).
5. Check that you received a return code of 0 or 4. Review SYSTERM for

completion messages.
Do not proceed if the return code is other than zero or four. Examine
SYSTSPRT or SYSPRINT for error messages. Perform corrective actions
and rerun this job.

Recover indexes converted to type 2
If your indexes were altered to TYPE 2 as a result of running DSQ1TBJ0, they
must be recovered, loaded or reorganized.

If you are uncertain whether indexes need to be rebuilt, follow these steps:
1. Review the output of job DSQ1TBJ0. If the final return code was 4, search

the job output for the string ALTER INDEX. If you find any occurrences of
ALTER INDEX, perform the next step.

2. Run the following DB2 command:

Submitting QMF Batch Install Jobs

38 Installing and Managing QMF

-DISPLAY DATABASE (DSQDBCTL) SPACENAM (*)

If any indexes (TYPE=IX) show a STATUS of RECP or RW,RECP, rebuild
the indexes.

Depending on your DB2 for OS/390 release, the following DB2 utility job
streams must be run:

Version 5 and lower
RECOVER INDEX(ALL) TABLESPACE DSQDBCTL.DSQTSCT1
RECOVER INDEX(ALL) TABLESPACE DSQDBCTL.DSQTSCT2
RECOVER INDEX(ALL) TABLESPACE DSQDBCTL.DSQTSCT3
RECOVER INDEX(ALL) TABLESPACE DSQDBCTL.DSQTSPRO
RECOVER INDEX(ALL) TABLESPACE DSQDBCTL.DSQTSSYN

Version 6 and above
REBUILD INDEX (Q.OBJECT_DIRECTORYX)
REBUILD INDEX (Q.OBJECT_REMARKSX)
REBUILD INDEX (Q.OBJECT_OBJDATAX)
REBUILD INDEX (Q.PROFILEX)
REBUILD INDEX (Q.COMMAND_SYNONYMSX)

Creating control tables without a previous QMF release
Run this step if the DB2 UDB for OS/390 subsystem for QMF does not
contain an earlier release of QMF.

This step contains two install jobs:
v DSQ1TBAJ allocates alias. (Skip this if your system already has the alias

defined.)
v DSQ1TBLJ creates and loads QMF control tables and catalog views.

Allocating alias and VSAM files
DSQ1TBAJ allocates the alias for the QMF control tables and views. The job
does its work through a series of IDCAMS statements.
1. Edit QMF720.SDSQSAPE(DSQ1TBAJ).
2. Verify the installation parameters in the instream procedure of the job and

the job steps match your tailoring specifications. If they do not, return to
“Step 2—Tailor the jobs” on page 66 and correct your installation
parameters.
//DSQ1TBAJ PROC RGN=’2048K’, Job-step region size
// QMFTPRE=’QMF720 ’, Prefix for QMF target libraries

3. Tailor the job for distributed data, if applicable.
If DB2 UDB for OS/390 is at Version 2 Release 3 and the server system is
remote (not in local system), you must insert a /*ROUTE XEQ JCL
statement for JES2 and //*ROUTE XEQ JCL statement for JES3 after the
jobcard. These statements are required. You must allocate the alias and

Submitting QMF Batch Install Jobs

Chapter 3. Submitting QMF Batch Install Jobs 39

VSAM data sets at the remote server system by executing this job through
the ROUTE card at that remote server system.
DSQ1TBLR

The job step defines the alias for QMF in the DB2 UDB for OS/390 VSAM
catalog. It contains this statement:
DEFINE ALIAS -
(NAME(’QMFDSN’) RELATE(’DSNC7101.USER.CATALOG’))

4. Verify that this statement matches your tailoring specifications.
5. Submit QMF720.SDSQSAPE(DSQ1TBAJ).
6. Check for a return code of 0.

If the first step fails, examine SYSPRINT for error messages and rerun the
job after you correct the error. If the second step fails, restart DSQ1VSTA.
If you receive an SQLCODE 203 on the location, then see the section
Appendix A, “Miscellaneous” on page 721.

Creating and loading QMF control tables and catalog views
DSQ1TBLJ creates and loads QMF control tables and catalog views by
working through a series of DB2 UDB for OS/390 statements.
1. Edit QMF720.SDSQSAPE(DSQ1TBLJ).
2. Verify the installation parameters in the instream procedure of the job and

the job steps match your tailoring specifications. If they do not, return to
“Step 2—Tailor the jobs” on page 66 and correct your installation
parameters.
//DSQ1TBLJ PROC RGN=’2048K’, Job-step region size
// QMFTPRE=’QMF720 ’, Prefix for QMF target libraries
// DB2EXIT=’DSN710 .SDSNEXIT’, Exit DB2 UDB for OS/390 library name
// DB2LOAD=’DSN710 .SDSNLOAD’ DB2 UDB for OS/390 program

library name

3. Determine whether your user catalog is password protected. If it is, add
the password clause to the STOGROUP statement in member DSQ1VSTB.
CREATE STOGROUP PASSWORD(password)

4. Verify that the installation parameter for the QMF Catalog Alias (default
QMFDSN) matches your tailoring specifications in the following
members:

DSQ1VSTD
DSQ1TBLB
DSQ1TBLI
DSQ1TBLU
DSQ1TBLE
DSQ1TBLN
DSQ1TBLG

5. Submit QMF720.SDSQSAPE(DSQ1TBLJ).

Submitting QMF Batch Install Jobs

40 Installing and Managing QMF

6. Check that you received a return code of 0 or 4. Review SYSTERM for
completion messages.
Do not proceed if the return code is other than zero or four. Examine
SYSTSPRT or SYSPRINT for error messages. Perform corrective actions
and rerun the job.

Step 10— Create a table space for the QMF IVP

DSQ1STGJ creates a table space named DSQDBDEF.DSQTSDEF for the QMF
installation verification procedure (IVP). Before it creates the table space, it
creates the storage group (DSQSGDEF) and the database (DSQDBDEF) for this
table space. After installation, you can use this table space for the tables your
users create.

Skip this step if the table space already exists in the DB2 UDB for OS/390
subsystem that you selected for QMF Version 7.2. If you attempt to create a
second table space, you will receive an error message indicating that the
object already exists.
1. Edit QMF720.SDSQSAPE(DSQ1STGJ).
2. Verify that the installation parameters in the instream procedure of the job

match your tailoring specifications. If they do not, return to “Step
2—Tailor the jobs” on page 66 and correct your installation parameters.
//DSQ1STGJ PROC RGN=’2048K’, Job-step region size
// QMFTPRE=’QMF720 ’, Prefix for QMF target libraries
// DB2EXIT=’DSN710 .SDSNEXIT’, Exit DB2 UDB for OS/390 library name
// DB2LOAD=’DSN710 .SDSNLOAD’ DB2 UDB for OS/390 program

library name

3. Edit member DSQ1STGC.
4. Determine whether your user catalog is password protected. If it is, add

the password clause to the STOGROUP statement in member DSQ1STGC.
CREATE STOGROUP PASSWORD(password)

5. Verify that the installation parameters in the instream procedure of the job
match your tailoring specifications. If they do not, return to “Step
2—Tailor the jobs” on page 66 and correct your installation parameters.
CREATE STOGROUP DSQSGDEF

VOLUMES (DSNVOL) QMF tables volume
VCAT QMFDSN; QMF catalog alias

The GRANT statements in this member allow everyone to create tables in
the IVP table space. You can restrict this authority to certain users. You
must include the installer if the installer is to run the IVP. If the program
is run under the installer’s authorization ID (the assumption), the installer
automatically has the authority.

6. Submit QMF720.SDSQSAPE(DSQ1STGJ).

Submitting QMF Batch Install Jobs

Chapter 3. Submitting QMF Batch Install Jobs 41

7. Check that you received a return code of 0. Review SYSTERM for
completion messages.
Do not proceed if the return code is other than zero. Examine SYSTSPRT
or SYSPRINT for error messages. Perform corrective actions and rerun the
job.

Establishing the QMF sample tables

In the next two steps you establish the QMF sample tables.
“Step 11—Delete earlier sample tables” drops copies of sample tables
created for a previous release of QMF.
“Step 12—Create the QMF sample tables” creates the QMF sample tables.

If you are migrating QMF from an earlier release, perform these steps. If you
are installing QMF for the first time into a database, perform only “Step
12—Create the QMF sample tables”.

Step 11—Delete earlier sample tables

The step deletes existing QMF sample tables from an earlier QMF version. It
does not drop the six DB2 UDB for OS/390 views that were created in QMF
Version 2.
1. Edit QMF720.SDSQSAPE(DSQ1EDSJ).
2. Verify that the installation parameters in the instream procedure of the job

match your tailoring specifications. If they do not, return to “Step
2—Tailor the jobs” on page 66 and correct your installation parameters.
//DSQ1EDSJ PROC RGN=’2048K’, Job-step region size
// QMFTPRE=’QMF720 ’, Prefix for QMF target libraries
// DB2EXIT=’DSN710.SDSNEXIT’, Exit DB2 UDB for OS/390 library name
// DB2LOAD=’DSN710.SDSNLOAD’ DB2 UDB for OS/390 program

library name

3. Submit QMF720.SDSQSAPE(DSQ1EDSJ)
4. Check that you received a return code of 0. Review SYSTERM for

completion messages.
Do not proceed if the return code is other than zero. Examine SYSTSPRT
or SYSPRINT for error messages. Perform corrective actions and t rerun
the job.

Step 12—Create the QMF sample tables

DSQ1EIVS creates the QMF sample tables. For more information about these
tables, see Appendix B, “QMF Objects Residing in DB2” on page 727.

Submitting QMF Batch Install Jobs

42 Installing and Managing QMF

Tip: Sample tables are authorized to PUBLIC AT ALL LOCATIONS so that
users can use three-part names to reference sample tables in another DB2 UDB
for OS/390 subsystem.

QMF users at locations within the network are authorized to use all the
sample tables created at the location into which you are installing QMF.
1. Edit QMF720.SDSQSAPE(DSQ1EIVS).
2. Verify that the installation parameters in the instream procedure of the job

match your tailoring specifications. If they do not, return to “Step
2—Tailor the jobs” on page 66 and correct your installation parameters.
//DSQ1EIVS PROC RGN=’2048K’, Job-step region size
// QMFTPRE=’QMF720 ’, Prefix for QMF target libraries
// DB2EXIT=’DSN710.SDSNEXIT’, Exit DB2 UDB for OS/390 library name
// DB2LOAD=’DSN710.SDSNLOAD’ DB2 UDB for OS/390 program

library name
// CDS=’2’, punctuation for decimal point
// CDP=’4’ default is period (comma is CDS 6
//* CDP 7)

3. If you are migrating from another level of QMF, comment out job step 1.
//*STEP1 EXEC PGM=IKJEFT01,REGION=&RGN

4. Edit member QMF720.SDSQSAPE(DSQ1VSTC).
This file creates a storage group, database, and table space for the sample
tables.

5. Verify that the following parameters are correct:
CREATE STOGROUP DSQ1STBG

VOLUMES (DSNVOL) QMF tables volume
VCAT QMFDSN; QMF Catalog Alias in VCAT

6. Determine whether or not your user catalog is password protected. If it is,
add the password clause to the STOGROUP statement in member
DSQ1VSTC.
CREATE STOGROUP PASSWORD(password)

7. Submit job QMF720.SDSQSAPE(DSQ1EIVS).
8. Check that you received a return code of 0. Review SYSTERM for

completion messages.
Do not proceed if the return code is other than zero. Examine SYSTSPRT
or SYSPRINT for error messages. Perform corrective actions and rerun the
job.

Step 13—Bind QMF packages

DSQ1BINJ binds the QMF packages into DB2 UDB for OS/390.
1. Edit QMF720.SDSQSAPE(DSQ1BINJ).

Submitting QMF Batch Install Jobs

Chapter 3. Submitting QMF Batch Install Jobs 43

2. Verify that the installation parameters in the instream procedure of the job
match your tailoring specifications. If they do not, return to “Step
2—Tailor the jobs” on page 66 and correct your installation parameters.
//DSQ1BINJ PROC RGN=’2048K’, Job-step region size
// QMFTPRE=’QMF720 ’, Prefix for QMF target libraries
// DB2EXIT=’DSN710.SDSNEXIT’, Exit DB2 UDB for OS/390 library name
// DB2LOAD=’DSN710.SDSNLOAD’ DB2 UDB for OS/390 program

library name

3. Submit QMF720.SDSQSAPE(DSQ1BINJ).
4. Check for a return code of 4 or less.

Do not proceed if the return code is higher than four. Examine SYSTSPRT
or SYSPRINT for error messages. Perform corrective actions and if you
need to rerun prior step(s), you will need to free QMF plans and packages
first, then restart from step 8.

Step 14—Bind communications package to DB2 UDB for OS/390

Skip this step if you are not using the DB2 UDB for OS/390 communications
package.

DSQ1BICD binds the DB2 UDB for OS/390 communications package to QMF.
1. Edit QMF720.SDSQSAPE(DSQ1BICD).
2. Verify that the installation parameters in the instream procedure of the job

match your tailoring specifications. If they do not, return to “Step
2—Tailor the jobs” on page 66 and correct your installation parameters.
//DSQ1BICD PROC RGN=’2048K’, Job-step region size
// QMFTPRE=’QMF720 ’, Prefix for QMF target libraries
// DB2EXIT=’DSN710.SDSNEXIT’, Exit DB2 UDB for OS/390 library name
// DB2LOAD=’DSN710.SDSNLOAD’ DB2 UDB for OS/390 program

library name

3. Submit job QMF720.SDSQSAPE(DSQ1BICD).
4. Check for a return code of 4 or less.

Do not proceed if the return code is higher than four. Examine SYSTSPRT
or SYSPRINT for error messages. Perform corrective actions and rerun the
job.

Step 15—Bind QMF application plan to DB2 UDB for OS/390

Before you start QMF, you must bind it to DB2 UDB for OS/390. Before you
bind QMF to DB2 UDB for OS/390, all of the DB2 UDB for OS/390 resources
that QMF needs must be available to the authorization ID under which QMF
is bound. At this point in the installation process, all of the essential DB2 UDB
for OS/390 resources should be available.

Submitting QMF Batch Install Jobs

44 Installing and Managing QMF

DSQ1BINR is the job that does the binding; it binds the QMF application to
DB2 UDB for OS/390 at the local DB2 UDB for OS/390.
1. Edit QMF720.SDSQSAPE(DSQ1BINR).
2. Verify that the installation parameters in the instream procedure of the job

match your tailoring specifications. If they do not, return to “Step
2—Tailor the jobs” on page 66 and correct your installation parameters.
//DSQ1BINR PROC RGN=’2048K’, Job-step region size
// QMFTPRE=’QMF720 ’, Prefix for QMF target libraries
// DB2EXIT=’DSN710.SDSNEXIT’, Exit DB2 UDB for OS/390 library name
// DB2LOAD=’DSN710.SDSNLOAD’ DB2 UDB for OS/390 program

library name

3. Submit job QMF720.SDSQSAPE(DSQ1BINR).
4. Check for a return code of 4 or less.

Do not proceed if the return code is higher than four. Examine SYSTSPRT
or SYSPRINT for error messages. Perform corrective actions and rerun the
job.

At this point, you are ready to tailor QMF for TSO or CICS.
v For TSO, read Chapter 4, “Tailoring QMF for TSO” on page 47.
v For CICS, read Chapter 6, “Tailoring QMF for CICS” on page 69.

Submitting QMF Batch Install Jobs

Chapter 3. Submitting QMF Batch Install Jobs 45

Submitting QMF Batch Install Jobs

46 Installing and Managing QMF

Chapter 4. Tailoring QMF for TSO

This chapter describes the tailoring of QMF for TSO. It includes the following
steps:
v “Step 16—Create a TSO logon procedure”
v “Step 17—Start QMF” on page 51
v “Step 18—Set up QMF batch job to run batch IVP (optional)” on page 54

Step 16—Create a TSO logon procedure

DSQ1EINV is an IBM-supplied sample TSO procedure.

Starting QMF in TSO
ISPF users can start QMF with the ISPF SELECT service and the ISPSTART
commands. Without ISPF, users can use the DSQQMFE module. For more
information on ISPF dialogs, see Interactive System Productivity Facility for
OS/390 Dialog Management Services and Examples.

As the QMF installer, you must have a TSO logon procedure. When you log
on to TSO as installer and start the Terminal Monitor Program (TMP), it
invokes the TSO logon procedure.

The TMP is the principal interface between user and terminal during the
user’s TSO sessions. Your installation might be using either its own TMP or
the standard one supplied by IBM. If the TMP is not the standard one, some
of the following information might not apply.

Besides invoking the TMP, a logon procedure allocates resources for its users
at the start of a TSO session. QMF users need more resources than the
minimum set that all TSO users require. By using a logon procedure, you
ensure that you are providing these additional resources to establish an
adequate TSO environment.

The TSO logon procedure starts when a user logs on to TSO. After the
procedure runs, you have the option of also running a logon CLIST.

The sample logon procedure allocates resources for someone who uses TSO
solely as a means to reach QMF. For users who want to do more with their
TSO sessions, additional resources may be required.

Some of the resources that are allocated in the logon procedure can also be
allocated in a CLIST that invokes QMF.

© Copyright IBM Corp. 1983, 2002 47

Preparing the TSO logon procedure
1. Edit QMF720.SDSQSAPE(DSQ1EINV).
2. Locate the region parameter and ensure that it meets the minimum storage

requirements as described in “Planning your storage requirements” on
page 21.
//DSQ1EINV EXEC PGM=IKJEFT01,TIME=1440,DYNAMNBR=30,REGION=4096K

3. Review the program load libraries.
a. Determine whether you want to allocate the program modules through

the STEPLIB statement or through a CLIST. Add the QMF user exit
library QMF720.SDSQEXIT to the STEPLIB concatenation if needed.
This only needs to be done if any exits reside in QMF720.SDSQEXIT.
The sample includes the load libraries for ISPF, ISPF-PDF, QMF, DB2
UDB for OS/390, and GDDM. Not all of these libraries need to appear
in the STEPLIB statement. Some can be allocated later through a CLIST.
Before you start QMF, a CLIST can allocate the ISPF and QMF libraries
as ISPLLIB data sets.

b. Tailor for ISPF, if appropriate.
If you are running with ISPF, you can make the STEPLIB allocation
with the ISPF ISPLLIB DD statement.

c. Determine whether you want to run concurrent versions of QMF on
the same DB2 UDB for OS/390 subsystem.
If you plan to run concurrent versions of QMF with different plan IDs
on the same DB2 UDB for OS/390 database, you cannot use the same
QMF load library in the same procedure. The following list indicates
the load module library names for QMF versions.

QMF Version
Load Module Library Name

Version 7 Release 2.0
QMF720.SDSQLOAD

Version 6
QMF610.SDSQLOAD

Version 3 Release 3.0
QMF330.DSQLOAD

Version 3 Release 2.0
QMF320.DSQLOAD

Version 3 Release 1.1
QMF311.DSQLOAD

Version 2 Release 2.4
QMF240.DSQLOAD

//**
//* PROGRAM LOAD LIBRARIES *
//**
//STEPLIB DD DSN=QMF720.SDSQEXIT,DISP=SHR * QMF MODULES *
// DD DSN=QMF720.SDSQLOAD,DISP=SHR * QMF MODULES *

Tailoring QMF for TSO

48 Installing and Managing QMF

// DD DSN=ISR.V4R1M0.ISRLOAD,DISP=SHR * PDF MODULES * Opt. for
// non-ISPF users
// DD DSN=ISP.V4R1M0.ISPLOAD,DISP=SHR * ISPF MODULES * Opt. for
// non-ISPF users
// DD DSN=DSN710 .SDSNEXIT,DISP=SHR * DB2 MODULES *
// DD DSN=DSN710 .SDSNLOAD,DISP=SHR * DB2 MODULES *
// DD DSN=GDDM230.SADMMOD,DISP=SHR * GDDM MODULES *

4. Allocate SDSQEXCE to either SYSEXEC or SYSPROC.
Use the DDNAME established by your installation for the TSO search
order for execs. This search order is affected by settings in the TSO
defaults modules IRXTSPRM and IRXISPRM, the TSO EXECUTIL
command, and the TSO ALTLIB command. If you do not know your
installation’s search order for REXX EXECs, allocate SDSQEXCE to both
SYSEXEC and SYSPROC.
//**
//* DATASETS USED BY TSO *
//**
//SYSPROC DD DSN=SYS2.CLIST,DISP=SHR * CLIST Library
// DD DSN=QMF720.SDSQCLTE,DISP=SHR
//SYSEXEC DD DSN=SYS2.EXEC,DISP=SHR
// DD DSN=QMF720.SDSQEXCE,DISP=SHR
//SYSHELP DD DSN=SYS1.HELP,DISP=SHR
//EDT DD DSN=&EDIT,UNIT=SYSDA,SPACE=(1688,(40,12))

5. Tailor ISPF libraries, if appropriate.
ISPF libraries are optional. If you use ISPF-related functions, allocate these
libraries.
//**
//* DATASETS USED BY ISPF *
//**
//ISPPLIB DD DSN=QMF720.SDSQPLBE,DISP=SHR * Panel libraries
// DD DSN=ISR.V4R1M0.ISRPLIB,DISP=SHR
// DD DSN=ISP.V4R1M0.ISPPLIB,DISP=SHR
//ISPMLIB DD DSN=QMF720.SDSQMLBE,DISP=SHR * Message Libraries
// DD DSN=ISR.V4R1M0.ISRMLIB,DISP=SHR
// DD DSN=ISP.V4R1M0.ISPMLIB,DISP=SHR
//ISPSLIB DD DSN=QMF720.SDSQSLBE,DISP=SHR * ISPF Skeleton Libraries
// DD DSN=ISR.V4R1M0.ISRSLIB,DISP=SHR
// DD DSN=ISP.V4R1M0.ISPSLIB,DISP=SHR
//ISPTLIB DD DSN=ISR.V4R1M0.ISRTLIB,DISP=SHR * Table Input Libraries
// DD DSN=ISP.V4R1M0.ISPTLIB,DISP=SHR
//ISPPROF DD UNIT=SYSDA,SPACE=(TRK,(9,1,4)), * User’s ISPF Profile Library
// DCB=(LRECL=80,BLKSIZE=8800,RECFM=FB,DSORG=PO)

6. Verify GDDM data sets.
These are allocated to ddnames beginning with ADM.
a. Ensure ADMGGMAP and the ADMGGMAP library are allocated

properly.
b.

Allocate separate libraries for users who want to save their own chart
forms. Create the new library with a DD statement like this:

Tailoring QMF for TSO

Chapter 4. Tailoring QMF for TSO 49

//DSQUCFRM DD DSN=aaaaaaaa,DISP=(NEW,CATLG),
// UNIT=xxxx,VOL=SER=yyyy,
// SPACE=(400,(200,50,25)),
// DCB=(LRECL=400,BLKSIZE=400,RECFM=F)

Provide the DSN, UNIT, VOL, and SPACE parameters, but do not
change the DCB parameters.
1) Locate the entry for DSQUCFRM in DSQ1EINV.
2) Replace aaaaaaa with the name of the user’s library.
3) Duplicate and customize this entry for each user library.

c. Replace xxxx in the DD statements for ADMCDATA, ADMGDF, and
ADMSYMBL with the name of the data set created during GDDM
installation. If these data sets do not exist, define them using the
following statements:
//ADMCDATA DD DSN=xxxx,DISP=(NEW,CATLG),
// UNIT=xxxx,SPACE=(TRK,(5,1,10)),
// DCB=(RECFM=F,LRECL=400,BLKSIZE=400,DSORG=PO)

//**
//* QMF/GDDM DATA SETS *
//**
//ADMGGMAP DD DSN=QMF720.DSQMAPE,DISP=SHR * GDDM Map Group
//ADMCFORM DD DSN=QMF720.DSQCHART,DISP=SHR * QMF-Supplied Chart Forms
//DSQUCFRM DD DSN=aaaaaaa,DISP=SHR * Saves User-Defined ICUFORMS
//ADMCDATA DD DSN=xxxx,DISP=SHR
//ADMGDF DD DSN=xxxx,DISP=SHR
//ADMSYMBL DD DSN=xxxx,DISP+SHR

7. Tailor for QMF preferences.
Data sets DSQDEBUG, DSQUDUMP, and SYSUDUMP all currently default
to a printer. You can tailor the definition to send the information instead to
a data set.
DSQUDUMP, DSQDEBUG, and DSQPRINT all require a DCB parameter.
For DSQPRINT, add 1 to LRECL for the print control character.

Tailoring QMF for TSO

50 Installing and Managing QMF

Data Extract (DXT) considerations
With administrative help, a user can start DXT dialogs. One method is to add
JCL to your users’ TSO logon procedure. A better way is to modify two
CLISTs that IBM supplies with QMF.

Step 17—Start QMF

After logging on to TSO with a logon procedure, you are in the TSO READY
mode. From this mode, you can start QMF with or without ISPF.

Starting QMF with ISPF
1. Start QMF from an application program using the callable interface, or

issue the ISPSTART command with or without parameters. The following
examples show how to use ISPSTART to override the default values for
the database subsystem name (DSN) and the plan ID (QMF720).
v With parameters:

Choose the appropriate command for your type of install. If you are
installing QMF into another DB2 UDB for OS/390 subsystem, the value
for ssid must be changed to your subsystem ID value.
– Full installs:

ISPSTART PGM(DSQQMFE) NEWAPPL(DSQE)
PARM(DSQSSUBS=ssid,DSQSPLAN=planid,...)

– Server installs:
ISPSTART PGM(DSQQMFE) NEWAPPL(DSQE)

– Requester installs:
ISPSTART PGM(DSQQMFE) NEWAPPL(DSQE) PARM(DSQSSUBS=ssid,
DSQSPLAN=planid,DSQSDBNM=<location>,...)

//**
//* DATASETS USED BY QMF *
//**
//DSQPNLE DD DSN=QMF720DSQPNLE,DISP=SHR * Panel Definition File
//DSQPRINT DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=1330) * Print Output
//DSQDEBUG DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=121,BLKSIZE=1210) * Trace Output
//DSQEDIT DD UNIT=SYSVIO,DCB=(RECFM=FBA,LRECL=79,BLKSIZE=4029), * Edit Transfer File
// DISP=NEW,SPACE=(CYL,(1,1))
//DSQUDUMP DD SYSOUT=A,DCB=(RECFM=VBA,LRECL=125,BLKSIZE=1632) * Snap Dump Output
//SYSUDUMP DD SYSOUT=A
//DSQSPILL DD DSN=&&SPILL,DISP=(NEW,DELETE), * User’s Spill File
// UNIT=SYSVIO,SPACE=(CYL,(1,1),RLSE),
// DCB=(RECFM=F,LRECL=4096,BLKSIZE=4096)

Tailoring QMF for TSO

Chapter 4. Tailoring QMF for TSO 51

The QMF Home panel is displayed. After the QMF session ends, you
are returned to TSO READY mode.

v Without parameters:
ISPSTART

You should now see the ISPF Master Application menu. From here, you
can select QMF. After the QMF session ends, the ISPF Master
Applications menu returns. The following section explains how to
customize the ISPF selection menus to include QMF.

Customizing the ISPF selection menus
ISPF supplies a master application menu as part of its installation process.
You can invoke QMF from the ISPF Master Application menu or from any
other selection menu that you want to use. Figure 5 on page 53 shows an
example of how to code the ISPF Master Application menu to include QMF.
The line for QMF is option 2.

You can change the program parameters you pass from TSO to QMF by using
the QMF callable interface REXX procedure
QMF720.SDSQEXCE(DSQSCMDE). Another method of passing program
parameters is through the ISPF service call that QMF uses.

Licensed Materials - Property of IBM
5675-DB2 5697-F42 (C) Copyright IBM Corp. 1982, 2002
All Rights Reserved.
IBM is a registered trademark of International Business Machines

QMF HOME PANEL Query Management Facility
Version 7 Release 2

****** ** ** ********* ____
Authorization ID ** ** *** *** ** ____
Q ** ** **** **** ******* ____

** ** ** ** ** ** ** ____
Connected to ** * ** ** **** ** ** ____
SQLDS ****** ** ** ** ** _______

** _______________________________________

Enter a command on the command line or press a function key.
For help, press the Help function key or enter the command HELP.

1=Help 2=List 3=End 4=Show 5=Chart 6=Query

7=Retrieve 8=Edit Table 9=Form 10=Proc 11=Profile 12=Report
OK, you may enter a command.
COMMAND ===>

Figure 4. QMF Home Panel

Tailoring QMF for TSO

52 Installing and Managing QMF

Starting QMF in TSO
To reach QMF, you can use an application program and the callable interface
(see Developing QMF Applications for further details), or you can enter the
following statement:
DSQQMFE DSQSSUBS=dbname,DSQSPLAN=planid,...

where (...) represents additional parameter values being passed to QMF.

You can also start QMF with the following TSO call commands:
v For full or server installs:

CALL ’QMF720.SDSQLOAD(DSQQMFE)’ ’DSQSSUBS=dbname,DSQSPLAN=planid,...’

%------------------------ MASTER APPLICATION MENU -------------------
%SELECT APPLICATION ===>_OPT +
% +USERID -
% +TIME -
% 1 +SPF - SPF PROGRAM DEVELOPMENT FACILITY +TERMINAL -
% 2 +QMF - QMF QUERY MANAGEMENT FACILITY +PF KEYS -
%
%
%
%
%
%
%
%
%
%
% P +PARMS - SPECIFY TERMINAL PARAMETERS AND LIST/LOG DEFAULTS
% X +EXIT - TERMINATE USING LIST/LOG DEFAULTS
%
+PRESS%END KEY+TO TERMINATE +
%
)INIT
)PROC

&SEL = TRANS(TRUNC (&OPT,’.’)
1,’PANEL(ISR@PRIM) NEWAPPL’
2,’PGM(DSQQMFE) NEWAPPL(DSQE)’

/* */
/* ADD OTHER APPLICATIONS HERE */
/* */

P,’PANEL(ISPOPT)’
X,’EXIT’

’ ’,’ ’
*,’?’)

)END

Figure 5. QMF Dialog on ISPF Master Application Menu

Tailoring QMF for TSO

Chapter 4. Tailoring QMF for TSO 53

v For requester installs:
CALL ’QMF720.SDSQLOAD(DSQQMFE)’ ’DSQSSUBS=dbname,DSQSPLAN=planid,

DSQSDBNM=<location>...’

For more information on starting QMF, see Installing and Managing QMF for
MVS.

Step 18—Set up QMF batch job to run batch IVP (optional)

In this step you set up a batch job for the batch-mode IVP. If you want to run
this test, you must wait until “Step 35—Run the batch-mode IVP (optional)”
on page 91. If you run the test earlier, the test will fail because the procedure
Q.DSQ1EBAT is not yet available.

To create a batch job:
1. Make a copy of the sample logon procedure (DSQ1EINV).
2. Add a JOB statement.

If you are working in a RACF environment, make the value of the USER
parameter the logon ID of the installer. For example, if the installer is
JONES, the job statement might look like this:
//BATCH JOB USER=JONES,PASSWORD=password

where password is JONES’ password.
3. Delete the SYSTERM and SYSIN DD statements.
4. Add the following statements to the end of the logon procedure:

//SYSTSPRT DD SYSOUT=A
//SYSTSIN DD *

PROFILE PREFIX(JONES)
ISPSTART PGM(DSQQMFE) NEWAPPL(DSQE) PARM(M=B,I=Q.DSQ1EBAT,S=ssid)

/*

The first control card within the second JCL statement is optional. Use it if
your installation does not have RACF. Replace JONES with the logon ID
of whoever is running the step.

The second control card within the second JCL statement invokes QMF in
batch mode (DSQSMODE=B). Replace ssid with the subsystem ID of the
database subsystem into which you installed QMF. If you do not specify a
subsystem ID, the default, DSN, will be used. When invoked in this way,
QMF invokes the procedure Q.DSQ1EBAT. After it invokes the procedure,
control returns to TSO, which terminates the job because it finds no more
TSO statements in SYSTSIN.

Proceed to Chapter 9, “Testing Your QMF Install” on page 85.

Tailoring QMF for TSO

54 Installing and Managing QMF

Chapter 5. Providing Input Parameters

In this chapter you customize a CLIST with input parameters specific to your
installation. Next, you run the job that updates the members with your
parameter information.

Before performing the steps in this chapter, you must first install QMF in your
OS/390 environment using SMP/E as documented in the QMF Program
Directory.

Step 1—Provide QMF installation parameters

This step will loop through a series of QMF installation panels. The panels
prompt you for the QMF and DB2 for OS/390 information that you described
on the worksheets in Table 10 on page 27.

Before you start
Before starting this step, consider the following requirements:
1. To do this step, you must be in an active ISPF session.
2. From the command line of your ISPF session enter (PANELID) to turn your

panel IDs on.
3. If you changed the default QMF target names (as originally specified in

DSQ1EJAL), you must either alter the DSQ1EINS, DSQ1EIN1, and
DSQ1EIN2 CLISTs, or skip to Chapter 3, “Submitting QMF Batch Install
Jobs”.
The tailoring portion of DSQ1EINS changes members in the SDSQSAPE
and SDSQEXCE data sets. Make a backup copy of SDSQSAPE and
SDSQEXCE before invoking DSQ1EINS. The backups can be deleted once
the QMF installation is complete.

4. If you are performing one of the database-only installs (full, server, or
requester), ensure that the QMF target libraries you are using for the
installation cannot be accessed by users of other databases during
installation.

5. If you are looping back through these procedures, be aware that the
installation step “Converting CLIST records” on page 33 changes
SDSQCLTE from FB to VB. Manually change it to FB to run DSQ1EINS.

Starting the installation panels
1. Enter the following:

TSO EXEC ’prefix.SDSQCLTE(DSQ1EINS)’ ’QMFPRE(prefix)’

© Copyright IBM Corp. 1983, 2002 55

where prefix is the QMF target library prefix from your worksheets.

This process generates one of the following:
v The Install QMF — Main menu, as shown in Figure 6, when you have

completed and saved installation parameters.
v The Install QMF — Local DB2 UDB for OS/390 Parameters panel, as

shown in Figure 7 on page 58, when there is no record of installation
parameters.

You will return to the main install menu, in a looping manner after
successfully completing the input parameter. The main menu offers you
four options:

P Installation parameters

T Tailor install files

Tailors all the required install data sets for QMF. This option lets
you edit jobs to:
v Format the QMF GDDM maps and panel file
v Bind the QMF application plan to DB2 UDB for OS/390
v Create a SAVE DATA table space (optional)
v Delete the sample tables (migration installation only)
v Install the QMF sample tables
v Tailor the QMF plan ID and DB2 UDB for OS/390 subsystem

name for the QMF callable interface (REXX EXEC DSQSCMDE)

DXYEIN00 INSTALL QMF -- MAIN MENU
ISPF Command ===>

Currently working on installation into DB2 UDB for OS/390 subsystem DSN

You can now re-specify the install parameters, tailor the installation
files, install QMF with the tailored files in foreground, quit and run
the tailored install files in batch, or quit and return here later.

ENTER CHOICE HERE ===> ("P" - INPUT PARAMETERS,
"T" - TAILOR INSTALL FILES,
"I" - INSTALL IN FOREGROUND,
"X" - EXIT INSTALL DIALOGS)

PRESS: ENTER to continue PF01 for help PF03 to end

Figure 6. Install main menu

Providing Input Parameters

56 Installing and Managing QMF

v Set up the Installation Verification Procedures (IVP)

If you previously tailored files in SDSQSAPE and SDSQEXCE and
want to keep them, back them up before you select the T option,
because the input parameter procedures write over that
information. This step is described further in “Step 2—Tailor the
jobs” on page 66.

I Install in foreground (optional)

This option lets you submit your jobs in an online environment.
You may also choose to submit your jobs manually, as discussed in
Chapter 3, “Submitting QMF Batch Install Jobs” on page 31.

X Exit install dialogs- to end the series of panels

Also on this panel, you see the last-used DB2 UDB for OS/390 subsystem
name. You can ignore that DB2 UDB for OS/390 name if you choose the P
option, because the DB2 UDB for OS/390 name and other QMF install
parameters might be overridden in the subsequent panels. Likewise, you
can customize QMF install parameters for an additional DB2 UDB for
OS/390 subsystem by ignoring the DB2 UDB for OS/390 subsystem name
on the panel and proceeding to the next panel by entering P.

2. Choose the P option to obtain the first parameter input panel.

As you enter the information on each panel, QMF saves your input in the
QMF720.SDSQCLTE library under your chosen database name.

If you leave this step before completing the last input parameter panel, your
input is not saved. The last panel asks you for job card information used to
tailor the installation. If you plan to install in the foreground, rather than
through batch, you do not need to provide job card information; just enter x
in the indicated spot on the panel.

After you supply the last installation parameter, you return to the main menu.
If you want to review or modify the parameters, enter P and proceed through
the input panels again. When you are satisfied with your installation
parameters, continue with the next step. (If you prefer, you can leave the
installation process at this point and return later; your installation parameters
are saved.)

Specifying local DB2 UDB for OS/390 parameters
The panel displayed in Figure 7 on page 58 displays if you have not yet saved
any install parameters. You also receive it if you choose the P option from the
main menu.

Providing Input Parameters

Chapter 5. Providing Input Parameters 57

Use the information from your worksheets to fill in the panel.

The following options are available on this panel:

Local DB2 UDB for OS/390 subsystem ID
Specify the DB2 UDB for OS/390 subsystem ID where the QMF
application plan is bound (required: default is DSN).

Local DB2 UDB for OS/390 release level
Specify the DB2 UDB for OS/390 release level of the local subsystem
(required: no default).

Local DB2 UDB for OS/390 exit library
Specify the exit library for the local DB2 UDB for OS/390 subsystem
(required: no default).

Local DB2 UDB for OS/390 load library
Specify the DB2 UDB for OS/390 load library for the local subsystem
(required: no default).

Communications database (CDB) installed at local DB2 UDB for OS/390
Specify whether the DB2 UDB for OS/390 communications database is
installed at the local DB2 UDB for OS/390 subsystem (required: no
default).

Specifying the scope of database install
The panel displayed in Figure 8 on page 59 displays if you indicated that the
communications database is installed at the local DB2 UDB for OS/390
subsystem on the previous panel.

DXYEIN10 INSTALL QMF -- LOCAL DB2 PARAMETERS
ISPF Command ===>

LOCAL DB2 SUBSYSTEM ID ===> DSN

LOCAL DB2 RELEASE LEVEL ===> ("31" FOR V3R1, ETC)

LOCAL DB2 EXIT LIBRARY ===>

LOCAL DB2 LOAD LIBRARY ===>

COMMUNICATIONS DATABASE(CDB) INSTALLED AT LOCAL DB2 ===> ("Y","N")

PRESS: ENTER to continue PF01 for help PF03 to end

Figure 7. Local DB2 UDB for OS/390 parameters

Providing Input Parameters

58 Installing and Managing QMF

Specify the scope of the database installation. For details about these options
see “Road maps for the QMF installation process” on page 10.

If you are installing QMF Version 7.2 for the first time, select the full database
install option.

Specifying QMF parameters for a local DB2 UDB for OS/390 subsystem
The panel displayed in Figure 9 on page 60 displays for full database and
requester database installations.

DXYEIN12 INSTALL QMF -- SCOPE OF DATABASE INSTALL
ISPF Command ===>

SCOPE OF DATABASE INSTALL ===> ("F" - full database,
"R" - requester database only,

"S" - server database only)

PRESS: ENTER to continue PF01 for help PF03 to end

Figure 8. Database install scope

Providing Input Parameters

Chapter 5. Providing Input Parameters 59

The following options are available on this panel:

Customize QMF runtime libraries
Specify YES if the QMF runtime libraries require customizing. Customize
these libraries only once per operating system (required: no default).

QMF application plan ID at local DB2 UDB for OS/390
Specify the QMF application plan name to be bound at the local DB2 UDB
for OS/390 subsystem (required: no default).

Specifying remote server location
The panel displayed in Figure 10 on page 61 displays if you indicated S for
server database, on the “Scope of database install” panel.

DXYEIN11 INSTALL QMF -- QMF PARAMETERS AT LOCAL DB2
ISPF Command ===>

CUSTOMIZE QMF RUNTIME LIBRARIES ===> Y ("Y" or "N")

- Install QMF panels
- Install QMF/GDDM map groups
- Install QMF/GDDM sample charts forms
- Make QMF REXX EXECs available
- Make QMF CLISTs available

QMF APPLICATION PLAN ID AT LOCAL DB2 ===> QMF720

PRESS: ENTER to continue PF01 for help PF03 to end

Figure 9. QMF parameters at local DB2 UDB for OS/390

Providing Input Parameters

60 Installing and Managing QMF

The following option is available on this panel.

DB2 UDB for OS/390 server location in remote DB2 UDB for OS/390
system

Specify whether the server database is different from the local DB2 UDB
for OS/390 subsystem (required: no default).

Specifying DB2 UDB for OS/390 and QMF parameters

Fill in the following parameters:

DXYEIN14 INSTALL QMF -- DB2 SERVER SYSTEM
ISPF Command ===>

DB2 SERVER LOCATION IN REMOTE DB2 SUBSYSTEM ===> N ("Y" OR "N")

(If the DB2 server location is different from
the requester location, the DB2 server is remote.)

Figure 10. DB2 UDB for OS/390 remote server panel

DXYEIN16 INSTALL QMF -- DB2 AND QMF PARAMETERS
ISPF Command ===>

DB2 USER CATALOG ===>

DB2 USER CATALOG PASSWORD ===>

QMF TABLESPACES CATALOG ALIAS ===> QMFDSN

QMF TABLESPACES CATALOG PASSWORD ===>

QMF TABLESPACES VOLUME ===> (VOLUME SERIAL NUMBER
OR "AST",
AST stands for *)

PREVIOUS QMF LEVEL ===> ("V2R4","V3R1","V3R1M1",
"V3R2","V3R3","V6R1","NONE")

PRESS: ENTER to continue PF01 for help PF03 to end

Figure 11. DB2 UDB for OS/390 and QMF parameters

Providing Input Parameters

Chapter 5. Providing Input Parameters 61

DB2 UDB for OS/390 user catalog
Specify the ICF catalog that QMF install uses to create the QMF catalog
alias (the VCAT name) (required: no default).

DB2 UDB for OS/390 user catalog password
Specify the password to access the DB2 UDB for OS/390 user catalog,
which enables the QMF installation to create the QMF catalog alias in this
user catalog (optional).

QMF tablespaces catalog alias
Specify the VCAT name for all the QMF table spaces. The VSAM data sets
that associate with these QMF table spaces have the high-level qualifier of
this alias value. If you are migrating from a previous level of QMF, use
the same alias value as the previous release (required: no default).

QMF tablespaces catalog password
Specify the password for all the QMF control table spaces and index
spaces created by the installation (optional).

QMF tablespaces volume
Specify a volume serial number where the QMF table spaces reside
(required: no default required default required: no default).

Default punctuation
Specify the symbol for a decimal point in DB2 UDB for OS/390 (required;
no default).

Previous QMF level
Specify the release level of QMF that you are migrating from (required: if
you do not have any previous release level in the database, enter NONE).

Specifying remote server parameters
The panel displayed in Figure 12 on page 63 displays only when the server is
different from the local DB2 UDB for OS/390 system.

Providing Input Parameters

62 Installing and Managing QMF

Fill in the following parameters:

DB2 UDB for OS/390 server location name
Specify the DB2 UDB for OS/390 location name for the remote server
database (required: no default).

DB2 UDB for OS/390 server in another operating system
Specify whether the remote server database is in a different operating
system than the requester database system (required: no default).

DB2 UDB for OS/390 user catalog for server
Specify the ICF catalog that QMF install uses to create the QMF catalog
alias (QMF VCAT name) (required: no default).

DB2 UDB for OS/390 user catalog password
Specify the password to access the DB2 UDB for OS/390 user catalog so
that the QMF installation creates a QMF catalog alias in this user catalog
(optional).

QMF tablespaces catalog alias at server
Specify the VCAT name for all the QMF table spaces. The VSAM data sets
that associate with these QMF table spaces have the high-level qualifier of
this alias value. If you are migrating from a previous level of QMF, use
the same alias value as the previous release (required: no default).

QMF tablespaces catalog password
Specify the password for all the QMF control table spaces and index
spaces created by the installation (optional).

DXYEIN15 INSTALL QMF -- REMOTE SERVER PARAMETERS
ISPF Command ===>

DB2 SERVER LOCATION NAME ===>
DB2 SERVER ON A REMOTE OS/390 SYSTEM ===> ("Y" OR "N")
DB2 USER CATALOG FOR SERVER ===>
DB2 USER CATALOG PASSWORD ===>

QMF TABLESPACES CATALOG ALIAS AT SERVER ===> QMFDSN
QMF TABLESPACES CATALOG PASSWORD ===>
QMF TABLESPACES VOLUME ===> (VOLUME SERIAL NUMBER

OR "AST",
AST stands for *)

DEFAULT PUNCTUATION AT SERVER ===> . ("," OR ".")
PREVIOUS QMF LEVEL INSTALLED AT SERVER ===> (V2R4,V3R1,V3R3,

V3R1M1,V3R2,NONE)
ROUTE XEQ JCL STATEMENT TO SERVER SYSTEM (REQUIRED IF SYSTEM IS REMOTE)
FOR JES2, USE THE FORMAT: /*ROUTE XEQ <NODEID>.<USERID>
FOR JES3, USE THE FORMAT: //*ROUTE XEQ <NODEID>.<USERID>

===>

PRESS: ENTER to continue PF01 for help PF03 to end

Figure 12. Remote server parameters

Providing Input Parameters

Chapter 5. Providing Input Parameters 63

QMF tablespaces volume for server
Specify a volume serial number where the QMF table spaces reside
(required: no default).

Default punctuation at server
Specify the symbol for a decimal point (required: no default).

Previous QMF level installed at server
Specify the release level of QMF that you are migrating from (required: if
you do not have any previous release level in the database, enter NONE).

ROUTE XEQ JCL statement to server system
Specify the ROUTE JCL to send certain install jobs to the remote system
for execution (required: if you have indicated that the server system is
different from the requester system).

Specifying space parameters for QMF table spaces
The panel displayed in Figure 13 displays when the install scope is F (full
database), or S (server database) install, and there is no previous QMF release
level in the database.

Specify the primary and secondary allocations for the QMF control table
space. QMF uses these values to allocate all the VSAM files for these table
spaces. Depending on the size of your installation, you might need to increase
or decrease the default sizes to allow free space for expansion. Figure 13
shows the default sizes in 1K units.

DXYEIN17 INSTALL QMF -- QMF TABLESPACES SPACE PARAMETERS
ISPF Command ===>

Specify the sizes (in 1K units) for the following tablespaces

TABLESPACE FOR QMF
CONTROL TABLE: PRIMARY SECONDARY
------------------ ------- ---------
Q.OBJECT_DIRECTORY ===> 200 ===> 20
Q.OBJECT_REMARKS ===> 200 ===> 20
Q.OBJECT_DATA ===> 5000 ===> 200
Q.PROFILES ===> 100 ===> 20
Q.ERROR_LOG ===> 100 ===> 20
Q.COMMAND_SYNONYMS ===> 100 ===> 20
Q.RESOURCE_TABLE ===> 100 ===> 20
"SAVE DATA" TABLESPACE ===> 100 ===> 20

PRESS: ENTER to continue PF01 for help PF03 to end

Figure 13. QMF table spaces space parameters

Providing Input Parameters

64 Installing and Managing QMF

Specifying parameters for QMF index spaces
The panel displayed in Figure 14 displays when the install scope is F (full
database) or S (server database) install, and there is no previous QMF release
level in the database.

The default sizes in 1K units are listed in Figure 14.

Specify the primary and secondary allocations for the QMF index spaces.
QMF uses these values when allocating all the VSAM files for these table
spaces. Depending on the size of your installation, you might need to increase
or decrease the default sizes to allow free space for expansion.

Specifying the job card
The panel displayed in Figure 15 on page 66 is the last panel for the P option,
installation parameters.

DXYEIN18 INSTALL QMF -- QMF INDEXSPACES SPACE PARAMETERS
ISPF Command ===>

Specify the sizes (in 1K units) for the following table indexes

TABLE INDEX PRIMARY SECONDARY
----------- ------- ---------
Q.OBJECT_DIRECTORYX ===> 100 ===> 20
Q.OBJECT_REMARKSX ===> 100 ===> 20
Q.OBJECT_OBJDATAX ===> 100 ===> 20
Q.PROFILEX ===> 100 ===> 20
Q.COMMAND_SYNONYMX ===> 100 ===> 20

PRESS: ENTER to continue PF01 for help PF03 to end

Figure 14. QMF index spaces space parameters

Providing Input Parameters

Chapter 5. Providing Input Parameters 65

QMF uses this job card information to submit all of the remaining install jobs
for your installation. When you complete this panel, you return to the Install
QMF — Main menu. You can review your selections by choosing P, or
continue on to tailoring the job.

Step 2—Tailor the jobs

Choose T on the main menu to tailor the jobs. This step updates the existing
SDSQSAPE and SDSQEXCE members with the installation parameters settings
you provided in “Step 1—Provide QMF installation parameters” on page 55.

During this step:
v A message tells you that the system is tailoring the JCL and copy files for

the installation path you selected during “Step 1—Provide QMF installation
parameters” on page 55.

v The QMF callable interface REXX EXEC QMF720.SDSQEXCE(DSQSCMDE)
is modified for full database and requester installations to update the
default values for the parameters: QMF plan ID and DB2 UDB for OS/390
subsystem name.

At the end of this step, you return to Install QMF — Main Menu. You can then
proceed with the installation of QMF.

DXYEIN19 INSTALL QMF -- JOBCARD
ISPF Command ===>

Modify the Job cards below to represent your installation requirements.
The "USER" and "PASSWORD" parameters must be specified in systems using
RACF. Since part of this install involves creating objects in DB2, you
will need DB2 SYSADM authority. Please see the "QMF Installation Guide
for OS/390" for more detail.

If you will be performing the installation in foreground rather than
batch, and you DO NOT want the batch (JCL) files tailored, enter an
’X’ here: ===>

JOB CARD INFORMATION (used for batch (JCL) tailoring)
===> //QMFINSTL JOB (ACCT),NAME,
===> // CLASS=A,MSGCLASS=A,MSGLEVEL=(1,1),
===> // USER=Q,PASSWORD=Q
===> //*

PRESS: ENTER to continue PF01 for help PF03 to end

Figure 15. Job card

Providing Input Parameters

66 Installing and Managing QMF

Attention: Do not manually edit any of the install JCL or control files in the
QMF720.SDSQSAPE library, unless you are instructed to do so. The CLISTs
that tailor these files depend on the sequence and format of the lines in these
files.

If you choose to submit your job by batch, you are instructed to verify that
the tailoring process worked correctly. Always return to the Install QMF —
Main Menu for tailoring if the job results did not match your intentions.

Your next step is to choose to install QMF either in the foreground, or
manually by batch. To choose a foreground install, select I on the Install QMF
— Main Menu and follow the instructions in “Step 3—Install QMF in the
foreground”. To choose a manual install, select X on the Install QMF — Main
Menu and follow the instructions in Chapter 3, “Submitting QMF Batch Install
Jobs” on page 31.

When you choose I, a panel displays the installation options. When you have
entered the information, a message tells you that the installation is
proceeding.

Step 3—Install QMF in the foreground

When you select I on the Install QMF — Main Menu to submit the jobs in the
foreground, they install under your current LOGON ID. Ensure your LOGON
ID has SYSADM authority as described in “Database authorization ID Q” on
page 10.

If you are installing QMF into a remote DB2 UDB for OS/390 server, do the
following tasks before you run the foreground installation:
v If you are installing QMF for the first time:

Use the full database installation option to install QMF into the local DB2
UDB for OS/390 subsystem.
If you install QMF into a server that is not in the local DB2 UDB for
OS/390 subsystem, submit the required job to allocate the VSAM data set
before you invoke this CLIST in the foreground.
For an initial install, submit the job QMF720.SDSQSAPE(DSQ1TBAJ).

v If you are migrating from QMF Version 2:
If you are migrating from QMF Version 2 Releases 2, 3, or 4, use the full
database installation to migrate QMF to the local DB2 UDB for OS/390.
1. Issue the -STOP command in QMF720.SDSQSAPE(DSQ1SPDB) to stop

the index space at the server.
2. Submit QMF720.SDSQSAPE(DSQ1TBA1).
3. Issue the -START command in QMF720.SDSQSAPE(DSQ1STDB) to start

the index space at the server.

Providing Input Parameters

Chapter 5. Providing Input Parameters 67

v If you are migrating from QMF Version 3 or Version 6:
No action is required.

Foreground installation is now complete. Continue the installation by
skipping to one of the following chapters:
v Chapter 4, “Tailoring QMF for TSO” on page 47
v Chapter 6, “Tailoring QMF for CICS” on page 69
v Chapter 7, “Tailoring QMF for Workstation Database Servers” on page 75

Providing Input Parameters

68 Installing and Managing QMF

Chapter 6. Tailoring QMF for CICS

This chapter describes the steps required to tailor QMF for CICS.

Before performing the tailoring process for QMF in CICS, you must install
and tailor DB2 UDB for OS/390 and GDDM for CICS. For more details, see
the GDDM Installation and System Management and the DB2 UDB for OS390
Administration Guide.

Step 19—Describe QMF to DB2 UDB for OS/390 in CICS

This step ensures that you complete all the prerequisite steps before you tailor
QMF for CICS.
1. Ensure that you install the DB2 UDB for OS/390-to-CICS connection and

the DB2 UDB for OS/390 attachment facility for CICS.
QMF uses the CICS/DB2 attachment facility to access DB2 UDB for
OS/390 data in the CICS environment. QMF-specific information for these
products is described in the DB2 UDB for OS390 Administration Guide.

2. Verify that the plan ID and authorization IDs for a QMF transaction ID are
in the resource control table (RCT).
Users invoking a QMF transaction operate under the authorization of the
associated RCT entry. (For a sample RCT, see member DSQ1ERCT in the
QMF sample library QMF720.SDSQSAPE.)
If your RCT includes RACF information, the authorization ID must be a
valid RACF ID.

3. Regenerate your RCT as described in DB2 UDB for OS390 Administration
Guide

For a complete description of the resource control table, see the DB2 UDB
for OS390 Administration Guide.

All QMF programs are bound during installation; it is unnecessary to
separately bind for CICS.

Step 20—Link-edit QMF with DFHEAI and DFHEAI0

This step uses two jobs, DSQ1ELNK and DSQ1EGLK, to link-edit QMF with
the CICS interface modules, DFHEAI and DFHEAIO. Because QMF uses the
CICS command level application programming interface when operating
under CICS, you must link-edit before you can run any QMF programs.

© Copyright IBM Corp. 1983, 2002 69

Link-edit QMF with CICS command interface modules
DSQ1ELNK link-edits QMF with the CICS command interface modules,
DFHEAI and DFHEA10, located in the LOADLIB data set generated by CICS.

Important: To include CICS interface modules DFHEAI and DFHEAI0, you
must run this step each time you apply QMF service.

1. Edit QMF720.QMFSAMPE(DSQ1ELNK).
2. Verify that the installation parameters in the instream procedure of the job,

and the job steps, match your tailoring specifications.
//DSQ1ELNK PROC REG=4096K, Job Step Region
// QMFTPRE=’QMF720 ’, DSN Prefix for QMF product
// CLOAD=’CICS.LOADLIB’, Name of CICS LOADLIB
// OUTC=’* Print SYSOUT class

3. Submit QMF720.QMFSAMPE(DSQ1ELNK).
4. Check for a return code of 0. If the return code is not 0, correct the

problem and rerun DSQ1ELNK.

Translate, assemble, and link-edit the QMF-supplied governor
DSQ1EGLK performs the translate, assemble, and link-edit for the
QMF-supplied governor.
1. Edit QMF720.QMFSAMPE(DSQ1EGLK).
2. Verify that the installation parameters in the instream procedure of the job,

and the job steps, match your tailoring specifications.
//DSQ1EGLK PROC SUFFIX=1$, CICS ASM Translator suffix
// QMFTPRE=’QMF720 ’, DSN Prefix for QMF product
// CMACS=’CICS.MACLIB’, Name of CICS MACLIB
// CLOAD=’CICS.LOADLIB’, Name of CICS LOADLIB
// A=, A=A for CICS Aligned MAP
// ASMBLR=IEV90, Assembler Program Name
// REG=4096K, Job step region
// OUTC=’*’, Print SYSOUT class
// WORK=’SYSDA’ Work unit

3. Submit QMF720.QMFSAMPE(DSQ1EGLK).
4. Check for a return code of 0 on all jobs except LINKPROG, which can

have a return code of 4. If the return code is not 0 or 4, correct the
problem and rerun the job.

Step 21—Define and load QMF/GDDM data sets

This step defines and loads a number of data sets.
v DSQ1EADM loads QMF/GDDM map sets to the GDDM ADMF data set.
v DSQ1BFRM creates QMF/GDDM charts and the QMF trace data set.

Tailoring QMF for CICS

70 Installing and Managing QMF

|

Load QMF/GDDM map sets to the GDDM ADMF data set

Important: This job replaces any existing QMF maps. Ensure that you back
up ADMF if you want to keep any existing QMF maps.

1. Edit QMF720.SDSQSAPE(DSQ1EADM).
2. Verify that the installation parameters in the instream procedure of the job,

and the job steps, match your tailoring specifications.
//DSQ1EADM PROC RGN=’2048K’, Job-step region size
// QMFTPRE=’QMF720 ’, QMF prefix name for target libraries
// GDDMADM=’GDDM.ADMF’ GDDM ADMF data set name

3. Submit QMF720.SDSQSAPE(DSQ1EADM).
4. Check for a return code of 0. If the return code is not 0, correct the

problem and rerun DSQ1EADM.

Create QMF/GDDM charts and the QMF trace data set
If you are migrating to QMF Version 7.2 from a previous QMF release, skip
this step.

DSQ1BFRM creates QMF/GDDM charts and the QMF trace data set.
1. Edit QMF720.SDSQSAPE(DSQ1BFRM).
2. Locate the installation parameters in the instream procedure of the job and

ensure that they match your specifications.
//DSQ1BFRM PROC QMFTPRE=’QMF720 ’, DSN Prefix for QMF Product
// GDDMADM=’GDDM.ADMF’, GDDM ADMF Data Set Name
// CHRTVOL=’QMFVOL’, QMF/GDDM Charts Volume
// TRCVOL=’QMFVOL’ Trace Data Set Volume

3. Edit DSQ1CFRM COPY, which is referenced on the SYSIN of DSQ1BFRM.
4. Tailor the VSAM control statement for your installations.

DEFINE CLUSTER (NAME(QMF720.DSQUCFRM) -
VOLUMES(QMFVOL) - QMF/GDDM Charts volume
UNIQUE -
RECSZ(400 400) -
CONTROLINTERVALSIZE(2048) -
KEYS(20 0)) -

DATA -
(RECORDS(1000 300)) -

CATALOG(VSAMUSERCAT) VSAM user catalog

5. Submit QMF720.SDSQSAPE(DSQ1BFRM).
6. Check for a return code of 0. If the return code is not 0, determine which

steps ran correctly:
v If some of DSQ1CFRM ran, edit DSQ1CFRM and remove the steps that

ran successfully. Otherwise, you will receive error messages indicating
that the objects are already there.

Tailoring QMF for CICS

Chapter 6. Tailoring QMF for CICS 71

v If all of DSQ1CFRM ran and the trace file is allocated, edit DSQ1BFRM
and remove the last job step to create the QMF trace data set
DSQDEBUG.

Step 22—Update CICS control tables (CICS version 3 or later)

Before you run QMF under CICS/ESA, you must describe QMF to CICS. To
do this, you must modify both control table statements and a job that updates
the CICS system definitions (CSDs).

CICS documentation is the authoritative source for information on how to set
up the CICS tables. For details, see CICS/OS390 Resource Definition (Macro) and
the CICS/OS390 Resource Definition (Online) .

DCT (destination control table)
DSQ1CDCS and DSQ1CDCT in QMF720.SDSQSAPE describe the QMF trace
data set to CICS.
1. Edit your CICS source for DFHDCT.
2. Find the local entry for TYPE=SDSCI and add a copy statement for

DSQ1CSCS as shown in the following example:
*--
* LOCAL ENTRIES FOR TYPE=SDSCI SHOULD BE PLACED BELOW THIS BOX
*--

COPY DSQ1CDCS

3. Install the QMF trace facility.
Find where local entries are specified and add a copy statement
(DSQ1CDCT) for TYPE=EXTRA, as shown in the following example:
*--
* OTHER LOCAL ENTRIES SHOULD BE PLACED BELOW THIS BOX
*--

COPY DSQ1CDCT

4. Assemble and link-edit the member to create a new DFHDCT module.

Ensure the job completes with a return code of 0. If you receive higher return
codes, check the list output and correct the error.

Update the CSD
DSQ1ECSD creates a new LIST called QMF, which is defined in the CSD.
CICS offers a utility program (DFHCSDUP) to update the CSD with a batch
job. Use DFHCSDUP to update all QMF/CICS control tables except the RCT
and DCT. For other RCT considerations, see “Step 19—Describe QMF to DB2
UDB for OS/390 in CICS” on page 69.
1. Use the RDO VIEW Lsrpool(name) command to check the current

definitions of the LSRPOOL.

Tailoring QMF for CICS

72 Installing and Managing QMF

The QMF panel data set requires a VSAM CI size of 32K. QMF does not
explicitly define an LSRPOOL entry. Instead, QMF defaults to the CICS
default of 1. If the LSRPOOL in your installation is smaller than 32K,
specify an LSRPOOL that supports a VSAM CI size of 32K through
DFHCSDUP.

2. Edit QMF720.SDSQSAPE(DSQ1ECSD).
3. Verify or change the installation parameters in the instream procedure of

the job to match your tailoring specifications.
4. //DSQ1ECSD PROC REG=2048K, Job Step Region

// QMFTPRE=’QMF720 ’, DSN Prefix for QMF
// CLOAD=’CICS.LOADLIB’, Name of CICS Program Lib
// CCSD=’CICS.DFHCSD’, Name of CICS CSD file
// OUTC=’*’ Print sysout class

5. Submit the job and check that the job ran with a return code of 0. If you
receive higher return codes, check the list output and correct the error.

Note: For CICS V4 and later you can ignore the following error:
E ’RESSECNUM’ is not valid and is ignored

from the DEFINE FILE(DSQPNLE) statement or the DEFINE
FILE(DSQUCFRM) statement. Any other errors should be corrected.

Step 23—Tailor the QMF profile

The ENVIRONMENT column of the Q.PROFILE table enables a single
AUTHID to have different profiles depending on the environment (TSO or
CICS). When installed under TSO, QMF initially assigns everything in the
ENVIRONMENT column the value of NULL. Next, a new row is added with
an AUTHID of SYSTEM and an ENVIRONMENT entry of CICS.

If you use the same AUTHID in CICS and TSO, and you use command
synonyms that contain TSO commands, change all NULL entries to TSO
entries as shown:
UPDATE Q.PROFILES SET ENVIRONMENT=’TSO’ WHERE ENVIRONMENT = NULL

After you issue this statement, QMF uses the SYSTEM row for the CICS
environment.

Step 24—Update CICS startup job stream

In this step, you update the DD statements that must be in the CICS startup
job stream.
1. Ensure that the library containing the link-edited RCT is accessible to

OS/390 through the normal library search order (STEPLIB, JOBLIB, link
library).

Tailoring QMF for CICS

Chapter 6. Tailoring QMF for CICS 73

//STEPLIB DD DSN=CICS.SDFHAUTH,DISP=SHR
// DD DSN=DSN710.SDSNEXIT,DISP=SHR
// DD DSN=DSN710.SDSNLOAD,DISP=SHR

In this example, DFHSIP, which loads from CICS.LOADLIB1, must receive
control in an authorized state. You must individually APF-authorize each
concatenated library.

DSN.SDSNLOAD is the library containing the link-edited RCT, it must
also be authorized.

If your CICS release is 4.1 or later: DB2 does not need the DB2 program
libraries in the DFHRPL DD statement. But, QMF does an EXEC CICS
LOAD for DSNHDECP upon initialization, therefore, QMF requires that
SDSNEXIT or SDSNLOAD (wherever your customized DSNHDECP
module is located) be in the DFHRPL DD concatenation. Be sure to
place these DB2 libraries after the CICS program libraries.

2. Place the load library containing QMF, GDDM, and DB2 UDB for OS/390
modules in the CICS module load library list, DFHRPL.
//DFHRPL DD ...
// DD DSN=QMF720.SDSQLOAD,DISP=SHR
// DD DSN=GDDM.SADMMOD,DISP=SHR
// DD DSN=DSN.SDSNEXIT,DISP=SHR
// DD DSN=DSN.SDSNLOAD,DISP=SHR

Be sure to use the correct DB2 UDB for OS/390 release level when
connecting from CICS (QMF loads DSNHDECP and DSNCLI).

3. Ensure access to the following data sets that are required by GDDM and
QMF:
//* GDDM DATA SETS
//ADMF DD DSN=GDDM.ADMF,DISP=SHR QMF Map Group
//ADML DD SYSOUT=A
//ADMS DD SYSOUT=A
//ADMT DD SYSOUT=A
//* QMF DATA SETS
//DSQPNLE DD DSN=QMF720.DSQPNLE,DISP=SHR QMF Panel File
//DSQDEBUG DD DSN=QMF720.DSQDEBUG,DISP=SHR Trace and Error Messages
//DSQUCFRM DD DSN=QMF720.DSQUCFRM,DISP=SHR User-Defined ICU Forms

4. Shut down and restart CICS to incorporate your changes to the CICS
tables and to the CICS startup job. Continue on to Chapter 9, “Testing
Your QMF Install” on page 85.

Tailoring QMF for CICS

74 Installing and Managing QMF

Chapter 7. Tailoring QMF for Workstation Database Servers

In this chapter all of the following DB2 products are referred to collectively as
the DB2 DRDA AS. When it is necessary, a more specific reference is made to
one of the following products:
v DB2 Universal Database™ Version 5 (UDB for AIX, DB2 for NT, ...)
v DB2 Common Server Version 2.1 (DB2 for AIX, DB2 for NT, ...)
v DB2 Parallel Edition Version 1.2
v DataJoiner® Version 1.2

QMF support for a DB2 DRDA AS is optional. You only need to perform the
steps described in this chapter if you intend to connect QMF to any of the
previously described DB2 DRDA Application Servers.

Before you install QMF into a DB2 DRDA AS from OS/390, you need to make
the following preparations for DB2 Common Server, DB2 Parallel Edition, or
DataJoiner:
v Create an installation ID on the platform of the DB2 DRDA AS and make it

a member of the SYSADM GROUP.
v Create the database on the platform of the DB2 DRDA AS using the

following command:
"db2 create database" <database-name>

Note: Normally you will want the created database to have authentication
SERVER, which is the default. However, due to password handling
restrictions with Microsoft SNA Server (on Windows NT), it is necessary to
change the database to have authentication CLIENT. Refer to the
appropriate DB2 Command Reference manual for the specific system
commands to use for setting database authentication.

v On the platform of the DB2 DRDA AS, locally connect to the installation ID
and verify that its authority level is SYSCRTL or SYSADM, using the
commands:
"db2 connect to" <database-name>

"user" <sysadm-id> "using" <password>

"db2 get authorizations"

v (Optional) Grant additional administrative authorities to groups, users, or
PUBLIC, as needed. If you install QMF into DB2 for VM or VSE server
from OS/390, you must create public and private dbspaces. QMF needs
some of the public dbspaces for tables, queries, procedures, forms, and
data.

© Copyright IBM Corp. 1983, 2002 75

The following steps apply to QMF migration and to first-time QMF
installations.

Check the step’s completion code in the system messages. Completion
messages can be found in the SYSTSPRT or the SYSTERM output, as
indicated. SYSPRINT provides additional diagnostic information for IBM
support.

Step 25—Bind QMF install programs to DB2 DRDA AS

This step binds programs DSQDBSQL and DSQDBINS to the DB2 DRDA AS.
The application plan associated with these packages is DSQSI720.
1. Edit QMF720.SDSQSAPE(DSQ1BDJ1).
2. Verify and change, if necessary, the default values for the installation

parameters in the job’s instream procedure:
//DSQBIND PROC RGN=’2048K’, Job-step region size
// QMFTPRE=’QMF720’, Prefix for QMF target libs
// DB2EXIT=’DSN710.SDSNEXIT’, Exit DB2 library name
// DB2LOAD=’DSN710.SDSNLOAD’ DB2 program library name

3. Change <ssid> to your DB2 for OS/390 subsystem ID.
4. Change <location> to the location name of the DB2 DRDA AS database

application server as defined in the DB2 for OS/390 communications
database.

5. (Optional) Review the Comments in the JOB for further tailoring
opportunities.

6. Submit job QMF720.SDSQSAPE(DSQ1BDJ1).
7. Check Procstep BIND for a return code of 0. Examine SYSTSPRT for error

messages. Do not proceed if the return code is other than zero. Perform
corrective actions if required and rerun the job.

Step 26—Create QMF control tables in a DB2 DRDA AS

This step creates the QMF control tables in DB2 DRDA AS.
1. Edit QMF720.SDSQSAPE(DSQ1EDJ2).
2. Verify and change, if necessary, the default values for the installation

parameters in the job’s instream procedure:
//DSQEXSQL PROC RGN=’2048K’, Job-step region size
// QMFTPRE=’QMf720’, Prefix for QMF target libs
// DB2EXIT=’DSN710.SDSNEXIT’, Exit DB2 library name
// DB2LOAD=’DSN710.SDSNLOAD’ DB2 program library name

3. Change <ssid> to your DB2 for OS/390 subsystem ID.
4. (Optional) Review the Comments in the JOB for further tailoring

opportunities.
5. Submit job QMF720.SDSQSAPE(DSQ1EDJ2).

Tailoring QMF for Workstation Database Servers

76 Installing and Managing QMF

6. Check Stepname DSQCTBL for a return code of 0 or 4. Review SYSTERM
for completion messages.
Do not proceed if the return code is other than zero or four. Examine
SYSTSPRT or SYSPRINT for error messages. Perform corrective actions
and rerun the job.

Step 27—Bind QMF application programs to a DB2 DRDA AS

This step binds QMF application programs to DB2 DRDA AS. After successful
completion of this step, QMF Version 7.2 can connect to the DB2 DRDA AS.
1. Edit QMF720.SDSQSAPE(DSQ1BPKG).
2. Verify and change, if necessary, the default values for the parameters in

the job’s instream procedure:
//DSQBIND PROC RGN=’2048K’, Job-step region size
// QMFTPRE=’QMF720’, Prefix for QMF target libs
// DB2EXIT=’DSN710.SDSNEXIT’, Exit DB2 library name
// DB2LOAD=’DSN710.SDSNLOAD’ DB2 program library name

3. Change <ssid> to your DB2 UDB for OS/390 subsystem ID.
4. Change to your DB2 UDB for OS/390 application requester local

subsystem ID.
5. Change <location> to the location name of the DB2 DRDA AS database

application server as defined in the DB2 UDB for OS/390communications
database.

6. (Optional) Review the Comments in the JOB for further tailoring
opportunities.

7. Submit job QMF720.SDSQSAPE(DSQ1BPKG).
8. A return code of 0 or 4 indicates a successful run of this job. Review

SYSTSPRT, SYSTERM and SYSPRINT outputs for clues to errors for return
codes greater than 4. Perform corrective actions and rerun the job.

Step 28—Create QMF sample tables in a DB2 DRDA AS

This step creates the QMF sample tables in DB2 DRDA AS.
1. Edit QMF720.SDSQSAPE(DSQ1EDJ4).
2. Verify and change, if necessary, the default values for the installation

parameters in the both of the job’s instream procedures:
//DSQEXSQL PROC RGN=’2048K’, Job-step region size
// QMFTPRE=’QMF720’, Prefix for QMF target libs
// DB2EXIT=’DSN710.SDSNEXIT’, Exit DB2 library name
// DB2LOAD=’DSN710.SDSNLOAD’ DB2 program library name

//DSQINSQL PROC RGN=’2048K’, Job-step region size
// QMFTPRE=’QMF720’, Prefix for QMF target libs
// DB2EXIT=’DSN710.SDSNEXIT’, Exit DB2 library name
// DB2LOAD=’DSN710.SDSNLOAD’ DB2 program library name

Tailoring QMF for Workstation Database Servers

Chapter 7. Tailoring QMF for Workstation Database Servers 77

|
|
|
|
|
|
|
|
|

3. Change <ssid> to your DB2 UDB for OS/390 subsystem ID.
4. (Optional) Review the comments in the job for further tailoring

opportunities.
5. Submit job QMF720.SDSQSAPE(DSQ1EDJ4).
6. Check Stepname DSQSINS for a return code of 0 or 4. Review SYSTERM

for completion messages.
If the return code is other than 0 or 4, examine SYSTSPRT and SYSPRINT
for error messages. Perform corrective actions and then rerun this job.

Deleting QMF from a DB2 DRDA AS

This section describes how to delete QMF from a DB2 DRDA AS.

Deleting QMF
This step should be run only if you are reinstalling QMF into a DB2 DRDA
AS application server that already contains QMF.

Attention: This step removes all QMF control tables and packages from the
DB2 DRDA AS. QMF is not able to connect to the DB2 DRDA AS after
running this step.
1. Edit QMF720.SDSQSAPE(DSQ1EDX1).
2. Verify and change, if necessary, the default values for the installation

parameters in the job’s instream procedure:
//DSQEXSQL PROC RGN=’2048K’, Job-step region size
// QMFTPRE=’QMF720’, Prefix for QMF target libs
// DB2EXIT=’DSN710.SDSNEXIT’, Exit DB2 library name
// DB2LOAD=’DSN710.SDSNLOAD’ DB2 program library name

3. Change <ssid> to your DB2 for OS/390 subsystem ID.
4. (Optional) Review the Comments in the JOB for further tailoring

opportunities.
5. Submit job QMF720.SDSQSAPE(DSQ1EDX1).
6. Check Stepname DSQCDROP for a return code of 0 or 4. Review

SYSTERM for completion messages.
If the return code is other than 0 or 4, examine SYSTSPRT and SYSPRINT
for error messages. Perform corrective actions and rerun the job.

Deleting QMF sample tables from a DB2 DRDA AS
This step should be run only if you are reinstalling QMF into a DB2 DRDA
AS application server that already contains QMF.

This step drops all the QMF sample tables from the DB2 DRDA AS.
1. Edit QMF720.SDSQSAPE(DSQ1EDX2).
2. Verify and change, if necessary, the default values for the installation

parameters in the job’s instream procedure:

Tailoring QMF for Workstation Database Servers

78 Installing and Managing QMF

//DSQEXSQL PROC RGN=’2048K’, Job-step region size
// QMFTPRE=’QMF720’, Prefix for QMF target libs
// DB2EXIT=’DSN710.SDSNEXIT’, Exit DB2 library name
// DB2LOAD=’DSN710.SDSNLOAD’ DB2 program library name

3. Change <ssid> to your DB2 UDB for OS/390 subsystem ID.
4. (Optional) Review the Comments in the JOB for further tailoring

opportunities.
5. Submit job QMF720.SDSQSAPE(DSQ1EDX2).
6. Check Stepname DSQCDROP for a return code of 0 or 4. Review

SYSTERM for completion messages.
If the return code is other than 0 or 4, examine SYSTSPRT and SYSPRINT
for error messages. Perform corrective actions and rerun the job.

Starting QMF against a DB2 DRDA AS

Assuming you have started QMF under TSO or CICS, you should change the
QMF parameters on your START command, if you want to start QMF under
DB2 DRDA AS. Specify the following:
(DSQSSUBS=<ssid>,DSQSDBNM=<location>

where <ssid> is your DB2 UDB for OS/390 subsystem ID and <location> is
your DB2 DRDA AS location name.

You are ready to continue on to Chapter 9, “Testing Your QMF Install” on
page 85 .

Tailoring QMF for Workstation Database Servers

Chapter 7. Tailoring QMF for Workstation Database Servers 79

80 Installing and Managing QMF

Chapter 8. Tailoring QMF for DB2 Universal Database for
iSeries® Servers

Beginning with Version 7 Release 1, QMF supports connectivity from a QMF
application requester to a DB2 UDB for iSeries Version 4 Release 4 (or higher)
server. This support is optional. You need to perform the steps in this chapter
only if you intend to connect QMF to a DB2 UDB for iSeries Version 4 Release
4 (or later) server. Before you install QMF on a DB2 UDB for iSeries server,
you need to make the following preparations:
v From the DB2 UDB for iSeries Query Manager, execute the following SQL

on the server: CREATE COLLECTION Q using a user ID that has administrative
authority. This must be the security officer or a user ID that has *ALLOBJ
authority.

v Ensure that users of QMF have *USE authority for Q *LIB.

The following steps apply to a first time QMF installation. You can rerun
these steps again as necessary to correct errors.

Step 29—Bind QMF install programs to DB2 UDB for iSeries

This step binds programs DSQDBSQL and DSQDBINS to DB2 UDB for
iSeries. The application plan associated with these packages is DSQSI720.
1. Edit QMF720.SDSQSAPE(DSQ1BAS1).
2. Verify and change, if necessary, the default values for the installation

parameters in the job’s instream procedure:
//DSQBIND PROC RGN=’2048K’, Job-step region size
// QMFTPRE=’QMF720’, Prefix for QMF target libs
// DB2EXIT=’DSN710.SDSNEXIT’, Exit DB2 library name
// DB2LOAD=’DSN710.SDSNLOAD’ DB2 program library name

3. Change to your DB2 for OS/390 subsystem ID.
4. Change to the location name of the DB2 UDB for iSeries database server as

defined in the DB2 for OS/390 communications database.
5. Optional: Review the comments in the job for further tailoring

opportunities.
6. Submit job QMF720.SDSQSAPE(DSQ1BAS1).
7. Check the return code of the job. Examine SYSTSPRT for error messages.

Do not proceed if the return code is other than 0. Perform corrective
actions, if required, and run the job again.

© Copyright IBM Corp. 1983, 2002 81

Step 30—Create QMF control tables in a DB2 UDB for iSeries server

This step creates the QMF control tables in DB2 UDB for iSeries server.
1. Edit QMF720.SDSQSAPE(DSQ1EAS2).
2. Verify and change, if necessary, the default values for the installation

parameters in the job’s instream procedure:
//DSQEXSQL PROC RGN=’2048K’, Job-step region size
// QMFTPRE=’QMF720’, Prefix for QMF target libs
// DB2EXIT=’DSN710.SDSNEXIT’, Exit DB2 library name
// DB2LOAD=’DSN710.SDSNLOAD’ DB2 program library name

3. Change to your DB2 for OS/390 subsystem ID.
4. Optional: Review the comments in the job to determine whether further

tailoring is needed.
5. Submit job QMF720.SDSQSAPE(DSQ1EAS2).
6. Check Stepname DSQCTBL for a return code of 0 or 4. Review the

complete job output for error messages.
Do not proceed if the return code is other than 0 or 4. After reviewing the
complete job output, perform corrective actions and run the job again.

Step 31—Bind QMF application programs to a DB2 UDB for iSeries server

This step binds QMF application programs to DB2 UDB for iSeries. After
successful completion of this step, QMF Version 7.2 can connect to the DB2
UDB for iSeries server.
1. Edit QMF720.SDSQSAPE(DSQ1BPKG).
2. Verify and change, if necessary, the default values for the parameters in

the job’s instream procedure:
//DSQBIND PROC RGN=’2048K’, Job-step region size
// QMFTPRE=’QMF720’, Prefix for QMF target libs
// DB2EXIT=’DSN710.SDSNEXIT’, Exit DB2 library name
// DB2LOAD=’DSN710.SDSNLOAD’ DB2 program library name

3. Change to your DB2 Universal Database for OS/390 subsystem ID.
4. Change to your DB2 Universal Database for OS/390 application requester

local subsystem ID.
5. Change <location> to the location name of the DB2 UDB for iSeries

database application server as defined in the DB2 Universal Database for
OS/390 communications database.

6. Optional: Review the Comments in the job to determine whether further
tailoring is needed.

7. Submit job QMF720.SDSQSAPE(DSQ1BPKG).
8. A return code of 0 or 4 indicates a successful run of this job. Review

SYSTSPRT, SYSTERM and SYSPRINT outputs for clues to errors for return
codes greater than 4. Perform corrective actions and run the job again.

Tailoring QMF for DB2 for AS/400 Servers

82 Installing and Managing QMF

Step 32—Create QMF sample tables in a DB2 UDB for iSeries server

This step creates the QMF sample tables in DB2 UDB for iSeries.
1. Edit QMF720.SDSQSAPE(DSQ1EAS4).
2. Verify and change, if necessary, the default values for the installation

parameters in the both of the job’s instream procedures:
//DSQEXSQL PROC RGN=’2048K’, Job-step region size
// QMFTPRE=’QMF720’, Prefix for QMF target libs
// DB2EXIT=’DSN710.SDSNEXIT’, Exit DB2 library name
// DB2LOAD=’DSN710.SDSNLOAD’ DB2 program library name

//DSQINSQL PROC RGN=’2048K’, Job-step region size
// QMFTPRE=’QMF720’, Prefix for QMF target libs
// DB2EXIT=’DSN710.SDSNEXIT’, Exit DB2 library name
// DB2LOAD=’DSN710.SDSNLOAD’ DB2 program library name

3. Change to your DB2 Universal Database for OS/390 subsystem ID.
4. Optional: Review the comments in the job to determine whether further

tailoring is needed.
5. Submit job QMF720.SDSQSAPE(DSQ1EAS4).
6. Check Stepname DSQSINS for a return code of 0 or 4. Review SYSTERM

for completion messages.
If the return code is other than 0 or 4, examine SYSTSPRT and SYSPRINT
for error messages. Perform corrective actions and run the job again.

Starting QMF against a DB2 UDB for iSeries server

If you started QMF under TSO or CICS, change the QMF parameters on your
START command to start QMF under DB2 UDB for iSeries.

Specify the following:
(DSQSSUBS=<ssid>,DSQSDBNM=<location>

where <ssid> is your DB2 Universal Database for OS/390 subsystem ID and
<location> is your DB2 UDB for iSeries location name.

Tailoring QMF for DB2 for AS/400 Servers

Chapter 8. Tailoring QMF for DB2 Universal Database for iSeries® Servers 83

|
|
|
|
|
|
|
|
|

84 Installing and Managing QMF

Chapter 9. Testing Your QMF Install

This chapter describes the final steps in the install process.

The chapter includes the steps:
v Step 33 (for TSO) - Run the IVP
v Step 33 (for CICS) - Run the IVP
v Step 34 - Install the QMF application queries and application objects (TSO)
v Step 35 - Run the batch-mode IVP (optional)
v Step 36 - Clean up after install
v Step 37 - Accept the permanent libraries
v Step 38 - Clean up security

Step 33 (for TSO)—run the IVP

This step leads you through the final testing of QMF, called the installation
verification procedure (IVP). To test QMF for OS/390 installation, you need to
start QMF and issue a few QMF commands. Most of the QMF product
installation is tested by simply starting QMF. If you plan to run QMF in batch
mode, there is a separate IVP, which follows the interactive IVP.
1. Complete all the installation and tailoring for the base product, as outlined

in this book.
2. Ensure you have proper authority.

If you start the QMF transaction with the authorization ID of Q, you
already have the necessary DB2 UDB for OS/390 authority. If you do not
use the authorization ID Q, you need, at a minimum, the authority
granted by the following SQL statements:
GRANT SELECT ON Q.PROFILES TO authid
GRANT SELECT ON Q.ERROR_LOG TO authid
GRANT ALL ON Q.OBJECT_DIRECTORY TO authid
GRANT ALL ON Q.OBJECT_DATA TO authid
GRANT ALL ON Q.OBJECT_REMARKS TO authid

where authid is your primary authorization ID.

You must also have enough DB2 UDB for OS/390 authority to exercise the
IVP’s SAVE DATA command. If you created the receiving database and
table space, you already have this authority. If not, you need, at a
minimum, the authority granted by the following SQL statements:
GRANT CREATETAB ON DATABASE dbname TO authid
GRANT USE OF TABLESPACE dbname.table space TO authid

© Copyright IBM Corp. 1983, 2002 85

where dbname is the database name, table space is the table space name, and
authid is your primary authorization ID.

If you chose the default values when you created the table space and
database in “Step 10— Create a table space for the QMF IVP” on page 41,
the database is named DSQDBDEF, and the table space DSQTSDEF. If not,
the names might be from the IVP on an earlier QMF release.

3. Start QMF
Use the logon procedure or CLIST to invoke QMF, as in “Step 17—Start
QMF” on page 51.
The QMF Home panel displays.

If the location name has not been defined for the database, Connected to
<location_name> will not appear on the QMF Home panel.

Be sure you are connected to the Workstation Database Server or DB2 for
OS/390 database in which you just installed QMF. If necessary, you can
use the QMF CONNECT command to connect to the correct location.

If QMF does not start correctly, you might receive an error message. See
Appendix A, “Miscellaneous” on page 721 for descriptions of common
error conditions and corrective actions. Correct the problem and begin the
IVP again.

Licensed Materials - Property of IBM
5675-DB2 5697-F42 (C) Copyright IBM Corp. 1982, 2000
All Rights Reserved.
IBM is a registered trademark of International Business Machines

QMF HOME PANEL Query Management Facility
Version 7 Release 1

****** ** ** ********* ____
Authorization ID ** ** *** *** ** ____
Q ** ** **** **** ******* ____

** ** ** ** ** ** ** ____
Connected to ** * ** ** **** ** ** ____
SQLDS ****** ** ** ** ** _______

** _______________________________________

Enter a command on the command line or press a function key.
For help, press the Help function key or enter the command HELP.

1=Help 2=List 3=End 4=Show 5=Chart 6=Query

7=Retrieve 8=Edit Table 9=Form 10=Proc 11=Profile 12=Report
OK, you may enter a command.
COMMAND ===>

Figure 16. QMF Home panel

Testing QMF Install

86 Installing and Managing QMF

4. Press the Help function key from the Home panel to validate the existence
of help panels.

5. Exit from the help panel by pressing either F3 or F12.
6. Obtain a list of QMF-supplied sample tables.

Type the QMF command LIST TABLES (OWNER=Q) on the command line
and press Enter.
If you press F8, additional panels are shown. Return to the QMF Home
panel by pressing the Cancel function key. End the QMF session by
pressing F12.

The installation verification for interactive mode is now complete.

Step 33 (for CICS)—Run the IVP

This step leads you through the final testing of QMF, called the installation
verification procedure (IVP). To test that you have installed QMF for
MVS/CICS properly, you need to start QMF and issue a few QMF commands.
Most elements of the QMF product installation are tested by starting QMF.

Before you start QMF
1. Complete all the installation and customization steps outlined in this book.
2. Start the database connection, if not already started.
3. Verify that the QMF Trace Facility is installed by checking the transient

data queue (DSQD). From a clear CICS screen, enter:
CEMT INQUIRE QUEUE(DSQD)

You should see a screen similar to this:

Ena Ope indicates that the queue is open and enabled. If you do not see
that DSQD is enabled and open, you need to review your modifications to

STATUS: RESULTS - OVERTYPE to MODIFY
Que(DSQD) Ext Ena Ope

Testing QMF Install

Chapter 9. Testing Your QMF Install 87

the CICS DCT. Verify that the QMF trace file was installed correctly. See
“Step 22—Update CICS control tables (CICS version 3 or later)” on page 72
for details.

Start and test QMF
This procedure starts the QMF for MVS/CICS product and tests that the
product is properly installed. If you receive an error message during any part
of the procedure, it indicates that QMF did not start properly. Under these
circumstances, start by investigating some of the more common problems as
described in Appendix A, “Miscellaneous” on page 721.
1. Sign on to the CICS system that is connected to QMF.
2. Press the Escape function key to begin a native CICS session.
3. Start QMF by issuing the CICS transaction, QMFE. Also specify the use of

the temporary storage queue (DSQSDBQT) so that you can view any
warning messages online. To start QMF with the temporary storage queue
name, DSQD, specify:
QMFE DSQSDBQT=TS,DSQSDBQN=DSQD

You should see the QMF Home panel.

4. Verify existence of QMF online help.
Press the Help function key. You should see this Help panel:

Licensed Materials - Property of IBM
5675-DB2 5697-F42 (C) Copyright IBM Corp. 1982, 2000
All Rights Reserved.
IBM is a registered trademark of International Business Machines

QMF HOME PANEL Query Management Facility
Version 7 Release 1

****** ** ** ********* ____
Authorization ID ** ** *** *** ** ____
Q ** ** **** **** ******* ____

** ** ** ** ** ** ** ____
Connected to ** * ** ** **** ** ** ____
SQLDS ****** ** ** ** ** _______

** _______________________________________

Enter a command on the command line or press a function key.
For help, press the Help function key or enter the command HELP.

1=Help 2=List 3=End 4=Show 5=Chart 6=Query

7=Retrieve 8=Edit Table 9=Form 10=Proc 11=Profile 12=Report
OK, you may enter a command.
COMMAND ===>

Testing QMF Install

88 Installing and Managing QMF

Exit from the Help panel by pressing either PF3 or PF12.
5. Obtain a list of QMF-supplied sample tables.

Type the QMF command LIST TABLES (OWNER=Q) on the command line
and press Enter. Depending on whether you previously installed QMF, the
tables that have the owner Q might vary from the following screen:

If you press PF8, additional panels are shown. Return to the QMF Home
panel by pressing the Cancel function key. End the QMF session by
pressing PF12.

__
Licensed Materials - Property of IBM
5645-DB2 5648-A70 (C) Copyright IBM Corp. 1982, 1998
All Rights Reserved.
IBM is a registered trademark of International Business Machines
+---+
| Help: Query Management Facility |
| |
| Select a topic. |
| 1 to 7 of 14 |
| 1. What’s new in Version 7 |
| 2. Profile |
| 3. QMF commands |
| 4. Prompted Query |
| 5. SQL (Structured Query Language) |
| 6. Table Editor |
| 7. Forms |
+---+
| F1=Help F3=Exit F7=Backward F8=Forward F9=Keys F12=Cancel |
+---+

OK, HELP performed. Please proceed.

+---+
| Table List |
| |
| Action Name Owner |
| 1 to 7 of 36 |
| APPLICANT Q |
| COMMAND_SYNONYMS Q |
| DSQ_RESERVED Q |
| DSQEC_ALIASES Q |
| DSQEC_COLS_LDB2 Q |
| DSQEC_COLS_RDB2 Q |
| DSQEC_QMFOBJS Q |
| DSQEC_TABS_LDB2 Q |
| DSQEC_TABS_RDB2 Q |
| INTERVIEW Q |
| ORG Q |
| PARTS Q |
+---+
| F1=Help F4=Command F5=Describe F6=Refresh F7=Backward F8=Forward |
| F9=Clear F10=Comments F11=Sort F12=Cancel |
+---+
OK, your database object list is displayed.

Testing QMF Install

Chapter 9. Testing Your QMF Install 89

The installation verification is now complete. You can browse the temporary
storage queue to determine if there are any QMF warning messages using the
CICS transaction:
CEBR DSQD

If your IVP ran without any errors, your TS queue DSQD is empty.

Step 34—Install the QMF application queries and application objects (TSO)

This step updates sample queries and procedures for QMF applications. These
applications include the Displaying Printed Reports (DPRE), layout, and the
document interface. The optional batch IVP uses these sample queries and
procedures as part of the test.

After QMF is successfully installed and tested, you can use it to create the
QMF-supplied sample queries, procedures, and command synonyms.

Complete this step by running one or two QMF procedures:

Procedure
Description

DSQ1ESQD
Deletes the sample queries and procedures from a previous QMF
release

DSQ1ESQI
Adds the new sample queries and procedures to the QMF database

1. Delete the current sample queries and procedures.
If there is no existing QMF release on the system, or if the previous release
is in another DB2 UDB for OS/390 subsystem, skip this step.
a. Begin a QMF session.
b. Connect to the Workstation Database Server or DB2 for OS/390 server

in which you just installed QMF.
c. Enter the following command from within QMF:

IMPORT PROC FROM ’QMF720.SDSQSAPE(DSQ1ESQD)’

where QMF720 is the prefix for the QMF data sets. If you used another
prefix, change the name accordingly.

d. Run the procedure.
2. Add the sample queries and procedures to your QMF database.

Enter the following command in a QMF session:
IMPORT PROC FROM ’QMF720.SDSQSAPE(DSQ1ESQI)’

Testing QMF Install

90 Installing and Managing QMF

where QMF720 is the prefix for the QMF data sets. If you used another
prefix, change the name accordingly.

3. Check that you receive a message that says the objects were installed
correctly.
If a failure occurs, rerun the first execution step to delete any partially
created objects. Then run the second step.

Step 35—Run the batch-mode IVP (optional)

Skip this step if your installation doesn’t use batch-mode QMF.

This step tests batch-mode IVP by running the batch-mode job that you
created in “Step 18—Set up QMF batch job to run batch IVP (optional)” on
page 54. The job begins a background TSO session in which QMF runs the
procedure Q.DSQ1EBAT. The procedure conducts the batch-mode IVP and
tests the following batch-mode operations:
v Reaching and starting QMF
v Importing, saving, running, and erasing a query
v Saving, retrieving, and erasing a new table
v Printing a query
v Exporting a query, then erasing it with the QMF TSO command

The IVP is successful when it runs without error and prints the following
query:
DELETE FROM &NAME

WHERE OWNER = USER AND NAME = ’QMF_IVPQUERY’

1. Examine the JCL.
The resources QMF needs in batch mode and those it needs interactively
are basically the same. You can create the batch job out of the sample TSO
logon procedure. Be certain that your batch job allocates DSQPRINT.
Output from the QMF PRINT command goes into this file.

2. Examine the QMF procedure Q.DSQ1EBAT.
You created Q.DSQ1EBAT with the sample queries and procedures. It was
saved with SHARE=YES. You can therefore examine and edit it on the
screen. If you are not using QMF720 as the prefix for the QMF data sets,
you must change the procedure’s IMPORT commands, which retrieve
queries from the QMF sample library.
If you change the procedure, you must save it under your own logon ID;
be sure to specify SHARE=YES. If you started QMF as an ISPF dialog, you
must change the ISPSTART statement in the batch IVP JCL to reflect the
new ownership of the procedure. For example, if your logon ID is JONES,
the modified statement looks like this:
ISPSTART PGM(DSQQMFE) NEWAPPL(DSQE) PARM(DSQSMODE=B,DSQSRUN=JONES.DSQ1EBAT)

3. Run the job.

Testing QMF Install

Chapter 9. Testing Your QMF Install 91

4. Check the printed output, the table Q.ERROR_LOG, and the DSQDEBUG
data set for errors. If an error is recorded in Q.ERROR_LOG or
DSQDEBUG, you can use the HELP command to see the corresponding
message help panel.
If the job fails, you can correct the error and rerun it.

Step 36—Clean up after install

If you do not have a previous release of QMF installed, skip this step.

Attention: This step removes your previous release of QMF. Do not perform
this step until you are certain that the earlier version is no longer needed.

Choose one of these procedures:
v Freeing an earlier application plan

This step removes the previous release when QMF Version 7.2 and the
release are in the same DB2 UDB for OS/390 subsystem.

v QMF Version 7.2 and a previous release are in different DB2 UDB for
OS/390 subsystems
This step removes the previous release when QMF Version 7.2 and the
release are in different DB2 UDB for OS/390 subsystems.

After running either of these two substeps, you can delete the libraries of the
previous QMF release. Table 11 on page 93 lists these libraries with their
default prefixes. The names at your installation might not be the ones shown.

Testing QMF Install

92 Installing and Managing QMF

Attention: Pay special attention to the prefix to avoid deleting a Version 7.2
data set.

Table 11. Libraries to be deleted from earlier QMF releases
V2R4 data sets V3RxMy data sets V6R1 data sets

QMF240.DSQOBJ QMF3xy.ADMFE QMF610.SDSQCLTE

QMF240.DSQMACE QMF3xy.CICS.DFHTEMP QMF610.SDSQEXCE

QMF240.DSQPMSE QMF3xy.DSQPMSE QMF610.SDSQMLBE

QMF240.DSQDBRMD QMF3xy.DSQDBRMD QMF610.SDSQPLBE

QMF240.DSQSAMPE QMF3xy.DSQSAMPE QMF610.SDSQSAPE

QMF240.DSQMAPE QMF3xy.DSQMAPE QMF610.SDSQSLBE

QMF240.DSQCLSTE QMF3xy.DSQCLSTE QMF610.SDSQUSRE

QMF240.DSQEXECE QMF3xy.DSQEXECE QMF610.SDSQLOAD

QMF240.DSQUSERE QMF3xy.DSQUSERE QMF610.SDSQDBRM

QMF240.DSQPLIBE QMF3xy.DSQPLIBE QMF610.DSQMAPE

QMF240.DSQSLIBE QMF3xy.DSQSLIBE QMF610.DSQCHART

QMF240.DSQMLIBE QMF3xy.DSQMLIBE QMF610.DSQPVARE

QMF240.DSQLOAD QMF3xy.DSQLOAD QMF610.DSQPNLE

QMF240.DSQDBRM QMF3xy.DSQDBRM QMF610.ADSQOBJ

QMF240.DSQTLIBE QMF3xy.DSQTLIBE QMF610.ADSQDBMD

QMF240.DSQCHART QMF3xy.DSQCHART QMF610.ADSQMACE

QMF3xy.DSQMACE QMF610.ADSQPMSE

QMF3xy.DSQOBJ QMF610.DSQDEBUG

QMF3xy.DSQPNLE

QMF3xy.DSQPVARE

QMF3xy.DSQUCFRM

Freeing an earlier application plan
Run this step only when QMF Version 7.2 and the previous release are on the
same DB2 UDB for OS/390 subsystem.
1. Edit QMF720.SDSQSAPE(DSQ1JFPL).
2. Change the job statement to conform to your site’s conventions.
3. Verify, or change if necessary, the values of the parameters in the instream

procedure of the job.

Testing QMF Install

Chapter 9. Testing Your QMF Install 93

//DSQ1JFPL PROC RGN=’2048K’,
Job-step region size
// QMFTPRE=’QMF720’, QMF prefix
// DB2EXIT=’DSN710.SDSNEXIT’, DB2 UDB for OS/390
// exit library
// DB2LOAD=’DSN710.SDSNLOAD’ DB2 UDB for OS/390
program library

4. Edit QMF720.SDSQSAPE(DSQ1DEL1).
5. Replace DSN with the name of the DB2 UDB for OS/390 subsystem, and

replace QMF720 with the name of the application plan of the previous
release.
DSN SYSTEM(DSN)
FREE PLAN(QMF720)

Table 12. QMF release defaults

Previous Release Default

QMF Version 6.1 QMF610

QMF Version 3.3 QMF330

QMF Version 3.2 QMF320

QMF Version 3.1.1 QMF311

QMF Version 3.1 QMF310

6. Submit the job QMF720.SDSQSAPE(DSQ1JFPL).
If the job fails, correct the error and rerun the job.

QMF Version 7.2 and a previous release are in different DB2 UDB for
OS/390 subsystems

Run this step only if QMF Version 7.2 and the earlier release are on different
DB2 UDB for OS/390 subsystems. The step frees the earlier application plan
and drops various DB2 UDB for OS/390 entities that belong to the earlier
QMF release.

Testing QMF Install

94 Installing and Managing QMF

|
|
|
|
|
|
|

Attention: This job removes all traces of QMF from the DB2 UDB for
OS/390 subsystem and should be run only if the current release of QMF does
not exist in the DB2 UDB for OS/390 subsystem.
1. Edit QMF720.SDSQSAPE(DSQ1DELA).
2. Change the job statement to conform to your site’s conventions.
3. Verify, or change if necessary, the values of the parameters in the instream

procedure of the job.
// DSQ1DELA PROC RGN=’2048K’, Job-step region size
// QMFTPRE=’QMF720’, QMF prefix
// DB2EXIT=’DSN710.SDSNEXIT’, DB2 UDB for OS/390 exit library
// DB2LOAD=’DSN710.SDSNLOAD’ DB2 UDB for OS/390 program library

4. Edit member QMF720.SDSQSAPE(DSQ1DEL1).
5. Replace DSN with the name of the DB2 UDB for OS/390 subsystem and

replace QMF720 with the name of the application plan of the previous
release.
DSN SYSTEM(DSN)
FREE PLAN(QMF720)

Table 13. QMF release defaults

Previous Release Default

QMF Version 6.1 QMF610

QMF Version 3.3 QMF330

QMF Version 3.2 QMF320

QMF Version 3.1.1 QMF311

QMF Version 3.1 QMF310

Testing QMF Install

Chapter 9. Testing Your QMF Install 95

6. Edit member QMF720.SDSQSAPE(DSQ1DEL2).
This member contains SQL statements to drop views, table spaces,
databases, and storage groups.
If the previous QMF release does not have the receiving table space for the
users’ SAVE DATA commands and the IVP (“Step 17” on page 41), delete
the following statement:
DROP STOGROUP DSQSGDEF

QMF720
7. Edit member QMF720.SDSQSAPE(DSQ1DEL13)

This member contains statements to delete user managed datasets for
QMF control tables. There is no need to run this step if it is managed by
DB2 .

8. Submit job QMF720.SDSQSAPE(DSQ1DELA).
If the job fails, correct the error and rerun the job.

If you are performing a requester or server database installation, go to “Step
38—Clean up security”.

Step 37—Accept the permanent libraries

DSQ1EJAC runs the SMP/E ACCEPT job, which makes the libraries
permanent.

Attention: If you have QMF Version 7.2 installed in the same DB2 UDB for
OS/390 subsystem as a previous release, do not accept the permanent libraries
until your local acceptance testing is complete. You can accept the libraries at
any time after successful execution of the IVP.

Step 38—Clean up security

The JCL currently contains a valid user ID and password, which creates a
security exposure. Correct this exposure as soon as possible. One possible
solution is to edit the JCL and blank out the password value.

The installation control files contain passwords for the DB2 UDB for OS/390
catalog as well as for all the QMF control table spaces. Delete these passwords
or restrict access to them. They are in QMF720.SDSQCLTE(xxxxINST), where
“xxxx” is the DB2 UDB for OS/390 subsystem ID.

Testing QMF Install

96 Installing and Managing QMF

Chapter 10. Planning and Installing a QMF NLF

A QMF NLF is the software that provides you with a QMF environment
tailored to a specific language.

In general, QMF functions available in the base English-language session can
be performed in a NLF session, and vice-versa.

This chapter parallels the installation steps required for the base QMF
product. Where there are significant procedural differences, this chapter
explains the procedures for installing the NLF. Where there are job, library, or
program name differences, this chapter provides the proper names, but the
procedures to follow are explained in the QMF Program Directory.

A module, library, or job name may contain a n, representing the National
Language Identifier. The n symbol is replaced with the actual NLF ID before
the product is shipped; you do not need to replace the symbol. (See Table 18
on page 100 for a list of the FMID values for each NLF.)

Profile table and NLF

When you install an NLF, three rows are added to the QMF profile table
(Q.PROFILES) to support the NLF. These rows are inserted with a user ID of
SYSTEM for the TSO, CICS, and CMS environments. A unique row is added
for each NLF that you install.

The NLF must be installed in each DB2 subsystem you want to use it in. The
JCL and control statements for the NLF are shipped on the IBM software
distribution (ISD) tape for that feature.

Note: You must accept the QMF Version 7.2 base product just before installing
a QMFNLF. It is assumed that QMF is sharing the DB2 SMP/E data sets.

Planning for QMF NLF

This section describes hardware and program product requirements, SMP/E
requirements, distribution libraries, target libraries, and user data sets for the
NLF.

Hardware and program product requirements
Make sure that your GDDM and ISPF environments, as well as your
controllers, terminals, and keyboards, are set up to display the characters for
the national language feature you are installing.

© Copyright IBM Corp. 1983, 2002 97

SMP/E requirements
Additional DASD space is required for the SMP/E data sets, the distribution
libraries, the target libraries, and the user data sets. The DASD space shown
here for the distribution, target, and user libraries for a QMF NLF is in
addition to what is required for installing the base QMF product. See
“Estimating SMP/E storage” on page 23 for SMP/E requirements for installing
base QMF. QMF and its features are added to the SMP/E data sets.

SMP/E data sets for QMF NLF
Additional estimated DASD space required (in cylinders) for the SMP/E data
sets is shown in Table 14.

Table 14. Additional DASD space for SMP/E data sets (cylinders)

DDNAME 3380 3390 9345

SMPSCDS 1 1 1

SMPLOG 1 1 1

SMPMTS 1 1 1

SMPPTS 1 1 1

SMPSTS 1 1 1

SMPCSI 8 8 8

Distribution libraries for QMF NLF
The QMF Version 7.2 distribution libraries for the NLF are:
v QMF720.ADSQMACn, which contains QMF NLF installation procedures,

IVP, sample queries, and QMF procedures.
v QMF720.ADSQPMSn, which contains ISPF panels for QMF NLF

The QMF NLF distribution libraries and the additional estimated DASD space
required (in cylinders) is shown in Table 15.

Table 15. Additional DASD space for QMF NLF distribution libraries (cylinders)

DSNAME Content 3380 3390 9345

QMF720.ADSQMACn QMF NLF install procs 15 13 15

QMF720.ADSQPMSn QMF NLF ISPF panels 1 1 1

Target libraries for QMF NLF
Estimated additional DASD space required (in cylinders) for the QMF NLF
target libraries is shown in Table 16 on page 99.

Planning and Installing a QMF NLF

98 Installing and Managing QMF

Table 16. Additional DASD space for QMF NLF target libraries (cylinders)

DSNAME 3380 3390 9345

QMF720.SDSQSAPn 17 15 17

QMF720.SDSQPLBn 1 1 1

QMF720.SDSQCLTn 2 1 2

QMF720.SDSQMLBn 1 1 1

QMF720.SDSQEXCn 1 1 1

QMF720.SDSQUSRn

QMF NLF user data sets

Estimated DASD space required (in cylinders) for the QMF NLF user data sets
is shown in Table 17.

Table 17. DASD space for QMF NLF user data sets (cylinders)

DSNAME Content 3380 3390 9345

QMF720.DSQMAPn GDDM map group files 1 1 1

QMF720.DSQPVARn QMF message help panels
(expanded in sequential
format)

6 6 N/A

QMF720.DSQPNLn QMF message help panels
(expanded in VSAM
format)

10 9 N/A

IBM software distribution (ISD) tape

To install a QMF NLF, you first read in information from the IBM ISD tape.
The tape contains the following:
v SMP/E control statements
v JCLIN for QMF 7 NLF
v JCL for installation-verification procedures
v Programs in load module format
v Panels and other items used by QMF Version 7.2 NLF

The ISD tape has an SMP/E (RELFILE) format. The format is fully described
in the OS/390 System Modification Program Extended Reference.

FMID
A function modification identifier (FMID) identifies QMF NLF to SMP/E. The
language identifier and FMID for each NLF are provided in Table 18 on
page 100.

Planning and Installing a QMF NLF

Chapter 10. Planning and Installing a QMF NLF 99

Table 18. Language ID and FMID

National Language Feature Language ID QMF 7 FMID

U/C English U JSQ7751

Danish Q JSQ7755

French F JSQ7756

German D JSQ7757

Italian I JSQ7758

Japanese Kanji K JSQ7759

Korean Hangeul H JSQ775A

Brazil Portuguese P JSQ775B

Spanish S JSQ775C

Swedish V JSQ775D

Swiss French Y JSQ775E

Swiss German Z JSQ775F

Canadian French C JSQ775G

SMP/E associates all modifications of a program to a system release level
(SREL) of that program. The system release level for QMF is P115.

All the files on the tape, except the first, are IEBCOPY unloaded partitioned
data sets and correspond to the NLF distribution libraries. The first data set
contains SMP/E control statements for NLF. This tape contains all the
procedures and data required for installation.

The installation process

The installation steps are outlined on the following pages.

The NLF JCL and control statements are shipped on the ISD tape. The
following figures show the steps required to install QMF 7 in a DB2
subsystem with or without an earlier QMF NLF release.

The NLF requires the use of the QMF Version 7.2 sample library,
QMF720.SDSQSAPE, and the load module library, QMF720.SDSQLOAD.

Planning and Installing a QMF NLF

100 Installing and Managing QMF

Figure 17. Installation steps for QMF NLF -- Part 1

Planning and Installing a QMF NLF

Chapter 10. Planning and Installing a QMF NLF 101

Figure 18. Installation Steps for QMF NLF -- Part 2

Planning and Installing a QMF NLF

102 Installing and Managing QMF

Figure 19. Installation Steps for QMF NLF -- Part 3

Planning and Installing a QMF NLF

Chapter 10. Planning and Installing a QMF NLF 103

Figure 20. Installation Steps for QMF NLF -- Part 4

Planning and Installing a QMF NLF

104 Installing and Managing QMF

Figure 21. Installation Steps for QMF NLF -- Part 5

Planning and Installing a QMF NLF

Chapter 10. Planning and Installing a QMF NLF 105

Preliminary: read the program directory and complete the NLF worksheet
Before beginning the installation process, read the NLF program directory for
supplementary data. Because the program directory is updated between
releases of QMF NLF, it may contain useful information, including
descriptions of PTFs and APARs, as well as modifications to this book that
may have occurred since its publication date. Table 19 on page 107 shows the
information that you will have to provide during QMF NLF installation. You
can use it as your own worksheet.

Figure 22. Installation Steps for QMF NLF -- Part 6

Planning and Installing a QMF NLF

106 Installing and Managing QMF

Table 19. QMF NLF Installation Parameters (Version 7 Worksheet-Part 1)

PARAMETER VALUE

Target Library Prefix (Default = QMF720)

Distribution Library Prefix (Default = QMF720)

Target Library Volume (Default = xxxxxx)

Distribution Library Volume (Default = yyyyyy)

SMP/E Data Set Prefix (Default = IMSVS)

Local DB2 Subsystem ID (Default=DSN)

Local DB2 Release Level (Default=V3R1)

Local DB2 Exit Library
(Default=DSN710.SDSNEXIT)

Local DB2 Load Library
(Default=DSN710.SDSNLOAD)

Communications database installed at local DB2 yes or no

Gather the following information, if the communications database is installed at the
local DB2:

Scope of Install F (full database), S (server
database), or R (requester

database)

Gather the following information, if the scope of the database install is not “S”:

Customize QMF runtime libraries yes or no

QMF application plan ID (Default=QMF720)

Gather the following information, if the scope of the database install is “F”, or “S”.

QMF tablespace catalog alias (Default=QMFDSN)

QMF tablespace catalog password (for QMF
control tables)

QMF tablespaces volume

DB2 default punctuation , (comma) or . (period)

Previous QMF NLF Level (Migration Installs Only) 3.1, 3.1.1, 3.2, 3.3, 6.1 or NONE

Table 20. QMF NLF Installation Parameters (Version 7 Worksheet-Part 2)

PARAMETER PRIMARY SECONDARY

Gather the following information, if the the scope of the database install is not “R”.

Planning and Installing a QMF NLF

Chapter 10. Planning and Installing a QMF NLF 107

Table 20. QMF NLF Installation Parameters (Version 7 Worksheet-Part 2) (continued)

PARAMETER PRIMARY SECONDARY

QMF Control Table tablespace

Sizes: (in 1K units)
Table Space name Default size

(primary, secondary)

- Q.COMMAND_SYNONYMS_n (100,20)
(see note)

______ ______

Sizes: (in 1K units)
Table Index name Default size

(primary, secondary)

- Q.COMMAND_SYNONYMSX_n (100,20)
(see note)

______ ______

Determine the following, if applicable:

Install QMF NLF jobs in the foreground or tailor
the JCL files yourself and run each job in batch?

foreground or batch

Do you have fixed or variable-length CLIST
libraries?

variable or fixed

Do you have fixed or variable-length EXEC
libraries?

variable or fixed

Do you want SAVE DATA table space created? yes or no

Before performing the following steps, you must first install QMF NLF in
your OS/390 environment using SMP/E as documented in the QMF NLF
Program Directory.

Step 1—Provide QMF NLF installation parameters
In this step, you provide information that describes your QMF and DB2
environments. You are presented with a series of QMF Installation Dialog
panels that let you “fill-in” the required data. Use the information that you
provided in the worksheet, Table 19 on page 107.

Preparation
Before starting this step, consider the following requirements:
1. You must be in an active ISPF session.
2. If you have not used the QMF target library names as originally specified

in DSQ1nJAL (for example, no user changes other than allowed variables,
such as QMFTPRE), you must either alter the DSQ1nINS, DSQ1nIN1, and
DSQ1nIN2 CLISTS, or skip to “Steps 4-8—Submit jobs manually” on
page 117.

Planning and Installing a QMF NLF

108 Installing and Managing QMF

3. If you are installing QMF into another database, ensure that the QMF
target libraries you are using for the installation cannot be accessed by
users of other databases during installation.

4. Fixed-block SDSQCLTn and SDSQEXCn are required for Steps 1 through 3.

Execution
Enter the following:
TSO EXEC ’prefix.SDSQCLTn(DSQ1nINS)’ ’QMFPRE(prefix)’

where prefix is the QMF target library prefix you provided in the worksheet.

Obtain the parameter input panels, in one of the following ways:
v If this is the first time that you provide installation parameters, you are

presented with the first parameter input panel automatically.
v If this step has been completed successfully, you are presented with an

initial panel offering you four options:

P installation parameters

T tailor install files

I install in foreground

X exit install dialogs

Choose the P option to obtain the first parameter input panel.

As you enter the information on each panel, your input is saved in the
QMF720.SDSQCLTn library under the database name that you chose.

If you leave this step before completing the last panel, your input will not be
saved. The last panel asks you for job card information used to tailor the
installation. If you plan to install in the foreground, you do not need to
provide job card information; just enter x in the indicated spot on the panel.

When you have supplied the last installation parameter, the Main menu is
displayed. If you want to review or modify the parameters, enter P and
proceed through the input panels again.

If you are satisfied with your installation parameters, continue with the next
step. If you prefer, you can leave the installation process at this point and
return later; your installation parameters are saved. Use the information from
your worksheets to work through the panels.

Main menu: The main menu is displayed if you saved any install
parameters. Otherwise, it is the first panel you see when you invoke the
install.

Planning and Installing a QMF NLF

Chapter 10. Planning and Installing a QMF NLF 109

This menu lets you provide installation parameters, tailor jobs, install QMF
NLF in the foreground, or exit install dialogs.

Note: The last-used DB2 subsystem name is displayed on this panel.

The following options are available on this panel:

P Customizes QMF NLF install parameters, which are described in the
following panels.

If you want to customize QMF NLF install parameters for another DB2
subsystem, you can ignore the DB2 subsystem name displayed in this
panel and proceed to the next panel by entering “P”.

T Tailors all the required NLF install data sets for QMF 7.

These panels are not displayed in this manual.

I Installs QMF NLF in foreground. This option lets you submit the jobs
(steps 4 through 8) in an online environment.

X Exits the install dialogs.

Local DB2 parameters: This panel is displayed first if you have not saved
any install parameters. Otherwise, it is displayed only if you have chosen the
“P” option.

INSTALL QMF NLF -- MAIN MENU
ISPF COMMAND ===>

CURRENTLY WORKING ON INSTALLATION INTO DB2 SUBSYSTEM DSN

YOU CAN NOW RE-SPECIFY THE INSTALL PARAMETERS, TAILOR THE INSTALLATION
FILES, INSTALL QMF WITH THE TAILORED FILES IN FOREGROUND, QUIT AND RUN
THE TAILORED INSTALL FILES IN BATCH, OR QUIT AND RETURN HERE LATER.

ENTER CHOICE HERE ===> ("P" - INPUT PARAMETERS,
"T" - TAILOR INSTALL FILES,
"I" - INSTALL IN FOREGROUND,
"X" - EXIT INSTALL DIALOGS)

PRESS: ENTER TO CONTINUE PF01 FOR HELP PF03 TO END

Figure 23. Dialog main menu

Planning and Installing a QMF NLF

110 Installing and Managing QMF

The following options are available on this panel:

LOCAL DB2 SUBSYSTEM ID
Specify the DB2 subsystem ID in which the QMF application plan was
bound (required: default is DSN).

LOCAL DB2 RELEASE LEVEL
Specify the DB2 release level of the local DB2 subsystem (required: no
default).

LOCAL DB2 EXIT LIBRARY
Specify the DB2 exit library for the local DB2 subsystem (required: no
default).

LOCAL DB2 LOAD LIBRARY
Specify the DB2 load library for the local DB2 subsystem (required: no
default).

COMMUNICATIONS DATABASE(CDB) INSTALLED AT LOCAL DB2
Specify, if the DB2 communications database is installed at the local DB2
subsystem (required: no default).

Scope of Database Install: This panel is displayed if the DB2 release level is
“23” and the communications database is installed with the local DB2.

INSTALL QMF NLF -- LOCAL DB2 PARAMETERS
ISPF COMMAND ===>

LOCAL DB2 SUBSYSTEM ID ===>

LOCAL DB2 RELEASE LEVEL ===> ("31" FOR V3R1)

LOCAL DB2 EXIT LIBRARY ===>

LOCAL DB2 LOAD LIBRARY ===>

COMMUNICATIONS DATABASE(CDB) INSTALLED AT LOCAL DB2 ===> ("Y","N")

PRESS: ENTER TO CONTINUE PF01 FOR HELP PF03 TO END

Figure 24. Local DB2 parameters

Planning and Installing a QMF NLF

Chapter 10. Planning and Installing a QMF NLF 111

The following option is available on this panel:

SCOPE OF DATABASE INSTALL
Specify the scope of the database install. The allowable options are FULL
database, REQUESTER database, and SERVER database. See “Road maps
for the QMF installation process” on page 10 for more information on
these options.

If you are installing QMF Version 7.2 NLF for the first time, select the
FULL database install option.

QMF Parameters at Local DB2: This panel is displayed if this is not a
SERVER database install.

INSTALL QMF NLF -- SCOPE OF DATABASE INSTALL
ISPF COMMAND ===>

SCOPE OF DATABASE INSTALL ===> ("F" - FULL DATABASE,
"R" - REQUESTOR DATABASE ONLY,
"S" - SERVER DATABASE ONLY)

PRESS: ENTER TO CONTINUE PF01 FOR HELP PF03 TO END

Figure 25. Database install scope

Planning and Installing a QMF NLF

112 Installing and Managing QMF

The following options are available on this panel:

CUSTOMIZE QMF RUNTIME LIBRARIES
Specify the options, if the QMF NLF runtime libraries require
customization. You only need to customize these libraries once per
operating system (required: no default).

QMF APPLICATION PLAN ID AT LOCAL DB2
Specify the QMF application plan name that was bound at the local DB2
subsystem (required: no default).

DB2 and QMF Parameters: This panel is displayed next.

INSTALL QMF NLF -- QMF PARAMETERS AT LOCAL DB2
ISPF COMMAND ===>

CUSTOMIZE QMF RUNTIME LIBRARIES ===> ("Y" OR "N")

- INSTALL QMF PANELS
- INSTALL QMF/GDDM MAP GROUPS
- INSTALL QMF/GDDM SAMPLE CHARTS FORMS
- MAKE QMF REXX EXECS AVAILABLE
- MAKE QMF CLISTS AVAILABLE

QMF APPLICATION PLAN ID AT LOCAL DB2 ===>

PRESS: ENTER TO CONTINUE PF01 FOR HELP PF03 TO END

Figure 26. QMF parameters at local DB2

Planning and Installing a QMF NLF

Chapter 10. Planning and Installing a QMF NLF 113

The following options are available on this panel:

QMF TABLESPACES CATALOG ALIAS
Specify the VCAT name for all the QMF NLF table spaces. The VSAM
data sets that associate with these QMF NLF table spaces have the high
level qualifier of this alias value. If you are migrating from a previous
level of QMF, use the same alias value as the previous release (required:
no default).

QMF TABLESPACES CATALOG PASSWORD
Specify the password for all the QMF NLF control table spaces and index
spaces that are created by the installation (optional).

QMF TABLESPACES VOLUME
Specify a volume serial number in which the QMF NLF table spaces
reside (required: no default).

DEFAULT PUNCTUATION
Specify the symbol for a decimal point in DB2 for QMF NLF (required: no
default).

PREVIOUS QMF LEVEL
Specify the release level of QMF NLF that you are migrating from
(required: if you do not have any previous release level in the database,
enter NONE).

INSTALL QMF NLF -- DB2 AND QMF PARAMETERS
ISPF COMMAND ===>

QMF TABLESPACES CATALOG ALIAS ===>

QMF TABLESPACES CATALOG PASSWORD ===>

QMF TABLESPACES VOLUME ===> ("SYSxxx" OR "AST",
x is from 0 to 9,
AST stands for *)

DEFAULT PUNCTUATION ===> ("," OR ".")

PREVIOUS QMF LEVEL ===> ("V2R2","V2R3","V2R4",
"V3R1","V3R1M1",
"V3R2","V3R3","V6R1"
"NONE")

PRESS: ENTER TO CONTINUE PF01 FOR HELP PF03 TO END

Figure 27. DB2 and QMF parameters

Planning and Installing a QMF NLF

114 Installing and Managing QMF

Space parameters for QMF index spaces: This panel is displayed if there is
no previous QMF NLF release level installed in the database.

Note: The default sizes in 1 KB units are listed above.

Specify the primary and secondary allocations for the QMF index spaces.
These values are used when QMF allocates all the VSAM files for these table
spaces. Depending on the size of your installation, you may need to increase
or decrease the default sizes to allow for additional free space.

Jobcard: This panel is always displayed as the last panel for the P option.

INSTALL QMF NLF -- QMF INDEXSPACES SPACE PARAMETERS
ISPF COMMAND ===>

SPECIFY THE SIZES (IN 1K UNITS) FOR THE FOLLOWING TABLE INDEXES

TABLE INDEX PRIMARY SECONDARY
----------- ------- ---------

Q.COMMAND_SYNONYMX_n ===> ===>

PRESS: ENTER TO CONTINUE PF01 FOR HELP PF03 TO END

Figure 28. QMF index spaces space parameters

Planning and Installing a QMF NLF

Chapter 10. Planning and Installing a QMF NLF 115

This jobcard is used to submit all the QMF install jobs at your installation.

Step 2—Tailor the jobs
When you are satisfied with your installation parameters, select the T option
on the “P T I” panel. The following steps will occur:
v A message tells you that the system is tailoring the JCL for the installation

path you selected in “Step 1—Provide QMF NLF installation parameters”
on page 108.

v QMF720.SDSQEXCn(DSQSCMDn), the QMF callable interface REXX EXEC,
is modified to update the default values for parameters planid and DB2
subsystem name, unless you are performing a server database installation.

At the conclusion of this step, the “P T I” panel is displayed. You can then
proceed with the installation of QMF NLF.

If you plan to tailor online, do not alter the sequence of the install JCL and
control files. This is because the CLIST requires the JCL and control files to be
in a particular sequence; if you alter the sequence of JCL or control files, you
must modify this CLIST.

Installing QMF NLF
You can install the tailored jobs in one of two ways:
v Install the jobs in the foreground (“Step 3—Install QMF NLF in the

foreground” on page 117)

INSTALL QMF NLF -- JOBCARD
ISPF COMMAND ===>

MODIFY THE JOB CARDS BELOW TO REPRESENT YOUR INSTALLATION REQUIREMENTS
THE "USER" AND "PASSWORD" PARAMETERS MUST BE SPECIFIED IN SYSTEMS USING
RACF. USE A USERID WITH THE APPROPRIATE AUTHORITY FOR THE DATABASE. SEE
THE "QUERY MANAGEMENT FACILITY: INSTALLATION GUIDE FOR MVS" PUBLICATION
FOR MORE DETAIL.

IF YOU WILL BE PERFORMING THE INSTALLATION IN FOREGROUND AND DO NOT
THE JCL FILES TO BE TAILORED, ENTER AN ’X’ HERE. ===>

JOB STATEMENT INFORMATION:
===> //QMFINSTL JOB (ACCT),NAME,
===> // CLASS=A,MSGCLASS=A,MSGLEVEL=(1,1),
===> // USER=Q,PASSWORD=Q
===> //*

PRESS: ENTER TO CONTINUE PF01 FOR HELP PF03 TO END

Figure 29. Jobcard

Planning and Installing a QMF NLF

116 Installing and Managing QMF

v Submit each job manually (starting with “Step 4—Install QMF panels”)
This option enables you to meet the needs of your installation environment.
It lets you modify certain installation parameter values that are provided by
default.

Step 3—Install QMF NLF in the foreground
If you want to install QMF NLF in the foreground, select the I option on the
“P T I” panel. A dialog panel is then displayed, requesting installation
options. After you enter the information, a message tells you that the
installation is proceeding.

DB2 authority
When you submit the jobs in the foreground, they are installed under your
current LOGON ID. If your LOGON ID has “Q” as its authorization ID, you
will need, as a minimum, DB2 authority granted by the following SQL
statements:
GRANT USE OF BUFFERPOOL BP0 TO Q
GRANT CREATESG TO Q
GRANT SELECT ON SYSIBM.SYSTABLES TO Q WITH GRANT OPTION
GRANT SELECT ON SYSIBM.SYSTABAUTH TO Q WITH GRANT OPTION
GRANT SELECT ON SYSIBM.SYSCOLUMNS TO Q WITH GRANT OPTION

If your LOGON ID has an authorization other than “Q”, you need the
authority granted by the following SQL statement:
GRANT SYSADM TO authid

where authid is the primary authorization ID. You are now done with Step 3.
Continue the installation with one of the following:
v “Step 8—Tailor NLF/QMF for TSO” on page 127
v “Step 9—Tailor NLF/QMF for CICS” on page 128

If you are installing QMF NLF into another DB2 subsystem:
v Using full or server database, go to “Step 7A—Update QMF control tables”

on page 120.
v Using requester database, go to “Step 8—Tailor NLF/QMF for TSO” on

page 127 or “Step 9A—Add NLF/QMF transaction ID to DB2 RCT” on
page 128.

Steps 4-8—Submit jobs manually
The following steps describe how to install QMF in a batch environment.

Step 4—Install QMF panels
This step copies the expanded version of QMF panels to the panel file,
QMF720.DSQPNLn.

Planning and Installing a QMF NLF

Chapter 10. Planning and Installing a QMF NLF 117

Preparation
The job for this step is in QMF720.SDSQSAPn(DSQ1nPNL). If the tailoring
performed in “Step 3—Install QMF NLF in the foreground” on page 117 was
not sufficient, change the JOB statement to conform to your installation. You
may also have to change the values of two parameters in the job’s instream
procedure:

Parameter name
description of value (default in parenthesis)

QMFTPRE
The prefix for the QMF target libraries (QMF720)

RGN The job step region size (2048K)

Execution
Run job DSQ1nPNL in library QMF720.SDSQSAPn.

Rerunning the Job
Before rerunning the job, do the following tasks:
v Delete any members that were added to the target library.
v Recover the used space by compressing the library.
v Fix the errors that caused the failure.

Step 5—Install NLF/GDDM map groups
QMF uses the GDDM screen mapping functions. This step expands the
NLF/GDDM map group files located in the sample library (default name is
QMF720.SDSQSAPn) to the target map group library (default name is
QMF720.DSQMAPn).

Preparation
The job for this step is QMF720.SDSQSAPn(DSQ1nMAP). If the tailoring
performed in “Step 3—Install QMF NLF in the foreground” on page 117 was
not sufficient, change the job statement to conform to your installation
requirements. You may also have to change the values of two parameters in
the job’s instream procedure:

Parameter name
Description of value (Default in parenthesis)

QMFTPRE
The prefix for the QMF target libraries (QMF720)

RGN The job step region size (2048K)

Execution
Run job DSQ1nMAP (in the library QMF720.SDSQSAPn).

Planning and Installing a QMF NLF

118 Installing and Managing QMF

Rerunning the job
Before rerunning the job, do the following:
v Delete any members that were added to the target library.
v Recover the used space by compressing the library.
v Fix the errors that caused the failure.

Step 6—Converting REXX EXEC or CLIST records
This step converts QMF REXX EXEC or QMF CLIST records from fixed to
variable length.

Step 6A—Converting QMF REXX EXEC records: fixed length to variable

Note: You must have TSO/E Version 2 (or later) installed to use REXX EXECs
in an OS/390 environment.

Later in this procedure, you must allocate the QMF exec library
(QMF720.SDSQEXCn) as a SYSEXEC data set. The library should be
concatenated to other exec libraries.

Example
In the following JCL the library QMF720.SDSQEXCn is concatenated to
an EXEC library named SYS2.EXEC.
//SYSEXEC DD DSN=SYS2.EXEC,DISP=SHR
// DD DSN=QMF720.SDSQEXCn,DISP=SHR

The QMF exec library contains fixed-length records. It can only be
concatenated to other exec libraries that have fixed-length records. If they
have variable-length records, you must create a copy of the QMF library with
variable-length records.

For more information, see Developing QMF Applications.

Preparation: The job for this step is QMF720.SDSQSAPn(DSQ1nJVE). Change
‘xxxxxx’ in the DSQTEVB.SYSUT2 statement to the serial number of the
volume for the copy of the library. If the tailoring performed in “Step
2—Tailor the jobs” on page 116 was not sufficient, you may want to do the
following tasks:
v Change the job statement to conform to your installation.
v Change, if necessary, the value of the QMFTPRE parameter in the job’s

instream procedure. This value is the prefix for the QMF libraries (default is
QMF720).

v Leave the exec procedure parameter blank; it is used by the job when the
procedure is called.

v Change, if necessary, the name of this library.

Planning and Installing a QMF NLF

Chapter 10. Planning and Installing a QMF NLF 119

|
|

|
|

Execution: Run job DSQ1nJVE.

Rerunning the job: If the job fails, correct the error and rerun the job.

Step 6B—Converting QMF CLISTs records: fixed length to variable
Later in this procedure, you must allocate the QMF CLIST library
(QMF720.SDSQCLTn) as a SYSPROC data set. The library should be
concatenated to other CLIST libraries.

Example
In the following JCL the library QMF720.SDSQCLTn is concatenated to a
CLIST library named SYS2.CLIST.
//SYSPROC DD DSN=SYS2.CLIST,DISP=SHR
// DD DSN=QMF720.SDSQCLTn,DISP=SHR

The QMF CLIST library contains fixed-length records. It can only be
concatenated to the other CLIST libraries that have fixed-length records. If
they have variable-length records, you must create a copy of the QMF library
with variable-length records.

Preparation: The job for this step is QMF720.SDSQSAPn(DSQ1nJVC). Change
‘xxxxxx’ in the DSQTIVB.SYSUT2 statement to the serial number of the
volume for the copy of the library. If the tailoring performed in “Step
2—Tailor the jobs” on page 116 was not sufficient, you may want to do the
following steps:
v Change the job statement to conform to your installation.
v Change, if necessary, the value of the QMFTPRE parameter in the job’s

instream procedure. This value is the prefix for the QMF libraries (default is
QMF720).

v Leave the CLIST procedure parameter blank. It is used by the job when the
procedure is called.

v Change, if necessary, the name of this library.

Execution: Run job DSQ1nJVC.

Rerunning the job: If the job fails, correct the error and rerun the job.

If you are doing a requester database install, go to “Step 8—Tailor NLF/QMF
for TSO” on page 127 or “Step 9A—Add NLF/QMF transaction ID to DB2
RCT” on page 128.

Step 7A—Update QMF control tables
The substep (7Aa, 7Ab, 7Ac, 7Ad) you perform depends on the type of
migration installation you are running:

Planning and Installing a QMF NLF

120 Installing and Managing QMF

|
|

|
|

v If no previous QMF NLF release is installed, do “Substep 7Aa—without a
previous QMF NLF release”.

v If you are running a QMF NLF 2.2 or 2.3 migration, do “Substep 7Ab—with
QMF NLF 2.2 or 2.3” on page 122.

v If you are running a QMF NLF 2.4, do “Substep 7Ac—with QMF NLF 2.4”
on page 123.

v If you are running a QMF NLF 3.1, do “Substep 7Ad—with QMF NLF 3.1”
on page 124.

v If QMF NLF 3.1.1, QMF NLF 3.2, QMF NLF 3.3, or QMF NLF 6.1 is in this
DB2 subsystem, skip to “Step 7B—Delete earlier QMF NLF sample tables”
on page 125.

For all these steps that run TSO batch, check the step completion code in the
system messages. Completion messages can be found in the SYSTSPRT or the
SYSTERM output, as indicated. SYSPRINT provides additional diagnostic
information for IBM support.

Substep 7Aa—without a previous QMF NLF release
Perform this step if you do not have a previous QMF NLF installed.

On this step, you do the following:
v Add NLF entries in the Q.PROFILES table. The job is

QMF720.SDSQSAPn(DSQ1nUPO).
v Create, for the NLF environment, a command synonyms table named

Q.COMMAND_SYNONYM_n. The job is QMF720.SDSQSAPn(DSQ1nCCS).

Preparation: Change the job statements for DSQ1nUPO and DSQ1nCCS to fit
your installation. The value of the USER parameter in the job statement is
currently “Q” for the owner of the QMF tables. Change this value to your
primary authorization ID if your authorization ID is not Q.

Make the necessary changes to the following parameter values in the job’s
instream procedure:

Parameter name
Description of value (Default in parenthesis)

QMFTPRE
Prefix of the QMF target libraries (QMF720)

DB2EXIT
Name of the DB2 exit library (DSN710.SDSNEXIT)

DB2LOAD
Name of the DB2 program library (DSN710.SDSNLOAD)

RGN Job step region size (2048K)

Planning and Installing a QMF NLF

Chapter 10. Planning and Installing a QMF NLF 121

DB2 Authority: If you are the user Q, run the following query to give you
enough authority to run the jobs:
GRANT CREATETAB ON DATABASE DSQDBCTL TO Q

You may need the query if the database DSQDBCTL was not created by the
user Q.

If you are not the user Q, run the following queries, to give you enough
authority to run the jobs:
GRANT INSERT, UPDATE ON TABLE Q.PROFILES TO authid
GRANT CREATETAB ON DATABASE DSQDBCTL TO authid

where authid is your primary authorization ID.

Execution: Run the appropriate jobs:
v DSQ1nUPO, to add a line to Q.PROFILES
v DSQ1nCCS, to run required SQL statements

Review SYSTERM for completion messages. If errors occur then examine
SYSTSPRT and SYSPRINT for error messages.

Rerunning the job: If the job fails, you can correct the error and rerun it.

Substep 7Ab—with QMF NLF 2.2 or 2.3
Perform this step only if you are migrating from QMF NLF 2.2 or 2.3.

This job adds your NLF equivalents of the IRM and LAYOUT command
synonyms to the Q.COMMAND_SYNONYM_n table, and update the
Q.PROFILES control table.

Preparation: The job used in this step is QMF720.SDSQSAPn(DSQ1nICS).
Change the job statement to conform to your installation. Also, make the
necessary changes to the following parameters in the job’s instream
procedure:

Parameter name
Description of value (Default in parenthesis)

QMFTPRE
The prefix name of the QMF target libraries (QMF720)

DB2EXIT
Name of the DB2 exit library (DSN710.SDSNEXIT)

DB2LOAD
Name of the DB2 program library (DSN710.SDSNLOAD)

RGN Job-step region size (2048K)

Planning and Installing a QMF NLF

122 Installing and Managing QMF

DB2 authority: If you are the user Q , you have the necessary authority to
run the job.

If you are not the user Q, run the following query, to get the necessary
authority:
GRANT INSERT ON TABLE Q.COMMAND_SYNONYM_n TO authid

where authid is your primary authorization ID.

Execution: Run job QMF720.SDSQSAPn(DSQ1nICS).

Review SYSTERM for completion messages. If errors occur then examine
SYSTSPRT and SYSPRINT for error messages.

Rerunning the job: If the job fails, you can correct the error and rerun it.

Substep 7Ac—with QMF NLF 2.4
Perform this step only if you are migrating from QMF NLF V2R4.

This job updates the Q.PROFILES control table.

Preparation: The job used in this step is QMF720.SDSQSAPn(DSQ1nUP1).
Change the job statement to conform to your installation. Change, if necessary,
the installation parameter values in the job’s instream procedure:

Parameter name
Description of value (Default in parenthesis)

QMFTPRE
The prefix name of the QMF target libraries (QMF720)

DB2EXIT
Name of the DB2 exit library (DSN710.SDSNEXIT)

DB2LOAD
Name of the DB2 program library (DSN710.SDSNLOAD)

RGN Job-step region size (2048 KB)

DB2 authority: If you are the user Q, you have the necessary authority to
run the job.

If you are not the user Q, run the following query to get the necessary
authority:
GRANT INSERT ON TABLE Q.PROFILES TO authid

where authid is your primary authorization ID.

Execution: Run job QMF720.SDSQSAPn(DSQ1nUP1).

Planning and Installing a QMF NLF

Chapter 10. Planning and Installing a QMF NLF 123

Review SYSTERM for completion messages. If errors occur then examine
SYSTSPRT and SYSPRINT for error messages.

Rerunning the job: If the job fails, correct the error and rerun the job.

Substep 7Ad—with QMF NLF 3.1
Perform this step only if you are migrating from QMF NLF V3R1.

This job updates the Q.PROFILES control table.

Preparation: The job used in this step is QMF720.SDSQSAPn(DSQ1nUP2).
Change the job statement to conform to your installation’s requirements.
Change, if necessary, the installation parameter values in the job’s instream
procedure:

Parameter name
Description of value (Default in parenthesis)

QMFTPRE
The prefix name of the QMF target libraries (QMF720)

DB2EXIT
Name of the DB2 exit library (DSN710.SDSNEXIT)

DB2LOAD
Name of the DB2 program library (DSN710.SDSNLOAD)

RGN Job-step region size (2048K)

DB2 authority: If you are the user Q, you have the necessary authority to
run the job.

If you are not the user Q, run the following query, to get the necessary
authority:
GRANT INSERT ON TABLE Q.PROFILES TO authid

where authid is your primary authorization ID.

Execution: Run job QMF720.SDSQSAPn(DSQ1nUP2).

Review SYSTERM for completion messages. If errors occur then examine
SYSTSPRT and SYSPRINT for error messages.

Rerunning the job: If the job fails, correct the error and rerun the job.

Step 7B and 7C—Establish the QMF NLF sample tables
Skip both steps 7B and 7C if either of the following apply:
v The NLF is the upper case feature (UCF).
v You already have the sample tables installed from an earlier Version 2 (any

release) of QMF NLF.

Planning and Installing a QMF NLF

124 Installing and Managing QMF

These two steps establish the QMF NLF sample tables. The first step drops
previously created tables, the second step installs new ones. In the event of a
failure, you can restart both of these steps because database changes are not
committed until the job run by the step ends.

Step 7B—Delete earlier QMF NLF sample tables
Do this step if you are installing QMF 7 NLF into a DB2 subsystem that also
contains a previous release of QMF NLF. Otherwise, skip to “Step 7C—Create
the NLF sample tables” on page 126.

This step deletes the sample tables that were created when the earlier version
was installed. The QMF NLF sample tables have been modified for QMF 7
NLF.

Preparation
The job used in this step is QMF720.SDSQSAPn(DSQ1nDSJ). If the tailoring
performed in “Step 3—Install QMF NLF in the foreground” on page 117 was
not sufficient, change the job statement to conform to your installation’s
requirements. Change, if necessary, the installation parameter values in the
job’s instream procedure:

Parameter name
Description of value (Default in parenthesis)

QMFTPRE
The prefix name of the QMF target libraries (QMF720)

DB2EXIT
Name of the DB2 exit library (DSN710.SDSNEXIT)

DB2LOAD
Name of the DB2 program library (DSN710.SDSNLOAD)

RGN Job-step region size (2048K)

Make no other modifications to the job.

DB2 authorization
If you are not the user Q, run the following query to grant you the necessary
authority:
GRANT SYSADM TO authid

where authid is your primary authorization ID.

Execution
Run job DSQ1nDSJ (in the library QMF720.SDSQSAPn). Review SYSTERM for
completion messages. If errors occur then examine SYSTSPRT and SYSPRINT
for error messages.

Planning and Installing a QMF NLF

Chapter 10. Planning and Installing a QMF NLF 125

Rerunning the job
If the job fails, you can correct the error and rerun it. It may, however, fail
because the tables it attempts to drop have already been dropped.

Step 7C—Create the NLF sample tables
This step creates the NLF sample tables.

Note: QMF NLF users at locations within the network are authorized to use
all the sample tables created at the location into which you are
installing the QMF NLF.

Preparation
The job for this step is QMF720.SDSQSAPn(DSQ1nIVS). If the tailoring
performed in step 3 was not sufficient, change the job statement to fit your
installation requirements. Change, if necessary, the values for the installation
parameters in the job’s instream procedure:

Parameter name
Description of value (Default in parenthesis)

QMFTPRE
The prefix for the QMF target libraries (QMF720)

DB2EXIT
Name of the DB2 exit library (DSN710.SDSNEXIT)

DB2LOAD
Name of the DB2 program library (DSN710.SDSNLOAD)

RGN Job-step region size (2048K)
CDS, CDP

Identify the punctuation mark for the decimal point used in decimal
fractions. This must match the DECPOINT option that was specified
when DB2 was installed:
v For a period, leave the current values as they are.
v For a comma, change CDS to 6 and CDP to 7.

For more information on the DECPOINT option, see the DB2 UDB for
OS390 Installation Guide.

DB2 authority
If you are the user Q, you need, as a minimum, DB2 authority granted by the
following SQL statements:
GRANT SELECT ON SYSIBM.SYSTABLES TO Q WITH GRANT OPTION
GRANT SELECT ON SYSIBM.SYSTABAUTH TO Q WITH GRANT OPTION
GRANT SELECT ON SYSIBM.SYSCOLUMNS TO Q WITH GRANT OPTION

If you are not the user Q, run the following query to give you the necessary
authority:
GRANT SYSADM TO authid

Planning and Installing a QMF NLF

126 Installing and Managing QMF

where authid is your primary authorization ID.

Execution
Run job DSQ1nIVS (in the library QMF720.SDSQSAPn). Review SYSTERM for
completion messages. If errors occur examine SYSTSPRT and SYSPRINT for
error messages.

Rerunning the job
If the job fails, you can correct the error and rerun the job.

If you are installing QMF NLF into another database, go to “Step 12—Set Up
NLF batch job to run batch IVP (optional)” on page 135.

You are now ready to tailor NLF/QMF for TSO or CICS.
v For information on tailoring QMF NLF for TSO, see the next section.
v For information on tailoring QMF NLF for CICS, see “Step 9—Tailor

NLF/QMF for CICS” on page 128.

Step 8—Tailor NLF/QMF for TSO
To create a TSO logon procedure for NLF, first make a copy of the TSO logon
procedure for the QMF base product.

Except for the following changes to the TSO logon procedure, the procedure
for tailoring NLF/QMF for TSO is that outlined in Chapter 4, “Tailoring QMF
for TSO” on page 47.
v The following NLF libraries should be concatenated in front of the QMF

base libraries.
– The statement to concatenate to the ADMGGMAP DD statement is:

//ADMGGMAP DD DSN=QMF720.DSQMAPn,DISP=SHR

– The statement to concatenate to the ISPPLIB DD statement is:
//ISPPLIB DD DSN=QMF720.SDSQPLBn,DISP=SHR

– The statement to concatenate to the ISPMLIB DD statement is:
//ISPMLIB DD DSN=QMF720.SDSQMLBn,DISP=SHR

– The statement to concatenate to the SYSPROC DD statement is:
//SYSPROC DD DSN=QMF720.SDSQCLTn,DISP=SHR

– The statement to concatenate to the SYSEXEC DD statement is:
//SYSEXEC DD DSN=QMF720.SDSQEXCn,DISP=SHR

– The statement to concatenate to the DSQPNLn DD statement is:
//DSQPNLn DD DSN=QMF720.DSQPNLn,DISP=SHR

v The statement to start QMF with ISPF looks like the following:
ISPSTART PGM(DSQQMFn) NEWAPPL(DSQn) PARM(DSQSSUBS=dbname,...)

Planning and Installing a QMF NLF

Chapter 10. Planning and Installing a QMF NLF 127

|

The ISPF Master Application Menu should be changed as shown in the
following figure (DSQQMFn is the NLF program).

v The statement to start QMF without ISPF looks like the following:
DSQQMFn DSQSPLAN=planid,DSQSSUBS=dbname,...

where DSQQMFn is the NLF program.

Step 9—Tailor NLF/QMF for CICS
You can run this step after the QMF product has been tailored for CICS as
described in Chapter 6, “Tailoring QMF for CICS” on page 69. If you are
migrating from QMF 3.1, you need to run all the steps except “Step
9Da—update CICS control tables (CICS V2 only)” on page 130. (For
information on CICS migration considerations, see Installing and Managing
QMF for OS/390.)

Step 9A—Add NLF/QMF transaction ID to DB2 RCT
The database plan ID and authorization ID for a transaction are specified in
the DB2 resource control table (RCT). For example, to specify a transaction ID
of “QMFn” and an authorization ID of “DEPT1”, add the following statement:

%------------------------ MASTER APPLICATION MENU --------------------
%SELECT APPLICATION ===>_;OPT +
% +USERID -
% +TIME -
% 1 +SPF - SPF PROGRAM DEVELOPMENT FACILITY +TERMINAL -
+ 2 +QMF - QMF QUERY MANAGEMENT FACILITY +PF KEYS -
% 3 +QMFn - QMF NATIONAL LANGUAGE FEATURE
%
%
%
%
%
%
% P +PARMS - SPECIFY TERMINAL PARAMETERS AND LIST/LOG DEFAULTS
% X +EXIT - TERMINATE USING LIST/LOG DEFAULTS
%
+PRESS%END KEY+TO TERMINATE +
%
)INIT
)PROC
&SEL = TRANS(TRUNC (&OPT,’.’)

1,’PANEL(ISR@PRIM) NEWAPPL’
2,’PGM(DSQQMFE) NEWAPPL(DSQE)’
3,’PGM(DSQQMFn) NEWAPPL(DSQn)’

/* */
/* ADD OTHER APPLICATIONS HERE */
/* */

P,’PANEL(ISPOPT)’
X,’EXIT’

’ ’,’ ’
*,’?’)

)END

Figure 30. QMF Dialog on ISPF Master Application Menu for NLF

Planning and Installing a QMF NLF

128 Installing and Managing QMF

DSNCRCT TYPE=ENTRY,TXID=QMFn,PLAN=QM720,AUTH=DEPT1

QMF ships a sample RCT entry located in QMF720.SDSQSAPn(DSQ1nRCT).

After the RCT is updated with information describing the QMF transaction to
DB2, you must then regenerate your RCT.

Step 9B—Link-edit with DFHEAI and DFHEAI0
QMF uses the CICS command-level application programming interface to
operate under CICS. You must link-edit QMF with the exec interface modules
DFHEAI and DFHEAI0 before you can run any QMF programs. To include
CICS interface modules DFHEAI and DFHEAI0, you must run this step each
time you apply QMF service.

Substep 9Ba— Link-edit QMF with CICS command interface modules
This job link-edits QMF NLF modules with CICS command level support
modules DFHEAI and DFHEAI0.

Preparation: The job used in this step is QMF720.SDSQSAPn(DSQ1nLNK).
Change the job statement to conform to your installation. Change, if necessary,
the values for the installation parameters in the job’s instream procedure:

Table 21. Installation parameters for DSQ1nLNK

Parameter name Description of value Default

QMFTPRE The prefix name of the QMF target
libraries

QMF720

REG The job-step region size 4096

OUTC The job output class *

CLOAD The name of the CICS load library CICS.LOADLIB

After completing this job, examine the listing and ensure that all modules
have been link-edited successfully.

Note: You must rerun this job if any of the modules are changed by PTF.

Substep 9Bb—translate, assemble and link-edit the QMF supplied
governor

Preparation: The job used in this step is QMF720.SDSQSAPn(DSQ1nGLK).
Change the job statement to conform to your installation. Change, if necessary,
the values for the installation parameters in the job’s instream procedure:

Planning and Installing a QMF NLF

Chapter 10. Planning and Installing a QMF NLF 129

Table 22. Installation parmaters for DSQ1nGLK

Parameter name Description of value Default

QMFTPRE The prefix name of the QMF target
libraries

QMF720

REG The job-step region size 4096

OUTC The job output class *

CLOAD The name of the CICS load library CICS.LOADLIB

CMACS The name of the CICS macro library CICS.MACLIB

SUFFIX The CICS ASM Translator suffix 1$

ASMBLR The name of the Assembler IEV90

WPRL The name of the work volume unit SYSDA

Step 9C—load QMF/GDDM map sets to the ADMF data set

Preparation: The job used in this step is QMF720.SDSQSAPn(DSQ1nADM).
Change the job statement to conform to your installation. Change, if necessary,
the values for the installation parameters in the job’s instream procedure.

Table 23. Installation parameters for DSQ1nADM

Parameter name Description of value Default

QMFTPRE The prefix name of the QMF target
libraries

QMF720

REG The job-step region size 2048

GDDM The name of the GDDM ADMF data
set

GDDM.ADMF

Step 9Da—update CICS control tables (CICS V2 only)
Before you can run the NLF/QMF feature under CICS, QMF entries must be
defined as follows:

FCT (file control table): Describes the QMF panel file that contains
NLF/QMF help and screen definitions. Add or copy member DSQ1nFCT (in
library QMF720.SDSQSAPn) into existing FCT entries on your CICS system.

PCT (program control table): Describes the QMF transaction name for this
NLF/QMF. Add or copy member DSQ1nPCT (in library QMF720.SDSQSAPn)
into existing PCT entries on your CICS system.

PPT (processing program table): Describes the QMF programs that contain
NLF/QMF constants and messages. Add or copy member DSQ1nPPT (in
library QMF720.SDSQSAPn) into existing PPT entries on your CICS system.

Planning and Installing a QMF NLF

130 Installing and Managing QMF

After you include or copy members into your CICS system, assemble and
link-edit.

Step 9Db—Update CICS control tables (CICS ESA only)
Before you can run the NLF/QMF feature under CICS, QMF entries must be
defined in the CICS system definition file (CSD).

Preparation: The job used in this step is QMF720.SDSQSAPn(DSQ1nCSD).
Change the job statement to conform to your installation. Change, if necessary,
the values for the installation parameters in the job’s instream procedure:

Table 24. Installation parameters for DSQ1nCSD

Parameter name Description of value Default

QMFTPRE The prefix name of the QMF
target libraries

QMF720

REG The job-step region size 2048

OUTC The job output class *

CLOAD THe name of the CICS load
library

CICS.LOADLIB

CCSD The name of the CICS CSD
data set

CICS.DFHCSD

Step 9E—Update CICS region job stream
The QMF panel file must be added to the existing JCL that is used to start the
CICS region containing QMF. Add the following statement:
//DSQPNLn DD DSN=QMF720.DSQPNLn,DISP=SHR

where n is the NLF character.

Step 9F—Run the IVP
Run the IVP as indicated in “Step 33 (for CICS)—Run the IVP” on page 87,
changing the following names:
v QMF320.DSQSAMPE to QMF720.SDSQSAPn
v DSQ1EIVC to DSQ1nIVC

where n is the NLF character.

Step 10—Tailoring QMF NLF for a Workstation Database Server (optional)
QMF support for Workstation Database Server is optional. You need to
perform the steps described in this step only if you intend to run a
Workstation Database Server as an application server for your QMF NLF.

Before you install a QMF NLF into a Workstation Database Server from
OS/390, you need to verify that you have followed the steps needed to install
the QMF base product into your Workstation Database Server database. The

Planning and Installing a QMF NLF

Chapter 10. Planning and Installing a QMF NLF 131

installation of a QMF NLF requires that the outbound Workstation Database
Server ID has SYSADM authority. For more information about installing QMF
into a Workstation Database Server, see Chapter 7, “Tailoring QMF for
Workstation Database Servers” on page 75.

Check the step completion codes in the system messages. Completion
messages can be found in the SYSTSPRT or the SYSTERM output, as
indicated. SYSPRINT provides additional diagnostic information for IBM
support.

Step 10A—Create QMF NLF control tables in a Workstation Database
Server
This step creates QMF NLF command synonym tables and profile rows in a
Workstation Database Server.
1. Edit QMF720.SDSQSAPE(DSQ1nDJ2).
2. Verify and change, if necessary, the default values for the installation

parameters in the job’s instream procedure:
//DSQ1TBJ4 PROC RGN=’2048K’, Job-step region size
// QMFTPRE=’QMF720’, Prefix for QMF target libraries
// DB2EXIT=’DSN710.SDSNEXIT’, Exit DB2 library name
// DB2LOAD=’DSN710.SDSNLOAD’ DB2 program library name

3. Change DSN in SYSTEM(DSN) to your DB2 UDB for OS/390 subsystem ID.
4. Submit job QMF720.SDSQSAPE(DSQ1nDJ2).
5. Check for a return code of 0 or 4. Review SYSTERM for completion

messages.
Do not proceed if the return code is other than zero or four. Examine
SYSTSPRT or SYSPRINT for error messages. Perform corrective actions
and then re-run this job.

Step 10B—Create QMF NLF sample tables in a Workstation Database
Server
This step creates the QMF NLF sample tables in a Workstation Database
Server.
1. Edit QMF720.SDSQSAPE(DSQ1nDJ4).
2. Verify and change, if necessary, the default values for the installation

parameters in the job’s instream procedure:
//DSQ1TBJ4 PROC RGN=’2048K’, Job-step region size
// QMFTPRE=’QMF720’, Prefix for QMF target libraries
// DB2EXIT=’DSN710.SDSNEXIT’, Exit DB2 library name
// DB2LOAD=’DSN710.SDSNLOAD’ DB2 program library name

3. Change DSN in SYSTEM(DSN) to your DB2 UDB for OS/390 subsystem ID.
4. Submit job QMF720.SDSQSAPE(DSQ1nDJ4).
5. Check for a return code of 0 or 4. Review SYSTERM for completion

messages.

Planning and Installing a QMF NLF

132 Installing and Managing QMF

Do not proceed if the return code is other than zero or four. Examine
SYSTSPRT or SYSPRINT for error messages. Perform corrective actions
and rerun the job.

Deleting QMF NLF from a Workstation Database Server
This section describes how to delete QMF NLF from a Workstation Database
Server.

Deleting QMF from a Workstation Database Server: This step should be
run only if you are re-installing QMF into a Workstation Database Server that
already contains QMF.

Attention: This step will delete the QMF NLF command synonym tables and
system profile rows from a Workstation Database Server.
1. Edit QMF720.SDSQSAPE(DSQ1nDX1).
2. Verify and change, if necessary, the default values for the installation

parameters in the job’s instream procedure:
//DSQ1TBJ4 PROC RGN=’2048K’, Job-step region size
// QMFTPRE=’QMF720’, Prefix for QMF target libraries
// DB2EXIT=’DSN710.SDSNEXIT’, Exit DB2 library name
// DB2LOAD=’DSN710.SDSNLOAD’ DB2 program library name

3. Change DSN in SYSTEM(DSN) to your DB2 UDB for OS/390 subsystem ID.
4. Submit job QMF720.SDSQSAPE(DSQ1nDX1).
5. Check for a return code of 0 or 4. Review SYSTERM for completion

messages.
Do not proceed if the return code is other than zero or four. Examine
SYSTSPRT or SYSPRINT for error messages. Perform corrective actions
and rerun the job.

Deleting QMF NLF sample tables from a Workstation Database Server:
This step should be run only if you are reinstalling the QMF NLF into a
Workstation Database Server that already contains the QMF NLF.

This step will drop and create all QMF NLF sample tables and tablespace
from a Workstation Database Server.
1. Edit QMF720.SDSQSAPE(DSQ1nDX2).
2. Verify and change, if necessary, the default values for the installation

parameters in the job’s instream procedure:
//DSQ1TBJ4 PROC RGN=’2048K’, Job-step region size
// QMFTPRE=’QMF720’, Prefix for QMF target libraries
// DB2EXIT=’DSN710.SDSNEXIT’, Exit DB2 library name
// DB2LOAD=’DSN710.SDSNLOAD’ DB2 program library name

3. Change DSN in SYSTEM(DSN) to your DB2 UDB for OS/390 subsystem ID.
4. Submit job QMF720.SDSQSAPE(DSQ1nDX2).

Planning and Installing a QMF NLF

Chapter 10. Planning and Installing a QMF NLF 133

5. Check for a return code of 0 or 4. Review SYSTERM for completion
messages.
Examine SYSTSPRT or SYSPRINT for error messages. Perform corrective
actions and then re-run this job.

Step 11—Tailoring QMF NLF for a DB2 UDB for iSeries server (optional)
QMF support for DB2 UDB for iSeries Database Servers is optional. You need
to perform the steps described in this step only if you intend to run a DB2
UDB for iSeries Database Server as an application server for your QMF NLF.
Before you install a QMF NLF into a DB2 UDB for iSeries Database Server
from OS/390, you need to verify that you have followed the steps needed to
install the QMF base product into your DB2 UDB for iSeries Database Server
database.

Check the step completion codes in the system messages. Completion
messages can be found in the SYSTSPRT or the SYSTERM output, as
indicated. SYSPRINT provides additional diagnostic information for IBM
support.

Create QMF NLF control table updates in a DB2 UDB for iSeries server.
1. Edit QMF720.SDSQSAPE(DSQ1nAS2).
2. Verify and change, if necessary, the default values for the installation

parameters in the job’s instream procedure:
//DSQ1nAS2 PROC RGN=’2048K’, Job-step region size
// QMFTPRE=’QMF720’, Prefix for QMF target libraries
// DB2EXIT=’DSN710.SDSNEXIT’, Exit DB2 library name
// DB2LOAD=’DSN710.SDSNLOAD’ DB2 program library name

3. Change in SYSTEM() to your DB2 for OS/390 subsystem ID.
4. Carefully read the comments in the job and make any necessary changes.
5. Submit job QMF720.SDSQSAPE(DSQ1nAS2).
6. Check for a return code of 0 or 4. Review SYSTERM for completion

messages. Do not proceed if the return code is other than zero or four.
Examine SYSTSPRT or SYSPRINT for error messages. Perform corrective
actions and rerun the job.

Create QMF NLF sample tables in a DB2 UDB for iSeries server
1. Edit QMF720.SDSQSAPE(DSQ1nAS4).
2. Verify and change, if necessary, the default values for the installation

parameters in the job’s instream procedure:
//DSQ1nAS4 PROC RGN=’2048K’, Job-step region size
// QMFTPRE=’QMF720’, Prefix for QMF target libraries
// DB2EXIT=’DSN710.SDSNEXIT’, Exit DB2 library name
// DB2LOAD=’DSN710.SDSNLOAD’ DB2 program library name

3. Change in SYSTEM() to your DB2 for OS/390 subsystem ID.

Planning and Installing a QMF NLF

134 Installing and Managing QMF

4. Carefully read the comments in the job and make any necessary changes.
5. Submit job QMF720.SDSQSAPE(DSQ1nAS4).
6. Check for a return code of 0 or 4. Review SYSTERM for completion

messages. Do not proceed if the return code is other than zero or four.
Examine SYSTSPRT or SYSPRINT for error messages. Perform corrective
actions and rerun the job.

Step 12—Set Up NLF batch job to run batch IVP (optional)
For the NLF, you must modify the TSO logon procedure described in “Step
18—Set up QMF batch job to run batch IVP (optional)” on page 54. Modify the
ISPSTART command at the end of that procedure as follows:
ISPSTART PGM(DSQQMFn) NEWAPPL(DSQn) PARM(DSQSMODE=B,DSQSRUN=Q.DSQ1nBAT)

Step 13—Running the IVP for QMF interactive mode
See “Step 33 (for TSO)—run the IVP” on page 85 and “Step 33 (for
CICS)—Run the IVP” on page 87 for information on running the IVP. The NLF
IVP (DSQ1nIVP) (found in the library QMF720.SDSQSAPn) is used to verify
the NLF. This procedure (DSQ1nIVP) imports a query from the QMF English
sample library (prefix.SDSQSAPE), where prefix is the prefix for the QMF data
sets.

The procedures were written assuming that this prefix is QMF720. If this is
not your prefix, change QMF720 to match your prefix wherever it appears in
the DSQ1nIVP procedure.
IMPORT PROC FROM ’QMF720.SDSQSAPn(DSQ1nIVP)’
RUN PROC

Step 14—Installing the national language sample queries and procedures
After the QMF NLF is installed and verified, use it to install the translated
versions of the sample queries and procedures. Do this in two steps:
v “Step 14A—Deleting the existing sample queries and procedures”
v “Step 14B—Installing the national language sample queries and procedures”

on page 136

Step 14A—Deleting the existing sample queries and procedures
Skip this step if you do not have a previous release of the QMF NLF with the
same language identifier installed at your location.

To delete the existing sample queries and procedures, import and run the
QMF procedure DSQ1nSQD (from the QMF Version 7.2 sample library,
QMF720.SDSQSAPn), using translated QMF commands where appropriate.
This procedure (DSQ1nSQD) imports a query from the QMF English sample
library (prefix.SDSQSAPE), where prefix is the prefix for the QMF data sets.

Planning and Installing a QMF NLF

Chapter 10. Planning and Installing a QMF NLF 135

The procedures were written assuming that this prefix is QMF720. If this is
not your prefix, change QMF720 to match your prefix wherever it appears in
the DSQ1nSQD procedure.
IMPORT PROC FROM ’QMF720.SDSQSAPn(DSQ1nSQD)’
RUN PROC

You may see the Database Status panel when you perform this step. You are
not required to perform any action because of it.

DB2 authorization: If you are the user Q, you already have the necessary
authority.

If you are not the user Q, run the following query to give you the necessary
authority:
GRANT UPDATE ON Q.OBJECT_DIRECTORY TO authid
GRANT UPDATE ON Q.OBJECT_REMARKS TO authid
GRANT UPDATE ON Q.OBJECT_DATA TO authid

where authid is your primary authorization ID.

Restarting this step: If the job fails, you can proceed to the next step.

Step 14B—Installing the national language sample queries and
procedures
To install the National Language sample queries and procedures, import and
run the QMF procedure in QMF720.SDSQSAPn (DSQ1nSQI), using translated
QMF commands where appropriate. This procedure (DSQ1nSQI) imports a
query from the QMF English sample library (prefix.SDSQSAPE), where prefix
is the prefix for the QMF data sets.

The procedures were written assuming that this prefix is QMF720. If this is
not your prefix, change QMF720 to match your prefix wherever it appears in
the DSQ1nSQI procedure.
IMPORT PROC FROM ’QMF720.SDSQSAPn(DSQ1nSQI)’
RUN PROC

If you are not the user Q, see Step 34—Install the QMF application queries
and application objects (TSO) for the necessary GRANT queries you must run.

This step also installs the batch mode IVP and sample application procedures.

DB2 authorization: If you are the user Q, you already have the necessary
authority.

If you are not the user Q, run the following query to give you the necessary
authority:

Planning and Installing a QMF NLF

136 Installing and Managing QMF

GRANT UPDATE ON Q.OBJECT_DIRECTORY TO authid
GRANT UPDATE ON Q.OBJECT_REMARKS TO authid
GRANT UPDATE ON Q.OBJECT_DATA TO authid

where authid is your primary authorization ID.

Restarting this step: If a failure occurs during this job, correct the error and
run procedure DSQ1nSQD, which deletes any previously created sample
queries. Then rerun procedure DSQ1nSQI.

Step 15—Running the batch-mode IVP (optional)
See “Step 35—Run the batch-mode IVP (optional)” on page 91 for information
on running the batch IVP. Start the batch IVP by using the national language
program, DSQQMFn, instead of DSQQMFE. This step uses the QMF 7 batch
IVP.

Step 16—Post-installation cleanup
See “Step 36—Clean up after install” on page 92 for information on cleanup
activities following installation.

Skip this step if you do not already have an earlier release of the QMF NLF
installed.

You may want to delete libraries of an earlier QMF NLF release. These are
listed in the following figure with their default prefixes.

Attention: Pay special attention to the prefix to avoid deleting a QMF
Version 7.2 data set.

Planning and Installing a QMF NLF

Chapter 10. Planning and Installing a QMF NLF 137

Step 17—Accept the permanent libraries
Perform this step if this is a first-time QMF NLF install for language n in an
OS/390 system.

The job name for this step is DSQ1nJAC, which invokes procedure DSQ1nJSM
or the SMP/E procedure used at your installation. See “Step 37—Accept the
permanent libraries” on page 96 for information on running the SMP/E
ACCEPT step.

Step 18—Create a cross-CDS environment
Skip this step if no maintenance changes were made to modules common to
base QMF Version 7.2 and the NLF. This step allows SMP/E to keep track of
changed modules.

This step contains an SMP/E job to update the JCLIN data in the SMP/E
environment. This job is located in member DSQ1nCDS (in library
QMF720.SDSQSAPn). The input to this job is located in member DSQ1nJCL

V2R2 Data Sets V2R3 Data Sets V2R4 Data Sets V3R1 Data Sets

QMF220.DSQMACn QMF230.DSQMACn QMF240.DSQMACn QMF310.DSQMACn
QMF220.DSQPMSn QMF230.DSQPMSn QMF240.DSQPMSn QMF310.DSQPMSn
QMF220.DSQSAMPn QMF230.DSQSAMPn QMF240.DSQSAMPn QMF310.DSQSAMPn
QMF220.DSQMAPn QMF230.DSQMAPn QMF240.DSQMAPn QMF310.DSQMAPn
QMF220.DSQCLSTn QMF230.DSQCLSTn QMF240.DSQCLSTn QMF310.DSQCLSTn
QMF220.DSQPLIBn QMF230.DSQPLIBn QMF240.DSQEXECn QMF310.DSQEXECn
QMF220.DSQSLIBn QMF230.DSQSLIBn QMF240.DSQUSERn QMF310.DSQUSERn
QMF220.DSQMLIBn QMF230.DSQMLIBn QMF240.DSQPLIBn QMF310.DSQPLIBn
QMF220.DSQTLIBn QMF230.DSQTLIBn QMF240.DSQSLIBn QMF310.DSQSLIBn

QMF240.DSQMLIBn QMF310.DSQMLIBn
QMF240.DSQTLIBn QMF310.DSQTLIBn

V3R1M1 Data Sets V3R2 Data Sets V3R3 Data Sets V6R1 Data Sets

QMF311.DSQMACn QMF320.DSQMACn QMF330.DSQMACn QMF610.ADSQMACn
QMF311.DSQPMSn QMF320.DSQPMSn QMF330.DSQPMSn QMF610.ADSQPMSn
QMF311.DSQSAMPn QMF320.DSQSAMPn QMF330.DSQSAMPn QMF610.SDSQSAPn
QMF311.DSQMAPn QMF320.DSQMAPn QMF330.DSQMAPn QMF610.SDSQPLBn
QMF311.DSQCLSTn QMF320.DSQCLSTn QMF330.DSQCLSTn QMF610.SDSQCLTn
QMF311.DSQEXECn QMF320.DSQEXECn QMF330.DSQEXECn QMF610.SDSQMLBn
QMF311.DSQUSERn QMF320.DSQUSERn QMF330.DSQUSERn QMF610.SDSQEXCn
QMF311.DSQPLIBn QMF320.DSQPLIBn QMF330.DSQPLIBn QMF610.SDSQUSRn
QMF311.DSQSLIBn QMF320.DSQSLIBn QMF330.DSQSLIBn QMF610.DSQMApn
QMF311.DSQMLIBn QMF320.DSQMLIBn QMF330.DSQMLIBn
QMF311.DSQTLIBn QMF320.DSQTLIBn QMF330.DSQTLIBn

Figure 31. Libraries to be deleted from earlier QMF NLF releases

Planning and Installing a QMF NLF

138 Installing and Managing QMF

(in library QMF720.SDSQSAPn).

Chapter 10. Planning and Installing a QMF NLF 139

140 Installing and Managing QMF

Chapter 11. Binding QMF Version 7.2 Packages at a
Remote Server

In order for a QMF Version 7.2 requester installation to be able to
communicate to a server, QMF Version 7.2 packages must be present at the
server. If a complete QMF Version 7.2 new or migration installation was
performed at the server, communications can be started and nothing further
needs to be done. But, for those servers containing QMF Version 3.3 or above
where migration is not a current option, you can run the job DSQ1BPKG
found in the QMF720.SDSQSAPE dataset. This job binds QMF Version 7.2
packages at any server specified (provided QMF Version 3.3 or higher is
detected at the server). Read, tailor and submit job DSQ1BPKG to perform the
binds. Check the job output for error messages and rerun the job as necessary.

Scenario for use: Local DB2 for OS/390 subsystem, DB2G, is migrated from
QMF Version 3.3 to QMF Version 7.2. QMF users in subsystem DB2G
regularly communicate with a DB2 for VM server, SQLV61A, which contains
QMF Version 3.3. The DB2 for VM DBA cannot perform a QMF migration to
Version 7.2 at the VM server. In order for the QMF Version 7.2 installation in
DB2G to communicate with QMF on SQLV61A, job DSQ1BPKG must be run
to bind packages at the DB2 for VM server.

© Copyright IBM Corp. 1983, 2002 141

|

|

|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

142 Installing and Managing QMF

Part 2. Installing QMF on VM/ESA

Chapter 12. Introduction 145
Overview of QMF 145

QMF objects 145
Overview of QMF with remote unit of
work 146

Terminology 147
Overview of the installation process . . . 147

Where the objects reside 147
Local and remote installation 147
Connecting to a remote database from
VM 147

Chapter 13. Planning for Installation. . . 149
Hardware requirements 149
Prerequisite software. 149
Virtual storage requirements 153
Required DB2 for VM knowledge 154
DB2 for VM requirements 154

A PUBLIC DBSPACE is required for
saving data 155
Database CONNECT ID “Q” and
“SQLDBA” 155
QMF SQL install packages 155
Further requirements. 155

Before you begin 159
Previous releases of QMF 159
Migration and fallback 159
QMF National Language Feature (NLF)
considerations 160
installing QMF into a workstation
database server on VM 161

Chapter 14. Installing QMF Version 7.2
into the DB2 for VM Database 163
QMF installation flow diagram 163
The installation steps 166

Preliminary: read the program directory
and complete the QMF Version 7.2
worksheet 166
Step 1—Create QMF installation control
file: DSQ2ECTL 167
Step 2—Creating DB2 for VM DBSPACEs:
DSQ2DBSC 168
Step 3—Run QMF installation exec:
DSQ2EINS 170

Step 4—Start QMF: DSQ2EINV 171
Step 5—Running IVP for QMF interactive
mode : DSQ2EIVP 177
Step 6—Installing QMF sample objects
and application objects: DSQ2ESQD and
DSQ2ESQI 179
Step 7—Run the batch-mode IVP
(optional): DSQ2EBAT 180
Step 8—Deleting previous versions of
QMF (optional): DSQ2BDEL 181
Step 9—Post-installation cleanup. . . . 182
Step 10—Load QMF database packages to
a remote server (optional): DSQ2BPKB . . 182
Step 11—Recreate QMF views (optional):
DSQ2BVW 183

Chapter 15. Installing a QMF Version 7.2
National Language Feature (NLF). . . . 185
NLF installation execs 185
Installing a National Language Feature . . 185
Hardware and program product
requirements 186
The installation steps 186

Preliminary: Read the NLF program
directory and complete the worksheet . . 186
Step 1—Create the QMF NLF installation
control file: DSQ2nCTL 187
Step 2—Run QMF NLF installation exec:
DSQ2nINS 187
Step 3—Start QMF NLF: DSQ2nINV . . 189
Step 4—Run the IVP for QMF NLF
interactive mode: DSQ2nIVP 190
Step 5—Install QMF NLF sample objects
and application objects: DSQ2nSQD and
DSQ2nSQI 191
Step 6—Run the IVP for QMF NLF batch
mode (optional): DSQ2nBAT 192
Step 7—Post-installation cleanup. . . . 192

© Copyright IBM Corp. 1983, 2002 143

144 Installing and Managing QMF

Chapter 12. Introduction

The Query Management Facility (QMF) is a query and report writing program
for users who have little or no data processing knowledge, as well as those
with much experience in the field. This program allows users to query data
and to generate online reports and charts based on the resulting data.

Overview of QMF

QMF runs under the IBM® Virtual Machine (VM), and accesses data through
DB2 for VM. Provided you are not using remote unit of work with QMF
Version 7.2, any data retrieved, updated, or deleted from the database is
handled by DB2 for VM. QMF uses the Graphical Data Display Manager
(GDDM®) to display panels, and the Interactive System Productivity Facility
(ISPF) to display application panels.

If you are a Shared File System (SFS) directory user you can assume that
whenever the term “minidisk” is used in this manual the same conditions
apply to a “SFS directory”.

QMF objects
QMF works with the following objects:

Data Information represented by alphanumeric characters contained in
tables and formatted in reports.

Query Specifies the data you want and the action you want to perform.

Form Describes how retrieved data should be formatted into a report or
chart.

Procedure
Contains one or more QMF commands that can be run as a group.

Profile
Contains information about how to process an individual user’s
session.

These objects are brought into a temporary storage area where users can
change and display reports or charts online without actually changing the
database. When the user is satisfied with the changes, the objects can be saved
in the database, as shown in the following diagram:

© Copyright IBM Corp. 1983, 2002 145

Overview of QMF with remote unit of work
With the remote unit of work function, QMF can access relational data in a
remote DB2 for OS/390, DB2 for VM, DB2 for VSE, DB2 Workstation or DB2
iSeries database server. Once connected to a location you can access the data
and QMF objects at that location in much the same way you would access
data and objects without a remote unit of work connection.

If you use the start-up program parameter DSQSDBNM or the QMF
CONNECT command to specify a remote location to connect to, all
subsequent QMF commands that access the database are directed to that
location.

Note: Before you can connect to a location you must have QMF installed in
the database at that location.

Figure 32. QMF Relationship to VM, DB2 for VM, and GDDM

Introduction

146 Installing and Managing QMF

Terminology

You are installing QMF Version 7 Release 2 (for brevity referred to as QMF
Version 7.2). Where QMF appears without a qualifier, (For example, “QMF
will run on ... ”) we mean QMF Version 7.2.

Overview of the installation process

QMF installation involves three object groups
v QMF load modules
v QMF control tables, catalog views, and sample tables
v QMF database packages

Where the objects reside
The load modules are saved into a discontiguous shared segment (DCSS) that
can be used from the VM user machines where users invoke QMF. The
control tables, catalog views, sample tables, and packages are installed in each
database that you want to access.

Local and remote installation
In a local installation you install QMF database objects into a DB2 for VM
database in the same system into which you are installing QMF.

In a remote installation you install QMF database objects into a DB2 database
in another system. The application requester and server are not required to
reside in the same system, but a system can be configured as both.

Connecting to a remote database from VM
If you plan to connect to a remote DB2 database from VM (with the
DSQSDBNM startup parameter or the CONNECT command) perform the
following task:
v Install the QMF control tables, catalog views, sample tables, and packages

in the DB2 database you want to connect to. For a DB2 VM, DB2
workstation, or DB2 iSeries database installation, this can be accomplished
using the installation jobs that are outlined in this chapter. For installation
into a DB2 OS/390 or DB2 VSE database, refer to the appropriate operating
system installation instructions in this book.
Note: If you do not have QMF installed in your local DB2 for VM database
you must use the DSQSDBNM startup parameter to connect to the DB2
database during the QMF session initialization.

v If QMF Version 3.2 or higher is already installed in the remote database you
want to connect to, you can simply install the new required QMF Version
7.2 database packages into that remote database. Use the job outlined in
“Step 10—Load QMF database packages to a remote server (optional):
DSQ2BPKB” on page 182.

Introduction

Chapter 12. Introduction 147

Introduction

148 Installing and Managing QMF

Chapter 13. Planning for Installation

This chapter describes the hardware, program products, and storage required
to install and run QMF. It presents an installation planning overview.

Hardware requirements

QMF runs on any processor supported by the VM operating system and DB2
for VM. QMF can access all direct-access storage devices (DASD) supported
by VM and DB2 for VM, and all terminals supported by GDDM. For
information about terminals supported by the GDDM, consult the GDDM
general information manual.

In order to use the Double Byte Character Set (DBCS) you must have the IBM
5550 Kanji workstation, or equivalent.

Prerequisite software

The following table lists the program products with the minimum release
levels required to support QMF for VM Version 7.2. Later releases that are not
available at the QMF Version 7.2 announcement time are not supported unless
specifically stated otherwise.

Table 25. Prerequisite Software For QMF For VM/ESA Version 7.2

Required product Version and release Number

IBM VM/ESA Version 2.2 5654–030

SQL/DS for VM Version 3.5 5688–103

GDDM/VMXA or Version 2.3 5684–007

GDDM/VM Version 3.1.1 5684–168

The following table lists the program products with the minimum release
levels required to support optional functions for QMF for VM Version 7.2.
Later releases that are not available at the QMF Version 7.2 announcement
time are not supported unless specifically stated otherwise.

© Copyright IBM Corp. 1983, 2002 149

|||

Table 26. Prerequisite software for optional functions for QMF for VM V7.2

Product Version and release Number

ISPF Version 3.2 5684–043

CHARTS (Interactive Chart Utility):

GDDM — PGF (for
GDDM/VMXA Version 2.3) or

Version 2.1.1 5668–812

GDDM — PGF (for GDDM/VM
Version 3.1.1)

Version 2.1.2 5668–812

Default editor for QMF EDIT command, display printed report application (DPRE),
ISPF command, and DXT/End User Dialogs bridge support:

ISPF/Program Development
Facility for VM

Version 3.2 5684–123

QMF Document Interface:

VM/SP System Product Editor
(XEDIT)

IBM OfficeVision/VM Version 1.2 5684–084

ISPF/Program Development
Facility for VM

Version 3.2 5684–123

Callable Interface Programs using the callable interface can be written in:

IBM C/370 Compiler and Version 2 5688–187

C/370 Library Version 2 5688–188

IBM HLASM Version 1.1 or Version 1.2 5696–234

VS COBOL II Compiler and
Library

Version 1.4 5688–023

VS COBOL II Compiler, Library
and Debugging Facility

Version 1.4 5668–958

AD/Cycle COBOL/370 Version 1.1 5688–197

IBM COBOL for MVS and VM Version 1.2 5688–197

AD/Cycle C/370 Compiler Version 1.1 5688–216

VS FORTRAN

(REXX and the SAA callable
interface for FORTRAN are not
supported in the QMF/CICS
environment.)

Version 2.5 5688–806

OS PL/I Version 2.2.3 5668–909

Planning for Installation

150 Installing and Managing QMF

Table 26. Prerequisite software for optional functions for QMF for VM V7.2 (continued)

Product Version and release Number

IBM PL/I for MVS and VM Version 1.1.1 5688–235

REXX: TSO Extensions
(TSO/E)(REXX and the SAA
callable interface for FORTRAN
are not supported in the
QMF/CICS environment.)

Version 2.1 5685–025

REXX(REXX and the SAA
callable interface for FORTRAN
are not supported in the
QMF/CICS environment.)

In VM/ESA

Assembler H Version 2.1 5668–962

IBM C/C++ for MVS/ESA (In
conjunction with Language
Environment for MVS and VM
(MVS feature)).

Version 3 5655–121

User Edit Routines can be written in:

IBM HLASM Version 1 5696–234

VS COBOL II Compiler and
Library

Version 1.4 5688–023

COBOL/370 Compiler and
Library

Version 1.1 5688–197

VS COBOL II Compiler and
Library

Version 1.3.1 5688–023

VS COBOL II Compiler, Library
and Debugging Facility

Version 1.3.1 5668–958

IBM COBOL for MVS and VM Version 1. 2 5688–197

OS PL/I Version 2.3 5668–909

IBM PL/I for MVS and VM Version 1.1.1 5688–235

Assembler H or standard
assembler

Version 2.1 5668–962

Governor Exit Routine

IBM HLASM Version 1 5696–234

QMF for Windows:

Microsoft Windows XP

Microsoft Windows ME

Microsoft Windows 2000

Planning for Installation

Chapter 13. Planning for Installation 151

Table 26. Prerequisite software for optional functions for QMF for VM V7.2 (continued)

Product Version and release Number

Microsoft Windows 95 or 98

Microsoft Windows NT Version 4.0

IBM APPC Networking Services
for Windows, or

Version 1

Microsoft SNA Server, or Version 2, Version 2.1, or Version
2.11

Novell Netware for SAA, or Version 2

Attachmate EXTRA! APPC Client Version 3.11

Remote Unit of Work (VM)

Connection to remote DB2 for VM on VM DRDA Application Server:

At the local DB2 for VM location:

SQL/DS for VM Version 3.5 5688–103

QMF for VM Version 7.2 5697-F42

At the remote DB2 for VM
database:

SQL/DS for VM Version 3.5 5688–103

QMF for VM Version 7.2 5697-F42

Connection to remote DB2 for MVS/ESA DRDA Application Server:

At the local DB2 for VM
database:

SQL/DS for VM Version 3.5 5688–103

QMF for VM Version 7.2 5697-F42

At the remote DB2 for MVS/ESA
location:

DB2 for MVS Version 3.1 5685–DB2

QMF for OS/390 Version 7.2 5675-DB2

Connection to remote DB2 for VSE DRDA Application Server:

At the local DB2 for VM location:

SQL/DS for VM Version 3.5 5688–103

QMF for VM Version 7.2 5697-F42

At the remote DB2 for VSE/ESA
location:

SQL/DS for VSE Version 3.5 5688–103

Planning for Installation

152 Installing and Managing QMF

Table 26. Prerequisite software for optional functions for QMF for VM V7.2 (continued)

Product Version and release Number

QMF for VSE Version 7.2 5697-F42

Connection to DB2 PE, DataJoiner, Common Server, iSeries:

At the local DB2 for VM location:

SQL/DS for VM Version 3.5 5697-F42

QMF for VM Version 7.2 5697-F42

At the remote database
configured for APPC
communications:

DB2 Parallel Edition for AIX or Version 1. 2 5765–328

DataJoiner for AIX or Version 1.2 84H1212

DB2 for Windows NT or Version 2.1 53H7474

DB2 for AIX or Version 2.1 41H2128

DB2 for HP-UX or Version 2.1 10H2366

DB2 for Solaris or Version 2.1 10H2421

DB2 for SCO OpenServer or Version 2.1 79H5359

DB2 for SINIX or Version 2.1 79H4133

DB2 for iSeries Version 4.4 5769–ST1

Virtual storage requirements

All QMF modules (31-bit shared segment) use approximately 2.8 MB total.
User storage required to run QMF requires approximately 0.5 to 1 MB. You
can allocate storage for both purposes above 16 MB. Additional storage is
required for other applications. For example, if you run in a standard CMS
environment with ISPF and GDDM, you need approximately 6 MB.

If users generate complex reports or use CMS execs to run other functions
within a QMF session more storage may be required. Graphics (for example,
the CHART function) requires additional storage.

Refer to the Program Directory on the ISD tape for information on
Discontiguous shared segments (DCSS) storage requirements or on disk
storage requirements.

Planning for Installation

Chapter 13. Planning for Installation 153

Required DB2 for VM knowledge

Although QMF has been designed to be installed with a minimum of DB2 for
VM knowledge, some knowledge of DB2 for VM is required.

General:
v Identifying programs and userids through the CONNECT command.

Understand how the CONNECT command can be used to acquire DBA
authority. For more details, see DB2 Server for VSE & VM Database
Administration

v What a DBSPACE is and the meaning of a PUBLIC or PRIVATE DBSPACE.
DBSPACEs are discussed briefly in “QMF DBSPACE requirements” on
page 156. For more details, see DB2 Server for VSE & VM Database
Administration

v CREATE, INSERT, and GRANT SQL statements. These SQL statements are
used in the QMF installation procedure. Information on what these
statements do and how to change them is found in DB2 Server for VSE &
VM SQL Reference

v Preprocessing a program. All application programs that contain SQL
commands must be preprocessed. Information about preprocessing a
program is in DB2 Server for VSE & VM Application Programming

v Familiarity with the terms remote unit of work, application requester, and
application server.

remote unit of work
QMF supports remote unit of work. With remote unit of work you can
connect to locations that have QMF installed in either the DB2 or the
DB2 for VM database system.

application requester and server
If you use remote unit of work support to access other remote
databases, then each VM user machine that can be used to run QMF is
known as an application requester for QMF. Each database that contains
the QMF database objects is known as an application server for QMF.

v Understanding how CMS communications directories are used by DB2 for
VM.

DB2 for VM requirements

QMF uses standard interfaces to the database. Because it supports only one
DB2 for VM database, if you want to use QMF in more than one database,
you must install QMF into each one. The QMF database installation execs
prompt the installer for the name of the DB2 for VM database into which
QMF is being installed. The QMF installation execs then issue a DB2 for VM
SQLINIT command for the specified database.

Planning for Installation

154 Installing and Managing QMF

A PUBLIC DBSPACE is required for saving data
A user must have a PUBLIC DBSPACE to use the QMF SAVE DATA
command. The size of this DBSPACE can vary depending on user
requirements.

To run the QMF Installation Verification Procedure (IVP), this DBSPACE must
exist because the SAVE DATA command is used during the IVP. A minimal
DB2 for VM DBSPACE (128 pages) is required to run the QMF IVP.

Database CONNECT ID “Q” and “SQLDBA”
QMF uses a CONNECT ID of Q for all control tables, sample tables, sample
queries, and views. The installer does not need a VM user ID of Q; however,
all installation steps that update the database issue the DB2 CONNECT
command for the userid of Q.

The CONNECT ID of SQLDBA is required to set up the CONNECT ID Q.
Because it was created when DB2 for VM was installed, the CONNECT ID of
SQLDBA should already exist in your database.

QMF SQL install packages
During installation, QMF runs two programs that contain SQL statements. The
DB2 for VM Database Utility (SQLDBSU) loads the database packages for the
DSQDBINS and DSQDBSQL programs into each database server where QMF
is being installed.

Further requirements
The following data base requirements exist for each database that QMF is
installed in. The sections that follow describe the items in this list.
v QMF DBSPACE requirements

There are ten DBSPACEs required for QMF. They are established during
installation.
QMF must have a DBSPACE to store user tables created as a result of using
the QMF SAVE DATA command. You can use an existing DBSPACE or you
can create a new one during the installation of QMF.

v QMF control tables

There are eight QMF control tables. Each table is created in its own
DBSPACE.

v QMF catalog views

There are three QMF catalog views required for the QMF LIST command,
enabling users to list database objects that they are authorized to use.

v QMF sample tables

There are nine sample tables that are created in one DBSPACE.
v QMF SQL packages

Planning for Installation

Chapter 13. Planning for Installation 155

QMF contains several SQL packages that must be loaded into each database
into which you install QMF. The packages are loaded after the QMF control
tables are created during installation.

QMF DBSPACE requirements
DB2 for VM stores tables and indexes in tables within DBSPACEs. A
DBSPACE is a logical allocation of space in the database. A DBSPACE holds
data in 4,096-byte blocks called pages. QMF requires the use of public
DBSPACEs, which allow multiple user access at the same time; any one user
can be doing update, insert, or delete functions.

Because you cannot extend DBSPACEs after they are defined, you should
overestimate the required number of pages. The penalty for overestimating
DBSPACE pages is nominal because the unused DBSPACE pages are not
stored. On the other hand, the penalty for underestimating DBSPACE pages
can be quite expensive in terms of reorganization activities required to
reestablish the data in a larger DBSPACE later.

DBSPACEs must first be created and then acquired for use through the DB2
ACQUIRE DBSPACE command. Because QMF issues the ACQUIRE DBSPACE
command, you must be sure you have already created the appropriate
DBSPACEs.

The DBSPACEs required by QMF, as well as their contents and default sizes,
are shown in Table 27.

Table 27. DBSPACEs Required by QMF

DBSPACE
Name Contents Default Size

DSQTSCT1 Q.OBJECT_DIRECTORY table 256

DSQTSCT2 Q.OBJECT_REMARKS table 256

DSQTSCT3 Q.OBJECT_DATA table 5120

DSQTSPRO Q.PROFILES table 128

DSQTSSYN Q.COMMAND_SYNONYMS table 128

DSQTSLOG Q.ERROR_LOG table 128

DSQTSGOV Q.RESOURCE_TABLE table 128

DSQTSRDO Q.DSQ_RESERVED table 128

DSQ2STBT QMF sample tables 128

DSQTSDEF QMF SAVE DATA 128

Planning for Installation

156 Installing and Managing QMF

Notes:

1. The default size of these DBSPACEs may not be correct for your
installation. You should evaluate the DBSPACE requirements of your
installation before creating the DBSPACEs.

2. DSQTSCT3 should be your largest DBSPACE because it contains all your
QMF queries, procedures, and forms. DBSPACEs DSQTSCT1 and
DSQTSCT2 are created and acquired with a size of one page for each 25
pages in DBSPACE DSQTSCT3.

3. DSQTSDEF is the default name for the DBSPACE to be used by the QMF
SAVE DATA command. This DBSPACE name can be changed.

4. Do not use SYS as the first three characters of a DBSPACE name; SYS
denotes a DBSPACE reserved for DB2 system usage.

5. The smallest DBSPACE size that DB2 for VM allows is 128 pages. DB2
may actually give you more pages than you request because it acquires
storage in units of 128 pages. DB2 determines the number of pages you
receive by rounding the number you specify to the next higher multiple of
128 pages.
Example: If you specify PAGES=53, DB2 acquires a block of 128 pages; if
you specify PAGES=130, DB2 acquires 256 pages.

To determine how many of the ten DBSPACEs you need to create for your
installation, perform these steps:
1. Identify the number of additional DBSPACEs that you need, based on the

following considerations:
v If you are installing QMF Version 7.2 into a database that does not

contain any version of QMF, you need to create all ten DBSPACEs
shown in Table 27 on page 156.

v If you have QMF Version 3.1 or a later release installed in the same
database in which you are installing QMF Version 7.2, no new
DBSPACEs are needed.

2. Run the following query to list the DBSPACEs defined and their sizes. To
run this query, you must have DB2 for VM DBA authority or have
SELECT authority on table SYSTEM.SYSDBSPACES. Run this query using
QMF or ISQL:
SELECT * FROM SYSTEM.SYSDBSPACES

WHERE DBSPACETYPE=1 AND OWNER=’’

Note: If you plan to create DBSPACEs while installing QMF, see the
discussion in “Step 2—Creating DB2 for VM DBSPACEs: DSQ2DBSC” on
page 168. If you need to create additional DBSPACEs after QMF is
installed, use the procedures described in DB2 Server for VSE & VM
Database Administration

Planning for Installation

Chapter 13. Planning for Installation 157

QMF control tables
There are eight QMF control tables, each created in its own DB2 for VM
DBSPACE. (Separate DBSPACEs improves performance.) The contents of each
control table are:

Table 28. The QMF control tables

Table DB space Contents

Q.OBJECT_DIRECTORY DSQTSCT1 General information on all
queries, forms, and
procedures in the database

Q.OBJECT_REMARKS DSQTSCT2 Comments that were saved
with the queries, forms,
and procedures in the
database

Q.OBJECT_DATA DSQTSCT3 Text defining the queries,
forms, and procedures in
the database

Q.PROFILES DSQTSPRO User session profiles

Q.ERROR_LOG DSQTSLOG Information on system,
resource, and “unexpected
condition” errors

Q.COMMAND_SYNONYMS DSQTSSYN Command synonyms

Q.RESOURCE_TABLE DSQTSGOV Resource and limit values
for the QMF governor

Q.DSQ_RESERVED DSQTSRDO The information needed
during QMF initialization

QMF catalog views
QMF requires the following three catalog views for the QMF LIST command
and Prompted Query functions:
v Q.DSQEC_TABS_SQL is a view on the SYSTEM.SYSCATALOG and

SYSTEM.SYSTABAUTH DB2 for VM system tables.
v Q.DSQEC_COLS_SQL is a view on the SYSTEM.SYSCOLUMNS and

SYSTEM.SYSTABAUTH DB2 for VM system tables.
v Q.DSQEC_QMFOBJS is a view on the QMF control tables

Q.OBJECT_DIRECTORY and Q.OBJECT_REMARKS.

QMF sample tables
The sample tables are placed in DBSPACE DSQ2STBT. The table contents are
described in the following list. (Each table provided by QMF contains
information on the fictional J & H Supply Company.)

Table Contains Information on:

Planning for Installation

158 Installing and Managing QMF

Q.ORG
The company organization

Q.STAFF
The company personnel

Q.APPLICANT
New candidates for hire

Q.PRODUCTS
The company’s products

Q.SALES
Sales and commissions

Q.PROJECT
Projects undertaken, by department

Q.INTERVIEW
Interviews of new hires

Q.SUPPLIER
Vendor information

Q.PARTS
Product parts data

QMF SQL packages
QMF contains SQL packages which must be loaded into each database in
which QMF is installed. QMF Version 7.2 access modules contain the DSQD
prefix in the SYSTEM.SYSACCESS table. For more information on access
modules see DB2 Server for VM System Administration.

Before you begin

Before you begin installing QMF Version 7.2 review these topics.

Previous releases of QMF
If you have a previous version of QMF installed, you can install the new
release of QMF into a different DB2 for VM database for testing purposes, or
you can install and run both releases in the same database concurrently. If you
install QMF Version 7.2 in the same database as the previous release, make
certain that the sample tables of the previous release are not used during
installation.

Migration and fallback

Note: Skip this section if QMF is being installed for the first time.

Your users might need help before they can operate the new release of QMF.
Supplying this help is what “migration” means.

If you decide to return to your earlier release of QMF, your Version 7.2 users
might need help. Supplying this help is what “fallback” means.

Planning for Installation

Chapter 13. Planning for Installation 159

Migration and fallback are post-installation operations. They are described in
Appendix C, ″Migration and Fallback″. For planning purposes, you should
read about them before beginning the Version 7.2 installation.

QMF National Language Feature (NLF) considerations
The QMF National Language Feature (NLF) is a software feature that
provides QMF users with a QMF environment tailored to the language of
their choice. NLFs enable users to enter QMF commands, view help, and
perform QMF tasks in languages other than English. NLFs are installed as
separate features of QMF.

Example
When a user elects to operate QMF in a German-language environment, QMF
commands, keywords, panels, and messages are displayed in German.

A NLF does not provide any new QMF function. In general, anything users
can do in the base English-language session can be done in an NLF session,
and vice versa. For the most part, the procedures for both the base and NLF
sessions are the same; however, any special considerations for NLF users are
preceded by the phrase: If you are using an NLF.

A QMF NLF is installed after you have installed QMF. For a description of
NLF, see Chapter 15, “Installing a QMF Version 7.2 National Language Feature
(NLF)” on page 185.

Some names of programs and phases shown in this book have an n symbol in
them, indicating that the name can vary. If you are using an NLF, replace all n
symbols you see in this book with the one-character national language
identifier (NLID) from Table 29 that matches the NLF you installed. The table
also shows the names by which QMF recognizes each language.

Table 29. NLIDs representing QMF base (English) and National Language Features

NLF NLID
Name QMF uses for this
NLF

Brazilian Portuguese P PORTUGUES

Canadian French C FRANCAIS CANADIEN

Danish Q DANSK

English E ENGLISH

French F FRANCAIS

German D DEUTSCH

Italian I ITALIANO

Japanese K NIHONGO

Korean H HANGEUL

Planning for Installation

160 Installing and Managing QMF

Table 29. NLIDs representing QMF base (English) and National Language
Features (continued)

NLF NLID
Name QMF uses for this
NLF

Spanish S ESPANOL

Swedish V SVENSKA

Swiss French Y FRANCAIS (SUISSE)

Swiss German Z DEUTSCH (SCHWEIZ)

Uppercase English U UPPERCASE

The uppercase feature (UCF) uses the English language, but converts all text
to uppercase characters. The uppercase characters allow users working with
Katakana terminals to use the product and get English online help and
messages. Terminals equipped with Katakana support include IBM 3277, 3278,
and 3279 terminals, as well as IBM 5550 Multistations.

installing QMF into a workstation database server on VM
In order to access remote database servers from QMF on VM, DRDA APPC
communications must be in place between VM and the remote server. VM
uses VTAM and AVS definitions for the remote server. These definitions are
accessed via the CMS COMDIR NAMES file, in which the VM gateway, DB2
remote server name, mode name, and session limits are defined for the remote
DRDA connection.

In addition, you must have a database created on the workstation database
server and you must have SYSADM authority to that database for your install
ID.

Some QMF install steps use the SQLDBSU DB2 for VM utility. Prior to
running the QMF installation exec (DSQ2EINS), you must install SQLDBSU
into the remote database server.

For more information about installing SQLDBSU into a remote database
server, see DB2 Server for VSE & VM Database Services Utility for IBM VM
Systems

Planning for Installation

Chapter 13. Planning for Installation 161

162 Installing and Managing QMF

Chapter 14. Installing QMF Version 7.2 into the DB2 for VM
Database

This chapter explains the steps for performing the installation of QMF Version
7.2 from VM. If you have already installed QMF Version 7.2 and want to
install it into another database, follow the directions in this chapter.

If you are installing QMF Version 7.2 for the first time, read the QMF Program
Directory first and complete the steps listed therein to unload QMF from tape
to disk. Check the program directory for modifications to the procedures
described in this chapter, then complete the steps in this chapter to complete
the QMF database installation.

The QMF installation uses the Restructured Extended Executor (REXX)
language execs to install QMF into a DB2 database. For information on how
to use REXX, see the VM System Product Interpreter Reference manual.

Installation considerations:

1. The QMF-supplied execs that install QMF into a database are designed to
prompt the installer for variable information. There is no requirement for
your installation to change the supplied installation execs. Every prompt
message asks for variable input, and each offers an optional help or cancel
response.
v If help is issued, a small abstract of the prompt request is displayed.
v If cancel is issued, the exec terminates.

2. All variables are resolved before execution of any given installation step,
which can be restarted from the beginning.

3. Several output files from the execs are routed to the printer. You may want
to spool your printer to HOLD before you start the database installation.

QMF installation flow diagram

Figure 33 on page 164 is a flow diagram of QMF installation to help acquaint
you with the installation process before starting.

© Copyright IBM Corp. 1983, 2002 163

Figure 33. Installation steps for QMF Version 7.2 (Part 1 of 2)

Installing QMF 7.1

164 Installing and Managing QMF

Figure 34. Installation steps for QMF 7.2 (Part 2 of 2)

Installing QMF 7.1

Chapter 14. Installing QMF Version 7.2 into the DB2 for VM Database 165

The installation steps

The installation steps are outlined on the following pages.

If you are performing a QMF Version 7.2 migration installation, that is, if you
are installing QMF Version 7.2 into a database that already has a previous
level of QMF installed, follow all the installation steps, indicating the previous
QMF level when required.

Preliminary: read the program directory and complete the QMF Version
7.2 worksheet

Before beginning the installation process, read the QMF Program Directory
shipped with the ISD tape for supplementary data. The program directory
contains all steps for installing QMF from tape to disk and building the DCSS.
You must complete the steps in the program directory before doing the
installation steps in this book. Only QMF installation from DB2 for VM is
described in this book.

Figure 35. Installation steps for QMF 7.2 (Part 3 of 3)

Installing QMF 7.1

166 Installing and Managing QMF

The following worksheet lists the information you provide during QMF
installation.

Table 30. Information Required during QMF Installation (QMF 7.2 Worksheet)

Information required for: Supply data fields containing __________

No prior
QMF

QMF
Migration

QMF in DB2
Workstation
Server

QMF in
iSeries
Server

v Database/location name ________ ________ ________ ________

v Database type (DB2 VM, DB2
Workstation Server, or DB2 UDB
for iSeries)

DB2VM DB2VM DB2WS DB2400

v Prior QMF Version/Release level
(if any)

N/A ________ N/A N/A

v SQLDBA CONNECT password ________ ________ N/A N/A

v Q CONNECT password ________ ________ N/A N/A

v Default DBSPACE name for
SAVE DATA command (default is
DSQTSDEF)

________ ________ N/A N/A

v Number of DBSPACE pages for:

DBSPACE NAME (default)

Q.OBJECT_DATA table (5120) ____ N/A N/A N/A

Q.PROFILES table (128) ____ N/A N/A N/A

Q.ERROR_LOG table (128) ____ N/A N/A N/A

Q.COMMAND_SYNONYMS table
(128)

____ N/A N/A N/A

Q.RESOURCE_TABLEtable (128) ____ N/A N/A N/A

SAVE DATA command (128) ____ N/A N/A N/A

Use DB2WS as the database type for all workstation database servers. Use
DB2400 as the database type for DB2 iSeries database servers.

The QMF table spaces created in workstation database servers are
system-managed. Thus, they have no default size.

Step 1—Create QMF installation control file: DSQ2ECTL
The QMF exec, DSQ2ECTL, prompts you for information that is required in
the QMF installation process.

Installing QMF 7.1

Chapter 14. Installing QMF Version 7.2 into the DB2 for VM Database 167

To create the QMF installation control file, do the following:
1. Access the QMF distribution disk in WRITE mode.
2. Ensure that your A disk has enough room to generate temporary files.
3. Supply the information for the worksheet, if you have not yet done so.
4. Run the exec: DSQ2ECTL.

Prompts
You receive a series of prompts that request the information you developed
using the worksheet (Table 30 on page 167).

Anytime during this process, you can enter:
v HELP on the command line for information
v CANCEL to terminate the process before completion

A file, QMFV720E INSTALL, is created on your installation disk. It contains
the information you supplied to the previous prompts.

If an installation file already exists from a previous installation, the
information you enter is appended to this file. The previous information is
“deactivated”, but saved, for service purposes.

Step 2—Creating DB2 for VM DBSPACEs: DSQ2DBSC

Note: Skip this step if one or more of the following are true:
v You are installing QMF into a remote database server.
v The database you are installing QMF Version 7.2 into has QMF

Version 3.1 or later already installed.
v There are sufficient public DBSPACEs available for the DB2 for VM

database of the sizes indicated in the installation worksheet (Table 30
on page 167). You can check this by invoking ISQL and issuing the

following:
SELECT * FROM SYSTEM.SYSDBSPACES

WHERE DBSPACETYPE=1 AND OWNER=’’

To create the DBSPACEs required by QMF, do the following:
1. Access the QMF distribution and production disks.
2. Ensure that the QMF installation control file QMFV720E INSTALL exists

on the distribution disk.
3. Ensure that you have an A-disk to generate a temporary file.
4. Run the exec: DSQ2DBSC.

This exec will:
v Use the QMFV720E INSTALL file on the QMF distribution disk to

determine whether or not this is a new or migration install. If this is a

Installing QMF 7.1

168 Installing and Managing QMF

new install, all ten DBSPACEs are created. If this is a migration from
QMF V2R4 or an earlier release, only one DBSPACE is created.

v Prompt you to enter the storage subpool you want to use.
v Create the 'dbname SQLADBSP A' file ('resid SQLADBSP A' file if the

database you are installing QMF into is Version 7.2) on your A-disk.
('dbname' is the database name and 'resid' is the resource ID for your
DB2 for VM database.)

5. Send the 'dbname SQLADBSP ' file (or 'resid SQLADBSP’) file to the
database virtual machine.

6. Log onto the database virtual machine and stop the database. (Typically
with the SQLEND command.)

7. Receive the 'dbname SQLADBSP' (or 'resid SQLADBSP') file to the
A-disk.

8. Access the DB2 for VM service disk (DASD 193) as the V-disk.
9. Run the SQLADBSP exec, by entering:

SQLADBSP DB(dbname)

where dbname is the name of the DB2 for VM database. DBSPACE(s) is
added based on the information in the dbname SQLADBSP file.

You receive the following message:
dbname SQLADBSP WAS FOUND.
SHOULD THIS FILE BE USED FOR ADD DBSPACE?

Answer YES.

You receive a message inquiring whether or not you want to modify the
dbname SQLADBSP file.
v To edit the file, answer YES.
v To continue without editing, answer NO.

10. Release the DB2 for VM service disk (DASD 193).
11. Restart the database and continue with the installation, by entering:

SQLSTART DB(dbname)

where dbname is the name of the DB2 for VM database.
12. Run the following query using ISQL to verify that the new DBSPACEs

are available for QMF:
SELECT * FROM SYSTEM.SYSDBSPACES

WHERE DBSPACETYPE=1 AND OWNER=’’

To run this query, as a minimum you need to have SELECT authority on
table SYSTEM.SYSDBSPACES, or have DB2 DBA authority, which implies
the SELECT privilege.

Installing QMF 7.1

Chapter 14. Installing QMF Version 7.2 into the DB2 for VM Database 169

Step 3—Run QMF installation exec: DSQ2EINS
This section describes the following topics:
v Preparing to run the installation exec
v What the installation exec does
v Running the installation exec
v Installation exec error messages

Preparation
The information you provided in Step 1—Create QMF installation control file:
DSQ2ECTL is used by the QMF installation exec. Before running this exec:
1. You must have access to the QMF distribution disk in WRITE mode.
2. Ensure that the QMF installation control file QMF720E INSTALL exists on

the distribution disk.
3. Ensure that you are linked to the DB2 for VM production minidisk in

READ mode.
4. You can let the printer and console continue processing unless a severe

error is found, by issuing the following CMS commands:
spool prt cont hold
spool console start cont

Assumptions for installing QMF into a remote database server
Before you attempt to install QMF on a remote database server, be sure to
complete the necessary pre-requisites described in “installing QMF into a
workstation database server on VM” on page 161.

What the installation exec does
All output from the installation exec is routed to the virtual printer spool file.

Substeps:
v Substep 3.1: Builds the SQL commands to acquire the DB2 DBSPACEs.
v Substep 3.2: Establishes a DB2 for VM CONNECT ID of Q.
v Substep 3.3: Reloads the QMF installation program packages.
v Substep 3.4: Creates the QMF control tables and QMF catalog views.
v Substep 3.5: Reloads the QMF SQL Packages into a DB2 for VM database.
v Substep 3.6: Discards any QMF sample tables, if they exist.
v Substep 3.7: Creates the QMF Version 7.2 sample tables.

Running the QMF installation exec
To start the installation exec, issue:
DSQ2EINS

Restart procedure: If this exec fails, use the following procedure to restart
the exec and continue where you left off:

Installing QMF 7.1

170 Installing and Managing QMF

1. Determine what the problem is and fix it.
2. Rerun this exec with an input parameter equal to the restart value

provided in the message after the exec terminates.

For example, if you receive the message:
TERMINATING EXECUTION ...
TO RESTART THIS EXEC AND CONTINUE WHERE YOU LEFT OFF:

- FIX THE PROBLEM ENCOUNTERED.
- RERUN THIS EXEC WITH THE INPUT PARAMETER OF 2

You can restart the exec with the statement:
DSQ2EINS 2

Installation exec error messages
If you encounter a problem running the QMF installation exec, you need to
find the error message describing the problem. This error message may be
sent to either the console or the printer; therefore you may want to spool your
console and your printer to “HOLD”.

If you choose to spool your printer or console, be aware that you may have to
enter both of the following statements to release the file that contains the error
information:

spool prt close
spool console close

Error messages produced by the SQLDBSU exec are sent to the printer. If you
see a console message like “Errors processing SQLDBSU”, you should
examine the output sent to the printer. The command to transfer the printer
files to your reader, so that you can view them there, is:

TRANS PRT ALL *

Look in the DB2 Server for VM Message and Codes manual for explanations of
any error messages starting with “ARI”.

Step 4—Start QMF: DSQ2EINV
This section describes tailoring the QMF invocation EXEC and establishing
QMF as an ISPF dialog (optional).

Step 4A—Tailor the QMF invocation exec: DSQ2EINV (optional)
The sample QMF invocation exec, located on the production minidisk, is
executed when a user wants to invoke QMF interactively in the VM
environment. The first part of the exec, DSQ2EINV, is shown in Figure 36 on
page 173. Modify only the indicated variables to tailor the exec for your
installation.

Installing QMF 7.1

Chapter 14. Installing QMF Version 7.2 into the DB2 for VM Database 171

Using DSQQMFE and ISPSTART: The parameter values that exist in
DSQ2EINV are used unless you specify different values when you invoke the
exec. You can do this through DSQQMFE or the ISPSTART command.
Parameters values specified in this way override those set in the QMF callable
interface REXX exec DSQSCMDE, which is on the production minidisk.

Note: DSQ2EINV is only a sample QMF invocation exec. The necessary links
to minidisks, FILEDEFs, SQLINIT, and ISPSTART commands are described
clearly in simpler QMF invocation exec. These execs, DSQ2EIN1 (with ISPF)
and DSQ2EIN2 (without ISPF), are located on the production minidisk. You
may find them useful in constructing your own QMF invocation exec to
match your environment requirements.

For clarification of ISPF files, see ISPF for VM Dialog Management Services and
Examples

Installing QMF 7.1

172 Installing and Managing QMF

Notes on Figure 36:

1. The correspondence between the variables on the sample exec and the
parameters on the ISPSTART command is as follows:

/*--*
* *
* Sample QMF invocation EXEC *
* *
* EXEC NAME: DSQ2EINV EXEC *
* *
* Status: Version 7 Release 2 LeveL 0 *
* *
* Input: DB(dbname) - optional, default ’SQLDBA’ *
* PGM(program) - optional, default ’DSQQMFE’ *
* MODE(runmode) - optional, default ’I’ *
* PROC(procedure) - optional, no default *
* CMSSUB(subset_restriction) - optional, default ’YES’ *
* ISPF(use_ispf) - optional, default ’YES’ *
* *
* Note: If you have any level of DB2 VM, GDDM, ISPF, QMF or *
* QMF NLF already attached when you execute this exec, *
* the corresponding disk in this exec will not be linked, *
* and the existing disk will be used. *
* *
--/

parse upper arg parm1 parm2 parm3 parm4 parm5 parm6 junk

lchar = ’E’ /* QMF language feature identifier */

/*--*
* The following are the variables which may need to be tailored *
* for your installation. *
* Note: If you are using SFS directories, replace the link *
* information with ’FILEPOOL:USERID.DIRNAME’. *
--/

dcssname = ’QMF720’||lchar /* QMF DCSS name for ISPSTART */
sql_link = ’SQLMACH 195 195’ /* DB2 VM minidisk link information*/
qmf_link = ’P697F4BA 400 400’ /* QMF Production minidisk */

/* link information */
dbname = ’SQLDBA’ /* set default database name */
program = ’DSQQMF’||lchar /* set default QMF program name */
mode = ’I’ /* set default QMF run mode */
procedure = ’’ /* no default procedure */
subset = ’YES’ /* default to CMS subset restrictions*/
ispf = ’YES’ /* link to ISPF minidisk (optional) */

/*--*
* END OF TAILORABLE VARIABLES *
--/

Figure 36. Sample QMF Invocation exec (DSQ2EINV)

Installing QMF 7.1

Chapter 14. Installing QMF Version 7.2 into the DB2 for VM Database 173

a. PGM is used as the PGM parameter on ISPSTART.
b. MODE is used as the DSQSMODE(M) parameter on ISPSTART.
c. PROC is used as the DSQSRUN(I) parameter on ISPSTART.

2. If you specify 'NO' for the ISPF parameter, the CMSSUB parameter is
ignored.
If you specify 'YES' for the ISPF parameter or take the default (YES), either
of the following happens:
v If CMSSUB = NO, then ISPF is started via SELECT DCSS.
v If CMSSUB = YES, then ISPF is started via SELECT PGM.

When ISPF executes a SELECT PGM, the ISPF product turns on the CMS
SUBSET indicator, whereas if ISPF executes a SELECT DCSS, the ISPF
product does not turn on the indicator.

3. Following are examples of invocation statements:
v DSQ2EINV MODE(I)

This statement invokes QMF interactively. (It is normally the default.)
v DSQ2EINV MODE(B) PROC(MYPROC)

This statement runs the procedure MYPROC in batch mode.

QMF dialog considerations: The following considerations apply to the QMF
dialog:
v Virtual Machine considerations

The virtual machine size should be at least 5.0 MB of storage without ISPF
or 6.0 MB with ISPF. If a larger virtual machine size is available, QMF uses
it when the user scrolls through a report. QMF requires that both ISPF (if
used) and DB2 for VM be running in disconnected virtual machines before
it can be invoked.

v Program modules
Before you invoke QMF, the DB2 for VM database, QMF’s discontiguous
shared segments, ISPF’s shared segments (if used), and GDDM’s shared
segments or product text libraries must be available.

v QMF data files
The following list describes the files used by QMF. These files are allocated
according to the recommended sizes in the DSQ2EINV exec. If you want to
allocate them differently, you must modify the invocation exec.
– DSQDEBUG—QMF trace dump output

If the trace option is set to trace during initialization or during a QMF
session, QMF’s trace output is used. It is also used if QMF abnormally
terminates. This file must be allocated prior to invoking the QMF dialog.
The trace output is formatted in two different formats on the basis of the
allocated record size. If the record is greater than 120, the output is
generated in eight fullword columns; otherwise, the output is generated

Installing QMF 7.1

174 Installing and Managing QMF

in four fullword columns appropriate for viewing on a terminal. The
record format RECFM can be fixed or variable, with a block size that is a
multiple of the record size.

– DSQPRINT—Print data output
The print data output contains print data that is produced by a QMF
PRINT command issued during a QMF session. This file can be allocated
by using the QMF CMS command while the QMF dialog is running or it
can be allocated prior to invoking the QMF dialog.
RECFM can be FBA or VBA. It is recommended that this file be allocated
with a record length (LRECL) supported by your printer device type.

– DSQSPILL—Spill data file
The spill file is used when QMF runs short of virtual storage when
producing data for a report that is requested during a QMF session. This
file can be allocated by using the QMF CMS command to invoke the
CMS FILEDEF command, while the QMF dialog is running or it can be
allocated prior to invoking the QMF dialog. The spill file is a fixed
unblocked file with a record length (LRECL) of 4,096.

Note: The larger the user’s spill file, the less often the user encounters
the “incomplete data” condition.

– DSQEDIT—Edit transfer file
This file is used whenever a QMF EDIT command is issued during a
QMF session. This file is a fixed record file with a record length (LRECL)
of 79.

– DSQPNLE—QMF panel file
This file contains all the QMF panel definitions. It is created during QMF
installation.

– DSQLDLIB—QMF load library
This file must be allocated to ISPLLIB and globally defined.

QMF-GDDM considerations: When the QMF DCSS is built, it includes the
GDDM interface code. If you run GDDM from a DCSS, you need not access a
GDDM disk, or GDDM TXTLIBs, and you may remove the lines in the
invocation EXEC that refer to GDDM.

However, if you do not have GDDM in a DCSS, you must access the GDDM
TXTLIBSs and perform the necessary FILEDEFs. If you want to change the
release of GDDM being used by QMF, you must rebuild the QMF DCSS. See
the Program Directory for information on building the QMF DCSS.

QMF-DB2 for VM considerations include the following:

v QMF supports DATE, TIME, and TIMESTAMP data types. So users can
make use of local date/time exit routines.

Installing QMF 7.1

Chapter 14. Installing QMF Version 7.2 into the DB2 for VM Database 175

When planning for local date/time exit routines, it is important to keep in
mind that these are DB2 for VM exits, they are not QMF exits. For details
about how these exits are created, refer to DB2 Server for VM System
Administration manual.
In order for QMF to use a local date/time exit, the text files containing the
date/time exits ARIUXDT and ARIUXTM must be placed on a minidisk
that is accessible to QMF when QMF starts.
If QMF is being started by DCSS mode, two relocatable module files must
be created from the existing exit text files ARIUXDT and ARIUXTM. To
create the relocatable module files issue the following CMS commands:

LOAD ARIUXDT (RLDSAVE)
GENMOD ARIUXDT
LOAD ARIUXTM (RLDSAVE)
GENMOD ARIUXTM

v The QMF DCSS includes the ARIRVSTC text file, and if this file is changed
by PTFs applied to DB2 for VM or a new level of DB2 for VM, the QMF
DCSS must be re-built. See the Program Directory.

QMF-DXT considerations: If you want to start Data Extract (DXT) from
QMF, the ISPF setup for DXT should be merged with the ISPF setup of QMF.
You can do this in either of the following ways:
v Combining the QMF and DXT ISPF library FILEDEFs (concatenating the

MACLIBs under the same ISPF ddname). Give some thought to how you
want the libraries concatenated. If QMF is generally used more than DXT,
its libraries should be concatenated ahead of DXT’s.

v Using the ISPF LIBDEF service to dynamically allocate DXT’s libraries
under QMF. This can be done in lieu of, or in addition to, the merging of
the ISPF setups.

QMF provides a sample exec, DSQABX2L, which contains an example of how
to use LIBDEF for DXT.

Step 4B—Invoke QMF from an ISPF environment (optional)
ISPF supplies a Master Application Menu as part of its installation process.
The QMF dialog can be invoked from the ISPF Master Application Menu, or
any other selection menu that you want to use. For an example of how the
ISPF Master Application Menu appears after adding QMF, see Figure 37 on
page 177.

The ISPF LIBDEF service provides applications with a dynamic method of
defining application data elements files while in an active ISPF session. For
more on the ISPF LIBDEF service, see ISPF for VM Dialog Management Services
and Examples.

Installing QMF 7.1

176 Installing and Managing QMF

Note: The default database name is SQLDBA. You can modify the name
within the QMF invocation exec DSQ2EINV, to suit your installation. You can
specify another database name as a parameter.

Step 5—Running IVP for QMF interactive mode : DSQ2EIVP
Note: Be sure that you have installed QMF Version 7.2 in the database you are
going to use, and that you are connected to that database.

The Installation Verification Procedure (IVP) session tests the following:
1. Initialization for a QMF session
2. The existence of QMF help panels
3. Importing of the initial IVP procedure
4. The existence of QMF control tables
5. The operation of the QMF database modules
6. The created table through the SAVE DATA command
7. The operation of QMF PRINT, EXPORT, IMPORT, and CMS commands
8. The trace facility
9. The QMF command interface

%------------------------ MASTER APPLICATION MENU --------------------
%SELECT APPLICATION ===>_OPT +
% +USERID -
% +TIME -
% 1 +SPF - SPF PROGRAM DEVELOPMENT FACILITY +TERMINAL -
% 2 +QMF - QMF QUERY MANAGEMENT FACILITY +PF KEYS -
% 3 +QMF2 - QMF with alternate database
%
%
%
%
%
%
%
%
% P +PARMS - SPECIFY TERMINAL PARAMETERS AND LIST/LOG DEFAULTS
% X +EXIT - TERMINATE USING LIST/LOG DEFAULTS
%
+PRESS%END KEY+TO TERMINATE +
%
)INIT
)PROC
&SEL = TRANS(TRUNC (&OPT,’.’)

1,’PANEL(ISP@PRIM) NEWAPPL’
2,’CMD(DSQ2EINV)’ (Note 1)
3,’CMD(DSQ2EINV DB(SQLDBA2))’ (Note 2)

/* */
/* ADD OTHER APPLICATIONS HERE */
/* */

P,’PANEL(ISPOPT)’
X,’EXIT’

’ ’,’ ’
*,’?’)

)END

Figure 37. QMF dialog on ISPF master application menu

Installing QMF 7.1

Chapter 14. Installing QMF Version 7.2 into the DB2 for VM Database 177

The IVP procedures are in the sample files on the production minidisk.

As a result of the IVP:
v A query is printed.
v A trace is saved in a file named DSQDEBUG.
v A query is exported to a file named QMFIVP QUERY A1.
v A query is imported from a file named QMFIVP QUERY A1.
v The file QMFIVP QUERY A1 is erased, using the CMS command.

Step 5A—Test QMF initialization
To run the IVP, first get to the QMF Home Panel using the DSQ2EINV sample
invocation exec or your own QMF invocation exec.

During the IVP, you might get QMF error messages; if you do, press the Help
key to get additional information.

Step 5B—Test the Help panel
When you have successfully initialized QMF, test for the Help panel. To do
this, press the Help key from the home panel. After you are on the Help
panel, press the Exit key to take you back to the home panel.

Step 5C—Test the QMF command interface (ISPF only)
To test the QMF command interface, issue the following command:
CMS DSQ2ECI1

If this exec runs successfully, your QMF profile is displayed and you receive a
confirming message.

Check your profile for the correct values. For example, verify that the
DBSPACE value matches what you specified during “Step 1—Create QMF
installation control file: DSQ2ECTL” on page 167. If the DBSPACE value is not
correct, update your profile to contain the correct value before you continue.

Step 5D—Testing the QMF IVP procedure
If you are running the IVP against QMF installed on a DB2 for VM server,
issue the command:
CONNECT Q (PASSWORD=xxx

where “xxx” is the value given to the Q CONNECT password when the QMF
installation control file is built.

If you are running the IVP to any database other than DB2 for VM, the
connect ID at that server must have DBA or SYSADM authority.

Next, issue the command:
IMPORT PROC FROM DSQ2EIVP PROC *

Installing QMF 7.1

178 Installing and Managing QMF

Now press the Run key or issue the RUN PROC command to run the
procedure. Answer YES to all prompts. If the procedure runs successfully, you
get a message indicating this. If the procedure does not run successfully,
determine the problem by using the QMF messages and by pressing the Help
key to see the message help panels.

Restarting the IVP
The IVP can be restarted from the beginning at any time by importing and
running the starting QMF procedure. Follow the procedures from the
beginning of this step.

Step 6—Installing QMF sample objects and application objects:
DSQ2ESQD and DSQ2ESQI

After QMF is installed and tested, you can use it to import the sample queries
(all saved with SHARE=‘YES’ option), batch IVP procedures, and sample
applications. The QMF procedure and queries used to import the sample
queries are on the QMF distribution minidisk (documented in the Program
Directory).

If you have a previous version of QMF installed, you must delete those
sample queries and procedures before installing QMF Version 7.2 queries and
procedures.

Perform the following steps to install the sample queries and procedures:
1. Start QMF if not already logged on from “Step 5—Running IVP for QMF

interactive mode : DSQ2EIVP” on page 177.
2. If not done in “Step 5—Running IVP for QMF interactive mode :

DSQ2EIVP” on page 177, and you are installing on a DB2 for VM server,
issue the command:
CONNECT Q (PASSWORD=xxx

where xxx is the password of Q.

If you are running these jobs to any database other than DB2 for VM, the
connect ID at that server must have DBA or SYSADM authority.

3. If you have a previous version of QMF installed, delete previous sample
queries and procedures by importing and running procedure DSQ2ESQD,
as follows:
IMPORT PROC FROM DSQ2ESQD PROC *

Press the Run key or issue the RUN PROC command.
4. Install sample queries and procedures by importing and running

procedure DSQ2ESQI, as follows:
IMPORT PROC FROM DSQ2ESQI PROC *

Installing QMF 7.1

Chapter 14. Installing QMF Version 7.2 into the DB2 for VM Database 179

Press the Run key or issue the RUN PROC command.

Restarting the procedure
If a failure occurs during this procedure, correct the error, then run procedure
DSQ2ESQD to delete any previously created sample queries. Rerun procedure
DSQ2ESQI to install sample queries and procedures.

Step 7—Run the batch-mode IVP (optional): DSQ2EBAT
If you plan to run QMF procedures in batch mode, run this IVP to ensure that
QMF for batch mode processing has been successfully installed. The same
files and DB2 for VM authorization used in QMF interactive mode are also
required to run QMF procedures in batch mode.

The Installation Verification Procedure (IVP) tests the following batch-mode
operations:
1. Reaching and initializing QMF
2. The existence of QMF control tables
3. The operation of the QMF database modules and issuing the SAVE DATA

command
4. The operation of the QMF PRINT, EXPORT, IMPORT, and CMS commands

and the trace facility

The IVP procedures are in the sample files on the QMF distribution disk.

Your CMS PROFILE EXEC should define a print file (DSQPRINT) and a
message file (DSQDEBUG).

As a result of the IVP:
v A query is printed.
v A trace file is saved in a file DSQDEBUG.
v A query is exported to file “QMFIVP QUERY A1”.
v A query is imported from file “QMFIVP QUERY A1”.
v File “QMFIVP QUERY A1” is erased using the CMS command.

During the IVP, you might receive QMF error messages. For the text of the
error messages, see the DSQDEBUG file. For more information on these error
messages, you can use the QMF HELP command to view the message help
panels.

DB2 for VM authorization
If you (the installer) do not have DB2 for VM DBA authority or an
authorization ID of “Q”, the minimum DB2 for VM authorization required is:
v SELECT authority for all QMF control tables. The following are examples of

SQL GRANT statements to give SELECT authority for Q.PROFILES and
Q.ERROR_LOG:

Installing QMF 7.1

180 Installing and Managing QMF

GRANT SELECT ON Q.PROFILES TO installerid
GRANT SELECT ON Q.ERROR_LOG TO installerid
GRANT RESOURCE TO installerid

v DELETE and UPDATE authority for Q.OBJECT tables. The following are
examples of SQL GRANT statements to give all authority to the Q.OBJECT
tables:
GRANT ALL ON Q.OBJECT_DIRECTORY TO installerid
GRANT ALL ON Q.OBJECT_DATA TO installerid
GRANT ALL ON Q.OBJECT_REMARKS TO installerid

To run the batch mode IVP, use the QMF invocation exec specifying the
parameters for batch mode and the QMF procedure Q.DSQ2EBAT:
DSQ2EINV MODE(B) PROC(Q.DSQ2EBAT)

or
DSQ2EINV MODE(B) PROC(Q.DSQ2EBAT) CMSSUB(NO)

If QMF was not installed correctly, QMF does not initialize, and you receive
error messages. For the text of the error messages, see the DSQDEBUG file.
For more information on these error messages, you can use the QMF HELP
command to view the message help panels.

Restarting the batch IVP
This IVP starts the DSQ2EINV exec with the appropriate parameters.

Expected results from executing the batch IVP
The output looks like the following example. (The dots indicate the beginning
and ending of trace records.)

YOU MAY ENTER A COMMAND.

RUN PROC Q.DSQ2EBAT

SET (CONFIRM=NO)
SET PERFORMED. PLEASE PROCEED....
SAVE DATA AS QMF_IVPDATA
DATA WAS SAVED AS QMF_IVPDATA IN THE DATABASE....
OK, YOUR PROCEDURE WAS RUN.

EXIT THE EXIT COMMAND TERMINATES QMF

Step 8—Deleting previous versions of QMF (optional): DSQ2BDEL
Attention: Do not run this step unless you have successfully completed the
installation and testing of QMF Version 7.2 and no longer need the previous
release.

Optionally, run the DSQ2BDEL exec to delete a previous version of QMF. The
DSQ2BDEL exec prompts for all necessary information needed to delete QMF.

Installing QMF 7.1

Chapter 14. Installing QMF Version 7.2 into the DB2 for VM Database 181

Confirmation of the deletion is required before the actual deletion is done.
You must be linked to the QMF distribution disk and the DB2 VM production
disk, the DB2 database machine must be active, you must have DRDA
connectivity to the target database, SQLDBSU must be installed in the target
database, and you must have authority to perform the database deletes. There
are two types of QMF deletions as defined below.
v If you have an earlier release of QMF installed in the same database in

which you have installed QMF Version 7.2, run DSQ2BDEL exec with the
PACKAGE option to delete the QMF database access modules of the prior
release.

v If you have an earlier release of QMF installed in a different database from
where you have installed QMF Version 7.2, run DSQ2BDEL exec with the
FULL option to drop ALL QMF DBSPACEs in addition to the database
access modules (packages) of the prior release.

Step 9—Post-installation cleanup
The QMF installation control file QMFV720E INSTALL resides on your QMF
distribution disk and contains the DB2 for VM CONNECT passwords for
SQLDBA and Q. This is a security exposure and should be corrected as soon
as possible. You can edit the installation control file and blank out the
password values. You may wish to change the DB2 for VM CONNECT
password for Q and/or REVOKE DBA authority from Q, especially if you
have chosen a non-trivial password for Q during QMF installation.

QMF uses the PROTOCOL (AUTO) option to run SQLINIT exec. If the
PROTOCOL (AUTO) option is not used at your machine, run SQLINIT to
change the default PROTOCOL.

On the CMS command line, enter:
SQLINIT PROTOCOL(protocol)

where protocol is SQLDS, AUTO, or DRDA.

Step 10—Load QMF database packages to a remote server (optional):
DSQ2BPKB

In order for a QMF Version 7.2 requester installation to be able to
communicate to a server, QMF Version 7.2 packages must be present at the
server. If a complete QMF Version 7.2 new or migration installation was
performed at the server, communications can be started and nothing further
needs to be done.

For those servers containing QMF Version 3.2 or above where migration is not
an option, you can run the install package job, DSQ2BPKB, to install QMF
Version 7.2 packages at the remote server. Then access from QMF for VM
Version 7.2 to that remote server is enabled. Following is a list of the DB2

Installing QMF 7.1

182 Installing and Managing QMF

servers types that are supported from QMF for VM for remote access and the
minimum version/release required at the server.
v DB2 for OS/390 Version 3.1
v DB2 for VM/VSE Version 3.5
v DB2 Universal Database Version 5
v DataJoiner Version 2
v DB2 Common Server Version 2.1
v DB2 Parallel Edition Version 1.2
v DataJoiner Version 1.2
v DB2 UDB for iSeries Version 4.4

Here is a list of considerations for running the job (DSQ2BPKB) to load QMF
database packages to a remote server:
1. The application server must contain at least QMF Version 3.2. For brand

new installs, the QMF installation package and QMF control tables (at
least) must be present.

2. DRDA communications between the DB2 application requester and the
DB2 application server must be defined and operational.

3. The DB2 DRDA application server must be started.
4. The connect userid at the server must have administrator authority.
5. This job can be rerun.

Step 11—Recreate QMF views (optional): DSQ2BVW
There may be times when it is necessary to recreate the QMF control tables
views. This can be accomplished by running the job DSQ2BVW, which is on
the QMF distribution disk. This job will DROP and CREATE al QMF control
table views and perform the necessary GRANTs to any QMF supported DB2
server. The following prerequisites must be met before the job can be run:
v QMF Version 7.2 must be installed on the target server.
v You must be linked to the QMF VM distribution disk.
v You must be linked to the DB2 VM product disk, and the DB2 database

machine must be active.
v DRDA connectivity to the target server must be configured.
v The CONNECT ID at the target server must have the following authorities:

– DBA authority on DB2 VM and VSE
– SYSADM authority on DB2 OS/390
– SYSADM authority on DB2 workstation
– *ALLOBJ authority on iSeries

On the CMS command line, enter:
DSQ2BVW dbn

Installing QMF 7.1

Chapter 14. Installing QMF Version 7.2 into the DB2 for VM Database 183

where dbn is the name of the target DB2 database server that you want to
recreate the QMF control table views on. For further details on the DSQ2BW
job, see “QMF views” on page 731

Note: This job can be rerun from the beginning.

Installing QMF 7.1

184 Installing and Managing QMF

Chapter 15. Installing a QMF Version 7.2 National
Language Feature (NLF)

This chapter parallels the installation steps for QMF Version 7.2. Where there
are significant procedural differences, this chapter explains the procedures to
follow when installing the National Language Feature. Where the job, library,
or program name differs, this chapter provides the proper names, but the
procedures you follow are in Chapter 14, “Installing QMF Version 7.2 into the
DB2 for VM Database” on page 163.

NLF installation execs

The QMF product ships CMS execs written in the Restructured Extended
Executor (REXX) language. The execs and control statements for each NLF are
shipped on the ISD tape for that feature. For information on how to use
REXX, see Virtual Machine/System Product Interpreter User’s Guide

The QMF NLF installation execs are designed to prompt the installer for
variable information. There is no requirement for your installation to change
the supplied installation execs. Every prompt message asks for variable input,
and each offers an optional Help or Cancel response.
v When Help is issued, a small abstract of the prompt request is displayed.
v When Cancel is issued, the exec stops.

Whenever a module, library, or job named in this chapter contains the letter n,
replace the n with the appropriate letter for the national language you are
installing. See your QMF NLF Program Directory or “QMF National Language
Feature (NLF) considerations” on page 160 for the appropriate letter to use for
your installation.

Installing a National Language Feature

When you install an NLF, a row is added to the QMF profile table
(Q.PROFILES) to support the language. This row is inserted with a user ID of
SYSTEM. A unique row is added for each language that you install.

The NLF must be installed in each database you want to use it in. If you are
installing into a database that contains a prior release of QMF NLF, ensure
that the sample tables and views of the prior release are not used during the
installation process.

© Copyright IBM Corp. 1983, 2002 185

You use your national language for the QMF commands to import, export,
and run some installation procedures. See the NLF program directory for a list
of the translated books (the translated books should have the translated QMF
commands).

Hardware and program product requirements

Make sure that your GDDM and ISPF (optional) environments, as well as
your controllers, terminals, and keyboards, are set up to display the national
characters of the NLF you are installing.

The Japanese, and Korean NLFs use DBCS characters; they require the
hardware and program products shown in Chapter 13, “Planning for
Installation” on page 149.

The installation steps

Note: You must first install the QMF Version 7.2 base product before you can
install a QMF National Language Feature. The QMF Version 7.2 distribution
and production disks are required for the NLF installation.

Figure 33 on page 164 is an overview of the installation process.

Preliminary: Read the NLF program directory and complete the worksheet
The QMF NLF program directory contains information concerning the
material and procedures associated with the installation of QMF. Because the
program directory is updated between releases of QMF, it may contain useful
information, including a description of PTFs and APARs, as well as
modifications to this book. The program directory contains all the steps for
installing QMF NLF from tape to disk and building the DCSS. Only the QMF
NLF database installation into DB2 for VM is described in this book. You
must complete the steps in the program directory before doing the installation
steps in this book.

The following table shows the information that you need for NLF installation.
Use it as your worksheet.

Table 31. Information Required during QMF NLF Installation (QMF V7.2 Worksheet)

Information required for: Your data: QMF in DB2
workstation
server

QMF in
iSeries server

Database/location ________ ________ ________

Database type (DB2 VM, DB2
workstation server, or DB2
iSeries server

DB2VM DB2WS DB2400

186 Installing and Managing QMF

Table 31. Information Required during QMF NLF Installation (QMF V7.2
Worksheet) (continued)

Prior QMF NLF level (if any) ________ N/A N/A

Q CONNECT password ________ N/A N/A

Default DBSPACE name for
SAVE DATA command (default
is DSQTSDEF)

________ N/A N/A

Step 1—Create the QMF NLF installation control file: DSQ2nCTL
The QMF exec, DSQ2nCTL, prompts you for information required during the
NLF installation.

To create the QMF NLF installation control file, perform the following steps:
1. Access the QMF NLF distribution disk in WRITE mode
2. Fill in the worksheet shown in Table 31 on page 186, if you have not

already done so.
3. Run the exec: DSQ2nCTL.

Prompts
You receive a series of prompts that ask you to supply the information you
developed using the worksheet. The prompts vary, depending on the previous
level of QMF, if any, installed on your system. (See “Step 1—Create QMF
installation control file: DSQ2ECTL” on page 167.)

Anytime during this process, you can enter:
v HELP on the command line to receive more information.
v CANCEL to terminate the process before completion.

A file named QMFV720n INSTALL is created on your QMF NLF distribution
minidisk. This file contains the information you supplied to the previous
prompts.

If an installation file already exists from a previous installation, the
information you enter is appended to this file and the previous information is
deactivated.

Step 2—Run QMF NLF installation exec: DSQ2nINS
Before running this exec:
1. You must have access to the QMF NLF distribution disk in WRITE mode.
2. The QMF NLF installation control file QMFV720n INSTALL must exist on

the QMF NLF distribution disk.
3. You must be linked to the DB2 for VM production disk in READ mode.

Chapter 15. Installing a QMF Version 7.2 National Language Feature (NLF) 187

4. The following CMS commands allow the printer and console to continue
processing unless a severe error is found.
spool prt cont hold
spool console start cont

Assumptions for installing QMF into a workstation database server
Before you attempt to install QMF on a remote database server, be sure to
complete the prerequisites indicated in “installing QMF into a workstation
database server on VM” on page 161.

Running the exec
To start the NLF installation exec, issue the command:

DSQ2nINS

The QMF NLF installation exec obtains its input from the QMF NLF
installation control file. (See “Step 1—Create the QMF NLF installation control
file: DSQ2nCTL” on page 187.) The QMF NLF installation exec performs the
following steps:
1. Updates the Q.PROFILES and creates an NLF command synonyms table

called Q.COMMAND_SYNONYM_n, if you are not migrating from any
previous release of QMF.

2. Discards existing QMF NLF sample tables and creates new ones, if
required.

Restart procedure
If this exec fails, use the following procedure to restart the exec and continue
where you left off:
1. Determine what the problem is and fix it.
2. Rerun this exec with an input parameter equal to the restart value

provided in the message when the exec terminated.

For example, if you get the message:
TERMINATING EXECUTION ...
TO RESTART THIS EXEC AND CONTINUE WHERE YOU LEFT OFF,
- FIX THE PROBLEM ENCOUNTERED
- RERUN THIS EXEC WITH THE INPUT PARAMETER OF 2

you can restart the exec with:
DSQ2nINS 2

Installation exec error messages
If you encounter a problem running the QMF installation exec, you need to
find the error message describing the problem. Because this error message
may be sent to either the console or the printer, you may want to spool your
console and your printer to “HOLD”.

188 Installing and Managing QMF

Note: If you choose to spool your printer or console, enter the following to
release the file that contains the error information:

spool prt close
spool console close

To transfer the printer files to your reader, issue the command:
TRANS PRT ALL *

Step 3—Start QMF NLF: DSQ2nINV
Follow “Step 4—Start QMF: DSQ2EINV” on page 171, noting the differences
listed here. Remember that you can either tailor the QMF invocation exec
(Step 4A) or invoke QMF from ISPF (Step 4B).

Step 3A—Tailor the QMF invocation exec: DSQ2nINV
Follow “Step 4A—Tailor the QMF invocation exec: DSQ2EINV (optional)” on
page 171.

Modify the QMF NLF invocation exec, DSQ2nINV, to meet the requirements
of your installation. The alterable parameters are the same as in Figure 36 on
page 173. Note that DSQ2nINV is only a sample NLF invocation exec. The
necessary links to disks, FILEDEFs, SQLINIT, and the ISPSTART commands
are described clearly in simpler QMF invocation execs. These execs,
DSQ2nIN1 (with ISPF) and DSQ2nIN2 (without ISPF), are located on the
production disk. You may find them useful in constructing your own QMF
invocation exec to match your environment requirements.

Step 3B—Invoking QMF from an ISPF environment (optional)
Follow “Step 4B—Invoke QMF from an ISPF environment (optional)” on
page 176 and make changes to the ISPF Master Application Menu as shown in
Figure 38 on page 190.

Chapter 15. Installing a QMF Version 7.2 National Language Feature (NLF) 189

Step 4—Run the IVP for QMF NLF interactive mode: DSQ2nIVP

Note: Be sure that QMF 7.2 is installed into the database you are using.

See “Step 5—Running IVP for QMF interactive mode : DSQ2EIVP” on
page 177 for information on what the IVP does. Start QMF using the NLF
program, DSQQMFn.

When you have successfully initialized QMF NLF, test for the help panel. To
do this, press the “Help” key from the home panel. After you are on the help
panel, press the “Cancel” key to take you back to the home panel.

You should then issue the command:

%--------------MASTER APPLICATION MENU ------------------------------
%SELECT APPLICATION ===>_OPT +
% +USERID -
% +TIME -
% 1 +SPF - SPF PROGRAM DEVELOPMENT FACILITY +TERMINAL -
% 2 +QMF - QMF QUERY MANAGEMENT FACILITY +PF KEYS -
%
%
%
%
%
%
%
%
% P +PARMS - SPECIFY TERMINAL PARAMETERS AND LIST/LOG DEFAULTS
% X +EXIT - TERMINATE USING LIST/LOG DEFAULTS
%
+PRESS%END KEY+TO TERMINATE +
%
)INIT
)PROC

&SEL = TRANS(TRUNC (&OPT,’.’)
1.’PANEL(ISP@PRIM) NEWAPPL’
2.’CMD(DSQ2EINV)’
3.’CMD(DSQ2nINV)’

/* */
/* ADD OTHER APPLICATIONS HERE */
/* */

P,’PANEL(ISPOPT)’
X,’EXIT’
’ ’.’ ’
*,’?’)

)END

Figure 38. ISPF master application menu for NLF

190 Installing and Managing QMF

CONNECT Q (PASSWORD=xxx

where xxx is the value given to the CONNECT password of Q.

If you are running these jobs to any database other than DB2 for VM, the
connect ID at that server must have DBA or SYSADM authority.

Test the QMF command interface
Test the command interface by issuing the following command:
CMS DSQ2nCI1

If this exec runs successfully, your QMF NLF profile is displayed, and you
receive a message indicating that your CMS command was successful.

Test the QMF procedure
Run the IVP by issuing the following commands:
IMPORT PROC FROM DSQ2nIVP PROC *
RUN PROC

Answer YES to all prompts.
v If the procedure runs successfully, you receive a message indicating this.
v If the procedure does not run successfully, determine what the problem is

by using the QMF NLF messages and message help panels.

Step 5—Install QMF NLF sample objects and application objects:
DSQ2nSQD and DSQ2nSQI

After the QMF NLF is installed and verified, you can use the NLF to import
the sample queries and procedures for the NLF.

If you have any previous version of this QMF NLF installed, you must delete
the previous sample queries and procedures before installing QMF NLF V7.2
queries and procedures.

Perform the following steps to install the sample queries and procedures:
1. Start QMF if not already logged on.
2. Issue the command (if not done earlier):

CONNECT Q (PASSWORD=xxx

where “xxx” is the QMF CONNECT password of “Q”.

If you are running these jobs to any database other than DB2 for VM, the
connect ID at that server must have DBA or SYSADM authority.

3. Delete previous sample queries and procedures. (Run this step only if you
have a previous version of this QMF NLF installed.)
Import and run the procedure DSQ2nSQD as follows:

Chapter 15. Installing a QMF Version 7.2 National Language Feature (NLF) 191

IMPORT PROC FROM DSQ2nSQD PROC *
RUN PROC

4. Install NLF sample queries and procedures, by importing and running
procedure DSQ2nSQI with the following commands:
IMPORT PROC FROM DSQ2nSQI PROC *
RUN PROC

This procedure also installs the batch mode IVP and sample application
procedures.

Restarting the procedure
If a failure occurs during this procedure, you can correct the error and run
procedure DSQ2nSQD, which deletes any previously created sample queries.
Then import and rerun procedure DSQ2nSQI to install sample queries and
procedures.

Step 6—Run the IVP for QMF NLF batch mode (optional): DSQ2nBAT
Follow the directions for “Step 7—Run the batch-mode IVP (optional):
DSQ2EBAT” on page 180.

To run the IVP, use the QMF invocation exec, specifying the parameters for
batch mode and the QMF procedure Q.DSQ2nBAT, by issuing either of the
following:
DSQ2nINV MODE(B) PROC(Q.DSQ2nBAT)

or
DSQ2nINV MODE(B) PROC(Q.DSQ2nBAT) CMSSUB(NO)

Step 7—Post-installation cleanup
The QMF installation control file, QMFV720n INSTALL, resides on the QMF
NLF production disk and contains the DB2 for VM CONNECT password for
Q. This file was created in “Step 1—Create the QMF NLF installation control
file: DSQ2nCTL” on page 187. Because this file is a potential security exposure,
you should edit the installation control file and blank out the password. You
may wish to change the DB2 for VM CONNECT password for Q and/or
REVOKE DBA authority from Q, especially if you have chosen a non-trivial
password for Q during QMF installation.

QMF uses the PROTOCOL (AUTO) option to run SQLINIT exec during Step
5. If the PROTOCOL (AUTO) option is not used at your machine, run
SQLINIT to change the default PROTOCOL.

On the CMS command line, enter:
SQLINIT PROTOCOL(protocol)

where protocol is SQLDS, AUTO, or DRDA.

192 Installing and Managing QMF

Part 3. Installing QMF on VSE/ESA

Chapter 16. Before You Begin 195
Hardware 195
Prerequisite software. 195
QMF storage requirements 196
Apply service 198
Check space requirements 198

Library space 198
VSAM catalog 198
dbspace 198
Check your CICS partition size 199
Partition size for installation 199

The planning considerations 199
Tailoring GDDM for QMF and CICS . . 200
Running DB2 guest sharing 200
Customizing DB2 for double-byte
character support 200

Installation overview. 200
Base installation 201
Installing language support 202
CICS tailoring 203

Chapter 17. Tailoring Your Installation 205
Punch members to an editor 205
install QMF base 205

Catalog the initialization procedure . . . 205
Install QMF base into DB2 database. . . 208

Tailor QMF for NLF 209
Install NLF 209
Install QMF into SQL database 210

Link-edit jobs for QMF 211
Link jobs for NLF 212

Tailor CICS 212
Modify the DFHFCT and DFHDCT . . . 213
Define QMF programs and transactions to
CICS 214
Run CEDA 214
Modify the DFHPCT and DFHPPT . . . 215
Modify the CICS startup job 216

Install QMF for VSE/ESA into a second
CICS system 216

Chapter 18. Installing QMF into Remote
Database Servers 219
Installing QMF V7.2 into a DB2 Universal
Database remote server 219

Punch Members to an editor 219
Installation steps 219

Installing QMF Version 7.2 for an iSeries
server 220

Chapter 19. Run the Installation
Verification Procedure 221
Before starting QMF 221
Start and test QMF 221
Run an IVP for NLF 224
What if it did not work? 224

Chapter 20. How to Maintain QMF . . . 227
Adding new components 227

Adding GDDM-PGF 227
Adding QMF to another DB2 database 227
Migrating to new releases of DB2, CICS,
or GDDM 227
Binding QMF Version 7.2 packages at a
remote server 227

Replacing existing components 228
Re-Installing QMF 228
Re-installing an NLF 228
Applying service updates 228

© Copyright IBM Corp. 1983, 2002 193

194 Installing and Managing QMF

Chapter 16. Before You Begin

This chapter will help you plan for QMF installation. The key to success is
having adequate resources. The following sections describe the hardware and
software requirements, your planning considerations, and an overview of the
installation task for QMF in the VSE/ESA environment.

Hardware

The required hardware consists of the following components:

Processor: You can install QMF for VSE/ESA on any processor supported by
VSE/ESA Version 2.2 or later in ESA mode.

Tape Drive: You need a tape drive for loading the installation tape. You can
use any tape drive supported by VSE/ESA Version 2.2 or later.

System console: you can use any terminal supported by VSE/ESA Version 2.2
or later.

Terminal: You need a terminal to install and test QMF. If you are installing
support for a national language that requires the double-byte character set
(DBCS), you will need a terminal that also supports DBCS to run the
installation verification procedure (IVP).

Prerequisite software

The following table lists the program products with the minimum release
levels required to support QMF for VSE/ESA Version 7.2. Later releases that
are not available at the QMF Version 7.2 announcement time are not
supported unless specifically stated otherwise.

Table 32. Prerequisite software for QMF for VSE/ESA Version 7.2
Required product Version and release Number

IBM Virtual Storage
Extended/Enterprise Systems
Architecture (VSE/ESA)

Version 2.2 5690-VSE

CICS/VSE Version 2.2 5686-026
GDDM/VSE Version 3.1 5686-057
DB2 for VSE Version 7.1 5697-F42

© Copyright IBM Corp. 1983, 2002 195

The following table lists the program products with the minimum release
levels required to support optional functions for QMF for VSE/ESA Version
7.2. Later releases that are not available at the QMF Version 7.2 announcement
time are not supported unless specifically stated otherwise.

Table 33. Prerequisite software for optional functions for QMF for VSE/ESA Version 7.2

Product Version and Release Number

CHARTS (Interactive Chart Utility):

GDDM-PGF (for GDDM Version
3.1.1)

Version 2.1.2 5668-812

GDDM-PGF (for GDDM Version
2.3)

Version 2.1.1 5668-812

Callable Interface Programs using the callable interface can be written in:

IBM C/370 Compiler Version 2 5668-187

C/370 Library Version 2 5668-188

IBM HLASM Version 1.1 or Version 1. 2 5696-234

VS COBOL II Compiler and
Library

Version 1.4 5688-023

COBOL for VSE/ESA Version 1.1 5686-068

PL/1 for VSE/ESA Version 1.1 5686-069

User Edit Routines can be written in:

IBM HLASM Version 1 5696-234

VS COBOL II Compiler and
Library

Version 1.4 5688-023

PL/1 for VSE/ESA Version 1.1 5686-069

Governor Exit Routine:

IBM HLASM Version 1 5696-234

QMF storage requirements

Before you start using QMF, you need to make sure that each CICS partition
that runs QMF has enough storage to accommodate QMF programs and the
QMF reports users create.

The partition must be large enough to accommodate:
v All QMF phases: 2.8 MB 31-bit storage, total
v Storage for users to execute queries and hold QMF report data: Average

of 0.5 MB to 1 MB GETVIS storage per user. Some report options may
require additional storage.

196 Installing and Managing QMF

You can allocate storage for both purposes above 16 MB.

For a QMF system with up to 20 users, allocate at least 24 MB virtual storage
for your CICS partition. The minimum acceptable partition size for any QMF
system is 18 MB, regardless of the number of users.

To specify your partition size, use the VSE ALLOC statement in the
ALLOC.PROC data set of the IPL procedures, as shown in the following
example. For systems with more than 20 QMF users, increase the ALLOC 0.5
MB to 1 MB for each additional user.

Also allow 9 MB, within the 24 MB, for your programs. Specify this space
with the SIZE value in the IPL allocation data set:
// JOB ALLOC
// EXEC LIBR,PARM=’MSHP’
ACC S=IJSYSRS.SYSLIB
CATALOG ALLOC.PROC DATA=YES RELPLACE=YES
ALLOC S,F1=24M
SIZE F1=9m...

Some users might require more than 1 MB of GETVIS storage if they use
complex formatting options for a report, or if a large amount of data is
returned from a query. ″Adjusting GEVIS Storage Used for Report Data
(DSQSBSTG) on page xx explains how to calculate the desired allocation and
size.

If a QMF transaction runs out of storage in the CICS partition, it might time
out waiting for storage to become available. Therefore, when you adjust the
GETVIS values for each user, make sure you increase the ALLOC to
accommodate that additional storage.

You might also consider allocating a spill file for certain users, by defining
CICS auxiliary temporary storage in DFHTEMP. The spill file is used for extra
storage for data and reports.

The installation procedure in this book installs QMF to an individual CICS
partition. If you have several users using QMF in different CCS partitions,
you might consider lading QMF into the 31-bit shared virtual area. Or, if the
QMF users you support routinely use more than 1 MB of GETVIS storage for
queries and reports, you might also consider using CICS multiregion
operators or intersystem communications to provide more efficient use of
CICS resources at your site.

Chapter 16. Before You Begin 197

Apply service

Ensure that the service level of your system is current. Call your IBM
Software Service Support or use IBMLink (ServiceLink) in the United States or
EMEA DIAL in Europe to request the latest program temporary fixes (PTFs)
for QMF and its prerequisite products. Additionally, request QMF’s preventive
service planning (PSP) bucket, SUBSET: QMFVSE under UPGRADE QMF720.
the bucket contains general hints, HIPER APARs and documentation changes.
Subscribers that have access to either Information/Access or ServiceLink, can
download this information directly.

Check space requirements

To ensure that there is adequate disk storage for QMF installation, you need
to account for three kinds of space requirements. You must calculate all three
requirements to get an accurate storage estimate.

Library space
Your first task is to calculate your exact library space requirements in blocks.
You perform this calculation as part of the QMF installation described in the
QMF Program Directory. The number of QMF library blocks can vary.
Although there is a set number of blocks for the QMF base product, the
library block number increases if you are adding support for a national
language in addition to English.

If you need a rough estimate for planning purposes only, the number of
library blocks is approximately 14,100 and the minimum number for each
national language feature (NLF) is approximately 4,100.

VSAM catalog
In addition to the library retirement, QMF needs to define a file in the VSAM
space. This file needs:
v 2.5 MB of free VSAM space in a VSAM catalog.
v 0.5 MB of free VSAM space in the catalog that holds the GDDM file, ADMF.

You need free storage in the user catalog where the ADMF file resides.

If you are using an NLF: For each NLF, you will need an additional 2.5 MB
of VSAM catalog space and a corresponding 0.5 MB space in the ADMF file.

dbspace
When you installed DB2, you created public and private dbspaces. QMF
needs some of the public dbspaces for tables, queries, procedures, forms, and
data.

198 Installing and Managing QMF

A dbaspace is a logical allocation of space in the database, which consists of
4K pages. To convert dbspaces to megabytes, cylinders and tracks, or to add
dbspaces to the database, see the DB2 Server for VSE System Administration
manual.

If QMF tries to acquire the dbspace and there is not an exact match, it will try
to acquire the next largest size available. To avoid wasting space, check that
you have:
v One 5,120-page public dbspace
v Three 256-page public dbspaces
v Six 128-page public dbspaces

QMF needs this amount of space for each DB2 database; if you have multiple
databases, you need to take that into account. To verify the size of the
dbspaces, you can enter the following SQL statement from ISQL:
SELECT * FROM SYSTTEM.SYSDBSPACES WHERE DBSPACETYPE=1 AND OWNER=’ ’

Your disk storage allotment is the sum of the dbspace, VSAM catalog space
and library block size calculated in cylinders or blocks.

Check your CICS partition size
The minimum acceptable partition size for any QMF system is 18 MB,
regardless of the number of users. For a QMF system with up to 20 users,
allocate 24 MB virtual storage for your CICS partition. To specify your
partition size, use the VSE ALLOC statement in the IPL procedure
ALLOC.PROC, such as:
ALLOC F4=24M
SIZE=F4=9M

For systems with more than 20 QMF users, increase the ALLOC by 0.5 MB to
1MB for each additional user. Also allow 9 MB , within the recommended 24
MB, for your programs. You specify this space with the SIZE value in the IPL
allocation data set.

Because of the size of the GETVIS area is the difference between the partition
size and the SIZE value, your GETVIS is 15 MB. After installation, you can
adjust GETVIS space to maximize storage for a user’s queries and reports.

Partition size for installation
You need a partition to run the QMF installation job. His partition must have
a partition size of at least 1.5 MB.

The planning considerations

Not all QMF installations are the same. The following sections describe some
additional installation considerations that might apply to your situation.

Chapter 16. Before You Begin 199

Tailoring GDDM for QMF and CICS
Before you install QMF, GDDM must be fully installed, tailored, and tested. It
is important to do a complete GDDM installation and not merely restore to a
library. During QMF installation, QMF modifies GDDM’s ADDMF file.
Additionally, you must define GDDM resources, such as programs and
transactions, to CICS.

Changing GDDM Version 2.3 default parameters
If you are using GDDM Version 2.3, you might need to modify a parameter in
the GDDM external defaults module. Ensure that the IOSYNCH parameter in
ADMADFC is set to YES.

Run the installation verification procedure (IVP) for GDDM
Check that you have GDDM properly installed by running the IVP for
GDDM. The IVP minimizes installation problems and ensures that you are
installing QMF onto a clean system.

Running DB2 guest sharing
You have the option to connect your CICS partition to a DB2 database on
either VSE or VM. When VSE is a guest to VM and shares data with the
host’s applications through a common VM DB2 database, it is called guest
sharing. The benefit of SQL guest sharing is that both VM and VSE users can
use a common database. QMF requires minimum levels of VM/ESA Version
1.1 and DB2 Version 6 to use QMF in an SQL guest sharing environment. You
do not have to install QMF for VM.

If you establish an SQL guest sharing environment and want to install QMF
on VSE, complete the installation as if VSE owned the database. The VM DB2
database is transparent to the VSE user.

However, if you have both DB2 and QMF installed under VM/ESA, and you
want to install an additional QMF product in VSE, you can skip the part of
the QMF installation that deals with database installation. During the install
process, you are told when to skip that step. Otherwise, the remainder of this
manual assumes that you are installing QMF into a DB2 for VSE database.

Customizing DB2 for double-byte character support
If you plan to install QMF with a national language that requires double-byte
character support, you need to complete the database customization before
installing QMF.

Installation overview

Every data center is different, and every system in each data center can be
configured numerous ways. You might have multiple DB2 databases, on one
or more CICS systems, VSE running as a guest under VM/ESA, DB2 guest
sharing, another version of QMF (either on VM or VSE), or special national

200 Installing and Managing QMF

language requirements. Because your VSE system might be unique, the QMF
installation has been designed so that you can easily install and re-install
using only a few simple jobs.

Some of these jobs will be run only once, others might be run multiple times
depending on your configuration.

Base installation
The base (English version) installation requires that you run the following
jobs:

DSQ3INIT
This job establishes the initialization criteria for the remainder of the
installation. The other installation jobs use the procedure cataloged by
DSQ3INIT to find information about installed products such as GDDM, DB2,
and VSAM. It also contains information about the QMF installation. You run
DSQ3INIT only once.

DSQ3EINS
This job defines and loads the QMF panel file (DSQPNLE) into VSAM space.
The panel file contains all of the panel definitions. DSQ3EINS also loads maps
and sample charts; you run it only once.

DSQ3EDBI
This job is QMF’s database installation job. DSQ3EDBI creates QMF control
tables, loads QMF packages and defines and loads sample tables into the DB2
database. You run this job once for each local SQL database that you are
connecting to CICS.

Normally, running this job is mandatory. However, if you currently have QMF
for VM/ESA Version 7.2 or later installed, and you want to add a QMF for
VSE/ESA in an SQL guest sharing environment, you do not need to run this
job. This is because the database portion of QMF was installed during the
QMF VM installation. However, if you want to define a DB2 VSE database in
addition to the DB2 VM database, you do need to run DSQ3EDBI.

DSQ3ELNK (optional job) Here
This job link-edits QMF with the current versions of GDDM and DB2. You do
not need to run this job if you have installed:
v GDDM/VSE Version 3.2
v CICS for VSE/ESA Version 2.3
v DB2 for VSE Version 7.1

QMF is already linked with those versions.

Chapter 16. Before You Begin 201

Installing language support
The QMF base installation loads all of the panels and maps in English. If you
require QMF in another or different language, you need to order one or more
of the National Language Features (NLFs) of QMF.

You can distinguish base installation members from NLF members by a single
character abbreviation known as the National Language Identifier (NLID). In
the manual, and throughout the QMF library, we use the letter n to represent
the NLID. For example, if you are installing DSQ3FINS.Z for French support,
you substitute F in place of the n in member name DSQ3nINS.Z. The same
member name for English support, DSQ3EINS.Z., lists all of the languages
and their associated NLIDs.

Table 34. NLIDs representing QMF base (English) and National Language Features
(NLFs)

Language NLID (n)

Brazilian Portuguese P

Canadian-French C

English E

French F

German D

Italian I

Japanese K

Korean H

Spanish S

Swiss French Y

Swiss German Z

Uppercase English U

The uppercase feature (UCF) uses the English language, but converts all test
to uppercase characters. The uppercase characters allow users working with
Katakana terminals to use the product and get English online help and
messages. Terminals equipped with Katakana support include IBM 3277, 3278,
and 3279 terminals, as well as IBM 5550 Multistations.

NLF install process
You begin an NLF installation by scanning the tape for the base product. After
the tape is restored to disk, you continue through the installation procedures
for the base install, up to the point of CICS tailoring. You must complete the

202 Installing and Managing QMF

installation of the base product, up to CICS tailoring, before you install the
NLFs. While doing the base installation, ignore the sections in the procedures
that apply to NLFs.

After the base product is installed, go back through the same procedures and
follow the directions that apply for an NLF. Continue with CICS tailoring and
customize both the base and the NLFs at the same time. Last, run the
Installation Verification Procedures (IVPs) for the base product and for each
NLF.

The NLF-specific installation jobs are:
v DSQ3nINS This job is the same as DSQ3EINS, except that it loads the

panel files in your national language. This is a mandatory step.
v DSQ3nDBI This job is the same as DSQ3EDBI, except that it loads the

sample tables and profile table in your national language. This is a
mandatory step for each database that you connect to CICS.

v DSQ3nLNK This job is the same as DSQ3ELNK, except it link-edits the
national language parts of QMF. This is an optional step depending on the
product versions you have installed.

CICS tailoring
CICS can be tailored after the product base and NLFs have been installed.
CICS can be tailored for both the base and any NLFs at the same time.
However, modifications must be made to every CICS system that works with
QMF.

During CICS tailoring, four CICS tables must be modified:
v Destination control table (DCT)
v File control table (FCT)
v PROGRAM resource (CSD) or processing program table (PPT)
v TRANSACTION resource (CSD) or program control table (PCT)

All four tables can be modified by assembling resource definition tables. Some
of the tables can also be modified by defining resources online (RDO) in a
CICS system definition (CS) data set. Use copyboooks and copy statements to
change the tables. Similar copybooks and copy statements should exist for the
NLF versions.

When CICS tailoring has been completed, the installation must be checked by
following the IVPs for the base product and for each NLF.

Chapter 16. Before You Begin 203

204 Installing and Managing QMF

Chapter 17. Tailoring Your Installation

QMF must be customized before it can be used. This chapter lists the
necessary steps to tailor or customize QMF and CICS for your system. The
QMF for VSE Version 7.2 installation must be completed in order to proceed
with this chapter.

Punch members to an editor

Members must be punched to a facility that have an editor such as ICCF or
Virtual Machine (VM) because they cannot be edited in a VSE sublibrary. The
following procedure illustrates how to punch QMF jobs to an ICCF library:
1. Return to the main VSE/ESA Function Selection panel.
2. Select the Command Mode option to enter commands directly. You can

switch to a secondary library by entering
/SWI nn

where nn represents the target ICCF library number.
3. Punch the following members to ICCF. Press Enter after typing each

command.
LIBRP PRD2.PROD DSQ3INIT.Z DSQ3INIT (REPLACE
LIBRP PRD2.PROD DSQ3EINS.Z DSQ3EINS (REPLACE
LIBRP PRD2.PROD DSQ3EDBI.Z DSQ3EDBI (REPLACE

4. For NLF: Punch NLF installation members to ICCF using the NLID for
your NLF listed in Table 34 on page 202. Press Enter before typing each
command.
LIBRP PRD2.PROD DSQ3nINS.Z DSQ3nINS (REPLACE
LIBRP PRD2.PROD DSQ3nDBI.Z DSQ3nDBI (REPLACE

install QMF base

This section covers installing the QMF base, which involves:
v Modifying and cataloging the initialization procedure
v Running the install job
v Installing to the DB2 database

Catalog the initialization procedure
DSQ3INIT is the QMF initialization procedure. It establishes installation
criteria for the remainder of the installation, which is stored in
DSQ3INIT.PROC. Because the information stored in DSQ3INIT is critical to

© Copyright IBM Corp. 1983, 2002 205

the success of the installation, ensure your entries are correct before running
the job. An incorrect entry in this job will cause errors in subsequent job steps.

You must edit DSQ3INIT before it can run:
1. Delete the first line of the file, which begins with CATALOG.
2. Change all instances of ..* to * with the following command:

ch /..*/*/ *

3. Delete the two last lines of the file, leaving the end-of-job statement.
4. Verify or change the name of the QMF library and sublibray, if necessary.

If you are using anything other than the default library, PRD2.PROD,
change the name to your library name:
// EXEC LIBR,PARM=’MSHP’

ACC S=PRD2.PROD
CATALOG DSQ3INIT.PROC

// SETPARM QMFLIB=PRD2 *-- QMF for VSE LIBRARY
// SETPARM QMFSLIB=PROD *-- QMF for VSE SUBLIBRARY

5. Check the default library and sublibray for GDDM/VSE and DB2 for VSE.
Compare, and change if necessary, the defaults to actual library and
sublibrary names being used. The default values are:
// SETPARM ADMLIB=PRD2 *-- GDDM/VSE LIBRARY
// SETPARM ADMSLIB=PROD *-- GDDM/VSE SUBLIBRARY
// SETPARM SQLLIB=PRD2 *-- DB2 LIBRARY
// SETPARM SQLSLIB=DB2720 *-- DB2 SUBLIBRARY

6. Check the VSAM catalog name and ID. The catalog name and ID specify
the target VSAM catalog for the QMF panel file and any NLF panel files.
Compare the fields and change, if necessary:
// SETPARM UCAT=VSESPUC *-- FILE NAME OF CATALOG
// SETPARM UCATID=’VSEP.USER.CATALOG’

*-- FILE ID OF CATALOG
7. Determine whether you changed any of the defaults for GDDM/VSE.

ADMF should have been defined in a VSAM catalog during the GDDM
install. The QMF installation loads maps and forms to ADMF. QMF
requires the file ID of ADMF (ADMFID), the catalog name (ACAT), and
the catalog ID (ACATID).
If you changed the defaults, change the following statements to match
your naming convention:
// SETPARM ADMID=’ADMF’ *-- FILE ID OF GDDM/VSE FILE ADMF
// SETPARM ACAT=VSESPUC *-- CATALOG NAME AND CATALOG ID IN
// SETPARM ACATID=’VSESP.USER.CATALOG’ *-- WHICH ADMF IS DEFINED

8. File the job and run DSQ3INIT. Check the system console to ensure that
the job ran with a return code of 0.
If the job did not run with a return code of 0:

206 Installing and Managing QMF

a. Check for an error message on the system console.
b. Check the list output to find the cause of the problem.
c. Correct the problem.
d. Return DSQ3INIT.
e. Recheck the return code.

Run the QMF installation job
DSQ3EINS is the QMF installation job:
v It defines and loads the QMF panel file
v It loads sample charts
v It loads maps

To successfully load and execute this job, these tasks must be accomplished
during the initial installation:
1. Edit DSQ3EINS to change or supply the required parameters

a. Delete the first line of the file that starts with CATALOG.
b. Change all instances of ..* to * with the following command:

ch /..*/*/ *

c. Delete the two last lines of the file, leaving the end-of-job statement.
2. Return to the top of the job and ensure the four job steps are set to YES.

DSQ3EINS contains four job steps When a SETPARM is set to YES, it
indicates that the step will be run; when set to NO, the step is skipped.
Under most circumstances, these steps are run only once because VSE can
share files with multiple CICS systems. For subsequent installations, or
under error conditions, some of the job steps might need to be set to NO.
// SETPARM STEP1=YES *-- DEFINE CLUSTER DSQPNLE
// SETPARM STEP2=YES *-- LOAD DSQPNLE
// SETPARM STEP3=YES *-- LOAD QMF CHARTS
// SETPARM STEP4=YES *-- LOAD QMF MAPS

3. Verify or change all instances of the library and sublibray names. If you
installed QMF to a library other than PRD2.PROD, you must change the
library and sublibrary names.

4. Supply one or more volume IDs for the VSAM cluster that holds the QMF
panel file. Locate this cluster definition under job step 1.
// EXEC IDCAMS,SIZE=AUTO
DEFINE CLUSTER (-

NAME (QMF720.DSQPNLE) -
RECORDS (1200 50) -
SHAREOPTIONS (3) -
RECORDSIZE (1920 32756) -
VOLUMES (--V001--) -

Replace the variable -V001- with the volume IDs , such as DOSRES or
SYSWK1. For example:

Chapter 17. Tailoring Your Installation 207

VOLUMES (DOSRES SYSWK1) -

or
VOLUMES (DOSRES) -

5. File and run the job. Check the system console to ensure that the job ran
with a return code of 0.

Install QMF base into DB2 database
Run DSQ3EDBI, the database installation job, for each SQL database that you
are connecting to QMF.

Skip this procedure if you have a DB2 guest sharing environment and have
installed QMF for VM. Under these conditions, you can continue with “Tailor
QMF for NLF” on page 209, if you have an NLF to install, or skip to
“Link-edit jobs for QMF” on page 211 for a base installation.

DSQ3EDBI
v Creates QMF control tables
v Loads QMF packages
v Defines and loads sample tables
1. Edit DSQ3EDBI (first use of the job only).

a. Delete the first line of the file, starting with CATALOG.
b. Change all instances of ..* to * with the following command:

ch /..*/*/ *

c. Delete the last two lines of the file, leaving the end-of-job statement.
2. Ensure that the first three job steps are set to YES.

// SETPARM STEP1=YES -- CREATE QMF CONTROL TABLES IN SQL DB
// SETPARM STEP2=YES -- LOAD QMF PACKAGES INTO SQL DB
// SETPARM STEP3=YES -- LOAD QMF SAMPLES INTO SQL DB

For subsequent installations, or under error conditions, some of the job
steps might need to be set to NO. Changing the setparm to NO will skip
the step.

3. Locate the
// SETPARM DBNAME=SQLDS

parameter and verify or change SQLDS to the name of the database that
you are using. DBNAME is the database name that is specified in the SQL
DBNAME directory.

4. Determine whether this database has an earlier version of QMF for VSE
installed. Possible earlier versions are Version 3.3, Version 6.1, or Version
7.1.

208 Installing and Managing QMF

If an earlier version is installed, located the following statement and
change the value from NO to Version 3.3, Version 6.1, or Version 7.1:
// SETPARM MIGRATE=NO
//

Using this parameter will prevent duplicate control tables from being
created.

5. Verify or change all instances of the QMF library and sublibray names. If
QMF was installed to a library other than PRD2.PROD, change the library
and sublibrary names.

6. Ensure that DB2 is up and running in multiple user mode.
7. Ensure the SQLDBA’s password is set to SQLDBAPW.

The QMF installation procedures assume that the password for SQLDBA is
set to SQLDBAPW. IF the password is set to anything else, DSQ3SETQ.A
must be updated and re-cataloged into the QMF installation library.
To update DSQ3SETQ.A:
a. Punch the member DSQ3SETQ.A to an editor, such as ICCF.
b. Modify the CONNECT statement by replacing SQLDBAPW with the

existing password for SQLDBA:
CONNECT SQLDBA IDENTIFIED BY ’new-SQLDBAPW’

c. Recatalog DSQ3SETQ.A into the QMF installation library
(PRD2.PROD).

8. File and run DSQ3EDBI. As the job runs, the system console displays
messages that indicate which job step is executing. At the end of the job,
check the system console to ensure that job completed with a return code
of 0. Those who are migrating from an earlier version of QMF for VSE,
might get a return code of 6 in job step; in this case, the return code can
be ignored.
If the job did not complete with a return code of 0 or 6, follow the same
tasks as in step 5 on page 208, except Rerun the job DSQ3EDBI instead of
DSQ3EINS for task f.
To install QMF into additional DB2 databases, repeat the procedure for
each database, starting with step 3 on page 208.

Tailor QMF for NLF

Two members, DSQ3nINS and DSQ3nDBL, should have been punched to add
support for a national language. These jobs need to be edited and executed.

Install NLF
Like DSQ3EINS, DSQ3nINS is run only once.
1. Edit DSQ3nINS for the following:

a. Delete the first line of the file, starting with CATALOG.

Chapter 17. Tailoring Your Installation 209

b. Change all instances of ..* to * with the following command:
ch /..*/*/ *

c. Delete the last two lines of the file, leaving the end-of-job statement.
d. Locate the three setparms and ensure that they are set to YES:

// SETPARM STEP1=YES *-- DEFINE CLUSTER DSQPNLn
// SETPARM STEP2=YES *-- LOAD DSQPNLn
// SETPARM STEP3=YES *-- LOAD QMF MAPS TO ADMF

e. Verify or correct the QMF library and sublibrary names. Change the
names accordingly if they were changed from the default PRD2.PROD
library.

f. Supply one or more volume IDs for the VSAM cluster that holds the
national language version of the QMF panel file. Locate this cluster
definition under job step 1:
// EXEC IDCAMS,SIZE=AUTO
DEFINE CLUSTER (-

NAME (QMF720.DSQPNLn) -
RECORDS (1200 50) -
SHAREOPTIONS (3) -
RECORDSIZE (1920 32756) -
VOLUMES (--V001--) -

2. File DSQ3nINS and run the job.

Install QMF into SQL database
Edit DSQ3nDBI for each database that needs NLF support:
1. Delete the first line of the file, starting with CATALOG.
2. Change all instances of ..* to * with the following command:

ch /..*/*/ *

3. Delete the last two lines of the file, leaving the end-of-job statement.
4. Ensure that the first three job steps are set to YES:

// SETPARM STEP1=YES *-- Create profile
// SETPARM STEP2=YES *-- Drop sample tables
// SETPARM STEP3=YES *-- Create and load sample tables

For subsequent installations, or under error conditions, some of the job
steps might need to be set to NO. Changing a setparm to NO skips the
step.

5. Locate the database name SQLDS, and verify that it is set for the correct
database:
// SETPARM DBNAME=SQLDS *-- TARGET DB2 DBNAME FOR QMF on VSE/ESA

6. Determine whether this database has an earlier version of QMF for VSE
installed.
If an earlier version is installed, locate the following statement and change
the value from NO to that version, for example V6R1:

210 Installing and Managing QMF

// SETPARM MIGRATE=NO
//

7. Verify or correct the QMF library and sublibrary names. Change the names
accordingly if they were changed from the default PRD2.PROD library.

8. Ensure that DB2 is up and running in multiple user mode.
9. File DSQ3nDBI and run the job. Check the system console to ensure that

the job completed with a return code of 0.

Link-edit jobs for QMF

QMF is prelinked with the following release levels of products:
v GDDM/VSE Version 3.2
v CICS/VSE Version 2.3
v DB2 Version 6

If you have different releases of these products, the following job must be run:
1. Punch DSQ3ELNK to a library and edit the job. The following example

uses ICCF to perform the punch:
LIBRP PRD2.PROD DSQ3ELNK.Z DSQ3ELNK (REPLACE

Press Enter.
2. Delete the first line of the file, starting with CATALOG.
3. Change all instances of ..* to * with the following command:

ch /..*/*/ *

4. Verify or correct the QMF library and sublibrary names. Change the names
accordingly if they were changed from the default PRD2.PROD library.

5. Verify or change the search chain so that it contains the library and
sublibrary for QMF, DB2, GDDM/VSE, and CICS:
// LIBDEF OBJ,SEARCH=(PRD2.PROD,PRD2.DB2710,PRD1.BASE)

6. File and run the job; check the system console to ensure the job completed
with a return code of 4. A return code of 0 is not returned because of weak
external references (WXTRNs) that are not resolved during the linkage
editor run.
If the job did not complete with ar return code of 4, recheck the LIBDEF
statement for the above products and rerun the link-edit job. Below is an
example of the output from this link-edit:
21651 WARNING - RMODE=ANY ASSIGNED TO PHASE, BUT THE PHASE

CONTAINS 2 AND/OR 3 BYTE RELOCATABLE ADDRESS CONSTRAINTS
UNRESOLVED EXTERNAL REFERENCES WXTRN ADMUFO

WXTRN GERHND
WXTRN ADME000C
WXTRN ADMADFC
WXTRN ADMACIN

Chapter 17. Tailoring Your Installation 211

WXTRN ADMUOFF
WXTRN DSQCLDQ
WXTRN LTTBAS
WXTRN LTTBASX
WXTRN DSNHLI
WXTRN DSQIRDB2

Additionally, several messages will appear about the use of WXTRNs and
using 2- or 3-byte ADCONs. These messages are expected and should not
cause a problem for QMF.

Link jobs for NLF
Repeat the procedure in “Link-edit jobs for QMF” on page 211 for your NLF
version of DSQ3nLNK.

Tailor CICS

The following CICS tables must be modified for QMF to run in CICS:
v Destination control table (DCT)
v File control table (FCT)
v PROGRAM resource (CSD) or processing program table (PPT)
v TRANSACTION resource (CSD) or program control table (PCT)

These modifications must be made for every CICS system that works with
QMF.

Resources, such as QMF programs and transactions that CICS controls for a
particular run, must be defined. They can be defined online (RDO) in a CICS
system definition (CSD) data set, or by assembling resource definition tables
using macros.

The macro method must be used to define the FCT and DCT. QMF supplies
copybooks for modifying these tables.

The PCT and PPT can also be modified with the QMF supplied copybooks.
However, the recommended method is to modify these tables with an RDO to
a CSD data set. RDO allows one to interactively create resource definitions
and store them in a data set.

CICS offers a utility program (DFHCSDUP) to update the CSD with a batch
job. QMF provides a job that defines the QMF programs and transactions to
CICS without reassembling the DFHPCT and DFHPPT.

The following procedures require knowledge of locating tables and
assembling them using the Interactive Interface. This is described in the IBM
VSE/ESA Administration guide.

212 Installing and Managing QMF

Modify the DFHFCT and DFHDCT
Change these tables using the macro method.

Before editing, locate the source used to create the FCT and DCT for this CICS
system. In the following examples, it is assumed that the skeletons provided
with VSE/ESA to bring up another CICS system were used. If these skeletons
were not used, the CICS for VSE/ESA Resource Definition (Macro) can be
used to locate the appropriate place to insert the changes. Note that these
examples have a suffix of C2; your tables may be different.

Modify DFHFCT
Modify the source of your DFHFCT to define the QMF panel file to CICS:
1. Find the LIBDEF statement and ensure that the search chain contains the

library and sublibrary for QMF. Otherwise, VSE/ESA will not be able to
find the copybook.
// LIBDEF *,SEARCH=(PRD1.BASE,PRD2.PROD)

2. Add a local entry for the QMF panel file in the FCT. If an NLF is to be
added, add a copy statement for the NLF member:
*---
* LOCAL ENTRIES SHOULD BE PLACED BELOW THIS BOX
*---

COPY DSQ3EFCT
COPY DSQ3nFCT
SPACE 3

Substitute the appropriate NLID for the n.
3. Assemble and link-edit the member to create a new DFHFCTC2 phase.

Modify DFHDCT
Locate the source of your DFHDCTC2 and make the following changes:
1. Find the LIBDEF statement and ensure that the search chain contains the

library and sublibrary for QMF. Otherwise, VSE/ESA will not be able to
find the copybook.
// LIBDEF *,SEARCH=(PRD1.BASE,PRD2.PROD)

2. Find the local entry for TYPE=SDSCI and add a copy statement for
DSQ3DCTS as shown in the example below:
*---
* OTHER LOCAL ENTRIES SHOULD BE PLACED BELOW THIS BOX
*---

COPY DSQ3DCTE
SPACE 3

3. Assemble and link-edit the member to create a new DFHDCTC2 phase.
Ensure the job completes with a return code of 0 or 4. If you receive
higher return codes, check the list output and correct the error.

Chapter 17. Tailoring Your Installation 213

Define QMF programs and transactions to CICS
QMF provides help to define the QMF programs and transactions to CICS:
v By providing a batch job that defines the QMF resources to the CICS CSD
v By providing copybooks that can be included in the CICS PPT and PCT

Define the QMF programs to the CSD using the job DSQ3ECDS (and
DSQ3nCSD for NLF installs).

Update the CSD
This procedure creates a new LIST called QMF, which is defined in the CSD.
Additionally, for each language, a GROUP called QMF720n is defined in the
LIST QMF. QMF720n contains the definition of the QMF programs and
transactions (E for English).
1. Punch the following member to ICCF using this command:

LIBRP PRD2.PROD DSQ3ECSD.Z DSQ3nCSD (REPLACE

Press Enter.
2. Punch equivalent NLF members to ICCF. Substitute the NLID for the n in

the following example:
LIBRP PRD2.PROD DSQ3nCSD.Z DSQ3nCSD (REPLACE

Press Enter.
3. Edit DSQ3ECSD (or DSQ3nCSD for NLF)

a. Delete the first line of the file, starting with CATALOG.
b. Change all instances of ..* to * with the following command:

ch /..*/*/ *

c. Delete the last two lines of the file, leaving the end-of-job statement.
4. Check that the file ID and catalog reflect your CSD:

// DLBL DFHCSD,’CICS.CSD’,,VSAM,CAT=VSESPUC

5. Verify that the library and sublibrary names in the POWER statements are
the QMF library and sublibrary names:
* $$ SLI MEM=DSQ3ECDN.A,S=PRD2.PROD
* $$ SLI MEM=DSQ3BCDB.A,S=PRD2.PROD

For NLF:
* $$ SLI MEM=DSQ3nCDN.A,S=PRD2.PROD

6. File and run the job. Ensure the job completes with a return code of 0 or 4.

Run CEDA
CEDA is one of three interactive online transactions that comprise RDO.
CEDA can be used to modify, delete, check and browse definitions while CICS
is running. It provides commands for managing groups and lists, which
include installing a group of resource definitions on an active system.

214 Installing and Managing QMF

To activate resource definitions from the main VSE/ESA Function Selection
panel:
1. Select 7, CICS - Supplied Transactions, and press Enter.
2. Select 2, Invoke CEDA , from the CICS-Supplied Transaction panel and

press Enter.
3. Type

AP LIST (QMF) TO(VSELIST)

and press Enter.

The VSELIST parameter must be the name specified for the GRPLIST
parameter specified in DFHSIT of this CICS. CEDA appends the LIST
QMF to the LIST VSELIST and ensures that the QMF definitions are
known to CIC after the next cold start.

To activate these QMF definitions immediately, perform a CICS cold start,
or issue:
CEDA INSTALL GR(QMF720e)

for a temporary, but immediate, change.
4. Repeat the procedure for applicable NLF members:

CEDA INSTALL GR(QMF720n)

Modify the DFHPCT and DFHPPT
If the QMF programs and transactions were not defined to the CSD, the
following modifications must be made:

Modify the DFHPCT
1. Locate the source of your DFHPCT.
2. Find where local entries are made and enter copy statements for

DSQ3EPCT and for any NLF PCT entries as shown in the example below:
*---
* LOCAL ENTRIES SHOULD BE PLACED BELOW THIS BOX
*---

SPACE 3
COPY DSQ3EPCT ***** QMF for VSE BASE ENTRIES

For NLF:
COPY DSQ3nPCT ***** QMF for VSE NLF ENTRIES

Substitute the appropriate NLID for the n.
3. Assemble and link-edit the member to create a new DFHPCTC2 phase.

Chapter 17. Tailoring Your Installation 215

Modify the DFHPPT
1. Locate the source of your DFHPPT.
2. Find where local entries are made and enter copy statements for

DSQ3EPCT and for any NLF PCT entries as shown in the example below:
*---
* LOCAL ENTRIES SHOULD BE PLACED BELOW THIS BOX
*---

SPACE 3
COPY DSQ3EPPT ***** QMF for VSE BASE ENTRIES

For NLF:
COPY DSQ3nPPT ***** QMF for VSE NLF ENTRIES

Substitute the appropriate NLID for the n.
3. Assemble and link-edit the member to create a new DFHPPTC2 phase.

Modify the CICS startup job
1. Locate the LIBDEF statement with the following search string and ensure

that it contains the QMF library and sublibrary:
// LIBDEF *,SEARCH+(PRD2.CONFIG,PRD1.BASE,PRD2.DB2710, -

PRD2.PROD),PERM

2. Define the labels for the base QMF panel file and for the NLF equivalent
member with your other CICS DLBL statement:
// DLBL DSQPNLE,’QMF720.DSQPNLE’,,VSAM,CAT=VSESPUC

For NLF:
// DLBL DSQPNLn,’QMF720.DSQNLE’,,VSAM,CAT=VSESPUC

Optionally, the above DLBL statement can be included in the system
standard label procedure.

3. Ensure that virtual storage allocated to the CICS partition was expanded.

Shut down and restart CICS to incorporate changes made to the CICS tables
and to the CICS startup job

Install QMF for VSE/ESA into a second CICS system

When installing QMF to several CICS systems, determine if a single CSD is
shared among the CICS systems or individual CSDs per CICS system.
Determine if all the CICS systems use the same CSD by comparing the
GRPLIST parameter in the SIT for each CICS.

If there is a single CSD for all your CICS systems, further customization steps
may be skipped after QMF programs and transactions to the CSD have been
initially defined. The FCT and DCT of the second CICS must still be modified.

216 Installing and Managing QMF

If there are individual CSDs for every CICS system, the entire CICS
customization procedure must be repeated for each CICS system.

Chapter 17. Tailoring Your Installation 217

218 Installing and Managing QMF

Chapter 18. Installing QMF into Remote Database Servers

TCP/IP communications must be in place between the local DB2 for VSE
requester and the remote database server in order to install QMF into remote
database servers from VSE.

Installing QMF V7.2 into a DB2 Universal Database remote server

DB2 Universal Database Version 5 or higher is supported

Punch Members to an editor
Members must be punched to a facility that have an editor such as ICCF or
VM because they cannot be edited in a VSE sublibrary. The following
procedure illustrates how to punch QMF jobs to an ICCF library:
1. Return to the main VSE/ESA Function Selection panel.
2. Select the Command Mode option to enter commands directly. You can

switch to a secondary library by entering
/SWI nn

where nn represents the target ICCF library number.
3. Punch the following members to ICCF. Press Enter after typing each

command.
LIBRP PRD2.PROD DSQ3EDBU.Z DSQ3EDBU (REPLACE
LIBRP PRD2.PROD DSQ3BPKG.Z DSQ3BPKG (REPLACE

4. For NLF: Punch NLF installation members to ICCF. Using the NLID for
your NLF listed in Table 34 on page 202. Press Enter before typing each
command.
LIBRP PRD2.PROD DSQ3nDBU.Z DSQ3nDBU (REPLACE

Installation steps
The steps listed here describe a QMF server installation to a remote DB2 UDB
Version 5 or higher database server. The QMF server installation utilizes DB2
for VSE batch requester services and assumes that all connections are active
and working. These steps install QMF control and sample tables and reload
packages at the remote server.
1. Run job DSQ3EDBU. Install QMF control tables and sample tables. This

job must be edited before it can be run.
a. Delete the first line of the file, which begins with CATALOG.
b. Change all instances of ..* to * with the following command:

ch /..*/*/ *

c. Delete the two last lines of the file, leaving the end-of-job statement.

© Copyright IBM Corp. 1983, 2002 219

d. Carefully read the detailed comments in the file and change all
appropriate values

e. File and run DSQ3EDBU.
2. Run job DSQ3BPKG- RELOAD QMF packages at remote server. This job

must be edited before it can be run. Follow the same tasks as above in
step 1, except for e, where DSQ3EBPKG instead of DSQ3EDBU will be
filed and run.

3. Install the QMF LNLF at the remote DB2 UDB server. If support for a
national language is being added, run DSQ3nDBU. This job must be
edited before it can be run. Follow the same tasks as above in step 1,
except for e, where DSQ3nDBU instead of DSQ3EDBU will be filed and
run.

Installing QMF Version 7.2 for an iSeries server

The steps listed here describe a QMF server installation to a remote DB2 UDB
for iSeries Version 4.4 or higher database server. The QMF server installation
uses DB2 for VSE batch requester services and assumes that all connections
are active and working. These steps install QMF control and sample tables
and reload packages at the remote server.

Follow the steps as described in “Installation steps” on page 219 and
substitute DSQ3EDBA for DSQ3EDBU in step 1. In step 3 substitute remote
iSeries server for remote DB2 UDB server.

220 Installing and Managing QMF

Chapter 19. Run the Installation Verification Procedure

This chapter describes the final testing of QMF, the installation verification
procedure (IVP).

Before starting QMF

1. Complete all the installation and customization steps outlined in the book.
2. Start the database connection by issuing the CIRB command.
3. Verify that the QMF Trace Facility is installed by checking the transient

data queue (DSQD). From a clear CICS screen, enter:
CEMT INQUIRE QUEUE (DSQD)

You should see a screen similar to this:

Ena Ope indicates that the queue is open and enabled. If you do not see
that DSQD is enabled and open, you need to review your modifications to
the CICS DCT. Verify that the QMF trace file was installed correctly. See
“Step 22—Update CICS control tables (CICS version 3 or later)” on page 72
for details.

Start and test QMF

This procedure starts the QMF for VSE product and tests that the product is
properly installed. If you receive an error message during any part of the
procedure, it indicates that QMF did not start properly.
1. Sign on to the CICS system that is connected to QMF.
2. Press the Escape function key to begin a native CICS session.

STATUS: RESULTS - OVERTYPE to MODIFY
Que(DSQD) Ext Ena Ope

© Copyright IBM Corp. 1983, 2002 221

3. Start QMF by issuing the CICS transaction, QMFE. Also specify the use of
the temporary storage queue (DSQSDBQT) so that you can view any
warning messages online. To start QMF with the temporary storage queue
name, DSQD, specify:
QMFE DSQSDBQT=TS,DSQSDBQN=DSQD

You should see the QMF Home panel.

4. Verify existence of QMF online help.
Press the Help function key. You should see this Help panel:

Licensed Materials - Property of IBM
5675-DB2 5697-F42 (C) Copyright IBM Corp. 1982, 2000
All Rights Reserved.
IBM is a registered trademark of International Business Machines

QMF HOME PANEL Query Management Facility
Version 7 Release 2

****** ** ** ********* ____
Authorization ID ** ** *** *** ** ____
Q ** ** **** **** ******* ____

** ** ** ** ** ** ** ____
Connected to ** * ** ** **** ** ** ____
SQLDS ****** ** ** ** ** _______

** _______________________________________

Enter a command on the command line or press a function key.
For help, press the Help function key or enter the command HELP.

1=Help 2=List 3=End 4=Show 5=Chart 6=Query

7=Retrieve 8=Edit Table 9=Form 10=Proc 11=Profile 12=Report
OK, you may enter a command.
COMMAND ===>

222 Installing and Managing QMF

Exit from the Help panel by pressing either PF3 or PF12.
5. Obtain a list of QMF-supplied sample tables.

Type the QMF command LIST TABLES (OWNER=Q) on the command line
and press Enter. Depending on whether you previously installed QMF, the
tables that have the owner Q might vary from the following screen:

If you press PF8, additional panels are shown. Return to the QMF Home
panel by pressing the Cancel function key. End the QMF session by
pressing PF12.

Licensed Materials - Property of IBM
5645-DB2 5648-A70 (C) Copyright IBM Corp. 1982, 1998
All Rights Reserved.
IBM is a registered trademark of International Business Machines
+---+
| Help: Query Management Facility |
| |
| Select a topic. |
| 1 to 7 of 14 |
| 1. What’s new in Version 7.2 |
| 2. Profile |
| 3. QMF commands |
| 4. Prompted Query |
| 5. SQL (Structured Query Language) |
| 6. Table Editor |
| 7. Forms |
+---+
| F1=Help F3=Exit F7=Backward F8=Forward F9=Keys F12=Cancel |
+---+

OK, HELP performed. Please proceed.

+---+
| Table List |
| |
| Action Name Owner |
| 1 to 7 of 36 |
| APPLICANT Q |
| COMMAND_SYNONYMS Q |
| DSQ_RESERVED Q |
| DSQEC_ALIASES Q |
| DSQEC_COLS_LDB2 Q |
| DSQEC_COLS_RDB2 Q |
| DSQEC_QMFOBJS Q |
| DSQEC_TABS_LDB2 Q |
| DSQEC_TABS_RDB2 Q |
| INTERVIEW Q |
| ORG Q |
| PARTS Q |
+---+
| F1=Help F4=Command F5=Describe F6=Refresh F7=Backward F8=Forward |
| F9=Clear F10=Comments F11=Sort F12=Cancel |
+---+
OK, yout database object list is displayed.

Chapter 19. Run the Installation Verification Procedure 223

The installation verification is now complete. You can browse the temporary
storage queue to determine if there are any QMF warning messages using the
CICS transaction:
CEBR DSQD

If your IVP ran without any errors, your TS queue DSQD is empty.

Run an IVP for NLF

Rerun the IVP, beginning with “Before starting QMF” on page 221 and start
QMF by issuing a different transaction ID. Use QMFn where n is the NLID for
the language, as given in Table 34 on page 202. For example, if you are
installing German, the transaction ID is QMFD.

If a language that uses the double-byte character set is being tested, such as
Japanese orKorean, your terminal must be double-byte enabled.

What if it did not work?

If QMF is unable to start, an error message is generated. Descriptions of some
of the more common errors from running the IVP follow. If you do not find
the message on this list, consult the appropriate Messages and Codes manual.
v AEY9 ABEND The database connection between the CICS partition and

DB2 is not active. Issue a CIRB command.
v G050 ABEND The release level of GDDM being used in CICS partition

does not match the version with which QMF was link-edited.
v Gxxx ABEND Issued by GDDM. See the GDDM Diagnosis manual and the

GDDM Diagnosis and Problem Determination guide.
v DFH1599 Region/partition size is insufficient to initialize CICS. Increase the

partition size.
v DSQ40083 GDDM ERROR ADM0962 E MAPGROUP ’DXYKIMD5’ not

found. SEVERITY 8 FUNCTION MSQGRP.
The double-byte character set language feature requires a terminal that is
also double-byte enabled. Before restarting QMF, ensure your terminal can
display double-byte characters. If your terminal is double-byte enabled and
you still have the error, check the ICCS Terminal Control Table (TCT) for
proper entries.

v DSQ51304 File DSQPNLn not found in CICS. ***CMD=HELP
The VSAM file that contains QMF screen images is not available. Check the
results of DSQ3EINS or DSQ3nINS for NLF. Also, verify teat the panel files
were defined in the CICS startup and in the CICS FCT.

v DSQI004I Unable to load module(s) nnnnnnn

224 Installing and Managing QMF

If nnnnnnn = ADMASP, verify that the GDDM product library was
available when running the QMF job DSQ3ELNK. If nnnnnnn = ARIPRDI,
verify that the DB2 product library was available when running QMF job
DSQ3ELNK. Other modules should be available from the QMF product
library.

Warning messages: QMF generates warning messages for conditions it detects
while starting QMF. Your QMF trace data contains helpful information for
analyzing warning messages. For example, the messages might concern the
initialization of the QMF governor DSQUEGV3, or the availability of the edit
exit phase DSQUECIC.

CEBR DSQD can be used to browse the temporary storage queue for warning
messages.

Chapter 19. Run the Installation Verification Procedure 225

226 Installing and Managing QMF

Chapter 20. How to Maintain QMF

QMF maintenance includes adding new components and replacing existing
ones. It is assumed here that QMF and all of the prerequisite products have
been installed.

Adding new components

New components include new products, new versions or release of products,
or additional databases.

Adding GDDM-PGF
GDDM-PGF is an optional product that can be installed after QMF. Because
all GDD objects (such as charts and forms) are loaded into the ADMF file
during QMF installation, no further action is required on the QMF side.

Adding QMF to another DB2 database
Repeat the procedures in “Install QMF base into DB2 database” on page 208.
If national language support is needed, follow the procedures in “Install QMF
base into DB2 database” on page 208.

Migrating to new releases of DB2, CICS, or GDDM
Because QMF is prelinked to specific release levels of DB2, CICS, and GDDM,
it is necessary to relink-edit whenever you migrate to a new release of those
products.

Binding QMF Version 7.2 packages at a remote server
QMF Version 7.2 packages must be present at the server in order for a
requester installation to be able to communicate. If a complete QMF Version
7.2 new or migration installation was performed at the server,
communications can be started and nothing further needs to be done.

For those servers containing QMF Version 3.3 or above, where migration is
not a current option, users can run the job DSQ3BPKG. This job binds QMF
Version 7.2 packages at any server specified.

Read, tailor and submit job DSQ3BPKG to perform the binds. Check the job
output for error messages and rerun as necessary.

Scenario for use: Local DB2 for VSE subsystem, DB2VSE, is migrated from
QMF Version 3.3 to QMF Version 7.2. QMF users in subsystem DB2VSE
regularly communicate with a DB2 for VM server, SQLV61A, which contains
QMF Version 3.3. The DB2 for VM DBA cannot perform a QMF migration to
Version 7.2 at the VM server. In order for the QMF Version 7.2 installation in

© Copyright IBM Corp. 1983, 2002 227

DB2VSE to communicate with QMF on SQLV61A, job DSQ3BPKG must be
run to bind packages at the DB2 for VM server.

Replacing existing components

This section describes the steps necessary to replace or reinstall QMF, and
how to apply service updates to QMF.

Re-Installing QMF
1. Install the tape as described in the QMF Program Directory
2. Perform “Run the QMF installation job” on page 207 to re-install QMF.

The initialization procedure, DSQ3INIT, does not have to be rerun unless
product information was changed from the last installation. For example, if
you are using another release of GDDM or installing to a different
sublibrary, then the Catalog the Initialization Procedure would be followed
beginning at step 4 on page 206.
Begin the installation procedure at step 2 on page 207. When this job is
run, the panel file is deleted, redefined, and reloaded. QMF charts and
maps are also reloaded into the GDDM object file, ADMF.

3. Perform “Install QMF base into DB2 database” on page 208 to re-install
QMF packages.
Set the first three job steps as follows:
// SETPARM STEP1=NO -- CREATE QMF CONTROL TABLES IN SQL DB
// SETPARM STEP2=YES -- LOAD QMF PACKAGES INTO SQL DB
// SETPARM STEP3=NO -- LOAD QMF SAMPLES INTO SQL DB

Continue with the remaining procedure.
4. Determine whether you need to relink-edit your products as described in

“Link-edit jobs for QMF” on page 211.
5. Skip the remaining steps, because it is not necessary to tailor CICS again.

Re-installing an NLF
Follow the procedure in Install NLF starting with step 1d on page 210.
DSQ3nDBL does not need to be run.

Determine whether you need to relink-edit your products, as described in
“Link-edit jobs for QMF” on page 211. CICS does not need to be tailored
again.

Applying service updates
Maintenance or service updates might need to be applied to QMF periodically.
These updates are in the form of a Program Temporary Fix (PTF) tape from
IBM. All QMF tapes are shipped in MSHP format for easy installation and
tracking. For more information on how to apply PTFs using MSHP, see the
VSE/ESA Installation and Service manual.

228 Installing and Managing QMF

Detailed instructions for installing that specific fix accompany the PTF tape
from IBM. Like most IBM products, QMF consists of phases. But, unlike most
IBM products, it also consists of objects such as panels, GDDM maps, and
SQL packages.

Replacing text decks or phases
This is the most common type of replacement. Apply the PTF that contains
the new text deck (object) or phase. The PTF specifies to MSHP which link
book to use, if necessary.

There are however, QMF objects that require your handling, as they cannot be
handled automatically. The MSHP process does keep track of these changes
and restores the objects to the QMF sublibrary. The PTF documentation
provides details if one of the following steps is to be performed after the PTF
installation.

Updating the QMF panel file
If changes are necessary to the QMF Panel file (DSQPNLn), the entire file does
not have to be replaced. Instead, single panels are shipped using the following
naming convention:

DXYnname.N where n is the NLID

DXYnname is the complete name of the panel.
1. Install the PTF; the panel (or panels) are restored in the QMF sublibrary.
2. Close the existing panel file using the CICS transaction, CEMT:

CEMT SET DA(DSQPNLn) CLOSE

3. Load the panels to the VSAM panel file DSQPNLn. Use the following
sample job to load the panel DSYnname to file DSQPNLn.
* $$ JOB JNM=REPPANEL,DISP=D,CLASS=0
// JOB REPPANEL Replace panel in the QMF panel file
// DLBL DSQPNLn,’QMF720.DSQPNLn’,,VSAM.CAT=VSESPUC
// LIBDEF *,SEARCH=(qmflib.sublib)
// EXEC DSQCVS80,SIZE=AUTO
* $$ SLI MEM=DXYnname.n s=qmflib.sublib

............
/*
/&
* $$ EOJ

Check and modify, if necessary, the following values:
v n NLID. The single character that represents the language of the panel.
v VSESPUC VSAM catalog name where the panel file was originally

defined during QMF installation.
v qmflib.sublib Library and sublibrary for QMF.

Chapter 20. How to Maintain QMF 229

v DXYnname Name of the panel to be replaced. This information is
provided with the PTF.

vRepeat, if necessary, the last statement for every panel being
replaced by the PTF.

4. Reopen the panel file with:
CEMT SET DA(DSQPNLn) OPEN

Updating QMF GDDM maps
QMF GDDM maps can also be affected by a PTF. As with the panels, those
objects are restored to the QMF sublibrary when the PTF is applied.
1. Install the PTF.
2. Modify the SETPARM statements in the QMF installation job, DSQ3EINS.

// SETPARM STEP1=NO *-- DEFINE CLUSTER DSQPNLE
// SETPARM STEP2=NO *-- LOAD DSQPNLE
// SETPARM STEP3=NO *-- LOAD QMF CHARTS
// SETPARM STEP4=YES *-- LOAD QMF MAPS

3. File and run the job. The first three job steps are skipped, and execution
begins with loading the QMF maps.

NLF maps: Because GDDM maps are language dependent, your PTF might
require you to change those objects as well.
1. Rerun the job DSQ3nINS, with the following SETPARM settings:

// SETPARM STEP1=NO *-- DEFINE CLUSTER DSQPNLP
// SETPARM STEP2=NO *-- LOAD DSQPNLP
// SETPARM STEP3=YES *-- LOAD QMF MAP GROUPS TO ADMF

2. File and run the job.

Updating QMF SQL packages
If QMF SQL packages are changed with a PTF, then the packages must be
loaded into each database where QMF is installed. Use the original
installation job, DSQ3EDBI, to update the packages.
1. Modify the SETPARMS in the QMF installation job DSQ3EDBI, as follows:

// SETPARM STEP1=NO *-- CREATE QMF CONTROL TABLES INSQLDB
// SETPARM STEP2=YES *-- LOAD QMF PACKAGES INTO SQL DB
// SETPARM STEP3=NO *-- LOAD QMF SAMPLES INTO SQL D B

2. Locate the // SETPARM DBNAME=SQLDS parameter and verify or
change SQLDS to the name of the database that you are using.

3. File and run the job.
4. Repeat the procedure to load the packages into every database.

230 Installing and Managing QMF

Part 4. Managing QMF

Chapter 21. Starting QMF 237
Setting up and starting QMF on OS/390 . . 237

Choosing an authorization ID on OS/390 237
Setting up QMF to run in native OS/390
as a batch job 237
Setting up and starting QMF on TSO . . 238
Setting up and starting QMF on ISPF . . 241
Setting up and starting QMF on CICS . . 246
Using the CICS/DB2 attachment facility 246
Verify QMF data sets on OS/390. . . . 248

Setting up QMF to run on VM 249
Connecting to DB2 249
Setting up QMF to run under ISPF . . . 251
Starting QMF from an ISPF menu on
CMS 251
Starting QMF in batch mode in ISPF . . 253
Verify QMF data files on VM 254

Setting up and starting QMF on VSE . . . 255
Starting QMF from the VSE/ESA function
selection menu. 255
Connecting CICS and DB2 for VSE . . . 255
Starting QMF from a CICS application 256
Starting QMF from a cleared CICS screen 257

Chapter 22. Customizing Your Start
Procedure 259
Choosing the right amount of virtual storage
for each session 259

Program parameters for OS/390 and
z/OS 259
DSQSBSTG (adjusting storage for report
data) 259
DSQSRSTG (Adjusting reserved storage
used for applications) 260
DSQSPILL (acquiring extra storage) . . . 261
DSQSIROW (controlling the number of
report rows retrieved for display) . . . 267
Tracing QMF activity at the start of a
session 268
Tracing QMF activity at the start of a
session 271

Customizing your start procedure on VM 273
Naming the program segment 273
Controlling initial activities during a
session 282

Customizing your start procedure on VSE 289
Program parameters for VSE 289
DSQSBSTG (adjusting GETVIS storage
used for report data) 289
DSQSPILL (acquiring extra storage) . . . 291
DSQSSPQN (specifying the name of the
CICS spill storage) 293
DSQSIROW (controlling the number of
report rows retrieved for display) . . . 294
Tracing QMF activity at the start of a
session 295
Controlling initial activities during a
session 298

Summary of program parameters 306

Chapter 23. The QMF Session Control
Facility 307
Installing Q.SYSTEM_INI 307
When does the Q.SYSTEM_INI procedure
run? 307
When does the Q.SYSTEM_INI procedure
run? 307
Using Q.SYSTEM_INI 308

Example shipped with QMF 308
User session procedure example 309
Procedure that displays an object list . . . 309
Security and sharing session procedure . . 310
Diagnosis considerations 310
Importing the default system initialization
procedure on OS/390 311
Importing the default system initialization
procedure on VM 311
Importing the default system initialization
procedure on VSE. 311

Chapter 24. QMF Installation User Exit
(DSQUOPTS) 313
OS/390 313
VM 313
VSE 314

Chapter 25. Establishing QMF Support for
End Users 315
Creating user profiles to enable user access
to QMF on OS/390 315

© Copyright IBM Corp. 1983, 2002 231

||
||
||

Establishing a profile structure for your
installation 315
Adding a new user profile to the
Q.PROFILES table 316
Preventing users without unique profiles
from using QMF 317
Reading the Q.PROFILES table 317
Providing the correct profile on OS/390 321
Updating user profiles 321
Deleting profiles from the Q.PROFILES
table 323

Establishing QMF support on VM 324
Ensuring that users have access to CMS 324
Establishing a profile structure for your
installation 325
Adding a new user profile to the
Q.PROFILES table in CMS 326
Preventing users without unique profiles
from using QMF 326
Reading the Q.PROFILES table 327
Providing the correct profile for VM . . 330
Updating user profiles 331
Deleting profiles from the Q.PROFILES
table 332

Establishing QMF support on VSE 333
Establishing a profile structure for your
installation 333
Adding a new user profile to the
Q.PROFILES table in CICS/VSE 334
Ensuring that users have access to CICS 334
Preventing users without unique profiles
from using QMF 335
Reading the Q.PROFILES table 335
Providing the correct profile for VSE . . 339
Storing profiles in VM DB2 in a
guest-sharing environment 339
Updating user profiles 340
Deleting profiles from the Q.PROFILES
table 341

Granting and revoking SQL privileges . . . 342
Using the SQL GRANT statement . . . 343
Using the SQL REVOKE statement . . . 344

Controlling access to QMF and database
objects 344

Controlling access on OS/390 344
Controlling access on VM 357
Controlling access on VSE 361

Customizing a user’s database object list . . 366
Using the default object lists on OS/390 367

Using the default object lists on VM and
VSE 371

Enabling users to create tables in the
database 374

Creating tables on OS/390 375
Creating tables on VM and VSE 379

Enabling users to support a chart 381
Supporting a chart in TSO and ISPF . . 382
Supporting a chart in CICS on OS/390 382
Supporting a chart on VM 383
Supporting a chart on VSE. 383

Maintaining QMF objects using QMF control
tables 383

Reading the Q.OBJECT__DIRECTORY
table 384
Reading the Q.OBJECT__DATA table . . 385
Reading the Q.OBJECT_REMARKS table 386
Listing QMF queries, forms, and
procedures 387
Displaying QMF queries, forms, and
procedures 387
Transferring ownership of queries, forms,
and procedures 388
Deleting obsolete queries, forms, and
procedures 389
Importing queries, forms, and procedures
in OS/390 data sets 389
Enlarging the dbspace for the QMF object
control tables on VM. 392
Enlarging the dbspace for the QMF object
control tables on VSE 393

Maintaining a DB2 subsystem on OS/390 395
Managing data sets 395
Maintaining the control tables. 396
Determining index use 397
Switching buffer pools 398

Maintaining tables and views using DB2
tables 398

Using DB2 catalog tables on OS/390 . . 398
Using DB2 for VM and VSE System tables 399

Supporting locally defined date/time
formats 400

Locally defined date/time formats on
OS/390 400
Locally defined date/time formats on VM 400
Locally defined date/time formats on
CICS OS/390 or VSE. 401

Accessing the DXT end user dialogs (ISPF
only) 401

232 Installing and Managing QMF

Supporting the EXTRACT command on
OS/390 401
Supporting the EXTRACT command on
VM 405

Customizing the document editing interface
for users 408

Customizing the document editing
interface on OS/390 408
Customizing the document editing
interface on VM 414

Customizing the QMF EDIT command. . . 418
The EDIT command on OS/390 418
The EDIT command on VM 420

Enabling English support in an NLF
environment 421
Using global variables to define the currency
symbol 422

Chapter 26. Enabling Users to Print
Objects 423
Deciding whether to use QMF or GDDM
services for printing 423

CICS (for OS/390 and VSE)
considerations 423

Using GDDM services to handle printing 424
How QMF interfaces with your GDDM
nickname 424
GDDM services on OS/390 424
GDDM services on VM 433
GDDM services on VSE. 437

Using QMF services to handle printing . . 442
Using QMF services for printing in native
OS/390 batch, TSO and ISPF 442
Using QMF services for printing in CICS 443
Using QMF’s DSQPRINT to handle
printing on VM 445
Using QMF services to handle printing on
VSE 446

Defining a synonym for the print function
key 452

Native OS/390 batch, TSO and ISPF . . 452
Defining a synonym for the print function
key for CICS 453
Defining a synonym for the print function
key in VM 453
Defining a synonym for the print function
key on VSE 454

Printing objects 454

Chapter 27. Customizing QMF Commands 457

Using the default synonyms provided with
QMF 457

Default synonyms on OS/390 457
Default synonyms on VM 460

Creating a command synonym table . . . 462
Creating a command synonym table on
OS/390 462
Creating a command synonym table on
VM and VSE 464

Entering command synonym definitions into
the table 465

Choosing a verb 465
Choosing an object name 467
Choosing the synonym definition . . . 468

Activating the synonyms 474
Activating the synonyms on OS/390 . . 474
Activating the synonyms on VM and VSE 475

Minimizing maintenance of command
synonym tables 476

Assigning one synonym table to all users 476
Assigning views of a synonym table to
individual users 476

Chapter 28. Customizing QMF Function
Keys 479
Choosing the keys that you want to
customize 479

Default keys on full-screen panels . . . 479
Default keys on window panels 480

Creating the function key table 482
Creating the table on OS/390 482
Creating the table on VM and VSE . . . 483

Entering your function key definitions into
the table 484

Linking a command with a function key 484
Labeling the function key and positioning
it on the screen 486
Examples of key definitions 486

Identifying the panel that you want to
customize 488

Full-screen panel identifiers 488
Window panel identifiers 489

Activating new function key definitions . . 491
Activating definitions on OS/390 . . . 491
Activating definitions on VM 492
Activating definitions on VSE 493

Testing and problem diagnosis for the
function key table. 494

Part 4. Managing QMF 233

Chapter 29. Creating Your Own Edit
Codes for QMF Forms 497
QMF forms 497
Choosing an edit code 497
Handling DATE, TIME, and TIMESTAMP
information 498
Calling your exit routine to format the data 499

Calling your exit routine on OS/390 . . 500
Calling your exit routine on VM 501
Calling your exit routine on VSE. . . . 503

Passing information to and from the exit
routine 504

Fields of the Interface control block . . . 505
Fields that characterize the input area . . 507
Fields that characterize the output area 508

Passing control to the exit routine when
QMF terminates 509
Writing an edit routine in HLASM (high
level assembler) 509

Writing an edit routine for native OS/390,
TSO, or ISPF 509
Writing an edit routine in Assembler for
CICS 512
Writing an edit routine for VM 515
Writing an edit routine in Assembler for
CICS/VSE 517

Writing an edit routine in PL/I without
language environment (LE) 522

Writing an edit routine for native OS/390,
TSO, or ISPF without LE 522
Writing an edit routine on VM without
LE 524

Writing an edit routine in PL/I with
language environment (LE) 527

Writing an edit routine in PL/I for native
OS/390, TSO, or ISPF with language
environment (LE) 527
Writing an edit routine in PL/I for VM
with language environment (LE) 529

Writing an edit routine in PL/I for CICS on
OS/390 531

Example program DSQUXCTP 532
How a PL/I edit routine interacts with
CICS 532
Translating your program 533
Compiling your program on OS/390 . . 533
Link-editing your program. 533
Example JCL statements for translating,
compiling, and link-editing for CICS on
OS/390 534

CICS program definition 534
Writing an edit routine in PL/I for
CICS/VSE 534

Example program DSQUXCTP 535
How a PL/I edit routine interacts with
CICS 535
Translating your program 537
Link-editing your program. 537
Example JCL statements for translating,
compiling, and link-editing for CICS on
VSE 537
How a PL/I program interacts with QMF 538

Writing an edit routine in COBOL without
language environment (LE) 539

Writing an edit routine in COBOL for
native OS/390, TSO, or ISPF without
language environment (LE) 539
Writing an edit routine in COBOL for
CMS without language environment (LE) . 543

Writing an edit routine in COBOL with
language environment (LE) 546

Writing an edit routine in COBOL for
native OS/390, ISPF, and TSO with
language environment (LE) 546
Writing an edit routine in COBOL for
CMS with language environment (LE) . . 549

Writing an edit routine in COBOL for CICS
on OS/390 550

How a COBOL edit routine interacts with
CICS 551
Translating your COBOL program . . . 552
Example program DSQUCTC 554
How a COBOL edit routine interacts with
QMF 554

Writing an edit routine in COBOL for
CICS/VSE 554

Example program DSQUCTC 554
Literal delimiters: quotes or apostrophes 555
How a COBOL edit routine interacts with
CICS 555
How a COBOL edit routine interacts with
QMF 556
Translating your COBOL program . . . 556
Defining the edit exit phase to CICS on
VSE 559

Handling double-byte character set data . . 559
Edit codes for DBCS data 559
What the edit routine receives 559
Ensuring the edit routine returns the right
results 560

234 Installing and Managing QMF

Chapter 30. Controlling QMF Resources
using a Governor Exit Routine. 563
Using a governor exit routine on OS/390 563

Using the IBM-supplied governor exit
routine 563

Using a governor exit routine on VM . . . 574
Using the IBM-supplied governor exit
routine 574

Using a governor exit routine on VSE . . . 584
Using the IBM-supplied governor exit
routine 584

Modifying the IBM-supplied governor exit
routine or writing your own 591

Modifying the governor exit on OS/390 592
Modifying the governor exit on VM . . 595
Modifying the governor exit on VSE . . 597

How and when QMF calls the governor exit
routine 599

OS/390 600
VM 607
VSE 611

Passing resource control information to the
governor exit 615

Structure of the DXEGOVA control block 615
Addressing the resource control table . . 619
Structure of the DXEXCBA control block 620

Storing resource control information for the
duration of a QMF session 628
Canceling user activity 629

OS/390 630
VM 630

Providing messages for canceled activities 630
OS/390 630
VM 632
VSE 633

Assembling and generating your governor
exit routine in CMS 634

Assembling your governor exit 634
Assembling and link-editing your governor
exit routine in TSO, ISPF, and native OS/390
batch 635

Assembling your governor exit 636
Link-editing your governor exit routine 636

Assembling and generating your governor
exit routine in CMS 637

Assembling your governor exit 637
Assembling, translating, and link-editing
your governor exit routine in CICS on
OS/390 638

Assembling your governor exit 638

Assembling, translating, and link-editing
your governor exit routine in CICS on VSE . 639

Assembling your governor exit 639
Link editing your governor exit routine 639
Example JCL statements 640

Using the DB2 governor on OS/390. . . . 642
Monitoring the resources 642
Differences between governors 642
When the maximum processor time is
exceeded. 643
Applying the DB2 governor to QMF for 643

Chapter 31. Running QMF as a Batch
Program 645
Running QMF as batch a batch program on
OS/390 645

TSO 645
Using the QMF batch query/procedure
application (BATCH) in ISPF 651
Running QMF batch in native OS/390 661

Running QMF as a non-interactive
transaction on CICS 663

Running batch from a terminal 663
Running batch without a terminal . . . 664
Debugging a procedure 664
Termination return codes 665

Running QMF as a batch program on CMS 665
Authority to operate in batch mode . . . 665
Running batch jobs on your CMS
machine 668
Debugging a procedure 668
MACLIBs required on VM 669
Using the application 669
Filling in the prompt panel 669
Modifying the batch application 673

Chapter 32. Troubleshooting and Problem
Diagnosis 675
Troubleshooting common problems 675

Handling initialization errors 675
Handling warning messages 676
Handling GDDM errors during printing 677
Handling QMF errors during printing on
OS/390 682
Handling QMF errors during printing on
VM 682
Handling CMS command errors 683
Handling display errors on VSE 684
Handling display errors. 685
Solving performance problems 685

Part 4. Managing QMF 235

Determining the problem using diagnosis
aids 687

Choosing the right diagnosis aid for the
symptoms 687
Diagnosing your problem using QMF
message support 688
Using the QMF trace facility 690
Diagnosing abends 706
Abend handling on VM Here 708
Abend handling on VSE 708
Using the QMF interrupt facility 709
Using error log reports from the
Q.ERROR_LOG table 714

Reporting a problem to IBM 715
Using ServiceLink to search for
previously reported problems 715
Working with your IBM support center 718

236 Installing and Managing QMF

Chapter 21. Starting QMF

This chapter describes the different ways you can start QMF.

For information about starting QMF from the callable interface, see Developing
QMF Applications.

Any references to OS/390 mean OS/390 and z/OS.

Setting up and starting QMF on OS/390

On OS/390, QMF can be set up to run under TSO, ISPF, as a batch job, or
under CICS.

Choosing an authorization ID on OS/390
A QMF session is started and runs under the authorization ID of the user or
program that starts the QMF session.

You can assign a single SQL authorization ID or a single primary
authorization ID with one or more secondary authorization IDs.

The SQL authorization ID must be either a primary or secondary
authorization ID. Both the primary and secondary IDs are fixed for the
duration of the user’s session.

Authorization IDs are names that contain no more than eight characters. The
first character must be a letter, and the remaining seven characters can consist
of letters or numbers. For rules of these names, see the DB2 UDB for OS390
SQL Reference. Authorization IDs are the source of all DB2 privileges. Each
authorization ID can possess any number and any kind of DB2 privileges. For
example, JONES is one of the user A’s authorization IDs, and JONES has the
SELECT privilege on the table SMITH.TABLEA. Thus, user A also has the
SELECT privilege on SMITH.TABLEA, and can run a SELECT query on that
table.

Setting up QMF to run in native OS/390 as a batch job
Allow your users to start QMF in native OS/390 as a batch job by creating
JCL that defines where the spill file is, where the panels are stored, the file
names of the panels, and the names and locations of other tables and QMF
objects.

© Copyright IBM Corp. 1983, 2002 237

To issue a QMF command, specify the name of an initial QMF procedure. In
Figure 39, the name of the procedure is I=X, where X is the name of the QMF
procedure.

QMF starts and runs procedure X. When procedure X completes, QMF
terminates. The QMF return code is returned in register 15. You can test it
using the standard JCL condition code testing.

If you are running QMF in native OS/390, data set names that are used in
QMF procedures must be fully qualified. The TSO prefix and suffix are not
available in native OS/390.

Setting up and starting QMF on TSO
DD statements in a logon procedure can allocate resources for the user.

Using DD statements in the logon procedure
You can provide new QMF users with a TSO logon procedure that is called
when the user logs on. This cataloged procedure calls the Terminal Monitor
Program (TMP).

The TMP is the principal interface between user and terminal during a TSO
session. If your installation uses its own TMP, rather than one supplied by
IBM, some of the following information might not apply. You can develop
CLISTs or execs that users run to start QMF. Within these CLISTS or execs,
you can allocate many of the required data sets through TSO ALLOCATION
statements. In particular, you can allocate a data set that is unique to the user.

//RUNQMF EXEC PGM=DSQQMFE,PARM=’M=B,I=X,P=QMF720,S=DSN’
//***
//* Program load libraries
//***
//STEPLIB DD DSN=QMF720.SDSQLOAD,DISP=SHR
// DD DSN=DSN720.SDSNEXIT,DISP=SHR
// DD DSN=DSN720.SDSNLOAD,DISP=SHR
// DD DSN=GDDM.GDDMLOAD,DISP=SHR
//***
//* QMF/GDDM maps
//***
//ADMGGMAP DD DSN=QMF720.DSQMAPE,DISP=SHR
//***
//* Datasets used by QMF *
//***
//DSQPRINT DD SYSOUT=*,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=1330)
//DSQDEBUG DD SYSOUT=*,DCB=(RECFM=FBA,LRECL=122,BLKSIZE=1210)
//DSQUDUMP DD SYSOUT=*,DCB=(RECFM=VBA,LRECL=125,BLKSIZE=1632)
//DSQSPILL DD DSN=&&SPILL,DISP=(NEW,DELETE),
// UNIT=SYSDA,SPACE=(TRK,(100),RLSE),
// DCB=(RECFM=F,LRECL=4096,BLKSIZE=4096)

Figure 39. JCL to run a QMF procedure in native OS/390 batch

Customizing a Remote Database Connection

238 Installing and Managing QMF

The following statement within a CLIST allocates a unique library for its
user’s CHART forms. The name of the allocated library begins with the user’s
TSO logon ID, represented by the variable &SYSUID:
ALLOC DDNAME(DSQUCFRM) DSNAME(’&SYSUID...CHARTLB.DATA’) OLD

You can also use TSO FREE statements in a CLIST or exec to deallocate data
sets after the QMF session terminates.

To create a TSO exec to start QMF, you need to ensure that the program load
libraries, modules, and data sets are available to QMF, and that GDDM and
DB2 requirements are met.

Defining a TSO ID
When you start QMF under TSO, you assign authorization IDs through the
DB2 exit routine, DSN3@ATH (IBM also supplies a default exit routine). If the
user’s TSO logon has been passed to it, the routine returns a list of the
assigned authorization IDs. If you want to use the default exit routine
DSN3@ATH without changes:
v A users’s primary and SQL authorization IDs match the user’s TSO logon

ID
v No secondary authorization IDs are assigned

TSO considerations
Use whichever ddname is established by your installation for the TSO search
order for execs. This search order is affected by settings in the TSO default
modules IRXTSPRM and IRXISPRM, the TSO EXECUTIL command, and the
TSO ALTLIB command. Figure 40 lists the datasets used by TSO. If you do
not know your installation’s search order for REXX execs, allocate SDSQEXCE
to both SYSEXEC and SYSPROC.

Starting QMF with the TSO CALL command
You can also use the TSO CALL command to start QMF. Specify the name of
the QMF load library, and pass the optional program parameters following
the data set name, as in the following example:
CALL ’QMF720.SDSQLOAD(DSQQMFE)’ ’DSQSMODE=I,DSQSSUBS=DB2T’

//***
//* DATASETS USED BY TSO *
//SYSPROC DD DSN=SYS2.CLIST,DISP=SHR * CLIST Library
// DD DSN=QMF720.SDSQCLTE,DISP=SHR
//SYSEXEC DD DSN=SYS2.EXEC,DISP=SHR
// DD DSN=QMF720.SDSQEXCE,DISP=SHR
//SYSHELP DD DSN=SYS1.HELP,DISP=SHR
//EDT DD DSN=&EDIT,UNIT=SYSDA,SPACE=(1668,(40,12))

Figure 40. Data sets used by TSO

Customizing a Remote Database Connection

Chapter 21. Starting QMF 239

The QMF load library becomes a TASKLIB for the duration of the CALL
command. However, you need to give QMF access to the DB2 and GDDM
libraries in order to LOAD program interfaces to those products. In most
cases, DB2 and GDDM libraries are not part of TASKLIB. IF DB2 and GDDM
libraries are not available, QMF terminates with an error.

Starting QMF directly with the DSQQMFE module
You can start QMF under TSO by entering DSQQMFE either from the
command line in the READY mode, or in a CLIST or exec:
DSQQMFE DSQSBSTG=123456,DSQSDBUG=ALL,DSQSIROW=0,DSQSRUN=SAM.PROG1

When QMF is started in TSO independently of ISPF, the following return
codes are valid:

0 Execution successful

4 Warning condition occurred

8 Error condition occurred

16 Server error occurred

Starting QMF in a batch environment
To start QMF without using ISPF services, place the following statement in
the SYSTSIN data set of your JCL on OS/390:
DSQQMFE ...DSQSMODE=B,DSQSRUN=aaa.bbb

where DSQSMOD=B establishes the appropriate operating mode, and
DSQSRUN=aaa.bbb identifies the procedure to be run. The procedure can
include a variable as the procedure name; it should contain the authorization
ID of the owner.

The ellipsis represents optional parameter values that the user can include in
addition to the required DSQSMODE and DSQSRUN parameters.

Examples of starting QMF under TSO
The following examples show how to start and pass parameters to QMF
operating independently of ISPF. The first two statements for TSO turn on L2
tracing (DSQSDBUG=NONE), pass a value of 50,000 for DSQSBSTG
(maximum storage for reports), and pass a value of B (batch) for DSQSMODE
(mode of operation).:
v Starting from TSO READY mode:

DSQQMFE DSQSBSTG=50000,DSQSDBUG=NONE,DSQSMODE=B

v Starting from a CLIST or exec and specifying an initial procedure:
DSQQMFE DSQSRUN=Q.IPROC(&&TABLE=Q.STAFF)

This statement uses the DSQSRUN parameter:

Customizing a Remote Database Connection

240 Installing and Managing QMF

– To specify an initial procedure, Q.IPROC, to run when QMF starts
– To pass a value, Q.STAFF, to the procedure for the variable &TABLE

The DSQSRUN parameter as specified in this example results in the
following QMF command:
RUN Q.IPROC(&TABLE=Q.STAFF

Setting up and starting QMF on ISPF
You can let users start QMF using ISPF services. You can add JCL to the ISPF
environment that defines QMF resources:
v Add QMF to an initial dialog of ISPF.
v Replace the initial dialog with one that starts QMF directly.
v Create a CLIST to start QMF as a program dialog (OS/390).

You can use any of the previous methods to start the other methods. For
example, you can run an initial dialog from a CLIST.

If you use JCL that points to the QMF program location, the JCL must always
be in an initial dialog.

To run QMF under ISPF, you must start the QMF program dialog using the
ISPF SELECT service. When a TSO call or a TSO command is used, the results
can be unpredictable.

Restrictions:

1. You cannot run QMF as a command dialog. For example, the following
statements are not valid:
ISPEXEC SELECT CMD(DSQQMFE) NEWAPPL(DSQE)
ISPSTART CMD(DSQQMFE) NEWAPPL(DSQE)

2. If QMF is started as an initial dialog, you cannot enter QMF from a split
screen or create a split screen during a QMF session.

Starting QMF from an ISPF menu
If you choose to set up a menu option to start QMF, the menu must point to
QMF. Figure 41 on page 242 shows a sample definition for the ISPF master
application menu and shows how to add an option to the menu. In this
definition, Option 2 was added for reaching QMF through a CLIST.

Customizing a Remote Database Connection

Chapter 21. Starting QMF 241

The direct menu approach to starting QMF can be faster than the CLIST
approach. If you allocate all user resources through TSO logon procedures,
then the CLIST that you create for the menu option has no resources to
allocate. The CLIST is left with a single function, starting QMF, which can be
run without a CLIST.

You can add more than one option to your menu. Suppose, for example, that
ABC is an experimental DB2 subsystem and DSN is the production
subsystem. You can now add two options to your menu: one for each
subsystem. You might have each option call a different CLIST, or you might
create one CLIST with a positional parameter for the subsystem. The added
lines in the menu’s PROC section might look like this:

)BODY
%--------------------- MASTER APPLICATION MENU -----------------
%SELECT APPLICATION ===>_OPT +
% +USERID -
% +TIME -
% 1 +SPF - SPF PROGRAM DEVELOPMENT FACILITY +TERMINAL -
% 2 +QMF - RUN QMF UNDER THE ABC SUBSYSTEM +PF KEYS -
%
%
%
%
%
%
%
%
%
% P +PARMS - SPECIFY TERMINAL PARAMETERS AND LIST/LOG DEFAULTS
% X +EXIT - TERMINATE USING LIST/LOG DEFAULTS
%
+PRESS%END KEY+TO TERMINATE +
%
)INIT
)PROC

&SEL = TRANS(TRUNC (&OPT,’.’)
1,’PANEL(ISP0PRIM) NEWAPPL’
2,’PGM(DSQQMFE) NEWAPPL(DSQE) PASSLIB PARM(DSQSSUBS=ABC)’

/* */
/* ADD Other APPLICATIONS HERE */
/* */

P,’PANEL(ISPOPT)’
X,’EXIT’
’ ’,’ ’

*,’?’)
)END

Figure 41. Sample Master Application menu

Customizing a Remote Database Connection

242 Installing and Managing QMF

2,’PGM(DSQQMFE) NEWAPPL(DSQE) PASSLIB PARM(DSQSSUBS=DB2SSFDX)’
3,’PGM(DSQQMFE) NEWAPPL(DSQE) PASSLIB PARM(DSQSSUBS=DB2SSFDY)’

Using LIBDEF statements on OS/390
You may optionally use the ISPF LIBDEF statements to allocate QMF libraries
during an ISPF session.

Allocate the program libraries to a unique QMF DD NAME of DSQLLIB to
use the ISPF LIBDEF service for QMF and DB2 programs. Then specify DD
NAME DSQLLIB as the ID value in the LIBRARY option on the ISPF LIBDEF
statement.

For example, to allocate QMF and DB2 product libraries, write a TSO
ALLOCATE and ISPF LIBDEF statement:
ALLOC FI(DSQLLIB) DA(’QMF720.SDSQEXIT,’QMF720.SDSQLOAD’,
’DSN710.SDSNEXIT’,’DSN710.SDSNLOAD’) SHR REUSE
LIBDEF ISPLLIB LIBRARY ID(DSQLLIB)

To allocate program libraries using the ISPF LIBDEF service, write a CLIST
similar to Figure 42 on page 244. The preceding CLIST assumes that ISPF is
already running and has other ISPF resources already allocated:

Customizing a Remote Database Connection

Chapter 21. Starting QMF 243

/**/
/* Allocate QMF and DB2 Programs to DSQLLIB */
/**/
ALLOC FI(DSQLLIB) SHR REUSE +

DA(’QMF720.SDSQEXIT’, +
’QMF720.SDSLOAD’, +

’DSN;720.SDSNEXIT’, +
’DSN;720.SDSNLOAD’)

/**/
/* Allocate QMF libraries used for GDDM */
/**/
ALLOC FI(ADMGGMAP) DA(’QMF720.DSQMAPE’) SHR REUSE
ALLOC FI(ADMCFORM) DA(’QMF720.DSQCFORM’) SHR REUSE
ALLOC FI(DSQUCFRM) DA(’QMF720.DSQUCFRM’) SHR REUSE
ALLOC FI(ADMGDF) DA(’QMF72.CHARTLIB’) SHR REUSE
/**/
/* Allocate QMF product datasets */
/**/
ALLOC FI(DSQPRINT) SYSOUT(Z) LRECL(133) RECFM(F B A) BLKSIZE(1330)
ALLOC FI(DSQPNLE) DA(’QMF720.DSQPNLE’) SHR REUSE
ALLOC FI(DSQDEBUG) SYSOUT(Z) LRECL(121) RECFM(F B A) BLKSIZE(1210)
ALLOC FI(DSQUDUMP) SYSOUT(Z) LRECL(125) RECFM(V B A) BLKSIZE(1632)
ALLOC FI(DSQSPILL) NEW UNIT(SYSDA) SPACE(1,1) CYLINDERS
ALLOC FI(DSQEDIT) NEW UNIT(SYSDA)
/**/
/* Issue ISPF LIBDEF for QMF libraries used for ISPF */
/**/
ISPEXEC LIBDEF ISPLLIB LIBRARY ID(DSQLLIB)
ISPFEXE LIBDEF ISPPLIB DATASET ID(’QMF720.SDSQPLBE’)
ISPFEXE LIBDEF ISPSLIB DATASET ID(’QMF720.SDSQSLBE’)
ISPFEXE LIBDEF ISPMLIB DATASET ID(’QMF720.SDSQMLBE’)
/***/
/* Start QMF dialog using PASSLIB */
/***/
ISPEXEC SELECT PGM(DSQQMFE) NEWAPPL(DSQE) PASSLIB
/***/
/* Free ISPF LIBDEF for QMF libraries used for ISPF */
/***/
ISPEXEC LIBDEF ISPLLIB LIBRARY ID()
ISPEXEC LIBDEF ISPPLIB LIBRARY ID()
ISPEXEC LIBDEF ISPSLIB LIBRARY ID()
ISPEXEC LIBDEF ISPMLIB LIBRARY ID()
FREE FI(DSQLLIB)
/***/
/* Free QMF product datasets */
/***/
FREE FI(DSQPRINT)
FREE FI(DSQPNLE)
FREE FI(DSQDEBUG)
FREE FI(DSQUDUMP)
FREE FI(DSQSPILL)
FREE FI(DSQEDIT)
/**/
/* Free QMF libraries used for GDDM */
/**/
FREE FI(ADMGGMAP)
FREE FI(ADMCFORM)
FREE FI(DSQUCFRM)
FREE FI(ADMGDF)

Customizing a Remote Database Connection

244 Installing and Managing QMF

Starting QMF in batch mode in ISPF
You can start QMF in batch mode to potentially save resources and time.

You can start QMF using ISPF with or without using a CLIST on OS/390.
Place either of the following statements in the SYSTSIN data set of your JCL:
v Without a CLIST:

ISPSTART PGM(DSQQMFE) NEWAPPL(DSQE) PARM(...DSQSMODE=B,DSQRUN=aa.bbb)

v With a CLIST:
ISPSTART CMD(clist_name) NEWAPPL

where clist_name is the name of the CLIST that starts QMF

PARM establishes the appropriate operating mode (DSQSMODE=B), identifies
the procedure to be run (DSQSRUN=aaa.bb), and can include variables for
that procedure.

The ellipsis after PARM represents optional parameter values that the user
might want to include in addition to the required values for the DSQSMODE
and DSQSRUN parameters. The name of the procedure, as shown in Figure 47
on page 253, must contain the authorization ID of the owner. For example,
assume that a procedure was named PROCA and owned by the user
authorization ID, JONES.

After the procedure runs, QMF ends and returns control to ISPF. ISPF can
then continue with another procedure or command. On OS/390 when ISPF
stops, TSO runs the next TSO command in SYSTSIN. When all commands in
SYSTSIN have been run, the job step ends.

Examples of starting QMF under ISPF: The following examples show how
to start and pass parameters to QMF under ISPF:
v Starting ISPF from a CLIST (OS/390) and specifying QMF as the initial

dialog:
ISPSTART PGM(DSQQMFE) NEWAPPL(DSQE) PARM(DSQSIROW=150,DSQSRSTG=0)

This statement passes a value of 150 for DSQSIROW (number of rows
fetched before first display of report), and passes a value of 0 for DSQSRTG
(amount of reserved storage).

v Starting from a CLIST that operates within ISPF on OS/390:

ISPSTART PGM(DSQQMFE) NEWAPPL(DSQE) PARM(DSQSMODE=B,DSQSRUN=JONES.PROCA)

Figure 43. Starting QMF in batch mode in ISPF with the user and procedure names

Customizing a Remote Database Connection

Chapter 21. Starting QMF 245

ISPEXEC SELECT PGM(DSQQMFE) NEWAPPL(DSQE) PARM(DSQSSUBS=DB2SSFDX)

This statement passes the name DB2SSFDX for the DB2 subsystem.
v Starting from an ISPF menu:

)PROC

&SEL = TRANS(TRUNC (&OPT,’.’)
1,’PGM(DSQQMFE) NEWAPPL(DSQE) PARM(DSQSPILL=NO)’
.
.
.

This code passes NO for DSQSPILL.
v Starting from an CLIST and specifying an initial procedure:

ISPSTART PGM(DSQQMFE) NEWAPPL(DSQE)
PARM(DSQSRUN=Q.IPROC(&&&&TABLE=Q.STAFF))

This statement uses the DSQSRUN parameter:
– To specify an initial procedure, Q.IPROC, to run when QMF starts.
– To pass a value, Q.STAFF, to the procedure for the variable &TABLE.

The DSQSRUN parameter as specified in this example results in the
following QMF command:
RUN Q.IPROC(&TABLE=Q.STAFF

Setting up and starting QMF on CICS
After QMF is tailored for CICS, start the QMF transaction (the default
transaction is QMFE) from the CICS screen as follows:
QMFE parameters

where QMFE is the transaction ID, and parameters represents the desired
program parameters.

You can also write an application program to issue the CICS START command
and specify program parameters, as in the following example:
EXEC CICS START TRANSID(QMFE) FROM (parameters) TERMID(’id’)

A terminal ID (TERMID) is required for an interactive session (DSQSMODE =
I), and is optional for a noninteractive session (DSQSMODE = B). If the
terminal ID specifies where the calling CICS application is running, the QMF
session starts when the CICS application finishes. To specify a terminal ID, the
terminal must be available. Also, make sure the ID is defined as either a local
or a remote terminal on the system where the START command is issued.

Using the CICS/DB2 attachment facility
When you start QMF under CICS, you perform DB2 sign-on processing
through the DB2 exit routine, DSN3@SGN. (IBM also supplies a default exit

Customizing a Remote Database Connection

246 Installing and Managing QMF

routine.) The routine returns a list of the assigned authorization IDs if the
AUTH entry provides it with the ID for the transaction in the CICS resource
control table (RCT).

The plan ID and authorization IDs for a transaction ID are specified in the
RCT. Use statements similar to these:
DSNCRCT TYPE=ENTRY,TXID=QMFE,PLAN=QMF720,AUTH=DEPT1

DSNCRCT TYPE=ENTRY,TXID=QMFQ,PLAN=QMF720,AUTH=Q

Users invoking the QMFE transaction operate under the primary
authorization ID DEPT1. Similarly, the QMF administrator can use the QMFQ
transaction and operate with the primary authorization ID Q. If RACF is
installed on your system, the authorization ID must be a valid RACF ID. The
transaction IDs must also be defined in the partition control table (PCT).

The QMF programs are link-edited and bound during installation. No
additional steps are necessary for CICS.

The CICS Attachment Facility uses the Resource Manager interface to access
DB2 data. There is a task switch for each database fetch. To maintain an
acceptable response for all users, you might want to limit the number of rows
that a query can fetch.

If you choose to use the default exit routine DSN3@SGN without changes, the
primary and SQL authorization IDs are the same as the ID that was obtained
by the AUTH entry for the transaction in the CICS RCT.

Examples of starting QMf under CICS
The following examples show starting QMF under CICS:
v Starting from a cleared CICS screen:

QMFE DSQSIROW=150,DSQSBSTG=500000,DSQSPILL=NO

This statement passes a value of 150 for DSQSIROW (rows fetched before
screen display), passes a value of 500,000 for DSQSBSTG (maximum storage
for reports), and turns off the QMF spill file (DSQSPILL=NO).

v Starting from a cleared CICS screen and specifying an initial procedure:
QMFE DSQSRUN=Q.IPROC(&&TABLE=Q.STAFF)

This statement uses the DSQSRUN parameter:
– To specify an initial procedure, Q.IPROC, to run when QMF starts
– To pass a value, Q.STAFF, to the procedure for the variable &TABLE

The DSQSRUN parameter as specified in this example results in the
following QMF command:
RUN Q.IPROC(&TABLE=Q.STAFF

Customizing a Remote Database Connection

Chapter 21. Starting QMF 247

Verify QMF data sets on OS/390
The following list of data sets is used by QMF in TSO. These files are
allocated to DD names beginning with DSQ. If you want to allocate them
differently, you must change the invocation exec.

DSQPNLE
QMF panel file

DSQUDUMP
QMF snap dump output

DSQDEBUG
QMF trace dump output

DSQSPRINT
Print data output

DSQSPILL
Spill data file

DSQEDIT
Edit transfer file

Verify program load libraries on OS/390
The DB2 database and the load libraries for ISPF, ISPF/PDF, QMF, DB2, and
GDDM must be available from the STEPLIB statement or through a CLIST
before starting QMF. Figure 44 lists the load libraries.

Verify GDDM data sets on OS/390: The GDDM data sets are allocated to
the following DD names:

ADMGGMAP
GDDM map group for QMF-mapped panels

ADMCFORM
QMF-supplied chart forms

//***
//* PROGRAM LOAD LIBRARIES *
//***
//STEPLIB DD DSN=QMF720.SDSQLOAD,DISP=SHR * QMF MODULES *
// DD DSN=ISR.V41IM0.ISRLOAD,DISP=SHR * PDF MODULES * OPT.
// for non-ISPF users
// DD DSN=ISP.V4R1M0.ISPLOAD,DISP=SHR * ISPF MODULES * OPT.
// for non-ISPF users
// DD DSN=DSN720.SDSNEXIT,DISP=SHR * DB2 MODULES *
// DD DSN=DSN720.SDSNLOAD,DISP=SHR * DB2 MODULES *
// DD DSN=GDDM230.SADMMOD,DISP=SHR * GDDM MODULES *

Figure 44. Program load libraries for ISPF, ISPF/PDF, QMF, DB2, and GDDM

Customizing a Remote Database Connection

248 Installing and Managing QMF

DSQUCFRM
User-defined ICUFORMS

Setting up QMF to run on VM

In CMS, a user can start QMF in a batch CMS environment, or by using the
DSQQMFE command either with the NUCXLOAD command or in an exec.

Note that if you use the CONCAT option on the ISPLLIB FILEDEF statement,
you must also issue a GLOBAL LOADLIB DSQLDLIB.

Connecting to DB2
The DB2 for VM database program usually operates in its own virtual
machine that is associated with a VM logon ID. The directories of each virtual
machine can contain IUCV (inter-User Communications Vehicle) entries that
allow the machines to communicate with DB2 for VM. You need to ensure the
compatibility between the entries for QMF users and DB2 for VM users.

Any combination of the following cases can exist:

Case 1: The DB2 for VM directory contains IUCV ALLOW. Any other virtual
machine can communicate with DB2 for VM.

Case 2: The QMF user’s entry contains IUCV ANY. The QMF user can
communicate with any other virtual machine, including the DB2 for VM
computer.

Case 3: The QMF user’s entry contains IUCV sqlsid, where sqlsid is the user ID
of the DB2 for VM. The QMF user can contain this directory entry in any case,
and must have it if neither case 1 nor case 2 entry applies.

Case 4: The DB2 for VM directory contains an IUCV *IDENT control
statement to identify which resources it manages, and whether the resources

//**
//* QMF/GDDM DATA SETS *
//**
//ADMGGMAP DD DSN=QMF720.DSQMAPE,DISP=SHR * GDDM Map Group
//ADMCFORM DD DSN=QMF720.DSQCHART,DISP=SHR * QMF-Supplied Chart Forms
//DSQUCFRM DD DSN=aaaaaa,DISP=SHR * Saves User-defined ICUFORMS
//ADMCDATA DD DSN=xxxx,DISP=SHR
//ADMGDF DD DSN=xxxx,DISP=SHR
//ADMSYMBL DD DSN=xxxx,DISP=SHR

Figure 45. QMF/GDDM data sets

Customizing a Remote Database Connection

Chapter 21. Starting QMF 249

are local or global. A local resource can be accessed only by QMF users on the
same processor. A global resource can be accessed by QMF users on local or
remote processors.

If your installation requires the use of QMF in different databases, you must
install QMF into each unique DB2 database. Each database contains the
following items:
v QMF control tables
v QMF DB2 for VM packages
v QMF sample tables and queries
v QMF views (stem tables)

Initializing the QMF session: The DB2 for VM user ID must be the same as
the VM logon ID during the QMF session initialization. QMF connects
implicitly during the session.

DB2 for VM considerations
QMF supports DATE, TIME, and TIMESTAMP data types so that users can
use local date/time exit routines. For QMF to use a local date/time exit, the
text files that contain the date/time exits, RIUXDT and ARIUXTM, must be
placed on a disk that is accessible to QMF when QMF is started.

The QMF DCSS includes the ARIRVSTC text file. The QMF DCSS must be
rebuilt using the DSQ2ESEG EXEC if this file is changed by PTFs applied to
DB2 for VM or a new level of DB2 for VM.

GDDM considerations on CMS
When the QMF DCSS is built, it includes the GDDM interface code. If you
run GDDM from a DCSS, you do not need to access a GDDM disk or GDDM
TXTLIBs, and you can remove the lines in the invocation exec that refer to
GDDM.

If you do not have a GDDM in a DCSS, you must access the GDDM TXTLIBs
and perform the necessary FILEDEFs. If you want to change the release of
GDDM that QMF uses, you must rebuild the QMF share segment using the
DSQ2ESEG EXEC.

Setting up and starting QMF on CMS
The following examples show how to start and pass parameters to QMF
operating independently of ISPF. The first two statements for CMS turn on L2
tracing (DSQSDBUG=NONE), pass a value of 50,000 for DSQSBSTG
(maximum storage for reports), and pass a value of B (batch) for DSQSMODE
(mode of operation).:
v Starting from CMS:

DSQQMFE dcssname(DSQSBSTG=50000,DSQSDBUG=NONE,DSQSMODE=B

Customizing a Remote Database Connection

250 Installing and Managing QMF

v Starting from an exec and specifying an initial procedure:
DSQQMFE DSQSRUN=Q.IPROC(&&TABLE=Q.STAFF)

This statement uses the DSQSRUN parameter:
– To specify an initial procedure, Q.IPROC, to run when QMF starts
– To pass a value, Q.STAFF, to the procedure for the variable &TABLE

To run QMF independently of ISPF, use either of the following commands:
DSQQMFE dcssname(DSQSBSTG=n1,...)
DSQQMFE DSQSBSTG=n1,...

The DSQSRUN parameter as specified in this example results in the
following QMF command:
RUN Q.IPROC(&TABLE=Q.STAFF

Setting up QMF to run under ISPF
You can let users start QMF using ISPF services.
v Add QMF to an initial dialog of ISPF.
v Replace the initial dialog with one that starts QMF directly.
v Create an exec to start QMF as a program dialog.

You can use any of the previous methods to start the other methods. For
example, you can run an initial dialog from an exec.

To run QMF under ISPF, you must start the QMF program dialog using the
ISPF SELECT service. When a CMS command is used, the results can be
unpredictable.

Restrictions:

1. You cannot run QMF as a command dialog.
2. If QMF is started as an initial dialog, you cannot enter QMF from a split

screen or create a split screen during a QMF session.

Starting QMF from an ISPF menu on CMS
In the definition shown below, Option 2 was added for reaching QMF
through an exec.

Customizing a Remote Database Connection

Chapter 21. Starting QMF 251

If you are using an NLF: You can change the definition of the Master
Application menu to allow users to pick the language environment for their
QMF sessions. Figure 46 is an example in which users have a choice of
beginning a QMF session in English (option 2), Uppercase (option 3), or
Japanese (option 4). The TRANS function in the)PROC section of the panel
definition transforms options 2, 3, and 4 into the operand portions of an ISPF
command that is executed like ISPSTART. The command invokes the
appropriate QMF module (DSQQMFE, DSQQMFU, or DSQQMFK), and
passes it the value 160 for the DSQSIROW parameter.

Tip: The direct menu approach can start QMF as much as four times faster
than the exec approach. If you allocate all user resources through CMS logon
procedures, then the exec that you create for the menu option has no
resources to allocate. The single function, starting QMF, can be run without an
exec.

)BODY
%---------------------- MASTER APPLICATION MENU -----------------
%SELECT APPLICATION ===>_OPT +
% +USERID -
% +TIME -
% 1 +SPF -SPF PROGRAM DEVELOPMENT FACILITY +TERMINAL -
% 2 +QMF -QMF --English +FUNCTION KEY -
% 3 +QMFU -QMF --Uppercase
% 4 +QMFK -QMF --Japanese
% P +PARMS - SPECIFY TERMINAL PARAMETERS AND LIST/LOG DEFAULTS
% X +EXIT - TERMINATE USING LIST/LOG DEFAULTS
%
+PRESS%END KEY+TO TERMINATE+
%
)INIT
)PROC

&SEL=TRANS(TRUNC(&OPT,’.’)
1,’PANEL(ISP@PRIM)NEWAPPL’
2,’PGM(DSQQMFE) NEWAPPL(DSQE) PARM(DSQIROW=150)’
3,’PGM(DSQQMFU) NEWAPPL(DSQU) PARM(DSQIROW=150)’
4,’PGM(DSQQMFK) NEWAPPL(DSQK) PARM(DSQIROW=150)’

/* */
/* ADD OTHER APPLICATIONS HERE */
/* */

P,’PANEL(ISPOPT)’
X,’EXIT’

’ ’,’ ’
*,’?’)

)END

Figure 46. ISPF on CMS sample Master Application menu

Customizing a Remote Database Connection

252 Installing and Managing QMF

Starting QMF in batch mode in ISPF
You can start QMF in batch mode to potentially save resources and time.

You can start QMF using ISPF with or without using an exec.
v Without an exec:

ISPSTART PGM(DSQQMFE) NEWAPPL(DSQE) PARM(...DSQSMODE=B,DSQRUN=aa.bbb)

v With an exec:
ISPSTART CMD(exec_name) NEWAPPL

where exec_name is the name of the exec that starts QMF

PARM establishes the appropriate operating mode (DSQSMODE=B), identifies
the procedure to be run (DSQSRUN=aaa.bb), and can include variables for
that procedure.

The ellipsis after PARM represents optional parameter values that the user
might want to include in addition to the required values for the DSQSMODE
and DSQSRUN parameters. The name of the procedure, as shown in
Figure 47, must contain the authorization ID of the owner. For example,
assume that a procedure was named PROCA and owned by the user
authorization ID, JONES.

After the procedure runs, QMF ends and returns control to ISPF. ISPF can
then continue with another procedure or command. On CMS, when ISPF
stops, control is returned to the next line in the exec.

Examples of starting QMF under ISPF
The following examples show how to start and pass parameters to QMF
under ISPF:
v Starting ISPF from an exec and specifying QMF as the initial dialog:

ISPSTART PGM(DSQQMFE) NEWAPPL(DSQE) PARM(DSQSIROW=150,DSQSRSTG=0)

This statement passes a value of 150 for DSQSIROW (number of rows
fetched before first display of report), and passes a value of 0 for DSQSRTG
(amount of reserved storage).

v Starting from an exec operating within ISPF on CMS:
ISPEXEC SELECT PGM(DSQQMFE) NEWAPPL(DSQE) PARM(DSQSDCSS=QMF)

This statement passes the name QMF for the QMF program segment.
v Starting from an ISPF menu:

ISPSTART PGM(DSQQMFE) NEWAPPL(DSQE) PARM(DSQSMODE=B,DSQSRUN=JONES.PROCA)

Figure 47. Starting QMF in batch mode in ISPF with the user and procedure names

Customizing a Remote Database Connection

Chapter 21. Starting QMF 253

)PROC

&SEL = TRANS(TRUNC (&OPT,’.’)
1,’PGM(DSQQMFE) NEWAPPL(DSQE) PARM(DSQSPILL=NO)’
.
.
.

This code passes NO for DSQSPILL.
v Starting from an exec and specifying an initial procedure:

ISPSTART PGM(DSQQMFE) NEWAPPL(DSQE)
PARM(DSQSRUN=Q.IPROC(&&&&TABLE=Q.STAFF))

This statement uses the DSQSRUN parameter:
– To specify an initial procedure, Q.IPROC, to run when QMF starts.
– To pass a value, Q.STAFF, to the procedure for the variable &TABLE.

The DSQSRUN parameter as specified in this example results in the
following QMF command:
RUN Q.IPROC(&TABLE=Q.STAFF

Verify QMF data files on VM
The following list of data files is used by QMF in CMS. These files are
allocated according to the recommended sizes in the DSQ2EINV exec. If you
want to allocate them differently, you must change the invocation exec.

DSQDEBUG
QMF trace dump output

DSQDEBUG cannot be allocated to a disk by using the shared file
system (SFS)

DSQPRINT
Print data output

DSQSPILL
Spill data file

DSQPNLE
QMF panel file

ISPLLIB
FIledef for QMF library; contains the QMF programs

Verify program modules on CMS
The DB2 for VM database, QMF’s program segments, ISPF’s shared segments
(if used), and GDDM’s shared segments or product text libraries must be
available before starting QMF.

Customizing a Remote Database Connection

254 Installing and Managing QMF

Setting up and starting QMF on VSE

QMF is provided as a standard CICS transaction.

Starting QMF from the VSE/ESA function selection menu
You can add the invocation of QMF to the VSE/ESA Function Selection menu.
Use these procedures to add QMF to your VSE system:
1. Create a new application profile for QMF.
2. Add or change the QMF application profile.

a. Ensure that the CODE field specifies QMF as a NON-
CONVERSATIONAL transaction with data.

b. Specify the name of the QMF transaction ID QMFn in the ACTIVATE
field where n is the NLF ID. The QMF transaction ID for English is
QMFE.

c. Specify any QMF program parameters that you want to use in the
DATA field.

3. Add the new QMF application profile to a selection panel.
After you add QMF to the VSE/ESA function selection menu, the menu
might look like this:
Enter the number of your selection and press the ENTER key:
1. Operations
2. Problem Handling
3. Program Development
4. Command Mode
5. CICS -supplied transactions
6. CIRB -start SQL connection
7. ISQL- Interactive SQL Facility
8. QMF- Query Management Facility

For more information on the function selection menu, see the

Connecting CICS and DB2 for VSE
This section is common to all methods of starting QMF on VSE.

Establishing the connection between CICS and DB2 VSE sets up DB2 online
support and allows users at CICS terminals to communicate with the DB2
VSE application server through CICS.

CIRB is usually run as part of the job that starts the CICS partition. To run
CIRB manually:
1. Start the DB2 VSE application server in multiple user mode, according to

instructions in DB2 Server for VSE System Administration.

2. Run the CICS CIRB transaction once for each CICS partition where QMF is
installed. You can run the transaction in one of three ways:
v By starting it from any CICS terminal

Customizing a Remote Database Connection

Chapter 21. Starting QMF 255

v By starting it from the VSE console
v Automatically when CICS comes up, if you make the appropriate

changes in the CICS startup facilities

Starting QMF from a CICS application
QMF can interact with existing QMF applications that you have at your site.
You can use the EXEC CICS START command with the transaction ID QMFn
to start a QMF session from within a CICS application. An example of the
command is shown in the following example. Replace the n symbol with the
NLID from the Table 1 on page xiv.
EXEC CICS START
TRANSID(’QMFn’) FROM(’M=B,I=START_PROC,UID=Q/QMF’) TERMID(’MYT5’)

The command starts a noninteractive QMF session, connects QMF to DB2
using a user ID of Q and a password of QMF, then runs a QMF procedure
named START_PROC.

Use the same rules for passing QMF program parameters that you use to start
QMF from a cleared CICS screen, as shown in “Starting QMF from a cleared
CICS screen” on page 257. You can use any QMF program parameter in a
CICS application.

A terminal ID (TERMID) is required for an interactive session (when
DSQSMODE = I), and optional for a noninteractive session (when
DSQSMODE = B). If the terminal ID specifies the terminal where the calling
CICS application is running, the QMF session starts when the CICS
application finishes. If you do specify a terminal ID, the terminal must be
available. Also ensure that the ID is defined as either a local terminal or a
remote terminal on the system from which the START command is issued.

If you do not know the TERMID, issue the EXEC CICS ADDRESS EIB(xxx)
parameter to retrieve it.

Starting a noninteractive session
You might choose to run a nonineractive QMF session to conserve resources.
Use a value of B for the DSQSMODE parameter and make sure that you use
the DSQSRUN parameter to pass the name of an initial procedure to perform
the necessary QMF tasks. Use the DSQSUSER parameter to ensure that you
connect to the database using the appropriate SQL authorization ID and
password.

If you do not specify a terminal ID, the QMF session runs without a terminal.

Starting an interactive session
You can also start an interactive QMF session from within a CICS application.
For example, the CICS application might be a menu application that allows

Customizing a Remote Database Connection

256 Installing and Managing QMF

users to start QMF from a menu of other products. A terminal ID is required
to start an interactive session. Because the session runs interactively, you do
not need to supply an initial procedure that runs when QMF starts, nor do
you need to supply a value for the DSQSMODE parameter. If you want to
connect to DB2 explicitly, supply values for the DSQSUSER parameter;
otherwise, QMF connects to DB2 using the default VSE operator ID and
password that are defined in the system catalog.

Starting QMF from a cleared CICS screen
QMF runs as a conversational transaction in CICS, and is defined in CICS
resource tables during QMF installation. You can start QMF by issuing the
QMFn transaction from a cleared CICS screen, as shown here:
QMFE B=600000,F=200,L=YES

The letters following QMFE represent abbreviated forms of some of the QMF
program parameters that you can use to customize the behavior of a QMF
session. For example, the values shown here start an interactive English QMF
session, retrieve 200 rows of data before displaying the first screen of the
report, and create active extra storage for report data when the amount of
data retrieved into GETVIS storage reaches 600,000 bytes.

You can specify the parameters in any order on the QMFn transaction. Ensure
that you meet the following requirements:
v Specify each value in a parameter_name=value format. You can use the short

form if the parameter has one.
v Specify only one value for each parameter.
v Enter a blank, a comma, or both after each value.
v Capitalize all letters in the parameter string.

QMF uses default values in Chapter 22, “Customizing Your Start Procedure”
on page 259 for parameters that are not entered following the QMFn

transaction. The values that you supply remain effective throughout the QMF
session, except for the parameter that specifies the level of detail in the trace
data. Users can change this trace parameter directly from their profiles using
the SET PROFILE command.

Customizing a Remote Database Connection

Chapter 21. Starting QMF 257

258 Installing and Managing QMF

Chapter 22. Customizing Your Start Procedure

This chapter describes the different ways that you can pass parameters to the
program to customize a QMF session.

For information about passing parameters in a callable interface or in a REXX
exec, see the Developing QMF Applications manual.

Choosing the right amount of virtual storage for each session

QMF consists of several load modules. The main module (about 2.8 MB) can
run in 31-bit mode above 16 MB and can be located in the extended pageable
link pack area (EPLPA). A small support module (about 52 KB) must be run in
24-bit mode below 16 MB. This module can reside in the pageable link pack
area (PLPA). By using EPLPA and PLPA, each OS/390 region executing QMF
can share QMF programs.

Each QMF region requires at least 1.5 MB of virtual storage. Additional
storage generally provides improved performance, because QMF can keep
more data records in virtual storage.

Program parameters for OS/390 and z/OS
When a user performs a QMF task that retrieves data from the database, the
data is returned in a default report that is stored in virtual storage. This
section explains QMF program parameters that help you customize:
v The maximum amount of storage used for report data
v The amount of spill storage used when virtual storage for reports is full
v The number of rows of data retrieved before QMF displays the first screen

of the report

DSQSBSTG (adjusting storage for report data)
Parameter name

DSQSBSTG
Short form

B
Valid values

From 0 to 99,999,999 bytes
Default

0 bytes

The value of DSQSBSTG provides QMF with an upper limit (in bytes) on the
storage available for report generation. It is a positive whole number ranging
in value from 0 through 99, 999, 999. If DSQSBSTG is specified with a nonzero

© Copyright IBM Corp. 1983, 2002 259

value less than a QMF-determined minimum (15 to 32 KB, depending on the
environment), it is increased to that minimum.

When DSQSBSTG has a value of 0, this parameter is not used; instead,
DSQSRSTG is used to specify storage. However, if both DSQSBSTG and
DSQSRSTG are specified, DSQSBSTG is used. The default for native OS/390,
TSO, or ISPF is 0.

TSO performance tradeoffs
Use the DSQSPILL parameter to provide users with a spill file, which is the
virtual I/O (UNIT=SYSVIO), or other DASD storage. If the spill file is full,
QMF continues to retrieve data into virtual storage in amounts specified by
the DSQSBSTG or DSQSRSTG parameters. The user does not receive any
notification if there is insufficient storage, and QMF can complete its report
processing. If you do not provide enough space, performance might be poor
even when using a spill file, because QMF must return to the database several
times to retrieve all the requested data. Users must make sure they have
enough virtual storage for the QMF work they need to do.

Consider using a governor exit routine to limit rows retrieved from the
database, so that less virtual storage is used for queries and reports. For more
information about governor exit routines, see Chapter 30, “Controlling QMF
Resources using a Governor Exit Routine” on page 563.

CICS performance tradeoffs
Use the DSQSPILL parameter to provide users with a spill file. If the spill file
is full, the QMF transaction is suspended until there is enough storage to
satisfy the request.

Consider using a governor exit routine to limit rows retrieved from the
database, so that less virtual storage is used for queries and reports.

DSQSRSTG (Adjusting reserved storage used for applications)
Parameter name

DSQSRSTG
Short form

R
Valid values

From 0 to 99,999,999 bytes
Default

0

You can use the DSQSBSTG parameter if you want a more explicit
specification of your report storage. The value of this parameter is a positive
whole number ranging in value from 0 through 99,999, 999, with a default of
0. The value can affect other programs and the generation of reports.

Customizing Your Start Procedure

260 Installing and Managing QMF

The first time a user generates a report during a session, QMF determines
how much storage is available in the QMF address space. The method that is
used to arrive at the total storage acquired for QMF reports depends on both
DSQSBSTG and DSQSRSTG:
v If DSQSBSTG is not specified, or is specified as 0, QMF subtracts the

amount of DSQSRSTG from the total available storage to determine the
maximum amount to use for QMF reports. The remaining storage is
available for other programs, including OS/390 system services, TSO
commands, REXX, ISPF, and any other non-QMF user requirements.

v If DSQSBSTG is specified, then its value is used to determine how much
storage is acquired for QMF reports, and DSQSRSTG is not used.

DSQSRSTG value of 0
You can specify 0 as the value for both DSQSBSTG and DSQSRSTG. In this
case, the DSQSRSTG parameter is used and no storage is reserved for other
system services. This value is probably adequate for users who never use
OS/390, TSO commands, REXX, ISPF or other non-QMF services during QMF
sessions. Those users who do use an OS/390 system service or a TSO or
command and has DSQSTSTG=0 and DSQSBSTG=0, run the risk of failing
and causing an abend, because QMF does not reserve any storage for those
services. Even the most casual users might unknowingly use a non-QMF
program when they issue installation-defined QMF commands. Such
commands are performed by QMF applications, which generally make
extensive use of such non-QMF programs. Take this into account when
selecting values for DSQSRSTG and DSQSBSTG.

Small value for DSQSBSTG or large value for DSQSRSTG
Requesting minimal storage for report processing can adversely affect
performance when a user is handling a report. If enough storage is not
available for the corresponding DATA object, QMF must use a spill file for
excess rows of DATA. The input/output operations required for the spill file
usually degrade performance.

DSQSPILL (acquiring extra storage)
Parameter name

DSQSPILL
Short form

L
Valid values

YES or NO
Default

YES

Because large amounts of report data in storage might affect the operation of
other programs, QMF lets you allocate a spill file.

Customizing Your Start Procedure

Chapter 22. Customizing Your Start Procedure 261

A spill file can improve performance in an interactive QMF session. Buffers in
memory can store data so that QMF does not need to return to the database
for multiple copies of the same data. Data the user needs to view multiple
times does not need to be retrieved from the database several times; the spill
file can be used to store it.

The spill file is activated automatically unless you specify NO:
DSQQMFn L=NO

Data is written to the spill file until:
v You use the RESET DATA command to reset the data object
v You replace the data object by running another query
v Your query has finished (all rows requested have been retrieved) and the

data object is complete
v Your defined storage for the spill file (DFHTEMP in CICS, DSQSPILL is full

Allocating a spill file for non-CICS users
You can allocate a spill file through a FILEDEF statement or through a DD
statement in the user’s logon procedure, JCL, or CLIST. An example of this
appears in the sample procedure, where the spill file is allocated through the
DD statement, DSQSPILL. The statement looks like this:
//DSQSPILL DD DSN=&&SPILL,DISP=(NEW,DELETE),
// UNIT=SYSVIO,SPACE=(TRK,(1,9),RLSE),
// DCB=(RECFM=F,LRECL=4096,BLKSIZE=4096)

The statement:
v Allocates the spill file as a temporary data set, unique to the user’s session
v Allocates the spill file to virtual I/O (UNIT=SYSVIO). You can allocate the

spill file to other DASD storage instead.
v Specifies the DSQSPILL file with fixed-length records, one record for each

block. The records must always be unblocked. (A block is the size of an
OS/390 page: 4096 bytes.)

The statement’s SPACE operand can minimize spill file storage requirements
during a session:
v The small primary extent keeps the space held by the spill file to a single

track during sessions when a spill file is not needed.
v The much larger secondary extents are used only when a spill file is

required.
v The RLSE keyword lets QMF release all secondary extents when the user’s

DATA object is reset. This happens, for example, when the user begins a
new report.

To allocate a spill file in a CLIST, use the following example:

Customizing Your Start Procedure

262 Installing and Managing QMF

ATTR SPILL RECFM(F) LRECL(4096) BLKSIZE(4096)
ALLOC FILE(DSQSPILL) UNIT(SYSVIO) SPACE(1,19) RELEASE +

NEW DELETE USING(SPILL)

If the user waits to do this until a report is being generated, the spill file is
not used for that report. The spill file is used during the session only when
the underlying DATA object has been replaced (for example, through a
DISPLAY command).

Estimating the space required for a spill file
If the data written to the spill file goes over the set limit (becoming full or
unusable), QMF does not use the data from the spill file, but instead retrieves
it again from the database, using virtual storage to hold it. You can exceed
TSO DASD storage.

To accommodate QMF’s storage requirements, ensure the TSO DASD storage
storage is large enough to hold the individual spill files for all concurrent
QMF users, in addition to any other transaction requirements for auxiliary
temporary storage.

Use the following procedure to calculate the amount of space required for an
individual spill file. Enlarge DFHTEMP storage according to how many
individual spill files you will need to accommodate all concurrent users of
QMF.
1. Calculate the width (W) of one row of the largest table that can appear

in the data object by adding field widths in bytes (use Table 35 on
page 264).
v All rows of an individual table are the same width, regardless of the

data each row contains. A row cannot be wider than 32,768 bytes.
v Defined columns do not get written to the spill file.

2. If W is 4,096 or less, calculate the number of rows per page (R) using R =
4096/W, and round the result down to the next lowest integer.
When W is 4,096 or less, QMF fits as many rows as it can into a page,
without spanning pages.

3. If W is greater than 4,096, calculate the number of pages per row (P),
using P = W/4096, and round up to the next highest integer.
When W is greater than 4,096, QMF uses the minimum number of pages
to hold a row, spanning pages regardless of column boundaries. Each row
begins at the start of a page.

4. Calculate the number of pages required for the spill file, according to
the value of W:
v If W is 4,096 or less, calculate the number of pages required for the spill

file by dividing the number of rows in the table by R.

Customizing Your Start Procedure

Chapter 22. Customizing Your Start Procedure 263

v If W is greater than 4,096, calculate the number of pages required for
the spill file by multiplying the number of rows in the table by P.

Table 35. Lengths of types of fields (use to estimate spill file size)

Field Type Field Length in Bytes

CHAR(n) n+2

DATE 12

DECIMAL(n,m) (n+1)/2+2, n odd (n+2)/2+2, n even

FLOAT(21) 10

FLOAT(53) 10

GRAPHIC(n) n*2+2

INTEGER 6

SMALLINT 4

TIME 10

TIMESTAMP 28

VARCHAR(n) n+4

LONG VARCHAR (depends on other field lengths)

LONG VARGRAPHIC (depends on other field lengths)

VARGRAPHIC(n) n*2+4

If a row contains LONG VARCHAR or LONG VARGRAPHIC fields, space is
first allotted for all other fields. Then the remaining space is divided by the
number of fields, and each LONG VARCHAR or LONG VARGRAPHIC field
is truncated to that length.

Table 36 shows a sample calculation for a spill file.

Table 36. Sample row width calculation for a spill file

Content of Row Calculation Contribution to Width

Two SMALLINT columns 2 x 4 = 8 bytes

One INTEGER column 6 bytes

One DECIMAL(3,2) column (3+1)/2+2 = 4 bytes

One DECIMAL(6,0) column (6+2)/2+2 = 6 bytes

One FLOAT column 10 bytes

One CHAR(10) column 10 + 2 = 12 bytes

One VARCHAR(16) column 16 + 4 = 20 bytes

Total width of row 59 bytes

Customizing Your Start Procedure

264 Installing and Managing QMF

The following sample calculations provide two ways to calculate the spill file
space.

When R=4096/540 = 7 multiple rows/buffer:
600,000 rows 1 track 1 cylinder
------------ * --------- * ---------- = 571 cylinders

7 10 blocks 15 tracks

When R=6000, 2 buffers/row:
6000 rows * 2 blocks/row * 1 track 1 cylinder

--------- * ---------- = 800 cylinders
10 blocks 15 tracks

Using a spill file in a noninteractive QMF session
A spill file is most useful for improving performance in an interactive QMF
session, when the DSQSMODE parameter is set to I. If you are running QMF
noninteractively (the DSQSMODE parameter is set to B), using a spill file can
also improve performance when multiple passes of the data are required to
produce the report. A spill file might also be necessary to complete the data
object, as when a RUN QUERY command is followed by a SAVE DATA
command.

Multiple passes of the data are required when:
v You need to print several reports with different formats for the same data.
v You use PCT, CPCT, TCPCT, or TPCT edit codes with the report.
v You print a report that requires QMF to split the pages, because the report

is wider than the print width.

When QMF is running in batch, the QMF program parameter
DSQSPILL(YES/NO) should be set based on the work to be done. If the job is
producing a large data object for printing, then allocating a spill file can have
a negative effect on performance. In most cases when running in batch,
DSQSPILL=NO is the best choice.

QMF Reference explains each of the QMF forms used to format reports and
provides examples of how to use the forms.

Solving some spill file problems
Creating a spill file for your users can solve the user’s storage problem, but
can cause other problems. You might encounter problems with DASD space or
create problems for other users.

Too little space on a DASD volume: If several users with the same QMF
logon procedure are experiencing spill file problems, and their common logon
procedure allocates all their spill files to a single specific DASD volume, the
problems could be due to insufficient space on this volume. If this is the case,

Customizing Your Start Procedure

Chapter 22. Customizing Your Start Procedure 265

you can solve the problem by changing the spill file DD statement in their
logon procedure. The new DD statement might make a nonspecific volume
reference instead of the current reference to a specific volume.

Creating spill file problems for others: Increasing the spill file’s secondary
allocation could solve a user’s spill file problem, but in doing this, you might
create spill file problems for others. If you need to increase the secondary
allocation, consider moving the user’s spill file to a volume not used for the
spill files of others.

A user can unknowingly create spill file problems for others. For example, a
user might scroll to the bottom of a large table and overflow the spill file, but
do nothing to bring about the incomplete data condition. This would be true
if the user failed to issue certain types of commands between the time the
table was first displayed and the time it was replaced by another. In the
interim, the user’s spill file might unnecessarily hold space that others need.

Performance problems: If you are not using conditional formatting or
column definitions (which use REXX and have additional performance
considerations), the performance you observe is the result of accessing data in
the database.

If you have enough storage available to QMF after your data is retrieved the
first time, QMF will not need to reaccess the database to obtain rows a second
time.

Part of the processing time is devoted to writing the data to DSQSPILL so that
it can be fetched later.

Performance is affected by several factors:
v The value of DSQSIROW (initial number of rows to fetch). This primarily

affects the initial display of the report only.
v Whether you perform a task that requires multiple passes of the data.

(Certain usage codes, such as PCT, require that all the data be read before
the first report screen displayed.) This primarily affects the initial display of
the report only.

v The amount of memory required to hold one row of data.
v Whether or not if data is fetched from the database the second time when

multiple passes are required (not all data fits in memory and DSQSPILL),
or from memory and DSQSPILL, or just from virtual memory.

v Whether you are scrolling backward or forward. Successive FORWARD
commands usually perform best. BACKWARD commands might require
starting over at the start of the answer set. This depends on the amount of
memory, how far back you want to scroll, and the complexity of the report.

Customizing Your Start Procedure

266 Installing and Managing QMF

For very large answer sets with little memory and insufficient DSQSPILL
allocation, the entire answer set could be read from row 1 to the new
current row, every time the BACKWARD command is used.

The best performance is attained when there is sufficient memory to hold all
data and DSQSPILL is not used.

If you can get the complete answer set into virtual memory before the first
display (DSQSIROW is large), the database locks will be released. You will be
able to scroll around the displayed report faster. This also slows the display of
the first report screen. Releasing the locks could also improve performance for
other users.

DSQSIROW (controlling the number of report rows retrieved for display)
Parameter name

DSQSIROW
Short form

F
Valid values

Any number from 0 through 99,999,999
Default

Minimum of 100 rows retrieved prior to the first report screen

Use DSQSIROW to specify the maximum number of rows QMF retrieves into
the data object before displaying the first screen of the report to the user.
DSQSIROW applies only to the initial load of a new data object, created by:
v Executing queries that use SQL SELECT statements
v Displaying a database table with the QMF DISPLAY command

To determine the proper value for this parameter, use step 1 of the algorithm
in “Estimating the space required for a spill file” on page 263 to estimate the
size of a block of rows for the largest table a user is likely to query. A block is
the number of rows that fit into one 4,096-byte buffer.

After every block of rows is retrieved, QMF compares the total number of
retrieved rows to the value of DSQSIROW to determine whether to display
the first screen of data. For example, suppose a block in your installation is 62
rows long, and you set DSQSIROW to 50. QMF retrieves 62 rows of data and,
upon comparing 62 to 50, stops retrieving rows and displays the first screen
of data.

Some report formatting options, such as percent (%) usage codes and
ACROSS reports, require that all the data be retrieved before QMF displays
the first screen. QMF ignores the DSQSIROW value in these situations. See the
QMF Reference manual for more information about these formatting options.

Customizing Your Start Procedure

Chapter 22. Customizing Your Start Procedure 267

Performance with small DSQSIROW values
If you use too small a value for DSQSIROW, QMF might not be able to
complete the data object before the first screen of data is displayed. An
incomplete data object causes share locks on the data, which can prevent
other users from updating the data.

Many users might be affected if a QMF control table or a part of the system
catalog is locked. You can release the locks in one of the following ways:
v Use the BOTTOM command to retrieve the remaining rows into the data

object, then release the locks.
v Use the RESET DATA command to release these locks and clear the data

object, whether or not all requested rows were retrieved.
v Use any SAVE command (for example, SAVE DATA or SAVE FORM) to

retrieve and save the remaining rows into the data object, then release the
locks.

To get the best performance in a noninteractive session (when the
DSQSMODE parameter is set to B), use a value of 0 for DSQSIROW unless
you want to minimize the number of open read locks while QMF is retrieving
or formatting data.

Do not use DSQSIROW to limit the number of rows that QMF displays on the
screen. Although you can specify a small value, QMF retrieves enough rows
to fill the screen display in an interactive session.

Performance with large DSQSIROW values
If you use too large a value for DSQSIROW, QMF might take a long time to
display the first screen of data. If you set DSQSIROW higher than you set the
DSQSBSTG parameter, QMF might display a message indicating that there is
insufficient storage available to satisfy the user’s request.

When storage for the region is full, QMF waits for virtual storage to become
available to finish retrieving rows for the database. QMF stops retrieving rows
or terminates when storage is full.

Tracing QMF activity at the start of a session
QMF provides a trace facility that helps track user activity and any errors that
might occur during a user’s session. The program parameters explained in
this section help you control:
v The level of detail at which QMF activity is traced, including activity before

the user’s profile is established
v Where trace data is stored

Customizing Your Start Procedure

268 Installing and Managing QMF

DSQSDBUG (setting the level of trace detail)
Parameter name

DSQSDBUG
Short form

T
Valid values

ALL or NONE
Default

NONE (no trace data)

Use DSQSDBUG to specify the level of detail at which you want to trace QMF
activity. If you specify NONE, no trace is performed unless you load a profile
with a saved value of ALL. If you specify ALL, ALL overrides the profile
values and remains at ALL.

The tracing you set with this parameter is effective until the user issues a SET
PROFILE (TRACE=value command to change it, or, in the case of NONE, until
the profile is loaded.

Set DSQSDBUG to ALL when you want to trace QMF activity at the highest
level of detail, including program initialization errors and other errors that
might occur before the user’s profile is established:
DSQQMFn T=ALL
QMFn T=ALL

For CICS, when you use a value of ALL, make sure the type of storage queue
you choose is large enough to hold the trace output.

When you set DSQSDBUG to NONE, the level of detail in the trace output
depends on whether the QMF session is running interactively or
noninteractively:
v In either an interactive or a noninteractive session, only system error tracing

is done during initialization, before the user’s profile is established. The
only way to turn off this initial tracing is to not allocate or define storage
for the trace data.

v In a noninteractive session, all messages and commands are traced at the
most detailed level.

After QMF starts, you can turn tracing off by using the command SET PROFILE
(TRACE=NONE. You can also set more specific levels of trace detail using this
command, by replacing NONE with various values that represent different QMF
functions. See “Using the QMF trace facility” on page 690 for more
information.

Customizing Your Start Procedure

Chapter 22. Customizing Your Start Procedure 269

DSQSDBQT (specifying the type of CICS storage for trace data)
Parameter name

DSQSDBQT
Short form

(no short form)
Valid values

TD or TS
Default

TD (transient data queue)

Use DSQSDBQT to indicate the type of CICS storage you want to use for
trace data. Specify the value TS to use a CICS auxiliary temporary storage
queue for tracing:
QMFn DSQSDBQT=TS

Use temporary storage (TS) for message-level tracing. For other types of
tracing, such as ALL, consider using a transient data queue if you think the
trace output might exceed 32, 767 rows of data (the limit for CICS temporary
storage queues).

A transient data queue named DSQD is predefined for you during QMF
installation. If you use the DSQSDBQN parameter to name the transient data
queue something other than DSQD, you must predefine the queue to CICS
before you use it for the first time.

For more information on specifying the amount of detail in the QMF trace
and viewing trace data, see “Using the QMF trace facility” on page 690.

DSQSDBQN (specifying the name of the CICS storage for trace data)
Parameter name

DSQSDBQN
Short form

(no short form)
Valid values

Any name that follows CICS naming conventions for queues
Default

DSQD

DSQSDBQN specifies the name of the transient data or temporary storage
queue that holds trace data. A transient data queue named DSQD is
predefined for you in the CICS DCT.

If you specify transient data for DSQSDBQT and you want to name the queue
something other than DSQD, define the queue in the CICS DCT if it is not yet
available.

Customizing Your Start Procedure

270 Installing and Managing QMF

Ensure the queue name conforms to CICS specifications for the type of queue
specified by DSQSDBQT. TD queues have names from 1 to 4 characters. TS
queues have names from 1 to 8 characters.

You do not need to predefine temporary storage queues to CICS. For example,
the following statement dynamically allocates a temporary storage queue
named MYTRACE to hold trace data for the QMF session:
QMFn DSQSDBQN=MYTRACE,DSQSDBQT=TS

QMF issues CICS ENQ and DEQ commands around single trace entries in the
queue, so that a single queue can be used by more than one user. See

Tracing QMF activity at the start of a session
QMF provides a trace facility that helps track user activity and any errors that
might occur during a user’s session. The program parameters explained in
this section help you control:
v The level of detail at which QMF activity is traced, including activity before

the user’s profile is established
v Where trace data is stored

DSQSDBUG (setting the level of trace detail)
Parameter name

DSQSDBUG
Short form

T
Valid values

ALL or NONE
Default

NONE (no trace data)

Use DSQSDBUG to specify the level of detail at which you want to trace QMF
activity. If you specify NONE, no trace is performed unless you load a profile
with a saved value of ALL. If you specify ALL, ALL overrides the profile
values and remains at ALL.

The tracing you set with this parameter is effective until the user issues a SET
PROFILE (TRACE=value command to change it, or, in the case of NONE, until
the profile is loaded.

Set DSQSDBUG to ALL when you want to trace QMF activity at the highest
level of detail, including program initialization errors and other errors that
might occur before the user’s profile is established:
DSQQMFn T=ALL
QMFn T=ALL

Customizing Your Start Procedure

Chapter 22. Customizing Your Start Procedure 271

For CICS, when you use a value of ALL, make sure the type of storage queue
you choose is large enough to hold the trace output.

When you set DSQSDBUG to NONE, the level of detail in the trace output
depends on whether the QMF session is running interactively or
noninteractively:
v In either an interactive or a noninteractive session, only system error tracing

is done during initialization, before the user’s profile is established. The
only way to turn off this initial tracing is to not allocate or define storage
for the trace data.

v In a noninteractive session, all messages and commands are traced at the
most detailed level.

After QMF starts, you can turn tracing off by using the command SET PROFILE
(TRACE=NONE. You can also set more specific levels of trace detail using this
command, by replacing NONE with various values that represent different QMF
functions. See “Using the QMF trace facility” on page 690 for more
information.

DSQSDBQT (specifying the type of CICS storage for trace data)
Parameter name

DSQSDBQT
Short form

(no short form)
Valid values

TD or TS
Default

TD (transient data queue)

Use DSQSDBQT to indicate the type of CICS storage you want to use for
trace data. Specify the value TS to use a CICS auxiliary temporary storage
queue for tracing:
QMFn DSQSDBQT=TS

Use temporary storage (TS) for message-level tracing. For other types of
tracing, such as ALL, consider using a transient data queue if you think the
trace output might exceed 32, 767 rows of data (the limit for CICS temporary
storage queues).

A transient data queue named DSQD is predefined for you during QMF
installation. If you use the DSQSDBQN parameter to name the transient data
queue something other than DSQD, you must predefine the queue to CICS
before you use it for the first time.

Customizing Your Start Procedure

272 Installing and Managing QMF

For more information on specifying the amount of detail in the QMF trace
and viewing trace data, see “Using the QMF trace facility” on page 690.

DSQSDBQN (specifying the name of the CICS storage for trace data)
Parameter name

DSQSDBQN
Short form

(no short form)
Valid values

Any name that follows CICS naming conventions for queues
Default

DSQD

DSQSDBQN specifies the name of the transient data or temporary storage
queue that holds trace data. A transient data queue named DSQD is
predefined for you in the CICS DCT.

If you specify transient data for DSQSDBQT and you want to name the queue
something other than DSQD, define the queue in the CICS DCT if it is not yet
available.

Ensure the queue name conforms to CICS specifications for the type of queue
specified by DSQSDBQT. TD queues have names from 1 to 4 characters. TS
queues have names from 1 to 8 characters.

You do not need to predefine temporary storage queues to CICS. For example,
the following statement dynamically allocates a temporary storage queue
named MYTRACE to hold trace data for the QMF session:
QMFn DSQSDBQN=MYTRACE,DSQSDBQT=TS

QMF issues CICS ENQ and DEQ commands around single trace entries in the
queue, so that a single queue can be used by more than one user. See

Customizing your start procedure on VM

Follow these instructions for customizing your start procedure on VM.

Naming the program segment
Use dsqsdcss or dcssname to name the program segment. The suggested
program segment name and default value is:
QMF720E

dcssname
The syntax of dcssname is still supported in QMF:
1. This parameter is optional in the PGM form of the ISPSTART command

ISPSTART PGM(DSQQMFE) provided that the default DCSS name is used.

Customizing Your Start Procedure

Chapter 22. Customizing Your Start Procedure 273

2. In the DCSS form of the command ISPSTART DCSS(dcssname), a DCSS
name must be specified.

3. If QMF is not running as an ISPF dialog, and DSQQMFE dcssname(B=n1,...)
is used to start QMF, the parameter is optional.

DSQSDCSS
You can add DSQSDCSS to the list of parameters to be passed when starting
QMF. For example:
DSQSDCSS=QMFNEW

DSQSDCSS supports the callable interface for QMF.

Setting default start values using the REXX program DSQSCMDn
Specify default values for the program parameters with an initialization
program. IBM supplies the REXX program DSQSCMDn for this purpose.
DSQSCMDn can change the default program parameter values and can
execute across environments.

The parameter values you specify when you start QMF override the values set
in the REXX program DSQSCMDn. The parameter values you specify when a
workstation session is started override the values set in DSQSCMDn.

DSQSCMDn is valid as a start function keyword on the START command
when QMF is started from an application program using the callable interface.

You must use the REXX program method if you want to run programs in
SAA environments that use the callable interface without changing the
programs.

For more information on the START command and the SAA callable interface,
see the Using QMF and Developing QMF Applications manuals.

For CMS, QMF calls the REXX program DSQSCMDE to provide values for the
program parameters. This IBM-supplied program supplies default values; by
adjusting these values, you can tailor the QMF environment for your
installation.

Use NULL if you do not want to provide a parameter value in DSQSCMDE.

Program parameters for VM
When a user performs a QMF task that retrieves data from the database, the
data is returned in a default report that is stored in virtual storage. This
section explains QMF program parameters that help you customize:
v The maximum amount of storage used for report data
v The amount of spill storage used when virtual storage for reports is full

Customizing Your Start Procedure

274 Installing and Managing QMF

v The number of rows of data retrieved before QMF displays the first screen
of the report

DSQSBSTG (adjusting storage for report data)
Parameter name

DSQSBSTG
Short form

B
Valid values

From 0 to 99,999,999 bytes
Default

0 bytes

The value of DSQSBSTG provides QMF with an upper limit (in bytes) on the
storage available for report generation. It is a positive whole number ranging
in value from 0 through 99, 999, 999. If DSQSBSTG is specified with a nonzero
value less than a QMF-determined minimum (15 to 32 KB, depending on the
environment), it is increased to that minimum.

When DSQSBSTG has a value of 0, this parameter is not used; instead,
DSQSRSTG is used to specify storage. However, if both DSQSBSTG and
DSQSRSTG are specified, DSQSBSTG is used.

Choosing the right amount of virtual storage for each user: Each QMF CMS
region requires at least 4.5 MB of virtual storage. Additional storage generally
provides improved performance since QMF is able to keep more data records
in virtual storage.

Performance tradeoffs: Use the DSQSPILL parameter to provide users with a
spill file, which is disk storage. If the spill file is full, QMF continues to
retrieve data into virtual storage in amounts specified by the DSQSBSTG or
DSQSRSTG parameters. The user does not receive any notification if there is
insufficient storage, and QMF can still complete report processing. Consider
using a governor exit routine to limit rows retrieved from the database, so
that less virtual storage is used for queries and reports.

DSQSRSTG (Adjusting reserved storage used for applications)
Parameter name

DSQSRSTG
Short form

R
Valid values

From 0 to 99,999,999 bytes
Default

0

Customizing Your Start Procedure

Chapter 22. Customizing Your Start Procedure 275

You can use the DSQSBSTG parameter if you want a more explicit
specification of your report storage. The value of this parameter is a positive
whole number ranging in value from 0 through 99,999, 999, with a default of
0. The value can affect other programs and the generation of reports.

The first time a user generates a report during a session, QMF determines
how much storage is available in the QMF address space. The method that is
used to arrive at the total storage acquired for QMF reports depends on both
DSQSBSTG and DSQSRSTG:
v If DSQSBSTG is not specified, or is specified as 0, QMF subtracts the

amount of DSQSRSTG from the total available storage to determine the
maximum amount to use for QMF reports. The remaining storage is
available for other programs, including CMS commands, REXX, ISPF, and
any other non-QMF user requirements.

v If DSQSBSTG is specified, then its value is used to determine how much
storage is acquired for QMF reports, and DSQSRSTG is not used.

DSQSRSTG value of 0: You can specify 0 as the value for both DSQSBSTG
and DSQSRSTG. In this case, the DSQSRSTG parameter is used and no
storage is reserved for other system services. This value is probably adequate
for users who never use VM system services, CMS commands, REXX, ISPF or
other non-QMF services during QMF sessions. Those users who do use a VM
system service or a CMS command and has DSQSTSTG=0 and DSQSBSTG=0,
run the risk of failing and causing an abend, because QMF does not reserve
any storage for those services. Even the most casual users might unknowingly
use a non-QMF program when they issue installation-defined QMF
commands. Such commands are performed by QMF applications, which
generally make extensive use of such non-QMF programs. Take this into
account when selecting values for DSQSRSTG and DSQSBSTG.

Small value for DSQSBSTG or large value for DSQSRSTG: Requesting
minimal storage for report processing can adversely affect performance when
a user is handling a report. If enough storage is not available for the
corresponding DATA object, QMF must use a spill file for excess rows of
DATA. The input/output operations required for the spill file usually degrade
performance.

DSQSPILL (acquiring extra storage)
Parameter name

DSQSPILL
Short form

L
Valid values

YES or NO
Default

YES

Customizing Your Start Procedure

276 Installing and Managing QMF

Because large amounts of report data in storage might affect the operation of
other CMS transactions, QMF lets you allocate a spill file, which is extra
storage used when a user’s storage is full.

You can reset the DSQSPILL parameter to NO to deactivate the spill file:
DSQQMFn L=NO

Data is written to the spill file until:
v You use the RESET DATA command to reset the data object
v You replace the data object by running another query
v Your query has finished and the data object is complete
v Storage you defined for the spill file is full.

Allocating a spill file for CMS users: You can allocate a spill file through a
FILEDEF statement:
FILEDEF DSQSPILL DISK DSQSPILL DATA T (LRECL 4096 RECFM F PERM’

The statement:
v Allocates the spill file to the T disk. The T disk can be a temporary disk.

The spill file cannot be allocated to a disk that is used in the CMS shared
file system (SFS).

v Specifies the DSQSPILL file with fixed-length records, one record for each
block. Records must always be unblocked (a block is the size of a VM page:
4,096 bytes).

Estimating the space required for a spill file: To accommodate QMF’s
storage requirements, ensure the CMS DASD storage is large enough to hold
the individual spill files for all concurrent QMF users, in addition to any other
transaction requirements for auxiliary temporary storage.

Use the following procedure to calculate the amount of space required for an
individual spill file. Enlarge CMS virtual storage according to how many
individual spill files you will need to accommodate all concurrent users of
QMF.
1. Calculate the width (W) of one row of the largest table that can appear

in the data object by adding field widths in bytes.
v All rows of an individual table are the same width, regardless of the

data each row contains. A row cannot be wider than 32,768 bytes.
v Defined columns do not get written to the spill file.

2. If W is 4,096 or less, calculate the number of rows per page (R) using R =
4096/W, and round the result down to the next lowest integer.
When W is 4,096 or less, QMF fits as many rows as it can into a page,
without spanning pages.

Customizing Your Start Procedure

Chapter 22. Customizing Your Start Procedure 277

3. If W is greater than 4,096, calculate the number of pages per row (P),
using P = W/4096, and round up to the next highest integer.
When W is greater than 4,096, QMF uses the minimum number of pages
to hold a row, spanning pages regardless of column boundaries. Each row
begins at the start of a page.

4. Calculate the number of pages required for the spill file, according to
the value of W:
v If W is 4,096 or less, calculate the number of pages required for the spill

file by dividing the number of rows in the table by R.
v If W is greater than 4,096, calculate the number of pages required for

the spill file by multiplying the number of rows in the table by P.

Using a spill file in a noninteractive QMF session: A spill file is most
useful for improving performance in an interactive QMF session, when the
DSQSMODE parameter is set to I. If you are running QMF noninteractively
(the DSQSMODE parameter is set to B), using a spill file can also improve
performance when multiple passes of the data are required to produce the
report. A spill file might also be necessary to complete the data object, as
when a RUN QUERY command is followed by a SAVE DATA command.

Multiple passes of the data are required when:
v You need to print several reports with different formats for the same data.
v You use PCT, CPCT, TCPCT, or TPCT edit codes with the report.
v You print a report that requires QMF to split the pages, because the report

is wider than the print width.

QMF Reference explains each of the QMF forms used to format reports and
provides examples of how to use the forms.

Solving some spill file problems: If you are not using conditional
formatting or column definitions (which use REXX and have additional
performance considerations), the performance you observe is the result of
accessing data in the database.

If you have enough storage available to QMF after your data is retrieved the
first time, QMF will not need to reaccess the database to obtain rows a second
time.

Part of the processing time is devoted to writing the data to DSQSPILL so that
it can be fetched later.

Performance is affected by several factors:
v The value of DSQSIROW (initial number of rows to fetch). This primarily

affects the initial display of the report only.

Customizing Your Start Procedure

278 Installing and Managing QMF

v Whether you perform a task that requires multiple passes of the data.
(Certain usage codes, such as PCT, require that all the data be read before
the first report screen displayed.) This primarily affects the initial display of
the report only.

v The amount of memory required to hold one row of data.
v Whether or not if data is fetched from the database the second time when

multiple passes are required (not all data fits in memory and DSQSPILL),
or from memory and DSQSPILL, or just from virtual memory.

v Whether you are scrolling backward or forward. Successive FORWARD
commands usually perform best. BACKWARD commands might require
starting over at the start of the answer set. This depends on the amount of
memory, how far back you want to scroll, and the complexity of the report.
For very large answer sets with little memory and insufficient DSQSPILL
allocation, the entire answer set could be read from row 1 to the new
current row, every time the BACKWARD command is used.

The best performance is attained when there is sufficient memory to hold all
data and DSQSPILL is not used.

If you can get the complete answer set into virtual memory before the first
display (DSQSIROW is large), the database locks will be released. You will be
able to scroll around the displayed report faster. This also slows the display of
the first report screen. Releasing the locks could also improve performance for
other users.

DSQSIROW (controlling the number of report rows retrieved for display)
Parameter name

DSQSIROW
Short form

F
Valid values

Any number from 0 through 99,999,999
Default

Minimum of 100 rows retrieved prior to the first report screen

Use DSQSIROW to specify the maximum number of rows QMF retrieves into
the data object before displaying the first screen of the report to the user.
DSQSIROW applies only to the initial load of a new data object, created by:
v Executing queries that use SQL SELECT statements
v Displaying a database table with the QMF DISPLAY command

To determine the proper value for this parameter, use step 1 of the algorithm
in “Estimating the space required for a spill file” on page 277 to estimate the
size of a block of rows for the largest table a user is likely to query. A block is
the number of rows that fit into one 4,096-byte buffer.

Customizing Your Start Procedure

Chapter 22. Customizing Your Start Procedure 279

After every block of rows is retrieved, QMF compares the total number of
retrieved rows to the value of DSQSIROW to determine whether to display
the first screen of data. For example, suppose a block in your installation is 62
rows long, and you set DSQSIROW to 50. QMF retrieves 62 rows of data and,
upon comparing 62 to 50, stops retrieving rows and displays the first screen
of data.

Some report formatting options, such as percent (%) usage codes and
ACROSS reports, require that all the data be retrieved before QMF displays
the first screen. QMF ignores the DSQSIROW value in these situations. See the
QMF Reference manual for more information about these formatting options.

Performance with small DSQSIROW values: If you use too small a value
for DSQSIROW, QMF might not be able to complete the data object before the
first screen of data is displayed. An incomplete data object causes share locks
on the data, which can prevent other users from updating the data. DB2
maintains an EDM pool to service its requesters. While a data object is
incomplete, the requester contends with all other requesters for EDM
resources.

Many users might be affected if a QMF control table or a part of the system
catalog is locked. You can release the locks in one of the following ways:
v Use the BOTTOM command to retrieve the remaining rows into the data

object, then release the locks.
v Use the RESET DATA command to release these locks and clear the data

object, whether or not all requested rows were retrieved.
v Use any SAVE command (for example, SAVE DATA or SAVE FORM) to

retrieve and save the remaining rows into the data object, then release the
locks.

To get the best performance in a noninteractive session (when the
DSQSMODE parameter is set to B), use a value of 0 for DSQSIROW unless
you want to minimize the number of open read locks while QMF is retrieving
or formatting data.

Do not use DSQSIROW to limit the number of rows that QMF displays on the
screen. Although you can specify a small value, QMF retrieves enough rows
to fill the screen display in an interactive session.

Performance with large DSQSIROW values: If you use too large a value for
DSQSIROW, QMF might take a long time to display the first screen of data. If
you set DSQSIROW higher than you set the DSQSBSTG parameter, QMF
might display a message indicating that there is insufficient storage available
to satisfy the user’s request.

Customizing Your Start Procedure

280 Installing and Managing QMF

When storage for the region is full, QMF stops retrieving rows or terminates
when storage is full.

DSQSDBUG (setting the level of trace detail)
Parameter name

DSQSDBUG
Short form

T
Valid values

ALL or NONE
Default

NONE (no trace data)

Use DSQSDBUG to specify the level of detail at which you want to trace QMF
activity. If you specify NONE, no trace is performed unless you load a profile
with a saved value of ALL. If you specify ALL, ALL overrides the profile
values and remains at ALL.

The tracing you set with this parameter is effective until the user issues a SET
PROFILE (TRACE=value command to change it, or, in the case of NONE, until
the profile is loaded.

Set DSQSDBUG to ALL when you want to trace QMF activity at the highest
level of detail, including program initialization errors and other errors that
might occur before the user’s profile is established:
DSQQMFn T=ALL
QMFn T=ALL

When you set DSQSDBUG to NONE, the level of detail in the trace output
depends on whether the QMF session is running interactively or
noninteractively:
v In either an interactive or a noninteractive session, only system error tracing

is done during initialization, before the user’s profile is established. The
only way to turn off this initial tracing is to not allocate or define storage
for the trace data.

v In a noninteractive session, all messages and commands are traced at the
most detailed level.

After QMF starts, you can turn tracing off by using the command SET PROFILE
(TRACE=NONE. You can also set more specific levels of trace detail using this
command, by replacing NONE with various values that represent different QMF
functions. See “Using the QMF trace facility” on page 690 for more
information.

Customizing Your Start Procedure

Chapter 22. Customizing Your Start Procedure 281

Controlling initial activities during a session
This section explains program parameters that help you control initial QMF
activities, such as:
v Specifying a location for the connection to the database
v Starting a noninteractive session
v Running an initial procedure that does the predetermined amount of work

defined in the procedure and then exits QMF

DSQSDBNM (specifying the location to connect to when starting QMF)
Parameter name

DSQSDBNM
Short form

D
Valid values

Any valid database name
Default

The default database in use by the subsystem

You can use DSQSDBNM to specify the location to which you are initially
connected for a QMF session. This location can be a remote database. You can
specify DSQSDBNM in all operating environments.

If you are setting up for a remote unit of work: The maximum length in
characters of the DSQSDBNM value depends on the type of the application
requester that initiates the remote unit of work connections. The lengths for
each requester type are shown in Table 37.

Table 37. Maximum Length of DSQSDBNM Value Based on Requester Type on VM

Requester Type Maximum Length

DB2 for VM 18

DSQSMODE (specifying an interactive or noninteractive QMF session)
Parameter name

DSQSMODE
Short form

M
Valid values

B (noninteractive) or I (interactive)
Default

I (B if started through the callable interface)

Some query and report-writing tasks users need to perform might not require
interaction with QMF. For example, a salesperson might use the same QMF

Customizing Your Start Procedure

282 Installing and Managing QMF

procedure every few days to query a set of tables for account status. Although
the data changes, the procedure and tasks required to access the data remain
the same.

Using the QMF program parameter DSQSMODE, you can save resources and
time by starting a noninteractive session to perform your QMF work. Your
terminal is then free for you to do other work while the transaction is
running.

Use a value of B to start a noninteractive session:
DSQQMFn M=B,I=STARTPROC

Because a noninteractive session displays no QMF panels, use the DSQSRUN
(I) parameter to run an initial procedure that does the required QMF work
and exits the program.

Use the DSQSDBNM parameter to specify an ID and password for the
database connection if you do not want to use the default database location.

DSQSRUN (naming a procedure to run when QMF starts)
Parameter name

DSQSRUN
Short form

I
Valid values

Any valid procedure name (see the QMF Reference) manual.
Default

No initial procedure is run

Use the DSQSRUN parameter to pass the name of a QMF procedure that runs
as soon as QMF starts. In a noninteractive session, use this procedure to
perform the QMF work you need to do, then exit the program.

For example, to run an initial procedure named STARTPROC, enter:
DSQQMFn I=STARTPROC

Qualify the procedure name with the SQL authorization ID of its owner if
other users are using it to start QMF. For example, if user JONES owns the
STARTPROC procedure, enter:
DSQQMFn I=JONES.STARTPROC

When you pass the name of an initial procedure, QMF issues a RUN PROC
command, which runs the procedure you name.

Note: QMF does not allow blanks in the user ID and procedure syntax. For
example, QMF does not recognize:

Customizing Your Start Procedure

Chapter 22. Customizing Your Start Procedure 283

DSQQMFn I=JONES. STARTPROC

To use a procedure name with an imbedded blank, you must enclose the
name in quotes:
DSQQMFn I=JONES.’START PROC’

Use DSQSRUN to help you automate noninteractive QMF work and allow
users to perform interactive QMF work within the confines of a predefined
procedure.

Running an initial procedure noninteractively: To conserve resources, you
can run a procedure noninteractively by using a value of B for the
DSQSMODE parameter and naming a procedure using the DSQSRUN
parameter. For example, suppose that every Monday morning you need to
produce an inventory status report. Each Sunday night you need to run a
query that retrieves data from the same columns of a table called
INVENTORY. Your query might look like the following sample,
INVENTORY__QUERY:
SELECT * FROM INVENTORY
WHERE STOCK < 20

The procedure you use to run this query and print the status report might
look like the following procedure, INVENTORY__PROC:
RUN QUERY INVENTORY__QUERY
PRINT REPORT
EXIT

The procedure includes an EXIT command because, when QMF is running
noninteractively, no user is present to end the QMF session. EXIT ends the
QMF session and frees the resources being held by QMF. Always use an EXIT
command in an initial procedure that runs noninteractively.

Because the tasks involved in creating the report do not change (only the data
changes), you can use the DSQSRUN parameter to query the INVENTORY
table Sunday night and print the report so you can have it Monday morning:
DSQQMFn I=INVENTORY_PROC,M=B

Performing interactive QMF work with an initial procedure: You can use
an initial procedure in an interactive QMF session to predefine data access
tasks for end users, allowing them to access only the data they need. For
example, suppose a QMF end user has the responsibility of producing an
inventory status report every Monday morning. The user might know the
value that indicates low stock, but may not know exactly how to produce the
status report. You could insert a variable in the query so that the user would
only need to enter the value that indicates low stock. We could call this query
INVENTORY__QUERY:

Customizing Your Start Procedure

284 Installing and Managing QMF

SELECT * FROM INVENTORY
WHERE STOCK < &LOWSTOCK

Because the user might want to view the data before printing it, the
INVENTORY__PROC procedure might not include the EXIT command:
RUN QUERY INVENTORY__QUERY

You can then use the DSQSRUN parameter without specifying the
DSQSMODE parameter, so that you start an interactive session for the user:
QMFn I=INVENTORY__PROC

The INVENTORY__PROC procedure prompts the user for the &LOWSTOCK
variable value. The QMF Reference manual explains variables in more detail.

As soon as the user provides the value, QMF displays the report and the user
can then view the report and issue a QMF PRINT command to print it.

For interactive sessions, instruct users to enter EXIT on the command line
when they are finished viewing the report. The initial procedure runs
repeatedly until an EXIT command is issued. Pressing the End function key
from the report panel reruns the initial procedure; it does not display the
QMF Home panel.

Additionally, when you use the DSQSRUN parameter, make sure that the
DSQEC__RERUN__IPROC global variable is set to 0 and that the current
object is not the QMF Home panel. The Developing QMF Applications manual
provides more information on this global variable, as well as information
about how to write procedures that help users perform QMF activities
specified in predefined procedures and applications.

Passing variable values to an initial procedure: When you supply the name
of an initial procedure on the DSQSRUN parameter, you can also supply
values for variables contained in the procedure. You can specify one or more
variables and their values following the procedure name on the DSQSRUN
parameter.

Follow these rules when you specify variables for DSQSRUN:
v Put parentheses around the variable parameter list, as shown in the

examples in this section.
v Precede the variable name with an ampersand, and make sure the string is

in a variable__name=value format.
v Ensure the combined total of characters for the procedure name and the

variable parameter list is 98 characters or less.
v Separate the variable parameter specifications using a single comma, one or

more blanks, or a combination of a comma and blanks.

Customizing Your Start Procedure

Chapter 22. Customizing Your Start Procedure 285

Table 38 lists environments and the number of ampersands required to use a
variable in each environment.

Table 38. Required number of ampersands preceding program variables

Environment Number of
additional

ampersands

Example

CMS with ISPF 1 &&variable=value

CMS without ISPF using CLIST 2 &&&variable=value

CMS with ISPF using CLIST 3 &&&&variable=value

When you specify the name of an initial procedure, QMF issues a RUN PROC
command that runs the procedure. When you use variables in your procedure,
the values you supply for these variables must conform to the syntax used for
passing variables on a RUN command. For information about this syntax, see
the QMF Reference manual.

For example, suppose you frequently need two pieces of information about
employees in your organization. One piece of information is the name of the
employee, and the other varies. You could define a query that includes NAME
and uses a variable for the other column. Figure 48 shows an example query
and procedure. The figure also shows how to pass a value for the variable
when you enter the DSQSRUN parameter, and shows the RUN PROC
command that QMF issues.

Figure 49 on page 287 shows a similar example, but instead of passing one
column name to the procedure, it allows you to pass several, which return the
employee’s name, the department, and the employee’s salary.

Query (named JONES.QUERY2)
SELECT NAME, &COL FROM Q.STAFF

Procedure (named JONES.PROC2)
RUN QUERY JONES.QUERY2 (&&COL=&COL

DSQSRUN parameter
QMFn I=JONES.PROC2(&COL=YEARS)

Resulting RUN command
RUN PROC JONES.PROC2 (&COL=YEARS)

Figure 48. Passing a QMF column name using DSQSRUN

Customizing Your Start Procedure

286 Installing and Managing QMF

The next four examples show how to pass information you normally supply
after the WHERE keyword in a query. (See the QMF Reference manual for
more information about the WHERE keyword.)

These examples contain character strings. Special syntax is required due to the
way QMF evaluates the values when it processes the RUN PROC command.
Special characters (comma, blank, parentheses, quotes, apostrophe or single
quote, and equal sign) can also be included in the string as shown.

For example, if you need to know the names and employee numbers of all the
managers in your organization, you could run a query like the one in
Figure 50. When you pass the character string MGR on the DSQSRUN
parameter, be sure to enclose the value in single quotes.

Figure 51 on page 288 shows how to pass variable values that contain
commas. Enclose the value SAN JOSE, CA in single quotes because it contains a
comma.

Query (named JONES.QUERY3)
SELECT &COLS FROM Q.STAFF

Procedure (named JONES.PROC3)
RUN QUERY JONES.QUERY3 (&&COLS=&COLS

DSQSRUN parameter
QMFn I=JONES.PROC3(&COLS=((DEPT,NAME, SALARY))

Resulting RUN command
RUN PROC JONES.PROC3(&COLS=((DEPT,NAME,SALARY)))

Figure 49. Passing several QMF column names using DSQSRUN

Query (named JONES.QUERY4)
SELECT JOB, NAME, ID FROM Q.STAFF WHERE JOB=&JOB

Procedure (named JONES.PROC4)
RUN QUERY JONES.QUERY4 (&&JOB=&JOB

DSQSRUN parameter
QMFn I=JONES.PROC4(&JOB=’MGR’)

Resulting RUN command
RUN PROC JONES.PROC4 (&JOB=’MGR’)

Figure 50. Passing a string within single quotes using DSQSRUN

Customizing Your Start Procedure

Chapter 22. Customizing Your Start Procedure 287

Figure 52 shows how to pass variable values that contain single quotes (for
example, an apostrophe in a name). When you pass the value on the
DSQSRUN parameter, be sure to enclose the value in single quotes and use
two single quotes for the apostrophe instead of one.

Figure 53 shows how to pass values for variables in two different parts of the
query.

DSQSDBCS (Setting printing for double-byte character set data)
Parameter name

DSQSDBCS

Query (named JONES.QUERY5)
SELECT * FROM Q.APPLICANT WHERE ADDRESS+&CITY

Procedure (named JONES.PROC5)
RUN QUERY JONES.QUERY5 (&&CITY=&CITY

DSQSRUN parameter
QMFn I=JONES.PROC5(&CITY=’SAN JOSE,CA’)

Resulting RUN command
RUN PROC JONES.PROC5 (&CITY=’SAN JOSE,CA’)

Figure 51. Passing a comma within a string using DSQSRUN

Query (named JONES.QUERY6)
SELECT * FROM Q.STAFF WHERE NAME=&NAME

Procedure (named JONES.PROC6)
RUN QUERY JONES.QUERY6 (&&NAME=&NAME

DSQSRUN parameter
QMFn I=JONES.PROC6(&NAME=’O’’BRIEN’)

Resulting RUN command
RUN PROC JONES.PROC6 (&NAME=’O’’BRIEN’)

Figure 52. Passing an apostrophe as part of a string using DSQSRUN

Query (JONES.QUERY7)
SELECT * FROM Q.STAFF WHERE DEPT IN &DEPT AND JOB=&JOB

Procedure (named JONES.QUERY7)
RUN JONES.QUERY7 (&&DEPT=&V1 &&JOB=&V2

DSQSRUN parameter
QMFn I=JONES.PROC7(&V1=(((10,38))) &V2=’MGR’)

Resulting RUN command
RUN PROC JONES.PROC7(&V1=(((10,38))) &V2=’MGR’)

Figure 53. Passing multiple variable parameters and values using DSQSRUN on VM

Customizing Your Start Procedure

288 Installing and Managing QMF

Short form
K

Valid values
YES or NO

Default
NO

If you use the Uppercase or Japanese NLF, you might need to print
double-byte character set (DBCS) data. You can set the DSQSDBCS program
parameter to YES to print DBCS data from non-DBCS terminals.

For example, suppose a user with an IBM 3279 display terminal needs to print
a table (DBCSTABLE) whose nonnumeric columns contain DBCS data. The
following statement starts the Uppercase NLF from a cleared CMS screen and
allows the user to print DBCSTABLE using a command such as PRINT
DBCSTABLE (PRINTER=DBCSPRT.
QMFU K=YES

For more information on how to establish a GDDM nickname for the
DBCSPRT printer, see Chapter 26, “Enabling Users to Print Objects” on
page 423.

Customizing your start procedure on VSE

Follow these instructions to customize your start procedure on VSE.

Program parameters for VSE
When a user performs a QMF task that retrieves data from the database, the
data is returned in a default report that is stored in GETVIS storage. This
section explains QMF program parameters that help you customize:
v The maximum amount of GETVIS storage used for report data
v Auxiliary storage used when GETVIS storage for reports is full
v The number of rows of data retrieved before QMF displays the first screen

of the report

DSQSBSTG (adjusting GETVIS storage used for report data)
Parameter name

DSQSBSTG
Short form

B
Valid values

From 0 to 99,999,999 bytes
Default

500,000 bytes

Customizing Your Start Procedure

Chapter 22. Customizing Your Start Procedure 289

In VSE, to produce reports and temporarily store data, QMF uses GETVIS
storage, which is virtual storage within the CICS partition. VSE/ESA 1.3 limits
GETVIS storage according to the partition size you define for CICS. To ensure
each user has enough storage for QMF queries and reports, first adjust the
CICS partition size according to the number of QMF users and the size and
complexity of reports they are creating.

After you size the CICS partition, use the DSQSBSTG parameter to specify the
maximum amount of GETVIS storage QMF uses to run queries and produce
reports. Specify the storage amount in bytes. The user can specify the GETVIS
storage from a cleared CICS screen.

For example, the following command starts QMF from a cleared CICS screen
and specifies that a maximum of 0.8 MB of GETVIS storage can be used to
store the user’s report data:
QMFn B=800000

Choosing the right amount of GETVIS storage for each user
QMF needs a minimum amount of GETVIS storage to display a report in the
default format. This minimum is between 15,000 and 31,000 bytes (15 to 31
KB) depending on how the storage in your CICS partition is distributed. Set
DSQSBSTG to 0 when you want QMF to use the minimum value for GETVIS
storage.

The default value of 0.5 MB can accommodate most QMF transactions.
However, the amount of virtual storage needed varies for individuals using a
report format other than the default. Users working with very large reports
may need up to 1 MB or more of virtual storage. See the QMF Referencefor
information on report formatting options.

Important: QMF requires a minimum of 15 MB GETVIS storage for up to 20
users (24 MB total virtual storage for the partition). When you increase a
user’s GETVIS storage using the DSQSBSTG parameter or when you add
more QMF users, make sure you increase the value of the CICS ALLOC
parameter so that each user has enough GETVIS storage to run queries and
produce reports. A QMF transaction could time out waiting for storage to
become available.

Performance tradeoffs
Use the DSQSPILL parameter to provide users with a spill file; if the spill file
is full, QMF continues to retrieve data into GETVIS storage in amounts
specified by the DSQSBSTG parameter. If you use too low a value for
DSQSBSTG, performance will be poor even if you use a spill file, because
QMF must return to the database several times to retrieve the requested data.
Consider using a governor exit routine to limit rows retrieved from the
database so that less GETVIS storage is used for queries and reports.

Customizing Your Start Procedure

290 Installing and Managing QMF

DSQSPILL (acquiring extra storage)
Parameter name

DSQSPILL
Short form

L
Valid values

YES or NO
Default

NO

Because large amounts of report data in storage might affect the operation of
other programs, QMF lets you allocate a spill file.

A spill file can improve performance in an interactive QMF session. Buffers in
memory can store data so that QMF does not need to return to the database
for multiple copies of the same data. Data the user needs to view multiple
times does not need to be retrieved from the database several times; the spill
file can be used to store it.

Set the DSQSPILL parameter to YES to activate the spill file:
QMFn L=YES

Data is written to the spill file until:
v You use the RESET DATA command to reset the data object
v You replace the data object by running another query
v Your query has finished (all rows requested have been retrieved) and the

data object is complete
v Your data in the spill file exceeds the maximum of 32 ,767 rows (each row

holds 4 KB of data)

Estimating the space required for a spill file
If the data written to the spill file goes over the set limit (becoming full or
unusable), QMF does not use the data from the spill file, but instead retrieves
it again from the database, using virtual storage to hold it. You can exceed
CICS storage. In CICS, temporary storage for the spill file is limited to 32,767
buffers that are each 4 KB.

To accommodate QMF’s storage requirements, ensure the CICS temporary
storage file DFHTEMP storage is large enough to hold the individual spill
files for all concurrent QMF users, in addition to any other transaction
requirements for auxiliary temporary storage.

Customizing Your Start Procedure

Chapter 22. Customizing Your Start Procedure 291

Use the following procedure to calculate the amount of space required for an
individual spill file. Enlarge DFHTEMP storage according to how many
individual spill files you will need to accommodate all concurrent users of
QMF.
1. Calculate the width (W) of one row of the largest table that can appear

in the data object by adding field widths in bytes.
v All rows of an individual table are the same width, regardless of the

data each row contains. A row cannot be wider than 32,768 bytes.
v Defined columns do not get written to the spill file.

2. If W is 4,096 or less, calculate the number of rows per page (R) using R =
4096/W, and round the result down to the next lowest integer.
When W is 4,096 or less, QMF fits as many rows as it can into a page,
without spanning pages.

3. If W is greater than 4,096, calculate the number of pages per row (P),
using P = W/4096, and round up to the next highest integer.
When W is greater than 4,096, QMF uses the minimum number of pages
to hold a row, spanning pages regardless of column boundaries. Each row
begins at the start of a page.

4. Calculate the number of pages required for the spill file, according to
the value of W:
v If W is 4,096 or less, calculate the number of pages required for the spill

file by dividing the number of rows in the table by R.
v If W is greater than 4,096, calculate the number of pages required for

the spill file by multiplying the number of rows in the table by P.

Using a spill file in a noninteractive QMF session
A spill file is most useful for improving performance in an interactive QMF
session, when the DSQSMODE parameter is set to I. If you are running QMF
noninteractively (the DSQSMODE parameter is set to B), using a spill file can
also improve performance when multiple passes of the data are required to
produce the report. A spill file might also be necessary to complete the data
object, as when a RUN QUERY command is followed by a SAVE DATA
command.

Multiple passes of the data are required when:
v You need to print several reports with different formats for the same data.
v You use PCT, CPCT, TCPCT, or TPCT edit codes with the report.
v You print a report that requires QMF to split the pages, because the report

is wider than the print width.

Customizing Your Start Procedure

292 Installing and Managing QMF

Solving some spill file problems
If you have enough storage available to QMF after your data is retrieved the
first time, QMF will not need to reaccess the database to obtain rows a second
time.

Part of the processing time is devoted to writing the data to DSQSPILL so that
it can be fetched later.

Performance is affected by several factors:
v The value of DSQSIROW (initial number of rows to fetch). This primarily

affects the initial display of the report only.
v Whether you perform a task that requires multiple passes of the data.

(Certain usage codes, such as PCT, require that all the data be read before
the first report screen displayed.) This primarily affects the initial display of
the report only.

v The amount of memory required to hold one row of data.
v Whether or not if data is fetched from the database the second time when

multiple passes are required (not all data fits in memory and DSQSPILL),
or from memory and DSQSPILL, or just from virtual memory.

v Whether you are scrolling backward or forward. Successive FORWARD
commands usually perform best. BACKWARD commands might require
starting over at the start of the answer set. This depends on the amount of
memory, how far back you want to scroll, and the complexity of the report.
For very large answer sets with little memory and insufficient DSQSPILL
allocation, the entire answer set could be read from row 1 to the new
current row, every time the BACKWARD command is used.

The best performance is attained when there is sufficient memory to hold all
data and DSQSPILL is not used.

If you can get the complete answer set into virtual memory before the first
display (DSQSIROW is large), the database locks will be released. You will be
able to scroll around the displayed report faster. This also slows the display of
the first report screen. Releasing the locks could also improve performance for
other users.

DSQSSPQN (specifying the name of the CICS spill storage)
Parameter name

DSQSSPQN
Short form

(no short form)
Valid values

Any name that follows CICS naming conventions for queues
Default

DSQSnnnn (nnnn is the CICS terminal ID)

Customizing Your Start Procedure

Chapter 22. Customizing Your Start Procedure 293

When you use a spill file, you can also specify a name for the CICS temporary
storage queue to use for QMF spill data. For example, to specify the name
MYDATA:
QMFn DSQSSPQN=MYDATA

If you start a noninteractive QMF session from within a CICS application and
choose not to specify a CICS terminal ID, you need to code the DSQSSPQN
parameter. You must explicitly specify a value for DSQSSPQN, or QMF does
not start.

DSQSIROW (controlling the number of report rows retrieved for display)
Parameter name

DSQSIROW
Short form

F
Valid values

Any number from 0 through 99,999,999
Default

Minimum of 100 rows retrieved prior to the first report screen

Use DSQSIROW to specify the maximum number of rows QMF retrieves into
the data object before displaying the first screen of the report to the user.
DSQSIROW applies only to the initial load of a new data object, created by:
v Executing queries that use SQL SELECT statements
v Displaying a database table with the QMF DISPLAY command

To determine the proper value for this parameter, use step 1 of the algorithm
in “Estimating the space required for a spill file” on page 291 to estimate the
size of a block of rows for the largest table a user is likely to query. A block is
the number of rows that fit into one 4,096-byte buffer.

After every block of rows is retrieved, QMF compares the total number of
retrieved rows to the value of DSQSIROW to determine whether to display
the first screen of data. For example, suppose a block in your installation is 62
rows long, and you set DSQSIROW to 50. QMF retrieves 62 rows of data and,
upon comparing 62 to 50, stops retrieving rows and displays the first screen
of data.

Some report formatting options, such as percent (%) usage codes and
ACROSS reports, require that all the data be retrieved before QMF displays
the first screen. QMF ignores the DSQSIROW value in these situations. See the
QMF Reference manual for more information about these formatting options.

Performance with small DSQSIROW values
If you use too small a value for DSQSIROW, QMF might not be able to
complete the data object before the first screen of data is displayed. An

Customizing Your Start Procedure

294 Installing and Managing QMF

incomplete data object causes share locks on the data, which can prevent
other users from updating the data. DB2 maintains an EDM pool to service its
requesters. While a data object is incomplete, the requester contends with all
other requesters for EDM resources.

Many users might be affected if a QMF control table or a part of the system
catalog is locked. You can release the locks in one of the following ways:
v Use the BOTTOM command to retrieve the remaining rows into the data

object, then release the locks.
v Use the RESET DATA command to release these locks and clear the data

object, whether or not all requested rows were retrieved.
v Use any SAVE command (for example, SAVE DATA or SAVE FORM) to

retrieve and save the remaining rows into the data object, then release the
locks.

To get the best performance in a noninteractive session (when the
DSQSMODE parameter is set to B), use a value of 0 for DSQSIROW unless
you want to minimize the number of open read locks while QMF is retrieving
or formatting data.

Do not use DSQSIROW to limit the number of rows that QMF displays on the
screen. Although you can specify a small value, QMF retrieves enough rows
to fill the screen display in an interactive session.

Performance with large DSQSIROW values
If you use too large a value for DSQSIROW, QMF might take a long time to
display the first screen of data. If you set DSQSIROW higher than you set the
DSQSBSTG parameter, QMF might display a message indicating that there is
insufficient storage available to satisfy the user’s request.

When storage for the region is full, QMF waits for virtual storage to become
available to finish retrieving rows for the database. When you plan your
values for DSQSBSTG and DSQSIROW, remember that in CICS, QMF could
time-out while waiting for storage to become available.

Tracing QMF activity at the start of a session
QMF provides a trace facility that helps track user activity and any errors that
might occur during a user’s session. The program parameters explained in
this section help you control:
v The level of detail at which QMF activity is traced, including activity before

the user’s profile is established
v Where trace data is stored

Customizing Your Start Procedure

Chapter 22. Customizing Your Start Procedure 295

DSQSDBUG (setting the level of trace detail)
Parameter name

DSQSDBUG
Short form

T
Valid values

ALL or NONE
Default

NONE (no trace data)

Use DSQSDBUG to specify the level of detail at which you want to trace QMF
activity. If you specify NONE, no trace is performed unless you load a profile
with a saved value of ALL. If you specify ALL, ALL overrides the profile
values and remains at ALL.

The tracing you set with this parameter is effective until the user issues a SET
PROFILE (TRACE=value command to change it, or, in the case of NONE, until
the profile is loaded.

Set DSQSDBUG to ALL when you want to trace QMF activity at the highest
level of detail, including program initialization errors and other errors that
might occur before the user’s profile is established:
DSQQMFn T=ALL
QMFn T=ALL

For CICS, when you use a value of ALL, make sure the type of storage queue
you choose is large enough to hold the trace output.

When you set DSQSDBUG to NONE, the level of detail in the trace output
depends on whether the QMF session is running interactively or
noninteractively:
v In either an interactive or a noninteractive session, only system error tracing

is done during initialization, before the user’s profile is established. The
only way to turn off this initial tracing is to not allocate or define storage
for the trace data.

v In a noninteractive session, all messages and commands are traced at the
most detailed level.

After QMF starts, you can turn tracing off by using the command SET PROFILE
(TRACE=NONE. You can also set more specific levels of trace detail using this
command, by replacing NONE with various values that represent different QMF
functions. See “Using the QMF trace facility” on page 690 for more
information.

Customizing Your Start Procedure

296 Installing and Managing QMF

DSQSDBQT (specifying the type of CICS storage for trace data)
Parameter name

DSQSDBQT
Short form

(no short form)
Valid values

TD or TS
Default

TD (transient data queue)

Use DSQSDBQT to indicate the type of CICS storage you want to use for
trace data. Specify the value TS to use a CICS auxiliary temporary storage
queue for tracing:
QMFn DSQSDBQT=TS

Use temporary storage (TS) for message-level tracing. For other types of
tracing, such as ALL, consider using a transient data queue if you think the
trace output might exceed 32, 767 rows of data (the limit for CICS temporary
storage queues).

A transient data queue named DSQD is predefined for you during QMF
installation. If you use the DSQSDBQN parameter to name the transient data
queue something other than DSQD, you must predefine the queue to CICS
before you use it for the first time.

For more information on specifying the amount of detail in the QMF trace
and viewing trace data, see “Using the QMF trace facility” on page 690.

DSQSDBQN (specifying the name of the CICS storage for trace data)
Parameter name

DSQSDBQN
Short form

(no short form)
Valid values

Any name that follows CICS naming conventions for queues
Default

DSQD

DSQSDBQN specifies the name of the transient data or temporary storage
queue that holds trace data. A transient data queue named DSQD is
predefined for you in the CICS DCT.

If you specify transient data for DSQSDBQT and you want to name the queue
something other than DSQD, define the queue in the CICS DCT if it is not yet
available.

Customizing Your Start Procedure

Chapter 22. Customizing Your Start Procedure 297

Ensure the queue name conforms to CICS specifications for the type of queue
specified by DSQSDBQT. TD queues have names from 1 to 4 characters. TS
queues have names from 1 to 8 characters.

You do not need to predefine temporary storage queues to CICS. For example,
the following statement dynamically allocates a temporary storage queue
named MYTRACE to hold trace data for the QMF session:
QMFn DSQSDBQN=MYTRACE,DSQSDBQT=TS

QMF issues CICS ENQ and DEQ commands around single trace entries in the
queue, so that a single queue can be used by more than one user.

Controlling initial activities during a session
This section explains program parameters that help you control initial QMF
activities, such as:
v Specifying a location for the connection to the database
v Starting a noninteractive session
v Running an initial procedure that does the predetermined amount of work

defined in the procedure and then exits QMF

DSQSUSER (Connecting to the database)
Parameter name

DSQUSER
Short form

UID
Valid values

ID and password that conform to CONNECT command rules
Default

3-character VSE operator ID and password defined in the DB2 system
catalog

When a user starts QMF, DB2 uses an authorization ID to determine whether
the user is authorized to connect to the database. DB2 uses this same ID to
determine a user’s authorization to access objects and perform database
activities.

You can use the DSQSUSER parameter to provide DB2 with an authorization
ID and password to use for the database connection. For example, the
following command connects user JONES, who has a password of MYPW:
QMFn UID=JONES/MYPW

When you specify the DSQSUSER parameter, QMF issues a CONNECT
command to connect to the database. Thus, the rules for this parameter are
the same as for the CONNECT command.

Customizing Your Start Procedure

298 Installing and Managing QMF

v The ID you supply for the DSQSUSER parameter must have DB2
CONNECT authority, or the QMF session will not start. Use the SQL
GRANT statement to grant this authority:
GRANT CONNECT TO userid IDENTIFIED BY password

v The DB2 authorization ID and password you supply for DSQSUSER must
conform to the rules for the CONNECT command for VSE DB2. For more
information about these rules, see the DB2 Server for VSE and VM SQL
Reference.

v The SQL authorization ID and password must both be in the DB2 system
table SYSTEM.SYSUSERAUTH.

If you do not supply an SQL authorization ID and password, DSQSUSER
defaults to the three-character VSE operator ID and password defined in the
DB2 system catalog. You can issue the following SQL statements from the SQL
query panel at any time during the QMF session to determine the ID that DB2
is currently using for database authorization:
SELECT DISTINCT USER FROM Q.ORG

If you supply a user ID, but no password, QMF displays an error message.
The password you supply does not have to be identical to the pasword
associated with the VSE logon ID.

DSQSMODE (specifying an interactive or noninteractive QMF session)
Parameter name

DSQSMODE
Short form

M
Valid values

B (noninteractive) or I (interactive)
Default

I (B if started through the callable interface)

Some query and report-writing tasks users need to perform might not require
interaction with QMF. For example, a salesperson might use the same QMF
procedure every few days to query a set of tables for account status. Although
the data changes, the procedure and tasks required to access the data remain
the same.

Using the QMF program parameter DSQSMODE, you can save resources and
time by starting a noninteractive session to perform your QMF work. Your
terminal is then free for you to do other work while the transaction is
running.

Use a value of B to start a noninteractive session:
DSQQMFn M=B,I=STARTPROC

Customizing Your Start Procedure

Chapter 22. Customizing Your Start Procedure 299

Because a noninteractive session displays no QMF panels, use the DSQSRUN
(I) parameter to run an initial procedure that does the required QMF work
and exits the program.

Use the DSQUSER parameter to specify an ID and password for the database
connection if you do not want to use the default VSE operator ID and
password.

DSQSRUN (naming a procedure to run when QMF starts)
Parameter name

DSQSRUN
Short form

I
Valid values

Any valid procedure name (see the QMF Reference) manual.
Default

No initial procedure is run

Use the DSQSRUN parameter to pass the name of a QMF procedure that runs
as soon as QMF starts. In a noninteractive session, use this procedure to
perform the QMF work you need to do, then exit the program.

For example, to run an initial procedure named STARTPROC, enter:
DSQQMFn I=STARTPROC

Qualify the procedure name with the SQL authorization ID of its owner if
other users are using it to start QMF. For example, if user JONES owns the
STARTPROC procedure, enter:
DSQQMFn I=JONES.STARTPROC

When you pass the name of an initial procedure, QMF issues a RUN PROC
command, which runs the procedure you name.

Note: QMF does not allow blanks in the user ID and procedure syntax. For
example, QMF does not recognize:
DSQQMFn I=JONES. STARTPROC

To use a procedure name with an imbedded blank, you must enclose the
name in quotes:
DSQQMFn I=JONES.’START PROC’

Use DSQSRUN to help you automate noninteractive QMF work and allow
users to perform interactive QMF work within the confines of a predefined
procedure.

Customizing Your Start Procedure

300 Installing and Managing QMF

Running an initial procedure noninteractively: To conserve resources, you
can run a procedure noninteractively by using a value of B for the
DSQSMODE parameter and naming a procedure using the DSQSRUN
parameter. For example, suppose that every Monday morning you need to
produce an inventory status report. Each Sunday night you need to run a
query that retrieves data from the same columns of a table called
INVENTORY. Your query might look like the following sample,
INVENTORY__QUERY:
SELECT * FROM INVENTORY
WHERE STOCK < 20

The procedure you use to run this query and print the status report might
look like the following procedure, INVENTORY__PROC:
RUN QUERY INVENTORY_QUERY
PRINT REPORT (QUEUENAME=Q1, QUEUETYPE=TS)
EXIT

The procedure includes an EXIT command because, when QMF is running
noninteractively, no user is present to end the QMF session. EXIT ends the
QMF session and frees the resources being held by QMF. Always use an EXIT
command in an initial procedure that runs noninteractively.

Because the tasks involved in creating the report do not change (only the data
changes), you can use the DSQSRUN parameter to query the INVENTORY
table Sunday night and print the report to the storage queue named Q1, so
you can have it Monday morning:
QMFn I=INVENTORY__PROC,M=B

Performing interactive QMF work with an initial procedure: You can use
an initial procedure in an interactive QMF session to predefine data access
tasks for end users, allowing them to access only the data they need. For
example, suppose a QMF end user has the responsibility of producing an
inventory status report every Monday morning. The user might know the
value that indicates low stock, but may not know exactly how to produce the
status report. You could insert a variable in the query so that the user would
only need to enter the value that indicates low stock. We could call this query
INVENTORY__QUERY:
SELECT * FROM INVENTORY
WHERE STOCK < &LOWSTOCK

Because the user might want to view the data before printing it, the
INVENTORY__PROC procedure might not include the EXIT command:
RUN QUERY INVENTORY__QUERY

You can then use the DSQSRUN parameter without specifying the
DSQSMODE parameter, so that you start an interactive session for the user:

Customizing Your Start Procedure

Chapter 22. Customizing Your Start Procedure 301

QMFn I=INVENTORY__PROC

The INVENTORY__PROC procedure prompts the user for the &LOWSTOCK
variable value. The QMF Reference manual explains variables in more detail.

As soon as the user provides the value, QMF displays the report and the user
can then view the report and issue a QMF PRINT command to print it.

For interactive sessions, instruct users to enter EXIT on the command line
when they are finished viewing the report. The initial procedure runs
repeatedly until an EXIT command is issued. Pressing the End function key
from the report panel reruns the initial procedure; it does not display the
QMF Home panel.

Additionally, when you use the DSQSRUN parameter, make sure that the
DSQEC__RERUN__IPROC global variable is set to 0 and that the current
object is not the QMF Home panel. The Developing QMF Applications manual
provides more information on this global variable, as well as information
about how to write procedures that help users perform QMF activities
specified in predefined procedures and applications.

Passing variable values to an initial procedure: When you supply the name
of an initial procedure on the DSQSRUN parameter, you can also supply
values for variables contained in the procedure. You can specify one or more
variables and their values following the procedure name on the DSQSRUN
parameter.

Follow these rules when you specify variables for DSQSRUN:
v Put parentheses around the variable parameter list, as shown in the

examples in this section.
v Precede the variable name with an ampersand, and make sure the string is

in a variable__name=value format.
v Ensure the combined total of characters for the procedure name and the

variable parameter list is 98 characters or less.
v Separate the variable parameter specifications using a single comma, one or

more blanks, or a combination of a comma and blanks.

When you specify the name of an initial procedure, QMF issues a RUN PROC
command that runs the procedure. When you use variables in your procedure,
the values you supply for these variables must conform to the syntax used for
passing variables on a RUN command. For information about this syntax, see
the QMF Reference manual.

For example, suppose you frequently need two pieces of information about
employees in your organization. One piece of information is the name of the

Customizing Your Start Procedure

302 Installing and Managing QMF

employee, and the other varies. You could define a query that includes NAME
and uses a variable for the other column. Figure 54 shows an example query
and procedure. The figure also shows how to pass a value for the variable
when you enter the DSQSRUN parameter, and shows the RUN PROC
command that QMF issues.

Figure 55 shows a similar example, but instead of passing one column name
to the procedure, it allows you to pass several, which return the employee’s
name, the department, and the employee’s salary.

The next four examples show how to pass information you normally supply
after the WHERE keyword in a query. (See the QMF Reference manual for
more information about the WHERE keyword.)

These examples contain character strings. Special syntax is required due to the
way QMF evaluates the values when it processes the RUN PROC command.
Special characters (comma, blank, parentheses, quotes, apostrophe or single
quote, and equal sign) can also be included in the string as shown.

For example, if you need to know the names and employee numbers of all the
managers in your organization, you could run a query like the one in

Query (named JONES.QUERY2)
SELECT NAME, &COL FROM Q.STAFF

Procedure (named JONES.PROC2)
RUN QUERY JONES.QUERY2 (&&COL=&COL

DSQSRUN parameter
QMFn I=JONES.PROC2(&COL=YEARS)

Resulting RUN command
RUN PROC JONES.PROC2 (&COL=YEARS)

Figure 54. Passing a QMF column name using DSQSRUN

Query (named JONES.QUERY3)
SELECT &COLS FROM Q.STAFF

Procedure (named JONES.PROC3)
RUN QUERY JONES.QUERY3 (&&COLS=&COLS

DSQSRUN parameter
QMFn I=JONES.PROC3(&COLS=((DEPT,NAME, SALARY))

Resulting RUN command
RUN PROC JONES.PROC3(&COLS=((DEPT,NAME,SALARY)))

Figure 55. Passing several QMF column names using DSQSRUN

Customizing Your Start Procedure

Chapter 22. Customizing Your Start Procedure 303

Figure 56. When you pass the character string MGR on the DSQSRUN
parameter, be sure to enclose the value in single quotes.

Figure 57 shows how to pass variable values that contain commas. Enclose the
value SAN JOSE, CA in single quotes because it contains a comma.

Figure 58 shows how to pass variable values that contain single quotes (for
example, an apostrophe in a name). When you pass the value on the
DSQSRUN parameter, be sure to enclose the value in single quotes and use
two single quotes for the apostrophe instead of one.

Query (named JONES.QUERY4)
SELECT JOB, NAME, ID FROM Q.STAFF WHERE JOB=&JOB

Procedure (named JONES.PROC4)
RUN QUERY JONES.QUERY4 (&&JOB=&JOB

DSQSRUN parameter
QMFn I=JONES.PROC4(&JOB=’MGR’)

Resulting RUN command
RUN PROC JONES.PROC4 (&JOB=’MGR’)

Figure 56. Passing a string within single quotes using DSQSRUN

Query (named JONES.QUERY5)
SELECT * FROM Q.APPLICANT WHERE ADDRESS+&CITY

Procedure (named JONES.PROC5)
RUN QUERY JONES.QUERY5 (&&CITY=&CITY

DSQSRUN parameter
QMFn I=JONES.PROC5(&CITY=’SAN JOSE,CA’)

Resulting RUN command
RUN PROC JONES.PROC5 (&CITY=’SAN JOSE,CA’)

Figure 57. Passing a comma within a string using DSQSRUN

Query (named JONES.QUERY6)
SELECT * FROM Q.STAFF WHERE NAME=&NAME

Procedure (named JONES.PROC6)
RUN QUERY JONES.QUERY6 (&&NAME=&NAME

DSQSRUN parameter
QMFn I=JONES.PROC6(&NAME=’O’’BRIEN’)

Resulting RUN command
RUN PROC JONES.PROC6 (&NAME=’O’’BRIEN’)

Figure 58. Passing an apostrophe as part of a string using DSQSRUN

Customizing Your Start Procedure

304 Installing and Managing QMF

Figure 59 shows how to pass values for variables in two different parts of the
query.

DSQSDBCS (Setting printing for double-byte character set data)
Parameter name

DSQSDBCS
Short form

K
Valid values

YES or NO
Default

NO

If you use the Uppercase or Japanese NLF, you might need to print
double-byte character set (DBCS) data. You can set the DSQSDBCS program
parameter to YES to print DBCS data from non-DBCS terminals.

For example, suppose a user with an IBM 3279 display terminal needs to print
a table (DBCSTABLE) whose nonnumeric columns contain DBCS data. The
following statement starts the Uppercase NLF from a cleared CICS screen and
allows the user to print DBCSTABLE using a command such as PRINT
DBCSTABLE (PRINTER=DBCSPRT.
QMFU K=YES

For more information on how to establish a GDDM nickname for the
DBCSPRT printer, see Chapter 26, “Enabling Users to Print Objects” on
page 423.

Query (JONES.QUERY7)
SELECT * FROM Q.STAFF WHERE DEPT IN &DEPT AND JOB=&JOB

Procedure (named JONES.QUERY7)
RUN JONES.QUERY7 (&&DEPT=&V1 &&JOB=&V2

DSQSRUN parameter
QMFn I=JONES.PROC7(&V1=(((10,38))) &V2=’MGR’)

Resulting RUN command
RUN PROC JONES.PROC7(&V1=(((10,38))) &V2=’MGR’)

Figure 59. Passing multiple variable parameters and values using DSQSRUN

Customizing Your Start Procedure

Chapter 22. Customizing Your Start Procedure 305

Summary of program parameters

The following table displays the long and short forms of parameters and their
appropriate environments. Parameters that are only used in CICS do not have
a short form.

Table 39. Program parameters

Long Form
Short
Form Environment Description

DSQSBSTG B TSO,CICS, CMS Maximum storage for reports

DSQSDBCS K TSO,CICS, CMS DBCS support of non-DBCS
device

DSQSDBNM D TSO,CICS, CMS Name of initial database location

DSQSDBQN — CICS Name of CICS resource to use for
QMF trace

DSQSDBQT — CICS Type of CICS resource to use for
QMF trace

DSQSDBUG T TSO,CICS, CMS Trace — ALL or NONE

DSQSIROW F TSO,CICS, CMS Rows fetched from the database

DSQSMODE M TSO,CICS, CMS Interactive or batch mode

DSQSPILL L TSO,CICS, CMS Use of the spill file

DSQSPLAN P TSO, CICS Name of QMF application plan

DSQSPRID U TSO Profile key — TSOID or PRIMEID

DSQSRSTG R TSO, CMS Amount of reserved storage

DSQSRUN I TSO,CICS, CMS Name of QMF procedure to run

DSQSSPQN — CICS Name of QMF spill file

DSQSSUBS S TSO, CICS Name of DB2 subsystem

DSQSUSER UID VSE/CICS Authorization ID and password
for DB2’s database connection

Customizing Your Start Procedure

306 Installing and Managing QMF

Chapter 23. The QMF Session Control Facility

The session control facility provides a method for initializing a QMF session
by executing a specific QMF procedure when QMF is started. The name of the
QMF procedure is Q.SYSTEM_INI. With this facility, the Q.SYSTEM_INI
procedure can run any QMF command or any stored query that the user is
authorized to run, prior to the user seeing the QMF home screen.

All sections in this chapter apply to OS/390, VM, and VSE except for the last
subject, ″Importing the default system initialization procedure″.

Installing Q.SYSTEM_INI

Create and save the Q.SYSTEM_INI procedure into the database like any
other QMF procedure. The procedure must be named SYSTEM_INI and be
saved under the authorization ID of Q. This QMF procedure should be shared
among all QMF users. You can make the procedure sharable by specifying the
SAVE command option SHARE=YES. It is also a good idea to add a comment
describing the procedure. For example:
SAVE PROC AS Q.SYSTEM_INI (SHARE=YES,COMMENT=’QMF System
Initialization Procedure’)

In order to save the procedure under the authorization ID of Q, the user must
be a QMF Administrator. A QMF Administrator would have the global
variable DSQAO_QMFADM equal to 1.

When does the Q.SYSTEM_INI procedure run?

The Q.SYSTEM_INI procedure runs just before the QMF initial procedure
specified by the DSQSRUN parameter and just after QMF has completed
initialization. All of the QMF functions available to QMF procedures are also
available for use by the Q.SYSTEM_INI procedure.

When does the Q.SYSTEM_INI procedure run?

The Q.SYSTEM_INI procedure runs just before the QMF initial procedure
specified by the DSQSRUN parameter and just after QMF has completed
initialization. All of the QMF functions available to QMF procedures are also
available for use by the Q.SYSTEM_INI procedure.

© Copyright IBM Corp. 1983, 2002 307

Using Q.SYSTEM_INI

Your QMF session procedure Q.SYSTEM_INI, can be as simple as setting
some QMF global variables or profile values, or as complex as as complete
front end to QMF. Each user can have their own session procedure called
from, but not replacing, Q.SYSTEM_INI.

Example shipped with QMF
The sample Q.SYSTEM_INI procedure provided with QMF makes
SHARE=YES the default for all users.

When you specify the DSQSUSER parameter, QMF issues a CONNECT
command to connect to the database. Thus, the rules for this parameter are
the same as for the CONNECT command.
v The ID you supply for the DSQSUSER parameter must have DB2

CONNECT authority, or the QMF session will not start. Use the SQL
GRANT statement to grant this authority:
GRANT CONNECT TO userid IDENTIFIED BY password

v The DB2 authorization ID and password you supply for DSQSUSER must
conform to the rules for the CONNECT command for DB2.

v The SQL authorization ID and password must both be in the DB2 system
table SYSIBM.SYSUSERAUTH for DB2 OS/390.

--
-- QUERY D S Q 0 B I N I
-- MANAGEMENT ---------------
-- FACILITY
--
-- Q M F S Y S T E M I N I T I A L I Z A T I O N P R O C
-- ----- ----------- --------------------------- -------
--
-- FUNCTION: PROVIDE AN EXAMPLE QMF SYSTEM INITIALIZATION PROCEDURE
-- THAT CAN BE ADDED AFTER QMF INSTALLATION. YOU MAY MOD-
-- IFY OR REPLACE THIS PROCEDURE WITH YOUR OWN VERSION.
--
-- THE PROCEDURE MUST BE STORED IN THE DATABASE UNDER THE
-- NAME OF Q.SYSTEM_INI BEFORE IT WILL RUN AUTOMATICALLY.
-- ------------
--
-- THE COMMAND BELOW IS AN EXAMPLE OF ESTABLISHING A NEW DEFAULT
-- FOR THE SHARE OPTION OF THE SAVE COMMAND THAT WILL APPLY TO ALL
-- QMF USERS. (REMOVE THE LEADING COMMENT SYMBOLS "--" TO ACTIVATE
-- IT.)
--
-- SET GLOBAL (DSQEC_SHARE=1 -- MAKE SHARE=YES THE DEFAULT FOR ALL

Note: The actual example shipped with QMF may vary from the above example.

Figure 60. The Q.SYSTEM_INI shipped with QMF

The QMF Session Control Facility

308 Installing and Managing QMF

User session procedure example

The session procedure can call another procedure. The procedure being called
can be a user procedure that is created, owned and updated by a QMF user.
You can use the same named procedure for different users if each user has a
unique SQLID. When each user starts QMF they are running under their own
SQLID. That SQLID is the default object owner when the object owner is not
otherwise specified when accessing a QMF object or database object. For
example, the QMF session procedure Q.SYSTEM_INI, could set global
variables or company wide global variables and then call a user session
procedure. In the following example, the user session procedure is called
USER_INI.

Procedure that displays an object list

The following is an example of a SYSTEM_INI procedure that displays a list
of objects instead of the QMF Home screen:

PROC Q.SYSTEM_INI LINE 1

-- This QMF procedure example shows how to setup QMF session defaults for
-- every QMF user and then calls a user procedure called USER_INI that will set
-- individual QMF session defaults
--

QMF SET GLOBAL (DSQEC_NLFCMD_LANG=1) -- Process English Commands
QMF RESET PROC -- Hide Contents of this PROC
QMF SET PROFILE (WIDTH=80,LENGTH=66) -- Set Default Report Page Size
QMF SET PROFILE (SPACE=COMMON) -- Set Default Space for Save Data Command
QMF SET GLOBAL (DSQDC_LIST_ORDER=5D) -- Object List Sorted by Date Modify
QMF SET GLOBAL (DSQEC_RESET_RPT=1) -- Prompt for Report Completion
RUN USER_INI -- Run Users Session Procedure
QMF END -- Display QMF Home screen first
QMF SET GLOBAL (DSQEC_NLFCMD_LANG=0) -- Return to Presiding Language

Figure 61. Q.SYSTEM_INI example that calls a user defined procedure

PROC WILLIAMS.USER_INI LINE
1
-- This QMF procedure example shows how to setup QMF session defaults for
-- a QMF user. The following settings replace any settings set by the
-- SYSTEM_INI proc.

--
QMF SET GLOBAL (DSQEC_NLFCMD_LANG=1) -- Process English Commands
QMF RESET PROC -- Hide Contents of this PROC
QMF SET PROFILE (SPACE=MYSPACE) -- Store data in MYSPACE.
QMF SET PROFILE (PRINTER=MYROOM) -- Print reports at My Printer
QMF SET GLOBAL (DSQDC_LIST_ORDER=3A) -- Object List Sorted by Object Name
QMF SET GLOBAL (DSQEC_RESET_RPT=2) -- Always ResetReports
QMF SET GLOBAL (DSQEC_SHARE = 1) -- Always Share My QMF Objects
QMF SET GLOBAL (DSQEC_NLFCMD_LANG=0) -- Return to Presiding Language

Figure 62. User session procedure example: user.USER_INI

The QMF Session Control Facility

Chapter 23. The QMF Session Control Facility 309

Security and sharing session procedure

The QMF session procedure Q.SYSTEM_INI and other objects used or called
by this procedure take on the same security as any other QMF object or
database object does during a QMF session. The Q.SYSTEM_INI procedure is
not special, other than QMF tries to execute it each time a QMF session is
started. If the procedure does not exist, QMF does not attempt to run it.

If the Q.SYSTEM_INI procedure exists but is restricted or not shared, the
result is the same as with any other QMF procedure object. If the SQLID
starting QMF is Q, the procedure can run. Any SQLID other than Q receives a
message that it is not authorized to run the procedure Q.SYSTEM_INI.

Diagnosis considerations

The QMF session procedure Q.SYSTEM_INI is run in the same environment
as any other QMF procedure. All of the diagnosis procedures used for existing
QMF procedures can also be used for the Q.SYSTEM_INI procedure. In
addition to normal procedure execution, consider that this procedure is run
before the QMF startup procedure named in the DSQSRUN parameter when
QMF is started. If you have session controls in the procedure specified by the
DSQSRUN parameter, consider moving them to the Q.SYSTEM_INI
procedure.

You can use the QMF L2 tracing option to see commands and messages
issued. Session procedure commands and messages are distinguished from
others. See “Using the QMF trace facility” on page 690 for more information
on QMF trace options.

PROC Q.SYSTEM_INI LINE 1

-- This QMF procedure example shows how to set up QMF session defaults for
-- every QMF user to display a list of objects instead of the QMF Home
-- screen.
--

QMF SET GLOBAL (DSQEC_NLFCMD_LANG=1) -- Process English Commands
QMF RESET PROC -- Hide Contents of this procedure
QMF SET GLOBAL (DSQDC_LIST_ORDER=3A) -- Object List sorted by object name
QMF SET GLOBAL (DSQEC_NLFCMD_LANG=0) -- Return to Presiding Language
QMF LIST ALL -- LIST OBJECTS FOR ENGLISH

Figure 63. Using Q.SYSTEM_INI to display a list of objects rather than the QMF Home screen

The QMF Session Control Facility

310 Installing and Managing QMF

Importing the default system initialization procedure on OS/390

On OS/390 a default QMF system initialization procedure is shipped. The
procedure is called DSQ0BINI. It can be found in
QMF720.SDSQSAPE(DSQ0BINI).

You may want to verify if your system has a system initialization procedure
before installing the sample The command DISPLAY Q.SYSTEM_INI will
show you what is already installed, or issue the message, ″Q.SYSTEM_INI
cannot be found″ if the initialization procedure has not been installed. If you
already have a system intitialization procedure and wish to overwrite it with
the sample, or do not have one and wish to install the sample, continue with
the example below:
IMPORT PROC FROM ’QMF720.SDSQSAPE(DSQ0BINI)’

You can import your own version of the procedure, import the default
procedure, and change it before saving it. Or, you can create your own
procedure from within QMF.

Importing the default system initialization procedure on VM

A default QMF system initialization procedure called DSQ0BINI is shipped on
the QMF distribution disk for VM as DSQ0BINI PROC.

You may want to verify if your system has a system initialization procedure
before installing the sample The command DISPLAY Q.SYSTEM_INI will
show you what is already installed, or issue the message, ″Q.SYSTEM_INI
cannot be found″ if the initialization procedure has not been installed. If you
already have a system intitialization procedure and wish to overwrite it with
the sample, or do not have one and wish to install the sample, continue with
the example below:
IMPORT PROC FROM DSQ0BINI PROC *
SAVE PROC AS Q.SYSTEM_INI (COM=’DEFAULT QMF SYSTEM PROCEDURE’ SHARE=YES

You can import your own version of the procedure, import the default
procedure, and change it before saving it. Or, you can create your own
procedure from within QMF.

Importing the default system initialization procedure on VSE

See “Installing Q.SYSTEM_INI” on page 307. You must create and save the
procedure as Q.SYSTEM_INI.

The QMF Session Control Facility

Chapter 23. The QMF Session Control Facility 311

312 Installing and Managing QMF

Chapter 24. QMF Installation User Exit (DSQUOPTS)

DSQUOPTS, a new QMF installation user exit for QMF Version 7.2, can be
used to override the initial default value of selected global variables.

The global variables that are supported in the first level of DSQUOPTS are
DSQEC_DISABLEADM and DSQEC_SHARE. Either or both of these global
variables may have their initial default value set to a different value than the
provided QMF default.

For example, DSQEC_DISABLEADM has a QMF initial default value of 0.
This means that QMF will do QMF Administrator authority checking. If
DSQUOPTS is modified to give DSQEC_DISABLEADM an initial value of 1,
then QMF Administrator authority checking would not be done, and users
that run QMF would never be considered to be QMF Administrators.

The QMF installation user exit DSQUOPTS may be modified by changing the
DSQUOPTS assembler source, assembling and link-editing the module.

OS/390

For OS/390, the DSQUOPTS assembler source resides in member DSQUOPTS
in the QMF720.SDSQUSRE dataset. For details on how to specify override
values, see the DSQUOPTS prolog. A sample job to assemble and link-edit
DSQUOPTS resides in member DSQ1UOPT in the QMF720.SDSQSAPE
dataset. Note that the modified DSQUOPTS load module will be placed in the
QMF exit library QMF720.SDSQEXIT. Remember to have the exit library
properly allocated to pick up the modified exit. A default version of
DSQUOPTS is shipped in the QMF720.SDSQLOAD dataset.

VM

For VM, the DSQUOPTS assembler source resides on the production disk with
a filetype of ASSEMBLE. See the DSQUOPTS prolog for details on how to
specify override values. DSQUOPTS requires the availability of the
DSQUOPTM macro that resides in the DSQUSERE MACLIB. Follow these
steps to create a modified version of DSQUOPTS:
1. Copy the DSQUOPTS ASSEMBLE source from the production disk.
2. Modify the DSQUOPTS ASSEMBLE source per instructions from the

source prolog.
3. Make the DSQUSERE MACLIB available by issuing the GLOBAL MACLIB

DSQUSERE command.

© Copyright IBM Corp. 1983, 2002 313

|
|

|
|
|
|

|
|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|

|
|

|
|

4. Assemble the DSQUOPTS source, HLASM DSQUOPTS.
5. Load the text file LOAD DSQUOPTS.
6. Generate the module GENMOD DSQUOPTS (AMODE 31 RMODE ANY).

VSE

Modification of the DSQUOPTS user exit is not available for VSE.

The QMF Session Control Facility

314 Installing and Managing QMF

|

|

|

|
|

|

Chapter 25. Establishing QMF Support for End Users

You can use QMF facilities to help customize support for end users. This
chapter discusses how to set up QMF so that end users can access QMF and
work with data in the database.

Creating user profiles to enable user access to QMF on OS/390

Code page considerations: QMF receives information from and presents
information to the terminal screen through services provided by GDDM. To
prepare GDDM device support, specify the code page to use with QMF, or
tailor GDDM session defaults, see the GDDM System Customization and
Administration.

The role of Q.AUTHID: QMF installation automatically grants SYSADM
authority to the user ID Q. The user Q owns and manages these QMF
resources:
v All QMF control tables.
v The sample queries.
v The sample tables shipped with QMF. (For descriptions of the sample

tables, see the QMF Reference manual.)
v Default views for the database object list, explained in “Customizing a

user’s database object list” on page 366.

For the discussions and procedures throughout this book, we assume you are
administering QMF using the Q user ID or another ID with SYSADM
authority.

All QMF users need access to a user profile, which determines how QMF
handles individual input of specific users. Use the profile to control certain
aspects of a user’s environment, such as where printer output is routed or
whether terminal input is converted to uppercase.

Each aspect of a user’s QMF session maps to a value in a column of the
Q.PROFILES control table. Each row of the Q.PROFILES table is an individual
user profile. “Reading the Q.PROFILES table” on page 317 shows the
Q.PROFILES table in detail and discusses possible profile values.

Establishing a profile structure for your installation
Provide users with a profile using one of these methods:
v Allow users to use the default QMF profile, which is the row of the

Q.PROFILES table where the CREATOR column has a value of SYSTEM.

© Copyright IBM Corp. 1983, 2002 315

The Q.PROFILES table is shipped with default profile values predefined in
this row. The defaults used by this SYSTEM profile are discussed in
“Adding a new user profile to the Q.PROFILES table”. You can change
these values to create a generic profile that meets the needs of your site.

v Create a unique row in Q.PROFILES for the use. Set the CREATOR column
of Q.PROFILES to the primary authorization ID of the user and customize
other column values according to individual needs. If you start QMF in
TSO with a DSQSPRID value of TSOID, the CREATOR column is the user’s
TSO logon ID.

You can create unique profiles for some users at your installation and allow
other users to use the SYSTEM default profile; you can also delete the
SYSTEM profile for security and tracking reasons, thus preventing those who
do not have unique profiles from using QMF.

Adding a new user profile to the Q.PROFILES table
You can use SQL INSERT queries or the QMF Table Editor (described in the
Using QMF manual) to add new user profiles to the Q.PROFILES table.
Figure 64 shows sample SQL that creates unique profiles in the TSO
environment for users with SQL authorization IDs of JONES (base QMF, or
English) and SCHMIDT (German NLF). Use the TRANSLATION column of
Q.PROFILES to distinguish between an English and an NLF environment.

The values shown in Figure 64 are examples of profile values you can use.

Note: Always specify a TRANSLATION value when inserting a row into
Q.PROFILES, or the TRANSLATION value defaults to a null value and the
profile row is automatically ignored. Figure 64 shows only a subset of all
possible profile values. Use “Reading the Q.PROFILES table” on page 317 for
guidance in specifying additional values.

Base QMF (English) German NLF

INSERT INTO Q.PROFILES INSERT INTO Q.PROFILES
(CREATOR, LANGUAGE, SPACE, TRANSLATION, (CREATOR, LANGUAGE, SPACE, TRANSLATION,
PFKEYS, SYNONYMS, RESOURCE__GROUP, PFKEYS, SYNONYMS, RESOURCE__GROUP,
ENVIRONMENT) ENVIRONMENT)
VALUES (’JONES’, ’PROMPTED’, ’SAVEIT’ VALUES (’SCHMIDT’, ’MENUE’, ’STUT2BER’
’ENGLISH’, ’PFKEYS’, ’COMMAND__SYNONYMS’ ’DEUTSCH’, ’DEUTASTEN’
’NONPRIME’, ’TSO’) ’COMMAND__SYNONYM__D’, ’SCHICHT’

’TSO’)

Figure 64. Creating a user profile on TSO

Establishing QMF Support

316 Installing and Managing QMF

To enroll several users, set up a template query that describes a standard
profile and that uses a substitution variable value for any value that
commonly changes (such as the value for the CREATOR column) with each
new user you enroll. For more information on using substitution variables, see
the QMF Reference manual .

If you are using an NLF: You can establish different profiles for the same user
according to the national language environment. A user can have a profile
with one set of values in one national language, and a profile with a different
set of values in another national language.

Preventing users without unique profiles from using QMF
It can be difficult to track individual resource use if several people use QMF
under the common, default SYSTEM profile. To restrict use of QMF to users
who have unique profiles, delete the SYSTEM rows of Q.PROFILES. Figure 65
shows SQL statements that delete the rows. You can also use the Table Editor,
as explained in Using QMF.

Note: For both base QMF and NLF environments, always specify a
TRANSLATION value when deleting rows from Q.PROFILES, or more rows
(across different national language environments) might be deleted than you
intend. Additionally, always use a WHERE clause, or all rows of Q.PROFILES
are deleted.

After you delete the SYSTEM row of Q.PROFILES, create a unique profile for
every QMF user; otherwise, your users will not be able to use QMF.

Reading the Q.PROFILES table
Table 40 on page 318 shows the columns of the Q.PROFILES control table.
Each column of the table represents an aspect of a user’s QMF session you
can customize. The defaults shown are for the English QMF environment.

If you are using an NLF: Default values might be different for the English
environment and some NLFs. For example, do not assume that the default for

Base QMF (English)
German NLF

DELETE FROM Q.PROFILES
DELETE FROM Q.PROFILES

WHERE CREATOR=’SYSTEM’
WHERE CREATOR=’SYSTEM’

AND TRANSLATION=’ENGLISH’
AND TRANSLATION=’DEUTSCH’

Figure 65. Restricting use of QMF to users who have unique profiles

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 317

all NLFs is UPPER because the English default is UPPER. The default value
for the CASE field in the German NLF is MIXED, and might also vary for
other NLFs. For the default values for each NLF, see the translated version of
the Q.PROFILE table. (Replace the n symbol with an NLID from Table 1 on
page xiv.)

The Q.PROFILES table has the index Q.PROFILEX, with the attributes
UNIQUE and CLUSTER. The keyed columns are CREATOR, TRANSLATION,
and ENVIRONMENT. No three rows can have identical values for these three
columns.

Table 40. Structure of the Q.PROFILES table

Column name
Data type and
length Nulls allowed

Function and possible values for OS/390

CREATOR CHAR (8) No Function: Specifies the authorization ID
(the user) who owns the profile.

Values: SYSTEM (default), primary or
SQL authorization ID, or TSO logon ID, if
DSQSPRID is set to TSOID. The SYSTEM
row is shipped with Q.PROFILES for
English and each NLF; users who do not
have unique profile rows can use the
SYSTEM row.

CASE CHAR (18) Yes Function: Specifies whether terminal
input is converted to uppercase.

Values: UPPER (default), STRING, or
MIXED. See the QMF Reference manual
for descriptions of these values. CASE
might have a different default for NLF
users.

DECOPT CHAR (18) Yes Function:Specifies what separators QMF
puts in numeric report columns.

Values:PERIOD (default), COMMA, and
FRENCH. See the QMF Reference manual
for more information. DECOPT is
translated and might have a different
default for NLF users.

CONFIRM CHAR (18) Yes Function: Controls display of
confirmation panels.

Values: YES (default) if you want
confirmation panels displayed before
database changes; NO if you do not.

Establishing QMF Support

318 Installing and Managing QMF

Table 40. Structure of the Q.PROFILES table (continued)

Column name
Data type and
length Nulls allowed

Function and possible values for OS/390

WIDTH CHAR (18) Yes Function: Controls number of printed
columns per page.

Values: 22 to 999. Default = 132.

LENGTH CHAR (18) Yes Function: Controls number of printed
lines per page.

Values: 1 to 999, or CONT if you want no
page breaks. Default = 60.

LANGUAGE CHAR (18) Yes Function: Controls which query language
QMF uses when creating a new query
after a RESET QUERY command is
issued.

Values: SQL (default), QBE (for
Query-by-Example), or PROMPTED (for
Prompted Query).

SPACE CHAR (50) Yes Function: Specifies a table space that
holds tables created using SAVE DATA
and IMPORT commands.

In DB2 Parallel Edition, this value refers
to a NODEGROUP name. However, QMF
refers to it as a TABLESPACE name.
Operation is not affected. DataJoiner does
not utilize tablespaces and the value for
the SPACE option is ignored in a
DataJoiner context; operation continues as
if a blank value were present.

Values: Any valid table space name.

TRACE CHAR (18) Yes Function: Controls the level of detail in
trace output.

Values: ALL traces all functions at the
most detailed level. A character string of
function codes and numbers indicates the
level of tracing for individual QMF
functions. The default varies depending
on the value for DSQSMODE. For
example, when DSQSMODE is B, the
trace level is L2, otherwise it is NONE.
Only the values ALL and NONE are
translated in NLFs.

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 319

Table 40. Structure of the Q.PROFILES table (continued)

Column name
Data type and
length Nulls allowed

Function and possible values for OS/390

PRINTER CHAR (8) Yes Function: Controls where printer output
is routed.

Values: Use a null (default) or blank
value to route print output to CICS
temporary storage or transient data
queues, or to the data set with the
ddname DSQPRINT. Use a GDDM
nickname to direct output to a
GDDM-defined printer.

TRANSLATION CHAR (18) No Function: Indicates English or NLF
environment

Values: English (default) or the name of
an NLF. The right-hand column of Table 1
on page xiv shows the translated names

you need to use in this column.

PFKEYS VARCHAR (31) Yes Function: Indicates the table or view (if
any) where user’s customized function
key definitions are stored.

Values: Any valid DB2 table or view
name. If blank or null (default), QMF’s
default keys are used.

SYNONYMS VARCHAR (31) Yes Function: Indicates the table or view (if
any) where user’s customized command
definitions are stored.

Values: Any valid DB2 table or view
name. If blank or null (default), no
customized definitions are used. For NLF
users, the IBM-supplied table is named
Q.COMMAND__SYNONYM__n, where n
is the National Language ID.

RESOURCE__GROUP CHAR (16) Yes Function: Controls how the governor exit
routine limits user’s resources or
commands.

Values: Any valid resource group name.
If blank or null (default), QMF attempts
to use the user’s SQL authorization ID
here, and the user’s session is not
governed (unless the authorization ID is a
valid resource group name).

Establishing QMF Support

320 Installing and Managing QMF

Table 40. Structure of the Q.PROFILES table (continued)

Column name
Data type and
length Nulls allowed

Function and possible values for OS/390

MODEL CHAR (8) Yes Function: Specifies the model for data
access.

Values: Always use the value REL for this
column, indicating relational data.

ENVIRONMENT CHAR (8) Yes Function: Indicates the operating
environment.

Values: This value is TSO, CICS if you
access the profile through OS/390.

Reminder: If you allocate output from DSQPRINT to go to the HOLD queue, to release the output to
the OUTPUT queue for printing, you must issue the following TSO command:

FREE DDNAME(DSQPRINT)

Providing the correct profile on OS/390
When QMF is started, it determines which users are authorized to establish a
QMF session by searching the CREATOR, ENVIRONMENT, and
TRANSLATION columns of the Q.PROFILES table. You need to add the
correct values to the user’s profile to ensure that QMF recognizes them and
starts.

QMF searches for specific profile values in the following order:
1. CREATOR=userid, ENVIRONMENT=current operating environment
2. If running in CICS, CREATOR=userid, ENVIRONMENT=CICS
3. CREATOR=userid, ENVIRONMENT=NULL
4. CREATOR=SYSTEM, ENVIRONMENT=current operating environment
5. If running in CICS, CREATOR=SYSTEM, ENVIRONMENT=CICS
6. CREATOR=SYSTEM, ENVIRONMENT=NULL

userid is the authorization ID of the user trying to log on to QMF. DB2 uses
this ID to determine if the user is authorized to use the database.

Current operating environment is CICS, OS/390, or TSO when QMF is being
started from CICS or TSO respectively.

QMF must find values for CREATOR and ENVIRONMENT that match one of
the pairs in the preceding list, or QMF initialization ends in an error before
the QMF Home panel is displayed.

Updating user profiles
You can change the values in a user’s profile by using either the SET
PROFILE command or SQL UPDATE statements.

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 321

Using the SET PROFILE command
Using this command is quicker than using SQL UPDATE statements, because
you can enter it from the QMF command line with minimal typing.

Values set using SET PROFILE remain effective only until the user’s session
ends; use the SAVE PROFILE command to save values you changed. For more
information on the SET PROFILE command and its parameters, see QMF
Reference.

Because no special SQL privileges are required to use this command, your
users can easily update their own profiles. However, they cannot use SET
PROFILE to update fields you might use to customize their QMF sessions.
These fields are PFKEYS, SYNONYMS, and RESOURCE__GROUP. You can
use SQL UPDATE statements or the QMF Table Editor to update these
Q.PROFILES fields. The Table Editor is explained in the Using QMF manual.

Using SQL UPDATE statements
SQL UPDATE statements can be used to update all fields of the Q.PROFILES
table, including SYNONYMS, PFKEYS, and RESOURCE__GROUP.

Use an SQL UPDATE query similar to the one in Figure 66 to update existing
user profiles. This example changes the name of the table that stores a user’s
command synonyms. On the left is an example query for user JONES in base
(English) QMF; on the right is the same query for user SCHMIDT in the
German NLF.

Note: When running UPDATE, DELETE, and INSERT queries on the
Q.PROFILES table, always include the TRANSLATION column in the query;
otherwise, QMF applies the changes you make in all language environments.

Base QMF (English)
German NLF

UPDATE Q.PROFILES
UPDATE Q.PROFILES

SET SYNONYMS=’COMMAND__SYNONYMS’
SET SYNONYMS=’GUMMOW.XYZ’

WHERE CREATOR=’JONES’ AND
WHERE CREATOR=’SCHMIDT’ AND

TRANSLATION=’ENGLISH’
TRANSLATION=’DEUTSCH’

Figure 66. Updating user profiles using UPDATE query on Q.PROFILES table

Establishing QMF Support

322 Installing and Managing QMF

Updating the SYSTEM profile
You can change the default values provided in the SYSTEM row of
Q.PROFILES. However, any user who needs different values than those you
assigned for the SYSTEM row must have a unique profile row.

For example, suppose that your system has two resource groups defined,
named PRIME and NONPRIME. Suppose that PRIME is the default value for
the RESOURCE__GROUP field of the SYSTEM row in Q.PROFILES. You must
formally enroll the users who are in the NONPRIME group by giving them
unique profile rows.

Deleting profiles from the Q.PROFILES table
Periodically, you might need to delete obsolete user profiles from the
Q.PROFILES table. Delete a user profile from Q.PROFILES when you are sure
that objects created by the primary authorization ID or the TSO logon ID in
that profile have been either deleted or safely transferred to other users:
v For information on how to perform these tasks for QMF queries, forms, and

procedures, see “Maintaining QMF objects using QMF control tables” on
page 383.

v For instructions on database tables and views, see “Maintaining tables and
views using DB2 tables” on page 398.

Use a query similar to the one shown in Figure 67 to delete a user profile.

If you are using an NLF: Include a value for the TRANSLATION column if
you want to delete the user profile in a single NLF environment. If you do not
specify a value for TRANSLATION, QMF deletes the profile in all NLF
environments.

Deleting profiles on OS/390
If the user whose profile you deleted had a private table space, use the SQL
DROP TABLE SPACE statement from the SQL query panel if the space
contains nothing you want to save. Also, you can use the SQL DROP TABLE

Base QMF (English)
German NLF

DELETE FROM Q.PROFILES
DELETE FROM Q.PROFILES

WHERE CREATOR=’JONES’
WHERE CREATOR=’SCHMIDT’

AND TRANSLATION=’ENGLISH’
AND TRANSLATION=’DEUTSCH’

Figure 67. Deleting a QMF user profile

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 323

statement or QMF ERASE commands if you want to delete specific QMF or
database objects. The DB2 UDB for OS/390 SQL Reference manual explains the
DROP statement. The QMF Reference manual explains the ERASE command.

Establishing QMF support on VM

The role of Q.AUTHID: QMF installation automatically grants DBA authority
to the user ID Q. The user Q owns and manages these QMF resources:
v All QMF control tables.
v The sample queries.
v The sample tables shipped with QMF. (For descriptions of the sample

tables, see the QMF Reference manual.)
v Default views for the database object list, explained in “Customizing a

user’s database object list” on page 366.

For the discussions and procedures throughout this book, we assume you are
administering QMF using the Q user ID or another ID with DBA authority.

Ensuring that users have access to CMS
Provide a new user with a VM logon ID. Set up the new users as you would
a DB2 for VM user virtual machine. See DB2 Server for VM Database
Administration for more information.

To communicate with DB2 for VM, a new QMF user logging on for the first
time must issue this command (assuming the user is linked to the DB2 for
VM production disk):
SQLINIT DBNAME(dbname)

where dbname is the name of the database that is being used for QMF. That
command loads two required modules to the user’s A-disk. As long as those
modules remain, and as long as the user wants to use the same database, the
command does not need to be reissued. Log on with the new user ID, and
give the SOLINIT command for the new user.

If your users need to connect to DB2 for VM explicitly, grant them DB2 for
VM CONNECT authority:
GRANT CONNECT TO userid IDENTIFIED BY password

The QMF CONNECT command enables an individual to access DB2 for VM
using an established CONNECT ID (DB2 for VM user ID), or to connect to a
different database during a QMF session. This command is useful for running
jobs in batch mode.

Establishing QMF Support

324 Installing and Managing QMF

After a user has received CONNECT authority (has been assigned a DB2 for
VM user ID), the user can access DB2 for VM through the QMF CONNECT
command:
CONNECT userid(PASSWORD=password

userid Any user ID conforming to the VM logon ID syntax rules is acceptable.
However, only those IDs that have been granted access to DB2 for VM can be
used in the CONNECT command. The ID can be embedded in double
quotation marks.

DB2 for VM password The DB2 for VM password:
v Must have no more than eight characters.
v Can be embedded in single or double quotation marks. A single quotation

mark embedded within single quotation marks is removed.
v Must contain no blanks (except for trailing blanks).

In order for a user to use the CONNECT command, the user ID and
password must both be in SYSTEM.SYSUSERAUTH. The password does not
need to be the same as the one associated with the VM logon ID.

In order for a user to use the CONNECT command, the user ID and
password must both be in SYSTEM.SYSUSERAUTH. The password does not
need to be the same as the one associated with the VM logon ID.

As a result of a QMF CONNECT command, the QMF profile resets to the
password associated with the new DB2 for VM user ID or to the SYSTEM row
default if that DB2 for VM user ID is not represented in Q.PROFILES. For
more information about CONNECT authority, see theDB2 server for VM
Database Administration manual.

Establishing a profile structure for your installation
Provide users with a profile using one of these methods:
v Allow users to use the default QMF profile, which is the row of the

Q.PROFILES table where the CREATOR column has a value of SYSTEM.
The Q.PROFILES table is shipped with default profile values predefined in
this row. The defaults used by this SYSTEM profile are discussed in
“Reading the Q.PROFILES table” on page 327. You can change these values
to create a generic profile that meets the needs of your site.

v Create a unique row in Q.PROFILES for the user, as shown in “Adding a
new user profile to the Q.PROFILES table in CMS” on page 326. Set the
CREATOR column of Q.PROFILES to the primary authorization ID of the
user and customize other column values according to individual needs.

You can create unique profiles for some users at your installation and allow
other users to use the SYSTEM default profile; you can also delete the

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 325

SYSTEM profile for security and tracking reasons, thus preventing those who
do not have unique profiles from using QMF.

Adding a new user profile to the Q.PROFILES table in CMS
You can use SQL INSERT queries or the QMF Table Editor (described in the
Using QMF manual) to add new user profiles to the Q.PROFILES table.
Figure 68 shows sample SQL that creates unique profiles for users with SQL
authorization IDs of JONES (base QMF, or English) and SCHMIDT (German
NLF). Use the TRANSLATION column of Q.PROFILES to distinguish between
an English and an NLF environment.

Preventing users without unique profiles from using QMF
It can be difficult to track individual resource use if several people use QMF
under the common, default SYSTEM profile. To restrict use of QMF to users
who have unique profiles, delete the SYSTEM rows of Q.PROFILES. You can
also use the Table Editor, as explained in Using QMF.

Note: For both base QMF and NLF environments, always specify a
TRANSLATION value when deleting rows from Q.PROFILES, or more rows
(across different national language environments) might be deleted than you
intend. Additionally, always use a WHERE clause, or all rows of Q.PROFILES
are deleted.

Base QMF (English) German NLF

INSERT INTO Q.PROFILES INSERT INTO Q.PROFILES
(CREATOR, LANGUAGE, SPACE, TRANSLATION, (CREATOR, LANGUAGE, SPACE, TRANSLATION,
PFKEYS, SYNONYMS, RESOURCE__GROUP, PFKEYS, SYNONYMS, RESOURCE__GROUP,
ENVIRONMENT) ENVIRONMENT)
VALUES (’JONES’, ’PROMPTED’, ’SAVEIT’ VALUES (’SCHMIDT’, ’MENUE’, ’STUT2BER’
’ENGLISH’, ’PFKEYS’, ’COMMAND__SYNONYMS’ ’DEUTSCH’, ’DEUTASTEN’
’NONPRIME’, ’CMS’) ’COMMAND__SYNONYM__D’, ’SCHICHT’

’CMS’)

Figure 68. Creating a user profile in CMS

Base QMF (English)
German NLF

DELETE FROM Q.PROFILES
DELETE FROM Q.PROFILES

WHERE CREATOR=’SYSTEM’
WHERE CREATOR=’SYSTEM’

AND TRANSLATION=’ENGLISH’
AND TRANSLATION=’DEUTSCH’

Figure 69. Restricting use of QMF to users who have unique profiles

Establishing QMF Support

326 Installing and Managing QMF

After you delete the SYSTEM row of Q.PROFILES, create a unique profile for
every QMF user; otherwise, your users will not be able to use QMF. .

Reading the Q.PROFILES table
Table 41 shows the columns of the Q.PROFILES control table. Each column of
the table represents an aspect of a user’s QMF session you can customize. The
defaults shown are for the English QMF environment.

If you are using an NLF: Default values might be different for the English
environment and some NLFs. For example, do not assume that the default for
all NLFs is UPPER because the English default is UPPER. The default value
for the CASE field in the German NLF is MIXED, and might also vary for
other NLFs. For the default values for each NLF, see the translated version of
the Q.PROFILE table. (Replace the n symbol with an NLID from Table 1 on
page xiv.)

The Q.PROFILES table has the index Q.PROFILEX, with the attributes
UNIQUE and CLUSTER. The keyed columns are CREATOR, TRANSLATION,
and ENVIRONMENT. No three rows can have identical values for these three
columns.

Table 41. Structure of the Q.PROFILES table

Column name
Data type and
length

Nulls
allowed

Function and possible values for VM

CREATOR CHAR (8) No Function: Specifies the authorization ID
(the user) who owns the profile.

Values: SYSTEM (default), primary or
SQL authorization ID, The SYSTEM row
is shipped with Q.PROFILES for English
and each NLF; users who do not have
unique profile rows can use the SYSTEM
row.

CASE CHAR (18) Yes Function: Specifies whether terminal
input is converted to uppercase.

Values: UPPER (default), STRING, or
MIXED. See the QMF Reference manual
for descriptions of these values. CASE
might have a different default for NLF
users.

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 327

Table 41. Structure of the Q.PROFILES table (continued)

Column name
Data type and
length

Nulls
allowed

Function and possible values for VM

DECOPT CHAR (18) Yes Function:Specifies what separators QMF
puts in numeric report columns.

Values:PERIOD (default), COMMA, and
FRENCH. See the QMF Reference manual
for more information. DECOPT is
translated and might have a different
default for NLF users.

CONFIRM CHAR (18) Yes Function: Controls display of
confirmation panels.

Values: YES (default) if you want
confirmation panels displayed before
database changes; NO if you do not.

WIDTH CHAR (18) Yes Function: Controls number of printed
columns per page.

Values: 22 to 999. Default = 132.

LENGTH CHAR (18) Yes Function: Controls number of printed
lines per page.

Values: 1 to 999, or CONT if you want
no page breaks. Default = 60.

LANGUAGE CHAR (18) Yes Function: Controls which query language
QMF uses when creating a new query
after a RESET QUERY command is
issued.

Values: SQL (default), QBE (for
Query-by-Example), or PROMPTED (for
Prompted Query).

SPACE CHAR (50) Yes Function: Specifies a dbspace that holds
tables created using SAVE DATA and
IMPORT commands.

Values: Any valid dbspace name.

Establishing QMF Support

328 Installing and Managing QMF

Table 41. Structure of the Q.PROFILES table (continued)

Column name
Data type and
length

Nulls
allowed

Function and possible values for VM

TRACE CHAR (18) Yes Function: Controls the level of detail in
trace output.

Values: ALL traces all functions at the
most detailed level. A character string of
function codes and numbers indicates the
level of tracing for individual QMF
functions. The default varies depending
on the value for DSQSMODE. For
example, when DSQSMODE is B, the
trace level is L2, otherwise it is NONE.
Only the values ALL and NONE are
translated in NLFs.

PRINTER CHAR (8) Yes Function: Controls where printer output
is routed.

Values: Use a null (default) or blank
value to route print output to a file or
printer associated with the DSQPRINT
FILEDEF. Use a GDDM nickname to
direct output to a GDDM-defined printer.

TRANSLATION CHAR (18) No Function: Indicates English or NLF
environment

Values: English (default) or the name of
an NLF. The right-hand column of
Table 1 on page xiv shows the translated
names you need to use in this column.

PFKEYS VARCHAR (31) Yes Function: Indicates the table or view (if
any) where user’s customized function
key definitions are stored.

Values: Any valid DB2 table or view
name. If blank or null (default), QMF’s
default keys are used.

SYNONYMS VARCHAR (31) Yes Function: Indicates the table or view (if
any) where user’s customized command
definitions are stored.

Values: Any valid DB2 table or view
name. If blank or null (default), no
customized definitions are used. For NLF
users, the IBM-supplied table is named
Q.COMMAND__SYNONYM__n, where n
is the National Language ID.

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 329

Table 41. Structure of the Q.PROFILES table (continued)

Column name
Data type and
length

Nulls
allowed

Function and possible values for VM

RESOURCE__GROUP CHAR (16) Yes Function: Controls how the governor exit
routine limits user’s resources or
commands.

Values: Any valid resource group name.
If blank or null (default), QMF attempts
to use the user’s SQL authorization ID
here, and the user’s session is not
governed (unless the authorization ID is
a valid resource group name).

MODEL CHAR (8) Yes Function: Specifies the model for data
access.

Values: Always use the value REL for
this column, indicating relational data.

ENVIRONMENT CHAR (8) Yes Function: Indicates the operating
environment.

Values: This value is null or CMS. If
profiles are stored in DB2 for VM, but are
being accessed from a DB2 application
requestor, the value used for
ENVIRONMENT can be TSO or CICS.

Providing the correct profile for VM
When QMF is started, it determines which users are authorized to establish a
QMF session by searching the CREATOR, ENVIRONMENT, and
TRANSLATION columns of the Q.PROFILES table. You need to add the
correct values to the user’s profile to ensure that QMF recognizes them and
starts.

QMF searches for specific profile values in the following order:
1. CREATOR=userid, ENVIRONMENT=current operating environment
2. CREATOR=userid, ENVIRONMENT=NULL
3. CREATOR=SYSTEM, ENVIRONMENT=current operating environment
4. CREATOR=SYSTEM, ENVIRONMENT=NULL

SQL ID is the DB2 for VM authorization ID of the user trying to log on to
QMF. DB2 for VM uses this ID to determine if the user is authorized to use
the database.

Current operating environment is CMS when QMF is being started from CMS.

Establishing QMF Support

330 Installing and Managing QMF

QMF must find values for CREATOR and ENVIRONMENT that match one of
the pairs in the preceding list, or QMF initialization ends in an error before
the QMF Home panel is displayed.

Updating user profiles
You can change the values in a user’s profile by using either the SET
PROFILE command or SQL UPDATE statements.

Using the SET PROFILE command
Using this command is quicker than using SQL UPDATE statements, because
you can enter it from the QMF command line with minimal typing.

Values set using SET PROFILE remain effective only until the user’s session
ends; use the SAVE PROFILE command to save values you changed. For more
information on the SET PROFILE command and its parameters, see QMF
Reference.

Because no special SQL privileges are required to use this command, your
users can easily update their own profiles. However, they cannot use SET
PROFILE to update fields you might use to customize their QMF sessions.
These fields are PFKEYS, SYNONYMS, and RESOURCE__GROUP. You can
use SQL UPDATE statements or the QMF Table Editor to update these
Q.PROFILES fields. The Table Editor is explained in the Using QMF manual.

Using SQL UPDATE statements
SQL UPDATE statements can be used to update all fields of the Q.PROFILES
table, including SYNONYMS, PFKEYS, and RESOURCE__GROUP.

Use an SQL UPDATE query similar to the one in Figure 70 on page 332 to
update existing user profiles. This example changes the name of the table that
stores a user’s command synonyms. On the left is an example query for user
JONES in base (English) QMF; on the right is the same query for user
SCHMIDT in the German NLF.

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 331

Note: When running UPDATE, DELETE, and INSERT queries on the
Q.PROFILES table, always include the TRANSLATION column in the query;
otherwise, QMF applies the changes you make in all language environments.

Updating the SYSTEM profile
You can change the default values provided in the SYSTEM row of
Q.PROFILES. However, any user who needs different values than those you
assigned for the SYSTEM row must have a unique profile row.

For example, suppose that your system has two resource groups defined,
named PRIME and NONPRIME. Suppose that PRIME is the default value for
the RESOURCE__GROUP field of the SYSTEM row in Q.PROFILES. You must
formally enroll the users who are in the NONPRIME group by giving them
unique profile rows.

Deleting profiles from the Q.PROFILES table
Periodically, you might need to delete obsolete user profiles from the
Q.PROFILES table. Delete a user profile from Q.PROFILES when you are sure
that objects created by the primary authorization ID or the TSO logon ID in
that profile have been either deleted or safely transferred to other users:
v For information on how to perform these tasks for QMF queries, forms, and

procedures, see “Maintaining QMF objects using QMF control tables” on
page 383.

v For instructions on database tables and views, see “Maintaining tables and
views using DB2 tables” on page 398.

Use a query similar to the one shown in Figure 71 on page 333 to delete a user
profile.

Base QMF (English)
German NLF

UPDATE Q.PROFILES
UPDATE Q.PROFILES

SET SYNONYMS=’COMMAND__SYNONYMS’
SET SYNONYMS=’GUMMOW.XYZ’

WHERE CREATOR=’JONES’ AND
WHERE CREATOR=’SCHMIDT’ AND

TRANSLATION=’ENGLISH’
TRANSLATION=’DEUTSCH’

Figure 70. Updating user profiles using UPDATE query on Q.PROFILES table

Establishing QMF Support

332 Installing and Managing QMF

If you are using an NLF: Include a value for the TRANSLATION column if
you want to delete the user profile in a single NLF environment. If you do not
specify a value for TRANSLATION, QMF deletes the profile in all NLF
environments.

Deleting profiles on VM
If the user whose profile you deleted had a private dbspace, use the SQL
DROP DBSPACE statement from the SQL query panel if the space contains
nothing you want to save. Also, you can use the SQL DROP TABLE statement
or QMF ERASE commands if you want to delete specific QMF or database
objects. The DB2 for VSE & VM SQL Reference manual explains the DROP
statement. The QMF Reference manual explains the ERASE command.

When you delete a user profile, all SQL privileges the user had on objects are
deleted, as well as all privileges that the user granted to other users. To
ensure other users will not be affected, query the SYSTEM.SYSTABAUTH
table to see what SQL privileges have been granted to the user. Query the
SYSTEM.SYSUSERAUTH table to see what DB2 authorities have been
granted.

Establishing QMF support on VSE

The role of Q.AUTHID: QMF installation automatically grants DBA authority
to the user ID Q. The user Q owns and manages these QMF resources:
v All QMF control tables.
v The sample queries.
v The sample tables shipped with QMF. (For descriptions of the sample

tables, see the QMF Reference manual.)
v Default views for the database object list, explained in “Customizing a

user’s database object list” on page 366.

Establishing a profile structure for your installation
Provide users with a profile using one of these methods:

Base QMF (English)
German NLF

DELETE FROM Q.PROFILES
DELETE FROM Q.PROFILES

WHERE CREATOR=’JONES’
WHERE CREATOR=’SCHMIDT’

AND TRANSLATION=’ENGLISH’
AND TRANSLATION=’DEUTSCH’

Figure 71. Deleting a QMF user profile

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 333

v Allow users to use the default QMF profile, which is the row of the
Q.PROFILES table where the CREATOR column has a value of SYSTEM.
The Q.PROFILES table is shipped with default profile values predefined in
this row. The defaults used by this SYSTEM profile are discussed in
“Reading the Q.PROFILES table” on page 335. You can change these values
to create a generic profile that meets the needs of your site.

v Create a unique row in Q.PROFILES for the user, as shown in “Adding a
new user profile to the Q.PROFILES table in CICS/VSE”. Set the CREATOR
column of Q.PROFILES to the primary authorization ID of the user and
customize other column values according to individual needs.

You can create unique profiles for some users at your installation and allow
other users to use the SYSTEM default profile; you can also delete the
SYSTEM profile for security and tracking reasons, thus preventing those who
do not have unique profiles from using QMF.

Adding a new user profile to the Q.PROFILES table in CICS/VSE
You can use SQL INSERT queries or the QMF Table Editor (described in the
Using QMF manual) to add new user profiles to the Q.PROFILES table. Use
the TRANSLATION column of Q.PROFILES to distinguish between an
English and an NLF environment.

Ensuring that users have access to CICS
Before setting up user access to QMF, make sure the user is known to CICS.
Define a three-character CICS terminal operator ID by defining a VSE user ID.
Map the VSE user ID to a CICS terminal operator ID, and redefine the CICS
ID in the the default sign-on table (SNT) that is shipped with VSE.

If your users need to connect to DB2 explicitly, grant them DB2 CONNECT
authority:
GRANT CONNECT TO userid IDENTIFIED BY password

Base QMF (English) German NLF

INSERT INTO Q.PROFILES INSERT INTO Q.PROFILES
(CREATOR, LANGUAGE, SPACE, TRANSLATION, (CREATOR, LANGUAGE, SPACE, TRANSLATION,
PFKEYS, SYNONYMS, RESOURCE__GROUP, PFKEYS, SYNONYMS, RESOURCE__GROUP,
ENVIRONMENT) ENVIRONMENT)
VALUES (’JONES’, ’PROMPTED’, ’SAVEIT’ VALUES (’SCHMIDT’, ’MENUE’, ’STUT2BER’
’ENGLISH’, ’PFKEYS’, ’COMMAND__SYNONYMS’ ’DEUTSCH’, ’DEUTASTEN’
’NONPRIME’, ’CICSVSE’) ’COMMAND__SYNONYM__D’, ’SCHICHT’

’CICSVSE’)

Figure 72. Creating a user profile in CICSVSE

Establishing QMF Support

334 Installing and Managing QMF

Preventing users without unique profiles from using QMF
It can be difficult to track individual resource use if several people use QMF
under the common, default SYSTEM profile. To restrict use of QMF to users
who have unique profiles, delete the SYSTEM rows of Q.PROFILES. Figure 73
shows SQL statements that delete the rows. You can also use the Table Editor,
as explained in Using QMF.

Note: For both base QMF and NLF environments, always specify a
TRANSLATION value when deleting rows from Q.PROFILES, or more rows
(across different national language environments) might be deleted than you
intend. Additionally, always use a WHERE clause, or all rows of Q.PROFILES
are deleted.

After you delete the SYSTEM row of Q.PROFILES, create a unique profile for
every QMF user; otherwise, your users will not be able to use QMF.

Reading the Q.PROFILES table
Table 42 on page 336 shows the columns of the Q.PROFILES control table.
Each column of the table represents an aspect of a user’s QMF session you
can customize. The defaults shown are for the English QMF environment.

If you are using an NLF: Default values might be different for the English
environment and some NLFs. For example, do not assume that the default for
all NLFs is UPPER because the English default is UPPER. The default value
for the CASE field in the German NLF is MIXED, and might also vary for
other NLFs. For the default values for each NLF, see the translated version of
the Q.PROFILE table. (Replace the n symbol with an NLID from Table 1 on
page xiv.)

The Q.PROFILES table has the index Q.PROFILEX, with the attributes
UNIQUE and CLUSTER. The keyed columns are CREATOR, TRANSLATION,
and ENVIRONMENT. No three rows can have identical values for these three
columns.

Base QMF (English)
German NLF

DELETE FROM Q.PROFILES
DELETE FROM Q.PROFILES

WHERE CREATOR=’SYSTEM’
WHERE CREATOR=’SYSTEM’

AND TRANSLATION=’ENGLISH’
AND TRANSLATION=’DEUTSCH’

Figure 73. Restricting use of QMF to users who have unique profiles

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 335

Table 42. Structure of the Q.PROFILES table

Column name
Data type and
length

Nulls
allowed Function and possible values for VSE

CREATOR CHAR (8) No Function: Specifies the authorization ID
(the user) who owns the profile.

Values: SYSTEM (default), primary or SQL
authorization ID. The SYSTEM row is
shipped with Q.PROFILES for English and
each NLF; users who do not have unique
profile rows can use the SYSTEM row.

CASE CHAR (18) Yes Function: Specifies whether terminal input
is converted to uppercase.

Values: UPPER (default), STRING, or
MIXED. See the QMF Reference manual for
descriptions of these values. CASE might
have a different default for NLF users.

DECOPT CHAR (18) Yes Function:Specifies what separators QMF
puts in numeric report columns.

Values:PERIOD (default), COMMA, and
FRENCH. See the QMF Reference manual
for more information. DECOPT is
translated and might have a different
default for NLF users.

CONFIRM CHAR (18) Yes Function: Controls display of confirmation
panels.

Values: YES (default) if you want
confirmation panels displayed before
database changes; NO if you do not.

WIDTH CHAR (18) Yes Function: Controls number of printed
columns per page.

Values: 22 to 999. Default = 132.

LENGTH CHAR (18) Yes Function: Controls number of printed lines
per page.

Values: 1 to 999, or CONT if you want no
page breaks. Default = 60.

Establishing QMF Support

336 Installing and Managing QMF

Table 42. Structure of the Q.PROFILES table (continued)

Column name
Data type and
length

Nulls
allowed Function and possible values for VSE

LANGUAGE CHAR (18) Yes Function: Controls which query language
QMF uses when creating a new query
after a RESET QUERY command is issued.

Values: SQL (default), QBE (for
Query-by-Example), or PROMPTED (for
Prompted Query).

SPACE CHAR (50) Yes Function: Specifies a dbspace that holds
tables created using SAVE DATA and
IMPORT commands.

Values: Any valid dbspace name.

TRACE CHAR (18) Yes Function: Controls the level of detail in
trace output.

Values: ALL traces all functions at the
most detailed level. A character string of
function codes and numbers indicates the
level of tracing for individual QMF
functions.

Only the values ALL and NONE are
translated in NLFs.

PRINTER CHAR (8) Yes Function: Controls where printer output is
routed.

Values: Use a null (default) or blank value
to route print output to CICS temporary
storage or transient data queues, or to the
data set with the ddname DSQPRINT. Use
a GDDM nickname to direct output to a
GDDM-defined printer.

TRANSLATION CHAR (18) No Function: Indicates English or NLF
environment

Values: English (default) or the name of an
NLF. The right-hand column of Table 1 on
page xiv shows the translated names you
need to use in this column.

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 337

Table 42. Structure of the Q.PROFILES table (continued)

Column name
Data type and
length

Nulls
allowed Function and possible values for VSE

PFKEYS VARCHAR (31) Yes Function: Indicates the table or view (if
any) where user’s customized function key
definitions are stored.

Values: Any valid DB2 table or view
name. If blank or null (default), QMF’s
default keys are used.

SYNONYMS VARCHAR (31) Yes Function: Indicates the table or view (if
any) where user’s customized command
definitions are stored.

Values: Any valid DB2 table or view
name. If blank or null (default), no
customized definitions are used. For NLF
users, the IBM-supplied table is named
Q.COMMAND__SYNONYM__n, where n
is the National Language ID.

RESOURCE__GROUP CHAR (16) Yes Function: Controls how the governor exit
routine limits user’s resources or
commands.

Values: Any valid resource group name. If
blank or null (default), QMF attempts to
use the user’s authorization ID here, and
the user’s session is not governed (unless
the authorization ID is a valid resource
group name).

MODEL CHAR (8) Yes Function: Specifies the model for data
access.

Values: Always use the value REL for this
column, indicating relational data.

ENVIRONMENT CHAR (8) Yes Function: Indicates the operating
environment.

Values: This value is CICSVSE if you
access the profile through CICS/VSE. If
profiles are stored in DB2 for VSE, but are
being accessed from a DB2 application
requestor, the value used for
ENVIRONMENT can be TSO, CMS, or
CICS.

Establishing QMF Support

338 Installing and Managing QMF

Providing the correct profile for VSE
When QMF is started, it determines which users are authorized to establish a
QMF session by searching the CREATOR, ENVIRONMENT, and
TRANSLATION columns of the Q.PROFILES table. You need to add the
correct values to the user’s profile to ensure that QMF recognizes them and
starts.

QMF searches for specific profile values in the following order:
1. CREATOR=auth ID, ENVIRONMENT=current operating environment
2. If running in CICS, CREATOR=auth ID, ENVIRONMENT=CICS
3. CREATOR= auth ID, ENVIRONMENT=NULL
4. CREATOR=SYSTEM, ENVIRONMENT=current operating environment
5. If running in CICS, CREATOR=SYSTEM, ENVIRONMENT=CICS
6. CREATOR=SYSTEM, ENVIRONMENT=NULL

auth ID is the DB2 authorization ID of the user trying to log on to QMF. DB2
uses this ID to determine if the user is authorized to use the database.

Current operating environment is CICSVSE if the profiles are stored in VSE DB2
and are being accessed through CICS/VSE.

QMF must find values for CREATOR and ENVIRONMENT that match one of
the pairs in the preceding list, or QMF initialization ends in an error before
the QMF Home panel is displayed.

Storing profiles in VM DB2 in a guest-sharing environment
If you store QMF VSE profiles in a DB2 VM database, add the values
CICSVSE to the ENVIRONMENT column of the user’s QMF VM profile to
ensure that your users can access QMF. Figure 74 shows how a site using DB2
guest sharing might use QMF VSE to access profiles and other objects stored
in DB2 VM.

Figure 74. Possible guest sharing scenario for profiles

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 339

Updating user profiles
You can change the values in a user’s profile by using either the SET
PROFILE command or SQL UPDATE statements.

Using the SET PROFILE command
Using this command is quicker than using SQL UPDATE statements, because
you can enter it from the QMF command line with minimal typing.

Values set using SET PROFILE remain effective only until the user’s session
ends; use the SAVE PROFILE command to save values you changed. For more
information on the SET PROFILE command and its parameters, see the QMF
Reference manual.

Because no special SQL privileges are required to use this command, your
users can easily update their own profiles. However, they cannot use SET
PROFILE to update fields you might use to customize their QMF sessions.
These fields are PFKEYS, SYNONYMS, and RESOURCE__GROUP. You can
use SQL UPDATE statements or the QMF Table Editor to update these
Q.PROFILES fields. The Table Editor is explained in the Using QMF manual.

Using SQL UPDATE statements
SQL UPDATE statements can be used to update all fields of the Q.PROFILES
table, including SYNONYMS, PFKEYS, and RESOURCE__GROUP.

Use an SQL UPDATE query similar to the one in Figure 75 to update existing
user profiles. This example changes the name of the table that stores a user’s
command synonyms. On the left is an example query for user JONES in base
(English) QMF; on the right is the same query for user SCHMIDT in the
German NLF.

Base QMF (English)
German NLF

UPDATE Q.PROFILES
UPDATE Q.PROFILES

SET SYNONYMS=’COMMAND__SYNONYMS’
SET SYNONYMS=’GUMMOW.XYZ’

WHERE CREATOR=’JONES’ AND
WHERE CREATOR=’SCHMIDT’ AND

TRANSLATION=’ENGLISH’
TRANSLATION=’DEUTSCH’

Figure 75. Updating user profiles using UPDATE query on Q.PROFILES table

Establishing QMF Support

340 Installing and Managing QMF

Note: When running UPDATE, DELETE, and INSERT queries on the
Q.PROFILES table, always include the TRANSLATION column in the query;
otherwise, QMF applies the changes you make in all language environments.

Updating the SYSTEM profile
You can change the default values provided in the SYSTEM row of
Q.PROFILES. However, any user who needs different values than those you
assigned for the SYSTEM row must have a unique profile row.

For example, suppose that your system has two resource groups defined,
named PRIME and NONPRIME. Suppose that PRIME is the default value for
the RESOURCE__GROUP field of the SYSTEM row in Q.PROFILES. You must
formally enroll the users who are in the NONPRIME group by giving them
unique profile rows.

Deleting profiles from the Q.PROFILES table
Periodically, you might need to delete obsolete user profiles from the
Q.PROFILES table. Delete a user profile from Q.PROFILES when you are sure
that objects created by the primary authorization ID in that profile have been
either deleted or safely transferred to other users:
v For information on how to perform these tasks for QMF queries, forms, and

procedures, see “Maintaining QMF objects using QMF control tables” on
page 383.

v For instructions on database tables and views, see “Maintaining tables and
views using DB2 tables” on page 398.

Use a query similar to the one shown in Figure 76 to delete a user profile.

If you are using an NLF: Include a value for the TRANSLATION column if
you want to delete the user profile in a single NLF environment. If you do not
specify a value for TRANSLATION, QMF deletes the profile in all NLF
environments.

Base QMF (English)
German NLF

DELETE FROM Q.PROFILES
DELETE FROM Q.PROFILES

WHERE CREATOR=’JONES’
WHERE CREATOR=’SCHMIDT’

AND TRANSLATION=’ENGLISH’
AND TRANSLATION=’DEUTSCH’

Figure 76. Deleting a QMF user profile

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 341

Deleting profiles on VSE
If the user whose profile you deleted had a private dbspace, use the SQL
DROP DBSPACE statement from the SQL query panel if the space contains
nothing you want to save. Also, you can use the SQL DROP TABLE statement
or QMF ERASE commands if you want to delete specific QMF or database
objects. The DB2 for VSE & VM SQL Reference manual explains the DROP
statement. The QMF Reference manual explains the ERASE command.

When you delete a user profile, all SQL privileges the user had on objects are
deleted, as well as all privileges that the user granted to other users. To
ensure other users will not be affected, query the SYSTEM.SYSTABAUTH
table to see what SQL privileges have been granted to the user. Query the
SYSTEM.SYSUSERAUTH table to see what DB2 authorities have been
granted.

Granting and revoking SQL privileges

Users automatically own any objects they create and save in the database
(unless they create a table with a different owner). The owner of an object
automatically has all SQL privileges on objects he or she owns, and can grant
(or revoke) these privileges to other users. Anyone with DB2 administrator
authority can grant or revoke SQL privileges for any object in the database.
The user Q has this authority, and is predefined to DB2 during QMF
installation.

When granting or revoking privileges on objects you do not own, qualify the
object with the SQL authorization ID of the owner:
JONES.ORDER__BACKLOG

SQL authorization IDs can be implicit qualifiers. Queries can contain
unqualified table, view, and index names. QMF commands can contain
unqualified query, procedure, and form names. In these cases, the user’s SQL
authorization ID serves as the implicit qualifier. For example, a user is
operating with JONES as the current SQL authorization ID. During the
session, the user issues the command:
RUN QUERYA (FORM=FORMA

which runs the following SQL query:
SELECT * FROM TABLEA

The RUN command refers to the query JONES.QUERYA and the form
JONES.FORMA. The SELECT command refers to the table JONES.TABLEA.

If you create a table, view, index, or alias with an unqualified name, your
current authorization ID becomes the owner of the object. That ID must have
the privileges needed to create the object.

Establishing QMF Support

342 Installing and Managing QMF

You must have DBA authority to create a table, view, or index with a qualified
name that is not your current authorization ID.

Using the SQL GRANT statement
Use the SQL GRANT statement to grant SQL SELECT, UPDATE, INSERT, and
DELETE privileges. For example, suppose user JONES needs to issue the
following command:
EDIT TABLE ORDER__BACKLOG (MODE=CHANGE

Assuming you are the owner of the table, use the statement in Figure 77to
grant JONES the SQL UPDATE privilege he needs to edit the
ORDER__BACKLOG table in change mode:

WITH GRANT OPTION indicates that JONES can grant to other users any of
the SQL privileges you granted him for the ORDER__BACKLOG table.

If you need to run GRANT queries often, use QMF variables in place of parts
of the query that frequently change, such as UPDATE, ORDER__BACKLOG,
and JONES. Variables are explained in the QMF Reference manual. You might
also consider using a QMF procedure to do the task if there is more than one
query. Using QMF explains how to create procedures.

Use the keyword PUBLIC to grant SQL privileges to all QMF users. For
example, use the statement in Figure 78 to grant INSERT authority on the
ORDER__BACKLOG table to all users, and allow each of those users to grant
INSERT authority to other users:

For more information on the GRANT statement, see the appropriate DB2 SQL
Reference manual.

Note: If you grant more than one person INSERT, UPDATE, or DELETE
privileges on a database object, and two or more users try to access that object
at the same time, there might be contention for resources, causing
performance or other problems. If a user is editing a table required during
QMF initialization, that table can be locked to prevent QMF from starting for
other users.

GRANT UPDATE ON ORDER__BACKLOG TO JONES WITH GRANT OPTION

Figure 77. Granting SQL privileges to a single QMF user

GRANT INSERT ON ORDER__BACKLOG TO PUBLIC WITH GRANT OPTION

Figure 78. Granting an SQL privilege to all QMF users

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 343

Using the SQL REVOKE statement
Use the SQL REVOKE statement to remove privileges:

Use the PUBLIC keyword to revoke privileges from all QMF users.

DB2 privileges have a cascading structure; privileges revoked from a user are
automatically revoked from any additional users to whom that user granted
them.

Controlling access to QMF and database objects

QMF objects, such as queries and procedures, and functions such as the Table
Editor, allow users to access and manipulate data stored in tables in the
database. Because this data might be sensitive, you may need to control users’
access to certain objects:
v You can use SQL GRANT and REVOKE statements from QMF’s SQL query

panel to control access to tables and views, as discussed in “Granting and
revoking SQL privileges” on page 363. “SQL privileges required to access
objects” on page 361 explains privileges required to use specific QMF
commands or functions on objects.

v You can use the SHARE parameter of the QMF SAVE command to control
access to queries, forms, and procedures, as discussed in “Sharing QMF
objects with other users” on page 365.

Controlling access on OS/390
All QMF users need access to the QMF application plan and packages built by
DB2 during QMF installation. The plan and packages enable QMF to run as a
DB2 application program. At installation time, the QMF plan and packages
are GRANTed EXECUTE to PUBLIC. You can REVOKE and issue specific
GRANTs to the user IDs/groups if this is preferred.

Providing access to the application plan and packages
You can enable users to use QMF by granting the EXECUTE privilege to
PUBLIC or to individual users with the SQL GRANT query. For example, to
grant access to user JONES:
GRANT EXECUTE on plan QMF__PLAN
to JONES

If you provide access to the QMF plan and packages by individual, you must
execute an SQL GRANT statement for each new user.

REVOKE UPDATE ON ORDER__BACKLOG FROM JONES

Figure 79. Revoking an SQL privilege from a QMF user

Establishing QMF Support

344 Installing and Managing QMF

If you restrict access by individual user, you limit use of the plan and
packages to selected DB2 primary or secondary authorization IDs. The
difference in refinement shows up when two or more primary authorization
IDs have use of the same secondary authorization ID. If you use restricted
enrollment to QMF through the profile, then only the primary authorization
IDs that have rows in Q.PROFILES have access to QMF. If you restrict access
to QMF based on granting EXECUTE privilege to specific authorization IDs,
then anyone who has these authorization IDs as their primary or secondary
authorization IDs has access to QMF.

Revoking user access to the QMF application plan and packages
After you dispose of a user’s queries, forms, and procedures, you need to
remove the user’s access to the QMF application plan and packages if you
granted the access individually. You can run the following queries:
REVOKE EXECUTE on plan ’QMF__PLAN’
FROM ’JONES’

REVOKE EXECUTE on package ’QMF__PACKAGE’
FROM ’JONES’

Revoke the EXECUTE authority on all packages used by QMF.

If the user’s EXECUTE privilege was granted more than once, you must
revoke each grant individually using the following queries:
REVOKE EXECUTE on plan ’QMF__PLAN’
FROM ’JONES’ by all

REVOKE EXECUTE on package ’QMF__PACKAGE’
FROM ’JONES’ by all

You must have SYSADM authority on OS/390 to revoke a GRANT.

If the user you are removing is a former QMF administrator who granted
access to the QMF plan and packages to other users, removing access from
the administrator also removes access for those users.

If other users share the same authorization ID of the former user, do not
revoke access to the plan and packages from the authorization ID. If you do,
the users sharing the authorization ID will no longer be able to use QMF.

DB2 privileges required to access objects
The DB2 privileges required to run QMF queries, the Table Editor, and QMF
commands are the same privileges needed to run the underlying SQL
statements.

Distributing DB2 privileges is a two-step process:
1. Assigning the user a set of authorization IDs

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 345

2. Assigning DB2 privileges to the authorization IDs

To assign and revoke privileges:
v Assign authorization IDs through a DB2 exit routine.
v Assign DB2 privileges through SQL GRANT queries.
v Undo previous grants through SQL REVOKE queries.

Not every query run in a QMF session requires DB2 privileges. Those that do
not are called static queries and are in the QMF code. QMF uses these queries,
for example, to update its own control tables. Users who have nothing to do
with QMF administration do not need DB2 privileges on these tables.

The privilege to run dynamic queries comes exclusively from the user.
Dynamic queries include all queries executed with the RUN command. They
also include certain queries formulated on behalf of the user by QMF. For
example, the user issues the DISPLAY command to see the contents of a table.

DB2 privileges required for QMF commands, for prompted and QBE queries,
and for the Table Editor are the same as those listed for SQL in “SQL
privileges required to access objects” on page 353.

Granting and revoking DB2 privileges
You provide DB2 privileges by running GRANT queries that give DB2
privileges to one or more authorization IDs. For example, the following query
grants the SELECT and UPDATE privileges on the table SMITH.TABLEA to
the authorization IDs JONES and JOHNSON:
GRANT SELECT, UPDATE ON TABLE SMITH.TABLEA TO JONES, JOHNSON

Run REVOKE queries to withdraw grants of DB2 privileges. You can always
withdraw grants for which your SQL authorization ID is the grantor. For
example, in a QMF session, the user’s current SQL authorization ID is JONES.
JONES had previously granted the SELECT privilege on the table
SMITH.TABLEA to BAKER. The following query withdraws this grant of the
privilege:
REVOKE SELECT ON TABLE SMITH.TABLEA FROM BAKER

If you revoke a privilege from a grantee and find that the grantee still has the
privilege, that grantee received the privilege from another user.

Granting to PUBLIC: You can make grants to PUBLIC and to individuals.
Granting a privilege to PUBLIC makes it available to all local users.

To make an object available to remote and local users for DB2 OS/390
subsystems that have distributed data enabled, grant authority to PUBLIC AT
ALL LOCATIONS. For example, the following queries give the SELECT
privilege on the table Q.STAFF:

Establishing QMF Support

346 Installing and Managing QMF

GRANT SELECT ON TABLE Q.STAFF TO PUBLIC
GRANT SELECT ON TABLE Q.STAFF TO PUBLIC AT ALL LOCATIONS

Q.STAFF is one of the sample tables of QMF. This, and similar queries for the
other sample tables, are run during QMF installation, so that everyone has
SELECT privilege on the sample tables.

Granting privileges to users: The privilege to run a GRANT query must
come from the grantor; that is, from the user’s current SQL authorization ID.
The grantor must have every privilege being granted and must have each
privilege with the GRANT option. For example, BAKER wants to grant the
SELECT and UPDATE privileges on the table SMITH.TABLEA to JONES. To
do this, BAKER must have the SELECT and UPDATE privileges with the
GRANT option on the same table.

A GRANT query can include the expression WITH GRANT OPTION. When it
does, the privileges are granted with the GRANT option. Without the GRANT
option, users cannot grant authority to others. For example, the following
queries grant the SELECT privilege on SMITH.TABLEA to JONES and
JOHNSON. After the queries are run, only JOHNSON can grant the privilege
to others.
GRANT SELECT ON TABLE SMITH.TABLEA TO JONES
GRANT SELECT ON TABLE SMITH.TABLEA TO JOHNSON WITH GRANT OPTION

You may have received your DB2 privilege through a SQL GRANT query,
from SYSADM authority on OS/390, or because you own the created object.
Any DB2 privilege you have might be the result of a chain of grants,
beginning with a grant from someone with installation SYSADM authority.
Installation SYSADM authority is the highest DB2 for OS/390 authority that
anyone can have. During DB2 installation, one or two authorization IDs
receive this authority. Users operating with this authority can then grant lesser
privileges to others, to be granted in turn to others, and so on.

Granting specific privileges: To grant a specific privilege, one of your
authorization IDs must have the privilege to do so, and this ID must be your
current SQL authorization ID. If this ID is not your current SQL authorization
ID, logon to that ID, or if possible, run the SET CURRENT SQLID query.

Granting table privileges: The most commonly used privileges for a table
are SELECT, INSERT, UPDATE, and DELETE. When you grant the SELECT
privilege on a table, the grantee can select data from it in a SELECT query or
subquery. When you grant the INSERT, UPDATE, or DELETE privilege on a
table, the user can modify the table’s data.

If you own a given table, you have all the table privileges with the GRANT
option.

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 347

Granting view privileges: View access can be granted to screen-sensitive
data, to read only, and to create.

Views as screening tools: You can use views in place of the tables they
represent to screen sensitive data from the viewers. For example, you want to
create a view based on the table SMITH.STAFF, which contains personnel
information. Each row in the table represents an employee. For each row, you
want the view to show the employee’s name, department, job classification,
and years of service. You do not want it to show the employee’s salary and
commission.

You create such a view with the following query:
CREATE VIEW VIEWA AS

SELECT NAME, DEPT, JOB, YRS
FROM SMITH.STAFF

View owners and underlying objects: Granting a privilege for a view begins
with the owner of the view. In this book, the owner of the view is assumed to
be the creator. The privileges the owner can grant depend on the privileges
the owner has on the underlying objects of the view. These are the tables and
views that are named in the FROM clause of the view’s defining query. For
example, the underlying object of the view created with this query is the table
SMITH.STAFF:
CREATE VIEW VIEWA AS

SELECT NAME, DEPT, JOB, YRS
FROM SMITH.STAFF

View privileges and read only views: The view privileges are SELECT, INSERT,
UPDATE, and DELETE. With the SELECT privilege, a person can use the
view just like a table in SELECT queries and subqueries. With the other
privileges, a person can modify the data in the table that the view represents.

The owner of a view has the SELECT privilege on the view, but might not
have other privileges. The other privileges might be lacking if the owner of
the view did not have the privilege on the underlying object. Alternatively,
the privileges might be lacking because the view is read only.

A view is read only, if the defining query is a join. Queries other than joins
can also appear in read only views. For more on read only views, see the
description of CREATE VIEW queries in the appropriate DB2 UDB SQL
Reference manual.

Privilege to create a view: To create a view, the user’s SQL authorization ID
must have the SELECT privilege on each of the underlying objects of the
view. No other privilege is needed.

Establishing QMF Support

348 Installing and Managing QMF

If the owner of a view loses the SELECT privilege on one or more of the
underlying objects, the view is dropped from the system. Any views using
that view as an underlying object are also dropped, and so on.

Granting view privileges: A person with the GRANT option on some view
privilege can grant that privilege to others using the GRANT option. The
grantee needs no privilege at all on the underlying objects. This fact makes
views useful for screening data: with no privilege on the underlying objects,
users granted the SELECT privilege on a view can see only the view. If users
need SELECT privilege on the underlying objects, they can bypass the view
and query these objects directly.

Privileges of the owner of the view: The owner normally creates one or more
tables, and then one or more views of these tables. For each of these views,
the owner has SELECT privilege with the GRANT option. If a view is not
read only, the owner also has INSERT, UPDATE, and DELETE privileges with
the GRANT option. The owner can then grant these privileges to others.

Views with other types of underlying objects: The owner of both the tables and
views has a complete set of privileges, with the GRANT option, on the
underlying objects. When the underlying objects include views, or objects not
owned by the owner of the view, the privileges the owner holds on the
underlying objects may vary widely.

In this situation, the following rules apply:
v The owner of a view always has the SELECT privilege on the view. The

owner has this privilege with the GRANT option if the owner has the
SELECT privilege with the GRANT option on each of the underlying
objects of the view.

v The owner of a view has the INSERT, UPDATE, or DELETE privileges on
the view if both of the following are true:
– The view is not read only. This implies that the view has a single

underlying object.
– The owner of the view has the same privilege on the single underlying

object.

Authority to maintain a database on OS/390: Suppose that, after creating a
database, you want someone else to maintain it. With proper DB2 authority,
you can grant that user DBADM authority over the database. With this
authority, the user can perform maintenance tasks, such as:
v Create and drop table spaces and tables from the database
v Create and drop indexes for the tables of the database
v Run utilities for maintaining the tables and indexes

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 349

The holder of this authority also has a full set of privileges on the database
tables, no matter who actually owns them. For example, if you want
authorization ID JONES to have the power to maintain the database DBASEA,
run this query:
GRANT DBADM ON DATABASE DBASEA TO JONES

You can run this query if your SQL authorization ID has SYSADM authority
or is the owner of the database.

DBADM authority on a database also has the CREATETS privilege, which lets
you create table spaces for the database , and the CREATETAB privilege,
which lets you create tables in the database.

If you can grant DBADM authority on a database, you can also grant lesser
privileges. Moreover, anyone having DBADM authority with the GRANT
option on the database can do the same. For example, if you want the
authorization ID JONES to have the power to grant lesser privileges on
database DBASEA, run this query:
GRANT DBADM ON DATABASE DBASEA TO JONES WITH GRANT OPTION

Granting the appropriate privilege: SAVE and IMPORT commands on
OS/390: Use the IMPORT command sparingly in CICS, because it can affect
the performance of other users in the same address space. Also, QMF uses OS
QSAM services GET/PUT. This can lock out other QMF users in the same
CICS region during I/O operations.

QMF must have the DB2 privileges to run the queries that result from the
SAVE and IMPORT commands. The privilege must come from the user, as if
the user were running the queries through the RUN command. For example, a
user must have the INSERT privilege on a table or an authority implying the
INSERT privilege before QMF can run the INSERT queries on that table.

Determining what priviliges are needed: The privileges needed depend in
part on whether the user is creating his or her own tables or tables for other
users.

When users create tables for others, the qualifier (the owner of the object)
must be the user’s primary or secondary authorization ID. In creating a table
for another user, other privileges might let the appropriate CREATE table
query run, but might not let INSERT queries run.

When users create their own tables after the table structure is created, the
users automatically have the necessary INSERT privilege. All that is needed is
the privilege to run the CREATE TABLE query. The minimum privilege to do
this depends on which table space option was chosen:

Establishing QMF Support

350 Installing and Managing QMF

Explicit option
The user needs at least CREATETAB privilege on the database and
USE privilege on the receiving table space.

Implicit option
The user needs at least CREATETAB and CREATETS privilege on the
database.

The user of the default DB2 OS/390 database, DSNDB04, might already have
some of these privileges. During DB2 installation, the CREATETAB and
CREATETS privileges for the default database were granted to PUBLIC. A
user of the default database, operating under the implicit table space option,
automatically has the minimum authority to create tables. If, instead, this user
operates under the explicit table space option, only the USE privilege must be
granted.

Note: The database might be the DB2 OS/390 default database (DSNDB04).
However, it should not be one of the databases used exclusively by DB2 itself:
DSNDB01, DSNDB03, or DSNDB05.

Granting the necessary privileges: Through one or more of the following
queries, you can grant the privileges that your user lacks:
GRANT CREATETAB ON DATABASE &dbname TO &authid
GRANT CREATETS ON DATABASE &dbname TO &authid
GRANT USE OF TABLESPACE &dbname.&tbspname TO &authid

where:
&dbname

Specifies the name of the database.
&authid

Specifies the user’s authorization ID.
&tbspname

Specifies the name of the receiving table space.

Do not enclose these values in quotation marks. For example, if you want to
grant USERA the CREATETAB privilege on the database DATABSE2, run this
query:
GRANT CREATETAB ON DATABASE DATABASE2 TO USERA

You have the authority to run these queries if you have the privileges they
grant, and you hold these privileges with the GRANT option. This is true if
you have SYSADM or SYSCTRL (for DB2 2.3) authority or if you have
DBADM, DBCTRL, or DBMAINT authorities with the GRANT option.

Revoking the grants of others on OS/390: If your SQL authorization ID has
SYSADM authority, you can revoke the grants of others. This gives you a way
of revoking privileges, even if they are a result from multiple grants. For

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 351

example, BAKER has the SELECT privilege on the table SMITH.TABLEA.
JONES wants to remove this privilege from BAKER, but does not know who
the grantors are. JONES, who has SYSADM authority, has the authority to run
the following query:
REVOKE SELECT ON TABLE SMITH.TABLEA FROM BAKER BY ALL

BY ALL removes every grant of the privilege.

Revoking a grant to PUBLIC on OS/390: You can withdraw a grant of
privilege from PUBLIC, just as you can from a single authorization ID. Doing
so, however, does not remove this privilege from those who gained the
privilege from another source.

You cannot remove a table privilege from the owner of a table. Nor can you
remove an implied database privilege, such as CREATETAB, from someone
with, for example, DBADM authority over a database. For more on what you
can and cannot do with a REVOKE query, see the DB2 UDB for OS390
Administration Guide Also, see the description of the REVOKE command in the
DB2 UDB for OS390 SQL Reference manual.

What can happen when too many users can grant DB2 authority: Revoking
a DB2 privilege might withdraw it from more users than you intended. This is
known as the cascade effect , because some authorities depend on the
existence of others. For example, a privilege held because of a single grant is
lost if the grantor loses that privilege. BAKER has the SELECT privilege with
the GRANT option on SMITH.TABLEA. BAKER grants this privilege to
JOHNSON and JONES. For JOHNSON and JONES, this is the only source of
this privilege. A REVOKE query now removes this privilege from BAKER. As
a result, the query removes this privilege from JOHNSON and JONES.

The loss of privileges can spread to many users, especially if some of those
who lost privileges had granted privileges to others. With this loss of
privileges might come other losses as well:
v The owner of a view loses the view if the owner loses the SELECT privilege

on one of the underlying objects. Views for which the lost view is an
underlying object are also lost, and so on.

v A DB2 application plan can become invalid if the authorization ID under
which it was bound loses a privilege that the plan needs for the operation
of the program. For example, this might be the SELECT privilege on a
table. When this happens, no one can run the program.

Both the cascade effect and ineffective revoking of grants are more likely
when many users have the ability to grant DB2 privileges.

Establishing QMF Support

352 Installing and Managing QMF

SQL privileges required to access objects
Whenever a SELECT query is issued through QMF, either through one of the
QMF query interfaces or as a result of commands, such as DISPLAY TABLE or
PRINT TABLE, QMF adds FOR FETCH ONLY to the query to improve
performance when accessing remote data. Therefore, FOR FETCH ONLY
should not be added to SQL queries run through QMF.

SQL privileges required for QMF commands: Using Table 43, locate the
QMF command your users need to use and grant them the required SQL
privilege on the table or view they are working with.

Table 43. QMF commands and their SQL equivalents

This QMF
command:

Requires this SQL privilege on objects referenced by the
command:

DISPLAY table/view SELECT

DRAW table/view SELECT

EDIT TABLE
table/view

The necessary privileges depend on the Table Editor mode.

EXPORT TABLE
table/view

SELECT

IMPORT TABLE
table/view

If the table exists, SELECT, DELETE, and INSERT. To include a
comment, you must have either ownership of the table or
DBADM authority for the table’s database. If the table does not
exist, you must have either the CREATETAB privilege or
DBADM authority for the database or the USE privilege for the
table space specified in the SPACE field of your user’s profile.

PRINT table/view SELECT

RUN query Whatever privileges are used in the query

RUN procedure Whatever privileges are used in the commands in the procedure

SAVE DATA If the table exists, SELECT, DELETE, and INSERT. To include a
comment, you must have either ownership of the table or
DBADM authority for the table’s database. If the table does not
exist, you must have either the CREATETAB privilege or
DBADM authority for the database or the USE privilege for the
table space specified in the SPACE field of your user’s profile.

LIST table/view SELECT

Not all users can use the SAVE command to create a new table.

For more information on SQL privileges, such as SELECT, INSERT, UPDATE,
or DELETE, see the appropriate DB2 SQL Reference manual.

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 353

SQL privileges required for prompted and QBE queries: Using Table 44 ,
locate the type of query your users need and grant them the SQL privilege on
the table or view against which the query runs.

Table 44. QMF query types and their SQL equivalents

Users using this type of query: Need this SQL privilege:

PROMPTED SELECT

QBE I. INSERT

QBE P. SELECT

QBE U. UPDATE

QBE D. DELETE

For more information on prompted or QBE queries, see Using QMF .

SQL privileges required for the table editor: Using Table 45, locate the Table
Editor function your users need to use and grant them the SQL privilege on
the table or view they need to edit.

Table 45. Table Editor commands and their SQL equivalents

Users using this Table Editor function: Need this SQL privilege on tables or
views being edited:

ADD INSERT

SEARCH SELECT

CHANGE UPDATE

DELETE DELETE

For more information on the Table Editor, see Using QMF.

Using the SQL GRANT statement
Use the SQL GRANT statement to grant SQL SELECT, UPDATE, INSERT, and
DELETE privileges. For example, suppose user JONES needs to issue the
following command:
EDIT TABLE ORDER__BACKLOG (MODE=CHANGE

Assuming you are the owner of the table, use the statement in to grant JONES
the SQL UPDATE privilege he needs to edit the ORDER__BACKLOG table in
change mode:

Establishing QMF Support

354 Installing and Managing QMF

WITH GRANT OPTION indicates that JONES can grant to other users any of
the SQL privileges you granted him for the ORDER__BACKLOG table.

If you need to run GRANT queries often, use QMF variables in place of parts
of the query that frequently change, such as UPDATE, ORDER__BACKLOG,
and JONES. Variables are explained in the QMF Reference manual. You might
also consider using a QMF procedure to do the task if there is more than one
query. Using QMF explains how to create procedures.

Use the keyword PUBLIC to grant SQL privileges to all QMF users. For
example, use the statement below to grant INSERT authority on the
ORDER__BACKLOG table to all users, and allow each of those users to grant
INSERT authority to other users:

For more information on the GRANT statement, see the appropriate DB2 SQL
Reference manual.

Note: If you grant more than one person INSERT, UPDATE, or DELETE
privileges on a database object, and two or more users try to access that object
at the same time, there might be contention for resources, causing
performance or other problems. If a user is editing a table required during
QMF initialization, that table can be locked to prevent QMF from starting for
other users.

Sharing QMF objects with other users
You or any QMF user can enable access to QMF queries, forms, and
procedures by using the SHARE parameter of the QMF SAVE command.

Specify SHARE=YES when saving an object to allow any other user to display
the query and use it in a QMF command that does not replace or erase it. For
example, the command below saves the current query as ORDER__QUERY
and allows any other user to display and run it:

GRANT UPDATE ON ORDER__BACKLOG TO JONES WITH GRANT OPTION

Figure 80. Granting SQL privileges to a single QMF user

GRANT INSERT ON ORDER__BACKLOG TO PUBLIC WITH GRANT OPTION

Figure 81. Granting an SQL privilege to all QMF users

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 355

The default is defined by the global variable DSQEC_SHARE. See the QMF
Reference manual for more information.

The owner of an object can change its shared status at any time, using a
DISPLAY command followed by a SAVE command, as shown below:

For more information on the SAVE command, see the QMF Reference manual.

Allowing uncommitted read
If you want your QMF session to allow uncommitted read, you can specify a
value for the global variable DSQEC__ISOLATION in the Q.SYSTEM__INI
procedure.

Uncommitted read can be useful in a distributed environment. However,
allowing uncommitted read can introduce non-existent data into a QMF
report. Do not allow uncommitted read if your QMF reports must be free of
non-existent data.

Values can be:

’0’ Isolation level UR, Uncommitted Read.

’1’ Isolation level CS, Cursor Stability. This is the default.

For QMF Version 7.2 the use of the value ’0’ is only effective with the
database server DB2 for OS/390 Version 4 or higher.

Setting standards for creating objects
The objects in your installation might be shared among many users, so they
should have names that indicate what the object is and how it should be
used. Encourage users to provide comments that describe for other users the
purpose of queries, forms, procedures, and tables. Tables and views require
more maintenance and administration, so consider establishing special
guidelines for creating these objects.

SAVE QUERY AS ORDER__QUERY (SHARE=YES

Figure 82. Sharing a QMF object

DISPLAY ORDER__QUERY
SAVE QUERY AS ORDER__QUERY (SHARE=NO

Figure 83. Changing the shared status of a QMF object

Establishing QMF Support

356 Installing and Managing QMF

For information on how to create comments for QMF and database objects
using the SAVE command, see QMF Reference.

Controlling access on VM
QMF objects, such as queries and procedures, and functions such as the Table
Editor, allow users to access and manipulate data stored in tables in the
database. Because this data might be sensitive, you might need to control
users’ access to certain objects.

SQL privileges required to access objects
Whenever a SELECT query is issued through QMF, either through one of the
QMF query interfaces or as a result of commands, such as DISPLAY TABLE or
PRINT TABLE, QMF adds FOR FETCH ONLY to the query to improve
performance when accessing remote data. Therefore, FOR FETCH ONLY
should not be added to SQL queries run through QMF.

SQL privileges required for QMF commands: Using Table 46, locate the
QMF command your users need to use and grant them the required SQL
privilege on the table or view they’re working with. See “Granting and
revoking SQL privileges” on page 342for examples of SQL GRANT statements.

Table 46. QMF commands and their SQL equivalents

This QMF
command:

Requires this SQL privilege on objects referenced by the
command:

DISPLAY table/view SELECT

DRAW table/view SELECT

EDIT TABLE
table/view

The necessary privileges depend on the Table Editor mode.

EXPORT TABLE
table/view

SELECT

IMPORT TABLE
table/view

If the table exists, SELECT, DELETE, and INSERT. To include a
comment, you must have either ownership of the table or
DBADM authority for the table’s database. If the table does not
exist, you must have either the CREATETAB privilege or
DBADM authority for the database or the USE privilege for the
table space specified in the SPACE field of your user’s profile.

PRINT table/view SELECT

RUN query Whatever privileges are used in the query

RUN procedure Whatever privileges are used in the commands in the procedure

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 357

Table 46. QMF commands and their SQL equivalents (continued)

This QMF
command:

Requires this SQL privilege on objects referenced by the
command:

SAVE DATA If the table exists, SELECT, DELETE, and INSERT. To include a
comment, you must have either ownership of the table or
DBADM authority for the table’s database. If the table does not
exist, you must have either the CREATETAB privilege or
DBADM authority for the database or the USE privilege for the
table space specified in the SPACE field of your user’s profile.

LIST table/view SELECT

Not all users can use the SAVE command to create a new table.

For more information on SQL privileges, such as SELECT, INSERT, UPDATE,
or DELETE, see the appropriate DB2 SQL Reference manual.

SQL privileges required for prompted and QBE queries: Using Table 47,
locate the type of query your users need and grant them the SQL privilege on
the table or view against which the query runs.

Table 47. QMF query types and their SQL equivalents

Users using this type of query: Need this SQL privilege:

PROMPTED SELECT

QBE I. INSERT

QBE P. SELECT

QBE U. UPDATE

QBE D. DELETE

For more information on prompted or QBE queries, see Using QMF .

SQL privileges required for the table editor: Using Table 48, locate the Table
Editor function your users need to use and grant them the SQL privilege on
the table or view they need to edit.

Table 48. Table Editor commands and their SQL equivalents

Users using this Table Editor function: Need this SQL privilege on tables or
views being edited:

ADD INSERT

SEARCH SELECT

CHANGE UPDATE

DELETE DELETE

Establishing QMF Support

358 Installing and Managing QMF

For more information on the Table Editor, see Using QMF.

Using the SQL GRANT statement: Use the SQL GRANT statement to grant
SQL SELECT, UPDATE, INSERT, and DELETE privileges. For example,
suppose user JONES needs to issue the following command:
EDIT TABLE ORDER__BACKLOG (MODE=CHANGE

Assuming you are the owner of the table, use the statement below to grant
JONES the SQL UPDATE privilege he needs to edit the ORDER__BACKLOG
table in change mode:

WITH GRANT OPTION indicates that JONES can grant to other users any of
the SQL privileges you granted him for the ORDER__BACKLOG table.

If you need to run GRANT queries often, use QMF variables in place of parts
of the query that frequently change, such as UPDATE, ORDER__BACKLOG,
and JONES. Variables are explained in the QMF Reference manual. You might
also consider using a QMF procedure to do the task if there is more than one
query. Using QMF explains how to create procedures.

Use the keyword PUBLIC to grant SQL privileges to all QMF users. For
example, use the statement below to grant INSERT authority on the
ORDER__BACKLOG table to all users, and allow each of those users to grant
INSERT authority to other users:

For more information on the GRANT statement, see the appropriate DB2 SQL
Reference manual.

Note: If you grant more than one person INSERT, UPDATE, or DELETE
privileges on a database object, and two or more users try to access that object
at the same time, there might be contention for resources, causing

GRANT UPDATE ON ORDER__BACKLOG TO JONES WITH GRANT OPTION

Figure 84. Granting SQL privileges to a single QMF user

GRANT INSERT ON ORDER__BACKLOG TO PUBLIC WITH GRANT OPTION

Figure 85. Granting an SQL privilege to all QMF users

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 359

performance or other problems. If a user is editing a table required during
QMF initialization, that table can be locked to prevent QMF from starting for
other users.

Sharing QMF objects with other users
You or any QMF user can enable access to QMF queries, forms, and
procedures by using the SHARE parameter of the QMF SAVE command.

Specify SHARE=YES when saving an object to allow any other user to display
the query and use it in a QMF command that does not replace or erase it. For
example, the command below saves the current query as ORDER__QUERY
and allows any other user to display and run it:

The default is defined by the global variable DSQEC_SHARE. See the QMF
Reference manual for more information.

The owner of an object can change its shared status at any time, using a
DISPLAY command followed by a SAVE command, as shown below:

For more information on the SAVE command, see the QMF Reference manual.

Allowing uncommitted read
If you want your QMF session to allow uncommitted read, you can specify a
value for the global variable DSQEC__ISOLATION in the Q.SYSTEM__INI
procedure.

Uncommitted read can be useful in a distributed environment. However,
allowing uncommitted read can introduce non-existent data into a QMF
report. Do not allow uncommitted read if your QMF reports must be free of
non-existent data.

Values can be:

’0’ Isolation level UR, Uncommitted Read.

’1’ Isolation level CS, Cursor Stability. This is the default.

SAVE QUERY AS ORDER__QUERY (SHARE=YES

Figure 86. Sharing a QMF object

DISPLAY ORDER__QUERY
SAVE QUERY AS ORDER__QUERY (SHARE=NO

Figure 87. Changing the shared status of a QMF object

Establishing QMF Support

360 Installing and Managing QMF

For QMF Version 7.2 the use of the value ’0’ is only effective with the
database servers DB2 for VM Version 5 or higher.

Setting standards for creating objects
The objects in your installation might be shared among many users, so they
should have names that indicate what the object is and how it should be
used. Encourage users to provide comments that describe for other users the
purpose of queries, forms, procedures, and tables. Tables and views require
more maintenance and administration, so consider establishing special
guidelines for creating these objects.

For information on how to create comments for QMF and database objects
using the SAVE command, see QMF Reference.

Controlling access on VSE
QMF objects, such as queries and procedures, and functions such as the Table
Editor, allow users to access and manipulate data stored in tables in the
database. Because this data might be sensitive, you might need to control
users’ access to certain objects.

SQL privileges required to access objects
Whenever a SELECT query is issued through QMF, either through one of the
QMF query interfaces or as a result of commands, such as DISPLAY TABLE or
PRINT TABLE, QMF adds FOR FETCH ONLY to the query to improve
performance when accessing remote data. Therefore, FOR FETCH ONLY
should not be added to SQL queries run through QMF.

SQL privileges required for QMF commands: Using Table 49, locate the
QMF command your users need to use and grant them the required SQL
privilege on the table or view they’re working with. See “Granting and
revoking SQL privileges” on page 342 for examples of SQL GRANT
statements.

Table 49. QMF commands and their SQL equivalents

This QMF
command:

Requires this SQL privilege on objects referenced by the
command:

DISPLAY table/view SELECT

DRAW table/view SELECT

EDIT TABLE
table/view

The necessary privileges depend on the Table Editor mode.

EXPORT TABLE
table/view

SELECT

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 361

Table 49. QMF commands and their SQL equivalents (continued)

This QMF
command:

Requires this SQL privilege on objects referenced by the
command:

IMPORT TABLE
table/view

If the table exists, SELECT, DELETE, and INSERT. To include a
comment, you must have either ownership of the table or
DBADM authority for the table’s database. If the table does not
exist, you must have either the CREATETAB privilege or
DBADM authority for the database or the USE privilege for the
table space specified in the SPACE field of your user’s profile.

PRINT table/view SELECT

RUN query Whatever privileges are used in the query

RUN procedure Whatever privileges are used in the commands in the procedure

SAVE DATA If the table exists, SELECT, DELETE, and INSERT. To include a
comment, you must have either ownership of the table or
DBADM authority for the table’s database. If the table does not
exist, you must have either the CREATETAB privilege or
DBADM authority for the database or the USE privilege for the
table space specified in the SPACE field of your user’s profile.

LIST table/view SELECT

Not all users can use the SAVE command to create a new table.

For more information on SQL privileges, such as SELECT, INSERT, UPDATE,
or DELETE, see the appropriate DB2 SQL Reference manual.

SQL privileges required for prompted and QBE queries: Using Table 50,
locate the type of query your users need and grant them the SQL privilege on
the table or view against which the query runs.

Table 50. QMF query types and their SQL equivalents

Users using this type of query: Need this SQL privilege:

PROMPTED SELECT

QBE I. INSERT

QBE P. SELECT

QBE U. UPDATE

QBE D. DELETE

For more information on prompted or QBE queries, see Using QMF .

SQL privileges required for the table editor: Using Table 51 on page 363,
locate the Table Editor function your users need to use and grant them the

Establishing QMF Support

362 Installing and Managing QMF

SQL privilege on the table or view they need to edit.

Table 51. Table Editor commands and their SQL equivalents

Users using this Table Editor function: Need this SQL privilege on tables or
views being edited:

ADD INSERT

SEARCH SELECT

CHANGE UPDATE

DELETE DELETE

For more information on the Table Editor, see Using QMF.

Granting and revoking SQL privileges
Users automatically own any objects they create and save in the database
(unless they create a table with a different owner). The owner of an object
automatically has all SQL privileges on objects he or she owns, and can grant
(or revoke) these privileges to other users. Anyone with DB2 administrator
authority can grant or revoke SQL privileges for any object in the database.
The user Q has this authority, and is predefined to DB2 during QMF
installation.

When granting or revoking privileges on objects you do not own, qualify the
object with the SQL authorization ID of the owner:
JONES.ORDER__BACKLOG

SQL authorization IDs can be implicit qualifiers. Queries can contain
unqualified table, view, and index names. QMF commands can contain
unqualified query, procedure, and form names. In these cases, the user’s SQL
authorization ID serves as the implicit qualifier. For example, a user is
operating with JONES as the current SQL authorization ID. During the
session, the user issues the command:
RUN QUERYA (FORM=FORMA

which runs the following SQL query:
SELECT * FROM TABLEA

The RUN command refers to the query JONES.QUERYA and the form
JONES.FORMA. The SELECT command refers to the table JONES.TABLEA.

If you create a table, view, index, or alias with an unqualified name, your
current authorization ID becomes the owner of the object. That ID must have
the privileges needed to create the object.

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 363

You must have DBA authority to create a table, view, or index with a qualified
name that is not your current authorization ID.

Using the SQL GRANT statement: Use the SQL GRANT statement to grant
SQL SELECT, UPDATE, INSERT, and DELETE privileges. For example,
suppose user JONES needs to issue the following command:
EDIT TABLE ORDER__BACKLOG (MODE=CHANGE

Assuming you are the owner of the table, use the statement in tFigure 88o
grant JONES the SQL UPDATE privilege he needs to edit the
ORDER__BACKLOG table in change mode:

WITH GRANT OPTION indicates that JONES can grant to other users any of
the SQL privileges you granted him for the ORDER__BACKLOG table.

If you need to run GRANT queries often, use QMF variables in place of parts
of the query that frequently change, such as UPDATE, ORDER__BACKLOG,
and JONES. Variables are explained in the QMF Reference manual. You might
also consider using a QMF procedure to do the task if there is more than one
query. Using QMF explains how to create procedures.

Use the keyword PUBLIC to grant SQL privileges to all QMF users. For
example, use the statement below to grant INSERT authority on the
ORDER__BACKLOG table to all users, and allow each of those users to grant
INSERT authority to other users:

For more information on the GRANT statement, see the appropriate DB2 SQL
Reference manual.

Note: If you grant more than one person INSERT, UPDATE, or DELETE
privileges on a database object, and two or more users try to access that object
at the same time, there might be contention for resources, causing
performance or other problems. If a user is editing a table required during
QMF initialization, that table can be locked to prevent QMF from starting for
other users.

GRANT UPDATE ON ORDER__BACKLOG TO JONES WITH GRANT OPTION

Figure 88. Granting SQL privileges to a single QMF user

GRANT INSERT ON ORDER__BACKLOG TO PUBLIC WITH GRANT OPTION

Figure 89. Granting an SQL privilege to all QMF users

Establishing QMF Support

364 Installing and Managing QMF

Using the SQL REVOKE statement: Use the SQL REVOKE statement to
remove privileges:

Use the PUBLIC keyword to revoke privileges from all QMF users.

DB2 privileges have a cascading structure; privileges revoked from a user are
automatically revoked from any additional users to whom that user granted
them.

Sharing QMF objects with other users
You or any QMF user can enable access to QMF queries, forms, and
procedures by using the SHARE parameter of the QMF SAVE command.

Specify SHARE=YES when saving an object to allow any other user to display
the query and use it in a QMF command that does not replace or erase it. For
example, the command below saves the current query as ORDER__QUERY
and allows any other user to display and run it:

The default is defined by the global variable DSQEC_SHARE. See the QMF
Reference manual for more information.

The owner of an object can change its shared status at any time, using a
DISPLAY command followed by a SAVE command, as shown below:

For more information on the SAVE command, see the QMF Reference manual.

Allowing uncommitted read
If you want your QMF session to allow uncommitted read, you can specify a
value for the global variable DSQEC__ISOLATION in the Q.SYSTEM__INI
procedure.

REVOKE UPDATE ON ORDER__BACKLOG FROM JONES

Figure 90. Revoking an SQL privilege from a QMF user

SAVE QUERY AS ORDER__QUERY (SHARE=NO

Figure 91. Sharing a QMF object on VSE

DISPLAY ORDER__QUERY
SAVE QUERY AS ORDER__QUERY (SHARE=NO

Figure 92. Changing the shared status of a QMF object

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 365

Uncommitted read can be useful in a distributed environment. However,
allowing uncommitted read can introduce non-existent data into a QMF
report. Do not allow uncommitted read if your QMF reports must be free of
non-existent data.

Values can be:

’0’ Isolation level UR, Uncommitted Read.

’1’ Isolation level CS, Cursor Stability. This is the default.

For QMF Version 7.2 the use of the value ’0’ is only effective with DB2 for
VSE Version 5 or higher.

Setting standards for creating objects
The objects in your installation might be shared among many users, so they
should have names that indicate what the object is and how it should be
used. Encourage users to provide comments that describe for other users the
purpose of queries, forms, procedures, and tables. Tables and views require
more maintenance and administration, so consider establishing special
guidelines for creating these objects.

For information on how to create comments for QMF and database objects
using the SAVE command, see QMF Reference.

Customizing a user’s database object list

QMF users periodically need to list objects they have saved in the database or
to view comments that show them what purpose a table serves or what type
of data a column in the table contains. The QMF LIST and DESCRIBE
commands perform these functions.

When a user issues a LIST or DESCRIBE command for a table, QMF uses a
view defined on a set of DB2 catalog tables to obtain information about the
table. The name of this view is stored in the global variables
DSQEC__TABS__LDB2, DSQEC__TABS__RDB2, or DSQEC_TABS_SQL. When
users issue these commands for a column within a table, QMF uses the global
variables DSQEC__COLS__LDB2, DSQEC__COLS__RDB2, or
DSQEC_COLS_SQL to obtain the name of the view.

QMF provides a set of default views, loaded during installation, that return
only the tables and column information the user is authorized to see. Because
processing for authorization takes extra time and resources, QMF also allows
you to customize the table lists and column information by creating your own
views.

Establishing QMF Support

366 Installing and Managing QMF

Using the default object lists on OS/390
For a complete list of the views provided by QMF, refer to Appendix B. QMF
provides the following default views and automatically assigns them to the
user Q during installation into DB2 for OS/390 databases:

Q.DSQEC__TABS__LDB2
Q.DSQEC__TABS__RDB2
Q.DSQEC__COLS__LDB2
Q.DSQEC__COLS_RDB2
Q.DSQEC__ALIASES

QMF also provides SQL default views that you might need in a remote unit of
work environment:

Q.DSQEC__TABS__SQL
Q.DSQEC__COLS__SQL

The view Q.DSQEC__TABS__LDB2 selects only the list of tables and views
from the current location in DB2 for OS/390, and workstation or iSeries
database servers. Figure 93 shows the view provided for DB2 for OS/390.

To use a view you have created (for example,
QMFADM.LOCAL__DB2__TABLES) and override the default view, issue a
command like this one:
SET GLOBAL (DSQEC__TABS__LDB2 = QMFADM.LOCAL__DB2__TABLES

The view Q.DSQEC__TABS__RDB2 selects only the list of tables and views in
a remote DB2 location accessed through a three-part name or the LOCATION
option of LIST. The user’s current location must be DB2 OS/390.

CREATE VIEW Q.DSQEC__TABS__LDB2
(OWNER,TNAME,TYPE,SUBTYPE,MODEL,RESTRICTED,REMARKS,
CREATED,MODIFIED,LAST_USED,LABEL,LOCATION,OWNER__AT__LOCATION,
NAME__AT__LOCATION)

AS SELECT DISTINCT
CREATOR,NAME,’TABLE’,TYPE,’ ’,’ ’,REMARKS,’ ’,’ ’,’ ’,
LABEL,LOCATION,TBCREATOR,TBNAME
FROM SYSIBM.SYSTABLES, SYSIBM.SYSTABAUTH
WHERE CREATOR = TCREATOR AND NAME=TTNAME AND GRANTEETYPE = ’ ’ AND

GRANTEE IN (USER,’PUBLIC’,CURRENT SQLID,’PUBLIC*’)

Figure 93. Default view that provides a list of tables for the LIST command (OS/390)

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 367

To use a view you have created (for example,
QMFADM.REMOTE__DB2__TABLES) and override the default view, issue a
command like this one:
SET GLOBAL (DSQEC__TABS__LDB2 = QMFADM.REMOTE__DB2__TABLES

If you are a remote user: You do not have access to objects defined only as
PUBLIC at the relevant remote location.

The view Q.DSQEC__ALIASES selects only the list of aliases for a list of
tables, or the column information for an alias in DB2 for OS/390, DB2
workstation, or iSeries servers.

To use a view you have created (for example, QMFADM.DB2__ALIASES) and
override the default view, issue a command like this one:
SET GLOBAL (DSQEC__ALIASES = QMFADM.DB2__ALIASES

CREATE VIEW Q.DSQEC__TABS__RDB2
(OWNER,TNAME,TYPE,SUBTYPE,MODEL,RESTRICTED,REMARKS,
CREATED,MODIFIED,LAST__USED,LABEL,LOCATION,OWNER__AT__LOCATION,
NAME__AT__LOCATION)

AS SELECT DISTINCT
CREATOR,NAME,’TABLE’,TYPE,’ ’,’ ’,REMARKS,’ ’,’ ’,’ ’,
LABEL,LOCATION,TBCREATOR,TBNAME
FROM SYSIBM.SYSTABLES, SYSIBM.SYSTABAUTH
WHERE CREATOR = TCREATOR AND NAME=TTNAME AND GRANTEETYPE = ’ ’ AND

GRANTEE IN (USER,CURRENT SQLID,’PUBLIC*’)

Figure 94. Default view that provides a list of tables for the LIST command (OS/390)

CREATE VIEW Q.DSQEC__ALIASES
(OWNER,TNAME,TYPE,SUBTYPE,MODEL,RESTRICTED,REMARKS,
CREATED,MODIFIED,LAST__USED,LABEL,LOCATION,OWNER__AT__LOCATION,
NAME__AT__LOCATION)

AS SELECT
CREATOR,NAME,’TABLE’,TYPE,’ ’,’ ’,REMARKS,’ ’,’ ’,’ ’,
LABEL,LOCATION,TBCREATOR,TBNAME
FROM SYSIBM.SYSTABLES
WHERE CREATOR IN (USER,CURRENT SQLID) AND TYPE = ’A’

Figure 95. Default view that provides a list of aliases for the LIST command (OS/390)

Establishing QMF Support

368 Installing and Managing QMF

To use a view you have created (for example,
QMFADM.LOCAL__DB2__COLUMNS) and override the default view, issue a
command like this one:
SET GLOBAL (DSQEC__COLS__LDB2 = QMFADM.LOCAL__DB2__COLUMNS

To use a view you have created (for example,
QMFADM.LOCAL__DB2__COLUMNS) and override the default view, issue a
command like this one:
SET GLOBAL (DSQEC__COLS__LDB2 = QMFADM.LOCAL__DB2__COLUMNS

The view Q.DSQEC__COLS__RDB2 selects only the column information from
a table on another DB2 location. The user’s current location must be DB2.

To use a view you have created (for example,
QMFADM.REMOTE__DB2__COLUMNS) and override the default view, issue
a command like this one:
SET GLOBAL (DSQEC__COLS__RDB2 = QMFADM.REMOTE__DB2__COLUMNS

If you are a remote user: You do not have access to objects defined only as
PUBLIC at the relevant remote location.

The views shipped with QMF can return multiple identical rows if
SYSIBM.SYSTABAUTH has multiple entries authorizing the user or PUBLIC
to a given table. When used by the QMF LIST or DESCRIBE commands, rows
with duplicate OWNER and TNAME (for the table view) or duplicate
OWNER, TNAME, and CNAME (for the column view) are ignored.

Changing the default list
Using the QMF-provided default views for your table lists and column
information might increase processing time, because DB2 gathers
authorization information from the SYSIBM.SYSTABAUTH. If you do not
need the extra security provided by these authorization checks, consider
creating your own views that generate a list of objects stored in the database.

CREATE VIEW Q.DSQEC__COLS__LDB2
(OWNER, TNAME, CNAME, REMARKS,LABEL)

AS SELECT DISTINCT
TBCREATOR, TBNAME, NAME, REMARKS, LABEL

FROM SYSIBM.SYSCOLUMNS, SYSIBM.SYSTABAUTH
WHERE TCREATOR = TBCREATOR AND TTNAME = TBNAME AND GRANTEETYPE = ’ ’

AND GRANTEE IN (USER,’PUBLIC’,CURRENT SQLID,’PUBLIC*’)

Figure 96. Default view that provides column information for the DESCRIBE command (OS/390)

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 369

Use a query similar to the one in Figure 97 to create your own view. This
query eliminates duplicate rows in the view and, although DB2 spends more
time before returning rows to QMF, there is less data transfer between the
database and the user machine, producing better performance. You can name
your customized view any name that is valid in QMF. See the QMF Reference
manual for information on QMF naming conventions.

Remember to SET GLOBAL for the appropriate variable for the new view
name to be used.

If you want to create a view that shows only the tables for which a user has
privileges, but does not require a join, consider defining a view that selects
only from SYSIBM.SYSTABAUTH, but does not return values for REMARKS
or LABEL.

For other administrators, consider creating another view similar to the default
QMF view, but that selects only from SYSIBM.SYSTABLES or
SYSIBM.SYSCOLUMNS for column list. Then the administrators can name
this view in the DSQEC__COLS__LDB2 or DSQEC__COLS__RDB2 global
variables and access descriptive information for any columns in the database.

Follow these rules if you’re creating a list view of your own:
v The view must have the same view column names as the corresponding

QMF-supplied view. The column names in the CREATE VIEW statement of
the alternative view can be in any order.

v All columns must have a data type of CHAR or VARCHAR. QMF returns
errors upon finding other data types.

v Do not exceed the following maximum lengths for columns in the view:
– 18 characters for TNAME, CNAME, and NAME__AT__LOCATION
– 254 characters for REMARKS

CREATE VIEW Q.DATABASE__OBJECTS
(OWNER,TNAME,TYPE,SUBTYPE,MODEL, RESTRICTED, REMARKS,
CREATED,MODIFIED,LAST__USED,LABEL,LOCATION,OWNER__AT__LOCATION,
NAME__AT__LOCATION)

AS SELECT CREATOR,TNAME,
’TABLE’,TABLETYPE,’ ’,’ ’,REMARKS,

’ ’,’ ’,’ ’,TLABEL,’ ’,’ ’,’ ’
FROM SYSIBM.SYSTABLES

WHERE TNAME IN (SELECT TTNAME
FROM SYSIBM.SYSTABAUTH
WHERE TCREATOR = A.CREATOR

AND GRANTEETYPE = ’ &’
AND GRANTEE IN (USER, ’PUBLIC’))

Figure 97. Customizing your object lists using global variables (OS/390)

Establishing QMF Support

370 Installing and Managing QMF

– 30 characters for LABEL
– 1 character for RESTRICTED
– 16 characters for LOCATION
– 8 characters for OWNER, TYPE, SUBTYPE, MODEL, and

OWNER__AT__LOCATION
v Always supply values for OWNER, TNAME, TYPE, and CNAME. These

columns cannot be null.

DSQEC__TABS__LDB2, DSQEC__TABS__RDB2, DSQEC__ALIASES,
DSQEC__COLS__LDB2, and DSQEC__COLS__RDB2 are part of a set of global
variables that help you control aspects of a user’s QMF session. For more
information on using global variables in procedures, see Using QMF. For a list
of global variables and information on using them in applications, see the
Developing QMF Applications manual .

Object list storage requirement
For the LIST command, there are two sets of storage requirements for each
row of the object list.
v The QMF internal RPT record collection requires:

– Object OWNER key information, 50 bytes
– REMARKS, up to 254 bytes
– TABLE with a LABEL, up to 30 bytes
– ALIAS, 42 bytes
– Object information for QUERY, PROC, and FORM, 63 bytes

v The storage to hold displayed data and control information requires 130
bytes plus the actual number of bytes for REMARKS, up to 254 bytes and
the actual number of bytes for the LABEL associated with a table, up to 30
bytes.

Note: For a complete list of the views provided by QMF refer to Appendix B,
“QMF Objects Residing in DB2” on page 727.

Using the default object lists on VM and VSE
QMF provides the following default views and automatically assigns them to
the user Q during installation into DB2 databases:

Q.DSQEC__TABS__SQL
Q.DSQEC__COLS__SQL

QMF supplies a variation of the following views when QMF is installed into a
DB2 workstation server or DB2 iSeries:

Q.DSQEC__TABS__LDB2
Q.DSQEC__ALIASES
Q.DSQEC__COLS__LDB2

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 371

The view Q.DSQEC_TABS_SQL selects only those database tables the user is
authorized to see. Figure 98 shows the view provided for DB2. To override the
default view Q.DSQEC_TABS_SQL, issue a command like this:

The view Q.DSQEC_COLS_SQL selects only the column information a user is
authorized to see in DB2 database servers. Figure 99 shows the view
provided:

To override the default view Q.DSQEC_COLS_SQL, issue the command:
SET GLOBAL (DSQEC_COLS_SQL = userid_hour_local_sql_columns

Changing the default list
Using the QMF-provided default views for your table lists and column
information might increase processing time, because DB2 gathers
authorization information from the SYSTEM.SYSCATALOG and
SYSTEM.SYSCOLUMNS tables. If you do not need the extra security provided
by these authorization checks, consider creating your own views that generate
a list of objects stored in the database.

Use a query similar to the one below to create your own view. This query
eliminates duplicate rows in the view and, although DB2 spends more time
before returning rows to QMF, there is less data transfer between the database
and the user machine, producing better performance. You can name your

CREATE VIEW Q.DSQEC_TABS__SQL
(OWNER,TNAME,TYPE,SUBTYPE,MODEL,RESTRICTED,REMARKS,
CREATED,MODIFIED,LAST__USED,LABEL,LOCATION,OWNER__AT__LOCATION,
NAME__AT__LOCATION)

AS SELECT
CREATOR,NAME,’TABLE’,TYPE,’ ’,’ ’,REMARKS,’ ’,’ ’,’ ’,
TLABEL,’ ’,’ ’,’ ’
FROM SYSTEM.SYSCATALOG, SYSTEM.SYSTABAUTH
WHERE CREATOR = TCREATOR AND TNAME=TTNAME AND GRANTEETYPE = ’ ’ AND

GRANTEE IN (USER,’PUBLIC’);
COMMENT ON TABLE Q.DSQEC_TABS_SQL IS

’QMF VIEW FOR DB2 TABLES/VIEWS LIST’;
GRANT SELECT ON Q.DSQEC_TABS_SQL TO PUBLIC;

Figure 98. Default view that provides a list of tables for the LIST command

CREATE VIEW Q.DSQEC__COLS__SQL
(OWNER, TNAME, CNAME, REMARKS,LABEL)

AS SELECT
CREATOR, TBNAME, CNAME, REMARKS, CLABEL

FROM SYSTEM.SYSCOLUMNS, SYSTEM.SYSTABAUTH
WHERE TCREATOR = CREATOR AND TTNAME = BNAME AND GRANTEETYPE = ’ ’

AND GRANTEE IN (USER,’PUBLIC’)

Figure 99. Default view that provides column information for the DESCRIBE command

Establishing QMF Support

372 Installing and Managing QMF

customized view any name that is valid in QMF. See the QMF Reference
manual for information on QMF naming conventions.

Remember to SET GLOBAL for the appropriate variable for the new view
name to be used.

If you want to create a view that shows only the tables for which a user has
privileges, but does not require a join, consider defining a view that selects
only from SYSTEM.SYSTABAUTH, but does not return values for REMARKS
or LABEL.

For other administrators, consider creating another view similar to the default
QMF view, but that selects only from SYSTEM.SYSCATALOG for table list or
SYSTEM.SYSCOLUMNS for column list. Then the administrators can name
this view in the DSQEC__COLS__SQL or DSQEC__TABS__SQL global
variables and access descriptive information for any columns in the database.

Follow these rules if you are creating a list view of your own:
v The view must have the same view column names as the corresponding

QMF-supplied view. The column names in the CREATE VIEW statement of
the alternative view can be in any order.

v All columns must have a data type of CHAR or VARCHAR. QMF returns
errors upon finding other data types.

v Do not exceed the following maximum lengths for columns in the view:
– 18 characters for TNAME, CNAME, and NAME__AT__LOCATION
– 254 characters for REMARKS
– 30 characters for LABEL
– 1 character for RESTRICTED
– 16 characters for LOCATION

CREATE VIEW Q.DATABASE__OBJECTS
(OWNER,TNAME,TYPE,SUBTYPE,MODEL, RESTRICTED, REMARKS,
CREATED,MODIFIED,LAST__USED,LABEL,LOCATION,OWNER__AT__LOCATION,
NAME__AT__LOCATION)

AS SELECT CREATOR,TNAME,
’TABLE’,TABLETYPE,’ ’,’ ’,REMARKS,

’ ’,’ ’,’ ’,TLABEL,’ ’,’ ’,’ ’
FROM SYSTEM.SYSCATALOG.A

WHERE TNAME IN (SELECT TTNAME
FROM SYSTEM.SYSTABAUTH
WHERE TCREATOR = A.CREATOR

AND GRANTEETYPE = ’ &’
AND GRANTEE IN (USER, ’PUBLIC’))

Figure 100. Customizing your object lists using global variables

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 373

– 8 characters for OWNER, TYPE, SUBTYPE, MODEL, and
OWNER__AT__LOCATION

v Always supply values for OWNER, TNAME, TYPE, and CNAME. These
columns cannot be null.

DSQEC__TABS__SQL and DSQEC__COLS__SQL are part of a set of global
variables that help you control aspects of a user’s QMF session. For more
information on using global variables in procedures, see Using QMF. For a list
of global variables and information on using them in applications, see the
Developing QMF Applications manual .

Object list storage requirement
For the LIST command, there are two sets of storage requirements for each
row of the object list.
v The QMF internal RPT record collection requires:

– Object OWNER key information, 50 bytes
– REMARKS, up to 254 bytes
– TABLE with a LABEL, up to 30 bytes
– ALIAS, 42 bytes
– Object information for QUERY, PROC, and FORM, 63 bytes

v The storage to hold displayed data and control information requires 130
bytes plus the actual number of bytes for REMARKS, up to 254 bytes and
the actual number of bytes for the LABEL associated with a table, up to 30
bytes.

Note: For a complete list of the views provided by QMF refer to Appendix B,
“QMF Objects Residing in DB2” on page 727.

Enabling users to create tables in the database

A QMF user can create a table using any of these methods:
v SQL CREATE TABLE statement

Enter the SQL CREATE TABLE statement from a QMF SQL query panel or
run it from a saved query.

v QMF DISPLAY TABLE (or DISPLAY viewname) command, followed by the
SAVE DATA command
All SQL privileges on the underlying table or view are required. If the
name you specify on the SAVE DATA command is the name of an existing
table, QMF replaces or appends the existing data object. The SAVE
command might be rejected if the table attributes do not match. For more
information on the SAVE DATA command, see the QMF Reference manual
and the online help.

v QMF IMPORT TABLE or IMPORT VIEW command

Establishing QMF Support

374 Installing and Managing QMF

All SQL privileges on the table or view being imported are required. If the
name the user specifies on the IMPORT command is the name of a table
that already exists, QMF replaces or appends the data in the existing table.
The IMPORT command might be rejected if the table attributes do not
match. For more information on the IMPORT command, see the QMF
Reference manual and the online help.

Depending on the needs of your installation, you might need to create tables
for your users or enable them to create their own tables.

Creating tables on OS/390

Table 52. Creating tables in the database

If you are creating tables for your users: If users are creating tables themselves:

Step 1 Create a table space and define it to DB2
before its first DB2 use. Use the
appropriate DB2 Administration Guide to
help you decide on assigning authorities
to create table spaces or dbspaces.

Step 1 Use the DB2 UDB for OS390 Administration
Guide to grant a user DB2 CREATETS
authority or DB2 CREATETAB authority.
Create a table space (if you have only
given them CREATETAB authority) and
define it to DB2 before its first use.

Step 2 To create the table, issue either an SQL
CREATE TABLE statement, a QMF
DISPLAY command followed by a SAVE
DATA command, or an IMPORT TABLE
command. See the Using QMF manual for
examples of creating tables.

Step 2 Assign the table space in the user’s QMF
profile, using an SQL UPDATE statement
for the SPACE field. You can update the
SYSTEM profile if you need to change its
default values.

Step 3 Create one or more indexes on the tables
you create, to improve DB2 performance.
See the DB2 UDB for OS390 SQL Reference
manual for information on the CREATE
INDEX statement and details on logical
design of tables.

Step 3 Grant CREATETAB authority to users
creating their own tables in table spaces,
or assign CREATETS authority and allow
users to create table spaces for their own
use. Users automatically have all SQL
privileges on tables and table spaces they
create.

Step 4 Fill the tables with data. Use the DB2
OS/390 LOAD Utility, QMF IMPORT
commands (for transferring small tables),
or other methods. The DB2 UDB for OS390
Uitility Guide and Reference manual
explains how to use the LOAD Utility. The
Using QMF manual explains exporting
and importing objects in QMF.

Step 4 Provide education on the SQL CREATE
TABLE statement, QMF SAVE DATA and
IMPORT commands, and other guidelines
your site has for creating tables. See the
QMF Reference manual for more
information on these commands.

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 375

Table 52. Creating tables in the database (continued)

If you are creating tables for your users: If users are creating tables themselves:

Step 5 Grant DB2 and SQL privileges for the
tables to users who need them.

Step 5 Grant DB2 and SQL privileges on any
table or view on which users issue SAVE
DATA or IMPORT commands to create
new tables. Grant at least the SELECT
privilege, or QMF cannot read the data to
create a new table.

For more information on the CREATE TABLE, CREATE INDEX, and other
SQL statements related to creating tables, see the DB2 UDB for OS390 SQL
Reference manual.

Choosing and assigning a table space for the user (OS/390)
A table space can be either assigned to or created by the user. Any QMF user
with CREATETAB authority can create tables in an assigned table space. If the
table space is owned, only the owner can create tables in it unless they assign
authority to others. For additional guidance on table spaces, see the DB2 UDB
for OS390 Administration Guide .

When creating a table space, you must choose between the two options:
explicit and implicit.

Explicit
With this option, all the tables created by the user’s SAVE and
IMPORT commands appear in a single table space created with an
SQL CREATE TABLESPACE command. In DB2 terminology, this table
space is “explicitly created”. For example,
UPDATE Q.PROFILES

SET SPACE=’DBASE1.TSPACE1’
WHERE CREATOR=’USERA’ AND TRANSLATION=’ENGLISH’

Implicit
With this option, each table created by the user’s SAVE and IMPORT
commands goes into a table space created exclusively for that table by
DB2. In DB2 terminology, this table space is “implicitly created”. Such
table spaces have the default LOCKSIZE, BUFFERPOOL, STOGROUP,
and space attributes, and have names derived from their table names.
For example,
UPDATE Q.PROFILES

SET SPACE=’DATABASE DBACE1’
WHERE CREATOR=’USERA’ AND TRANSLATION=’ENGLISH’

For information on the default attributes, see the description of the
CREATE TABLESPACE query in the DB2 UDB for OS390 SQL
Reference manual.

Establishing QMF Support

376 Installing and Managing QMF

For information on the table spaces, see the DB2 UDB for OS390 Administration
Guide.

You need to consider the following factors when you decide between the
options for the table space.

Table sizes
The default attributes for implicitly created table spaces might not be
suitable for the intended tables. The default values for the space
parameters (PRIQTY and SECQTY) are intended for small sample and
summary tables. If the user’s tables are large, the explicit table space
option is probably the better choice.

If the table space is too small, the new table remains in the table space
but is empty. The table space must therefore be enlarged, before the
SAVE or IMPORT command can run successfully. Procedures to do
this are described in the DB2 UDB for OS390 Administration Guide.

Maintenance
When you use the QMF Explicit Table Space Option, you simplify
maintenance if you take advantage of segmented table spaces.
Implicitly created table spaces can also simplify maintenance.

For example, if the user creates various temporary tables and then
erases them, creating and erasing these tables in a simple table space
(not segmented) causes a rapid buildup of dead space that would
soon have to be removed by reorganizing the table space. In contrast,
when a table is dropped in a segmented table space, its segments
become immediately available for reuse when the drop is committed.
It is not necessary to wait for reorganization of the table space. An
implicitly created table space is erased automatically when the table it
contains is erased.

Resource contention
To avoid resource contention, use either the explicit table space option
with a segmented table space, or the implicit table space option.

With a segmented table space, when a table is locked, the lock does
not interfere with access to segments of other tables. Having a number
of tables in a single simple table space, each used by more than one
user, might cause resource contention, but placing the tables in a
segmented or separate table space might avoid the resource
contention.

Integrity and security
You might have to grant the user certain DB2 privileges that the user
would not otherwise need. With the explicit table space option, you
can limit these added privileges to the creation of tables in the chosen
database. With the implicit table space option, you must grant the

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 377

user the privilege to create table spaces for the database, and you
cannot restrict this privilege to table spaces created with the SAVE
and IMPORT commands.

Convenience
An explicitly created table space is already available for user created
tables. It is created during QMF installation and used for the
installation verification procedure. The table space is named
DSQTSDEF, and its database is DSQDBDEF. You might find that this
table space is large enough to hold the tables of your users.

Many users should use this table space only if the tables are primarily
read only.

Choosing the type of table space: You can choose from three types of table
spaces for your users.

Simple
Segmented
Partitioned

For more information about the types of table spaces, see the DB2 UDB for
OS390 Administration Guide .

Granting a user DB2 CREATETAB authority (OS/390)
You need to grant DB2 CREATETAB authority to any user who needs to
create tables in a database. To grant a user CREATETAB authority, issue the
SQL statement shown in Figure 101, where userid1, userid2, and userid3
represent SQL authorization IDs.

A user with CREATETAB authority can create tables in a table space. Users
with CREATETS authority can create a table space for their own use.

If you want to allow a user to create tables, but need to maintain control over
how much resource is used, assign a table space for the user rather than
granting CREATETS authority. That way, you can control the size of the table
space and the amount of resource used.

See DB2 UDB for OS390 Administration Guide for more information on creating
a table space and a discussion of DB2 authority levels.

GRANT CREATETAB on database DBASEA TO userid1, userid2, userid3, ...

Figure 101. SQL statements to grant CREATETAB authority to more than one user

Establishing QMF Support

378 Installing and Managing QMF

Creating tables on VM and VSE

Table 53. Creating tables in the database

If you are creating tables for your users: If users are creating tables themselves:

Step 1 Acquire a dbspace and define it to DB2 for
VM before its first use. Use the
appropriate DB2 Administration Guide to
help you decide on assigning authorities
to create table spaces or dbspaces.

Step 1 Acquire a dbspace and define it to DB2
before its first use. Use the DB2 Server for
VSE & VM Administration Guide to help
you decide on a private or public dbspace.

Step 2 To create the table, issue either an SQL
CREATE TABLE statement, a QMF
DISPLAY command followed by a SAVE
DATA command, or an IMPORT TABLE
command. See the Using QMF manual for
examples of creating tables.

Step 2 Assign the dbspace in the user’s QMF
profile, using an SQL UPDATE statement
for the SPACE field. You can update the
SYSTEM profile if you need to change its
default values.

Step 3 Create one or more indexes on the tables
you create, to improve DB2 performance.

Step 3 Grant DB2 RESOURCE authority to users
creating their own tables in public
dbspaces, or acquire a private dbspace for
the user. Users automatically have all SQL
privileges on tables they create.

Step 4 Fill the tables with data. Use the DB2 DBS
utility, QMF IMPORT commands (for
transferring small tables), or other
methods. The Using QMF manual explains
exporting and importing objects in QMF.

Step 4 Provide education on the SQL CREATE
TABLE statement, QMF SAVE DATA and
IMPORT commands, and other guidelines
your site has for creating tables. See the
QMF Reference manual for more
information on these commands.

Step 5 Grant SQL privileges for the tables to
users who need them.

Step 5 Grant SQL privileges on any table or view
on which users issue SAVE DATA or
IMPORT commands to create new tables.
Grant at least the SELECT privilege, or
QMF cannot read the data to create a new
table.

Choosing and acquiring a dbspace for the user
A dbspace can be either private or public. Any QMF user with DB2
RESOURCE authority can create tables in a public dbspace. If the dbspace is
private, only the assignee is allowed to create tables in it. For additional
guidance on types of dbspaces, see the DB2 Server for VSE & VM Database
Administration manual.

Using the SQL ACQUIRE statement: After you decide whether a public or
private dbspace best suits your needs, acquire the dbspace using a statement

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 379

similar to the one in below. You can enter this statement from the QMF SQL
query panel, then press the Run function key to run the query.

Substitute PRIVATE for PUBLIC in the statement if you are acquiring a
private dbspace and be sure to qualify dbspacename with the SQL
authorization ID of the user for whom you are acquiring the dbspace.

Sizing a dbspace: The size of the dbspace in an acquire statement is given in
pages, where one page is 4,096 bytes. If you do not specify a page size, a
default value of 128 pages is assumed. Estimate the size you need by
estimating the size of the tables the dbspace must hold, as though the tables
are reports and you are estimating the size of a spill file to hold them.
″Estimating the Space Required for a Spill File″ on page 76 shows an
algorithm for estimating the size of a spill file.

Whatever size you choose, first search the DB2 storage pools for an existing
dbspace close to the size you need. If no dbspace of convenient size already
exists, use the ADD dbspace statement to create one. Instructions for adding
dbspaces are provided in the DB2 Server for VSE & VM System Administration
manual.

Granting a user DB2 RESOURCE authority
You need to grant DB2 RESOURCE authority to any user who needs to create
tables in a public dbspace. To grant a user RESOURCE authority, issue the
SQL statement shown below where userid1, userid2 and userid3 represent
SQL authorization IDs.
GRANT RESOURCE TO userid1, userid2, userid3...

A user with RESOURCE authority can acquire a private dbspace for his or her
own use, and create tables in a public dbspace in addition to those created in
a private dbspace.

If you want to allow a user to create tables, but need to maintain control over
how much resources are used, acquire a private dbspace for the user rather
than granting RESOURCE authority. That way, you can control the size of the
dbspace and the amount of resources used. See the DB2 Server for VSE & VM
Database Administration manual for more information on acquiring a dbspace
and a discussion of DB2 authority levels.

Enabling users to confirm table changes before they are made: Using the
QMF Table Editor, a user can add, delete, or update information in a database

ACQUIRE PUBLIC DBSPACE NAMED dbspacename
(PAGES=1024)

Figure 102. Acquiring a dbspace

Establishing QMF Support

380 Installing and Managing QMF

table. If the value of the CONFIRM field of a user’s QMF profile is YES, QMF
displays a panel before making database changes. This panel asks users if
they are sure they want to change the database.

To enable users to confirm their database changes, first make sure the dbspace
you chose for the user is recoverable. Because changes to DB2 tables stored in
nonrecoverable table spaces or dbspaces cannot be rolled back or canceled,
answering NO on the Table Editor confirmation prompt panel for database
changes will not prevent the changes to the table from taking place.

As end users become more comfortable changing data in the database, they
may not need QMF to display these confirmation panels. You can use the
following global variables to disable the panels for specific categories of
actions allowed by the Table Editor:
v DSQCP_TEADD for the ADD category
v DSQCP-TECHG for the CHANGE category
v DSQCP_TEDEL for the DELETE category
v DSQC[_TEEND for the END/CANCEL category
v DSQCP_TEMOD for the MODIFY category

The Table Editor loads values for these variables when it is initialized. The
possible values for each variable are:
v 0 Disables the confirmation panel for the category
v 1 Enables the confirmation panel for the category
v 2 (the default) Either disables or enables the panel for the category

depending on how the SAVE keyword of the EDIT command is set:
– When SAVE=IMMEDIATE, the confirmation panel displays
– When SAVE=END, the confirmation panel displays for the DELETE,

MODIFY, and END/CANCEL categories, but does not display for the
ADD and CHANGE categories.

For more information about functions provided by the QMF Table Editor, see
the Using QMF manual.

Enabling users to support a chart

QMF creates charts using the Interactive Chart Utility (ICU) supplied by the
GDDM-PGF product. Chart formats are templates for various types of charts
(such as pie charts or histograms) that don’t contain data. When a user creates
a chart, QMF associates the data used with the chart format. Then, when the
user enters a QMF DISPLAY CHART or EXPORT CHART command, the chart
format and the data are merged to produce graphics data file (GDF) data.

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 381

Supporting a chart in TSO and ISPF
From a single report, users can specify different chart forms, such as scatter
charts, pie charts, and bar charts. Users can use IBM-supplied chart forms or
create their own. In addition, they can save newly created chart forms, if they
have libraries in which to store them.

To create a library to hold a user’s saved chart forms:
1. Create the new library with a DD statement like this:

//DSQUCFRM DD DSN=aaaaaaaa,DISP=(NEW,CATLG),
// UNIT=xxxx,VOL=SER=yyyy,
// SPACE=(400,(200,50,25)),
// DCB=(LRECL=400,BLKSIZE=400,RECFM=F)

Provide the DSN, UNIT, VOL, and SPACE parameters but do not change
the DCB parameters.

2. Allocate the library for the user’s QMF sessions, using the ddname
DSQUCFRM. You might allocate the data set through the user’s TSO logon
procedure, or you might allocate it through a CLIST that the user calls to
reach QMF. For example:
ALLOC DSNAME(aaaaaaaa) DDNAME(DSQUCFRM) SHR

The IBM-supplied chart forms are in the library QMF720.DSQCHART.
Allocate this library to the DD name ADMCFORM. Both this library and the
user’s library are searched for user specified chart forms, but the new library
is searched first. When the user saves a chart form, it always goes into the
new library, never into QMF720.DSQCHART.

This arrangement gives each user access to both the IBM-supplied chart forms
and those the user saved. It also prevents replacement of the IBM-supplied
chart forms.

Supporting a chart in CICS on OS/390
QMF users can create charts from their reports through the interactive chart
utility (ICU), a feature of GDDM. From a single report, users can specify
different chart forms, such as scatter charts, pie charts, and bar charts. Users
can use IBM-supplied chart forms or create their own. In addition, they can
save newly created chart forms, provided they have libraries in which to store
them.

During QMF installation, a data set is created to hold IBM-supplied charts.
This data set is described to CICS by an FCT or CSD file entry with the name
DSQUCFRM. This data set is normally allocated to the CICS region during
CICS start up and is available to all CICS users. The DSQUCFRM data set is
the default chart library used to store chart forms when using the ICS from
QMF. You can store chart forms into other chart libraries by using the
advanced form of the ICU panel directory. Each chart library must be

Establishing QMF Support

382 Installing and Managing QMF

described to CICS and accessed by the CICS region that is executing QMF.
You describe the chart library with an FCT or file entry in the CSD data set.
For a description on how to use the advanced ICU panel directory, see
theGDDM Presentation Graphics Feature Interactive Chart Utility User’s Guide.

In addition to the ICU, QMF provides an export chart command. This
command is used to save the whole chart in graphic data format (GDF).
When you export a chart, the GDF data is stored into the GDDM ADMF
library. You can also save the whole chart in GDF using the ICU facility of
GDDM.

Supporting a chart on VM
On VM, the IBM-supplied chart forms are supplied on the QMF production
disk. When the user saves a chart form, it is saved on the user’s A-disk.
Charts on a user’s A-disk are used before charts on the QMF production disk.
This arrangement gives each user access to both the IBM-supplied chart forms
and those the user saved. It also prevents replacement of the IBM-supplied
chart forms. On VSE, user-defined chart objects are saved in the GDDM file
ADMF. This file is defined during GDDM for CICS.

Supporting a chart on VSE
If you install GDDM-PGF after installing QMF, you need to fully install and
tailor GDDM-PGF for CICS rather than merely restoring the product to a
sublibrary. If you use GDDM 3.2, you need to install GDDM-PGR 2.1.3. If you
use GDDM 2.3, you need to install GDDM-PGF 2.1.1.

After you install GDDM-PGF and tailor it, you can verify the installation by
running the CICS ADMC transaction, which is predefined by GDDM during
GDDM tailoring for CICS. No further customization of the chart formats is
necessary since these formats were defined for you during QMF installation.

Maintaining QMF objects using QMF control tables

Periodically, you need to condense and reorganize the QMF control tables that
store QMF queries, forms, and procedures. Regular maintenance of the QMF
control tables might involve tasks such as transferring objects to new owners
or enlarging the table space for the tables when it is no longer large enough to
hold existing QMF objects.

For a complete list of QMF Control Tables provided by IBM, please refer to
Appendix B. QMF Objects Residing in DB2.

All QMF queries, forms, and procedures are stored among three QMF control
tables:
v The Q.OBJECT__DIRECTORY table, which is described in “Reading the

Q.OBJECT__DIRECTORY table” on page 384

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 383

v The Q.OBJECT__DATA table, which is described in “Reading the
Q.OBJECT__DATA table” on page 385

v The Q.OBJECT__REMARKS table, which is described in “Reading the
Q.OBJECT_REMARKS table” on page 386

Keep QMF and the database running efficiently by periodically listing,
displaying, or deleting QMF objects from these tables and reorganizing them
when necessary. You might also need to use the information in these tables to
transfer an object from one owner to another.

Workstation database server users: DB2 Common Server has an additional
control table, Q.OBJECT_DATA2. QMF users must have INSERT privilege to
this table. When all database activity is complete, this table should contain no
records. If any records remain, they might be removed.

You need to assign STATS and REORG privileges to a user who is monitoring
or reorganizing the control tables.

Reading the Q.OBJECT__DIRECTORY table
This table contains a row for each QMF query, form, and procedure in the
database. The table has the index Q.OBJECT__DIRECTORYX, with attributes
UNIQUE and CLUSTER. The keyed columns are OWNER and NAME. No
two rows can have identical values for these columns.

The Q.OBJECT__DIRECTORY table has the structure shown in Table 54:

Table 54. Structure of the Q.OBJECT__DIRECTORY table

Column name Data type Length
(bytes)

Nulls
allowed?

Function/values

OWNER CHAR 8 No Shows the authorization ID of the
creator of the object.

NAME VARCHAR 18 No Shows the name of the object.

TYPE CHAR 8 No Shows the type of object: FORM,
PROC, or QUERY.

SUBTYPE CHAR 8 Yes Shows SQL, QBE, or PROMPTED
when TYPE is QUERY. Null or
blank if TYPE is not QUERY.

OBJECTLEVEL INTEGER 4 No QMF uses this number to
reconstruct an object from its
defining text in the
Q.OBJECT__DATA table.

Establishing QMF Support

384 Installing and Managing QMF

Table 54. Structure of the Q.OBJECT__DIRECTORY table (continued)

Column name Data type Length
(bytes)

Nulls
allowed?

Function/values

RESTRICTED CHAR 1 No YES if the object has not been
shared (using the SHARE
parameter of the QMF SAVE
command); NO if the object has
been shared with other users.

MODEL CHAR 8 Yes This value is always REL,
indicating relational data.

CREATED TIMESTAMP Yes Shows the timestamp value for
when an object was created. The
value is recorded after SAVE or
IMPORT commands.

MODIFIED TIMESTAMP Yes Shows the timestamp value for
when an object was last modified.
The value is recorded after SAVE
or IMPORT commands.

LAST__USED TIMESTAMP Yes Shows the date value for when an
object was last used. The value is
updated only once a day.

Reading the Q.OBJECT__DATA table
This table contains one or more rows for each query, form, and procedure in
the database. Each row contains all or part of the defining text for one of
these objects. Objects are reconstructed from this text by combining the text
with the corresponding format number in the OBJECTLEVEL column of the
Q.OBJECT__DIRECTORY table.

The Q.OBJECT__DATA table has the index Q.OBJECT__OBJDATAX, with
attributes UNIQUE and CLUSTER. Keyed columns are OWNER, NAME, and
SEQ.

The table has the structure shown in Table 55:

Table 55. Structure of the Q.OBJECT__DATA table

Column name Data type
Length
(bytes)

Nulls
allowed? Function/values

OWNER CHAR 8 No Shows the authorization ID of the creator
of the object.

NAME VARCHAR 18 No Shows the name of the object.

TYPE CHAR 8 No Shows the type of object: FORM, PROC,
or QUERY.

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 385

Table 55. Structure of the Q.OBJECT__DATA table (continued)

Column name Data type
Length
(bytes)

Nulls
allowed? Function/values

SEQ SMALLINT 2 No Indicates the sequence that this text
occupies within the entire text of the
object. For example, if this row is the
first row of text in the object, SEQ is 1; if
it is the second, SEQ is 2, and so on.

APPLDATA LONG
VARCHAR
FOR BIT DATA
(see note)

3600 (see
note)

Yes Contains all or part of text that defines
the object. Text appears in an internal
QMF format. The OBJECTLEVEL column
in Q.OBJECT__DIRECTORY defines this
format.

Attention: The APPLDATA column
must never be subjected to code page
(CCSID) conversion.

Note: With DataJoiner Version 1.2.1 and DB2 for AIX, Parallel Edition Version
1.2, the data type and length for APPLDATA are VARCHAR(3600) for bit data.
This is a permanent restriction for Version 1 SQL databases.

Workstation database server users:For DB2 Common Server, there is a similar
table, Q.OBJECT_DATA2. This table is required for internal QMF processing
of a SAVE or IMPORT command.

Reading the Q.OBJECT_REMARKS table
This table contains one row for each query, form, and procedure in the
database. The row contains comments entered using the QMF SAVE command
when the object was created or last replaced. (See the description of the SAVE
command in QMF Reference.)

The Q.OBJECT__REMARKS table has the index Q.OBJECT_REMARKSX, with
the attributes UNIQUE and CLUSTER. Keyed columns are OWNER and
NAME.

The table has the structure shown in Table 56:

Table 56. Structure of the Q.OBJECT__REMARKS table

Column name Data type Length
(bytes)

Nulls
allowed?

Function/values

OWNER CHAR 8 No Shows the authorization ID of the user
who created the object

Establishing QMF Support

386 Installing and Managing QMF

Table 56. Structure of the Q.OBJECT__REMARKS table (continued)

Column name Data type Length
(bytes)

Nulls
allowed?

Function/values

NAME VARCHAR 18 No Shows the name of the object.

TYPE CHAR 8 No Shows the type of the object: FORM,
PROC, or QUERY.

REMARKS VARCHAR 254 Yes Contains the comment that was saved
with the object when it was created or
replaced.

Listing QMF queries, forms, and procedures
To get the information you need to help you maintain the QMF environment,
you need to list the queries, forms, and procedures that QMF users have
saved in the database. With administrator authority you can list QMF objects
you do not own using the query in Figure 103.

This query returns a list of objects sorted by type (FORM, PROC, QUERY)
and further by subtype (SQL, QBE, or PROMPTED) if TYPE is query. Enclose
the value you supply for userid in single quotation marks. Objects of each
type are further sorted by whether they’ve been shared by the owner. Shared
status is reflected in the RESTRICTED column of the
Q.OBJECT__DIRECTORY table.

Displaying QMF queries, forms, and procedures
If listing the objects does not provide enough information in the REMARKS
column, try displaying the object by one of the following methods:
v Running the following query to share the user’s objects, then displaying

them from your own ID:

SELECT D.NAME, D.TYPE, D.SUBTYPE, D.RESTRICTED, R.REMARKS
FROM Q.OBJECT_DIRECTORY D,

Q.OBJECT_REMARKS R
WHERE D.OWNER = ’userid’

AND D.OWNER = R.OWNER
AND D.NAME = R.NAME

ORDER BY D.TYPE, D.SUBTYPE, D.RESTRICTED

Figure 103. Listing queries, forms, and procedures owned by a particular user

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 387

Enclose the value you supply for userid in single quotes.

Note: Run this query only if you do not need to track which of the user’s
objects are restricted and which are not. After you run this query, you can
reset RESTRICTED to Y, but then you will not be able to tell which objects
were originally restricted.

v Issuing the QMF DISPLAY command for each object you want to display.

Transferring ownership of queries, forms, and procedures
Use the queries shown in Figure 105 to transfer QMF objects from one user to
another. Make sure that you run all three queries.

Note: First make sure that the new owner has no objects saved with the name
of the object you are transferring, or QMF will replace the existing object with
the object that you transfer.

In the queries shown in Figure 105, namelist is a list of the object names to be
transferred; the list must be set off by parentheses, with each name separated
by a comma and surrounded by single quotes. For example:
(’QUERY1’,’QUERY2’,’FORMA’,’PROCB’)

For queries or procedures that name objects qualified with the old SQL
authorization ID, be sure to change the qualifier. For example, if you transfer
MYQUERY from BAXTER to JONES, change the name from
BAXTER.MYQUERY to JONES.MYQUERY.

Use an SQL query like the one in Figure 104 to change the RESTRICTED
column value to Y if you decide you want to share the object after
transferring it.

UPDATE Q.OBJECT_DIRECTORY
SET RESTRICTED = ’N’
WHERE OWNER = ’userid’

Figure 104. Sharing another user’s objects with all users

UPDATE Q.OBJECT_DIRECTORY UPDATE Q.OBJECT_REMARKS UPDATE Q.OBJECT_DATA
SET OWNER = ’newuserid’ SET OWNER = ’newuserid’ SET OWNER = ’newuserid’
WHERE OWNER = ’olduserid’ WHERE OWNER = ’olduserid’ WHERE OWNER = ’olduserid’
AND NAME IN namelist AND NAME IN namelist AND NAME IN namelist

Figure 105. Transferring QMF objects to another user

Establishing QMF Support

388 Installing and Managing QMF

Deleting obsolete queries, forms, and procedures
Use the SQL in Figure 106 to delete all of a particular user’s QMF queries,
forms, and procedures. Make sure you run all three queries, because the
internal representation of each object spans the three QMF control tables
Q.OBJECT__DIRECTORY, Q.OBJECT__DATA, and Q.OBJECT__REMARKS.
Surround values you supply for the user ID variables with single quotes.

Unpredictable results can occur if the tables are not properly updated.

You can also delete obsolete objects by using the date and time sorting
capabilities in Q.OBJECT_DIRECTORY. You can select every object where the
date last used was before 06/01/95 and delete all the appropriate rows from
the three control tables.

Importing queries, forms, and procedures in OS/390 data sets
If a user has QMF objects that have been exported to OS/390 data sets, you
can bring them back with the QMF IMPORT command.

If the exported objects are RACF protected, you need RACF read access to
import objects from them. To obtain this access, see your RACF administrator.

Enlarging the table space for the QMF object control tables
Periodically, QMF objects might become too numerous for the table space that
contains the QMF object control tables Q.OBJECT_DIRECTORY,
Q.OBJECT_DATA, and Q.OBJECT_REMARKS.

Before you enlarge the table space, you must determine its space
requirements. One factor in your estimate can be the amount of space
currently used.

If the space is DB2 managed, you can get this information by doing the
following:
1. Run the STOSPACE utility on the table space’s storage group.
2. Run the following query:

SELECT SPACE
FROM SYSIBM.SYSTABLEPART
WHERE TSNAME=’tttttttt’ AND DBNAME=’DSQDBCTL’

where tttttttt is the table space name. The result (SPACE) gives the
number of kilobytes of storage currently allocated to the table space.

DELETE FROM Q.OBJECT_DIRECTORY DELETE FROM Q.OBJECT_REMARKS DELETE FROM Q.OBJECT_DATA
WHERE OWNER = ’olduserid’ WHERE OWNER = ’olduserid’ WHERE OWNER = ’olduserid’

Figure 106. Deleting unnecessary objects from the QMF control tables

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 389

If the space is user managed, you can use the TSO LISTCAT command for the
space information, if you know the data set name.

To enlarge the table space for the QMF object control tables:
1. Make an image copy of the table space.

You can use this for restoration if the procedure fails.
2. Create a storage group for the table space.

Do this only if the table space has user managed data sets, and no storage
group is already available.
To determine the type of data set management used for the table space,
run the following query:
SELECT STORTYPE

FROM SYSIBM.SYSTABLEPART
WHERE TSNAME=’DSQTSCT3’ AND DBNAME=’DSQDBCTL’

This should produce a one-line result for the table space DSQTSCT3. In
the result, STORTYPE has the value E or I.

E Indicates that the data sets for the table space are user managed
(no associated storage group).

I Indicates that the data sets for the table space are DB2 managed.

Table 57. Table spaces for control tables that store QMF objects

Table space
name Contents

Default
size

DSQTSCT1 Q.OBJECT__DIRECTORY table 256 pages

DSQTSCT2 Q.OBJECT__REMARKS table 256 pages

DSQTSCT3 Q.OBJECT__DATA 5120 pages

Table 58. Node groups for control tables that store QMF objects using a DB2 Parallel
Edition V1R2 database or DB2 UDB

NODEGROUP
Name Used for Characteristics

DSQTSCTL

For all QMF control tables
except as described
elsewhere in this table.

Can be distributed across multiple
nodes. Growth potential is low.

DSQTSOBJ

The QMF OBJECT control
tables where PROC, Query,
and FORM objects are
stored.

Can be distributed across multiple
nodes. Growth potential is high.

DSQTSDEF

The default SAVE DATA
space as initialized in the
QMF Profile.

Should be defined to be restricted
to a single node to avoid
complications.

Establishing QMF Support

390 Installing and Managing QMF

Table 58. Node groups for control tables that store QMF objects using a DB2 Parallel
Edition V1R2 database or DB2 UDB (continued)

NODEGROUP
Name Used for Characteristics

DSQTSAMP The QMF Sample tables.
Candidate for distributing across
multiple nodes.

3. Stop the database.
Use the command -STOP DATABASE(DSQDBCTL).

4. Change the table space description.
v If the table space data sets are user managed, issue a DB2 statement of

the following form:
ALTER TABLESPACE DSQDBCTL.tttttt

USING STOGROUP ssssss PRIQTY pppp SECQTY ssss

where tttttt is the table space name. The statement changes the table
space from user managed to DB2 managed and names a storage group
(ssssss) for the management. The quantities pppp and ssss are the new
primary and secondary allocation sizes (in kilobytes) for the enlarged
table space.

v If the table space data sets are DB2 managed, execute a DB2 statement
like the following:
ALTER TABLESPACE DSQDBCTL.tttttt

PRIQTY pppp SECQTY ssss

where tttttt is the table space name. pppp and ssss are the new
primary and secondary allocation sizes, in kilobytes, for the enlarged
table space.

5. Move the table space data.
Simply changing the table space description does not effect enlargement.
You must instead do something that causes the table space to be refilled.

6. Start the database with the statement:
-START DATABASE(DSQDBCTL)

You can also use the DB2 LOAD utility to enlarge a table space.

For more information on enlarging table spaces, see the DB2 UDB for OS390
Uitility Guide and Reference manual.

Note: QMF Version 7.2 creates DB2 managed table space data sets if QMF was
not previously installed.

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 391

Enlarging the dbspace for the QMF object control tables on VM
Periodically, QMF objects might become too large for the dbspace that
contains the QMF object control tables Q.OBJECT_DIRECTORY,
Q.OBJECT_DATA, AND Q.OBJECT_REMARKS.

Use the DB2 for VM DBS utility to enlarge the dbspace for the QMF object
control tables:
1. Archive the database so that a backup copy is available for recovery if

needed.
2. Unload the dbspace to a CMS sequential file using the UNLOAD dbspace

command of the DBS utility.
Table 59 shows the dbspace names and default sizes for the QMF object
control tables. Dbspace names for other QMF control tables are shown in
″Appendix D. QMF Control Tables and Dbspaces Used by QMF″ on page
325.
All dbspaces for the QMF control tables are public. The sizes are given in
pages, where each page is one 4,096-byte block.

Table 59. Dbspaces for control tables that store QMF objects

Dbspace
name

Contents Default
size

DSQTSCT1 Q.OBJECT_DIRECTORY table 256 pages

DSQTSCT2 Q.OBJECT_REMARKS table 256 pages

DSQTSCT3 Q.OBJECT_DATA table 5120 pages

3. Drop the dbspace using the DBS utility or ISQL.
4. Acquire a larger public space for the dbspace using either the DBS utility

or ISQL. For example:
ACQUIRE PUBLIC DBSPACE NAMED PUBLIC.DSQxxxxx

(PAGES=xxx, PCTFREE=25, LOCK=ROW)

5. Use the DBS utility to reload the QMF object control tables into the new
dbspace with the file you specified when you unloaded the tables as the
new input file. Use the NEW keyword for the RELOAD dbspace
command.

6. Recreate indexes for the reloaded tables using the DBS utility or ISQL.
Make sure that:
v The indexes are unique.
v The index name for the Q.OBJECT_DIRECTORY table is

OBJECT_DIRECTORYX and is keyed on the OWNER and NAME
columns.

v The index name for the Q.OBJECT_DATA table is OBJECT_OBJDATAX
and is keyed on the OWNER, NAME, and SEQ columns.

Establishing QMF Support

392 Installing and Managing QMF

v The index name for the Q.OBJECT_REMARKS table is
OBJECT_REMARKSX and is keyed on the OWNER and NAME
columns.

7. Recreate views if the dbspaces for Q.OBJECT_DIRECTORY or
Q.OBJECT_REMARKS were dropped. For example: To provide access to
this view to all QMF users, grant SELECT authority.
CREATE VIEW Q.DSQEC_QMFOBJS

(OWNER, TNAME, TYPE, SUBTYPE, MODEL, RESTRICTED, REMARKS, LABEL,
LOCATION, OWNER_AT_LOCATION, NAME_AT_LOCATION)

AS SELECT
A.OWNER, A.NAME, A.TYPE, SUBTYPE, MODEL, RESTRICTED,

REMARKS, ’ ’, ’ ’, ’ ’
FROM Q.OBJECT_DIRECTORY A, Q.OBJECT_REMARKS B
WHERE A.OWNER = B.OWNER AND A.NAME = B.NAME
AND (A.OWNER = USER OR RESTRICTED = ’N’)

to PUBLIC:
GRANT SELECT ON Q.DSQEC_QMFOBJS TO PUBLIC

8. Alter the dbspace to allow the free space on occupied pages to e used. For
example:
ALTER DBSPACE PUBLIC.DSQTSCT1 (PCTFREE=5)

9. If you change the QMF control tables, reload the QMF SQL packages with
the install exec DSQ2PREP EXEC on VM.

For more information on enlarging dbspaces, see the appropriate DB2 Server
Database Administration Guide. For instructions and syntax of the DBS utility
and ISQL commands, see theDB2 Server for VSE and VM Database Services
Utility manual and the DB2 Server for VSE and VM SQL Reference manual.

Enlarging the dbspace for the QMF object control tables on VSE
Periodically, QMF objects might become too large for the dbspace that
contains the QMF object control tables Q.OBJECT_DIRECTORY,
Q.OBJECT_DATA, AND Q.OBJECT_REMARKS.

Use the DB2 DBS utility to enlarge the dbspace for the QMF object control
tables:
1. Archive the database so that a backup copy is available for recovery if

needed.
2. Unload the dbspace using the UNLOAD dbspace command of the DBS

utility.
Table 60 on page 394 shows the dbspace names and default sizes for the
QMF object control tables. Dbspace names for other QMF control tables
are shown in ″Appendix D. QMF Control Tables and Dbspaces Used by
QMF″ on page 325.

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 393

All dbspaces for the QMF control tables are public. The sizes are given in
pages, where each page is one 4,096-byte block.

Table 60. Dbspaces for control tables that store QMF objects

Dbspace
name

Contents Default
size

DSQTSCT1 Q.OBJECT_DIRECTORY table 256 pages

DSQTSCT2 Q.OBJECT_REMARKS table 256 pages

DSQTSCT3 Q.OBJECT_DATA table 5120 pages

3. Drop the dbspace using the DBS utility or ISQL.
4. Acquire a larger public space for the dbspace using either the DBS utility

or ISQL. For example:
ACQUIRE PUBLIC DBSPACE NAMED PUBLIC.DSQxxxxx

(PAGES=xxx, PCTFREE=25, LOCK=ROW)

5. Use the DBS utility to reload the QMF object control tables into the new
dbspace with the file you specified when you unloaded the tables as the
new input file. Use the NEW keyword for the RELOAD dbspace
command.

6. Recreate indexes for the reloaded tables using the DBS utility or ISQL.
Make sure that:
v The indexes are unique.
v The index name for the Q.OBJECT_DIRECTORY table is

OBJECT_DIRECTORYX and is keyed on the OWNER and NAME
columns.

v The index name for the Q.OBJECT_DATA table is OBJECT_OBJDATAX
and is keyed on the OWNER, NAME, and SEQ columns.

v The index name for the Q.OBJECT_REMARKS table is
OBJECT_REMARKSX and is keyed on the OWNER and NAME
columns.

7. Recreate views if the dbspaces for Q.OBJECT_DIRECTORY or
Q.OBJECT_REMARKS were dropped. For example: To provide access to
this view to all QMF users, grant SELECT authority.
CREATE VIEW Q.DSQEC_QMFOBJS

(OWNER, TNAME, TYPE, SUBTYPE, MODEL, RESTRICTED, REMARKS, LABEL,
LOCATION, OWNER_AT_LOCATION, NAME_AT_LOCATION)

AS SELECT
A.OWNER, A.NAME, A.TYPE, SUBTYPE, MODEL, RESTRICTED,

REMARKS, ’ ’, ’ ’, ’ ’
FROM Q.OBJECT_DIRECTORY A, Q.OBJECT_REMARKS B
WHERE A.OWNER = B.OWNER AND A.NAME = B.NAME
AND (A.OWNER = USER OR RESTRICTED = ’N’)

to PUBLIC:

Establishing QMF Support

394 Installing and Managing QMF

GRANT SELECT ON Q.DSQEC_QMFOBJS TO PUBLIC

8. Alter the dbspace to allow the free space on occupied pages to e used. For
example:
ALTER DBSPACE PUBLIC.DSQTSCT1 (PCTFREE=5)

9. If you change the QMF control tables, reload the QMF SQL packages with
DSQ3EDBI JCLE on VSE.

For more information on enlarging dbspaces, see the appropriate DB2 Server
Database Administration Guide. For instructions and syntax of the DBS utility
and ISQL commands, see theDB2 Server for VSE and VM Database Services
Utility manual and the DB2 Server for VSE and VM SQL Reference manual.

Maintaining a DB2 subsystem on OS/390

Note: Except where noted, this section provides information about DB2 for
MVS/ESA.

You can maintain multiple databases with multiple table spaces.

Workstation database server users: Each server (a named location) is a single
database. You can maintain multiple table spaces in that single database.

You might assign specialized administration tasks to users to perform under
their own authorization IDs. Give these users just enough DB2 authority to
run the queries and utilities required for their tasks. For example, a person
would need:
v The INSERT privilege on the table Q.PROFILES to insert QMF profiles for

new users
v DBADM authority on a given database to administer the associated tables,

indexes, and table spaces
v STATS and REORG privileges on the database for the Q.OBJECT tables to

monitor these tables and, if necessary, reorganize them

Managing data sets
The data sets for the table spaces and indexes might be user or DB2 managed.
How these data sets are managed determines what you must do to enlarge
table spaces and indexes.

DB2 common server users: QMF table spaces are defined as system managed
space (SMS).

Storage groups for DB2 managed data sets
Prior to Version 3.2, DB2 managed the space for the control table indexes and
table spaces. This required the use of a storage group for each table space and
index. A storage group is a named set of DASD volumes from which space

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 395

can be drawn for the objects that the storage group supports. For each control
table with an index, the index and the table space share a common storage
group, as Table 61 indicates.

Workstation database server users: Storage groups do not apply.

Table 61. Control table storage groups

Table Table space Storage group

Q.PROFILES DSQTSPRO DSQSGPRO

Q.ERROR__LOG DSQTSLOG DSQSGLOG

Q.OBJECT__DIRECTORY DSQTSCT1 DSQSGCT1

Q.OBJECT_REMARKS DSQTSCT2 DSQSGCT2

Q.OBJECT__DATA DSQTSCT3 DSQSGCT3

VSAM clusters for user managed data sets
You need a VSAM cluster for each table space and each index to manage the
control-table data sets. You define these clusters using VSAM statements, and
link the resulting clusters to DB2 with SQL CREATE queries. The link
between a cluster and its DB2 object is in the name of the cluster and the
name of the ICF (Integrated Catalog Facility) in which the cluster is cataloged.

Maintaining the control tables
Most control-table maintenance cannot be done under QMF, because QMF
relies on these tables for its operations. You can issue your maintenance
queries in batch-mode TSO through the DSN processor, or interactively
through the SPUFI facility of DB2I.

Workstation database server users: Additionally, you can use the DB2
Command Line Processor from the local operating system environment of the
database.

You can find information on these subjects in the DB2 UDB for OS390
Administration Guide.

No one should be using QMF during maintenance work. To ensure this, apply
the DB2-STOP DATABASE command to one of the table spaces containing a
control table. You can then do maintenance operations on the other control
tables and indexes. You can do either of the following:
v Include the DB2-STOP DATABASE command as the first in your input to

DSN if you are working in batch-mode TSO.
v Issue the DB2-STOP DATABASE command from the DB2I commands panel

if you are using DB2I.

Establishing QMF Support

396 Installing and Managing QMF

For a description of the DB2-STOP DATABASE command, see the DB2 UDB
for OS390 Uitility Guide and Reference manual.

Monitoring and reorganizing the control tables
You should forestall maintenance problems by monitoring the condition of the
control tables through the DB2 system catalog. For more information, see the
DB2 UDB for OS390 Administration Guide.

Running the RUNSTATS utility: You periodically run the RUNSTATS utility
on the control tables and indexes to add current statistics to certain DB2
system tables. You then query these tables and examine these statistics to
decide whether reorganization is required.

If reorganization is required, do the following:
1. Run the REORG utility.
2. Rerun the RUNSTATS utility.
3. Query the updated system tables again to see if the reorganization

improved the statistics.

At its most effective, reorganization can minimize the space requirements for
the control tables and indexes and increase the efficiency of QMF operations.

TheDB2 UDB for OS390 Administration Guide suggests that you rebind your
most critical applications after reorganization so that the most efficient search
paths can be selected. This suggests that the QMF application plan be
rebound after each such reorganization.

Determining index use
QMF query performance can be affected if the QMF application plan is bound
when Q.OBJECT_DATA has very few entries. Under these circumstances, the
index on Q.OBJECT_DATA is not being used by the optimizer. (The optimizer
is a DB2 function that determines the best ways to access a row in a table.)
Instead, a table space scan is performed, affecting future performance when
Q.OBJECT_DATA contains many entries. You need to rebind the plan so that
the index is used.

To determine whether the index on Q.OBJECT_DATA is being used, run the
following query:
SELECT BCREATOR, BNAME

FROM SYSIBM.SYSPLANDEP
WHERE DNAME=’QMF720’

AND BTYPE=’I’

This query selects the owner (BCREATOR) and name (BNAME) of any
indexes that the QMF application plan is dependent upon. Although QMF720
is the default plan name, use the name used during QMF installation.

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 397

If the result does not indicate an entry for Q.OBJECT_OBJDATAX
(Q.OBJECT_DATAX, if you are migrated from QMF V2R2), do the following:
1. Run RUNSTATS on table space DSQDBCTL.DSQTSCT3.
2. Rebind the QMF application plan.

Switching buffer pools
For performance reasons, you might want to change the buffer pool for a
table space containing a control table or for a control table index. For example,
if your installation is strongly QMF oriented, you might switch the buffer
pools for the control table indexes and table spaces to BP1, and reserve BP1
for their exclusive use.

You change buffer pools through ALTER TABLESPACE and ALTER INDEX
queries. For descriptions of these queries and the authorities needed to run
them, see the DB2 UDB for OS390 SQL Reference manual. You can choose BP0,
BP1, or BP2 for your new buffer pool, but not BP32K.

There are other parameters whose values you can change with ALTER
TABLESPACE and ALTER INDEX queries. Of these, only the DSETPASS
parameters can be changed without damaging the operability of QMF.

Maintaining tables and views using DB2 tables

Anyone with DBA authority can access the DB2 catalog tables to list, display,
transfer, or delete tables and views. For complete information on using these
DB2 catalog tables, see the appropriate DB2 UDB SQL Reference manual.

Transferring ownership of a table or view can be a very difficult task.

Using DB2 catalog tables on OS/390
Note: Certain tables in the system catalog have columns containing binary
data. Such columns have character data types but do not contain character
data. Retrieving data from these columns can cause an incoherent display,
because some of the column “characters” can give unexpected signals to the
screen manager.

Listing tables and views
The query in Figure 107 on page 399 returns a list of tables from DB2 OS/390
with columns TABLETYPE (T indicates a table, V indicates a view), TNAME
(table name), TABLE SPACENAME, and REMARKS.

Establishing QMF Support

398 Installing and Managing QMF

Deleting a table or view from the database
Use the SQL DROP TABLE statement or the QMF ERASE command to delete
tables or views from the database. Only the creator of the table or someone
with DBA authority can delete it.

When you delete the row of the SYSIBM.SYSTABLES table that defines the
table, all views, synonyms, and indexes associated with the table are also
deleted. Before you drop a table from the database, ensure that no other user
relies on it (for example, for command synonym or function key definitions).

For more information on erasing tables, see the appropriate DB2 UDB
Administration Guide.

Using DB2 for VM and VSE System tables
Anyone with DBA authority can access the DB2 tables to list, display, transfer,
or delete tables and views. Transferring ownership of a table or view is not
recommended.

Listing tables and views
The query in Figure 108returns a list of tables from DB2 VM with columns
TABLETYPE (R indicates a table, V indicates a view), TNAME (table name),
TABESPACENAME, and REMARKS.

Deleting a table or view from the database
Use the SQL DROP TABLE statement or the QMF ERASE command to delete
tables or views from the database. Only the creator of the table or someone
with DBA authority can delete it.

When you delete the row of the SYSTEM.SYSCATALOG table that defines the
table, all views, synonyms, and indexes associated with the table are also

SELECT TABLETYPE, TNAME, TABLE SPACE NAME, REMARKS
FROM SYSIBM.SYSTABLES
WHERE CREATOR = ’userid’
ORDER BY TABLETYPE, TNAME

Figure 107. Listing DB2 tables and views owned by a particular user (OS/390)

SELECT TABLETYPE, TNAME, DBSPACENAME, REMARKS
FROM SYSTEM.SYSCATALOG
WHERE CREATOR = ’userid’
ORDER BY TABLETYPE, TNAME

Figure 108. Listing DB2 tables and views owned by a particular user (VM)

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 399

deleted. Before you drop a table from the database, ensure that no other user
relies on it (for example, for command synonym or function key definitions).

Supporting locally defined date/time formats

Note: Locally defined date/time formats are not supported in CICS.

Locally defined date/time formats on OS/390
To define local formats, your installation creates two formatting routines. One
of these, named DSNXVDTX, formats dates. The other, named DSNXVTMX,
formats times. Creating these routines is a DB2 administration task. If you
yourself must do it, see information on locally defined formats in the DB2
UDB for OS390 Administration Guide.

Specifying the format
When creating a report, a user can specify the local format for either type of
data: TDL for dates; TTL for times. QMF does the formatting by calling the
appropriate routine. You must ensure QMF can load both DSNXVTMX and
DSNXVDTX.

Making the edit routine available
You can make these routines available by placing their load library in the
STEPLIB concatenation of your users’ JCL. Make certain that this library is
searched before the DB2 program library. If the program library is searched
first, QMF loads and uses two IBM-supplied stubs from the DB2 library. These
stubs are meant to be used when no local formats are defined: they do no
formatting at all. For example, the formatting routines are in the library
XYZ.FORMAT. The library is properly placed in the STEPLIB statement in
Figure 109, where the DB2 program library is DSN230.SDSQLOAD.

Locally defined date/time formats on VM
QMF’s support of DATE, TIME and TIMESTAMP data types makes it possible
for your users to use local date/time exit routines. When planning for local
date/time exits, remember that theses are DB2 for VM exits, not QMF exits.
For details about how these exits are created, refer to the DB2 Server for VM
System Administration manual.

//STEPLIB DD DSN=ISP.V2R2M0.ISPLOAD,DISP=SHR
// DD DSN=ISR.V2R2M0.ISRLOAD,DISP=SHR
// DD DSN=QMF710.SDSQLOAD,DISP=SHR
// DD DSN=XYZ.FORMAT,DISP=SHR (local formatting library)
// DD DSN=DSN230.DSNLOAD,DISP=SHR (DB2 program library)
// DD DSN=GDDM.OSPID.GDDMLOAD,DISP=SHR

Figure 109. Making the edit routine available

Establishing QMF Support

400 Installing and Managing QMF

For QMF to use a local date/time exit, the text files containing the date/time
exits ″ARIUXDT″ and ″ARIUXTM″ must be placed on a minidisk that is
accessible to QMF when QMF starts. If QMF is started using DCSS mode, two
relocatable module files must be created from the existing exit text files
″ARIUXDT″ and ″ARIUXTM″. To create the relocatable module files, issue the
following CMS commands:

LOAD ARIUXDT (RLDSAVE)
GENMOD ARIUXDT
LOAD ARIUXTM (RLDSAVE)
GENMOD ARIUXTM

Locally defined date/time formats on CICS OS/390 or VSE
Locally defined date and time edit codes (TTL and TDL) available in other
QMF operating environments are not available in QMF on CICS. If you
choose to write an edit exit routine to carry out these functions that are not
supplied by IBM, you cannot use TTL and TDL as the edit codes. Instead, use
Uxxxx or Vxxxx edit codes to identify your local date and time exit routines.

Accessing the DXT end user dialogs (ISPF only)

QMF’s EXTRACT command accesses IBM’s Data Extract (DXT) End User
Dialogs. With these services, users can extract data from many different
sources and load that data into DB2 tables. Possible data sources include IMS,
VSAM, physical sequential data sets, and tables from other DB2 systems.

If you plan to support the EXTRACT command, ensure that:
v Version 2 Release 5 of DXT dialogs is operating at your installation.
v All potential users of the QMF EXTRACT command have been enrolled for

DXT dialogs, and have been educated in its use.

For detailed information about DXT, see the appropriate DXT book listed in
the bibliography at page Appendix H, “Bibliography” on page 773.

Supporting the EXTRACT command on OS/390
Another way to load data into tables is to use the DB2 Loader for sequential
sources of data. See theDB2 UDB for OS390 SQL Reference manual for more
information about the DB2 Loader.

To support the EXTRACT command, you must allocate data sets to each user
of that command, and deallocate these data sets after the user ends the
command.

The data sets can be in DXT libraries that are common to all users, or can be
data sets created for the individual users enrolled in DXT.

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 401

The data sets are described in the Data Extract: Planning and Administration
Guide for Dialogs manual. If you are enrolling DXT dialog users, you need that
document. If you are not, all you need to know about the process is included
in the following discussion.

Allocating resources on OS/390
QMF can support English, Kanji, and Uppercase (UCF) DXT dialogs. Each
requires different DXT data sets, all of which can be allocated with ISPF
LIBDEF statements (see “Allocating and deallocating resources using CLISTs”
on page 403 for more information about using LIBDEF).

If you choose some other method of allocation, you can skip the following
topics on modifying the CLISTs. The unmodified CLISTs will not interfere
with the method you choose.

Allocating DXT data sets: Table 62 shows the data sets required for several
DXT Version 2 Release 5 dialogs. The table identifies the data sets and their
associated ddnames. For any given ddname, the data sets in the table are in
addition to any data sets that were already allocated for that ddname.

The names shown in the table are the default names provided by DXT. Your
installation might be using different names for these data sets.

In the table, each n is the language key. For DXT dialogs, the language keys
are E (English), K (Kanji), and U (uppercase English).

Table 62. Data sets needed for DXT Version 2.5

DDNAME Default Data Set Name

ISPLLIB DXT250.DVRLOAD

ISPPLIB DXT250.DVRPLIBn

ISPMLIB DXT250.DVRMLIBn

ISPSLIB userid.DXT250.DVRJEDIn DXT250.DVRSLIBn

ISPTLIB userid.DXT250.DVRTLIBn DXT250.DVRTADMn

ISPTABL userid.DXT250.DVRTLIBn

DVRDJEDI userid.DXT250.DVRJEDIn or DXT250.DVRJEDIn (See
note)

DVRDJED0 userid.DXT250.DVRJEDIn

DVRDIMEX userid.DXT250.DVRIMEXn

DVREUADD DXT250.DVRTADMn

DVRSTABL DXT250.DVRTLIBn (See note)

Note: The library DXT250.DVRTLIBn applies only if your installation uses the DXT
dialogs object-sharing capability.

Establishing QMF Support

402 Installing and Managing QMF

Allocating and deallocating resources using CLISTs: Note: If you are not
familiar with the ISPF LIBDEF statement, see the ISPF V2 MVS Dialog
Management Services manual before reading further.

To allocate the needed data sets, you can either add JCL to your users’ TSO
logon procedures, or use two IBM-furnished CLISTs.

QMF calls one of these CLISTs just before issuing an EXTRACT command,
and the other just after the command executes. With appropriate
modifications, the first CLIST can allocate the added resources; the second can
deallocate them. DSQABX1L is a sample CLIST that you can use to do the
necessary allocation. This method is superior to adding JCL to your users’
TSO logon procedures because it ensures that the DXT data sets are allocated
only when they can be used.

Preparing the allocation CLIST: This CLIST is the member, DSQABX1L, of
the library QMF720.SDSQCLTE. QMF calls this CLIST through the ISPF
SELECT service whenever a user issues the EXTRACT command. The
following modifications on DSQABX1L might be necessary before it can
allocate:
1. Change the PROC statement.

The original PROC statement is:
PROC 0 DXTPRE(DXT250) LKEY(E) OBJSHR(NO)

Because QMF does not pass parameters to the CLIST, you must ensure
that the values for the following three keyword parameters are correct:

DXTPRE
Identifies the prefix for the DXT libraries.

LKEY Identifies the language environment. It contains the language key.
The original value, E, specifies the English-language environment.

OBJSHR
Can be YES or NO. The original value, NO, indicates that DXT
object sharing is not in effect.

2. Remove the third executable statement.
This is the statement EXIT CODE(0), the last statement in the CLIST. It
ensures that the CLIST does nothing if you are not supporting the
EXTRACT command or are making the allocations in some other manner.

3. Modify the code as necessary.
Refer to the sample DSQABX1L CLIST in the ’QMF720.SDSQCLTE’ sample
library to see how the CLIST generates the data set names for its LIBDEF
statements. These data set names are the defaults for DXT V2R5 dialogs.
Modify the code, if necessary, to produce the names used at your
installation, but do not modify the logic or the return codes for failed
allocations.

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 403

Preparing the deallocation CLIST: The sample CLIST is the member
DSQABX1F of the library QMF720.SDSQCLTE. QMF calls this CLIST through
the ISPF SELECT service after the EXTRACT command runs. The following
modifications of DSQABX1F might be necessary before it can deallocate:
1. Change the PROC statement.

The original PROC statement is:
PROC 0 QMFPRE(QMF720) LKEY(E) OBJSHR(NO)

Because QMF does not pass parameters to the CLIST, be sure that the
values for the following three keyword parameters are correct:

QMFPRE
Establishes a value in the CLIST for the variable &QMFPRE. This
value is the first qualifier in a number of Version 3.1 data set
names. The original value, QMF720, is the installation default for
QMF Version 7.2. If this qualifier is different at your installation,
you might want to change the value for QMFPRE. Whether you
need to do this depends on how you deallocate the data sets, as
explained in the next steps.

LKEY Identifies the language environment. Use the same value for LKEY
that you did in the allocating CLIST.

OBJSHR
Indicates whether DXT object sharing is in effect. Use the same
value for OBJSHR that you did in the allocating CLIST.

2. Remove the third executable statement.
This is the statement EXIT CODE(0). It ensures that the CLIST does nothing
if you either aren’t supporting the EXTRACT command or are making the
allocations in some other manner.

3. If necessary, change the branching statement and modify the code.
The third statement after the comments in the prolog is the branching
statement GOTO A. Following this statement are two blocks of code: section
A and section B. Both blocks deallocate the DXT data sets, but do so in
different ways. If you choose section B to do the deallocation, you must
change the branching statement to GOTO B.
Section A nullifies every LIBDEF statement that the allocation CLIST
issued. This deallocates the DXT data sets, but it might also deallocate
data sets that the user needs after the EXTRACT command ends. Such
data sets were allocated with LIBDEF statements before the user issued the
EXTRACT command. If the user needs data sets that were allocated with
LIBDEF statements issued before the EXTRACT command, then change
the branching statement so that section B is invoked.
For a data set to fit this description, a LIBDEF statement for its ddname
must appear in this CLIST and in its allocating companion. For example,

Establishing QMF Support

404 Installing and Managing QMF

the following LIBDEF statement adds a panel library, ABC.XYZ, to the
libraries already allocated to the ddname ISPPLIB:
ISPEXEC LIBDEF ISPPLIB DATASET(ABC.XYZ)

In the allocation CLIST, this allocation disappears when the CLIST runs its
LIBDEF statement for ISPPLIB. To restore it, you need to reissue the
original LIBDEF statement in the deallocating CLIST. If this is the only
allocation to restore, you might still use section A, just change the LIBDEF
statement for ISPPLIB in that section.

The LIBDEF statements in section B reallocate QMF libraries to the ISPF
ddnames. Change these statements to whatever is needed if you choose to
use section B.

LIBDEF statements cannot deallocate data sets that were allocated through
the TSO logon procedure or through TSO ALLOCATE statements.
Therefore, you can always use section A if all the data sets needed for a
QMF session are allocated in that way.

Supporting the EXTRACT command on VM
To support the EXTRACT command, you must make files available to the
users of that command, and reallocate these files after a user ends the
command.

These files do not appear in the QMF Invocation exec that is described in
Installing and Managing QMF on OS/390. The file types can be in DXT libraries
that are common to all users, or can be files created for the individual users
when the users are enrolled in DXT.

The data files are described in the Data Extract: Planning and Administration
Guide for Dialogs manual. If you are enrolling DXT dialog users, you need that
document. If you are not, all you need to know about the process is included
in the following discussion.

Allocating resources on VM
Table 63 on page 406 shows the files required for any variety of Version 2.3
dialogs. The figure identifies the files and their associated FILEDEFs. For any
given FILEDEF, the files in the table are in addition to any files that were
allocated for that FILEDEF. The names shown in this table are the default
names provided by DXT. Your installation might be using different names for
these files. In the table, each lowercase letter n is the language key. For DXT
dialogs, the language keys are E (English), K (Kanji) and U (Uppercase).

Example: For DXT dialogs in which the language key is E, the file name and
file type to be added to ISPMLIB is named DVRMLIBE MACLIB.

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 405

Table 63. Files needed for Version 2 Release 5 DXT

FILEDEF Default File Name/Filetype

ISPLLIB DVRLOAD TXTLIB

ISPPLIB DVRPLIBn MACLIB

ISPMLIB DVRMLIBn MACLIB

ISPSLIB DVRJEDIn MACLIB DVRSLIBn MACLIB

ISPTLIB DVRTLIBn MACLIB DVRTADMn MACLIB

ISPTABL DVRTLIBn MACLIB

DVRDJEDI DVRJEDIn MACLIB

DVRDJEDO DVRJEDIn MACLIB

DVRDIMEX DVRIMEXn MACLIB

DVREUADD DVRTADMn MACLIB

DVRSTABL DVRTLIBn MACLIB

Allocating and reallocating resources using execs: There are two
IBM-supplied execs that QMF calls. One is called just before the execution of
an EXTRACT command, and the other just after execution ends. After
modifying the execs, the first can allocate added resources, and the second can
reallocate them.

DSQABX2L is a sample exec that you can use to do the necessary allocations.
It has the following advantages over adding exec statements to your users’
CMS invocation exec:
v It can apply to every user of the EXTRACT command.
v It does the allocations ONLY when a user issues an EXTRACT command.

Preparing the allocation exec: This exec is named DSQABX2L and is located
on QMF’s production disk. Whenever a user executes the EXTRACT
command, QMF calls this exec through the ISPF SELECT service. The call
passes the exec no parameters- a fact that is used when we consider possible
exec modifications.

Before the exec can do its allocations, you must modify it. The following list
describes some modifications that might or might not be necessary, and one
modification that is mandatory:
1. Remove the first executable statement.

This is the statement EXIT 0. It ensures that the exec does nothing if you
are not supporting the EXTRACT command or are making the allocations
in some other manner.

2. Set the language key.

Establishing QMF Support

406 Installing and Managing QMF

The first thing the exec does is to set the DXT language key variable
(LKEY), to E for English. If your DXT product is not the English version,
you must set the language key to the proper DXT value.

3. Set the object sharing variable.
If you have taken advantage of the DXT dialogs object sharing capability,
you need to set the variable OBJSHR to a value of YES. By doing this you
allocate the shared variable DVRTLIB located on the DXT production disk.
If you are not using object sharing, set the variable OBJSHR to a value of
NO. Values for this variable can either be YES or NO.

4. Update the disk linkage.
After setting LKEY and OBJSHR, the next thing that the exec does is to
link to and access the DXT production disk. You might have to alter any
or all of the following to fit your DXT installation:
v DXT production disk owner ID
v DXT production disk address
v DXT production disk READ password
v The QMF user’s disk access address for the DXT disk
v The QMF user’s disk access mode for the DXT disk

5. Modify the code as necessary.
Refer to the sample DSQABX2L exec on the QMF production disk to see
how the exec generates the file names for its LIBDEF statements. These file
names are the defaults. Modify the code, if necessary, to produce the
names that are used at your installation, but do not modify the logic or
return codes for failed allocations.

Preparing the reallocation exec: The DSQABX2F exec is located on the QMF
production disk. QMF calls it through the ISPF SELECT service, right after the
execution of the EXTRACT command. It is called to reallocate QMF libraries if
the ISPF LIBDEF function was used to allocate DXT libraries. The call passes
the exec no parameters, just as the call to the allocating exec passes that exec
no parameters.

Before the exec can work properly for your users, you might need to modify
it. If you allocated all your DXT libraries before you started QMF or ISPF, you
should not modify this exec. It then exits without performing any library
reallocation.

If you allocated QMF libraries using the ISPF LIBDEF function, you must
execute this exec to reallocate the QMF libraries because they were replaced
by DXT library definitions when the exec DSQABX2L was executed.

Possible modifications to the exec are:
v Remove the first executable statement.

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 407

This is the statement EXIT 0. It ensures that the exec does nothing if you
are not supporting the EXTRACT command or are making the allocations
in some other manner.

v If necessary, change the DXT disk address.
The first thing the exec does is to release the DXT production disk. You
need to modify the statement USER_ADDRESS = ’291’ depending on the
changes you made when updating the disk linkage to DXT when executing
the exec DSQABX2L.

Other allocation methods: Previously, we recommended that you use the exec
for the DXT allocations and mentioned certain advantages for doing this. If
you elect to use some other method of allocation, do not modify the exec. The
unmodified exec will not interfere with your alternate method of allocation.

Customizing the document editing interface for users

The document interface is an IBM-supplied macro. Using this macro, a user
operating outside QMF can begin a QMF session. In that session, the user can
insert a QMF report into a document while the document is being edited. The
report can be created before the editing session begins. More importantly, the
user can create the report at the time the GETQMF macro is issued, in a QMF
session that the macro started.

Customizing the document editing interface on OS/390
The document interface is an IBM-supplied macro for the ISPF/PDF and
PS/TSO editors.

Before your users can use this macro, you must:
v Ensure that each user has the proper QMF resources.

On OS/390, the resources are the QMF libraries. In the sample TSO logon
procedure, these have names of the form:
QMF720.DSQ*

You can operate the ISPF/PDF and PS/TSO editors without these resources;
however, the document interface cannot successfully begin a QMF session.

v Change certain document interface components.
Some of these changes are required, while others are optional. This section
discusses the changes, both required and optional. To use the document
interface, you should also see the Using QMF manual.
If you are using an NLF: You must also customize the NLF version of the
document interface.

Changing the application
Change the application by changing one or more of its components. The
components that you can change are members of certain QMF libraries:

Establishing QMF Support

408 Installing and Managing QMF

v The CLISTs and macros are members of QMF720.SDSQCLTE on OS/390.
v The other components are members of QMF720.SDSQSAPE on OS/390.

Renaming the document interface macro DSQAED1P
The macro component, DSQAED1P, is the macro that users call to use the
document interface.

To use the macro:
v Rename a copy of the macro, preferably to GETQMF. This is the name used

for the macro in this publication and in the Using QMF manual.
v Place the renamed copy in QMF720.SDSQCLTE; that is, in the library

containing the original.

If you are using an NLF: The main macro is the member DSQAnD1P of the
library QMF720.DSQCLSTn. Like the main English-language macro, it can be
renamed with no effect on the other components. Choose a name other than
GETQMF if your users’ JCL supports both the English-language and NLF
environments. You might consider changing it to GETQMFn, for example.

Placing the Q.DSQAED1S procedure in the database
The Q.DSQAED1S procedure is in the member DSQAED1S of the
QMF720.SDSQSAPE library. The process of placing the procedure in the
database depends on the version of DB2.

As the user Q, you can easily place Q.DSQAEDIS in the database by entering
the following QMF command:
IMPORT PROC DSQAED1S FROM ’QMF720.SDSQSAPE(DSQAED1S)’ (SHARE=YES

If you are not the user Q, but have one of the following:
v SYSADM authority
v SYSCTRL authority
v Q as one of your secondary authorization IDs

you can still easily place DSQAED1S in the database by entering the following
QMF commands from the query panel:
SET CURRENT SQLID = ’Q’
IMPORT PROC DSQAED1S FROM ’QMF720.SDSQSAPE(DSQAED1S)’ (SHARE=YES

A user other than Q who has neither SYSADM (or SYSCTRL) authority nor Q
as one of the user’s secondary authorization IDs, needs to use the procedure
described in “Transferring ownership to Q” on page 410.

If you are using an NLF: Change the NLID in the member DSQAnD1S of the
QMF720.SDSQSAPn library.

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 409

Transferring ownership to Q
If you cannot use QMF as the user Q, you can still issue the commands in the
previous section. However, you must first transfer ownership of the procedure
from your authorization ID to Q. You can do this as follows:
1. Create the following query:

UPDATE Q.&T
SET OWNER = ’Q’
WHERE NAME = &N AND OWNER = USER

2. Run the following commands:
RUN QUERY (&T=OBJECT__DIRECTORY, &N=’DSQAED1S’
RUN QUERY (&T=OBJECT__DATA, &N=’DSQAED1S’
RUN QUERY (&T=OBJECT__REMARKS, &N=’DSQAED1S’

Each command updates one of the Q.OBJECT tables and requires the
UPDATE privilege on these tables.

If the queries fail to run, an object named Q.DSQAED1S might already be in
the database. If so, rename that object or delete it before you attempt to
transfer ownership again. One of the following two queries can rename or
delete the object for you. You must run the three RUN QUERY commands on
whichever query you choose.
v To rename the object, use the following query, replacing newname with the

new name of the object:
UPDATE Q.&T

SET NAME = ’newname’
WHERE NAME = &N AND OWNER = ’Q’

v To delete the object, use the following query:
DELETE FROM Q.&T

WHERE NAME = &N AND OWNER = ’Q’

Changing the data components
There are five data components, all in the library QMF720.SDSQSAPE on
OS/390. Unlike the CLISTs and macros, these components contain neither
logic nor executable commands. Instead, they contain information that can
appear in messages or in the users’ reports.

Because the document interface assumes that these components are in a single
library, you can modify them in either of the following ways:
v You can retain the changed components in QMF720.SDSQSAPE on OS/390.

If you do, change the names of the original components, and give the
changed components the original names.

v You can place the changed components in a new library or minidisk.
If you do, you must copy all the other data components from the old
library into the new library on OS/390.

Establishing QMF Support

410 Installing and Managing QMF

If you use the second method, you must make the change to the macro
DSQAED1P or DSQAED2P.

The message component: One of the five data components is named
DSQAED0L. This component contains messages that can appear on a user’s
screen while the user is operating the document interface, and keywords for
certain QMF commands.

Do not change this component.

If you are using an NLF: Change the NLID in the member DSQAnD0L of the
QMF720.DSQSAMPn library on OS/390.

The DCF components: The DCF (Document Composition Facility) is a
licensed IBM text processing system that supports the use of computers in
preparing print documentation.

If your installation uses DCF, you might want to change the remaining four
DCF components. For more on DCF, see Document Composition Facility:
SCRIPT/VS Text Programmer’s Guide

A user can tell the document interface that the current document is formatted
by DCF. In response, the document interface adds DCF control statements to
the user’s inserted report. Wherever these statements appear, they consist of
all the records in one or another of the DCF components. You can change any
or all of the records in a component. The components, and what they supply,
are as follows:

DSQABD01: Supplies statements inserted just before the report. In the
IBM-supplied component, these are:
.* QMF Document Interface heading control:
.SA
.RH SUP
.RF SUP
.HS 0
.FS 0
.TM 0.5I
.BM 0
.DC CONT OFF
.FO OFF

DSQABD02: Supplies statements inserted just after each page footing. In the
IBM-supplied component, the single furnished statement is:
.* QMF Document Interface page footing control:

DSQABD03: Supplies statements inserted just before each page heading. In
the IBM-supplied component, these are:

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 411

.PA NOSTART

.* QMF Document Interface page heading control:

DSQABD04: Supplies statements inserted just after the end of the report. In
the IBM-supplied component, these are:
.* QMF Document Interface footing control:
.RE
.* QMF REPORT END

Changing the CLISTs, and macros
As mentioned earlier, these components are all in the library
QMF720.SDSQCLTE. If you change the CLISTs or macros, change a copy, not
the original, and place it in another library. On OS/390, a DD statement for
the new library must appear among the statements for SYSPROC in your
users’ JCL. If it is not there already, insert one before the statement for
QMF720.SDSQCLTE. Otherwise, the original components are used, instead of
the ones you modified. For example, if you place the modified components in
the library XYZ.NEWCLIST, then the DD statements for SYSPROC might look
like this:
//SYSPROC DD DSN=SYSUT2.CLIST,DISP=SHR
// DD DSN=XYZ.NEWCLIST,DISP=SHR
// DD DSN=QMF720.SDSQCLTE,DISP=SHR

Changing DSQAnD1P: This is the macro that you renamed GETQMF. You
can also do the following to the macro:
v Change the following statements:

SET &SAMPLIB = QMF720.DSQSAMP&LANGCHAR
SET &BASELIB = QMF720.SDSQSAPE

&SAMPLIB
Identifies the library containing the data components of the
document interface

&BASELIB
Identifies the QMF sample library

When &LANGCHAR has the value E, both variables name the same
library—QMF720.SDSQSAPE. If the libraries have different names, change
the names assigned: &SAMPLIB and &BASELIB.

v Change the statement:
ALLOC FI(DSQPRINT) SYSOUT RECFM(F B A) LRECL(133) BLKSIZE(1330)

A user can call the document interface in an interactive QMF session. When
this is done, the document interface can reallocate DSQPRINT. This
statement restores DSQPRINT to the default. If this is not what you want,
replace this statement with one that restores DSQPRINT to the value you
want.

Establishing QMF Support

412 Installing and Managing QMF

Changing DSQABD1Q: This CLIST allocates data sets for the session started
with the document interface. Make whatever modifications you think
necessary to the CLIST code. For example, you might need to add allocations
for data sets peculiar to your installation.

Some of these allocations include GDDM data sets. The document interface
does not itself use these data sets, but you might find this allocation
necessary.

The variable &LANGCHAR has the value E. This value indicates a library
containing English-language components, as opposed to components for an
Uppercase Feature application, for example.

To support LIBDEF allocations, activate LIBDEF service and tailor filenames
as necessary:
/***@82*/
/* Remove the Following "GOTO NOLIBDEF" statement to allocate @82*/
/* ISPF libraries using the ISPF LIBDEF service. @82*/
/***@82*/

GOTO NOLIBDEF
/***@82*/
/* ALLOCATE QMF ISPF LIBRARIES USING LIBDEF @82*/
/***@82*/
SET PNAME = ’QMF720.DSQPLIB&LANGCHAR’ /* ISPF Panel Library */
SET MNAME = ’QMF720.DSQMLIB&LANGCHAR’ /* ISPF Message Library */
SET SNAME = ’QMF720.DSQSLIB&LANGCHAR’ /* ISPF Skeleton Library */
SET LNAME = ’QMF720.SDSQLOAD’ /* QMF Modules */
ISPEXEC LIBDEF ISPPLIB DATASET ID(&PNAME)

Changing DSQABD1P to Support LIBDEF: If you allocated QMF libraries
using the LIBDEF function, modify DSQABD1P to free the use of LIBDEF
allocated libraries. Uncomment the following statements in DSQABD1P:
/**/
/* FREE ISPF LIBDEFs @82*/
/* You might or might not need to free libdefs here. */
/* If you do, then remove comments from LIBDEF statements. */
/**/
/* ISPEXEC LIBDEF ISPPLIB DATASET ID() */
/* ISPEXEC LIBDEF ISPMLIB DATASET ID() */
/* ISPEXEC LIBDEF ISPSLIB DATASET ID() */
/* ISPEXEC LIBDEF ISPLLIB DATASET ID() */
/* FREE FI(DSQLLIB) */

Changing DSQABD1C: You can modify this component in the following
ways:
v Change the statement:

ALLOC FI(DSQPRINT) UNIT(SYSDA) SPACE(5,2) TRACKS +
RECFM(F B A) LRECL(&PRINTREC) BLKSIZE(&EVAL(&PRINTREC*10))

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 413

This statement allocates a data set for the user’s report. The user then fills
the data set through the QMF PRINT command. You might need to change
the statement’s SPACE operand if your users create extremely large reports.

v Change the statement:
ISPEXEC SELECT PGM(DSQQMF&LANGCHAR)

PARM(I=&PROCNAME)
NEWAPPL(DSQ&LANGCHAR)

With the statement in its present form, the subsystem for DB2 must be
named DSN, and the application plan for QMF must be named QMF720. If
not, you must add information to the PARM operand of the statement. For
example, the subsystem and application plan are named ABC and
QMFXXX. Then the modified statement might look like this:
ISPEXEC SELECT PGM(DSQQMF&LANGCHAR)

PARM(I=&PROCNAME,S=ABC,P=QMFXXX)
NEWAPPL(DSQ&LANGCHAR)

The modified statement overrides default values for two of QMF’s program
parameters.

For a discussion of program parameters, see Chapter 22, “Customizing Your
Start Procedure” on page 259.

Customizing the document editing interface on VM
The document interface is an IBM-supplied macro for the ISPF/PDF and
XEDIT editors. Using this macro, a user operating outside QMF can begin a
QMF session. In that session, the user can insert a QMF report into a
document while the document is being edited. The report can be created
before the editing session begins. More importantly, the user can create the
report at the time the GETQMF macro is issued, in a QMF session that the
macro started.

Changing the application
Change the application by changing one or more of its components. The
components that you can change are members of certain QMF libraries:
v The execs and macros are on the QMF production disk on VM.
v The other components are on the QMF distribution disk on VM.

Renaming the document interface macro DSQAED2P
The ISPF/PDF macro component DSQAED2P is the macro that users call
when they use the document interface. Give the macro a name that has more
significance to your users. (Renaming this component has no affect on the
other components.) Use the name GETQMF ISREDIT; this is the name used
for the macro in this publication. In addition, the following should also be
renamed:

DSQAED2X (an XEDIT macro), to GETQMF XEDIT
DSQAED2E (a REXX exec), to GETQMF exec

Establishing QMF Support

414 Installing and Managing QMF

You should rename a copy rather than the original. You can place each
renamed copy on the production disk where the original resides.

Placing the Q.DSQAED2S procedure in the database
The Q.DSQAED2S procedure is on the production disk. As the user Q, you
can place it in the database by entering the following QMF commands:
IMPORT PROC FROM DSQAED2S PROC fm
SAVE PROC AS DSQAED2S (SHARE=YES

where fm is the QMF production disk.

If you are using an NLF: Save DSQAnD2S using the language key identifier
for the language you want.

Transferring ownership to Q
If you cannot use QMF as the user Q, you can still issue these commands;
however, the procedure is stored in the database under your own
authorization ID, rather under Q. To give it the proper name, you must
transfer its ownership to Q. You can do this by executing the following
commands:
RUN Q.DSQ0BSQI (&T=Q.OBJECT_DIRECTORY, &N=’DSQAED2S’
RUN Q.DSQ0BSQI (&T=Q.OBJECT_DATA, &N=’DSQAED2S’
RUN Q.DSQ0BSQI (&T=Q.OBJECT_REMARKS, &N=’DSQAED2S’

These commands execute an IBM-supplied parameterized query named
Q.DSQ0BSQI. Each execution updates one of the QMF control tables. For
these executions to be successful, you must have UPDATE authority on the
three control tables, or some DB2 for VM authority that implies UPDATE
authority.

If, for some reason, you cannot use the query Q.DSQ0BSQI, you can create a
copy of it and use the copy instead. The copy would look like this:
UPDATE Q.&T
SET OWNER = ’Q’
WHERE NAME = &N AND OWNER = USER

To delete the object, use the following query:
DELETE FROM Q.&T
WHERE NAME =&N AND OWNER = ’Q’

Changing the data components
There are five data components, all on the QMF distribution library on VM.
Unlike the execs and macros, these components contain neither logic nor
executable commands. Instead, they contain information that can appear in
messages or in the users’ reports.

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 415

Because the document interface assumes that these components are in a single
library, you can modify them in either of the following ways:
v You can retain the changed components on the QMF distribution disk on

VM.
If you do, change the names of the original components, and give the
changed components the original names.

v You can place the changed components in a new library or minidisk.
Make sure that the new minidisk is accessed before the old one in the
search order.

The message component: One of the five data components is named
DSQAED0L. This component contains messages that can appear on a user’s
screen while the user is operating the document interface, and keywords for
certain QMF commands.

Do not change this component.

If you are using an NLF: The DSQAnD0L component is on the NLF
distribution disk and the messages are in the language set in the user’s
profile.

The DCF components: The DCF (Document Composition Facility) is a
licensed IBM text processing system that supports the use of computers in
preparing print documentation.

If your installation uses DCF, you might want to change the remaining four
DCF components. For more on DCF, see Document Composition Facility:
SCRIPT/VS Text Programmer’s Guide

A user can tell the document interface that the current document is formatted
by DCF. In response, the document interface adds DCF control statements to
the user’s inserted report. Wherever these statements appear, they consist of
all the records in one or another of the DCF components. You can change any
or all of the records in a component. The components, and what they supply,
are as follows:

DSQABD01: Supplies statements inserted just before the report. In the
IBM-supplied component, these are:
.* QMF Document Interface heading control:
.SA
.RH SUP
.RF SUP
.HS 0
.FS 0

Establishing QMF Support

416 Installing and Managing QMF

.TM 0.5I

.BM 0

.DC CONT OFF

.FO OFF

DSQABD02: Supplies statements inserted just after each page footing. In the
IBM-supplied component, the single furnished statement is:
.* QMF Document Interface page footing control:

DSQABD03: Supplies statements inserted just before each page heading. In
the IBM-supplied component, these are:
.PA NOSTART
.* QMF Document Interface page heading control:

DSQABD04: Supplies statements inserted just after the end of the report. In
the IBM-supplied component, these are:
.* QMF Document Interface footing control:
.RE
.* QMF REPORT END

Changing the execs and macros
As mentioned earlier, these components are all in the QMF production disk. If
you change a component, change a copy, not the original, and place it in
another library.

The minidisk must be accessed before the QMF production disk. If the
document interface is issued from a current ISPF session, then that session
needs to have the QMF and ISPF definitions for the ISPF libraries (the ones
beginning with ISP) built. This is illustrated in DSQABD2I.

Changing DSQABD2Q: With the document interface, a user operating
outside QMF can begin a QMF session. In that session, the user creates the
report to be inserted into the current document. DSQABD2Q does the file
definitions (FILEDEFs) for this session. Make whatever modifications to the
exec you think necessary. For example, you might need to add FILEDEFs for
files peculiar to your installation or you might have to change the links and
accesses to the QMF, GDDM, and DB2 for VM disks.

Observe that some of these FILEDEFs involve GDDM files. The document
interface does not itself use these files, but the user might find this necessary.

If you are using an NLF: Make a separate copy of DSQABD2Q to link to the
QMF NLF production disk. Do not rename this exec.

Changing DSQABD2I: Ensure that the link and access to the ISPF/PDF disk
is correct.

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 417

Changing DSQABD2C: This is the final component to be discussed. It can
be modified as shown:
v Change the statement:

FILEDEF DSQPRINT PRINTER (LRECL 131 BLKSIZE 131 RECFM FBA)

v Change the statement:
ADDRESS ISPEXEC ’SELECT PGM(DSQQMF’LANG_CHAR’)’ ,

’PARM (DSQSRUN=’PROC_NAME’) NEWAPPL(DSQ’LANG_CHAR’)’

This statement invokes QMF with the default DCSS name. (LANG_CHAR has
the value E.) If the default DCSS is not being used, put the name in the
PARM operand. For example, if you want to change the default DCSS name
to QMFXXX, then the modified PARM operand would look like:
’PARM(QMFXXX(DSQSRUN=’PROC_NAME’))...

v Change the statement:
ADDRESS COMMAND ’EXEC ISPSTART PGM(DSQQMF’LANG_CHAR’)’,

’PARM(DSQSRUN=’PROC_NAME’) NEWAPPL’

This statement invokes QMF with the default DCSS name. (LANG_CHAR has
the value E.) If the default DCSS is not being used, put the name in the
PARM operand. For example, if you want to change the default DCSS name
to QMFXXX, then the modified PARM operand would look like:
’PARM(QMFXXX(DSQSRUN=’PROC_NAME’))...

If you are using an NLF: Make a separate copy of DSQABD2C to specify the
NLF DCSS name in the ISPSTART and SELECT QMF invocation statements.
Do not rename this exec.

Customizing the QMF EDIT command

With the EDIT command, you can modify QMF queries and procedures with
an editor. One of these editors can be ISPF/PDF (provided that QMF is
started under ISPF).

The EDIT command on OS/390
The following procedure assumes that you use an editor that can be called by
a CLIST operating under ISPF. The EDIT TABLE command calls the Table
Editor, and does not require a text editor.

To make an editor available for the EDIT command:
1. Write a CLIST to call the editor and pass the name of the data set to be

edited as a positional parameter. For example, with the following
command, QMF calls the CLIST, XYZEDIT, to edit the data set,
USERA.XYZDATA.TEXT:
XYZEDIT ’USERA.XYZDATA.TEXT’

Establishing QMF Support

418 Installing and Managing QMF

2. Place the CLIST in a command library allocated to everyone with access to
the editor. Place it in a library that is part of the concatenation for the data
set SYSPROC. One possible choice is the QMF library,
QMF720.SDSQCLTE, which must be available to all QMF users.

3. For individual users, allocate and catalog a data set for objects to be
edited. This data set is refilled every time the user calls the editor with the
EDIT command. Give the data set the following characteristics:
v A physical sequential organization (DSORG=PS)
v Fixed-length, 79-byte records (LRECL=79)
v A blocking factor of 51 (BLKSIZE=4029)

4. In the JCL for each user, allocate the data set cataloged for that user in
step 3. Allocate it with the ddname DSQEDIT. Write DISP=OLD for the
disposition of the data set.

5. Advise users how to specify the EDIT command. The command has the
following format:
EDIT yyyy (EDITOR=xxxx)

where yyyy is either PROC or QUERY, and xxxx is the name of the CLIST
created to call the editor. For more on the EDIT command, see QMF
Reference.

6. You can edit your QMF SQL query or QMF procedure in a different ISPF
application ID by using an exec or CLIST as the editor name on the QMF
EDIT command.
If you specify the program development facility (PDF) editor to edit an
SQL query or QMF procedure, QMF executes the PDF editor in the QMF
application ID DSQE, or DSQn where n is the NLF character. In addition,
QMF sets the function keys and location of the command line to fit the
QMF product.
If you need to use a different set of function keys or have existing PDF
macros or specialized PDF editor screens, you can use them by executing
the PDF editor in an application ID other than DSQ*. To do this, execute
two small REXX programs or CLISTs. The first program simply routes
execution to the second program, which then invokes the editor running in
the desired ISPF application ID with the desired function key or other
special setup requirements such as an edit invocation macro or a unique
edit panel.
The REXX program example in Figure 110 on page 420 shows how to edit
the SQL query or QMF procedure using the edit transfer data set, as
defined by DDNAME(DSQEDIT), when QMF is started. The PDF
application ID ISP is used in this example.

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 419

The REXX programs must be allocated to a valid concatenation of either
SYSPROC or SYSEXEC before execution. To execute from QMF, enter the
following QMF EDIT command on the QMF command line:
EDIT QUERY (E=MYEDIT)

Important: If you edit a procedure or query, and the resulting object is too
large to fit in QMF’s work area, QMF truncates the object and displays an
error message. QMF saves the entire object, however, in a file associated with
the ddname QMFEDIT. To bring the object into QMF, the user needs to issue a
RESET DATA command. This information, including the file name of the
saved object, is provided in the message help for the error message associated
with this condition.

The EDIT command on VM
The following procedure assumes that you use an editor that can be called by
an exec operating under ISPF. The EDIT TABLE command calls the Table
Editor, and does not require a text editor.

To make an editor available for the EDIT command:
1. Write an exec to invoke the editor, given the name of the file to be edited.

For example, with the following command, QMF calls the exec, XYZEDIT,
to edit the data set, USERA.FILE:
XYZEDIT USERA FILE A1

2. Allocate the file USERA FILE A1 using the FILEDEF command specifying
the file name of DSQEDIT. The FILEDEF needs to be allocated prior to
invoking the editor. Therefore, the FILEDEF needs to be part of the QMF
invocation process, or a FILEDEF needs to be established before invoking
the EDIT command.

Edit Program 1 (MYEDIT)

/* REXX QMF Edit program 1 */
/* Transfer to ISP application ID */
Address ISPEXEC "SELECT CMD(MYEDIT2) NEWAPPL(ISP)"
Exit 0

Edit Program 2 (MYEDIT2)

/* REXX QMF Edit program 2 */
/* Invoke PDF Editor using DDNAME */
Address ISPEXEC "LMINIT DATAID(EDT) DDNAME(DSQEDIT)"
Address ISPEXEC "EDIT DATAID("EDT")"
Address ISPEXEC "LMFREE DATAID("EDT")"
Exit 0

Figure 110. Editing using the edit transfer data set

Establishing QMF Support

420 Installing and Managing QMF

3. Instruct the users on how to invoke the editor through the EDIT
command. A command would like like this:
EDIT yyyy (EDITOR=xxxxxxxxx)

where yyyy is either PROC or QUERY. Only the current procedure or
query can be edited. xxxxxxxxx is the name of the exec created to invoke
the editor.

The file you can use can also be used for the ISPF/PDF editor.

Important: If you edit a procedure or query, and the resulting object is too
large to fit in QMF’s work area, QMF truncates the object and displays an
error message. QMF saves the entire object in a file associated with the
FILEDEF DSQEDIT. Remember that the edit transfer file described by the
DSQEDI filedef cannot be associated to a disk that is used in the CMS shared
file system. To bring the object into QMF, the user needs to issue a RESET
DATA command.

Enabling English support in an NLF environment

Every NLF has a complete set of translated verbs, keywords, messages, and
panels for QMF. The global variable DSQEC__NLFCMD__LANG allows you
to change the language in which the user enters commands.

Set DSQEC__NLFCMD__LANG to 1 to allow users to enter commands only
in English.

The default value, 0, allows users to enter commands and keywords only in
the national language of the current session, except for the following
commands:

SET
GET
INTERACT
MESSAGE
START

QMF allows you to enter these commands in either English or the NLF,
regardless of how you set DSQEC_NLFCMD_LANG.

Use the DSQEC_FORM_LANG variable to enable users working in an NLF
environment to store their form objects in the English language. The
LANGUAGE option on the SAVE, EXPORT, and IMPORT commands allows
users to specify the national language of the saved form. The values for this
option are ENGLISH and SESSION, and are controlled by the global variable
DSQEC_FORM_LANG.

Establishing QMF Support

Chapter 25. Establishing QMF Support for End Users 421

Set DSQEC_FORM_LANG to 0 to use the language of the current session as
the national language of the saved form.

The default value is 1, which specifies English as the language of the saved
form.

If the user specifies the LANGUAGE keyword on the IMPORT or EXPORT
command, that value overrides the current value of the
DSQEC_FORM_LANG variable.

To change the national language displayed during a QMF session, the QMF
user must end the current QMF session and begin another. You cannot change
the language from within the QMF session.

Using global variables to define the currency symbol

If you require a currency symbol that is not represented on the keyboard, you
can specify the currency symbol by using the HEX value in a Procedure with
Logic. For example, the following PROC will set the currency symbol to HEX
’9F’:
/* */
"SET GLOBAL (DSQDC_CURRENCY =" ’9F’X

If trailing blanks are needed for the currency symbol, you can put the
currency symbol in single quotes as follows:
SET GLOBAL (DSQDC_CURRENCY = ’FR ’

You can use the command in either the command line or in a linear PROC.

Establishing QMF Support

422 Installing and Managing QMF

Chapter 26. Enabling Users to Print Objects

QMF end users frequently need to print data they retrieve from the database.
This data might be in the format of a report, a chart, a database table, or some
other QMF or database object.

How you set up printing for your end users depends on what type of printer
you have and which QMF objects you need to print. This chapter helps you
decide whether it is more efficient for you to handle printing using QMF
services or Graphical Data Display Manager (GDDM) services. It also
provides instructions on how to print objects using either method.

If you need to print double-byte character set (DBCS) data, you can use the
DSQSDBCS program parameter when you start QMF to allow users to print
DBCS data from non-DBCS terminals.

Deciding whether to use QMF or GDDM services for printing

Whether you print using GDDM services or QMF services depends on what
type of objects you need to print and what types of printers and other
resources are available to you. Use this section to help you decide which
method suits your needs.
v If you need to print charts, forms, or prompted queries, use GDDM.

QMF uses GDDM services to display these objects; GDDM must be used to
print these objects as well. If you do not use GDDM services, you can print
only reports, tables, QBE and SQL queries, procedures, and the QMF
profile.

v If your site is set up to route output to named printers, use GDDM services
for printing.
GDDM allows you to link a name with a physical device. If you do not use
GDDM and use exclusively QMF services, you need to print objects by
specifying the type and name of the storage queue through which those
objects are routed to the printer.

Both QMF and GDDM handle printer input asynchronously, which means
that QMF can return messages indicating that the object is printed before it is
actually printed.

CICS (for OS/390 and VSE) considerations
These considerations are for CICS:

© Copyright IBM Corp. 1983, 2002 423

v In CICS, if you need to handle routing automatically (rather than writing a
program to route output), use GDDM or define transient data queues for
use with QMF.
GDDM does the routing for you by using the transient data queue
definitions that you define to CICS. QMF takes care of the routing in the
same way if you are using transient data queues to hold your output.
If you print to temporary storage, you must write a program to send the
temporary storage queue to the printer or display the printed output online
with the CICS-supplied transaction CEBR.

v In CICS, if you need to print more than 32, 767 rows of output, use GDDM
or define transient data queues to use with QMF.
Temporary storage queues cannot handle more than 32, 767 rows of data.

Using GDDM services to handle printing

Important: The explanations in this section apply only if you are using the
GDDM default values shipped with the GDDM product. For more
information on changing these values, see either the appropriate GDDM
Installation and System Management manual or the GDDM System Customization
and Administration manual for GDDM 3.1.

How QMF interfaces with your GDDM nickname
QMF interfaces with GDDM nicknames through the standard interface
provided by GDDM, which issues a call that allows QMF to open a GDDM
print file.

The following defaults are provided by QMF on the DSOPEN call when the
PRINT command begins:
v The device type is set to Family 2
v The device token is set to *
v No processing options are in place (PROCOPT is set to zero)
v The only entry in the name list is the nickname

The print operation is carried out one page at a time using the ASCPUT and
FSFRCE GDDM services. When printing is complete, QMF closes the print
operation with a DSDROP statement.

GDDM services on OS/390
These services apply to native OS/390 batch, TSO, ISPF, and CICS

Native OS/390 batch and TSO
To use GDDM services for printing QMF objects, you must:
1. Choose a GDDM nickname for the print device, as explained in “Choosing

a GDDM nickname for your printer” on page 425.

Enabling Users to Print Objects

424 Installing and Managing QMF

Nicknames enable you to predefine complex print or display devices to
simplify the work of your end users. Nicknames define device
characteristics that indicate to GDDM how to format and distribute the
report, and they can define both local and remote devices.

2. Update the GDDM defaults module, ADMADFT, with the specifications of
your nickname.

3. Allocate the ddname ADMDEFS. Allocating the ddname ADMDEFS is
explained in “Allocating the nickname file for native OS/390 batch, TSO
and ISPF” on page 432.

4. Update the PRINTER field of the user’s row in the Q.PROFILES table.

CICS
To use GDDM services for printing QMF objects, you must:
1. Choose a GDDM nickname for the print device.

Nicknames enable you to predefine complex print or display devices to
simplify the work of your end users. Nicknames define device
characteristics that indicate to GDDM how to format and distribute the
report, and they can define both local and remote devices.

2. Update the GDDM defaults module, ADMADFC, with the specifications of
your nickname.

3. Update CICS resource definitions with the values in the nickname
specification, so that CICS can link the nickname with the physical device
it manages.

4. Update the PRINTER field of the user’s row in the Q.PROFILES table.

Choosing a GDDM nickname for your printer
Here is information on the data sets GDDM searches for.

Native OS/390 batch, TSO, and ISPF: In native OS/390 batch and TSO,
when a user enters a printer name on the PRINTER keyword of the QMF
PRINT command, GDDM first searches the ADMDEFS data set and then the
defaults module, ADMADTC, for a matching nickname that defines how and
where to direct the output.

CICS: In CICS, GDDM searches only the defaults module, ADMADTC.
GDDM uses nicknames to recognize all the devices with which it can
communicate (including terminals).

Choosing the right type of GDDM device
The printer nickname you use depends on the type of device:
v Family 1 devices specify auxiliary devices attached to a workstation using

GDDM-PCLK. A Family 1 device can also include display devices, such as
3270 data-stream terminals.

Enabling Users to Print Objects

Chapter 26. Enabling Users to Print Objects 425

v Family 2 devices include devices such as IBM 3270 terminals and queued
printers.

v Family 3 devices are system printers that support the ANSI code of
carriage control characters.

v Family 4 devices are advanced function printers for which you need to use
the ADMOPUT and ADMOPUJ utilities (in TSO, and native OS/390 batch
only) to print output. These utilities are provided by GDDM.

This chapter explains how to define nicknames for Family 1, 2, and 3 devices.
For more information on how to set up a nickname for a Family 4 printer and
use the ADMOPUT and ADMOPUJ utilities, see the GDDM System
Customization and Administration manual for GDDM or the appropriate GDDM
Installation and System Management manual. These publications also provide
more information on each type of GDDM device.

Creating the nickname specification
Here are the instructions to create nicknames on native OS/390, TSO, and
CICS.

Native OS/390 batch, TSO, and ISPF: Add the nickname to your ddname
ADMDEFS data set. GDDM looks at this data set first. If the nickname is not
found, GDDM looks in the external default module, ADMADFT, in which you
define a GDDM ADMMNICK specification.

CICS: To create a nickname in CICS, first define a GDDM ADMMNICK
specification in the GDDM external default module ADMADFC. This
specification indicates the device characteristics to GDDM, such as the number
of lines per page the printer can handle, and how the printer is managed by
CICS.

Use the format shown in Figure 111 for your ADMMNICK specification.

TONAME is used only in CICS.
v Use NAME to indicate a 1-character to 8-character printer nickname to use

with the QMF PRINT command. For example, if MYPRTR is the nickname,
users can enter the command: PRINT REPORT (PRINTER=MYPRTR. NAME can
be a single name, a list of names separated by commas, or a name with a
leading or trailing ? used as a wildcard to send output to multiple printers
that have similar names.

ADMMNICK NAME=nickname,TOFAM=family_type,DEVTOK=device_token(,TONAME=name)

Figure 111. Using the ADMMNICK specification to define a nickname

Enabling Users to Print Objects

426 Installing and Managing QMF

v Use TOFAM to indicate the type of device you are using. GDDM recognizes
four families of devices, and handles each differently.

v Use DEVTOK to indicate a valid GDDM device token, which uniquely
identifies a device and its print configuration (for example, a 3820 printer
that prints 60 rows by 85 columns, 6 lines per inch). For a list of valid
device tokens, see the GDDM System Customization and Administration
manual or the GDDM Installation and System Management for OS/390 manual
for GDDM.

v In CICS, the TONAME field points to entries in the TCT or DCT so that
CICS is able to properly manage communication between GDDM and the
printer. Use TONAME to point to the name of a 1-character to 4-character
printer definition name with a value that depends on the type of device:
– If the nickname defines a Family 1 or 2 printer, TONAME points to a

matching entry in the CICS terminal control table (TCT), which defines
the printer to CICS. In the matching entry, the TRMIDNT field has the
same value as TONAME.
If you define the printer to CICS using CICS resource definition online
(RDO) to update the CICS system definition (CSD) file, the TERMINAL
attribute has the same value as TONAME.

– If the nickname defines a Family 3 printer, TONAME points to a
matching entry in the CICS destination control table (DCT), which
defines the printer to CICS. In the matching entry, the DESTID field has
the same value as TONAME.

A unique label can be added to the syntax. For example, GDDMPRT1 is a
possible label for the nickname definition:
GDDMPRT1 ADMMNICK NAME=MYPRINT,TOFAM=3,DEVTOK=ADMKSYSP

Example nickname for a family 1 or 2 GDDM printer
To define the nickname GRAPHIC for a Family 1 or 2 GDDM printer, you
might use an ADMMNICK specification similar to the one in Figure 112. This
specification is for a Family 2 GDDM printer (use TOFAM=1 for a Family 1
GDDM printer). It uses the device token R87S, an example of a token for a
remotely attached 3287 printer.

Native OS/390 batch, TSO and ISPF: After you create your nickname in
TSO, and native OS/390 batch, a temporary data set is created as a result of
running the QMF PRINT command and specifying a nickname that already
exists. This data set is userid.ADMPRINT.REQUEST.#nnnnn, where nnnnn is a

ADMMNICK NAME=GRAPHIC,TOFAM=2,DEVTOK=R87S,TONAME=GRAP

Figure 112. Using the ADMMNICK specification to define a nickname for a Family 2 printer

Enabling Users to Print Objects

Chapter 26. Enabling Users to Print Objects 427

sequence number. You can then print the data set using the ADMOPUT utility.
You can also use the ADMOPUJ utility to write your print job to the JES
spool.

CICS: If you use either of the GDDM print utilities (ADMOPUT or
ADMOPUJ) to print QMF objects using GDDM nicknames, the QMF-supplied
GDDM map groups must be made available to the GDDM print utility. The
ADMGGMAP DD statement contains the name of the data set
(QMF720.DSQMAPE) that holds the map groups:
//ADMGGMAP DD DSN=QMF720.DSQMAPE,DISP=SHR

Without this statement, any attempt to print a form on a Family 2 printer
ends in an error. For more information on the GDDM print utilities, see the
GDDM Installation and System Management manual if you are using GDDM
Version 2 Release 3 or the GDDM System Customization and Administration
manual if you’re using GDDM Version 3 Release 1.

Important: In CICS, after you create the ADMMNICK specification, link the
name with a physical device by updating the TCT. Make sure TONAME in
the ADMMNICK specification and TRMIDNT in the TCT have matching
values.

You can also use CICS RDO facilities to update the CSD online. If you define
the printer this way, make sure the TERMINAL attribute in the CSD and
TONAME in the ADMMNICK specification have matching values.

Example nickname for a family 3 GDDM printer
Use this information to define the nickname for a family 3 GDDM printer on
native OS/390 batch and TSO.

Native OS/390 batch, TSO and ISPF: To define the nickname 370PRINT for
a Family 3 GDDM printer, you might use an ADMMNICK specification
similar to the one in below.

After you create your nickname in TSO or native OS/390 batch, a ddname
ADMLIST is created. You can then send the formatted file to the printer you
have chosen.

ADMMNICK NAME=370PRINT,TOFAM=3,DEVTOK=R87S,TONAME=370P (CICS)

ADMMNICK NAME=370PRINT,TOFAM=3,DEVTOK=R87S (CMS)

Figure 113. Using the ADMMNICK specification to define a nickname for a Family 3 printer

Enabling Users to Print Objects

428 Installing and Managing QMF

CICS: To define the nickname 370PRINT for a Family 3 GDDM printer, you
might use an ADMMNICK specification similar to the one in below.

After you create the ADMMNICK specification in CICS, link the name with a
physical device by updating the DCT, as shown in the example in Figure 118
on page 433. Make sure TONAME in the ADMMNICK specification and
DESTID in the DCT have matching values.

Example nickname for a family 4 GDDM printer on native OS/390 batch,
TSO or ISPF
To define the nickname 3900PRNT for a Family 4 GDDM printer, you might
use an ADMMNICK specification similar to the one below.

After you create your nickname, the ddname ADMIMAGE is created. You can
spool the file to PSF/OS/390 automatically through JES if you have the
CSPOOL processing option set. For more information about Family 4 printing,
see theGDDM System Customization and Administration manual.

Defining multiple nicknames with one definition
You can use a single nickname to define multiple printer addresses by
including the wildcard ? in your nickname definition, like this:
ADMMNICK TOFAM=3,NAME=MYPRINT?,PROCOPT=((PRINTCTL,0))

The nickname MYPRINT? allows you to route print output to printers named
MYPRINT1, MYPRINT2, MYPRINTA, and so on. For example, when you
enter:
PRINT REPORT (PRINTER=MYPRINT2

GDDM uses the nickname definition for the MYPRINT? nickname to create a
data set and direct the output from the PRINT command to the data set with
ddname MYPRINT2.

Examples of nickname definitions
This section shows examples of nicknames you might use for Family 1, 2, or 3
devices. For examples on defining nicknames for Family 4 devices, see the

ADMMNICK NAME=370PRINT,TOFAM=3,DEVTOK=R87S,TONAME=370P (CICS)

ADMMNICK NAME=370PRINT,TOFAM=3,DEVTOK=R87S (CMS)

Figure 114. Using the ADMMNICK specification to define a nickname for a Family 3 printer

ADMMNICK NAME=3900PRNT,TOFAM=4,DEVTOK=R87S

Figure 115. Using the ADMMNICK specification to define a nickname for a Family 4 printer

Enabling Users to Print Objects

Chapter 26. Enabling Users to Print Objects 429

GDDM System Customization and Administration manual for GDDM or the
GDDM Installation and System Management for OS/390 manual for GDDM.
v 3800, 3812, or 3820 printer, 6 lines per inch: Use the following definition to

define the nickname GDDMPRT1 for a Family 3 printer:
GDDMPRT1 ADMMNICK TOFAM=3,DEVTOK=S3800N6,NAME=MYPRINT1

v 3800, 3812, or 3820 printer, 8 lines per inch: Use the following definition to
define the nickname GDDMPRT2 for a Family 3 printer:
GDDMPRT2 ADMMNICK TOFAM=3,DEVTOK=S3800N8,NAME=MYPRINT2

v Non-3800 system printer, 132 columns, 8 lines per inch: Use the following
definition to define the nickname GDDMPRT3 for a Family 3 printer:
GDDMPRT3 ADMMNICK TOFAM=3,DEVTOK=S1403W8,NAME=MYPRINT3

v A remotely attached 3287 (suitable for printing charts): Use the following
definition to define the nickname GDDMPRT4 for a Family 2 printer:
GDDMPRT4 ADMMNICK TOFAM=2,DEVTOK=R87,NAME=MYPRINT4

v Any destination without print control options: Use the following
definition to define the nickname GDDMPRT5 for a Family 3 printer:
GDDMPRT5 ADMMNICK TOFAM=3,PROCOPT=((PRINTCLTL,)),NAME=MYPRINT5

The PROCOPT parameter specifies processing options using a print control
(PRINTCTL) keyword, which allows you to specify a number of print control
options. For example, you can use PRINTCTL to specify a page heading to be
printed, the number of copies to print, and the width of margins. The zero
in this example suppresses page headings.

Attention: If the print data set has RECFM=F, GDDM printing changes
the DCB of the data set from RECFM=F to RECFM=V.

For a list of print control options and how to use them, see the GDDM
System Customization and Administration manual.

v A PC printer using GDDM-PCLK (for DOS users): Use the following
definition to define the nickname PCPRINT for a Family 1 printer:
GDDMPRT6 ADMMNICK TOFAM=1,FAM=0,NAME=PCPRINT,TONAME=*,ADMPCPRT

where * indicates the user’s current device or the default value.

To print to a workstation printer connected to DOS, GDDM-PCLK must be
installed on your workstation.

Updating the GDDM defaults module with the nickname
Use this information to update the GDDM defaults module on native OS/390
batch, TSO, and CICS.

Native OS/390 batch, TSO and ISPF: In TSO, and native OS/390 batch, the
external defaults module is ADMADFT.

Enabling Users to Print Objects

430 Installing and Managing QMF

The default modules also contain default values for the GDDM product. The
modules are stored as members of the SADMSAM data set.

To update the modules with your nickname specification:
1. Edit the source file to add the nickname.
2. Enter your ADMMNICK specification after the ADMMDFT statements in

the module.
3. Reassemble and link-edit the changed default module.

For more information on the defaults modules, see the GDDM System
Customization and Administration manual for GDDM or the GDDM Installation
and System Management for OS/390 for GDDM manual.

CICS: In CICS, the ADMMNICK nickname specifications reside in the
GDDM external defaults module ADMADFC, which is supplied with the
GDDM product.

The default modules also contain default values for the GDDM product. The
modules are stored as members of the SADMSAM data set.

To update the modules with your nickname specification:
1. Edit the source file to add the nickname.
2. Enter your ADMMNICK specification after the ADMMDFT statements in

the module.
3. Reassemble and link-edit the changed default module.

For more information on the defaults modules, see the GDDM System
Customization and Administration manual for GDDM or the GDDM Installation
and System Management for OS/390 for GDDM manual.

Testing the nickname definitions in external default files for native OS/390
batch, TSO and ISPF
Test your nickname definitions by placing them in an external default file and
printing with them until you are satisfied they are working correctly. Then
you can assemble them into external default modules. .

GDDM uses external default modules more efficiently than a data set to find a
given nickname.

The decision to use external default files or modules affects a user’s JCL,
because an external default file requires a DD statement, while an external
default module must be a member of a STEPLIB library. Your GDDM
administrator can advise you on the JCL changes.

Enabling Users to Print Objects

Chapter 26. Enabling Users to Print Objects 431

Allocating the nickname file for native OS/390 batch, TSO and ISPF
For TSO, and native OS/390 batch, the ddname of the nickname data set is
ADMDEFS. You should allocate it when you start your QMF session. To add
the ddname ADMDEFS to the user’s logon procedure:
//ADMDEFS DD DSN=LOCAL.GDDM.NICKNAME,DISP=SHR

Using nicknames in CICS
In CICS, the nicknames are incorporated into user default specifications and
assembled into the external defaults module ADMADFC.

After you update the ADMADFC module, you need to update the CICS
resource definitions so that CICS can link the nickname with a physical device
it manages.

Linking a Family 2 nickname with a physical device: QMF supports the use
of GDDM nicknames for reports and requires nicknames for printing QMF
charts, forms, and prompted queries. If you have printers described to CICS
using VTAM and TCT entries, you must describe the printer as queued
(GDDM Family 2 device). When using a Family 2 device, your ADMMNICK
specification for TONAME points to a CICS TCT entry, as opposed to a DCT
entry for Family 3 devices.

For example, for this nickname specification:
ADMMNICK NAME=GRAPHIC,TOFAM=2,DEVTOK=R87S,TONAME=GRAP

you can update the CICS TCT using a macro similar to the example shown
below.

In VSE, all Family 1 and 2 devices must be described to CICS as queued.

Linking a family 3 nickname with a physical device: To use Family 3
devices, set up a GDDM nickname table as shown below.

GRAP DFHTCT TYPE=TERMINAL,
ACCMETH=VTAM,
TRMIDNT=GRAP,
TRMTYPE=SCSPRT,

. . .

. . .

. . .

Figure 116. Defining to CICS a nickname for a Family 2 GDDM printer

Enabling Users to Print Objects

432 Installing and Managing QMF

TheGDDM Installation and System Management for OS/390 manual for GDDM
and the GDDM System Customization and Administration manual for GDDM
describe the process of incorporating the nicknames into the user default
specifications and assembling the user default specifications into external
defaults module ADMADFC.

The TONAME parameter must have a matching entry in the CICS DCT as
shown in Figure 118.

You also need to add the ddname ADMSYSP to the CICS start-up JCL, as
follows:
//ADMSYSP DD SYSOUT=A

Add the TYPE=SDSCI entry shown in Figure 118 after all other TYPE=SDSCI
entries in the DCT. The device address (SYS097) corresponds to the printer,
04E, according to the assign statement in the startup JCL. If you use SYSLST,
CICS STATS is part of your QMF report. Instead, use an alternate printer.

GDDM services on VM
To use GDDM services for printing QMF objects, you must:
1. Choose a GDDM nickname for the print device.

Nicknames enable you to predefine complex print or display devices to
simplify the work of your end users. Nicknames define device

GDDMPRT ADMMNICK TOFAM=3, FAMILY (SYSTEM PRINTER) X
NAME=SYSPRT, PRINTER NAME (NICKNAME) X
DEVTOK=S1403W6, DEVICE TOKEN (1403) X
TONAME=SYSP TONAME MUST MATCH CICS DCT ENTRY

Figure 117. Defining to CICS a nickname for a Family 3 GDDM printer

* THE GDDM NICKNAME IS SYSPRT AND THE
* LONGEST RECORD THAT CAN BE PRINTED
* IS 256.

DFHDCT TYPE=SDSCI,DSCNAME=ADMSYSP, X
RECFORM=VARBLK, X
RECSIZE=260,BLKSIZE=6050,TYPEFLE=OUTPUT

.

.
* ENTRY FOR GDDM NICKNAME SYSPRT
SYSP DFHDCT TYPE=EXTRA,DESTID=SYSP,DSCNAME=ADMSYSP,RSL=1

Figure 118. Adding a TONAME entry to the CICS DCT

Enabling Users to Print Objects

Chapter 26. Enabling Users to Print Objects 433

characteristics that indicate to GDDM how to format and distribute the
report, and they can define both local and remote devices.

2. Update the ADMDEFS PROFILE file or the GDDM defaults module,
ADMADFV with the specifications of your nickname.

3. Update the PRINTER field of the user’s row in the Q.PROFILES table.

Choosing a GDDM nickname for your printer
In CMS, GDDM searches the ADMDEFS PROFILE file and then the defaults
module, ADMADFV, for a matching nickname that defines how and where to
direct the output.

Choosing the right type of GDDM device
The printer nickname you use depends on the type of device:
v Family 1 devices specify auxiliary devices attached to a workstation using

GDDM-PCLK. A Family 1 device can also include display devices, such as
3270 data-stream terminals.

v Family 2 devices include devices such as IBM 3270 terminals and queued
printers.

v Family 3 devices are system printers that support the ANSI code of
carriage control characters.

v Family 4 devices are advanced function printers for which you need to use
the ADMOPUT and ADMOPUJ utilities (in TSO, and native OS/390 batch
only) to print output. These utilities are provided by GDDM.

This chapter explains how to define nicknames for Family 1, 2, and 3 devices.
For more information on how to set up a nickname for a Family 4 printer and
use the ADMOPUT and ADMOPUJ utilities, see the GDDM System
Customization and Administration manual for GDDM or the appropriate GDDM
Installation and System Management manual. These publications also provide
more information on each type of GDDM device.

Creating a nickname specification
To create a nickname in CMS, you can add the nickname to your PROFILE
ADMDEFS file. GDDM looks at this file first. If the nickname is not found,
GDDM looks in the external default module, ADMADFV, in which you define
a GDDM ADMMNICK specification.

Example nickname for a family 2 GDDM printer
To define the nickname GRAPHIC for a Family 2 GDDM printer, you might
use an ADMMNICK specification similar to the one below. It uses the device
token R87S, an example of a token for a remotely attached 3287 printer.

Enabling Users to Print Objects

434 Installing and Managing QMF

After you create your nickname in CMS, a file with type ADMPRINT is
created on your A-disk. This file has a file name of the printer that was
supplied on input to the DSOPEN call. You can then print the ADMPRINT
file using the ADMOPUV utility.

Example nickname for a family 3 GDDM printer
To define the nickname 370PRINT for a Family 3 GDDM printer, you might
use an ADMMNICK specification similar to the one below.

In CMS, a file with type ADMLIST is created. You can then send the
formatted file to the printer you have chosen.

Example nickname for a family 4 GDDM printer
To define the nickname 3900PRNT for a Family 4 GDDM printer, you might
use an ADMMNICK specification similar to the one below.

After you create your nickname, the ddname ADMIMAGE is created. You can
spool the file to PSF/VM if you have the CSPOOL processing option set. For
more information about Family 4 printing, see theGDDM System Customization
and Administration manual.

Defining multiple nicknames with one definition
You can use a single nickname to define multiple printer addresses by
including the wildcard ? in your nickname definition, like this:
ADMMNICK TOFAM=3,NAME=MYPRINT?,PROCOPT=((PRINTCTL,0))

The nickname MYPRINT? allows you to route print output to printers named
MYPRINT1, MYPRINT2, MYPRINTA, and so on. For example, when you
enter:
PRINT REPORT (PRINTER=MYPRINT2

ADMMNICK NAME=GRAPHIC,TOFAM=2,DEVTOK=R87S,TONAME=GRAP

Figure 119. Using the ADMMNICK specification to define a nickname for a Family 2 printer

ADMMNICK NAME=370PRINT,TOFAM=3,DEVTOK=R87S (CMS)

Figure 120. Using the ADMMNICK specification to define a nickname for a Family 3 printer

ADMMNICK NAME=3900PRNT,TOFAM=4,DEVTOK=R87S

Figure 121. Using the ADMMNICK specification to define a nickname for a Family 4 printer

Enabling Users to Print Objects

Chapter 26. Enabling Users to Print Objects 435

GDDM uses the nickname definition for the MYPRINT? nickname to create a
data set and direct the output from the PRINT command to the data set with
ddname MYPRINT2.

Examples of nickname definitions
This section shows examples of nicknames you might use for Family 1, 2, or 3
devices. For examples on defining nicknames for Family 4 devices, see the
GDDM System Customization and Administration manual for GDDM or the
appropriate GDDM Installation and System Management manual for GDDM.
v 3800, 3812, or 3820 printer, 6 lines per inch: Use the following definition to

define the nickname GDDMPRT1 for a Family 3 printer:
GDDMPRT1 ADMMNICK TOFAM=3,DEVTOK=S3800N6,NAME=MYPRINT1

v 3800, 3812, or 3820 printer, 8 lines per inch: Use the following definition to
define the nickname GDDMPRT2 for a Family 3 printer:
GDDMPRT2 ADMMNICK TOFAM=3,DEVTOK=S3800N8,NAME=MYPRINT2

v Non-3800 system printer, 132 columns, 8 lines per inch: Use the following
definition to define the nickname GDDMPRT3 for a Family 3 printer:
GDDMPRT3 ADMMNICK TOFAM=3,DEVTOK=S1403W8,NAME=MYPRINT3

v A remotely attached 3287 (suitable for printing charts): Use the following
definition to define the nickname GDDMPRT4 for a Family 2 printer:
GDDMPRT4 ADMMNICK TOFAM=2,DEVTOK=R87,NAME=MYPRINT4

v Any destination without print control options: Use the following
definition to define the nickname GDDMPRT5 for a Family 3 printer:
GDDMPRT5 ADMMNICK TOFAM=3,PROCOPT=((PRINTCLTL,)),NAME=MYPRINT5

The PROCOPT parameter specifies processing options using a print control
(PRINTCTL) keyword, which allows you to specify a number of print control
options. For example, you can use PRINTCTL to specify a page heading to be
printed, the number of copies to print, and the width of margins. The zero
in this example suppresses page headings.

Attention: If the print data set has RECFM=F, GDDM printing changes
the DCB of the data set from RECFM=F to RECFM=V.

For a list of print control options and how to use them, see the GDDM
System Customization and Administration manual.

v A PC printer using GDDM-PCLK (for DOS users): Use the following
definition to define the nickname PCPRINT for a Family 1 printer:
GDDMPRT6 ADMMNICK TOFAM=1,FAM=0,NAME=PCPRINT,TONAME=*,ADMPCPRT

where * indicates the user’s current device or the default value.

To print to a workstation printer connected to DOS, GDDM-PCLK must be
installed on your workstation.

Enabling Users to Print Objects

436 Installing and Managing QMF

Updating the GDDM defaults module with the nickname
In CMS, the ADMMNICK nickname specifications reside in the GDDM
external defaults module ADMADFV, which is supplied with the GDDM
product. The default module also contains default values for the GDDM
product. The module is stored as a file with a type ASSEMBLE.

To update the modules with your nickname specification:
1. Copy the GDDM source file to your own storage.
2. Edit the source file to add the nickname.
3. Enter your ADMMNICK specification after the ADMMDFT statements in

the module.
4. Reassemble and replace the changed default module. For more

information on the default modules, see the GDDM System Customization
and Administration for GDDM manual or the GDDM Installation and System
Management for VM for GDDM manual.

Testing the nickname definitions in external default files
Test your nickname definitions by placing them in an external default file and
printing with them until you are satisfied they are working correctly. Then
you can assemble them into external default modules.

Name the external default file ADMDEFS PROFILE and name the external
default module ADMADFV. Testing the nickname definitions requires access
to the minidisks containing these files. The external default file can be placed
on any minidisk normally accessed when using QMF (for example the GDDM
minidisks, which are accessed when using QMF).

GDDM uses external default modules more efficiently than a data set to find a
given nickname.

GDDM services on VSE
To use GDDM services for printing QMF objects, you must:
1. Choose a GDDM nickname for the print device.

Nicknames enable you to predefine complex print or display devices to
simplify the work of your end users. Nicknames define device
characteristics that indicate to GDDM how to format and distribute the
report, and they can define both local and remote devices.

2. Update the GDDM defaults module, ADMADFC, with the specifications of
your nickname.

3. Update CICS resource definitions with the values in the nickname
specification, so that CICS can link the nickname with the physical device
it manages.

4. Update the PRINTER field of the user’s row in the Q.PROFILES table.

Enabling Users to Print Objects

Chapter 26. Enabling Users to Print Objects 437

Choosing a GDDM nickname for your printer
In CICS, GDDM searches only the defaults module, ADMADFC. GDDM uses
nicknames to recognize all the devices with which it can communicate
(including terminals).

Choosing the right type of GDDM device
The printer nickname you use depends on the type of device:
v Family 1 devices specify auxiliary devices attached to a workstation using

GDDM-PCLK. A Family 1 device can also include display devices, such as
3270 data-stream terminals.

v Family 2 devices include devices such as IBM 3270 terminals and queued
printers.

v Family 3 devices are system printers that support the ANSI code of
carriage control characters.

v Family 4 devices are advanced function printers for which you need to use
the ADMOPUT and ADMOPUJ utilities (in TSO, and native OS/390 batch
only) to print output. These utilities are provided by GDDM.

This chapter explains how to define nicknames for Family 1, 2, and 3 devices.
For more information on how to set up a nickname for a Family 4 printer and
use the ADMOPUT and ADMOPUJ utilities, see the GDDM System
Customization and Administration manual for GDDM or the appropriate GDDM
Installation and System Management manual. These publications also provide
more information on each type of GDDM device.

To create a nickname in CICS, first define a GDDM ADMMNICK specification
in the GDDM external default module ADMADFC. This specification indicates
the device characteristics to GDDM, such as the number of lines per page the
printer can handle, and how the printer is managed by CICS.

Use the format shown below for your ADMMNICK specification.

TONAME is used only in CICS.
v Use NAME to indicate a 1-character to 8-character printer nickname to use

with the QMF PRINT command. For example, if MYPRTR is the nickname,
users can enter the command: PRINT REPORT (PRINTER=MYPRTR. NAME can
be a single name, a list of names separated by commas, or a name with a
leading or trailing ? used as a wildcard to send output to multiple printers
that have similar names.

ADMMNICK NAME=nickname,TOFAM=family_type,DEVTOK=device_token(,TONAME=name)

Figure 122. Using the ADMMNICK specification to define a nickname

Enabling Users to Print Objects

438 Installing and Managing QMF

v Use TOFAM to indicate the type of device you are using. GDDM recognizes
four families of devices, and handles each differently.

v Use DEVTOK to indicate a valid GDDM device token, which uniquely
identifies a device and its print configuration (for example, a 3820 printer
that prints 60 rows by 85 columns, 6 lines per inch). For a list of valid
device tokens, see the GDDM System Customization and Administration
manual or the appropriate GDDM Installation and System Management
manual.

v In CICS, the TONAME field points to entries in the TCT or DCT so that
CICS is able to properly manage communication between GDDM and the
printer. Use TONAME to point to the name of a 1-character to 4-character
printer definition name with a value that depends on the type of device:
– If the nickname defines a Family 1 or 2 printer, TONAME points to a

matching entry in the CICS terminal control table (TCT), which defines
the printer to CICS. In the matching entry, the TRMIDNT field has the
same value as TONAME.
If you define the printer to CICS using CICS resource definition online
(RDO) to update the CICS system definition (CSD) file, the TERMINAL
attribute has the same value as TONAME.

– If the nickname defines a Family 3 printer, TONAME points to a
matching entry in the CICS destination control table (DCT), which
defines the printer to CICS. In the matching entry, the DESTID field has
the same value as TONAME.

Example nickname for a family 3 GDDM printer
To define the nickname 370PRINT for a Family 3 GDDM printer, you might
use an ADMMNICK specification similar to the one below.

After you create the ADMMNICK specification in CICS, link the name with a
physical device by updating the DCT. Make sure TONAME in the
ADMMNICK specification and DESTID in the DCT have matching values.

Examples of nickname definitions
This section shows examples of nicknames you might use for Family 1, 2, or 3
devices. For examples on defining nicknames for Family 4 devices, see the
GDDM System Customization and Administration manual for GDDM or the
appropriateGDDM Installation and System Management manual for GDDM.
v 3800, 3812, or 3820 printer, 6 lines per inch: Use the following definition to

define the nickname GDDMPRT1 for a Family 3 printer:

ADMMNICK NAME=370PRINT,TOFAM=3,DEVTOK=R87S,TONAME=370P

Figure 123. Using the ADMMNICK specification to define a nickname for a Family 3 printer

Enabling Users to Print Objects

Chapter 26. Enabling Users to Print Objects 439

GDDMPRT1 ADMMNICK TOFAM=3,DEVTOK=S3800N6,NAME=MYPRINT1

v 3800, 3812, or 3820 printer, 8 lines per inch: Use the following definition to
define the nickname GDDMPRT2 for a Family 3 printer:
GDDMPRT2 ADMMNICK TOFAM=3,DEVTOK=S3800N8,NAME=MYPRINT2

v Non-3800 system printer, 132 columns, 8 lines per inch: Use the following
definition to define the nickname GDDMPRT3 for a Family 3 printer:
GDDMPRT3 ADMMNICK TOFAM=3,DEVTOK=S1403W8,NAME=MYPRINT3

v A remotely attached 3287 (suitable for printing charts): Use the following
definition to define the nickname GDDMPRT4 for a Family 2 printer:
GDDMPRT4 ADMMNICK TOFAM=2,DEVTOK=R87,NAME=MYPRINT4

v Any destination without print control options: Use the following
definition to define the nickname GDDMPRT5 for a Family 3 printer:
GDDMPRT5 ADMMNICK TOFAM=3,PROCOPT=((PRINTCLTL,)),NAME=MYPRINT5

The PROCOPT parameter specifies processing options using a print control
(PRINTCTL) keyword, which allows you to specify a number of print control
options. For example, you can use PRINTCTL to specify a page heading to be
printed, the number of copies to print, and the width of margins. The zero
in this example suppresses page headings.

Attention: If the print data set has RECFM=F, GDDM printing changes
the DCB of the data set from RECFM=F to RECFM=V.

For a list of print control options and how to use them, see the GDDM
System Customization and Administration manual.

v A PC printer using GDDM-PCLK (for DOS users): Use the following
definition to define the nickname PCPRINT for a Family 1 printer:
GDDMPRT6 ADMMNICK TOFAM=1,FAM=0,NAME=PCPRINT,TONAME=*,ADMPCPRT

where * indicates the user’s current device or the default value.

To print to a workstation printer connected to DOS, GDDM-PCLK must be
installed on your workstation.

Updating the GDDM defaults module with the nickname
In CICS, the ADMMNICK nickname specifications reside in the GDDM
external defaults module ADMADFC, which is supplied with the GDDM
product.

To update the modules with your nickname specification:
1. Punch ADMADFC to ICCF or another editor, and edit the member to

update it with the nickname specification.
2. Enter your ADMMNICK specification after the ADMMDFT statements in

the module.

Enabling Users to Print Objects

440 Installing and Managing QMF

3. Reassemble and link-edit the changed default module.

For more information on the defaults modules, see the GDDM System
Customization and Administration manual for GDDM or the GDDM Installation
and System Management for VSE for GDDM manual.

In VSE, use the CEMT transaction to load a new copy of the ADMADFC
phase into CICS storage. Use a statement similar to the following example:
CEMTS PROG(ADMADFC)NEW

Linking the nickname with a physical device
After you update the ADMADFC module, you need to update the CICS
resource definitions so that CICS can link the nickname with a physical device
it manages.

Linking a family 1 or 2 nickname with a physical device: For a family 1 or
2 printer, you can use macros to update CICS resource definitions in the TCT,
or use CICS resource definition online (RDO) to update the CICS system
definition (CSD) file.

For example, for this nickname specification:
ADMMNICK NAME=GRAPHIC,TOFAM=2,DEVTOK=R87S,TONAME=GRAP

you can update the CICS TCT using a macro similar to the example shown in
below.

In VSE, all Family 1 and 2 devices must be described to CICS as queued.

Linking a family 3 nickname with a physical device: For a Family 3 printer
in CICS/VSE, you need to update the DCT using macros. For example, for
this nickname specification:
ADMMNICK NAME=370PRINT,TOFAM=3,DEVTOK=S3800N6,TONAME=S04E

you can update the CICS DCT.

GRAP DFHTCT TYPE=TERMINAL,
ACCMETH=VTAM,
TRMIDNT=GRAP,
TRMTYPE=SCSPRT,

. . .

. . .

. . .

Figure 124. Defining to CICS a nickname for a Family 2 GDDM printer

Enabling Users to Print Objects

Chapter 26. Enabling Users to Print Objects 441

Add the TYPE=SDSCI entry shown in Figure 125 after all other TYPE=SDSCI
entries in the DCT. The device address (SYS097) corresponds to the printer,
04E, according to the assign statement in the startup JCL. If you use SYSLST,
CICS STATS is part of your QMF report. Instead, use an alternate printer.

Add the TYPE=EXTRA entry shown in Figure 126 after all other
TYPE=EXTRA and TYPE=INDIRECT DCT entries. The TYPE=EXTRA entry
corresponds to the preceding TYPE=SDSCI entry by the matching value for
DSCNAME.

Using QMF services to handle printing

Use this information for handling printing on native OS/390 batch and TSO,
CICS, VM, and CICS/VSE.

Using QMF services for printing in native OS/390 batch, TSO and ISPF
You can use DSQPRINT to print a report, table, SQL or QBE query, procedure,
or your profile.

DSQPRINT is a special printer destination that QMF uses when you do not
supply a printer name on the command line or in the user profile to print a
report, table, SQL or QBE query, procedure, or the profile. DSQPRINT must be

**
* SYSTEM PRINTER FOR QMF OUTPUT. *
* BLKSIZE: 132 + 1 FOR CTLCHR=ASA + 4 FOR RECFORM=VARUNB *

DFHDCT TYPE=SDSCI, +
BLKSIZE=137, +
DSCNAME=UTMS04E, +
RECFORM=VARUNB, +
DEVADDR=SYS097, +
DEVICE=1403, +
TYPEFILE=OUTPUT, +
CTLCHR=ASA

Figure 125. TYPE=SDSCI entry for the DCT

*** *
* SYSTEM PRINTER FOR QMF OUTPUT. *

DFHDCT TYPE=EXTRA, +
DESTID=S04E, +
DSCNAME=UTMS04E,RSL=1

Figure 126. TYPE=EXTRA entry for the DCT

Enabling Users to Print Objects

442 Installing and Managing QMF

allocated with a DD statement that points to the data set or output class QMF
uses for printing. The DD statement becomes part of your QMF startup exec,
CLIST, or JCL.

To add your printed output to a user-owned data set, allocate DSQPRINT
using either the following JCL:
//DSQPRINT DD DSN=&SYSUID..PRINT.DATA,DISP=MOD

or the following CLIST:
ALLOC DDNAME(DSQPRINT) SYSOUT(A) LRECL(133) RECFM(F B A) BLKSIZE(1330)
FREE DDNAME(DSQPRINT)

To route your output to a printer, allocate DSQPRINT using the following
syntax:
//DSQPRINT DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=1330)

Term
Definition

Term
Definition

If you are using ISPF: You can use the QMF-supplied DPRE (Display Printed
Report) command synonym to view the effects of the width and length values
you specified without having to print the report. This is applicable only while
using DSQPRINT.

Using QMF services for printing in CICS
To use QMF services to handle printing, specify the type of storage you want
to use and provide CICS with a name for the storage.

Choosing between temporary storage queues and transient data queues
CICS temporary storage queues are limited to 32, 767 rows of output. They
route data only to local print destinations. If you use temporary storage, you
need to write a program that routes the data from the queue to the transient
data queue, or view the report online with the CICS-supplied transaction
CEBR.

CICS transient data queues are limited only by the amount of storage
associated with the CICS DCT before CICS is started. You can define the
transient data queue as an intrapartition or extrapartition data queue. You can
use transient data queues to print data to a data set or SYSOUT class. Some
intrapartition data queues are limited to 32,767 rows.

Enabling Users to Print Objects

Chapter 26. Enabling Users to Print Objects 443

Using the PRINT command to route output to queues
You can specify on the QMF PRINT command both the name of the queue
and the type of storage defined for that queue. For example, to print a report
to a temporary storage queue named XYZ, enter this command:
PRINT REPORT (QUEUET=TS,QUEUEN=XYZ

To print from a transient data queue named XYZ, you can enter the following
command. Ensure that the transient data queue is defined to CICS before its
first use.
PRINT REPORT (QUEUET=TD,QUEUEN=XYZ

QUEUET and QUEUEN are abbreviations for QUEUETYPE and QUEUENAME.

QMF issues an ENQ statement on the queue name to prevent writing to the
queue if another program is using it. If the name is already enqueued by
another application, CICS indicates to QMF that the queue is unavailable at
that time. Use the SUSPEND (S) keyword to tell QMF what to do when the
queue is unavailable. Use the value YES (or Y) to hold the report until the
queue is available, then write to it. For example:
PRINT REPORT (QUEUET=TS,QUEUEN=XYZ,S=YES

The value NO is the default and cancels the PRINT command, returning a
message to the user.

Using global variables to define queues for printing
If you do not specify a value on the PRINT command, QMF uses values
stored in the global variables DSQAP_CICS_PQNAME and
DSQAP_CICS_PQTYPE.

Set the global variable DSQAP_CICS_PQTYPE to TS if you are using
temporary storage queues for printing, and TD if you are using transient data
queues. TS is the default.

Use the global variable DSQAP_CICS_PQNAME to define the name of the
temporary storage or transient data queue. Names for transient data queues
can be from 1 to 4 bytes. Names for temporary storage queues can be from 1
to 8 bytes. The default temporary storage queue name is DSQPnnnn, where
nnnn is the user’s 4 byte CICS terminal ID. For example, DSQPA085 is a valid
name.

Printing from a CICS temporary storage queue
If you set up your environment to route print output to temporary storage
queues, you need to write a transaction that routes the output from the queue
to a printer. The QMF user can then start the print transaction by using the
CICS command. Any subsequent print command from the same terminal uses
the same queue name, appending the previous report.

Enabling Users to Print Objects

444 Installing and Managing QMF

Viewing a report from a CICS temporary storage queue
You can view a report with the CICS-supplied transaction CEBR.

Using QMF’s DSQPRINT to handle printing on VM
You can use DSQPRINT to print a report, table, SQL or QBE query, procedure,
or your profile.

DSQPRINT is a special printer destination that QMF uses when you do not
supply a printer name on the command line or in the user profile to print a
report, table, SQL or QBE query, procedure, or the profile. DSQPRINT must be
allocated with a DD statement that points to the data set or output class QMF
uses for printing, or with a FILEDEF that points to the file or output class
QMF uses for printing. The DD statement becomes part of your QMF startup
exec, CLIST, or JCL. The FILEDEF is part of your QMF startup exec or is run
from a QMF session using the QMF CMS command. You must allocate
DSQPRINT before running the QMF PRINT command.

To add your printed output to PRINT FILE A, use the following syntax:
"FILEDEF DSQPRINT DISK PRINT FILE A(LRECL 133 BLKSIZE 133 RECFM V PERM",

"DISP MOD"

The use of DISP MOD ensures that each PRINT command adds the latest
print output to the end of the file, instead of overwriting the results of the
previous PRINT command.

To add your printed output to a user-owned data set, allocate DSQPRINT
using either the following JCL:
//DSQPRINT DD DSN=&SYSUID..PRINT.DATA,DISP=MOD

or the following CLIST:
ALLOC DDNAME(DSQPRINT) SYSOUT(A) LRECL(133) RECFM(FBA) BLKSIZE(1330)
FREE DDNAME(DSQPRINT)

To route your output to a printer, allocate DSQPRINT using the following
syntax:
//DSQPRINT DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=1330) (TSO)

"FILEDEF DSQPRINT PRINTER(LRECL 121 BLKSIZE 121 RECFM VBA PERM"(CMS)

If you are using ISPF: You can use the QMF-supplied DPRE (Display Printed
Report) command synonym to view the effects of the width and length values
you specified without having to print the report. This is applicable only while
using DSQPRINT. For more information on DPRE, see ″Displaying Printed
Reports (DPRE) in TSO″ on page xx and the QMF Reference.

Enabling Users to Print Objects

Chapter 26. Enabling Users to Print Objects 445

Using QMF services to handle printing on VSE
To use QMF services to handle printing, specify the type of storage you want
to use and provide CICS with a name for the storage.

Choosing between temporary storage queues and transient data queues
CICS temporary storage queues are limited to 32, 767 rows of output. They
route data only to local print destinations. If you use temporary storage, you
need to write a program that routes the data from the queue to the VSE
POWER LIST queue.

CICS transient data queues are limited only by the amount of storage
associated with the CICS DCT before CICS is started. You can define the
transient data queue as an intrapartition or extrapartition data queue. You can
use transient data queues to print data to a file, SYSLST, or SYSPCH. A
transient data queue that you define as an intrapartition data queue is limited
to 32,767 rows and can only be used to print data to a file.

Using the PRINT command to route output to queues
You can specify on the QMF PRINT command both the name of the queue
and the type of storage defined for that queue. For example, to print a report
to a temporary storage queue named XYZ, enter this command:
PRINT REPORT (QUEUET=TS,QUEUEN=XYZ

To print from a transient data queue named XYZ, you can enter the following
command. Ensure that the transient data queue is defined to CICS before its
first use.
PRINT REPORT (QUEUET=TD,QUEUEN=XYZ

QUEUET and QUEUEN are abbreviations for QUEUETYPE and QUEUENAME.

QMF issues an ENQ statement on the queue name to prevent writing to the
queue if another program is using it. If the name is already enqueued by
another application, CICS indicates to QMF that the queue is unavailable at
that time. Use the SUSPEND (S) keyword to tell QMF what to do when the
queue is unavailable. Use the value YES (or Y) to hold the report until the
queue is available, then write to it. For example:
PRINT REPORT (QUEUET=TS,QUEUEN=XYZ,S=YES

The value NO is the default and cancels the PRINT command, returning a
message to the user.

Using global variables to define queues for printing
If you do not specify a value on the PRINT command, QMF uses values
stored in the global variables DSQAP_CICS_PQNAME and
DSQAP_CICS_PQTYPE.

Enabling Users to Print Objects

446 Installing and Managing QMF

Set the global variable DSQAP_CICS_PQTYPE to TS if you are using
temporary storage queues for printing, and TD if you are using transient data
queues. TS is the default.

Use the global variable DSQAP_CICS_PQNAME to define the name of the
temporary storage or transient data queue. Names for transient data queues
can be from 1 to 4 bytes. Names for temporary storage queues can be from 1
to 8 bytes. The default temporary storage queue name is DSQPnnnn, where
nnnn is the user’s 4 byte CICS terminal ID. For example, DSQPA085 is a valid
name.

Printing to VSE POWER using QMF
You can print to a POWER-controlled printer using QMF. To do this, you need
to write a program (see Figure xx on page 127) that segments the POWER
output queue. You also need a QMF procedure to execute the QMF PRINT
command and execute a CICS transaction that will execute the program. You
can then run the QMF procedure using the PRINT PF key from the QMF
Report screen.

You need to customize your CICS startup JCL, the DCT, and your synonym
and function key tables to print using the LST POWER queue. (In your JCL
and DCT entries, you may modify the references to POWER printer 04E, print
class P, and logical unit SYS097, to values that are appropriate for your
installation. Be sure that you make the modifications to all of the steps.
Remember that printer 00E (usually print class A and logical unit SYSLST) is
not recommended for QMF printing, because CICS statistics are routed there
and would be segmented with your QMF report.

Modifying your CICS startup JCL: The following POWER LST statements
need to be in the CICS startup JCL. 04E is the printer address for the QMF
output:
*$$LST LST=04E,CLASS=P

Include the following assignment in the CICS startup JCL:
//ASSGNSYS097,04E

You do not need printer DLBLs/EXTENTs in the CICS startup JCL for the
QMF printer destination.

Modifying your synonym and function key tables: Run the job shown in
Figure 127 on page 448 to create and initialize two tables. The tables define a
user-defined command synonym and a function key setting.

Ensure that column definitions that can contain nulls are not changed to NOT
NULL, or QMF will not process the table entry properly.

Enabling Users to Print Objects

Chapter 26. Enabling Users to Print Objects 447

Sample program to segment POWER output: The CICS program shown in
Figure 43 on page 127 issues the POWER SEGMENT macro. You need to add
a PCT entry for transaction S04E and a PPT entry for assembler program

* $$ JOB JNM=QMFPRINT,CLASS=0
* $$ LST CLASS=A
// JOB QMFPRINT SQL TABLES
// LIBDEF *,SEARCH=PRD2.SQL340
// EXEC ARIDBS
CONNECT Q IDENTIFIED BY ????????; -- MODIFY PASSWORD
SET AUTOCOMMIT ON;
--
CREATE TABLE Q.UTM_SYN

(VERB CHAR(18) NOT NULL,
OBJECT VARCHAR(31) .
SYNONYM_DEFINITION VARCHAR(254)NOT NULL)
IN PUBLIC.TEMP1;

--
CREATE UNIQUE INDEX Q.UTM_SYN_IDX1 ON Q.UTM_SYN (VERB, OBJECT);
--
GRANT SELECT ON Q.UTM_SYN TO PUBLIC;
--
INSERT INTO Q.UTM_SYN

(VERB,SYNONYM_DEFINITION)
VALUES (’SYSPRINT’,’RUN PROC Q.SYSPRINT_PROC’);

--
CREATE TABLE Q.UTM_PFK

(PANEL CHAR(18) NOT NULL,
ENTRY_TYPE CHAR(1) NOT NULL,
NUMBER SMALLINT NOT NULL,
PF_SETTING VARCHAR(254))
IN PUBLIC.TEMP1;

--
CREATE UNIQUE INDEX Q.UTM_PFK_IDX1 ON Q.UTM_PFK

(PANEL, ENTRY_TYPE, NUMBER);
--
GRANT SELECT ON Q.UTM_PFK TO PUBLIC;
--
INSERT INTO Q.UTM_PFK

(PANEL, ENTRY_TYPE, NUMBER, PF_SETTING)
VALUES (’REPORT’, ’K’,2,’SYSPRINT’);

--
INSERT INTO Q.UTM_PFK

(PANEL, ENTRY_TYPE, NUMBER, PF_SETTING)
VALUES (’REPORT’, ’L’,1,
’1=Help 2=Sys Print 3=End 4=Dflt Print 5=Chart 6=Query’);

/*
/&
* $$ EOJ

Figure 127. User-defined command synonym and function key setting

Enabling Users to Print Objects

448 Installing and Managing QMF

SAMSEGMP. This is command-level assembler, so TWASIZE is zero in the
PCT. This program segments the 04E POWER printer output.

Enabling Users to Print Objects

Chapter 26. Enabling Users to Print Objects 449

* $$ JOB JNM=SAMSEGMP,CLASS=0,DISP=D
* $$ LST CLASS=A
// JOB SAMSEGMP ASSEMBLER CMD LEVEL CICS
// LIBDEF PAHASE,CATALOG=????.?????? -- your target library
* ***************************************
* STEP 1: CICS COMMAND LEVEL TRANSLATION
* ***************************************
// DLBL IJSYSPH,’ASM.TRANSLATION’,0,SD
// EXTENT SYSPCH,1,0,??????,???? -- specify start, length
ASSGN SYSPCH,DISK,VOL=DOSRES,SHR
// EXEC DFHEAP1$,SIZE=512K
*ASM XOPTS(NOEPILOG)
**
* *
* PROGRAM NAME: SAMSEGMP *
* TRANSID: S04E *
* *
* PURPOSE: SEGMENT POWER-CONTROLLED PRINTER OUTPUT. *
* TRANSID IDENTIFIES THE DCT TYPE=EXTRA ENTRY *
* THAT CORRESPONDS TO A SPECIFIC SYSTEM PRINTER. *
* *
* NOTES: STARTED BY QMFE, T0 RUN AS ASYNC TRANS. *
* THEREFORE, NO TERMINAL MESSAGES ARE DISPLAYED. *
**

EJECT
* ***
* REGISTER USAGE
* ***
*
R1 EQU 1
R2 EQU 2
R11 EQU 11 EXEC INTERFACE BLOCK
R12 EQU 12 PROGRAM BASE
R13 EQU 13 EIB DYNAMIC STORAGE
*
* **
* PROGRAM ENTRY
* **
*
SAMSEGMP DFHEIENT DTATREG=R13,CODEREG=R12,EIBREG=R11
*

B STRT ==> BRANCH AROUND
DC CLB’SAMSEGMP’ PROGRAM NAME.
DC CLB ’01/20/94’ LAST MOD DATE.

STRT DS 0H
EXEC CICS ENQ RESOURCE(EIBTRNID) LENGTH(4).
MVC USERNM(8),BLANKS * CLEAR SAVE AREA * 9/94
EXEC CICS RETRIEVE INTO(USERNM) LENGTH(USERLEN)
MVC JOBJECL,JOBINIT
MVC JOBJECL+13(8),USERNM * MOVE QMF SUERID TO JOB STATEMENT

*
CLC EIBTRNID,=C’S04E’ SEGMENT LST=04E ?
BE SEG04E
DC H’0’ ABEND IF NOT 04E.

*
SEG04E DS 0H

SEGMENT DEVADDR=SYS097,JECL=JOBJECL
SEGMENT DEVADDR=SYS097,JECL=S04EJECL
B DONE

DONE DS 0H
EXEC CICS DEQ RESOURCE(EIBTRNID) LENGTH(4)

Enabling Users to Print Objects

450 Installing and Managing QMF

Creating the QMF procedures: Create two procedures to send your report to a
specified printer.

The first procedure is:
SET GLOBAL (Q=’
RUN Q.SYSPRINT_PROC2

Save the procedure using SHARE=YES to enable your users to access the
segmenting program.
SAVE PROC AS Q.SYSPRINT_PROC (SHARE=YES

Create the following two-line QMF procedure. The first line is a QMF
command; the second line causes QMF to start the transaction S04E
asynchronously. After QMF routes a report to the printer destination,
transaction S04E causes POWER to segment the output and print it
immediately. Without segmentation, you do not get the printout until CICS is
shut down (like waiting for CICS STATS).
PRINT REPORT (QUEUENAME=S04E QUEUETYPE=TD LENGTH=62 WIDTH=132
CICS S043 (FROM=&Q&DSQAO_CONNECT_ID&Q)

Save the procedure using SHARE=YES:
SAVE PROC AS Q.SYSPRINT-PROC2 (SHARE=YES

Modifying your user’s profile: Modify your user’s profile to ensure that the
SYNONYM column name is the name of the created synonym table
(Q.UTM_SYN) and the PFKEY column name is the name of the created
function key table (Q.UTM_PFK). To update one or more profiles in the QMF
control table Q.PROFILE, run an SQL command. For example, to enable
JONES to use the synonym, run the following command:
UPDAE Q.PROFILES

SET SYNONYM = ’Q.UTM_SYN’,
PFKEYS = ’Q.UTM_PFK’
WHERE CREATOR = ’JONES’

Using your new print procedure: To produce the startup JCL and DCT changes,
you need to cycle CICS. (Recycling CICS also replaces your old PCT and PPT
tables with your changed tables, unless you used CEDA.) All other changes
can be made before or after CICS is cycled, but we suggest that you do the
table definition job and the segmentation program assembly before restarting
CICS. Also, if a user is using QMF when the profile is updated, the changes
will not take effect until the user exits QMF and starts a new session. You can
test your changes as follows:
1. User logs on to QMF, runs a query, and the report screen is displayed
2. User sees customized function key line and presses PF2 (instead of PF4)
3. QMF associates PF2 with the synonym SYSPRINT

Enabling Users to Print Objects

Chapter 26. Enabling Users to Print Objects 451

4. Synonym SYSPRINT becomes the command RUN PROC
Q.SYSPRINT_PROC

5. Q.SYSPRINT_PROC issues a global, then invokes Q.SYSPRINT_PROC2
6. Q.SYSPRINT_PROC2 issues the print report command
7. Q.SYSPRINT_PROC2 also starts transaction S04E to segment printer
8. User sees message:

OK, Your procedure was run.

Defining a synonym for the print function key

Use these instructions to define a synonym in native OS/390 batch, TSO,
CICS, and VM.

Native OS/390 batch, TSO and ISPF
You can customize your system so you can print an object without exiting
QMF. You can use a local print utility by simply pressing the Print function
key, if you define a command synonym for printing and customize your Print
function key.
1. Create a REXX exec or CLIST to locally print the current object. Here is a

sample, using the QMF callable interface:
/* PRTQMF REXX EXEC for local DSPRINT */
CALL DSQCIX “PRINT PROC (PRINTER=MYPRINT1”
DSPRINT ’&SYSUID..MYPRINT1.DATA’

This example assumes you have a MYPRINT1 nickname defined and that
it directs print output to a data set called MYPRINT1.DATA.

Some QMF users prefer to bypass the print command and simply export
the object for local printing. In this case your exec looks something like:
/* PRTQMF REXX EXEC for local print utilities called DSPRINT */
CALL DSQCIX “EXPORT PROC TO MYPROC”
DSPRINT ’&SYSUID..MYPROC.PROC’

2. Create a QMF command synonym for printing. Here is a sample query
that creates a command synonym PRTQMF to execute the PRTQMF exec:
INSERT INTO COMMAND_SYNONYMS (VERB, SYNONYM_DEFINITION, REMARKS)
VALUES(’PRTQMF’,’TSO PRTQMF’,’Print QMF Proc’)

3. You can now customize a function key on the procedure panel to use this
command synonym. You need to customize for each panel. A query to
customize function key 4 on the procedure panel looks like this:
INSERT INTO PFKY__TABLE (PANEL,ENTRY_TYPE,NUMBER,PF_SETTING)
VALUES(’PROC’,’K’, 4, ’PRTQMF’)

Enabling Users to Print Objects

452 Installing and Managing QMF

This example assumes that the user’s profile has the PFKEYS column
value set to PFKY_TABLE, the name of the function key customization
table. (After running the query, QMF must be restarted to implement the
function key change.)

Defining a synonym for the print function key for CICS
You can customize to allow a user to print an object (in the following
example, a report) without exiting QMF.

Use this technique to invoke a local print utility when the Print function key
is pressed.
1. Create a QMF procedure called PRT__QMF. This sends the object to

temporary storage, then starts a transaction that prints the object.
PRINT REPORT (QUEUENAME=QMFREPT,QUEUETYPE=TS)
CICS QMFP (FROM=’QMFREPT’)

2. Create a QMF command synonym for printing. Here is a sample query
that creates a command synonym PRTQMF to execute the PRTQMF exec:
INSERT INTO COMMAND__SYNONYMS (VERB, SYNONYM__DEFINITION, REMARKS)
VALUES(’PRTQMF’,’RUN PRT_QMF’,’Print QMF Report’)

3. You can now customize a function key on the report panel to use this
command synonym. You need to customize a key for each panel. A query
to customize function key 4 on the report panel looks like this:
INSERT INTO PFKY_TABLE (PANEL,ENTRY_TYPE,NUMBER,PF_SETTING)
VALUES(’REPORT’,’K’, 4, ’PRTQMF’)

This example assumes the user’s profile has the PFKEYS column value set
to PFKY_TABLE, the name of the function key customization table. (After
the query runs, QMF must be restarted to implement the function key
change.)

Defining a synonym for the print function key in VM
Here is a customization technique that allows a user to print an object without
exiting QMF. The first two steps of this technique show how to define a
command synonym for printing; the final step shows how to customize your
Print function key. This technique can be used to invoke a local print utility
when the Print function key is pressed.
1. Create a REXX exec that locally prints the current object. Here is a sample,

called PRTQMF, using the QMF callable interface:
/* PRTQMF REXX EXEC for local print utility called MPRINT */
CALL DSQCI "PRINT PROC (PRINTER=MYPIRNT1"
mprint MYPRINT1 ADMLIST A

This example assumes you have a MYPRINT1 nickname defined and that
it creates a file with a file type of ADMLIST.

Enabling Users to Print Objects

Chapter 26. Enabling Users to Print Objects 453

Some QMF users prefer to bypass the PRINT command and simply export
the object for local printing. In this case your exec looks something like:
/* PRTQMF REXX EXEC for local DSPRINT *?
CALL DSQCIX "EXPORT PROC TO MYPROC"
mprint MYPROC PROC A

2. Create a QMF command synonym for printing. Here is a sample query
that creates a command synonym PRTQMF to execute the PRTQMF exec.
INSERT INTO COMMAND_SYNONYMS (VERB, SYNONYM_DEFINITION, REMARKS)
VALUES(’PRTQMF’, ’CMS PRTQMF’, ’Print QMF Proc’)

3. You can now customize a function key on the procedure panel to use this
command synonym. You need to customize a key for each panel. a query
to customize function key 4 on the procedure panel would look like this:
INSERT INTO PFKY_TABLE (PANEL,ENTRY_TYPE,NUMBER,PF-SETTING)
VALUES(’PROC’,’K’ 4, ’PRTQMF’)

This example assumes that the user’s profile has the PFKEYS column
value set to PFKY_TABLE, the name of the function key customization
table. (After running the query, QMF must be restarted to implement the
function key change.)

Defining a synonym for the print function key on VSE
For an example of using a command synonym, see “Modifying your synonym
and function key tables” on page 447.

Printing objects

The rules for printing QMF and database objects vary, depending on the type
of object. Table 64 summarizes the requirements for each object.

Table 64. Summary of print requirements for QMF and database objects

Object type Nickname
required

GDDM gets control Where output is routed for
OS/390 or VM

Where output is routed for
VSE

Chart Yes GDDM ICU always gets
control when the PRINT
command is issued.

Output is controlled by
GDDM.

Destination associated with
TONAME in the
ADMMNICK specification.

Form Yes GDDM always gets
control when the PRINT
command is issued.

Output is controlled by
GDDM.

Destination associated with
TONAME in the
ADMMNICK specification.

QBE query No Only if the nickname is
supplied on the PRINT
command or in profile.

Output goes to the device
associated with the GDDM
nickname or the ddname
DSQPRINT.

Temporary storage or
transient data queue. If a
Nickname is supplied,
output goes to the
destination associated with
TONAME in the
ADMMNICK specification.

Enabling Users to Print Objects

454 Installing and Managing QMF

Table 64. Summary of print requirements for QMF and database objects (continued)

Object type Nickname
required

GDDM gets control Where output is routed for
OS/390 or VM

Where output is routed for
VSE

Procedure No Only if the nickname is
supplied on the PRINT
command or in profile.

Output goes to the device
associated with the GDDM
nickname or the ddname
DSQPRINT.

Temporary storage or
transient data queue. If a
Nickname is supplied,
output goes to the
destination associated with
TONAME in the
ADMMNICK specification.

Profile No Only if the nickname is
supplied on the PRINT
command or in profile.

Output goes to the device
associated with the GDDM
nickname or the ddname
DSQPRINT.

Temporary storage or
transient data queue. If a
nickname is supplied,
output goes to the
destination associated with
TONAME in the
ADMMNICK specification.

Prompted
query

Yes GDDM always gets
control when the PRINT
command is issued.

Output is controlled by
GDDM.

Destination associated with
TONAME in the
ADMMNICK specification.

Report No Only if the nickname is
supplied on PRINT
command or in profile.

Output goes to the device
associated with the GDDM
nickname or the ddname
DSQPRINT.

Temporary storage or
transient data queue. If a
nickname is supplied,
output goes to the
destination associated with
TONAME in the
ADMMNICK specification.

SQL query No Only if the nickname is
supplied on the PRINT
command or in profile.

Output goes to the device
associated with the GDDM
nickname or the ddname
DSQPRINT.

Temporary storage or
transient data queue. If a
nickname is supplied,
output goes to the
destination associated with
TONAME in the
ADMMNICK specification.

Table No Only if the nickname is
supplied on the PRINT
command or in profile.

Output goes to the device
associated with the GDDM
nickname or the ddname
DSQPRINT.

Temporary storage or
transient data queue. If a
nickname is supplied,
output goes to the
destination associated with
TONAME in the
ADMMNICK specification.

Enabling Users to Print Objects

Chapter 26. Enabling Users to Print Objects 455

Enabling Users to Print Objects

456 Installing and Managing QMF

Chapter 27. Customizing QMF Commands

QMF command synonyms help customize QMF commands by allowing you
to define your own terms and link them to QMF, CICS on OS/390, TSO, CMS,
or CICS on VSE commands. A synonym might be another word for a
command, or it might be a term that does the work of several commands.

After you create a command synonym, QMF end users can enter the synonym
on the command line in the same way they enter a QMF command.

Using the default synonyms provided with QMF

QMF provides four applications that can be used as installation-defined
commands. After installation, these synonyms appear in the
Q.COMMAND_SYNONYMS table. Users with access to this table can call
these applications by entering the appropriate synonym, as if it were a QMF
command.

Default synonyms on OS/390
Workstation database server users: After installation, these synonyms appear
in the table Q.COMMAND_SYN_TSO.

Display Printed Report
Synonym is DPRE. Displays the user’s current report in its printed
form.

Batch Query/Procedure
Synonym is BATCH. Allows the user to run a query or procedure in
batch mode.

Layout Form
Synonym is LAYOUT. Lets the user tailor reports without running a
query. For information on the Layout command syntax and an
example of how to use this application, see the QMF Reference manual.

Bridge to ISPF
Synonym is ISPF. Lets the user temporarily leave interactive mode
QMF and “bridge” to an ISPF/PDF session. After the session is
ended, the user returns to QMF at the point where the ISPF command
was issued. For more on the ISPF application, see the Using QMF and
Developing QMF Applications manuals.

ISPF considerations
The synonyms DPRE, BATCH, LAYOUT, and ISPF are valid only if

© Copyright IBM Corp. 1983, 2002 457

QMF is started under ISPF. If QMF is not started under ISPF, you can
access ISPF by entering TSO ISPSTART.

Displaying printed reports (DPRE) in ISPF
A printed report does not look exactly as it does on-screen. For example, the
displayed report is treated as a single page even with one or more page
breaks in the printed report.

The differences between the printed report and its displayed version are
largely cosmetic; the facts and figures on the screen and those on the printed
page are the same. However, the differences can be important. (For more
detailed information about the differences, see the Using QMF manual.) IBM
supplies the QMF application DPRE to display the report as it will look when
printed. After QMF is installed, the application can be invoked using a
command stored in the Q.COMMAND_SYNONYMS table. The application is
shared for everyone’s use.

DPRE components under TSO are a procedure named Q.DSQAER1P in the
database and a CLIST named DSQABR13 in the library QMF720.SDSQCLTE.

Using DPRE: To use DPRE, load the DATA object with the report data and
the FORM object with the appropriate form, then issue the command:
DPRE

The application then generates the printer output and displays it through the
ISPF browse facility. After you are done browsing, the printer output
disappears.

If you are using an NLF: Issue the translated command synonym for DPRE to
display printed reports. For example, the translated German command
synonym for DPRE is AGB. For the translated command synonym for DPRE
in the other language environments, see the Q.COMMAND_SYNONYM_n
control table or the translated online help for the command.

Report Parameters: The LENGTH parameter for the report being browsed is
taken from PROFILE. The WIDTH parameter specified in PROFILE is used if
it is less than 132 (lrecl); otherwise, a width of 132 (lrecl) is used because this
is the length specified in the TSO allocate statement. If 132 is too small, the
TSO allocate statement for DSQPRINT can be changed to accommodate a
larger width.

Performance Considerations: The design of QMF encourages users to
develop their printed reports by alternately modifying the FORM panels and
displaying REPORT, until the report suits the user’s needs. With DPRE, the
user can alternate changing the FORM panel and browsing the tentative
report with DPRE. Users should be aware, however, that this method of

Customizing QMF Commands

458 Installing and Managing QMF

development is more expensive than the first method, and should be used
sparingly when resources are at a premium.

For a large report, all the rows of the report are fetched before the report is
displayed.

Responding to Errors: DSQPRINT is the ddname for the data set that
receives output from QMF PRINT commands in which PRINTER=’ ’ is either
expressed or implied. When a user runs DPRE, DSQPRINT is redefined as the
data set that holds the material to be browsed. If an error stops the run, this
definition might still be in effect.

Customizing DPRE: Important: When making modifications to any file, first
rename it and be sure to keep backup copies of original and modified files.

Under TSO, you can change two areas in DPRE:
v Handling the BROWSE data set

The application reallocates DSQPRINT as a sequential data set created for
the user. This data set contains the printed form of the report for the user to
browse. You can change the name of this data set and its disposition.

v Modifying the function keys for DPRE
To modify the function keys for DPRE, you must edit the QMF PROC
Q.DSQAER1P and QMF720.SDSQCLTE(DSQABR13). For example, if you
want to change the DPRE application function key 12 from CURSOR to
RETRIEVE, you need to do both of the following:
– In Q.DSQAER1P, change the value on the PF12CON line from CURSOR

to RETRIEVE.
– In the CLIST DSQABR13, change the value for both ZPF12 and ZPF24

from CURSOR to RETRIEVE.
v Reallocating DSQPRINT

After a user finishes browsing the report, DSQPRINT must be reallocated to
what it was before the application was called. The following statements in
the application do this for you. They are in the procedure DSQAER1P.
ADDRESS TSO “ATTR DSQDPRA LRECL(133) RECFM(F B A) BLKSIZE(1330)”
ADDRESS TSO “ALLOC DDNAME(DSQPRINT) SYSOUT(A) USING(DSQDPRA)”

You can change the ALLOC statement. For example, you can change the
output class for DSQPRINT from A to C. You might want to do this if
output class C handles confidential printouts and most QMF reports at
your installation are confidential. The modified ALLOC statement looks like
this:
ADDRESS TSO “ALLOC DDNAME(DSQPRINT) SYSOUT(C) USING(DSQDPRA)”

Customizing QMF Commands

Chapter 27. Customizing QMF Commands 459

Default synonyms on VM

Display Printed Report
Synonym is DPRE. Displays the user’s current report in its printed
form.

Batch Query/Procedure
Synonym is BATCH. Allows the user to run a query or procedure in
batch mode.

Layout Form
Synonym is LAYOUT. Lets the user tailor reports without running a
query. For information on the Layout command syntax and an
example of how to use this application, see the QMF Reference manual.

Bridge to ISPF
Synonym is ISPF. Lets the user temporarily leave interactive mode
QMF and “bridge” to an ISPF/PDF session. After the session is
ended, the user returns to QMF at the point where the ISPF command
was issued. For more on the ISPF application, see the Using QMF and
Developing QMF Applications manuals.

ISPF considerations
The synonyms DPRE, BATCH, LAYOUT, and ISPF are valid only if
QMF is started under ISPF. If QMF is not started under ISPF, you can
access ISPF by entering TSO ISPSTART. You must start QMF under
ISPF in order to use the above three applications.

Displaying printed reports (DPRE) in CMS
A printed report does not look exactly as it does on-screen. For example, the
displayed report is treated as a single page even with one or more page
breaks in the printed report.

The differences between the printed report and its displayed version are
largely cosmetic; the facts and figures on the screen and those on the printed
page are the same. However, the differences can be important. (For more
detailed information about the differences, see the Using QMF manual.) IBM
supplies the QMF application DPRE to display the report as it will look when
printed. After QMF is installed, the application can be invoked using a
command stored in the Q.COMMAND_SYNONYMS table. The application is
shared for everyone’s use.

DPRE components under CMS are a procedure named Q.DSQAER2p in the
database and a CLIST named DSQABR23 in the QMF production library.

Using DPRE: To use DPRE, load the DATA object with the report data and
the FORM object with the appropriate form, then issue the command:
DPRE

Customizing QMF Commands

460 Installing and Managing QMF

The application then generates the printer output and displays it through the
ISPF browse facility. After you are done browsing, the printer output
disappears.

If you are using an NLF: Issue the translated command synonym for DPRE to
display printed reports. For example, the translated German command
synonym for DPRE is AGB. For the translated command synonym for DPRE
in the other language environments, see the Q.COMMAND_SYNONYM_n
control table or the translated online help for the command.

Report Parameters: The LENGTH parameter for the report being browsed is
taken from PROFILE. The WIDTH parameter specified in PROFILE is used if
it is less than 132 (lrecl); otherwise, a width of 132 (lrecl) is used because this
is the length specified in the CMS FILEDEF statement for DSQPRINT. If 132 is
too small, the CMS FILEDEF statement for DSQPRINT can be changed to
accommodate a larger width.

Performance Considerations: The design of QMF encourages users to
develop their printed reports by alternately modifying the FORM panels and
displaying REPORT, until the report suits the user’s needs. With DPRE, the
user can alternate changing the FORM panel and browsing the tentative
report with DPRE. Users should be aware, however, that this method of
development is more expensive than the first method, and should be used
sparingly when resources are at a premium.

For a large report, all the rows of the report are fetched before the report is
displayed.

Responding to Errors: DSQPRINT is the name of the file that receives output
from QMF PRINT commands in which PRINTER=’ ’ is either expressed or
implied. When a user runs DPRE, DSQPRINT is redefined as the file that
holds the material to be browsed. If an error stops the run, this definition
might still be in effect after the run terminates.

Customizing DPRE: Important: When making modifications to any file, first
rename it and be sure to keep backup copies of original and modified files.

Under CMS, you can change the parameters that DSQPRINT has when DPRE
ends normally. This is controlled by statements in the QMF procedure
DSQAER2P which is invoked by the DPRE command synonym. This
statement:
Print_opts = "LRECL 121 RECFM FBA BLKSIZE 1210"
Address COMMAND "FILEDEF DSQPRINT PRINTER ("Print_opts

changes the record format (LRECL) from 133 to 121, and changes the block
size (BLKSIZE) from 1330 to 1210.

Customizing QMF Commands

Chapter 27. Customizing QMF Commands 461

Creating a command synonym table

When a user starts a QMF session, QMF loads a command synonym table
whose name you specify in the synonyms field of the user’s profile. When
you enter a command, QMF first checks the synonym table for a match. If
there is no match, QMF assumes the command is a base QMF command.
When you enter the letters QMF in front of any command, QMF automatically
assumes the command is a base QMF command and does not check the
synonym table for a match.

Creating a command synonym table on OS/390
Use the following procedure to create a command synonym table. Then see
“Entering command synonym definitions into the table” on page 465 for
instructions on entering your synonyms and their definitions.
1. If necessary, acquire or add a table space to hold the command synonym

table. On OS/390 the storage container for a table is referred to as a table
space. The examples below use the OS/390 default table space name,
TBSPACE1. Refer to the appropriate DB2 System Administration manual for
how to add a table space. If you do not have an available table space,
create one for your table with a query like the following:

Running this query creates the table space DSQTSSN1. The storage group
and database for this table space are also those for the table space
containing Q.COMMAND_SYNONYMS.

You might be able to use DSQDBCTL.DSQTSSYN as a table space. The
Q.COMMAND_SYNONYMS table resides in DSQDBCTL.DSQTSSYN.

2. From the QMF SQL query panel, run an SQL CREATE TABLE statement
similar to the one in Figure 130 on page 463 to create the table. Substitute
your own table name in place of COMMAND_SYNONYMS and your own
table space name for TBSPACE1. Type the other portions of the query
exactly as shown.

CREATE TABLESPACE DSQTSSN1
IN DSQDBCTL

USING STOGROUP DSQSGSYN
PRIQTY 100
SECQTY 20
LOCKSIZE PAGE
BUFFERPOOL BP0
CLOSE NO

Figure 129. Creating a table space

Customizing QMF Commands

462 Installing and Managing QMF

The VERB and OBJECT columns store your synonym. The
SYNONYM_DEFINITION column stores the command or procedure that
runs when you enter the synonym.

The columns can be in any order, and you can add a column for
comments so users know what function each synonym performs.

3. Add comments to the DB2 system catalog using the following example for
the COMMAND_SYNONYMS table created with the query in Figure 130.
COMMENT ON TABLE COMMAND_SYNONYMS IS ’SYNONYMS FOR R AND D’

The phrase SYNONYMS FOR R AND D appears in the REMARKS column of the
DB2 system catalog.

You do not need to add comments about your new table to the DB2
system catalog, but if you do, one comment might be about the table,
others might describe the columns. For example, suppose that
COMMAND_SYNONYMS has a column named AUTHID that distinguishes
private from public synonyms. To add a comment to explain this, run a
query:
COMMENT ON COLUMN COMMAND_SYNONYMS.AUTHID

IS ’PRIVATE SYNONYM: USE AUTH ID. PUBLIC SYNONYM: USE NULL’

By running a subsequent COMMENT ON query, you can replace the
current one. For more on COMMENT ON queries, see the DB2 UDB for
OS390 Administration Guide.

4. Create an index to maximize performance at initialization time, when
QMF processes the command synonym table. Use a statement similar to
the following:
CREATE UNIQUE INDEX SYNONYMS_INDEX

ON COMMAND_SYNONYMS (VERB, OBJECT)

Index both the VERB and OBJECT columns with the UNIQUE keyword to
prevent duplicate synonym definitions. If you choose not to use the
UNIQUE keyword, QMF allows duplicate synonyms in the table; QMF
uses the first synonym it locates in the table and displays a warning
message on the QMF Home panel after initialization.

CREATE TABLE COMMAND_SYNONYMS
(VERB CHAR(18) NOT NULL,

OBJECT VARCHAR(31),
SYNONYM_DEFINITION VARCHAR(254) NOT NULL,
REMARKS VARCHAR(254))

IN TBSPACE1

Figure 130. Creating a command synonym table

Customizing QMF Commands

Chapter 27. Customizing QMF Commands 463

Creating a command synonym table on VM and VSE
Use the following procedure to create a command synonym table. Then see
“Entering command synonym definitions into the table” on page 465 for
instructions on entering your synonyms and their definitions.
1. If necessary, acquire or add a dbspace to hold the command synonym

table.
2. From the QMF SQL query panel, run an SQL CREATE TABLE statement

similar to the one in Figure 131 to create the table. Substitute your own
table name in place of COMMAND_SYNONYMS and your own table
space name for TBSPACE1. Type the other portions of the query exactly as
shown.

The VERB and OBJECT columns store your synonym. The
SYNONYM_DEFINITION column stores the command or procedure that
runs when you enter the synonym.

The columns can be in any order, and you can add a column for
comments so users know what function each synonym performs.

3. Add comments to the SYSTEMS.SYSCATALOG table using the following
example for the COMMAND_SYNONYMS table created with the query in
Figure 131.
COMMENT ON TABLE COMMAND_SYNONYMS IS ’SYNONYMS FOR R AND D’

The phrase SYNONYMS FOR R AND D appears in the REMARKS column of the
SYSTEMS.SYSCATALOG table.

4. Create an index to maximize performance at initialization time, when
QMF processes the command synonym table. Use a statement similar to
the following:
CREATE UNIQUE INDEX SYNONYMS_INDEX

ON COMMAND_SYNONYMS (VERB, OBJECT)

Index both the VERB and OBJECT columns with the UNIQUE keyword to
prevent duplicate synonym definitions. If you choose not to use the
UNIQUE keyword, QMF allows duplicate synonyms in the table; QMF

CREATE TABLE COMMAND_SYNONYMS
(VERB CHAR(18) NOT NULL,

OBJECT VARCHAR(31),
SYNONYM_DEFINITION VARCHAR(254) NOT NULL,
REMARKS VARCHAR(254))

IN DBSPACE1

Figure 131. Creating a command synonym table

Customizing QMF Commands

464 Installing and Managing QMF

uses the first synonym it locates in the table and displays a warning
message on the QMF Home panel after initialization.

Entering command synonym definitions into the table

After you create a command synonym table, use an SQL INSERT statement
similar to the one in Figure 132 to enter your synonyms into the table. You
can also use the Table Editor to update the table, as explained in Using QMF.

After it is activated according to the procedure in “Activating the synonyms”
on page 474, the synonym COMPUTE MONTHLY_SALES runs a QMF linear
procedure called SALES_FIGURES, owned by user JONES.

The query in Figure 133 shows an example of a synonym that has no entry in
the object column:

After it is activated, the synonym EXECUTE runs the query currently in the
QMF temporary storage area.

The synonyms in Figures 132 and 133 follow guidelines that allow QMF to
process each synonym correctly. The rest of this section explains these
guidelines, which you need to follow to ensure that QMF correctly processes
your entries for the VERB, OBJECT, and SYNONYM_DEFINITION columns in
the table.

Choosing a verb
Every command synonym definition must have a verb. Only the object name
is optional.

The verb is your own word for the QMF RUN command, CICS, TSO, or CMS
command stored in the SYNONYM_DEFINITION column. For example, you

INSERT INTO COMMAND_SYNONYMS (VERB,OBJECT,SYNONYM_DEFINITION)
VALUES(’COMPUTE’, ’MONTHLY_SALES’, ’RUN PROC JONES.SALES_FIGURES’)

Figure 132. Creating a command synonym definition

INSERT INTO COMMAND_SYNONYMS (VERB,SYNONYM_DEFINITION)
VALUES(’EXECUTE’,’RUN QUERY’)

Figure 133. Creating a command synonym definition

Customizing QMF Commands

Chapter 27. Customizing QMF Commands 465

might create the synonym COMPUTE for the QMF base verb RUN if your
company has financial analysts who run only procedures that return financial
results.

Rules for the VERB column
Ensure entries in the VERB column of the synonym table:
v Are 1 to 18 characters long.
v Do not contain blanks.
v Do not include the verb QMF (other base QMF commands are allowed).
v Have an alphabetic or national character as the first character. (In English,

national characters are #, @, and $.)

Characters after the first letter can be alphabetic, national characters, decimal
digits, or the underscore. No other characters are allowed.

The following examples demonstrate these rules. QMF ignores rows that have
invalid entries in the VERB column, and displays a warning message.

Valid Verbs:
Invalid Verbs:

COMPUTE
DO SALES (Blanks not allowed unless surrounded by double quotes)

DISPLAY
ADJ%AGE (% not allowed)

PRINT
PRINT__PRODUCTIVITY__TOTALS (more than 18 characters)

Using base QMF verbs as command synonym verbs
You can use base QMF commands, such as PRINT, as synonyms. For example,
you might choose to define a synonym that automatically routes print output
to a GDDM-defined printer.

When you define a synonym that is also a base QMF command, instruct users
to precede the command with the letters QMF when they want to use the
base QMF command. For example, the synonym DISPLAY might represent a
synonym definition that executes the QMF command RUN PROC
SALES__REPORT. The SALES__REPORT procedure runs a query and prints a
report on a GDDM-defined printer. Users who forget to enter QMF in front of
DISPLAY might get a formatted, printed report of data they did not
necessarily want. Using base verbs in verb-object synonyms has a similar
impact.

Some base QMF commands must be followed by a parameter. For example,
you need to follow the IMPORT command with an object type, such as
TABLE. If you are using a verb such as IMPORT in a verb-object pair, choose
an object name that is not one of these parameters to prevent users from

Customizing QMF Commands

466 Installing and Managing QMF

inadvertently running the synonym. For other base commands you use, see
the syntax diagrams in the QMF Reference manual to find out if the command
requires a parameter.

OS/390 concerns
The verb is your own word for the QMF RUN command, CICS, or TSO
command stored in the SYNONYM_DEFINITION column. For example, you
might create the synonym COMPUTE for the QMF base verb RUN if your
company has financial analysts who run only procedures that return financial
results.

VM concerns
The verb is your own word for the QMF RUN command or CMS command
stored in the SYNONYM_DEFINITION column. For example, you might
create the synonym COMPUTE for the QMF base verb RUN if your company
has financial analysts who run only procedures that return financial results.

VSE concerns.
The verb is your own word for the QMF RUN command or CICS command
stored in the SYNONYM_DEFINITION column. For example, you might
create the synonym COMPUTE for the QMF base verb RUN if your company
has financial analysts who run only procedures that return financial results.

Choosing an object name
An object name is optional in a command synonym. When you do use an
object name, however, ensure users specify both the verb and the object name;
otherwise, QMF cannot find a match in the synonym table. Entries in the
OBJECT column must follow these rules:
v Must be 1 to 18 characters long.
v Must conform to the rules for naming DB2 tables.
v Must be surrounded by double quotes if the object name has blanks or

other special characters. (Both QMF and the database manager remove the
double quotes when the name is processed.)

The following examples show valid and invalid objects.

Valid Objects:
Invalid Objects:

PFKEYS
80CAT (first character is numeric)

MONTH_2_REPORT
ADJ%AGE (% not allowed)

“User x”.“Net Sales”
JANUARY__PRODUCTIVITY (over 18 characters)

“Net Sales”
JONES GROSS (double quotes required for blanks)

Customizing QMF Commands

Chapter 27. Customizing QMF Commands 467

If you are using fully qualified table names: Object names can look like fully
qualified table names; this is consistent with the QMF language. However,
QMF objects other than tables cannot be referenced by three-part names. For
example, the object name in the following QMF command has a fully
qualified table name:
DISPLAY FORM.BACKUP

Choosing the synonym definition
The synonym definition is the QMF command or procedure that runs when
the user enters the command synonym.

Choosing the synonym on OS/390
An entry in the SYNONYM_DEFINITION column can include:
v A RUN command that calls a QMF procedure or query. For example, RUN

PROC JONES.SALES_DATA might be a synonym definition for the
command synonym COMPUTE MONTHLY_SALES.

v A TSO command that calls a CLIST.
v A CICS command that starts another CICS transaction.

Your synonym definition can even include both types of commands if the
definition runs a QMF linear procedure.

For information about developing complex applications to run in a command
synonym, see the Developing QMF Applications manual.

Using a linear procedure in the synonym definition: A linear procedure is a
QMF procedure that executes QMF commands sequentially. Your synonym
definition can include a linear procedure that does the work of several QMF
commands. For example, the procedure in Figure 134 on page 469 performs
the following tasks:
1. Runs the following query, called SALES_DATA, which creates a report that

shows all the customers handled by sales representative number 20:
SELECT QUANTITY, CUSTNO
FROM Q.SALES
WHERE SALESREPNO = 20

2. Routes the report from QMF to TSO virtual storage or a CICS temporary
queue. In Figure 134 on page 469, XYZ is the name of the temporary
storage queue.

3. Runs a CICS or TSO procedure to route the report from virtual storage to
a predefined print destination. In Figure 134 on page 469, RPTX is the
transaction name. It runs asynchronously with QMF to route output to a
destination named REPORTX.

Customizing QMF Commands

468 Installing and Managing QMF

Your definition for a synonym that runs this procedure might look similar to
the one in Figure 135:

If you are using an NLF: Make sure that the QMF commands in the queries,
forms, and other objects included in the procedure are translated before you
use the command synonym that calls the procedure. Also ensure these
components are suitable for the NLF you are using. Unless your procedure
sets the DSQEC_NLFCMD_LANG variable to 1, ensure the commands are
translated before you use the command synonym.

Choosing the synonym definition on VM
An entry in the SYNONYM_DEFINITION column can include:
v A RUN command that calls a QMF procedure or query. For example, RUN

PROC JONES.SALES_DATA might be a synonym definition for the
command synonym COMPUTE MONTHLY_SALES.

v A CMS command that calls a QMF procedure.

Your synonym definition can even include both types of commands if the
definition runs a QMF linear procedure.

For information about developing complex applications to run in a command
synonym, see the Developing QMF Applications manual.

Using a procedure in the synonym definition: Your synonym definition can
include a linear procedure that does the work of several QMF commands. For
example, the procedure in Figure 137 on page 470 performs the following
tasks:
1. Runs the following query, called SALES_DATA, which creates a report that

shows all the customers handled by sales representative number 20:

-- Procedure name: SALES_PROC
RUN QUERY SALES_DATA
PRINT REPORT (QUEUENAME=XYZ,QUEUETYPE=TS)
TSO RPTX (FROM=(’REPORTX, XYZ’))

Figure 134. Sample procedure to run using a command synonym

SYNONYM
VERB OBJECT DEFINITION
----------- --------------- -------------------
SHOW SALES RUN PROC SALES_PROC

Figure 135. Using a command synonym to run a linear procedure

Customizing QMF Commands

Chapter 27. Customizing QMF Commands 469

SELECT QUANTITY, CUSTNO
FROM Q.SALES
WHERE SALESREPNO = 20

2. Routes the report from QMF to a file.
3. Runs a QMF procedure to route the report to a predefined print

destination. Your definition for a synonym that runs this procedure might
look similar to this:

If you are using an NLF: Make sure that the QMF commands in the queries,
forms, and other objects included in the procedure are translated before you
use the command synonym that calls the procedure. Also ensure these
components are suitable for the NLF you are using. Unless your procedure
sets the DSQEC_NLFCMD_LANG variable to 1, ensure the commands are
translated before you use the command synonym. The
DSQEC_NLFCMD__LANG variable is discussed in “Enabling English support
in an NLF environment” on page 421

Choosing the synonym definition on VSE
An entry in the SYNONYM_DEFINITION column can include:
v A RUN command that calls a QMF procedure or query. For example, RUN

PROC JONES.SALES_DATA might be a synonym definition for the
command synonym COMPUTE MONTHLY_SALES.

v A CICS command that starts another CICS transaction.

Your synonym definition can even include both types of commands if the
definition runs a QMF linear procedure.

For information about developing complex applications to run in a command
synonym, see the Developing QMF Applications manual.

-- Procedure name: SALES_PROC
RUN QUERY SALES_DATA
CMS FILEDEF DSQPRINT DISK MYPRT FILE A (LRECL 75 BLKSIZE 75 RECFM F
PRINT REPORT (PRINTER=‘ ‘

Figure 136. Sample procedure to run using a command synonym ON CMS

SYNONYM
VERB OBJECT DEFINITION
----------- --------------- -------------------
SHOW SALES RUN PROC SALES_PROC

Figure 137. Using a command synonym to run a procedure

Customizing QMF Commands

470 Installing and Managing QMF

Using a linear procedure in the synonym definition: A linear procedure is a
QMF procedure that executes QMF commands sequentially. Your synonym
definition can include a linear procedure that does the work of several QMF
commands. For example, the procedure in Figure 138 performs the following
tasks:
1. Runs the following query, called SALES_DATA, which creates a report that

shows all the customers handled by sales representative number 20:
SELECT QUANTITY, CUSTNO
FROM Q.SALES
WHERE SALESREPNO = 20

2. Routes the report from QMF to CICS temporary storage. In Figure 138,
XYZ is the name of the temporary storage queue.

3. Runs a CICS transaction to route the report from temporary storage to a
predefined print destination. In Figure 138, RPTX is the transaction name.
It runs asynchronously with QMF to route output to a destination named
REPORTX.

Your definition for a synonym that runs this procedure might look similar to
the one in Figure 139:

If you are using an NLF: Make sure that the QMF commands in the queries,
forms, and other objects included in the procedure are translated before you
use the command synonym that calls the procedure. Also ensure these
components are suitable for the NLF you are using. Unless your procedure
sets the DSQEC_NLFCMD_LANG variable to 1, ensure the commands are
translated before you use the command synonym. The
DSQEC_NLFCMD__LANG variable is discussed in “Enabling English support
in an NLF environment” on page 421

-- Procedure name: SALES_PROC
RUN QUERY SALES_DATA
PRINT REPORT (QUEUENAME=XYZ,QUEUETYPE=TS)
CICS RPTX (FROM=(’REPORTX, XYZ’))

Figure 138. Sample procedure to run using a command synonym

SYNONYM
VERB OBJECT DEFINITION
----------- --------------- -------------------
SHOW SALES RUN PROC SALES_PROC

Figure 139. Using a command synonym to run a linear procedure

Customizing QMF Commands

Chapter 27. Customizing QMF Commands 471

Using variables in the synonym definition
You can use variables in the synonym definition to pass values for like-named
variables present in objects (such as queries) named in the definition. For
example, Figure 140 shows a definition that passes the value Q.STAFF for the
table name, which is evaluated when MYQUERY runs.

MYQUERY might look something like:
SELECT * FROM &TABLENAME

Ampersands are doubled in a variable name in the synonym definition
because they become single ampersands when QMF executes the RUN
command.

Use double ampersands in the synonym definition for all variables except the
variable &ALL. &ALL is a special QMF variable that allows you to enter
variable values when you enter the synonym, rather than including them in
the synonym definition. When you use the variable &ALL in a synonym
definition, QMF uses as variable values any information you enter to the right
of the synonym. You can use the &ALL variable to show where the
information is located within the synonym definition.

The synonym definition in Figure 141 shows an example of a synonym
defined using &ALL.

The query named STAFFQUERY might look something like the following:
SELECT * FROM Q.STAFF
WHERE DEPT=&DEPT and JOB=&EMPLOYEE_JOB

SYNONYM
VERB OBJECT DEFINITION
---------- --------- --------------------------------------
EXECUTE - RUN QUERY MYQUERY (&&TABLENAME=Q.STAFF

Figure 140. Using variables in command synonym definitions

SYNONYM
VERB OBJECT DEFINITION
---------- --------- ------------------------
SHOW_INFO - RUN QUERY STAFFQUERY (&ALL)

Figure 141. Using the variable &ALL in a command synonym definition

Customizing QMF Commands

472 Installing and Managing QMF

After activating the SHOW_INFO synonym defined in the preceding example,
you can enter the following statement from the QMF command line to display
information about all the managers in Department 10:
SHOW_INFO &DEPT=10 &EMPLOYEE_JOB=’MGR’

Rules for &ALL: When you use the variable &ALL in a synonym definition:
v Use &ALL only once in a synonym definition.
v Always write &ALL in uppercase.
v Never follow &ALL with a number or letter.
v Any value you substitute for &ALL must be syntactically correct when

QMF evaluates the entire command. For more information on syntax of
QMF commands, see the QMF Reference manual.

If a user does not supply a value following the command synonym, QMF
substitutes a null value for &ALL. In the synonym definition shown in
Figure 141 on page 472, QMF prompts the user for values for the &DEPT and
&EMPLOYEE_JOB variables if the user enters SHOW_INFO by itself on the
command line.

Keying information into the SYNONYM_DEFINITION column: Follow
these rules when keying your synonym definitions into the synonym table:
v Add single quotes around a variable in your synonym definition.

Single quotes around a variable eliminate the need for the user to add
quotes to the command synonym when running a query. For example,
&ALL has single quotes in this synonym definition:
RUN MYQUERY (&&NAMEVALUE=’&ALL’

If you search for the name O’BRIEN, you do not need to enter ’O’BRIEN’,
because QMF does this for you.

v Enter base verbs and keywords in uppercase.
Literal information in the synonym definition is not converted to uppercase.

v Qualify all object names if their owners are different from the SQL
authorization ID of the user who uses the synonym.
QMF leaves names unqualified when searching for a synonym that contains
the object name specified. For example, if your synonym definition includes
a query named MY_SALES owned by user ID JONES, ensure that the object
name in the synonym definition reads JONES.MY_SALES. Otherwise,
JONES is the only user that can use that command synonym.

v Use only capital letters for letters that lie outside of delimited identifiers.
If QMF converts user input (the synonym) to uppercase and the synonym
definition is in lowercase, QMF cannot find the synonym definition that
matches the synonym the user entered. The CASE value of the user’s QMF

Customizing QMF Commands

Chapter 27. Customizing QMF Commands 473

profile controls whether input is converted to uppercase. Use the SET
PROFILE command to change the CASE value. This command is explained
in the QMF Reference manual.

Activating the synonyms

Command synonyms follow the same rules for abbreviation as QMF
commands. Any abbreviation must indicate a unique QMF command or
command synonym. For example, the minimum valid abbreviation for the
synonym EXECUTE is EXE. If you enter only EX, QMF can’t distinguish the
command synonym EXECUTE from the base QMF command EXPORT. See
the QMF Reference manual for the proper abbreviations for QMF commands.

Activating the synonyms on OS/390
To activate the command synonym table for your users:
1. Update the SYNONYMS field of the user’s profile with the proper

command synonym table name.
For example, to assign the COMMAND__SYNONYMS table to the user
JONES in the English language and the table GUMMOW.XYZ to the user
SCHMIDT in the German NLF environment, use the query in Figure 142:

Important: Always specify a value for TRANSLATION when you are
updating Q.PROFILES, or you might change more rows than you intend.

The query in Figure 142 applies to users who are already enrolled in QMF.
You can use a similar query to update the SYSTEM profile. If you are
enrolling a new user, use an INSERT query.

2. Grant the SQL SELECT privilege to PUBLIC so that assigned users can
access the synonyms. For example:

Base QMF (English)
German NLF

UPDATE Q.PROFILES
UPDATE Q.PROFILES

SET SYNONYMS=’COMMAND__SYNONYMS’
SET SYNONYMS=’GUMMOW.XYZ’

WHERE CREATOR=’JONES’
WHERE CREATOR=’SCHMIDT’

AND TRANSLATION=’ENGLISH’
AND TRANSLATION=’DEUTSCH’

AND ENVIRONMENT=’TSO’
AND ENVIRONMENT=’TSO’

Figure 142. Activating a user’s QMF command synonyms

Customizing QMF Commands

474 Installing and Managing QMF

GRANT SELECT ON COMMAND__SYNONYMS TO PUBLIC

If you are using a view of a synonym table rather than the table itself,
grant SELECT on only the view to prevent users from accessing synonyms
not meant for their use. Views are discussed in “Minimizing maintenance
of command synonym tables” on page 476.

3. Instruct users to end the current QMF session and start another to activate
the new synonyms.

Activating the synonyms on VM and VSE
To activate the command synonym table for your users:
1. Update the SYNONYMS field of the user’s profile with the proper

command synonym table name.
For example, to assign the COMMAND__SYNONYMS table to the user
JONES in the English language and the table GUMMOW.XYZ to the user
SCHMIDT in the German NLF environment, use the query below:

Important: Always specify a value for TRANSLATION when you are
updating Q.PROFILES, or you might change more rows than you intend.

The query in Figure 143 applies to users who are already enrolled in QMF.
You can use a similar query to update the SYSTEM profile. If you are
enrolling a new user, use an INSERT query.

2. Grant the SQL SELECT privilege to PUBLIC so that assigned users can
access the synonyms. For example:
GRANT SELECT ON COMMAND__SYNONYMS TO PUBLIC

If you are using a view of a synonym table rather than the table itself,
grant SELECT on only the view to prevent users from accessing synonyms

Base QMF (English)
German NLF

UPDATE Q.PROFILES
UPDATE Q.PROFILES

SET SYNONYMS=’COMMAND__SYNONYMS’
SET SYNONYMS=’GUMMOW.XYZ’

WHERE CREATOR=’JONES’
WHERE CREATOR=’SCHMIDT’

AND TRANSLATION=’ENGLISH’
AND TRANSLATION=’DEUTSCH’

AND ENVIRONMENT=’CMS’
AND ENVIRONMENT=’CMS’

Figure 143. Activating a user’s QMF command synonyms

Customizing QMF Commands

Chapter 27. Customizing QMF Commands 475

not meant for their use. Views are discussed in “Minimizing maintenance
of command synonym tables”.

3. Instruct users to use the QMF CONNECT command to reconnect to the
database to activate the new synonyms. For example, user JONES who has
the password MYPW needs to enter:
CONNECT JONES (PA=MYPW

Each time you make a change to the table, instruct users to reconnect to the
database to activate the changes you made.

Minimizing maintenance of command synonym tables

The command synonym table is initialized before the QMF Home panel is
displayed. If you notice that QMF initialization time is increasing, you might
need to reorganize the command synonym table. To monitor the table’s
statistics, refer to the appropriate DB2 UDB Administration Guide .

To minimize the time you spend maintaining users’ command synonym
tables, consider either assigning one synonym table to all users or assigning a
variety of different views of the same table. Both methods are discussed in
this section.

Assigning one synonym table to all users
The more command synonym tables you create for individual users, the more
time you spend on maintenance. One way to reduce maintenance is to create
a single command synonym table and assign it to every user. The query in
Figure 144 assigns to every user of base (English) QMF a table named
COMMAND__SYNONYMS.

Assigning views of a synonym table to individual users
To enable users to have synonyms unique to their needs and still keep table
maintenance at an acceptable level, consider creating several views of one
synonym table, and assigning the views to individual users or groups of
users. There are three types of views you can create.

Synonyms for public or private use
If you have few synonyms that are used by individuals, consider creating and
assigning a view that flags each synonym for either public use (by all users)
or private use (by individual users):

UPDATE Q.PROFILES
SET SYNONYMS=’Q.COMMAND__SYNONYMS’
WHERE TRANSLATION=’ENGLISH’ and ENVIRONMENT=’TSO’

Figure 144. Assigning a single command synonym table to all QMF users

Customizing QMF Commands

476 Installing and Managing QMF

1. Add an AUTHID column to the synonym table when you create the table.
A null value in the AUTHID column indicates a public synonym; a user
ID in the AUTHID column indicates a private synonym. You can have
many entries for the same synonym, each assigned to a different user.

2. Use a query similar to that in Figure 145 to create a view on the synonym
table. This query allows a user (indicated by userid in the figure) to use
all public synonyms in the table and any synonyms assigned privately to
his or her SQL authorization ID.

Synonyms for public or group use
If you support a large group of end users, consider creating and assigning a
view that flags certain synonyms to be used by certain groups of users.

The synonym table used to create the view contains a single row for each
synonym that belongs to a user group, and a single row for each public
synonym. AUTHID is either null or has a value that uniquely identifies the
user group.
1. Add an AUTHID column to the synonym table if it does not have one.
2. Use a query similar to the one in Figure 146 to create the view on the

synonym table. The example in the figure shows a view created for a
group of users that have a common user ID, DEPTD02. All users in the
DEPTD02 group can use all public synonyms in the table and any
synonyms assigned specifically to the group.

Synonyms paired with an authorization table
Consider creating a separate table that holds in one column SQL authorization
IDs and in the other column the values of a key. If the keyed value for a
particular SQL authorization ID matches a keyed value in a row of the
command synonym table, the synonym described in that row is available to
the user.

CREATE VIEW SYNVIEW (VERB,OBJECT,SYNONYM__DEFINITION)
AS SELECT VERB, OBJECT, SYNONYM__DEFINITION

FROM COMMAND__SYNONYMS
WHERE AUTHID=’userid’ OR AUTHID IS NULL

Figure 145. Creating a view that controls individual and public use of synonyms

CREATE VIEW GROUPVIEW (VERB,OBJECT,SYNONYM__DEFINITION)
AS SELECT VERB, OBJECT, SYNONYM__DEFINITION

FROM COMMAND__SYNONYMS
WHERE AUTHID=’DEPTD02’ OR AUTHID IS NULL

Figure 146. Creating a view that controls group and public use of synonyms

Customizing QMF Commands

Chapter 27. Customizing QMF Commands 477

Use a query similar to the one in Figure 147 to implement this method of
maintaining command synonyms. The query creates a view called KEYVIEW
on the table COMMAND__SYNONYMS, incorporating in the view only the
synonyms that have keyed matches between COMMAND__SYNONYMS and
the auxiliary table, KEYTABLE.

CREATE VIEW KEYVIEW (VERB,OBJECT,SYNONYM__DEFINITION)
AS SELECT VERB, OBJECT, SYNONYM__DEFINITION

FROM COMMAND__SYNONYMS
WHERE AUTHID IS NULL OR AUTHID IN

(SELECT KEYS FROM KEYTABLE WHERE USER=userid)

Figure 147. Creating a view that uses an extra table to control use of synonyms

Customizing QMF Commands

478 Installing and Managing QMF

Chapter 28. Customizing QMF Function Keys

The default settings and labels for function keys on each QMF panel describe
a common set of QMF tasks that end users are likely to perform. However,
because every site’s needs are unique, QMF provides a way for you to
customize both the label that displays on the screen and the command QMF
executes when a user presses the key.

Choosing the keys that you want to customize

QMF function keys appear on two types of panels: primary panels, which are
full-screen panels such as FORM.MAIN and REPORT, and secondary panels,
which appear as window dialog panels. Help, prompt, and Prompted Query
panels are examples of secondary panels.

The tables in “Default keys on full-screen panels” show the default QMF
function key labels and commands for both full-screen and window panels;
use them to decide which function keys you want to change.

You cannot customize function keys on Table Editor panels. On other panels,
you can choose QMF or installation-defined commands to associate with any
function key label you modify.

Default keys on full-screen panels

Key Executed Command

Backward BACKWARD

Cancel CANCEL

Change CHANGE

Chart DISPLAY CHART or SHOW CHART

Check CHECK

Clear CLEAR

Command SHOW COMMAND

Comments SWITCH COMMENTS

Delete DELETE

Describe DESCRIBE

Draw DRAW

Edit Table EDIT TABLE

End END

© Copyright IBM Corp. 1983, 2002 479

Key Executed Command

Enlarge ENLARGE

Form DISPLAY FORM or SHOW FORM

Forward FORWARD

Help HELP

Insert INSERT

Left LEFT

List LIST

Print PRINT

Proc DISPLAY PROC or SHOW PROC

Profile DISPLAY PROFILE

Query DISPLAY QUERY or SHOW QUERY

Reduce REDUCE

Refresh REFRESH

Report DISPLAY REPORT or
SHOW REPORT

Retrieve RETRIEVE

Right RIGHT

Run RUN QUERY or RUN PROC

Save SAVE PROFILE

Show SHOW

Show Field SHOW FIELD

Show SQL SHOW SQL

Sort SORT

Specify SPECIFY

Specify View SPECIFY VIEW

Default keys on window panels

Key Executed Command

Attribute SPECIFY ATTRIBUTES

Backward BACKWARD

Cancel CANCEL

Clear CLEAR

Command SHOW COMMAND

Customizing QMF Function Keys

480 Installing and Managing QMF

Key Executed Command

Comments SWITCH COMMENTS

Condition SPECIFY CONDITION

Delete DELETE

Describe DESCRIBE

End END

Exit END

Forward FORWARD

Help HELP

Index HELP INDEX

Keys HELP KEYS

List LIST

Menu HELP MENU

More Help HELP MORE

Next Column NEXT COLUMN

Next Definition NEXT DEFINITION

Previous Column PREVIOUS COLUMN

Previous Definition PREVIOUS DEFINITION

Refresh REFRESH

Show Entity SHOW ENTITY

Show Field SHOW FIELD

Show View SHOW VIEW

Sort SORT

Specify Attributes SPECIFY ATTRIBUTES

Specify Condition SPECIFY CONDITION

Switch HELP SWITCH

On the global variable list panel, RESET GLOBAL is the command executed
when the Delete function key is pressed.

For more information on the commands associated with these function keys,
see the QMF Reference manual.

Customizing QMF Function Keys

Chapter 28. Customizing QMF Function Keys 481

Creating the function key table

Use these instructions to create the function key tables on OS/390, VM, and
VSE.

Creating the table on OS/390
After you decide which function keys you want to customize, follow these
steps to create a table that links your customized function key definitions with
the appropriate panels:
1. Use an SQL CREATE TABLE statement similar to the one shown in

Figure 148 to create the table. Substitute your own name for MY__PFKEYS.
Under TSO, substitute your own table space for TBSPACE1.

See the appropriate DB2 UDB Administration Guide for information on
creating a new table space.

2. Add comments to the DB2 system catalog using an SQL statement similar
to the following:
COMMENT ON TABLE MY__PFKEYS IS ’PF KEYS RESERVED FOR FINANCIAL ANALYSTS’

The phrase PF KEYS RESERVED FOR FINANCIAL ANALYSTS appears in the
REMARKS column of the DB2 system catalog. For more information on
adding comments to the system catalog, see the DB2 UDB for OS390
Administration Guide.

You do not need to add comments about your new table to the DB2
system catalog, but if you do, one comment might be about the table;
others might describe the columns. For example, suppose that
MY__PFKEYS has a column named AUTHID that distinguishes private from
public function keys. To add a comment to explain this, run a query:
COMMENT ON COLUMN MY__PFKEYS.AUTHID

IS ’PRIVATE PFKEY: USE AUTH ID. PUBLIC PFKEY: USE NULL’

By running a subsequent COMMENT ON query, you can replace the
current one. For more on COMMENT ON queries, see the DB2 UDB for
OS390 SQL Reference manual.

CREATE TABLE MY_PFKEYS
(PANEL CHAR(18) NOT NULL,
ENTRY__TYPE CHAR(1) NOT NULL,
NUMBER SMALLINT NOT NULL,
PF__SETTING VARCHAR(254),
REMARKS VARCHAR(254))
IN TBSPACE1

Figure 148. Creating a function key table

Customizing QMF Function Keys

482 Installing and Managing QMF

3. Create an index using an SQL statement similar to the following:
CREATE UNIQUE INDEX MY__PFKEYSX

ON MY__PFKEYS (PANEL, ENTRY__TYPE, NUMBER)

Use the UNIQUE keyword to index the PANEL, ENTRY__TYPE, and
NUMBER columns to ensure that no two rows of the table can be
identical.

If you choose not to use the UNIQUE keyword, QMF allows duplicate key
definitions. QMF displays warning messages on the Home panel if it finds
more than one key definition for the same key, and writes information
about the warning messages to the user’s trace data. Multiple key
definitions for window panels cause no messages; QMF uses the last
definition it finds.

Creating the table on VM and VSE
After you decide which function keys you want to customize, follow these
steps to create a table that links your customized function key definitions with
the appropriate panels:
1. Use an SQL CREATE TABLE statement similar to the one shown in

Figure 149 to create the table. Substitute your own name for MY__PFKEYS.
Substitute your own dbspace name for SPACE1.

2. Add comments to the SYSTEM.SYSCATALOG table using an SQL
statement similar to the following:
COMMENT ON TABLE MY__PFKEYS IS ’PF KEYS RESERVED FOR FINANCIAL ANALYSTS’

The phrase PF KEYS RESERVED FOR FINANCIAL ANALYSTS appears in the
REMARKS column of the SYSTEM.SYSCATALOG table.

3. Create an index using an SQL statement similar to the following:
CREATE UNIQUE INDEX MY__PFKEYSX

ON MY__PFKEYS (PANEL, ENTRY__TYPE, NUMBER)

CREATE TABLE MY_PFKEYS
(PANEL CHAR(18) NOT NULL,
ENTRY__TYPE CHAR(1) NOT NULL,
NUMBER SMALLINT NOT NULL,
PF__SETTING VARCHAR(254),
REMARKS VARCHAR(254))
IN DBSPACE1

Figure 149. Creating a function key table on VM and VSE

Customizing QMF Function Keys

Chapter 28. Customizing QMF Function Keys 483

Use the UNIQUE keyword to index the PANEL, ENTRY__TYPE, and
NUMBER columns to ensure that no two rows of the table can be
identical.

If you choose not to use the UNIQUE keyword, QMF allows duplicate key
definitions. QMF displays warning messages on the Home panel if it finds
more than one key definition for the same key, and writes information
about the warning messages to the user’s trace data. Multiple key
definitions for window panels cause no messages; QMF uses the last
definition it finds.

Entering your function key definitions into the table

You can use SQL INSERT statements or the QMF Table Editor to insert
customized key definitions into the function key table. Each function key
definition spans two rows in the table:
v One row specifies the command QMF issues when a user presses the key.
v The other row specifies the label text that appears on the screen.

Enter both rows for each key you want to customize. A function key
command without an associated label doesn’t appear on the user’s screen.
Similarly, a label with no associated command is inactive.

The next two sections discuss the values you need to enter for each row.

Linking a command with a function key
Each function key on a QMF panel is linked with a QMF command that
executes when the function key is pressed. To ensure your customized
function keys also work this way, make sure one of the two rows you enter
into the table has the values shown in Table 65 on page 485.

Customizing QMF Function Keys

484 Installing and Managing QMF

Table 65. Values to customize your function key table

Column Value Information

PANEL ID of the QMF panel
you’re customizing

“Full-screen panel identifiers” on page 488 shows the IDs
you need to use for full-screen panels. “Window panel
identifiers” on page 489 shows the IDs you need to use for
specific window panels.

If you want to define the same set of keys to appear on
every panel in a class of window panels, use the class ID
shown at the bottom of the tables. For example, to
customize the Specify panel of a Forms window, use the
panel ID FOSPEC if you want the Specify panel to have
different keys than the rest of the panels in the forms class.
Otherwise, use the panel ID FOXXXX, which characterizes
all panels in that class.

Changes you make using a class ID apply to all panels
customized by that class ID. Help and prompt windows
do not have a set of unique IDs; they can be customized
only by using class IDs.

ENTRY_TYPE K K indicates that this row defines the command QMF issues
when the key is pressed.

NUMBER Number of the function
key you’re customizing

If you are changing the definition for F5, enter a 5 in this
column.

F__SETTING Text of the command
that runs when the key
is pressed

Make sure this command is appropriate for the panel on
which it appears. For example, the ENLARGE command is
appropriate for only the QUERY panel in a QBE query.
Because QMF does not check if the command is
appropriate for the panel until the user presses the key,
test each of your new function keys before your end users
need them.

Enter the command in uppercase, because QMF does not
convert terminal input to uppercase when it retrieves the
commands associated with function keys. The command
won’t run if this value is lowercase and the CASE field of
the user’s profile has the value UPPER.

Ensure that each panel you customize has a key set to
END or CANCEL. Without a key defined to one of these
commands, users might not be able to exit the panel.

If you are using an NLF: Make sure the underlying command has the correct
national language translation; additionally, it is helpful if the label text for
each key is written in the language of the NLF you are using.

Customizing QMF Function Keys

Chapter 28. Customizing QMF Function Keys 485

Labeling the function key and positioning it on the screen
The function keys on each QMF panel have labels next to the function key
numbers. To ensure the label appears on the screen, you need to add a second
row to the table. In this row, make sure the columns of the function key table
have the following values:

Table 66. Values to label your function key table

Column Value Information

PANEL ID of the QMF panel
you’re customizing

This is the same ID you used for the first row of the
definition, explained in “Linking a command with a
function key” on page 484.

ENTRY_TYPE L L indicates that the row defines the label associated with
the function key.

NUMBER Number of the row
where the key appears
on the display, if you are
customizing a full-screen
panel

If you are customizing a window or help panel, NUMBER
represents the number of the function key (as it does in
the first row you added to the table in “Linking a
command with a function key” on page 484). For example,
on the Home panel, F5 appears in row 1 and F12 appears
in row 2.

PF_SETTING Text of the function key
labels

For full-screen panels, QMF displays on the screen exactly
what you enter in this column, and does not adjust for
spacing. For example, if you are customizing the QMF
Home panel, you need to enter all the keys that appear on
that panel, whether or not you customized them. QMF
does not automatically fill in the default key settings for
keys you choose not to customize. See Figure 150 on
page 487 for an example.

For window panels, you need to type only the label of the
key in this column. See Figure 151 on page 488 and
Figure 152 on page 488 for examples.

Examples of key definitions
Use the examples in this section to see how to enter a complete function key
definition for each type of QMF panel. The examples show how to update a
full-screen panel, a window panel, and a help panel.

The examples shown use panel IDs from the tables in “Identifying the panel
that you want to customize” on page 488. Use these tables to get the proper
values for the PANEL column of the function key table.

Important: Ensure that each customized secondary panel has a key set to the
CANCEL command to enable the user to exit the panel.

Customizing QMF Function Keys

486 Installing and Managing QMF

Entering a definition for a key on a full-screen panel
Use the SQL queries shown in Figure 150 to change F2 on the Home panel
from EDIT TABLE to IMPORT. Identify the Home panel with the panel ID
HOME, and indicate with the number 2 (in the first query shown) that you want
to customize the command executed when a user presses F2.

The QMF Home panel now displays Import for F2:

In the PF__SETTING column of the second query, be sure to type exactly
what appears in the top row of keys on the Home panel, even if you have not
customized each key. For example, if you specify only the word Import in the
PF__SETTING column for the second query, the Home panel looks like this:

Entering a definition for a key on a window panel
The SQL queries in Figure 151 on page 488 add a F3 key to the Tables panel in
Prompted Query. The function key executes the CANCEL command, and is
labeled CancelMe.

INSERT INTO MY__PFKEYS (PANEL,ENTRY__TYPE,NUMBER,PF__SETTING)
VALUES(’HOME’, ’K’, 2, ’IMPORT’)

INSERT INTO MY__PFKEYS (PANEL,ENTRY__TYPE,NUMBER,PF__SETTING)
VALUES(’HOME’,’L’,1,’1=Help 2=Import 3=End 4=Show 5=Chart 6=Query’)

Figure 150. Changing a function key for a QMF command on the Home panel

Type command on command line or use PF keys. For help, press PF1 or type HELP.
__
1=Help 2=Import 3=End 4=Show 5=Chart 6=Query
7=Retrieve 8=Edit Table 9=Form 10=Proc 11=Profile 12=Report
OK, cursor positioned.
COMMAND ===>

Type command on command line or use PF keys. For help, press PF1 or type HELP.
__
Import
7=Retrieve 8=Edit Table 9=Form 10=Proc 11=Profile 12=Report
OK, cursor positioned.
COMMAND ===>

Customizing QMF Function Keys

Chapter 28. Customizing QMF Function Keys 487

Entering a key definition for a Help or prompt panel
The SQL queries in Figure 152 add a F13 key to all help panels. The function
key executes the CANCEL command, and is labeled CancelMe.

All help and prompt panels are customized using a single class ID. Because
any changes you make to one panel in the class appear on all panels that are
defined with that class ID, ensure changes you make to one help or prompt
panel are appropriate for all the help and prompt panels in that class.

Identifying the panel that you want to customize

Use the tables in this section to help you determine what ID to enter in the
PANEL column of your function key table. The panel ID appears in the upper
left corner of the panel, when the global variable DSQDC__SHOW__PANID is
set to 1, using the following command:
SET GLOBAL (DSQDC__SHOW__PANID=1

Full-screen panel identifiers
The full-screen panel identifiers for the QMF English base are listed in
Figure 153 on page 489. For the list of valid full-screen panel IDs in a QMF
NLF, type in the QMF command: HELP DSQ22957 from within any panel of
the QMF NLF. Valid full-screen panel IDs for each QMF NLF are listed in the
language-specific versions of the DSQ22957 message. Enter the identifiers in
the PANEL column of the function key table exactly as they are shown here or
in the message text.

INSERT INTO MY__PFKEYS (PANEL,ENTRY__TYPE,NUMBER,PF__SETTING)
VALUES(’QPTABL’, ’K’, 3, ’CANCEL’)

INSERT INTO MY__PFKEYS (PANEL,ENTRY__TYPE,NUMBER,PF__SETTING)
VALUES(’QPTABL’, ’L’, 3, ’CancelMe’)

Figure 151. Changing a function key on the Specify panel of Prompted Query

INSERT INTO MY__PFKEYS (PANEL,ENTRY__TYPE,NUMBER,PF__SETTING)
VALUES(’HEXXXX’, ’K’, 13, ’CANCEL’)

INSERT INTO MY__PFKEYS (PANEL,ENTRY__TYPE,NUMBER,PF__SETTING)
VALUES(’HEXXXX’, ’L’, 13, ’CancelMe’)

Figure 152. Changing a function key on a help panel or prompt panel

Customizing QMF Function Keys

488 Installing and Managing QMF

Window panel identifiers
Use the tables in this section to reference window panel IDs. If you set the
global variable DSQDC__SHOW__PANID to display the panel IDs, you will
notice that each ID shown in these tables is prefaced by 4 characters when it
appears on the screen.

Window panels not named in the tables do not have unique panel IDs, and
can be customized using the class ID shown at the bottom of each table. All
class IDs have the character string XXXX in them. These characters are not
variable characters; they are actually part of the ID.

Command windows

Panel Identifier Title or Description

COENTR Command Entry

COXXXX Command Window Class

Forms Windows

Panel Identifier Title or Description

FOALIG Alignment

FODFIN Definition

FOSPEC Specify

FOXXXX Form Window Class

Global variable windows

Panel Identifier Title or Description

GLADVA Add Variables

GLSHVA Show Variables

GLXXXX Global Variables Window Class

PROMPTED QUERY FORM.BREAK1 FORM.COLUMNS
SQL QUERY FORM.BREAK2 FORM.CONDITIONS
QBE QUERY FORM.BREAK3 FORM.DETAIL
PROC FORM.BREAK4 FORM.FINAL
PROFILE FORM.BREAK5 FORM.MAIN
REPORT FORM.BREAK6 FORM.OPTIONS
GLOBALS FORM.CALC FORM.PAGE
HOME

Figure 153. Full-screen panel identifiers for QMF English base

Customizing QMF Function Keys

Chapter 28. Customizing QMF Function Keys 489

Help and prompt windows

Panel Identifier Title or Description

HEXXXX Help Window Class

PRXXXX Prompt Window Class

Location windows

Panel Identifier Title or Description

PLLOCA Location Window List

Object list windows

Panel Identifier Title or Description

OBDESC Object Description

OBLIAC Object List: Action

OBLIMU Object List: Multi-selection

OBLISI Object List: Single-selection

OBSORT Object List Sort

OBXXXX Object List Window Class

Prompted query windows

Panel Identifier Title or Description

QPCDCH Condition Connector - Change

QPCDIT Condition Connector

QPCOCH Column - Change

QPCODE Column Description

QPCOFI Column Summary Function Items

QPCOFU Column Summary Functions

QPCOLI Column Names List

QPCOLU Columns

QPDUCH Duplicate Rows - Change

QPDUPL Duplicate Rows

QPEXPR Expression

QPJOCO Join Columns

QPJOTA Join Tables

QPROBE Rows - Between

QPROCH Rows - Change (left side)

Customizing QMF Function Keys

490 Installing and Managing QMF

Panel Identifier Title or Description

QPROCT Rows - Containing

QPROC1 Rows - Comparison Operators 1

QPROC2 Rows - Comparison Operators 2

QPROEN Rows - Ending With

QPROEQ Rows - Equal To

QPROGQ Rows - Greater Than or Equal To

QPROGR Rows - Greater Than

QPROLQ Rows - Less Than or Equal To

QPROLS Rows - Less Than

QPROST Rows - Starting With

QPROWS Rows (Row Conditions)

QPSHFI Show Field

QPSHSQ Show SQL

QPSOCH Sort - Change

QPSORT Sort

QPSPEC Specify

QPTABL Tables

QPXXXX PQ Window Class

Activating new function key definitions

Use these instructions to activate new function key definitions on OS/390,
VM, and VSE.

Activating definitions on OS/390
To enable users to use the customized function key definitions you created:
1. Update the PFKEYS field of the user’s profile with the name of your

function key definitions table.
For example, use a query like the one in Figure 154 on page 492 to assign
to English QMF user JONES the table MY__PFKEYS, and to German NLF
user SCHMIDT the table MEIN__FKY. Always include a value for the
TRANSLATION and ENVIRONMENT columns in a query that updates
the Q.PROFILES table.

Customizing QMF Function Keys

Chapter 28. Customizing QMF Function Keys 491

2. Grant the SQL SELECT privilege to users who need to access the table.
To allow any user to whom the table is assigned to use it, grant the
SELECT privilege to PUBLIC. For example:
GRANT SELECT ON MY__PFKEYS TO PUBLIC

To minimize maintenance of function keys at your site, you can assign a
view of the table. Grant the SELECT privilege on only the view to prevent
users from accessing function keys not meant for their use.

The procedures for assigning views of a function key table are the same as
those for command synonym tables, discussed in “Minimizing
maintenance of command synonym tables” on page 476. Use the strategies
discussed in that section to decide whether to assign a table or a view to
individual users or groups of users.

3. Instruct users to end the current QMF session and start another to activate
the new function keys.

Activating definitions on VM
To enable users to use the customized function key definitions you created:
1. Update the PFKEYS field of the user’s profile with the name of your

function key definitions table.
For example, use a query like the one in Figure 155 on page 493 to assign
to English QMF user JONES the table MY__PFKEYS, and to German NLF
user SCHMIDT the table MEIN__FKY. Always include a value for the
TRANSLATION and ENVIRONMENT columns in a query that updates
the Q.PROFILES table.

Base QMF (English)
German NLF

UPDATE Q.PROFILES
UPDATE Q.PROFILES

SET PFKEYS = ’MY__PFKEYS’
SET PFKEYS = ’MEIN__PFKY’

WHERE CREATOR=’JONES’
WHERE CREATOR=’SCHMIDT’

AND TRANSLATION = ’ENGLISH’
AND TRANSLATION = ’DEUTSCH’

AND ENVIRONMENT = ’TSO’)
AND ENVIRONMENT = ’TSO’)

Figure 154. Making customized function keys accessible to a user on OS/390

Customizing QMF Function Keys

492 Installing and Managing QMF

2. Grant the SQL SELECT privilege to users who need to access the table.
To allow any user to whom the table is assigned to use it, grant the
SELECT privilege to PUBLIC. For example:
GRANT SELECT ON MY__PFKEYS TO PUBLIC

To minimize maintenance of function keys at your site, you can assign a
view of the table. Grant the SELECT privilege on only the view to prevent
users from accessing function keys not meant for their use.

The procedures for assigning views of a function key table are the same as
those for command synonym tables discussed in “Minimizing maintenance
of command synonym tables” on page 476 Use the strategies discussed in
that section to decide whether to assign a table or a view to individual
users or groups of users.

3. Instruct users to reconnect to the database to initialize a QMF session with
the new function key definitions. For example, user JONES who has the
password MYPW needs to enter:
CONNECT JONES (PA=MYPW

Activating definitions on VSE
To enable users to use the customized function key definitions you created:
1. Update the PFKEYS field of the user’s profile with the name of your

function key definitions table.
For example, use a query like the one in Figure 156 on page 494 to assign
to English QMF user JONES the table MY__PFKEYS, and to German NLF
user SCHMIDT the table MEIN__FKY. Always include a value for the
TRANSLATION and ENVIRONMENT columns in a query that updates
the Q.PROFILES table.

Base QMF (English)
German NLF

UPDATE Q.PROFILES
UPDATE Q.PROFILES

SET PFKEYS = ’MY__PFKEYS’
SET PFKEYS = ’MEIN__PFKY’

WHERE CREATOR=’JONES’
WHERE CREATOR=’SCHMIDT’

AND TRANSLATION = ’ENGLISH’
AND TRANSLATION = ’DEUTSCH’

AND ENVIRONMENT = ’CMS’
AND ENVIRONMENT = ’CMS’ (or ’TSO’)

Figure 155. Making customized function keys accessible to a user

Customizing QMF Function Keys

Chapter 28. Customizing QMF Function Keys 493

2. Grant the SQL SELECT privilege to users who need to access the table.
To allow any user to whom the table is assigned to use it, grant the
SELECT privilege to PUBLIC. For example:
GRANT SELECT ON MY__PFKEYS TO PUBLIC

To minimize maintenance of function keys at your site, you can assign a
view of the table. Grant the SELECT privilege on only the view to prevent
users from accessing function keys not meant for their use.

The procedures for assigning views of a function key table are the same as
those for command synonym tables, discussed in “Minimizing
maintenance of command synonym tables” on page 476. Use the strategies
discussed in that section to decide whether to assign a table or a view to
individual users or groups of users.

3. Instruct users to reconnect to the database to initialize a QMF session with
the new function key definitions. For example, user JONES who has the
password MYPW needs to enter:
CONNECT JONES (PA=MYPW

Testing and problem diagnosis for the function key table

After you have activated the new function key definition by inserting the
function key table name into your Q.PROFILES entry, the new definitions are
ready to be tested. The new definitions do not take effect until one of two
conditions is met.
v You close QMF and then start a new QMF session.
v From within QMF, you reconnect to QMF by entering the CONNECT TO

locname command, where locname is the same location name that you see on
the QMF home panel.

Base QMF (English)
German NLF

UPDATE Q.PROFILES
UPDATE Q.PROFILES

SET PFKEYS = ’MY__PFKEYS’
SET PFKEYS = ’MEIN__PFKY’

WHERE CREATOR=’JONES’
WHERE CREATOR=’SCHMIDT’

AND TRANSLATION = ’ENGLISH’
AND TRANSLATION = ’DEUTSCH’

AND ENVIRONMENT = ’CICSVSE’
AND ENVIRONMENT = ’CICSVSE’ (or ’TSO’)

Figure 156. Making customized function keys accessible to a user

Customizing QMF Function Keys

494 Installing and Managing QMF

If you see the message ″Warning messages have been generated″ after you
perform one of these two actions, exit QMF and examine your QMF trace data
(DSQDEBUG) output. The trace provides messages that you can use to fix
problems. If you do not see the new function key definitions after
reconnecting to QMF, it is possible that the Q.SYSTEM_INI proc or other user
controlled features is covering up a possible ″Warning messages have been
generated″ message. In this case, exit QMF and review the DSQDEBUG trace
output.

If the QMF trace data shows no errors, issue the SHOW GLOBALS command
and check the global variable DSQAP_PFKEY_TABLE. If this global variable
does not contain the name of the newly created or modified function key
table, review your Q.PROFILES row entry.

Customizing QMF Function Keys

Chapter 28. Customizing QMF Function Keys 495

496 Installing and Managing QMF

Chapter 29. Creating Your Own Edit Codes for QMF Forms

Note: This chapter contains General Use Programming Interface and
Associated Guidance information.

QMF forms

QMF forms help users to control the format of data returned from the
database. Use edit codes in the EDIT column of the MAIN and COLUMNS
panels of the QMF form to format report data in different ways. For example,
use a decimal edit code for a column that returns salary data. This edit code
formats the numeric data into a decimal with a currency symbol.

If the edit codes supplied with QMF do not meet the report editing needs of
your site, you can use the information in this chapter to create your own edit
codes to be used in the EDIT column of the FORM.MAIN and
FORM.COLUMNS panels. The QMF Reference manual shows the edit codes
supplied with QMF.

This chapter also shows how to write an edit exit routine in High Level
Assembler, PL/I, or COBOL to format the data described by your edit code.
QMF provides both a standard interface to your edit exit routine and a
sample edit exit program you can use as a starting point for writing your
own.

QMF supports edit routines in 31-bit or 24-bit AMODE or RMODE; however,
some versions of supported languages do not support 31-bit addressing. QMF
running in CICS requires 31-bit addressing.

Choosing an edit code

Create either a Uxxxx or Vxxxx edit code to be handled by your edit exit
routine. For U codes, data passed to the edit routine has the internal database
representation of the source data. For V codes, numeric data is converted to a
character string, and this character string is passed to the edit program.

Both codes can indicate processing for either character or numeric data. U and
V must be uppercase. Replace xxxx with zero to four characters (letters, digits,
or special characters) that can be entered from a terminal; embedded blanks or
nulls are not allowed. The following examples show valid U-type and V-type
edit codes:
U1 UAB42 V_1 VX%5

© Copyright IBM Corp. 1983, 2002 497

When the source data is character, codes of either type are equally easy to
process. If the formatting requires arithmetic operations, consider using U
codes for numeric sources; otherwise, use V codes. If the data type is
extended floating point, ensure that the programming language supports it.
For example, VS COBOL II does not handle extended floating point data. In
this case, use V codes.

For V codes containing numeric data, QMF converts the data to character
format and then calls the user edit routine. The length of the converted
number varies depending upon its original data type, as shown in Table 67.

Table 67. How QMF converts numeric data according to data type

If data type of original
numeric data is:

QMF converts it to this length:

Small integer 5

Integer 11

Decimal Equal to the precision of the original data (raised to an
odd number if the original data is even)

Floating point 15 or more depending on the base 10 exponent

Extended floating point 30 or more depending on the base 10 exponent

You do not need to restrict an edit code to the processing of numeric data, or
to the processing of character data. The sample edit routines supplied with
QMF process one edit code for both numeric and character data.

If the CASE field of a user’s profile has the value UPPER or STRING, QMF
converts all input entered from the terminal to uppercase, and the edit code
might not be recognized. If your edit code is written to accept edit codes in
mixed case, enter the edit codes when case is set to mixed.

Handling DATE, TIME, and TIMESTAMP information

You can also use the edit code exit to format date, time, and timestamp
values.

If your installation supports date/time data types, you can format columns
with data types of DATE, TIME, and TIMESTAMP. This enables your users to
use local date/time exit routines. For more information about these data
types, see the Using QMF manual. You need to remember that these are DB2,
not QMF exits. For details about how these exits are created refer to the
appropriate DB2 System Administration manual.

Your edit routine can format data from these columns, just as it can format
data from columns of the other data types. The one difference is that the

Creating Your Own Edit Codes for QMF Forms

498 Installing and Managing QMF

value to be formatted, which appears in the control block field ECSINPT, is
always passed as a character string, whether the code to be processed is a U
code or a V code. The format of the string is described in Table 68.

Table 68. Formatting DATE, TIME, and TIMESTAMP data

Data type Form of the string

DATE data yyyy-mm-dd where:
yyyy Specifies the year. It is always a four-digit number.
mm Specifies the month (01 for January, ... 12 for

December). It is always a two-digit number that can
contain a leading zero.

dd Specifies the day of the month. It is always a two-digit
number that can contain a leading zero.

The dashes (-) represent true dashes.

For example, 1990-12-12 is the date December 12, 1990.

TIME data hh.mm.ss where:
hh Specifies the hour (based on a 24-hour clock, from 00

to 23). It is always a two-digit number that can contain
a leading zero.

mm Specifies the minute. It is always a two-digit number
that can contain a leading zero.

ss Specifies the second. It is always a two-digit number
that can contain a leading zero.

The periods represent true periods.

For example, 13.08.36 is 1:08 P.M. and 36 seconds in the
notation commonly used in the United States.

TIMESTAMP data yyyy-mm-dd-hh.mm.ss.nnnnnn where:
yyyy-mm-dd

Specifies the date in the same way it does for DATE
data.

hh.mm.ss
Specifies the time of day in the same way it does for
TIME data.

nnnnnn
Specifies a six-digit number that extends the count of
seconds (ss) down to the nearest microsecond.

For example, 1990-12-12-13.08.36.123456 is 1:08 P.M. and
36.123456 seconds on December 12, 1990, in the notation
commonly used in the United States.

For the data types available, see the ECSINTYP field in Table 69 on page 505.

Calling your exit routine to format the data

Use these instructions to call your exit routine on OS/390, VM, and VSE.

Creating Your Own Edit Codes for QMF Forms

Chapter 29. Creating Your Own Edit Codes for QMF Forms 499

Calling your exit routine on OS/390
Figure 157 shows how QMF and your edit exit routine work together to
format data using the edit codes you define.

When you enter your own code in a column of FORM.MAIN or
FORM.COLUMNS, QMF passes certain characteristics of the data into the first
interface control block. These characteristics reside in specific fields of the
control block, which are discussed in “Fields of the Interface control block” on
page 505. QMF also passes into the input area the data to be formatted and an
output area that holds the formatted result.

IBM supplies six different versions of a sample edit exit routine in
QMF720.SDSQSAPE.

Language TSO and native OS/390
Batch

CICS

COBOL DSQUXDTC DSQUXCTC

PL/I DSQUXDTP DSQUXCTP

Assembler DSQUXDTA DSQUXCTA

The sample program supports two edit codes:
VSS Adds dashes to a social security number or a character string.
UDN Transforms a department number into its department name, using a

table internal to the program.

The sample program is commented so you can more easily see how a user
edit routine works. You can use the sample as a template for creating your
own program. These routines can be found in QMF720.SDSQSAPE on
OS/390.

QMF supplies the user edit routine DSQUEDIT for TSO and native OS/390,
and a reentrant module, DSQUECIC, for CICS, which are located in the QMF

Figure 157. How a user edit routine works with QMF for OS/390

Creating Your Own Edit Codes for QMF Forms

500 Installing and Managing QMF

library QMF720.SDSQLOAD. Delete or rename the QMF-supplied module
when you are ready to use your edit routine.

See Figure 159 on page 502for the general structure of an edit routine.

Calling your exit routine on VM
Figure 158 shows how QMF and your edit exit routine work together to
format data using the edit codes you define.

When you enter your own code in a column of FORM.MAIN or
FORM.COLUMNS, QMF passes certain characteristics of the data into the first
interface control block. These characteristics reside in specific fields of the
control block, which are discussed in “Fields of the Interface control block” on
page 505. QMF also passes into the input area the data to be formatted and an
output area that holds the formatted result.

IBM supplies three different versions of a sample edit exit routine. One
version is for assembler (DSQUXDTA), one is for PL/I (DSQUXDTP), and one
is for COBOL (DSQUXDTC).

The sample program supports two edit codes:
VSS Adds dashes to a social security number or a character string.
UDN Transforms a department number into its department name, using a

table internal to the program.

The sample program is commented so you can more easily see how a user
edit routine works. You can use the sample as a template for creating your
own program. These routines can be found on the QMF production disk on
CMS.

QMF supplies the user edit routine, DSQUEDIT, for CMS. DSQUEDIT is a
relocatable module file and a text file on the QMF production disk. Delete or
rename the QMF-supplied module and text file when you are ready to use
your edit routine.

Figure 158. How a user edit routine works with QMF for VM

Creating Your Own Edit Codes for QMF Forms

Chapter 29. Creating Your Own Edit Codes for QMF Forms 501

VM Note: The use of a relocatable module file facilitates user edit code
development because a module file on the user’s A-disk can be tested without
renaming or deleting the QMF-supplied user edit routine from the QMF
production disk. This reduces the impact on other QMF users. Once you have
written and assembled or compiled your edit routine, you need to consider
the method of making your routine available to QMF for execution. The user
edit routine can be executed in text or module format. The use of a relocatable
CMS module file is the preferred method of generating a user edit routine.

When QMF for VM is started, QMF attempts to load the edit routine as
follows:
1. Issue CMS NUCXLOAD for DSQUEDIT. NUCXLOAD loads a CMS

module file that has relocation information saved, or as a member of an
OS load library.

2. Issue OS LOAD (SVC 8) for DSQUEDIT. If use of NUCXLOAD is not
successful, QMF then issues an OS LOAD (SVC 8). OS LOAD loads a text
file, a member of a TXTLIB, or a member of an OS load library.

Different versions of the interface control block are used for Assembly, PL/I,
and COBOL edit routines. However, the fields of the control block and the
input they contain are the same regardless of the programming language the
routine is written in. Figure 159 shows the general structure of the edit
routines.

Figure 159. General program structure for edit routines

Creating Your Own Edit Codes for QMF Forms

502 Installing and Managing QMF

Calling your exit routine on VSE
Figure 160 shows how QMF for VSE and your edit exit routine work together
to format data using the edit codes you define.

Figure 160. How a user edit routine works with QMF for VSE

Creating Your Own Edit Codes for QMF Forms

Chapter 29. Creating Your Own Edit Codes for QMF Forms 503

When you enter your own code in a column of FORM.MAIN or
FORM.COLUMNS, QMF passes certain characteristics of the data into the first
interface control block. These characteristics reside in specific fields of the
control block, which are discussed in “Fields of the Interface control block” on
page 505. QMF also passes into the input area the data to be formatted and an
output area that holds the formatted result.

IBM supplies three different versions of a sample edit exit routine. One
version is for assembler (DSQUXDTA), one is for PL/I (DSQUXDTP), and one
is for COBOL (DSQUXDTC).

The sample program supports two edit codes:
VSS Adds dashes to a social security number or a character string.
UDN Transforms a department number into its department name, using a

table internal to the program.

The sample program is commented so you can more easily see how a user
edit routine works. You can use the sample as a template for creating your
own program. These routines can be found in the QMF sublibrary on VSE.

The DSQUECIC program supplied with QMF is a sample meant to be used
with the sample edit programs. Because of this, the program simply returns
an error code when it is called, and QMF displays a message indicating you
attempted to use an unsupported edit code.

After you write your edit exit program, name is DSQUECIC. Then translate,
assemble (or compile), and link-edit the program to form the edit exit phase
named DSQUECIC. You need to replace the IBM-supplied program with your
new program. Do not change the name of the program; it remains
DSQUECIC.

Passing information to and from the exit routine

To format the data returned from the database, QMF calls your edit exit
routine and passes information through fields of the interface control block.
Information is also passed to and from the exit routine using the input and
output areas, which contain the database data to be formatted and
information about where to put the formatted result.

The data to be formatted can be a column value, the result of a built-in
function, a defined column, a calculation, or a value represented by a variable
in a heading, a footing, or a final-summary line.

Upon receiving control for formatting, your edit routine takes the parameters
in the following list.
v The interface control block.

Creating Your Own Edit Codes for QMF Forms

504 Installing and Managing QMF

v The value of ECSINPT, the data from the input area to be formatted.
v The value of ECSRSLT, the output area containing the formatted result.

ECSRSLEN contains the amount of storage actually passed to this output
area on each call. The result cannot be column wrapped.
Important: Do not use more memory in the output area than is indicated in
the ECSRSLEN field, or you will see QMF error DSQ60439 - User edit
program memory overwrite.
User edit programs may require modifications. To correct this application
error, do one of the following:
– Increase the WIDTH of the COLUMN by modifying the edit code in the

FORM to the correct length expected on the report.
– Check the length of ECSRSLEN to determine if your program should

PAD or TRUNCATE the results passed back to QMF.

ECSINPT, ECSRSLT, and ECSRSLEN are fields of the interface control block,
explained in Table 69.

Fields of the Interface control block
Use the fields of the interface control block to pass information to and from
your exit routine. Although there are separate interface control blocks that
work with Assembly, PL/I, or COBOL, the fields of the interface control block
are standard regardless of the programming language your edit exit routine is
written in. These fields are shown in Table 69. Unless otherwise stated, each
field relates to all formatting calls.

These same fields appear in each sample program (one for each programming
language supported) shipped with QMF. You can include these field names in
your own source program. The QMF production disk contains the sample
programs.

Table 69. Fields of the QMF interface control block

Name Contents

ECSDECPT Contains the current decimal point symbol as determined by the
DECOPT option of PROFILE (period or comma).

ECSECODE Contains the user edit code.

Creating Your Own Edit Codes for QMF Forms

Chapter 29. Creating Your Own Edit Codes for QMF Forms 505

Table 69. Fields of the QMF interface control block (continued)

Name Contents

ECSERRET Contains a zero at the point of call. Set this to a nonzero return code to
record an error. Use one of the values on the following list for an error
of the indicated type:

Number
Error

99101 Unrecognized edit code
99102 Improper input data type for edit code
99103 Invalid input value for item to be formatted
99104 Item to be formatted is too short
99105 Not enough room for result in ECSRSLT (result is too wide

for the space allotted)

The error codes listed (and their associated messages and help panels)
are specific to the error. For any other code, a general error message,
with a general backup help panel, is displayed.

ECSFREQ Holds E for a formatting call, T for a termination call.

ECSINLEN Contains the length, in bytes, of the value to be formatted.

ECSINNUL Holds an N if the value to be formatted is null.

ECSINPRC Contains the precision of the value to be formatted. Applies only to
U-type codes when the data type is DECIMAL, or to V-type codes
when the character string to be formatted was derived from numeric
data.

ECSINSCL Contains the scale of the value to be formatted. Applies only to U-type
codes when the data type is DECIMAL, or to V-type codes when the
character string to be formatted was derived from numeric data.

ECSINSGN Holds the sign of a converted numeric value (blank or -). Applies only
to V codes when the character string to be formatted was derived from
numeric data.

Creating Your Own Edit Codes for QMF Forms

506 Installing and Managing QMF

Table 69. Fields of the QMF interface control block (continued)

Name Contents

ECSINTYP Indicates, in database terms, how the value to be formatted is
represented. Applies to edit codes of every type. Values can be:
384 DATE data type
388 TIME data type
392 TIMESTAMP data type
448 VARCHAR data type
452 CHAR data type
456 LONG VARCHAR data type
464 VARGRAPHIC data type
468 GRAPHIC data type
472 LONG VARGRAPHIC data type
480 FLOAT data type
484 DECIMAL data type
496 INTEGER data type
500 SMALLINT data type
940 Extended floating point data type
The extended floating point data type is not supported by the database
(or by COBOL); it is limited to functions such as AVERAGE and
STDEV. Extended floating point values are precise to more than 30
digits.

ECSNAME Contains the name of the control block, which is DXEECS. Serves as an
eye catcher in storage dumps.

ECSRQMF Set this to T to request a termination call.

ECSRSLEN Contains the length of the output area, in bytes. (Value is taken from
the column WIDTH in the FORM)

ECSTHSEP Contains the thousands separator as determined by the DECOPT
option of PROFILE (blank or a comma).

ECSUSERS A 256-byte scratchpad area where your exit routine can record
information that persists from one call to the next. On the first call
after the edit routine is loaded, this field contains binary zeros.

Fields that characterize the input area

Restriction: This section does not apply to values from DATE, TIME, and
TIMESTAMP columns. For information on values for those types,
see “Handling DATE, TIME, and TIMESTAMP information” on
page 498.

During a session, the subprogram DSQUXDT might need to service many
different edit codes. If it does, consider making your routine an executive
routine, which does nothing but analyze the edit codes passed to it and then

Creating Your Own Edit Codes for QMF Forms

Chapter 29. Creating Your Own Edit Codes for QMF Forms 507

invokes an appropriate routine to do the actual formatting. The design makes
the source code easier to read and easier to modify when new user edit codes
are devised.

In addition to the fields in the interface control block, your edit exit routine
receives, in the input field, information about the data to be formatted.

The value to be formatted appears in the field ECSINPT. How it is
represented depends on whether the value to be formatted is numeric or
character, as determined by the ECSINTYP field, or whether the edit code is a
U or V code, as determined by the ECSECODE field.

How U-type edit codes are represented in the input area
Numeric values are represented in internal database format. For example, if
ECSINTYP is equal to 496 (INTEGER data type), the value is a full-word
integer. If it is 484 (DECIMAL data type), the value is in decimal format. Scale
and precision for decimal format are in the ECSINSCL and ECSINPRC fields.
Length (in bytes) is in the ECSINLEN field.

Numeric data from defined columns, calculations, and summary values is
returned as extended floating point values, a data type not explicitly
supported by DB2. The length (16 bytes) is in the ECSINLEN field.

Character or graphic values are represented in their internal, character-string
format, with one exception: for variable-length strings (for example,
VARCHAR data type), only the string itself appears and not the preceding
length field. For all character values, the string length (in bytes) is in the
ECSINLEN field.

How V-type edit codes are represented in the input area
Numeric values are represented by a numeric character string. The length is
contained in the field ECSINLEN. Leading or trailing zeros fill out the string
if required.

The string contains no sign or decimal point. Instead, the sign appears as a
blank or a minus sign in the field ECSINSGN, and the position of the decimal
point is in the field ECSINSCL. For example, suppose that the string in
ECSINPT is 12345, that ECSINSGN is blank, and that ECSINSCL is equal to 3;
then the value represented is +12.345.

Character or graphic values are represented in their character string. For all
character values, the string length (in bytes) is in the ECSINLEN field.

Fields that characterize the output area
The ECSRSLT field receives the formatted output in the form of a character
string that completely fills the field. Upon input, this field is always blank.
The length of this field (in bytes) is in the ECSRSLEN field. QMF blanks out

Creating Your Own Edit Codes for QMF Forms

508 Installing and Managing QMF

ECSRSLT before calling the edit routine. The output area is temporary storage
and can hold no more than 32,767 rows of output.

Passing control to the exit routine when QMF terminates

Use the ECSRQMF field of the control block to indicate that you want your
exit routine to receive control whenever QMF terminates. The ECSRQMF
value should be updated the first time the edit exit routine receives control.

When your edit exit routine receives control upon termination of QMF, the
parameters passed to the routine are the control block, the input area, and the
output area. Only the control block contains usable information.

Writing an edit routine in HLASM (high level assembler)

You can write an edit routine in Assembler for native OS/390, TSO, CICS, and
CMS.

Writing an edit routine for native OS/390, TSO, or ISPF
The QMF edit exit interface for Assembler consists of these parts:
v Interface control block, which is shipped with QMF as DXEECSA
v Control program, which is shipped with QMF as DSQUXIA
v Your edit exit program, which is named DSQUXDT

Figure 161 shows the program structure of an Assembler edit exit routine for
native OS/390, TSO, or ISPF.

Figure 161. Program structure of an Assembler edit exit routine for TSO, native OS/390,

Creating Your Own Edit Codes for QMF Forms

Chapter 29. Creating Your Own Edit Codes for QMF Forms 509

Example program DSQUXDTA
The IBM-supplied sample edit program for Assembler, DSQUXDTA, is located
in the QMF720.SDSQSAPE library for OS/390. The sample program is
commented so that you can modify it to suit your needs. If you plan to use
this example program, copy it to your program library and change its name to
DSQUXDT. Near the bottom of this file is a COPY statement for DXEECSA.
which is a member of DSQUSERE MACLIB on OS/390. DXEECSA defines the
input fields, giving them the names we are using in this chapter.

How an Assembly edit routine interacts with native OS/390
The user edit program is called as a subroutine in TSO and native OS/390
using a standard Assembly CALL statement. Linkage obeys the standard IBM
calling conventions. On entry to your edit exit program, the following
conditions exist:
v Register 1 contains the address of a standard parameter list.

v Register 13 contains the address of a standard SAVE area.
v Register 14 contains the caller’s (QMF) return address.

An Assembly DSECT for DXEECS is shipped with QMF as DXEECSA, located
in library QMF720.SDSQUSRE on OS/390 or in DSQUSERE MACLIB on CMS.
Include this DSECT in your program using the Assembly COPY statement.

Return control to QMF in the standard convention by restoring registers to
their value at the time of the call and then returning to the address in register
14.

In the example program, the addresses are placed in registers 8, 9, and 10
through the statements:
ECSPTR EQU R10

L ECSPTR,0(R1)
USING DXEECS,ECSPTR

ECSINPTP EQU R9
L ECSINPTP,4(R1)
USING ECSINPT,ECSINPTP

ECSRSLTP EQU R8
L ECSRSLTP,8(R1)
USING ECSRSLT,ECSRSLTP

Creating Your Own Edit Codes for QMF Forms

510 Installing and Managing QMF

The USING statements refer to the DSECTs defined in DXEECSA. These
define the three parameters and their input-field components.

It follows that registers 10, 9, and 8 point, respectively, at the control block,
the value to be formatted, and the storage reserved for the formatted results.

Return control to QMF using the standard convention by restoring the
registers to their value at the time of the call, and returning to the address in
register 14.

How an Assembly edit routine interacts with QMF
The interface control block between QMF and the user edit interface
DSQUXDT is DXEECS. It contains the user’s edit code, identifies the source
data and the target location for the edited result , and provides a scratchpad
area for the user edit routine’s use. This control block is persistent between
calls to the user edit routine. The scratchpad area is not modified by QMF
after the initial invocation of the exit routine.

Assembling and link-editing your program on OS/390
During the assembly, QMF edit exit interface control block DXEECSA, located
in QMF sample library QMF720.SDSQUSRE in TSO or native OS/390, must
be available in a macro library.

Create a new QMF edit exit module DSQUEDIT by including your edit
program DSQUXDT with the IBM-supplied control module DSQUXIA, which
is located in the QMF module library QMF720.SDSQLOAD. The IBM-supplied
control module DSQUXIA must be specified as the entry point.

The module DSQUEDIT can be executed in either 24-bit or 31-bit addressing
mode. QMF runs in 31-bit addressing mode and automatically switches to
24-bit addressing mode if the edit exit module DSQUEDIT has a 24-bit
addressing mode. We recommend the 31-bit addressing mode.

Example statements for assembling and link-editing on OS/390
The following are example statements for assembling and link-editing your
job for TSO or native OS/390:
//sampasm JOB
//STEP1 EXEC PROC=ASMHCL
//* Provide Access to QMF Edit Macro DXEECSA
//C.SYSLIB DD DSN=QMF720.SDSQUSRE,DISP=SHR
//C.SYSIN DD *

.
Your program or copy of QMF sample DSQUXDTA
.

/*
//* Provide Access to QMF Interface Module
//L.QMFLOAD DD DSN=QMF720.SDSQLOAD,DISP=SHR
//L.SYSIN DD *

Creating Your Own Edit Codes for QMF Forms

Chapter 29. Creating Your Own Edit Codes for QMF Forms 511

INCLUDE QMFLOAD(DSQUXIA)
ENTRY DSQUXIA
MODE AMODE(31) RMODE(ANY)
NAME DSQUEDIT(R)

/*

Writing an edit routine in Assembler for CICS
The QMF edit exit interface for Assembler in CICS consists of these parts:
v Interface control block, which is shipped with QMF as DXEECSA
v CICS prolog and epilog macros, which are shipped with CICS as

DFHEIENT and DFHEIRET
v CICS command interface modules, which are shipped with CICS as

DFHEAI and DFHEAI0
v Your edit exit program, which is named DSQUECIC

Figure 162 shows the program structure of an Assembler edit exit routine for
CICS.

How an Assembler edit routine interacts with CICS
The user edit program is called by using the standard CICS LINK command
interface. Your program is executing on a different program level than the
main QMF program. On entry to your edit exit program, the following
conditions exist:

Figure 162. Program structure of an Assembler edit exit routine for CICS

Creating Your Own Edit Codes for QMF Forms

512 Installing and Managing QMF

v Register 1 contains the address of a standard CICS parameter list suitable
for processing by CICS supplied macros DFHEIENT and DFHEIRET.

v Register 13 contains the address of a standard CICS working storage area as
described by CICS supplied macro DFHEISTG.

An Assembler DSECT for DXEECS is shipped with QMF as DXEECSA,
located in library QMF720.SDSQSAPE. Include this DSECT into your program
using the Assembly COPY statement.

Return control to QMF by using the standard CICS RETURN command.

Translating your program
You must translate your program using the CICS translator for Assembler.
When you translate your program, CICS normally supplies the standard CICS
prologue (DFHEIENT) which sets up addressability, saves registers in the
standard CICS working storage area, and provides a standard CICS epilogue
(DFHEIRET).

Return control to QMF by using the CICS RETURN command; for example,
EXEC CICS RETURN.

Assembling your program
During assembly, QMF edit exit interface control block DXEECSA, located in
QMF sample library QMF720.SDSQUSRE, and the CICS macro library must
be available.

Link-editing your program
Create a new QMF edit exit module DSQUECIC by including your edit
program DSQUXCTA with EXEC CICS interface control modules DFHEAI

Creating Your Own Edit Codes for QMF Forms

Chapter 29. Creating Your Own Edit Codes for QMF Forms 513

and DFHEAI0, which are both located in the CICS module library as
distributed by the CICS product. The EXEC CICS module DFHEAI must be
the first module in the edit exit module and the entry point must be
DSQUECIC.

The module DSQUECIC must be executable in 31-bit addressing mode.

Example JCL statements for translating, assembling and link-editing for
CICS on OS/390
The following are example statements for translating, assembling, and
link-editing your job for CICS.
//SAMPASM JOB ...
//* Add a parameter PROGLIB to procedure DFHEITAL
//* PROGLIB=&PROGLIB,
//TRNCOMLK EXEC PROC=DFHEITAL,PROGLIB=’QMF720.SDSQLOAD’
//TRN.SYSIN DD *

.
Your program or modified copy of QMF sample DSQUXCTA
.

/*
//* Provide access to QMF Edit Macro DXEECSA
//ASM.SYSLIB DD DSN=QMF720.SDSQUSRE,DISP=SHR
//LKED.SYSIN DD *

INCLUDE SYSLIB(DFHEAI)
INCLUDE CICSLOAD(DFHEAI0)
ORDER DFHEAI,DFHEAI0
ENTRY DSQUECIC
MODE AMODE(31) RMODE(ANY)
NAME DSQUECIC(R)

/*

Example program DSQUXCTA
The IBM-supplied example edit program in Assembler, named DSQUXCTA, is
located in QMF sample library QMF720.SDSQSAPE on OS/390. The example
program is heavily commented; you can print it, browse it online, or modify it
to meet your needs. If you plan to use this program, copy it to your program
library and change its name to DSQUECIC.

How an Assembler edit routine interacts with QMF
The interface control block between QMF and the user edit interface
DSQUEDIT is DXEECS. It contains the user’s edit code, identifies the source
data and the target location for the edited result, and provides a scratchpad
area for the user edit routine’s use. The control block is persistent between
calls to the user edit routine. The scratchpad area is not modified by QMF
after the initial invocation of the exit routine.

Please refer to the DXEECSA file provided by QMF as a sample Assembly
version of the DXEECS control block. This file is located in library

Creating Your Own Edit Codes for QMF Forms

514 Installing and Managing QMF

QMF720.SDSQSAPE on OS/390, on the QMF production disk on CMS, or in
the QMF sublibrary as DXEECSA.A on VSE.

Writing an edit routine for VM
The QMF edit exit interface for Assembler consists of these parts:
v Interface control block, which is shipped with QMF as DXEECSA
v Control program, which is shipped with QMF as DSQUXIA
v Your edit exit program, which is named DSQUXDT

Figure 163 shows the program structure of an Assembly edit exit routine for
VM.

Example program DSQUXDTA
The IBM-supplied sample edit program for Assembler, DSQUXDTA, is located
in the QMF production disk. The sample program is commented so that you
can modify it to suit your needs. If you plan to use this example program,
copy it to your program library and change its name to DSQUXDT. Near the
bottom of this file is a COPY statement for DXEECSA. which is a member of
DSQUSERE MACLIB on OS/390. DXEECSA defines the input fields, giving
them the names we are using in this chapter.

How an Assembler edit routine interacts with CMS
Linkage obeys the standard IBM calling conventions. On entry to your edit
exit program, the following conditions exist:
v The parameter list contains three four-byte addresses. The addresses point

to:
– the control block
– the value to be formatted

Figure 163. Program structure of an Assembler edit exit routine for VM

Creating Your Own Edit Codes for QMF Forms

Chapter 29. Creating Your Own Edit Codes for QMF Forms 515

– the storage reserved for the formatted results

v Register 13 contains the address of a standard SAVE area.
v Register 14 contains the caller’s (QMF) return address.

An Assembler DSECT for DXEECS is shipped with QMF as DXEECSA,
located in DSQUSERE MACLIB on CMS. Include this DSECT in your program
using the Assembly COPY statement.

In the example program, the addresses are placed in registers 8, 9, and 10
through the statements:
ECSPTR EQU R10

L ECSPTR,0(R1)
USING DXEECS,ECSPTR

ECSINPTP EQU R9
L ECSINPTP,4(R1)
USING ECSINPT,ECSINPTP

ECSRSLTP EQU R8
L ECSRSLTP,8(R1)
USING ECSRSLT,ECSRSLTP

The USING statements refer to the DSECTs defined in DXEECSA. These
define the three parameters and their input-field components.

It follows that registers 10, 9, and 8 point, respectively, at the control block,
the value to be formatted, and the storage reserved for the formatted results.

Return control to QMF using the standard convention by restoring the
registers to their value at the time of the call, and returning to the address in
register 14.

How an Assembler edit routine interacts with QMF
The interface control block between QMF and the user edit interface
DSQUXDT is DXEECS. It contains the user’s edit code, identifies the source
data and the target location for the edited result , and provides a scratchpad
area for the user edit routine’s use. This control block is persistent between

Creating Your Own Edit Codes for QMF Forms

516 Installing and Managing QMF

calls to the user edit routine. The scratchpad area is not modified by QMF
after the initial invocation of the exit routine.

Assembling and generating your program on CMS
Before you assemble your program, ensure that you can access the
IBM-supplied control block DXEECSA, which is located in the QMF library
DSQUSERE MACLIB on the QMF production disk. You need to access the
QMF production disk and issue the CMS command GLOBAL MACLIB for the
QMF macro library. For example:
GLOBAL MACLIB DSQUSERE

Assemble your edit program, DSQUXDT, using HLASM or the Assembly
supplied with CMS.

Before you create the DSQUEDIT module file to generate your program,
ensure that you can access the IBM-supplied control module (DSQUXIA).
DSQUXIA is located on the QMF production disk. You need to access this
disk prior to creating the module file.

To create the DSQUEDIT module file, use the CMS LOAD and GENMOD
commands as follows:
1. Load the text files that make up the DSQUEDIT module. The DSQUEDIT

module must be relocatable. To be relocatable, the module must be loaded
with RLD entries. You do this by specifying the RLDSAVE option on the
CMS LOAD command. The entry point to the DSQUEDIT module must be
DSQUXIA. Issue the following CMS LOAD command:
LOAD DSQUXIA DSQUXDT (RLDSAVE RESET DSQUXIA)

You can run your edit routine in either 24-bit or 31-bit addressing mode.
QMF manages address switching as required. You can specify 31-bit
addressing on the CMS LOAD command. For example:
LOAD DSQUXIA DSQUXDT (RLDSAVE RESET DSQUXIA AMODE 31 RMODE ANY)

2. Generate the DSQUEDIT module. Issue the CMS GENMOD command to
generate the DSQUEDIT module from the text files just loaded by the
CMS LOAD command:
GENMOD DSQUEDIT (AMODE 31 RMODE ANY)

Once the user edit routine is tested it can be placed on the QMF production
disk or user disk that is available when you start QMF.

Writing an edit routine in Assembler for CICS/VSE
The QMF edit exit interface for Assembler in CICS consists of these parts:
v Interface control block, which is shipped with QMF as DXEECSA.A Use a

COPY statement to include the interface control block in your source deck.

Creating Your Own Edit Codes for QMF Forms

Chapter 29. Creating Your Own Edit Codes for QMF Forms 517

v CICS prolog macro DFHEIENT, which is shipped with CICS. The CICS
epilog macro DFHEIRET is not needed for an EXEC CICS RETURN.

v CICS command interface modules, which are shipped with CICS as
DFHEAI and DFHEAI0.

v Your edit exit program, which is named DSQUECIC

Figure 164 shows the program structure of an Assembler edit exit routine for
CICS.

Example program DSQUXCTA
The IBM-supplied example edit program in Assembler, named DSQUXCTA.A,
is located in the QMF sublibrary on VSE as DSQUXCTA.Z. The example
program is heavily commented; you can print it, browse it online, or modify it
to meet your needs. If you plan to use this program, copy it to your program
library and change its name to DSQUECIC.

How an Assembler edit routine interacts with CICS
The user edit program is called by using the standard CICS LINK command
interface. Your program is executing on a different program level than the
main QMF program. On entry to your edit exit program, the following
conditions exist:

Figure 164. Program structure of an Assembler edit exit routine for CICS

Creating Your Own Edit Codes for QMF Forms

518 Installing and Managing QMF

v Register 1 contains the address of a standard CICS parameter list suitable
for processing by CICS supplied macros DFHEIENT.

v Register 13 contains the address of a standard CICS working storage area as
described by CICS supplied macro DFHEISTG.

An Assembly DSECT for DXEECS is shipped with QMF as DXEECSA.A,
located in the sublibrary where QMF is installed. Include DXEECSA.A into
your program using the Assembler COPY statement.

Return control to QMF by using the standard CICS RETURN command.

How an Assembler edit routine interacts with QMF
The interface control block between QMF and the user edit interface
DSQUEDIT is DXEECS. It contains the user’s edit code, identifies the source
data and the target location for the edited result, and provides a scratchpad
area for the user edit routine’s use. The control block is persistent between
calls to the user edit routine. The scratchpad area is not modified by QMF
after the initial invocation of the exit routine.

Refer to the DXEECSA file provided by QMF as a sample Assembler version
of the DXEECS control block. This file is located in the QMF sublibrary as
DXEECSA.A on VSE.

Translating your program
You must translate your program using the CICS translator for Assembler.
When you translate your program, CICS normally supplies the standard CICS
prologue (DFHEIENT) which sets up addressability, saves registers in the
standard CICS working storage area.

Creating Your Own Edit Codes for QMF Forms

Chapter 29. Creating Your Own Edit Codes for QMF Forms 519

Return control to QMF by using the CICS RETURN command; for example,
EXEC CICS RETURN.

Assembling your program on VSE
When you assemble your program, ensure the LIBDEF search chain includes
the CICS and QMF sublibraries so that the CICS macros and the edit exit
interface control block (DXEECSA.A) can be found. Use the following
Assembler compiler options to assemble the routine:
’LIBMAC,USING(NOLIMIT,NOWARN),EXIT(LIBEXIT(EDECKXIT(ORDER=EA)))’

These compiler options require that you specify an E-deck exit. EDECKXIT is
a library exit for Assembler that enables the processing of E-decks. This exit is
required here to process CICS E-decks.

VSE/ESA provides a skeleton to help you set up the E-deck exit. You can use
the skeleton without modifying it; however, before you use the skeleton,
ensure you enable the exit according to instructions provided in the VSE
Guide to System Functions.

Link-editing your program
Create a new QMF edit exit module DSQUECIC by including your edit
program DSQUXCTA with EXEC CICS interface control modules DFHEAI
and DFHEAI0, which are both located in the CICS module library as
distributed by the CICS product. The EXEC CICS module DFHEAI must be
the first module in the edit exit module and the entry point must be
DSQUECIC.

The module DSQUECIC must be executable in 31-bit addressing mode.

Example JCL statements for translating, assembling and link-editing for
CICS on VSE
Figure 67 on page 174 shows the sample job DSQ3XCTA.Z, which is shipped
with QMF. This job translates, compiles, and link-edits the example Assembler
program (DSQUXCTA.Z), which is also shipped with QMF. Use the sample
job as a starting point to create JCL that translates, assembles, and link-edits
your own edit exit routine. For more information on installing an Assembler
program in CICS, see the CICS System Definition Guide.

Creating Your Own Edit Codes for QMF Forms

520 Installing and Managing QMF

// JOB DSQ3XCTA Install QMF Edit Exit for COBOL
* ---
* Install QMF Edit Exit (HLASM)
* --
// SETPARM VOLID=volid *-- update volid for syspch
// SETPARM START=rtrk *-- update start track/block (syspch)
// SETPARM SIZE=ntrks *-- update number of tracks/blocks (syspch)
*--
// DLBL IJSYSPH,’ASM.TRANSLATION’,0
// EXTENT SYSPCH,,1,0,&STARTL,&SIZE.

ASSIGN SYSPCH,DISK,VOL=&VOLID.,SHR
* Library search chain must contain the QMF, CICS and HLASM sublibraries
// LIBDEF *,SEARCH=(PRD2,PROD,PRD1.BASE,PRD2.CONFIG)
// LIBDEF PHASE,CATALOG=PRD2.PROD
*--
// STEP 1: Translate Edit ExitQMF720 program
*--
// EXEC DFHEAP1$

:
Assembly source program here
:

/*
*---
* Step 2: Assemble Edit Exit program
CLOSE SYSPCH,00d
// DLBL IJSYSIN,’ASM,TRANSLATION’,0
// EXTENT SYSIPT
ASSGN SYSIPT,DISK,VOL=&VOLID.,SHR
// OPTION CATAL,DECK,SYM,ERRS

PHASE DSQUECIC,*,SVA

INCLUDE DFHEAI
INCLUDE DFHEAI0

// EXEC ASMA90,SIZE=(ASMA90,50K), C
PARM=’LIBMAC,USING(NOLIMIT,NOWARN),EXIT(LIBEXIT(EDECKXITC
(ORDER=EA)))’

CLOSE SYSIPT,SYSRDR
/*
*--
* Step 3: Link-dit Edit Exit program
*--
// EXEC LNKEDT,PARM=’AMODE=31,RMODE=ANY’
/*
/&
// JOB RESET
ASSGN SYSIPT,SYSRDR IF 1A93D, CLOSE SYSIPT,SYSRDR
ASSGN SY;SPCH,00D IF 1A93D, CLOSE SYSPCH,00D
/&

Figure 165. Example JCL for translating, assembling, and link-editing an HLASM routine

Creating Your Own Edit Codes for QMF Forms

Chapter 29. Creating Your Own Edit Codes for QMF Forms 521

Writing an edit routine in PL/I without language environment (LE)

You can write an edit routine in PL/I without language environment for
native OS/390 or TSO, or CMS.

Writing an edit routine for native OS/390, TSO, or ISPF without LE
The QMF edit exit interface for PL/I in TSO, ISPF, or native OS/390 consists
of these parts:
v Interface control block, which is shipped with QMF as DXEECSP
v Control program, which is shipped with QMF as DSQUXIP
v Control program, which is shipped with QMF as DSQUPLI
v Your edit exit program, which is named DSQUXDT

Figure 167 on page 524 shows the program structure of a PL/I edit exit
routine in TSO, ISPF, or native OS/390.

How a PL/I edit routine interacts with native OS/390, TSO, or ISPF
The user edit program is called as a PL/I external procedure using a standard
PL/I CALL statement. The following parameters are provided in the indicated
order:
1. DXEECS
2. Input data
3. Output data

An example procedure statement specifying parameters is as follows:

Figure 166. Program structure of a PL/I edit exit routine without LE

Creating Your Own Edit Codes for QMF Forms

522 Installing and Managing QMF

DSQUXDT:
PROCEDURE(DXEECSF,ECSINPTF,ECSRSLTF) OPTIONS(REENTRANT);

A PL/I data structure is shipped with QMF as DXEECSP, located in library
QMF720.SDSQSAPE. Include this data structure in your program.

Return control to QMF using a standard RETURN statement.

Compiling DSQUXDT and DSQUPLI
During the compile, QMF edit exit interface control block DXEECSP, located
in QMF sample library QMF720.SDSQUSRE on OS/390 must be available in a
macro library.

Compile both programs with no STAE or SPIE macros. To do this, add the
following statement to your PL/I program:
DCL PLIXOPT CHAR(15) VAR INIT(’NOSTAE,NOSPIE’) STATIC EXTERNAL;

Compile DSQUPLI with the MAIN option. Your edit exit program DSQUXDT
must not specify MAIN.

Link-editing your program
Create a new QMF edit exit module DSQUEDIT by including your edit
program DSQUXDT with the IBM-supplied control modules DSQUXIP and
DSQUPLI, which are located in the QMF module library
QMF720.SDSQLOAD. The module DSQUXIC must be specified as the entry
point.

The module DSQUEDIT can be executed in either 24-bit or 31- bit addressing
mode. QMF runs in 31-bit addressing mode and automatically switches to
24-bit addressing mode if the edit exit module DSQUEDIT has a 24-bit
addressing mode.

We recommend 31-bit addressing mode.

Example statements for compiling and link-editing
The following are example statements for assembling and link-editing your
job for TSO, or native OS/390.
//samPLI JOB
//STEP1 EXEC IEL1CL
//* Provide Access to QMF Edit Macro DXEECSP
//PLI.SYSLIB DD DSN=QMF720.SDSQUSRE,DISP=SHR
//PLI.SYSIN DD *

.
Your program or copy of QMF sample DSQUXDTP
.

/*
//* Provide Access to QMF Interface Module
//LKED.QMFLOAD DD DSN=QM720.SDSQLOAD,DISP=SHR

Creating Your Own Edit Codes for QMF Forms

Chapter 29. Creating Your Own Edit Codes for QMF Forms 523

//LKED.SYSIN DD *
INCLUDE QMFLOAD(DSQUXIP)
INCLUDE QMFLOAD(DSQUPLI)
ENTRY DSQUXIP
MODE AMODE(31) RMODE(ANY)
NAME DSQUEDIT(R)

/*

Example program DSQUXDTP
The IBM-supplied example edit exit program in PL/I, named DSQUXDTP, is
located in QMF sample library QMF720.SDSQSAPE. The example program is
heavily commented; it can be browsed online, printed, or modified to meet
your needs. If you plan to use this example program, copy it to your program
library and change its name to DSQUXDT.

Writing an edit routine on VM without LE
The QMF edit exit interface for PL/I in CMS consists of these parts:
v Interface control block, which is shipped with QMF as DXEECSP
v Control program, which is shipped with QMF as DSQUXIP
v Control program, which is shipped with QMF as DSQUPLI
v Your edit exit program, which is named DSQUXDT

Figure 167 shows the program structure of a PL/I edit exit routine in CMS.

Figure 167. Program structure of a PL/I edit exit routine without LE

Creating Your Own Edit Codes for QMF Forms

524 Installing and Managing QMF

Example program DSQUXDTP
The IBM-supplied example edit exit program in PL/I, named DSQUXDTP, is
located on the QMF production disk on CMS. The example program is
heavily commented; it can be browsed online, printed, or modified to meet
your needs. If you plan to use this example program, copy it to your program
library and change its name to DSQUXDT. If you build your own routine
instead, note that within the source is an %INCLUDE statement for DXEECSP,
which is a member of DSQUSERE MACLIB on CMS. It is DXEECSP that
defines the input fields, giving them the names we are using in this chapter. It
is best to include this in your own edit routine.

How a PL/I edit routine interacts with QMF
Linkage begins with the PROCEDURE statement:
DSQUXDT:

PROCEDURE(DXEECSF,ECSINPTF,ECSRSLTF) ...;

Passed through this statement are the control block (DXEECSF), the value to
be formatted (ECSINPTF), and the storage set aside for the formatted result
(ECSRSLTF). At this point, you can expect to find declarations defining
DXEECSF as a structure, and defining ECSINPTF and ECSRSLTF as character
strings. Instead, you find the statement:
DECLARE (DXEECSF,

ECSINPTF,
ECSRSLTF)

BINARY FIXED, ...

which defines the three parameters as fullword integers. This is because the
calling program itself, in order to avoid the overhead of locators and
descriptors, represents the parameters in its call to DSQUXDT as fullword
integers. QMF doesn’t know in what language the calling program is written,
so the parameters are passed in the same way as they are for Assembler.

In the sample program below, the actual parameter descriptions appear in the
previously mentioned block of definitions comprising DXEECSP. The
declaration for the control block begins with:
DECLARE

1 DXEECSP BASED(ECSPTR)
.
.
.

The statements defining the other two parameters are:
DECLARE

ECSINPT CHARACTER(32767)
BASED(ECSINPTP), ... and

DECLARE
ECSRSLT CHARACTER(32767)

BASED(ECSRSLTP);

Creating Your Own Edit Codes for QMF Forms

Chapter 29. Creating Your Own Edit Codes for QMF Forms 525

Thus, the parameters are defined as based storage. To complete the linkage,
the pointers are set to the appropriate addresses at the start of the procedural
logic section:
ECSPTR = ADDR(DXEECSF);
ECSINPTP = ADDR(ECSINPTF);
ECSRSLTP = ADDR(ECSRSLTF);

The interface control block between QMF and the user edit interface
DSQUXDT is DXEECS. It contains the user’s edit code, identifies the source
data and the target location for the edited result, and provides a scratchpad
area for the user edit routine’s use. This control block is persistent between
calls to the user edit routine. The scratchpad area is not modified by QMF
after the initial invocation of the exit routine.

Return control to QMF using a standard RETURN statement.

Compiling DSQUXDT and DSQUPLI
During the compile, QMF edit exit interface control block DXEECSP, located
in DSQUSERE MACLIB on the QMF production disk on CMS must be
available in a macro library. You need to make the macro libraries available to
the PL/I compiler by issuing a CMS GLOBAL MACLIB command. For
example:
GLOBAL MACLIB DSQUSERE PLICOMP

Compile both programs with no STAE or SPIE macros. To do this, add the
following statement to your PL/I program:
DCL PLIXOPT CHAR(15) VAR INIT(’NOSTAE,NOSPIE’) STATIC EXTERNAL;

Compile DSQUPLI with the MAIN option. Your edit exit program DSQUXDT
must not specify MAIN.

Creating your DSQUEDIT module file in PL/I
Before you can create your DSQUEDIT module file, ensure that you can
access the IBM-supplied control module (DSQUXIP). DSQUXIP is located on
the QMF production disk. You need to access this disk prior to creating the
module file.

To create the DSQUEDIT module file, use the CMS LOAD and GENMOD
commands:
1. Load the text files that make up the DSQUEDIT module.

The DSQUEDIT module must be relocatable. To be relocatable, the module
must be loaded with RLD entries. You do this by specifying the RLDSAVE
option on the CMS LOAD command. The entry point to the DSQUEDIT
module must be DSQUXIP. PL/I text libraries must be made available by
issuing a CMS GLOBAL TXTLIB command. Issue the following CMS
commands:

Creating Your Own Edit Codes for QMF Forms

526 Installing and Managing QMF

GLOBAL TXTLIB IBMLIB PLILIB
LOAD DSQUXIP DSQUXDT DSQUPLI (RLDSAVE RESET DSQUXIP)

You can run your edit routine in either 24-bit or 31-bit addressing mode.
QMF manages address switching as required. You can specify 31-bit
addressing on the CMS LOAD command. For example:

GLOBAL TXTLIB IBMLIB PLILIB
LOAD DSQUXIP DSQUXDT DSQUPLI

(RLDSAVE RESET DSQUXIP AMODE 31 RMODE ANY)

2. Generate the DSQUEDIT module.
Issue the CMS GENMOD command to generate the DSQUEDIT module
from the text files just loaded by the CMS LOAD command:
GENMOD DSQUEDIT

Once the user edit routine is tested, it can replace the DSQUEDIT module file
on the QMF production disk or user disk that is available when starting QMF.
In order to use the PL/I user edit routine, the PL/I production disk and
run-time libraries need to be available when you start QMF.

When running under ISPF and starting QMF using the PGM form of
ISPSTART, the PL/I run-time load libraries must be specified using a CMS
FILEDEF command for ISPLLIB. For guidelines and considerations about PL/I
programs running in ISPF, see ISPF for VM Dialog Management Services and
Examples

When running without ISPF, or running under ISPF and starting QMF using
the program segment form of ISPSTART, the PL/I run-time load libraries
must be specified using a CMS GLOBAL LOADLIB command.

For detailed information on how to compile and make run-time libraries
available for PL/I, see the PL/I Programming Guide.

Writing an edit routine in PL/I with language environment (LE)

Use these instructions for writing an edit routine for native OS/390, TSO, or
CMS with language environment.

Writing an edit routine in PL/I for native OS/390, TSO, or ISPF with
language environment (LE)

The QMF edit exit interface for PL/I in TSO, ISPF, or native OS/390 with LE
consists of these parts:
v Interface control block, which is shipped with QMF as DXEECSP
v Control program, which is shipped with QMF as DSQUXILE
v Dynamic loaded LE preinitialization service program, which is named

CEEPIPI
v Your edit exit program, which is named DSQUXDT

Creating Your Own Edit Codes for QMF Forms

Chapter 29. Creating Your Own Edit Codes for QMF Forms 527

Figure 168 shows the program structure of a PL/I edit exit routine in TSO,
ISPF, or native OS/390.

How a PL/I Edit routine interacts with native OS/390, TSO, or ISPF with
LE
The user edit program is called as an LE subroutine. The following
parameters are provided in the indicated order:
1. DXEECS
2. Input data
3. Output data

An example procedure statement specifying parameters is as follows:
DSQUXDT:

PROCEDURE(DXEECSF,ECSINPTF,ECSRSLTF) OPTIONS(REENTRANT);

Compiling DSQUXDT
During the compile, QMF edit exit interface control block DXEECSP, located
in QMF sample library QMF720.SDSQUSRE must be available in a macro
library.

Compile the program with no STAE or SPIE macros. To do this, add the
following statement to your PL/I program:
DCL PLIXOPT CHAR(15) VAR INIT(’NOSTAE,NOSPIE’) STATIC EXTERNAL;

Figure 168. Program structure of a PL/I edit exit routine with LE

Creating Your Own Edit Codes for QMF Forms

528 Installing and Managing QMF

Compile DSQUPLI with the MAIN option. Your edit exit program DSQUXDT
must not specify MAIN.

Link-editing your program
Create a new QMF edit exit module DSQUEDIT by including your edit
program DSQUXDT with the IBM-supplied control module DSQUXILE,
located in the QMF module library QMF720.SDSQLOAD. The module
DSQUXILE must be specified as the entry point.

The module DSQUEDIT can be executed in either 24-bit or 31- bit addressing
mode. QMF runs in 31-bit addressing mode and automatically switches to
24-bit addressing mode if the edit exit module DSQUEDIT has a 24-bit
addressing mode.

We recommend 31-bit addressing mode.

Example statements for compiling and link-editing
The following are example statements for assembling and link-editing your
job for TSO or native OS/390.

//samPLI JOB
//STEP1 EXEC PLIXCL
//* Provide Access to QMF Edit Macro DXEECSP
//PLI.SYSLIB DD DSN=QMF720.SDSQUSRE,DISP=SHR
//PLI.SYSIN DD *

.
Your program or copy of QMF sample DSQUXDTP
.

/*
//* Provide Access to QMF & LE Interface Module
//LKED.QMFLOAD DD DSN=QMF720.SDSQLOAD,DISP=SHR
//LKED.SYSLIB DD DSN=SYS1.SCEELKED,DISP=SHR
//LKED.SYSIN DD *

INCLUDE QMFLOAD(DSQUXILE)
ENTRY DSQUXILE
MODE AMODE(31) RMODE(ANY)
NAME DSQUEDIT(R)

/*

Example program DSQUXDTP
The IBM-supplied example edit exit program in PL/I, named DSQUXDTP, is
located in QMF sample library QMF720.SDSQSAPE. The example program is
heavily commented; it can be browsed online, printed, or modified to meet
your needs. If you plan to use the example program, copy it to your program
library and change its name to DSQUXDT.

Writing an edit routine in PL/I for VM with language environment (LE)
The QMF edit exit interface for PL/I in CMS with LE consists of these parts:
v Interface control block, which is shipped with QMF as DXEECSP
v Control program, which is shipped with QMF as DSQUXILE

Creating Your Own Edit Codes for QMF Forms

Chapter 29. Creating Your Own Edit Codes for QMF Forms 529

v Dynamic loaded LE preinitialization service program, which is named
CEEPIPI

v Your edit exit program, which is named DSQUXDT

Figure 169 shows the program structure of a PL/I edit exit routine in CMS.

Generating your PL/I program for LE
Before you can create your DSQUEDIT module file, ensure that you can
access the IBM-supplied module DSQUXILE. This module is located on the
production disk. You need to access this disk prior to creating the module file.
Use the CMS LOAD and GEMOD commands as follows:
1. Load the text files that make up the DSQUEDIT module.

The DSQUEDIT module must be relocatable. To be relocatable, the module
must be loaded with RLD entries. Do this by specifying the RLDSAVE
option on the CMS/LOAD command. The entry point to the DSQUEDIT
module must be DSQUXILE. LE text libraries must be made available by
using a CMS GLOBAL TXTLIB command:
GLOBAL TXTLIB SCEELKED
LOAD DSQUXILE DSQUXDT (RLDSAVE RESET DSQUXILE

Figure 169. Program structure of a PL/I edit exit routine with LE

Creating Your Own Edit Codes for QMF Forms

530 Installing and Managing QMF

You can run your edit routine in either 24-bit or 31-bit addressing mode.
QMF manages address switching as required. You can specify 31-bit
addressing on the CMS LOAD command:
GLOBAL TXTLIB SCEELKED
LOAD DSQUXILE DSQUXDT (RLDSAVE RESET DSQUXILE AMODE 31 RMODE ANY

2. Generate the DSQUEDIT module. Issue the CMS GENMOD command to
generate the DSQUEDIT module from the text files just loaded by the
CMS LOAD command:
GENMOD DSQUEDIT

An example procedure statement specifying parameters is as follows:
DSQUXDT:

PROCEDURE(DXEECSF,ECSINPTF,ECSRSLTF) OPTIONS(REENTRANT);

Writing an edit routine in PL/I for CICS on OS/390

The QMF edit exit interface for PL/I in CICS consists of these parts:
v Interface control block, which is shipped with QMF as DXEECSP
v CICS command interface modules, which are shipped with CICS as

DFHPL1OI
v Your edit exit program, which is named DSQUECIC

Figure 170 shows the program structure of a PL/I edit exit routine in CICS.

Figure 170. Program structure for PL/I edit exit routine in CICS

Creating Your Own Edit Codes for QMF Forms

Chapter 29. Creating Your Own Edit Codes for QMF Forms 531

Example program DSQUXCTP
The IBM-supplied example edit program in Assembly, named DSQUXCTP, is
located in QMF sample library QMF720.SDSQSAPE. The example program is
heavily commented; you can print it, browse it online, or modify it to meet
your needs. A PL/I data structure is shipped with QMF as DXEECSP, located
in library QMF720.SDSQUSRE. Include this structure in your program.

How a PL/I edit routine interacts with CICS
The user edit program is called by using the standard CICS LINK command
interface. Your program is executing on a different program level than the
main QMF program. The user edit program must be translated using the
CICS translator for PL/I.

The CICS communications area DFHCOMMAREA is used to provide
addresses to the user edit routine program parameters, DXEECS, input data,
and output data as shown in the following diagram.

After translation, the CICS translator provides a procedure statement that
describes the CICS environment block DFHEIBLK. Provide a parameter that is
a pointer to the CICS communications block DFHCOMMAREA such as the
following example:
DSQUECIC:

PROCEDURE(DFHCOMMP) OPTIONS(REENTRANT,MAIN);

QMF provides addresses to the user edit routine control block DXEECS, input
data, and output data in the CICS communications area DFHCOMMAREA.
Provide your own description of the DFHCOMMAREA in the PL/I program
as follows:
/***/

/* CICS DFHCOMM ARE DESCRIPTION OF EDIT EXIT PARAMETERS */
/***/
DECLARE

DFHCOMMP PTR;
DECLARE

Creating Your Own Edit Codes for QMF Forms

532 Installing and Managing QMF

1 DFHCOMM BASED(DFHCOMMP),
02 DFHCOMM_ECSPTR PTR,
02 DFHCOMM_INPTR PTR,
02 DFHCOMM___OUTPTR PTR;

To provide addressability to the user edit routine control block DXEECS, input
data area ECSINPT, and the result data area ECSRSLT, set the addresses of
these data areas to the values located in DFHCOMMAREA as in the following
example:
ECSPTR = DFHCOMM_ECSPTR /* ADDRESS OF DXEECS:

EDIT CODE SPECIFICATIONS */
ECSINPTP = DFHCOMM_INPTR /* ADDRESS OF INPUT DATA */
ECSRSLTP = DFHCOMM_OUTPTR /* ADDRESS OF RESULT AREA */

A PL/I data structure is shipped with QMF as DXEECSP, located in library
QMF720.SDSQSAPE. Include this structure in your program.

Return control to QMF using a standard CICS RETURN command such as the
following:
EXEC CICS RETURN;

Translating your program
Translate your program using the CICS translator for PL/I. During
translation, CICS normally supplies an input parameter and data structure
definition for the CICS environment control block EIB.

Compiling your program on OS/390
QMF edit exit interface control block DXEECSP, located in QMF sample
library QMF720.SDSQUSRE, must be available in a macro library during the
compile.

You must compile your program with no STAE or SPIE macros. To do this
you should add the following statement to your PL/I program:
DCL PLIXOPT CHAR(15) VAR INIT(’NOSTAE,NOSPIE’) STATIC EXTERNAL;

Specify PL/I compiler option SYSTEM(CICS).

Link-editing your program
Create a new QMF edit exit module DSQUECIC by including the EXEC CICS
interface control module DFHPL1OI, located in the CICS module library as
distributed by the CICS product, and your edit exit program DSQUXCTP. Be
sure to allocate PL/I libraries required for link-edit. Ensure DFHPL1OI or
DFHPL1I is the first module in the edit exit module.

The module DSQUECIC must be executable in 31-bit addressing mode.

Creating Your Own Edit Codes for QMF Forms

Chapter 29. Creating Your Own Edit Codes for QMF Forms 533

Example JCL statements for translating, compiling, and link-editing for
CICS on OS/390

The following are example statements for translating, compiling, and
link-editing your job for CICS.
//SAMPLI JOB ...
//* Add a parameter PROGLIB to procedure DFHEITPL
//* PROGLIB=&PROGLIB,
//TRNCOMLK EXEC PROC=DFHEITPL,PROGLIB=’QMF720.SDSQLOAD’
//TRN.SYSIN DD *

.
Your program or modified copy of QMF sample DSQUXCTP
.

/*
//* Provide access to QMF Edit Macro DXEECSP
//PLI.SYSLIB DD DSN=QMF720.SDSQUSRE,DISP=SHR
//LKED.SYSIN DD *

REPLACE PLISTART
INCLUDE CICSLOAD(DFHPL1OI)
REPLACE PLISTART
ORDER DFHPL1OI
ENTRY DFHPL1OI
MODE AMODE(31),RMODE(ANY)
NAME DSQUECIC(R)

/*

CICS program definition
When QMF is installed, the QMF edit exit program is installed with a
program language of Assembly. To use the PL/I edit exit program, you must
change the program language of module DSQUECIC to PL/I using the CICS
program control table (PCT) macro or resource definition online (RDO).

Writing an edit routine in PL/I for CICS/VSE

The QMF edit exit interface for PL/I in CICS consists of these parts:
v Interface control block, which is shipped with QMF as DXEECSP
v CICS command interface modules, which are shipped with CICS as

DFHPL1I.
v Your edit exit program, which is named DSQUECIC

Figure 171 on page 535 shows the program structure of a PL/I edit exit
routine in CICS.

Creating Your Own Edit Codes for QMF Forms

534 Installing and Managing QMF

Example program DSQUXCTP
The IBM-supplied example edit program in Assembly, named DSQUXCTP, is
located in QMF sublibrary on VSE as DSQUXCTP.Z. The example program is
heavily commented; you can print it, browse it online, or modify it to meet
your needs. A PL/I data structure is shipped with QMF as DXEECSP, located
in DXEECSP.C on VSE in the QMF sublibrary. Include this structure in your
program.

How a PL/I edit routine interacts with CICS
The user edit program is called by using the standard CICS LINK command
interface. Your program is executing on a different program level than the
main QMF program. The user edit program must be translated using the
CICS translator for PL/I.

The CICS communications area DFHCOMMAREA is used to provide
addresses to the user edit routine program parameters, DXEECS, input data,

Figure 171. Program structure for PL/I edit exit routine in CICS

Creating Your Own Edit Codes for QMF Forms

Chapter 29. Creating Your Own Edit Codes for QMF Forms 535

and output data as shown in the following diagram.

After translation, the CICS translator provides a procedure statement that
describes the CICS environment block DFHEIBLK. Provide a parameter that is
a pointer to the CICS communications block DFHCOMMAREA such as the
following example:
DSQUECIC:

PROCEDURE(DFHCOMMP) OPTIONS(REENTRANT,MAIN);

QMF provides addresses to the user edit routine control block DXEECS, input
data, and output data in the CICS communications area DFHCOMMAREA.
Provide your own description of the DFHCOMMAREA in the PL/I program
as follows:
/***/

/* CICS DFHCOMM ARE DESCRIPTION OF EDIT EXIT PARAMETERS */
/***/
DECLARE

DFHCOMMP PTR;
DECLARE

1 DFHCOMM BASED(DFHCOMMP),
02 DFHCOMM_ECSPTR PTR,
02 DFHCOMM_INPTR PTR,
02 DFHCOMM___OUTPTR PTR;

To provide addressability to the user edit routine control block DXEECS, input
data area ECSINPT, and the result data area ECSRSLT, set the addresses of
these data areas to the values located in DFHCOMMAREA as in the following
example:
ECSPTR = DFHCOMM_ECSPTR /* ADDRESS OF DXEECS:

EDIT CODE SPECIFICATIONS */
ECSINPTP = DFHCOMM_INPTR /* ADDRESS OF INPUT DATA */
ECSRSLTP = DFHCOMM_OUTPTR /* ADDRESS OF RESULT AREA */

A PL/I data structure is shipped with QMF as DXEECSP, located in library
QMF720.SDSQSAPE. Include this structure in your program.

Creating Your Own Edit Codes for QMF Forms

536 Installing and Managing QMF

Return control to QMF using a standard CICS RETURN command such as the
following:
EXEC CICS RETURN;

Translating your program
On VSE, before you translate your program, include in the LIBDEF statement
the QMF edit exit interface control block DXEECSP.C, which is located in the
sublibrary where QMF is installed.

Translate your program using the CICS translator for PL/I. During
translation, CICS normally supplies an input parameter and data structure
definition for the CICS environment control block EIB.

Link-editing your program
Create a new QMF edit exit module DSQUECIC by including the EXEC CICS
interface control module DFHPL1OI, located in the CICS module library as
distributed by the CICS product, and your edit exit program DSQUXCTP. Be
sure to allocate PL/I libraries required for link-edit. Ensure DFHPL1OI or
DFHPL1I is the first module in the edit exit module.

The module DSQUECIC must be executable in 31-bit addressing mode.

Example JCL statements for translating, compiling, and link-editing for
CICS on VSE

The sample job DSQ3XCTP.Z is shipped with QMF. This job translates,
compiles, and link-edits the example PL/I program (DSQUXCTP.Z), which is
also shipped with QMF. Use the sample job as a starting point to create JCL
that translates, assembles, and link-edits your own edit exit routine.

Ignore weak external references unresolved by the linkage editor, and also the
associated messages about unresolved address constants. For more
information on installing a program in CICS, see the CICS System Definition
Guide.

Creating Your Own Edit Codes for QMF Forms

Chapter 29. Creating Your Own Edit Codes for QMF Forms 537

How a PL/I program interacts with QMF
The interface control block between QMF and the user edit interface
DSQUECIC is DCXEECS. It contains the user’s edit code, identifies the source

..* $$ JOB JNM=DSQ3XCTP,DISP=D,CLASS=0
// JOB DSQ3XCTP Sample Job to Install QMF Edit Exit for PL/I
* --
* Install QMF edit exit (PL/I)
* --
// SETPARM VOLID=volid *-- update volid for syspch
// SETPARM START=rtrk *-- update start track/block
// SETPARM SIZE=ntrks *-- update number of tracks/blocks
* --
// DLBL IJSYSPH,’CICS.TRANSLAT.OUTPUT’,0
// EXTENT SYSPCH,,1,0,&START,&SIZE
ASSGN SYSPCH,DISK,VOL=&VOLID,SHR
* Library search chain must contain the QMF, CICS and PL/I sublibrary
// LIBDEF *,SEARCH=(PRD2.PROD,PRD1.BASE,PRD2.CONFIG)
// LIBDEF PHASE,CATALOG=PRD2.PROD
* --
* Step 1: Translate user edit exit program
* --
// EXEC DFHECP1$,SIZE=256K,PARM=’XOPTS(CICS,QUOTE)’
..* $$ SLI MEM=DSQUXCTP.Z,S=PRD2.PROD
/*
* --
* Step 2: Compile translated user edit exit program
* --
CLOSE SYSPCH,00D
// DLBL IJSYSIN,’CICS.TRANSLAT.OUTPUT’,0
// EXTENT SYSIPT
ASGN SYSIPT,DISK,VOL=&VOLID,SHR
// OPTION CATAL

PHASE DSQUECIC,*,SVA
INCLUDE DFHPLII

// EXEC PLIOPT
CLOSE SYSIPT,SYSRDR
/*
* ---
* Step 3: Link-edit user edit exit program
* ---
// EXEC LNKEDT,PARM=’AMODE=31,RMODE=31’
/*
/&
// JOB RESET
ASSGN SYSIPT,SYSRDR IF 1A93D, CLOSE SYSIPT,SYSRDR
ASSGN SYSPCH,00D IF 1A93D, CLOSE SYSPCH,00D
/&
..* $$ EOJ

Figure 172. Example JCL for translating, assembling and link-editing an HLASM routine

Creating Your Own Edit Codes for QMF Forms

538 Installing and Managing QMF

data and the target location for the edited result, and provides a scratchpad
area for the user edit routine’s use. the control block is persistent between
calls to the user edit routine. The scratchpad area is not modified by QMF
after the initial invocation of the edit routine.

Writing an edit routine in COBOL without language environment (LE)

You can write an edit routine in COBOL for native OS/390,, TSO, or CMS.

In this section, COBOL refers to VS COBOL II, COBOL/370, and COBOL for
OS/390 and VM unless otherwise stated.

Writing an edit routine in COBOL for native OS/390, TSO, or ISPF without
language environment (LE)

The QMF edit exit interface of COBOL consists of these parts:
v Interface control block, which is shipped with QMF as DXEECSC
v Control program, which is shipped with QMF as DSQUXIC
v Your edit exit program, which is named DSQUXDT

Figure 173 shows the program structure of a COBOL edit exit routine

Figure 173. Program structure of a COBOL edit exit routine

Creating Your Own Edit Codes for QMF Forms

Chapter 29. Creating Your Own Edit Codes for QMF Forms 539

Example program DSQUXDTC
The IBM-supplied example edit exit program in COBOL, named DSQUXDTC,
is located in QMF sample library QMF720.SDSQSAPE on OS/390 . The
example program is heavily commented; it can be browsed online, printed, or
modified to suit your needs. If you plan to use this program, copy it to your
program library and change its name to DSQUXDT.

How a COBOL edit routine operates
The user edit program is called as a COBOL subprogram using a standard
COBOL CALL statement. The following parameters are provided in the
indicated order:
1. DXEECS
2. Input data
3. Output data

An example procedure statement specifying parameters is as follows:
PROCEDURE DIVISION

USING DXEECS, ECSINPT, ECSRSLT.

Return control to QMF using standard subprogram GOBACK statement.

Compiling DSQUXDT
Compile DSQUXDT (the edit exit program you have written). During the
compile, QMF edit exit interface control block DXEECSC, located in QMF
sample library QMF720.SDSQUSRE on OS/390.

Select COBOL compiler options as follows:
COBOL II

Specify compiler options RENT, RES, NODYNAM, OBJECT, and LIB.
COBOL/370 or IBM COBOL for OS/390 and VM

Specify compiler options OBJECT, LIB, RENT, and NODYNAM.

QMF distributes the user edit routine control block DXEECSC using quotes as
literal delimiters. You must use the QUOTE compiler option if you use the
DXEECSC control block as distributed by IBM.

After compiling DSQUXDT, place the resulting load module in the
QMF720.SDSQLOAD library.

Using the language environment run time library
When you use the Language Environment run time library with QMF user
edit exit programs, consider the following:
v QMF does not require a new compile.
v LINK EDIT is required for any QMF user edit exit program that will be

used with LE run time libraries.

Creating Your Own Edit Codes for QMF Forms

540 Installing and Managing QMF

v The QMF Assembly driver, DSQUXIC calls IGZERRE. See your IBM
COBOL documentation for more information.

Assembling the run time options module
When you assemble the run time option macro IGZOPT, you must specify the
COBOL run time option STAE=NO. (For the Language Environment options
module, use TRAP=OFF in place of STAE=NO.) Include the resulting object
module IGZEOPT in the QMF edit exit module DSQUEDIT.

Link-editing your program on OS/390
You create a new QMF edit exit module DSQUEDIT by including your edit
exit program DSQUXDT with the IBM-supplied control module DSQUXIC,
which is located in the QMF module library QMF720.SDSQLOAD. The
module DSQUXIC must be specified as the entry point.

The module DSQUEDIT can be executed in either 24-bit or 31- bit addressing
mode. QMF runs in 31-bit addressing mode and automatically switches to
24-bit addressing mode if the edit exit module DSQUEDIT has a 24-bit
addressing mode.

Note: 31-bit addressing mode is recommended.

Example statements for compiling and link-editing on OS/390
The following are example statements for compiling and link-editing your job
for TSO or native OS/390).

For COBOL II:
//samCOBOL JOB
//* Assemble run time option macro
//STEP1 EXEC PGM=IEV90,PARM=’DECK,NOLOAD’
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSPUNCH DD DSN=&&TEMPOBJ(IGZEOPT),DISP=(,PASS),UNIT=SYSDA,
// SPACE=(TRK,(1,1,1)),DCB=(BLKSIZE=3120,LRECL=80,DSORG=PO)
//* Provide Access to Cobol run time option macro
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
//SYSIN DD *

IGZOPT SYSTYPE=OS,STAE=NO
END

//*
//STEP2 EXEC PROC=COB2UCL
//* Provide Access to QMF Edit Macro DXEECSC
//COB2.SYSLIB DD DSN=QMF720.SDSQUSRE,DISP=SHR
//COB2.SYSIN DD *

.
Your program or copy of QMF sample DSQUXDTC
.

/*

Creating Your Own Edit Codes for QMF Forms

Chapter 29. Creating Your Own Edit Codes for QMF Forms 541

//* Provide Access to QMF Interface Module
//LKED.QMFLOAD DD DSN=QMF720.SDSQLOAD,DISP=SHR
//* Make sure COBOL library is concatenated after &&TEMPOBJ
//LKED.SYSLIB DD DSN=&&TEMPOBJ,DISP=(OLD,PASS)

DD DSN=COB2LIB,DISP=(OLD,PASS)
//LKED.SYSIN DD *

INCLUDE QMFLOAD(DSQUXIC)
INCLUDE SYSLIB(IGZEOPT)
INCLUDE SYSLIB(IGZERRE)
ENTRY DSQUXIC
MODE AMODE(31) RMODE(ANY)
NAME DSQUEDIT(R)

/*

For COBOL/370 or IBM COBOL for OS/390:
//samCOBOL JOB
//* Assemble run time option macro
//STEP1 EXEC PGM=IEV90,PARM=’DECK,NOLOAD’
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSPUNCH DD DSN=&&TEMPOBJ(IGZEOPT),DISP=(,PASS),UNIT=SYSDA,
// SPACE=(TRK,(1,1,1)),DCB=(BLKSIZE=3120,LRECL=80,DSORG=PO)
//* Provide Access to Cobol run time option macro
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
//SYSIN DD *

IGZOPT SYSTYPE=OS,STAE=NO
END

//*
//STEP2 EXEC PROC=IGYWCL
//* Provide Access to QMF Edit Macro DXEECSC
//COBOL.SYSLIB DD DSN=QMF720.SDSQUSRE,DISP=SHR
//COBOL.SYSIN DD *

.
Your program or copy of QMF sample DSQUXDTC
.

/*
//* Provide Access to QMF Interface Module
//LKED.QMFLOAD DD DSN=QMF720.SDSQLOAD,DISP=SHR
//LKED.SYSLIB DD ...

DD DSN=&&TEMPOBJ,DISP=(OLD,PASS)
//LKED.SYSIN DD *

INCLUDE QMFLOAD(DSQUXIC)
INCLUDE SYSLIB(IGZEOPT)
INCLUDE SYSLIB(IGZERRE)
ENTRY DSQUXIC
MODE AMODE(31) RMODE(ANY)
NAME DSQUEDIT(R)

/*

Creating Your Own Edit Codes for QMF Forms

542 Installing and Managing QMF

Writing an edit routine in COBOL for CMS without language environment
(LE)

The QMF edit exit interface of COBOL consists of these parts:
v Interface control block, which is shipped with QMF as DXEECSC
v Control program, which is shipped with QMF as DSQUXIC
v Control macro, which is supplied by IBM as IGZOPT
v Control module, which is supplied by IBM as IGZERRE
v Your edit exit program, which is named DSQUXDT

Figure 174 shows the program structure of a COBOL edit exit routine

Example program DSQUXDTC
The IBM-supplied example edit exit program in COBOL, named DSQUXDTC,
is located in the QMF production disk on CMS. The example program is
heavily commented; it can be browsed online, printed, or modified to suit
your needs. If you plan to use this program, copy it to your program library
and change its name to DSQUXDT. If you plan to write your own user edit
routine, note that this routine contains a COPY statement for DXEECSC,
which is a member of DSQUSERE MACLIB on CMS. It is DXEECSC that
defines the input fields, giving them the names we are using in this chapter. It
is best to include this in your own user edit routine.

Figure 174. Program structure of a COBOL edit exit routine

Creating Your Own Edit Codes for QMF Forms

Chapter 29. Creating Your Own Edit Codes for QMF Forms 543

How a COBOL edit routine interacts with QMF
The following statement begins the mainline logic:
PROCEDURE DIVISION USING DXEECS, ECSINPT, ECSRSLT

In this example, DXEECS is the name of the control block, ECSINPT is the
name of the value to be formatted, and ECSRSLT is the name of the area
reserved for the formatted result. The fields within these parameters are
defined in DXEECSC.

The interface control block between QMF and the user edit interface
DSQUXDT is DXEECS. It contains the user’s edit code and provides a
scratchpad area for the user edit routine’s use. This control block is persistent
between calls to the user edit routine. The scratchpad area is not modified by
QMF after the initial invocation of the edit routine. Return control to QMF
with a GOBACK statement.

Please refer to the DXEECSC file provided by QMF as a sample COBOL
version of the DXEECS control block. This file is located in library
QMF720.SDSQSAPE on OS/390, or on the QMF production disk on CMS.

Compiling your program
Compile DSQUXDT (the edit exit program you have written). During the
compile, QMF edit exit interface control block DXEECSC, located in in the
DSQUSERE MACLIB on the QMF production disk on CMS, must be available
in a macro library.

On CMS, you need to access the QMF and COBOL production disks. You also
need to make the macro libraries available to the COBOL compiler by issuing
a CMS GLOBAL MACLIB command. For example:
GLOBAL MACLIB DSQUSERE VSC2MAC

DXEECSC, as distributed by IBM, uses quotation marks (“”) to delimit
character literals. If your program uses apostrophes (’), you must either
change DXEECSC as distributed by IBM or copy the structure to your
program, changing quotes to apostrophes.

Select COBOL compiler options as follows:
COBOL II

Specify compiler options RENT, RES, NODYNAM, OBJECT, and LIB.
COBOL/370 or IBM COBOL for OS/390 and VM

Specify compiler options OBJECT, LIB, RENT, and NODYNAM.

QMF distributes the user edit routine control block DXEECSC using quotes as
literal delimiters. You must use the QUOTE compiler option if you use the
DXEECSC control block as distributed by IBM.

Creating Your Own Edit Codes for QMF Forms

544 Installing and Managing QMF

Assembling the run time options module
On CMS, use the C2CUSTL exec provided by IBM to assemble IGZOPT.
Follow the prompts and add option STAE=NO to the IGZEOPT ASSEMBLE
file. The new or changed option file is replaced in VSC2LTXT TXTLIB and
VSC2LOAD LOADLIB, or in another TXTLIB and LOADLIB that you specify.
Refer to VS COBOL II Installation and Customization for CMS for more
information about assembling run time options.

Generating your program on CMS
Before you can create the module file, ensure that you can access the
IBM-supplied control module (DSQUXIC). DSQUXIC is located on the QMF
production disk. You need to access this disk prior to creating the module file.

To create the DSQUEDIT module file, use the CMS LOAD and GENMOD
commands as follows:
1. Load the text files that make up the DSQUEDIT module.

The DSQUEDIT module must be relocatable. To be relocatable, the module
must be loaded with RLD entries. You do this by specifying the RLDSAVE
option on the CMS LOAD command. The entry point to the DSQUEDIT
module must be DSQUXIC. COBOL text libraries must be made available
by issuing a CMS GLOBAL TEXTLIB command. Issue the following CMS
commands:

GLOBAL TXTLIB VSC2LTXT
LOAD DSQUXIC DSQUXDT (RLDSAVE RESET DSQUXIC)

You can run your edit routine in either 24-bit or 31-bit addressing mode.
QMF manages address switching as required. You can specify 31-bit
addressing on the CMS LOAD command. For example:

GLOBAL TXTLIB VSC2LTXT
LOAD DSQUXIC DSQUXDT

(RLDSAVE RESET DSQUXIC AMODE 31 RMODE ANY)

2. Issue the CMS GENMOD command to generate the DSQUEDIT module
from the text files just loaded by the CMS LOAD command:

GENMOD DSQUEDIT (AMODE 31 RMODE ANY)

Once the user edit routine is tested, it can replace the DSQUEDIT module file
on the QMF production disk or user disk that is available when you start
QMF. In order to use the COBOL user edit routine, the COBOL production
disk and run-time libraries need to be available when you start QMF.

When running under ISPF and starting QMF using the PGM form of
ISPSTART, the COBOL run-time load libraries must be specified using a CMS
FILEDEF command for ISPLLIB. For guidelines and considerations about
COBOL programs running in ISPF, see the ISPF for VM Dialog Management
Services and Examples manual.

Creating Your Own Edit Codes for QMF Forms

Chapter 29. Creating Your Own Edit Codes for QMF Forms 545

When running without ISPF, or running under ISPF and starting QMF using
the program segment form of ISPSTART, the COBOL run-time load libraries
must be specified using a CMS GLOBAL LOADLIB command.

For detailed information on how to compile and make run-time libraries
available for COBOL, see the VS COBOL II Application Programming Guide.

Writing an edit routine in COBOL with language environment (LE)

Use these instructions to write an edit routine in COBOL with language
environment for native OS/390, TSO, and CMS.

Writing an edit routine in COBOL for native OS/390, ISPF, and TSO with
language environment (LE)

The QMF edit exit interface of COBOL in native OS/390 and TSO consists of
these parts:
v Interface control block, which is shipped with QMF as DXEECSC
v Control program, which is shipped with QMF as DSQUXILE
v Your edit exit program, which is named DSQUXDT
v LE Preinitialization Service program, which is named CEEPIPI

Figure 175 on page 547 shows the program structure of a COBOL edit exit
routine in native OS/390 and TSO.

Creating Your Own Edit Codes for QMF Forms

546 Installing and Managing QMF

The edit control block DXEECSC and the sample COBOL program
DSQUXCTC, as distributed by QMF, use quotes (″) to delimit literals. If your
installation or program uses apostrophes (’) instead, you have to change
DXEECSC or copy the structure to your program, changing quotes to
apostrophes.

Example program DSQUXDTC
The IBM-supplied example edit exit program in COBOL, named DSQUXDTC,
is located in QMF sample library QMF720.SDSQSAPE on OS/390. The
example program is heavily commented; it can be browsed online, printed, or
modified to suit your needs. If you plan to use this program, copy it to your
program library and change its name to DSQUXDT.

How a COBOL edit routine interacts with native OS/390, TSO, or ISPF in
LE
The user edit program is called as an LE subroutine. The following
parameters are provided in the indicated order:
1. DXEECS
2. Input data
3. Output data

An example procedure statement specifying parameters is as follows:

Figure 175. Program structure of a COBOL edit exit routine in TSO, ISPF, or native OS/390 with
LE

Creating Your Own Edit Codes for QMF Forms

Chapter 29. Creating Your Own Edit Codes for QMF Forms 547

PROCEDURE DIVISION
USING DXEECS, ECSINPT, ECSRSLT.

A COBOL data structure is shipped with QMF as DXEECSC, located in library
QMF720.SDSQSAPE. Include this data structure in your program.

Return control to QMF using a standard subprogram GOBACK statement.

Compiling DSQUXDT
During the compile, QMF edit exit interface control block DXEECSC, located
in QMF sample library QMF720.SDSQUSRE on OS/390 or on the QMF
production disk on CMS, must be available in a macro library.

Compile the program with the following compile options:
OBJECT, LIB, RENT, RES, and NODYNAM.

Link-editing your program
Create a new QMF edit exit module DSQUEDIT by including your edit
program DSQUXDT with the IBM-supplied control QMF module DSQUXILE
(located in the QMF module library QMF720.SDSQLOAD on OS/390).

The module DSQUXILE must be specified as the entry point.

The module DSQUEDIT can be executed in either 24-bit or 31- bit addressing
mode. QMF runs in 31-bit addressing mode and automatically switches to
24-bit addressing mode if the edit exit module DSQUEDIT has a 24-bit
addressing mode.

Note: 31-bit addressing mode is recommended.

Example statements for compiling and link-editing on OS/390
The following are example statements for compiling and link-editing your job
for TSO or native OS/390:

//samCOBOL JOB
//STEP1 EXEC PROC=IGYWCL
//* Provide Access to QMF Edit Macro DXEECSC
//COBOL.SYSLIB DD DSN=QMF720.SDSQUSRE,DISP=SHR
//COBOL.SYSIN DD *

Your program or copy of QMF sample DSQUXDTC:
/*
//* Provide Access to QMF Interface Module
//LKED.QMFLOAD DD DSN=QMF720.SDSQLOAD,DISP=SHR
//LKED.SYSLIB DD ...
// DD DSN=&&TEMPOBJ,DISP=(OLD,PASS)
// DD DSN=SYS1.SCEELKED,DISP=SHR
//LKED.SYSIN DD *

INCLUDE QMFLOAD(DSQUXILE)

Creating Your Own Edit Codes for QMF Forms

548 Installing and Managing QMF

ENTRY DSQUXILE
MODE AMODE(31) RMODE(ANY)
NAME DSQUEDIT(R)

/*

Writing an edit routine in COBOL for CMS with language environment (LE)
The QMF edit exit interface of COBOL in CMS consists of these parts:
v Interface control block, which is shipped with QMF as DXEECSC
v Control program, which is shipped with QMF as DSQUXILE
v Your edit exit program, which is named DSQUXDT
v LE Preinitialization Service program, which is named CEEPIPI

Figure 176 shows the program structure of a COBOL edit exit routine in CMS.

The edit control block DXEECSC and the sample COBOL program
DSQUXCTC, as distributed by QMF, use quotes (″) to delimit literals. If your
installation or program uses apostrophes (’) instead, you have to change
DXEECSC or copy the structure to your program, changing quotes to
apostrophes.

Generating your COBOL program for LE in CMS
Before you can create the module file, ensure that you can access the
IBM-supplied control module (DSQUXILE). DSQUXILE is located on the QMF
production disk. You need to access this disk prior to creating the module file.

Figure 176. Program structure of a COBOL edit exit routine in CMS with LE

Creating Your Own Edit Codes for QMF Forms

Chapter 29. Creating Your Own Edit Codes for QMF Forms 549

To create the DSQUEDIT module file , use the CMS LOAD and GENMOD
commands as follows:
1. Load the text files that make up the DSQUEDIT module. The DSQUEDIT

module must be relocatable To be relocatable, the module must be loaded
with RLD entries. You do this by specifying the RLDSAVE option on the
CMS/LOAD command. The entry point to the DSQUEDIT module must
be DSQUXILE. LE text libraries must be made available by issuing a CMS
GLOBAL TXTLIB command. Issue the following CMS command:
GLOBAL TXTLIB SCEELKED
LOAD DSQUXILE DSQUXDT (RLDSAVE RESET DSQUXILE

You can run your edit routine in either 24-bit or 31-bit addressing mode.
QMF manages address switching as required. You can specify 31-bit
addressing on the CMS LOAD command. For example:
GLOBAL TXTLIB SCEELKED
LOAD DSQUXILE DSQUXDT (RLDSAVE RESET DSQUXILE AMODE 31 RMODE ANY

2. Generate the DSQUEDIT module.
Issue the CMS GENMOD command to generate the DSQUEDIT module
from the text files just loaded by the CMS LOAD command:
GENMOD DSQUEDIT

Writing an edit routine in COBOL for CICS on OS/390

The edit exit interface for COBOL in CICS consists of these parts:
v Interface control block, which is shipped with QMF as DXEECSC
v CICS command interface module, which is shipped with CICS as DFHECI
v Your edit exit program, which is named DSQUECIC

Figure 177 on page 551 shows the structure of a COBOL edit exit routine in
CICS.

Creating Your Own Edit Codes for QMF Forms

550 Installing and Managing QMF

How a COBOL edit routine interacts with CICS
The user edit program is called by using the standard CICS LINK command
interface. Your program is executing on a different program level than the
main QMF program. The user edit program must be translated using the
CICS translator for COBOL. The CICS communications area
DFHCOMMAREA is used to provide addresses to the user edit routine
program parameters, DXEECS, input data, and output data as shown in the
following diagram.

After translation, the CICS translator provides a procedure statement that
describes the CICS environment block DFHEIBLK and the CICS
communications block, DFHCOMMAREA, like the following example:
PROCEDURE DIVISION USING DFHEIBLK DFHCOMMAREA.

Figure 177. Program structure for a COBOL edit exit routine in CICS

Creating Your Own Edit Codes for QMF Forms

Chapter 29. Creating Your Own Edit Codes for QMF Forms 551

QMF provides addresses to the user edit routine control block DXEECS, input
data, and output data in the CICS communications area DFHCOMMAREA.
Provide your own description of the DFHCOMMAREA in the COBOL
program linkage section as follows:
LINKAGE SECTION.

01 DFHCOMMAREA.
02 ECSADR POINTER.
02 ECSINADR POINTER.
02 ECSRLADR POINTER.

To provide addressability to the user edit routine control block DXEECS, input
data area ECSINPT, and the result data area ECSRSLT, set the addresses of
these data areas to the values located in the DFHCOMMAREA as in the
following example:
SETUP SECTION.

SET ADDRESS OF DXEECS TO ECSADR.
SET ADDRESS OF ECSINPT TO ECSINADR.
SET ADDRESS OF ECSRSLT TO ECSRLADR.

A COBOL copy book is shipped with QMF as DXEECSC, located in library
QMF720.SDSQSAPE on OS/390. Include this copy book in your program.

Return control to QMF using a standard CICS RETURN command such as the
following:
EXEC CICS

RETURN

END-EXEC.

Translating your COBOL program
Translate your program using the CICS translator for COBOL. When you
translate your program, CICS normally supplies the standard procedure and
linkage sections. Replace the standard CICS communications area
DFHCOMMAREA by providing a structure as specified in the previous
linkage section example.

Compiling
QMF edit exit interface control block DXEECSC, located in QMF sample
library QMF720.SDSQUSRE, must be available in a macro library during the
compile.

Specify COBOL compiler options RENT, RES, and NODYNAM, and run time
options NOSTAE and NORTEREUS.

Creating Your Own Edit Codes for QMF Forms

552 Installing and Managing QMF

QMF distributes the user edit routine control block DXEECSC, using quotes as
literal delimiters. You must use the QUOTE compiler option if you use the
DXEECSC control block as distributed by IBM.

Link-editing
You create a new QMF edit exit module DSQUECIC by including your edit
exit program DSQUXCTC with the EXEC CICS interface control module
DFHECI, located in the CICS module library, as distributed by the CICS
product. DFHECI must be the first module in the edit exit module and the
entry point must be module DSQUECIC. Be sure to allocate COBOL libraries
required for link-edit.

The module DSQUECIC must be executable in 31-bit addressing mode.

Example JCL statements for translating, compiling, and link-editing for
CICS on OS/390
The following are example statements for translating, compiling, and
link-editing your job for CICS.
//SAMCOBOL JOB ...
//* Add a parameter PROGLIB to procedure DFHEITVL
//* PROGLIB=&PROGLIB,
//TRNCOMLK EXEC PROC=DFHEITVL,PROGLIB=’QMF720.SDSQLOAD’,
// PARM.TRN=’QUOTE’,
// PARM.COB=’RENT,RES,NODYNAM,OBJECT,LIB,LIST,MAP,QUOTE’
//TRN.SYSIN DD *

.
Your program or modified copy of QMF sample DSQUXCTC
.

/*
//* Provide access to QMF Edit Macro DXEECSC
//COB.SYSLIB DD DSN=QMF720.SDSQUSRE,DISP=SHR
//LKED.SYSIN DD *

INCLUDE SYSLIB(DFHECI)
ORDER DFHECI
ENTRY DSQUECIC
MODE AMODE(31) RMODE(ANY)
NAME DSQUECIC(R)

/*

CICS program definition on OS/390
When QMF is installed, the QMF edit exit program is installed with a
program language of Assembly. To use the COBOL edit exit program, you
must change the program language of module DSQUECIC to COBOL using
the CICS program control table (PCT) macro or resource definition online
(RDO).

Creating Your Own Edit Codes for QMF Forms

Chapter 29. Creating Your Own Edit Codes for QMF Forms 553

Example program DSQUCTC
The IBM-supplied example edit program in COBOL named DSQUXCTC is
located in QMF sample library QMF720.SDSQSAPE on OS/390. The example
program is heavily commented; it can be browsed online, printed, or modified
to suit your needs.

How a COBOL edit routine interacts with QMF
The interface control block between QMF and the user edit interface
DSQUEDIT is DXEECS. It contains the user’s edit code and provides a
scratchpad area for the user edit routine’s use. The control block is persistent
between calls to the user edit routine. The scratchpad area is not modified by
QMF after the initial invocation of the exit routine.

Writing an edit routine in COBOL for CICS/VSE

The edit exit interface for COBOL in CICS consists of these parts:
v Interface control block, which is shipped with QMF as DXEECSC.C
v CICS command interface module, which is shipped with CICS as DFHECI
v Your edit exit program, which is named DSQUECIC

Figure 178 shows the structure of a COBOL edit exit routine in CICS.

Example program DSQUCTC
The IBM-supplied example edit program in COBOL named DSQUXCTC.Z is
located in the QMF sublibrary on VSE. The example program is heavily

Figure 178. Program structure for a COBOL edit exit routine in CICS/VSE

Creating Your Own Edit Codes for QMF Forms

554 Installing and Managing QMF

commented; it can be browsed online, printed, or modified to suit your needs.
A sample job named DSQ3XCTC.Z is shipped with QMF. This job compiles
and link-edits the sample COBOL program as DXEECSC, located in library
QMF720.SDSQUSRE on OS/390 or as DXQUCTC.Z .

Literal delimiters: quotes or apostrophes
You must use either quotes (") or apostrophes (’) to delimit literals in a
COBOL program. You can specify the delimiter of your choice to the CICS
translation process and the COBOL compiler by specifying “QUOTE” or
“APOST”. Make sure the APOST or QUOTE option in effect for the COBOL
compiler matches that of the CICS translator.

The edit control block DXEECSC.C and the sample COBOL program
DSQUXCTC.Z, as distributed by QMF, use quotes (") to delimit literals. If
your installation or program uses apostrophes (’) instead, you have to change
DXEECSC or copy the structure to your program, changing quotes to
apostrophes.

How a COBOL edit routine interacts with CICS
The user edit program is called by using the standard CICS LINK command
interface. Your program is executing on a different program level than the
main QMF program. The user edit program must be translated using the
CICS translator for COBOL. The CICS communications area
DFHCOMMAREA is used to provide addresses to the user edit routine
program parameters, DXEECS, input data, and output data as shown in the
following diagram.

After translation, the CICS translator provides a procedure statement that
describes the CICS environment block DFHEIBLK and the CICS
communications block, DFHCOMMAREA, like the following example:
PROCEDURE DIVISION USING DFHEIBLK DFHCOMMAREA.

Creating Your Own Edit Codes for QMF Forms

Chapter 29. Creating Your Own Edit Codes for QMF Forms 555

QMF provides addresses to the user edit routine control block DXEECS, input
data, and output data in the CICS communications area DFHCOMMAREA.
Provide your own description of the DFHCOMMAREA in the COBOL
program linkage section as follows:
LINKAGE SECTION.

01 DFHCOMMAREA.
02 ECSADR POINTER.
02 ECSINADR POINTER.
02 ECSRLADR POINTER.

To provide addressability to the user edit routine control block DXEECS, input
data area ECSINPT, and the result data area ECSRSLT, set the addresses of
these data areas to the values located in the DFHCOMMAREA as in the
following example:
SETUP SECTION.

SET ADDRESS OF DXEECS TO ECSADR.
SET ADDRESS OF ECSINPT TO ECSINADR.
SET ADDRESS OF ECSRSLT TO ECSRLADR.

A COBOL copy book is shipped with QMF as DXEECSC, located in library
QMF720.SDSQSAPE on OS/390 or as DXEECSC.C in the QMF sublibrary on
VSE. Include this copy book in your program.

Return control to QMF using a standard CICS RETURN command such as the
following:
EXEC CICS

RETURN

END-EXEC.

How a COBOL edit routine interacts with QMF
The interface control block between QMF and the user edit interface
DSQUEDIT is DXEECS. It contains the user’s edit code and provides a
scratchpad area for the user edit routine’s use. The control block is persistent
between calls to the user edit routine. The scratchpad area is not modified by
QMF after the initial invocation of the exit routine.

Translating your COBOL program
Before you translate your program, include the QMF edit exit interface control
block, DXEECSC.C, in the LIBDEF statement. DXEECSC.C is located in the
sublibrary where QMF is installed.

Translate your program using the CICS translator for COBOL. When you
translate your program, CICS normally supplies the standard procedure and

Creating Your Own Edit Codes for QMF Forms

556 Installing and Managing QMF

linkage sections. Replace the standard CICS communications area
DFHCOMMAREA by providing a structure as specified in the previous
linkage section example.

Compiling
Specify COBOL compiler options RENT, RES, and NODYNAM, and run time
options NOSTAE and NORTEREUS.

QMF distributes the user edit routine control block DXEECSC.C, using quotes
as literal delimiters. You must use the QUOTE compiler option if you use the
DXEECSC control block as distributed by IBM.

Link-editing
You create a new QMF edit exit module DSQUECIC by including your edit
exit program with the EXEC CICS interface control module DFHECI, located
in the CICS module library, as distributed by the CICS product. DFHECI must
be the first module in the edit exit module and the entry point must be
module DSQUECIC. DSQUECIC must be executable in 31-bit addressing
mode.

Example JCL statements for translating, compiling, and link-editing on
VSE
Figure 179 on page 558 shows the sample job DSQ3XCTC.Z, which is shipped
with QMF. This job translates, compiles, and link-edits the example COBOL
program (DSQUXCTC.Z), which is also shipped with QMF. Use the sample
job as a starting point to create JCL that translates, assembles, and link-edits
your own edit exit routine.

Ignore weak external references unresolved by the linkage editor, and also the
associated messages about unresolved address constants. For more
information on installing a program in CICS, see CICS System Definition
Guide.

Creating Your Own Edit Codes for QMF Forms

Chapter 29. Creating Your Own Edit Codes for QMF Forms 557

// JOB DSQ3XCTC Install QMF Edit Exit for COBOL
* ---
* Install QMF edit exit (COBOL Version)
* ---
// SETPARM VOLID=volid *-- update volid for syspch
// SETPARM START=rtrk *-- update start track/block
// SETPARM SIZE=ntrks *-- update number of tracks/blocks
* ---
// DLBL IJSYSPH,’CICS.TRANSLAT.OUTPUT’,0
// EXTENT SYSPCH,,1,0,&STARTL,&SIZE.
ASSGN SYSPCH,DISK,VOL=&VOLID.,SHR
* Library search chain must contain the QMF, CICS and COBOL sublibraries
// LIBDEF *,SEARCH=(PRD2.PROD,PRD1.BASE,PRD2.CONFIG)
// LIBDEF PHASE,CATALOG=PRD2.PROD
* ---
* Step 1: Translate user edit exit program
*--
// EXEC DFHECP1$,SIZE=256K,PARM=’XOPTS(CICS,QUOTE)’

:
COBOL source program here
:

/*
*--
* Step 2: Compile translated user edit exit program
*--
CLOSE SYSPCH,00D
// DLBL IJSYSIN,’CICS.RANSLAT.OUTPUT’,0
// EXTENT SYSIPT
ASSIGN SYSIPT,DISK,VOL=&VOLID.,SHR
// OPTION CATAL

PHASE DSQUECIC,*,SVA
INCLUDE DFHEC1

// EXEC IGYCRCTL,PARM=’SZ(MAX),OBJECT,MAP,RES,NODYNAM,QUOTE,LIB,RENT
CLOSE SYSIPT,SYSRDR
/*
*--
* Step 3: Link-edit user edit exit program
*--
// EXEC LNKEDT,PARM=’AMODE=31,RMODE=31’
/*
/&
// JOB RESET
ASSGN SYSIPT,SYSRDR IF 1A93D, CLOSE SYSIPT,SYSRDR
ASSGN SYSPCH,00D IF 1A93D, CLOSE SYSPCH,00D
/&

Figure 179. Example JCL for translating, compiling, and link-editing a COBOL routine

Creating Your Own Edit Codes for QMF Forms

558 Installing and Managing QMF

Defining the edit exit phase to CICS on VSE
During QMF installation, the QMF edit exit program is installed with a
programming language of HLASM. To use the COBOL edit exit program, you
must define the routine to CICS using the COBOL

Handling double-byte character set data

Double-byte character set (DBCS) data can appear in character columns or in
columns with a graphic data type (GRAPHIC, VARGRAPHIC, and LONG
VARGRAPHIC). If you need to devise edit routines that process this type of
data, read this section.

Among the characters represented by the Japanese DBCS are Latin characters
and Katakana characters. A Latin character has these characteristics:
v The first (leftmost) byte of the character has the value X’42’.
v The second byte of the character contains the EBCDIC equivalent.

A Katakana character has these characteristics:
v The first byte of the character contains X’43’.
v The second byte contains the EBCDIC equivalent.

Edit codes for DBCS data
You can use either Uxxxx or Vxxxx edit codes for DBCS data. The data that
the edit routine receives is the same.

What the edit routine receives
The data to be formatted is in the field ECSINPT, and the length of that data,
in bytes, is in ECSINLEN. What you find in ECSINPT depends to some extent
on where the data originates. More precisely, it depends on whether the
column containing that data is a character column or one with a graphic data
type.

Data from graphic columns
If the data to be formatted is from a column with a graphic data type, then
the text in ECSINPT consists of this data preceded by one shift character and
followed by another. Both shift characters are single bytes. For DBCS
terminals, shift characters mark the start and end of a string of DBCS
characters.

So denotes the shift character that introduces a DBCS string, and Si denotes
the one that marks its end. So has the value X'0E'. Si has the value X'0F'. The
shift characters are included in the data length recorded in ECSINLEN.

Thus, the length appearing in ECSINLEN is always greater by two than the
length of the actual data. Because the data is presumably a string of DBCS
characters, its length (in bytes) is always an even number.

Creating Your Own Edit Codes for QMF Forms

Chapter 29. Creating Your Own Edit Codes for QMF Forms 559

Data from character columns
If the data to be processed comes from a character column, then the data in
ECSINPT is just a copy of the column data. Unlike data from a graphic
column, this data can hold single-byte characters and shift characters, as well
as DBCS characters. To locate DBCS characters, you must search for the So
and Si characters that bracket the DBCS strings. If there are no So or Si
characters in ECSINPT, the string contains no DBCS data. For example,
ECSINPT contains the following string:
ccccSodedededededededeSiccSodededededeSi

Here, c, d, and e stand for any possible byte, and So and Si are shift bytes.
From the placement of the shift bytes, you can see that every occurrence of c
represents a single-byte character, and that every occurrence of de represents a
DBCS character.

Single-byte characters can represent Latin letters, Arabic numerals, and special
characters such as plus signs and parentheses. For Japanese DBCS, they can
also be Katakana characters. Some bytes meant to represent lowercase Latin
might be displayed as Katakana symbols. You might have to devise edit codes
that distinguish between columns containing lowercase English and those
containing Katakana.

Ensuring the edit routine returns the right results
Return the results in the ECSRSLT field, with trailing blanks for unused bytes.
Make the results readable to the user’s screen. This means that the resulting
DBCS and EBCDIC characters must have the appropriate representations, and
that the beginning and end of any string of DBCS characters are marked by So
and Si characters.

Overflowing the ECSRSLT field
Be careful not to overflow the ECSRSLT field, whose length is contained in
the ECSRSLEN field. If your results do not fit, truncate them on the right. If
the last character represented in the truncated results is a DBCS character, be
certain to retain its rightmost byte, and to follow that character with an Si
character.

Printing the report column
QMF copies the ECSRSLT field into the corresponding report column. The
result is exactly as wide as the report column. If you do not specify
ALIGNMENT for data, the data is aligned exactly as you typed it.

How the report device represents what you return depends on the specific
device. For some terminals, the following rules apply:
v If the report is displayed on the screen, the Si and So characters embedded

in a user’s results also appear on the terminal.

Creating Your Own Edit Codes for QMF Forms

560 Installing and Managing QMF

v The Si and So characters appear either as blanks or as special symbols.
There is one special symbol for Si and another for So.

v Blanks appear instead of the symbols unless the user presses a certain
combination of keys.

For other devices, the rules can be slightly different.

Instructions for using DBCS characters in the online help say not to use
certain DBCS characters in queries and QMF commands. The same restriction
does not apply to the formatted data returned by an edit routine. Any
legitimate DBCS character can be returned in the ECSRSLT field.

Creating Your Own Edit Codes for QMF Forms

Chapter 29. Creating Your Own Edit Codes for QMF Forms 561

562 Installing and Managing QMF

Chapter 30. Controlling QMF Resources using a Governor
Exit Routine

Note: This chapter contains General Use Programming Interface and
Associated Guidance Information.

A governor exit routine helps you limit end-user activity and control use of
computer resources at your installation. IBM supplies a governor exit routine
for QMF with default limits for the number of rows a user can retrieve from
the database. You can use this default exit routine, or use Assembler to
modify the routine or write one of your own.

Using a governor exit routine on OS/390

On OS/390, default limits are provided for the amount of time spent running
a QMF command.

You can use the DB2 governor with the QMF governor to monitor the
processor time used when dynamically running SELECT, INSERT, UPDATE,
and DELETE queries. You can also use the DB2 governor independently.

You can also use the QMF OS/390 High Performance Option/Manager
(HPO/Manager) to manage and control QMF session activity. With
HPO/Manager you also have a real-time user interface to QMF session
activity and a query analyzer that estimates a query’s resource use before it is
run. The HPO/Manager overrides the QMF governor. For more information
about the HPO feature, see the QMF High Performance Option User’s Guide for
OS/390.

Using the IBM-supplied governor exit routine
The governor exit routine supplied for CICS (DSQUEGV3) controls how many
rows a user can retrieve from the database. The governor exit routine
supplied for TSO, ISPF, and native OS/390 (DSQUEGV1) controls how many
rows a user can retrieve from the database or the processor time used running
a QMF command. The governor exit routine is shipped with two predefined
values for the number of rows:
v A row prompt value warns users when the number of rows retrieved

reaches 25,000, at which time the user sees the message shown below.

© Copyright IBM Corp. 1983, 2002 563

Important: Database activity is not suspended when a cancellation prompt
is displayed. DB2 continues to fetch rows and use processor time.

v A row limit value cancels data retrieval when 100 ,000 rows have been
retrieved, if the user presses the Enter key in response to the message in
Figure 180. When the IBM-supplied governor cancels data retrieval, the user
sees the message shown in below.

When running a procedure, you might get a message that your procedure was
canceled, rather than the message in Figure 181. For example, if your
procedure contains a command that requires the report to complete (such as
ERASE), you receive the message shown below.

Users using the SYSTEM profile are already set up to use these default values
of 25, 000 and 100, 000.

TSO, ISPF, and native OS/390 have two additional predefined values (a time
limit and a time prompt value) for the time spent running a QMF command:
v A time prompt value warns users when the processor time for the cycle

reaches six minutes, at which time the user sees the message shown below.

DSQUn00 QMF governor prompt:
Command has fetched 25,000 rows of data.

==> To continue QMF command press the "ENTER" key.
==> To cancel QMF command type "CANCEL" then press the "ENTER" key
==> To turn off prompting type “NOPROMPT” then press the “ENTER” key

Figure 180. Message displayed when a resource limit is approaching. The n symbol in the figure
represents an NLID from Table 1 on page xiv

Row limit exceeded! Your command canceled by QMF governor.

Figure 181. Message displayed when a resource limit is exceeded

Procedure canceled.

Figure 182. Message displayed when a procedure is canceled

Controlling QMF Resources Using a Governor Exit Routine

564 Installing and Managing QMF

v A time limit value cancels the command when 24 minutes of processor time
are used during the cycle.

Activating the default limits
Follow this procedure to set up the governor exit routine to warn a user when
the number of rows retrieved from the database reaches 25, 000 and to cancel
the QMF activity when the number of rows retrieved reaches 100 ,000:
1. Run the query shown in Figure 184 from the SQL query panel.

2. Set a value of SYSTEM for the RESOURCE__GROUP field of the user’s
profile. For example, the UPDATE statements in Figure 185 on page 566
activate default values for user JONES (using English QMF) and user
SCHMIDT (using German QMF).
Important: Always specify a value for the TRANSLATION column, or you
might change more rows in Q.PROFILES than you intend.

DSQUn00 QMF governor prompt:
Command has executed for 6 minutes

==> To continue QMF command press the "ENTER" key.
==> To cancel QMF command type "CANCEL" then press the "ENTER" key
==> To turn off prompting type "NOPROMPT" then press the "ENTER" key

Figure 183. Message displayed when a resource limit is approaching (OS/390). The n symbol in
the figure represents an NLID from Table 1 on page xiv

UPDATE Q.RESOURCE_VIEW
SET INTVAL=0
WHERE RESOURCE_OPTION=’SCOPE’ AND

RESOURCE_GROUP=’SYSTEM’

Figure 184. Activating default values for the IBM-supplied governor

Controlling QMF Resources Using a Governor Exit Routine

Chapter 30. Controlling QMF Resources using a Governor Exit Routine 565

Important: If you start QMF with a DSQSPRID parameter value of TSOID,
the resource group name is the user ID.

3. Instruct users to reconnect to the database to activate the new values. This
can be done with a DB2 CONNECT command, or they can end their
current QMF session and begin another to activate the new resource
group.

If you want to define row limits other than the defaults of 25, 000 and
100, 000, read “How a governor exit routine controls resources”. Then see the
procedure in “Defining your own resource limits” on page 569.

How a governor exit routine controls resources
The governor uses two types of information to control resources.
v Information about the resource limits you set for a user, defined in a

resource control table called Q.RESOURCE_TABLE.
v Information about the state of the user’s session, which tells the governor

how close the user’s activity is coming to the resource limits defined for the
resource group the user is in. This information is passed to the governor
exit routine in the IBM-supplied control blocks DXEGOVA and DXEXCBA.

How the governor knows what the resource limits are: Each row of the
IBM-supplied Q.RESOURCE_TABLE contains:
v The name of a resource group (RESOURCE_GROUP), which characterizes one or

more users whose activities you want to govern in the same manner.
v The name of the resource (RESOURCE_OPTION) you want to limit for the group

of users named in RESOURCE_GROUP.
v Values (INTVAL, FLOATVAL, or CHARVAL) that define the limit for the resource

option. Resource options can have integer values, floating-point values, or
character values.

Base QMF (English)
German NLF

UPDATE Q.PROFILES
UPDATE Q.PROFILES

SET RESOURCE__GROUP = ’SYSTEM’
SET RESOURCE__GROUP = ’SYSTEM’

WHERE CREATOR=’JONES’ AND
WHERE CREATOR=’SCHMIDT’ AND

TRANSLATION=’ENGLISH’
TRANSLATION=’DEUTSCH’

Figure 185. Updating a user’s resource group

Controlling QMF Resources Using a Governor Exit Routine

566 Installing and Managing QMF

Table 70 shows the structure of the Q.RESOURCE_TABLE as it is shipped by
IBM. Q.RESOURCE_TABLE has the index Q.RESOURCE_INDEX. Keyed
columns are RESOURCE_GROUP and RESOURCE_OPTION.

If you are migrating from an older QMF release: The older QMF releases do
not include Q.RESOURCE_INDEX.

The Q.RESOURCE_TABLE is shipped by IBM with a predefined resource
group called SYSTEM. The SYSTEM resource group has three predefined
resource options for CICS. The group has additional time options for TSO,
ISPF, or native OS/390 batch. Use the CHARVAL column to indicate the limits
defined in each row, as shown.

Table 70. Default resource group and options for the IBM-supplied governor exit
common to all

GROUP OPTION INTVAL FLOATVAL CHARVAL

SYSTEM SCOPE - - Indicate whether
governor is active

SYSTEM ROWLIMIT 100,000 - Cancel after fetching
100,000 rows

SYSTEM ROWPROMPT 25,000 - Prompt user after
fetching 25,000 rows

Table 71. Options for the IBM-supplied governor exit for TSO, ISPF, or native OS/390
batch

GROUP OPTION INTVAL FLOATVAL CHARVAL

SYSTEM TIMELIMIT 1440 - Cancel after 24 minutes
CPU

SYSTEM TIMEPROMPT 360 - Prompt user after 6
minutes CPU

SYSTEM TIMECHECK 900 - 15 minutes interval
between time check

Table 72. Options for the IBM-supplied governor exit for CMS

GROUP OPTION INTVAL FLOATVAL CHARVAL

SYSTEM TIMELIMIT 3600 - Cancel after 60 minutes

SYSTEM TIMEPROMPT 900 - Prompt user after 15
minutes

SYSTEM TIMECHECK 900 - 15 minutes interval
between time check

Controlling QMF Resources Using a Governor Exit Routine

Chapter 30. Controlling QMF Resources using a Governor Exit Routine 567

SCOPE = 0
Activates governing for a particular resource group.

Any non-zero value for SCOPE, including a null, deactivates
governing for the resource group.

ROWLIMIT = 100,000
If the user decides to continue when warned, the governor exit
routine cancels data retrieval activities after 100, 000 rows are
retrieved. (Retrieval is for FETCH only.) ROWLIMIT is dependent on
the buffer size; therefore, more than 100, 000 rows can be retrieved if
the buffer holds a number of rows not divisible by 100, 000.

ROWPROMPT = 25,000
Warns the user when 25, 000 database rows have been retrieved.

The three additional options provided in TSO, and native OS/390 batch are:

TIMELIMIT = 1440
If the user decides to continue when warned, the governor exit
routine cancels the command after 24 minutes of processor time have
elapsed. TIMELIMIT is checked at TIMECHECK intervals; therefore,
more than 24 minutes of processor time can elapse if the
TIMECHECK interval is set at an interval not divisible by 24.
TIMELIMIT is evaluated after a TIMECHECK interval is processed.

Processor time: Processor time refers to the jobstep time plus the SBR
(Service Request Block) time.

TIMEPROMPT = 360
Warns the user when 6 minutes of processor time have elapsed.
Evaluated after a TIMECHECK interval is processed.

TIMECHECK = 900
Specifies 15 minutes of real time between time checks or prompting or
canceling.

IBM also supplies a view of this table, called Q.RESOURCE_VIEW, that
includes all five columns of Q.RESOURCE_TABLE. Each time QMF calls the
governor exit routine, QMF passes to the routine the resource control
information stored in Q.RESOURCE_VIEW. The governor exit routine uses
this resource information to help determine when the user reaches a resource
limit.

How the governor knows when you reach a resource limit: On a call to the
governor exit routine, QMF queries Q.RESOURCE_VIEW, which shows what
resource limits are defined in the resource control table for the resource group
to which the user belongs. To determine the resource group, QMF checks the
value of the RESOURCE_GROUP field of the user’s row in the Q.PROFILES
table and checks Q.RESOURCE_VIEW for a matching value.

Controlling QMF Resources Using a Governor Exit Routine

568 Installing and Managing QMF

QMF uses two control blocks, DXEGOVA and DXEXCBA, to pass information
to the governor exit routine. The DXEGOVA control block contains
information from Q.RESOURCE_VIEW about the limits you set for each user.
The DXEXCBA control block contains information about the activities the user
is performing in the current QMF session, which tells the governor how close
the user is coming to the resource limits.

Figure 186 shows how the governor limits use of resources.

QMF calls the governor exit routine at a number of different points within the
QMF session. These calls are called function calls. For more information about
function calls, see “Points at which QMF calls the governor” on page 600.

What happens when you reach a resource limit: When the resource control
information QMF passes to the governor exit routine indicates that a resource
limit has been reached, the IBM-supplied governor exit routine calls the QMF
cancellation service to cancel the QMF activity the user tried to perform.

If you use the default limits for number of rows, the IBM-supplied governor
exit routine also displays a warning before canceling the activity, as shown in
Figure 181 on page 564. See “Defining your own resource limits” for how to
activate this warning if you are not using the default values for the number of
rows retrieved.

The IBM-supplied governor exit routine resets its count of the number of rows
upon returning control to QMF, so that the number of rows is not cumulative
across calls to the governor.

Defining your own resource limits
This section explains how to create a new resource group, for which the
resource is the number of rows retrieved from the database. If you want to
define resource limits other than the number of rows, you need to modify the
IBM-supplied governor exit routine or write an exit routine of your own. See

Figure 186. How a governor exit routine works with QMF for OS/390

Controlling QMF Resources Using a Governor Exit Routine

Chapter 30. Controlling QMF Resources using a Governor Exit Routine 569

“Modifying the IBM-supplied governor exit routine or writing your own” on
page 591 for more information on the facilities you can use.

Use the following procedure to add a resource group to the resource control
table. This procedure adds a resource group named GROUP1, where the
governor prompts a user in GROUP1 when the number of rows reaches
10, 000, and cancels the user’s activity when the number of rows reaches
10,000; it cancels the user’s activity when the number of rows reaches 15 ,000.
For TSO and native OS/390 batch, the governor also prompts a user in
GROUP1 when processor time reaches 300 seconds, and cancels the user’s
activity when the processor time reaches 1,000 seconds. The procedure also
shows an example of how to add a user to a resource group.
1. Run the query in Figure 187 to set the number of rows at which the user is

warned of the approaching resource limit.
If you do not want to warn users when they are approaching their limit
for the number of rows, skip to step 2

2. Run the query in Figure 188 to set the number of rows at which the
governor cancels the user’s activity.

3. Run the query in Figure 189 to set the processor time that elapses before
the user is warned of the approaching resource limit.
If you do not want to warn users when they are approaching their limit
for the time elapsed, skip to step 4 on page 571.

INSERT INTO Q.RESOURCE__VIEW (RESOURCE__GROUP,RESOURCE__OPTION,INTVAL)
VALUES(’GROUP1’,’ROWPROMPT’,10000)

Figure 187. Activating prompting for row limit

INSERT INTO Q.RESOURCE__VIEW (RESOURCE__GROUP,RESOURCE__OPTION,INTVAL)
VALUES(’GROUP1’,’ROWLIMIT’,15000)

Figure 188. Activating cancellation of activities when user reaches row limit

INSERT INTO Q.RESOURCE__VIEW (RESOURCE__GROUP,RESOURCE__OPTION,INTVAL)
VALUES(’GROUP1’,’TIMEPROMPT’,300)

Figure 189. Activating prompting for time limit

Controlling QMF Resources Using a Governor Exit Routine

570 Installing and Managing QMF

4. Run the query in Figure 190 to set the processor time that can elapse
before the governor cancels the user’s activity.

5. Run the query in Figure 191 to set the real time between intervals when
the governor checks the user’s activity.

6. Run the query shown in Figure 192 to turn on governing for the GROUP1
resource group. SCOPE is a resource option that activates or deactivates
governing. Each resource group in the Q.RESOURCE__TABLE must have a
RESOURCE__OPTION called SCOPE, and SCOPE must have a
corresponding INTVAL of zero, or the resource group is not governed. Set
INTVAL to 1 to deactivate governing.

7. Run a query similar to the one in Figure 193 to add user JONES to the
GROUP1 resource group in the English QMF environment.

If you are using an NLF: Use a similar query to update a user’s profile in
an NLF environment, but use a TRANSLATION value from Table 1 on
page xiv.

INSERT INTO Q.RESOURCE__VIEW (RESOURCE__GROUP,RESOURCE__OPTION,INTVAL)
VALUES(’GROUP1’,’TIMELIMIT’,1000)

Figure 190. For TSO and native OS/390 batch: Activating cancellation of activities when user
reaches time limit

INSERT INTO Q.RESOURCE__VIEW (RESOURCE__GROUP,RESOURCE__OPTION,INTVAL)
VALUES(’GROUP1’,’TIMECHECK’,800)

Figure 191. For TSO and native OS/390 batch: Activating time interval check

INSERT INTO Q.RESOURCE__VIEW (RESOURCE__GROUP,RESOURCE__OPTION,INTVAL)
VALUES(’GROUP1’,’SCOPE’,0)

Figure 192. Turning on the governor for a particular resource group

UPDATE Q.PROFILES
SET RESOURCE__GROUP=’GROUP1’
WHERE CREATOR=’JONES’ AND
TRANSLATION=’ENGLISH’

Figure 193. Updating a user’s resource group

Controlling QMF Resources Using a Governor Exit Routine

Chapter 30. Controlling QMF Resources using a Governor Exit Routine 571

8. Instruct the user whose profile you updated to end the current QMF
session and start another to activate the new values. This can be done with
a DB2 CONNECT command or they can end their current QMF session
and begin another to activate the new values.

Creating your own resource control table
You can create your own table or rename the Q.RESOURCE_TABLE. You can
also include additional columns in the table you create, if
Q.RESOURCE_VIEW is the view defined in this table, and if the table
includes all of the columns shown inTable 73 on page 573.

Figure 194 shows an example of SQL statements you might use to create a
table called MY_RESOURCES. Substitute your own table, column, and table
space names in the query. Before creating a new table, ensure you erase the
Q.RESOURCE_TABLE from the database, because Q.RESOURCE_VIEW is
defined in this table:
DROP TABLE Q.RESOURCE_TABLE

Dropping the Q.RESOURCE__TABLE also drops Q.RESOURCE_VIEW from
the database, so you need to recreate both the table and the view, as shown in
Figure 194 and Figure 195 on page 573. Under TSO, substitute your own table
space name for SPACE1.

When running QMF on OS/390, you automatically invalidate the QMF
application plan when you drop the view. For this reason, you should work
outside QMF when you drop and recreate the resource table and view. Choose
a time when QMF is inactive, and use DB2’s DB2I facility. DB2I lets you carry
out the work interactively.

If you do not use the IBM-supplied table space, you must create your own. If
you rebind the QMF authorization plan explicitly, you also need the BIND
privilege on the plan. You can find information on the needed authority for
each of your SQL commands in the DB2 UDB for OS390 SQL Reference
manual.

CREATE TABLE MY_RESOURCES
(GROUP_NAME CHAR(16) NOT NULL,
CONSTRAINT CHAR(16) NOT NULL,
INTEGER INTEGER,
FLOAT_VALUE FLOAT,
CHARACTER VARCHAR(80))

IN TBSPACE1

Figure 194. Creating a resource control table or renaming Q.RESOURCE_TABLE

Controlling QMF Resources Using a Governor Exit Routine

572 Installing and Managing QMF

Always recreate Q.RESOURCE_VIEW if you decide to use a table other than
Q.RESOURCE_TABLE or decide to give Q.RESOURCE__TABLE a different
name, because QMF queries the view, not the table, to obtain resource control
information to pass to the governor exit routine.

Figure 195 shows how to redefine Q.RESOURCE_VIEW as a view on the new
table, MY_RESOURCES. Substitute your own table and column names for
those in the figure.

After you create the view, you must grant the SELECT privilege on
Q.RESOURCE_VIEW to PUBLIC. Then test the new view; you can test the
view using SPUFI. Finally, rebind the QMF authorization plan.

Table 73. Structure of the Q.RESOURCE_TABLE table

Column name Data type Length
(bytes)

Nulls
allowed?

Function/values

RESOURCE__GROUP CHAR 16 No Contains the name of the resource
group. Update the RESOURCE__GROUP
field of the user’s row in Q.PROFILES to
activate governing for that user.

RESOURCE__OPTION CHAR 16 No Your own name for a resource you want
to monitor.

INTVAL INTEGER Yes Reflects resource limit for resource
options that have integer values. For
example, number of rows retrieved from
the database is a resource that has an
integer value.

FLOATVAL FLOAT Yes Reflects resource limit for resource
options that have floating point values.
FLOATVAL is null for the IBM-supplied
governor.

CREATE VIEW Q.RESOURCE_VIEW
(RESOURCE_GROUP, RESOURCE_OPTION, INTVAL, FLOATVAL, CHARVAL)
AS SELECT GROUPNAME, CONSTRAINT, INTEGER, FLOAT_VALUE, CHARACTER
FROM MY_RESOURCES

Figure 195. Redefining the Q.RESOURCE_VIEW

Controlling QMF Resources Using a Governor Exit Routine

Chapter 30. Controlling QMF Resources using a Governor Exit Routine 573

Table 73. Structure of the Q.RESOURCE_TABLE table (continued)

Column name Data type Length
(bytes)

Nulls
allowed?

Function/values

CHARVAL VARCHAR 80 Yes Reflects resource limit for resource
options that have character values. For
example, you might establish a
DAY_OF_WEEK resource option and
assign MONDAY to CHARVAL so that
QMF users can log on to QMF only on
Mondays. CHARVAL is used as a
comment column in the IBM-supplied
governor.

Using a governor exit routine on VM

Default limits are provided for the amount of time spent running a QMF
command.

Using the IBM-supplied governor exit routine
The governor exit routine supplied for CMS (DSQUEGV2) controls how many
rows a user can retrieve from the database or the real time used running a
QMF command. The governor exit routine is shipped with two predefined
values for the number of rows:
v A row prompt value warns users when the number of rows retrieved

reaches 25,000, at which time the user sees the message shown below.

v A row limit value cancels data retrieval when 100 ,000 rows have been
retrieved, if the user presses the Enter key in response to the message in
Figure 196. When the IBM-supplied governor cancels data retrieval, the user
sees the message shown in below.

DSQUn00 QMF governor prompt:
Command has fetched 25,000 rows of data.

==> To continue QMF command press the "ENTER" key.
==> To cancel QMF command type "CANCEL" then press the "ENTER" key
==> To turn off prompting type “NOPROMPT” then press the “ENTER” key

Figure 196. Message displayed when a resource limit is approaching. The n symbol in the figure
represents an NLID from Table 1 on page xiv

Controlling QMF Resources Using a Governor Exit Routine

574 Installing and Managing QMF

When running a procedure, you might get a message that your procedure was
canceled, rather than the message in Figure 197. For example, if your
procedure contains a command that requires the report to complete (such as
ERASE), you receive the message shown below.

Users using the SYSTEM profile, are already set up to use these default values
of 25, 000 and 100, 000.

If you want to define your own limits for when the user is warned and when
data retrieval is canceled, see “Defining your own resource limits” on
page 569.

CMS has two predefined values (a time limit and a time prompt value) for the
time spent running a QMF command:
v A time prompt value warns users when the real time for the cycle has

reached 15 minutes, at which time the user sees the message shown in
Figure 199.

v A time limit value cancels the command when 60 minutes of real time are
used during the cycle.

Activating the default limits
Follow this procedure to set up the governor exit routine to warn a user when
the number of rows retrieved from the database reaches 25, 000 and to cancel
the QMF activity when the number of rows retrieved reaches 100 ,000:

Row limit exceeded! Your command canceled by QMF governor.

Figure 197. Message displayed when a resource limit is exceeded

Procedure canceled.

Figure 198. Message displayed when a procedure is canceled

DSQUn00 QMF governor prompt:
Command has executed for 15 minutes.

==> To continue QMF command press the “ENTER” key.
==> To cancel QMF command type “CANCEL” then press the “ENTER” key
==> To turn off prompting type “NOPROMPT” then press the “ENTER” key

Figure 199. Message displayed when a resource limit is approaching

Controlling QMF Resources Using a Governor Exit Routine

Chapter 30. Controlling QMF Resources using a Governor Exit Routine 575

1. Run the query shown below from the SQL query panel.

2. Set a value of SYSTEM for the RESOURCE__GROUP field of the user’s
profile. For example, the UPDATE statements below activate default values
for user JONES (using English QMF) and user SCHMIDT (using German
QMF).

3. Instruct users to reconnect to the database to activate the new values.

“How a governor exit routine controls resources” on page 566 explains how
the governor uses the information in the Q.RESOURCE__VIEW and the
Q.PROFILES table to control resources.

If you want to define row limits other than the defaults of 25, 000 and
100, 000, read “How a governor exit routine controls resources” on page 566.
Then see the procedure in “Defining your own resource limits” on page 569.

How a governor exit routine controls resources
The governor uses two types of information to control resources.
v Information about the resource limits you set for a user, defined in a

resource control table called Q.RESOURCE_TABLE.
v Information about the state of the user’s session, which tells the governor

how close the user’s activity is coming to the resource limits defined for the

UPDATE Q.RESOURCE_VIEW
SET INTVAL=0
WHERE RESOURCE_OPTION=’SCOPE’ AND

RESOURCE_GROUP=’SYSTEM’

Figure 200. Activating default values for the IBM-supplied governor

Base QMF (English)
German NLF

UPDATE Q.PROFILES
UPDATE Q.PROFILES

SET RESOURCE__GROUP = ’SYSTEM’
SET RESOURCE__GROUP = ’SYSTEM’

WHERE CREATOR=’JONES’ AND
WHERE CREATOR=’SCHMIDT’ AND

TRANSLATION=’ENGLISH’
TRANSLATION=’DEUTSCH’

Figure 201. Updating a user’s resource group

Controlling QMF Resources Using a Governor Exit Routine

576 Installing and Managing QMF

resource group the user is in. This information is passed to the governor
exit routine in the IBM-supplied control blocks DXEGOVA and DXEXCBA.

How the governor knows what the resource limits are: Each row of the
IBM-supplied Q.RESOURCE_TABLE contains:
v The name of a resource group (RESOURCE_GROUP), which characterizes one or

more users whose activities you want to govern in the same manner.
v The name of the resource (RESOURCE_OPTION) you want to limit for the group

of users named in RESOURCE_GROUP.
v Values (INTVAL, FLOATVAL, or CHARVAL) that define the limit for the resource

option. Resource options can have integer values, floating-point values, or
character values.

Table 74 shows the structure of the Q.RESOURCE_TABLE as it is shipped by
IBM. Q.RESOURCE_TABLE has the index Q.RESOURCE_INDEX. Keyed
columns are RESOURCE_GROUP and RESOURCE_OPTION.

The Q.RESOURCE_TABLE is shipped by IBM with a predefined resource
group called SYSTEM. The SYSTEM resource group has three predefined
resource options for CICS, as shown in Table 74. The group has additional
time options for TSO, native OS/390 batch, or CMS. Use the CHARVAL
column to indicate the limits defined in each row, as shown.

Table 74. Default resource group and options for the IBM-supplied governor exit
common to all

GROUP OPTION INTVAL FLOATVAL CHARVAL

SYSTEM SCOPE - - Indicate whether
governor is active

SYSTEM ROWLIMIT 100,000 - Cancel after fetching
100,000 rows

SYSTEM ROWPROMPT 25,000 - Prompt user after
fetching 25,000 rows

Table 75. Options for the IBM-supplied governor exit for TSO or native OS/390 batch

GROUP OPTION INTVAL FLOATVAL CHARVAL

SYSTEM TIMELIMIT 1440 - Cancel after 24 minutes
CPU

SYSTEM TIMEPROMPT 360 - Prompt user after 6
minutes CPU

SYSTEM TIMECHECK 900 - 15 minutes interval
between time check

Controlling QMF Resources Using a Governor Exit Routine

Chapter 30. Controlling QMF Resources using a Governor Exit Routine 577

Table 76. Options for the IBM-supplied governor exit for CMS

GROUP OPTION INTVAL FLOATVAL CHARVAL

SYSTEM TIMELIMIT 3600 - Cancel after 60 minutes

SYSTEM TIMEPROMPT 900 - Prompt user after 15
minutes

SYSTEM TIMECHECK 900 - 15 minutes interval
between time check

SCOPE = 0
Activates governing for a particular resource group.

Any non-zero value for SCOPE, including a null, deactivates
governing for the resource group.

ROWLIMIT = 100,000
If the user decides to continue when warned, the governor exit
routine cancels data retrieval activities after 100, 000 rows are
retrieved. (Retrieval is for FETCH only.) ROWLIMIT is dependent on
the buffer size; therefore, more than 100, 000 rows can be retrieved if
the buffer holds a number of rows not divisible by 100, 000.

ROWPROMPT = 25,000
Warns the user when 25, 000 database rows have been retrieved.

IBM also supplies a view of this table, called Q.RESOURCE_VIEW, that
includes all five columns of Q.RESOURCE_TABLE. Each time QMF calls the
governor exit routine, QMF passes to the routine the resource control
information stored in Q.RESOURCE_VIEW. The governor exit routine uses
this resource information to help determine when the user reaches a resource
limit.

The three additional options provided in CMS are:

TIMELIMIT = 3600
If the user decides to continue when warned, the governor exit
routine cancels the command after 60 minutes of processor time have
elapsed. TIMELIMIT is checked at TIMECHECK intervals; therefore,
more than 60 minutes of processor time can elapse if the
TIMECHECK interval is set at an interval not divisible by 60.

TIMEPROMPT = 900
Warns the user when 15 minutes of processor time have elapsed.

TIMECHECK = 900
Specifies 15 minutes of real time between time checks or prompting or
canceling.

Controlling QMF Resources Using a Governor Exit Routine

578 Installing and Managing QMF

How the governor knows when you reach a resource limit: On a call to the
governor exit routine, QMF queries Q.RESOURCE_VIEW, which shows what
resource limits are defined in the resource control table for the resource group
to which the user belongs. To determine the resource group, QMF checks the
value of the RESOURCE_GROUP field of the user’s row in the Q.PROFILES
table and checks Q.RESOURCE_VIEW for a matching value.

QMF uses two control blocks, DXEGOVA and DXEXCBA, to pass information
to the governor exit routine. The DXEGOVA control block contains
information from Q.RESOURCE_VIEW about the limits you set for each user.
The DXEXCBA control block contains information about the activities the user
is performing in the current QMF session, which tells the governor how close
the user is coming to the resource limits.

Figure 202 shows how the governor limits use of resources.

QMF calls the governor exit routine at a number of different points within the
QMF session.

These calls are called function calls. For more information about function calls,
see “Points at which QMF calls the governor” on page 600.

What happens when you reach a resource limit: When the resource control
information QMF passes to the governor exit routine indicates that a resource
limit has been reached, the IBM-supplied governor exit routine calls the QMF
cancellation service to cancel the QMF activity the user tried to perform.

If you use the default limits for number of rows, the IBM-supplied governor
exit routine also displays a warning before canceling the activity, as shown in
Figure 181 on page 564. See “Defining your own resource limits” on page 569
for how to activate this warning if you are not using the default values for the
number of rows retrieved.

Figure 202. How a governor exit routine works with QMF CMS

Controlling QMF Resources Using a Governor Exit Routine

Chapter 30. Controlling QMF Resources using a Governor Exit Routine 579

The IBM-supplied governor exit routine resets its count of the number of rows
upon returning control to QMF, so that the number of rows is not cumulative
across calls to the governor.

Defining your own resource limits
This section explains how to create a new resource group, for which the
resource is the number of rows retrieved from the database. If you want to
define resource limits other than the number of rows, you need to modify the
IBM-supplied governor exit routine or write an exit routine of your own. See
“Modifying the IBM-supplied governor exit routine or writing your own” on
page 591 for more information on the facilities you can use.

Use the following procedure to add a resource group to the resource control
table. This procedure adds a resource group named GROUP1, where the
governor prompts a user in GROUP1 when the number of rows reaches
10, 000, and cancels the user’s activity when the number of rows reaches
10,000; it cancels the user’s activity when the number of rows reaches 15 ,000.
For CMS, the governor also prompts a user in GROUP1 when the real time
reaches 10 minutes, and cancels the user’s activity when the real time reaches
45 minutes. The procedure also shows an example of how to add a user to a
resource group.
1. Run the query below to set the number of rows at which the user is

warned of the approaching resource limit.
If you do not want to warn users when they are approaching their limit
for the number of rows, skip to step 2

2. Run the query in Figure 204 to set the number of rows at which the
governor cancels the user’s activity.

3. Run the query in Figure 205 on page 581 to set the real time that elapses
before the user is warned of the approaching resource limit.

INSERT INTO Q.RESOURCE__VIEW (RESOURCE__GROUP,RESOURCE__OPTION,INTVAL)
VALUES(’GROUP1’,’ROWPROMPT’,10000)

Figure 203. Activating prompting for row limit

INSERT INTO Q.RESOURCE__VIEW (RESOURCE__GROUP,RESOURCE__OPTION,INTVAL)
VALUES(’GROUP1’,’ROWLIMIT’,15000)

Figure 204. Activating cancellation of activities when user reaches row limit

Controlling QMF Resources Using a Governor Exit Routine

580 Installing and Managing QMF

If you do not want to warn users when they are approaching their limit
for the time elapsed, skip to step 4.

4. Run the query in Figure 206 to set the processor time that can elapse
before the governor cancels the user’s activity.

5. Run the query in Figure 207 to set the real time between intervals when
the governor checks the user’s activity.

6. Run the query shown in Figure 208 to turn on governing for the GROUP1
resource group. SCOPE is a resource option that activates or deactivates
governing. Each resource group in the Q.RESOURCE__TABLE must have a
RESOURCE__OPTION called SCOPE, and SCOPE must have a
corresponding INTVAL of zero, or the resource group is not governed. Set
INTVAL to 1 to deactivate governing.

7. Run a query similar to the one in Figure 209 on page 582 to add user
JONES to the GROUP1 resource group in the English QMF environment.

INSERT INTO Q.RESOURCE__VIEW (RESOURCE__GROUP,RESOURCE__OPTION,INTVAL)
VALUES(’GROUP1’,’TIMEPROMPT’,600)

Figure 205. Activating prompting for time limit on VM

INSERT INTO Q.RESOURCE__VIEW (RESOURCE__GROUP,RESOURCE__OPTION,INTVAL)
VALUES(’GROUP1’,’TIMELIMIT’,2700)

Figure 206. For CMS: Activating cancellation of activities when user reaches time limit

INSERT INTO Q.RESOURCE__VIEW (RESOURCE__GROUP,RESOURCE__OPTION,INTVAL)
VALUES(’GROUP1’,’TIMECHECK’,600)

Figure 207. For CMS: Activating time interval check

INSERT INTO Q.RESOURCE__VIEW (RESOURCE__GROUP,RESOURCE__OPTION,INTVAL)
VALUES(’GROUP1’,’SCOPE’,0)

Figure 208. Turning on the governor for a particular resource group

Controlling QMF Resources Using a Governor Exit Routine

Chapter 30. Controlling QMF Resources using a Governor Exit Routine 581

If you are using an NLF: Use a similar query to update a user’s profile in
an NLF environment, but use a TRANSLATION value from Table 1 on
page xiv.

8. Instruct the user whose profile you updated to end the current QMF
session and start another to activate the new values. This can be done with
a DB2 CONNECT command or they can end their current QMF session
and begin another to activate the new values.

Creating your own resource control table
You can create your own table or rename the Q.RESOURCE_TABLE. You can
also include additional columns in the table you create, if
Q.RESOURCE_VIEW is the view defined in this table, and if the table
includes all of the columns shown in Table 77 on page 583.

Figure 210 shows an example of SQL statements you might use to create a
table called MY_RESOURCES. Substitute your own table, column, and table
space names in the query. Before creating a new table, ensure you erase the
Q.RESOURCE_TABLE from the database, because Q.RESOURCE_VIEW is
defined in this table:
DROP TABLE Q.RESOURCE_TABLE

Dropping the Q.RESOURCE__TABLE also drops Q.RESOURCE_VIEW from
the database, so you need to recreate both the table and the view, as shown in
Figure 210 and Figure 211 on page 583. Substitute your own dbspace name for
SPACE1.

Always recreate Q.RESOURCE_VIEW if you decide to use a table other than
Q.RESOURCE_TABLE or decide to give Q.RESOURCE__TABLE a different

UPDATE Q.PROFILES
SET RESOURCE__GROUP=’GROUP1’
WHERE CREATOR=’JONES’ AND
TRANSLATION=’ENGLISH’

Figure 209. Updating a user’s resource group

CREATE TABLE MY_RESOURCES
(GROUP_NAME CHAR(16) NOT NULL,
CONSTRAINT CHAR(16) NOT NULL,
INTEGER INTEGER,
FLOAT_VALUE FLOAT,
CHARACTER VARCHAR(80))

IN DBSPACE1

Figure 210. Creating a resource control table or renaming Q.RESOURCE_TABLE on VM

Controlling QMF Resources Using a Governor Exit Routine

582 Installing and Managing QMF

name, because QMF queries the view, not the table, to obtain resource control
information to pass to the governor exit routine.

Figure 211 shows how to redefine Q.RESOURCE_VIEW as a view on the new
table, MY_RESOURCES. Substitute your own table and column names for
those in the figure.

Table 77. Structure of the Q.RESOURCE_TABLE table

Column name Data type Length
(bytes)

Nulls
allowed?

Function/values

RESOURCE__GROUP CHAR 16 No Contains the name of the resource
group. Update the RESOURCE__GROUP
field of the user’s row in Q.PROFILES to
activate governing for that user.

RESOURCE__OPTION CHAR 16 No Your own name for a resource you want
to monitor.

INTVAL INTEGER Yes Reflects resource limit for resource
options that have integer values. For
example, number of rows retrieved from
the database is a resource that has an
integer value.

FLOATVAL FLOAT Yes Reflects resource limit for resource
options that have floating point values.
FLOATVAL is null for the IBM-supplied
governor.

CHARVAL VARCHAR 80 Yes Reflects resource limit for resource
options that have character values. For
example, you might establish a
DAY_OF_WEEK resource option and
assign MONDAY to CHARVAL so that
QMF users can log on to QMF only on
Mondays. CHARVAL is used as a
comment column in the IBM-supplied
governor.

CREATE VIEW Q.RESOURCE_VIEW
(RESOURCE_GROUP, RESOURCE_OPTION, INTVAL, FLOATVAL, CHARVAL)
AS SELECT GROUPNAME, CONSTRAINT, INTEGER, FLOAT_VALUE, CHARACTER
FROM MY_RESOURCES

Figure 211. Redefining the Q.RESOURCE_VIEW

Controlling QMF Resources Using a Governor Exit Routine

Chapter 30. Controlling QMF Resources using a Governor Exit Routine 583

Using a governor exit routine on VSE

Use these instructions to control QMF resources on VSE.

Using the IBM-supplied governor exit routine
The governor exit routine supplied by IBM controls how many rows a user
can retrieve from the database. The governor exit routine is shipped with two
predefined values for the number of rows:
v A row prompt value warns users when the number of rows retrieved

reaches 25,000, at which time the user sees the message shown in
Figure 212.

v A row limit value cancels data retrieval when 100 ,000 rows have been
retrieved, if the user presses the Enter key in response to the message in
Figure 212. When the IBM-supplied governor cancels data retrieval, the user
sees the message shown in Figure 213.

When running a procedure, you might get a message that your procedure was
canceled, rather than the message in Figure 213. For example, if your
procedure contains a command that requires the report to complete (such as
ERASE), you receive the message shown in Figure 214.

Users using the SYSTEM profile, are already set up to use these default values
of 25, 000 and 100, 000.

DSQUn00 QMF governor prompt:
Command has fetched 25,000 rows of data.

==> To continue QMF command press the "ENTER" key.
==> To cancel QMF command type "CANCEL" then press the "ENTER" key
==> To turn off prompting type “NOPROMPT” then press the “ENTER” key

Figure 212. Message displayed when a resource limit is approaching. The n symbol in the figure
represents an NLID from Table 1 on page xiv

Row limit exceeded! Your command canceled by QMF governor.

Figure 213. Message displayed when a resource limit is exceeded

Procedure canceled.

Figure 214. Message displayed when a procedure is canceled

Controlling QMF Resources Using a Governor Exit Routine

584 Installing and Managing QMF

If you want to define your own limits for when the user is warned and when
data retrieval is canceled, see “Defining your own resource limits” on
page 580.

Activating the default limits
Follow this procedure to set up the governor exit routine to warn a user when
the number of rows retrieved from the database reaches 25, 000 and to cancel
the QMF activity when the number of rows retrieved reaches 100 ,000:
1. Run the query shown in below from the SQL query panel.

2. Set a value of SYSTEM for the RESOURCE__GROUP field of the user’s
profile. For example, the UPDATE statements in Figure 216 activate default
values for user JONES (using English QMF) and user SCHMIDT (using
German QMF).
Important: Always specify a value for the TRANSLATION column, or you
might change more rows in Q.PROFILES than you intend.

3. Instruct users to reconnect to the database to activate the new values.

If you want to define row limits other than the defaults of 25, 000 and
100, 000, read “How a governor exit routine controls resources” on page 576.
Then see the procedure in “Defining your own resource limits” on page 588.

UPDATE Q.RESOURCE_VIEW
SET INTVAL=0
WHERE RESOURCE_OPTION=’SCOPE’ AND

RESOURCE_GROUP=’SYSTEM’

Figure 215. Activating default values for the IBM-supplied governor

Base QMF (English)
German NLF

UPDATE Q.PROFILES
UPDATE Q.PROFILES

SET RESOURCE__GROUP = ’SYSTEM’
SET RESOURCE__GROUP = ’SYSTEM’

WHERE CREATOR=’JONES’ AND
WHERE CREATOR=’SCHMIDT’ AND

TRANSLATION=’ENGLISH’
TRANSLATION=’DEUTSCH’

Figure 216. Updating a user’s resource group

Controlling QMF Resources Using a Governor Exit Routine

Chapter 30. Controlling QMF Resources using a Governor Exit Routine 585

How a governor exit routine controls resources
The governor uses two types of information to control resources.
v Information about the resource limits you set for a user, defined in a

resource control table called Q.RESOURCE_TABLE.
v Information about the state of the user’s session, which tells the governor

how close the user’s activity is coming to the resource limits defined for the
resource group the user is in. This information is passed to the governor
exit routine in the IBM-supplied control blocks DXEGOVA and DXEXCBA.

How the governor knows what the resource limits are: Each row of the
IBM-supplied Q.RESOURCE_TABLE contains:
v The name of a resource group (RESOURCE_GROUP), which characterizes one or

more users whose activities you want to govern in the same manner.
v The name of the resource (RESOURCE_OPTION) you want to limit for the group

of users named in RESOURCE_GROUP.
v Values (INTVAL, FLOATVAL, or CHARVAL) that define the limit for the resource

option. Resource options can have integer values, floating-point values, or
character values.

Table 78 shows the structure of the Q.RESOURCE_TABLE as it is shipped by
IBM. Q.RESOURCE_TABLE has the index Q.RESOURCE_INDEX. Keyed
columns are RESOURCE_GROUP and RESOURCE_OPTION.

The Q.RESOURCE_TABLE is shipped by IBM with a predefined resource
group called SYSTEM. The SYSTEM resource group has three predefined
resource options for CICS. Use the CHARVAL column to indicate the limits
defined in each row, as shown.

Table 78. Default resource group and options for the IBM-supplied governor exit
common to all

GROUP OPTION INTVAL FLOATVAL CHARVAL

SYSTEM SCOPE - - Indicate whether
governor is active

SYSTEM ROWLIMIT 100,000 - Cancel after fetching
100,000 rows

SYSTEM ROWPROMPT 25,000 - Prompt user after
fetching 25,000 rows

SCOPE = 0
Activates governing for a particular resource group.

Any non-zero value for SCOPE, including a null, deactivates
governing for the resource group.

Controlling QMF Resources Using a Governor Exit Routine

586 Installing and Managing QMF

ROWLIMIT = 100,000
If the user decides to continue when warned, the governor exit
routine cancels data retrieval activities after 100, 000 rows are
retrieved. (Retrieval is for FETCH only.) ROWLIMIT is dependent on
the buffer size; therefore, more than 100, 000 rows can be retrieved if
the buffer holds a number of rows not divisible by 100, 000.

ROWPROMPT = 25,000
Warns the user when 25, 000 database rows have been retrieved.

IBM also supplies a view of this table, called Q.RESOURCE_VIEW, that
includes all five columns of Q.RESOURCE_TABLE. Each time QMF calls the
governor exit routine, QMF passes to the routine the resource control
information stored in Q.RESOURCE_VIEW. The governor exit routine uses
this resource information to help determine when the user reaches a resource
limit.

How the governor knows when you reach a resource limit: On a call to the
governor exit routine, QMF queries Q.RESOURCE_VIEW, which shows what
resource limits are defined in the resource control table for the resource group
to which the user belongs. To determine the resource group, QMF checks the
value of the RESOURCE_GROUP field of the user’s row in the Q.PROFILES
table and checks Q.RESOURCE_VIEW for a matching value.

QMF uses two control blocks, DXEGOVA and DXEXCBA, to pass information
to the governor exit routine. The DXEGOVA control block contains
information from Q.RESOURCE_VIEW about the limits you set for each user.
The DXEXCBA control block contains information about the activities the user
is performing in the current QMF session, which tells the governor how close
the user is coming to the resource limits.

QMF calls the governor exit routine at a number of different points within the
QMF session, as shown in Figure 217 on page 588.

Controlling QMF Resources Using a Governor Exit Routine

Chapter 30. Controlling QMF Resources using a Governor Exit Routine 587

These calls are called function calls. For more information about function calls,
see “Points at which QMF calls the governor” on page 600.

What happens when you reach a resource limit: When the resource control
information QMF passes to the governor exit routine indicates that a resource
limit has been reached, the IBM-supplied governor exit routine calls the QMF
cancellation service to cancel the QMF activity the user tried to perform.

If you use the default limits for number of rows, the IBM-supplied governor
exit routine also displays a warning before canceling the activity, as shown in
Figure 213 on page 584. See “Defining your own resource limits” for how to
activate this warning if you are not using the default values for the number of
rows retrieved.

The IBM-supplied governor exit routine resets its count of the number of rows
upon returning control to QMF, so that the number of rows is not cumulative
across calls to the governor.

Defining your own resource limits
This section explains how to create a new resource group, for which the
resource is the number of rows retrieved from the database. If you want to
define resource limits other than the number of rows, you need to modify the
IBM-supplied governor exit routine or write an exit routine of your own. See
“Modifying the IBM-supplied governor exit routine or writing your own” on
page 591 for more information on the facilities you can use.

Figure 217. How a governor exit routine works with QMF for VSE

Controlling QMF Resources Using a Governor Exit Routine

588 Installing and Managing QMF

Use the following procedure to add a resource group to the resource control
table. This procedure adds a resource group named GROUP1, where the
governor prompts a user in GROUP1 when the number of rows reaches
10, 000, and cancels the user’s activity when the number of rows reaches
10,000; it cancels the user’s activity when the number of rows reaches 15 ,000.
The procedure also shows an example of how to add a user to a resource
group.
1. Run the query below to set the number of rows at which the user is

warned of the approaching resource limit.
If you do not want to warn users when they are approaching their limit
for the number of rows, skip to step 2

2. Run the query in Figure 219 to set the number of rows at which the
governor cancels the user’s activity.

3. Run the query shown in below to turn on governing for the GROUP1
resource group. SCOPE is a resource option that activates or deactivates
governing. Each resource group in the Q.RESOURCE__TABLE must have a
RESOURCE__OPTION called SCOPE, and SCOPE must have a
corresponding INTVAL of zero, or the resource group is not governed. Set
INTVAL to 1 to deactivate governing.

4. Run a query similar to the one below to add user JONES to the GROUP1
resource group in the English QMF environment.

INSERT INTO Q.RESOURCE__VIEW (RESOURCE__GROUP,RESOURCE__OPTION,INTVAL)
VALUES(’GROUP1’,’ROWPROMPT’,10000)

Figure 218. Activating prompting for row limit

INSERT INTO Q.RESOURCE__VIEW (RESOURCE__GROUP,RESOURCE__OPTION,INTVAL)
VALUES(’GROUP1’,’ROWLIMIT’,15000)

Figure 219. Activating cancellation of activities when user reaches row limit

INSERT INTO Q.RESOURCE__VIEW (RESOURCE__GROUP,RESOURCE__OPTION,INTVAL)
VALUES(’GROUP1’,’SCOPE’,0)

Figure 220. Turning on the governor for a particular resource group

Controlling QMF Resources Using a Governor Exit Routine

Chapter 30. Controlling QMF Resources using a Governor Exit Routine 589

If you are using an NLF: Use a similar query to update a user’s profile in
an NLF environment, but use a TRANSLATION value from Table 1 on
page xiv.

5. Instruct the user whose profile you updated to end the current QMF
session and start another to activate the new values.

Creating your own resource control table
You can create your own table or rename the Q.RESOURCE_TABLE. You can
also include additional columns in the table you create, if
Q.RESOURCE_VIEW is the view defined in this table, and if the table
includes all of the columns shown in Table 79 on page 591.

Figure 222 shows an example of SQL statements you might use to create a
table called MY_RESOURCES. Substitute your own table, column, and table
space names in the query. Before creating a new table, ensure you erase the
Q.RESOURCE_TABLE from the database, because Q.RESOURCE_VIEW is
defined in this table:
DROP TABLE Q.RESOURCE_TABLE

Dropping the Q.RESOURCE__TABLE also drops Q.RESOURCE_VIEW from
the database, so you need to recreate both the table and the view, as shown in
Figure 222 and Figure 223 on page 591. Substitute your own dbspace name for
SPACE1.

Always recreate Q.RESOURCE_VIEW if you decide to use a table other than
Q.RESOURCE_TABLE or decide to give Q.RESOURCE__TABLE a different
name, because QMF queries the view, not the table, to obtain resource control
information to pass to the governor exit routine.

UPDATE Q.PROFILES
SET RESOURCE__GROUP=’GROUP1’
WHERE CREATOR=’JONES’ AND
TRANSLATION=’ENGLISH’

Figure 221. Updating a user’s resource group

CREATE TABLE MY_RESOURCES
(GROUP_NAME CHAR(16) NOT NULL,
CONSTRAINT CHAR(16) NOT NULL,
INTEGER INTEGER,
FLOAT_VALUE FLOAT,
CHARACTER VARCHAR(80))

IN DBSPACE1

Figure 222. Creating a resource control table or renaming Q.RESOURCE_TABLE

Controlling QMF Resources Using a Governor Exit Routine

590 Installing and Managing QMF

Figure 223 shows how to redefine Q.RESOURCE_VIEW as a view on the new
table, MY_RESOURCES. Substitute your own table and column names for
those in the figure.

Table 79. Structure of the Q.RESOURCE_TABLE table

Column name Data type Length
(bytes)

Nulls
allowed?

Function/values

RESOURCE__GROUP CHAR 16 No Contains the name of the resource
group. Update the RESOURCE__GROUP
field of the user’s row in Q.PROFILES to
activate governing for that user.

RESOURCE__OPTION CHAR 16 No Your own name for a resource you want
to monitor.

INTVAL INTEGER Yes Reflects resource limit for resource
options that have integer values. For
example, number of rows retrieved from
the database is a resource that has an
integer value.

FLOATVAL FLOAT Yes Reflects resource limit for resource
options that have floating point values.
FLOATVAL is null for the IBM-supplied
governor.

CHARVAL VARCHAR 80 Yes Reflects resource limit for resource
options that have character values. For
example, you might establish a
DAY_OF_WEEK resource option and
assign MONDAY to CHARVAL so that
QMF users can log on to QMF only on
Mondays. CHARVAL is used as a
comment column in the IBM-supplied
governor.

Modifying the IBM-supplied governor exit routine or writing your own

If you decide to govern resources other than the number of rows returned
from the database or the processor time expired, you need to modify the
IBM-supplied governor exit routine or write your own by doing the following:

CREATE VIEW Q.RESOURCE_VIEW
(RESOURCE_GROUP, RESOURCE_OPTION, INTVAL, FLOATVAL, CHARVAL)
AS SELECT GROUPNAME, CONSTRAINT, INTEGER, FLOAT_VALUE, CHARACTER
FROM MY_RESOURCES

Figure 223. Redefining the Q.RESOURCE_VIEW

Controlling QMF Resources Using a Governor Exit Routine

Chapter 30. Controlling QMF Resources using a Governor Exit Routine 591

1. Establish addressability to the exit routine for the points at which QMF
calls the routine. “How and when QMF calls the governor exit routine” on
page 599 explains this step.

2. Pass resource control information to the governor exit routine and store
this information. “Passing resource control information to the governor
exit” on page 615 explains this step.

3. Establish addressability to the QMF cancellation service to cancel activities.
“Canceling user activity” on page 629 explains this step.

4. Establish addressability to the QMF message service to provide messages
for activities that have been canceled. “Providing messages for canceled
activities” on page 630 explains this step.

See the following sections for OS/390, VM, and VSE for additional steps for
those particular platforms.

Modifying the governor exit on OS/390
For TSO, and native OS/390 batch, assemble, and link-edit your governor exit
routine, whether you modified the IBM-supplied governor exit routine or
wrote your own.

For CICS, translate, assemble, and link-edit your governor exit routine,
whether you modified the IBM-supplied governor exit routine or wrote your
own. “Assembling, translating, and link-editing your governor exit routine in
CICS on OS/390” on page 638 explains this step.

Program components of the governor exit routine
Before you begin modifying or writing your own governor exit routine, you
need to know the names of the governor exit routine components and what
purpose each component serves.

Table 80 shows these components, whose names vary according to which
language you installed (English or an NLF). Replace the n symbol in the
following names with the NLID (from Table 1 on page xiv) that matches the
NLF you’re using. In the component names, a 1 represents TSO and native
OS/390 batch.

Table 80. IBM-supplied governor components

Member Name Library Function

TSO, ISPF, and native OS/390

DSQUnGV1 QMF720.SDSQLOAD Load module for TSO, and native OS/390
batch

DSQUnGV1 QMF720.SDSQUSRn Source code for governor exit routine for
TSO, and native OS/390 batch

Controlling QMF Resources Using a Governor Exit Routine

592 Installing and Managing QMF

DXEUnGV1 QMF720.SDSQUSRn Contains text and related definitions for the
governor prompts and cancellation
messages in TSO, and native OS/390 batch

CICS on OS/390

DSQUnGV3 QMF720.SDSQLOAD Load module for CICS

DSQUnGV3 QMF720.SDSQUSRn Source code for governor exit routine for
CICS

DXEUnGV3 QMF720.SDSQUSRn Contains text and related definitions for
the governor cancellation message in CICS

DXEUnGM QMF720.SDSQUSRn Contains BMS map for the governor
prompts in CICS.

DXEGOVA QMF720.SDSQUSRn DSECT for the DXEGOVA control block

DXEXCBA QMF720.SDSQUSRn DSECT for the DXEXCBA control block.

If you are using an NLF: You can govern resources in an NLF session as well
as an English QMF session, by using different versions of the module
DSQUnGVx for each language environment. For example, if you have both
English and German installed, use the module DSQUEGV1 for English in
TSO, and native OS/390 batch and the module DSQUDGV1 for German in
TSO, and native OS/390 batch.

You can share the resource control table (Q.RESOURCE_TABLE or one you
create yourself) and the Q.RESOURCE_VIEW between language
environments, just as the Q.PROFILES table can contain profiles for English or
any NLF.

How TSO, and native OS/390 interact with the governor exit routine
At the start of a user’s session, QMF issues a LOAD command to bring the
governor into the user’s virtual storage. For performance reasons, an
Assembly call interface is used between QMF and the governor exit routine.
The governor exit routine must provide fast performance because, depending
on which resources you are trying to control, it might be called on every row
retrieved from the database.

Throughout this chapter, the load module library QMF720.SDSQLOAD is
assumed to be in a library concatenated to the user’s STEPLIB data set.

Figure 224 on page 594 shows the program structure of a governor exit
routine.

Controlling QMF Resources Using a Governor Exit Routine

Chapter 30. Controlling QMF Resources using a Governor Exit Routine 593

How CICS interacts with the governor exit routine
At the start of a user’s session, QMF issues an EXEC CICS LOAD command
to bring the governor into the user’s virtual storage. For performance reasons,
an assembler call interface is used between QMF and the governor exit
routine. The governor exit routine must provide fast performance because,
depending on which resources you are trying to control, it might be called on
every row retrieved from the database. Assembling and link-editing this
module are discussed in “Assembling, translating, and link-editing your
governor exit routine in CICS on OS/390” on page 638.

The CICS control block interface to the governor exit consists of the following
parts:
v Interface control blocks DXEXCBA and DXEGOVA, which are shipped with

QMF
v CICS-supplied prolog and epilog macros DFHEIENT and DFHEIRET, which

are shipped with CICS
v Command interface modules DFHEAI and DFHEAI0, which are shipped

with CICS
v The governor exit program, which is named DSQUnGV3

Figure 226 on page 597 shows the program structure of a governor exit
routine.

Figure 224. TSO or native OS/390 processing that interacts QMF with the governor exit

Controlling QMF Resources Using a Governor Exit Routine

594 Installing and Managing QMF

The governor exit routine executes on the same program level as the main
QMF program.

The entry point to the governor exit routine is DSQUnGV3. When it calls the
governor exit routine, QMF always branches to the address returned by CICS
as the result of an EXEC CICS LOAD command.

If the load fails or the module does not support 31-bit addressing mode, QMF
issues a warning message, disables the governor exit, and continues the
session without the governor. Assembling and link-editing this module are
discussed in “Assembling, translating, and link-editing your governor exit
routine in CICS on OS/390” on page 638.

Modifying the governor exit on VM
On CMS, assemble and generate your governor exit routine, whether you
modified the IBM-supplied governor exit routine or wrote your own.

Program components of the governor exit routine
Before you begin modifying or writing your own governor exit routine, you
need to know the names of the governor exit routine components and what
purpose each component serves.

Table 81 on page 596 shows these components, whose names vary according to
which language you installed (English or an NLF). Replace the n symbol in
the following names with the NLID (from Table 1 on page xiv) that matches
the NLF you’re using. In the component names, a 2 represents CMS.

Figure 225. CICS processing that interacts QMF with the governor exit

Controlling QMF Resources Using a Governor Exit Routine

Chapter 30. Controlling QMF Resources using a Governor Exit Routine 595

Table 81. IBM-supplied governor components

Member Name Library Function

CMS

DSQUnGV2 PRODUCTION DISK Text file and member of load library

DSQUnGV2 PRODUCTION DISK Source code for governor exit routine

DXEGOVA DSQUSERE MACLIB DSECT for the DXEGOVA control block.

DXEXCBA DSQUSERE MACLIB DSECT for the DXEXCBA con6trol block.

DSQUnGV2 DSQUSERE MACLIB Contains text and related definitions for
the governor exit routine prompts and
cancellation message

If you are using an NLF: You can govern resources in an NLF session as well
as an English QMF session, by using different versions of the module
DSQUnGVx for each language environment. For example, if you have both
English and German installed, use the module DSQUEGV2 for English and
the module DSQUDGV2 for German in.

You can share the resource control table (Q.RESOURCE_TABLE or one you
create yourself) and the Q.RESOURCE_VIEW between language
environments, just as the Q.PROFILES table can contain profiles for English or
any NLF.

How CMS interacts with the governor exit routine
At the start of a user’s session, QMF loads the governor into the user’s virtual
storage. For performance reasons, an assembler call interface is used between
QMF and the governor exit routine. The governor exit routine must provide
fast performance because, depending on which resources you are trying to
control, it might be called on every row retrieved from the database.

After loading the governor, QMF calls it once during session initialization. On
this call, the governor should initialize itself for the user’s QMF session.
Toward this end, QMF passes to the governor the rows in the resource control
table for the user’s resource group. Resource groups and control tables were
described in “How the governor knows what the resource limits are” on
page 577.

Within QMF are exits, each marking the beginning or end of some activity.
When control reaches one of these exits, QMF calls the governor. The first
such exit is the one, just described, for the governor’s initialization. The last is

Controlling QMF Resources Using a Governor Exit Routine

596 Installing and Managing QMF

part of session termination. On this last call, the governor can do whatever is
needed for its own termination. It might, for instance, release storage it no
longer needs.

Between the first and last calls, QMF can call the governor many times from
many different exits. Some of these calls, for example, precede the execution
of a QMF command. The types of calls are described in detail in “How and
when QMF calls the governor exit routine” on page 599.

Figure 226 shows the processing that interacts QMF with the governor exit
routine:

Modifying the governor exit on VSE
Translate, assemble, and link-edit your governor exit routine, whether you
modified the IBM-supplied governor exit routine or wrote your own.

Program components of the governor exit routine
Before you begin modifying or writing your own governor exit routine, you
need to know the names of the governor exit routine components and what
purpose each component serves.

Table 82 shows these components, whose names vary according to which
language you installed (English or an NLF). Replace the n symbol in the
following names with the NLID (from Table 1 on page xiv) that matches the
NLF you’re using. In the component names, a 3 represents CICS.

Member Name Library Function

Table 82. IBM-supplied governor components

VSE

Figure 226. CMS processing that interacts QMF with the governor exit routine

Controlling QMF Resources Using a Governor Exit Routine

Chapter 30. Controlling QMF Resources using a Governor Exit Routine 597

Table 82. IBM-supplied governor components (continued)

VSE

DSQUnGV3.PHASE PRD2.PROD Executable phase installed during QMF
installation.

DSQUnGV3.Z PRD2.PROD Source code for governor exit routine.

DXEGOVA.A PRD2.PROD DSECT for the DXEGOVA control block.

DXEXCBA.A PRD2.PROD DSECT for the DXEXCBA control block.

DXEUnGV3.A PRD2.PROD Contains text and related definitions for
the governor exit routine cancellation
message in CICS.

DXEUnGM.Z PRD2.PROD Contains CICS basic mapping support
(BMS) information, which describes how
the governor prompts appear on the
screen.

DSQ3nGLK.Z PRD2.PROD Job that translates, assembles, and
link-edits the IBM-supplied governor exit
routine and the BMS map.

If you are using an NLF: You can govern resources in an NLF session as well
as an English QMF session, by using different versions of the module
DSQUnGVx for each language environment. For example, if you have both
English and German installed, use the module DSQUEGV3 for English and
the module DSQUDGV3 for German.

You can share the resource control table (Q.RESOURCE_TABLE or one you
create yourself) and the Q.RESOURCE_VIEW between language
environments, just as the Q.PROFILES table can contain profiles for English or
any NLF.

How CICS interacts with the governor exit routine
At the start of a user’s session, QMF issues an EXEC CICS LOAD command
to bring the governor into the user’s virtual storage. For performance reasons,
an assembler call interface is used between QMF and the governor exit
routine. The governor exit routine must provide fast performance because,
depending on which resources you are trying to control, it might be called on
every row retrieved from the database.

The CICS control block interface to the governor exit consists of the following
parts:
v Interface control blocks DXEXCBA.A and DXEGOVA.A, which are shipped

with QMF
v CICS-supplied prolog and epilog macros DFHEIENT and DFHEIRET, which

are shipped with CICS

Controlling QMF Resources Using a Governor Exit Routine

598 Installing and Managing QMF

v Command interface modules DFHEAI and DFHEAI0, which are shipped
with CICS

v The governor exit program, which is named DSQUnGV3

Figure 227 shows the program structure of a governor exit routine.

The governor exit routine executes on the same program level as the main
QMF program.

The entry point to the governor exit routine is DSQUnGV3. When it calls the
governor exit routine, QMF always branches to the address returned by CICS
as the result of an EXEC CICS LOAD command.

If the load fails or the module does not support 31-bit addressing mode, QMF
issues a warning message, disables the governor exit, and continues the
session without the governor. Assembling and link-editing this module are
discussed in “Assembling, translating, and link-editing your governor exit
routine in CICS on OS/390” on page 638.

How and when QMF calls the governor exit routine

QMF issues standard assembler CALL statements to the governor exit routine.
The term function calls describes the points during the QMF session when
these CALL statements are issued.

Figure 227. CICS processing that interacts QMF with the governor exit

Controlling QMF Resources Using a Governor Exit Routine

Chapter 30. Controlling QMF Resources using a Governor Exit Routine 599

OS/390
Follow these instructions for OS/390.

Points at which QMF calls the governor
Function calls to the governor exit routine either precede or follow a specific
type of QMF activity. For example, QMF passes control to the governor exit
before and after running a command.

When it calls the governor, QMF always branches to an entry point named
DSQUnGVx. Therefore, you cannot use the entry point to determine the type
of exit. Use instead the control-block field GOVFUNCT. Its value is a positive
integer that identifies the type of exit.
v At the beginning and end of a QMF session

QMF calls the governor exit routine during initialization for a QMF session,
after the governor exit routine is loaded into the user’s virtual storage. The
governor initializes itself for the session using the resource control
information contained in rows passed from QMF’s query of
Q.RESOURCE_VIEW.

v After a new connection is made to the database

When a user issues the CONNECT command, the Q.PROFILES table and
the resource control table are re-initialized. The governor is called because
the resource control values might have changed if a different CONNECT ID
was used. All unfinished database operations are completed before the
connection is made.
Although the governor exit routine cannot cancel a connection to the
database, you can write statements in your own routine that cancel the
user’s session on the next activity, if the resource information passed to the
governor indicates that the user is not allowed to use QMF.

v Before and after running a command

QMF calls the governor before and after running all commands. There can
be several calls for the start of commands before a call for the completion of
a command. For example, a RUN PROC command results in two “start
command” calls and two “end command” calls when there is a RUN
QUERY command embedded in the procedure.

v Before database activity starts and when it ends

QMF calls the governor just before it begins a variety of database
operations, such as PREPARE, OPEN, and FETCH; QMF also calls the
governor upon completing any database activity.
When QMF retrieves data, it fits the maximum number of rows possible
into a buffer that has a minimum size of 4K. QMF calls the governor once
upon retrieving the first row into the buffer and once upon either filling the
buffer or reaching the end of the table, whichever comes first.

Controlling QMF Resources Using a Governor Exit Routine

600 Installing and Managing QMF

QMF also calls the governor when SQL, QBE, or prompted queries are
submitted using RUN QUERY, or when QMF is running queries started by
a command. For example, a SAVE DATA command might result in
DELETE, CREATE, and INSERT queries. The governor is called before and
after each of these operations. If there is an incomplete data object when a
command is entered, there might be governor calls for database activity
while the data object is being completed. See “Solving performance
problems” on page 685 for more information on handling problems
associated with completing the data object.
The following QMF commands always force database activity:
– DISPLAY table commands
– The EDIT TABLE command for the Table Editor
– The ERASE command for a table
– The EXPORT TABLE command
– The IMPORT command to a table
– The PRINT command for a table or view
– The RUN command for queries
– The SAVE DATA command (which forces an implicit CREATE TABLE

query)
– Scrolling commands that result in fetching data when a report is being

displayed
– Data retrieval operations (fetch operations)

v Before and after the user makes a choice

At various points in a session, QMF waits for users to make decisions. The
time QMF spends waiting is known as think time.
QMF calls the governor before performing an operation that leads to think
time, such as displaying a panel for a user-entered selection. As soon as the
user enters a response and ends the period of think time, QMF calls the
governor.
Any of the following activities lead to think time:
– Displaying a QMF panel between running commands
– Displaying help panels
– Displaying confirmation prompt panels; for example, when the user is

about to erase something by issuing the SAVE command that replaces
the object

– Displaying command prompt panels; for example, when the user enters
DISPLAY ?

– Displaying the LIST prompt panel
– Displaying ICU and EXTRACT panels
– Running the EDIT PROC and EDIT QUERY functions

Controlling QMF Resources Using a Governor Exit Routine

Chapter 30. Controlling QMF Resources using a Governor Exit Routine 601

v At initiation of an abnormal ending

QMF calls the governor just before it initiates an abnormal ending. The
governor can perform the cleanup necessary before the abend processing
begins. The actions might be similar to those during the session end.

For the IBM-supplied governor exit routine, QMF uses the GOVFUNCT field
of the DXEGOVA control block to pass information about the type of function
call. Each type of function call has a specific value for the GOVFUNCT field.
These values are shown in Figure 228.

What happens upon entry to the governor exit routine
QMF calls the governor exit routine by branching to the address of the entry
point DSQUnGV1 (TSO), or DSQUnGV3 (CICS).

Branching to the CICS entry point DSQUnGV3: Entry to the governor exit
routine in CICS follows the standard CICS linkage conventions:
v Register 1 contains a CICS parameter list suitable for processing by

CICS-supplied macros DFHEIENT and DFHEIRET Figure 228shows the
contents of Register 1 on a call to the governor.
DFHEIBLK is the address of the CICS communications area. DFHCOMMA
contains two pointers, one to the DXEXCBA control block and the other to
the DXEGOVA control block.

v Register 13 contains the address of a standard CICS working storage area as
described by CICS DSECT (DFHEISTG).

v Register 14 contains the return address.

Because the governor program runs on the same program level as QMF, use
caution when using any EXEC CICS commands that change the environment

Figure 228. Contents of Register 1 on a call to the governor exit routine

Controlling QMF Resources Using a Governor Exit Routine

602 Installing and Managing QMF

(for example, CICS HANDLE CONDITION). If you need to use the CICS
HANDLE CONDITION, use EXEC CICS PUSH and EXEC CICS POP to save
and restore them.

Begin the governor program with code similar to that shown below.

The code in Figure 229 first branches around a block of constants that can
serve as eye catchers in a dump of virtual storage. The constants name the
entry point and the applicable version of QMF. They also show the date and
time that the code was assembled.

The code establishes base registers for the program, DXEXCB, DXEGOV, and a
scratchpad area named GOVUSERS. The scratchpad area is preserved by QMF
between calls to the governor. A DSECT named WORK describes this
scratchpad area in the code for the IBM-supplied governor.

When processing is complete, the governor returns control to QMF using the
standard CICS return as specified by the CICS macro DFHEIRET.

Attention: Do not use the command EXEC CICS RETURN. This ends the
QMF session without releasing QMF resources.

DSQUEGV3 TITLE ’QMF GOVERNOR EXIT ROUTINE’
DFHEISTG DSECT
DSQUEGV3 DFHEIENT CODEREG=(12),DATAREG=(13),EIBREG=(10)

B FDENTRY BRANCH AROUND CONSTANTS
*
MODNAME DC C’DSQUEGV3’ MODULE NAME

DC C’ ’
DC C’&SYSDATE ’ DATE OF ASSEMBLY
DC C’&SYSTIME ’ TIME OF ASSEMBLY
DS 0H

*
FDENTRY DS 0H

L R01,4(R01) GET ADDRESS OF DFHCOMMA
L XCBPTR,8(R01) GET ADDRESS OF QMF EXIT CTL BLK
L GOVPTR,12(R01) GET ADDRESS OF QMF GOV CTL BLK
USING DXEXCBA,XCBPTR
USING DXEGOVA,GOVPTR
LA WORKPTR,GOVUSERS GET ADDRESS OF GOVERNOR WORK AREA
USING WORK,WORKPTR

*...
GOVPTR EQU R03 PTR TO DXEGOV CONTROL BLOCK
XCBPTR EQU R02 PTR TO DXEXCB CONTROL BLOCK
WORKPTR EQU R04 PTR TO GOVERNOR SCRATCH PAD AREA

Figure 229. Sample code at the start of a governor (for CICS)

Controlling QMF Resources Using a Governor Exit Routine

Chapter 30. Controlling QMF Resources using a Governor Exit Routine 603

The governor program ends with code similar to Figure 230.

Branching to the entry point: QMF calls the governor exit routine by
branching to the address of the entry point DSQUEGV1 (TSO). Upon entry to
the governor exit routine:
v Register 1 contains the address of the parameter list.

The parameter list contains two full-word addresses; one for the control
block DXEXCBA; the other for the control block DXEGOVA.

v Register 13 contains the address of the QMF SAVE area.
v Register 14 contains the return address from the call.
v Register 15 contains the address of the entry point, which is DSQUEGV1.

After the governor is called, it might begin with code like that shown in
Figure 232 on page 605. The code sample is from the IBM-supplied governor
for TSO or native OS/390.

...
*

XR R15,R15 ZERO RETURN CODE
DFHEIRET RCREG=15

*

Figure 230. Endcode for the governor program

Figure 231. Contents of Register 1 on a call to the governor exit routine

Controlling QMF Resources Using a Governor Exit Routine

604 Installing and Managing QMF

The code in Figure 232 first branches around a block of constants that can
serve as eye catchers in a dump of virtual storage. The constants name the
entry point and the applicable version of QMF. They also show the date and
time that the code was assembled.

The code establishes base registers for the program, DXEXCB, DXEGOV, and a
scratchpad area named GOVUSERS. The scratchpad area is preserved by QMF
between calls to the governor. A DSECT named WORK describes this
scratchpad area in the code for the IBM-supplied governor.

After processing a call, the governor returns control to QMF in the standard
way; that is, you must use the standard epilog and prolog. In the
IBM-supplied governor, the following code does this:
L R13,4(R13) RESTORE CALLER’S SAVE AREA ADDRESS

LM R14,R12,12(R13) RESTORE CALLER’S REGISTERS
XR R15,R15 ZERO RETURN CODE
BR R14 RETURN TO CALLER

DSQUEGV1 CSECT
USING *,R15
B FDENTRY BRANCH AROUND CONSTANTS
DC C’DSQUEGV1’ MODULE NAME
DC C’ ’
DC C’&SYSDATE ’ DATE OF ASSEMBLY
DC C’&SYSTIME ’ TIME OF ASSEMBLY
DS 0H

*
FDENTRY STM R14,R12,12(R13) SAVE THE REGISTERS

BALR R12,0 INITIALIZE BASE REGISTER
DROP R15
LA R02,MAINSV CHAIN THE SAVE AREAS
ST R02,8(R13)
ST R13,MAINSV+4
LR R13,R02

*
L R01,4(R01) GET ADDRESS OF DFHCOMMA
L XCBPTR,0(R01) GET ADDRESS OF QMF EXIT CTL BLK
L GOVPTR,4(R01) GET ADDRESS OF QMF GOV CTL BLK
USING DXEXCBA,XCBPTR
USING DXEGOVA,GOVPTR
LA WORKPTR,GOVUSERS SCRATCH PAD ADDRESS
USING WORK,WORKPTR...

MAINSV DS 18F SAVE AREA
XCBPTR EQU R02 PTR TO DXEXCBA CONTROL BLOCK
GOVPTR EQU R03 PTR TO DXEGOVA CONTROL BLOCK
WORKPTR EQU R04 PTR TO SCRATCH__PAD AREA

Figure 232. Sample code at the start of a governor (for TSO, ISPF, or native OS/390)

Controlling QMF Resources Using a Governor Exit Routine

Chapter 30. Controlling QMF Resources using a Governor Exit Routine 605

Establishing addressability for function calls
Because QMF always branches to an entry point named DSQUnGV1 (TSO), or
DSQUnGV3 (CICS) when it calls the governor, you cannot use these entry
points to determine the type of function call; instead, use the GOVFUNCT
field of the DXEGOVA control block.

In the IBM-supplied governor exit routine, GOVFUNCT contains a character
value that identifies the type of function call. This character value, in turn,
equates to a 1-byte binary integer from 1 to 10. For example, on a function call
for the start of a QMF session, the value of GOVFUNCT is GOVINIT, which
equates to a numeric value of X'1'.

Both character and numeric values for each type of function call are shown in
Figure 233. (If you need more information about the activity that occurs at
each function call, see “Points at which QMF calls the governor” on page 611.)
GOVABEND is not called when running in CICS.

To improve performance in your own exit routine, you can follow the
convention the IBM-supplied governor uses, and equate the values of
GOVFUNCT with binary numbers by using a branch table. QMF uses the
branch table to find the addresses to branch to for each type of function call.

Figure 234 on page 607 shows an example of some code that identifies branch
addresses for the IBM-supplied governor.

GOVINIT EQU 1 -------- INITIALIZATION OF SESSION
GOVTERM EQU 2 -------- TERMINATION OF SESSION
GOVSCMD EQU 3 -------- START COMMAND
GOVECMD EQU 4 -------- END COMMAND
GOVCONN EQU 5 -------- CONNECT COMMAND
GOVSDBAS EQU 6 -------- START DATA BASE
GOVEDBAS EQU 7 -------- END DATA BASE
GOVSACTV EQU 8 -------- SUSPEND QMF ACTIVITY
GOVRACTV EQU 9 -------- RESUME QMF ACTIVITY
GOVABEND EQU 10 -------- QMF ABEND OPERATION

Figure 233. Character and numeric values for the GOVFUNCT field of DXEGOVA

Controlling QMF Resources Using a Governor Exit Routine

606 Installing and Managing QMF

VM
Follow these instructions for VM.

Points at which QMF calls the governor
Function calls to the governor exit routine either precede or follow a specific
type of QMF activity. For example, QMF passes control to the governor exit
before and after running a command.

When it calls the governor, QMF always branches to an entry point named
DSQUnGVx. Therefore, you cannot use the entry point to determine the type
of exit. Use instead the control-block field GOVFUNCT. Its value is a positive
integer that identifies the type of exit.
v At the beginning and end of a QMF session

QMF calls the governor exit routine during initialization for a QMF session,
after the governor exit routine is loaded into the user’s virtual storage. The
governor initializes itself for the session using the resource control
information contained in rows passed from QMF’s query of
Q.RESOURCE_VIEW.

v After a new connection is made to the database

When a user issues the CONNECT command, the Q.PROFILES table and
the resource control table are re-initialized. The governor is called because
the resource control values might have changed if a different CONNECT ID
was used. All unfinished database operations are completed before the
connection is made.

XR R07,R07 ZERO REGISTER 7
IC R07,GOVFUNCT IDENTIFY EXIT TYPE
SLL R07,2 DETERMINE BRANCH TABLE OFFSET
LA R15,FUNBTAB(R07) GET BRANCH TABLE ADDRESS
L R15,0(R15) GET BRANCHING ADDRESS
BALR R14,R15 BRANCH TO THE APPROPRIATE CODE

. . .

. . .

. . .

. . .
FUNBTAB DS 0F

DC A(BYPASS) VALUE "0" - UNUSED
DC A(INIT) VALUE "1" - QMF INITIALIZATION

. . .

. . .

. . .
DC A(SUSPEND) VALUE "10" - QMF ABEND IN PROCESS

Figure 234. Identifying the type of function call and branching to the appropriate address

Controlling QMF Resources Using a Governor Exit Routine

Chapter 30. Controlling QMF Resources using a Governor Exit Routine 607

Although the governor exit routine cannot cancel a connection to the
database, you can write statements in your own routine that cancel the
user’s session on the next activity, if the resource information passed to the
governor indicates that the user is not allowed to use QMF.

v Before and after running a command

QMF calls the governor before and after running all commands. There can
be several calls for the start of commands before a call for the completion of
a command. For example, a RUN PROC command results in two “start
command” calls and two “end command” calls when there is a RUN
QUERY command embedded in the procedure.

v Before database activity starts and when it ends

QMF calls the governor just before it begins a variety of database
operations, such as PREPARE, OPEN, and FETCH; QMF also calls the
governor upon completing any database activity.
When QMF retrieves data, it fits the maximum number of rows possible
into a buffer that has a minimum size of 4K. QMF calls the governor once
upon retrieving the first row into the buffer and once upon either filling the
buffer or reaching the end of the table, whichever comes first.
QMF also calls the governor when SQL, QBE, or prompted queries are
submitted using RUN QUERY, or when QMF is running queries started by
a command. For example, a SAVE DATA command might result in
DELETE, CREATE, and INSERT queries. The governor is called before and
after each of these operations. If there is an incomplete data object when a
command is entered, there might be governor calls for database activity
while the data object is being completed. See “Solving performance
problems” on page 685 for more information on handling problems
associated with completing the data object.
The following QMF commands always force database activity:
– DISPLAY table commands
– The EDIT TABLE command for the Table Editor
– The ERASE command for a table
– The EXPORT TABLE command
– The IMPORT command to a table
– The PRINT command for a table or view
– The RUN command for queries
– The SAVE DATA command (which forces an implicit CREATE TABLE

query)
– Scrolling commands that result in fetching data when a report is being

displayed
– Data retrieval operations (fetch operations)

v Before and after the user makes a choice

Controlling QMF Resources Using a Governor Exit Routine

608 Installing and Managing QMF

At various points in a session, QMF waits for users to make decisions. The
time QMF spends waiting is known as think time.
QMF calls the governor before performing an operation that leads to think
time, such as displaying a panel for a user-entered selection. As soon as the
user enters a response and ends the period of think time, QMF calls the
governor.
Any of the following activities lead to think time:
– Displaying a QMF panel between running commands
– Displaying help panels
– Displaying confirmation prompt panels; for example, when the user is

about to erase something by issuing the SAVE command that replaces
the object

– Displaying command prompt panels; for example, when the user enters
DISPLAY ?

– Displaying the LIST prompt panel
– Displaying the GDDM interactive chart utility panels for QMF charting

functions
– Running EDIT PROC or EDIT QUERY functions

v At initiation of an abnormal ending

QMF calls the governor just before it initiates an abnormal ending. The
governor can perform the cleanup necessary before the abend processing
begins. The actions might be similar to those during the session end.

What happens upon entry to the governor exit routine
QMF calls the governor exit routine by branching to the address of the entry
point DSQUnGV2.

Branching to the entry point: QMF calls the governor exit routine by
branching to the address of the entry point DSQUnGV2. Upon entry to the
governor exit routine:
v Register 1 contains the address of the parameter list.

The parameter list contains two full-word addresses; one for the control
block DXEXCBA; the other for the control block DXEGOVA.

v Register 13 contains the address of the QMF SAVE area.

Figure 235. Contents of Register 1 on a call to the governor exit routine

Controlling QMF Resources Using a Governor Exit Routine

Chapter 30. Controlling QMF Resources using a Governor Exit Routine 609

v Register 14 contains the return address from the call.
v Register 15 contains the address of the entry point, which is DSQUnGV2.

Establishing addressability for function calls
Because QMF always branches to an entry point named DSQUnGV2 when it
calls the governor, you cannot use these entry points to determine the type of
function call; instead, use the GOVFUNCT field of the DXEGOVA control
block.

In the IBM-supplied governor exit routine, GOVFUNCT contains a character
value that identifies the type of function call. This character value, in turn,
equates to a 1-byte binary integer from 1 to 10. For example, on a function call
for the start of a QMF session, the value of GOVFUNCT is GOVINIT, which
equates to a numeric value of X'1'.

Both character and numeric values for each type of function call are shown
below.

To improve performance in your own exit routine, you can follow the
convention the IBM-supplied governor uses, and equate the values of
GOVFUNCT with binary numbers by using a branch table. QMF uses the
branch table to find the addresses to branch to for each type of function call.

Figure 237 on page 611 shows an example of some code that identifies branch
addresses for the IBM-supplied governor.

GOVINIT EQU 1 -------- INITIALIZATION OF SESSION
GOVTERM EQU 2 -------- TERMINATION OF SESSION
GOVSCMD EQU 3 -------- START COMMAND
GOVECMD EQU 4 -------- END COMMAND
GOVCONN EQU 5 -------- CONNECT COMMAND
GOVSDBAS EQU 6 -------- START DATA BASE
GOVEDBAS EQU 7 -------- END DATA BASE
GOVSACTV EQU 8 -------- SUSPEND QMF ACTIVITY
GOVRACTV EQU 9 -------- RESUME QMF ACTIVITY
GOVABEND EQU 10 -------- QMF ABEND OPERATION

Figure 236. Character and numeric values for the GOVFUNCT field of DXEGOVA

Controlling QMF Resources Using a Governor Exit Routine

610 Installing and Managing QMF

Because the governor program runs on the same level as the main QMF
program, ensure you preserve the QMF environment at every function call.
Use the standard assembler RETURN statement to return control to QMF after
every call.

VSE
Follow these instructions for VSE

Points at which QMF calls the governor
Function calls to the governor exit routine either precede or follow a specific
type of QMF activity. For example, QMF passes control to the governor exit
before and after running a command.

When it calls the governor, QMF always branches to an entry point named
DSQUnGVx. Therefore, you cannot use the entry point to determine the type
of exit. Use instead the control-block field GOVFUNCT. Its value is a positive
integer that identifies the type of exit.
v At the beginning and end of a QMF session

QMF calls the governor exit routine during initialization for a QMF session,
after the governor exit routine is loaded into the user’s virtual storage. The
governor initializes itself for the session using the resource control
information contained in rows passed from QMF’s query of
Q.RESOURCE_VIEW.

v After a new connection is made to the database

When a user issues the CONNECT command, the Q.PROFILES table and
the resource control table are re-initialized. The governor is called because

XR R07,R07 ZERO REGISTER 7
IC R07,GOVFUNCT IDENTIFY EXIT TYPE
SLL R07,2 DETERMINE BRANCH TABLE OFFSET
LA R15,FUNBTAB(R07) GET BRANCH TABLE ADDRESS
L R15,0(R15) GET BRANCHING ADDRESS
BALR R14,R15 BRANCH TO THE APPROPRIATE CODE

. . .

. . .

. . .

. . .
FUNBTAB DS 0F

DC A(BYPASS) VALUE "0" - UNUSED
DC A(INIT) VALUE "1" - QMF INITIALIZATION

. . .

. . .

. . .
DC A(SUSPEND) VALUE "10" - QMF ABEND IN PROCESS

Figure 237. Identifying the type of function call and branching to the appropriate address

Controlling QMF Resources Using a Governor Exit Routine

Chapter 30. Controlling QMF Resources using a Governor Exit Routine 611

the resource control values might have changed if a different CONNECT ID
was used. All unfinished database operations are completed before the
connection is made.
Although the governor exit routine cannot cancel a connection to the
database, you can write statements in your own routine that cancel the
user’s session on the next activity, if the resource information passed to the
governor indicates that the user is not allowed to use QMF.

v Before and after running a command

QMF calls the governor before and after running all commands. There can
be several calls for the start of commands before a call for the completion of
a command. For example, a RUN PROC command results in two “start
command” calls and two “end command” calls when there is a RUN
QUERY command embedded in the procedure.

v Before database activity starts and when it ends

QMF calls the governor just before it begins a variety of database
operations, such as PREPARE, OPEN, and FETCH; QMF also calls the
governor upon completing any database activity.
When QMF retrieves data, it fits the maximum number of rows possible
into a buffer that has a minimum size of 4K. QMF calls the governor once
upon retrieving the first row into the buffer and once upon either filling the
buffer or reaching the end of the table, whichever comes first.
QMF also calls the governor when SQL, QBE, or prompted queries are
submitted using RUN QUERY, or when QMF is running queries started by
a command. For example, a SAVE DATA command might result in
DELETE, CREATE, and INSERT queries. The governor is called before and
after each of these operations. If there is an incomplete data object when a
command is entered, there might be governor calls for database activity
while the data object is being completed. See “Solving performance
problems” on page 685 for more information on handling problems
associated with completing the data object.
The following QMF commands always force database activity:
– DISPLAY table commands
– The EDIT TABLE command for the Table Editor
– The ERASE command for a table
– The EXPORT TABLE command
– The IMPORT command to a table
– The PRINT command for a table or view
– The RUN command for queries
– The SAVE DATA command (which forces an implicit CREATE TABLE

query)
– Scrolling commands that result in fetching data when a report is being

displayed

Controlling QMF Resources Using a Governor Exit Routine

612 Installing and Managing QMF

– Data retrieval operations (fetch operations)
v Before and after the user makes a choice

At various points in a session, QMF waits for users to make decisions. The
time QMF spends waiting is known as think time.
QMF calls the governor before performing an operation that leads to think
time, such as displaying a panel for a user-entered selection. As soon as the
user enters a response and ends the period of think time, QMF calls the
governor.
Any of the following activities lead to think time:
– Displaying a QMF panel between running commands
– Displaying help panels
– Displaying confirmation prompt panels; for example, when the user is

about to erase something by issuing the SAVE command that replaces
the object

– Displaying command prompt panels; for example, when the user enters
DISPLAY ?

– Displaying the LIST prompt panel
– Displaying ICU and EXTRACT panels
– Displaying the GDDM interactive chart utility panels for QMF charting

functions

For the IBM-supplied governor exit routine, QMF uses the GOVFUNCT field
of the DXEGOVA control block to pass information about the type of function
call. Each type of function call has a specific value for the GOVFUNCT field.

What happens upon entry to the governor exit routine
QMF calls the governor exit routine by branching to the address of the entry
point DSQUnGV3.

Entry to the governor exit routine follows the standard CICS linkage
conventions:
v Register 1 contains a CICS parameter list suitable for processing by

CICS-supplied macros DFHEIENT and DFHEIRET. Figure 238 on page 614
shows the contents of Register 1 on a call to the governor.
DFHEIBLK is the address of the CICS communications area. DFHCOMMA
contains two pointers, one to the DXEXCBA control block and the other to
the DXEGOVA control block.

Controlling QMF Resources Using a Governor Exit Routine

Chapter 30. Controlling QMF Resources using a Governor Exit Routine 613

v Register 13 contains the address of a standard CICS working storage area as
described by CICS DSECT (DFHEISTG).

v Register 14 contains the return address.

Establishing addressability for function calls
Because QMF always branches to an entry point named DSQUnGV3 when it
calls the governor, you cannot use these entry points to determine the type of
function call; instead, use the GOVFUNCT field of the DXEGOVA control
block.

In the IBM-supplied governor exit routine, GOVFUNCT contains a character
value that identifies the type of function call. This character value, in turn,
equates to a 1-byte binary integer from 1 to 10. For example, on a function call
for the start of a QMF session, the value of GOVFUNCT is GOVINIT, which
equates to a numeric value of X'1'.

Both character and numeric values for each type of function call are shown
below. (If you need more information about the activity that occurs at each
function call, see “Points at which QMF calls the governor” on page 611.)
GOVABEND is not called when running in CICS.

Figure 238. Contents of Register 1 on a call to the governor exit routine on VSE

GOVINIT EQU 1 -------- INITIALIZATION OF SESSION
GOVTERM EQU 2 -------- TERMINATION OF SESSION
GOVSCMD EQU 3 -------- START COMMAND
GOVECMD EQU 4 -------- END COMMAND
GOVCONN EQU 5 -------- CONNECT COMMAND
GOVSDBAS EQU 6 -------- START DATA BASE
GOVEDBAS EQU 7 -------- END DATA BASE
GOVSACTV EQU 8 -------- SUSPEND QMF ACTIVITY
GOVRACTV EQU 9 -------- RESUME QMF ACTIVITY
GOVABEND EQU 10 -------- QMF ABEND OPERATION

Figure 239. Character and numeric values for the GOVFUNCT field of DXEGOVA

Controlling QMF Resources Using a Governor Exit Routine

614 Installing and Managing QMF

To improve performance in your own exit routine, you can follow the
convention the IBM-supplied governor uses, and equate the values of
GOVFUNCT with binary numbers by using a branch table. QMF uses the
branch table to find the addresses to branch to for each type of function call.

Figure 240 shows an example of some code that identifies branch addresses
for the IBM-supplied governor.

Passing resource control information to the governor exit

If you have not done so already, read the following sections, which describe
how to set up resource control information in a format the governor can use:
v “How a governor exit routine controls resources” on page 586
v “Defining your own resource limits” on page 588

QMF passes resource control information using two control blocks named
DXEGOVA and DXEXCBA. Their addresses are passed to the governor on
every function call. The DSECT DXEXCBA (shipped as DXEXCBA) and the
DSECT DXEGOVA (shipped as DXEGOVA) are located in the SDSQUSRE
MACLIB. Include these DSECTs in your program using the assembler COPY
statement.

Structure of the DXEGOVA control block
The DXEGOVA control block passes to the governor exit routine information
about a user’s resource constraints. This information is located in a resource
control view called Q.RESOURCE__VIEW. See “How the governor knows
what the resource limits are” on page 586 for more information on how this
view is used.

XR R07,R07 ZERO REGISTER 7
IC R07,GOVFUNCT IDENTIFY EXIT TYPE
SLL R07,2 DETERMINE BRANCH TABLE OFFSET
LA R15,FUNBTAB(R07) GET BRANCH TABLE ADDRESS
L R15,0(R15) GET BRANCHING ADDRESS
BALR R14,R15 BRANCH TO THE APPROPRIATE CODE

. . .

. . .

. . .

. . .
FUNBTAB DS 0F

DC A(BYPASS) VALUE "0" - UNUSED
DC A(INIT) VALUE "1" - QMF INITIALIZATION

. . .

. . .

. . .
DC A(SUSPEND) VALUE "10" - QMF ABEND IN PROCESS

Figure 240. Identifying the type of function call and branching to the appropriate address

Controlling QMF Resources Using a Governor Exit Routine

Chapter 30. Controlling QMF Resources using a Governor Exit Routine 615

Table 83 provides the name of each field in the DXEGOVA control block, with
its data type and purpose. Each data type is listed as it appears in the DS
statement that defines the field in the DSECT. For example, for the
GOVOROWS field, the letter F indicates that this field contains a full-word
integer. The DS statement for GOVOROWS appears as GOVOROWS DS F.

The layout of the control blocks and the information they contain is the same
for QMF support in all operating environments. Therefore, some of the
information shown in the control blocks might not apply to QMF in the
operating system you are running in.

Table 83. Fields of the DXEGOVA interface control block to the governor

Field Data Type Purpose

GOVCADDR A Contains the address to branch to for canceling an activity.

GOVFUNCT XL1 Indicates the type of function call. Possible values are:
v GOVINIT (session initialization); GOVTERM (session

termination)
v GOVSCMD (start command); GOVECMD (end command)
v GOVCONN (connect command)
v GOVSDBAS (start database retrieval operation); GOVEDBAS

(end database retrieval operation)
v GOVSACTV (suspend QMF activity for user think time);

GOVRACTV (resume QMF activity)
v GOVABEND (start of an abnormal ending)

GOVGROUP CL16 Contains the name of the user’s resource group. This value does
not change during a QMF session.

GOVNAME CL8 Contains the name of the control block (DXEGOVA). This value
does not change during a session. It can serve as an eye catcher in
a dump of virtual storage.

GOVOROWS F Contains the number of rows for the user’s resource group in the
resource control table. This value does not change during a session,
and can be zero.

GOVRESC 10XL128 Contains information from the resource control table. This
information is divided into 10 contiguous blocks of storage that are
structured like DSECT GOVRESCT. A block contains information
about one of the rows for the user’s resource group in the QMF
resource control table.
v If the resource group has less than 10 rows, unused blocks are

those at the end of the field.
v If the resource group has more than 10 rows, use the field

named GOVNEXTR (in the GOVRESCT DSECT) to access
additional rows.

Controlling QMF Resources Using a Governor Exit Routine

616 Installing and Managing QMF

Table 83. Fields of the DXEGOVA interface control block to the governor (continued)

Field Data Type Purpose

GOVRESCT DSECT Describes the block of storage containing information on one of the
user’s rows of the resource control table.
GOVOPTN(CL16)

Contains the value in the RESOURCE__OPTION column
of the resource control table. Blocks in the chain are
ordered alphabetically on the content of this field.

GOVNULLI(H)
Null indicator for INTVAL column.

GOVINTVL(F)
Value of INTVAL column.

GOVNULLF(H)
Null indicator for FLOATVAL column.

GOVFLOAT(D)
Value of FLOATVAL column.

GOVNULLC(H)
Null indicator for CHARVAL column.

GOVCHLEN(H)
Length of data in CHARVAL column.

GOVCHAR(CL80)
Value in CHARVAL column.

GOVNEXTR(A)
Points to the block of data for the next resource table row.
Contains zero if this is the last row.

Any null indicator in the structure is zero when its corresponding
column value isn’t null. If the column value is null, the indicator is
not zero.

GOVSQLCA A Address of the SQL communications area (SQLCA), which holds
information about the SQL SELECT query on the resource control
view (Q.RESOURCE__VIEW).

GOVSQLRC F Return code from the SQL SELECT query on the resource control
view (Q.RESOURCE__VIEW). If it is nonzero, the query failed and
no rows are passed to the governor.

GOVUSERS CL2048 Scratchpad area, retained between session calls. QMF does not
change this value.

Controlling QMF Resources Using a Governor Exit Routine

Chapter 30. Controlling QMF Resources using a Governor Exit Routine 617

** 00001000
* * 00002000
* CONTROL BLOCK NAME: DXEGOVA * 00003000
* * 00004000
* FUNCTION: * 00005000
* * 00006000
* THIS IS THE INTERFACE CONTROL BLOCK BETWEEN QMF AND * 00007000
* THE GOVERNOR EXIT ROUTINE. * 00008000
* * 00009000
* STATUS: VERSION 7 RELEASE 2 LEVEL 0 * 00010000
* * 00011000
* INNER CONTROL BLOCKS: NONE * 00012000
* * 00013000
* CHANGE ACTIVITY: NA * 00014000
* * 00015000
* CHANGE DATE: NA * 00016000
* * 00017000
** 00018000
* 00019000
DXEGOVA DSECT 00020000

DS 0D 00021000
GOVNAME DS CL8 -- CONTROL BLOCK IDENTIFICATION 00022000

SPACE 00023000
GOVEXCTL DS XL72 -- EXIT CONTROL 00024000

ORG GOVEXCTL 00025000
GOVFUNCT DS XL1 ----- FUNCTION CODE 00026000
GOVINIT EQU 1 -------- INITIALIZATION OF SESSION 00027000
GOVTERM EQU 2 -------- TERMINATION OF SESSION 00028000
GOVSCMD EQU 3 -------- START COMMAND 00029000
GOVECMD EQU 4 -------- END COMMAND 00030000
GOVCONN EQU 5 -------- CONNECT COMMAND 00031000
GOVSDBAS EQU 6 -------- START DATA BASE 00032000
GOVEDBAS EQU 7 -------- END DATA BASE 00033000
GOVSACTV EQU 8 -------- SUSPEND QMF ACTIVITY 00034000
GOVRACTV EQU 9 -------- RESUME QMF ACTIVITY 00035000
GOVABEND EQU 10 -------- QMF ABEND OPERATION 00036000
GOVPAD10 DS CL7 ----- RESERVED FIELD 00037000

SPACE 00038000
GOVCADDR DS A ---- ADDR TO BRANCH TO FOR CANCELLATION 00039000

SPACE 00040000
GOVOROWS DS F ---- NUMBER OF OPTION ROWS RETRIEVED 00041000

SPACE 00042000
GOVSQLRC DS F ---- RESOURCE TABLE SQL RETURN CODE 00043000

SPACE 00044000
GOVSQLCA DS A ---- ADDRESS OF SQLCA FOR ERROR CONDITION 00045000

SPACE 00046000
GOVGROUP DS CL16 ---- GROUP NAME 00047000
GOVPAD20 DS CL32 ---- RESERVED FIELD 00048000

Figure 241. The DXEGOVA control block (Part 1 of 2)

Controlling QMF Resources Using a Governor Exit Routine

618 Installing and Managing QMF

Addressing the resource control table
The GOVGROUP field of the DXEGOVA control block holds the value of the
RESOURCE_GROUP column of Q.RESOURCE_VIEW, the view defined on the
resource control table.

All information about the user’s resource options is stored in blocks; there is
one block for each of the user’s resource options you decide to monitor.

The first block defines the first resource option and is stored in the DXEGOVA
control block as the DSECT GOVRESCT. The address of this DSECT is defined
in the DXEGOVA field GOVRESC. You can establish addressability to the
GOVRESC field in your own routine using the address of the GOVRESCT
DSECT.

Negative half-word integers in the DSECT represent null values entered for
INTVAL, CHARVAL, or FLOATVAL in the Q.RESOURCE_VIEW; zero or
positive half-words indicate a value in that column of Q.RESOURCE_VIEW.

The blocks that store the resource control information form a chain in which a
pointer in one block points to the beginning of the next block (the next
resource option) in the chain. For example, the GOVNEXTR DS statement in

SPACE 00049000
GOVUCTL DS XL304 -- USER CONTROL AREA 00050000

ORG GOVUCTL 00051000
GOVUSERS DS CL2048 ----- USER SCRATCH PAD AREA 00052000
GOVPAD30 DS CL48 ----- RESERVED FIELD 00053000

SPACE 00054000
DS 0D 00055000

GOVRESC DS 10XL128 -- RESOURCE CONTROL TABLE 00056000
ORG GOVRESC 00057000

GOVRESCT DSECT -- RESOURCE CONTROL TABLE MAPPING 00058000
DS 0D 00059000

GOVOPTN DS CL16 ----- RESOURCE OPTION 00060000
GOVNULLI DS H ----- INTEGER NULL INDICATOR 00061000
GOVPAD40 DS CL2 ----- RESERVED FIELD 00062000
GOVINTVL DS F ----- INTEGER OPTION REPRESENTATION 00063000
GOVNULLF DS H ----- FLOATING POINT NULL INDICATOR 00064000
GOVPAD50 DS CL6 ----- RESERVED FIELD 00065000
GOVFLOAT DS D ----- FLOATING POINT OPTION REPRESENTATION 00066000
GOVNULLC DS H ----- CHARACTER NULL INDICATOR 00067000
GOVCHLEN DS H ----- LENGTH OF THE CHARACTER OPTION 00068000
GOVCHAR DS CL80 ----- CHARACTER OPTION REPRESENTATION 00069000
GOVNEXTR DS A ----- POINTER TO NEXT RESOURCE CONTROL ROW 00070000

Figure 241. The DXEGOVA control block (Part 2 of 2)

Controlling QMF Resources Using a Governor Exit Routine

Chapter 30. Controlling QMF Resources using a Governor Exit Routine 619

the GOVRESCT DSECT, contains the address of the next block in the chain of
resource control information. Each block in the chain has a GOVNEXTR DS
statement. In the final block, the GOVNEXTR DS statement contains zeros to
mark the end of the user’s resource control information.

Figure 242 shows a part of the code for the IBM-supplied governor that
processes the blocks of resource control information. In this code, GOVRESC
points to the GOVRESCT DSECT.

Structure of the DXEXCBA control block
The DXEXCBA control block passes to the governor exit routine information
about the state of the QMF session upon entry to the governor. The governor

L R08,GOVOROWS GET NUMBER OF RESOURCE TABLE ROWS
LTR R08,R08 ANY RESOURCE TABLE ROWS?
BZ ENDRESST NO, SKIP RESOURCE INITIALIZATION
LA R05,GOVRESC GET ADDRESS OF 1ST RESOURCE ROW
USING GOVRESC,R05 BASE RESOURCE RECORD ENTRY

LOOK4RES DS 0H MAIN LOOP THRU RESOURCE ROWS
LTR R05,R05 ANY MORE RESOURCE TABLE ROWS?
BZ ENDRESST NO, END RESOURCE INITIALIZATION...
L R05,GOVNEXTR GET ADDRESS ON NEXT RESOURCE ROW
B LOOK4RES BEGIN NEXT ITERATION

ENDRESST DS OH -- BRANCH HERE WHEN FINISHED READING ALL ROWS

. . .

. . .

. . .

. . .

DXEGOVA DSECT

. . .

. . .

. . .

GOVRESC DS 10XL128 -- RESOURCE CONTROL TABLE
ORG GOVRESC

GOVRESCT DSECT -- DSECT FOR RESOURCE ROW
. . .
. . .
. . .

GOVNEXTR DS A -- POINTER TO NEXT RESOURCE ROW
. . .
. . .
. . .

Figure 242. Resource initialization

Controlling QMF Resources Using a Governor Exit Routine

620 Installing and Managing QMF

combines this information with information on resource limits (contained in
DXEGOVA) to determine when the resource limits are exceeded and when to
cancel the user’s activity.

For example, you can define a resource option that does not allow user
JONES to use the EDIT TABLE command. You can then write your governor
exit routine so that, if the XCBQRYP field of the DXEXCBA control block
indicates an EDIT TABLE command, the governor exit calls the QMF
cancellation service to cancel the command.

Table 84 provides the name of each field in the control block, with its data
type and purpose. Each data type is listed as it appears in the DS statement
that defines the field in the DSECT.

The layout of the control blocks and the information they contain is the same
for QMF support in all operating environments. Therefore, some of the
information shown in the control blocks might not apply to QMF operating
system you are running in.

Table 84. Fields of the DXEXCBA interface control block to the governor

Field Data Type Purpose

XCBACTIV CL1 Indicates the current type of database activity. Applies only when
rows are being retrieved for the current data object. Does not apply
when rows are retrieved for an IMPORT command. Possible values
are:
1 OPEN being run
2 FETCH being run
3 PREPARE being run
4 DESCRIBE being run
5 CLOSE being run

This field changes whenever the type of database activity changes.
You can use the value when the governor receives control
asynchronously as the result of a timer.

XCBAIACT CL1 Tells whether the current command is running interactively:
1 Interactive
0 Noninteractive (batch)
Interactive commands display prompt and status panels. This field
changes value on any function call for the start of the command; it
is reset to zero when the command completes.

XCBAUTH CL8 Contains the user’s SQL authorization ID.

Controlling QMF Resources Using a Governor Exit Routine

Chapter 30. Controlling QMF Resources using a Governor Exit Routine 621

Table 84. Fields of the DXEXCBA interface control block to the governor (continued)

Field Data Type Purpose

XCBCAN CL1 Indicates whether the user or the governor requested cancelation of
the current command. The field is set to 1 if cancelation is
requested. Zero indicates that no cancelation was requested. The
value changes at the point at which the cancelation is requested.
This field is reset to zero before the function call for the
command’s termination.

XCBCLOC CL18 Contains the current location name.

XCBCMDL F Contains the length of the string containing the command to be
run. This is the string addressed by XCBCMDP field. This field
changes values when XCBCMDL changes values.

XCBCMDP A Points to the string containing the command to be run. This field is
reset when QMF validates a command at some point before the
function call for the start of the command.

The field is reset to zeros before the function call when the
command completes. If a command synonym is being run, it
appears here.

XCBCVERB CL18 Holds the verb of the current command. This field changes value
on the function call for the start of a command. The value does not
change between calls.

XCBDBMG CL1 Identifies the database manager. This value is set to 1 for DB2 for
VM or VSE and to 2 for DB2 for OS/390.

XCBEMODE CL1 Indicates the current mode of the QMF session:
1 Interactive
2 Noninteractive (batch or server)
This value does not change during a session.

XCBERRET F Contains the return code to be used in the default cancelation
message.

XCBINCI (ISPF
only)

CL1 Tells whether the current command is being run through the
command interface. The field is set to 1 if it is, and 2 if it isn’t. For
more information about the command interface, see the Developing
QMF Applications manual.

XCBINPRC CL1 Tells the governor where a command is being run: 1 indicates it is
running in a procedure or LIST command; 0 indicates it is being
run another way.

XCBKPARM CL1 Tells the governor how the DSQSDBCS program parameter is set.
The value does not change during a session. Possible values are: 0
for Latin letters; 1 for double-byte character set (DBCS) data.

XCBLOGM CL1 Indicates if QMF should log a message in the QMF trace data set.
Use a value of 1 to log the message, and 0 to not log the message.

Controlling QMF Resources Using a Governor Exit Routine

622 Installing and Managing QMF

Table 84. Fields of the DXEXCBA interface control block to the governor (continued)

Field Data Type Purpose

XCBMGTXT CL78 Contains the text for a message. The message can be logged in the
QMF trace data, displayed on the screen, or both.

XCBMSGNO
(ISPF only)

CL8 Contains the message ID for an ISPF message definition that can be
used to log a message in the DSQDEBUG data set, viewed on your
screen, or both.

XCBNAME CL8 Contains the control block name (DXEXCBA). Can serve as an eye
catcher in a dump of virtual storage. This value does not change
during a session.

XCBNLANG CL1 Identifies NLFs being used. (For a list of NLIDs used, see Table 1
on page xiv.) Value does not change during a session.

XCBPANEL
(ISPF only)

CL8 Contains the panel ID for the message Help panel for a cancelation
message.

XCBPLAN CL8 Contains the application plan ID for QMF. The value does not
change during a session. This field does not apply in CICS.

XCBQCE F Contains the decimal equivalent of the value of the SQLDERRD(4)
field in the SQLCA returned from DBMS. The integer part of this
decimal appears in the database status (“relative cost estimate”)
panel. The value is set to zero on the function call when the
command finishes running. The field contains zeros if the
operation is not a data retrieval query. The query cost estimate is
not available from DB2 Parallel Edition V1.2 or DataJoiner v1.2.1.
In these environments the value is set to 1.

XCBQERR CL1 Tells whether a QMF error occurred since the previous function
call: 0 indicates no error occurred; 1 indicates an error occurred.

XCBQMF CL10 Identifies the current release of QMF. This value is QMF V7R2.0, and
does not change during a session.

Controlling QMF Resources Using a Governor Exit Routine

Chapter 30. Controlling QMF Resources using a Governor Exit Routine 623

Table 84. Fields of the DXEXCBA interface control block to the governor (continued)

Field Data Type Purpose

XCBQRYP A Contains the address of a copy of the query that QMF passes to the
database for execution. The governor inspects the query upon a
call to start database activity (before any data retrieval) and
determines whether to cancel the activity. The address is set to zero
either at the beginning of the session or when the data object is
reset or imported to temporary storage.

This field contains information only when data retrieval is
requested through one of the following commands; no information
is provided for queries on OS/390 DB2 system tables or QMF
control tables.
DISPLAY TABLE

EDIT TABLE
ERASE TABLE

EXPORT TABLE
IMPORT TABLE

PRINT TABLE
RUN QUERY

SAVE DATA

XCBREFR CL1 Indicates whether QMF refreshes the screen after returning from
the governor; 1 indicates a refresh; 0 indicates no refresh.

If your governor displays any screen information, set this field to 1.

XCBRELN CL2 Identifies the QMF release level. For QMF Version 7.2, this is 13.
The value does not change during a session.

XCBRGRP CL16 Contains the name of the user’s resource group. This value does
not change during a session.

XCBROWSF F Reflects the number of rows retrieved into the data object. Initially
zero, this field changes value whenever more rows are retrieved.
All data retrieval is counted whether data is retrieved from the
database, sequential files, CICS temporary storage, or CICS
transient data queues.

QMF does not reset this field, but the governor can. For example, if
your governor exit routine monitors the number of database rows
retrieved, you can set this field to zero on the function call for the
end of the command that began the data retrieval.

XCBSYST CL1 Identifies the current operating system. The value does not change
during a session, and is usually set to 3, indicating TSO, or native
OS/390 batch. Possible values are:
1 CMS (VM/SP)
3 TSO, or native OS/390 batch (MVS/XA or MVS/ESA)
4 CMS (VM/XA or VM/ESA)
5 CICS (VSE/ESA, MVS/ESA, or MVS/XA)
.

Controlling QMF Resources Using a Governor Exit Routine

624 Installing and Managing QMF

Table 84. Fields of the DXEXCBA interface control block to the governor (continued)

Field Data Type Purpose

XCBTRACE CL1 Contains a value for the level of detail at which user exit activity is
traced. Possible values are 0 (least detail), 1, or 2 (most detail).

At the start of a session, the value of the TRACE field from the
user’s QMF profile is used here. After that, the value changes only
when the user changes the value of the TRACE option. For more
information on tracing, see “Using the QMF trace facility” on
page 690.

XCBUSER CL8 Contains the user’s TSO logon ID (for TSO), the user parameter on
the job statement (for native OS/390 batch). This field is not used
in CICS; it contains blanks.

XCBUSERS CL2048 Scratchpad area in which you can store results you want the
governor to save from one call to the next. It is initially set to
blanks. QMF does not change this value.

The structure of the DXEXCBA control block is illustrated below:

Controlling QMF Resources Using a Governor Exit Routine

Chapter 30. Controlling QMF Resources using a Governor Exit Routine 625

** 00001000
* * 00002000
* CONTROL BLOCK NAME: DXEXCBA * 00003000
* * 00004000
* FUNCTION: * 00005000
* * 00006000
* THIS IS THE INTERFACE CONTROL BLOCK BETWEEN QMF AND * 00007000
* EXIT ROUTINES. * 00008000
* * 00009000
* STATUS: VERSION 7 RELEASE 2 LEVEL 0 * 00010000
* * 00011000
* INNER CONTROL BLOCKS: NONE * 00012000
* * 00013000
* CHANGE ACTIVITY: * 00014000
* * 00015000
* * 00016000
** 00017000
* 00018000
DXEXCBA DSECT 00019000

DS 0D 00020000
XCBNAME DS CL8 -- CONTROL BLOCK IDENTIFICATION 00021000

SPACE 00022000
XCBEXCTL DS XL190 -- EXIT CONTROL 00023000

ORG XCBEXCTL 00024000
XCBAUTH DS CL8 ----- AUTHORIZATION ID 00025000
XCBUSER DS CL8 ----- USER ID 00026000
XCBPLAN DS CL8 ----- PLAN ID 00027000

SPACE 00028000
XCBQMF DS CL10 ----- CURRENT VERSION/RELEASE 00029000

SPACE 00030000
XCBRELN DS CL2 ----- QMF RELEASE LEVEL 00031000

SPACE 00032000
XCBTRACE DS CL1 ----- QMF EXIT TRACE LEVEL 00033000
XCBTOFF EQU C’0’ -------- NO TRACING 00034000
XCBTPART EQU C’1’ -------- PARTIAL TRACING 00035000
XCBTFULL EQU C’2’ -------- FULL TRACING 00036000

SPACE 00037000
XCBSYST DS CL1 ----- OPERATING SYSTEM 00038000
XCBSYSTX EQU C’3’ -------- MVS/ESA or XA (TSO,APPC, native) 00039000
XCBSYSTV EQU C’4’ -------- CMS/VM/ESA 00040000
XCBSYSTY EQU C’5’ -------- CICS (OS/390 or VSE) 00041000

SPACE 00042000
XCBPAD10 DS CL4 ----- RESERVED FIELD 00043000

SPACE 00044000
XCBNLANG DS CL1 ----- CURRENT NATIONAL LANGUAGE 00045000

SPACE 00046000
XCBKPARM DS CL1 ----- SETTING OF K PARAMETER 00047000
XCBKPARN EQU C’0’ -------- LATIN 00048000

Figure 243. The DXEXCBA control block (Part 1 of 3)

Controlling QMF Resources Using a Governor Exit Routine

626 Installing and Managing QMF

XCBKPARY EQU C’1’ -------- DBCS 00049000
SPACE 00050000

XCBDBMG DS CL1 ----- DATA BASE MANAGER 00051000
XCBDBMGS EQU C’1’ -------- DB2 FOR VM/VSE 00052000
XCBDBMGD EQU C’2’ -------- DB2 FOR OS/390 00053000
XCBDBMGW EQU C’3’ -------- WORKSTATION DB2 00054000

SPACE 00055000
XCBEMODE DS CL1 ----- CURRENT EXECUTION MODE 00056000
XCBIACTV EQU C’1’ -------- INTERACTIVE MODE 00057000
XCBBATCH EQU C’2’ -------- BATCH MODE 00058000

SPACE 00059000
XCBAIACT DS CL1 ----- CURRENT INTERACT MODE 00060000
XCBAIACY EQU C’1’ -------- INTERACTIVE EXECUTION 00061000
XCBAIACN EQU C’0’ -------- NOT INTERACTIVE EXECUTION 00062000

SPACE 00063000
XCBINCI DS CL1 ----- CURRENT COMMAND INTERFACE STATE 00064000
XCBINCIY EQU C’1’ -------- COMMAND INTERFACE ACTIVE 00065000
XCBINCIN EQU C’0’ -------- COMMAND INTERFACE NOT ACTIVE 00066000

SPACE 00067000
XCBINPRC DS CL1 ----- PROCEDURE OR LIST CMD EXEC STATE 00068000
XCBPRCY EQU C’1’ ------- RUNNING A PROCEDURE OR LIST CMD 00069000
XCBPRCN EQU C’0’ ------- NOT RUNNING PROCEDURE OR LIST CMD 00070000

SPACE 00071000
XCBCVERB DS CL18 ----- CURRENT COMMAND VERB 00072000

SPACE 00073000
XCBCAN DS CL1 ----- CANCEL CURRENT COMMAND INDICATOR 00074000
XCBCANN EQU C’0’ -------- NO CANCELLATION 00075000
XCBCANY EQU C’1’ -------- CANCELLATION IN PROGRESS 00076000

SPACE 00077000
XCBACTIV DS CL1 ----- TYPE OF DATA BASE ACTIVITY 00078000
XCBOPEN EQU C’1’ -------- OPEN 00079000
XCBFETCH EQU C’2’ -------- FETCH 00080000
XCBPREP EQU C’3’ -------- PREPARE 00081000
XCBDESCR EQU C’4’ -------- DESCRIBE 00082000
XCBCLOSE EQU C’5’ -------- CLOSE 00083000
XCBEXEC EQU C’6’ -------- EXECUTE 00084000
XCBEXECI EQU C’7’ -------- EXECUTE IMMEDIATE 00085000
XCBPAD20 DS CL9 ----- RESERVED FIELD 00086000

SPACE 00087000
XCBRGRP DS CL16 ----- RESOURCE GROUP NAME 00088000
XCBPAD30 DS CL22 ----- RESERVED FIELD 00089000

SPACE 00900000
XCBCMDP DS A ----- POINTER TO ORIGINAL COMMAND STRING 00091000
* -------- WILL NOT CONTAIN PROMPT VALUES 00092000

SPACE 00093000
XCBCMDL DS F ----- ORIGINAL COMMAND STRING LENGTH 00094000

SPACE 00095000
XCBQCE DS F ----- QUERY COST ESTIMATE VALUE 00096000

Figure 243. The DXEXCBA control block (Part 2 of 3)

Controlling QMF Resources Using a Governor Exit Routine

Chapter 30. Controlling QMF Resources using a Governor Exit Routine 627

Storing resource control information for the duration of a QMF session

You can use the information passed to the governor on the first call of a
session for subsequent calls to the governor routine. You can use the
2,048-byte scratchpad areas provided in the DXEGOVA and DXEXCBA control
blocks to obtain the necessary storage to hold the resource control
information. These fields can contain any information you need to store. The
information persists from one call to the governor to the next (if a CONNECT
call doesn’t change it).

The IBM-supplied governor uses the code shown in Figure 244 on page 629 to
address GOVUSERS, the scratchpad area in the DXEGOVA control block. You
can use similar code to address the XCBUSERS scratchpad area in the
DXEXCBA control block, by replacing GOVUSERS in the following example
with XCBUSERS. WORK is the name of a DSECT, and WORKPTR is equated

SPACE 00097000
XCBROWSF DS F ----- DATA BASE ROWS FETCHED FROM SOURCE 00098000
* -------- SET BY QMF; EXIT MAY RESET 00099000

SPACE 00100000
XCBQERR DS CL1 ----- QMF ERROR INDICATOR 00101000
XCBQERRN EQU C’0’ -------- NO QMF ERROR DETECTED 00102000
XCBQERRY EQU C’1’ -------- QMF ERROR DETECTED 00103000
XCBCLOC DS CL18 ----- CURRENT LOCATION NAME 00104000
XCBPAD40 DS CL41 ----- RESERVED FIELD 00105000

SPACE 00106000
XCBQRYP DS A ----- POINTER TO SQL QUERY 00107000
* -------- QUERY LENGTH IS FIRST HALFWORD 00108000

SPACE 00109000
XCBUCTL DS XL432 -- USER CONTROL AREA 00110000

ORG XCBUCTL 00111000
XCBERRET DS F ----- EXIT ERROR RETURN CODE 00112000
XCBMGTXT DS CL78 ----- EXIT ERROR MESSAGE TEXT 00113000
XCBMSGNO DS CL8 ----- ISPF MESSAGE NUMBER 00114000
XCBPANEL DS CL8 ----- ISPF MESSAGE HELP PANEL 00115000
XCBLOGM DS CL1 ----- LOG MESSAGE INDICATOR 00116000
XCBLOGMN EQU C’0’ -------- QMF SHOULD NOT LOG MESSAGE 00117000
XCBLOGMY EQU C’1’ -------- QMF SHOULD LOG MESSAGE 00118000
XCBREFR DS CL1 ----- REFRESH SCREEN INDICATOR 00119000
XCBREFRN EQU C’0’ -------- QMF DOES NOT HAVE TO REFRESH SCR 00120000
XCBREFRY EQU C’1’ -------- QMF SHOULD REFRESH SCREEN 00121000
XCBPAD50 DS CL28 ----- RESERVED FIELD 00122000

SPACE 00123000
XCBUSERS DS CL2048 -- USER SCRATCH PAD AREA 00124000
XCBPAD60 DS CL48 ----- RESERVED FIELD 00125000

Figure 243. The DXEXCBA control block (Part 3 of 3)

Controlling QMF Resources Using a Governor Exit Routine

628 Installing and Managing QMF

to general register 4. The WORK DSECT contains the definition for the fields
that hold the information in the scratchpad areas.

The governor might also issue GETMAIN macros to obtain needed storage.

Canceling user activity

When users reach their resource limits, you can call the QMF cancellation
service to cancel user activity. For example, your governor exit routine might
cancel the following:
v A QMF session during a function call at the start of a QMF session
v The current command during a number of different function calls, and any

commands that start database activity

The code for canceling either of the first two activities is contained in the
source program DSQUnGV1, DSQUnGV2, or DSQUnGV3. To have your
governor call the QMF cancelation service to cancel an activity, branch to the
address that appears in the DXEGOVA control block field named
GOVCADDR. Figure 245 shows the statements that establish addressability to
the QMF cancellation service. Before you use these statements to pass control
from the governor exit routine to QMF, ensure that Register 13 points to a
save area for the governor so that QMF can restore the state of the governor
upon returning control.

The cancellation routine returns control to the point addressed by Register 14
(in this case, the command that follows the BALR command). Register 15
contains a return code of 0 if QMF accepted the request to cancel, and a
return code of 100 if the governor requested a cancel when QMF was inactive.

To cancel QMF commands using asynchronous processing in TSO, native
OS/390, or CMS, the IBM-supplied governor uses a timer macro, which
returns control to a timer routine. The timer routine tests whether to cancel
the current command. If the command is to be canceled, it carries out the
cancellation. The tests are based on processor time (TSO and native OS/390)

LA WORKPTR,GOVUSERS
USING WORK,WORKPTR

Figure 244. Establishing addressability to the governor scratchpad area

L R15,GOVCADDR
BALR R14,R15

Figure 245. Calling the QMF cancellation service

Controlling QMF Resources Using a Governor Exit Routine

Chapter 30. Controlling QMF Resources using a Governor Exit Routine 629

or real time (CMS), and the number of rows fetched for the current DATA
object. Your VM system should be running with the value of CP TIMER set to
REAL. The tests can also be based on the user’s response to a cancellation
prompt.

The timer routine is the CSECT named TIMEX in the source code for the
IBM-supplied governor. On OS/390 the source code is the member
DSQUnGV1 of the library QMF720.SDSQUSRE. On CMS the source code is
the file DSQUnGV2 on the production disk.

Making an asynchronous cancellation call is very much like pressing PA1.
Cancellation might not be immediate, and it might be impossible. Before the
cancellation takes place, control can return to the governor.

OS/390
Your governor exit routine can cancel asynchronous commands when a timer
is active in TSO or native OS/390.

To cancel QMF commands using asynchronous processing in TSO or native
OS/390, the IBM-supplied governor uses a timer macro, which returns control
to a timer routine. The timer routine tests whether to cancel the current
command. If the command is to be canceled, it carries out the cancellation.
The tests are based on processor time and the number of rows fetched for the
current DATA object. The tests can also be based on the user’s response to a
cancellation prompt.

VM
Your governor exit routine can cancel asynchronous commands when a timer
is active in CMS.

To cancel QMF commands using asynchronous processing in CMS, the
IBM-supplied governor uses a timer macro, which returns control to a timer
routine. The timer routine tests whether to cancel the current command. If the
command is to be canceled, it carries out the cancellation. The tests are based
on real time and the number of rows fetched for the current DATA object.
Your VM system should be running with the value of CP TIMER set to REAL.
The tests can also be based on the user’s response to a cancellation prompt.

Providing messages for canceled activities

Use this information to provide messages on OS/390, VM, and VSE.

OS/390
You can use the QMF message service to display a message to users after
their commands are canceled, by using the following fields of the DXEXCBA
control block:

Controlling QMF Resources Using a Governor Exit Routine

630 Installing and Managing QMF

XCBMGTXT
Contains the message text.

XCBERRET
Contains the error return code.

XCBMSGNO
Contains the message ID for an ISPF message definition if QMF was
invoked under ISPF in TSO.

XCBPANEL
Contains the panel ID for an ISPF message help panel if QMF was
invoked under ISPF in TSO.

Upon entry to the governor, XCBMGTXT contains blanks, and XCBERRET
contains binary zeros. The value of XCBERRET determines what message is
displayed on the screen:
v If you want to use the message OK, command canceled, leave the zero value

in XCBERRET.
v If you want to use the message A governor exit cancel occurred with

return code xxxxx, use a nonzero value for XCBERRET; this nonzero value
appears in the message in place of xxxxx.

If QMF initialization is canceled by the governor exit, the preceding messages
for XCBMGTXT and XCBERRET appear in the user’s trace data rather than on
the screen.

Set XCBLOGM to 1 to log a message in the user’s trace data for any function
call in your own governor exit routine. If the value of XCBERRET is nonzero,
the IBM-supplied governor logs cancellation messages in the user’s trace data
by setting the XCBLOGM field of the DXEXCBA control block to a value of 1.

An ISPF message definition can contain long message text and can designate a
panel ID. To use the long text for a message and the designated panel for
Help, fill XCBMSGNO with the message ID of the message definition and
leave XCBMGTXT and XCBPANEL blank. If no HELP panel was designated
in the message definition, the user receives no message Help.

To override the long-message specification in a message definition, place the
new message text in XCBMGTXT. To override the panel specification, place
the new panel ID in XCBPANEL. Placing a panel ID in XCBPANEL also
provides message Help when the message definition doesn’t specify a panel.

Leave XCBMSGNO blank if there is no relevant ISPF message definition. Then
place the message text in XCBMGTXT, and the HELP panel ID, if any, in
XCBPANEL. Leaving XCBPANEL blank, in this case, leaves the user without
message help.

Controlling QMF Resources Using a Governor Exit Routine

Chapter 30. Controlling QMF Resources using a Governor Exit Routine 631

The governor can also log messages in the ISPF log file if QMF was invoked
under ISPF. It can do this through the ISPF LOG service. For more
information on the ISPF LOG service, refer to the appropriate ISPF Dialog
Management Services manual.

The trace facility writes messages to the DSQDEBUG data set at a level of
detail determined by the value of the XCBTRACE field of the DXEXCBA
control block. Use a value of zero for XCBTRACE if you do not want
messages to be logged (although initialization errors are logged unless you do
not allocate a trace data set). Use a value of 1 or 2 in the U-setting of the trace
option to get trace output. For additional details on using the QMF trace
facility, see “Using the QMF trace facility” on page 690.

The IBM-supplied governor does not log messages for termination function
calls. Messages do not appear on screen if the command is run in batch or
noninteractively from a QMF application.

VM
You can use the QMF message service to display a message to users after
their commands are canceled, by using the following fields of the DXEXCBA
control block:

XCBMGTXT
Contains the message text.

XCBERRET
Contains the error return code.

XCBMSGNO
Contains the message ID for an ISPF message definition if QMF was
invoked under ISPF in TSO.

XCBPANEL
Contains the panel ID for an ISPF message help panel definition.

Upon entry to the governor, XCBMGTXT contains blanks, and XCBERRET
contains binary zeros. The value of XCBERRET determines what message is
displayed on the screen:
v If you want to use the message OK, command canceled, leave the zero value

in XCBERRET.
v If you want to use the message A governor exit cancel occurred with

return code xxxxx, use a nonzero value for XCBERRET; this nonzero value
appears in the message in place of xxxxx.

If QMF initialization is canceled by the governor exit, the preceding messages
for XCBMGTXT and XCBERRET appear in the user’s trace data rather than on
the screen.

Controlling QMF Resources Using a Governor Exit Routine

632 Installing and Managing QMF

Set XCBLOGM to 1 to log a message in the user’s trace data for any function
call in your own governor exit routine. If the value of XCBERRET is nonzero,
the IBM-supplied governor logs cancellation messages in the user’s trace data
by setting the XCBLOGM field of the DXEXCBA control block to a value of 1.

An ISPF message definition can contain long message text and can designate a
panel ID. To use the long text for a message and the designated panel for
Help, fill XCBMSGNO with the message ID of the message definition and
leave XCBMGTXT and XCBPANEL blank. If no HELP panel was designated
in the message definition, the user receives no message Help.

To override the long-message specification in a message definition, place the
new message text in XCBMGTXT. To override the panel specification, place
the new panel ID in XCBPANEL. Placing a panel ID in XCBPANEL also
provides message Help when the message definition doesn’t specify a panel.

Leave XCBMSGNO blank if there is no relevant ISPF message definition. Then
place the message text in XCBMGTXT, and the HELP panel ID, if any, in
XCBPANEL. Leaving XCBPANEL blank, in this case, leaves the user without
message help.

The governor can also log messages in the ISPF log file if QMF was invoked
under ISPF. It can do this through the ISPF LOG service. For more
information on the ISPF LOG service, refer to the appropriate ISPF Dialog
Management Services manual.

The trace facility writes messages to the DSQDEBUG data set at a level of
detail determined by the value of the XCBTRACE field of the DXEXCBA
control block. Use a value of zero for XCBTRACE if you do not want
messages to be logged (although initialization errors are logged unless you do
not allocate a trace data set). Use a value of 1 or 2 in the U-setting of the trace
option to get trace output. For additional details on using the QMF trace
facility, see “Using the QMF trace facility” on page 690.

The IBM-supplied governor does not log messages for termination function
calls. Messages do not appear on screen if the command is run in batch or
noninteractively from a QMF application.

VSE
You can use the QMF message service to display a message to users after
their commands are canceled, by using the following fields of the DXEXCBA
control block:

XCBMGTXT
Contains the message text.

Controlling QMF Resources Using a Governor Exit Routine

Chapter 30. Controlling QMF Resources using a Governor Exit Routine 633

XCBERRET
Contains the error return code.

Upon entry to the governor, XCBMGTXT contains blanks, and XCBERRET
contains binary zeros. The value of XCBERRET determines what message is
displayed on the screen:
v If you want to use the message OK, command canceled, leave the zero value

in XCBERRET.
v If you want to use the message A governor exit cancel occurred with

return code xxxxx, use a nonzero value for XCBERRET; this nonzero value
appears in the message in place of xxxxx.

If QMF initialization is canceled by the governor exit, the preceding messages
for XCBMGTXT and XCBERRET appear in the user’s trace data rather than on
the screen.

Set XCBLOGM to 1 to log a message in the user’s trace data for any function
call in your own governor exit routine. If the value of XCBERRET is nonzero,
the IBM-supplied governor logs cancellation messages in the user’s trace data
by setting the XCBLOGM field of the DXEXCBA control block to a value of 1.

The trace facility writes messages to the DSQDEBUG data set at a level of
detail determined by the value of the XCBTRACE field of the DXEXCBA
control block. Use a value of zero for XCBTRACE if you do not want
messages to be logged (although initialization errors are logged unless you do
not allocate a trace data set). Use a value of 1 or 2 in the U-setting of the trace
option to get trace output. For additional details on using the QMF trace
facility, see “Using the QMF trace facility” on page 690.

The IBM-supplied governor does not log messages for termination function
calls.

Assembling and generating your governor exit routine in CMS

Whether you are modifying the IBM-supplied governor exit routine or writing
a routine of your own, you need to create a CMS module.

If you are migrating from an earlier QMF release:Starting QMF from ISPF
with PGM or DCSS form no longer has an effect on how to create the
governor module.

Assembling your governor exit
The IBM-supplied governor is written for HLASM. To use the IBM-supplied
governor, IBM supplies governor control blocks (DXEGOVA and DXEXCBA)
in DSQUSERE MACLIB, which is located on the QMF production disk.

Controlling QMF Resources Using a Governor Exit Routine

634 Installing and Managing QMF

If you assemble the IBM-supplied governor, you need to issue a global maclib
command for the following libraries:
1. DSQUSERE
2. OSMACRO
3. TSOMAC

For example, use the following statements to assemble the QMF-supplied
governor:
Address CMS "PRODUCT HLASM"
Address CMS "PRODUCT QMF"
Address CMS "GLOBAL MACLIB DSQUSERE DMSSP CMSLIB OSMACRO TSOMAC "
Address CMS "HLASM DSQUEGV2

Building a module file or creating a load library member
After you assemble your governor, a TEXT file is created. You then need to
build a relocatable module file named DSQUEGV2 or create a member of a
CMS LOADLIB.

Important:If you are using your own governor, the DSQUEGV2 file can run in
31-bit addressing mode. If you are using the IBM-supplied governor,
DSQUEGV2 must run in 24-bit mode. For example, use the following REXX
statements to build a module file for the IBM-supplied governor:
Address CMS "LOAD DSQUEGV2 (RLDSAVE AMODE 24 RMODE 24"
Address CMS "GENMOD DSQUEGV2"

If you choose to create a member of a CMS LOADLIB:
1. Create a SYSLIN file that contains the following statements:

INCLUDE DSQUEGV2
ENTRY DSQUEGV2

2. Allocate the SYSLIN and INCLUDE files using the following CMS
commands:
FILEDEF SYSLIN DISK SYSLIN CONTROL A
FILEDEF DSQUEGV2 DISK DSQUEGV2 TEXT A

3. Create the module as a member of a new or existing CMS load library
using the following CMS command:
LKED DSQUEGV2 (NCAL LET REUS NAME DSQUEGV2 LIBE USERLIB)

Assembling and link-editing your governor exit routine in TSO, ISPF, and native
OS/390 batch

Whether you are modifying the IBM-supplied governor exit routine or writing
a routine of your own, you need to translate, assemble, and link-edit the
routine. Use the sample link-edit statements shown in this section to help you.

Controlling QMF Resources Using a Governor Exit Routine

Chapter 30. Controlling QMF Resources using a Governor Exit Routine 635

Assembling your governor exit
QMF supports only assembler-language programming for a governor. This is
the language, for example, in which the IBM-supplied governor is coded; the
code was written for HLASM. You can review this code by printing certain
members of the QMF720.SDSQUSRE library.

Link-editing your governor exit routine
Place the load module for the governor in a library available to all your QMF
users. IBM recommends the library QMF720.SDSQLOAD, which contains the
load modules for QMF itself. This library can be part of the concatenation for
STEPLIB.

Name the module DSQUnGV1. These are the names of the IBM-supplied
modules. Placing your own governor module in the QMF720.SDSQLOAD
library replaces the IBM-supplied module, because that module is a member
of that library.

To avoid replacing the IBM-supplied module, you can rename it or move it to
another library. Or you can place the module for your own governor in a
different library in STEPLIB. If you place your module in a different library,
be sure that your module’s new library comes before QMF720.SDSQLOAD in
the concatenation sequence. If it is not, QMF calls the IBM-supplied module
instead of your own.

Be sure that the entry point for the new module is DSQUnGV1. If your source
code begins with a CSECT statement with the DSQUnGV1 label, there is
nothing extra to do. If your source code does not begin with the DSQUnGV1
label, specify the entry name on the END statement for the assembler code, or
place it in an ENTRY statement in the linkage editor input.

Your own routine can run in either 31- or 24-bit addressing mode. If your
routine requires OS/390 services that need 24-bit addressing mode (such as
TPUT), then QMF handles the transfer from QMF running in 31-bit mode to
the governor routine running in 24-bit mode and back to QMF in 31-bit mode.
ENTRY DSQUEGV1

MODE AMODE(31),RMODE(ANY)
NAME DSQUEGV1(R)

The QMF-supplied governor (DSQUEGV1) must run with AMODE(24) and
RMODE(24).
ENTRY DSQUEGV1

MODE AMODE(24),RMODE(24)
NAME DSQUEGV1(R)

Controlling QMF Resources Using a Governor Exit Routine

636 Installing and Managing QMF

Assembling and generating your governor exit routine in CMS

Whether you are modifying the IBM-supplied governor exit routine or writing
a routine of your own, you need to create a CMS module.

If you are migrating from an earlier QMF release:Starting QMF from ISPF
with PGM or DCSS form no longer has an effect on how to create the
governor module.

Assembling your governor exit
The IBM-supplied governor is written for HLASM. To use the IBM-supplied
governor, IBM supplies governor control blocks (DXEGOVA and DXEXCBA)
in DSQUSERE MACLIB, which is located on the QMF production disk.

If you assemble the IBM-supplied governor, you need to issue a global maclib
command for the following libraries:
1. DSQUSERE
2. OSMACRO
3. TSOMAC

For example, use the following statements to assemble the QMF-supplied
governor:
Address CMS "PRODUCT HLASM"
Address CMS "PRODUCT QMF"
Address CMS "GLOBAL MACLIB DSQUSERE DMSSP CMSLIB OSMACRO TSOMAC "
Address CMS "HLASM DSQUEGV2

Building a module file or creating a load library member
After you assemble your governor, a TEXT file is created. You then need to
build a relocatable module file named DSQUEGV2 or create a member of a
CMS LOADLIB.

Important:If you are using your own governor, the DSQUEGV2 file can run in
31-bit addressing mode. If you are using the IBM-supplied governor,
DSQUEGV2 must run in 24-bit mode. For example, use the following REXX
statements to build a module file for the IBM-supplied governor:
Address CMS "LOAD DSQUEGV2 (RLDSAVE AMODE 24 RMODE 24"
Address CMS "GENMOD DSQUEGV2"

If you choose to create a member of a CMS LOADLIB:
1. Create a SYSLIN file that contains the following statements:

INCLUDE DSQUEGV2
ENTRY DSQUEGV2

2. Allocate the SYSLIN and INCLUDE files using the following CMS
commands:

Controlling QMF Resources Using a Governor Exit Routine

Chapter 30. Controlling QMF Resources using a Governor Exit Routine 637

FILEDEF SYSLIN DISK SYSLIN CONTROL A
FILEDEF DSQUEGV2 DISK DSQUEGV2 TEXT A

3. Create the module as a member of a new or existing CMS load library
using the following CMS command:
LKED DSQUEGV2 (NCAL LET REUS NAME DSQUEGV2 LIBE USERLIB)

Assembling, translating, and link-editing your governor exit routine in CICS on
OS/390

Whether you are modifying the IBM-supplied governor exit routine or writing
a routine of your own, you need to translate, assemble, and link-edit the
routine. Use the sample link-edit statements shown in this section to help you.

Translate your program using the CICS translator for assembler. When you
translate your program, CICS supplies the standard CICS prolog
(DFHEIENT), which establishes addressability and saves registers in the
standard CICS working storage area. The standard prolog also provides a
standard CICS epilog (DFHEIRET).

Assembling your governor exit
QMF supports only assembler-language programming for a governor. This is
the language, for example, in which the IBM-supplied governor is coded; the
code was written for HLASM or Assembler H. You can review this code by
printing certain members of the QMF720.SDSQUSRE library.

Link-editing your governor exit routine
Place the load module for the governor in a library available to all your QMF
users. IBM recommends the library QMF720.SDSQLOAD, which contains the
load modules for QMF. This library must be concatenated with DFHRPL in
CICS.

Name the module DSQUnGV3. These are the names of the IBM-supplied
modules. Placing your own governor module in the QMF720.SDSQLOAD
library replaces the IBM-supplied module, because that module is a member
of that library.

To avoid replacing the IBM-supplied module, you can rename it or move it to
another library. Or you can place the module for your own governor in a
different library in DFHRPL. For the last of these alternatives, be sure that
your module’s new library is ahead of QMF720.SDSQLOAD in the
concatenation sequence. If it is not, QMF calls the IBM-supplied module
instead of your own.

Be sure that the entry point for this module is DSQUnGV3. If your source
code begins with a CSECT statement with this label, there is nothing else to

Controlling QMF Resources Using a Governor Exit Routine

638 Installing and Managing QMF

do. If not, specify the entry name on the END statement for the assembler
code, or place it in an ENTRY statement in the linkage editor input.

When link-editing, you must include the CICS command interface control
modules DFHEAI and DFHEAI0. You must also place the control modules at
the beginning of the governor load module. In CICS, the governor must run
with AMODE(31) and RMODE(ANY).
INCLUDE SYSLIB(DFHEAI)

INCLUDE SYSLIB(DFHEAI0)
ORDER DFHEAI,DFHEAI0
ENTRY DSQUEGV3
MODE AMODE(31),RMODE(ANY)
NAME DSQUEGV3(R)

Assembling, translating, and link-editing your governor exit routine in CICS on
VSE

Whether you are modifying the IBM-supplied governor exit routine or writing
a routine of your own, you need to translate, assemble, and link-edit the
routine. Use the sample link-edit statements shown in this section to help you.

Translate your program using the CICS translator for assembler. When you
translate your program, CICS supplies the standard CICS prolog
(DFHEIENT), which establishes addressability and saves registers in the
standard CICS working storage area. The standard prolog also provides a
standard CICS epilog (DFHEIRET).

Assembling your governor exit
Before you assemble your governor exit routine, establish a VSE library exit to
handle macro processing of E-decks. The VSE Guide to System Functions
provides a description on how to establish this exit.

Use the HLASM compiler option in the following example to assemble to
routine. The LIBEXIT parameter includes CICS macro definitions created by
the CICS translation process.
’LIBMAC,USING(NOLIMIT,NOWARN),EXIT(LIBEXIT(EDECKXIT(ORDER=EA)))’

In the source library search specification, specify the QMF governor exit
interface control blocks DXEXCBA.A and DXEGOVA.A located in the QMF
library.

Link editing your governor exit routine
Create a new QMF governor exit routine named DSQUnV3 by including the
EXEC CICS interface control modules DFHEAI and DFHEAI0, and you
governor exit program DSQUnV3. The EXEC CICS module DFHEAI must be
the first module in your governor exit routine, and the entry point must be

Controlling QMF Resources Using a Governor Exit Routine

Chapter 30. Controlling QMF Resources using a Governor Exit Routine 639

the QMF module DSQUnV3. DSQUnV3 must be executable in 31-bit
addressing mode. Replace the n symbol with an NLID that corresponds to the
national language that you are using.

Example JCL statements
Figure 246 on page 641 shows the JCL used to install, translate, assemble, and
link-edit the IBM-supplied governor exit routine. This JCL is supplied in the
QMF sublibrary, under the name DSQ3GV3.Z. For more information on
installing your own program into CICS, see the CICS System Definition Guide.

Controlling QMF Resources Using a Governor Exit Routine

640 Installing and Managing QMF

...* $$ JOB JNM=DSQ3GV3,DISP=D,CLASS=0
// JOB DSQ3GV3 Sample Job to Install Cutomer Written QMF Governor
* ---
* Instal QMF Governor Exit (HLASM)
* ---
// SETPARM VOLID=volid *--update volid for syspch
// SETPARM START=rtrk *--update start track/block (syspch)
// SETPARM SIZE=ntrks *--update number of tracks/blocks (syspch)
* --
* Library search chain must contain QMF, CICS, and HLASM sublibrary
* ---
// LIBDEF *,SEARCH=(PRD2.PROD,PRD1.BASE)
// LIBDEF PHASE,CATALOG=PRD2.PROD
* ---
* Step 1: Translate Governor exit program
* ---
// DLBL IJSYSPH,’ASM.TRANSLATION’.0
// EXTENT SYSPCH,,1,0,&START.,&SIZE.
ASSIGN SYSPCH,DISK,VOL=&VOLID.,SHR
// EXEC DFHEAP1$

:
:
Your governor program
:
:

/*
* --
* Step 2: Assemble Governor exit program
* --
CLOSE SYSPCH,00D
// DLBL IJSYSIN,’ASM.TRANSLATION’,0
// EXTENT SYSIPT
ASSGN SYSIPT,DISK,VOL=&VOLID.,SHR
// OPTI0N CATAL,DECK,SYM,ERRS

PHASE DSQUEGV3,*,SVA
INCLUDE DFHEAI
INCLUDE DFHEAI0

// EXEC ASMA90,SIZE=(ASMA90,50K), C
PARM=’LIBMAC,USING(NOLIMIT,NOWARN),EXIT(LIBEXIT(EDECKXITC
(ORDER=EA)))’

CLOSE SYSIPT,SYSRDR
/*
* --
* Step 3: Link-edit Goernor exit program
* --
// EXEC LNKEDT,PARM=’AMODE=31,RMODE=ANY’
/*
/&
// JOB RESET
ASSGN SYSIPT,SYSRDR IF 1A93D, CLOSE SYSIPT,SYSRDR
ASSGN SYSPCH,00D IF 1A93D, CLOSE SYSPCH,00D
/&
...* $$ EOJ

Figure 246. Example JCL for translating, assembling, and link-editing a governor exit

Controlling QMF Resources Using a Governor Exit Routine

Chapter 30. Controlling QMF Resources using a Governor Exit Routine 641

Using the DB2 governor on OS/390

DB2 has its own governor, which operates independently of the QMF
governor. This section tells you what the DB2 governor does, and how you
can use it for additional resource control. For more information on the DB2
governor, read the section on improving resource utilization in the DB2 UDB
for OS390 Administration Guide. In DB2 publications, this governor is
commonly called the Resource Limit Facility. You can control all access to the
database and distributed access with the DB2 governor.

Monitoring the resources
The DB2 governor monitors the processor time consumed running certain
queries. The queries it monitors are the dynamically run SELECT, INSERT,
UPDATE, and DELETE queries. In a QMF session, this includes all queries of
these types that are run in the following ways:

Using the QMF RUN command
The queries run might be SQL, QBE, or prompted queries. For QBE and
prompted queries, the governor monitors the equivalent SQL queries.

Using other QMF commands
In support of other commands, QMF creates and runs SQL queries on
behalf of the user. For example, among these queries are the SELECT
queries that QMF runs in response to DISPLAY table commands.

Running the Table Editor
In support of the Table Editor, QMF creates and runs SQL queries on
behalf of the user. For example, among these queries are the SELECT
queries that QMF runs in response to SEARCH commands.

Differences between governors
You can supplement the operations of the QMF governor with the DB2
governor. Before you do, you should know how the governors differ.
v The DB2 governor limits its monitoring to the types of queries mentioned

in the previous section. It does not monitor, for example, the processor time
spent in running a CREATE or DROP query.

v The DB2 governor limits its monitoring to processor time. It does not count
row fetches, as the QMF governor does.

v Processor time for the DB2 governor includes only the time consumed by
DB2. In contrast, the QMF governor includes the time QMF spends running
a command—manipulating a spill file, for example, or displaying the first
page of the results of running a SELECT query.

v When a user runs a SELECT query, the DB2 governor monitors all the time
DB2 spends running the query, beginning with the PREPARE statement and
continuing through the row fetches and the closing of the cursor. The QMF

Controlling QMF Resources Using a Governor Exit Routine

642 Installing and Managing QMF

governor ends its monitoring after the first page of the results are
displayed. Any subsequent row fetch is treated as part of the scrolling
command that caused the fetch to occur.

v The DB2 governor makes no provision for a cancellation prompt; its only
control parameter for a given QMF session is maximum processor time.

When the maximum processor time is exceeded
When a query exceeds the maximum processor time, the DB2 governor ends
the query and returns an SQL error code of -905. QMF then knows that the
governor canceled the query. How QMF treats this information depends on
where in a QMF session the governor canceled the query:

During QMF Initialization
When it begins a user’s session, QMF runs several queries that the DB2
governor monitors. If any of these queries are canceled, QMF ends the
session. Before the session ends, QMF writes an explanatory record in the
user’s DSQDEBUG data set.

The session end might occur during periods when QMF sessions are not
allowed. To enforce this restriction, people who attempt to use QMF
during such a period of time might be assigned a maximum processor
time of zero. This causes the cancellation of any monitored query.

After QMF Initialization
After initialization, QMF treats the cancellation of a query just as it treats
any other error in running the query. Suppose, for example, that the
governor cancels an INSERT query for which the user issued a RUN
command. Then the inserts, if any, are undone, and the query panel is
displayed with an error message. If the user then asks for message help, a
panel explaining the governor’s action is displayed.

Suppose instead that a cancellation takes effect while the user is scrolling
through a report. Then it is likely that a row fetch caused the cancellation.
The cancellation leaves the DATA object incomplete. Because DB2 closes
the cursor, the DATA object cannot be completed.

Applying the DB2 governor to QMF for
Before it can govern a QMF session, the DB2 governor needs input. Input in
this case is the maximum processor time. The DB2 governor gets this input
from a row in a resource limit specification table.. In DB2 terminology, this
table is an RLST. Such a table can be modified by anyone with appropriate
DB2 authority (INSERT, UPDATE, and so on). By adding rows to one or more
RLSTs, you can control the operation of the DB2 governor for your QMF
users.

Controlling QMF Resources Using a Governor Exit Routine

Chapter 30. Controlling QMF Resources using a Governor Exit Routine 643

Selecting an RLST
Consider a DB2 subsystem into which QMF is installed. When the subsystem
is started, it is associated with a specific RLST. This RLST then provides the
DB2 governor input for all the subsystem users, including those who begin
QMF sessions.

Different RLSTs can be associated at different times with the same DB2
subsystem. For example, your installation might use different RLSTs for
different shifts. The RLST for one shift makes it impossible to use QMF
during that shift. Any attempt to start a QMF session ends during QMF
initialization, and a message appears in the DSQDEBUG data set.

Adding rows to an RLST
You (or someone with appropriate DB2 authority) can add rows to an RLST
for your QMF users. A row contains:
v An authorization ID
v The name of a DB2 application plan
v A value for the maximum processor time
v The LU name of the site where the request originated (for DB2 2.2 and

above)

For example, you might add rows for a few individual users and a row that
applies to everyone else. The rows for the individual users contain their
primary authorization IDs and the name of the QMF application plan. The
row for the other users contains the QMF plan name and blanks for the
authorization ID.

Contact your DB2 administrator for information about what you can and
cannot do with the RLSTs, and the structures of the tables. Each RLST has
required columns with prescribed names and data types, but your installation
might have added more columns. For general information on these tables, see
the DB2 UDB for OS390 Administration Guide .

Controlling QMF Resources Using a Governor Exit Routine

644 Installing and Managing QMF

Chapter 31. Running QMF as a Batch Program

If a user runs a procedure with the RUN command, he cannot execute QMF
commands except to cancel the procedure or the session. Running a procedure
using the RUN command might tie up considerable session time.
Alternatively, given the proper authority, the user might run the procedure in
batch mode. In this mode, the procedure runs independently of the user’s
session so that the user can continue to issue commands.

To enable your users to use batch mode, you must give them the proper
authority. Your users can then use batch mode to run procedures
independently of a session and issue commands interactively while the
procedure is running. The batch procedure may not run immediately; it might
wait to run after the user’s QMF session ends.

You and your users can create batch procedures to be run and saved in the
database. A procedure can invoke queries or other procedures and can execute
other QMF commands. For more information about writing batch procedures,
see the Using QMF manual.

QMF also supplies the QMF BATCH application to simplify running batch
jobs.

If you are using an NLF: Users at a multilingual installation can choose the
language environment for their batch QMF sessions, just as they can for their
interactive sessions.

Running QMF as batch a batch program on OS/390

This chapter section how you can use the QMF batch mode in TSO, ISPF,
native OS/390, or CICS. For ISPF on OS/390, the QMF batch facility executes
QMF in the TSO terminal monitor program (TMP).

TSO
The order of information for OS/390 is: TSO, ISPF, native OS/390, and CICS.

Authority to operate in batch mode (TSO)
To submit a batch job, you need to know what QMF and DB2 authority is
needed.

How to determine the logon ID and DB2 primary authorization ID your job is
running under:

© Copyright IBM Corp. 1983, 2002 645

v If your installation uses RACF, the logon ID is the value of the USER
parameter on your JOB statement. The DB2 primary authorization ID is the
one corresponding to that logon ID.

v If your installation does not use RACF, the logon ID and primary
authorization ID are determined as described in “The PROFILE PREFIX
statement” on page 649.

The logon ID and authorization ID play the same role as when you use QMF
interactively. As a result, the procedure runs only if the following conditions
are satisfied:
v You can operate QMF interactively using the logon ID for the batch run.
v The authorization ID corresponding to the logon ID owns the procedure to

be run, or that procedure is shared.

In running the procedure’s commands, the authorization ID works
interactively. However, not every QMF command that can be run interactively
can be run in batch mode. For more information about which commands are
appropriate for the batch environment, see Using QMF

Users with authority to use QMF interactively, and who can run jobs in the
background, can also use it in batch mode, while users who do not have
authority cannot use it in batch mode.

RACF security considerations
If RACF is a part of your security, you can prevent users from running jobs
under other users’ logon IDs. A user who runs such a job can access all the
DB2 data that the other user has access to, including data that the user
running the job is not authorized to see.

Sending a job to OS/390 using the TSO SUBMIT command
You or your users must create the QMF procedure to be run and save it in the
database. The procedure might issue queries or run other procedures and
might run most other QMF commands. Through the TSO command of QMF,
the procedure might also call CLISTs or online programs. For more
information on writing procedures for batch, see Using QMF

After you save the procedure, you or your users must create a JCL file for the
job that runs the procedure. The JCL for this job calls TSO for batch
operations. It must allocate resources that TSO and QMF need, including a
data set containing statements that TSO is to run. One of these statements
must start a QMF session.

Submit the job to the background through the TSO SUBMIT command.
SUBMIT is one of the FIB (foreground-initiated background) commands
through which the user runs, monitors, and manipulates background jobs.
Issuing a FIB command requires the proper TSO authority. (Granting this

646 Installing and Managing QMF

authority is a TSO administration task.) For more on FIB commands and their
uses, see TSO Extensions Command Language Reference

The SUBMIT command can be run:
v During the user’s QMF session by using the TSO command of QMF
v In TSO READY mode or in a CLIST that tailors the JCL of the job

The tailoring can be based on parameters whose values are passed to called
CLIST.

Any error encountered while running a procedure can:
v Terminate the procedure
v Back out an uncommitted DB2 unit of recovery

The JOB statement for the job can specify that a message be sent to the user
when the job is done. The message appears on the user’s screen. The user
need not end a QMF session to receive the message.

After the run is ended, the user can examine the printer output for errors.
With the proper JCL, this output is routed to data sets that the user can
examine with an editor. One of these data sets might contain a record of the
confirmation and error messages and, if desired, a record of the QMF
commands that have run.

JCL to execute a QMF batch job under TSO
Batch-job JCL is similar to a TSO logon JCL, because QMF is run in batch
mode through batch-mode TSO. The JCL statements you can use in batch
mode are discussed in this section.

The job statement: Begin your JCL with a JOB statement like this:
//BATCH JOB USER=LMN,PASSWORD=ABC,NOTIFY=LMN

The statement shown might not be adequate for every installation, because it
contains neither accounting information nor the user’s name. The operands
shown specify that:
v The logon ID is LMN.
v The logon password is ABC.
v The terminal message is sent to user LMN when the job ends.

You can include other operands; among these are the MSGLEVEL and
MSGCLASS operands that control the level of detail and the routing of the
JCL and system messages.

Attention: Without RACF, the PASSWORD parameter is ignored, creating a
security exposure.

Chapter 31. Running QMF as a Batch Program 647

The exec statement: You can use an exec statement for a JOB step to run
batch-mode QMF similar to the following:
//SAMPLE EXEC PGM=IKJEFT01,TIME=1440,DYNAMNBR=30,REGION=3072K

This statement:
v Calls TSO (PGM=IKJEFT01)
v Specifies an adequate number of allowable dynamic allocations

(DYNAMNBR=30)
v Specifies a sufficiently large region for QMF (REGION=3072K)

The DD statements: You can use the same DD statements both for running
QMF interactively and for batch mode. You must remove the statements for
SYSPRINT, SYSTERM, and SYSIN.

You can add the operand HOLD=YES to one or more of the SYSOUT DD
statements and then manipulate their output with the OUTPUT command of
TSO (another FIB command). Using the OUTPUT command, you can route
the output of the SYSOUT DD statement to your screen.

You also need DD statements for the SYSTSPRT and SYSTSIN data sets.

SYSTSPRT: This data set contains the message output from TSO and ISPF.
For this data set write:
//SYSTSPRT DD SYSOUT=A

SYSTSIN: SYSTSIN holds the TSO statements that run during the job step. To
include these statements in your JCL, write the following:

TSO runs these statements in their order of appearance in SYSTSIN:
v The first statement runs a CLIST named CLISTA, which might do

allocations of QMF libraries.
v The second sets the user’s dsname prefix to LMN.
v The ISPSTART statement invokes batch-mode QMF with ISPF and runs the

procedure LMN.PROCA.

//SYSTSIN DD *
EXEC CLISTA
PROFILE PREFIX(LMN)
ISPSTART PGM(DSQQMFE) NEWAPPL(DSQE) PARM(DSQSMODE=B,DSQSRUN=LMN.PROCA)

...
/*

Figure 247. Adding the TSO statements from SYSTSIN

648 Installing and Managing QMF

The PROFILE PREFIX statement: The PROFILE PREFIX statement sets the
user’s dsname prefix to LMN, which is assumed in the example to be the
user’s logon ID.

Where to place the statement: Place the PROFILE PREFIX statement before the
first ISPSTART statement that starts QMF. Issuing the PROFILE PREFIX
statement within QMF is ineffective.

How PROFILE PREFIX can change a profile:: By itself, the QMF SET PROFILE
command makes no permanent changes to the user’s QMF profile. In contrast,
the PROFILE PREFIX statement can make permanent changes to the user’s
TSO profile, depending on your installation’s setup. If it does, a user might
want to restore the dsname prefix. The initial value of the prefix setting is in
the ISPF system variable ZPREFIX.

Making the PROFILE PREFIX effective: For the PROFILE PREFIX statement to
be effective, the DSQSPRID parameter must be set to TSOID. A similar
statement (one setting the user’s prefix to the user’s logon ID) might be
needed in other jobs running QMF in batch mode for the following reasons:
v To identify the user to QMF when RACF is not used

At installations where RACF is not used, QMF assumes that the user’s
logon ID is equal to the user’s dsname prefix; if this prefix is null, QMF
assumes that the logon ID is BATCH. Thus, by setting the dsname prefix to
the user’s logon ID, the PROFILE PREFIX statement provides the user’s
logon ID to QMF.
The primary authorization ID that DB2 assigns the user in this case is the
value specified by the DB2 installation parameter UNKNOWN AUTHID.
The logon ID is used in trace output recorded in the DSQDEBUG data set.
Either the primary authorization ID or the logon ID is used for reading
from the profile and assigning a default resource group, depending on the
setting of the DSQSPRID parameter. See the discussion of this parameter in
Chapter 22, “Customizing Your Start Procedure” on page 259.

v To avoid problems with data set names
You can encounter problems when a QMF procedure uses both the fully
qualified and the incomplete forms of a data set’s name in the QMF
IMPORT/EXPORT commands. For example, a procedure running under the
logon ID LMN issues the following two commands:
EXPORT QUERY TO ’LMN.QUERYX.QUERY’
. . .
IMPORT QUERY FROM QUERYX

The EXPORT command uses the logon ID (LMN) as the first qualifier for
the export file name. Later, the IMPORT command imports this file.

Chapter 31. Running QMF as a Batch Program 649

If the user’s dsname prefix is ABC instead of LMN, the file referenced in
the IMPORT statement is named ’ABC.QUERYX.QUERY’ instead of
’LMN.QUERYX.QUERY’. This is because the prefix is used for the first
qualifier of a data set name when, as in the example IMPORT command,
the name is not fully qualified.

The procedure cannot find the file it previously exported. The PROFILE
PREFIX statement avoids this problem by setting the dsname prefix to the
user’s logon ID (in this case, ‘LMN’).

Running QMF batch in the foreground using TSO or ISPF: To start QMF in
batch mode in the foreground, you can use any of the methods to start QMF
that were discussed in Chapter 21, “Starting QMF” on page 237. For example,
from the TSO READY mode, you can issue the following statement to start
QMF from a CLIST:
ISPSTART CMD(clist__name) NEWAPPL

where clist_name is the name of the CLIST that starts QMF. This CLIST must
contain a statement of the form:
ISPEXEC SELECT PGM(DSQQMFE) NEWAPPL(DSQE)

PARM(...DSQSMODE=B,DSQSRUN=aaa.bbb)

Here the ISPSTART statement runs in the foreground, not the background.
You cannot do other things with TSO while waiting for the CLIST to end.

When the CLIST actually ends, you are back in TSO READY mode. Before the
CLIST ends, you might see a display of the ISPF Disposition Prompt panel if
your procedure terminates before you specify permanent disposition
parameters for the TSO console, log, and list files. To avoid displaying this
panel, specify permanent disposition parameters for these files. A value of D
(specifying “delete”) for each is probably adequate. If you do not know how
to specify these dispositions, ask an ISPF expert or use ISPF help.

Debugging a procedure: You can use the trace codes and the HELP
command to diagnose problems with a batch mode procedure. In fact, L2
tracing is the default for procedures run in batch mode. To change the trace
setting, you need a SET command in your procedure. For example, to specify
L1 tracing instead of L2, add the following statement at the start of the
procedure:
SET PROFILE (TRACE=L1

With either L1 or L2 tracing, a log is produced in the DSQDEBUG data set.
Within this log is a series of message records: one for each message that QMF
issued while the procedure was being run.

650 Installing and Managing QMF

With L2 tracing in effect, the log also contains a record for each QMF
command run by the procedure (and its subordinates).

If the procedure terminates prematurely, an error message is written to the
DSQDEBUG data set. You can then use the HELP command to display the
corresponding message help panel.

Using the QMF batch query/procedure application (BATCH) in ISPF
The QMF batch query/procedure application is designed to minimize the
amount of effort involved and knowledge required to run a query or
procedure in batch mode. To use the application, you must start QMF under
ISPF.

If you are using an NLF: You need to assign the translated synonym to the
users. They then issue the translated command synonym for BATCH. Refer to
Chapter 27, “Customizing QMF Commands” on page 457 for the procedure on
how to assign synonyms.

Assigning authority to use the application on OS/390
Any QMF user can use the application, since starting it consists of running a
shared procedure. The application creates the procedure and JCL for the user’s
batch job, but it is not able to submit the job unless the user has authority to
use the TSO FIB (foreground-initiated background) commands. A TSO
administrator grants the user this authority.

The batch job is run under the user’s TSO logon ID, so the commands issued
by the batch procedure are run under the user’s authorization ID. The same
rules apply to a batch job and to the user running the job interactively:
v If the query, procedure, or form to be run is not owned by the user, it must

be shared by its owner.
v For any table referenced in the query (assuming a retrieval query), the user

must have SQL SELECT privilege.
v If the query or procedure results are to be saved in a new table, the user’s

SAVE command must be enhanced. (See “Enabling users to create tables in
the database” on page 374.)

Using the application
Before starting the application, the user must have the query or procedure
available to be run, and, if necessary, a form to format the report. These
objects can be either in the database or in temporary storage. If the objects are
in the database, they can be owned by others, provided they are shared.

After the user fills in the appropriate fields and presses ENTER, the
application composes a batch job and submits it to the background.

While the prompt panel is displayed, the user can:

Chapter 31. Running QMF as a Batch Program 651

v Display the application’s help panels by pressing the Help function key
v Terminate the application by pressing the End function key

(The function key settings appear at the bottom of the prompt panel.)

If you are using an NLF: Issue the translated command synonym for BATCH
to run a query or procedure in batch mode. For example, the translated
German command synonym for BATCH is STAPEL. For the translated
command synonym for BATCH in the other language environments, see the
Q.COMMAND__SYNONYM__n control table.

Starting the application
The application must be invoked while its user is operating under QMF.
When invoked, the application prepares a batch job for the user and submits
it to the background. The job is prepared from information the user enters on
a prompt panel. It runs a single query or procedure of the user’s choice.
Assuming the batch job is a select query, the job can also:
v Save the data object that is created by running the query
v Format the report object using a form of the user’s choice
v Print the report
v Write the report into a permanent data set
v Send the report to one or more other users

The advantage to using the application lies in its prompt panel, where the
user outlines what the job should do and leaves the details of how to do it to
the application. The user does not need to know JCL or QMF procedures.

To use the batch application, enter:
BATCH

which results in the display of the prompt panel in Figure 248 on page 653

Filling in the prompt panel
A user can get help filling out the prompt panel by pressing function key 1,
which results in the display of the first of three help panels.

652 Installing and Managing QMF

Required entry fields: Certain fields on the batch prompt panel are
mandatory. Messages are displayed prompting the user to enter values for
these required fields if the Enter key is pressed before values are provided.
The cursor is then positioned on the field requiring input. Table 85 describes
the required fields.

Table 85. BATCH application required entry fields

Field Description

OBJECT NAME A value is required for the name of the query or procedure to
be run in batch mode. If the query or procedure is currently in
temporary storage, it is saved in the database using this name.
If the name is that of an existing object, the new object replaces
the old one. (The name must be unqualified.) If the object is in
the database, enter the name under which it was saved. (The
name must be qualified if the object is owned by someone else
and shared.) Save this object using CONFIRM = NO as a profile
setting.

QUERY or PROC The object type to be run in batch; must be either QUERY or
PROC.

QMF BATCH QUERY/PROC BATCH PROMPT

OBJECT NAME ===> Name of query or procedure
Current OBJECT ===> NO Use object in temporary storage?
QUERY or PROC ===> QUERY
PROC arguments ===>
FORM NAME ===> Form to be used with query
Current FORM ===> NO Use form in temporary storage?
BATCH NAME ===> Name of QMF batch execution proc
DB2 SUBSYSTEM ===> DB2 PLAN ===>
LOGON PASSWORD ===> TSO logon password
LOGGING ===> YES Log messages and commands?
SAVE DATA ===> Name of data to be saved
REPORT DATASET ===>

NEW DATASET ===> Is the data set new?
VOLUME ===> Optional if NEW or uncataloged
REPORT WIDTH ===> 133 Width of report line

VIEW REPORT ===> YES Should report be printed?
OUTPUT CLASS ===> A Class for PRINT and TRACE
DISTRIBUTION Enter userids and nodes to send report.

USERID ===> NODE ===>
===> ===>

PF1=Help PF3=End Enter=Process batch request

Figure 248. The QMF batch prompt panel

Chapter 31. Running QMF as a Batch Program 653

Table 85. BATCH application required entry fields (continued)

Field Description

BATCH NAME A value is required for the name of the QMF procedure to be
run in batch mode. (The name is not qualified.) If you are
submitting multiple queries, you need to modify the BATCH
NAME field for each query or the new batch job replaces the
old job. This procedure contains the appropriate QMF
commands depending upon the user’s input. The user’s query
or procedure, specified in the QUERY or PROC field, is run
from this procedure. The procedure is saved using the SHARE
= YES keyword option. It must be able to be run by the batch
machine. Save this procedure using CONFIRM = NO as a
profile setting.

Optional entry fields: Table 86 describes the remaining (optional) entry fields
on the panel. Where a value of YES or NO is expected, a default YES or NO
normally appears on the screen. If a user blanks out a value in a YES/NO
field, the user is prompted for an entry.

Table 86. BATCH application optional entry fields

Field Description

Current OBJECT If the batch query or procedure is currently in temporary
storage, the user enters YES in this field. The query or
procedure is then saved to be run later in batch. If the
query or procedure is in the database, enter NO. The
default value for this field is NO.

Arguments to the REXX
procedure named in the
OBJECT NAME field.

PROC ARGUMENTS Through this field, you can pass arguments to the REXX
procedure specified in the OBJECT NAME field.

654 Installing and Managing QMF

Table 86. BATCH application optional entry fields (continued)

Field Description

FORM NAME To run the batch query using a form, the user must
specify the name of a form in this field. If the form to be
used:

v Is the default form, leave the field empty.

v Is in the database, the form is saved using this name.
The name must be qualified if the form is owned by
someone else and shared.

v Is the current form, enter a name under which it can
be saved. The name must be unqualified, because the
form is saved under your own authorization ID.

This form is saved using CONFIRM = NO as a profile
setting.

If you enter the name of an existing form, the new form
replaces the old.

Current FORM If the batch form is the current form, the user enters YES
in this field. The form is then saved for use later in
batch. If the form is in the database, enter NO. The
default value for this field is NO.

DB2 SUBSYSTEM Enter the name of the DB2 subsystem that QMF uses; it
has the same value as program parameter DSQSSUBS.

DB2 PLAN Enter the name of the QMF application plan; it has the
same value as program parameter DSQSPLAN.

LOGON PASSWORD Enter your logon password; it does not appear on the
screen.

LOGGING The default value for this field is YES. This means that
the default trace level in batch mode is L2, which traces
messages and commands. If the user does not want
tracing at the L2 level, NO should be specified. Tracing
does not continue in the batch procedure beyond the SET
PROFILE (TRACE=NONE command, which is then in
the generated user procedure.

SAVE DATA If the user wants the data resulting from running a query
or procedure to be saved, a value must be given for this
field. The DATA is saved as a new table using this name
and the CONFIRM=NO keyword option.

Chapter 31. Running QMF as a Batch Program 655

Table 86. BATCH application optional entry fields (continued)

Field Description

REPORT DATASET If you want the report to be written to a permanent data
set, enter the name of that data set here. The name must
be fully qualified. If you do not want this done, leave the
field empty.

This data set name is passed to OS/390 JCL and must
conform to the OS/390 naming conventions. Fully
qualified names do not require quotation marks if the
name does not contain any special characters other than
period, @, #, $. If quotation marks are used, OS/390
assumes that special characters are used and does not
catalog the data set in the system catalog.

NEW DATASET You must enter something in this field if you entered a
data set name in REPORT DATASET. Enter YES to show
that this data set does not currently exist. Enter NO to
show that the data set does currently exist.

VOLUME You can optionally fill this field if you entered YES in the
NEW DATASET field. Enter the serial number of a
volume on which the new data set can reside. The
volume must be one that can be used on a unit of the
SYSDA class, as defined by your installation.

REPORT WIDTH If you entered YES in the NEW DATASET field, you
must fill in this field. Its value becomes the logical record
length (LRECL) of the new data set. If the width of your
report is less than or equal to the LRECL, use the default
value of 133.

VIEW REPORT This field must contain YES or NO. YES indicates print
the job; NO indicates do not print the job.

OUTPUT CLASS Enter the output class for the printed output from your
job. The printed output includes:
v The system messages
v The report (DSQPRINT), if it was printed
v The trace output (DSQDEBUG)
v An abend dump (DSQUDUMP), if one was produced

If your installation provides for it, you can choose an
output class that holds the printed output for routing to
your terminal.

656 Installing and Managing QMF

Table 86. BATCH application optional entry fields (continued)

Field Description

DISTRIBUTION USERID
and NODE

If the user wants the resulting report to be sent to other
users, the user must enter their user IDs and nodes in
these fields. To use the fields, you need to name a data
set for the report output in the REPORT DATASET field.

On the same line, enter a user’s logon ID in one of the
USERID fields and the user’s node in the corresponding
NODE field. In this way, you can specify up to two
recipients for the report. The report is sent using the TSO
TRANSMIT command. You need not fill in the NODE
field for a given user if that information is in your
NAMES.TEXTLIST data set. The node ID you write
might correspond to an entire list of names in this file,
allowing you to send the report to more than just two
people.

Modifying the batch application
You can modify the batch application by making changes to its components or
creating new components for the customized application. Create new
components, so you do not risk losing your changes when maintenance is
performed.

The applicable QMF components: To modify the batch application, you
need to be aware of the following components in the QMF libraries:
v The CLISTs DSQABB11 and DSQABB12 in the QMF720.SDSQCLTE library

When users call the batch application with the BATCH command, they
actually call DSQABB11. The purpose of this CLIST is to call DSQABB12
through the ISPF SELECT service as a new application. Most of the logic in
the application is in DSQABB12.

v ISPF message definitions in the members DSQBE00, DSQBE01, and
DSQBE02 of the QMF720.SDSQMLBE library
These messages appear on the user’s screen after the application ends. The
application generates these messages using the QMF MESSAGE command.

v Various ISPF panel definitions in the QMF720.SDSQPLBE library, which
serve a variety of purposes:
– DXYEABMP is the application’s prompt panel.
– DXYEABM1, DXYEABM2, and DXYEABM3 are the help panels for the

prompt panel.
– DXYEAB12, DXYEAB13, DXYEAB14, and DXYEAB15 furnish message

help for the application’s error messages.
v Certain file-tailoring models in the QMF720.SDSQSLBE library:

Chapter 31. Running QMF as a Batch Program 657

– DSQABB1J models the JCL for the batch job. This models a procedure
that runs a query in batch mode.

– DSQABB1P and DSQABB1S model QMF procedures. They model a
procedure that submits the JCL for the job.

Possible changes to the application: You can make the following changes to
the application:
v Allow users to choose the DB2 subsystem.

Within the model file DSQABB1J is the ISPSTART statement to call
batch-mode QMF. This statement does not provide a value for the
DSQSSUBS parameter of QMF. As a result, the DB2 subsystem under which
QMF is to run is assumed to have the name DSN. If you want QMF to run
in a DB2 subsystem with a different name, add DSQSSUBS=xxx to the
PARM operand of the ISPSTART command (where xxx is the appropriate
subsystem name).

v Allow the user to specify a GDDM nickname for the printed report.
v Add extra logic to enforce your installation’s rules.

For example, you might offer the user a list of acceptable volumes when the
user creates a new data set for the report output.

v Change the JCL produced by the application to conform to your
installation.
You can do either of the following:
– Add accounting information to the JOB statement.
– Change the name of QMF application plan in the ISPSTART statement of

the SYSTSIN data set.

You might also have to make additional changes such as:
v Adding a field or fields to the prompt panel (DXYEABMP)
v Changing the help panels for the prompt panel
v Adding new error messages to DSQBE00, DSQBE01, or DSQBE02
v Changing some of the logic in DSQABB12

Important: Users who call the batch application should not maintain a data
set named userid.DSQ1EBFT.PROC, where userid is the user’s TSO logon ID. If
such a data set is maintained, the QMF batch application might not run
correctly.

Example of modifying the application: The following example shows one
way you can modify the BATCH application.

Modify the batch application with all users having the same PROFILE
PREFIX, and assume that all users have unique user IDs. Add the user IDs to
the data set names using &SYSUID and &ZUSER.

658 Installing and Managing QMF

You need to make three modifications to DSQABB1S SKELETON. Figure 249
shows the required changes. The old lines are commented out. The new
replacement lines follow them.

Make the five modifications to DSQABB12 CLIST as commented in Figure 250
on page 660.

)CM ---
)CM FILE: DSQABB1S
)CM DESCRIPTION: THIS SKELETON CREATES DSQABB1S, THE PROC WHICH
)CM SAVES THE CURRENT FORM (IF SPECIFIED)
)CM IMPORTS AND SAVES THE PROC WHICH RUNS THE QUERY
)CM SENDS THE QMF INVOCATION JOB TO OS/390 BATCH
)CM RESETS THE PROC ITEM
)CM FREES ISPFILE USED FOR FILE TAILORING
)CM DISPLAYS THE QUERY PANEL
)CM ---

)SEL &FAN = &YES
&SAVE &FORM &AS &FNAME (&SHARE=&YES, &CONFIRM=&NO
)ENDSEL

)CM &IMPORT &PROC &FROM ’&ZPREFIX..DSQ1EBFT.&PROC.’ (&MEMBER = DSQABB1P
&IMPORT &PROC &FROM ’&ZPREFIX..&ZUSER..DSQ1EBFT.&PROC.’ (&MEMBER = DSQABB1P
&SAVE &PROC &AS &PNAME (&CONFIRM=&NO
)CM TSO SUBMIT ’&ZPREFIX..DSQ1EBFT.&PROC.(DSQABB1J)’
TSO SUBMIT ’&ZPREFIX..&ZUSER..DSQ1EBFT.&PROC.(DSQABB1J)’

TSO FREE FILE(ISPFILE) DELETE
&RESET &PROC
)CM &IMPORT &PROC &FROM DSQABB
&IMPORT &PROC &FROM &ZUSER..DSQABB

)SEL &ITM = &QUERY
&DISPLAY &QUERY
)ENDSEL

Figure 249. Modifying the DSQABB1S SKELETON

Chapter 31. Running QMF as a Batch Program 659

/**/ 00088000
/* ALLOCATE USERID.DSQ1EBFT.PROC TO BE USED FOR ISPF */ 00089000
/* FILE TAILORING OUTPUT. */ 00090000
/**/ 00091000
FREE FILE(ISPFILE) 00092000
/* ALLOC DDNAME(ISPFILE) DSNAME(DSQ1EBFT.&PROC) OLD 00093000
ALLOC DDNAME(ISPFILE) DSNAME(&SYSUID..DSQ1EBFT.&PROC) OLD 00093000
IF &LASTCC ≠ 0 THEN + 00094000

DO 00095000
FREE ATTRLIST(ATTRPDS) 00096000
ATTR ATTRPDS LRECL(80) RECFM(F B) BLKSIZE(800) DSORG(PO) 00097000

/* ALLOC DDNAME(ISPFILE) DSNAME(DSQ1EBFT.&PROC) NEW SPACE(5,2) + 00098000
/* TRACKS DIR(10) USING(ATTRPDS) CATALOG 00099000

ALLOC DDNAME(ISPFILE) DSNAME(&SYSUID..DSQ1EBFT.&PROC) NEW + 00098000
SPACE(5,2) TRACKS DIR(10) USING(ATTRPDS) CATALOG 00099000
END 00100000

IF &RC = 8 THEN + 00101000
DO 00102000...

/**/ 00203000
/*EXPORT CURRENT CONTENTS OF PROC PANEL */ 00204000
/**/ 00205000
ISPEXEC SELECT PGM(DSQCCI) + 00206000
/* PARM(&EXPORT &PROC &TO DSQABB (&CONFIRM = &NO) 00207000
PARM(&EXPORT &PROC &TO &SYSUID..DSQABB (&CONFIRM = &NO) 00207000
IF &LASTCC ≠ 0 THEN DO 00208000

ISPEXEC SELECT PGM(DSQCCI) + 00209000
PARM(SET GLOBAL (DSQEC__NLFCMD__LANG = &LOCLANG)) 00210000

SET &MSG = &DSQB.023 00211000
ISPEXEC SELECT PGM(DSQCCI) PARM(&MESSAGE &MSG) 00212000
SET &RCDE = 8 00213000
GOTO CLEANUP 00214000

END 00215000...

Figure 250. Modifying DSQABB12 CLIST (Part 1 of 2)

660 Installing and Managing QMF

Running QMF batch in native OS/390
In addition to running QMF batch in TSO and ISPF, you can run QMF as a
native OS/390 batch job. You can use the JCL shown in Figure 251 on page 662
to run QMF as a batch job in native OS/390.

/**/ 00244000
/* IMPORT AND RUN FILE TAILORED SKELETON */ 00245000
/**/ 00246000
ISPEXEC SELECT PGM(DSQCCI) + 00247000
/* PARM(&IMPORT &PROC &FROM DSQ1EBFT (&MEMBER = DSQABB1S) 00248000
PARM(&IMPORT &PROC &FROM &SYSUID..DSQ1EBFT (&MEMBER = DSQABB1S) 00248000
IF &LASTCC ≠ 0 THEN + 00249000...
CLEANUP: FREE FILE(ISPFILE) DELETE 00274000

DONE: SET &ZPLACE = &SAVEPLC 00275000
SET &ZPFCTL = &SAVEPFC 00276000
SET &ZPF01 = &STR(&SAVEPF01) 00277000
SET &ZPF13 = &STR(&SAVEPF13) 00278000
SET &ZPF03 = &STR(&SAVEPF03) 00279000
SET &ZPF15 = &STR(&SAVEPF15) 00280000
SET &ZPF10 = &STR(&SAVEPF10) 00281000
SET &ZPF22 = &STR(&SAVEPF22) 00282000
SET &ZPF11 = &STR(&SAVEPF11) 00283000
SET &ZPF23 = &STR(&SAVEPF23) 00284000
ISPEXEC VPUT (ZPLACE ZPFCTL ZPF01 ZPF13) PROFILE 00285000
ISPEXEC VPUT (ZPF03 ZPF15 ZPF10 ZPF22 ZPF11 ZPF23) PROFILE 00286000

/* DELETE DSQABB.&PROC 00287000
DELETE &SYSUID..DSQABB.&PROC 00287000
EXIT CODE(&RCDE) 00288000

Figure 250. Modifying DSQABB12 CLIST (Part 2 of 2)

Chapter 31. Running QMF as a Batch Program 661

When you run QMF in native OS/390, remember these facts:
v TSO is not available.
v QMF functions that require TSO or ISPF will not work when you run QMF

in native OS/390.
v The default user ID suffix is not available; you must use the fully qualified

data set name to export or import files.
v You cannot use procedures with logic (REXX PROCS). To run QMF with

REXX in a non-TSO address space, you must use IRXJCL, as illustrated in
Figure 252 on page 663.

The REXX program listed in Figure 252 on page 663 uses the QMF callable
interface to start QMF and run QMF commands in batch mode.

/***/ 00299000
//QMFBAT JOB 00300000
//S1 EXEC PGM=DSQQMFE,PARM=’M=B,I=yourQMFproc’ 00301000
//* 00302000
//* Program libraries required when running in batch 00303000
//* 00304000
//STEPLIB DD DSN=QMF720.SDSQLOAD,DISP=SHR 00305000
// DD DSN=DSN.SDSNEXIT,DISP=SHR 00306000
// DD DSN=DSN.SDSNLOAD,DISP=SHR 00307000
// DD DSN=GDDM.ADMLOAD,DISP=SHR 00308000
//* 00309000
//* QMF/GDDM maps are required when running in batch 00310000
//* 00311000
//ADMGGMAP DD DSN=QMF720.DSQMAPE,DISP=SHR 00312000
//* 00313000
//* 00314000
//* Datasets used by QMR 00315000
//* 00316000
//DSQPRINT DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=1330) 00317000
//DSQDEBUG DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=121,BLKSIZE=1210) 00318000
//DSQUDUMP DD SYSOUT=A,DCB=(RECFM=VBA,LRECL=125,BLKSIZE=1632) 00319000
//DSQSPILL DD DSN=&&SPILL,DISP=(NEW,DELETE), 00320000
// UNIT=SYSDA,SPACE=(TRK,(100),RLSE), 00321000
// DCB=(RECFM=F,LRECL=4096,BLKSIZE=4096) 00322000
//* 00323000
/**/ 00324000

Figure 251. JCL to run QMF as a native OS/390 batch job

662 Installing and Managing QMF

Running QMF as a non-interactive transaction on CICS

This CICS procedure works on both OS/390 and VSE. In CICS, QMF runs
interactively as a conversational transaction. All resources needed by QMF are
available throughout the user session. Run QMF procedures that can be used
to generate a report in order to conserve resources. The procedures can be run
noninteractively.

The QMF transaction can be run from a terminal or as a transaction running
without a terminal.

Running batch from a terminal
You can run QMF from a terminal to produce a report. For example, you can
write the procedure in Figure 253 on page 664 to produce a report located in

//QMFBATCH JOB REGION=8M,
// MSGCLASS=H,TIME=(2,30),USER=&SYSUID,NOTIFY=&SYSUID,CLASS=A
//ROBQMF1 EXEC PGM=IRXJCL
//STEPLIB DD DSN=DSN.DB2A.SDSNLOAD,DISP=SHR
// DD DSN=DSN.DB2A.SDSNEXIT,DISP=SHR
// DD DSN=QMFDEV.QMF720.SDSQLOAD,DISP=SHR
//ADMGGMAP DD DSN=QMFDEV.QF720.DSQMAPE,DISP=SHR
//SYSEXEC DD DSN=ROBIN.QMF720.SDSQEXCE,DISP=SHR
//DSQPRINT DD SYSOUT=*,DCB=(RECFM=FBA,LRECL=137,BLKSIZE=1330)
//DSQDEBUG DD SYSOUT=*,DCB=(RECFM=FBA,LRECL=121,BLKSIZE=1210)
//DSQUDUMP DD SYSOUT=A,DCB=(RECFM=VBA,LRECL=125,BLKSIZE=1632)
//SYSUDUMP DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//DSQSPILL DD DSN=&&SPILL,DISP=(NEW,DELETE),
// UNIT=VIO,SPACE=(CYL,(1,1),RLSE),
// DCB=(RECFM=F,LRECL=4096,BLKSIZE=4096)
//SYSTSIN DD *
/* REXX */
CALL DSQCIX "START (DSQSMODE=BATCH"
SAY DSQ_MESSAGE_ID DSQ_MESSAGE_TEXT
IF DSQ_RETURN_CODE = DSQ_SEVERE THEN EXIT DSQ_RETURN_CODE
CALL DSQCIX "RUN PROC REXXPP"
SAY DSQ_MESSAGE_ID DSQ_MESSAGE_TEXT
IF DSQ_RETURN_CODE = DSQ_SEVERE THEN EXIT DSQ_RETURN_CODE
CALL DSQCIX "EXIT"
SAY DSQ_MESSAGE_ID DSQ_MESSAGE_TEXT
EXIT DSQ_RETURN_CODE
/*

Figure 252. REXX program to start and run QMF in batch mode

Chapter 31. Running QMF as a Batch Program 663

CICS auxiliary storage. (QMF treats lines that begin with “--” as comments in
QMF procedures.)

Execute the QMF transaction as described here to run this procedure in batch
mode:
QMFE M=BATCH,I=STATRPT1__PROC

QMF runs this transaction without displaying any screens. Upon successful
completion of the procedure, the report is located in CICS storage queue
STATRPT1. You can then view the report using the CICS-supplied transaction
CEBR:
CEBR STATRPT1

Running batch without a terminal
A QMF transaction can also be run without a terminal. A terminal used to run
a batch job is locked until QMF completes the transaction. To run a QMF
procedure in batch mode without a terminal, use the EXEC CICS START
command. The following example runs the QMF procedure
STATRPT1__PROC:
EXEC CICS START TRANSID(QMFE) FROM(M=BATCH,I=STATRPT1__PROC)

When this transaction completes, the CICS storage queue STATRPT1 can be
browsed using the CICS-supplied transaction CEBR.

Debugging a procedure
QMF provides a command-level and message-level trace facility. This facility
is useful when there is a problem running a QMF procedure in batch mode.
QMF command-level and message-level tracing is automatically active when
running QMF in batch mode. You can route this message trace to CICS
auxiliary temporary storage or the transient data queue.

For example, to run the previous procedure and send the command and
message trace to a CICS auxiliary storage queue with the name QMFMSG,
issue a CICS START command similar to the following:

-- Procedure name: STATRPT1__PROC
--
-- Example QMF procedure to create an auxiliary CICS
-- temporary storage queue named STATRPT1
--

RUN QUERY STATRPT1__QUERY (FORM=STATRPT1__FORM)
PRINT REPORT (QUEUENAME=STATRPT1,QUEUETYPE=TS)

--
-- End of procedure

Figure 253. Producing a report located in CICS auxiliary storage

664 Installing and Managing QMF

EXEC CICS START TRANSID(QMFE)
FROM(M=BATCH,I=STATRPT1__PROC,DSQSDBQN=QMFMSG,DSQSDBQT=TS)

Multiple QMF transactions can issue messages to the same trace area. QMF
issues a CICS ENQ command on the queue name while it writes a trace entry.
Each entry is marked with the terminal ID and task ID of the QMF
transaction that created the trace entry.

When routing QMF trace to CICS auxiliary storage, do not set full
component-level trace; temporary storage will fill up quickly. Transient data
(the default) is recommended when doing other than message-level tracing.

Termination return codes
Termination return codes for QMF are 0- normal termination, and 8- abnormal
termination.

Running QMF as a batch program on CMS

Authority to operate in batch mode
Anyone can send a job to the CMS batch machine. Either the batch machine
can use the minimum authority for running the job granted to that batch
machine’s ID, or it can use the authorization granted to some user through
the CONNECT command. The CONNECT command must be used to enable
a user to access data in batch mode with the same authorization that user has
when working with QMF interactively.

If you or your users create a procedure to run in batch, and save that
procedure with SHARE=YES, anyone can display it. If the procedure also has
your CONNECT ID in it, then anyone who can display that procedure can see
your CONNECT ID and its associated password.

A batch machine’s authority depends on your installation setup. It is possible
for users to run a job and save queries, procedures, and forms under the
batch machine’s ID. If users are allowed to save things under the batch
machine’s ID instead of their own IDs, you or the database administrator
must clean up the database periodically and purge what is owned by the
batch machine. If items are saved in this way, let users know that what they
save under the ID of the batch machine might be purged from the database
on a periodic basis.

To provide a user with CONNECT authority, you must grant them access
using the following query:
GRANT CONNECT TO userid IDENTIFIED BY password

You need to ensure that your own or your user’s IDs are not made public.

Chapter 31. Running QMF as a Batch Program 665

You can use one of the following procedures:
v The job you send to the CMS batch machine can call an exec that creates a

procedure on the CMS batch machine’s A disk containing the CONNECT
ID, the CONNECT ID password, and a command to run the user’s
procedure. This intermediary procedure, created by the exec, then connects
to the database and runs the user’s procedure already saved in the
database. The procedure named on the DSQSRUN parameter of the
ISPSTART command imports the intermediary procedure that connects to
the database and runs the user’s procedure.

v You can send the data in-stream (with the CMS batch job) and use the CMS
MOVEFILE command. This process creates a procedure containing the
CONNECT ID, the CONNECT ID password, and a command to run the
user’s procedure.

If you are using an NLF: Users at a multilingual installation can choose the
language environment for their batch QMF sessions, just as they can for their
interactive sessions.

Sending a job to the CMS batch machine
Users can execute procedures in batch mode by sending jobs to the CMS
batch machine. They can then continue their sessions without waiting for
those procedures to be run. For example, a user can send the following exec
and continue to work:

You also need to tell the CMS batch machine to execute the procedure in
batch mode.

Figure 255 on page 667 is a sample job to start QMF in batch mode. Lowercase
words in it are parts of commands filled in by you.

/* Sends batch job file to batch machine */
/* Syntax: BATCHJOB fn ft <fm <batmach>> */
/* where batmach is the name of the batch machine */
/* (default is CMSBATCH) */
/* */
Parse upper arg fn ft fm batmach
If batmach = ’’ then batmach = ’CMSBATCH’
’PUSH PUN’
’CP SPOOL PUN NOHOLD NOCONT TO’ batmach
’PUNCH ’ fn ft fm
’POP PUN’

Figure 254. Sample exec to send a job to the batch machine

666 Installing and Managing QMF

/*
/JOB userid acctnum jobname
/SET TIME 10 PUNCH 3000 PRINT 3000

*---Spool PRINTER, PUNCH and CONSOLE to userid
CP SPOOL 00E CONT DIST userid TO userid NOHOLD
CP SPOOL 009 NOHOLD TO userid
CP SPOOL 00D NOHOLD TO userid
CP SPOOL 009 START

*--- Link to userid’s disk
CP LINK userid 191 192 RR readpass
ACCESS 192 B/A

* Tailor the QMF invocation EXEC DSQ2EINV which
* first links to GDDM, ISPF, DB2 for VM, QMF, and then
* creates the FILEDEFs to run the job.
* The result from this tailoring can be invoked
* as an EXEC or can be coded in line with this
* sample job.

* QMF invocation follows:
* Run with code in BATCHMODE, and pass the name
* of an invocation QMF PROC to run.
* EXEC ISPSTART PGM(DSQQMFE) NEWAPPL(DSQE)
* PARM(dcssname(DSQSMODE=B,DSQSRUN=userid.myproc))
* Other forms of QMF invocation which can be used are as follows:
* DSQQMFE dcssname(DSQSMODE=B,DSQSRUN=userid.myproc))
* when QMF is started independent of ISPF
* EXEC ISPSTART PGM(appl_name)
* where "appl_name" is the name of the application program.
* EXEC ISPSTART DCSS(dcssname) NEWAPPL(DSQE)
* PARM(DSQSMODE=B,DSQSRUN=userid.myproc))
* See
Chapter 22, “Customizing Your Start Procedure” on page 259 for more
* information on these forms of QMF invocation.
--
* MAKE THE NLF RESOURCES NEEDED FOR THE RUN AVAILABLE
--
EXEC QMFBATCH DEUTSCH LMN.PROCA
---Close the PRINTER--
CP SPOOL 00E NOCONT
CP CLOSE 00E
* You can also run an application in batch without ISPF.
* You would use the following command:
* EXEC MYAPEXEC
/*

Figure 255. Sample job to send to CMS batch machine

Chapter 31. Running QMF as a Batch Program 667

The job first spools the printer, punch, and console, and then accesses the
user’s A-disk as an extension of the batch machine’s A-disk. Having done
this, it invokes an exec to allocate the necessary resources and start QMF.

Sample job notes:

1. Using parameter ‘DSQSMODE=B’ to indicate batch mode means you must
include the ‘DSQSRUN’ parameter (as in the preceding example) to name
the procedure you run.

2. The CMS batch machine must be authorized to both start QMF and to
connect to DB2 for VM.

3. The DCSS name following PARM on the ISPSTART command must be
included if it is anything other than the default: QMF720E. It is required if
you use the DCSS(dcssname) form of the end.

4. The language exec included is started by the following statement:
EXEC QMFBATCH language proc

where language is the language for the session and proc is the name of the
QMF procedure to be run.

Running batch jobs on your CMS machine
You can start QMF to run a job in batch mode (DSQSMODE=B) without
sending the job to the CMS batch machine. Invoking QMF for such a job
means that QMF comes up and runs the procedure you specify with the
DSQSRUN parameter.

For more information on passing parameters to QMF, see Chapter 22,
“Customizing Your Start Procedure” on page 259. Before doing this however,
check the ISPF profile and ensure a value is entered for CONSOLE PROCESS
OPTION. you for a CONSOLE PROCESS OPTION value.

Debugging a procedure
You can use both the trace codes and the tool to diagnose problems with a
batch mode procedure. L2 tracing is the default for procedures run in batch
mode. A SET command in your procedure will change the trace level. For
example, to specify L1 instead of L2, add the following statement at the start
of the procedure:
SET PROFILE(TRACE=L1

With either L1 or L2 tracing, a log is produced in DSQDEBUG. If the
procedure terminates prematurely, an error messages logged to the
DSDQDEBUG data set. Use the HELP command to reconstruct the
corresponding message HELP panel.

668 Installing and Managing QMF

MACLIBs required on VM
The following MACLIBs must exist for use by this application. Appropriate
FILEDEFs for these MACLIBs should be named on the exec used to invoke
ISPF.

Note:In addition, several other files are supplied with QMF. If you want to
examine them, they can be printed from the distribution disk:
v DSQMLIBE

This is the application message library. It should be concatenated with
ISPMLIB. For this application, the members of this MACLIB are DSQBE00,
DSQBE01, and DSQBE02.

v DSQPLIBE
This is the library containing the application’s panels. It should be
concatenated with ISPPLIB DXYEABVP, DXYEABV1, DXYEABV2, and
DXYEABV3 are the members of this library for this application.

v DSQSLIBE
This is the library containing the application skeleton library. It should be
concatenated with ISPPLIB. DSQABB2P, DSQABB2J, and DSQABB2S are the
members of this library for this application.

Using the application
The application must be invoked while its user is operating under QMF.
When invoked, the application prepares a batch job for the user and submits
it to the background. The job is prepared from information the user enters on
a prompt panel. It runs a single query or procedure of the user’s choice.
Assuming the batch job is a select query, the job can also:
v Save the data object that is created by running the query
v Format the report object using a form of the user’s choice
v Print the report
v Send the report to one or more other users

The advantage to using the application lies in its prompt panel, where the
user outlines what the job should do and leaves the details of how to do it to
the application.

To use the batch application, enter:
BATCH

which results in the display of the prompt panel in Figure 256 on page 670

Filling in the prompt panel
A user can get help filling out the prompt panel by pressing function key 1,
which results in the display of the first of three help panels.

Chapter 31. Running QMF as a Batch Program 669

Required entry fields
Certain fields on the batch prompt panel are mandatory. Messages are
displayed prompting the user to enter values for these required fields if the
Enter key is pressed before values are provided. The cursor is then positioned
on the field requiring input. Table 87 describes the required fields.

Table 87. BATCH application required entry fields

Field Description

OBJECT NAME A value is required for the name of the query or procedure to
be run in batch mode. If the query or procedure is currently in
temporary storage, it is saved in the database using this name.
If the name is that of an existing object, the new object replaces
the old one. (The name must be unqualified.) If the object is in
the database, enter the name under which it was saved. (The
name must be qualified if the object is owned by someone else
and shared.) Save this object using CONFIRM = NO as a profile
setting.

QUERY or PROC The object type to be run in batch; must be either QUERY or
PROC.

QMF BATCH QUERY/PROC BATCH PROMPT
OBJECT NAME ===> Name of query or procedure
Current OBJECT ===> NO Use object in temporary storage?
QUERY or PROC ===> QUERY
FORM NAME ===> Form to be used with query
Current FORM ===> NO Use form in temporary storage?
BATCH NAME ===> Name of QMF batch execution proc
PROC arguments ===> ARGS
CONNECT PASSWORD ===> Database password
DISK PASSWORD ===> User ‘A’ disk read pasword
LOGGING ===> YES Log messages and commands?
BATCH MACHINE ===> CMS ID of batch machine
SAVE DATA ===> Name of data to be saved
REVIEW OUTPUT ===> YES Send report to your reader?
DISTRIBUTION Userids and notes to send report

USERID ===> NODE ===>
===> ===>

PRINT OUTPUT: Printer ID and node for printed output.
ID ===> NODE ===>

PF1=Help PF3=End Enter=Process batch request

Figure 256. The QMF batch prompt panel

670 Installing and Managing QMF

Table 87. BATCH application required entry fields (continued)

Field Description

BATCH NAME A value is required for the name of the QMF procedure to be
run in batch mode. (The name is not qualified.) If you are
submitting multiple queries, you need to modify the BATCH
NAME field for each query or the new batch job replaces the
old job. This procedure contains the appropriate QMF
commands depending upon the user’s input. The user’s query
or procedure, specified in the QUERY or PROC field, is run
from this procedure. The procedure is saved using the SHARE
= YES keyword option. It must be able to be run by the batch
machine. Save this procedure using CONFIRM = NO as a
profile setting.

PROC arguments Through this field, you can pass arguments to the REXX
procedure specified in the OBJECT NAME field.

CONNECT
PASSWORD

Users are required to enter the DB2 for VM password. Assign
this to a user in the SYSTEM.SYSUSERAUTH table. This
password is used in a CONNECT command in the batch
machine. The user is then operating with the authority granted
to the DB2 for VM user ID. The batch procedure is run with
this authority.

DISK PASSWORD Users are required to enter their 191 A-disk read password. (If
the user has no read password, ‘ALL’ must be entered instead.)
This is used in the batch job sent to the CMS batch machine.
The batch machine then links to the user’s 191 disk.

BATCH MACHINE Users are required to enter the CMS user ID of a batch machine
on which the job is to be run. The job is punched to this
machine. This value is saved across sessions for users. The
batch machine must exist on the same processor as that of the
user.

Optional entry fields
Table 88 describes the remaining (optional) entry fields on the panel. Where a
value of YES or NO is expected, a default YES or NO normally appears on the
screen. If a user blanks out a value in a YES/NO field, the user is prompted
for an entry.

Table 88. BATCH application optional entry fields

Field Description

Current OBJECT If the batch query or procedure is currently in temporary
storage, the user enters YES in this field. The query or
procedure is then saved to be run later in batch. If the
query or procedure is in the database, enter NO. The
default value for this field is NO.

Chapter 31. Running QMF as a Batch Program 671

Table 88. BATCH application optional entry fields (continued)

Field Description

FORM NAME To run the batch query using a form, the user must
specify the name of a form in this field. If the form to be
used:

v Is the default form, leave the field empty.

v Is in the database, the form is saved using this name.
The name must be qualified if the form is owned by
someone else and shared.

v Is the current form, enter a name under which it can
be saved. The name must be unqualified, because the
form is saved under your own authorization ID.

This form is saved using CONFIRM = NO as a profile
setting.

If you enter the name of an existing form, the new form
replaces the old.

Current FORM If the batch form is the current form, the user enters YES
in this field. The form is then saved for use later in
batch. If the form is in the database, enter NO. The
default value for this field is NO.

LOGGING The default value for this field is YES. This means that
the default trace level in batch mode is L2, which traces
messages and commands. If the user doesn’t want
tracing at the L2 level, NO should be specified. Tracing
does not continue in the batch procedure beyond the SET
PROFILE (TRACE=NONE command, which is then in
the generated user procedure.

SAVE DATA If the user wants the data resulting from running a query
or procedure to be saved, a value must be given for this
field. The DATA is saved as a new table using this name
and the CONFIRM=NO keyword option.

REVIEW OUTPUT If the user wants to view the report from running the
batch query or procedure, YES (the default value) should
be specified as the value for this field. The report is sent
to the user’s reader using SENDFILE. If the query or
procedure to be sent to batch does not generate a report,
such as an INSERT or UPDATE query, this field should
be set to NO.

672 Installing and Managing QMF

Table 88. BATCH application optional entry fields (continued)

Field Description

DISTRIBUTION USERID
and NODE

If the user wants the resulting report to be sent to other
users, the user must enter their user IDs and nodes in
these fields. The report is sent using SENDFILE, which
makes use of the NAMES file. Because of this fact, the
NODE need only be supplied if the recipient of the
report is on a different system and there is no entry for
that user in the NAMES file. The USERID can also be a
list defined in the NAMES file. If the query or procedure
to be sent to batch does not generate a report, such as an
INSERT or UPDATE query, no values should be supplied
for these fields.

PRINT OUTPUT If the user wants the resulting report to be sent to a
printer, the printer ID and the NODE should be entered
here. If the printer ID is SYSTEM, the output is sent to
the system printer. The appropriate CP SPOOL and TAG
commands are executed before the report is printed.

Modifying the batch application
When you make modifications to the application, be sure to save a copy of
the original file. Modify a copy of an original file that has been renamed.
Keep a backup copy of any original file and its modified version. This way, a
new copy sent by IBM will not replace it.

Three modifiable model files are shipped with the product. They provide
input to ISPF file tailoring, which in turn produces three files needed to run
this application. One of these model files, DSQABB2J COPY, is the skeleton
file behind the actual job sent to the CMS batch machine. In DSQABB2J
COPY, you can modify the following:
v The account number
v The print and punch output limits
v The maximum processor time allowed for a job
v The name of the discontiguous shared segment (DCSS) on the ISPSTART

command
v The SQLINIT statement to specify another database if queries are run in

some database other than SQLDBA
v The links to the product disks

The two other model files do the following:
v DSQABB2P COPY creates the user’s batch procedure.
v DSQABB2S COPY saves a user’s query, form, and procedure and punches a

job to the CMS batch machine. It also erases any work files that were
created.

Chapter 31. Running QMF as a Batch Program 673

674 Installing and Managing QMF

Chapter 32. Troubleshooting and Problem Diagnosis

Use this chapter to help solve problems your users might have while using
QMF. “Troubleshooting common problems” provides possible solutions to
common problems, while “Determining the problem using diagnosis aids” on
page 687 provides explanations of diagnosis aids that help you solve more
complex problems.

Troubleshooting common problems

Use this section to help determine how to solve initialization errors, printing
errors, warning messages on the display, incoherent report displays, and slow
response times or other performance problems.

Handling initialization errors
If you cannot start QMF, there are several common fixes:
v Determine if all QMF users at your shop cannot get into QMF, or is it just

one user.
v Check whether there are any messages on the terminal screen, and look up

the explanation for the DSQDEBUG file message in the QMF Messages and
Codes manual.

v If nothing appears on the screen and nothing is in DSQDEBUG, go into
ISQL and issue a SELECT * FROM Q.ERROR__LOG and see if any entries
appear during the time you were trying to access QMF.

v QMF initializes DB2 and GDDM during QMF initialization. If any DSN
(DB2) and ADM (GDDM) error messages appear, look them up in the
messages and codes book for the appropriate product.
Check that the DB2 database is initialized and working properly. If all users
are getting a type of ADMxxxx message upon start up, check that the base
GDDM product is working correctly by running the GDDM IVPs.

OS/390 concerns
If any DSN (DB2) and ADM (GDDM) error messages appear, look them up in
the QMF Messages and Codes manual.

Users should still look on the screen for more messages, and in DSQDEBUG
and Q.ERROR__LOG for more information. If there are no other messages,
have the user try to run the TSO command PROFILE MSGID WTPMSG and
restart QMF.

© Copyright IBM Corp. 1983, 2002 675

VM concerns
Follow these instructions in addition to the general ″Handling initialization
errors″ instructions.
v Check that the DB2 database is initialized and working properly. If all users

are getting a type of ADMxxxx message upon start up, check that the base
GDDM product is working correctly by running the GDDM IVPs.
If users try to start QMF through ISPF, and QMF fails to start, the following
message appears:
INITIAL PGM RC ¬ = 0 | 4 − ΤΗΕ ΙΝΙΤΙΑΛΛΨ ΙΝςΟΚΕ∆ ΜΟ∆ϒΛΕ

ΕΝ∆Ε∆]ΙΤΗ Α ΡΕΤϒΡΝ ΧΟ∆Ε = 16 .

v Users should still look on the screen for more messages, and in
DSQDEBUG and Q.ERROR__LOG for more information. If there are no
other messages, have the user try to run the CMS command SET EMSG ON
and restart QMF.

VSE concerns
Check that the DB2 database is initialized and working properly.

Handling warning messages
If errors occur during QMF initialization (or after issuing the CONNECT
command), you might see this message on the QMF Home panel:
Warning messages have been generated

Errors that cause this kind of message do not stop QMF. They indicate that
QMF is having a problem loading or reading any of the following:
v Command synonym table
v Function key definitions table
v Resource control table (for governor exit routine)
v User edit exit routine
v Governor exit routine
v Module level trace control

For command synonyms, function keys, and resource control tables, ensure
that:
v The user has the SQL SELECT privilege for that table. If this might be the

problem, issue an SQL GRANT statement.
v The table conforms to the proper structure:

– The structure for command synonym tables is shown in Chapter 27,
“Customizing QMF Commands” on page 457

– The structure for function key tables is shown in Chapter 28,
“Customizing QMF Function Keys” on page 479

v All rows of the table contain valid data. If this might be the problem, see:
– “Entering command synonym definitions into the table” on page 465 for

information on valid command synonym definitions

Troubleshooting and Problem Diagnosis

676 Installing and Managing QMF

– “Entering your function key definitions into the table” on page 484 for
information on valid function key definitions

v All rows in the tables are unique.

To view the information in the trace data, first press the Help key to display a
panel containing the message number. Then browse or print the user’s trace
data. Search the trace data for the numeric portion of the message number to
see information about the error.

OS/390 concerns
More information about the error is logged in the user’s trace data. In TSO
and native OS/390, the trace data is stored in DSQDEBUG. In CICS, the trace
data is stored in a transient data queue named DSQD, unless you changed the
type or name using the DSQSDBQT or DSQSDBQN program parameter when
you started the QMF session.

VM concerns
More information about the error is logged in the user’s trace data. In CMS,
the trace data is stored in DSQDEBUG.

VSE concerns
The trace data is stored in a transient data queue named DSQD, unless you
changed the type or name using the DSQSDBQT or DSQSDBQN program
parameter when you started the QMF session.

Handling GDDM errors during printing
If a GDDM error occurred during printing, QMF displays this message:
GDDM error using nnnnnnnn. See message help for details.

The character string nnnnnnnn in the message represents a GDDM printer
nickname. Press the Help key to display the help panel, which contains an
explanation of the error. This section discusses some common errors and what
you can do to fix them.

DSQ50623
GDDM error. ADM0307 E FILE ’ADMPRINT.REQU—QUEUE’ NOT
FOUND. Severity 8. Function DSOPEN. *** CMD=PRINT

If you see a message like this, QMF cannot find a nickname definition
for the printer name the user specified. You must set up a nickname
definition for the printer name, or supply one that is already defined.

DSQ50623
GDDM error. ADM0314 E UNABLE TO OPEN ’MYPRINT’. DD
STATEMENT MISSING. Severity 8. Function DSOPEN. ***
CMD=PRINT

Troubleshooting and Problem Diagnosis

Chapter 32. Troubleshooting and Problem Diagnosis 677

If you see a message like this, QMF was able to find a DD statement
for the output. You need to provide a DD statement to your QMF
startup EXEC, CLIST, or JCL to specify what to do with output from
the nickname.

DSQ50623
GDDM error. ADM0482 E DEVICE NAME LIST ’31E’ IS INVALID
FOR FAMILY 1. Severity 8. Function DSOPEN. *** CMD=PRINT

If you see a message like this, your nickname definition is incorrect.
The device token you supplied is not a valid token for the type of
GDDM printer for which you created the nickname. For a list of valid
device tokens for each family of GDDM printers, see the GDDM
System Customization and Administration manual or the GDDM
Installation and System Management for OS/390 manual.

DSQ50631
GDDM error. ADM0904 E ALPHANUMERIC FIELDS ARE NOT
SUPPORTED FOR THIS DEVICE. Severity 8. Function ASDFLD.
*** CMD=PRINT

If you see a message like this, the output the user is trying to print is
not valid for the type of printer defined by the GDDM nickname.
Certain types of output, such as QMF charts, are restricted to specific
families of GDDM printers. For more information on what families of
printers handle your type of output, see the GDDM System
Customization and Administration manual or the GDDM Installation and
System Management for OS/390 manual.

DSQ90551
GDDM error. ADM0055 E SPINIT, AT ’82F810C2’X ADM0050 E
DEFAULTS ERROR. INVALID SYNTAX OR VALUE AT
’...JIP,ADMMNICK’

You might see a message like this when starting QMF. The message
indicates that you made a syntax error somewhere in the
ADMMNICK specification for the nickname. After you fix the syntax
error, reload the ADMADFC GDDM defaults module.

DSQ50633
GDDM error ADM0327 E ’TD WRITEQ’ ERROR CODE ’08000000’X,
ON ’SYSP’. Severity 8. Function FSFRCE. *** CMD=PRINT

A message like this indicates that the temporary storage or transient
data queue (SYSP) to which QMF is attempting to print is closed, or
that a DD statement is missing from your startup JCL. Contact your
CICS administrator for help with this problem (either modifying the
JCL and restarting CICS or opening the queue).

Troubleshooting and Problem Diagnosis

678 Installing and Managing QMF

Handling GDDM errors on OS/390

DSQ50623
GDDM error. ADM0307 E FILE ’ADMPRINT.REQU—QUEUE’ NOT
FOUND. Severity 8. Function DSOPEN. *** CMD=PRINT

If you see a message like this, QMF cannot find a nickname definition
for the printer name the user specified. You must set up a nickname
definition for the printer name, or supply one that is already defined.

DSQ50623
GDDM error. ADM0314 E UNABLE TO OPEN ’MYPRINT’. DD
STATEMENT MISSING. Severity 8. Function DSOPEN. ***
CMD=PRINT

If you see a message like this, QMF was able to find a DD statement
for the output. You need to provide a DD statement to your QMF
startup EXEC, CLIST, or JCL to specify what to do with output from
the nickname.

DSQ50623
GDDM error. ADM0482 E DEVICE NAME LIST ’31E’ IS INVALID
FOR FAMILY 1. Severity 8. Function DSOPEN. *** CMD=PRINT

If you see a message like this, your nickname definition is incorrect.
The device token you supplied is not a valid token for the type of
GDDM printer for which you created the nickname. For a list of valid
device tokens for each family of GDDM printers, see the GDDM
System Customization and Administration manual or the GDDM
Installation and System Management for OS/390 manual.

DSQ50631
GDDM error. ADM0904 E ALPHANUMERIC FIELDS ARE NOT
SUPPORTED FOR THIS DEVICE. Severity 8. Function ASDFLD.
*** CMD=PRINT

If you see a message like this, the output the user is trying to print is
not valid for the type of printer defined by the GDDM nickname.
Certain types of output, such as QMF charts, are restricted to specific
families of GDDM printers. For more information on what families of
printers handle your type of output, see the GDDM System
Customization and Administration manual or the GDDM Installation and
System Management for OS/390 manual.

DSQ90551
GDDM error. ADM0055 E SPINIT, AT ’82F810C2’X ADM0050 E
DEFAULTS ERROR. INVALID SYNTAX OR VALUE AT
’...JIP,ADMMNICK’

You might see a message like this when starting QMF. The message
indicates that you made a syntax error somewhere in the

Troubleshooting and Problem Diagnosis

Chapter 32. Troubleshooting and Problem Diagnosis 679

ADMMNICK specification for the nickname. After you fix the syntax
error, reload the ADMADFC GDDM defaults module.

DSQ50633
GDDM error ADM0327 E ’TD WRITEQ’ ERROR CODE ’08000000’X,
ON ’SYSP’. Severity 8. Function FSFRCE. *** CMD=PRINT

A message like this indicates that the temporary storage or transient
data queue (SYSP) to which QMF is attempting to print is closed, or
that a DD statement is missing from your startup JCL. Contact your
CICS administrator for help with this problem (either modifying the
JCL and restarting CICS or opening the queue).

Handling GDDM errors on VM

DSQ50623
GDDM error. ADM0482 E DEVICE NAME LIST ’31E’ IS INVALID
FOR FAMILY 1. Severity 8. Function DSOPEN. *** CMD=PRINT

If you see a message like this, your nickname definition is incorrect.
The device token you supplied is not a valid token for the type of
GDDM printer for which you created the nickname.

DSQ50631
GDDM error. ADM0904 E ALPHANUMERIC FIELDS ARE NOT
SUPPORTED FOR THIS DEVICE. Severity 8. Function ASDFLD.
*** CMD=PRINT

If you see a message like this, the output the user is trying to print is
not valid for the type of printer defined by the GDDM nickname.
Certain types of output, such as QMF charts, are restricted to specific
families of GDDM printers. .

DSQ90551
GDDM error. ADM0055 E SPINIT, AT ’82F810C2’X ADM0050 E
DEFAULTS ERROR, INVALID SYNTAX OR VALUE AT
’...JIP,ADMMNICK’

You might see a message like this when starting QMF. The message
indicates that you made a syntax error somewhere in the
ADMMNICK specification for the nickname.

Handling GDDM errors on VSE

DSQ50623
GDDM error. ADM0307 E FILE ’ADMPRINT.REQU—QUEUE’ NOT
FOUND. Severity 8. Function DSOPEN. *** CMD=PRINT

If you see a message like this, QMF cannot find a nickname definition
for the printer name the user specified. You must set up a nickname
definition for the printer name, or supply one that is already defined.

Troubleshooting and Problem Diagnosis

680 Installing and Managing QMF

DSQ50623
GDDM error. ADM0314 E UNABLE TO OPEN ’MYPRINT’. DD
STATEMENT MISSING. Severity 8. Function DSOPEN. ***
CMD=PRINT

If you see a message like this, QMF was able to find a DD statement
for the output. You need to provide a DD statement to your QMF
startup EXEC, CLIST, or JCL to specify what to do with output from
the nickname.

DSQ50623
GDDM error. ADM0482 E DEVICE NAME LIST ’31E’ IS INVALID
FOR FAMILY 1. Severity 8. Function DSOPEN. *** CMD=PRINT

If you see a message like this, your nickname definition is incorrect.
The device token you supplied is not a valid token for the type of
GDDM printer for which you created the nickname. For a list of valid
device tokens for each family of GDDM printers, see the GDDM
System Customization and Administration manual or the GDDM
Installation and System Management for OS/390 manual.

DSQ50631
GDDM error. ADM0904 E ALPHANUMERIC FIELDS ARE NOT
SUPPORTED FOR THIS DEVICE. Severity 8. Function ASDFLD.
*** CMD=PRINT

If you see a message like this, the output the user is trying to print is
not valid for the type of printer defined by the GDDM nickname.
Certain types of output, such as QMF charts, are restricted to specific
families of GDDM printers. For more information on what families of
printers handle your type of output, see the GDDM System
Customization and Administration manual or the GDDM Installation and
System Management for OS/390 manual.

DSQ90551
GDDM error. ADM0055 E SPINIT, AT ’82F810C2’X ADM0050 E
DEFAULTS ERROR. INVALID SYNTAX OR VALUE AT
’...JIP,ADMMNICK’

You might see a message like this when starting QMF. The message
indicates that you made a syntax error somewhere in the
ADMMNICK specification for the nickname. After you fix the syntax
error, reload the ADMADFC GDDM defaults module.

DSQ50633
GDDM error ADM0327 E ’TD WRITEQ’ ERROR CODE ’08000000’X,
ON ’SYSP’. Severity 8. Function FSFRCE. *** CMD=PRINT

A message like this indicates that the temporary storage or transient
data queue (SYSP) to which QMF is attempting to print is closed, or

Troubleshooting and Problem Diagnosis

Chapter 32. Troubleshooting and Problem Diagnosis 681

that a DD statement is missing from your startup JCL. Contact your
CICS administrator for help with this problem (either modifying the
JCL and restarting CICS or opening the queue).

Handling QMF errors during printing on OS/390
The information in the following table helps you to solve errors that can occur
during printing:

What happens What it means What to do

You issue the PRINT command from
the command line or a function key
and see the message:

GDDM printer nickname is
required for PRINTER.

The object you are trying to print
needs a printer name, and no printer
name default exists in your profile.

Press the Enter key again to display a
prompt panel on which you can enter
a printer name and other print
parameters. You can set a printer
name default in your profile to avoid
being prompted.

You issue several PRINT commands
but find that only the last object is
printed.

Your output data set does not have a
disposition of MOD, so each PRINT
operation reopens the data set and
overwrites the previous contents.

Change the disposition of your
output data set to MOD. You cannot
use the disposition MOD with a
member of a regioned data set.

You print a QMF object and see
unexpected control characters in the
printed output or data set.

The device token or PROCOPT you
are using does not match the device
on which you are actually printing.

Supply the correct device token, or
reduce control characters to a
minimum by one of these techniques:

v For a report, table SQL or QBE
query, procedure, or profile, specify
PRINTER=’ ’ to bypass GDDM
printing.

v For other objects, use
PROCOPT=((PRINTCTL,0)) with no
device token.

When printing a report, table, SQL or
QBE query, procedure, or profile, you
see the message:

File DSQPRINT did not open.

No printer name default exists in
your profile, and no DSQPRINT data
set or system output is currently
allocated.

Allocate DSQPRINT before issuing a
print command.

Reminder: If you allocate output from DSQDEBUG to go to the HOLD queue, to release the output to the OUTPUT
queue you must issue the following TSO command:

FREE DDNAME(DSQDEBUG)

Handling QMF errors during printing on VM
The information in the following table helps you to solve errors that can occur
during printing:

What happens What it means What to do

You issue the PRINT command from
the command line or a function key
and see the message:

GDDM printer nickname is
required for PRINTER.

The object you are trying to print
needs a printer name, and no printer
name default exists in your profile.

Press the Enter key again to display a
prompt panel on which you can enter
a printer name and other print
parameters. You can set a printer
name default in your profile to avoid
being prompted.

Troubleshooting and Problem Diagnosis

682 Installing and Managing QMF

What happens What it means What to do

After using the CONNECT command,
your PRINT commands result in the
message described, or your printed
output goes to a different printer.

The CONNECT command replaces
your own profile values with those of
the user you connected to.

After connecting, remember to enter:
SET PROFILE (PRINTER=prtname
from the command line to establish
your printer name as the default.

You issue several PRINT commands
but find that only the last object is
printed.

Your output data set does not have a
disposition of MOD, so each PRINT
operation reopens the data set and
overwrites the previous contents.

Change the disposition of your
output data set to MOD. You cannot
use the disposition MOD with a
member of a regioned data set.

You print a QMF object and see
unexpected control characters in the
printed output or data set.

The device token or PROCOPT you
are using does not match the device
on which you are actually printing.

Supply the correct device token, or
reduce control characters to a
minimum by one of these techniques:

v For a report, table SQL or QBE
query, procedure, or profile, specify
PRINTER=’ ’ to bypass GDDM
printing.

v For other objects, use
PROCOPT=((PRINTCTL,0)) with no
device token.

When printing a report, table, SQL or
QBE query, procedure, or profile, you
see the message:

File DSQPRINT did not open.

No printer name default exists in
your profile, and no DSQPRINT data
set or system output is currently
allocated.

Allocate DSQPRINT before issuing a
print command.

Reminder: If you allocate output from DSQDEBUG to go to the HOLD queue, to release the output to the OUTPUT
queue you must issue the following TSO command:

FREE DDNAME(DSQDEBUG)

Handling CMS command errors
You might encounter problems when using the QMF CMS command in the
following ways:
v When using The CMS command to run an exec
v When using the CMS command if QMF has been started using ISPF
v If the CMS command is used to invoke a function and that function

executes a program that issues a DB2 for VM CONNECT
v If the CMS command is used to invoke a function and that function

executes a program that issues a DB2 for VM COMMIT

The following sections describe the type of problem that might occur.

Using the CMS command to run an exec
QMF uses a STAE exit to establish an abend handler. If you use the CMS
command to run an exec that alters the Stae exit, you can encounter the
following problems:
v If the Stae exit is removed, you are not able to record abend information

should a QMF abend occur.

Troubleshooting and Problem Diagnosis

Chapter 32. Troubleshooting and Problem Diagnosis 683

v If a Stae exit is added, the wrong Stae exit can get control should a QMF
abend occur.

Issuing the CMS command if QMF is started using ISPF
If you invoke QMF through the PGM form of the ISPSTART command, QMF
packages the CMS command and uses the ISPF “SELECT CMD” service. The
command is then executed in CMS subset mode. Some CMS functions do not
work while in subset mode. if a function is started using the QMF CMS
command and that function changes the CMS environment or resets CMS
subset mode, results can be unpredictable when returning to QMF.

Note:if QMF is invoked with the DCSS form of the ISPSTART command, you
do not get CMS in subset mode; you get the full CMS with all CMS functions
available.

Using the DB2 for VM CONNECT command
If the CMS command is used to invoke a function and that function in turn
executes a program that issues an DB2 for VM CONNECT, the results of that
function are not known to QMF. In such a case when control is returned to
QMF, QMF is unknowingly executing on behalf of the user ID specified by
the CONNECT done outside of QMF. In this case all table requests are
performed using the connect ID outside of QMF and all QMF objects are
processed using the connect ID known to QMF.

Caution your end users not to use the DB2 for VM CONNECT command
through the CMS command.

Using the DB2 for VM COMMIT command
If a function is invoked through the CMS command, and that function in turn
executes a program that issues an DB2 forVM COMMIT command, the results
can prematurely close the cursor on a QMF report object.

This might happen if the QMF report is not complete when issuing the CMS
command. To prevent this from happening, complete or reset the report object
prior to executing a function through the CMS command that causes a
database commit. If the report cursor is closed prematurely, and you
subsequently scroll to the bottom of the report, a system error occurs.

Handling display errors on VSE
The following message indicates the the object the user is trying to print
needs a printer name, which QMF cannot find in the user’s profile or as a
default name:
GDDM printer nickname is required for PRINTER

Troubleshooting and Problem Diagnosis

684 Installing and Managing QMF

Users who see this message should press the Enter key to display a prompt
panel on which they can enter a printer name and other print parameters.
Update your user profile with a valid printer nickname so QMF does not
display this message again.

Handling display errors
If a user who attempts to display a report finds that the report has several
display control characters in it, data in one or more of the table columns from
which the report is derived might be binary (rather than character) data. QMF
provides three ways of handling these control characters:
v Using the hex function
v Using the QMF-provided hex and bit edit codes in the QMF form
v Handling binary data through user-written edit routines

Using the HEX function
The HEX function is an SQL scalar function that converts its argument to a
string of legitimate characters. The resulting string is the value of the
argument in hexadecimal notation. For example, the function argument ABC
produces the string C1C2C3 in hexadecimal notation.

Instruct users to use the word HEX in their queries in front of any columns
that might contain binary data. For example, the following statement converts
binary data in column A of the table SMITH.TABLEA.
SELECT HEX(A) FROM SMITH.TABLEA

Using QMF-provided HEX and bit edit codes
Two edit codes (and their wrapping versions) allow QMF to display binary
data in character columns: X and XW (for HEX display), B and BW (for bit
display). For more information on using these edit codes, see the QMF
Reference manual.

Handling binary data with user-written edit routines
Using the HEX function or the HEX and bit edit codes can be a good way to
handle binary data. For example, assume that each bit represents a data item
and displays in Natural Language Form of the value. If the fifth bit represents
gender rather than HEX values, a user edit code routine can cause a value of
Male Or Female to be displayed.

You can create your own edit code and write an edit exit routine in COBOL,
PL/I, or assembler to convert the binary data to the character string you
want. You might consider predefining some QMF forms for users that use the
new edit codes you create. See Chapter 29, “Creating Your Own Edit Codes
for QMF Forms” on page 497 for more information.

Solving performance problems
If your users notice slow performance in running queries or formatting
reports, the problem might be that QMF is attempting to retrieve all the

Troubleshooting and Problem Diagnosis

Chapter 32. Troubleshooting and Problem Diagnosis 685

database rows requested during one command before starting another. It is
also possible that the user does not have enough virtual storage to retrieve all
the requested rows. This section explains what you can do to solve each kind
of problem.

Increasing the user’s report storage
Users might also experience slow performance if they do not have enough
virtual storage to accommodate a large report. For example, if you set the
DSQSBSTG parameter at a very low value and the user runs a query that
retrieves hundreds of thousands of rows, QMF can only maintain a small
amount of data in user memory. The user might find performance slow for
formatting complex reports or scrolling the report.

To maximize report performance, make sure you specify an adequate amount
of virtual storage for the user, using the DSQSBSTG or DSQSRSTG
parameter.To provide the best performance, use a value that accommodates
the largest report the user is likely to have.

You can also define a spill file for the user. However, using primarily virtual
storage for QMF operations provides better performance. Users who rely on a
spill file and have little virtual storage might notice slow performance for
large reports. For CICS, because a spill file can hold a maximum of 32, 767
rows of size 4K each, setting DSQSBSTG higher ensures that QMF will
complete the report.

Even with a spill file, a user can encounter the incomplete data condition. If
this occurs often, you might want to find if there is an additional problem.

QMF performance may also slow down if QMF needs a data row (as a result
of a SCROLL BACKWARD command) and that data is not in the spill file or
in virtual storage.

OS/390 concerns
Setting the DSQSRSTG parameter at a very high value can also cause slow
performance.

Increasing the storage group’s volume space: If the problem is caused by a
lack of available space on the volumes of a control table storage group, add
more volumes to this storage group with the DB2 ALTER STOGROUP query.
For a description of this query, see the DB2 UDB for OS390 SQL Reference
manual.

Increasing the size of the CICS region: If a QMF transaction runs out of
virtual storage in the CICS region, the transaction might time out waiting for
storage to become available. These recommendations are in addition to any
storage required by additional products installed.

Troubleshooting and Problem Diagnosis

686 Installing and Managing QMF

VM concerns
There are no additional concerns on VM.

VSE concerns
Follow these instructions for increasing the CICS region on VSE.

Increasing the size of the CICS region: If a QMF transaction runs out of
virtual storage in the CICS region, the transaction might time out waiting for
storage to become available. These recommendations are in addition to any
storage required by additional products installed.

Determining the problem using diagnosis aids

If you were not able to solve your problem using the troubleshooting
techniques discussed in “Troubleshooting common problems” on page 675, use
this section to find out which QMF and CMS diagnosis aids can help you to
determine the problem.

Choosing the right diagnosis aid for the symptoms
Use Table 89 to help you determine which diagnosis aids you need for the
symptoms you are experiencing. The diagnosis aids are listed across the top of
the table, and symptoms are listed on the side. For example, if you experience
a problem while using a governor exit routine, you can use the QMF trace
facility, CICS, TSO, or CMS status information, and QMF messages and help
to determine the problem.

Table 89. Types of problems and the best diagnosis aids to use for them

QMF msg.
no. QMF trace Dump Status info

Help
message

Non-QMF
Msg. No.

Error Log
Output

Abend OS/390,
CMS,

CICS/VSE

CMS OS/390,
CICS/VSE

OS/390,
CICS/VSE

CMS CMS

Batch session OS/390,
CMS

OS/390,
CMS

OS/390,
CMS

OS/390,
CMS

OS/390,
CMS

Callable interface OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

Display panel OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CISS/VSE

OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

Document interface OS/390,
CMS

OS/390,
CMS

OS/390 OS/390 OS/390

Error messages OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

Governor exit routine OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

Troubleshooting and Problem Diagnosis

Chapter 32. Troubleshooting and Problem Diagnosis 687

Table 89. Types of problems and the best diagnosis aids to use for them (continued)

QMF msg.
no. QMF trace Dump Status info

Help
message

Non-QMF
Msg. No.

Error Log
Output

Incorrect output OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

Initialization OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

Installation OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

Interrupt facility OS/390,
CMS

OS/390,
CMS

OS/390 OS/390 OS/390

Loop OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

Performance OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

Printing OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

QMF command OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

SQL error codes OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

Termination OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

OS/390,
CMS,

CICS/VSE

User edit routine OS/390,
CICS/VSE

OS/390,
CICS/VSE

OS/390,
CICS/VSE

OS/390,
CICS/VSE

OS/390,
CICS/VSE

OS/390

Diagnosing your problem using QMF message support
QMF issues various types of messages during a user’s session, indicating
either that QMF successfully completed the user’s request or that an error
occurred. All QMF messages have a message number of the form DSQnnnnn,
where nnnnn is a five-digit number. These numbers are listed in the QMF
Messages and Codes manual, which provides more information on how you can
solve the problem.

To obtain the message number and more information about the error, press
the Help key to display a message help panel. Each help panel has a panel
number associated with it. If you report the problem to IBM, your IBM

Troubleshooting and Problem Diagnosis

688 Installing and Managing QMF

Support Center representative might need this number. To make sure the
number displays, set the global variable DSQDC__SHOW__PANID to 1:
SET GLOBAL (DSQDC__SHOW__PANID=1

Determining which QMF function issued an error message
You can use the QMF message number, which begins with DSQ, to determine
which QMF component issued the message. This information can help you
isolate the problem to a specific QMF function.

The QMF functions and their associated ranges of message numbers are
shown in Table 90. The trace IDs are the same IDs that you use to trace QMF
activity for each function.

Table 90. QMF functions and the message numbers they issue

Function Trace ID Message Numbers

Database services I DSQ10000 - DSQ19999
DSQ30000 - DSQ39999

Dialog command processing D DSQ20000 - DSQ29999

Display services E DSQ40000 - DSQ49999

Common services and Systems
interface

C DSQ50000 - DSQ59999

Report formatting F DSQ60000 - DSQ69999

Charting P DSQ70000 - DSQ79999

Full-screen windows G DSQ80000 - DSQ89999

In addition to the message numbers in Table 90, the following ranges of
message numbers might be generated during QMF initialization:

DSQI0001 - DSQI0100
DSQ90000 - DSQ99999

Handling system error messages
A system error might indicate a system problem, a resource problem, or an
unexpected condition. These might be problems within QMF, the database
manager, or possibly some other software component. System errors are
indicated by the following message:
Sorry, a system error occurred. Your command may not have been
executed.

Press the Help key to display more information about the message, or see the
QMF Messages and Codes manual.

Troubleshooting and Problem Diagnosis

Chapter 32. Troubleshooting and Problem Diagnosis 689

All uncommitted changes to the database are rolled back when a system
problem stops QMF. Error information about the system problem is written to
the trace data, which is the only source of information for a system problem
that stops QMF. The Q.ERROR__LOG table contains information about a
system error only if the error occurred while the database was still running.

Handling SQL return codes
In some cases, the message QMF displays might map to an SQL return code.
For example, suppose a user receives QMF message DSQ10422. This message
maps to the SQL return code -30060, which has the text:
RDB AUTHORIZATION FAILURE

See the DB2 Messages and Codes manual for the SQL return codes.

Using the QMF trace facility
QMF provides a facility that traces QMF activity during a user’s session. Trace
output from the facility can help you analyze errors such as incorrect or
missing output, performance problems, or loops. This section shows you how
to allocate storage for the trace output, how to start the facility and determine
the level of tracing detail, and how to view the trace data for diagnosis.

The trace facility on OS/390
Follow these instructions for using the trace facility on OS/390.

Allocating the trace data set (TSO): Certain procedures in this book rely on
abend information as well as trace information that QMF records in the
DSQDEBUG data set.

Allocating for TSO or native OS/390: Trace information is recorded in the
DSQDEBUG data set. You can find abend dump information in the
DSQUDUMP and SYSUDUMP data sets. Make sure that these data sets are
allocated before you begin the QMF session. The data sets are automatically
allocated by the LOGON procedure for the user ID under which you intend
to operate.

Check with TSO administration if you are not sure whether these data sets are
automatically allocated before a QMF session. If they are not, issue the
following TSO statements before you invoke QMF for your diagnostic session.

Troubleshooting and Problem Diagnosis

690 Installing and Managing QMF

Allocating for CICS: The trace is recorded in the DSQDEBUG data set. This
data set should be allocated in the CICS startup JCL. The trace can be shared
between all users in the same CICS address space.

Starting the trace facility:

1. Allocate a data set with a ddname of DSQDEBUG.
The trace facility writes trace results into the DSQDEBUG data set, which
can be printed or displayed. This data set is used for trace purposes only.

2. Decide on your tracing options.
With these options, you control what is traced and the level of detail.
Specify a value of ALL on the DSQSDBUG program parameter when you
start QMF. This value traces QMF activity at the highest level of detail,
including program failures that might occur during QMF initialization.
You need to use a transient data queue to hold the output if it exceeds
32, 767 rows.

3. Specify these options to QMF Trace.
During a QMF session, some set of tracing options is always in effect. You
can override current trace options in several different ways:
v Instruct the user to enter the following QMF command:

SET PROFILE (T=value

where value is ALL or a string that indicates QMF functions and their
levels of detail in the trace output.

v Use SQL UPDATE statements for the TRACE field in the user’s profile,
which has the same effect as the previous method. Instruct the user to
reconnect to the database to initialize the new values. For example, user
JONES with password MYPW can enter:
CONNECT JONES (PA=MYPW

v Users who do not have DB2 CONNECT authority can end the current
QMF session and begin another to initialize the values.

v Users can do a DISPLAY PROFILE to change the TRACE parameter in
the profile. If the user wants to make this setting permanent (until the
next change), he can hit PF2 to save it.

ATTR DEBUG RECFM(F B A) LRECL(121)
ATTR DUMP RECFM(F B A) LRECL(125)
ALLOC DDNAME(DSQDEBUG) SYSOUT(A) USING(DEBUG)
ALLOC DDNAME(DSQUDUMP) SYSOUT(A) USING(DUMP)
ALLOC DDNAME(SYSUDUMP) SYSOUT(A)

Figure 257. Allocating the data sets for TSO

Troubleshooting and Problem Diagnosis

Chapter 32. Troubleshooting and Problem Diagnosis 691

v Users can issue setting, SET (T=value. This setting will temporarily
change the user’s profile. To save this setting, the user can issue the
SAVE PROFILE command.

4. Access the trace data set when you have a warning or a system error
during QMF initialization.
Looking at DSQDEBUG helps you understand the reason for the error.

5. Interpret the trace output.
You can display or print the DSQDEBUG file for analysis.

Getting the right level of detail in your trace output: If you want to trace
all QMF functions at the most detailed level, use a value of ALL for the trace.

If you want to trace individual QMF functions, update the TRACE column of
Q.PROFILES with a character string that has letters for the QMF functions
you want to trace and numbers for the level of detail you want in the trace
data for each function. You need to pair each letter with a number:

The value 1 traces a function at a medium level of detail.
The value 2 traces a function at the highest level of detail.

Only the functions you specify in the character string are traced. The letter for
each QMF function is shown in the following list.

Trace ID
QMF Function

A Application Support Services

C Common Services and Systems Interface

D Dialog Command Processing

E Display services for parts of QMF such as Prompted Query, QBE,
Table Editor, global variable lists, and database object list

F Report formatting

G QBE, Prompted Query, and table editor full-screen windows

I Database services

L Message and command logging

P Charting (Interactive Chart Utility)

R Storage management functions

U User exits, such as user edit exit routines or a governor exit routine

For example, to trace message and command logging at the most detailed
level, application support services at a medium level, and common services
and systems interfaces at the most detailed level, use this command:

Troubleshooting and Problem Diagnosis

692 Installing and Managing QMF

SET PROFILE (T=L2A1C2

Use the L1 and L2 trace records to precisely record user activities during a
QMF session. A value of L1 writes records for all messages issued by QMF; L2
writes all the L1 records, plus additional records describing the execution of
QMF commands. Use the L2 trace code to log each command a user issued
and how QMF responded to that command. Figure 258 shows an example of a
RUN QUERY command that failed because the user named columns that were
not in the table.

Within the DSQDEBUG data set, the messages appear chronologically. When
commands are included, they also appear chronologically and are intermixed
with the messages. A message is associated with the command that precedes
it in the data set or file.

QMF messages have variables for parts of the message that change, such as a
table or column name. You can use the trace data to help a user decipher a
message that includes variables. For example, the message shown in
Figure 258 appears in QMF Messages and Codesas:
Column &01 is not in table &02.

The bottom half of Figure 258shows that the value for &01 in the message is
DATE and that the value for &02 is STAFF. Substitute these values into the
message to help a user solve the problem.

These variables might also appear in the definition of the help panels
associated with the error message. Use the variable values from the trace data
together with the help command to reconstruct the message help panel.

--
---------- ****** 93/12/15 20:39 ****** -----------------
USERID: KRIS
AUTHORIZATION-ID: KRIS
COMMAND TEXT:
RUN QUERY
--
--
---------- ****** 93/12/15 20:39 ****** -----------------
USERID: KRIS
AUTHORIZATION-ID: KRIS
MESSAGE NUMBER: DSQ12405
MESSAGE TEXT:
Column name DATE is not in table STAFF.
&O1: DATE
&O2: STAFF
&O9: -205
--

Figure 258. Using the L2 trace code to trace a user’s commands and messages

Troubleshooting and Problem Diagnosis

Chapter 32. Troubleshooting and Problem Diagnosis 693

Tracing at the module level: Important: Perform a trace at the module level
only under IBM Service Level 2 guidance.

You can turn on a trace for certain modules using the SET PROFILE command
and the module DSQUTRAC. For example, you can trace the formatter buffer
manager without tracing the line manager or the summary manager. The
values for module-level tracing are:

The value 3 provides a detailed trace for specific programs in a
component, and traces entry and exit for all other programs in the
component.
The value 4 traces a module only.

To create a module-level trace, list the modules you want traced in the
DSQUTRAC module. Then assemble and link-edit the module. After the
module is created, you must make it available. You can then run the following
command:
SET PROFILE (TRACE F4

Viewing QMF trace data: DSQDEBUG holds the information recorded by
the trace facility. It must be allocated before you start QMF if tracing is to be
used. You can allocate the data set to print or display it.

In CICS, depending on the number of users and the levels of detail at which
their sessions are traced, the trace data might be very long.

Printing or displaying in TSO: The DSQDEBUG data set might have been
allocated automatically through your LOGON profile in a TSO environment.
Even so, you can reallocate it if the original allocation does not fill your needs
(for example, the original allocation might define DSQDEBUG as a PRINT file
when you really want to display it).

To allocate (or reallocate) for printing, issue the following statements, which
define DSQDEBUG as a PRINT file:
FREE FILE(DSQDEBUG)
ATTR DEBUG RECFM(F B A) LRECL(121)
ALLOC DDNAME(DSQDEBUG) SYSOUT(A) USING(DEBUG)

The allocation contains fixed-length, 121-character records whose first byte is
an ANSI carriage-control character. The trace information is formatted with
120 characters to the line, not including the ANSI control character.

Reminder: If you allocate output from DSQDEBUG to go to the HOLD queue,
to release the output to the OUTPUT queue, you must issue the following
TSO command:
FREE DDNAME(DSQDEBUG)

Troubleshooting and Problem Diagnosis

694 Installing and Managing QMF

You can also issue the following statements to allocate (or reallocate)
DSQDEBUG as a sequential data set that can be displayed using an online
editor. The data set consists of fixed-length, 81-character records whose first
byte is an ANSI carriage-control character. The trace information is formatted
with 80 characters to a line, not including the ANSI control character.
FREE FILE(DSQDEBUG)
ATTR DEBUG RECFM(F B A) LRECL(81)
ALLOC DDNAME(DSQDEBUG) DSNAME(DEBUG.LIST) NEW KEEP

Printing or displaying in CICS: The trace is recorded in the DSQDEBUG data
set. Allocate this data set in the CICS startup JCL.

If you have a warning or a system error during QMF initialization, you must
look at the QMF trace data set to understand the reason for the error. In CICS,
the trace data set is described as an extra region data set. The trace data set is
described in CICS tables by a DCT TYPE=SDSCI command and a DCT
TYPE=EXTRA command, as in Figure 259.

QMF trace data from all the QMF users in a single CICS region are written to
a single trace data set. Each trace entry contains the terminal ID of the user
that recorded it.

To look at the trace data set while the CICS region is active, you must close
the trace data set using the CICS queue ID DSQD. You can use this ID while
using the CICS-supplied transaction CEMT. After the trace data set is closed,
you can print or browse it.

While the trace data set is closed, no other records are written by CICS users.
In this state, QMF continues to operate without recording trace records. To
make the QMF trace available again, you can use the CICS-supplied
transaction CEMT to open the trace data set using the CICS queue ID DSQD.

* TRACE DATA SET
DFHDCT TYPE=SDSCI,DSCNAME=DSQDEBUG,

RECFORM=VARBLK,
RECSIZE=121,
BLKSIZE=6050,
TYPEFILE=OUTPUT

*
*

TITLE ’DSQDCT - CICS DESTINATION CONTROL TABLE’
*
* TRACE DATA SET
*
DSQD DFHDCT TYPE=EXTRA,DESTID=DSQD,DSCNAME=DSQDEBUG,RSL=1

Figure 259. Description of the trace data set in the CICS environment

Troubleshooting and Problem Diagnosis

Chapter 32. Troubleshooting and Problem Diagnosis 695

Determining the QMF service level: The service level information is
displayed:
v When T=ALL is specified on invocation (or from Q.PROFILES)
v When SET (TRACE ALL was specified as a command
v When an abend occurs

You can determine the QMF service level using the following procedure:
1. Enter the SET PROFILE command (T=ALL.
2. Enter the SET PROFILE command (T=NONE.
3. Exit QMF.
4. Look at the DSQDEBUG file.

The resulting trace shows the program with its version, date, and time. The
trace can also show an Authorized Program Analysis Report (APAR) number
if the module has a Program Temporary Fix (PTF) applied, as in the following
trace example:
** DSQFQWRM: ENTERED FROM DSQFMCTL ***

V7R2.00 00/01/30 12:00 PNxxxxx

APAR PNxxxxx is the most recent APAR for which service was applied.

Turning off the trace facility: After you capture diagnostic details using the
trace facility, you might want to turn tracing off, because the storage queue
for the trace data can fill up very quickly.

To turn tracing off, issue the following command from within QMF:
SET PROFILE (T=NONE

If you leave tracing on until you end the QMF session, when you start QMF
the next time, the tracing is set to NONE by default. The program parameter
DSQSDBUG controls this tracing when QMF is started.

Using the trace facility on VM
Follow these instructions to use the trace facility on VM.

Allocating the trace fIle on CMS: When you are using procedures involving
trace information, ensure that the trace file is allocated before you begin the
QMF session. This is true if the file is allocated by the PROFILE EXEC for a
user ID. The default file name is DSQDEBUG.

Check with your VM administrator if you are not sure whether the file is
allocated automatically before a QMF session. If it is not, issue the following
CMS statement before you start QMF for your diagnostic session.
FILEDEF DSQDEBUG PRINTER (LRECL 121 RECFM FA PERM)

Troubleshooting and Problem Diagnosis

696 Installing and Managing QMF

If the PROFILE EXEC takes you to QMF immediately after logon and logs
you off VM when you terminate the QMF session, insert the preceding
FILEDEF statement into the user’s PROFILE EXEC file.

Starting the trace facility:

1. Allocate a file with a file name of DSQDEBUG.
The trace facility writes trace results into the DSQDEBUG data set, which
can be printed or displayed. This data set is used for trace purposes only.

2. Decide on your tracing options.
With these options, you control what is traced and the level of detail. For
more information on choosing trace options, see “Getting the right level of
detail in your trace output” on page 692.
Specify a value of ALL on the DSQSDBUG program parameter when you
start QMF. This value traces QMF activity at the highest level of detail,
including program failures that might occur during QMF initialization.

3. Specify these options to QMF Trace.
During a QMF session, some set of tracing options is always in effect. You
can override current trace options in several different ways:
v Instruct the user to enter the following QMF command:

SET PROFILE (T=value

where value is ALL or a string that indicates QMF functions and their
levels of detail in the trace output.

v Use SQL UPDATE statements for the TRACE field in the user’s profile,
which has the same effect as the previous method. Instruct the user to
reconnect to the database to initialize the new values. For example, user
JONES with password MYPW can enter:
CONNECT JONES (PA=MYPW

v Users who do not have DB2 CONNECT authority can end the current
QMF session and begin another to initialize the values.

4. Access the trace data set when you have a warning or a system error
during QMF initialization.
Looking at DSQDEBUG helps you understand the reason for the error.

5. Interpret the trace output.
You can display or print the DSQDEBUG file for analysis.

Getting the right level of detail in your trace output: If you want to trace
all QMF functions at the most detailed level, use a value of ALL for the trace.

If you want to trace individual QMF functions, update the TRACE column of
Q.PROFILES with a character string that has letters for the QMF functions

Troubleshooting and Problem Diagnosis

Chapter 32. Troubleshooting and Problem Diagnosis 697

you want to trace and numbers for the level of detail you want in the trace
data for each function. You need to pair each letter with a number:

The value 1 traces a function at a medium level of detail.
The value 2 traces a function at the highest level of detail.

Only the functions you specify in the character string are traced. The letter for
each QMF function is shown in the following list.

Trace ID
QMF Function

A Application Support Services

C Common Services and Systems Interface

D Dialog Command Processing

E Display services for parts of QMF such as Prompted Query, QBE,
Table Editor, global variable lists, and database object list

F Report formatting

G QBE, Prompted Query, and table editor full-screen windows

I Database services

L Message and command logging

P Charting (Interactive Chart Utility)

R Storage management functions

U User exits, such as user edit exit routines or a governor exit routine

For example, to trace message and command logging at the most detailed
level, application support services at a medium level, and common services
and systems interfaces at the most detailed level, use this command:
SET PROFILE (T=L2A1C2

Use the L1 and L2 trace records to precisely record user activities during a
QMF session. A value of L1 writes records for all messages issued by QMF; L2
writes all the L1 records, plus additional records describing the execution of
QMF commands. Use the L2 trace code to log each command a user issued
and how QMF responded to that command. Figure 260 on page 699 shows an
example of a RUN QUERY command that failed because the user named
columns that were not in the table.

Troubleshooting and Problem Diagnosis

698 Installing and Managing QMF

Within the DSQDEBUG data set, the messages appear chronologically. When
commands are included, they also appear chronologically and are intermixed
with the messages. A message is associated with the command that precedes
it in the data set or file.

QMF messages have variables for parts of the message that change, such as a
table or column name. You can use the trace data to help a user decipher a
message that includes variables. For example, the message shown in
Figure 260 appears in QMF Messages and Codesas:
Column &01 is not in table &02.

The bottom half of Figure 260shows that the value for &01 in the message is
DATE and that the value for &02 is STAFF. Substitute these values into the
message to help a user solve the problem.

These variables might also appear in the definition of the help panels
associated with the error message. Use the variable values from the trace data
together with the help command to reconstruct the message help panel.

Tracing at the module level: Important: Perform a trace at the module level
only under IBM Service Level 2 guidance.

You can turn on a trace for certain modules using the SET PROFILE command
and the module DSQUTRAC. For example, you can trace the formatter buffer
manager without tracing the line manager or the summary manager. The
values for module-level tracing are:

--
---------- ****** 93/12/15 20:39 ****** -----------------
USERID: KRIS
AUTHORIZATION-ID: KRIS
COMMAND TEXT:
RUN QUERY
--
--
---------- ****** 93/12/15 20:39 ****** -----------------
USERID: KRIS
AUTHORIZATION-ID: KRIS
MESSAGE NUMBER: DSQ12405
MESSAGE TEXT:
Column name DATE is not in table STAFF.
&O1: DATE
&O2: STAFF
&O9: -205
--

Figure 260. Using the L2 trace code to trace a user’s commands and messages

Troubleshooting and Problem Diagnosis

Chapter 32. Troubleshooting and Problem Diagnosis 699

The value 3 provides a detailed trace for specific programs in a
component, and traces entry and exit for all other programs in the
component.
The value 4 traces a module only.

To create a module-level trace, list the modules you want traced in the
DSQUTRAC module. Then assemble and link-edit the module. After the
module is created, you must make it available. You can then run the following
command:
SET PROFILE (TRACE F4

Viewing QMF trace data: DSQDEBUG might have been allocated
automatically through your PROFILE EXEC. You might want to reallocate it if
the original allocation does not fill your needs (for example, the original
allocation might define DSQDEBUG as a PRINT file, when you actually want
to display it.

To allocate (or reallocate) for printing, issue the following statement which
defines DSQDEBUG as a print file:
FILEDEF DSQDEBUG PRINTER (LRECL 121 FA PERM)

The allocation contains fixed-length, 121-character records hose first byte is an
ANSI carriage-control character. The trace information is formatted with 120
characters to the line, not including the ANSI control character.

You can also issue the following statements to allocate (or reallocate)
DSQDEBUG as a sequential data set that can be displayed using an online
editor. The data set consists of fixed-length, 81-character records whose first
byte is an ANSI carriage-control character. The trace information is formatted
with 80 characters to a line, not including the ANSI control character.
FILEDEF DSQDEBUG DISK DEBUG LIST (PERM RECFM FBA LRECL 81

Determining the QMF service level: The service level information is
displayed:
v When T=ALL is specified on invocation (or from Q.PROFILES)
v When SET (TRACE ALL was specified as a command
v When an abend occurs

You can determine the QMF service level using the following procedure:
1. Enter the SET PROFILE command (T=ALL.
2. Enter the SET PROFILE command (T=NONE.
3. Exit QMF.
4. Look at the DSQDEBUG file.

Troubleshooting and Problem Diagnosis

700 Installing and Managing QMF

The resulting trace shows the program with its version, date, and time. The
trace can also show an Authorized Program Analysis Report (APAR) number
if the module has a Program Temporary Fix (PTF) applied, as in the following
trace example:
** DSQFQWRM: ENTERED FROM DSQFMCTL ***

V7R2.00 00/01/30 12:00 PNxxxxx

APAR PNxxxxx is the most recent APAR for which service was applied.

Turning off the trace facility: After you capture diagnostic details using the
trace facility, you might want to turn tracing off, because the storage queue
for the trace data can fill up very quickly.

To turn tracing off, issue the following command from within QMF:
SET PROFILE (T=NONE

If you leave tracing on until you end the QMF session, when you start QMF
the next time, the tracing is set to NONE by default. The program parameter
DSQSDBUG controls this tracing when QMF is started.

Using the trace facility on VSE
Follow these instructions to use the trace facility on VSE.

Allocating storage for trace data: Choose either a CICS temporary storage or
transient data queue to store trace data. If the trace data for the user’s session
does not exceed 32,767 rows, you can use CICS temporary storage or
intrapartition transient data queues to contain it. If the trace data exceed
32,767 rows, define in the CICS DCT an extrapartition transient data queue
that routes the output to a VSE file or SYSLST.

To define a transient data queue, update the CICS DCT with a 1-byte to 7-byte
entry that points to the location that receives your trace data.

Figure 261 on page 702 shows the definitions for the default queue, a transient
data queue named DSQD that is allocated to a SYSLST. The default location is
DSQDBUG.

Troubleshooting and Problem Diagnosis

Chapter 32. Troubleshooting and Problem Diagnosis 701

Use DSQSDBQT parameter if you want to use a temporary storage queue for
the trace data when you start QMF. If you want to name the queue something
other than DSQD, use the DSQSDBQN parameter.

The trace data queue can be shared by all users in the same CICS partition,
because QMF issues CICS ENQ and DEQ commands around single trace
entries. Because tracing is an aspect of a user’s profile, you can also set the
level of trace detail individually for each user with the SET PROFILE
command using the TRACE keyword. Records in the trace data identify
individual terminal IDs for different QMF sessions on the header line.

Starting the trace facility: To start the trace facility, do one of the following
tasks:
v Specify a value of ALL on the DSQSDBUG program parameter when you

start QMF. This value traces QMF activity at the highest level of detail,
including program failures that might occur during QMF initialization.

v Instruct the user to enter the following QMF command:
SET PROFILE (T=value

where value is ALL or a string that indicates QMF functions and their
levels of detail in the trace output.

v Use SQL UPDATE statements for the TRACE field in the user’s profile,
which has the same effect as the previous method. Instruct the user to
reconnect to the database to initialize the new values. For example, user
JONES with password MYPW can enter:
CONNECT JONES (PA=MYPW

Users who do not have DB2 CONNECT authority can end the current QMF
session and begin another to initialize the values.

DFHDCT TYPE=EXTRA, QUEUE FOR QMF EXTRA PROCESSING
DESTID=DSQD,
RSL=PUBLIC,
DSCNAME=DSQDBUG

DFHDCT TYPE=SDSCI, DCT ENTRY FOR DEBUG OF QMF
DSCNAME=DSQDBUG,
RECFORM=VARUNB,
BLKSIZE=136,
TYPEFLE=OUTPUT,
CTLCHR=ASA,
DEVADDR=SYSLST,
DEVICE=1403

Figure 261. Describing a SYSLST to contain trace data

Troubleshooting and Problem Diagnosis

702 Installing and Managing QMF

Getting the right level of detail in your trace output: If you want to trace
all QMF functions at the most detailed level, use a value of ALL for the trace.

If you want to trace individual QMF functions, update the TRACE column of
Q.PROFILES with a character string that has letters for the QMF functions
you want to trace and numbers for the level of detail you want in the trace
data for each function. You need to pair each letter with a number:

The value 1 traces a function at a medium level of detail.
The value 2 traces a function at the highest level of detail.

Only the functions you specify in the character string are traced. The letter for
each QMF function is shown in the following list.

Trace ID
QMF Function

A Application Support Services

C Common Services and Systems Interface

D Dialog Command Processing

E Display services for parts of QMF such as Prompted Query, QBE,
Table Editor, global variable lists, and database object list

F Report formatting

G QBE, Prompted Query, and table editor full-screen windows

I Database services

L Message and command logging

P Charting (Interactive Chart Utility)

R Storage management functions

U User exits, such as user edit exit routines or a governor exit routine

For example, to trace message and command logging at the most detailed
level, application support services at a medium level, and common services
and systems interfaces at the most detailed level, use this command:
SET PROFILE (T=L2A1C2

Use the L1 and L2 trace records to precisely record user activities during a
QMF session. A value of L1 writes records for all messages issued by QMF; L2
writes all the L1 records, plus additional records describing the execution of
QMF commands. Use the L2 trace code to log each command a user issued
and how QMF responded to that command. Figure 262 on page 704 shows an
example of a RUN QUERY command that failed because the user named
columns that were not in the table.

Troubleshooting and Problem Diagnosis

Chapter 32. Troubleshooting and Problem Diagnosis 703

Within the DSQDEBUG data set, the messages appear chronologically. When
commands are included, they also appear chronologically and are intermixed
with the messages. A message is associated with the command that precedes
it in the data set or file.

QMF messages have variables for parts of the message that change, such as a
table or column name. You can use the trace data to help a user decipher a
message that includes variables. For example, the message shown in
Figure 262 appears in QMF Messages and Codesas:
Column &01 is not in table &02.

The bottom half of Figure 262shows that the value for &01 in the message is
DATE and that the value for &02 is STAFF. Substitute these values into the
message to help a user solve the problem.

These variables might also appear in the definition of the help panels
associated with the error message. Use the variable values from the trace data
together with the help command to reconstruct the message help panel.

Tracing at the module level: Important: Perform a trace at the module level
only under IBM Service Level 2 guidance.

You can turn on a trace for certain modules using the SET PROFILE command
and the module DSQUTRAC. For example, you can trace the formatter buffer
manager without tracing the line manager or the summary manager. The
values for module-level tracing are:

--
---------- ****** 93/12/15 20:39 ****** -----------------
USERID: KRIS
AUTHORIZATION-ID: KRIS
COMMAND TEXT:
RUN QUERY
--
--
---------- ****** 93/12/15 20:39 ****** -----------------
USERID: KRIS
AUTHORIZATION-ID: KRIS
MESSAGE NUMBER: DSQ12405
MESSAGE TEXT:
Column name DATE is not in table STAFF.
&O1: DATE
&O2: STAFF
&O9: -205
--

Figure 262. Using the L2 trace code to trace a user’s commands and messages

Troubleshooting and Problem Diagnosis

704 Installing and Managing QMF

The value 3 provides a detailed trace for specific programs in a
component, and traces entry and exit for all other programs in the
component.
The value 4 traces a module only.

To create a module-level trace, list the modules you want traced in the
DSQUTRAC module. Then assemble and link-edit the module. After the
module is created, you must make it available. You can then run the following
command:
SET PROFILE (TRACE F4

Viewing QMF trace data: Depending on the number of users and the levels
of detail at which their sessions are traced, the data might be very long.
Browse the data before you decide to print it.

Viewing data in a temporary storage queue: Use the CICS transaction CEBR to
browse a temporary storage queue. For example, to browse a queue named
MYTRACE, enter the following command from a cleared CICS screen:
CEBR MYTRACE

If the trace output is less than 32,767 rows, use temporary storage queues to
hold the trace data. If the output is more than 32,767 rows, you must use a
transient data queue for the trace data.

Viewing data in a transient data queue: The default queue for trace data is a
transient data queue named DSQD. Trace output routed to this queue goes to
the SYSLST, and can be found in the list output of your CICS job. To transfer
the data from the CICS LST queue to the SYSLT so you can view it, you must
stop CICS. This will allow you to browse or print the SYSLST using VSE
POWER, ICCF, or another facility available to you.

Determining the QMF service level: The service level information is
displayed:
v When T=ALL is specified on invocation (or from Q.PROFILES)
v When SET (TRACE ALL was specified as a command
v When an abend occurs

You can determine the QMF service level using the following procedure:
1. Enter the SET PROFILE command (T=ALL.
2. Enter the SET PROFILE command (T=NONE.
3. Exit QMF.
4. Look at the DSQDEBUG file.

Troubleshooting and Problem Diagnosis

Chapter 32. Troubleshooting and Problem Diagnosis 705

The resulting trace shows the program with its version, date, and time. The
trace can also show an Authorized Program Analysis Report (APAR) number
if the module has a Program Temporary Fix (PTF) applied, as in the following
trace example:
** DSQFQWRM: ENTERED FROM DSQFMCTL ***

V7R2.00 00/01/30 12:00 PNxxxxx

APAR PNxxxxx is the most recent APAR for which service was applied.

Turning off the trace facility: After you capture diagnostic details using the
trace facility, you might want to turn tracing off, because the storage queue
for the trace data can fill up very quickly.

To turn tracing off, issue the following command from within QMF:
SET PROFILE (T=NONE

If you leave tracing on until you end the QMF session, when you start QMF
the next time, the tracing is set to NONE by default. The program parameter
DSQSDBUG controls this tracing when QMF is started.

Diagnosing abends
You might need to diagnose abends using diagnostic facilities in TSO, OS/390,
CMS, or CICS facilities available in your environment. (In CICS, abend
information is recorded in the DFHDMPx data set. This data set should be
allocated in the CICS startup JCL.) Most QMF programs contain a stamp that
you can use to help identify them in diagnostic output. Figure 263 shows an
example.

Using OS/390 diagnostic facilities
To diagnose an abend, you might need to use procedures in the appropriate
Tools and Service Aids , or you might be able to use the QMF abend handler.

When QMF starts, it establishes an abend handler. If QMF fails, the abend
handler gets control, records the error, and cleans up the environment. After
completion, the abend handler returns to the operating system, and allows it
to continue with the abnormal termination process.

Figure 263. Example of a stamp that identifies a QMF program

Troubleshooting and Problem Diagnosis

706 Installing and Managing QMF

If an abend occurs while processing the user edit code or while executing the
governor, additional areas appear in the dump to assist with problem
diagnosis.

For the user edit code, DXEECS, the input area, and the result area are added
to the output.

For the governor, DXEXCBA and DXEGOV are added to the output.

Using CICS diagnostic facilities
To diagnose an abend in QMF, you might need to use procedures in the CICS
Problem Determination Guide. Because another program might have caused
QMF to abend, these procedures can help you find much of the information
you need in a CICS dump of the transaction. A transaction dump shows
detailed activity of the programs that were running in the CICS region at the
time of the abend.

The program that caused the abend might be QMF or it might be another
program. You can use the CICS Execution Diagnostic Facility (CEDF) to help
you diagnose a QMF abend if the QMF diagnostic facilities explained in this
chapter do not contain enough information about the cause of the error.

Identifying QMF in CICS diagnostic output: If you use CICS diagnostic
facilities to help you diagnose an abend in QMF, the following information
might help you identify QMF programs in CICS output.
v QMF program names begin with the prefix DSQ.
v QMF is an assembler-language program and issues standard assembler

calls, not CICS LINK statements.
v QMF issues standard EXEC CICS statements for all system services when

running in CICS.
v QMF uses an internal call interface to the GDDM product.
v QMF issues standard EXEC SQL statements to the database.
v QMF does not issue any EXEC CICS ABEND commands.

Defining the display for a CICS abend message: In some cases, such as if
QMF abends or when the operator cancels the transaction, CICS sends a
message to the user’s terminal indicating the abnormal ending. Because QMF
is a full-screen application that uses GDDM to provide display services, you
need to define to CICS how you want the abend message displayed.

Using the CICS Resource Definition Online (RDO) facility, set diagnostic
display attributes of the CICS error message in the CICS TYPETERM
definition. A TYPETERM is a partial terminal definition that makes it easy for
you to define many terminal displays with one definition. Figure 264 on
page 708 shows an example of diagnostic display attributes you might use.

Troubleshooting and Problem Diagnosis

Chapter 32. Troubleshooting and Problem Diagnosis 707

The definition shown in Figure 264 displays the message at the bottom of the
screen, beneath the QMF message line. The message appears in red,
underlined, and with a higher intensity than the rest of the screen display.
This definition is useful if you defined the QMF transaction to time out when
the user does not enter input for a certain amount of time. In this type of
transaction time-out, the QMF display remains on the screen, so the message
is readable only at the bottom of the screen.

Abend handling on VM Here
When QMF starts, it establishes an abend handler. If QMF fails, the abend
handler gets control, records the error, and cleans up the environment. After
completion, the abend handler returns to the operating system, and allows it
to continue with the abnormal termination process.

If an abend occurs while processing the user edit code or while executing the
governor, additional areas appear in the dump to assist with the problem
diagnosis.

For the user edit code, DXEECS, the input area and the result area are added
to the output.

Abend handling on VSE
First Paragraph

Using CICS diagnostic facilities
To diagnose an abend in QMF, you might need to use procedures in the CICS
Problem Determination Guide. Because another program might have caused
QMF to abend, these procedures can help you find much of the information
you need in a CICS dump of the transaction. A transaction dump shows
detailed activity of the programs that were running in the CICS region at the
time of the abend.

The program that caused the abend might be QMF or it might be another
program. You can use the CICS Execution Diagnostic Facility (CEDF) to help
you diagnose a QMF abend if the QMF diagnostic facilities explained in this
chapter do not contain enough information about the cause of the error.

DIAGNOSTIC DISPLAY
ERR Last line : Yes No | Yes
ERRIntensify : Yes No | Yes
ERRColor : Red NO | Blue | Red | Pink | Green

| Turquoise | Yellow | Neutral
ERRHilight : Underline No | Blink | Reverse | Underline

Figure 264. TYPETERM specification for CICS diagnostic display

Troubleshooting and Problem Diagnosis

708 Installing and Managing QMF

Identifying QMF in CICS diagnostic output: If you use CICS diagnostic
facilities to help you diagnose an abend in QMF, the following information
might help you identify QMF programs in CICS output.
v QMF program names begin with the prefix DSQ.
v QMF is an assembler-language program and issues standard assembler

calls, not CICS LINK statements.
v QMF issues standard EXEC CICS statements for all system services when

running in CICS.
v QMF uses an internal call interface to the GDDM product.
v QMF issues standard EXEC SQL statements to the database.
v QMF does not issue any EXEC CICS ABEND commands.

Defining the display for a CICS abend message: In some cases, such as if
QMF abends or when the operator cancels the transaction, CICS sends a
message to the user’s terminal indicating the abnormal ending. Because QMF
is a full-screen application that uses GDDM to provide display services, you
need to define to CICS how you want the abend message displayed.

Using the CICS Resource Definition Online (RDO) facility, set diagnostic
display attributes of the CICS error message in the CICS TYPETERM
definition. A TYPETERM is a partial terminal definition that makes it easy for
you to define many terminal displays with one definition. Figure 264 on
page 708 shows an example of diagnostic display attributes you might use.

The definition shown in Figure 265 displays the message at the bottom of the
screen, beneath the QMF message line. The message appears in red,
underlined, and with a higher intensity than the rest of the screen display.
This definition is useful if you defined the QMF transaction to time out when
the user does not enter input for a certain amount of time. In this type of
transaction time-out, the QMF display remains on the screen, so the message
is readable only at the bottom of the screen.

Using the QMF interrupt facility
This section applies only to OS/390 and VM.

DIAGNOSTIC DISPLAY
ERR Last line : Yes No | Yes
ERRIntensify : Yes No | Yes
ERRColor : Red NO | Blue | Red | Pink | Green

| Turquoise | Yellow | Neutral
ERRHilight : Underline No | Blink | Reverse | Underline

Figure 265. TYPETERM specification for CICS diagnostic display

Troubleshooting and Problem Diagnosis

Chapter 32. Troubleshooting and Problem Diagnosis 709

OS/390
In TSO, the QMF interrupt handler can be activated even though a QMF
command is inactive. To interrupt QMF, press the PA1 key. You need to
refresh the screen to see the QMF procedure panel. To do this, press the PA2
key.

Use the QMF interrupt facility to gather information about a problem. Using
the interrupt facility, you can produce an abend dump, or cause trace
information to be displayed or written into the DSQDEBUG data set.

You use the interrupt facility under the logon ID of the user whose problem
you are diagnosing. However, you must recreate the problem first, unless you
were there when it occurred.

Creating an interrupt: The first step in using the interrupt facility is to create
an attention interrupt. For most system configurations, you can create an
attention interrupt by pressing either the Attn key or a combination of the
Reset and PA1 keys. If these combinations do not work for you, see the
appropriate publications for your current system configuration to obtain more
information on creating the interrupt.

The interrupt facility responds by displaying the following message:

Displaying trace information after creating an interrupt: After the interrupt
message appears, press the Clear and Enter keys, as the message instructs you
to do. The following message appears:

Make your choice by typing CONT, CANCEL, or DEBUG, then press the Enter key:
v Enter CONT to return control to wherever you were before you caused the

interrupt, as if the interrupt had never occurred.

DSQ50546 QMF command interrupted! Clear screen and press enter.

Figure 266. QMF interrupt handler prompt 1

DSQ50547 QMF command interrupted! Do one of the following:
==> To continue QMF command, type ’CONT’.
==> To cancel QMF command, type ’CANCEL’.
==> To enter QMF debug, type ’DEBUG’.

Figure 267. QMF interrupt handler prompt 2

Troubleshooting and Problem Diagnosis

710 Installing and Managing QMF

v Enter CANCEL to stop any command that is running at the time of the
interrupt. The keyboard is unlocked, and QMF awaits your next command.
Note that it is not always possible to cancel a command.

v Enter DEBUG to get diagnostic information as shown in Figure 268

The trace information on the second line of this example tells you that, at
the time of the interrupt, control was in CSECT DSQEINPT, and that
control had reached this CSECT by passing successively through the
CSECTs DSQDSUPV, DSQDSUPX, DSQEADAP, and DSQEMAIN.

Respond to the debug panel shown in Figure 268 by entering CONT, CANCEL,
ABEND, TRACEALL, or TRACENONE, according to the following descriptions. Then
press the Enter key.
v Enter CONT to return control to wherever you were before you caused the

interrupt, as if the interrupt never occurred.
v Enter CANCEL to stop any command that is running at the time of interrupt.

The keyboard is unlocked, and QMF awaits your next command. However,
note that it is not always possible to cancel a command.

v Enter ABEND to abnormally terminate QMF and produce an abend dump (if
a DSQUDUMP data set was allocated for the session).

v Enter TRACEALL to cause QMF to start adding the most detailed level of
tracing output to the DSQDEBUG data set. Control returns to wherever it
was at the time of interrupt.

v Enter TRACENONE to cause QMF to stop adding any trace output to the
DSQDEBUG data set. Control returns to wherever it was at the time of
interrupt.

VM
To use the QMF interrupt handler in CMS, make sure that your break key is
set to PA1. To do this, enter:
CMS Q TERMINAL

Examine the BRKKEY field that is displayed. If it does not show BRKKEY PA1
, then enter:

-- OK, QMF debug entered. QMF CSECT trace is:
DSQDSUPV -> DSQDSUPX -> DSQEADAP -> DSQEMAIN -> DSQEINPT -> ENDTRACE

==> To continue QMF command, type ’CONT’
==> To cancel QMF command, type ’CANCEL’
==> To abnormally terminate QMF, type ’ABEND’
==> To set QMF trace, type ’TRACEALL’ or ’TRACENONE’

Figure 268. Diagnostic information captured by typing DEBUG on the interrupt screen.

Troubleshooting and Problem Diagnosis

Chapter 32. Troubleshooting and Problem Diagnosis 711

CMS TERM BRKKEY PA1

to set the break key to PA1. Press the CLEAR key to see the QMF procedure
panel.

Use the QMF interrupt facility to gather information about a problem. Using
the interrupt facility, you can produce an abend dump, or cause trace
information to be displayed or written into the DSQDEBUG data set.

You use the interrupt facility under the logon ID of the user whose problem
you are diagnosing. However, you must recreate the problem first, unless you
were there when it occurred.

Creating an interrupt: The first step in using the interrupt facility is to create
an attention interrupt. For most system configurations, you can create an
attention interrupt by pressing either the Attn key or a combination of the
Reset and PA1 keys. If these combinations do not work for you, see the
appropriate publications for your current system configuration to obtain more
information on creating the interrupt.

The interrupt facility responds by displaying the following message:

Note: If you have to use the PA1 key to create the interrupt, you might have
to press the PA1 key twice before this message appears.

Displaying trace information after creating an interrupt: After the interrupt
message appears, press the Clear and Enter keys, as the message instructs you
to do. The following message appears:

Note: You might have to press the Enter key twice before this message
appears on your screen.

Make your choice by typing CONT, CANCEL, or DEBUG, then press the Enter key:

DSQ50546 QMF command interrupted! Clear screen and press enter.

Figure 269. QMF interrupt handler prompt 1

DSQ50547 QMF command interrupted! Do one of the following:
==> To continue QMF command, type ’CONT’.
==> To cancel QMF command, type ’CANCEL’.
==> To enter QMF debug, type ’DEBUG’.

Figure 270. QMF interrupt handler prompt 2

Troubleshooting and Problem Diagnosis

712 Installing and Managing QMF

v Enter CONT to return control to wherever you were before you caused the
interrupt, as if the interrupt had never occurred.

v Enter CANCEL to stop any command that is running at the time of the
interrupt. The keyboard is unlocked, and QMF awaits your next command.
Note that it is not always possible to cancel a command.

v Enter DEBUG to get diagnostic information as shown below:

The trace information on the second line of this example tells you that, at
the time of the interrupt, control was in CSECT DSQEINPT, and that
control had reached this CSECT by passing successively through the
CSECTs DSQDSUPV, DSQDSUPX, DSQEADAP, and DSQEMAIN.

Respond to the debug panel shown in Figure 271 by entering CONT, CANCEL,
ABEND, TRACEALL, or TRACENONE, according to the following descriptions. Then
press the Enter key.
v Enter CONT to return control to wherever you were before you caused the

interrupt, as if the interrupt never occurred.
v Enter CANCEL to stop any command that is running at the time of interrupt.

The keyboard is unlocked, and QMF awaits your next command. However,
note that it is not always possible to cancel a command.

v Enter ABEND to abnormally terminate QMF and produce an abend dump (if
a DSQUDUMP data set was allocated for the session).

v Enter TRACEALL to cause QMF to start adding the most detailed level of
tracing output to the DSQDEBUG data set. Control returns to wherever it
was at the time of interrupt.

v Enter TRACENONE to cause QMF to stop adding any trace output to the
DSQDEBUG data set. Control returns to wherever it was at the time of
interrupt.

Error handling: QMF handles interrupts through the use of a STAX exit. If
you use a CMS command to execute an exec that alters the STAX exit, you
encounter the following problems when returning to QMF:

-- OK, QMF debug entered. QMF CSECT trace is:
DSQDSUPV -> DSQDSUPX -> DSQEADAP -> DSQEMAIN -> DSQEINPT -> ENDTRACE

==> To continue QMF command, type ’CONT’
==> To cancel QMF command, type ’CANCEL’
==> To abnormally terminate QMF, type ’ABEND’
==> To set QMF trace, type ’TRACEALL’ or ’TRACENONE’

Figure 271. Diagnostic information captured by typing DEBUG on the interrupt screen.

Troubleshooting and Problem Diagnosis

Chapter 32. Troubleshooting and Problem Diagnosis 713

v If the STAX exit is removed, you are not able to interrupt QMF. This means
you won’t be able to cancel a QMF command. You can, however, get into
CP READ and issue an HX command. This action halts execution of both
QMF and ISPF.

v If a STAX exit is added, you can have a problem canceling a QMF
command. You can end up in the wrong interrupt handler! Here again, you
can get into CP READ and issue an HX command, which halts the
execution of both QMF and ISPF.

Using error log reports from the Q.ERROR_LOG table
The Q.ERROR_LOG table is a QMF control table that logs information about
resource problems and problems caused by possible software defects. The
structure of the table is shown in Table 91.

Table 91. Structure of the Q.ERROR_LOG table

Column name Data type Length (bytes) Nulls allowed? Function/values

DATESTAMP CHAR 8 no The date on which the error
occurred. It is in the form
yyyymmdd.

TIMESTAMP CHAR 5 no The time at which the error
occurred. It is in the form
hh:mm, where hh is the hour
and mm is the minute.

USERID CHAR 8 no The logon ID or, in CICS, the
terminal ID of the user who
experienced the error.

MSG_NO CHAR 8 no The QMF message number that
was issued with the error.

MSGTEXT VARCHAR 254 no Text of the message. SQL errors
might have data from the
SQLCA in this column.

A long error message might need more than one row of the table to represent
it. If it does, the values of every column except the MSGTEXT column repeat.
Within the MSGTEXT column, each row carries a fragment of the message. A
fragment begins with 1), 2), 3), and so on, to indicate its relative position in
the message.

To help diagnose problems, you can query the Q.ERROR_LOG table for
information about errors. You need to know the terminal ID of the user who
experienced the problem and the approximate time the problem occurred.
Figure 272 on page 715 shows the format of the query.

Troubleshooting and Problem Diagnosis

714 Installing and Managing QMF

Be sure to use valid formats for the date and times you supply.

Reporting a problem to IBM

Before you report a problem to IBM, check IBM’s Software Support Facility
(SSF) to see if the problem has already been reported. For unreported
problems, IBM support center representatives prepare an Authorized Program
Analysis Report (APAR), which includes useful information about how to
solve the problem.

If you have access to the SSF through ServiceLink or some other facility, read
“Using ServiceLink to search for previously reported problems” for
instructions on how to develop a string of search keywords that help you find
the problem. If you do not have access to ServiceLink, you can go directly to
“Working with your IBM support center” on page 718.

Using ServiceLink to search for previously reported problems
Search the SSF by constructing a string of search words that describe your
problem. Every string of search words for QMF OS/390 6 begins with the
component ID 566872101 and a release number (shown in Table 92) that
matches the QMF national language environment in which you experienced
the problem.

Table 92. Release numbers for QMF base product and NLFs

NLF ID

Brazilian Portuguese 65A

Danish 654

English 610

French 655

German 656

Italian 657

Japanese 658

Korean 659

SELECT TIMESTAMP, MSG_NO, MSGTEXT
FROM Q.ERROR_LOG
WHERE USERID = ’terminal_id’ (for CICS)
WHERE USERID = ’user_id’ (for other than CICS)

AND DATESTAMP = ’date’
AND TIMESTAMP BETWEEN ’time1’ AND ’time2’

ORDER BY TIMESTAMP, MSG_NO, MSGTEXT

Figure 272. Querying the error log for problem information

Troubleshooting and Problem Diagnosis

Chapter 32. Troubleshooting and Problem Diagnosis 715

Table 92. Release numbers for QMF base product and NLFs (continued)

NLF ID

Spanish 65B

Swedish 65C

Swiss French 65D

Swiss German 65E

Uppercase English 651

The flowchart in Figure 273 on page 717 shows how to develop your search
words as you determine each characteristic of the problem.

Troubleshooting and Problem Diagnosis

716 Installing and Managing QMF

For example, if the problem you are searching for is an abend type of 0C4
that occurred in the DSQFDTBL control section (CSECT) when a user was
running an English QMF session, use this search phrase:

Figure 273. Chart of keyword types. Move from the top to the bottom of this chart to determine
your keywords.

Troubleshooting and Problem Diagnosis

Chapter 32. Troubleshooting and Problem Diagnosis 717

566872101 09 ABEND0C4 DSQFDTBL

To find the CSECT name, look in the section of the trace output that has the
heading ABEND CSECT NAME. The CSECT name is set off by asterisks. See
“Using the QMF trace facility” on page 690 for more information on how to
use the QMF trace facility.

For more information on searching the SSF for known QMF problems, see the
ServiceLink User’s Guide.

Working with your IBM support center
If you are having trouble diagnosing the problem and have used the diagnosis
aids explained in this chapter, contact your IBM Support Center to report the
problem.

To help diagnose the problem, your support center representative might need
some information that provides more details about the problem. For example,
if you call to report an abend in QMF, you might need to supply some
information about CSECTs of the program that you suspect might have
caused the error. In many cases, you can find this type of information using
the trace facility, which is explained in “Using the QMF trace facility” on
page 690. The IBM representative might also need documentation produced
by other diagnosis aids shown in Table 89 on page 687. This documentation
can help the representative recreate the problem.

Troubleshooting and Problem Diagnosis

718 Installing and Managing QMF

Part 5. Appendixes

© Copyright IBM Corp. 1983, 2002 719

720 Installing and Managing QMF

Appendix A. Miscellaneous

What if it did not work? (OS/390)

During the installation process, you will receive some informational messages
that you can safely ignore; others are warning or error messages that require
corrective action. This section describes some of the most common errors that
occur during installation. This list is not meant to replace the messages and
codes manuals for QMF or other products. If you do not find the message on
this list, consult the appropriate Messages and Codes manual.

Error messages you might see

You may receive one or more of the following error messages.

ABENDASRA
v On QMF startup:

– Make sure the GDDM link-edit ran successfully.
– Make sure the GDDM IVPs are successful in the region base.
– Make sure QMF correctly link-edits.
– Make sure the region allocates the QMF Version 7.2 LOADLIBs and map

groups.
v In module DSQQMFE CSECT ADM

The problem is probably a GDDM failure. Verify that GDDM is correctly
installed and tailored for CICS. Verify that GDDM is located in the same
CSI zone as CICS.

v In module DSQQMFE CSECT DSQEGINT
Verify that GDDM is customized for CICS and that the PPT entry exists for
the GDDM module ADMASPLC.

v In module DSQQMFE CSECT DSQIELI
Verify that the PPT entry exists for the DB2 UDB for OS/390 interface
module DSQIELI.

v In module DSQCBST CSECT DSQCMCVP
After QMF Service has been applied, verify that an OS/390 LLA REFRESH
has been done in case QMF CODE is in the Lookaside Library.

v ABEND0C1 with FFFFFFFE in R15
Rerun DSQ1ELNK, especially after applying QMF maintenance

v On exit of QMF
Check that the governor is linked correctly. Review job DSQ1EGLK.

v With ABEND0C4 and DFHSM0102

© Copyright IBM Corp. 1983, 2002 721

This error occurs when running a query or when pressing the Help
function key. Make sure that the FCT for DSQPNLE has RECFM=V.

v On issuing HELP or RUN commands
The QMF data set DSQPNLE, which contains help and other screen text,
was either not installed correctly, or it was not allocated to the job that
started the CICS region.
– Verify that the FCT entry is defined correctly.
– Verify that a DD statement for DSQPNLE exists in the job stream that

starts the CICS region. DD statements are described in “Step 24—Update
CICS startup job stream” on page 73.

Look for console error messages related to the DSQPNLE data set.

AEY9 ABEND
The DB2 UDB for OS/390 attachment facility is not active in the CICS region.
Start the attachment facility using the DSNC transaction.

AZTS ABEND
Make sure that GDDM is running with IOSYNCH=YES.

DSNT302I
Invalid name profilex. This is a normal message produced by DSQ1TBJ2;
ignore the message.

DSQ10297
Invalid subsystem ID. This error can occur on ISPF startup or when using the
callable interface. Check your ISPF startup parameters to make sure that
s=xxxx or DSQSSUBS=xxxx. See “Starting QMF with ISPF” on page 51 for
more details.

DSQ10493
This message indicates a database authorization error. Verify that the DB2
UDB for OS/390 resource control table (RCT) contains an entry for the
transaction ID that you are using to start QMF. For example, if you are using
the CICS transaction ID QMFE to start QMF, code an entry of:
DSNCRCT TYPE=ENTRY,TXID=QMFE,PLAN=QMF720,AUTH=DEPT1

In this example, the authorization ID is DEPT1, and the plan ID is QMF720.

DSQ36805
SQLCODE 805. This error occurs during startup. Record all the tokens
returned from the SQLCODE 805, and follow the directions in the DB2 UDB
for OS390 Message and Codes manual for the -805.

DSQI004I
GDDM error.

What if It Didn’t Work?

722 Installing and Managing QMF

DSQI0026
This message usually occurs on startup. Make sure that the QMFE transaction
is entered from a clear screen.

G050 ABEND
Verify that the release level of GDDM that you tailored for CICS matches the
release level of GDDM that you are using in the job stream to start the CICS
region.

IDC3012I
Entry QMFCAT.DSNDBC.DSQDBCTL.PROFILEX.I0001.A001.

IDC3009I
**VSAM catalog return code is 8 - reason code is IGGOCLAS3-42.

IDC0551I
**Entry QMFCAT.DSNDBC.DSQDBCTL.PROFILEX.I001 A001 not deleted.

These are normal messages that occur during the delete and purge of the
VSAM cluster, when running DSQ1VSTP; ignore the messages.

IEW0342
Library does not contain module xxxxxxxx.

QMF is attempting to replace a module that does not yet exist. You receive
this message for each load module link-edited.

IEW0461
You received this warning message because of one of the following reasons:
v The symbol printed is an unresolved external reference.
v NCAL is specified.
v The reference is marked for restricted NO=CALL or NEVERCALL.

This message occurs for three load modules (DSQUXIA, DSQUXIC, and
DSQUXIP). These modules are the sample assembler, COBOL, and PL/I user
exits; ignore these messages.

DSQ22843
Make sure that GDDM is running with IOSYNCH=YES.

If the QMF IVP fails with the message A GDDM graphics printer nickname is
required for printer, there is an error in your GDDM nicknames definition.

The QMF IVP includes a step to print a query, which requires a GDDM
nickname. If you use GDDM nicknames at your installation, change the
PRINT QUERY statement in the IVP procedure to PRINT QUERY (PRINTER =
gddmnickname. The procedure for creating GDDM printer nicknames is

What if It Didn’t Work?

Appendix A. Miscellaneous 723

discussed in Chapter 26, “Enabling Users to Print Objects” on page 423. If you
do not use GDDM nicknames at your installation, replace the PRINT in the
IVP procedure with PRINT PROFILE. QMF prints the profile without using
nicknames.

Warning messages
Warning messages after you start QMF might be caused by:
v Same AUTHID as TSO

If you use the same database AUTHID in TSO and CICS, you can use a
QMF command synonym table that contains TSO commands. Although this
warning does not affect running QMF, such command synonyms are not
available during the CICS session.
To allocate a unique profile for the CICS session and eliminate the warning
message, see the discussion in “Step 23—Tailor the QMF profile” on
page 73.

v Other factors
When a warning message is issued, the cause of the warning is written to
the QMF trace data set, DSQDEBUG. The ddname DSQDEBUG is described
in the job stream that started the CICS region.

What if I did not get an error message?
Sometimes you can tell that there is a problem without receiving an error
message. The most common type of this error is incorrect output. For
example, the QMF Home panel does not read Version 7 Release 2, but instead
points to another release. In this case, make sure your ADMGGMAP ddname
points to the QMF720.DSQMAPn data set. For further details on
troubleshooting in general and incorrect output specifically, see Chapter 32,
“Troubleshooting and Problem Diagnosis” on page 675.

Access to QMF trace data set DSQDEBUG
If you have a warning or system error during QMF initialization, you must
look at the QMF trace data set to understand the reason for the error. In CICS,
the trace data set is described as an extra partition data set. The trace data set
is described in the CICS tables by a DCT TYPE=SDSCI and a DCT
TYPE=EXTRA, as shown in Figure 274 on page 725.

What if It Didn’t Work?

724 Installing and Managing QMF

QMF trace data from all the QMF users in a single CICS region is written to a
single trace data set. Each trace entry contains the terminal ID of the user that
recorded it.

To look at the trace data set while the CICS region is active, you must close
the trace data set using the CICS queue ID DSQD. You can do this using the
CICS-supplied transaction CEMT. When the trace data set is closed, you can
print or browse it from ISPF on TSO. When the trace data set is closed, no
other records can be written by CICS users. QMF continues to operate in this
state without recording trace records. To make the QMF trace available again,
you can use the CICS-supplied transaction CEMT to open the trace data set
using the CICS queue ID DSQD.

QMF for CICS on VSE/ESA and OS/390 Version 7.2 product limitations

Some functions provided by QMF are dependent on underlying system
services and other program products that are available in VM/CMS and
OS/390/TSO, but not in CICS/VSE or CICS on OS/390. ISPF is not available
in CICS. REXX is not available in QMF CICS, even though REXX is available
in VSE/ESA 1.3. The following QMF functions or programs are not supported
in QMF for VSE/ESA Version 7.2. These functions depend on ISPF (as well as
other services in some cases):
v Report calculations
v Conditional formatting
v Column definition
v Procedures with logic

Other products are not available in CICS:
v Repository Manager

TITLE ’DSQDCTSD - QMF SDSCI ENTRIES’
* TRACE DATA SET

DFHDCT TYPE=SDSCI,DSCNAME=DSQDEBUG,
RECFORM=VARBLK,
RECSIZE=121,
BLKSIZE=6050,
TYPEFILE=OUTPUT

*
TITLE ’DSQDCT - CICS DESTINATION CONTROL TABLE’

*
* TRACE DATA SET
*
DSQD DFHDCT TYPE=EXTRA,DESTID=DSQD,DSCNAME=DSQDEBUG,RSL=1

Figure 274. Description, in a CICS table, of the trace data set

What if It Didn’t Work?

Appendix A. Miscellaneous 725

v Document Interface

The EDIT PROC and EDIT QUERY commands are not available in CICS.
However, it is possible to edit procedures and queries using the DISPLAY
command with QMF. Other products are not available in QMF for VSE/ESA
Version 7.2:
v CMS command (VM only)
v TSO command (TSO only)
v CONNECT command (when issued to connect to another database)
v Remote unit of work and distributed unit of work

DB2 on VSE is a server, not a requester. It can be accessed by other
application requesters where QMF is installed, but QMF users on VSE
cannot connect to another application server with the QMF CONNECT
command.

v QMF client/server components
The function of QMF on VSE is synchronized with that of QMF on other
platforms. As a result, some functions that exist in QMF Version 1 are not
supported in QMF for VSE/ESA Version 7.2:
– Command canceling
– IMPORT ISQL queries
– Table plot utility
– QMF VSE Version 1 defaults module for starting QMF
– VSE/POWER support (use methods supplied by CICS or GDDM to print

your objects)
– QMF supplied views
– QMF sample queries from QMF VSE V1. QMF for VSE/ESA

Version 7.2 does not supply sample objects except for tables (sample
queries are not discussed in the documentation). It is not abnormal that,
under some circumstances, a QMF Version 1 report looks slightly
different in Version 7.2. You can make it look the same as it did in
Version 1 with a minor adjustment on the FORM.OPTIONS panel.

What if It Didn’t Work?

726 Installing and Managing QMF

Appendix B. QMF Objects Residing in DB2

The following tables show a DBA the QMF Version 7.2 objects that reside in
the database. The tables are intended to summarize all the database objects
that are needed to run QMF Version 7.2 in the DB2 subsystem. These tables
are not intended as replacements for the Installation jobs outlined in this
book, but merely as a guide if database object recovery is needed.

QMF plans

Table 93 describes the plans shipped with QMF for OS/390.

Table 93. QMF plans

Plan Name Bind job Notes

QMF720 DSQ1BINR General QMF plan

DSQIN720 DSQ1BSQL QMF plan used for installation jobs only

QMF packages

Table 94 describes the package shipped with QMF.

Table 94. QMF Packages

Package Name Bind Job

DSQD* DSQ1BINJ JCL (OS/390)

DSQ2PREP EXEC (VM)

DSQ3EDBI JCLE (VSE)

To a remote server: DSQD* DSQ1BPKG JCL (OS/390 any supported server)

DSQ2BPKB EXEC (VM any supported server)

DSQ3EDBA JCLE (VSE to DB2 iSeries)

DSQ3DEBU JCLE (VSE to DB2 workstation database)

QMF control tables and table spaces on OS/390

Table 95 on page 728 shows the control tables shipped with QMF. For more
information about the control tables, see the Installing and Managing QMF for
OS/390 manual.

© Copyright IBM Corp. 1983, 2002 727

Note: iSeries requires a Collection ″Q″ be created before these QMF DB
storage structures can be created. There are no nodegroups, tablespaces or
dbspaces in iSeries. On VM, DBSPACEs are acquired using DSQ2DBSP EXEC.

Table 95. QMF Objects, Control Tables, Save Data Tables, and Sample Tables

Control table
name

Table space Table space
size (in 1K
units)

Table content Index

Q.PROFILES DSQTSPRO 100
primary, 20
secondary

Contains QMF
profiles that hold
information about
individual users’
access to resources
and data during a
QMF session.

Q.PROFILEX

Q.OBJECT_
DIRECTORY

DSQTSCT1 200
primary, 20
secondary

Contains general
information about
all QMF queries,
forms, and
procedures in the
database.

Q.OBJECT_
DIRECTORY

Q.OBJECT_DATADSQTSCT3 5000
primary,
200
secondary

Contains queries,
forms, and
procedures
represented in an
internal QMF
format.

Q.OBJECT_ DATAX

Q.OBJECT_
REMARKS

DSQTSCT2 200
primary, 20
secondary

Contains
comments that
were saved when
queries, forms, and
procedures were
created or
replaced.

Q.OBJECT_
REMARKS

Q.COMMAND_
SYNONYMS

DSQTSSYN 100
primary, 20
secondary

Contains
information on the
command
synonyms.

Q.COMMAND_
SYNONYMNSX

Q.RESOURCE_
TABLE

DSQTSGOV 100
primary, 20
secondary

Contains resource
control information
passed to the
governor exit
routine.

Q.RESOURCE_
INDEX

QMF Objects Residing in DB2

728 Installing and Managing QMF

Table 95. QMF Objects, Control Tables, Save Data Tables, and Sample
Tables (continued)

Control table
name

Table space Table space
size (in 1K
units)

Table content Index

Q.ERROR_LOG DSQTSLOG 100
primary, 20
secondary

Contains
information on
system , resource,
and ″unexpected
condition″ errors.
This information is
more detailed than
that found in error
messages.

none

Q.DSQ.
RESERVED

DSQTSRDO 100
primary, 20
secondary

Contains
information on
used by QMF
during
installation..
IMPORTANT: DO
NOT MODIFY
THIS TABLE

none

QMF control tables and table spaces on VM

Table 96. QMF Objects, Control Tables, Save Data Tables, and Sample Tables

DBspace name QMF Table name Index

QMF OBJECTS

DSQTSCT1 Q.OBJECT_DIRECTORY Q.OBJECT_DIRECTORYX

DSQTSCT2 Q.OBJECT_REMARKS Q.OBJECT_REMARKSX

DSQTSCT3 Q.OBJECT_DATA Q.OBJECT_DATAX

CONTROL TABLES

DSQTSGOV Q.RESOURCE_TABLE Q.RESOURCE_INDEX

DSQTSLOG Q.ERROR_LOG none

DSQTSPRO Q.PROFILES Q.PROFILEX

DSQTSRDO Q.DSQ_RESERVED none

DSQTSSYN Q.COMMAND_ SYNONYMS Q.COMMAND_ SYNONYMNSX

QMF Objects Residing in DB2

Appendix B. QMF Objects Residing in DB2 729

QMF control tables and table spaces on VSE

Table 97. QMF Objects, Control Tables, Save Data Tables, and Sample Tables

Control table
name

dbspace dbspace
size (in 1K
units)

Table content Index

Q.PROFILES DSQTSPRO 100
primary, 20
secondary

Contains QMF
profiles that hold
information about
individual users’
access to resources
and data during a
QMF session.

Q.PROFILEX

Q.OBJECT_
DIRECTORY

DSQTSCT1 200
primary, 20
secondary

Contains general
information about
all QMF queries,
forms, and
procedures in the
database.

Q.OBJECT_
DIRECTORY

Q.OBJECT_DATA DSQTSCT3 5000
primary,
200
secondary

Contains queries,
forms, and
procedures
represented in an
internal QMF
format.

Q.OBJECT_ DATAX

Q.OBJECT_REMARKSDSQTSCT2 200
primary, 20
secondary

Contains
comments that
were saved when
queries, forms, and
procedures were
created or
replaced.

Q.OBJECT_
REMARKS

Q.RESOURCE_TABLEDSQTSGOV 100
primary, 20
secondary

Contains resource
control information
passed to the
governor exit
routine.

Q.RESOURCE_
INDEX

Q.ERROR_LOG DSQTSLOG 100
primary, 20
secondary

Contains
information on
system , resource,
and ″unexpected
condition″ errors.
This information is
more detailed than
that found in error
messages.

none

QMF Objects Residing in DB2

730 Installing and Managing QMF

Table 97. QMF Objects, Control Tables, Save Data Tables, and Sample
Tables (continued)

Control table
name

dbspace dbspace
size (in 1K
units)

Table content Index

Q.DSQ.
RESERVED

DSQTSRDO 100
primary, 20
secondary

Contains
information on
used by QMF
during
installation..
IMPORTANT: DO
NOT MODIFY
THIS TABLE

none

QMF views

The following table describes the views shipped with QMF.

Table 98. Views shipped with QMF

View Name Table Viewed Operating System

Q.DSQEC_ALIASES SYSIBM.SYSTABLES OS/390

SYSCAT.TABLES workstation

QSYS2.SYSTABLES iSeries

Q.DSQEC_COLS_LDB2 SYSIBM.SYSCOLUMNS OS/390

SYSIBM.SYSTABAUTH OS/390

SYSCAT.COLUMNS workstation

SYSCAT.TABAUTH workstation

QSYS2.SYSCOLUMNS iSeries

Q.DSQEC_COLS_RDB2 SYSIBM.SYSCOLUMNS OS/390

SYSIBM.SYSTABAUTH OS/390

Q.DSQEC_COLS_SQL SYSTEM.SYSCOLUMNS VM

SYSTEM.SYSTABAUTH VM

Q.DSQEC_QMFOBJS Q.OBJECT-DIRECTORY All operating systems

Q.OBJECT_REMARKS All operating systems

Q.DSQEC_TABS_LDB2 SYSIBM.SYSTABAUTH OS/390

SYSIBM.SYSTABLES OS/390

SYSCAT.TABAUTH workstation

SYSCAT.TABLES workstation

QMF Objects Residing in DB2

Appendix B. QMF Objects Residing in DB2 731

Table 98. Views shipped with QMF (continued)

View Name Table Viewed Operating System

QSYS2.SYSTABLES iSeries

Q.DSQEC_TABS_RDB2 SYSIBM.SYSTABAUTH OS/390

SYSIBM.SYSTABLES OS/390

Q.DSQEC_TABS_SQL SYSTEM.SYSCATALOG VM

SYSTEM.SYSTABAUTH VM

Q.RESOURCE_VIEW Q.RESOURCE_TABLE All operating systems

Several of these views are based on DB2 system tables and are used by QMF
for the LIST and DESCRIBE functions.

You can create/recreate all QMF control table views on any supported DB2
database from VM or OS/390:
v On VM, run job DSQ2BVW EXEC.
v On MVS, run job DSQ1BVW JCL.

These jobs will DROP and CREATE all QMF control table views and GRANT
necessary authorities.

On OS/390, if you want to enable QMF control table views for DB2 secondary
authorization IDs, you must run one of these jobs to refresh the QMF views
for that DB2 database.

VSAM clusters for OS/390

Table 99 shows the VSAM clusters shipped with QMF.

Table 99. VSAM clusters

Cluster Name Object that Cluster is Needed for

QMFDSN.DSNDBC.DSQDBCTL.DSQTSCT1.I0001.A001 DSQTSCT1

QMFDSN.DSNDBC.DSQDBCTL.DSQTSCT2.I0001.A001 DSQTSCT2

QMFDSN.DSNDBC.DSQDBCTL.DSQTSCT3.I0001.A001 DSQTSCT3

QMFDSN.DSNDBC.DSQDBCTL.DSQTSPRO.I0001.A001 DSQTSPRO

QMFDSN.DSNDBC.DSQDBCTL.DSQTSLOG.I0001.A001 DSQTSLOG

QMFDSN.DSNDBC.DSQDBCTL.DSQTSGOV.I0001.A001 DSQTSGOV

QMFDSN.DSNDBC.DSQDBCTL.DSQTSSYN.I0001.A001 DSQTSSYN

QMFDSN.DSNDBC.DSQDBCTL.OBJECTRD.I0001.A001 Q.OBJECT_DIRECTORYX

QMFDSN.DSNDBC.DSQDBCTL.OBJECTRR.I0001.A001 Q.OBJECT_REMARKSX

QMF Objects Residing in DB2

732 Installing and Managing QMF

Table 99. VSAM clusters (continued)

Cluster Name Object that Cluster is Needed for

QMFDSN.DSNDBC.DSQDBCTL.OBJECTRO.I0001.A001 Q.OBJECT_OBJDATAX

QMFDSN.DSNDBC.DSQDBCTL.PROFILEX.I0001.A001 Q.PROFILEX

QMFDSN.DSNDBC.DSQDBCTL.COMMANDR.I0001.A001 Q.COMMAND_SYNONYMSX

QMF sample tables for OS/390

Table 100 describes the sample tables.

Table 100. Sample tables

Table Contains information about:

Q.ORG The company organization

Q.STAFF The company personnel

Q.APPLICANT New candidates for hire

Q.PRODUCTS The company’s products

Q.SALES Sales and commissions

Q.PROJECT Projects undertaken, by department

Q.INTERVIEW Interviews of new hires

Q.SUPPLIER Vendor information

Q.PARTS Product parts data

QMF Objects Residing in DB2

Appendix B. QMF Objects Residing in DB2 733

QMF Objects Residing in DB2

734 Installing and Managing QMF

Appendix C. QMF User Defined Functions

APPL_AUTHNAMES

The syntax description for the user defined function table is:

^^ APPL_AUTHNAMES(
adjuncts

) ^_

^^ RETURNS TABLE(
authname
namekind

) ^_

The APPL_AUTHNAMES function returns the DB2 Authorization IDs for the
current application process. A row is returned for each authorization name.
The schema name is Q.

adjuncts VARCHAR(255)

A string of authorization names. Specify each authorization name as an
identifier or a delimited identifier. Separate each authorization name by one or
more blanks:
’SALES "DEPT A1" PAYROLL’

These three names would be added to the output of the function should they
represent distinct values not already defined as authorization IDs for the
current process.

The result of the function is a DB2 table with the following columns:
v authname CHARACTER (8)

The name for an authorization ID of the current process.
v namekind CHARACTER(1)

A classification code for the name value in AUTHNAME:
– 1 Primary authorization ID or user name
– 2 Secondary authorization ID or group name
– 3 Current authorization ID

This applies only when the CURRENT SQLID is neither the primary ID
nor a secondary ID of the current process.

– 9 Adjunct name value

© Copyright IBM Corp. 1983, 2002 735

|

|

||||||||||||||||

|

||||||||||||||||||||

|

|
|
|

|

|
|
|

|

|
|
|

|

|

|

|

|

|

|

|

|
|

|

This applies only when the ADJUNCT parameter is used and the
identifiers it specifies are not authorization IDs of the current process.

CALL DSQAB1E

The syntax description for the stored procedure interface is:

^^ CALL DSQABA1E (userid , groupids , sqlid) ^_

The DSQAB1E stored procedure returns the DB2 authorization IDs for the
currently running process. The schema name is Q.

userid VARCHAR(130)

The primary authorization ID is returned in the parameter.

groupids VARCHAR (32672)

The secondary authorization IDs are returned in this parameter.

Each authorization name is converted from a varchar data format and into a
single string structure. The calling program must interpret the content of the
character string to obtain the individual authorization names.

sqlid VARCHAR (130)

The current SQL authorization ID is returned in this parameter.

DSQABA1E

The syntax description for the diagnostic user defined function is:

^^ DSQABA1E () ^_

The DSQABA1E function returns diagnostic information that can assist IBM
Service with problem diagnosis. The schema name is Q.

The result of the function is a character string with a datatype of VARCHAR
and an actual length not greater than 5,300 bytes. This string is suitable for
formatting in a QMF report with column setting of WIDTH = 53 and an EDIT
code of CW.

QMF Functions that Require Specific Support

736 Installing and Managing QMF

|
|

|
|

|

|||||||||||||||||||||||

|
|
|

|

|

|

|

|
|
|

|

|

|
|

|

|||||||||||

|

|
|

|
|
|
|

Appendix D. Migration and Fallback between QMF
Releases

Note: Skip this section if you are installing QMF for the first time.

If your installation was using an earlier release of QMF before it installed
Version 7 Release 2, your users might still be operating an earlier release of
QMF. You need to help them operate the new release. You might need to:
v Grant them access to the QMF Version 7.2 application plan.
v Provide them with an appropriate QMF profile.
v Make objects created earlier (queries and forms, for example) available for

QMF sessions under the new release.

What is meant by migration?

Migration is the process of carrying out the steps described in the previous
section. The migration is essentially the same when moving from the
following QMF releases:
v Version 2 Release 2
v Version 2 Release 3
v Version 2 Release 4
v Version 3 Release 1
v Version 3 Release 1 Modification 1
v Version 3 Release 2

Note: QMF for VSE/ESA can only be migrated from Version 3 Release 1
Modification 1 to QMF Version 7.2.

This appendix assumes that QMF Version 7.2 was installed according to the
instructions in this book. If it was not, or if some of the settings have been
changed, parts of the discussion might not apply.

Multiple releases of QMF

Multiple releases of QMF can access one DB2 database, and all releases use
the same QMF control tables and QMF objects.

Granting access to the QMF V7R2 application plan and packages

This procedure is the same for all the earlier releases of QMF. If the grants are
still in effect, skip this section:

© Copyright IBM Corp. 1983, 2002 737

If during QMF installation, access to the QMF application plan (QMF720) was
not granted to PUBLIC or to the user being migrated, run the following
queries. (You need EXECUTE privilege on the QMF plan and packages with
the GRANT option.)
GRANT EXECUTE ON PLAN QMF720 to authid

where authid is the authorization ID of the user being migrated. If you
substitute PUBLIC for authid, you give everyone EXECUTE authority on the
plan and the package.

DB2 subsystems and migration

When you migrate users, the new and old versions of QMF might be on the
same DB2 subsystem or on two different subsystems.
v If the two releases of QMF are on the same DB2 subsystem, read

“Migrating QMF on the Same DB2 subsystem”.
v If the two releases of QMF are not on the same DB2 subsystem, read

“Migrating QMF across different DB2 subsystems” on page 740.

Migrating QMF on the Same DB2 subsystem
Read this section to migrate when both releases of QMF are on the same DB2
subsystem.

Providing a QMF profile on OS/390
At the start of a QMF session, a user’s QMF profile comes from some row of
the Q.PROFILES table. With both releases of QMF in the same DB2
subsystem, the two releases use the same Q.PROFILES table.

If a user has a primary authorization ID different from the TSO logon ID, the
DSQSPRID parameter should have a value of TSOID when you start QMF.
Otherwise, insert a user row in Q.PROFILES with CREATOR set to the
primary authorization ID.

For QMF Version 3.1.1 Users: There are no new columns in the Q.PROFILES
table if you are migrating from Version 3.1.1.

For QMF Version 3.1 Users: There are no new columns in the Q.PROFILES
table if you are migrating from Version 3.1.

For QMF Version 2.4 Users: The Q.PROFILES table now has one more
column, ENVIRONMENT, which carries a profile parameter that applies to
only the new release. This column has a single default value for its entry, as
shown in Table 101 on page 739. The new column has no effect on the
execution of Version 2.4; the new column is invisible to the Version 3 releases.

Migration between QMF OS/390 Releases

738 Installing and Managing QMF

Important: The new column is not invisible unless QMF Version 2.4 users
have installed the fix for APAR PL77029.

For QMF Version 2.2 and Version 2.3 Users: The Q.PROFILES table now has
two more columns, MODEL and ENVIRONMENT, which carry profile
parameters that apply to only the new release. These columns have single
default values for their entries, as shown in Table 101. The two new columns
have no effect on the execution of QMF Version 2.2 and Version 2.3; the new
columns are invisible to these releases.

Important: The new columns are not invisible unless users have installed the
fix for APAR PL77028.

MODEL and ENVIRONMENT columns added to existing rows contain
NULLS. Through SET or SAVE PROFILE, users can supply only the MODEL
column. You need to assign the ENVIRONMENT column.

Table 101. Columns added to the Version 2.3 profiles table

Column Name Purpose

MODEL Identifies each user’s conceptual view of the data that Prompted
Query utilizes to access the data. Default value is REL. .

ENVIRONMENT Identifies the execution environment of the QMF session.

Migrating Q.OBJECT__DIRECTORY
Version 3.2 added three new columns to the Q.OBJECT__DIRECTORY table. If
you are migrating from an older release of QMF, these three columns have no
effect on the previous tables. Table 102 shows the three new columns.

Table 102. Columns added to the Version 3.2 Q.OBJECT__DIRECTORY table

Column name Data type Length
(bytes)

Nulls
allowed?

Function/Values

CREATED TIMESTAMP Yes Shows the timestamp value for when
an object was created. The value is
recorded after SAVE or IMPORT
commands.

MODIFIED TIMESTAMP Yes Shows the timestamp value for when
an object was last modified. The value
is recorded after SAVE or IMPORT
commands.

LAST__USED DATE Yes Shows the date value for when an
object was last used. The value is
updated only once a day.

Migration between QMF OS/390 Releases

Appendix D. Migration and Fallback between QMF Releases 739

Migrating DPRE in ISPF from Version 2.4
If you are migrating from QMF Version 2.4 to QMF Version 7.2 and you plan
to run both QMF Version 2.4 and Version 7.2 on the same database, you need
to use the QMF Version 2.4 version of DPRE for both versions of QMF. To
provide the QMF Version 2.4 version after installing QMF Version 7.2:
1. Rename or save the QMF Version 7.2 version of DSQABR13 for use when

upgrading DPRE to Version 7 level.
2. Move the following CLISTs from QMF Version 2.4 library

QMF240.DSQCLSTE to the QMF Version 7.2 library QMF720.SDSQCLTE:
DSQABR11
DSQABR12
DSQABR13

3. From a QMF Version 2.4 session that has an authorization ID of Q,
IMPORT and save the Version 2.4 version of QMF procedure
Q.DSQAER1P. To do this, issue the QMF command:
IMPORT PROC Q.DSQAER1P FROM ’QMF240.DSQSAMPE(DSQAER1P)’

When you are no longer using QMF Version 2.4, restore DPRE to the Version
7.2 level as follows:
1. Restore the QMF Version 7.2 version of DSQABR13 that was saved or

renamed in step 1 above to QMF Version 7.2 library QMF720.SDSQCLTE
2. From a QMF Version 7.2 session that has an authorization ID of Q,

IMPORT and save the Version 7.2 version of QMF procedure
Q.DSQAER1P. To do this issue the QMF command:
IMPORT PROC Q.DSQAER1P FROM ’QMF720.SDSQSAPE(DSQAER1P)’

Making objects from the earlier release available under QMF Version 7.2
If both releases of QMF are on the same DB2 subsystem, all the DB2 objects
(tables and views, for example), are available under QMF Version 7.2 if they
are available under the earlier release. All the queries, forms, and procedures
are also available, but some might be unusable under QMF Version 7.2. This
topic is discussed in “Migrating QMF objects” on page 743.

Migrating QMF across different DB2 subsystems
This section describes how to migrate when both releases of QMF are in
different DB2 subsystems.

When the DB2 subsystems are different, migration is complicated by the fact
that QMF objects in the database for the earlier QMF release are not available
to Version 7.2 users. Nor are these objects in the QMF Version 7.2 database
available to users of the earlier QMF release.

The tables and views required by QMF must be made available in the new
subsystem.

Migration between QMF OS/390 Releases

740 Installing and Managing QMF

Providing a QMF profile
The installation process creates a new Q.PROFILES table when QMF Version
7.2 is in a different DB2 subsystem.

For QMF Version 3.1.1 users: There are no new columns in the Q.PROFILES
table if you are migrating from Version 3.1.1.

For QMF Version 3.1 users: There are no new columns in the Q.PROFILES
table if you are migrating from Version 3.1.

For QMF Version 2.4 users: The new Q.PROFILES table has an additional
column, ENVIRONMENT.

For QMF version Version 2.2 and Version 2.3 users: The new Q.PROFILES
table has two additional columns, MODEL and ENVIRONMENT.

For QMF Version 2.4, Version 2.3, or Version 2.2 users: The newly created
table contains a single SYSTEM row. The values assigned to the columns
appear in Table 103.

Table 103. Installation-supplied SYSTEM row values

Column Value

CREATOR SYSTEM

CASE UPPER

DECOPT PERIOD

CONFIRM YES

WIDTH 132

LENGTH 60

LANGUAGE SQL

SPACE DSQDBDEF.DSQTSDEF

TRACE NONE

PRINTER blank

TRANSLATION ENGLISH

PFKEYS Zero-length string

SYNONYMS Q.COMMAND__SYNONYMS

RESOURCE__GROUP SYSTEM

MODEL REL

ENVIRONMENT Null

Migration between QMF OS/390 Releases

Appendix D. Migration and Fallback between QMF Releases 741

If CICS is installed, there is an additional SYSTEM row, in which SYNONYMS
is set to null and ENVIRONMENT is set to CICS.

With only the SYSTEM row in the table, users begin their Version 7.2 sessions
with the QMF profile provided by this row. This profile can differ from
profiles on earlier QMF releases. You can recreate the earlier profiles with a
series of INSERT queries, but users can also do this for themselves with SET
or SAVE PROFILE.

Users cannot, however, change the values of the PFKEYS, SYNONYMS, and
RESOURCE__GROUP parameters with SET or SAVE PROFILE. You must do
this with an UPDATE query on the Q.PROFILES table. For an example of this,
see “Activating new function key definitions” on page 491.

The PFKEYS, SYNONYMS, and RESOURCE__GROUP parameters play key
roles in customizing the QMF environment. For a brief description of each, see
Table 101 on page 739.

Making objects from the earlier release available under QMF Version 7.2
DB2 tables and QMF objects can be exported from a subsystem under an
earlier QMF release and then imported under QMF Version 7.2.

To migrate DB2 tables, any user with the proper DB2 authority can:
1. Unload the tables using a DB2-supplied application program, DSNTIAUL.

For more on this program, see the DB2 UDB for OS390 Administration
Guide.

2. Load the unloaded tables into the Version 7.2 DB2 subsystem using the
DB2 loader. For details on using the loader see the DB2 UDB for OS390
Administration Guide

.

If you have DXT installed, you can also use DXT for unloading and loading
tables. DXT is an IBM licensed program product. For more information on
DXT, see the Data Extract: General Information manual.

If the two versions of QMF are on different OS/390 systems, use the available
networking facilities to send the exported objects and unloaded tables to the
system containing QMF Version 7.2.

To migrate QMF queries, forms, procedures, and applications, make sure you
read the following section, “Migrating QMF objects” on page 743.

If you have QMF High Performance Option (HPO) installed, you can use the
QMF HPO Object Manager for assistance with the migration of QMF objects
from one DB2 subsystem to another.

Migration between QMF OS/390 Releases

742 Installing and Managing QMF

For more information on Data Refresher or the QMF High Performance
Option, see the web site at: http://www.ibm.com/software/data.

Views and synonyms
If you use QMF to export tables from a database and import them to a
different database, you must create any views, indexes, synonyms, and
authorizations on that table at the new database.

Migrating QMF objects

This section describes migration considerations for QMF objects. Most objects
created under earlier releases of QMF can be used under QMF Version 7.2.
(For information about migrating back to an earlier release of QMF, see
“Fallback” on page 749.)

Queries and forms
All queries and forms created under earlier releases of QMF can be used
under QMF Version 7.2.

Procedures
Procedure objects that were saved or exported in Version 2.4 can be displayed
or imported under Version 7.2, and they can be run if the abbreviations for
commands and options (if any are used) are valid in Version 7.2. Version 2.4
procedures containing commands or applications requiring ISPF run only if
QMF Version 7.2 is started as an ISPF dialog. Procedures written in English
and saved or exported in QMF Version 2.4 can be imported and run without
modification in a Version 7.2 NLF session (a QMF session where English is
not the presiding language) if the command language global variable is set to
accept English commands.

Some procedures from earlier releases will not work properly if they issue
commands with verbs that are also verbs for installation-defined commands.
To ensure this does not happen under QMF Version 7.2, users can add QMF
before all commands. This identifies these commands as standard QMF
commands instead of installation-defined commands. It lets these procedures
run under QMF Version 7.2 (or any QMF Version 2 or Version 3 release). For
more information on installation-defined commands, read Chapter 27,
“Customizing QMF Commands” on page 457.

Migrating applications

Version 2.4 applications containing commands requiring ISPF run only if
Version 7.2 is started as an ISPF dialog. Applications that issue commands
written in English and that run with Version 2.4 can be run without
modification in a Version 7.2 NLF session (a QMF session where English is
not the presiding language) if the command language global variable has been
set to accept English commands.

Migration between QMF OS/390 Releases

Appendix D. Migration and Fallback between QMF Releases 743

Callable interface considerations
If you want to use the LIBDEF function in your QMF applications that were
link edited prior to QMF Version 7.2 and that use the callable interface, you
must re-link edit your application using the QMF Version 7.2 interface
module.

Form application migration aid
If your applications written for earlier versions of QMF refer to break field
IDs, you might need to use the form application migration aid to use those
applications with QMF Version 7.2.

With the form application migration aid, applications that contain Version 2.4
break numbers can be used with QMF Version 7.2. The form application
migration aid does not allow you to export QMF Version 3 FORMs and use
them in QMF Version 2.4 or earlier releases.

This aid, shipped with QMF Version 7.2, changes the break numbers in a
version 7 form back to those used in early versions. Because the changes to
the break field IDs are enough to keep applications from working properly,
the object level field in the header record has been changed from 3 to 4. For
more information about header records, see the Developing QMF Applications
manual.

The form application migration aid runs when a user or application issues the
EXPORT FORM command, which automatically triggers a command synonym
for the aid. Because it requires REXX execs, the REXX interpreter must be
available and QMF must be operating as an ISPF dialog.

Encourage application developers to:
1. Change applications that reference the break fields of the old numbering

scheme to the new field numbers used in QMF Version 3.
2. Remove the command synonym for the migration aid from command

synonym tables when all their applications are changed.

To set up the migration aid, run the following SQL INSERT query on the
QMF command synonyms table, Q.COMMAND__SYNONYMS, and any other
synonym tables that use the applications requiring the migration aid.
INSERT INTO Q.COMMAND__SYNONYMS (VERB, OBJECT, SYNONYM__DEFINITION, REMARKS)

VALUES (’EXPORT’, ’FORM’, ’TSO DSQAEF0A’, ’Version 7.2 Form Migration Aid’)

Delete this entry from your command synonyms tables as soon as you have
adjusted your applications to conform to the new externalized form.

Delete this entry with a query such as the following:

Migration between QMF OS/390 Releases

744 Installing and Managing QMF

DELETE FROM Q.COMMAND__SYNONYMS
WHERE VERB=’EXPORT’
AND OBJECT=’FORM’
AND SYNONYM__DEFINITION=’TSO DSQAEF0A’

In the previous INSERT and DELETE queries, the keywords EXPORT, FORM,
and DSQAEF0A are subject to NLS translation, so this query must be
translated accordingly.

Running QMF under ISPF on OS/390
With QMF Version 7.2, review how you allocate resources for a QMF session,
and how you start it. You can run QMF Version 7.2 and a previous version of
QMF from the same ISPF session with ISPF LIBDEF. You cannot however, run
more than one QMF session at a time or have more than one set of QMF
libraries allocated at a time.

You can also use different versions of the database without ending your ISPF
session by allocating the your DB2 libraries to DSQLLIB. Then use ISPF
LIBDEF to make the libraries that you allocated to DSQLLIB available to ISPF.

With this version of QMF running under ISPF, QMF first looks for a program
from DSQLLIB. If the program is not found in DSQLLIB or DSQLLIB is not
allocated, QMF looks for a program as it has in past releases.

Other migration considerations

This section describes other migration considerations for QMF, including
special considerations for the environment that is being used for QMF.

31-digit decimal support
If you are using QMF Version 3.1 (or later) and are operating in DB2 Version
2.3 (or higher), you have 31-digit decimal support. If you migrate from an
earlier version of QMF, or from an earlier database version, you might want
to determine which tables are impacted by 31-digit decimal support. The
following query retrieves a list of the user tables that might be impacted by
the DB2 tables:
SELECT DISTINCT(TBNAME)

FROM SYSIBM.SYSCOLUMNS
WHERE COLTYPE IN (’INTEGER’, ’SMALLINT’, ’FLOAT’,

’DECIMAL’, ’DATE’, ’TIME’, ’TIMESTAMP’)
ORDER BY TBNAME

Governor
If a user wants to use the V2.4 IBM-supplied governor with QMF Version 3
and the Version 2.4 governor sets XCBPANEL to DXYEMU00 or DXYEMU01,
the user must do one of the following:
v If the user wants to use the Version 2.4 governor and to run the QMF

Version 3 product without ISPF, the user must remove statements that set

Migration between QMF OS/390 Releases

Appendix D. Migration and Fallback between QMF Releases 745

XCBPANEL from the governor exit. (QMF Version 3 provides a window
help panel as the default instead of an ISPF panel.)

v If the user wants to use an unaltered version of the IBM-supplied governor
shipped with QMF V2.4, the user should use the QMF governor shipped
with QMF Version 3, and should add ISPF panels DXYEMU00 and
DXYEMU01 to the QMF Version 3 ISPF panel library.

Governor in CICS
If you are using a modified or replacement version of the QMF Version 3.1
governor, you need to change the interface. The governor interface for Version
3.1.1 and later was changed to pass standard CICS parameters to the governor
in the DFHCOMMA area, instead of through the first and second parameters.

If you plan to use the IBM-supplied governor, replace it with the new version.

If you have modified the IBM-supplied governor, or have re-written it, you
must make a minor change to the way you access the address of the
DXEGOVA and DXEXCBA control information. The governor continues to
function as before, and its contents are unchanged.

User edit routine in CICS
The user edit routine, as documented in QMF Version 3.1 APAR PN07713, is
part of the base QMF Version 3.1.1 and later products. If you created your
user edit exit module DSQUECIC following the instructions in PN07713, it
can be used without change in QMF Version 3.1.1 or later.

User edit routine in TSO and native OS/390 batch
For QMF Version 7.2, you need to relink your user edit code. For more
information about relinking your user edit code, see Chapter 29, “Creating
Your Own Edit Codes for QMF Forms” on page 497.

Callable interface in CICS
If you are migrating from QMF Version 3.1 or later, the interface between the
QMF-supplied function call and the main QMF program has changed from a
CALL interface to an EXEC CICS LINK interface. The new interface provides
better isolation from the user program and the QMF product. Because the
interface has changed, it is necessary to relink-edit your programs that use the
callable interface.

Printing in CICS
In QMF Version 3.1, when no printer is specified on the PRINT command,
output is held in CICS auxiliary temporary storage, replacing the previous
report. In Version 3.2 and later, the report is not replaced. If CICS auxiliary
temporary storage already exists, QMF appends the report to the existing
temporary storage queue.

Migration between QMF OS/390 Releases

746 Installing and Managing QMF

Export/import support for CICS on OS/390
QMF V3.1.1 support for export/import in the CICS/MVS environment uses
TSO file support. This level of support is not recommended when running in
a CICS environment. In fact, some error conditions can cause the entire CICS
region to abnormally terminate. In QMF Version 3.2 and later, this problem is
corrected; TSO file system support is replaced by support for CICS temporary
or transient data.

When running QMF in CICS, you must set the execution key of the QMF
module DSQCBST to CICS (EXECkey=CICS) if you plan to use the QMF
EXPORT or IMPORT commands and CICS storage protection (SIT
STGPROT=YES) is being used. This avoids abnormal terminations
(ABENDASRA or ABEND0C4) in IGG0191I conditions.

Migration considerations and support
QMF provides a migration capability that allows you to choose between the
recommended use of CICS temporary storage or transient data queues and
the volatile use of TSO data sets. After QMF Version 7.2 is installed, the
default use of CICS temporary storage and transient data queues, is active. If
you do not want to use the TSO data sets, there are no migration
considerations.

If you do want to use the TSO data sets, then you must disable the QMF
export/import control module, DSQCTLXI. To do this, use the CICS-supplied
CEMT transaction. For example:
CEMT SET PROGRAM(DSQCTLXI) DISABLE

DSQCTLXI can also be disabled by removing it from the CICS CSD or PCT
table. After you disable DSQCTLXI, all QMF sessions running in CICS use the
TSO data set support for export and import commands.

After support for CICS temporary storage or transient data queues is disabled,
you can reactivate that support by using CEMT or by adding a program entry
to the CICS CSD or PCT table, if it was removed. To use CEMT, enter the
following command:
CEMT SET PROGRAM(DSQCTLXI) ENABLE

Migrating from version 2
QMF Version 3 contains a new DD statement and dataset, DSQPNLE, and
ISPTLIB is no longer used.

The message tool is no longer shipped with the product. To see a message
help panel, issue the following command on the QMF command line:
HELP msgno

For more information on messages, see the QMF Messages and Codes manual .

Migration between QMF OS/390 Releases

Appendix D. Migration and Fallback between QMF Releases 747

The QMF demonstration application for function key customization is no
longer shipped with QMF.

The QMF ISPF panel library data set, SDSQPLBE (formerly DSQPLIBE), has
decreased in size of members from about 2500 members to about 70 members
due to QMF’s conversion from ISPF panels to GDDM mapped panels.

The following views, available in QMF Version 2, do not exist in Version 3:
v Q.AUTH__LIST
v Q.COLUMN__LIST
v Q.TABLE__LIST
v Q.QUERY__LIST
v Q.PROC__LIST
v Q.FORM__LIST
v Q.QMFTABLE__LIST

For information about how to obtain these object lists in Version 3, see
“Customizing a user’s database object list” on page 366.

Global variables and the governor on VM

These are the changes made to the global variables and the governor exit
control block for QMF Version 7.2:
v Global variables

DSQA0_QMF_RELEASE is now set to ’13’
DSQA0_QMF_VER_RELS is now set to ’QMF V7R2.0’

v Governor exit control block DXEXCBA fields
XCBRELN is now set to ’13’
XCBQMF is now set to ’QMF V7R2.0’

Use of the invocation procedure
In the current release, if you start QMF with a value for the DSQSRUN
program parameter, the specified invocation procedure is run at the initial
location (the first server). If you change locations during the QMF session, the
invocation procedure is not rerun. Instead, the following QMF session, the
invocation procedure is not rerun. Instead, the following message is displayed
on the Home Panel:

“Your invocation procedure was not rerun due to location differences ”

This remains until:
v You connect to the initial location.
v You set the global variable DSQEC_RERUN_IPROC to 0.
v You issue the EXIT command.

Migration between QMF OS/390 Releases

748 Installing and Managing QMF

Q.VPROFILE
In previous releases, Q.VPROFILE was created when you installed QMF into a
database. This view is no longer created during QMF installation. If you are
|migrating to QMF Version 7.2 from an existing release of QMF that is
already installed into that database, the Q.VPROFILE view remains intact; that
is, QMF does not drop it during the migration process. If you have any
applications that depend on Q.VPROFILE, and you are installing QMF
Version 7.2 into a new database, you must create Q.VPROFILE or use your
own view in the application. If you need to use Q.VPROFILE, use the
following statement to create it:

CREATE VIEW Q.VPROFILE AS SELECT *FROM Q.PROFILES WHERE CREATOR =
’SYSTEM’

Fallback

Fallback is the process of migrating a user back to the earlier release of QMF.
Cleanup is the process of removing the earlier release from OS/390. Cleanup
is described in “Step 36—Clean up after install” on page 92 and is not
discussed here.

Fallback is not necessary unless the two versions of QMF are running from
the same DB2 subsystem.

What do we mean by fallback?
Fallback is the process of migrating users from QMF Version 7.2 to an earlier
release. If you are interested only in fallback, turn to “Fallback”. Cleanup is
described in “Step 36—Clean up after install” on page 92 and is not discussed
here.

Version 3 (and later) forms and the forms for earlier QMF versions have
different internal representations. When one of the earlier forms is converted
to a Version 3 (or later) form, it no longer can be used with an earlier version
of QMF.

Applications developed to work with QMF Version 2.4 (or earlier) forms
might also not work if they reference the object level in the header record or
break field numbers.

To prevent users from accidentally converting a version 2 or earlier form to a
Version 7.2 form (a mistake a user might make by replacing the old form
while running under QMF Version 7.2), you can save both the earlier version
and a Version 7.2 version with different names until it is clear that one version
is no longer needed. For example, the following commands convert work area
forms to Version 7.2 forms:

Migration between QMF OS/390 Releases

Appendix D. Migration and Fallback between QMF Releases 749

SAVE FORM AS FORM1
EXPORT FORM TO FORM2

If your installation falls back to the earlier QMF release, urge your users to
recreate their Version 7.2 objects under the earlier release before QMF Version
7.2 is withdrawn.

Note: REXX is not supported in CICS.

Re-establishing the earlier profiles
The ENVIRONMENT column, absent in QMF Version 2.4, does not affect the
Version 7.2 profile. The same holds true for all the columns added since
Version 2.2.

Note: If logon IDs are different from primary authorization IDs and the
CREATOR values were updated to use the primary authorization IDs, then
they must be restored to the logon IDs as part of fallback

Using QMF Version 7.2 objects under earlier releases
This is largely preventive. While there is still a chance for fallback, make
certain that your users understand the compatibility rules given previously in
this appendix. If you have not looked at these rules already, read “Migrating
QMF objects” on page 743.

If you fall back to the earlier QMF release, some objects created under QMF
Version 7.2 cannot be used in the earlier environment. Consider this when
planning for a possible fallback. The following list contains the restrictions
that apply when you use some Version 7.2 objects in earlier releases.
v Forms

Form objects that are saved or exported from Version 7.2, and displayed or
imported to earlier releases of QMF, can be expected to execute normally.
However, form objects saved or exported from Version 7.2 cannot be used
in Version 2.4 or earlier.
Before they can be used in earlier applications, forms exported from Version
7.2 that use break field numbers (or the object level in the header record)
require the Form Application Migration Aid, as described in “Form
application migration aid” on page 744.

v Queries
Some restrictions apply to Version 7.2 queries for fallback to earlier releases:
– SQL queries: You can export SQL queries from Version and import them

on earlier releases, and they execute normally. However, SQL queries
saved on Version 7.2 cannot be used in Version 2.4 or earlier.

– Prompted queries: You can display and import Version 7.2 prompted
queries in earlier releases provided they do not contain variables, or
expressions with more than the old 55 or 65 character limit.

Migration between QMF OS/390 Releases

750 Installing and Managing QMF

– QBE queries: Queries created with QBE (Query-by-Example) saved or
exported in Version 7.2 can be displayed or imported in earlier releases
and execute normally.

v Procedures
Procedure objects exported from Version 7.2 can be imported into earlier
releases, and they can be run if the new QMF commands or command
syntax are not used. Procedure objects saved with Version 7.2 cannot be
displayed with earlier releases unless you first export them from Version 7.2
and import them into the earlier release. Procedures with logic, that is,
procedures that contain REXX logic, cannot be displayed or imported in
releases earlier than Version 3.

v Procedures or applications containing QMF commands that cannot be run
under the earlier release
These commands might fail to run for a number of reasons. See “Using
QMF Version 7.2 commands under earlier releases” for details.

v Applications that call the callable interface
Applications call the callable interface in their CLISTs and programs to call
QMF. The callable interface was introduced for Version 2.4, so applications
running with earlier versions of QMF cannot use it.

For specific differences between an earlier QMF release and QMF Version 7.2,
compare the two releases of the QMF Reference manual.

Using QMF Version 7.2 commands under earlier releases
Version 7.2 procedures and applications might run incorrectly under an earlier
QMF release because they contain commands that the earlier release cannot
run. Some commands:
v Do not exist in the earlier release.
v Contain options that operate differently in the earlier release. For example,

the DRAW command has the same syntax as before, but now produces
different results. All keywords now have double quotes; therefore, the users
no longer have to add the quotes, and any tools used to provide double
quotes are no longer necessary.

Migration between QMF OS/390 Releases

Appendix D. Migration and Fallback between QMF Releases 751

Migration between QMF OS/390 Releases

752 Installing and Managing QMF

Appendix E. How QMF and GDDM Programs are Defined to
CICS

QMF for OS/390 and QMF for VSE/ESA provide the jobs necessary to define
QMF programs to CICS and load GDDM definitions and chart formats for
QMF panels. Use this section if you need to know how QMF programs are
defined and how GDDM definitions are loaded during QMF installation.

How QMF programs are defined to CICS/MVS and CICS/VSE

During QMF installation, the default transaction ID QMFn is defined for QMF,
where n is a national language identifier from Table 1 on page xiv. The
transaction ID is defined in either the CICS program control table (PCT) or the
system definition (CSD) file. If you need to, you can change this default
transaction ID:
v To update the CSD, see the CICS/MVS Resource Definition (Online)
v To update the PCT, see the CICS/MVS Resource Definition (Macro)
v To update the CSD, see the CICS/VSE Resource Definition (Online)
v To update the PCT, see the CICS/VSE Resource Definition (Macro)

Resident QMF programs
During QMF installation, the following programs are defined as resident in
CICS:

DSQQMF
DSQQMFn
DSQCBST
DSQCnLTT
DSQCnBLT
DSQUEGV3
DSQUECIC

CICS treats programs with RMODE(ANY) as permanently resident because of
the large amount of virtual storage available above the 16 MB line. Programs
defined as resident are loaded during CICS system initialization. Nonresident
programs are loaded on the first reference to the program.

The first QMF transaction to start causes certain GDDM programs to be
loaded. See “How nonresident GDDM programs affect QMF” on page 756 for
more information.

How nonresident programs affect performance
If several users use QMF, removing QMF programs from resident storage
might affect QMF and CICS performance, because QMF must be loaded each

© Copyright IBM Corp. 1983, 2002 753

time a user starts the program. However, if the needs of your installation
require that you remove these programs from resident storage, change the
definition for QMF programs from resident to nonresident.

You can specify RESIDENT=NO on the CEDA DEFINE PROGRAM command
to interactively change the program definition in the CSD, or specify RES=NO
on the DFHPPT TYPE=ENTRY macro to change the value in the program
processing table (PPT).

For more information on the performance implications of nonresident
programs, see the CICS/MVS Performance Guide or the CICS/VSE Performance
Guide .

Loading QMF to the 31-Bit shared virtual area on VSE

The default installation loads QMF to an individual CICS partition.
Depending on the configuration of your system, you might consider loading
QMF programs to the 31-bit VSE shared virtual area (SVA).

If several CICS partitions run QMF, consider loading QMF to the SVA rather
than to the resident area in the individual CICS partitions where QMF is
running. Loading QMF to the SVA:
v Allows two or more CICS systems in the same processor to share QMF

programs. The CICS systems do not have to be using intercommunication
facilities to benefit from sharing programs.

v Automatically protects the programs from being overwritten by other
programs, such as CICS applications. This integrity also applies to a single
CICS system within the processor.

If you decide to load programs to the SVA, you need to use the SVA
command to allocate space in the SVA for QMF modules and their system
directory list (SDL) entries at IPL time. The space you allocate is in addition to
any required for other phases in the SVA.

The following QMF base programs can be loaded to the SVA; they take
approximately 2.8 MB of space:
DSQQMF

Main QMF program
DSQCBST

Driver for the callable interface
DSQQMFE

Identifies the environment and language being started
DSQCELTT

Holds messages and constants for QMF objects and screen displays

How QMF and GDDM Programs Are Defined to CICS

754 Installing and Managing QMF

DSQCEBLT
Holds command definitions and permits bilingual support

DSQUEGV3
Required for the governor exit routine (discussed in Chapter 14)

DSQUECIC
Required for user-written edit exit routines (discussed in Chapter 13)

DSQUOPTS
Required for user-written edit exit routines

If you are using an NLF: You can also load the following QMF NLF
programs to the SVA. These programs require a total of approximately 300 KB
in the SVA, per NLF. The n symbol represents an NLID from table xx on page
yy.
v DSQQMFn

v DSQCnLTT
v DSQCnBLT
v DSQUnGV3

To load programs into the SVA, issue a SE SDL command from the
background (BG) partition, naming the selected programs. You can issue this
command at any time after IPL, but you must issue it before bringing up any
CICS system that uses programs from the SVA.

VSE loads SVA phases from the libraries of the BG partition library search
chain. You need to specify the QMF library in the SEARCH operand of the
LIBDEF statement for the BG partition. shows an example of a load list for
QMF programs:

// JOB CICS SVALOAD
* CICS/VSE/EDA SVA LOAD LIST
* LIBDEF statement for the QMF sublibrary
SET SDL
DSQQMFE,SVA
DSQCBST,SVA
DSQCELTT,SVA

. . .

. . .

. . .
/*
/&

Figure 275. Loading QMF programs to the SVA

How QMF and GDDM Programs Are Defined to CICS

Appendix E. How QMF and GDDM Programs are Defined to CICS 755

How GDDM definitions are loaded during QMF installation

QMF uses GDDM services for printing and displaying QMF screens. The
VSAM panel file DSQPNLn contains text for QMF screens and is described to
CICS during QMF installation. QMF also uses the GDDM-PGF product to
create charts of many types, such as scatter, pie, histogram, and others.

How nonresident GDDM programs affect QMF
GDDM programs are not predefined as resident. When you tailor GDDM for
CICS, consider making the GDDM programs resident, because certain GDDM
programs are loaded when QMF is started whether or not you use QMF’s
charting functions. See the CICS/MVS Performance Guide for more information
on how to decide which programs should be resident. For more information
on tailoring GDDM for CICS, see the:

GDDM Installation and System Management for OS/390 or VSE manual for
GDDM, and
GDDM System Customization and Administration manual for GDDM.

How chart formats are defined
The QMF default installation stores chart formats, chart data, and GDF data in
the GDDM file ADMF. You can change the name of this GDDM object file or
create additional GDDM object files to store chart objects by modifying the
OBJFILE section of the GDDM external defaults module ADMADFC. For
example, you might have separate files for chart formats, chart data, and GDF
data.

Adding charting function after QMF installation
If you install GDDM-PGF after you install QMF, you need to fully install and
tailor GDDM-PGF for CICS, rather than merely restoring the product to a
sublibrary.

If you use GDDM 3.1, you need to install GDDM-PGF 2.1.2.
If you use GDDM 2.3, you need GDDM-PGF 2.1.1.

After you install GDDM-PGF and tailor it, you can verify the installation by
running the CICS ADMC transaction, which is predefined by GDDM during
GDDM tailoring for CICS. No further customization of the chart formats is
necessary; these formats were defined for you during QMF installation.

Using transaction routing to control resource use

To protect high-speed transactions in your system from potential long-running
QMF queries that might consume extra resources, consider isolating execution
of QMF transactions to a single region, using multiregion operations or
intersystem communications. Define one CICS terminal-owning region and
route QMF transaction requests to other regions by using multiple transaction
IDs or dynamic routing exits. Both methods are described in the CICS/OS390
Intercommunication Guide.

How QMF and GDDM Programs Are Defined to CICS

756 Installing and Managing QMF

See “Program parameters for OS/390 and z/OS” on page 259 for information
on how QMF uses temporary storage in the CICS region on OS/390 or how
QMF uses GETVIS storage in the CICS partition on VSE.

How QMF and GDDM Programs Are Defined to CICS

Appendix E. How QMF and GDDM Programs are Defined to CICS 757

758 Installing and Managing QMF

Appendix F. Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10594-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will

© Copyright IBM Corp. 1983, 2002 759

be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this publication to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is as your own risk.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Corporation
J74/G4
555 Bailey Avenue
San Jose, CA 95161-9023
U.S.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurement may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

760 Installing and Managing QMF

All IBM prices shown are IBM’s suggested retail prices, are current and are
subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is
subject to change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include
the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language,
which illustrates programming techniques on various operating platforms.
You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are
written. These examples have not been thoroughly tested under all conditions.
IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Appendix F. Notices 761

Trademarks

The following terms are trademarks of the IBM Corporation in the United
States or other countries or both:

ACF/VTAM
Advanced Peer-to-Peer

Networking
AIX
AIX/6000
C/370
CICS
CICS/ESA
CICS/MVS
CICS/VSE
COBOL/370
DATABASE2
DataJoiner
DB2
DB2 Universal Database
Distributed Relational

Database Architecture
DRDA
DXT
GDDM
IBM
IBMLink
IMS

iSeries
Language Environment
MVS
MVS/ESA
MVS/XA
OfficeVision/VM
OS/2
OS/390
PL/I
PROFS
QMF
RACF
S/390
SQL/DS
Virtual Machine/Enterprise

Systems Architecture
Visual Basic
VM/XA
VM/ESA
VSE/ESA
VTAM
z/OS

Java or all Java-based trademarks and logos, and Solaris are trademarks of
Sun Microsystems, Inc. in the United States, other counrtries, or both.

Lotus and 1-2-3 are trademarks of Lotus Development Corporation in the
Unites States, other counrties, or both.

Microsoft, Windows, and Windows NT are trademarks or registered
trademarks of Microsoft Corporation.

Other company, product, and service names, which may be denoted by a
double asterisk (**), may be trademarks or service marks of others.

762 Installing and Managing QMF

Appendix G. Glossary of Terms and Acronyms

This glossary defines terms as they are used throughout the QMF library. If
you do not find the term you are looking for, refer to the index in this book,
or to the IBM Dictionary of Computing.

abend. The abnormal termination of a task.

ABENDx. The keyword for an abend problem.

aggregation function. Any of a group of functions that summarizes data in a column. They are
requested with these usage codes on the form panels: AVERAGE, CALC, COUNT, FIRST, LAST,
MAXIMUM, MINIMUM, STDEV, SUM, CSUM, PCT, CPCT, TPCT, TCPCT.

aggregation variable. An aggregation function that is placed in a report using either the
FORM.BREAK, FORM.CALC, FORM.DETAIL, or FORM.FINAL panels. Its value appears as part of the
break footing, detail block text, or final text when the report is produced.

alias. In DB2 UDB for OS/390, an alternate name that can be used in SQL statements to refer to a table
or view in the same or a remote DB2 UDB for OS/390 subsystem. In OS/2, an alternate name used to
identify a object, a database, or a network resource such as an LU. In QMF, a locally defined name used
to access a QMF table or view stored on a local or remote DB2 UDB for OS/390 subsystem.

APAR. Authorized Program Analysis Report.

application. A program written by QMF users that extends the capabilities of QMF without modifying
the QMF licensed program. Started from a QMF session by issuing a RUN command for a QMF
procedure, an installation-defined command, or a CMS or TSO command that invokes an EXEC or
CLIST, respectively.

application requester. (1) A facility that accepts a database request from an application process and
passes it to an application server. (2) In DRDA, the source of a request to a remote relational database
management system.

The application requester is the DBMS code that handles the QMF end of the distributed connection.
The local DB2 UDB for OS/390 subsystem to which QMF attaches is known as the application requester
for QMF, because DB2 UDB for OS/390’s application requester is installed within the local database
manager. Therefore, an entire DB2 UDB for OS/390 subsystem (including data) is associated with the
application requester, but the SQL statements are processed at the current location. This subsystem is
called the “local DB2 UDB for OS/390”.

With DB2 for VM and VSE the application requester runs in the same virtual machine as QMF; that is,
no database is inherently associated with the DB2 for VM and VSE application requester.

application server. The target of a request from an application requester. (1) The local or remote
database manager to which the application process is connected. The application server executes at the
system containing the desired data. (2) In DRDA, the target of a request from an application requester.
With DB2 UDB for OS/390, the application server is part of a full DB2 UDB for OS/390 subsystem.

With DB2 for VM and VSE, the application server is part of a DB2 for VM and VSE database machine.

© Copyright IBM Corp. 1983, 2002 763

application-support command. A QMF command that can be used within an application program to
exchange information between the application program and QMF. These commands include INTERACT,
MESSAGE, STATE, and QMF.

area separator. The barrier that separates the fixed area of a displayed report from the remainder of the
report.

argument. An independent variable.

base QMF environment. The English-language environment of QMF, established when QMF is
installed. Any other language environment is established after installation.

batch QMF session. A QMF session running in the background. Begins when a specified QMF
procedure is invoked and ends when the procedure ends. During a background QMF session, no user
interaction and panel display interaction are allowed.

bind. In DRDA, the process by which the SQL statements in an application program are made known
to a database management system over application support protocol (and database support protocol)
flows. During a bind, output from a precompiler or preprocessor is converted to a control structure
called a package. In addition, access paths to the referenced data are selected and some authorization
checking is performed. (Optionally in DB2 UDB for OS/390, the output may be an application plan.)

built-in function. Generic term for scalar function or column function. Can also be “function.”

calculation variable. CALCid is a special variable for forms that contains a user-defined calculated
value. CALCid is defined on the FORM.CALC panel.

callable interface. A programming interface that provides access to QMF services. An application can
access these services even when the application is running outside of a QMF session. Contrast with
command interface.

CICS. Customer Information Control System.

CMS. Conversational Monitor System.

column wrapping. Formatting values in a report so that they occupy several lines within a column.
Often used when a column contains values whose length exceeds the column width.

command interface. An interface for running QMF commands. The QMF commands can only be issued
from within an active QMF session. Contrast with callable interface.

command synonym. The verb or verb/object part of an installation-defined command. Users enter this
for the command, followed by whatever other information is needed.

command synonym table. A table each of whose rows describes an installation-defined command. Each
user can be assigned one of these tables.

commit. The process that makes a data change permanent. When a commit occurs, data locks are freed
enabling other applications to reference the just-committed data. See also “rollback”.

concatenation. The combination of two strings into a single string by appending the second to the first.

Glossary

764 Installing and Managing QMF

correlation name. An alias for a table name, specified in the FROM clause of a SELECT query. When
concatenated with a column name, it identifies the table to which the column belongs.

CP. The Control Program for VM.

CSECT. Control section.

current location. The application server to which the QMF session is currently connected. Except for
connection-type statements, such as CONNECT (which are handled by the application requester), this
server processes all the SQL statements. When initializing QMF, the current location is indicated by the
DSQSDBNM startup program parameter. (If that parameter is not specified, the local DB2 UDB for
OS/390 subsystem

current object. An object in temporary storage currently displayed. Contrast with saved object.

Customer Information Control System (CICS). An IBM licensed program that enables transactions
entered at remote terminals to be processed concurrently by user-written application programs. It
includes facilities for building, using, and maintaining databases.

database administrator. The person who controls the content of and access to a database.

database management system. A computer-based system for defining, creating, manipulating,
controlling, managing, and using databases. The database management system also has transaction
management and data recovery facilities to protect data integrity.

database manager. A program used to create and maintain a database and to communicate with
programs requiring access to the database.

database server. (1) In DRDA, the target of a request received from an application server (2) In OS/2, a
workstations that provides database services for its local database to database clients.

date/time default formats. Date and time formats specified by a database manager installation option.
They can be the EUR, ISO, JIS, USA, or LOC (LOCAL) formats.

date/time data. The data in a table column with a DATE, TIME, or TIMESTAMP data type.

DBCS. Double-byte character set.

DBMS. Database management system.

default form. The form created by QMF when a query is run. The default form is not created if a saved
form is run with the query.

destination control table (DCT). In CICS, a table containing a definition for each transient data queue.

detail block text. The text in the body of the report associated with a particular row of data.

detail heading text. The text in the heading of a report. Whether or not headings will be printed is
specified in FORM.DETAIL.

dialog panel. A panel that overlays part of a Prompted Query primary panel and extends the dialog
that helps build a query.

Glossary

Appendix G. Glossary of Terms and Acronyms 765

distributed data. Data that is stored in more than one system in a network, and is available to remote
users and application programs.

distributed database. A database that appears to users as a logical whole, locally accessible, but is
comprised of databases in multiple locations.

distributed relational database. A distributed database where all data is stored according to the
relational model.

Distributed Relational Database Architecture (DRDA). A connection protocol for distributed relational
database processing that is used by IBM and vendor relational database products.

distributed unit of work. A method of accessing distributed relational data in which users or
applications can, within a single unit of work, submit SQL statements to multiple relational database
management systems, but no more than one RDBMS per SQL statement.

DB2 UDB for OS/390 introduced a limited form of distributed unit of work support in its V2R2 called
system-directed access, which QMF supports.

double-byte character. An entity that requires two character bytes.

double-byte character set (DBCS). A set of characters in which each character is represented by two
bytes. Languages such as Japanese, Chinese, and Korean, which contain more symbols that can be
represented by 256 code points, require double-byte character sets. Because each character requires two
bytes, the typing, display, and printing of DBCS characters requires hardware and programs that support
DBCS. Contrast with single-byte character set.

EBCDIC. Extended Binary-Coded Decimal Interchange Code.

echo area. The part of the Prompted Query primary panel in which a prompted query is built.

EUR (European) format. A format that represents date and time values as follows:
v Date: dd.mm.yyyy
v Time: hh.mm.ss

extended syntax. QMF command syntax that is used by the QMF callable interface; this syntax defines
variables that are stored in the storage acquired by the callable interface application and shared with
QMF

gateway. A functional unit that connects two computer networks of different network architectures. A
gateway connects networks or systems of different architectures, as opposed to a bridge, which connects
networks or systems with the same or similar architectures.

global variable. A variable that, once set, can be used for an entire QMF session. A global variable can
be used in a procedure, query, or form. Contrast with run-time variable.

Graphical Data Display Manager (GDDM). A group of routines that allows pictures to be defined and
displayed procedurally through function routines that correspond to graphic primitives.

grouped row. A row of data in a QBE target or example table that is summarized either by a G. or a
built-in function.

HTML. Hypertext Markup Language. A standardized markup language for documents displayed on
the Internet.

Glossary

766 Installing and Managing QMF

ICU. Interactive Chart Utility.

INCORROUT. The keyword for incorrect output.

initialization program. A program that sets QMF program parameters. This program is specified by
DSQSCMD in the callable interface. The default program for interactive QMF is DSQSCMDn, where n is
the qualifier for the presiding language (’;E’; for English).

invocation CLIST or EXEC. A program that invokes (starts) QMF.

ISO (International Standards Organization) format. A format that represents date and time values as
follows:
v Date: yyyy-mm-dd
v Time: hh.mm.ss

ISPF. Interactive System Productivity Facility.

IXF. Integration Exchange Format: A protocol for transferring tabular data among various software
products.

JCL. Job control language for OS/390.

job control. In VSE, a program called into storage to prepare each job or job step to be run. Some of its
functions are to assign I/O devices to symbolic names, set switches for program use, log (or print) job
control statements, and fetch the first phase of each job step.

JIS (Japanese Industrial Standard) format. A format that represents date and time values as follows:
v Date: yyyy-mm-dd
v Time: hh:mm:ss

keyword parameter. An element of a QMF command consisting of a keyword and an assigned value.

literal. In programming languages, a lexical unit that directly represents a value. A character string
whose value is given by the characters themselves.

linear procedure. Any procedure not beginning with a REXX comment. A linear procedure can contain
QMF commands, comments, blank lines, RUN commands, and substitution variables. See also
“procedure with logic.”

linear syntax. QMF command syntax that is entered in one statement of a program or procedure, or
that can be entered on the QMF command line.

local area network (LAN). (1) Two or more processors connected for local resource sharing (2) A
network within a limited geographic area, such as a single office building, warehouse, or campus.

local data. Data that is maintained by the subsystem that is attempting to access the data. Contrast
with remote data.

local DB2 UDB for OS/390. With DB2 UDB for OS/390, the application requester is part of a DB2 UDB
for OS/390 subsystem that is running in the same MVS system as QMF. Therefore, an entire DB2 UDB
for OS/390 subsystem (including data) is associated with the application requester, but the SQL
statements are processed at the current location. This subsystem is where the QMF plan is bound.

Glossary

Appendix G. Glossary of Terms and Acronyms 767

When QMF runs in TSO, this subsystem is specified using DSQSSUBS startup program parameter. When
QMF runs in CICS, this subsystem is identified in the Resource Control Table (RCT). The local DB2 UDB
for OS/390 is the subsystem ID of the DB2 UDB for OS/390 that was started in the CICS region.

location. A specific relational database management system in a distributed relational database system.
Each DB2 UDB for OS/390 subsystem is considered to be a location.

logical unit (LU). A port through which an end user accesses the SNA network to communicate with
another end user and through which the end user accesses the functions provided by system services
control points.

Logical Unit type 6.2 (LU 6.2). The SNA logical unit type that supports general communication
between programs in a distributed processing environment.

MSGx. The keyword for a message problem.

MVS/ESA. Multiple Virtual Storage/Enterprise System Architecture (IBM operating system).

Network Control Program (NCP). An IBM licensed program that provides communication controller
support for single-domain, multiple-domain, and interconnected network capability.

NLF. National Language Feature. Any of several optional features available with QMF that lets the user
select a language other than US English.

NLS. National Language Support.

package. The control structure produced when the SQL statements in an application program are
bound to a relational database management system. The database management system uses the control
structure to process SQL statements encountered during statement execution.

panel. A particular arrangement of information, grouped together for presentation in a window. A
panel can contain informational text, entry fields, options the user can choose from, or a mixture of
these.

parameter. An element of a QMF command. This term is used generically in QMF documentation to
reference a keyword parameter or a positional parameter.

partner logical unit. In SNA, the remote system in a session.

PERFM. The keyword for a performance problem.

permanent storage. The database where all tables and QMF objects are stored.

plan. A form of package where the SQL statements of several programs are collected together during
bind to create a plan.

positional parameter. An element of a QMF command that must be placed in a certain position within
the command.

primary panel. The main Prompted Query panel containing your query.

primary QMF session. An interactive session begun from outside QMF Within this session, other
sessions can be started by using the INTERACT command.

Glossary

768 Installing and Managing QMF

procedure with logic. Any QMF procedure beginning with a REXX comment. In a procedure with
logic, you can perform conditional logic, make calculations, build strings, and pass commands back to
the host environment. See also “linear procedure.”

profile. An object that contains information about the characteristics of the user’s session. A stored
profile is a profile that has been saved in permanent storage. A profile in temporary storage has the
name PROFILE. There can be only one profile for each user.

Prompted Query. A query built in accordance with the user’s responses to a set of dialog panels.

PSW. Program status word.

PTF. Program temporary fix.

QBE (Query-By-Example). A language used to write queries graphically. For more information see
Using QMF

QMF administrative authority. At minimum, insert or delete priviledge for the Q.PROFILES control
table.

QMF administrator. A QMF user with QMF administrative authority.

QMF command. Refers to any command that is part of the QMF language. Does not include
installation-defined commands.

QMF session. All interactions between the user and QMF from the time the user invokes QMF until
the EXIT command is issued.

qualifier. When referring to a QMF object, the part of the name that identifies the owner. When
referring to a TSO data set, any part of the name that is separated from the rest of the name by periods.
For example, ‘TCK’, ‘XYZ’, and ‘QUERY’ are all qualifiers in the data set name ‘TCK.XYZ.QUERY’.

RDBMS. Relational database management system

relational database management system (RDBMS). A computer-based system for defining, creating,
manipulating, controlling, managing, and using relational databases.

remote unit of work. (1) The form of SQL distributed processing where the application is on a system
different from the relational database and a single application server services all remote unit of work
requests within a single logical unit of work. (2) A unit of work that allows for the remote preparation
and execution of SQL statements.

REXX. Restructured extended executor.

rollback. The process that removes uncommitted database changes made by one application or user.
When a rollback occurs, locks are freed and the state of the resource being changed is returned to its
state at the last commit, rollback, or initiation. See also commit.

row operator area. The leftmost column of a QBE target or example table.

run-time variable. A variable in a procedure or query whose value is specified by the user when the
procedure or query is run. The value of a run-time variable is only available in the current procedure or
query. Contrast with global variable.

Glossary

Appendix G. Glossary of Terms and Acronyms 769

SBCS. Single-byte character set.

scalar. A value in a column or the value of a literal or an expression involving other scalars.

scalar function. An operation that produces a single value from another value and is expressed in the
form of a function name followed by a list of arguments enclosed in parentheses.

SNAP dump. A dynamic dump of the contents of one or more storage areas that QMF generates
during an abend.

SQLCA. Structured Query Language Communication Area.

SSF. Software Support Facility. An IBM online database that allows for storage and retrieval of
information about all current APARs and PTFs.

Structured Query Language (SQL). A language used to communicate with DB2 UDB for OS/390 and
DB2 for VSE or VM. Used to write queries in descriptive phrases.

subquery. A complete SQL query that appears in a WHERE or HAVING clause of another query (the
main query or a higher-level subquery).

substitution variable. (1) A variable in a procedure or query whose value is specified either by a global
variable or by a run-time variable. (2) A variable in a form whose value is specified by a global variable.

substring. The part of a string whose beginning and length are specified in the SUBSTR function.

System Log (SYSLOG). A data set or file in which job-related information, operational data,
descriptions of unusual occurrences, commands, and messages to and from the operator may be stored.

Systems Network Architecture (SNA). The description of the logical structure, formats, protocols, and
operational sequences for transmitting information units through and controlling the configuration and
operation of networks.

tabular data. The data in columns. The content and the form of the data is specified on FORM.MAIN
and FORM.COLUMNS.

target table. An empty table in which example elements are used to combine columns, combine rows,
or include constant values in a report.

temporary storage. An area where the query, form, procedure, profile, report, chart, and data objects in
current use are stored. All but the data object can be displayed.

temporary storage queue. In CICS, a temporary storage area used for transfer of objects between QMF
and an application or a system service.

thread. The DB2 UDB for OS/390 structure that describes an application’s connection, traces its
progress, provides resource function processing capability, and delimits its accessibility to DB2 UDB for
OS/390 resources and services. Most DB2 UDB for OS/390 functions execute under a thread structure.

three-part name. A fully-qualified name of a table or view, consisting of a location name, owner ID,
and object name. When supported by the application server (that is, DB2 UDB for OS/390), a three-part
name can be used in an SQL statement to retrieve or update the specified table or view at the specified
location.

Glossary

770 Installing and Managing QMF

timestamp. A date and a time, and possibly a number of microseconds (a six- or seven-part value).

TP. Transaction Program

TPN. Transaction program name

transaction program name. The name by which each program participating in an LU 6.2 conversation
is known. Normally, the initiator of a connection identifies the name of the program it wants to connect
to at the other LU. When used in conjunction with an LU name, it identifies a specific transaction
program in the network.

transient data queue. In CICS, a storage area, whose name is defined in the Destination Control Table
(DCT), where objects are stored for subsequent internal or external processing.

TSO. Time Sharing Option.

two-phase commit. A protocol used in distributed unit of work to ensure that participating relational
database management systems commit or roll back a unit of work consistently.

unit of work. (1) A recoverable sequence of operations within an application process. At any time, an
application process is a single unit of work, but the life of an application process may involve many
units of work as a result of commit or rollback operations. (2) In DRDA, a sequence of SQL commands
that the database manager treats as a single entity. The database manager ensures the consistency of data
by verifying that either all the data changes made during a unit of work are performed or none of them
are performed.

unnamed column. An empty column added to an example table. Like a target table, it is used to
combine columns, combine rows, or include constant values in a report.

USA (United States of America) format. A format that represents date and time values as follows:
v Date: mm/dd/yyyy
v Time: hh:mm xM

variation. A data formatting definition specified on a FORM.DETAIL panel that conditionally can be
used to format a report or part of a report.

Virtual Storage Extended. An operating system that is an extension of Disk Operating System/ Virtual
Storage. A VSE consists of (1) VSE/Advanced Functions support and (2) any IBM-supplied and
user-written programs that are required to meet the data processing needs of a user. VSE and the
hardware it controls form a complete computing system.

VM. Virtual Machine (IBM operating system). The generic term for the VM/ESA environment.

VSE. Virtual Storage Extended (IBM operating system). The generic term for the VSE/ESA
environment.

WAIT. The keyword for an endless-wait-state problem.

Workstation Database Server. The IBM family of DRDA database products on the UNIX and Intel
platforms (such as DB2 Universal Database (UDB), DB2 Common Server, DB2 Parallel Edition, and
DataJoiner.)

Glossary

Appendix G. Glossary of Terms and Acronyms 771

Glossary

772 Installing and Managing QMF

Appendix H. Bibliography

The following lists do not include all the books for a particular library. To get
copies of any of these books, or to get more information about a particular
library, contact your IBM representative.

For a list of QMF publications, see “The QMF library” on page ix.

CICS publications

CICS Transaction Server for OS390
CICS User’s Handbook
CICS Application Programming Reference
CICS Application Programming Guide
CICS DB2 Guide
CICS Resource Definition Guide
CICS Problem Determination Guide
CICS System Definition Guide
CICS Intercommunication Guide
CICS Performance Guide

CICS Transaction Server for VSE/ESA
User’s Handbook
Application Programming Reference
Application Programming Guide
Resource Definition Guide
Problem Determination Guide
System Definition Guide
Intercommunication Guide
Performance Guide

COBOL publications
COBOL for VSE/ESA Language Reference
COBOL for VSE/ESA Programming Guide

DB2 Universal Database Server for OS/390 and z/OS publications

DB2 Universal Database for OS/390 and z/OS
Installation Guide
Administration Guide
SQL Reference
Command Reference

© Copyright IBM Corp. 1983, 2002 773

Application Programming and SQL Guide
Messages and Codes
Utility Guide and Reference
Reference for Remote DRDA Requesters and Servers

IBM DB2 Server for VSE & VM
Diagnosis Guide and Reference
DB2 Server for VSE Messages and Codes
DB2 Server for VM Messages and Codes
DB2 Server for VSE System Administration
DB2 Server for VM System Administration
DB2 Server for VSE & VM Operation
DB2 Server for VSE & VM SQL Reference
DB2 Server for VSE & VM Application Programming
DB2 Server for VSE & VM Interactive SQL Guide and Reference
DB2 Server for VSE & VM Database Services Utility
DB2 Server for VSE & VM Performance Tuning Handbook

DB2 Universal Database for iSeries
SQL Reference
SQL Programming with Host Languages

DB2 Universal Database
Command Reference
SQL Reference
Message Reference

DB2 DataJoiner
DataJoiner Application Programming and SQL Reference Supplement

Document Composition Facility (DCF) publications
DCF and DLF General Information

Distributed Relational Database Architecture (DRDA) publications
Every Manager’s Guide
Connectivity Guide

DXT publications
DXT Guide to Dialogs
Data Extract: Planning and Administration Guide for Dialogs
Data Extract: User AE’s Guide
Learning to Use DXT

Bibliography

774 Installing and Managing QMF

Graphical Data Display Manager (GDDM) publications
GDDM General Information
GDDM Base Application Programming Reference
GDDM User’s Guide
GDDM/VSE Program Directory
GDDM Messages

HIgh Level Assembler (HLASM) publications
High-Level Assembler for MVS, VM and VSE Programming Guide
High-Level Assembler for MVS, VM and VSE Language Reference

Interactive System Productivity Facility (ISPF) publications

OS/390
ISPF Planning and Customizing
ISPF Dialog Developer’s Guide and Reference

VM
ISPF for VM Dialog Management Guide and Reference

OS/390 publications

JCL
OS/390 MVS JCL Reference
OS/390 MVS JCL User’s Guide

Pageable Link Pack Area (PLPA)
OS/390 Extended Architecture Initialization and Tuning
OS/390 SPL: Initialization and Tuning

VSAM
OS/390 VSAM Administration Guide
OS/390 VSAM Catalog Administration Access Method Services

TSO/E
TSO/E Primer
TSO/E User’s Guide

SMP/E
OS/390 System Modification Program Extended Messages and Codes
OS/390 System Modification Program Extended Reference
OS/390 System Modification Program Extended User’s Guide

Bibliography

Appendix H. Bibliography 775

OS PL/I publications
OS PL/I Programming Language Reference
OS PL/I Programming Guide

REXX publications

OS/390 environment
TSO/E REXX/MVS User’s Guide
TSO/E REXX/MVS Reference

VM environment
System Product Interpreter Reference
REXX/VM User’s Guide

VM/ESA publications
VM/ESA Planning and Administration
VM/ESA Command Reference

VSE/ESA publications
Planning
System Utilities
Guide for Solving Problems

Bibliography

776 Installing and Managing QMF

Index

A
abbreviating command

synonyms 474
abbreviations

for command synonyms 474
ABEND, from QMF install 721
ABENDASRA 721
access

data 6
to objects

SQL GRANT statement 354,
359, 364

to QMF
enabling 315
restricting 317

to QMF application plan
open 344

to QMF application plan
packages 344

accessing data 6
ACQUIRE DBSPACE command 156
ACQUIRE dbspace statement 156
acquire the DB2 for VM

DBSPACE(s) 170
address, governor function

calls 606, 610, 614
ADMADFC defaults module 430
ADMADFC, GDDM defaults

module 26
ADMADFT defaults module 430
ADMCFORM ddname 382
administration

assigning table space 376
DB2 catalog tables 398
listing user’s tables/views 398
object

deleting 389
displaying user’s 387
listing user’s 387
transferring ownership 388

Q user profile 315
resources 315
tables, creating 374
user profiles and objects 323,

332
ADMMNICK specification 427
ADSQDBMD 24
ADSQMACE 24
ADSQOBJ 24

ADSQPMSE 24
AEY9 ABEND 722
alias

DB2 UDB for OS/390 catalog 40
alias, DB2 UDB for OS/390

catalog 40
allocating

VSAM files 37
allocating DXT CMS files,

example 407
ampersand (&)

in command synonyms 472
ampersands in command

synonyms 472
APAR (Authorized Program

Analysis Report) 706, 715
description 706

APPLDATA column 386
application plan for QMF 44

access type 344
binding to DB2 UDB for

OS/390 44
role in user access to QMF 344
when not to rebind 398

application procedures
install in base 179
install in NLF 191

application requester 12
definition 154

application requester (AR) 154
application requester for QMF

definition 154
application server 12

definition 154
application server (AS) 154
ASCPUT services, printing 424
assembler

edit routine
interface control block 526

asynchronous processing,
printing 423

attachment facility for CICS/DB2
UDB for OS/390 69

AUTHID 73
authority, DB2

distributing, overview 395
maintaining a database 349

authorization
command synonyms 477

authorization (continued)
CREATETAB 378
creating tables 374
DB2

deleting sample queries 136
installing jobs in the

foreground 117
installing sample queries and

procedures 136
DBA, user Q 315
error 722
ID Q 10
installation verification procedure

CICS 85
maintaining a DB2 database 349
to access QMF 315, 325, 333
to create tables 41
to run IVP 85

authorization ID 237
authorization IDs

primary/secondary
SAVE and IMPORT

commands 350
authorization, DB2

to delete sample queries 136
to install jobs in the foreground

NLF 117
to install sample queries 136

automatic routing, print output 424
AZTS ABEND 722

B
base QMF commands as

synonyms 466
batch

expected results for IVP 181
install jobs, submitting 31
installation verification procedure

NLF 135, 137
running TSO 91
set up for TSO 54

installing an NLF in 117
running a query or procedure

in 457, 460
running IVP in 180
running the IVP (NLF) 192
running the IVP in 91
running the IVP, NLF 137
set up for IVP 54

NLF 135

© Copyright IBM Corp. 1983, 2002 777

batch (continued)
updating the CSD 72
using a spill file 265

batch mode
CEBR transaction 664
PROFILE PREFIX statement 649
RACF security 646

bilingual support
forms 421

bilingual support, QMF forms 421
binary data

in system catalog tables 398
binding

communications package 44
packages to DB2 UDB for

OS/390 43, 44
QMF application plan to DB2

UDB for OS/390 44
QMF install programs to DB2

UDB for OS/390 34
bit edit codes 685
branch addresses, governor 606,

610, 614
Brazilian Portuguese NLF 161
break field IDs 744
buffer pools, control table

assignments for 398

C
calculate spill file size 263, 277, 292
callable interface

changing program
parameters 52

common error 722
starting QMF 51

canceling
governor 629

cancellation service, governor 629
cascading authority 352
CASE column (Q.PROFILES) 318
case, setting 318
catalog

alias 40
views 35

catalog tables, DB2 398
catalog views

QMF 158
CEBR transaction 664
changing

printer defaults 50
chart

formats 382
GDDM requirements 31
printing 423, 454

GDDM vs QMF 423

chart (continued)
printing (continued)

specific objects 454
chart forms (GDDM) 31
Chinese NLF 161
CICS

common errors 721
control tables

DCT (destination control
table) 72

national language
feature 130, 131

CSD modification 73
diagnostic facilities 707
ENVIRONMENT values, QMF

profile 318
ESA 131
install DB2 UDB for OS/390 into

CICS 69
installation verification

procedure 85, 87
interface to governor 594, 598
Multiple Region Option

(MRO) 25
QMFE transaction 88, 222
run the IVP

initialize QMF 86
startup job 73
tailoring 69, 75

command interface
modules 129

control tables 72
create QMF/CICS table

entries 72
DB2 UDB for OS/390 to CICS

connection 69
define and load data sets 70,

71
GDDM 26
install charts and trace

file 70
install maps 70
link-edit command interface

modules 69
link-edit with DFHEAI and

DFHEAIO 129
Multiple Region Option

(MRO) 25
national language

feature 128, 131
QMF profile table 73, 123
startup job stream 73
TSO and CICS sharing

AUTHID 73
transaction ID 722

CICS (continued)
TYPETERM entries, QMF

display 707
using the trace facility 724
V3 control tables

DCT (destination control
table) 72

virtual storage requirements 23
CICS (Customer Information Control

System)
ENVIRONMENT values, QMF

profile 318
HANDLE CONDITION 603
IMPORT command 350
interface to governor 594, 598
performance 260
temporary storage queue 443
terminal control table (TCT),

defining printers 427
transient data queue 443
TYPETERM entries, QMF

display 707
CICS control tables, NLF 131

V2 130
CICS, tailoring NLF for

add NLF/QMF transaction ID to
DB2 RCT 128

link-edit QMF with CICS
command interface
modules 129

run the IVP 131
tailor and execute job

DSQ1nCSD 131
translate, assemble and link-edit

the QMF-supplied
governor 129

update CICS control tables 130
CICS, tailoring QMF for

insert new row into
Q.PROFILES 123

link-edit with DFHEAI and
DFHEAI0

NLF 129
CICS/DB2 attachment 5
CICS/ESA region

storage requirements 21
CIRB 255
class ID, customizing function

keys 485
cleanup after installation 93, 96
CLIST

alternate for logon procedure 47
converting records 33
to start DXT 51

CLIST, converting records 33

778 Installing and Managing QMF

CLISTs, converting records 120
CMS

QMF CMS command
command synonym 468

CMS (Conversational Monitor
System)

storage requirements for
QMF 156

CMS (Customer Information Control
System)

QMF CMS command
command synonym 468

COBOL
edit routine

creating a DSQUEDIT module
file 545

COBOL edit routine
creating a DSQUEDIT module

file 545
interface control block 544

Code-only installation
create DB2 for VM

dbspace(s) 168
installation EXEC 170

command 318
cancellation messages 634
cancellation service 629
CMS, synonym definition 468
CONNECT

in OS/390 6
customizing

See synonyms for QMF
commands

function keys, assigning 479
interface

installation verification
procedure (IVP) 178, 191

interface initialization
messages 676

PRINT
See printing

privileges required 353
RUN

synonym definition 468
SET PROFILE 321
synonyms

See synonyms for QMF
commands

window IDs 489
command (QMF) interface test, IVP

base 178
NLF 191

command interface modules 70
command synonyms table

creating 462, 464

command synonyms table
(continued)

maintaining 476
views 477

comment
on function keys table 482

comments
on function keys table 482

communications package 44
concurrent versions of QMF 48
configurations supported 5
CONFIRM column

(Q.PROFILES) 318
confirmation panel

displaying 318
CONNECT command 6

errors 676
in OS/390 6

CONNECT ID
user Q 155

CONNECT ID “Q” 155
connecting to other databases 6
control section (CSECT),

diagnosis 717
control tables

creating 35
creating without a previous QMF

release 39
data set management

See data set
maintenance

environment 396
ownership 315
Q.ERROR_LOG 714
Q.PROFILES

See Q.PROFILES control table
Q.RESOURCE_;VIEW 568, 578,

587
QMF 158
rebinding QMF after a table is

dropped 398
storage groups, DB2 managed

data sets 395
switching buffer pools 398
VSAM clusters for user managed

data sets 396
when to reorganize 397

controlling access to QMF 344, 345
converting

CLISTs records 33, 120
REXX EXEC records 32, 119

converting QMF CLISTs records
NLF 120

converting REXX EXEC records
NLF 119

CPU time
See processor time

CREATE statement, SQL
CREATETS/CREATETAB

privilege 350
CREATE TABLE statement

command synonyms 462, 464
privileges for SAVE DATA 353,

358
resource control table 572, 582,

590
tables for users 374

CREATETAB authority 378
CREATETS/CREATETAB privilege

definition 350
privilege to run CREATE TABLE

query 351
creating

control tables
with QMF V2R4 37
without a prior QMF

release 39
QMF control tables 39
QMF NLF

control tables 131
sample tables 131

TSO logon procedure 47
CREATOR column (Q.PROFILES)

defined 318
role in profile initialization 321

cross CDS environment, create 138
CSD data set 72
CSECT (control section),

diagnosis 717
cursor stability 356, 360
Customer Information Control

System (CICS)
HANDLE CONDITION 603
performance 260
providing a QMF profile,

migration 742
temporary storage queue 443
transient data queue 443

customizing 479
environment 315
ISPF 52
QMF commands

See synonyms for QMF
commands

QMF session behavior
using user profile 315

D
Danish NLF 161
DASD space requirements 23

Index 779

data
files 174

Data Extract (DXT)
installation considerations 51

Data Extract end user dialogs 401
data formats 497
data object

privileges for SAVE DATA 353,
358

data set
management of

overview 395
storage groups, DB2

managed 395
VSAM cluster, user

managed 396
database

-only installation
for NLF 100, 186
for QMF base 166

authorization ID Q 10
CONNECT ID “Q” 155
connection

authority 315
remote 237

create for QMF IVP 41
create for sample tables 43
install scope panel 59
requirements for QMF 154
slow performance 685

DATABASE 2
enlarging table spaces 389
governor 563

resource limit specification
table 643

optimizer and table
reorganization 397

database authority,
maintenance 349

database-only installation
for NLF 186
for QMF 166

DATE columns
See user edit routines

DB2
enlarging table spaces 389
governor 563

resource limit specification
table 643

optimizer and table
reorganization 397

DB2 (IBM DATABASE 2)
specifications, providing 116

DB2 authorization
creating

command synonym tables,
NLF 122

deleting sample queries 136
inserting new command

synonyms into 123, 124
inserting new row into

Q.PROFILES 123
installing

jobs in the foreground 117
sample queries and

procedures 136
DB2 for VM

CONNECT ID 170
dbspace 168, 170
knowledge required 154
required by QMF 154
use of 145

DB2 for VM CONNECT ID,
establish 170

DB2 for VM DBSPACE(s)
acquire 170
create 168

DB2 Loader 401
DB2 UDB for OS/390 (DB2

Universal Database for OS/390)
authorization to run IVP 85
catalog, defining an alias for 40
cleanup 93, 96
objects that support QMF 9
pre-installation planning 8, 9
prepare QMF as DB2 UDB for

OS/390 application 34
prerequisite knowledge for

installing 8, 9
RCT error 722
requirements 8
specifications, providing 66
supported objects 9
tailoring for CICS 69
use of 5

DB2 UDB for OS/390 attachment
facility for CICS 69, 722

DB2 VSE application server 255
DBADM authority

database maintenance 349
DBCS 195
DBCS (double-byte character set)

support
edit codes 559
Katakana characters 559
Latin characters 559

dbspace
requirements 156, 159

DBSPACE requirements
number to create 157
overview 156
Q.RESOURCE table 158
QMF sample tables 158
SAVE DATA command 155

DCT (destination control table)
CICS V3 72

ddname 49
decimal data, edit routine 498
DECOPT column

(Q.PROFILES) 318
default

function keys 479
GDDM module ADMADFC 430
GDDM module ADMADFT 430
QMF profile 317

default function keys 479
default QMF profile 317
defaults module, GDDM

printing 430
deleting

libraries from previous
releases 93

older sample tables 42
QMF NLF 131
QMF NLF sample tables 131

DEQ command
print queues 444

Deutsch (NLF) 161
DEVTOK keyword, ADMMNICK

specification 427, 439
DFHEAI 69
DFHEAI0 69
diagnostic aids

interrupt facility 710
diagnostics

aids 687
CICS 707
dumps 707
message support 688
problem reporting 715
Q.ERROR_LOG table 714
SQL return codes 690
symptoms 687
system error messages 689
termination messages 707, 709
trace facility 690

dialog panel
base

jobcard 116
DB2 UDB for OS/390 and QMF

parameters 61
DB2 UDB for OS/390 server 61
job card 66

780 Installing and Managing QMF

dialog panel (continued)
local DB2 UDB for OS/390

parameters 58
main menu 110
NLF 110, 115

DB2 and QMF
parameters 114

local DB2 parameters 110
main menu 110
QMF table space

parameters 115
scope of database install 111

QMF parameters at local DB2
UDB for OS/390 60

QMF table space parameters 64
remote server parameters 63
scope of database install 58, 59

disk space required
for distribution libraries 23
for SMP/E 23
for target libraries 24

DISPLAY command, SQL privileges
required 353

displaying reports (DPRE) 458, 460,
740

distributed data 6, 9
distributed unit of work

setting up QMF 12
support 6, 8

distribution libraries
contents 23
DASD space required, NLF 98
disk storage required 23, 98

distribution minidisk
create DB2 for VM

DBSPACE(s) 168
create QMF installation control

file 167, 187
NLF 187
QMF 167

QMF installation EXEC 170, 187
base 170
NLF 187

DOS printers 430, 436, 440
double-byte character set (DBCS)

support
edit codes 559
Katakana characters 559
Latin characters 559

DPRE
migrating 740
TSO 458, 460

DRAW command
SQL privileges required 353

DRAW command, SQL privileges
required 353

DRDA (Distributed Relational
Database Architecture) 6

dropping sample tables 42
DSNT302I 722
DSQ0BINS 23
DSQ0BSQL 23
DSQ10297 722
DSQ10493 722
DSQ1BICD 44
DSQ1BINJ 43
DSQ1BINR 44
DSQ1CHRT 31
DSQ1EDSJ 42
DSQ1EGLK 721
DSQ1EINV 47, 54
DSQ1EIVS 43
DSQ1EJVC 33
DSQ1EJVE 32
DSQ1ELNK 721
DSQ1EMAP 31
DSQ1EPNL 31
DSQ1ERCT 69
DSQ1STBG 43
DSQ1STGC 41
DSQ1STGJ 41, 43
DSQ1TBA1 37
DSQ1TBAJ 39
DSQ1TBD1 37
DSQ1TBJ0 36
DSQ1TBJ1 38
DSQ1TBLE 40
DSQ1TBLG 40
DSQ1TBLI 40
DSQ1TBLJ 40
DSQ1TBLN 40
DSQ1TBLR 40
DSQ1TBLU 40
DSQ1VSTA 40
DSQ1VSTB 40
DSQ1VSTC 43
DSQ1VSTP 723
DSQ2EINS, installation EXEC 170

preparation 170
DSQ2EINV, QMF invocation

EXEC 171
DSQ36805 722
DSQ9BINS 34
DSQABSQL 34
DSQCBST 22
DSQCCI 22
DSQCCISW 22
DSQCEBLT 22
DSQCELTT 22

DSQCFR80 23
DSQCHART 24
DSQCI 22
DSQCIA 22
DSQCIB 22
DSQCICX 22
DSQCIF 22
DSQCIFE 22
DSQCIPL 22
DSQCIPX 22
DSQCIR 22
DSQCIX 22
DSQCMAPB 23
DSQCSUB 22
DSQCT080 23
DSQCTOPX 22
DSQDBDEF 41
DSQDBDEF.DSQTSDEF 41
DSQDBRM 24
DSQDEBUG 174

requirements 174
tailoring 50
under CICS 724

DSQEDIT 175
DSQI0026 723
DSQI004I 722
DSQIN330 34
DSQIRDBR 12
DSQLDLIB 175
DSQMAPE 24
DSQPNLE 175

FCT definition 721
size of user data sets 25
VSAM CI size 73

DSQPRINT 175
allocation

using the QMF CMS
command 175

DSQPVARE 25
DSQQMF 22
DSQQMFE 22, 721
DSQSAMPE 24
DSQSBSTG 259
DSQSCMDE 52
DSQSCMDE EXEC 66
DSQSCMDn EXEC 116
DSQSDBCS 288, 305
DSQSDBNM 282
DSQSDBNM program parameter 6,

12
DSQSDBQN 270, 273, 297
DSQSDBQT 270, 272, 297
DSQSDBUG 269, 271, 281, 296
DSQSGDEF 41
DSQSIROW 267, 279, 294

Index 781

DSQSMODE 282, 298, 299
DSQSPILL 175, 261, 276, 291
DSQSPILL parameter

file requirements 175
DSQSPRID (profile key)

controlling access to QMF 345
DSQSRSTG 260, 275
DSQSRUN 283, 300
DSQSSPQN 293
DSQUCFRM 24
DSQUCFRM ddname 382
DSQUDUMP 50
DSQUECIC edit program 500
DSQUEDIT 22
DSQUEGV1 22
DSQUEGV1 module, governor

exit 602
DSQUEGV3 22
DSQUEGV3 module, governor

exit 602
DSQUOPTM macro 313
DSQUOPTS 313
DSQUSERE MACLIB 313
DSQUXIA 22
DSQUXIC 22
DSQUXIP 22
dump data sets 50
dumps for diagnosis 707
DXEECS control block 526, 544
DXEGOVA control block 615
DXEXCBA control block 620
DXT (Data Extract)

installation considerations 51
DXT end user dialogs 401
dynamic queries 346

E
edit

codes 497
binary data 685
bit 685
CASE field of profile 498
DBCS data 559
hex 685
numeric data processing 498
types 497
UDN 500
VSS 500

exit interface 497
assembler 526
COBOL 544
control block fields 505
input area 507
output area 507, 508
termination calls 509

edit (continued)
exit routine 505
routine 497

DBCS data 559
general structure 500
scratchpad area 544
storing data between

calls 526
edit routines

creating a DSQUEDIT module
file

in PL/I 526
in VS COBOL II 545

handling different codes 507
EDIT TABLE command

concurrent editing 355, 359
SQL privileges required 353

EMEA DIAL 25
English QMF, NLID 161
English support in NLF session 421
enhance QMF performance 22
enhancing the SAVE and IMPORT

commands
DB2 privileges

determining what is
needed 350

granting 351
explicit table spaces 376
implicit table spaces 376

ENQ command
print queues 444

ENQ command, storage queues 444
entry point, governor 595, 599
ENTRY_TYPE column (function key

table) 486
environment

changing in QMF profile 318
customizing 315
default setup 753

ENVIRONMENT column 73
ENVIRONMENT column

(Q.PROFILES)
role in profile initialization 321

EPLPA (extended pageable link pack
area) 21

error
initialization 675
messages

warning 676
QMF log 714
reporting to IBM 715

error messages 721
estimating

SMP/E storage 23

estimating (continued)
space for distribution

libraries 23
EXEC DSQ2EINV

examples of invocation
statements 174

getting to the QMF Home
Panel 178

tailoring 171
EXECUTE privilege

access, QMF application plan and
packages 344

explicitly created table spaces 376,
378

EXPORT TABLE, SQL
privileges 353

extended floating point, edit
routine 498

external reference 723
EXTRACT command 401

reallocation through an
EXEC 407

F
fallback

definition of 749
installation considerations 159

fallback to an earlier release of
QMF 749

fallback, installation
considerations 159

Family 1 printer 425, 427, 434, 438
Family 2 printer 425, 427, 434, 438
Family 3 printer 425, 428, 429, 434,

435, 438
Family 4 printer 429, 435
FCT (File Control Table)

tailoring for the panel file 721
file (CMS)

DSQDEBUG 174
DSQPRINT 175
DSQSPILL 175

file requirements
DSQDEBUG 174
DSQPRINT 175
DSQSPILL 175

floating point data, edit routine 498
FMID

NLF 100
foreground, installing jobs in 67,

117
form

application migration aid 744
forms 497

creating new edit codes 497

782 Installing and Managing QMF

forms (continued)
displaying 387
internal stored format 385
listing 387
NLF support 421
printing 454
window IDs 489

French NLF 161
FSFRCE services, printing 424
full database install

and providing install parameters
SERVER database, and
REQUESTER database 112

definition 10
providing install parameters 59
QMF NLF into another DB2

subsystem 117
QMF target libraries 55

Full database install
starting QMF 51

full-screen panels 487, 488
customized function key

examples 487
panel IDs 488

function calls
branch addresses 606, 610, 614
types 600, 607, 611

function keys
customizing 318

activating new
definitions 491, 492, 493

problems activating 484
updating function key

table 484
default settings 479
index on table 483
initialization messages 676
panels 479
table 482

authorizing users 491, 492,
493

creating 482, 483
entering definitions 484
maintenance 491, 492, 493
panel IDs 488

G
G050 ABEND 723
GDDM (Graphical Data Display

Manager) 430, 436, 440, 756
add maps to ADMF data

set 130
ADMADFC defaults

module 430

GDDM (Graphical Data Display
Manager) (continued)

ADMADFT defaults
module 430

chart forms required 31
common errors on QMF

startup 721
considerations, QMF

invocation 175
default setup 756
error messages, printing 677
map groups

NLF 118
QMF 31

map groups, base 31
map groups, NLF 118
nonresident programs,

performance 756
PGF product 756
printer nicknames 425, 723

ADMADFC defaults
module 430

ADMADFT defaults
module 430

ADMMNICK
specification 426

printing 424
QMF panels 31, 117
QMF panels, NLF 117
tailoring for CICS 26
use of 5, 145
verify GDDM installation 26

GDDM-PGF 756
GDDM.ADMF 25
generic QMF profile 315, 325, 333
GENMOD DSQUOPTS module 314
German NLF 161
global variables

English support for NLFs 421
printing 444
window IDs 489

governor
DB2 563
High Performance

Option/Manager 563
governor exit routine

branch table 606, 610, 614
cancellation service 629
CICS control block interface 591
command processing 602, 604,

609, 613
control information, storing 628
description 563, 584
entry point 595, 599
exit routine information 620

governor exit routine (continued)
flow of control 591
function calls 606, 610, 614
passing resource control

information 615
performance 606, 610, 615
program structure 591
resource control table 563
scratchpad area 628
specifying for resource

groups 572, 582, 590
types of function calls 600, 607,

611
GRANT

option 347
example 347
requirements 347

queries 346
GRANT statement

CREATETAB authority 378
PUBLIC keyword 355, 359
WITH GRANT OPTION 355,

359
GRANT statements 41
granting to PUBLIC AT ALL

LOCATIONS 346
Graphical Data Display Manager

(GDDM)
See GDDM (Graphical Data

Display Manager)
graphics printers, defining

nicknames 424

H
HANDLE CONDITION

CICS 603
Hangeul (NLF) 161
hardware and program requirements

for NLF 97
hardware requirements 15, 97

for NLF 186
for QMF 149

help
customizing panel function

keys 488, 490
panel test during IVP 86, 88,

178, 222
help panel test during IVP 88, 222
help panel test, running IVP 86
Help panel test, the IVP 178
help panels

customized function key
example 488

panel ID 490
hex edit codes 685

Index 783

HEX function 685
High Performance

Option/Manager 563
home panel 88, 222

during IVP 88, 222
HPO/Manager 563

I
IBM software distribution (ISD) tape

NLF
contents of 99

IBMLink 25
ID

for NLFs 160
QMF panels 488

IDC0551I 723
IDC3009I 723
IDC3012I 723
IEW0342 723
IEW0461 723
IKJEFT01 34
implicitly created table spaces 376,

377
IMPORT TABLE command

creating tables 374
SQL privileges required 353

index
function key table 483
Q.PROFILES table 318, 327, 335
recreating 389

index space parameters 65
index space, stopping 37
informational messages 721
initial procedure

receiving variable values 285,
302

initialization
errors 676
message numbers 689
performance 753
QMF profile values 321
troubleshooting 675

input area
control for formatting 505
control for termination 509

input parameters 55
install programs, binding to DB2

UDB for OS/390 34
installation

accessing remote DB2 UDB for
OS/390 subsystem 12

application plan and packages 8
binding QMF to DB2 UDB for

OS/390 34, 35
considerations 12, 108, 159, 160

installation (continued)
control file, create 167, 187
control tables, catalog views, and

sample tables 8
EXEC

error messages 171, 188
function 170
preparation 170, 187
restart procedure 170
running 170, 188

NLF 97
overview 8, 147
parameters

NLF 106
QMF 55
values 27

prerequisite software 15
for optional features 17

setting up to use distributed unit
of work 12

steps 163, 166
target and distribution

libraries 8
types 10
verification procedure 177
verification procedure (IVP) 87
worksheet

NLF 106, 108, 186
QMF 167

installation parameters
worksheets, NLF 106

Installation Verification Procedure
(see IVP) 180

installing an NLF 97
integer data, edit routine 498
Inter-User Communications Vehicle

(IUCV) 249
interactive mode

IVP 135
interface control block

assembler edit routine 526
COBOL 544
DXEGOVA 615
DXEXCBA 615

interrupt facility
using 710

introduction of QMF 5
invalid name profilex 722
invalid sysystem ID 722
invocation EXEC

GDDM considerations 175
parameters 172, 189
QMF dialog considerations 174
to start QMF 172, 189

NLF 189

invocation EXEC (continued)
to start QMF (continued)

QMF 172
ISC (intersystem

communicaton) 756
isolation levels

cursor stability 356, 360
uncommited read 356, 360

ISPF (interactive System Productivity
Facility)

common error 722
ISPF (Interactive System Productivity

Facility)
customizing selection menus 52
establishing QMF as dialog 176,

189
invocation EXEC 176
Master Application menu 52
Master Application Menu

NLF 190
QMF 177
updating 128

tailoring libraries 49
tailoring the logon procedure 48
use of 5, 145

ISPSTART command
considerations when using user

edit routines 527, 545
from TSO READY mode 51
passing parameters 173

ISPSTART command
parameters 173

ISPSTART command, use of 51
Italian NLF 161
IVP 195
IVP (installation verification

procedure)
create a table space for 41
for QMF batch mode 91

NLF 192
what it tests 91

for QMF under CICS 85
overview 85

IVP (Installation Verification
Procedure) 87

for QMF batch mode
authorization required 180
QMF 180
what the results are 180

for QMF interactive mode
NLF 190
QMF 135, 177

for QMF interactive mode,
base 135

run for NLF 131

784 Installing and Managing QMF

IVP (Installation Verification
Procedure) (continued)

testing NLF 131

J
Japanese NLF 161
job card 65
jobs

install in foreground 67, 117
install in foreground, NLF 117
install in foreground, QMF 67
submit manually 31, 117
submit manually, NLF 117
tailor for installation 66, 116
tailor for installation, NLF 116
tailor for installation, QMF 66

K
Katakana terminals

UCF support 161
Katakana terminals, DBCS

support 161
keywords, reporting problems 715
Korean NLF 161

L
LENGTH column

(Q.PROFILES) 318
linear procedures in command

synonyms 469, 471
link pack area 22
link-edit messages 723
link-edit statements

governor exit routine 636, 638
LIST command

ALL keyword 387
list views

creating 370, 373
literals in command synonyms 473
load modules, placement 22, 48
local installation 147
location window IDs 490
locks on tables 355, 359
logical transaction, definition 6
logon procedure

for VM 171
logon procedure for QMF 171
logon to QMF

enabling 315
restricting 317

M
macros to define printers 432, 441
main menu for installation 56
maintenance

command synonym table 476

maintenance (continued)
displaying objects 387
enlarging table space for

objects 389
function key table 491, 492, 493
listing objects 387
listing tables 398
listing views 398
QMF and database objects 383

map groups 31, 118
Master Application menu 52
message

canceling user activity,
governor 630, 633

printing errors 677
QMF message services 688
row limit exceeded 564, 575, 584
warning, QMF Home panel 676

messages 721
migrating from a previous QMF

release
Version 2 Releases 2, 3, or 4 37
Version 3.x 36

migrating to QMF Version 7 737
31-digit decimal support 745
access to the application

plan 737
callable interface in CICS 746
command compatibility with

earlier releases 751
DPRE, in TSO 740
fallback and clean-up 749
Form Application Migration

Aid 744
governor 745
object compatibility

earlier objects under QMF
Version 7 743

Version 7 objects under earlier
releases 750

objects
different DB2

subsystems 740, 742
same DB2 subsystem 740

outline of steps 737
printing in CICS 746
profile considerations, different

DB2 subsystems 741
profile considerations, same DB2

subsystem 739
safeguarding earlier objects 749
user edit routine in CICS 746
user edit routine in TSO, and

native OS/390 batch 746

migration
considerations

installation 159
installation considerations 159

minidisk, distribution and
production 187

create DB2 for VM
DBSPACE(s) 168

create QMF installation control
file 167, 187

QMF installation EXEC 170
MODEL column 318, 385
MRO (multiregion operation) 756
Multiple Region Option (MRO) 25
Multiple Region Option (MRO),

CICS 25
multiple releases 48
MVS/ESA 5

N
n symbol 160
name

ADMMNICK specification 426,
438

column in control tables 385
printers 425

National Language Feature (NLF)
See NLF (National Language

Feature)
nickname

defined 425
defining multiple printers 429,

435
errors during printing 677

Nihongo (NLF) 161
NLF

command synonyms 469, 471
English support 421
release numbers,

ServiceLink 715
NLF (national language feature)

parameters 108
storage requirements for 98

NLF (National Language Feature)
administering 160
changing in QMF profile 318
defined 160
NLID 161

NLIDs, national languages 161
Notices 759
NUMBER column (function key

table) 486
numeric data conversion, edit

routine 498

Index 785

O
object

control tables 383
deleting 389, 399
displaying 387
enlarging table space 389
installation 8
internal representation 384
list

customizing 369
window IDs 490

listing 387
maintenance 383
name, command synonym 466
non-distributed data

environment 9
privileges 353
sharing 387
standards for creating 356, 361,

366
transferring ownership

queries, forms,
procedures 388

types 145
OBJECT column (synonyms

table) 467
object groups and installation 8
object lists

customizing with global
variables 370, 373

OBJECTLEVEL column, QMF control
tables 385

objects and their relationship to
distributed data 9

open enrollment 316
operating environment 15
operating systems required 15
output area

control for formatting 505
control for termination 509

overriding default values 51
overriding the initial default value of

selected global variables 313
overview

of installation 8, 147
of QMF 5, 145

overview of the install process 147
overview of the installation

process 8
OWNER column, QMF control

tables 385
ownership

control tables 315
how QMF tracks 384
transferring 388

P
packages, binding 43
packages, binding at remote

server 141
panel

class ID 485
confirmation 318
customized function keys 479
governor prompt 563, 584
IDs 488, 489
NLF 117
print and display support 756
QMF 31

PANEL column (function key
table) 485

panel file 31
panels

class ID 485
customized function keys 479
governor prompt 563, 584
IDs 488, 489
print and display support 756

parameters
input 55
installation 55
NLF invocation 189
passed to edit routine 504
passing 259
QMF index spaces 65
QMF invocation 172
remote server 62
specifying local DB2 UDB for

OS/390 58
table space 64

partitioned table space 378
password 54, 96
PC printers 430, 436, 440
performance

CICS (Customer Information
Control System) 260

DSQSIROW, large values 268,
280, 295

DSQSIROW, small values 268,
280, 294

governor exit routine 606, 610,
615

resident programs 754
slow, causes 685
table indexes 375, 379
TSO (TIME Sharing Option) 260
using spill file 262, 266, 278, 291

performance enhancement 22
permanent libraries 96

accept, NLF 138
PF keys 318

PF_SETTING column (function key
table) 486

PFKEYS column (Q.PROFILES) 318
PL/I edit routine

creating a CMS text file 526
creating a DSQUEDIT module

file 526
returning to the caller 526

placement of load modules 22
plan ID 48, 51
planning for base installation

user libraries, NLF 99
planning for installation

DB2 UDB for OS/390
requirements 8

distribution libraries 23
hardware requirements 15
operating system 15
operating system and program

products 15
SMP/E data sets 23
target libraries 24
user libraries 24
virtual storage 21

planning for NLF
distribution libraries 98
hardware requirements 97
SMP/E requirements 97
target libraries 98

PLPA (pageable link pack area) 21
Portuguese NLF 161
post-installation cleanup 93, 96

NLF 137, 192
QMF 182

PPT (Processing Program Table)
customizing for GDDM 721

preprocess QMF modules
for sample table insert

program 170
prerequisite DB2 UDB for OS/390

knowledge 8
prerequisite software 5, 15

for optional features 17
primary authorization ID and

creating tables 350
PRINT command 423, 444

routing to named
destinations 423, 444

print data output 175
PRINT TABLE command, SQL

privileges required 353
printer

ANSI support
graphic device 424

786 Installing and Managing QMF

printer (continued)
control keywords

(PRINTCTL) 430, 436, 440
DOS 430, 436, 440
Family 1 425, 434, 438
Family 2 427
Family 3 428, 429, 435
Family 4 429, 435
length of output 318
multiple addresses 426, 438
nicknames 425
nicknames (GDDM) 723
PROCOPT parameter 430, 436,

440
settings for dumps 50
width of output 318

PRINTER column
(Q.PROFILES) 318

printing
enabling users 423
errors 677
QMF vs. GEM 423
summary 454
temporary storage queue 443
to PC printers 430, 436, 440
transient data queue 443
using GDDM services 424

privilege, DB2
See also table privileges
See also view privileges
CREATETS/CREATETAB 350
distributing

See GRANT queries
See REVOKE queries

dynamic queries 346
incomplete revocation 346
QMF commands 346
revoking a grant to PUBLIC 352
revoking grants of others 351
SAVE/IMPORT commands 350
static queries 346
STATS and REORG 395
Table Editor 346

privileges 321
commands 353
database objects 353
for table editor 354, 358, 362
GRANT statement 354, 359, 364
granting to all users

(PUBLIC) 355, 359
queries 354, 358

privileges required for QMF
tasks 353

privileges, DB2
QMF commands 346

privileges, DB2 (continued)
running prompted queries 346
running QBE queries 346

problem reporting 715
procedure, IVP

batch mode 91
in CICS 85

procedure, IVP for QMF
NLF 135

procedures
displaying 387
internal stored format 385
listing 387
maintaining objects 385
printing 454
using in command

synonyms 469, 471
processor time

controlling use 565, 575, 585
setting limits 563

PROCOPT parameter, printing 430,
436, 440

production minidisk
create DB2 for VM

DBSPACE(s) 168
create QMF installation control

file 167, 187
NLF 187
QMF 167

QMF installation EXEC 170, 187
NLF 187
QMF 170

QMF invocation EXEC 172, 189
NLF 189
QMF 172

profile
CASE setting, customized

function keys 486
command synonyms 474, 475
creating 315, 325, 333
default values 317, 327, 335
deleting 317, 323, 332
function key customization 491,

492, 493
initialization search order 321
maintenance 383
multiple (NLFs) 317
printing 454
Q user ID 315
SET PROFILE command 322,

331
updating 321, 323, 331, 332

PROFILE PREFIX statement 649
PROG 759 723

program
access packages 159
parameters 172
requirements

NLF 97, 186
program access modules, QMF 159
program access packages, QMF 159
program directory 25
program parameters

DSQSBSTG 259
DSQSDBCS 288, 305
DSQSDBNM 282
DSQSDBQN 270, 273, 297
DSQSDBQT 270, 272, 297
DSQSDBUG 269, 271, 281, 296
DSQSIROW 267, 279, 294
DSQSMODE 282, 298, 299
DSQSPILL 261, 276, 291
DSQSRSTG 260, 275
DSQSRUN 283, 300
DSQSSPQN 293
summary 306

program products 15
required 15

NLF 186
required, NLF 97

prompt panel
customized function key

example 488
panel ID 490

prompted queries
DB2 privileges 346

prompted query
printing 424, 454
SQL privileges 354, 358
window IDs 490

PSP (preventive service
planning) 25

PUBLIC keyword 343, 355, 359
PUBLIC, granting to

See also GRANT queries
See REVOKE queries

Q
Q user profile 315
Q.COMMAND_SYNONYMS

table 158
storage structure 158

Q.COMMAND_SYNONYMS_n
table 121, 123

insert new command synonyms
into 122

job to create 121
Q.DSQ_RESERVED control table

table structure 158

Index 787

Q.DSQ_RESERVED table 158
Q.DSQIOLST_AU_VIEW catalog

view 158
Q.DSQIOLST_QT_VIEW catalog

view 158
Q.DSQIOLST_TB_VIEW catalog

view 158
Q.ERROR_LOG control table 714

table structure 158
Q.ERROR_LOG table 158
Q.OBJECT_;DATA control table

enlarging table space 389
Q.OBJECT_;DIRECTORY control

table
enlarging table space 389

Q.OBJECT_;REMARKS control table
enlarging table space 389

Q.OBJECT_DATA control table
table structure 158

Q.OBJECT_DATA table 158
Q.OBJECT_DIRECTORY control

table
table structure 158

Q.OBJECT_DIRECTORY table 158
Q.OBJECT_REMARKS control table

table structure 158
Q.OBJECT_REMARKS table 158
Q.PROFILES control table 37, 73

adding user profiles 316
deleting user profile 317
insert new row into 123, 124
table structure 158, 317, 327, 335
update for NLF 121
updating 321, 331
updating PFKEYS field 491, 492,

493
updating RESOURCE_;GROUP

field 565, 575, 585
user modifications 322, 331

Q.PROFILES table 158
Q.RESOURCE_;VIEW,

governor 568, 578, 587
Q.RESOURCE_TABLE table 158
QBE queries

DB2 privileges 346
QBE query

printing 454
SQL privileges 354, 358

QMF
as a command prefix 743
commands

compatibility between QMF
releases 743

DB2 privileges 346
establishing user support 315

QMF (continued)
migration, to Version 7 737
program stamps 706
session 315

QMF (Query Management Facility)
application procedures

install in base 191
install in NLF 179

application queries 90
control tables 35, 158
data files 174
dbspace requirements 156
deleting existing QMF sample

tables/queries
NLF 135

dialog on ISPF menu
NLF 190
QMF 177

establishing as an ISPF dialog
NLF 189
QMF 176

hardware requirements 149
install steps for QMF sample

tables/queries
NLF 136

invocation 171
IVP

CICS 85
TSO 91

IVP for interactive mode,
NLF 135

objects 145
objects required 9
overview of 5, 15, 145
panel file 31
program

access modules 159
parameters 172

required files 174
sample procedures/queries 90
starting

NLF 189
QMF 172

storage requirements 156
QMF Administrators 313
QMF as a DB2 UDB for OS/390

application 34
QMF CLISTs

converting records, NLF 120
QMF commands, DB2 privileges

for 346
QMF dialog and invocation 174
QMF installation EXEC 187
QMF installation user exit 313

QMF panels
NLF 117

QMF program access modules 159
QMF program access packages 159
QMF REXX EXECs

converting records, NLF 119
QMFE transaction 69, 88, 222
queries

changing default type 318
deleting 389
displaying 387
GRANT 355, 359
internal stored format 385
listing 387
printing 423
required privileges 354, 358
transferring object

ownership 388
queries, QMF sample

installing
NLF 191
QMF 179

query
changing default type 318
deleting

SQL statements 389
displaying 387
internal stored format 385
listing

SQL statements 387
required privileges 354, 358
sample

installing 179, 191
Query Management Facility (see

QMF) 149
QUEUENAME, QUEUETYPE

keywords 444

R
RACF

batch security 646
RACF considerations 54
RCT (Resource Control Table) 722
recreating control tables and table

indexes 38
references, external 723
region size for TSO 47
release numbers 715
REMARKS column 386
remote installation 147
remote server location 60
remote server parameters 62
remote unit of work

access to objects 368
accessing data 12

788 Installing and Managing QMF

remote unit of work (continued)
creating command synonym

tables 239
customizing a remote database

connection 237
defined 154
example 12
OS/390 installation example 12
overview 146
schematic 7
setting up QMF 12
SQL default views 367, 371
support 6, 7

removing DB2 privileges
incomplete revocations 346
revoking a grant to PUBLIC 352
the cascade effect 352

reports
binary data 685
data formats 497
printing 454
Q.ERROR_LOG table 714
slow performance 686
width/length 318

requester database install
definition 11
QMF target libraries 55
starting QMF 51

REQUESTER database install
QMF NLF into another DB2

subsystem 117
worksheet, QMF 107

requirements
hardware 15

requirements for QMF
database 154
DBSPACE 156
files 174
hardware 97, 149
MAINT machine 156
program products 97
storage 156
virtual storage 21

resident QMF programs 753
resource

controlling 563, 584
governor exit routine 563, 584
group 317

limiting 563, 584
profile 318

ownership 315
passing control information 615
problem log 714
profile management 317, 318

resource limit specification
table 643

restricted access to QMF 317
RESTRICTED column

changing value to NO 388
defined 385

return codes, SQL 690
REVOKE queries

example 346
grant to PUBLIC 352
the cascade effect 352

REXX 32, 52
converting records 32, 119

RLST 643
rows, controlling number

retrieved 563, 584
rules

command synonyms 465
customizing function keys 484

rules for command synonyms 465
rules for customizing function

keys 484
RUN command

command synonym 468
SQL privileges required 353

S
sample

procedures, installation 90
queries

deleting 135
installation 136, 179
installing 191
storage requirements 156

queries, installation 90
tables

creating 43, 126, 170
DBSPACE for 158
deleting 42, 125, 170
insert program 170
installing 89, 223
installing NLF 125
space requirements 156

TSO procedure 47
sample QMF procedures

deletion 135
installation, NLF 136
procedures

deleting 135
installation 136

sample QMF queries
deletion 135
installation, NLF 136

sample queries, QMF
installing

NLF 191
QMF 179

storage requirements for 156
sample tables 89, 223

creating
NLF 126

delete 170
deleting

NLF 125
insert program 170
install 170
installing NLF 125
QMF 158

storage requirements for 156
SAVE command

DATA keyword 353
enhancement 376
SQL privileges required 353
TABLE keyword 353

scope of database install 58
SCOPE resource option 567
scratchpad area

edit routines 544
governor exit routine 628

SDSQCLTE 24
SDSQEXCE 24, 49
SDSQLOAD 22

load module placement 48
target library size 24

SDSQMLBE 24
SDSQPLBE 24
SDSQSLBE 24
SDSQUSRE 24
secondary authorization ID

creating tables, authority
needed 350

security cleanup 96
segmented table space 378
selection menus in ISPF 52
SEQ column 386
server database install

QMF planid and DB2 UDB for
OS/390 subsystem name 66

Server database install
definition 11
starting QMF 51

SERVER database install
QMF NLF into another DB2

subsystem 117
QMF target libraries 55
worksheet, QMF 107

ServiceLink 25, 715
session 315

Index 789

session (continued)
cancellation service 629
customizing

user profile 315
SET PROFILE command 322, 331
SFS (Shared File System)

directories 145
shift characters 559
simple table space 378
Simplified Chinese NLF 161
small integer data, edit routine 498
SMP/E (System Modification

Program Extended)
control statements for

ACCEPT 96
DASD space required 23
DASD space required, NLF 98
format of 99
storage requirements 23
storage requirements for

NLF 98
software requirements 15

under OS/390 15
Software Support Facility (SSF) 715
SPACE column (Q.PROFILES) 318
Spanish NLF 161
spill file

performance problems 262, 266,
278, 291

sample calculations 265
spill files

estimating size 263, 291
SQL

HEX function 685
ID 316

attached to user profile 318
command synonym

table 477
how QMF stores 385
Q 315

privileges 316
for prompted, QBE

queries 354, 358
for QMF commands 353
for table editor 354, 358, 362
table and view access 353

queries, printing 454
return codes 690
statement

CREATE TABLE 374
GRANT 354, 359, 364
INSERT (new user

profile) 316
UPDATE 322, 331

SQLADBSP DB(dbname)
command 169

SQLCODE 722
SQLSTART DB(dbname)

command 169
SREL 100
SSF (Software Support Facility) 715
stamps, QMF programs 706
starting QMF

common errors 721
QMF profile initialization 321
table lock failure 355, 359
with ISPF 51, 128

NLF 128
without ISPF 53, 128

NLF 128
startup job stream for CICS 73
static queries 346
stem tables 250
storage

CICS/ESA region 21
data from edit routine 505
table space, increasing size 389

storage group
create for QMF IVP 41
create for sample tables 43

storage requirements 23
for DB2 for VM 154

QMF catalog views 158
QMF control tables 158
QMF DBSPACE 156
QMF program access

modules 159
QMF sample tables 158

for NLF SMP/E 98
SUBTYPE column, QMF control

tables 385
support products

CICS 753
GDDM 756
setup 753

supported configurations 5
SUSPEND keyword 444
Swedish NLF 161
Swiss French NLF 161
Swiss German NLF 161
SYNONYM_;DEFINITION

column 468
SYNONYMS column

(Q.PROFILES) 318
synonyms for QMF commands 457,

465
abbreviations 474
creating synonyms table 462
index 462, 464

synonyms for QMF commands
(continued)

initialization messages 676
object name 466
problems activating 466
quotation marks 473
synonym definition 468
syntax 473
table maintenance 476
using variables 472
verb 466

SYSADM authority
maintaining a database 350
REVOKE queries 352
revoking access to the application

plan 345
SYSOUT

printing 443
system

error messages 689
system catalog tables

binary data warning 398
SYSTEM profile

changing default values 323,
332

deleting 317
SYSUDUMP 50

T
Table Editor

ADD and CHANGE 346
DB2 privileges 346
SQL privileges required 354,

358, 362
table privilege

overview 347
table reorganization and the DB2

optimizer 397
table space 376

assigning 376
create for QMF IVP 41
create for sample tables 43
creating tables 375, 379
define clusters for control table,

QMF V2 38
deleting 323, 332
enhancing the SAVE/IMPORT

commands 376
enlarging 389
explicit/implicit option

CREATE TABLE query 351
SAVE and IMPORT

commands 376
explicitly created table

spaces 376, 378

790 Installing and Managing QMF

table space (continued)
implicitly created table

spaces 376, 377
scans and the DB2

optimizer 397
specifying in user profile 318
types 378

table space parameters 64
tables

command synonym 462, 464
concurrent editing 355, 359
control tables

See control tables
controlling access 353
creating 374
DB2 catalog 398
deleting 399
enlarging table spaces 389
function keys 479
indexes 375, 379
listing 398
locks 355, 359
maintenance 398
printing 454
QMF control tables

See control tables
resource control, governor

exit 567
tables, control

QMF 149
tables, sample

(see sample tables) 149
tailor jobs, batch/foreground

NLF 116
tailor the QMF invocation EXEC

NLF 189
QMF 172

tailoring for CICS 69, 75
create QMF/CICS table

entries 72
define and load data sets 70
install DB2 UDB for OS/390 into

CICS 69
link-edit with DFHEAI and

DFHEAI0 69
QMF profile 73
run the IVP

DB2 UDB for OS/390
authority 85

initialize QMF 86
preparation 85

set up Multiple Region Option
(MRO) 25

update startup job stream 73

tailoring for TSO (Time Sharing
Option)

how QMF uses TSO 5
ISPF Master Application

Menu 52
logon procedure for QMF

Data Extract (DXT)
considerations 51

requirements 47
region size required 47
run the IVP for QMF interactive

mode
help panel test 86

set up batch jobs to run batch
IVP 54

starting QMF with ISPF 51
starting QMF without ISPF 53

tailoring GDDM for QMF and
CICS 26

tailoring jobs, batch/foreground 66,
116

tailoring QMF for CICS
link-edit with DFHEAI and

DFHEAI0
NLF 129

tailoring QMF for TSO (Time
Sharing Option)

modifications to logon PROC for
NLF 127

set up batch jobs to run batch
IVP 135

NLF 135
starting QMF with ISPF 128

NLF 128
starting QMF without ISPF 128

NLF 128
tailoring QMF for Workstation

Database Servers
creating QMF NLF

control tables 131
sample tables 131

deleting QMF NLF 131
deleting QMF NLF sample

tables 131
tailoring the QMF invocation

EXEC 172, 189
target

libraries
DASD space required 98

target libraries
contents 23
DASD space required, NLF 98
disk space required 24

TCT (Terminal Control Table),
defining printers 432, 441

temporary storage queue
printing using QMF

services 443
trace data 694

terminal
changing case 318
GDDM nicknames 425
UCF support for Katakana 161

TERMINAL field, CICS TCT 427,
439

Terminal Monitor Program
(TMP 47

Terminal Monitor Program
TMP 238

termination calls, edit routine 509
termination messages 707, 709
testing QMF 88
three-part names 7
TIME data

See user edit routines
Time Sharing Option (TSO)

interface to governor 593
interrupt facility 710

TIME Sharing Option (TSO)
performance 260
virtual storage 259

timeout, QMF transaction
CICS region size 686, 687
defining message display 707

TIMESTAMP data
See user edit routines

TOFAM keyword, ADMMNICK
specification 427, 439

toggle switch, governor exit 567
TONAME keyword, ADMMNICK

specification 427, 439
trace

data
viewing 694

dump output 174
facility

file allocation 690
functions 692, 697, 703
starting 691, 697
stopping 696, 701, 706

level of detail 318, 692, 697, 703
message logging 676

TRACE column (Q.PROFILES) 318
trace data set

allocating 690
trace dump output 174
trace facility 724
TRANS function 252

Index 791

transaction
routing requests with MRO and

ISC 756
transferring object ownership 388
transient data queue

printing using QMF
services 443

routing output 424
trace data 694

translation
governor exit routine 638

TRANSLATION column
(Q.PROFILES) 318

TRMIDNT field, CICS TCT 427, 439
troubleshooting

diagnostic aids 687
performance problems 685
storage requirements 686, 687

TSO
interface to governor 593

TSO (Time Sharing Option)
interface to governor 593
interrupt facility 710

TSO (TIME Sharing Option)
performance 260
virtual storage 259

TYPE column, QMF control
tables 385

types of QMF installation 10
TYPETERM specification 708, 709
TYPETERMs for QMF display 707

U
U edit codes, forms 497, 507

defined 497
input area 507

UCF (Uppercase Feature) 161
UDN edit code 500
uncommited read 356, 360
unit of work, definition 6
Uppercase Feature (UCF) 161
user

adding new 316
authorization for objects 353
libraries 24, 99
objects 387

user edit routines
creating a DSQUEDIT module

file
in PL/I 526
in VS COBOL II 545

DATE data 499
handling different codes 507
TIME data 499
TIMESTAMP data 499

user libraries 24
DASD space required, NLF 99

V
V edit codes, forms 497, 507

defined 497
input area 507

values, variable 285, 302
variable values

passing to initial procedure 285,
302

variables
in synonym definitions 472
using &ALL 472

VERB column (synonyms table) 466
verification procedure 87
view privileges

for the view’s owner 349
granting 348

views
controlling access 353
deleting 399
listing 398
maintenance 398
privilege to create 348
privileges for queries 354, 358
privileges for table editor 354,

358, 362
Q.RESOURCE_;VIEW, governor

exit 568, 578, 587
read only 348
screening tools 348
underlying objects 348

virtual storage
estimates

CICS 23
MVS/ESA 21

requirements
VM 153

virtual storage requirements 21, 23,
153

virtual storage, estimating 21
VSAM data sets

used for indexes and table
spaces 396

VSAM files, allocating 37, 39
VSS edit code 500

W
warning messages 676, 721
where QMF objects reside 147
WIDTH column (Q.PROFILES) 318
window panels

customized function key
examples 487

window panels (continued)
IDs 489

worksheet for installation
NLF 106
QMF 167

worksheets for installation 27
workstation database servers

planning 161

792 Installing and Managing QMF

Readers’ Comments — We’d Like to Hear from You

Query Management Facility™

Installing and Managing QMF
Version 7 Release 2

Publication No. GC27-0720-01

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
GC27-0720-01

GC27-0720-01

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM CORPORATION
Department HHX/H3
555 Bailey Ave.
San Jose, CA
U.S.A.
95161-9023

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5675-DB2

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

GC27-0720-01

	Contents
	The QMF library
	About this book
	Who should read this book
	What you should know before you begin
	z/OS or OS/390
	VM
	VSE

	How to use this book
	Prerequisite and related information
	How National Language Feature information is represented
	How to send your comments
	How to order QMF books
	Where to next?

	Part 1. Installing QMF on z/OS and OS/390
	Chapter 1. Introducing QMF and the Install Process
	Introducing QMF
	How QMF can access data in other databases
	Remote unit of work
	DB2 UDB for OS/390-to-DB2 UDB for OS/390 distributed unit of work

	Overview of the database installation process
	DB2 UDB for OS/390 requirements for QMF
	Prerequisite DB2 UDB for OS/390 knowledge
	DB2 UDB for OS/390 objects created by QMF install
	Database authorization ID Q
	Road maps for the QMF installation process
	Setting up QMF for remote unit of work
	Setting up QMF for DB2 UDB for OS/390-to-DB2 UDB for OS/390 distributed unit of work
	Example

	Chapter 2. Planning for QMF
	Hardware requirements
	Prerequisite software
	Planning your storage requirements
	OS/390 storage
	CICS/ESA region

	Moving modules to enhance performance
	In CICS

	Estimating SMP/E storage
	Estimating space for distribution libraries
	Estimating target library size

	Estimating space for user data sets
	Read the program directory and apply service

	Planning for QMF under CICS
	Tailoring CICS for QMF
	Tailoring GDDM for QMF

	Planning for QMF for DB2 UDB for OS/390 for AIX
	Complete the worksheets

	Chapter 3. Submitting QMF Batch Install Jobs
	Step 4—Install QMF panels
	Step 5—Install QMF/GDDM map groups
	Step 6—Install QMF/GDDM sample chart forms
	Step 7—Convert REXX exec and CLIST records
	Converting REXX exec records
	Converting CLIST records

	Preparing QMF as a DB2 universal database for OS/390 application
	Step 8—Binding QMF install programs to DB2 UDB for OS/390
	Step 9—Create QMF control tables
	Converting QMF control table indexes to type 2:
	Tips for remote unit of work
	Migrating from QMF Version 7.1, Version 6, and Version 3 Release 3.0, 2.0, 1.1, 1.0
	Migrating from QMF Version 2.4
	Recover indexes converted to type 2
	Creating control tables without a previous QMF release

	Step 10— Create a table space for the QMF IVP
	Establishing the QMF sample tables
	Step 11—Delete earlier sample tables
	Step 12—Create the QMF sample tables
	Step 13—Bind QMF packages
	Step 14—Bind communications package to DB2 UDB for OS/390
	Step 15—Bind QMF application plan to DB2 UDB for OS/390

	Chapter 4. Tailoring QMF for TSO
	Step 16—Create a TSO logon procedure
	Starting QMF in TSO
	Preparing the TSO logon procedure
	Data Extract (DXT) considerations

	Step 17—Start QMF
	Starting QMF with ISPF
	Starting QMF in TSO

	Step 18—Set up QMF batch job to run batch IVP (optional)

	Chapter 5. Providing Input Parameters
	Step 1—Provide QMF installation parameters
	Before you start
	Starting the installation panels
	Specifying local DB2 UDB for OS/390 parameters
	Specifying the scope of database install
	Specifying remote server location
	Specifying DB2 UDB for OS/390 and QMF parameters
	Specifying remote server parameters
	Specifying space parameters for QMF table spaces
	Specifying parameters for QMF index spaces
	Specifying the job card

	Step 2—Tailor the jobs
	Step 3—Install QMF in the foreground

	Chapter 6. Tailoring QMF for CICS
	Step 19—Describe QMF to DB2 UDB for OS/390 in CICS
	Step 20—Link-edit QMF with DFHEAI and DFHEAI0
	Link-edit QMF with CICS command interface modules
	Translate, assemble, and link-edit the QMF-supplied governor

	Step 21—Define and load QMF/GDDM data sets
	Load QMF/GDDM map sets to the GDDM ADMF data set
	Create QMF/GDDM charts and the QMF trace data set

	Step 22—Update CICS control tables (CICS version 3 or later)
	DCT (destination control table)

	Step 23—Tailor the QMF profile
	Step 24—Update CICS startup job stream

	Chapter 7. Tailoring QMF for Workstation Database Servers
	Step 25—Bind QMF install programs to DB2 DRDA AS
	Step 26—Create QMF control tables in a DB2 DRDA AS
	Step 27—Bind QMF application programs to a DB2 DRDA AS
	Step 28—Create QMF sample tables in a DB2 DRDA AS
	Deleting QMF from a DB2 DRDA AS
	Deleting QMF
	Deleting QMF sample tables from a DB2 DRDA AS

	Starting QMF against a DB2 DRDA AS

	Chapter 8. Tailoring QMF for DB2 Universal Database for iSeries® Servers
	Step 29—Bind QMF install programs to DB2 UDB for iSeries
	Step 30—Create QMF control tables in a DB2 UDB for iSeries server
	Step 31—Bind QMF application programs to a DB2 UDB for iSeries server
	Step 32—Create QMF sample tables in a DB2 UDB for iSeries server
	Starting QMF against a DB2 UDB for iSeries server

	Chapter 9. Testing Your QMF Install
	Step 33 (for TSO)—run the IVP
	Step 33 (for CICS)—Run the IVP
	Before you start QMF
	Start and test QMF

	Step 34—Install the QMF application queries and application objects (TSO)
	Step 35—Run the batch-mode IVP (optional)
	Step 36—Clean up after install
	Freeing an earlier application plan
	QMF Version 7.2 and a previous release are in different DB2 UDB for OS/390 subsystems

	Step 37—Accept the permanent libraries
	Step 38—Clean up security

	Chapter 10. Planning and Installing a QMF NLF
	Profile table and NLF
	Planning for QMF NLF
	Hardware and program product requirements
	SMP/E requirements

	QMF NLF user data sets
	IBM software distribution (ISD) tape
	FMID

	The installation process
	Preliminary: read the program directory and complete the NLF worksheet
	Step 1—Provide QMF NLF installation parameters
	Step 2—Tailor the jobs
	Step 3—Install QMF NLF in the foreground
	Steps 4-8—Submit jobs manually
	Step 4—Install QMF panels
	Step 5—Install NLF/GDDM map groups
	Step 6—Converting REXX EXEC or CLIST records
	Step 7A—Update QMF control tables
	Step 7B and 7C—Establish the QMF NLF sample tables
	Step 7B—Delete earlier QMF NLF sample tables
	Step 7C—Create the NLF sample tables
	Step 8—Tailor NLF/QMF for TSO
	Step 9—Tailor NLF/QMF for CICS
	Step 10—Tailoring QMF NLF for a Workstation Database Server (optional)
	Step 11—Tailoring QMF NLF for a DB2 UDB for iSeries server (optional)
	Step 12—Set Up NLF batch job to run batch IVP (optional)
	Step 13—Running the IVP for QMF interactive mode
	Step 14—Installing the national language sample queries and procedures
	Step 15—Running the batch-mode IVP (optional)
	Step 16—Post-installation cleanup
	Step 17—Accept the permanent libraries
	Step 18—Create a cross-CDS environment

	Chapter 11. Binding QMF Version 7.2 Packages at a Remote Server
	Part 2. Installing QMF on VM/ESA
	Chapter 12. Introduction
	Overview of QMF
	QMF objects
	Overview of QMF with remote unit of work

	Terminology
	Overview of the installation process
	Where the objects reside
	Local and remote installation
	Connecting to a remote database from VM

	Chapter 13. Planning for Installation
	Hardware requirements
	Prerequisite software
	Virtual storage requirements
	Required DB2 for VM knowledge
	DB2 for VM requirements
	A PUBLIC DBSPACE is required for saving data
	Database CONNECT ID “Q” and “SQLDBA”
	QMF SQL install packages
	Further requirements

	Before you begin
	Previous releases of QMF
	Migration and fallback
	QMF National Language Feature (NLF) considerations
	installing QMF into a workstation database server on VM

	Chapter 14. Installing QMF Version 7.2 into the DB2 for VM Database
	QMF installation flow diagram
	The installation steps
	Preliminary: read the program directory and complete the QMF Version 7.2 worksheet
	Step 1—Create QMF installation control file: DSQ2ECTL
	Step 2—Creating DB2 for VM DBSPACEs: DSQ2DBSC
	Step 3—Run QMF installation exec: DSQ2EINS
	Step 4—Start QMF: DSQ2EINV
	Step 5—Running IVP for QMF interactive mode : DSQ2EIVP
	Step 6—Installing QMF sample objects and application objects: DSQ2ESQD and DSQ2ESQI
	Step 7—Run the batch-mode IVP (optional): DSQ2EBAT
	Step 8—Deleting previous versions of QMF (optional): DSQ2BDEL
	Step 9—Post-installation cleanup
	Step 10—Load QMF database packages to a remote server (optional): DSQ2BPKB
	Step 11—Recreate QMF views (optional): DSQ2BVW

	Chapter 15. Installing a QMF Version 7.2 National Language Feature (NLF)
	NLF installation execs
	Installing a National Language Feature
	Hardware and program product requirements
	The installation steps
	Preliminary: Read the NLF program directory and complete the worksheet
	Step 1—Create the QMF NLF installation control file: DSQ2nCTL
	Step 2—Run QMF NLF installation exec: DSQ2nINS
	Step 3—Start QMF NLF: DSQ2nINV
	Step 4—Run the IVP for QMF NLF interactive mode: DSQ2nIVP
	Step 5—Install QMF NLF sample objects and application objects: DSQ2nSQD and DSQ2nSQI
	Step 6—Run the IVP for QMF NLF batch mode (optional): DSQ2nBAT
	Step 7—Post-installation cleanup

	Part 3. Installing QMF on VSE/ESA
	Chapter 16. Before You Begin
	Hardware
	Prerequisite software
	QMF storage requirements
	Apply service
	Check space requirements
	Library space
	VSAM catalog
	dbspace
	Check your CICS partition size
	Partition size for installation

	The planning considerations
	Tailoring GDDM for QMF and CICS
	Running DB2 guest sharing
	Customizing DB2 for double-byte character support

	Installation overview
	Base installation
	Installing language support
	CICS tailoring

	Chapter 17. Tailoring Your Installation
	Punch members to an editor
	install QMF base
	Catalog the initialization procedure
	Install QMF base into DB2 database

	Tailor QMF for NLF
	Install NLF
	Install QMF into SQL database

	Link-edit jobs for QMF
	Link jobs for NLF

	Tailor CICS
	Modify the DFHFCT and DFHDCT
	Define QMF programs and transactions to CICS
	Run CEDA
	Modify the DFHPCT and DFHPPT
	Modify the CICS startup job

	Install QMF for VSE/ESA into a second CICS system

	Chapter 18. Installing QMF into Remote Database Servers
	Installing QMF V7.2 into a DB2 Universal Database remote server
	Punch Members to an editor
	Installation steps

	Installing QMF Version 7.2 for an iSeries server

	Chapter 19. Run the Installation Verification Procedure
	Before starting QMF
	Start and test QMF
	Run an IVP for NLF
	What if it did not work?

	Chapter 20. How to Maintain QMF
	Adding new components
	Adding GDDM-PGF
	Adding QMF to another DB2 database
	Migrating to new releases of DB2, CICS, or GDDM
	Binding QMF Version 7.2 packages at a remote server

	Replacing existing components
	Re-Installing QMF
	Re-installing an NLF
	Applying service updates

	Part 4. Managing QMF
	Chapter 21. Starting QMF
	Setting up and starting QMF on OS/390
	Choosing an authorization ID on OS/390
	Setting up QMF to run in native OS/390 as a batch job
	Setting up and starting QMF on TSO
	Setting up and starting QMF on ISPF
	Setting up and starting QMF on CICS
	Using the CICS/DB2 attachment facility
	Verify QMF data sets on OS/390

	Setting up QMF to run on VM
	Connecting to DB2
	Setting up QMF to run under ISPF
	Starting QMF from an ISPF menu on CMS
	Starting QMF in batch mode in ISPF
	Verify QMF data files on VM

	Setting up and starting QMF on VSE
	Starting QMF from the VSE/ESA function selection menu
	Connecting CICS and DB2 for VSE
	Starting QMF from a CICS application
	Starting QMF from a cleared CICS screen

	Chapter 22. Customizing Your Start Procedure
	Choosing the right amount of virtual storage for each session
	Program parameters for OS/390 and z/OS
	DSQSBSTG (adjusting storage for report data)
	DSQSRSTG (Adjusting reserved storage used for applications)
	DSQSPILL (acquiring extra storage)
	DSQSIROW (controlling the number of report rows retrieved for display)
	Tracing QMF activity at the start of a session
	Tracing QMF activity at the start of a session

	Customizing your start procedure on VM
	Naming the program segment
	Controlling initial activities during a session

	Customizing your start procedure on VSE
	Program parameters for VSE
	DSQSBSTG (adjusting GETVIS storage used for report data)
	DSQSPILL (acquiring extra storage)
	DSQSSPQN (specifying the name of the CICS spill storage)
	DSQSIROW (controlling the number of report rows retrieved for display)
	Tracing QMF activity at the start of a session
	Controlling initial activities during a session

	Summary of program parameters

	Chapter 23. The QMF Session Control Facility
	Installing Q.SYSTEM_INI
	When does the Q.SYSTEM_INI procedure run?
	When does the Q.SYSTEM_INI procedure run?
	Using Q.SYSTEM_INI
	Example shipped with QMF

	User session procedure example
	Procedure that displays an object list
	Security and sharing session procedure
	Diagnosis considerations
	Importing the default system initialization procedure on OS/390
	Importing the default system initialization procedure on VM
	Importing the default system initialization procedure on VSE

	Chapter 24. QMF Installation User Exit (DSQUOPTS)
	OS/390
	VM
	VSE

	Chapter 25. Establishing QMF Support for End Users
	Creating user profiles to enable user access to QMF on OS/390
	Establishing a profile structure for your installation
	Adding a new user profile to the Q.PROFILES table
	Preventing users without unique profiles from using QMF
	Reading the Q.PROFILES table
	Providing the correct profile on OS/390
	Updating user profiles
	Deleting profiles from the Q.PROFILES table

	Establishing QMF support on VM
	Ensuring that users have access to CMS
	Establishing a profile structure for your installation
	Adding a new user profile to the Q.PROFILES table in CMS
	Preventing users without unique profiles from using QMF
	Reading the Q.PROFILES table
	Providing the correct profile for VM
	Updating user profiles
	Deleting profiles from the Q.PROFILES table

	Establishing QMF support on VSE
	Establishing a profile structure for your installation
	Adding a new user profile to the Q.PROFILES table in CICS/VSE
	Ensuring that users have access to CICS
	Preventing users without unique profiles from using QMF
	Reading the Q.PROFILES table
	Providing the correct profile for VSE
	Storing profiles in VM DB2 in a guest-sharing environment
	Updating user profiles
	Deleting profiles from the Q.PROFILES table

	Granting and revoking SQL privileges
	Using the SQL GRANT statement
	Using the SQL REVOKE statement

	Controlling access to QMF and database objects
	Controlling access on OS/390
	Controlling access on VM
	Controlling access on VSE

	Customizing a user's database object list
	Using the default object lists on OS/390
	Using the default object lists on VM and VSE

	Enabling users to create tables in the database
	Creating tables on OS/390
	Creating tables on VM and VSE

	Enabling users to support a chart
	Supporting a chart in TSO and ISPF
	Supporting a chart in CICS on OS/390
	Supporting a chart on VM
	Supporting a chart on VSE

	Maintaining QMF objects using QMF control tables
	Reading the Q.OBJECT__DIRECTORY table
	Reading the Q.OBJECT__DATA table
	Reading the Q.OBJECT_REMARKS table
	Listing QMF queries, forms, and procedures
	Displaying QMF queries, forms, and procedures
	Transferring ownership of queries, forms, and procedures
	Deleting obsolete queries, forms, and procedures
	Importing queries, forms, and procedures in OS/390 data sets
	Enlarging the dbspace for the QMF object control tables on VM
	Enlarging the dbspace for the QMF object control tables on VSE

	Maintaining a DB2 subsystem on OS/390
	Managing data sets
	Maintaining the control tables
	Determining index use
	Switching buffer pools

	Maintaining tables and views using DB2 tables
	Using DB2 catalog tables on OS/390
	Using DB2 for VM and VSE System tables

	Supporting locally defined date/time formats
	Locally defined date/time formats on OS/390
	Locally defined date/time formats on VM
	Locally defined date/time formats on CICS OS/390 or VSE

	Accessing the DXT end user dialogs (ISPF only)
	Supporting the EXTRACT command on OS/390
	Supporting the EXTRACT command on VM

	Customizing the document editing interface for users
	Customizing the document editing interface on OS/390
	Customizing the document editing interface on VM

	Customizing the QMF EDIT command
	The EDIT command on OS/390
	The EDIT command on VM

	Enabling English support in an NLF environment
	Using global variables to define the currency symbol

	Chapter 26. Enabling Users to Print Objects
	Deciding whether to use QMF or GDDM services for printing
	CICS (for OS/390 and VSE) considerations

	Using GDDM services to handle printing
	How QMF interfaces with your GDDM nickname
	GDDM services on OS/390
	GDDM services on VM
	GDDM services on VSE

	Using QMF services to handle printing
	Using QMF services for printing in native OS/390 batch, TSO and ISPF
	Using QMF services for printing in CICS
	Using QMF’s DSQPRINT to handle printing on VM
	Using QMF services to handle printing on VSE

	Defining a synonym for the print function key
	Native OS/390 batch, TSO and ISPF
	Defining a synonym for the print function key for CICS
	Defining a synonym for the print function key in VM
	Defining a synonym for the print function key on VSE

	Printing objects

	Chapter 27. Customizing QMF Commands
	Using the default synonyms provided with QMF
	Default synonyms on OS/390
	Default synonyms on VM

	Creating a command synonym table
	Creating a command synonym table on OS/390
	Creating a command synonym table on VM and VSE

	Entering command synonym definitions into the table
	Choosing a verb
	Choosing an object name
	Choosing the synonym definition

	Activating the synonyms
	Activating the synonyms on OS/390
	Activating the synonyms on VM and VSE

	Minimizing maintenance of command synonym tables
	Assigning one synonym table to all users
	Assigning views of a synonym table to individual users

	Chapter 28. Customizing QMF Function Keys
	Choosing the keys that you want to customize
	Default keys on full-screen panels
	Default keys on window panels

	Creating the function key table
	Creating the table on OS/390
	Creating the table on VM and VSE

	Entering your function key definitions into the table
	Linking a command with a function key
	Labeling the function key and positioning it on the screen
	Examples of key definitions

	Identifying the panel that you want to customize
	Full-screen panel identifiers
	Window panel identifiers

	Activating new function key definitions
	Activating definitions on OS/390
	Activating definitions on VM
	Activating definitions on VSE

	Testing and problem diagnosis for the function key table

	Chapter 29. Creating Your Own Edit Codes for QMF Forms
	QMF forms
	Choosing an edit code
	Handling DATE, TIME, and TIMESTAMP information
	Calling your exit routine to format the data
	Calling your exit routine on OS/390
	Calling your exit routine on VM
	Calling your exit routine on VSE

	Passing information to and from the exit routine
	Fields of the Interface control block
	Fields that characterize the input area
	Fields that characterize the output area

	Passing control to the exit routine when QMF terminates
	Writing an edit routine in HLASM (high level assembler)
	Writing an edit routine for native OS/390, TSO, or ISPF
	Writing an edit routine in Assembler for CICS
	Writing an edit routine for VM
	Writing an edit routine in Assembler for CICS/VSE

	Writing an edit routine in PL/I without language environment (LE)
	Writing an edit routine for native OS/390, TSO, or ISPF without LE
	Writing an edit routine on VM without LE

	Writing an edit routine in PL/I with language environment (LE)
	Writing an edit routine in PL/I for native OS/390, TSO, or ISPF with language environment (LE)
	Writing an edit routine in PL/I for VM with language environment (LE)

	Writing an edit routine in PL/I for CICS on OS/390
	Example program DSQUXCTP
	How a PL/I edit routine interacts with CICS
	Translating your program
	Compiling your program on OS/390
	Link-editing your program
	Example JCL statements for translating, compiling, and link-editing for CICS on OS/390
	CICS program definition

	Writing an edit routine in PL/I for CICS/VSE
	Example program DSQUXCTP
	How a PL/I edit routine interacts with CICS
	Translating your program
	Link-editing your program
	Example JCL statements for translating, compiling, and link-editing for CICS on VSE
	How a PL/I program interacts with QMF

	Writing an edit routine in COBOL without language environment (LE)
	Writing an edit routine in COBOL for native OS/390, TSO, or ISPF without language environment (LE)
	Writing an edit routine in COBOL for CMS without language environment (LE)

	Writing an edit routine in COBOL with language environment (LE)
	Writing an edit routine in COBOL for native OS/390, ISPF, and TSO with language environment (LE)
	Writing an edit routine in COBOL for CMS with language environment (LE)

	Writing an edit routine in COBOL for CICS on OS/390
	How a COBOL edit routine interacts with CICS
	Translating your COBOL program
	Example program DSQUCTC
	How a COBOL edit routine interacts with QMF

	Writing an edit routine in COBOL for CICS/VSE
	Example program DSQUCTC
	Literal delimiters: quotes or apostrophes
	How a COBOL edit routine interacts with CICS
	How a COBOL edit routine interacts with QMF
	Translating your COBOL program
	Defining the edit exit phase to CICS on VSE

	Handling double-byte character set data
	Edit codes for DBCS data
	What the edit routine receives
	Ensuring the edit routine returns the right results

	Chapter 30. Controlling QMF Resources using a Governor Exit Routine
	Using a governor exit routine on OS/390
	Using the IBM-supplied governor exit routine

	Using a governor exit routine on VM
	Using the IBM-supplied governor exit routine

	Using a governor exit routine on VSE
	Using the IBM-supplied governor exit routine

	Modifying the IBM-supplied governor exit routine or writing your own
	Modifying the governor exit on OS/390
	Modifying the governor exit on VM
	Modifying the governor exit on VSE

	How and when QMF calls the governor exit routine
	OS/390
	VM
	VSE

	Passing resource control information to the governor exit
	Structure of the DXEGOVA control block
	Addressing the resource control table
	Structure of the DXEXCBA control block

	Storing resource control information for the duration of a QMF session
	Canceling user activity
	OS/390
	VM

	Providing messages for canceled activities
	OS/390
	VM
	VSE

	Assembling and generating your governor exit routine in CMS
	Assembling your governor exit

	Assembling and link-editing your governor exit routine in TSO, ISPF, and native OS/390 batch
	Assembling your governor exit
	Link-editing your governor exit routine

	Assembling and generating your governor exit routine in CMS
	Assembling your governor exit

	Assembling, translating, and link-editing your governor exit routine in CICS on OS/390
	Assembling your governor exit

	Assembling, translating, and link-editing your governor exit routine in CICS on VSE
	Assembling your governor exit
	Link editing your governor exit routine
	Example JCL statements

	Using the DB2 governor on OS/390
	Monitoring the resources
	Differences between governors
	When the maximum processor time is exceeded
	Applying the DB2 governor to QMF for

	Chapter 31. Running QMF as a Batch Program
	Running QMF as batch a batch program on OS/390
	TSO
	Using the QMF batch query/procedure application (BATCH) in ISPF
	Running QMF batch in native OS/390

	Running QMF as a non-interactive transaction on CICS
	Running batch from a terminal
	Running batch without a terminal
	Debugging a procedure
	Termination return codes

	Running QMF as a batch program on CMS
	Authority to operate in batch mode
	Running batch jobs on your CMS machine
	Debugging a procedure
	MACLIBs required on VM
	Using the application
	Filling in the prompt panel
	Modifying the batch application

	Chapter 32. Troubleshooting and Problem Diagnosis
	Troubleshooting common problems
	Handling initialization errors
	Handling warning messages
	Handling GDDM errors during printing
	Handling QMF errors during printing on OS/390
	Handling QMF errors during printing on VM
	Handling CMS command errors
	Handling display errors on VSE
	Handling display errors
	Solving performance problems

	Determining the problem using diagnosis aids
	Choosing the right diagnosis aid for the symptoms
	Diagnosing your problem using QMF message support
	Using the QMF trace facility
	Diagnosing abends
	Abend handling on VM Here
	Abend handling on VSE
	Using the QMF interrupt facility
	Using error log reports from the Q.ERROR_LOG table

	Reporting a problem to IBM
	Using ServiceLink to search for previously reported problems
	Working with your IBM support center

	Part 5. Appendixes
	Appendix A. Miscellaneous
	What if it did not work? (OS/390)
	Error messages you might see
	ABENDASRA
	AEY9 ABEND
	AZTS ABEND
	DSNT302I
	DSQ10297
	DSQ10493
	DSQ36805
	DSQI004I
	DSQI0026
	G050 ABEND
	IDC3012I
	IDC3009I
	IDC0551I
	IEW0342
	IEW0461
	DSQ22843
	Warning messages
	What if I did not get an error message?
	Access to QMF trace data set DSQDEBUG

	QMF for CICS on VSE/ESA and OS/390 Version 7.2 product limitations

	Appendix B. QMF Objects Residing in DB2
	QMF plans
	QMF packages
	QMF control tables and table spaces on OS/390
	QMF control tables and table spaces on VM
	QMF control tables and table spaces on VSE

	QMF views
	VSAM clusters for OS/390
	QMF sample tables for OS/390

	Appendix C. QMF User Defined Functions
	APPL_AUTHNAMES
	CALL DSQAB1E
	DSQABA1E

	Appendix D. Migration and Fallback between QMF Releases
	What is meant by migration?
	Multiple releases of QMF
	Granting access to the QMF V7R2 application plan and packages
	DB2 subsystems and migration
	Migrating QMF on the Same DB2 subsystem
	Migrating QMF across different DB2 subsystems

	Migrating QMF objects
	Queries and forms
	Procedures

	Migrating applications
	Callable interface considerations
	Form application migration aid
	Running QMF under ISPF on OS/390

	Other migration considerations
	31-digit decimal support
	Governor
	User edit routine in CICS
	User edit routine in TSO and native OS/390 batch
	Callable interface in CICS
	Printing in CICS
	Export/import support for CICS on OS/390
	Migrating from version 2

	Global variables and the governor on VM
	Use of the invocation procedure

	Fallback
	What do we mean by fallback?
	Re-establishing the earlier profiles
	Using QMF Version 7.2 objects under earlier releases
	Using QMF Version 7.2 commands under earlier releases

	Appendix E. How QMF and GDDM Programs are Defined to CICS
	How QMF programs are defined to CICS/MVS and CICS/VSE
	Resident QMF programs
	How nonresident programs affect performance

	Loading QMF to the 31-Bit shared virtual area on VSE
	How GDDM definitions are loaded during QMF installation
	How nonresident GDDM programs affect QMF
	How chart formats are defined
	Adding charting function after QMF installation

	Using transaction routing to control resource use

	Appendix F. Notices
	Trademarks

	Appendix G. Glossary of Terms and Acronyms
	Appendix H. Bibliography
	CICS publications
	COBOL publications
	DB2 Universal Database Server for OS/390 and z/OS publications
	Document Composition Facility (DCF) publications
	Distributed Relational Database Architecture (DRDA) publications
	DXT publications
	Graphical Data Display Manager (GDDM) publications
	HIgh Level Assembler (HLASM) publications
	Interactive System Productivity Facility (ISPF) publications
	OS/390 publications
	OS PL/I publications
	REXX publications
	VM/ESA publications
	VSE/ESA publications

	Index
	Readers’ Comments — We'd Like to Hear from You

