IBM InfoSphere Global Name Management

Developer's Guide

Version 6 Release 0

<|ll

IBM InfoSphere Global Name Management

Developer's Guide

Version 6 Release 0

<|ll

Note
FBefore using this information and the product it supports, read the information in the Notices section.

Edition
This edition applies to Version 6.0 IBM InfoSphere Global Name Recognition (product number 5724-Q20) and to all
subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2001, 2013.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Version 6.0 - features and enhancements .

Generating a list of name Varlants for full names 46
Product architecture .

Preface.V Country of association.43
Identifying the country of assocratlon for full

Chapter 1. Overview of IBM InfoSphere i‘;m‘fs’f SRR .. 48

Global Name Management 1 entifying country of association for glven name
y) . and surname44
What's new in Version 6.0 . Coe e e e 2 Generating name Varlants usmg NameWorks .. .44
Version 6.0 - Release Notes . . . Lo é Name variants . . . 44

9

Generating a list of name variants for given

Component APIs.9 names and surnames . . 46
IBM NameWorks Ce e e 10 Analyzing names with the component APIs ... 47
Client applications11
Distributed Search11 Chapter 5. Searching for names. . . . 49
Chapter 2. Overview of names and Ma]rjlzgt;;rfsiata lists in IBM NameWorks. g
name matching13 Adding names to data hsts50
Approaches to name matching13 Updating names on data lists51
Name categories.14 Deleting names from data lists52
Personal names14 Migration of IBM NameWorks52
Organization names17 Preparing names for search55
Name parts18 Scenarios: searching for names55
Parse trees.18 Creating name objects for name searchmg .. .56
Parsed names.19 Searching for names using IBM NameWorks . . . 58
Name fields20 Managing search strategies59
Name phrases21 Overriding comparison parameters 62
Name tokens.21 Preparing names for search66
Name lists.26 Categorizing names, comparing names, and
Name data archive26 comparing dates using IBM NameWorks . . . 66
External token list26 Searching for names inadatalist.73
Name transliteration27 Retrieving supplemental data for names
Transliteration rule files27 associated with a unique name.74
Chinese transliteration overview28 Searching for names using NameHunter.75
Japanese transliteration overview30 NameHunter overview75
NameHunter API quick start examples88
Chapter 3. Parsingnames 33 NameHunter sample applications91
Parsing names using NameWorks33 Modifying comparison parameters.91
Parsing names into individual parts33 Configuring transliteration rule sets for
Parsing names using NameParser34 NameHunter 119
Types of input strings34 Searching for names using Dlstrlbuted Search .. 119
NameParser functions for parsing names . . . 35 Name Preprocessor introduction 121
NameParser phrase override list35 Distributed Search performance and
configuration overview . . . 132
Chapter 4. Analyzing names 37 NameHunter Distributed Search XML 1nterface 142
Analyzing names using NameWorks 37 Searchmg.for names nsmg Enterprise Name Search 154
Identifying the culture of a name using NameWorks 37 Managmg Enterprlse Name Search user security 154
Culture identification38 Managmg name lists with the NameLoader
Culture codes.] . .38 utility158
Identifying the culture of a full name.40
Identifying the culture of name fields.40 Chapter 6. Configuring IBM
Identifying the culture of an organization name 41 NameWorks < 169
Identifying the gender of names using NameWorks 41 Specifying configuration settmgs by using the IBM
Identifying the gender of a full name.42 NameWorks configuration file. 170
Identifying the gender of a given name 42 General section of the configuration f11e .. 172
Identifying the country of association for names Custom tokens section of the configuration file 173
using NameWorks42 Datalist section of the configuration file . . . 173

© Copyright IBM Corp. 2001, 2013 iii

Specifying configuration settings by using the Cc . . 219
Configuration class 182 D . . 219
Updating your IBM NameWorks conflguratlon F . . 220
to use additional transliteration rule files . . . 183 G . . 220
H . . 220
Chapter 7. Troubleshooting and L. - 220
support.18 I . - 220
Troubleshooting Checkhst for IBM InfoSphere 1111/[: ’ 33(1)
Global Name Management 185 o ’ ’ 1
Component API C++ error codes. 186 P ’ ’ 1
Reference data errorcodes188 0 ’ : 0
Global error codes.191 R ’ ’ 9
Input error codes192 S ’ : 273
Internal error codes19 T ’ ’ 23
IBM NameWorks error codes19 ’)
IBM NameWorks C++ error codes 196 .
Distributed Search error codes.200 Notices225
Enterprise Name Search error codes.203
ENS Console error codes203 Trademarks 229
ENS Search error codes209
Searching knowledge bases.214 Terms and conditions. 231
Logfiles215
Tracing . . A
Contacting IBM Support . 11 Index.23
Subscribing to Support updates216

Appendix. Glossary. 219
A . 219

iv IBM InfoSphere Global Name Management: Developer's Guide

Preface

© Copyright IBM Corp. 2001, 2013

IBM InfoSphere Global Name Management leverages cultural-specific name data
and builds rules associated with the names culture to perform the best matching,
management, parsing, and scoring results. Global Name Management is an
industry-leading technology that lets you search, recognize, and manage
multicultural names, screen potential threats, and perform background checks
across multiple geographies and cultures.

About this publication

The IBM® InfoSphere® Global Name Management Developer’s Guide and the API
Reference are provided to help you create applications that leverage IBM InfoSphere
Global Name Recognition technology through the provided APIs.

This information is provided in several forms for your convenience. In addition to
the PDF format (found on the product installation DVD and downloadable from
ibm.com), an online version that includes all of the product information can be
found at [[BM InfoSphere Global Name Management information center| You can
also install the browser-based product information center on a local machine.

Intended audience

The Developer’s Guide and API Reference are intended to help you successfully
deploy the product in your environment and create applications.

How to send your comments

Your feedback is important in helping to provide the most accurate and
high-quality information. If you have any comments about this book or any other
IBM InfoSphere Global Name Management documentation, you can use the
Feedback link in the information center or the following form:

http:/ /www.ibm.com/software/data/rct/

http://publib.boulder.ibm.com/infocenter/gnrgnm/v4r2m0/index.jsp

vi IBM InfoSphere Global Name Management: Developer's Guide

Chapter 1. Overview of IBM InfoSphere Global Name

Management

The IBM InfoSphere Global Name Management product contains technologies to
manage, search, analyze, and compare multicultural name data sets by leveraging
culture-specific name data and linguistic rules that are associated with the name's
culture.

The components within IBM InfoSphere Global Name Management enable you to:

Identify and classify the most likely culture (ethnic category) of a name,
including the countries in which the given name or surname is most often found

Recognize and report the relative frequencies of gender (male or female)
associated with given names

Parse personal names into surname and given name components

Generate lists that contain variant forms of the components (given name and
surname) of a name

Search and match names using culture-specific search strategies

Match names even if they are affected by typical spelling and cultural variations,
related by sound but not by spelling, or damaged by spelling and typing errors

Match names even if some of their components (given name or surname) are
missing or are not in the correct order

Match names on both pronunciation and orthography, with the closest matches
returned first

Adjust search parameters for highly tunable and application-specific results
Separate personal names from organization names

Compare date values, which can be useful when searching for a name that has
an associated date value (such as date of birth), or compute differences between
date values

APl components and server processes

API components and server processes in this bundle include:

IBM NameWorks, an integrated high-level API
NameParser®

NameClassifier

NameClassifier - Country of Association
Country of Association

NameHunter®

— Distributed Search process
NameGenderizer®

NameVariationGenerator®

NameSifter

DateCompare

Related concepts:

[“What's new in Version 6.0” on page 2|

This version of IBM InfoSphere Global Name Management contains many new

© Copyright IBM Corp. 2001, 2013

features and product enhancements.

[“Version 6.0 - Release Notes”|

These release notes contain information about IBM InfoSphere Global Name
Management, Version 6.0, such as installation notes, known issues, fixed problems,
and usage notes.

What's new in Version 6.0

2

This version of IBM InfoSphere Global Name Management contains many new
features and product enhancements.

For the most recent information about IBM InfoSphere Global Name Management
Version 6.0, go to the product website at |http:/ /www-03.ibm.com /software/|
[products/en/infosphere-global-name-management]

Platform additions and deprecations

This version of IBM InfoSphere Global Name Management supports newer
versions of several platforms. Other platforms were deprecated as part of this
release. For a listing of supported platforms and development environments, see
the [system requirements| on ibm.com.

Related concepts:

[Chapter 1, “Overview of IBM InfoSphere Global Name Management ,” on page 1|
The IBM InfoSphere Global Name Management product contains technologies to
manage, search, analyze, and compare multicultural name data sets by leveraging
culture-specific name data and linguistic rules that are associated with the name's
culture.

Version 6.0 - Release Notes

These release notes contain information about IBM InfoSphere Global Name
Management, Version 6.0, such as installation notes, known issues, fixed problems,
and usage notes.

Note: For the latest version of the release notes, see the online version in the
linformation center ht ibm.com or the separate release notes HTML file that

accompanies the installation media and is separately downloadable at the
—

Contents
* [“System requirements” on page 3|

* [“Performance considerations” on page 3|

* “Upgrading to IBM Global Name Management version 6.0” on page 3|

* |“List of product enhancements” on page 3|

+ [“Known issues when using the product” on page 3|

+ [“Known issues - Enterprise Name Search” on page 4|

* |“To see the latest information about known problems and issues” on page 7|

* [“Product documentation” on page 7|

+ [“Announcements” on page 7|

IBM InfoSphere Global Name Management: Developer's Guide

http://www-03.ibm.com/software/products/en/infosphere-global-name-management
http://www-03.ibm.com/software/products/en/infosphere-global-name-management
http://www.ibm.com/support/docview.wss?rs=0&q1&uid=swg27019150
http://www.ibm.com/support/knowledgecenter/SSEV5M_6.0.0
http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/InfoSphere_Global_Name_Recognition
http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/InfoSphere_Global_Name_Recognition

System requirements

For the latest information about hardware and software compatibility, see the
detailed system requirements document at fttps:/ /www.ibm.com/support/|
[knowledgecenter /SSEV5M_6.0.0}

Performance considerations

Searches should not exceed five tokens when running a search against a large data
list (5 million or more names) on a computer that runs Linux for IBM zSeries
(s390). Including more than five tokens in your search query can return results that
exceed the limit size, causing a transaction timeout that leads Web services to fail.
See the product information center for more performance information.

Upgrading to IBM Global Name Management version 6.0

The installation program writes new configuration files to install_path/data/
*.config.template, where install_path is the full path of the directory where you
installed IBM InfoSphere Global Name Management. Existing configuration files
are preserved and are not overwritten by the installation program.

List of product enhancements

The following list describes some of the functional improvements included in
version 6.0:

* Support for new standard cultures: Polish, Portuguese and Turkish.

* Extending native script support to handle personal names written in extended
Latin (Hispanic, Polish, Portuguese) and Devanagari (Indian), and organization
names written in Cyrillic (Russian), Hangul (Korean), Kanji (Japanese), Hanzi
(Chinese) and Devanagari (Indian).

* Extending organization name searching support for additional cultures: Chinese,
Hispanic, Japanese, Korean, Polish, Portuguese and Russian. Improving handling
of short name comparisons to properly identify misspellings ("Fred" vs. "Ferd")
while avoiding matches on truly different names ("Bill" vs. "Jill"). A significant
feature of this release improves scoring of short names, which yields better name
search results. This improvement utilizes data from GNM's Name Data Archive,
and therefore is only applicable for personal names.

* Improving genderization to work with the entire compendium of GNR name
data and to provide culture-specific gender information ("Juan" is a male name
in most of the world, but a female name in China).

Known issues when using the product

Review the following information before installing and using IBM InfoSphere
Global Name Management version 6.0.

Support libraries used on Windows
The default installation on Windows systems installs components built
with Microsoft® VisualStudio® 2013. Before installing any GNM
components it is important to ensure the required compiler support
libraries are installed on the target system. The necessary vcredist files are
available for download from Microsoft support sites.

Changes to NameParser C++ API
The NameParser API has been simplified in version 6.0, to align with the

Chapter 1. Overview of IBM InfoSphere Global Name Management 3

https://www.ibm.com/support/knowledgecenter/SSEV5M_6.0.0
https://www.ibm.com/support/knowledgecenter/SSEV5M_6.0.0

4

behavior of the NameWorks parsing API. C++ programs that utilize
NameParser directly must be modified to work with version 6.0.

Changes and additions to NameWorks configuration file entries
In support of native script comparison new support for comparison files
has been added to version 6.0.

* NativeTaq=path to native script TAQ file
Specifies native script TAQ data.

* NativePnVar=path to native script personal name variants file
Specifies native script personal name variant data

* NativeOnVar=path to native script organization name variants file
Specifies native script organization name variant data

* NativePnReg=path to native script personal name reqularization module,script
name

Specifies native script personal name regularization data for a specific
script type

* NativeOnReg=path to native script organization name regularization
module,script name

Specifies native script organization name regularization data for a
specific script type

Standalone NameAnalyzer installation
When performing a GNM v6.0 install and selecting the product option of
NameAnalyzer, the NameAnalyzer web application does not properly install.
This can be mitigated by performing a "full" or default GNM v6.0 install.
When a default install is performed, then the NameAnalyzer web
application is available as expected.

NameAnalyzer API Samples
Issues have been found with NameAnalyzer API Samples (Analytics and
Scoring) where certain inputs are not being handled properly when run on
Microsoft Internet Explorer. Instead, use Mozilla Firefox for the API
Samples.

Known issues - Enterprise Name Search

Be aware of the following additional information and instructions before you
install and use Enterprise Name Search.

ENS now uses WebSphere Liberty rather than Embedded WebSphere
Application Server
The configuration files used, the paths and folders in the installation, the
URLSs for web services, and details on managing users and security have
all changed. See the documentation for details on all of these.

New database schema
In conjunction with new GNM script type and culture support, and new
ENS support for multiple source names with the same external id, ENS 6.0
has a different database schema from that in previous versions. NameLoader
operation is similar to that in version 5.X, apart from its handling of
duplicate external ids and an optional extended input format allowing
explicit specification of script type. See the documentation for details.

ENS is dataabase-intensive when adding names
ENS is database-intensive both when adding names via NameLoader and
when mapping analyzed names back to source name forms during a

IBM InfoSphere Global Name Management: Developer's Guide

search. Proper database settings and runs of database statistics are essential
and can dramatically affect performance. As above, see the documentation
for details.

DB2 locking mode
"DB2_KEEPTABLELOCK=CONNECTION" locking mode is NOT
supported with ENS

DB2_INLIST_TO_NLJN
For best ENS performance you should set DB2_INLIST_TO_NLJN db2
register variable. To set it you do:
1. db2set DB2_INLIST_TO NLJN=yes

2. then you must stop and restart the database manager.

Enterprise Name Search requires UTF-8 encoding
If you are working with data that includes non-ASCII characters with the
SOAP Web services, make sure that the locale environment variables are
set to use UTF-8 encoding. REST Web services are not affected. If your
systems do not default to UTF-8 encoding, do the following;:

Linux/UNIX environment:

1. Find or install the UTF-8 version of the locale for your language and
country. This locale must be installed on all machines used in the ENS
cell. Use the Tocale -a command to see a list of installed locales on the
machine. For example:
jksmith@din:™~$ locale -a
C
C.UTF-8
en_AG
en_AG.utf8
en_AU.utf8
en_GB.utf8
en_US.utf8
ja_JP.utf8
POSIX
Find or install the UTE-8 version of the locale for your language and
country. For example, if you are in the US, you can select
"en_US.UTF-8" from the list.

2. Make sure that the shell environment that starts ENS WebSphere
processes (runs the <ENS Install Home>/bin/start-<profile name>.sh
scripts) should have the following environment set to the selected
UTF-8 locale BEFORE starting ENS. Bourne shell (sh) example:

export LC_ALL=en_US.UTF-8
export LANG=en_US.UTF-8

Example for an sh shell:

LC_ALL=en_US.UTF-8
LANG=en_US.UTF-8
export LC_ALL
export LANG

Windows environment:

Windows does not support making UTF-8 the system-wide or user-wide
default character encoding and applications must be configured to use
UTEF-8 on a case-by-case basis. For ENS, you must configure the Java JVM
that runs WebSphere and ENS to use UTF-8. IBM]9 Java JVM is bundled
with WebSphere and has an environment variable for specifying JVM
options called "IBM_JAVA_OPTIONS". This variable can be set on
Windows in multiple ways.

Chapter 1. Overview of IBM InfoSphere Global Name Management 5

* From the Windows command prompt:

1. Set the environment variable: IBM_JAVA_OPTIONS=-
Dfile.encoding=UTF-8

2. Run the start-(ENS Profile Name).bat script.

* Scoped to a specific Windows user:

This setting will propagate to all IBM]9 based Java applications run by
the user.

1. Click the Environment Variables... button in the Advanced tab of the
system Control Panel. On Windows 2008 Server go to Start > Control
Panel > Advanced system settings to be taken directly to the
Advanced tab of the System control panel). The Environment
Variables dialog appears.

2. In User variable for <current user name> section, click the New...
button.

3. The New User Variable box appears. In the "Variable name" field,
enter IBM_JAVA_OPTIONS.

4. In the "Variable value" field, enter -Dfile.encoding=UTF-8.

5. Click OK in the box. Then click OK in both the Environment
Variables dialog and in the System control panel.

6. Log out of Windows and then log back in. Any Java application
started by this user who is using the IBM J9 JVM will now use the
UTF-8 encoding by default.

* Scoped to an entire Windows system

This setting will propagate to all IBM]9 based Java applications started
on the Windows server.

1. Click the Environment Variables... button in the Advanced tab of the
system Control Panel. On Windows 2008 Server go to Start > Control
Panel > Advanced system settings to be taken directly to the
Advanced tab of the System control panel). The Environment
Variables dialog appears.

2. In System variables section, click the New... button.

3. The New System Variable box appears. In the "Variable name" field,
enter IBM_JAVA_OPTIONS.

4. In the "Variable value" field, enter -Dfile.encoding=UTF-8.
5. Click OK in the box. Then click OK in both the Environment
Variables dialog and in the System control panel.

6. Reboot the system. Any Java application started on this system that
uses the IBM J9 JVM will now use the UTE-8 encoding by default.

Note: The above IBM_JAVA_OPTIONS environment variable solution
should also work on any other platform that uses the IBM J9 JVM to run
WebSphere, including Linux and AIX. It would not work for Solaris
because IBM does not use IBM J9 JVM with that operating system.

Creating multiple profiles using the ENS CU utility

You should only create one profile at a time. Creating multiple profiles
using the ENS CU utility can take significantly more time, especially with
large numbers of profiles. Creating each additional profile is slower than
the last one because the newly created profile causes an SSL encryption
key to be generated between it and each existing profile. These keys are

6 IBM InfoSphere Global Name Management: Developer's Guide

required to support the SSL/HTTPS secure communication feature between
any two profiles. For example, if you create 35 profiles, the 35th profile
needs to create 34 encryption keys.

One database driver for all systems in an ENS distributed environment
As noted elsewhere in the ENS documentation, the database driver must
be the same and at one location for all of the ENS host and server
machines in your ENS environment (referred to as an ENS cell). You can
create a dynamic link to location of the database driver. If all of the
machines point to the dynamic link, you can make changes to the database
driver location without having to makes changes on every machine.

To see the latest information about known problems and issues
Known problems are documented in technotes at the Support

portaljhttp:/ /www.ibm.com /support/entry /portal / Overview /Software /|
[[nformation_Management/InfoSphere_Global_Name_Recognitiont

1. Use the Search Support feature and in the Enter terms, error code or APAR #
field, enter a keyword, phrase, error code, or APAR number to search on.

2. Select Solve a problem.
3. Click Search.

As problems are discovered and resolved, the IBM Support team updates the
Support portal. By searching the Support portal, you can quickly find solutions to
problems.

At time of publication, there were no known installation problems. Check the
Support portal for the most current information.

Product documentation

You can find product documentation version 6.0 in the following places:

Version 6.0 information center
Access at ibm.com: fhttp:/ /www.ibm.com /support/knowledgecenter /|
SSEV5M_6.0.0

Culture reference for Name Analyzer
Culture reference information is provided within the IBM InfoSphere
Global Name Management Name Analyzer tool.

IBM product Support home
Access at ibm.com: |http:/ /www.ibm.com /support/entry/portal /|
Overview /Software /Information_Management /|
InfoSphere_Global_Name_Recognitionl

In addition to Technotes and other Support-related information, contains
links to the information center, PDF versions of the product information,
and the latest updates of the release notes.

Announcements

You can find the latest announcement letter, which is linked to from the following
page at |ttp:/ /www.ibm.com /software/data/infosphere/global-name-|
frecognition /| See the announcement for the following information:

* Detailed product description, including a description of new functions

* Product-positioning statement

Chapter 1. Overview of IBM InfoSphere Global Name Management 7

http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/InfoSphere_Global_Name_Recognition
http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/InfoSphere_Global_Name_Recognition
http://www.ibm.com/support/knowledgecenter/SSEV5M_6.0.0
http://www.ibm.com/support/knowledgecenter/SSEV5M_6.0.0
http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/InfoSphere_Global_Name_Recognition
http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/InfoSphere_Global_Name_Recognition
http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/InfoSphere_Global_Name_Recognition
http://www.ibm.com/software/data/infosphere/global-name-recognition/
http://www.ibm.com/software/data/infosphere/global-name-recognition/

8

* Packaging and ordering details
* International compatibility information

Copyright and trademark information

IBM, the IBM logo and ibm.com are trademarks of International Business Machines
Corp., registered in many jurisdictions worldwide. Other product and service
names might be trademarks of IBM or other companies. A current list of IBM
trademarks is available under the "Copyright and trademark information" entry at
[http:/ /www.ibm.com/legal /us/en/|

Related concepts:

[Chapter 1, “Overview of IBM InfoSphere Global Name Management ,” on page 1
The IBM InfoSphere Global Name Management product contains technologies to

manage, search, analyze, and compare multicultural name data sets by leveraging
culture-specific name data and linguistic rules that are associated with the name's

culture.

Version 6.0 - features and enhancements

IBM InfoSphere Global Name Management Version 6.0 includes significant new
product capabilities and enhancements to existing functions.

Table 1. Product features and enhancements for Version 6.0

Version 6.0
enhancement

New standard
cultures: Polish,
Portuguese and
Turkish

Description

Polish, Portuguese and Turkish have been added as new standard
cultures. These new cultures support culture-specific variants,
gender data and comparison parameters. Portuguese is also
included in the European group culture and Turkish is included in
the SouthwestAsian group culture.

Extensions to native
script support

Native script support has been extended to handle personal names
written in extended Latin (Hispanic, Polish, Portuguese) and
Devanagari (Indian), and organization names written in Cyrillic
(Russian), Hangul (Korean), Kanji (Japanese), Hanzi (Chinese) and
Devanagari (Indian).

New organization
name cultures

Organization name scoring has been extended to support additional
cultures: Chinese, Hispanic, Japanese, Korean, Polish, Portuguese
and Russian.

Improved scoring of
short names

New scoring procedures and comparison parameters now consider
the possibility that two short names differing by a possible
typographical error are actually different names. For example,
"Amir" and "Mair" differ by a single transposition but are different
names, while "Amir" and "Aimr" represent a typographical error.
Frequency information from the Name Data Archive is used to
make this determination. Special logic is then used to compare the
names.

Improved gender
information

Simplified
NameParser C++ API
ENS support for
multiple names with
the same external id

The amount of gender data available for analysis has been increased
over 10 times, and culture-specific gender information is now
available. For example, "Juan" is a male name in most of the world,
but primarily a female name in China.

The C++ API for NameParser has been simplified: a single call will
return all parses of a name.

Previous ENS versions required that names be unique within a
name list. Version 6 removes this restriction and allows multiple
names with the same external id in the same list.

IBM InfoSphere Global Name Management: Developer's Guide

http://www.ibm.com/legal/us/en/

Table 1. Product features and enhancements for Version 6.0 (continued)

Version 6.0

enhancement Description

ENS support for and |ENS now supports and uses GNM’s changes to scripts and cultures

use of GNM script including added cultures, inference of culture from script type,

and culture changes |added script type recognition, and support for organization name
cultures.

ENS NameLoader Name fields in an ENS NameLoader comma-separated values (.csv)

support for commas |input file may now contain commas, if those fields are in quotes.
within names
ENS support for DB2 | ENS now runs with DB2 10.5 and Oracle 12c. It takes advantage of

10.5 and Oracle 12¢ DB2 10.5’s support of functional indexes. In Oracle, it allows service
names (or SIDs) when specifying database details.
ENS use of ENS now uses WebSphere Liberty internally as its application server

WebSphere Liberty for hosting web components, instead of the earlier Embedded
WebSphere. The security implementation has changed as a result,
and ENS configuration is simpler.

For a complete list of fixes and minor changes and improvements including new
and modified APIs, see the release notes file on the product installation media or
on the IBM InfoSphere Global Name Management product support portal.

Product architecture

The product architecture of IBM InfoSphere Global Name Management consists of
the component APIs, IBM NameWorks APIs, and the client and server applications
that communicate with these APIs.

Server applications are applications on the server side that are built upon and
provide the functionality of the component APIs. IBM InfoSphere Global Name
Management includes the NameHunter and Distributed Search server applications.
You can also develop your own server applications by using the component and
IBM NameWorks APIs.

In addition to the applications and components below, version 6.0 includes
[Enterprise Name Search| a separately installed set of components with a Web
application interface to make it easier to manage, maintain, and perform name
searches.

Component APIs

IBM InfoSphere Global Name Management component APIs are C++ libraries that
can be integrated into any C++ application.

All of the component APIs perform an analytical function of a single name, but
NameHunter and DateCompare take two or more objects (names and dates,
respectively) and compare them. Each of the component APIs are presented in the
following list:

NameClassifier
The NameClassifier package (ibmgnr::classifier) determines how likely a
Personal name is associated with one or more cultures.

NameGenderizer
The NameGenderizer package (ibmgnr::genderizer) provides gender
distribution statistics for the given-name part of a Personal name.

Chapter 1. Overview of IBM InfoSphere Global Name Management 9

NameParser
The NameParser package (ibmgnr::parser) parses personal names into their
constituent parts (given name, surname, titles, and qualifiers).

NameVariationGenerator
The NameVariantGenerator package (ibmgnr::nvg) produces a list of
variant forms of each component of a Personal name. These alternate
spellings are based on patterns of spelling variation that are typically
observed in names from the same cultural or ethnic background.

NameSifter
The NameSifter package (ibmgnr::sifter) separates organization names from
personal names.

NameClassifier-Country of Association (NC_COA)
The NameClassifier-Country of Association package (ibmgnr::cc) uses
Country of Association (COA) in conjunction with NameClassifier to
produce highly accurate results for an associated name culture.

Country of Association (COA)
The COA package (ibmgnr::coa) references the data that is contained in the
IBM Name Data Archive (NDA) to list the countries in which each of the
components of a personal name have been observed to occur.

NameHunter
The NameHunter package (ibmgnr::hunter) compares pairs of personal and
organization names and also searches lists with these name types.

DateCompare
DateCompare (ibmgnr::datecompare) compares two date values and
returns a similarity score. DateCompare can only compare dates in the
Gregorian, 12-month calendar.

IBM NameWorks

IBM NameWorks combines the individual IBM InfoSphere Global Name
Management components into a single, unified, easy-to-use application
programming interface (API), and also extends this functionality to Java
applications and as a web service.

IBM NameWorks comprises two, distinct API classes:

Analytics class
Includes the functions that are necessary for evaluating a single name,
including name parsing, culture classification, genderization,
categorization, variant generation and country of association information.
You can use these linguistic processes individually or together. For
example, the analyze() method performs all linguistic operations and
produces a single, combined result that contains all analysis information
for a name.

Scoring class
Includes the functions that are necessary to compare two names or to
search for a name in one or more data lists, along with ancillary tasks such
as date comparison and name categorization that might be used to refine
search results. Preparation for searching (parsing and culture classification)
can be performed separately or included in a search operation.

You can access IBM NameWorks in three ways, either through the C++ functions,
Java functions or through web services. The C++ and Java interfaces can be used

10 1BM InfoSphere Global Name Management: Developer's Guide

directly on any of the supported platforms and the web service interface can be
used either locally or remotely in SOA environments. Any programming
environment that can utilize Web services can take advantage of the name analysis
and comparison tools provided by IBM NameWorks. Similarly, the Java interface
can be used to build custom SOA applications.

Client applications

Client applications are built upon the component APIs or IBM NameWorks. These
applications can communicate with server-side applications that are built upon the
same framework.

You can use either API package to build applications that display a wide range of
physical architectures, ranging from simple standalone solutions that operate on a
single host platform, to more complex solutions that operate as independent
processes on multiple networked host platforms, such as in a client-server
environment. Two major types of client applications exist:

end-user applications
Applications that are built upon the component APIs or the IBM
NameWorks package and are compiled to run on the user's machine.

client-side applications
Client-side applications that communicate with server applications that are
built upon the component APIs or the IBM NameWorks package. For
example, an IBM NameWorks Web server client that is built from the
SOAP APIs.

Distributed Search

Distributed Search exposes the functionality of the NameHunter API in the form of
a single server process that can accommodate complex and performance-intensive
search requirements due to the size of data lists to be searched or the number of
search transactions that occur at a given time.

Distributed Search is best suited for loading large data lists, comprising millions of
names. However, the application is unable to load multiple data lists into a single
search. This limitation prevents clients from searching multiple data lists from a
single XML message. If you need to load multiple small data lists into a single
server application, you should use the IBM NameWorks embedded search
application.

You can interface with Distributed Search directly or through end-user client
applications and server applications that are built upon IBM NameWorks.

Chapter 1. Overview of IBM InfoSphere Global Name Management 11

12 1BM InfoSphere Global Name Management: Developer's Guide

Chapter 2. Overview of names and name matching

Matching names can be particularly hard because there are no consistent global
standards for names, and because names can contain a variety of information
(much of it optional) that can make names appear very different. IBM InfoSphere
Global Name Management products leverage a unique knowledge base of
multicultural names and linguistic information that enables the best culture-specific
name search and match capabilities.

Approaches to

name matching

Software for automated name-matching typically makes use of four basic
approaches: exact-match, name dictionary, key-based and analytical.

Exact match
Exact matching systems require the query name to exactly match the name
in the database to return a result. That is, what the system returns exactly
matches the query string and nothing more.

Dictionary
Dictionary matching systems look up the name in a dictionary to find its
variants, any of which can then be matched against database entries. The
set of variant spelled forms associated with a specific name is manually
compiled in advance, so any variant form not yet known or observed does
not appear in the name dictionary. Also, certain name forms can be listed
as variants of two or more different names, which complicates the decision
logic based on finding multiple dictionary matches for the same query
name.

Key-based
Key-based systems apply an algorithm to reduce a name to a standardized
form known as a key. In theory, all names that are understood as
equivalent or matching spelled forms render the same key when processed
by the key-generation algorithm. The oldest and best-known
key-generation algorithm is Soundex, which was first patented in 1911.

Analytical
Analytical name-matching systems simultaneously consider orthographic
(spelling) information, noise filtration techniques, and semantic, cultural,
and syntactic patterns in order to measure the similarity between two
names. This pair-wise approach to name comparison depends heavily on
access to extensive empirical information about a name's usage within the
context of its associated linguistic and cultural context.

IBM InfoSphere Global Name Management products rely on the analytical
approach to name matching. Linguistic and cultural data that is used for name
analysis is supported by a large repository of data about names, gathered from
different countries, worldwide. This knowledge base allows for minute distinctions
when matching names so that the relative similarity of two names can be
measured with precision. Analytical name matching allows match results to be
listed in a hierarchical order, showing the best matches first. Also, the ranking and
scoring algorithms can be adjusted so that match results can be fitted to a variety
of differing operational settings, user preferences, and business rules.

© Copyright IBM Corp. 2001, 2013 13

Name categories

14

During name processing, names are associated with a name category, either
personal or organization. While they might share similar usage, names from these
two categories are separated by important differences, and so different types of
linguistic and reference-data resources are applied to names in each category
during analysis and matching.

When categorizing names, IBM InfoSphere Global Name Management components
place names into the following categories:

* Personal names, which contain no indicators that suggest it belongs in any other
category (For example: "Linda K. Smith")

* Organization names, which contain some form of a non-personal indicator (For
example, "Smith & Company")

* Unknown names, which contain some element that appears to be a misspelling,
or that contains some other construct that does not normally appear in either
personal or organization names (For example "SMI")

* Both, which are names that contain a professional qualifier that could suggest
that the name is a business name derived from a personal name (For example,
"Linda Smith Architect")

If a name is categorized as anything other than a personal name, the component
provides a reason code that identifies the indicator or pattern that qualifies the
name as non-personal.

Personal names

A personal name consists of a given name or names, any family, group names
(such as tribal or clan names), or other surname-like elements used in the culture
from which the name comes, and whatever titles and other name qualifiers are
associated with the name bearer. A full personal name refers to an individual and
might encode information that indicates social class, religious and political
backgrounds, educational levels, ethnic or cultural backgrounds, and regional
provenance.

IBM InfoSphere Global Name Management personal nhame model

To discuss and work with personal names, regardless of their native format, it is
important to use consistent terminology. It is also vital to be able to consistently
parse names into their constituent parts, so that the equivalent parts can be
compared.

The shape of the IBM InfoSphere Global Name Management personal name model
is motivated by the necessity to deal with names as they are encoded in real-world
data sets. It is a practical approach to determining structure in a name. For
example, even though names in many parts of the world do not have true
surnames in the Western sense, these names are nevertheless forced into databases
that assume surnames. Therefore, for the purposes of consistent name processing,
IBM InfoSphere Global Name Management imposes a two-field structure. Which
field the various parts of a name belong to is determined in part by how
frequently each name part has been associated with a given name or surname
field. Within each field, individual name elements are parsed into larger units. The
surname “de la Salle,” for example, is recognized as one name phrase made up of
a main name stem and two prefixes, not as three separate name parts.

IBM InfoSphere Global Name Management: Developer's Guide

Personal Name

Title

NameField NameField Qualifier

NamePhrase

NamePhrase NamePhrase NamePhrase

S = cE=———

Affix Stem Affix Stem Affix Stem Affix Stem
v v oo v ooy
Robert de Quincey Johnson dela Salle Jr.

Figure 1. IBM InfoSphere Global Name Management personal name model

Structure and components of personal names

Personal names can contain many different components. These components and
the way they are structured differ across cultural groups.

Here are some of the components that can be used in personal names:

Given name

Surname

Family name

Tribal, clan, or caste name

Relationship or lineage markers (such as patryonymic (names derived from a
father's name), matronymic (names derived from a mother's name), teknonymic
(names derived from a child's name), and generational markers)

Qualifiers that indicate birth order, gender, religion, or religious affiliation
Titles

Particles (such as "bin" (son) and "al" (the) in Arabic or "de" (of/from) in Spanish
and French)

The structure of personal names, or the order of the name components, also varies
from one country or cultural group to another.

Here are some examples of name structures:

Given Name(s) + Family Name

* Megan Marie Andrews (European)
* Fereshteh Gholamzadeh (Iranian)
* Rattima Nitisaroj (Thai)

* Hasan Incirlioglu (Turkish)

Family Name + Given Name

* Lim Yauw Tjin (Chinese)
* Pak Mi-Ok (Korean)
* Suzuki Ichiro (Japanese)

Chapter 2. Overview of names and name matching 15

Family Name + Middle Name + Given Name
* Trinh Van Thanh (Vietnamese)

Given Name + Father's Given Name
* Ahmed bin Eisa (some Arab communities)
* Abdurrahman Wahid (Indonesia)
* Mahmud bin Haji Basir (Malaysia)

Given Name + Patronymic Name (Father's Name) + Family Name
* Ivan Andreyevich Saratov (Russia)
* Basimah Ali Al-Qallaf (some Arab countries)

Tribal Name + Religious Name
* WOUKO Philomene (Cameroon)

Given Name Only
* Sukarno (Indonesia)
* Habibullah (Afghanistan)

Reference to Offspring's Name
* Abu Hassan (which translates literally to father of Hassan, Arab countries)

Conjoined names

A conjoined name refers to two or more people within a single name structure
where two distinct names are linked by titles (Mr. and Mrs. Smith), given names
(John and Marie Smith), full names (John Smith and Marie Smith), or some other
combination of name elements with conjunctions like and, or, or equivalent
punctuation marks like the ampersand (&).

Conjoined names are first parsed into individual names, so that further parsing
and other product functions can be applied to each personal name. IBM InfoSphere
Global Name Management products (IBM NameWorks and NameParser) recognize
six types of conjoined name constructs:

* Conjoined titles, such as Mr. and Mrs. John Smith
* Conjoined given names, such as John and Linda Smith
* Conjoined pairs of title and given name, such as Mr. John and Mrs. Linda Smith

* Conjoined titles and given names in parallel construction, such as Mr. and Mrs.
John and Linda Smith

* Entire names conjoined, such as John Smith and Maria Jones

* Combinations of the other five conjoined name constructs, such as John and Linda
Smith and Bob and Maria Jones

By default, the parsing facility in IBM InfoSphere Global Name Management
products recognizes conjoined names by the presence of the conjunctions and, or, or
the ampersand (&). Names that do not contain one of these indicators are not
treated as conjoined names. For example, the string John Smith Marie Smith would
not be parsed into two distinct names. Furthermore, comma-delimited lists of
names (such as Bob, Karen, and David Smith), are not parsed into their proper
constituent parts, even if a conjunction is present.

The parsing facility accepts custom lists of characters and words, such as the

backward slash (\), et, or y, that are to be treated like conjunctions. You can add
these characters through the external tokens list.

16 1BM InfoSphere Global Name Management: Developer's Guide

ParsedNames

ParsedName

NameField

Namephrase

NameToken

Conjoined name example

The following example shows the parse tree created for a conjoined name
construction made up of two conjoined titles and two conjoined full names. The
individual names are first separated and then each individual full name is parsed
into its constituent parts.

Mr. and Mrs. John P. and Linda K. Smith

Mr. John P. Smith Mrs. Linda K. Smith

|Mr. | |John P. | | Smith | |and| |Mrs.| |Linda K. | | Smith |

|Mr.| |John|| P. | | Smi

=

h | |and| |Mrs.| |Linda|| K. | |Smith |

|Mr.| |John|| Bl | | Smith | |and| |Mrs.| |Linda|| K. | |Smith |

Related concepts:

[“Parse trees” on page 18]

NameParser creates a parse tree from the result of analyzing the structure and
distribution patterns of an input name. The parse tree is a hierarchy that groups the
elements in a name into structural units, beginning with individual tokens (space-
or punctuation-delimited strings), which might combine into name phrases, which
combine to form a full personal name.

Organization names

An organization name is a non-personal name that refers to a structured body of one
or more persons that exists to perform some common function. Organizations can
be businesses, clubs, schools, government agencies, political parties, or World Wide
Web manifestations. Organization names typically include some type of indicator
or pattern or words that help identify them as non-personal names.

Organization names typically, but not always, contain some word or phrase that

indicates their function, such as “high school”, “plumbing”, “police department”,
or “bank”.

Organization names also contain a naming element, or some string of characters,
words, or phrases that uniquely identify this organization from among others of
the same type. For example, “First Union Bank,” “Joe’s Italian Restaurant,” “AAA
Auto Wash.” Some organizations, such as businesses, are regulated by
governments and have prescribed name elements that indicate their registration
status, such as “PTY” or “LTD”.

The kinds of tokens and combinations of tokens that are found in organization
names usually do not look like or pattern like those in personal names. These

Chapter 2. Overview of names and name matching 17

patterns correspond to codes (called name category reason codes) that identify the
reason that a name was classified as an organization name, rather than a personal
name. These reason codes do not define an organization name, but they indicate
patterns that would not be expected in a personal name. For example, a string of
three identical consonants in a row (such as “DDD”) would be very unusual in a
personal name, but would not be uncommon in organizational names.

When IBM InfoSphere Global Name Management components categorize a name,
if the name matches one or more name category reason codes, it is assumed to be
an organization name. Otherwise, it is a candidate to be a personal name.

Name parts

Personal names are comprised of one or more words that are combined into
structures according to language-specific rules and cultural conventions.

Parse trees

NameParser creates a parse tree from the result of analyzing the structure and
distribution patterns of an input name. The parse tree is a hierarchy that groups the
elements in a name into structural units, beginning with individual tokens (space-
or punctuation-delimited strings), which might combine into name phrases, which
combine to form a full personal name.

A two-field data structure is imposed on a name during processing that divides the
name phrases into a given name and a surname field, based on statistical
distribution patterns. The object at the root of the tree represents the entire input
string, its children represent the largest subdivisions of the name, their children
represent subdivisions of subdivisions, and so on.

The following example shows the structural elements of a fairly complex name,
beginning at the bottom row with individual name tokens, moving up a level to
capture name phrases, then moving up another level to show the division into
name fields. The original name form is shown at the top of the tree as the
ParsedName. This parse tree represents the structures that are recognized by
NameParser.

ParsedName Dr. William P. van Reisen Jr.

Title Given name Surname Quallifier
NameField Dr. William P. van Reisen Jr.
NamePhrase Dr. William P. van Reisen Jr.
NameToken Dr. William P. van Reisen Jr.

Figure 2. Example of a NameParser parse tree

18 1BM InfoSphere Global Name Management: Developer's Guide

Related concepts:

[‘Conjoined names” on page 16|

A conjoined name refers to two or more people within a single name structure
where two distinct names are linked by titles (Mr. and Mrs. Smith), given names
(John and Marie Smith), full names (John Smith and Marie Smith), or some other
combination of name elements with conjunctions like and, or, or equivalent
punctuation marks like the ampersand (&).

[“Parsed names”|

Name parsing is the process of organizing the tokens in a name into the larger
structural units that contain the tokens. Some of these structures, like name
phrases, are natural grammatical structures found within the language from which
the name originates. Name parsing is accomplished through the use of both
statistical information and linguistically based rules for recognizing the syntactic
structures within names.

Parsed names

Name parsing is the process of organizing the tokens in a name into the larger
structural units that contain the tokens. Some of these structures, like name
phrases, are natural grammatical structures found within the language from which
the name originates. Name parsing is accomplished through the use of both
statistical information and linguistically based rules for recognizing the syntactic
structures within names.

Higher-level name processing operations such as searching and matching return
the best results when each part of a name is handled according to its relative
informational value. That is, tokens like name stems, which are high in content
value, are given more weight during searching than grammatical particles like
prefixes, suffixes, or tokens like titles that are external to the name itself. Similarly,
parts of a name that represent the given name or the surname should be handled
in parallel with other given names or surnames. In order to determine what role
the various parts of a name play, a name must be parsed.

Others name structures, like name fields, are artificial data structures that might
(or might not) correspond to semantic or social structures recognized by a cultural
or linguistic community. For example, in North American culture, many people
have a given name, a middle name, and a surname. A name like Karen Lee van der
Meer consists of a the following components:

* A name phrase, made up of the stem Karen, serving as the given name
* A name phrase, made up of the name stem Lee, serving as the middle name

* A name phrase van der Meer, made up of two prefixes and the stem Meer,
serving as the surname

This name does not map neatly to a two-field data structure because there is no
recognition of the differing status of the middle name.

IBM InfoSphere Global Name Management products use a hierarchical parse
structure in which tokens (space- or punctuation-delimited strings of characters)
are grouped into naturally occurring structures known as name phrases, which in
turn are grouped into elements of a given name field and a surname field, based
on statistical distribution of the name phrases and culture-specific name patterns.
The two name fields, along with any titles or qualifiers appearing in the original
input name, make up the full name.

Related concepts:

Chapter 2. Overview of names and name matching 19

20

[“Parse trees” on page 18|

NameParser creates a parse tree from the result of analyzing the structure and
distribution patterns of an input name. The parse tree is a hierarchy that groups the
elements in a name into structural units, beginning with individual tokens (space-
or punctuation-delimited strings), which might combine into name phrases, which
combine to form a full personal name.

Name fields

A name field is an artificial data structure imposed on names to facilitate data
processing. Many databases divide names into two fields, typically corresponding
to the given name and the family name, though some enter names into a single
field, and others may use three or more fields. Name fields are the first branch of a
personal name parse tree.

IBM InfoSphere Global Name Management products use a two-field personal name
structure, labeled as given name and surname, with two additional fields provided
for titles and qualifiers. Each field has its own field-type indicator:

Surnames
The surname (or SN) is the part of the name that is typically, although not
necessarily, common to a group of people, such as a family, tribe, or caste.
In certain parts of the world, some surnames might be unique to an
individual, such as those that indicate a personal characteristic or a
profession.

Surnames are key content-bearing elements of a personal name. Not all
people use surnames, however. In parts of Indonesia, for example, most
people have only a given name.

Given names
Given names (or GN) is the part of a name that uniquely identifies an
individual as distinct from other family or group members. In an Anglo
name, the first and middle names are given names.

Given names are the only name element known to be a universal naming
requirement, across all cultures around the world. Not all cultures have
surname elements, but all assign individuals a given name

Titles Titles are words or phrases that are external to the name itself, but that
convey some type of information about the owner of the name. Titles can
indicate marital status, birth order, educational or professional attainment,
religious status, social rank, or other information. Titles are processed
differently from core name elements because they tend to be optional and
might not always appear with a name.

Qualifiers
Qualifiers are terms or phrases added to a personal name to distinguish
that name by specifying a generational standing (such as Junior or Senior,
or "fils" in French for Junior), an achievement or honor that a person has
attained (for example, Ph.D.), or a qualification of some kind (such as
D.D.S.). Qualifiers typically come after a name. Like titles, qualifiers travel
with a name, but they are not considered part of a personal name.

Preceding conjunctions
If a name contains a conjoined-name construct, the last element in the
construct must be preceded by a conjunction that joins the name to the one
that precedes it in the input string. For example, the input string John and
Mary Smith is a conjoined-name construct that represents two names: John

IBM InfoSphere Global Name Management: Developer's Guide

Smith and Mary Smith. The name Mary Smith has a preceding conjunction
of and. NameParser allows this conjunction to be retained in its own field.

The NameHunter search engine incorporates titles into the given name field and
qualifiers into the surname field. These non-name elements are handled differently
during search and match operations, according to how the NameHunter search
parameters are configured. In comparison, similar products retain separate fields
for non-name elements.

Name phrases

A name phrase is a token or sequence of tokens that comprises a single linguistic
structure, analogous to a noun phrase or a prepositional phrase in a language.
Name phrases consist of one or more name stems and any prefixes, suffixes,
conjunctions, or other grammatical elements that relate to the stems.

For example, the Spanish name phrase, de la Cruz contains one name stem (Cruz)
and two prefixes (de and la). The Chinese name phrase, Mei-hui contains two
stems, and the English name, Smith, is a name phrase that consists only of a single
stem. Name phrases comprise the intermediate level of the parse tree and group
individual tokens into larger structures. However, they do not necessarily
constitute a name field, which might contain multiple name phrases.

IBM NameWorks and NameParser use an internal repository of information about
name phrases that is derived from an original data set of over 800 million names
from almost every country in the world. This repository informs all name
processing operations, including parsing, generation of variant forms, classification,
and search.

Name tokens

Name tokens are the smallest indivisible elements of a name that consist of "white
space" or punctuation-delimited strings of characters.

Name tokens are usually affixes or stems, though they can sometimes be full name
phrases in cases where the smaller grammatical units in a name are written as a
single word. For example, the full name phrase, de la Cruz, is comprised of the
affixes de and la and the stem Cruz. Name tokens are the last level in a parse tree,
sometimes referred to as leaf nodes. The function of a name token depends on its
content and on its position relative to other elements in the name. A token like de,
for example, might be a prefix, a given name, or a surname depending on the
linguistic origin of the name it appears in and where it occurs within the name.

Name tokens can be comprised of single-token or multi-tokens. For example, the
multi-token term Limited Liability Corporation.

Types of name tokens include:
* Prefixes

* Suffixes

+ Titles

* Qualifiers

* Organization Designator

* Professional Qualifier

* Stop words

* Organization Affixes

Chapter 2. Overview of names and name matching 21

22

 Initials
* Conjunctions
* Name stems

* Terms

Titles, affixes, and qualifiers (TAQs)

IBM InfoSphere Global Name Management products use special logic for scoring
titles, affixes, and qualifiers, collectively known as TAQs. Titles and qualifiers are
optional elements that are not normally an integral part of a name. Affixes, while
grammatically part of a name, carry little content value and are therefore given less
weight in name comparison operations.

Titles

Titles are terms of address for a person that typically precede a name and might
indicate politeness, social standing, or professional status.

Examples of titles include:

* Dr. for Doctor

* Mr. for Mister

* Hajj for someone from the Islamic faith who has made the pilgrimage to Mecca

Affixes

Affixes are prefixes or suffixes that are attached to a name. While grammatically
part of the name, they do not typically carry significant content value and are
therefore given less weight when comparing two names.

Examples of personal name affixes include:
* de la in, de la Torres

* pan der in van der Meer

* Abdul in Abdul Rahman

* Al Din in Nur Al Din

Qualifiers

Qualifiers are terms or phrases that are added to a personal name to distinguish
that name by specifying a generational standing, an achievement or honor that the
person has attained, or a qualification of some kind. Typically, qualifiers come after
a name, and they are not generally considered part of the actual name.

Examples of qualifiers include:

* Jr. for Junior

* Sr. for Senior

* Esq. for Esquire

* PhD for Doctor of Philosophy
D.D.S for Doctor of Dental Science

Organization name TAQs

Special processing is required for terms that are found uniquely in organization
names, which, to be consistent, are labeled as TAQs. While titles are not present in
organization names; certain qualifiers and affixes are present.

IBM InfoSphere Global Name Management: Developer's Guide

These types of tokens are not considered to be meaningful elements of an
Organization name. Therefore, all of the following TAQs are listed in the TAQ file
(tag.ibm) so that they are not treated like name stems in NameHunter
comparisons. These terms are subject to the following default TAQ factors that are
assigned in the TAQ file.

Multi-token terms are supported to recognize organization terms with embedded
white space. For example, Limited Liability Corporation.

Table 2. Example of organization name TAQs and default TAQ factors
Different TAQ factor Missing TAQ factor

TAQ type Example (default) (default)
Organization COMPANY, CORP, 98 .99
designator (OD) LLC, LIMITED

LIABILITY

CORPORATION,

COUNTRY CLUB
Stop word (SW) OF, THE 1.0 1.0
Organization affix DE, DEL, LA, LAS 97 .98
(OA)

Organization designator:

An Organization Designator (OD) provides information about the legal registration
of an organization, but it is generally not an essential part of the Organization
name. For this reason, an OD is often ignored altogether or might appear in
various forms.

For example, all of the following names refer to the same organization:
» 20TH CENTURY PRODUCTIONS INCORPORATED

» 20TH CENTURY PRODUCTIONS INCORP

* 20TH CENTURY PRODUCTIONS INC

» 20TH CENTURY PRODUCTIONS

When NameHunter compares the last two names in this list, the Missing TAQ
factor would apply, assigning a .99 penalty to an otherwise perfect match.
Comparisons between the first three names, however, should not be subject to the
Different TAQ factor, because these ODs are equivalents of each other
(INCORPORATED, INCORP, and INC are all the same). In fact, most ODs have
interchangeable variant forms. For example, the following ODs are synonymous of
one another:

+ CO/COMPANY
* JSC/JOINT STOCK COMPANY
* LLC/ LIMITED LIABILITY COMPANY

Recognition of OD variants is handled through a set of regularization rules that
apply to both the query name and the data list name. Each rule converts a variant
OD form to a predetermined regularized form, and these regularized forms are all
included in the TAQ file. For example, a regularization rule converts INC and
INCORP to INCORPORATED, which is then listed in the TAQ file. The first three
names in the previous list are then regularized to 20TH CENTURY
PRODUCTIONS INCORPORATED and thus receive a 1.0 score during comparison.
This solution was adopted to reduce ambiguity and handle multi-token TAQs.

Chapter 2. Overview of names and name matching 23

24

Ambiguity

Many ODs can also be meaningful name elements. For example, while LLC is
often an OD that stands for LIMITED LIABILITY COMPANY, there are also
organization names such as LLC COUNSELING SERVICES, in which LLC is a
name stem that distinguishes this particular organization from other organizations
of the same type (for example, FRANKLIN COUNSELING SERVICES).

If LLC were simply included in the TAQ file, then any occurrence of LLC would
be handled as a TAQ during NameHunter comparisons. A name like LLC
COUNSELING SERVICES would then match on all other names in the data list
that contain the phrase COUNSELING SERVICES. Regularization offers a way to
be sensitive to the position of terms like LLC—that is, if such a term occurs at the
end of a name, then it is probably an OD, and the regularization rule would say:
LLC = LIMITEDLIABILITYCOMPANY. If the term occurs at the beginning of a
name, then the term is probably a name stem.

Multi-token TAQs

Many ODs contain multiple tokens, as in the example LIMITED LIABILITY
COMPANY. However, the search engine does not support TAQ and variant files
that contain multi-token entries. Regularization offers a way of converting a
multi-token string into a single token that can be listed in the TAQ file. Due to
regularization, the following names receive a perfect 1.0 comparison score from the
search engine when compared.

Original strings Regularized string

BISON LEGACY LLC BISON LEGACY

BISON LEGACY LIMITED LIABILITY LIMITEDLIABILITYCOMPANY
COMPANY

For Organization names, NameHunter compares only the regularized query name
to the regularized data list names. The original query and data list names are not
compared. In the following example, the query name is not affected by the OD
regularization rules because LLC appears at the beginning of the name. LLC is
regularized in the data list name because it appears at the end of the name.

Query name Data list name

LLC CONSULTING SERVICES BEVERLY CONSULTING SERVICES
LIMITEDLIABILITYCOMPANY

This comparison returns a low comparison score because the strings LLC and
BEVERLY do not match, and LIMITEDLIABILITYCOMPANY triggers an
application of a TAQ penalty. This outcome is correct because these organizations
are not the same. However, if the original form were also maintained as searchable,
then the following names would be compared:

Query name Data list name

LLC CONSULTING SERVICES BEVERLY CONSULTING SERVICES LLC

The TAQ file contains only regularized forms such as
LIMITEDLIABILITYCOMPANY and not original forms like LLC. So in this case,
neither instance of LLC would be recognized as a TAQ, and the two cases of LLC

IBM InfoSphere Global Name Management: Developer's Guide

would be compared as stems. This comparison would return a relatively high score
because three out of four of their tokens are identical. Preventing comparisons of
non-regularized Organization names avoids this problem.

Besides OD variation which is handled through regularization, there are occasional
instances where variation is handled through variants. Unlike a pair such as
INC/INCORPORATED (which are equivalents of each other that should receive a
perfect score) there are other pairs that are more like variants than equivalents. In
these cases, a variant pair is listed in the TAQ file with a score and culture
assigned (which is always 0 for Organization names). An example entry might be:
COMPANY, COMPANIES, .99, 0. Because of this variant set, a pair that includes
the strings COMPANY and COMPANIES receives a higher comparison score than
it would have had it been subjected to the Different TAQ factor.

Stop word:

A stop word is a word that adds no meaning to an Organization name and
therefore is not included in any name comparison or name scoring. The current
release of IBM InfoSphere Global Name Management includes only OF and THE
as stop words.

The default TAQ factor value for stop words is 1.0, which causes stop words to be
seemingly ignored in name comparisons. Therefore, a perfect score is achieved
when comparing the following name sets.

Table 3. Name sets that contain stop words

Organization name Organization name with stop word
ACME INKS CANADA INC. ACME INKS OF CANADA INC.
TRACTOR & ENGINEERING CO. THE TRACTOR & ENGINEERING CO.
ASSOCIATION OF AMERICAN THE ASSOCIATION AMERICAN
GEOGRAPHERS GEOGRAPHERS

Organization affix:

An Organization affix (OA) is a word that (like a stop word) adds virtually no
meaning to an Organization name. However, the presence or absence of an OA,
especially in other languages, tends to carry more significance than a stop word
does, so the TAQ factors assign a small penalty when an OA is different or
missing.

OAs include the English conjunction AND, as well as a number of non-English
articles that carry number and gender information. When these tokens are absent,
such as in the following name pairs, the missing TAQ factor applies. When
different OAs are compared, the Different TAQ factor applies.

Table 4. Organization names with an organization affix

Organization name Organization name with OA

AAI ENGINEERING SALES SERVICE AAI ENGINEERING SALES AND SERVICE
BUTCHER HAUS DAS BUTCHER HAUS

BANCO ORO BANCO DE ORO

Chapter 2. Overview of names and name matching 25

Stem tokens

A stem token (also known as name stem) is a name element that can stand alone or
be combined with affixes to form a name phrase. For example, the name phrase de
la Torres is a Hispanic surname that consists of the name stem Torres, preceded by
two affixes.

A name stem that has no affixes associated with it, for example Robert or Gonzales,
is a name phrase in itself. A given name or surname field typically contains one or
more name phrases. Most name phrases in the given name field in Korean and
Chinese cultures, as well as the most common given names in French, German,
and Hispanic, consist of two name stems, e.g., "Shu Dong," "Eun Jung," or "Jean
Luc."

Name lists

IBM InfoSphere Global Name Recognition products use several types of name lists
to process names.

Name data archive

The name data archive is a collection of nearly one billion names from around the
world, along with gender and country of association for each name. This large
repository of name information powers the algorithms and rules that IBM
InfoSphere Global Name Management products use to categorize, classify, parse,
genderize, and match names.

The frequency counts for individual name tokens and name phrases drawn from
the name data archive form the basis for the statistical and computational
algorithms that IBM InfoSphere Global Name Management products use to analyze
names. For example, the name parsing component uses these statistics to calculate
a validity score for a particular combination of given name and surname fields. A
low validity score might indicate that the names have been fielded incorrectly,
leading the parsing engine to suggest one or more alternate, more likely
combinations.

External token list

External token lists are files to which you can add titles, affixes, qualifiers, or name
stems in order to supplement the information in the IBM InfoSphere Global Name
Management internal database. Custom token lists are searched before the internal
database during name analysis or scoring.

By default, both the NameParser external token list and the IBM NameWorks
custom token list are empty. You can access the custom token list for IBM
NameWorks through its configuration file.

Related reference:

[NameParser external token list]

You can add tokens to the external tokens list to customize the behavior of
NameParser. The external token list is a supplemental list of token data that
NameParser searches for tokens in this supplemental list of token data. If the
tokens are not found, NameParser searches its own internal tables that include
information on millions of name tokens.

26 IBM InfoSphere Global Name Management: Developer's Guide

Name transliteration

Name transliteration is the process of converting a name from a particular writing
system or character encoding convention into another. For example, name
transliteration allows a name written in Arabic script to be analyzed and matched
to a similar name written in the Roman alphabet.

Transliteration is sometimes confused with translation. Translation means conveying
the meaning of something spoken or written in one language into another
language. For example, "a horse" in English is "un cheval" in French. Transliteration
is transferring the sounds represented by one orthography (writing system) into
how those sounds would be represented in a different orthography. So, the Chinese
character you would use to write down the way you pronounce the Mandarin
word for a horse would be transliterated into Roman letters as "ma".

IBM InfoSphere Global Name Management products contain built-in support for
name matching across a number of writing systems, including Arabic, Greek,
Cyrillic, Devanagari, Kana, Hangul, Hanzi, and extended Latin, that is, the
standard Latin alphabet with additional characters and diacritical markings that is
found in many European and Asian languages.

Names are transliterated as the first step in the name analysis and scoring
processes. NameTransliterator converts names from their native encoding into
ASCII encoding as a preprocessing step before parsing, classifying, or scoring
names. Many methods within IBM NameWorks are designed to perform
transliteration first, before performing any of the other method functions.

Support for Kanji to Kana transliteration is provided by a separate Java package
that can be used in conjunction with the IBM NameWorks Java or Web service
interfaces. The com.ibm.gnrja package is documented in the Java API Reference
section.

Transliteration rule files

Transliterator rule files are encrypted binary files that enable handling of a
particular writing system or alphabet. Each rule file makes it possible for IBM
InfoSphere Global Name Management components to handle input in a particular
script. Text is converted to uppercase ASCII characters in forms suitable for name
analysis and scoring.

You can use the following rule files, or modules, to extend the basic name
transliterator functionality:

arabicTransRule.ibm
For personal names written in Arabic script.

chineseTransRule.ibm
For personal names written in Hanzi script.

chineseOnTransRule.ibm
For organization names written in Hanzi script.

cyrillicTransRule.ibm
For personal names written in Cyrillic script.

cyrillicOnTransRule.ibm
For organization names written in Cyrillic script.

Chapter 2. Overview of names and name matching 27

28

greekTransRule.ibm
For personal names written in Greek script.

hindiTransRule.ibm
For personal names written in Devanagari script.

hindiOnTransRule.ibm
For organization names written in Devanagari script.

japaneseTransRule.ibm
For personal names written in Kana (Katakana and Hiragana) script.

japaneseOnTransRule.ibm
For organization names written in Kanji or Kana (Katakana and Hiragana)
script.

koreanTransRule.ibm
For personal names written in Hangul script.

koreanOnTransRule.ibm
For organization names written in Hangul script.

latinTransRule.ibm
For personal and organization names written in Basic Latin or any of the
Latin Supplements and Extensions. This module is built into NameWorks
and need not be referenced in configuration files.

Chinese transliteration overview

IBM InfoSphere Global Name Management matches Chinese Hanzi names in their
exact and equivalent Hanzi forms and matches Hanzi and transliterated Roman
name equivalents to each other.

Chinese and Japanese written languages share many characters. Chinese language
names written in Hanzi characters are similar to Japanese Kanji names with many
shared characters. Chinese Hanzi names have the following characteristics that
differentiate them from Kanji names:

¢ There are few multi-character Chinese surnames, which means most Chinese full
names are not ambiguous with only one surname and one given name to parse.

* There are few characters with multiple readings (tonal variations aside) in
modern Mandarin.

* For characters with multiple readings, the most common one is usually assumed
when used in personal names. There is a small set of characters that have a
surname-specific pronunciation. Because of this, pronunciation assistance is
typically not provided for Chinese personal names in normal usage.

These features imply that almost all Chinese names have only one pronunciation in
Mandarin. Because of this, Chinese names can be transliterated directly within the
NameTransliterator component. This differs from Japanese names, which often
have many-to-many relationships between Kanji names and Romanized forms.

The International Components for Unicode (ICU) open source project has a set of
system rules that transliterate commonly used Chinese characters into Mandarin
Pinyin representations. Each character has only one output form. In the case of
characters with multiple pronunciations, the most common one is selected. The
IBM InfoSphere Global Name Management transliteration process uses the ICU
internal rule set for most Chinese characters. Exceptions are handled by special
rules.

IBM InfoSphere Global Name Management: Developer's Guide

Processing Chinese names requires more than adding transliteration rules. All
Chinese characters in Mandarin Chinese are monosyllabic—pronounced as a single
syllable. There are about 1,760 possible syllables in Mandarin—1,350 syllables with
tones and 410 syllables without tones. However, there are tens of thousands of
Chinese characters, each of which has a different meaning. This means that dozens
of different characters with different meanings may be pronounced exactly the
same way. As a result, names written in different characters can be transliterated
into the same Latin form, since Romanization is based on pronunciation rather
than meaning. In other words, there is a many-to-one relationship between Chinese
character names and Romanized forms. A problem arises when the query name is
a Chinese character name and the data list contains different Chinese character
names that are pronounced the same way and have been transliterated into the
same Romanized form. Without additional filtering procedures these different
Chinese character names will be returned by a name search as perfect matches.

Consider the following list showing five different names, each of which has at least
one character different from the other names:

1. &N - name written with the simplified character set
(YY) - same name as (1), but written with the traditional character set

w

(YA - different last character in given name

&

0NN - different surname character
(YN - all different characters.

o

All these names are transliterated into the same Latin form, namely “HUANG
SHU DONG” (or HUANG2 SHU1 DONGT1 if numeric tone markings are included).
However, only names (1) and (2) are the same Chinese name. If these Roman
forms are all in the data list, querying (1) “0YY” would also return (3), (4), and (5)
at 1.0 even though they are all different names to a native speaker. The
NameHunter search process is enhanced to deal with this type of problematic
result.

Handling Chinese Hanzi name data

The NameHunter function analyzes Chinese Hanzi name data with the following
general process:

¢ Hanzi name transliteration is done outside of NameHunter. Hanzi names must
be transliterated before being sent to NameHunter.

* NameHunter requires both Romanized name equivalents and original Hanzi
name data.

* NameHunter first compares names in Romanized form then eliminates false
positives (which can be created by many-to-one Hanzi-to-Roman mappings) by
comparing the original Hanzi characters of potential matches.

Capabilities include:

* Recognizing given name and surname elements in personal names written in
Hanzi script and processing these elements appropriately.

* Matching variant forms of the same Hanzi characters.

* Matching Hanzi and Romanized personal name equivalents.

Chinese scoring is applied on a pass or fail basis—either both names contain the
same Hanzi characters (or variant forms of the same characters) or the comparison
fails. If the Hanzi script comparison passes, the score generated for the Romanized
name mappings are used except where the Romanized score is 1.0 and the Hanzi

Chapter 2. Overview of names and name matching 29

score is less than 1.0 due to non-exact values caused by character variants. In this
case a penalty of -.02 is applied to the Romanized score so it becomes .98. This
indicates the Hanzi name forms are not identical but instead contain variant forms
of the same characters.

The scoring algorithm uses a Chinese variant table that includes simplified versus
traditional along with other variants. The highest variant score is .995. The table is
in a format similar to other NameHunter variant tables and is expandable. For
example, you can add character sets that are not true variants but are related to
each other (i.e., pronounced the same and written with similar strokes) to prevent
the failed match that would result from entirely different characters.

Chinese surnames and given names are not delimited in normal usage. Even
structured name data, such as from a residency application form, typically has only
one full name field. The transliteration rule file includes a parsing algorithm by
which an unparsed Chinese character full name is parsed into a surname and
given name before being transliterated. This parsing is essential for cross-language
name processing and helps provide correct Roman forms for those few exceptional
surname characters that do not follow the most common pronunciation.

Chinese Hanzi name data analysis has the following limitations:
* Chinese transliteration produces Mandarin Pinyin only.

* Comparison between Chinese characters is only possible if their Romanized
forms match at the pre-defined threshold.

* Names having similar Hanzi characters but are pronounced differently are
unlikely to pass initial matching, since the Latin forms (which are based on
pronunciation) are unlikely to match. Adding such characters to the character
variant table is not effective, because direct search and comparison of Chinese
character names is not supported.

Chinese transliteration requires both the chineseTransRule.ibm and
chineseOnTransRule.ibm files, the former for personal names and the latter for
organization names. Updates to the configuration files for Distributed Search and
NameWorks are required if migrating from an earlier release of the product.

Japanese transliteration overview

Native Japanese names are written in the Han character set, known in Japan as
Kanji. For the most part, these characters are the same as those used to write
Chinese.

For any single Chinese dialect, such as Mandarin, a single Han character has one
pronunciation, or reading. In Japanese, however, there is no single reading for a
character or sequence of characters. The same Kanji characters may be used to
write entirely different names, with completely different pronunciations. For this
reason, a record containing a Kanji personal name may also contain the Kana
spelling of that name, to clarify which reading is to be used.

Kana is a pronunciation-based writing system used in Japan, not unlike an
alphabet. Each Kana symbol represents a different syllable, usually a
consonant-vowel combination. There are two “styles” of Kana, hiragana and
katakana, both of which are supported by GNM.

Foreign names in Japan are written in Kana.

30 1BM InfoSphere Global Name Management: Developer's Guide

GNM handles Kanji personal names and organization names differently. Personal
names in Kanji must be processed through a special Java-only Kanji Transliteration
component which generates multiple Kana readings for the input string. One or all
of these Kana readings can then be passed to GNM for further processing. This
approach allows for the broadest matching of Romanized Japanese names.

Kanji organization names are passed directly through GNM'’s transliteration
module. Each Kanji character is consistently mapped to one reading, represented in
the Latin alphabet.

Because Chinese and Japanese use the same Han character set, Japanese names
must be marked as Japanese culture in order to be transliterated with Japanese
readings. The default assumption for any input string in Han characters is that the
name is Chinese. Any Han-character name for which culture has not been specified
will be passed through the Chinese transliteration module.

Chapter 2. Overview of names and name matching 31

32 IBM InfoSphere Global Name Management: Developer's Guide

Chapter 3. Parsing names

Name parsing consists of identifying the component parts of names then
separating those components into given name fields and surname fields, as well as
recognizing non-name elements such as titles (Mr., Hajj, etc.) and qualifiers (Jr,
Esq., etc.). Parsing names is a key element of analyzing and scoring names.
Accurate parsing increases the likelihood that each name component is analyzed
correctly, which in turn yields more accurate search results.

Parsing names using NameWorks

Parsing names into constituent parts is a key step in analyzing and scoring names.
NameWorks integrates transliteration into methods used to parse names.

Parsing names into individual parts

Use the parse() method to transliterate and parse one or more names into
component parts. This method returns a parse tree for each name in the input
string, providing information about alternate parses for each name, and a score
representing how likely the parse is to be correct based on culture-specific
heuristics and relative frequencies of the component name phrases as given names
or surnames.

About this task

You use the parse() method of the NameWorks Analytics class to parse a personal
name into its given name and surname components, as well as separate the titles
and qualifiers from the name. If enabled, NameWorks returns information about
alternate parses when the confidence score is high enough. For example, if your
original search query is for the name David,Robert, NameWorks might return an
alternate parse of Robert,David because both name tokens are equally like to serve
as either the given name or surname. The alternateThreshold value must be met
for NameWorks to return alternate parses. To begin parsing a name, pass the
following values to the parse() method.

* The full name to be parsed, represented as a full name. For example, ROBERT E
JONES. The name must be passed to the parse() method as a string value.

* An integer between 0 and 100 that represents the alternateThreshold value (0
always suppresses alternate parses). This value is the minimum confidence value
that is required for an initial parse before the name is reordered and alternate
parses are considered.

Results

The parse() method transliterates and parses the input string and returns a
collection of the following data structures for each input string. The parse()
method returns each of the following objects for a name parse.

ParseAlternate
Contains parse data for an alternate (conjoined) name.

ParseName
Contains information about possible parses of a name.

© Copyright IBM Corp. 2001, 2013 33

ParseField
Contains parse information about a name field.

ParsePhrase
Contains parse data for a single name phrase.

Parsing names using NameParser

34

NameParser is a low-level component that separates personal names into their
constituent parts, such as given name, surname, titles and qualifiers.

NameParser completes each of the following actions when parsing a personal
name.

* Determines the proper boundary between the given name and surname.
* Separates titles and qualifiers from the name.

* Breaks the given name and surname into phrases (handling details such as
prefixes and stems) that can be operated on individually.

* Separates multiple names from a single name string. For example, the string
“John and Mary Smith” is separated into the strings, “John Smith” and “Mary
Smith.”

Types of input strings

The parseName() function has several overloaded versions to help better integrate
with whatever method your application currently uses to deal with names. If the
names have already been split into given name and surname fields, NameParser
can be used to make sure the right things have been placed into each field.

You can pass names to NameParser through the following methods by using the
parseName() function.

In a single string, as an unparsed name
The entire name to be parsed can be passed in as a single string in its
original format. There is a separate gnFirst flag that the calling application
can use to specify the expected field order of the input string. If gnFirst is
true, the name is expected to be in given name first order. In other words,
NameParser will assume that the given name precedes the surname in the
string. If gnFirst is false, NameParser assumes the surname precedes the
given name in the input string. For names determined to be Chinese,
Japanese, or Korean, NameParser assumes by default that the surname
comes first in the string, but the gnFirst flag biases this algorithm one way
or the other in ambiguous cases. The gnFirst flag defaults to true.

Note: The gnFirst flag is for situations where you know the field
ordering of the strings you are processing; for situations where you do not
know, but know it can be mixed, leave gnFirst set to true.

In a single string, as a parsed name
If the name has been parsed into given name and surname before, you can
pass the name as a single string, with the surname first and a comma
between the surname and the given name (For example, "King, Martin
Luther"). NameParser will convert the name to natural order and re-parse
it. Commas that set off qualifiers (For example, "Martin Luther King, Jr.")
are legal and will not be mistaken for the division between surname and
given name.

IBM InfoSphere Global Name Management: Developer's Guide

In two strings, as a parsed name
If the names are in a context where they are already split into separate
given-name and surname strings, you can just pass those two strings (for
example, "Martin Luther" and "King") to NameParser, which will
automatically concatenate them into a single string in natural order and
re-parse it.

In three strings, as a parsed name
If the names are in a context where they are already split into separate
first-, middle-, and last-name strings, you can just pass those three strings
(for example, "Martin", "Luther", and "King") to NameParser, which
automatically concatenates them into a single string in natural order and
re-parses it.

NameParser functions for parsing names

The method for analyzing a name using NameParser is the parseName() function.

parseName() function
Performs a full name analysis and generates a parse tree. The parse tree is
a hierarchy that groups the elements in a name into structural units,
beginning with individual tokens (space- or punctuation-delimited strings),
which might combine into name phrases, which combine to form one or
more full personal names.

Alternate parses and validity scores

NameParser looks for multiple parses of a name, starting with a parse which
matches the specified gn-first parameter and the order in which the name was
provided. NameParser also considers alternative parses which may be more likely
than that first parse.

After all titles and qualifiers have been removed, the remaining phrases in the
name can be rotated, but their relative order must be preserved. For example, if the
original input name included the phrases A B C D, reparsing can convert the
phrases into BC D Aor D ABC,butnot AD B Cor BA C D. Whenever two or
more rotations are possible the actual reparsed result is the result that yields the
highest validity score.

The ParseData object returned by parseName() contains one or more conjoined
names and lists alternative parses (if any) for each of those conjoined names—there
may be more than one parse per name.

NameParser phrase override list

You can add phrases to the phrase override list to customize the behavior of
NameParser. The phrase override list is a supplemental list of name phrases in
which NameParser searches. If a phrase is not found in the supplemental list,
NameParser searches its own internal tables that include information on millions of
name phrases.

Because the needs of each deployment vary, you might need to modify
NameParser's token and phrase database. For example, you might need to add
titles and qualifiers to the set that is built into NameParser, supplement
NameParser's internal resource tables with name stem or affix tokens that occur
frequently in your data, or override given name and surname frequency data to
better conform to local usage in the names that you are processing.

Chapter 3. Parsing names 35

36

The phrase override list is an STL map that maps from a std::string object to a
PhraseOverrideData object. The std::string object is the name token or phrase
you want to add to the list, represented in uppercase ASCII characters. The
PhraseOverrideData object is a record of information about the token that provides
a token type plus given name and surname factors.

The given name and surname factors are ignored for all token types except for
NAME_STEM tokens, so for all other token types these values should be set to 0. With
NAME_STEM tokens the given name and surname factors are used to determine
whether NameParser should associate the token with the given name or surname
field when encountered in a name. Generally, the determination of field association
is based on whether the token has a higher given name factor or a higher surname
factor. The overall logic considers many more elements but the given name and
surname factors are the key metrics in the decision of how a name token should be
associated.

The actual phrase override list is not directly accessible. The APIs for working with
it operate by copying names and PhraseOverrideData records to and from a list
supplied by client code. The phrase override list is empty by default

Each entry in the phrase override list is associated with a PhraseOverrideData

object, which specifies the type, surname factor, and given name factor for that

token. The type member of a PhraseOverrideData object tells the

setPhraseOverrides() method how to process the associated data. The

PhraseOverrideData class includes support for the following characters:

* Lowercase Latin letters are equivalent to uppercase Latin letters.

* Extended Latin letters are equivalent to their nearest ASCII equivalent. For
example, diacritical marks are removed for most alphabetic characters. All
alphabetic characters in the following Unicode encoding are accepted:

Latin-1

Latin Extended A

Latin Extended Additional blocks

Latin Extended B block (most characters)

* The numeric characters 0-9, the space, and the following special characters are
significant: @ § % & + = /

* Hyphens, periods, commas, tabs, and new lines are equivalent to spaces, and
multiple space-equivalent characters in a row are equivalent to a single space.

All other characters that are not included in the previous list, including
apostrophe, are ignored.

IBM InfoSphere Global Name Management: Developer's Guide

Chapter 4. Analyzing names

When analyzing names, you identify various attributes about those names, such as
the likely gender of the name, the likely ethnicity (culture) of the name, the likely
countries where the name may have originated, possible variants of the name, and
the category the name—either a personal name or an organization name.

Analyzing names using NameWorks

Use the analyze() method when you want to perform full analysis on a name. This
method transliterates and parses the name, provides gender information, culture
classification, variant name forms for the name and a list of countries where the
name is found (country of association information).

About this task

To perform a full analysis of a name use the analyze() method of the Analytics
class of NameWorks and pass the following values:

* Either the full name as a single string value or separate surname and given
name strings if a specific parse is desired.

* An integer between 0 and 100 representing the alternateThreshold value, which
sets the minimum acceptable confidence value for deciding whether NameWorks
should search for alternate parses. If the initial parse has a confidence value
above the threshold no alternate parses will be attempted. An alternateThreshold
value of zero (0) always suppresses alternate parses.

* An integer representing the maxForms value which limits the number of possible
variant forms generated for each name phrase. A zero (0) value indicates all
possible variant forms should be returned.

* An integer representing the maxElements value which limits the number of
possible country elements returned for each name phrase. A value less than one
will cause all possible country elements to be returned.

Results

The analyze() method transliterates and parses the input string then returns the
following set of nested data structures which represent analysis data:

* AnalysisData

* AnalysisAlternate
* AnalysisName

* AnalysisField

* AnalysisPhrase

Identifying the culture of a name using NameWorks

NameWorks includes functions that identify the culture of personal names, using
the NameClassifier—Country of Association (NC_COA) API component. The
functions perform a simple culture classification first then, if a single culture
cannot be selected, a more complex analysis of country associations is performed
to determine possible cultures. In the case of organization names, culture may be
automatically inferred from script type where names are written in supported

© Copyright IBM Corp. 2001, 2013 37

38

non-Latin scripts, or it may be supplied by the user. For Latin-script organization
names, culture must be supplied by the user, else a culture of Ambiguous will be
assumed.

Culture identification

Names differ from one part of the world and from one cultural group to the next.
These differences range from the sounds used in names, to where the given name
is located in relation to the other parts of the name. Identifying the culture of a
name can significantly improve name matching.

By identifying the culture of a name, IBM InfoSphere Global Name Management
products can apply culture-specific knowledge, such as nickname recognition and
pre-tuned parameter settings that increase search recall and reduce false positives.
IBM InfoSphere Global Name Management products apply a combination of
linguistic, statistical, and probabilistic techniques to identify the possible cultural
nature of personal names represented in the Roman alphabet.

While being able to identify the culture can boost name matching capabilities, even
without culture-specific knowledge, IBM InfoSphere Global Name Management
products are able to effectively and competitively parse, genderize, and match
names.

This example shows how identifying the culture of an Hispanic name can boost
name matching capabilities.

In Hispanic communities, people typically have two surnames. The first (leftmost)
surname is the surname of their father, and it is the name used as their own family
name. The final surname is the surname of their mother, and it may be omitted.

Because the IBM InfoSphere Global Name Management products can identify the
name of "Ana Garcia Valdez" as an Hispanic name and apply culture-specific
scoring parameters during processing, the name "Ana Garcia" is a top-ranking
name match. But the name "Ana Valdez" is not considered a top-ranking name
match, even though the two names contain the same name components, because
the names fail to match on the first surname component.

Culture codes

Culture codes describe one or more cultures associated with a personal name
during culture classification.

IBM InfoSphere Global Name Management products use the following culture
codes:

Note: A roll-up culture code represents a defined set of cultures within a specific
region. If a name returns multiple culture codes within that region, the roll-up
code better represents the culture of the name.

Table 5. Culture codes and their associated cultures

Code Associated Culture

0 Ambiguous (No valid roll-up code could be determined)
1 Anglo

2 Arabic

3 Chinese

IBM InfoSphere Global Name Management: Developer's Guide

Table 5. Culture codes and their associated cultures (continued)

Code Associated Culture

4 Hispanic

5 Korean

6 Russian

7 French

8 German

9 Thai

10 Indonesian

11 Yoruban

12 Farsi

13 Pakistani

14 Indian

15 Japanese

16 Afghani

17 Vietnamese

18 Polish

19 Portuguese

20 Turkish

38 Southwest Asian (Roll-up culture code that represents some combination of
Arabic, Farsi, Pakistani, Afghan and Turkish cultures)

39 European (Roll-up culture code that represents some combination of Anglo,
French, German, Hispanic and Portuguese cultures)

40 Han (Roll-up culture code that represents some combination of Chinese,

Korean, and Vietnamese cultures)

Additionally, codes for customized cultures can be added as follows:

Table 6. Custom culture codes

Code Associated Culture
41 CUSTOM_01
42 CUSTOM_02
43 CUSTOM_03
44 CUSTOM_04
45 CUSTOM_05
46 CUSTOM_06
47 CUSTOM_07
48 CUSTOM_08
49 CUSTOM_09
50 CUSTOM_10
51 CUSTOM_11
52 CUSTOM_12
53 CUSTOM_13

Chapter 4. Analyzing names

39

40

Table 6. Custom culture codes (continued)

Code Associated Culture
54 CUSTOM_14
55 CUSTOM_15
56 CUSTOM_16
57 CUSTOM_17
58 CUSTOM_18
59 CUSTOM_19
60 CUSTOM_20

Identifying the culture of a full name

If you can identify the culture of a name, and annotate your data with that culture
classification, you can more effectively match names with greater confidence and
also significantly improve performance in matching names. This task is useful
when identifying the culture of a name string that is not already parsed into
separate name phrases.

About this task

To identify the culture of a name, use the classify() method of the Analytics class of
IBM NameWorks, and pass it the full name as a string value.

This method performs transliteration on the name, parses the name, associates a
culture with the parsed name, and then returns the culture classification as one of
the standard 20 culture codes.

Results

The classify() method returns the CultureData object.

Identifying the culture of name fields

If you can identify the culture of the individual parts of a name (the given name
and the surname), and annotate your data with that culture classification, you can
more effectively match names (with greater confidence) and also significantly
improve performance in matching names.

About this task

To identify the culture of a name already parsed into given name and surname
fields, use the classify() method of the Analytics class of IBM NameWorks , and
pass it the name fields (gn and sn) as a pair of string values. Either name field can
be NULL or contain empty strings.

This method parses the name, associates a culture with the parsed name fields, and
then returns the culture classification for one or both name fields as one of the
standard 20 culture codes.

Results

The classify() method returns the CultureData object.

IBM InfoSphere Global Name Management: Developer's Guide

Identifying the culture of an organization name

If you can identify the culture of an organization name, you can apply
language-specific rules for mapping digits and special symbols to their spelled-out
forms. For example, the digit string “62” is equivalent to “sixty-two” in English,
but matches “0YYY” in a Korean Hangul name.

About this task

For organization names, culture-specific support is available for Anglo, Mandarin
Chinese, Hispanic, Indian, Japanese, Korean, Polish, Portuguese, Russian, and
Turkish.

The culture of an organization name can be automatically determined based on the
writing system used for names written in a few scripts. For all other organization
names, the culture must be supplied by the user in order to trigger use of available
culture-specific resources. The following table shows how scripts are mapped to
cultures:

Kanji mixed with Kana Japanese
Kana Japanese
Hanzi Chinese
Devanagari Indian

Cyrillic Russian

All other organization names will be classified as Ambiguous, unless a specific
culture is provided.

Note that any names encoded in Hanzi/Kanji characters will be assumed to be
Chinese. To trigger Japanese transliterations of Kanji characters, Japanese culture
must be specified for all Japanese Kanji organization names.

The Japanese Kanji writing system uses almost the same character set as the Hanzi
system used for Chinese. It is therefore not possible much of the time to tell
whether a Han-character organization name is Japanese or Chinese. Despite the
similarity in the written forms of the two languages, they have entirely different
pronunciations of the characters. To ensure that Japanese readings are obtained for
Han characters, the culture of a Japanese Kanji name must be specified in the
input.

Japanese organization names written in Kana can be auto-detected as Japanese
based on script type. However, organization names in Japan are almost exclusively
written in Kanji, or in a mixture of Kanji and Kana.

Identifying the

gender of names using NameWorks

NameWorks includes functions to identify the relative frequencies of the genders
associated with a given name. You can retrieve gender frequencies for a name as a
total of the frequencies from all cultures where that name is found in the Name
Data Archive or you can choose to see only the frequencies found for a specific
culture.

Frequencies are expressed as percentages of the total number of occurrences for a
given name. For example, the name "ILHAM" returns 79% for female and 20% for

Chapter 4. Analyzing names 41

male, meaning 79% of the "ILHAM" entries in the Name Data Archive were
reported as female, 20% of the entries were reported as male and 1% had no
specific gender reported.

Identifying the gender of a full name

Use this task when you want to identify the given name field of a full name and
return gender data about the given name. You may retrieve gender frequencies for
a specific culture by specifying that culture. For example, you may find the given
name gender distribution in Turkey for the name "ILHAM SAYIL" by specifying
the Turkish culture. Leaving the culture value unspecified will return the gender
distribution across all cultures.

About this task

To identify the gender of a name that is not already parsed into name fields, use
the genderize() method of the Analytics class of IBM NameWorks, and pass it the
full name as a string value.

This method parses the name, associates a gender with the parsed given name,
and then returns gender data.

Results

The genderize() method returns a GenderData object. The return value is a data
structure that contains values for the relative frequency of the occurrence of the
given name, and percentages that represent the likelihood that the gender
associated with the given name is male, female or unknown

Identifying the gender of a given name

Use this task when you want to return gender data about a given name. You may
retrieve gender frequencies for a specific culture by specifying that culture. For
example, you may find the given name gender distribution in Turkey for the name
"ILHAM" by specifying the Turkish culture. Leaving the culture value unspecified
will return the gender distribution across all cultures.

About this task

To identify the gender of a given name, use the genderizeField() method of the
Analytics class of NameWorks, and pass it the given name as a string value
(givenName).

This method associates a gender with the given name, and then returns gender
data.

Results

The genderizeField() method returns a GenderData object. The return value is a
data structure that contains values for the relative frequency of the occurrence of
the given name, and percentages that represent the likelihood that the gender
associated with the given name is male, female or unknown.

Identifying the country of association for names using NameWorks

42

NameWorks includes functions that you can use to identify the country of
association for names to assist in name analysis.

IBM InfoSphere Global Name Management: Developer's Guide

Country of association

If you can associate a country with a name, you can further enhance the culture
identification and name matching capabilities of IBM InfoSphere Global Name
Management . Associating a name with a country can reduce the number of
“unknown” cultures and increase the accuracy of the cultures that are identified.

IBM InfoSphere Global Name Management products include country of association
(COA) statistics to increase the accuracy of culture identification, which in turn
allows developers to balance and validate cultural information with distributional
data from the IBM InfoSphere Global Name Data Archive (NDA). The COA
function can provide three different values that are related to associating a name
with a country:

Frequency
Indicates how common a name is in a country with respect to the other
names within that country. Frequency values vary depending upon the
name.

Confidence
Indicates how much data the NDO contains from a particular country
compared to the amount of data the NDO contains from other countries.
Confidence values vary by country only.

Significance
Also known as cross-country significance, this function provides an
indication of how representative a name is of a country in comparison to
how representative it is of other countries. Significance is a more complete
method of establishing country of association because factors are
considered such as the total number of names in circulation for a given
country, in addition to the amount of data that the NDO contains for that
country.

The COA function returns the following information in this order:
1. Significance, from high to low

2. Frequency, from high to low

3. Confidence, from high to low

4. ISO 3166 country code, in alphabetic, ascending order

Identifying the country of association for full names

You can add another layer of information to name analysis by identifying the
country of association for a name. Use this task when the name is already parsed
into name fields.

About this task

To identify the country of association for a given name and surname, use the
associate() method of the Analytics class of IBM NameWorks, and pass it the
following values:

* the full name as a string value

* an integer representing the maxElements value, which restricts the number of
country elements returned for each name phrase (a value less than one returns
all country elements)

Chapter 4. Analyzing names 43

This method parses the full name and performs transliteration on each name field,
and then associates countries with the name fields on the parse with the highest
confidence.

Results

The associate() method returns the following set of nested objects for each name
phrase:

* CountryData
* CountryPhrase
* CountryElement

Identifying country of association for given name and
surname

If you can identify the country of association for the given name and the surname,
you can add another layer of information to name analysis. Use this task when the
name is already parsed into name fields.

About this task

To identify the country of association for a given name and surname, use the
associate() method of the Analytics class of IBM NameWorks, and pass it the
following values:

* the name fields (gn and sn) as a pair of string values (Either name field can be
NULL or contain empty strings.)

* an integer representing the maxElements value, which restricts the number of
country elements returned for each name phrase (a value less than one returns
all country elements)

This method performs transliteration on each name field, and then associates
countries with the name fields.

Results

The associate() method returns the following set of nested objects for each name
phrase:

* CountryData
* CountryPhrase

* CountryElement

Generating name variants using NameWorks

NameWorks includes functions that you can use to generate lists of variant forms
for the name fields of a name.

Name variants

A name variant is an alternative of a name that is considered to be equivalent to
that name, but which differs from the name in its particular external form. In other
words, the two names are considered somehow equivalent and can be substituted
for the other in some context.

Name variants occur for many reasons, including:

44 1BM InfoSphere Global Name Management: Developer's Guide

* Spelling variations (For example, Geoff and Jeff)

* Nicknames (For example, Bill for William

* Abbreviations (for example, GPE for Guadalupe)

* Cognates, or translations (for example, Peter for Pierre)
* Cultural differences

* Variations in the order of components (For example, adapting a name to another
culture, L.N.S. Gandikota adapted from Gandikota Lakshmi Narayana Sastry)

* Transliterations from one writing system to another (For example, from
Logographic Chinese characters to Roman characters)

IBM InfoSphere Global Name Management products can produce name variants
that are caused by spelling variations, nicknames, cultural differences, and
abbreviations.

Knowing the possible name variants helps you expand your name queries to
include the variant forms, and include those name variants in searches to generate
lists of candidate matches. Name variants can also be helpful when analyzing
names, because analysts can see the lists of variant forms of a name that are likely
to occur.

In IBM InfoSphere Global Name Management products, the process of generating a
list of name variants involves breaking the name fields (given name and surname)
into name phrases, and then generating the list of variants for each of the name
phrases. Knowing which name is the given name and which name is the surname
is important, because there are different variants for a phrase, depending on which
field it occurs in.

Knowing the culture behind each name field is also important, because the name
variants differ widely between cultures. Just because a particular name may be
found in many cultures and spelled the same way, does not mean that the names
are the same. In actuality, the names are different names, and produce different
variant forms depending on which culture is associated with the name.

For example, if we compare the name variants for the Hispanic name Juan and the
Chinese name Juan, we can see a vast difference in the variant name forms,
because the name is not the same name in each culture.

The Hispanic name variants of Juan include:
* Juam

* Juanch

* Juancho

* Xuan

The Chinese name variants of Juan include:
* Chuan

* Chwan

* Jwan

* Zhuan

Chapter 4. Analyzing names 45

While both cultures share some of the same variants, the two names are very
different. This difference is supported by the difference in the order of the name
variants, which reflect the differences in the frequency of spelling from one culture
to another.

Generating a list of name variants for full names

By generating a list of the name variants, you can expand your name queries,
generate better lists of candidate matches, or better analyze a name by seeing the
possible variants associated with it. Because the process of generating a name
variant list depends upon breaking a name into name fields and identifying the
culture of each name field, use this task when the name is not already parsed into
given name and surname fields.

Before you begin

Because the list of variants for names differs widely based on the culture
associated with the name, the getVariants() method takes a culture code as a
parameter. You may want to obtain the culture code for the given name and
surname before performing this task. (You can obtain the culture code by using
either the analyze() method or the classify() method of the Analytics class.

About this task

To generate a list of the name variants for a full name, use the getVariants()
method of the Analytics class of IBM NameWorks, and pass it the following
values:

* The full name as a string value

* A culture code giving the culture of the name (If you do not know the culture of
the name, you can pass it NULL for Java or -1 for Web services, and IBM
NameWorks will determine the likely culture for the name.)

* An integer to limit the number of variant forms returned per name phrase
(Negative values or a zero value indicates to return all variant name forms.)

This method returns a list of variants. If you passed -1 or NULL for the culture
parameter to have IBM NameWorks determine the culture, you can inspect the
culture field on the VariantData object to find out which culture IBM NameWorks
associated the name with.

Results

The getVariants() method returns the following set of nested objects in a tree
structure, representing the breakdown of name phrases found in the name being
analyzed:

* VariantData
¢ VariantPhrase

¢ VariantForm

Generating a list of name variants for given names and
surnames

By generating a list of the name variants, you can expand your name queries,
generate better lists of candidate matches, or better analyze a name by seeing the
possible variants associated with it. Because the process of generating a name

46 1BM InfoSphere Global Name Management: Developer's Guide

variant list depends upon breaking a name into name fields and identifying the
culture of each name field, use this task when you already have the given name
and surname fields.

Before you begin

Because the list of variants for names differs widely based on the culture
associated with the name, the getVariants() method takes a culture code as a
parameter. You may want to obtain the culture code for the given name and
surname before performing this task. (You can obtain the culture code by using
either the analyze() method or the classify() method of the Analytics class of IBM
NameWorks.

About this task

To generate a list of the name variants for a name that is already parsed into given
name and surname fields, use the getVariants() method of the Analytics class of
IBM NameWorks, and pass it the following values:

* The given name and surname fields (Either name field can be NULL or contain
empty strings.)
* A culture code giving the culture of the name (If you do not know the culture of

the name, you can pass it NULL for Java or -1 for Web services, and IBM
NameWorks will determine the likely culture for the name.)

* An integer to limit the number of variant forms returned per name phrase
(Negative values or a zero value indicates to return all variant name forms.)

This method returns a list of variants. If you passed -1 or NULL for the culture
parameter to have IBM NameWorks determine the culture, you can inspect the
culture field on the VariantData object to find out which culture IBM NameWorks
associated the name with.

Results

The getVariants() method returns the following set of nested objects in a tree
structure, representing the breakdown of name phrases found in the name being
analyzed:

* VariantData
¢ VariantPhrase

¢ VariantForm

Analyzing names with the component APIs

When you analyze names, you identify various attributes about those names, such
as the likely gender of the name, the likely culture of the name, the likely country
that the name originated from, various variants of the name, and categorizations of
the name as either personal names or organizational names.

IBM InfoSphere Global Name Management products are delivered with C++
libraries that you can link with to integrate the technology directly into your
applications or workflow. Along with the APIs are sample applications to
demonstrate how to use the libraries.

Chapter 4. Analyzing names 47

48 1BM InfoSphere Global Name Management: Developer's Guide

Chapter 5. Searching for names

You can use IBM InfoSphere Global Name Recognition products to search for
names across multiple data lists.

Managing data lists in IBM NameWorks

Data lists are memory-based collections of names that are populated from an
external data source (such as a flat file) when an IBM InfoSphere Global Name
Management application is initialized. Each entry in a data list contains extensive
information about a single name that is accessed and considered during the search
process in order to apply a number of fine-grained linguistic, cultural, and
string-similarity measures during a name search.

Data lists are the main data structure used by IBM for automated searching and
matching of names.

Typically, a system administrator configures, populates, and manages data lists by
creating and maintaining a set of configuration parameters for each list. A single
search request is not limited to any number of names because IBM NameWorks
and NameHunter can support an indefinite number of configurable name lists. In
addition, the ability to map different external files to differing memory-resident
name lists allows for dynamic search scoping, on a transaction-by-transaction basis,
with each search request only considering the relevant list or lists.

The IBM NameWorks configuration file contains the mapping information between
each data list and its search engine instance, as well as other key information used
during system initialization.

The IBM NameWorks configuration file requires data list information that specifies
the mapping between search engine instances and data lists and a flag that
indicates the type of search that can be performed against the data list (full search
or unique name search). If names can be added to the data list on this search
engine instance, the data list section contains an add flag.

System administrators and client applications can add, delete, or update a name on
a data list, even while active searches are referencing that data list. Active searches
use cached information to finish their operation, and subsequent searches use the
modified data list name information.

Data lists

A data list is a memory-resident data structure that is populated with a set of
names that are drawn from an external source, such as a flat file. After a data list is
created and populated with names, it is available for use in subsequent search
requests. Each data list must be uniquely named and is expected to be in a specific
format. Data lists can contain from one to hundreds of millions of names.

Because a data list is a dynamic data structure, IBM NameWorks supports
data-manipulation transactions, such as adding, updating, and deleting the
contents of the data list. Dynamic manipulation allows data list contents that are
stored in memory to remain synchronized with the underlying data source they
represent, even when that data source is changing.

© Copyright IBM Corp. 2001, 2013 49

50

Data lists are used by IBM InfoSphere Global Name Management product search
engines, where search requests are performed against one or more data lists. Each
search request must indicate the names of the data lists to use.

Data lists are usually managed by a system administrator and they can be located
on one or more servers, depending on how the search engine servers are
configured to meet your organization's needs.

Typically, system administrators associate a data list with a single search engine
instance, which in IBM NameWorks is an instance of the Distributed Search
process (a communications-management process and one or more searcher
processes).

System administrators or client applications can add, update, or delete names on
data lists, as needed. However, in any instance of the Distributed Search process,
only one data list, the add list, can be designated as the recipient for names that are
added during a session. All other data lists that are configured with an instance of
Distributed Search can contain only the names with which they are populated
during session initialization, according to the associated configuration file.
Therefore, any names that are added after initialization are placed in the add list.

Adding names to data lists

As part of data list management, system administrators might need to add names
to data lists as an interim update to the data list in between periodic refreshes.
Because data lists are memory-resident, you can add names to a data list at any
time, even while active searches are accessing the data list. If an active search is in
progress when names are added, the new names can be accessed during
subsequent searches on the data list.

Before you begin

* The data list must be configured with the add flag in the IBM NameWorks
configuration file. If it is not, an error message displays when you try to add
names to the data list.

* You must know the name of the data list. (Use the getDatalistNames() method to
return a list of all existing datalist names.)

* The name must already be parsed into given name and surname fields. You can
use the analyzeForSearch() method to parse the name into fields and classify it,
which provides the information you need to add the name to a data list.

* If you already have culture information for each name field (given name and
surname), you can add the culture code to name as well.

About this task

To add a name to an existing data list, use the addNameToDatalist() method of the
Scoring class of IBM NameWorks and pass it the following values:

* The name of the data list.
* The given name and surname name field values to add to the data list.

* The original name parse, the original script for the name (if not expressed in the
Roman alphabet), or both. Passing both indicates that this addition should be
flagged as an alternate parse for the original name or script.

* Any supplemental data to be associated with the new name record (This
information is a key value to identify additional or supplementary data related
to a name, such as a date of birth or a driver's license number. It typically allows

IBM InfoSphere Global Name Management: Developer's Guide

more complete information to be retrieved about a matched name. Supplemental
data can be used in post-search filtering and weighting. It is also used when
updating or deleting names from data lists. All name records that share the same
supplemental data are updated or deleted.)

* The culture codes for the given name and surname (If you do not have these
culture codes, pass the value of -1. This value signals the method to classify the
culture of the given name and surname name fields first.)

Results

The addNameToDatalist() method adds the name and its associated information to
the indicated data list. Passing a value of -1 as a culture code instructs IBM
NameWorks to decide the most appropriate culture code automatically for the
name.

Updating names on data lists

In-between periodic refreshes of the data list, system administrators may need to
update the names on existing data lists, as part of their data list management
duties. Because data lists are memory-resident, you can update names to a data list
at any time, even while active searches are accessing the data list. If an active
search is in progress when names are updated, the new information can be
accessed during subsequent searches on the data list.

Before you begin

* You must know the name of the data list. (Use the getDatalistNames() method to
return a list of all existing data list names.)

* You must know the original supplementary data value (originalData value)
associated with the name, which is often a date of birth, a driver's license
number, or a similar piece of data. This supplementary data value is the key to
identify the name records to update, and it typically provides more complete
information to be retrieved about the name that can be used in post-search tasks,
such as weighting and filtering. All names on this data list that contain a
matching supplementary data value are updated.

 If you are changing the given name, the surname, or both, remember that the
name must already be parsed. (You can use the analyzeForSearch() method to
prepare the name before this update. This method parses the name into name
fields and classifies the culture of each name field.)

About this task

To update a name or its associated information on an existing data list, use the

updateNamelnDatalist() method of the Scoring class of IBM NameWorks, and pass

it the following values:

* The name of the data list

* The original supplementary data value (originalData value All records with this
supplementary data value will be updated, and the original supplementary data
value is replaced by this data value.)

* The given name and surname name field values to modify on the data list

* The original name parse, the original script for the name, or both (This
information is the key to locating the original entry, and it indicates that this
addition should be flagged as an alternate parse for the original name or script.)

Chapter 5. Searching for names 51

* Any supplemental data that you want to replace the originalData (original
supplemental information) value with (For example, if the driver's license
associated with this person has changed.)

* The culture codes for the given name and surname (If you do not have these
culture codes, pass the value of -1. This value signals the method to classify the
culture of the given name and surname name fields first.)

Results

The updateNamelnDatalist() method updates all name records that contain the
same supplementary data information on the indicated data list. If you passed the
-1 value as the culture code for either the given name or surname (or both), the
method first classifies the culture codes and updates the name with the identified
culture codes.

Deleting names from data lists

When maintaining data lists, occasionally, system administrators need to remove
names from a data list as part of an interim data list update. Because data lists are
memory-resident, you can delete names from a data list at any time, even while
active searches are accessing the data list. Subsequent searches for the name after it
has been deleted indicate no match on that data list.

Before you begin

* You must know the name of the data list. (Use the getDatalistNames() method to
return a list of all existing data list names.)

* You must know the original supplementary data value (originalData value)
associated with the name, which is often a date of birth, a driver's license
number, or a similar piece of data. This supplementary data value is the key to
identify the name records to delete. All names on this data list that contain a
matching supplementary data value are deleted from the data list.

About this task

To delete a name and its associated information on an existing data list, use the
updateNamelnDatalist() method of the Scoring class of IBM NameWorks and pass
it the following values:

* The name of the data list
* The supplementary data associated with the name record

To delete all name records that contain the same supplementary data information
on the indicated data list, use the deleteNameFromDatalist() method.

Migration of IBM NameWorks

This release of IBM InfoSphere Global Name Management includes numerous
changes to the IBM NameWorks APIs. Use this information to learn about the
changes that are required to migrate your existing APIs.

52 1BM InfoSphere Global Name Management: Developer's Guide

New Java methods and objects

The following table illustrates new Java methods and objects for this release.

Table 7. New Java methods and objects

Java method or object

Description

createName() method

The search(), compare(), addName() and
updateName() methods now accept Name
objects as a parameter. Therefore, you must
create a Name object through the
createName() method before you can call this
version of search.

Name object

In previous versions, a name string was used
as the input for the name, surname, or given
name parameters. This release introduces
Name objects, which encapsulate the name
fields (given name and surname), culture
information, and NameCategory of the
name.This class represents names that are
input either as a query name or as a data list
name from an input file.

NameCategory object

NameCategory is used to describe the
categories of names that are supported by
IBM InfoSphere Global Name Management
products. The following name categories are
supported through this release:

* Unknown

* Personal

* Organization

* Both

You specify the category of a name when

creating a name using the createName()
method.

NameCategorySet object

NameCategorySet represents a collection of

one or more NameCategory values. This data
type identifies the category of specific names
and indicates what category of names should
be returned after calling the search() method.

Changed Java methods and objects

Several IBM NameWorks API data structures have become data classes. Each of the
objects derives from the Name class and therefore inherits several methods that
contain name and culture information. You must now call get() methods to access
member data for several classes, each of which is described in the following table.

Table 8. Changed Java methods and objects

Java method or object

Description of changes

addName() method

Two versions of this method exist, both of
which require the Name object as
parameters. You can choose whether or not
you want to add the original name and the
transliterated version of the name to the list,
or only the transliterated version.

Chapter 5. Searching for names 53

Table 8. Changed Java methods and objects (continued)

Java method or object

Description of changes

analyzeForSearch() method

Two versions of this method exist: one
version accepts a full name parameter, and
the second version accepts given name and
surname parameters.

* If the method that accepts a full name
parameter is called, NameSifter is used to
first categorize the name, and further
processing is determined based on the
name category (Personal, Organization, or
Both). The resulting data is used to create
the related QueryName objects.

* If the method that accepts given name and
surname parameters is called, the name is
treated as a personal name. The name is
parsed and classified and the resulting
data is used to create the related
QueryName objects.

compare() method

This version requires Name objects and
supports multiple comparison types. Two
names are compared based on the
NameCategory of the queryName, and the
results of the comparison are returned in the
CompareData object. Instead of accepting
given name, surname, and culture
parameters individually for a name, two
Name objects (one for the left name, one for
the right name) are used during the
comparison.

search() method

The search() method now accepts Name
objects as a parameter. Therefore, you must
create a Name object through the
createName() method before you can call this
version of search.

updateName() method

Two versions of this method exist, both of
which require the Name object as
parameters. You can choose whether or not
you want to update the list with the original
name and the transliterated version of the
name, or only the transliterated version.

CategorizeData object

CategorizeData is the result of calling the
categorize() method. The name is categorized
as either Personal, Organization, Both, or
Unknown.

CompareData object

CompareData is the result of calling the
compare() method. This object contains two
Name objects, one used as the query name
and one used as the evaluation name, along
with the results of the name comparison. The
structures of this object have been condensed
now that the name culture is returned
through the Name object. Additionally, you
can specify a flag to be returned that
indicates which parameter of the name (left
or right) was used for comparison.

54 1BM InfoSphere Global Name Management: Developer's Guide

Table 8. Changed Java methods and objects (continued)

Java method or object Description of changes

OriginalName object OriginalName contains the name, given
name, and surname parameters. In addition,
this object contains culture information for
the name parts as well as information about
the regularized and alternate states.

QueryName object QueryName is used to determine the
confidence of a name match. This object
accepts titles and qualifier strings that can be
used during name comparison.

SearchMatch object SearchMatch contains a matched name
record. Each SearchMatch object that is
returned from a search operation is entered
into a list, which is contained within the
SearchResults object.

Preparing names for search

Use the analyzeForSearch() method to prepare a name for use in a search
transaction. This method categorizes the name by determining whether it is a
personal name or an organization name, parses personal names into given name
and surname fields, and determines a culture classification code for each field in a
personal name. If NameSifter determines that the name is an organization name,
only the name category information is returned.

About this task

The analyzeForSearch() method supports input strings in UTF-16 encoding only. If
the input string is in an unsupported encoding, IBM NameWorks signals an error
or produces undesired results. To prepare a name for search, pass the following
values to the analyzeForSearch() method of the Scoring class of IBM NameWorks.

* The full name to be parsed, represented as a full name. For example, ROBERT E
JONES. The name must be passed to the parse() method as a string value.

* An integer between 0 and 100 that represents the alternateThreshold value (0
always suppresses alternate parses). This value is the minimum confidence value
that is required for an initial parse before the name is reordered and alternate
parses are considered.

Results

The analyzeForSearch() method first categorizes and then transliterates the name.
Name transliteration is the process of converting a name from a particular writing
system or character encoding convention into another. For example, name
transliteration allows a name written in Arabic script to be analyzed and matched
to a similar name written in the Roman alphabet. The method then parses the
input string and returns a collection of QueryName objects for each input string
and its transliterated version.

Scenarios: searching for names

IBM InfoSphere Global Name Management provides various ways to search for
names. The following scenarios describe several common implementations that you
can follow when searching for names.

Chapter 5. Searching for names 55

56

Creating name objects for name searching

The following scenarios describe the different methods for creating name objects in
preparation for search, based on how you intend to interface with your name
information.

Both scenarios describe how you can create names in preparation for search, but
the scenarios achieve this goal in different ways. The first scenario describes how
to create a Name object through the createName() method before calling the
search() method. The second scenario employs the analyzeForSearch() method to
create QueryName objects that are used for the name search.

When using the search() method, you must first create Name objects for Personal
and Organization names through the createName() method. Name objects
encapsulate the name fields (given name and surname), culture information, and
the name category for the name instead of accepting name strings as in releases
prior to IBM InfoSphere Global Name Management , Version 4.2. The Name class
represents names that are input either as a query name or as a data list name from
an input file.

Alternatively, you can invoke the search() method by using the results of the
analyzeForSearch() method. QueryName objects are returned by
analyzeForSearch(), and because the QueryName object is derived from the Name
class, each element in the list of QueryName objects can be sent to the search()
method.

The createName() method generates the highest-confidence parse for the name and
the recommended culture for both the given name and surname, but only if the
NameCategory indicates a Personal name. However, the analyzeForSearch()
method provides up to six cultures for each given name and surname, and as
many as three possible parses for each conjoinned name. The method you use
depends on the results you want to achieve.

Creating QueryName objects and searching for names
The following scenario describes how to create QueryName objects with the
analyzeForSearch() method in preparation for name searching.

Before you begin

Use the following guidelines to create QueryName objects that you want to use
search functions. QueryName objects inherit information from the Name class, but
are only created through the analyzeForSearch() method. The analyzeForSearch()
method categorizes, parses, classifies, and transliterates the name like the
createName() method. In addition, analyzeForSearch() returns up to six cultures for
each given name and surname, and as up to three possible parses for each
conjoined name.

Procedure
1. Call the analyzeForSearch() method.

2. Optional: If you want to override the culture codes for a QueryName object,
you must call the createName() method to create a Name object with a different
culture than the one provided by analyzeForSearch(). You can use the
createName() method to create multiple Name objects to be used by the
search() method.

IBM InfoSphere Global Name Management: Developer's Guide

3. Call the search() method to perform searching operations. The NameCategory
of the name determines which set of comparison parameters are used for
searching.

a. Optional: Call the getDataListNames() method to return the names of all
available data lists in the system.

b. Optional: Call the getSearchStrategyNames() method to return the names of
all available search strategies in the system.

4. Optional: Call the dataFetch() method to retrieve original name data and

supplementary data for name records that are associated with a Unique Name
match.

Results

A list of QueryName objects is returned from analyzeForSearch().

Creating a Name object and searching for names
The following scenario describes how to create a Name object with the
createName() method in preparation for name searching.

Before you begin

Use the following guidelines to create Personal or Organization Name objects that
you want to use for add, update, search, and compare functions. You are not
required to specify a name category (Personal or Organization), because IBM
NameWorks uses NameSifter to categorize the name automatically. However, the
name category determines how the name is processed. For example, if you specify
a NameCategory of Personal, the createName() method transliterates, parses, and
classifies the name, whereas only transliteration occurs for an Organization name.

Procedure
1. Call the createName() method to create a Name object.

Option Description

If you do not know anything about the Pass a single name string to the

name createName() method. IBM NameWorks
transliterates the name and determines the
NameCategory:

e If the name is determined to be a Personal
name, IBM NameWorks parses and
classifies the name.

e If the name is determined to be an
Organization name, the name receives a
culture of Ambiguous

If you know that the name is a Personal or |Specify the NameCategory, which
Organization name determines how the name is processed.

If you know the given name and surname |Pass these values to the createName()
method, which determines that the name is
a Personal. The name fields are classified
when the culture information is required
from the Name object.

If you know the given name, surname, and |Pass these values to the createName()
culture method, which automatically assigns a
NameCategory of Personal for the name.

Chapter 5. Searching for names 57

2. Call the search() method to perform searching operations. The NameCategory
of the name determines which set of comparison parameters are used for
searching.

a. Optional: Call the getDataListNames() method to return the names of all
available data lists in the system.

b. Optional: Call the SearchStrategyNames() method to return the names of all
available search strategies in the system.

3. Specify the searchOpt= parameter to indicate what type of NameCategory that
you want to search against. You can specify this value in the search strategy
that is passed to IBM NameWorks.

* 1 = Personal names
* 2 = Organization names
* 3 = All name categories

Results

Search results are returned through the SearchResult object, which contains a list of
SearchMatch objects. Each SearchMatch object contains the following information:

¢ Data list name where the matched name was found

* Ancillary data that is associated with the name

* Full name similarity score

* Given name similarity score

* Surname similarity score

* Whether the matched name comes from an alternate parse

* Whether matched name comes from a regularized name entry

* Number of matching name records associated with this unique name

Because the SearchMatch object derives from the OriginalName class, it also
returns the following information:

* Name category

* Full name

* Given name

* Surname

* Supplementary data

Searching for names using IBM NameWorks

58

IBM NameWorks supports full name and unique name searches. In full name
searches, IBM NameWorks returns every matching name record that appears on
the data list in the search results. In unique name searches, one copy of each
unique full name that is matched is returned, along with a count of the number of
times that name appears in the data list.

Note: Before searching occurs with IBM NameWorks, your system administrator
must associate external files of names with IBM InfoSphere Global Name
Management data lists, through entries in the IBM NameWorks configuration file.

Unique-name searching is useful when searching very large name lists where many
common names can occur hundreds, or thousands of times. Such repetition can be
problematic for IBM NameWorks search logic and for users who must otherwise

IBM InfoSphere Global Name Management: Developer's Guide

review large volumes of search results that show identical names. After performing
a unique name search, you can choose which names to investigate further by using
the dataFetch() method.

Each physical external file can also be a separate logical entry (for example, one
file for customers, one file for employees). However, each of these external files is a
subset of a much larger file that is understood as one logical name collection.
Breaking a large file into a set of smaller files takes advantage of search
parallelism, so that IBM NameWorks and its search component, Distributed Search,
can simultaneously search multiple subsets, and then consolidate all the results
into a single reply. This physical-to-logical association is completed in the IBM
NameWorks configuration file.

You can use embedded searching to conduct full name searches where name data
is preprocessed when IBM NameWorks initializes, rather than in a separate step.
Combining search capabilities with name preprocessing in a single process reduces
communication and administration overhead that can be associated with full name
searches of large data lists. Settings within the [Datalist] sections of the IBM
NameWorks configuration file determine whether a data list is embedded or
external. Additional settings control what type of name preprocessing is performed
when an embedded data list is loaded during initialization.

Managing search strategies

To help users consistently and easily search for names, define the set of search
comparison parameter values in search strategies. You must define search
strategies for each search before using them during name searches.

About this task

Search strategies can be defined in the configuration file or in a Strategy object that
you create by using the Strategy class. You can specify the name of the search
strategy that you want to use when a search operation is invoked. The comparison
parameters that are defined in the search strategy are used for the search.

Search strategies

A search strategy is a collection of search comparison parameter values that the
search() method of the Scoring class can use. You use search strategies to define the
sets of comparison parameter values that are allowable for the search() method to
use. Each search strategy has a unique name.

The configuration file that ships with IBM NameWorks contains three example
search strategies that system administrators can use and customize:

 Standard (contains the default comparison values)
* Broad (contains comparison parameter values that widen the search)

* Narrow (contains comparison parameter values that restrict a search)

You can create as many search strategies as necessary, and your search strategy can
vary based on the needs of your client application and what type of search that
you want to run.

Note: The MinScore comparison parameter corresponds to the NAME_THRESH
comparison parameter from previous releases, and does not need to be set
separately in the other sections of the configuration file. If both parameters are set,
IBM NameWorks uses MinScore and reports NAME_THRESH as an error.

Chapter 5. Searching for names 59

Relative adjustment factors adjust the calculated scores for comparison parameters.
These factors appear after the parameter name as _ADJ in the following examples.

Sample broad search strategy:

You use a broad search strategy to achieve a higher recall of names in a search, but
at the cost of lower precision. Your search results will catch more names overall
but might also include a lower percentage of names that are related to your search.
The following example shows what a broad search strategy might look like.

[Strategy:Broad]
MinScore=65

[GNParms :Broad]
ANCHOR_FACTOR=0.97
COMPRESSED_SCORE_MAX=1.00
DO_COMPRESSED_SCORE=Y
FIELD_THRESH=0.50
FIELD_WEIGHT=0.50
NAME_UNKNOWN_SCORE=0.75
NO_NAME_SCORE=0.75
INITIAL_INITIAL_SCORE=1.00
INITIAL_TOKEN_SCORE=0.85
MATCH_INITIALS=Y
00PS_FACTOR=0.95

[SNParms:Broad]
ANCHOR_FACTOR=0.97
COMPRESSED_SCORE_MAX=1.00
DO_COMPRESSED_SCORE=Y
FIELD_THRESH=0.50
FIELD_WEIGHT=0.50
NAME_UNKNOWN_SCORE=0.75
NO_NAME_SCORE=0.75
00PS_FACTOR=0.95

Sample narrow search strategy:

You use a narrow search strategy to achieve a lower recall of names in a search but
with a higher precision. Your search results will include less names overall but will
return a higher percentage of names that are related to your search. The following
example shows what a narrow search strategy might look like.

[Strategy:Narrow]
MinScore=80

[GNParms :Narrow]
ANCHOR_FACTOR=0.85
COMPRESSED_SCORE_MAX=0.95
DO_COMPRESSED_SCORE=Y
FIELD_THRESH=0.70
FIELD_WEIGHT=0.50
INITIAL_INITIAL_SCORE=0.75
INITIAL_TOKEN_SCORE=0.70
NAME_UNKNOWN_SCORE=0.70
NO_NAME_SCORE=0.70
00PS_FACTOR=0.85

[SNParms:Narrow]
ANCHOR_FACTOR=0.85
COMPRESSED_SCORE_MAX=0.95
DO_COMPRESSED_SCORE=Y
FIELD_THRESH=0.70

60 1BM InfoSphere Global Name Management: Developer's Guide

FIELD_WEIGHT=0.50
NAME_UNKNOWN_SCORE=0.70
NO_NAME_SCORE=0.70
00PS_FACTOR=0.85

Creating and modifying search strategies by using the IBM
NameWorks configuration file

System administrators create or modify search strategies as necessary to aid name
searches or to map to a particular set of user roles or business rules. You can
manage search strategies by using the IBM NameWorks configuration file, which
means that the IBM NameWorks configuration file must be reloaded before the
changes take place.

Procedure
1. Open the IBM NameWorks configuration file in a text editor.
2. Create or modify the appropriate sections of the configuration file.

* To create a new search strategy, create new section headings and provide the
appropriate entries and values for each section heading:
[Strategy:name]

GNCulture=-1
SNCulture=-1
ONCulture=0
MinScore=-1
MaxReplies=-1
SearchOpt=1
IncludeTAQs=
[GNParms :name]

[SNParms :name]

[ONParms :name]

name is the unique name of the new search strategy. Make certain that each
section heading specifies the appropriate search strategy name, or the
sections will be ignored.

The [Strategy:] heading is the only required section heading to create or
run a search strategy. If you do not include the other section headings, the
search strategy uses the default search parameters for the parameters in
those sections.

* To modify an existing search strategy, make the changes in the appropriate
search strategy section headings. Make certain that each section heading
specifies the appropriate search strategy name, or the sections will be
ignored.

3. Save the configuration file.

4. Restart IBM NameWorks to reload the configuration file so that the changes
take effect.

Creating search strategies by using the Strategy class
You can use the Strategy class to define a search strategy in place of the
[Strategy:] section of the IBM NameWorks configuration file.

About this task

The following procedure includes code samples that use the Java"™ language, but
the steps for creating a search strategy in C++ are the same.

Chapter 5. Searching for names 61

62

Procedure

1. Using your development application, create a Strategy object and give it a
unique name.

Strategy broad = new Configuration.Strategy();

2. Call various methods to specify values for search comparison parameters in
your search strategy, such as default minimum score threshold, the maximum
number of matches to return, and the name categories to search. For example,
broad.setMinScore(70)

.setMaxReply(1000)

.setSearchOptions(EnumSet.of (NameCatetory.PERSONAL));
Configuration configuration = new Configuration();
configuration.addStrategy("Broad", broad);

3. Save your Strategy object.

4. Create a Configuration object by using the Configuration class and add your
search strategy to the Configuration object.

Deleting search strategies from the configuration file

If you no longer use a search strategy or the search strategy is redundant, delete
the search strategy from the configuration file. You must reload the configuration
file before the changes take effect.

Procedure
1. Open the IBM NameWorks configuration file in a text editor.

2. Locate the [Strategy:] section header that contains the name of the search
strategy that you want to delete, and delete all the information under that
section header. Ensure that you delete all possible section headings for each
search strategy:

[Strategy:name]
[GNParms :name]

[SNParms :name]
[ONParms :name]

name is the unique name of the search strategy that you want to delete.
3. Save the IBM NameWorks configuration file.

4. Restart IBM NameWorks to reload the configuration file so that the changes
take effect.

Overriding comparison parameters

IBM NameWorks allows collections of comparison parameters to be gathered
together as named search strategies to provide simplified handling of search
override information. You can override the default comparison parameters on a
transactional basis by creating different search strategies.

Comparison parameter overrides options

You can specify overrides for comparison parameters by using search strategies in
the IBM NameWorks configuration file, by using the CompParmsOverride class, or
by using the Configuration class. Each option provides different ways to specify
overrides that depend on how you want to build your client application to handle
name searching.

For example, assume that the default field threshold for the surname and given

name fields of a name with an Anglo culture is 0.49 (FIELD_THRESHOLD = 0.49). You
can specify FIELD_THRESHOLD = 0.60 in a search strategy to alter the default value

IBM InfoSphere Global Name Management: Developer's Guide

that resides in the IBM NameWorks configuration file, increasing the name
threshold by 22%. This override is absolute because it specifies a new value for the
comparison parameter.

Similarly, you can include relative adjustment factors that are used to adjust
calculated scores. If you enter an adjustment factor for the previous example by
specifying FIELD_THRESHOLD_ADJ = 0.60, the new value is calculated by multiplying
the default value and the adjustment factor:

FIELD_THRESHOLD = 0.49 = 0.60 = 0.29

The adjusted value, 0.29 is used for the duration of the search, without altering the
default value in the configuration file.

Search strategy overrides

You can create search strategies to override any, all, or none of the default
comparison parameters. Overrides are only used for the duration of the
search, and return to the default values for the next transaction.

The overrides that you specify in a search strategy are both absolute and
relative, whereas the overrides on the server side are absolute, such as
when specified through datalists that are used with Embedded Search.

Because comparison parameter values on the server are fixed, the value
FIELD_THRESHOLD = 0.49 cannot be altered unless the value is changed
within the IBM NameWorks configuration file, which contains the default
values for comparison parameters. When you change values for
comparison parameters on the server, all transactions use the updated
value unless you change them in the configuration file.

If you want to use the default comparison parameters that are inherent to
Distributed Search or Embedded Search, pass a search strategy with an
empty name. An empty search strategy name signals that the default
comparison parameters should be used.

Per-datalist overrides

Per-datalist overrides apply to embedded datalists only. You can specify
comparison parameter overrides for individual datalists by adding one or
more CompParmsDefaults= entries to the [Datalist:] section of your
configuration file. By using this option, you can set the default values for
specific datalists, whereas search strategies and overrides that are indicated
by the CompParmOverrides class only override the default values for an
individual query.

CompParmsOverrides class overrides

You can use the CompParmOverrides class to provide overrides for
individual search queries. This class contains override information for a
search strategy and does not provide information on default values. To
indicate overrides with this class, create a CompParmsOverrides object and
use one or more of the override methods (such as addSurnameOverride()).
You indicate overrides as name and value pairs in the same way that
overrides are specified in the search strategies that are stored in IBM
NameWorks configuration files, or sent to Distributed Search servers in
XML messages. Both absolute and relative overrides are supported by the
CompParmOverrides class.

Overrides that you specify by using this class are processed when they are
sent to the Scoring.search() and Scoring.compare() methods. Errors in

Chapter 5. Searching for names 63

64

comparison parameter names or values are reported during processing,
which is how overrides are processed in search strategies.

Configuration class overrides

The Configuration class replaces the IBM NameWorks configuration file
and provides the ability to store your configurations in a database or to
specify your configurations dynamically. Alternatively, you can use an
external configuration file and indicate default values in the [Strategy:]
section, and then use this class to specify overrides for specific datalists.
You use one of the following options to specify overrides with the
Configuration class:

* Create a search strategy by using the Strategy class and specify overrides
by using the override methods (such as addSurnameOverride()), and then
add the search strategy to the Configuration object with the
addStrategy() method

* Use an external overrides file and call that file by using the
setDefaultCompParmOverrides() method

Specifying comparison parameter overrides by using search strategies:

You can override comparison parameters for IBM NameWorks by specifying
absolute overrides, relative overrides, or per-data list overrides in your IBM
NameWorks configuration file, or by creating a Configuration object by using the
Configuration class.

About this task

Relative adjustment factors adjust the calculated scores for comparison parameters.
These factors appear after the parameter name as _ADJ.

Procedure
1. Open the IBM NameWorks configuration file in a text editor.

2. In the [Strategy:name] section of your configuration file, where name is the
name of your search strategy, modify the parameters that you want to override.

Option Description

To specify absolute overrides Replace the value of the comparison
parameter that you want to modify with a
new value.

To specify relative overrides Append _ADJ to the parameter that you
want to modify and provide a value that
you want to adjust the original value by.

3. Save your search strategy and then restart IBM NameWorks.
4. Run a new search for the overrides to take effect.

Specifying overrides by using the CompParmsOverrides class:

You can specify comparison parameter overrides for IBM NameWorks by creating
a CompParmsOverrides object and indicating which overrides that you want to
include. You then send the overrides to the Scoring.search() and Scoring.compare()
methods to be included as part of your name comparison or name search.

IBM InfoSphere Global Name Management: Developer's Guide

Procedure
1. Using your development application, create a CompParmsOverrides object.
CompParmsOverrides overrides = new CompParmsOverrides();

2. Call various methods to specify comparison parameter overrides for your
CompParmsOverrides object, where name is the name of the comparison

parameter that you want to override and new_value is the value that you want

to use.

CompParmsOverrides overrides = new CompParmsOverrides();
overrides.addSurnameOverride("name", "new_value");
overrides.addSurnameOverride("00PS_FACTOR", "0.60");
overrides.addSurnameOverride ("NAME_UNKNOWN_SCORE", "0.45");

3. Pass your CompParmsOverrides object to the Scoring.search() method, the
Scoring.compare() method, or both to be processed as part of your name
comparison and name search.

Specifying overrides by using the Configuration class:

You can specify comparison parameter overrides for IBM NameWorks by using the

Configuration class. You can create search strategies by using the Configuration
class in the same way that you create [Strategy:] sections in an external
configuration file.

Before you begin

You must create a Configuration object as part of your client application. This
object contains the override information for your comparison parameters.

Additionally, you must specify values that are associated with your name search

through one of the following options:

* By using an external configuration file that contains default values for your IBM

NameWorks parameters
* By using a search strategy that you create by using the Strategy class

Procedure
1. Open your Configuration object in your development application.
2. Indicate the overrides that you want to implement.

Option Description

If you are using an | Specify overrides in your Datalist object by using the
external setDefaultCompParmOverrides() method.
configuration file

data list called Customers, with an override file named
compparms.config:

Configuration configuration = new Configuration();

The following example creates a Configuration object that contains a

Datalist customers = configuration.addDatalist("Customers");

customers.setDefaultCompParmsOverridesFile("compparms.config")

If you are using the |Specify overrides in your Strategy object by using one or more of
Strategy class the override methods.

The following example specifies a broad search strategy and includes
a surname override:
Configuration configuration = new Configuration();

Strategy broad = configuration.addStrategy("Broad");
broad.addSurnameOverride("00PS_FACTOR", "0.60");

Chapter 5. Searching for names 65

66

3. Save your development application and then restart IBM NameWorks.
4. Run a new search for the overrides to take effect.

Preparing names for search

Use the analyzeForSearch() method to prepare a name for use in a search
transaction. This method categorizes the name by determining whether it is a
personal name or an organization name, parses personal names into given name
and surname fields, and determines a culture classification code for each field in a
personal name. If NameSifter determines that the name is an organization name,
only the name category information is returned.

About this task

The analyzeForSearch() method supports input strings in UTF-16 encoding only. If
the input string is in an unsupported encoding, IBM NameWorks signals an error
or produces undesired results. To prepare a name for search, pass the following
values to the analyzeForSearch() method of the Scoring class of IBM NameWorks.

* The full name to be parsed, represented as a full name. For example, ROBERT E
JONES. The name must be passed to the parse() method as a string value.

* An integer between 0 and 100 that represents the alternateThreshold value (0
always suppresses alternate parses). This value is the minimum confidence value
that is required for an initial parse before the name is reordered and alternate
parses are considered.

Results

The analyzeForSearch() method first categorizes and then transliterates the name.
Name transliteration is the process of converting a name from a particular writing
system or character encoding convention into another. For example, name
transliteration allows a name written in Arabic script to be analyzed and matched
to a similar name written in the Roman alphabet. The method then parses the
input string and returns a collection of QueryName objects for each input string
and its transliterated version.

Categorizing names, comparing names, and comparing dates
using IBM NameWorks

You can use IBM NameWorks to categorize names as personal or organization,
compare two personal names, or compare dates.

Name categories

During name processing, names are associated with a name category, either
personal or organization. While they might share similar usage, names from these
two categories are separated by important differences, and so different types of
linguistic and reference-data resources are applied to names in each category
during analysis and matching.

When categorizing names, IBM InfoSphere Global Name Management components
place names into the following categories:

* Personal names, which contain no indicators that suggest it belongs in any other
category (For example: "Linda K. Smith")

* Organization names, which contain some form of a non-personal indicator (For
example, "Smith & Company")

IBM InfoSphere Global Name Management: Developer's Guide

* Unknown names, which contain some element that appears to be a misspelling,
or that contains some other construct that does not normally appear in either
personal or organization names (For example "SMI")

* Both, which are names that contain a professional qualifier that could suggest
that the name is a business name derived from a personal name (For example,
"Linda Smith Architect")

If a name is categorized as anything other than a personal name, the component
provides a reason code that identifies the indicator or pattern that qualifies the
name as non-personal.

Personal names:

A personal name consists of a given name or names, any family, group names
(such as tribal or clan names), or other surname-like elements used in the culture
from which the name comes, and whatever titles and other name qualifiers are
associated with the name bearer. A full personal name refers to an individual and
might encode information that indicates social class, religious and political
backgrounds, educational levels, ethnic or cultural backgrounds, and regional
provenance.

IBM InfoSphere Global Name Management personal name model

To discuss and work with personal names, regardless of their native format, it is
important to use consistent terminology. It is also vital to be able to consistently
parse names into their constituent parts, so that the equivalent parts can be
compared.

The shape of the IBM InfoSphere Global Name Management personal name model
is motivated by the necessity to deal with names as they are encoded in real-world
data sets. It is a practical approach to determining structure in a name. For
example, even though names in many parts of the world do not have true
surnames in the Western sense, these names are nevertheless forced into databases
that assume surnames. Therefore, for the purposes of consistent name processing,
IBM InfoSphere Global Name Management imposes a two-field structure. Which
field the various parts of a name belong to is determined in part by how
frequently each name part has been associated with a given name or surname
field. Within each field, individual name elements are parsed into larger units. The
surname “de la Salle,” for example, is recognized as one name phrase made up of
a main name stem and two prefixes, not as three separate name parts.

Chapter 5. Searching for names 67

Personal Name

Title NameField NameField Qualifier
NamePhrase NamePhrase NamePhrase NamePhrase
Affix Stem Affix Stem Affix Stem Affix Stem
v v v v ' v v
Dr. Robert de Quincey Johnson de la Salle Jr.

Figure 3. IBM InfoSphere Global Name Management personal name model

68

Structure and components of personal names

Personal names can contain many different components. These components and
the way they are structured differ across cultural groups.

Here are some of the components that can be used in personal names:

Given name

Surname

Family name

Tribal, clan, or caste name

Relationship or lineage markers (such as patryonymic (names derived from a
father's name), matronymic (names derived from a mother's name), teknonymic
(names derived from a child's name), and generational markers)

Qualifiers that indicate birth order, gender, religion, or religious affiliation
Titles

Particles (such as "bin" (son) and "al" (the) in Arabic or "de" (of/from) in Spanish
and French)

The structure of personal names, or the order of the name components, also varies
from one country or cultural group to another.

Here are some examples of name structures:

Given Name(s) + Family Name

* Megan Marie Andrews (European)
* Fereshteh Gholamzadeh (Iranian)
* Rattima Nitisaroj (Thai)

* Hasan Incirlioglu (Turkish)

Family Name + Given Name

IBM InfoSphere Global

* Lim Yauw Tjin (Chinese)
* Pak Mi-Ok (Korean)
* Suzuki Ichiro (Japanese)

Name Management: Developer's Guide

Family Name + Middle Name + Given Name
* Trinh Van Thanh (Vietnamese)

Given Name + Father's Given Name
* Ahmed bin Eisa (some Arab communities)
* Abdurrahman Wahid (Indonesia)
* Mahmud bin Haji Basir (Malaysia)

Given Name + Patronymic Name (Father's Name) + Family Name
* Ivan Andreyevich Saratov (Russia)
* Basimah Ali Al-Qallaf (some Arab countries)

Tribal Name + Religious Name
* WOUKO Philomene (Cameroon)

Given Name Only
* Sukarno (Indonesia)
* Habibullah (Afghanistan)

Reference to Offspring's Name
* Abu Hassan (which translates literally to father of Hassan, Arab countries)

Organization names:

An organization name is a non-personal name that refers to a structured body of one
or more persons that exists to perform some common function. Organizations can
be businesses, clubs, schools, government agencies, political parties, or World Wide
Web manifestations. Organization names typically include some type of indicator
or pattern or words that help identify them as non-personal names.

Organization names typically, but not always, contain some word or phrase that

indicates their function, such as “high school”, “plumbing”, “police department”,
or “bank”.

Organization names also contain a naming element, or some string of characters,
words, or phrases that uniquely identify this organization from among others of
the same type. For example, “First Union Bank,” “Joe’s Italian Restaurant,” “AAA
Auto Wash.” Some organizations, such as businesses, are regulated by
governments and have prescribed name elements that indicate their registration
status, such as “PTY” or “LTD”.

The kinds of tokens and combinations of tokens that are found in organization
names usually do not look like or pattern like those in personal names. These
patterns correspond to codes (called name category reason codes) that identify the
reason that a name was classified as an organization name, rather than a personal
name. These reason codes do not define an organization name, but they indicate
patterns that would not be expected in a personal name. For example, a string of
three identical consonants in a row (such as “DDD”) would be very unusual in a
personal name, but would not be uncommon in organizational names.

When IBM InfoSphere Global Name Management components categorize a name,

if the name matches one or more name category reason codes, it is assumed to be
an organization name. Otherwise, it is a candidate to be a personal name.

Chapter 5. Searching for names 69

70

Categorizing names as personal or non-personal using IBM
NameWorks

You can categorize names on your data lists as either personal or non-personal
(organization) names, as a pre-processing step before parsing, classifying,
analyzing, or searching for names.

About this task

To categorize a name as either personal or non-personal, categorize() method of the
Scoring class of IBM NameWorks and pass it the name to categorize.

Results

The categorize() method examines the name and returns the name category that
was selected, the name category reason code (identifies the reason the category
was selected), and a confidence score between 0 and 100 that indicates the likely
percentage that the name is correctly categorized. The closer the percentage is to
100, the higher the confidence in the name categorization.

What to do next

After names have been categorized, you can use the names that are identified as
personal names in IBM NameWorks to parse, classify, analyze, or search.

Name category reason codes

Name categorization reasons identify which type of non-personal indicator or
pattern was found. They provide an explanation of why the category was chosen.
You can use reason codes for more detailed analysis, or to make your own name
categorizations, based on these reason codes.

Table 9. IBM InfoSphere Global Name Management product name category reason codes
and their descriptions

Name Category Reason Code

Description

BadData The name was too long.

UrlEnding The names contains a common Internet URL indicator, such
as ".COM", ".ORG", or ".NET".

EstateOf The name contains the words "estate of".

KnownOrg The name contains a known organizational phrase.

Phrase The name contains an organization-only phrase.

NoTokens There are no known name tokens.

AndCompany The name contains some form of the "& Company" indicator.

Multiplelnitials The name contains multiple initials.

SingleSequence The name contains a single letter sequence.

NameAndName The name contains "name & name".

LeadingToken The token appears only at the beginning of the name.

Triplet The name contains a leading single-letter triplet.

NforAnd The name contains "n for and'.

SingleHyphen The name contains a hyphen between single letters.

MultipleHyphen The name contains multiple hyphenation.

MultiSlash The name contains multiple slashes.

IBM InfoSphere Global Name Management: Developer's Guide

Table 9. IBM InfoSphere Global Name Management product name category reason codes
and their descriptions (continued)

Name Category Reason Code Description

Enumeration The name contains an enumeration, such as "1st" or "2nd".

Possessive The name contains a possessive, such as "Smith’s" or
"Jones™".

OrgWord The name contains a known organization-only word.

HyphOrgWord The name contains a known hyphenated organization-only
word.

AllSymbols The token contains only symbols.

ConsPlusC The name consists of an all-consonant token plus a type C
word.

CPL The name contains a type C word, a preposition, and a
location.

TwoTypeC The name contains two type C words.

LandC The name contains a location and a type C word.

AandC The name contains an adjective and a type C word.

TandC The name contains a type T word and a type C word.

TwoTypeT The name contains two type T words.

LandT The name contains a type T word and a location.

TwoPreps The name contains two prepositions.

PrepL The name contains a preposition and a location.

PrepT The name contains a preposition and a type T word.

PrepC The name contains a preposition and a type C word.

Parens The name contains parenthesis.

NonAlpha A name token contains non-alpha characters.

AllCons The name token contains all consonants.

NamelandName2 The name contains the "namel" & "name2" pattern.

AndName The name contains the "... & name" pattern.

LLC The name contains a professional qualifier and "LLC".

ProfQual The name contains a professional qualifier, such as
"Architect".

FallThru The name failed all tests.

Comparing two names using IBM NameWorks
You can use IBM NameWorks to determine how similar two names are to one

another.

About this task

Use the compare() method of the Scoring class of IBM NameWorks to compare two
names by passing it two Name objects. Each Name object has either a single name
string (Personal or Organization) or two strings that contain the given name and
surname of the names to compare.

Chapter 5. Searching for names 71

72

The compare() method transliterates the two names and compares them based on
the NameCategory of the query name. The comparison parameters (CompParms)
that are used for the comparison are based on the NameCategory of the two
operands:

* Both names are Personal names: compParms associated with the first (left) name
are applied.

* Both names are Organization: compParms associated with the first (left) name
are applied.

* One name is Personal and one is an Organization: the names are compared as
Organizational names and the Organization name CompParms are applied.

* One of the names did not have a NameCategory associated: NameSifter is used

to determine the NameCategory. The CompParms are that are used are based on
the chosen NameCategory.

If the NameCategory is Personal, then the name is parsed and classified. Each field
of the personal name is classified and the culture codes for the query name are
collapsed into a single roll-up culture code that is used to select the correct built-in
parameters for the comparison.

Results

The CompareData object returns comparison scores for the two names in the range
of 0 to 100, with 0 representing no similarity and 100 representing exact similarity.

Comparing two dates using IBM NameWorks

Many identity-search or verification tasks rely on two key pieces of information: a
name and a date of birth (DOB). IBM NameWorks ensures that many search tasks
can be entirely based on its functions by supporting comparisons for each of these
two types of data.

Before you begin

Dates must be eight-character strings containing numeric digits in the form of
YYYYMMDD.

About this task

To compare two dates, use the dateCompare() method of the Scoring class of IBM
NameWorks and pass it a paired string containing the two dates to compare.

Results

The dateCompare() method performs the date comparison between the two dates
and returns a similarity score in the range of 0 to 100, with 0 being the least similar
and 100 being exactly similar. If the date arguments are not provided in the
required format (YYYYMMDD), the method returns a -1 value.

Determining the difference between two date values using IBM
NameWorks
You can use IBM NameWorks to compute the difference between two date values.

Before you begin

Date values must be eight-character strings containing numeric digits in the form
of YYYYMMDD.

IBM InfoSphere Global Name Management: Developer's Guide

About this task

To determine the difference between two date values, use the dateDifference()
method of the Scoring class of IBM NameWorks and pass it a paired string
containing the two date values.

Results

The dateDifference() method computes and returns the difference between the two
date values. If the date arguments are not provided in the required format
(YYYYMMDD), the method returns a -1 value.

Searching for names in a data list

You search for names against the data lists that your system administrator
configures for use with IBM NameWorks in the IBM NameWorks configuration
file. When you specify the name of one or more data lists in the search request, the
system returns the matching name data based on the type of search (Type= setting)
configured for the data list, either full name search or unique name search. The
results from multiple data lists are combined into a single reply.

Before you begin

* You must know the name of the data list to search against. (Use the
getDatalistNames() method to return a list of all existing data list names, if
necessary.)

* You must know the name of the search strategy to use as part of the search.
(Use the getSearchStrategyNames() method to list currently available search
strategies, if necessary.)

* Prepare the personal name for search by using the analyzeForSearch() method,
which parses the name into given name and surname name fields, and returns a
single culture code for each name field. This method also returns a value for the
QueryName object, which is used as part of the search.

About this task

To search for a name on a data list, use the search() method of the Scoring class of
IBM NameWorks, and pass it the following values:

* A transaction ID value that identifies a specific search request (If you pass a
value of -1, IBM NameWorks assigns a unique value that is returned in the
search results. This value is included in log file entries and can be used to
reference this specific searching operation in the log file.)

* The return value from the QueryName object, which includes name field and
culture information used as search criteria

* The names of the data lists to search

* The name of the Search Strategy to use

* An integer that represents which category to search for. A value of -1 indicates
that the default value from the Search Strategy should be used.
1 Personal name

2 Organization name

3 Both personal and organization names

* An integer representing the maximum number of replies, or matches, to return.
This number limits the number of matches to return, filtering the top-ranked

Chapter 5. Searching for names 73

74

matches. A value between 0 and 1 returns all matches, and a value of -1
indicates that the default value from the Search Strategy should be used.

* An integer from 0 to 100 that represents the minimum score (nmScore value)
that names on the data list must meet or exceed to returned as a match (A value
of less than zero is treated as 0. A value of more than 100 generates an invalid
parameter exception (GODWO031E).

Note: If the name that you are searching for is a common name, consider limiting
the number of replies to return and using a higher value for the minimum score
values. Otherwise, it is possible to exceed the message buffers for the return
results.

Results

The search() method performs the type of search configured for the data list and
returns the list of matches sorted by full name score.

What to do next

If the data list is configured to return unique name searches, you can use the
dataFetch() method to retrieve the supplementary data for all the name records
that are associated with a unique name.

Retrieving supplemental data for names associated with a
unique name

After performing a search on a data list configured for unique name searches, you
may want to see the detail associated with the names included in the unique name
count that was returned. Use the dataFetch() method to retrieve supplemental data
for all name records that are associated with a unique name.

Before you begin

* You must have already performed a unique name search, using the search()
method.

* You must know the name of the data list that contains the unique name. (This
information is returned by the search operation.)

About this task

To search for a name on a data list, use the search() method of the Scoring class of
IBM NameWorks, and pass it the following values:

* The name of the data list that contains the unique name

* The key value that identifies a specific unique name (This is returned by the
search operation.)

Results

The dataFetch() method retrieves the supplementary data for all the name records
that are associated with a unique name, based on the key value.

IBM InfoSphere Global Name Management: Developer's Guide

Searching for names using NameHunter

The NameHunter component can enhance name searching in your organization's
applications. NameHunter supports requests such as "retrieve the 10 closest names
to X", "retrieve names that match Y with a similarity score of 90% or more" , or
"what is the degree of similarity between name A and name B?".

NameHunter overview

The NameHunter® programming library includes functions and classes that enable
developers to add enhanced personal and organizational name searching to a new
or existing application.

The NameHunter APIs give your application the ability to support user requests
such as “Give me the 10 closest names to JAMES SLESINGER from my name list”,
“Show me all names in a database that match JOHN WONG with similarity of
90% or more”, or “Tell me the degree of similarity between PAUL VANESANN
and P. VANLESANN".

NameHunter uses integrated linguistic, probabilistic and string-similarity
techniques to achieve search results well beyond those delivered by standard
string-similarity metrics such as edit-distance, or name-grouping algorithms such
as standard Soundex or NYSIIS.

The NameHunter libraries are coded in standard C++ and can be integrated into
any application written in C++. Therefore, the NameHunter library can be used on
any platform that supports a C++ compiler. NameHunter was designed for
simplicity, ease of integration, maximum run-time flexibility, and extensibility.

Note: NameHunter can process a maximum of six tokens per name field. All
tokens after the first six tokens are ignored.

Culture-specific and configurable NameHunter searches
Each individual search performed by NameHunter is configurable by adjusting
numerous run-time comparison parameters.

Each search parameter controls a particular aspect of the comparison made
between two names while determining the degree of similarity. The basic
parameters set thresholds for determining how close two names must be in order
to be considered a match. Other parameters control specialized linguistic rules that
apply to specific cultures. The optimal settings for these various search-control
parameters are best determined by:

* Careful analysis of the nature of the name data you search
* The type of queries made by your users

* The business rules that define precision and recall tolerances for your
organization.

In practice, a developer or end-user can begin with the default values IBM has
established for each run-time search control parameter, then make subsequent
adjustments as needed. Culture-specific comparison parameters are encapsulated in
the CompParmsdata structure.

The NameHunter API product includes certain pre-defined packages of
parameters, each tailored for effective searches against names from a particular
culture or ethnicity. For example, Hispanic names frequently have certain
characteristics (for example, compound surnames like TORRES DE LA CRUZ), that

Chapter 5. Searching for names 75

76

typically cause problems when processed with conventional search methods. The
Hispanic parameters comparison parameters contain settings that address issues
specific to this type of name. New comparison parameters can be created by users
for custom cultures and existing parameters can be modified to tune searches.

Titles, affixes, and qualifier (TAQ) data

IBM provides a list of multi-cultural titles, affixes, and qualifiers (TAQs) that are
used in name matching. TAQs are not thrown away when performing a name
comparison because they can contribute to the overall name score depending on
the search parameters.

You can choose whether or not to load the TAQ list (taq.ibm) through the
configuration file, although the default is to load the TAQ list. You can also
provide a custom given name and surname variant list to either replace or
supplement the IBM list. The TAQ and variant lists must be comma delimited text
files that contain the following parameters:

TAQ file:
The TAQ file contains all of the information that is necessary to score TAQs.

You can provide your own TAQ files to either replace or supplement the default
lists. You also have the ability to override information in default TAQ files.

The first entry in the file indicates the version of the file that NameHunter uses to
determine whether or not the file is in the proper format. If the header is missing,
NameHunter assumes that the file is for a version before 4.2 and only contains
single-token TAQs, and not variants, factors, or multi-token text TAQs.

If you are migrating from a version prior to 4.2, you must run the ConvertTaq
conversion utility.

Version 4.2 of the product introduces the following allowances in the TAQ:
+ Digits (0-9)
* Special characters: @ $ % & + = /

* Hyphens, periods, commas, tabs, and new lines are treated as equivalent to
spaces

This file uses .ini headers to separate sections.

[version]
The first section in the file indicates the version of the file that
NameHunter uses to determine whether or not the file is in the proper
format. If the header is missing, NameHunter assumes that the file is for a
version before 4.2 and only contains single-token TAQs, and not variants,
factors, or multi-token term TAQs.

If you are migrating from a version prior to 4.2, you can use the
ConvertTaq conversion utility to upgrade existing files.
[tags] This section of the file identifies TAQs using the following format:
TaqText,TaqType,TaqPosition,Culture
TaqText
The token text.
TaqType
Type of TAQ token. The following TAQ types are supported.

IBM InfoSphere Global Name Management: Developer's Guide

10

11

12

TaqPosition

PREFIX

Token that is included in the same name phrase as the
subsequent name stem token. “DE” and “LA” are prefixes.

SUFFIX

Token that is included in the same name phrase as the
preceding name stem token. “ALDEEN” is a suffix (in
Arabic names).

TITLE

Token that travels with a name and typically indicates a
social or professional standing. “MR” and “GEN” are titles.
Titles are not included in either the given name or surname
fields, but are placed in a field of their own.

QUALIFIER

Token that travel with names and typically indicate
generational relationships or social or professional status.
“JR” and “ESQ” are qualifiers. Qualifiers are not included
in either the given name or surname fields, but are placed
in a field of their own.

ORGANIZATION DESIGNATOR

Words such as “Inc.”, “LLC”, or “Limited Liability
Corporation” that identify the organization type.

PROFESSIONAL QUALIFIER

Words such as “M.D.” or “CPA” that describe the
professional characteristics of a name.

STOPWORD

A word that does not figure into the calculation. For
example, a search for “Pet Shop” would we be a match for
the data entry “The Pet Shop” because “The” does not
affect the calculation.

ORGANIZATION AFFIX

A word that does not add any descriptive meaning to a
name. However, unlike Stopword tokens, Organization
Affix tokens are factored into name calculations.

Position of a TAQ in the name. Typically, titles are first, qualifiers
are last, and prefixes and suffixes are every. For example, “Junior”
is a qualifier, but only when it occurs in the last position of a

name.

E
F
L

Culture

Every
First
Last

The colon delimited list of culture codes. Indicates the culture or
ethnic group that is associated with this TAQ. You can specify
multiple cultures for a single personal TAQ entry. If you want to

Chapter 5. Searching for names 77

apply the TAQs to all cultures, specify A as the Culture code. This
value must be one of the cultures currently supported by
NameHunter and NameClassifier.

0 Ambiguous
1 Anglo

2 Arabic

3 Chinese

4 Hispanic

5 Korean

6 Russian

7 French

8 German

9 Thai

10 Indonesian
11 Yoruban

12 Farsi

13 Pakistani
14 Indian

15 Japanese

16 Afghan

17 Vietnamese
18 Polish

19 Portuguese
20 Turkish

38 SouthwestAsian
39 European
40 Han

A All

[variants]
This section identifies TAQ variants using the following format:

score,variant:variant,culture:culture

score The score to be assigned when variants match. The score must be
between 0.0 and 1.0.

variant(s)
The colon delimited list of related TAQ variants. For example,
AMBASSADOR: AMB.

culture(s)
The colon delimited list of culture codes. You can specify multiple
cultures for a single TAQ variant entry. This value must be one of
the cultures currently supported by NameHunter and
NameClassifier.

78 1BM InfoSphere Global Name Management: Developer's Guide

0 Ambiguous
1 Anglo

2 Arabic

3 Chinese

4 Hispanic

5 Korean

6 Russian

7 French

8 German

9 Thai

10 Indonesian
11 Yoruban

12 Farsi

13 Pakistani
14 Indian

15 Japanese

16 Afghan

17 Vietnamese
18 Polish

19 Portuguese
20 Turkish

38 SouthwestAsian

39 European
40 Han
A All

The following example illustrates a small subset of the TAQ file that is provided
with the IBM InfoSphere Global Name Management product, to help you construct
your own TAQ file.

[version]
gnr 4.2

[tags]

#PERSONAL TAQS

#format - TaqText,TaqType,TaqPosition,Culturel,Culture2,CultureN
#TagqPosition Typically, Titles are F, Qualifiers are L, Prefixes and
#Suffixes are E

ABD,3,E,0:1:18

MAYOR,5,F,10

LETNAN COLONEL,5,F,10

#0ORGANIZATION TAQS

#format - TaqText,TaqType,TaqPosition,Culture(always 0)

#Unambiguous TAQ TaqPosition values are code E (for every position);ambiguous
#tags are restricted to L (for last position)

&,12,E,0

A B,9,L,0

Chapter 5. Searching for names 79

80

A PROFESSIONAL CORPORATION,9,L,0

[variants]

#PERSONAL TAQ VARIANTS

#format -#Factor,Variantl:Variant2:VariantN,Culturel:Culture2:CultureN
1.0,AMBASSADOR:AMB,0:1:3:4:5:6:7:8:9:10:11:12:13:14:15:16:17
1.0,SR:SENIOR,0:1:2:3:5:6:7:8:9:10:11:12:13:14:15:16:17

1.0,DELAS:DE LAS,4:7

#ORGANIZATION TAQ VARIANTS

#format - Variantl,Variant2,Factor,Culture
COMPANIA,COMPANHIA,.99,0
COMPANY,COMPANIES, .99,0

#ORGANIZATION TAQ VARIANTS

#format -#Factor,Variantl:Variant2:VariantN,Culturel:Culture2:CultureN
.99,COMPANY : COMPANIES, 0

.99, COMPANY : COMPAGNIE : COMPANIA: COMPANHIA,O

[tagFactors]

#format - TaqType,FactorType,Factor,Culture
3,1,0.97,A

3,2,0.98,A

#TaqType

Prefix =3
Suffix =4
Title =5
Qualifier =6
OrganizationDesignator = 9
ProfessionalQualifier = 10
StopWord =11
OrganizationAffix =12
#FactorType

Different =1

Missing =2

#Culture Codes

Ambiguous =0

Anglo =1

Arabic =2

Chinese =3

Hispanic =4

Korean =5

Russian =6

French =7

German =8

Thai =9

Indonesian =10

Yoruban =11

Farsi =12

Pakistani =13

Indian =14

Japanese =15

Afghan =16

Vietnamese =17

Polish =18

Portuguese =19

Turkish = 20

SouthwestAsian = 38

European =39

Han = 40

All = A

IBM InfoSphere Global Name Management: Developer's Guide

converttag.exe conversion utility:

The converttaq.exe command line utility converts pre-4.2 TAQ files. If you are
migrating from a version before 4.2, you must run the converttaq.exe conversion
utility on your existing TAQ file.

converttaq <input_pre_4.2_TAQ_filename> <output_converted_4.2_TAQ_filename>

During the conversion process, the new TaqPosition parameter value is defaulted
to the value of E (every position).

Name token variants

A name token variant is an alternative of a specified name that is considered to be
equivalent to that name, but which differs from it in its particular external form.
Variants usually arise from spelling variations. NameHunter provides functions to
load these files.

IBM provides extensive lists of name token variants (e.g., Peggy = Margaret) for
surnames and given names. Variants are provided in the data directory and are
named gnv.ibm (given name variants), snv.ibm (surname variants), and onv.ibm
(organization variants).

You can provide your own given name and surname variant lists to either replace
or supplement the IBM lists. You also have the ability to override information in
existing variant files to suppress individual variant pairs or to modify the score
that is assigned to a variant pair. For example, consider the following variant
entries:

given name variant
0.95,ROBERT:ROB:ROBBY :BOB:BOBBY :BERT,0:1
This entry associates the given variant names listed, with a related score of

0.95 for the cultures of 0 and 1, which are generic and Anglo.

surname name variant
0.95,0YANG:OYEUNG:0YONG:0YOUNG:AU YAN:AU YANG:AU YEUNG:AU YONG:AU YOUNG:
AW YAN:AW YANG:AW YEUNG:AW YONG:AW YOUNG:0U YAN:0U YANG:0U YEUNG:0U YONG:
OU YOUNG:OW YAN:OW YANG:0W,3

This entry associates the surname variant names listed, with a related score
of 0.95 for the culture of 3, which is Chinese.

organization name variant
1,WRECKER:WRCKR,0

This entry associates the organization variant names listed, with a related
score of 1 for the culture of 0, which is generic.

Name variant file:

The name variant file contains all of the information that is necessary to find
alternative and equivalent name variants.

You can provide your own variant file to either replace or supplement the default
list. You also have the ability to override information in default variant file.

If you are migrating from a version prior to 4.2, you must run the convertvar.exe
conversion utility.

Chapter 5. Searching for names 81

82

This file uses .ini headers to separate sections.

[version]
The first section in the file indicates the version of the file that
NameHunter uses to determine whether or not the file is in the proper
format. If the header is missing, NameHunter assumes that the file is for a
version before 4.2 and only contains single-token text.

If you are migrating from a version prior to 4.2, you can use the
convertvar conversion utility to update your files.

[variants]
This section identifies variants using the following format:

score,variant:variant,culture:culture

score The score to be assigned when variants match. The score must be
between 0.0 and 1.0.

variant(s)
The colon delimited list of related name token variants (e.g.,
BOB:ROBERT).

culture(s)
The colon delimited list of culture codes. You can specify multiple
cultures for a single variant entry. This value must be one of the
cultures currently supported by NameHunter and NameClassifier.

Generic
Anglo
Arabic
Chinese
Hispanic
Korean
Russian
French
German

Thai

O© 00 3 & U B W N = O

Y
(=]

Indonesian
11 Yoruban
12 Farsi

13 Pakistani

14 Indian

15 Japanese

16 Afghani

17 Vietnamese

18 Polish

19 Portuguese

20 Turkish

38 SouthwestAsian

IBM InfoSphere Global Name Management: Developer's Guide

39 European
40 Han
A All

The following example illustrates the format to help you construct your own name
variant file.

[version]
gnr 4.2.1

[variants]

0.95,ROBERT:ROB:ROBBY:BOB:BOBBY :BERT,0:1
0.95,ELIZABETH:ELIZBETH: LIZ:LIZZY:LIZZIE:LISA:LIBBY:LIBBIE,Q:1
0.95,ELISABETH: LIESEL:LIESE: LIESCHEN:LIL,8

convertvar.exe conversion utility:

The convertvar.exe command line utility converts pre-4.2 name variant files. If
you are migrating from a version before 4.2, you must run the convertvar.exe
conversion utility on your existing name variant file.

convertvar <input_pre4.2_filename> <output_converted4.2_filename>

Terms
Terms are name tokens that refer to a concept. They are most commonly used for
organization names.

Term text can be single-token or multi-token. Terms will most often consist of
multi-token text. A multi-token term is sequence of two or more words (text with
embedded white space) that together refer to a single concept. The terms file
defines a set of multi-token terms for use in search comparisons. Items in the terms
file are treated by NameHunter as though they were a single, non-space delimited
word. For example:

multi-token term
TRACTOR TRAILER,1.0,0
“tractor trailer" is treated as though it were "tractor_trailer".

Terms file:

The terms file contains all of the information that is necessary to identify
organization terms.

IBM provides a default organizational terms file Organizational terms are provided
in the data directory and are named onterms.ibm. You can provide your own terms
file to either replace or supplement the default list. You also have the ability to
override information in default terms file.

Terms file entries do not contain variants. Multi-token terms with variant forms are
defined in the organization variant file. The term real estate has the variant r1
est. Each value is defined in a terms file and as variants of each other within the

organization variant file

This file uses .ini headers to separate sections.

Chapter 5. Searching for names 83

[version]
The first section in the file indicates the version of the file that
NameHunter uses to determine whether or not the file is in the proper
format.

[terms]
This section identifies terms using the following format:

termtext,weight,culture:culture

termtext
Text to be treated as a term.

Term text can be single-token or multi-token. Terms will most often
consist of multi-token text. A multi-token term is sequence of two
or more words (text with embedded white space) that together
refer to a single concept.

weight
Specifies the relative contribution a term makes to a match score.

The value must be set to 1.0 .

culture(s)
Colon-delimited list of culture codes, which indicate the culture or
ethnic group that is associated with this term. This value must be
one of the cultures that are supported by NameHunter and
NameClassifier.

Generic
Anglo
Arabic
Chinese
Hispanic
Korean
Russian
French
German

Thai

O© 0 3 & U k=B W N = O

Y
S

Indonesian
11 Yoruban
12 Farsi

13 Pakistani
14 Indian

15 Japanese

16 Afghani

17 Vietnamese
18 Polish

19 Portuguese
20 Turkish

84 1BM InfoSphere Global Name Management: Developer's Guide

38 SouthwestAsian
39 European

40 Han

A All

The following example illustrates the format to help you construct your own terms
file.

[version]
gnr 4.2.1

[terms]

ANNIMAL CLINIC,1.0,0
APPLIANCE REPAIR,1.0,0
AUTO SALES,1.0,0

AUTO REPAIR,1.0,0

AUTO SALES,1.0,0

BAY AREA,1.0,0

BEAUTY SALON,1.0,0
CHILD CARE,1.0,0
COMMUNITY CHURCH,1.0,0
ELEMENTARY SCHOOL,1.0,0
FARM BUREAU,1.0,0

FIRE DEPT,1.0,0

HAIR CARE,1.0,0
HEATING & AIR,1.0,0
HEATING & AIR COND,1.0,0
LAWN CARE,1.0,0

LITTLE LEAGUE,1.0,0
NAIL CARE,1.0,0

REAL ESTATE,1.0,0
SECURITY SYSTEMS,1.0,0

Name regularization

For personal names, name regularization is a feature that generates sound-based
spellings of name tokens, in order to map different spellings of the same
pronunciation to the same or similar form. The effect of these regularized spellings
is to enable NameHunter to identify names that are widely understood to be
related, even though their spellings may be quite different.

For example, the name Layton and Leighton both normalize to Laten. An exact
match is returned when these names are compared, although the score is limited
by the maximum regularized name score comparison parameter
(REGULARIZE_SCORE_MAX).

For organization names, regularization maps digits and symbols to their
spelled-out forms. In English, for example, the rules make sure that 162, one
hundred sixty-two, one sixty-two, and one six two all match each other.

Name regularization is driven by the name regularization rule files. The following
name regularization rule files are provided:

angloRegRule.ibm
For personal names identified with the Anglo culture. This is also
sometimes used for a generic culture.

angloOnRegRule.ibm
For organization names identified with the Anglo culture.

chineseRegRule.ibm
For personal names identified with the Chinese culture.

Chapter 5. Searching for names 85

chineseNativeOnRegRule.ibm
For organization names identified with the Chinese culture, including
special rules for numbers and other text written in Hanzi script.

chineseOnRegRule.ibm
For organization names identified with the Chinese culture.

farsiRegRule.ibm
For personal names identified with the Farsi culture

frenchRegRule.ibm
For personal names identified with the French culture.

genericOnRegRule.ibm
For organization names identified with unspecified (Ambiguous) culture.

germanRegRule.ibm
For personal names identified with the German culture.

hispanicRegRule.ibm
For personal names identified with the Hispanic culture.

hispanicOnRegRule.ibm
For organization names identified with the Hispanic culture.

indianRegRule.ibm
For personal names identified with the Indian culture.

indoRegRule.ibm
For personal names identified with the Indonesian culture.

japaneseRegRule.ibm
For personal names identified with the Japanese culture.

japaneseNativeOnRegRule.ibm
For organization names identified with the Japanese culture, including
special rules for numbers and other text written in Kanji script.

koreanRegRule.ibm
For personal names identified with the Korean culture.

koreanOnRegRule.ibm
For organization names identified with the Korean culture.

polishRegRule.ibm
For personal names identified with the Polish culture.

polishOnRegRule.ibm
For organization names identified with the Polish culture.

portugueseRegRule.ibm
For personal names identified with the Portuguese culture.

portugueseOnRegRule.ibm
For organization names identified with the Portuguese culture.

russianRegRule.ibm
For personal names identified with the Russian culture.

russianOnRegRule.ibm
For organization names identified with the Russian culture.

swasianRegRule.ibm
For personal names identified with Southwest Asian cultures. Replaces
arabicRegRule.ibm.

86 1BM InfoSphere Global Name Management: Developer's Guide

thaiRegRule.ibm
For personal names identified with the Thai culture.

turkishRegRule.ibm
For personal names identified with the Turkish culture.

Customers who choose to create custom cultures may add their own custom
regularization rule files. However, development of and support for custom
regularization files is not provided as part of the Global Name Management
product.

If you enable regularization, there will be a performance penalty. Whenever a
name is added to a data list, and regularization finds a normalized form, a second
entry will be added to the data list. Further, if a query name gets normalized, both
forms will be compared to every name in the data list. You can expect search times
to approximately double with this feature enabled.

Integrating the NameHunter API in applications
To integrate the NameHunter API into your applications, use the NameHunter.h
header file, which contains a complete definition of the AP

There is another header file in the include directory, ConfigHandler.h; however, it
is only used in some of the sample applications. You can use it, but it is not
required for using NameHunter.

The implementation of NameHunter is contained in one object library; however,
NameHunter uses several IBM shared components to support name transliteration
and regularization. Most of this come from IBM's International Components for
Unicode (ICU). The libraries are:

NameHunter.lib
the NameHunter API

NameTransliterator.lib
a library used for name transliteration and regularization

sicudata.lib
ICU data tables

sicuil8n.lib
ICU internationalization libraries

sicuuc.lib
ICU common Unicode library

The actual file names will vary from platform to platform. Expect to see the above
names on Windows, and names like "libNameHunter.a" on the Unix platforms.
Refer to the bin directory for your preferred platform to get the exact file names.

Linking to other data

NameHunter stores and searches name data. Most systems store and use other
kinds of data in addition to names, for example: addresses, account numbers,
physical attributes, and images. For this reason, NameHunter provides an ID field
for each entry in the SearchList class.

When you add a record to a SearchList, you can provide an index/pointer to your

data in the ID field, such as a database index. The NameHunter ID field can be up
to 256 bytes long and can be made up of any combination of ASCII characters.

Chapter 5. Searching for names 87

88

NameHunter API quick start examples

These quick start examples provide several small working programs that
demonstrate the basic NameHunter functionality.

NameHunter quick start example: Match two names

Here is a very simple example of a working program that uses the NameHunter
APL It compares two names and reports whether or not they match. It compiles
and creates a NameHunter instance and calls the NameHunter::nameMatch
function. Note that some of the most powerful NameHunter features such as
variants are not enabled.

#include <NameHunter.h>
#include <iostream>

using namespace LAS;
using namespace LAS::NH;
using namespace std;

int main(int argc, char* argv[])

// NameHunter will throw (mostly at startup)
try
{
// you always need a NameHunter instance
NameHunter nh;

// call nameMatch using the default compParms
if (nh.nameMatch("jack", "johnson jr",
"john j", "de la jones"))
cout << "names match" << endl;
else
cout << "names don't match" << endl;
}

catch (const exceptiond e)

{
cerr << "Caught exception - " << e.what() << endl;
return 1;

}

return 0;

}

NameHunter quick start example: Score two names
Here is simple example that reports on the similarity between two names using the
NameHunter::nameScore function. No special features are used.

#include <NameHunter.h>
#include <iostream>

using namespace LAS;
using namespace LAS::NH;
using namespace std;

int main(int argc, char* argv[])
{
// NameHunter will throw (mostly at startup)
try
{
// you always need a NameHunter instance
NameHunter nh;

char* gnl = "jack";

char* snl = "johnson jr";
charx gn2 = "john j";
char* sn2 = "de la jones";

IBM InfoSphere Global Name Management: Developer's Guide

}

// call nameScore with the default compParms
Scorelnfo score = nh.nameScore(gnl, snl, gn2, sn2);

cout << "comparing " << gnl << " " << snl
<< " to " << gn2 << " " << sn2 << endl;
cout << " name score = " << score.name << endl;

cout << " gn score =

<< score.gn << endl;

cout << " sn score = " << score.sn << endl;

catch (const exceptiond e)

{

}

cerr << "Caught exception - " << e.what() << endl;

return 1;

return 0;

}

NameHunter quick start example: Score two names using
different cultures, TAQs, and variants
Here is a much more realistic example. We score two names using all of the
possible NameHunter cultures. We also use NameHunter TAQs (titles, affixes and
qualifiers) and variants (John = Jack).

#include <NameHunter.h>
#include <iostream>

using namespace LAS;
using namespace LAS::NH;
using namespace std;

int main(int argc, char* argv[])

// NameHunter will throw (mostly at startup)
try

{

}

// you always need a NameHunter instance

NameHunter nh;

// assuming that these files are in the path.
// 1f they are not, an exception will be thrown.

nh.loadTags("taq.ibm");

nh.loadVariants("gnv.ibm", GivenName);
nh.loadVariants("snv.ibm", SurName);

char* gnl = "jack";

char* snl = "johnson jr";
char* gn2 = "john j";
char* sn2 = "de la jones";

for (int i = 0; i < MaxCultureNum; ++i)

{

CompParms gnParms((Culture)i, GivenName);
CompParms snParms((Culture)i, SurName);
Scorelnfo score = nh.nameScore(gnl, snl,

cout << " for culture,

cout << " name score
cout << " gn score =
cout << " sn score =

}

catch (const exceptiond e)

{

cerr << "Caught exception

gn2, sn2,

&gnParms, &snParms);

<< nh.cultureName((Cul

ture)i) << endl;

" << score.name << endl;

<< score.gn << endl;
<< score.sn << endl;

" << e.what() << endl;

Chapter 5. Searching for names

89

return 1;

}

return 0;

}

NameHunter quick start example: Searchlist and Search

In typical cases, you will want to store your database of names in a NameHunter
SearchList object and use a NameHunter Searcher object to search the list with a
query name. Here is a simple example of the SearchList, Searcher paradigm. Note
that this example does not use cultures, comparison parameter tuning, or any of
the other NameHunter special features.

#include <NameHunter.h>
#include <iostream>

using namespace LAS;
using namespace LAS::NH;
using namespace std;

int main(int argc, char* argv[])
{
// NameHunter will throw (mostly at startup)
try
{
// you always need a NameHunter instance
NameHunter nh;

// assuming that these files are in the path
nh.loadTags ("taq.ibm");
nh.loadVariants("gnv.ibm", GivenName);
nh.loadVariants("snv.ibm", SurName);

// create a search 1ist and add some names
SearchList searchList(&nh);

// add entries in the format GN, SN, ID where ID is

// a field you can use to tie to you own data on

// this name (e.g., date of birth, favorite color, etc.).
searchList.add("john j", "de Ta jonson", "1");
searchList.add("jack", "john sr", "2");
searchList.add("j", "johnson", "3");
searchList.add("george", "smith", "4");

// create a searcher and resultList
Searcher searcher(&nh);
ResultList results;

charx gn = "jack";
char* sn = "johnson jr.";

searcher.search(searchlist,
results,
gn,
sn);

// print the query name and all the matches.
cout << "hits for, " << sn << ", " << gn << endl;
for (size_t i = 0; 1 < results.size(); ++i)
COUt << n n
<< results[i].sn << ", "
<< results[i].gn << " -
<< results[i].score.name << endl;

}

catch (const exceptiond e)

{

90 1BM InfoSphere Global Name Management: Developer's Guide

cerr << "Caught exception - " << e.what() << endl;
return 1;

}

return 0;

}

NameHunter sample applications

Sample applications are provided with the NameHunter distribution package that
illustrate various ways to use the APL You can use these sample applications as a
basis to begin developing your own applications.

NameHunter search sample application

The NameHunter search application is a command line program that compares
two files of names and writes the results to a third file. To run this application,
open a command prompt, navigate to the /support/bin directory, and enter
search.

You specify settings for global parameters, set given name or surname comparison
parameters, and specify the location of the following data files in the
search.config configuration file. You can also use this configuration file to load
TAQ and variant files and configure regularization and transliteration. The
following data files are comma-delimited text files that are called by the
search.config configuration file.

queryFile
Includes the names to look for.

nameFile
Includes the names to search for.

resultFile
Contains the matched name records.

The search.config configuration file is located in the /support/datadirectory,
along with several other files that are used by the search sample application.

NameHunter why sample application

The NameHunter why sample application is a command line utility that determines
why NameHunter arrived at a certain score for two names. To run this application,
open a command prompt, navigate to the /support/bin directory, and enter why.

You can modify the why.config configuration file to change NameHunter
CompParm settings and to specify the names to compare. After you modify the
configuration file, save the file and enter a period (.) at the command prompt. The
why utility reloads the configuration file and compares the names without having
to restart the application. The results of the name comparison are printed to the
NameHunter source output.

Modifying comparison parameters

Comparison parameters, or CompParms, are a set of adjustable parameters that are

used to guide and score the comparison of name objects that are referenced during
the processing of a query name against a single candidate name from a designated
data list.

Technical personnel tasked with the integration and optimization of NameHunter
search results must understand the consequences that are associated with adjusting
one or more of these parameters. A thorough and detailed understanding of

Chapter 5. Searching for names 91

92

CompParms settings allows you to configure NameHunter to function at
maximum effectiveness for a specific application and a specific data list of names
and associated data.

CompParms settings are checked and set through a group of related API calls
provided in the NameHunter Developers Tool Kit. When NameHunter
functionality is accessed through the NameHunter Distributed Search application,
the CompParms settings are available for adjustment either by including specific
settings within the XML parameters message, or by supplying a culture code to
use the IBM defaults.

This information contains numerous examples of parameter settings and sample

search results. These results are drawn from actual searches with the sample data
provided with NameHunter Distributed Search. In some cases, the result list has

been compressed to a manageable size.

NameHunter comparison parameters overview

The NameHunter comparison parameters (CompParms) form an abstract data
structure that provides a persistent runtime control framework for pair-wise
comparisons between a query name and each successive name from a data list
(database or file of records) that you identify as a target for NameHunter-based
searching.

CompParms search controls are organized around a basic data model for personal
names. A two-part name model has been established for names that are drawn
from a wide range of linguistic and cultural origins. Because of this underlying
name model, different NameHunter CompParms can be used for the given name
and the surname.

The NameHunter API includes several packages of predefined CompParm settings
that have been shown to work effectively with names from prominent groups.
These cultural parameter packages represent alternative default values for the
CompParms, including a generic package to be used with names that are not
clearly associated with a specific cultural background.

The compParms.config file contains the overrides for the default CompParms for
one or more cultures. The configuration file contains given name and surname
culture values for Personal names and a single set of values for Organization
names. Distributed Search reads the configuration file, compiles the set for a
culture, and invokes the NameHunter overrideDefaultParms() method to set the
new default values. You can retrieve the default values of the current CompParms
by calling the getDefaultParms() method.

The compparms.config file may also be referenced by NameWorks, where it applies
at an instance level and affects both Embedded Search and pair-wise comparison
(Scoring.compare()).

The scoring and evaluation process occurs at the following consecutive levels of
abstraction:

* Full name level
* Name field level (given name or surname)

* Segment level (token or name phrase)

This grouping is intended to facilitate software design and maintenance of
applications that use NameHunter functions. A layered CompParm architecture

IBM InfoSphere Global Name Management: Developer's Guide

simplifies runtime administrative or user access to the NameHunter
name-processing sequence, so that NameHunter-enabled applications can respond
flexibly and effectively both to changes in user requirements and to changes
(qualitative or quantitative) in the database of names to be searched.

Alternate parse score factor:

Users may penalize matches made on the basis of alternative parses of names by
setting the Alternate Parse Score Factor (altScoreFactor) to a value less than 1.0.

The name "JOHN ELTON" may match the name "ELTON JOHN" because the latter
produces an alternate parse in which "JOHN" has been marked as the given name
and "ELTON" as the surname. The user may want the comparison score to reflect
the difference in the original order of the names, so that the comparison does not
receive a perfect 1.0 score. The alternate score factor is applied to the full name
score calculated by NameHunter.

The alternate score factor must be a value between 0.00 and 1.00. It may be set in
any of three ways:

* Via the low-level NameHunter component
(ibmgnr::hunter::Searcher::altScoreFactor())

* As a NameWorks General setting, which affects the scores for all Embedded
Search datalists associated with a specific Scoring object (see NameWorks
configuration files):

[General]
DefaultAltScoreFactor=0.99

* As part of a NameWorks Search Strategy definition (see NameWorks Search

Strategy definitions):

[Strategy:Somename]
AltScoreFactor=0.99"

Short name scoring logic:

Use short name controls to achieve desired results with short names where
differences are large in relation to the length of names.

IBM InfoSphere Global Name Management now includes special logic for
matching short names that takes into account whether a putative typographical
error is actually a legitimate personal name. For example, "BRET" and "BETR"
differ from "BERT" based on a single transposition, but "BRET" is likely to be a
legitimate name while "BETR" is probably a typographical error. IBM InfoSphere
Global Name Management uses frequency information from the Name Data
Archive (NDA) to determine whether two short names that differ by one extra
letter (e.g., "STEVE" and "STEEVE"), one differing letter (e.g., "STEVE" and
"STEBE") or one transposed letter pair (e.g., "STEVE" and "SETVE") are legitimate
names or typographical errors. Special logic is then applied to handle scoring of
the names. Scoring logic can be modified by the application of comparison
parameters. As names become longer, the scoring difference between them that can
be attributed to typographical errors is less pronounced. For this reason the new
scoring logic applies only to short names, where short is defined as being from 2 to
7 letters. Names containing as many as eight letters can be subject to the logic if
they are related to a shorter name, such as "MARJORIE" and "MARORIE".
Two-letter names are scored with the new logic only when compared to names
with two or three letters since single-character tokens are assumed to be initials
and are subject to special initials-scoring logic. Names with more than one

Chapter 5. Searching for names 93

94

typographical difference between them are also not subject to the new logic, so
"MARJORIE" and "MAROREI" would be scored using the normal scoring logic.

You can specify the short name controls through the NameHunter API or the
NameHunter Distributed Search XML attributes.

NameHunter Distributed Search XML

NameHunter API attributes

¢ CompParms::shortMinLength ¢ COMP_PARMS_GN

* CompParms::shortMaxLength SHORT_MIN_LENGTH
* CompParms::shortNameScore * COMP_PARMS_GN

SHORT_MAX_LENGTH

* COMP_PARMS_GN
SHORT_NAME_SCORE

« COMP_PARMS_GN
SHORT_VALID_FACTOR

* COMP_PARMS_GN
SHORT_VALID_RATIO

* COMP_PARMS_GN SHORT_VALID_MAX

» COMP_PARMS_SN
SHORT_MIN_LENGTH

« COMP_PARMS_SN
SHORT_MAX_LENGTH

* COMP_PARMS_SN
SHORT_NAME_SCORE

* COMP_PARMS_SN
SHORT_VALID_FACTOR

* COMP_PARMS_SN
SHORT_VALID_RATIO

* COMP_PARMS_SN SHORT_VALID_MAX

* CompParms::shortValidFactor
* CompParms::shortValidRatio
* CompParms::shortValidMax

The shortMinLength and shorMaxLength parameters control which names fall under
the short name logic. The values must be between 2 and 7 inclusive.

The shortNameScore parameter provides the score used for two matching short
names that differ by a single typographical error, such as "ANNA" and "ANNQ",
"TVAN" and "IVANM" or "KLAUS" and "KLUAS". Valid values are [0.00, 1.00]
inclusive. The default for all cultures is 0.97.

The shortValidFactor parameter provides factor applied to the shortNameScore
when names that have a single difference are considered to be legitimate, distinct
names, such as "DORA" and "CORA", "JUAN" and "JUANA" or "AMIR" and
"MAIR". The shortNameScore is multiplied by this factor to determine the match
score in such cases. Valid values are [0.00, 1.00] inclusive. The default for all
cultures is 0.75. (The score for matches between two legitimate, distinct names with
one spelling difference is therefore 0.72.)

Short names are considered to be distinct legitimate names if the frequency count
of one of them in the NDA is greater than a configurable percentage of the other,
or if the frequency counts of both are greater than a configurable threshold. These
two conditions are controlled by the shortValidRatio and shertValidMax
parameters, respectively. For example, with the default shortValidRatio as set at
0.1, "TAMAM" will be scored as a typographical error when compared to "JAMAL",
since the number of occurrences of "JAMAM" in the NDA is less than 0.01 times

IBM InfoSphere Global Name Management: Developer's Guide

the number of occurrences of "JAMAL". However, when "KAMAL" is compared to
"JAMAL" the two will be treated as distinct legitimate names since the number of
occurrences of "KAMAL" in the NDA is greater than the valid ratio. In fact, both
"JAMAL" and "KAMAL" occur in the NDA more frequently than the default value
of the shortValidMax parameter. For that reason as well the two would be treated
as distinct legitimate names.

Name threshold:

The name threshold control is the top-level comparison parameter that is
referenced by NameHunter during name search processing. This value defines the
overall score that each candidate database name must meet or exceed in order to
be considered a match.

This control is a value in the range from 0.00 to 1.00. When set to 1.00, all matches
must compare to a query name exactly, so that search results can be expected to
contain a relatively smaller number of matching records. The slightest differences
between the query name and a candidate database name causes match processing
to reject that candidate record.

You can specify the name threshold through the NameHunter API or the
NameHunter Distributed Search XML attributes to turn this capability on or off.

NameHunter Distributed Search XML
NameHunter API attributes

¢ CompParms::nameThreshold * GENERAL_PARMS NAME_THRESH

The following examples show search results that were rendered by NameHunter
Distributed Search for search requests that were submitted for the sample database,
when the name threshold control is set at three different levels.

The following search results were obtained with the name threshold control set at
0.80. Three names from the data list qualified as matches at this threshold level.

Query name = Johnson, Robert

GN SN Name Score SN Score GN Score
Bob Johnson 0.98 1.00 0.95
Robert Johnston 0.90 0.82 1.00
Robert Adamson Johnston 0.90 0.82 0.99
Michael Robert Johnson 0.82 1.00 0.59

Changing the name threshold to 0.70 returns the following results.

GN SN Name Score SN Score GN Score
Bob Johnson 0.98 1.00 0.95
Robert Johnston 0.90 0.82 1.00
Robert Adamson Johnston 0.90 0.82 0.99
Michael Robert Johnson 0.82 1.00 0.59
Craig Robert Johnston 0.74 0.82 0.63
Robert Jackson 0.72 0.50 1.00

Chapter 5. Searching for names 95

GN SN Name Score SN Score GN Score
Robert Swanson 0.72 0.50 1.00

Changing the name threshold to 0.50 returns the following results.

GN SN Name Score SN Score GN Score
Bob Johnson 0.98 1.00 0.95
Robert Johnston 0.90 0.82 1.00
Robert Adamson Johnston 0.90 0.82 0.99
Michael Robert Johnson 0.82 1.00 0.59
Craig Robert Johnston 0.74 0.82 0.63
Robert Jackson 0.72 0.50 1.00
Robert Swanson 0.72 0.50 1.00
Henry R Rokeby Johnson 0.58 0.64 0.50
Albert Leslie Swanson 0.53 0.50 0.57

Field controls:

The basic CompParms include two controls that determine how given name (GN)
and surname (SN) components from the query name and the database names are
processed and scored by NameHunter.

Because the linguistic, cultural, statistical, and computational properties of GN data
differ significantly from those of SN data, these controls support adjustment and
refinement of GN and SN processing in ways that allow NameHunter to
accommodate widely varying database contents, application designs, and user
preferences.

Two principal factors determine the way in which field information participates in
the NameHunter matching process:

Threshold
The minimum acceptable degree of variation between the query name and
the name that it is being compared to, as expressed by the similarity score
for the comparison.

Weight
The importance of the GN or SN field to the overall name comparison, as
expressed by the relative contribution of the GN or SN field score to the
computation of the total score for the full name comparison.

Field threshold:

Use the field threshold to set the minimal level of similarity that must be
determined between the query field and the field component of a database record
in order for the NameHunter search process to continue.

As with the name threshold control, this control is a value in the range from 0.00
to 1.00. When set to 1.00, all database hits must match a query name exactly.
Search results can be expected to contain a relatively smaller number of matching
records, and even the slightest differences between the query name and a
candidate database name causes match processing to reject that candidate record.

96 IBM InfoSphere Global Name Management: Developer's Guide

You can specify the field threshold through the NameHunter API or the
NameHunter Distributed Search XML attributes. The closer that the field threshold
is to 1.00, the more similar the compared names must be. The lower the setting, the
more different the two names must be. The given name weight control and the
surname weight control are combined in order to determine the relative weights of
the GN and the SN.

NameHunter Distributed Search XML
NameHunter API attributes

¢ CompParms::threshold * COMP_PARMS_GN FIELD_THRESH
* COMP_PARMS_SN FIELD_THRESH

Note: The FIELD_THRESH parameter is ignored in the scoring logic for Organization
names. Use the NAME_THRESH comparison parameter for Organization names to set
the value that defines the overall score that each candidate database name must
meet or exceed in order to be considered a match.

The following results are returned when the GN threshold is set to 0.80 and the SN
threshold is set to 0.30. As evidenced in the table, close correspondence exists

between GN data in the query and the result names.

Query name = Johnson, Robert

GN SN Name Score SN Score GN Score
Bob Johnson 0.98 1.00 0.95
Robert Johnston 0.90 0.82 1.00
Robert Adamson Johnston 0.90 0.82 0.99
Robert Jackson 0.82 1.00 0.59
Robert Swanson 0.72 0.50 1.00
Robert Nelson 0.67 0.40 1.00

Setting the GN threshold to 0.30 and the SN threshold to 0.80 results in more
variety in the given name field.

GN SN Name Score SN Score GN Score
Bob Johnson 0.98 1.00 0.95
Robert Johnston 0.90 0.82 1.00
Robert Adamson Johnston 0.90 0.82 0.99
Michael Robert Johnson 0.82 1.00 0.59
Craig Robert Johnston 0.74 0.82 0.63
Robert Jackson 0.72 0.50 1.00
Robert Swanson 0.72 0.50 1.00
Roy Johnson 0.72 1.00 0.36

Field weight:
Use the field weight control to determine the relative importance of the given

name or surname score, with respect to the other field score, in calculating the full
name score.

Chapter 5. Searching for names 97

For example, when both the GN and SN field weights are set to 1.00, the field
scores contribute equally to the computation of the full name score. When the GN
weight is set to 0.00 and the SN weight is set to 1.00, the GN score is effectively
eliminated from consideration when calculating the full name score.

In many cultures, the GN is allowed variant forms (such as nicknames and
diminutives), while the SN rigidly maintains a fixed form. A change in the
representation of the SN is far more significant for differentiating two people than
is a change to the given name. This difference in the distinctive value of the given
name and surname is captured through a lower GN field weight, relative to the SN
field weight.

You can specify the field weight through the NameHunter API or the NameHunter
Distributed Search XML attributes to turn this capability on or off. In the
NameHunter API, the GN weight control and the SN weight control are combined
in order to determine the relative weights of the GN and the SN.

NameHunter Distributed Search XML
NameHunter API attributes

¢ CompParms::weight ¢ COMP_PARMS_GN FIELD_WEIGHT
¢ COMP_PARMS_SN FIELD_WEIGHT

The following results occur when the GN weight is set to 0.20 (the GN is not very
important) and the SN weight set to 1.00.

Query name = Johnson, Robert

GN SN Name Score SN Score GN Score
Bob Johnson 0.98 1.00 0.95
Michael Robert Johnston 0.93 1.00 0.59
Roy Johnson 0.89 1.00 0.36
Robert Johnston 0.85 0.82 100
Robert Adamson Johnston 0.90 0.82 0.99
Craig Robert Johnston 0.82 1.00 0.59
Henry R Rokeby Johnson 0.61 0.64 0.50

The following results occur when the GN weight is set to 0.90 (the GN is
important). The effect on the overall name score is markedly different from the
previous example.

GN SN Name Score SN Score GN Score
Bob Johnson 0.98 1.00 0.95
Robert Johnston 0.91 0.82 1.00
Robert Adamson Johnston 0.90 0.82 0.99
Michael Robert Johnson 0.82 1.00 0.59
Robert Jackson 0.72 0.50 1.00
Robert Swanson 0.72 0.50 1.00
Craig Robert Johnston 0.74 0.82 0.63
Roy Johnson 0.72 1.00 0.36

98 I1BM InfoSphere Global Name Management: Developer's Guide

Missing stem factor:

When comparing two name fields, NameHunter checks to see if the fields differ in
the number of name phrases they contain.

If they do (for example, one field is 'de la Cruz Beltran' and the other is 'de la
Cruz'), a penalty is applied. The amount of the penalty is determined by the value
set for the Missing Stem Factor parameter, which is applied as a factor to the score
for the field.

Typically, the value for this parameter is set to 0.98, although any value between
0.00 and 1.00 is allowed.

You can specify the missing stem factor through the NameHunter API or the
NameHunter Distributed Search XML attributes to turn this capability on or off.

NameHunter Distributed Search XML
NameHunter API attributes

* CompParms::missingStemFactor * COMP_PARMS_GN
MISSING_STEM_FACTOR

*+ COMP_PARMS_SN
MISSING_STEM_FACTOR

The following results are returned with the missing stem factor set to 1.00 for the
following query name. No penalty is assigned, so the names match exactly.

Query name = Johnson, Robert

GN SN Name Score SN Score GN Score
Robert Johnston 0.90 0.82 1.00
Robert Adamson Johnston 0.90 0.82 1.00

The following results are returned when the missing stem factor is set to 0.90. A
harsher penalty is assigned because Robert Adamson is not as good a match as
Robert.

GN SN Name Score SN Score GN Score
Robert Johnston 0.90 0.82 1.00
Robert Adamson Johnston 0.86 0.82 0.90

Initials controls:

Initials are normally less distinctive than spelled-out names because an initial can
match any number of different names. You can use controls that are inherent to
NameHunter to determine the value of matches on initials.

Three NameHunter CompParms control how initials are processed. Each parameter
can be applied to the GN and the SN.

Match-Initials Flag
This logical value (true/false) determines whether or not special
initials-handling logic in NameHunter is to be applied to the indicated

Chapter 5. Searching for names 99

100

name field. The C++ API field is CompParm::matchInitials. The
corresponding XML attributes are: COMP_PARM_GN MATCH_INITIAL and
COMP_PARM_SN MATCH_INITIAL.

Initial-on-Initial Score
The match score (a value in the range from 0.00 to 1.00) that is to be
assigned when two segments are both initials and both are identical. The
C++ API field is CompParm::initialOnInitialScore. The corresponding
XML attributes are: COMP_PARM_GN INITIAL_ON_INITIAL_SCORE and
COMP_PARM_SN INITIAL ON_INITIAL_SCORE.

Initial Match Score
The match score (a value in the range from 0.00 to 1.00) that is to be
assigned when one segment is an initial and the other is a multi-character
token whose first character is the same as the initial (for example, H and
Harold). The C++ API field is CompParm::initialOnTokenScore. The
corresponding XML attributes are: COMP_PARM_GN INITIAL_ON_TOKEN_SCORE
and COMP_PARM SN INITIAL_ON_TOKEN_SCORE.

The results in the following tables are returned when the following settings are
applied:

* Initial matching = On

* InitialOnlInitialScore = 0.95

¢ InitialOnTokenScore = 0.85

Query name = Mathers, X

GN SN Name Score SN Score GN Score
X Mathews 0.81 0.71 0.95
Xavier Mathews 0.77 0.71 0.85

The following results are returned if initial matching is off:

Query name = Mathers, X

GN SN Name Score SN Score GN Score

X Mathews 0.84 0.71 1.00

The NameHunter default for InitialOnIntialScore is 1.00.
Missing name controls:

NameHunter includes parameters to control how fields that contain no data are to
be scored. You can use the missing name controls to regulate comparisons between
corresponding name fields (given name or surname) in two names when one (or
both) has no data available for comparison.

A common problem in many collections of names is that one of the name data
fields in a record might be empty. This problem can arise because data is
incorrectly fielded (for example, the entire name might be placed in a surname
field), part of the name is missing from the record (as when only the surname has
been recorded), or the individual has only a single name (as in the name of the
former Indonesian president, Suharto). Two pairs of controls are used to deal with
missing or empty name fields in NameHunter:

IBM InfoSphere Global Name Management: Developer's Guide

e Partial name controls

¢ Nonexistent name controls
Partial name controls:

The partial name score (a value in the range from 0.00 to 1.00) is assigned when
one name field is designated as unknown.

The symbolic values FNU (First Name Unknown) and LNU (Last Name Unknown)
are codes that inform NameHunter that a given name or surname is either missing
or unknown. NameHunter treats NFN as a blank given name and NLN as a blank
surname. If the given name field or surname field is blank, or if NFN or NLN are
designated, NameHunter uses the corresponding partial name score when the
name field is compared against a non-missing name field from the data list record.

If a name field is designated as NFN, NLN, or empty, and is compared with a field
that is unknown (FNU or LNU), the resulting score is determined by using the
following equation:

(UnknownScore + 1)/2

You can specify the partial name controls through the NameHunter API or the
NameHunter Distributed Search XML attributes to turn this capability on or off.

NameHunter Distributed Search XML

NameHunter API attributes
¢ CompParms::noNameScore * COMP_PARMS_GN NO_NAME_SCORE
¢ CompParms::nameUnknownScore * COMP_PARMS_GN

NAME_UNKNOWN_SCORE
* COMP_PARMS_SN NO_NAME_SCORE

* COMP_PARMS_SN
NAME_UNKNOWN_SCORE

The following results are produced when noNameScore = 0.80 and UnknownScore =
0.85. A blank entry in the table indicates that the field is empty.

Query name = Farris, Travis

GN SN Name Score SN Score GN Score

FNU Farris 0.93 1.00 0.85
Farris 0.91 1.00 0.80

NEN Farris 0.91 1.00 0.80

Nonexistent name controls:

Nonexistent name controls help you in situations when a name is not known or no
such name field exists.

Because some cultures allow individuals to be designated with only a single name
that can function either as a GN or SN, it might be necessary to distinguish
between cases when a name is not known and cases when no such name field
exists. A nonexistent name score (a value in the range from 0.00 to 1.00) is
provided as a means to set the matching score when one name is explicitly

Chapter 5. Searching for names 101

102

designated as having either no first name (GN) or no last name (SN) by means of
the special symbolic values, no first name (NFN) and no last name (NLN),
respectively.

The nonexistent name control is also applied in instances where both names have
no values for a name field, such as when two names that contain only surnames
are being compared by NameHunter.

You can specify these parameters through the NameHunter C++ API or the
NameHunter Distributed Search XML attributes:

NameHunter Distributed Search XML

NameHunter API attributes
* CompParms::noNameScore * COMP_PARMS_GN NO_NAME_SCORE
* CompParms::nameUnknownScore * COMP_PARMS_SN NO_NAME_SCORE

« COMP_PARMS_GN
NAME_UNKNOWN_SCORE

« COMP_PARMS_SN
NAME_UNKNOWN_SCORE

The following results are returned when noNameScore = 0.80 and
unknownNameScore = 0.85. The results for this type of query can be extensive. In
this case, every given name would match the blank query name.

Query name = Farris,

GN SN Name Score SN Score GN Score

FNU Farris 0.97 1.00 0.93
Farris 1.00 1.00 1.00

NEN Farris 0.96 1.00 0.80

James Farris 091 1.00 0.80

Note: Anglo parameters are being applied in these examples. Taking the average
of the surname score (1.00) and the given name score (0.80) would yield an
average of 0.90 for the name, James Farris. However, surname scores are weighted
slightly higher than given names scores when applying Anglo parameters,
resulting in a 0.91 overall name score.

Segment scoring method:

Names often contain more than a single given name or surname in a field, as in
Kate Marie Smith or Ana Ramos Sanchez. The NameHunter segment score
parameters control how the score for the entire field (GN or SN field) is to be
determined from the scores for each of the individual names (segments) within the
field.

You can specify three different scoring modes that determine how NameHunter
combines specific GN or SN name phrases (segments) into a composite score for
the corresponding GN or SN name field. You specify these options through the
NameHunter C++ API or the NameHunter Distributed Search XML attributes.

IBM InfoSphere Global Name Management: Developer's Guide

NameHunter Distributed Search XML
NameHunter API attributes

* CompParm::scoreMode * COMP_PARMS_GN SCORE_MODE
* COMP_PARMS_SN SCORE_MODE

Three scoring modes exist. Selecting the Highest setting for a name field enables
many more matches to succeed, while selecting the Lowest setting has the opposite
effect.

Lowest
NameHunter calculates the comparison scores for all individual names
within the field. The lowest comparison score is assigned to the field as the
score for the entire field. For example, if Gina Marie is compared to Ginny
Marie, the score for the Marie/Marie comparison would be 1.0, while that
for the Gina/Ginny comparison would be lower (for example, 0.67). The
lowest score, 0.67, is assigned as the score for this GN field. The effect of
this scoring mode is that every single segment in the field must have a
high enough comparison score to pass the field threshold. Therefore, this
scoring mode is the most strict and requires the highest level of similarity
between the query and the name that is being compared.

Average
A simple average is taken of all segment scores in the name field to
compute a composite score for the name field.

Highest
NameHunter calculates the comparison scores for all individual names
within the field. The highest comparison score is assigned to the field as
the score for the whole field. In the previous example (Gina Marie/Ginny
Marie), the score for the GN field would be 1.0 if this scoring mode were
used. Only a single segment comparison needs to be high enough to pass
the field threshold. This mode is the most lenient because it allows for the
greatest degree of variability between the query name and the name that is
being compared.

The following results occur with the segment score mode set to Highest for both
the SN and GN.

Query name = Hamilton Connerly, Lucinda Anna

GN SN Name Score SN Score GN Score
Lucinda Anna Hamilton Connor 1.00 1.00 1.00
Patricia Ann Hamilton 0.99 0.98 1.00
Hubert A Hamilton 0.92 0.98 0.85
Wade A Hamilton 0.92 0.98 0.85
Linda Charlton 0.62 0.54 0.71

The following results occur with the segment score mode set to Average for both
the SN and GN.

The scores from the best matches for the GN name phrases (Lucinda~Lucinda) and
the best matches for the SN name phrases (Hamilton~Hamilton) are used as the

Chapter 5. Searching for names 103

104

GN name field score and the SN name field score, respectively. The
missingStemFactor accounts for the slight differences in scores where a different
number of tokens are compared.

Query name = Hamilton Connerly, Lucinda Anna

GN SN Name Score SN Score GN Score
Lucinda Anna Hamilton Connor 1.00 1.00 1.00
Patricia Ann Hamilton 0.99 0.98 1.00
Linda Charlton 0.62 0.54 0.71

Some matches were dropped out because all token comparisons contribute to the
name score. Therefore, Hubert~Lucinda, which receives a very low score, causes
Hubert A Hamilton to drop off the list.

Anchor segment controls:

The anchor segment parameter determines whether a matching name phrase must
occur in the leftmost (first) or rightmost (last) position in a multi-name field in
order to be considered an optimal match, or whether position within the field does
not matter. This parameter allows sequence in a field to be taken into account in
scoring.

Sequence is important in Hispanic surnames, for example, the leftmost of two
surnames is a person's family name, while the rightmost surname simply reveals
the mother's family line and is often omitted from the name.

The available options are to choose whether the leftmost name, the rightmost
name, or neither name is more important

In many parts of the world, people have more than one given name (GN) or
surname (SN). Customs that govern the function of these names or that determine
which name is used under what circumstances differ from one group to another.

For example, it is common among English-speaking people to have at least two
given names: a “first name” and a “middle name”. The middle name might be
omitted, or perhaps represented only as an initial, so that ROBERT WILSON and
ROBERT JAMES WILSON and ROBERT]. WILSON might all be considered as
references to the same individual. Similar patterns of inclusion, omission, and
syntax use can be found in other cultures. An Anchor Segment control is provided
for both the SN and GN name fields to enable NameHunter to place emphasis on
the correct portion of a multi-segment name field. This control defines whether the
first (leftmost) or last (rightmost) segment in the field is to be considered the
anchor segment, or whether no segment is to be considered more central than the
others (none).

Among Hispanics, the surname anchor segment setting is typically first because
the leftmost surname is an individual's patronymic surname, and the second, or
matronymic surname, is often omitted. However, the opposite is true among
Lusophone (Portuguese-speaking) cultures, such as those in Brazil, Portugal, and
certain African nations.

You can specify anchor segment controls through the NameHunter API or the
NameHunter Distributed Search XML attributes.

IBM InfoSphere Global Name Management: Developer's Guide

NameHunter Distributed Search XML
NameHunter API attributes

* CompParms::anchorType * COMP_PARMS_GN ANCHOR_MODE
* COMP_PARMS_SN ANCHOR_MODE

The magnitude of the anchor segment effect on scoring at the name field level is
determined by the value of the anchor factor, which you can set through the
NameHunter C++ API or the NameHunter Distributed Search XML attributes.

NameHunter Distributed Search XML
NameHunter API attributes

* CompParm::anchorFactor * COMP_PARMS_GN ANCHOR_FACTOR
* COMP_PARMS_SN ANCHOR_FACTOR

This factor accepts a value between 0.00 and 1.00, and is applied to any
NameParser match score where one of the matched name phrases is not found in
the Anchor Segment position.

Consider the following example, which shows a search for a typical Hispanic name
that has two name phrases in the GN field and two name phrases in the SN field:

Query name = Figueroa Martin, Ana Maria

GN SN Name Score SN Score GN Score
Ana Figueroa 0.98 0.98 0.99
Maria Figueroa 0.90 0.98 0.80
Juana Figueredo 0.61 0.62 0.59

For this search, both the GN and SN Anchor Segments were set to first and the GN
Anchor Factor was set to 0.90.

In the first matched name, Ana Figueroa, both the given name, Ana, and the
surname, Figueroa, are in the leftmost position (anchor segment first position). The
anchor segment factor is therefore not applied to either of these names. In the
second matched name, Maria Figueroa, the given name, Maria, matches the second
name in the given name for the search, Ana Maria. However, the name Maria in
the query name is not in the leftmost anchor position. A match on Maria is
therefore not a favored match and is penalized by application of the anchor factor.
The match on Maria is then valued at 0.90, even though the comparison of Maria
to Maria is an exact spelling match. With this lower value and other penalties the
GN score is dropped to 0.80.

Now, reverse the given name phrases and keep the same settings.

Query name = Figueroa Martin, Maria Ana

GN SN Name Score SN Score GN Score
Maria Figueroa 0.98 0.98 0.99
Ana Figueroa 0.90 0.98 0.80

Chapter 5. Searching for names 105

106

The highest ranking matched record contains “Maria”, producing a matched GN
score of 0.99. The matched score is 0.99 because the GN name phrase in the
Anchor Segment position (leftmost, in this instance) was matched with a GN name
phrase that was also in the Anchor Segment position. Therefore, the GN anchor
was not applied, and the preliminary name phrase exact-match score of 0.99 for
the Maria/Maria match stands unmodified as the final GN name field score.

Matches with data list records that contain Ana in the GN field are now subject to
the same score reductions as those applied to Maria in the preceding example
because Ana is no longer in the Anchor Segment position and does not appear in
the corresponding syntactic position in both given name fields.

Out-of-place segment controls:

Use the out-of-place segment (OOPS) controls in NameHunter to regulate scoring
at the name field level in instances when a match is determined between name
segments that do not occupy the same syntactic position in the name field.

The OOPS factor is helpful for when a GN field that contains two name phrases
(such as JAMES ROBERT) is matched against a GN field that contains one or more
of the same name phrases, but are in different positions (for example, ROBERT
JOSEPH or JOSEPH ROBERT).

When determining the best way to find matching name phrases in the GN or SN
fields of two names under comparison, NameHunter frequently identifies an
optimal match between two name phrases that are not in the same syntactic
position within the GN or SN name field. This is commonly the case when
matching GN fields because the GN in most cultures comprises multiple name
phrases, and many names contain one or more highly common GN name phrases.

The OOPS factor is a value in the range from 0.00 to 1.00. Scores closer to 1.00 are
penalized less for an out-of-position match. Scores closer to 0.00 are penalized for
an out-of-position match. For example, when the OOPS factor is set to 1.00, a name
phrase match retains its preliminary match score, even if it has been paired with a
name phrase that is in a different position in the name field.

You can specify the OOPS factor through the NameHunter API or the NameHunter
Distributed Search XML attributes and set the score that is returned when a field
variant match is found.

NameHunter Distributed Search XML
NameHunter API attributes

* CompParms::oopsFactor * COMP_PARMS_GN OOPS_FACTOR
* COMP_PARMS_SN OOPS_FACTOR

Consider the following NameHunter search results, in which the OOPS factor has
been set to a value of 0.80 for the GN:

Query name = Duval, James Robert

GN SN Name Score SN Score GN Score
James Duval 1.00 1.00 0.99
Jim Duval 0.97 1.00 0.94
Robert James Duval 0.91 1.00 0.80

IBM InfoSphere Global Name Management: Developer's Guide

GN SN Name Score SN Score GN Score
Robert Duval 0.91 1.00 0.79
Bob Duval 0.89 1.00 0.75

When the matched name phrases for Joseph are found in the same position, the
OOPS factor is not applied. The preliminary name parse score of 1.00 for an exact
match (James~James — actually 0.99 because of the missingStemFactor) remains
unaffected in the final GN Score.

However, when the matched name phrases for Robert are found in different
positions (non-leftmost in the query name; leftmost in the matched name from the
data list), the GN OOPS factor is applied, reducing the preliminary name parse
score from 1.00 to 0.80.

Compressed name controls:

Use compressed name controls to mitigate accidental differences in segmentation
and white space placement when comparing two names.

A common issue that arises in large collections of personal names is inconsistent
placement of white spaces (blanks). Blanks are frequently eliminated through a
manual process in order to fit more characters into a data entry form. Also, many
automated data processing systems eliminate blanks, causing distinct tokens in a
name field to be collapsed into a single token.

Another major cause for inconsistent blanks in names is the wide variety of
standards that are applied when a name is converted from a non-Roman writing
system into a Romanized form. When the original form of the name is expressed in
a non-alphabetic writing system (such as Arabic, Chinese, or Korean), the
placement of blanks in the Romanized name is often left to the discretion of the
person or automated process that performs the Romanization. Therefore, two
instances of a name that are written identically in the native form might result in
two very different manifestations after Romanization.

NameHunter CompParms controls provide a mechanism for mitigating and
overcoming accidental differences in segmentation and white space placement
when comparing two names. The compressed name controls allow NameHunter to
consider all the placements in a name field (GN or SN) as if they logically
constituted a single value, which is then scored with standard NameHunter name
similarity techniques. If compressed name processing is activated, NameHunter
calculates a score for the GN and SN name fields as if all blanks were removed,
and uses this score if it is greater than the name field score that is calculated by
standard NameHunter scoring metrics.

You can specify compressed name controls through the NameHunter API or the
NameHunter Distributed Search XML attributes.

Chapter 5. Searching for names 107

108

NameHunter Distributed Search XML
NameHunter API attributes

* CompParms::doCompressedName * COMP_PARMS_GN
DO_COMPRESSED_NAME
* COMP_PARMS_GN
COMPRESSED_SCORE_MAX
* COMP_PARMS_SN
DO_COMPRESSED_NAME
« COMP_PARMS_SN
COMPRESSED_SCORE_MAX

¢ CompParms::compressedScoreMax

* CompParms::compressedScoreFactor

When the doCompressedName flag is set to true for the SN or GN field, then scoring
is performed first in the standard way for that name field, then again with the
compressed form of the value in that field. If the compressed name score is higher
than the normal field score, then compressedScoreMax is used as the field score. The
default value for compressedScoreMax is 0.95.

The compressed score factor, CompParms: :compressedScoreFactor, is primarily
intended for use with organization names where compressed names might return
undesirable matches. This factor discounts the compressed name score to avoid
matches where a single, relatively meaningless term generates a high score. For
example, the compressed score for ABC CONSTRUCTION and XYZ
CONSTRUCTION is fairly high because of the term CONSTRUCTION. The
compressed score factor is always applied when a compressed score is obtained.
The resultant score is checked against compressedScoreMax and the lesser of the
two scores is deemed as the match score. The default value for the compressed
score factor is 0.90 for organization names and 1.00 for personal names.

The NameHunter compressed name controls provide an effective mechanism for
establishing matches between instances of names that have differing placement of
white space in languages where Roman writing conventions vary for names. For
example, white space differs in Romanized Chinese names such as Li Ping, Liping,
and Li-Ping.

Consider the following query when doCompressedName=true. If this flag were not
set to true, none of the following results would have been returned.

Query name = Abdulsalah, Mohamed

GN SN Name Score SN Score GN Score
Mohamed Abdul Salah 0.97 0.95 1.00
Mohamed Abdel Salah 0.90 0.82 1.00
Mohamed Abd El Salah 0.90 0.82 1.00
Mohamed Abdel Salam 0.90 0.64 1.00

Additional considerations

When implementing compressed name scoring, consider the following behaviors.

* NameHunter includes mechanisms to prevent organization names, specifically
multi-token organization names, from generating erroneous high scores and false
positives.

IBM InfoSphere Global Name Management: Developer's Guide

* Multiple consecutive TAQs are removed from scoring. In addition, specific
TAQs, such as titles, qualifiers, organization designators, and professional
qualifiers, are not considered during scoring.

* The compressedScoreFactor comparison parameter is applied to discount all
compressed name scores. The default values for compressedScoreFactor are 0.90
for organization names and 1.0 for personal names.

The effects of the compressed name controls can be suppressed when an early out
option for a data list is being used by NameHunter in order to accelerate search
processing speed. This option applies a number of rapid calculations early in each
pair-wise comparison between a query name and a data list name in order to
eliminate data list names that are unlikely to result in matches. The use of the early
out option can occasionally prevent a valid compressed name match from being
recognized, applied, and scored. If potential compressed name matches are not
being included in the NameHunter search results, check to see if an early out
option is being used to accelerate search processing. Remove the early out option
and retry the same search.

Left bias controls:

NameHunter provides left bias controls that can be used to mitigate the effect of
common endings on calculations of similarity between two names.

Names from many Western European and North American cultures share certain
characteristics, some of which follow from the common traits of the Romance,
Germanic, and Slavic languages spoken by their ancestors. One characteristic of
these cultures that has significance for name matching algorithms is that many
names share the same endings. For this reason, the letters that occur at the left end
of these names might be more distinctive than the letters that occur further to the
right.

For example, many surnames among English-speaking people reflect patrilineal
information, which is information on a person's lineage that is traced through
fatherhood. The ending -SON is observed frequently in the surnames of
English-speaking people: JOHNSON, STEVENSON, ROBERTSON, JEFFERSON.

Similar phenomena can be found in other European cultures, such as Russian,
where many typical endings such as -OV, -OVA, -SKI, and -SKY are found in a
high percentage of names when Romanized.

When NameHunter determines whether two names match, the letters at the right
end of the name might be of less value than those occurring at the left end. This
phenomenon is termed left bias, and is regulated by the left bias control. This
control is a flag that, when set to true, applies a predetermined similarity
calculation that favors matches between segments in corresponding name fields
(GN or SN) with more letters in common at the beginning of the name stems.

You can specify left bias controls through the NameHunter API or the
NameHunter Distributed Search XML attributes.

NameHunter Distributed Search XML
NameHunter API attributes

* CompParms::leftBias * COMP_PARMS_GN LEFT_BIAS
* COMP_PARMS_SN LEFT_BIAS

Chapter 5. Searching for names 109

110

In the following example, the left bias control is enabled, which reduced the
impact of differences found further to the right of each name. With the left bias
control enabled, the value of the similar letters in the right half of the name have a
reduced impact, so the scores are lower than when this control is disabled.

Query name = Tarkovsky,Andrei

GN SN Name Score SN Score GN Score
Andrei Tankovsky 0.83 0.70 1.00
Andrei Tchiakovsky 0.69 0.44 1.00

When the left bias control is disabled, all letters contribute equally to the name
score. Therefore, the shared letter sequence at the right of each name, OVSKY,
boosts the similarity score for the comparison and a higher name score is returned.

Query name = Tarkovsky,Andrei

GN SN Name Score SN Score GN Score
Andrei Tankovsky 0.88 0.80 1.00
Andrei Tchiakovsky 0.79 0.63 1.00

Default comparison parameters

NameHunter includes built-in default comparison parameters which are used
while comparing names. These default comparison parameters can be overridden
via an external configuration file. Within the configuration file only the values
provided are overridden; missing or unspecified parameters are not modified.

Use the CompParms::overrideDefaultParms () method to set the default comparison
parameters for a given culture and field type.

The Distributed Search parameter message accepts factors that can be applied to
thresholds and other fields. For example, you can modify the name threshold to
define the overall score that each candidate database name must meet or exceed to
be considered a match. If you specify nameThresho1d=1.00 in the comparison
parameters override file, the name threshold is changed to 1.00. When set to 1.00,
all matches must compare to a query name exactly, so that search results can be
expected to contain a relatively smaller number of matching records.

The valid range of factors and thresholds is 0.00-1.00 in NameHunter. Changes are
applied to parameters that are sent separately or are embedded in a search request.

Parameters which control a query are applied in a specific order:
* parameter overrides supplied with the query
* default override parameters read from a compparms.config file

* built-in default parameters for the culture and field type
NameHunter comparison parameters (Organization names):

The following table provides the default comparison parameters for Organization
names.

IBM InfoSphere Global Name Management: Developer's Guide

Organization names

Name threshold

0.55

Weight 1.00
Left bias FALSE
Match initials TRUE
Initial on token 0.00
Initial on initial 1.00
Match variants TRUE
Name unknown 0.40
No name 0.40

Anchor type

Anchor none

Anchor factor 1.00

Oops factor 0.97

Do compressed score TRUE

Compressed score max 0.95

Compressed score factor 0.90

Score mode ScoreModeAverage
Missing stem factor 0.95

Match field variants TRUE

Short name scoring parameters are disabled for organization names.

NameHunter comparison parameters (Ambiguous-Arabic):

The following table provides the default parameters for the given name (GN) and
surname (SN) fields for the Ambiguous, Afghan, Anglo, and Arabic cultures codes.

Ambiguous - 0 Afghan - 16 Anglo - 1 Arabic - 2

GN SN GN SN GN SN GN SN
Name 0.60 0.60 0.65 0.65 0.65 0.65 0.65 0.65
threshold
Field 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49
threshold
Field 0.80 1.00 1.00 1.00 0.80 1.00 1.00 1.00
weight
Missing 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98
stem
Match TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
variants
Match TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE
initials
Initial on 0.90 0.00 0.85 0.00 0.90 0.00 0.85 0.00
initial
Initial on 0.85 0.00 0.75 0.00 0.85 0.00 0.75 0.00
token

Chapter 5. Searching for names 111

Ambiguous - 0 Afghan - 16 Anglo - 1 Arabic - 2
Name 0.60 0.60 0.60 0.75 0.60 0.60 0.75 0.75
unknown
No name 0.60 0.60 0.60 0.75 0.60 0.60 0.75 0.75
Score mode AVG AVG AVG AVG AVG AVG AVG AVG
Anchor NONE NONE FIRST NONE NONE LAST FIRST NONE
type
Anchor 1.00 1.00 0.85 1.00 1.00 0.70 0.90 1.00
factor
Oops factor 0.97 0.97 0.85 0.90 0.97 0.97 0.85 0.90
Compressed TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
name
Compressed 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
max
Compressed 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
score factor
Left bias FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
Regularized 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
Max
Short name 2 2 2 2 2 2 2 2
minimum
length
Short name 6 6 6 6 6 6 6 6
maximum
length
Short name 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
score
Short name 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
validity
factor
Short name 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
validity
ratio
Short name 200 200 200 200 200 200 200 200
validity
maximum
NameHunter comparison parameters (Chinese-German):
The following table provides the default comparison parameters for the given
name (GN) and surname (SN) fields for the Chinese, Farsi, French, and German
culture codes.
Chinese - 3 Farsi - 12 French - 7 German - 8
GN SN GN SN GN SN GN SN
Name 0.70 0.70 0.65 0.65 0.65 0.65 0.65 0.65
threshold
Field 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49
threshold

112 1BM InfoSphere Global Name Management: Developer's Guide

Chinese - 3 Farsi - 12 French - 7 German - 8
Field 0.80 1.00 1.00 1.00 0.80 1.00 0.80 1.00
weight
Missing 0.70 0.70 0.99 0.98 0.99 0.98 0.99 0.98
stem
Match TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
variants
Match TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE
initials
Initial on 0.85 0.00 0.85 0.00 0.85 0.00 0.85 0.00
initial
Initial on 0.85 0.00 0.75 0.00 0.75 0.00 0.75 0.00
token
Name 0.65 0.65 0.60 0.75 0.65 0.65 0.60 0.60
unknown
No name 0.65 0.65 0.60 0.75 0.65 0.65 0.60 0.60
Score mode LOW AVG AVG AVG AVG AVG AVG AVG
Anchor NONE NONE FIRST NONE NONE LAST NONE LAST
type
Anchor 1.00 1.00 0.90 1.00 1.00 0.85 1.00 0.85
factor
Oops factor 0.85 0.75 0.85 0.90 0.97 0.97 0.97 0.97
Compressed TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
name
Compressed 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
max
Compressed 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
score factor
Left bias FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
Regularized 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
Max
Short name 2 2 2 2 2 2 2 2
minimum
length
Short name 6 6 6 6 6 6 6 6
maximum
length
Short name 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
score
Short name 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
validity
factor
Short name 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
validity
ratio
Short name 200 200 200 200 200 200 200 200
validity
maximum

Chapter 5. Searching for names 113

NameHunter comparison parameters (Hispanic-Japanese):

The following table provides the default comparison parameters for the given
name (GN) and surname (SN) fields for the Hispanic, Indian, Indonesian, and
Japanese culture codes.

Hispanic - 4 Indian - 14 Indonesian - 10 Japanese - 15

GN SN GN SN GN SN GN SN
Name 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60
threshold
Field 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49
threshold
Field 0.80 1.00 1.00 1.00 1.00 1.00 1.00 1.00
weight
Missing 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98
stem
Match TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
variants
Match TRUE TRUE TRUE FALSE TRUE FALSE TRUE FALSE
initials
Initial on 0.85 1.00 1.00 0.00 0.85 0.00 0.80 0.00
initial
Initial on 0.85 0.85 0.85 0.00 0.75 0.00 0.80 0.00
token
Name 0.60 0.60 0.55 0.50 0.70 0.70 0.55 0.55
unknown
No name 0.60 0.60 0.55 0.50 0.70 0.70 0.55 0.55
Score mode AVG AVG AVG AVG AVG AVG AVG AVG
Anchor NONE FIRST NONE NONE NONE NONE NONE NONE
type
Anchor 1.00 0.70 1.00 1.00 1.00 1.00 1.00 1.00
factor
Oops factor 0.90 0.80 0.90 0.90 0.97 0.97 0.90 0.75
Compressed TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
name
Compressed 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
max
Compressed 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
score factor
Left bias FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
Regularized 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
Max
Short name 2 2 2 2 2 2 2 2
minimum
length
Short name 6 6 6 6 6 6 6 6
maximum
length
Short name 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

score

114 1BM InfoSphere Global Name Management: Developer's Guide

Hispanic - 4 Indian - 14 Indonesian - 10 Japanese - 15

Short name 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
validity

factor

Short name 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
validity

ratio

Short name 200 200 200 200 200 200 200 200
validity

maximum

NameHunter comparison parameters (Korean-Russian):

The following table provides the default comparison parameters for the given
name (GN) and surname (SN) fields for the Korean, Pakistani, Polish, Portuguese,
and Russian cultures codes

Korean - 5 Pakistani - 13 Polish - 18 Portuguese - 19 Russian - 6
GN SN GN SN GN SN GN SN GN SN
Name 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65
threshold
Field 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49
threshold
Field 0.80 1.00 1.00 1.00 0.80 1.00 0.80 1.00 0.80 1.00
weight
Missing 0.85 0.75 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98
stem

Match TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
variants

Match TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE
initials

Initial on 0.85 0.00 0.85 0.00 1.00 0.00 1.00 0.00 0.80 0.00
initial

Initial on 0.85 0.00 0.75 0.00 0.85 0.00 0.85 0.00 0.85 0.00
token

Name 0.60 0.60 0.60 0.75 0.65 0.65 0.65 0.65 0.65 0.65
unknown

No name 0.60 0.65 0.60 0.75 0.65 0.65 0.65 0.65 0.65 0.65

Score AVG AVG AVG AVG AVG AVG AVG AVG AVG AVG
mode

Anchor NONE NONE FIRST LAST NONE NONE NONE NONE FIRST NONE
type

Anchor 1.00 1.00 0.85 0.85 1.00 1.00 1.00 1.00 0.80 1.00
factor
Oops 0.85 0.75 0.85 0.90 0.90 0.80 0.90 0.80 0.90 0.85
factor

Compressed RUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
name

Compressed.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
max

Chapter 5. Searching for names 115

Korean - 5 Pakistani - 13 Polish - 18 Portuguese - 19 Russian - 6
Compressed.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
score
factor
Left bias FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
Regularized.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
Max
Short 2 2 2 2 2 2 2 2 2 2
name
minimum
length
Short 6 6 6 6 6 6 6 6 6 6
name
maximum
length
Short 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
name
score
Short 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
name
validity
factor
Short 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
name
validity
ratio
Short 200 200 200 200 200 200 200 200 200 200
name
validity
maximum

NameHunter comparison parameters (Thai-Yoruban):
The following table provides the default comparison parameters for the given
name (GN) and surname (SN) fields for the Thai, Turkish, Vietnamese and Yoruban
culture codes.
Thai - 9 Turkish - 20 Vietnamese - 17 Yoruban - 11
GN SN GN SN GN SN GN SN
Name 0.60 0.60 0.65 0.65 0.70 0.70 0.60 0.60
threshold
Field 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49
threshold
Field 1.00 1.00 0.80 1.00 0.80 1.00 1.00 1.00
weight
Missing 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98
stem
Match TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
variants
Match TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE
initials

116 1BM InfoSphere Global Name Management: Developer's Guide

Thai - 9 Turkish - 20 Vietnamese - 17 Yoruban - 11
Initial on 0.90 0.00 1.00 0.00 0.85 0.00 0.85 0.00
initial
Initial on 0.85 0.00 0.85 0.00 0.85 0.00 0.85 0.00
token
Name 0.50 0.50 0.60 0.60 0.65 0.65 0.55 0.55
unknown
No name 0.50 0.50 0.60 0.60 0.65 0.65 0.55 0.55
Score mode AVG AVG AVG AVG LOW AVG AVG AVG
Anchor NONE NONE NONE LAST NONE NONE NONE NONE
type
Anchor 1.00 1.00 1.00 0.70 1.00 1.00 1.00 1.00
factor
Oops factor 0.90 0.75 0.97 0.97 0.85 0.80 0.97 0.97
Compressed TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
name
Compressed 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
max
Compressed 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
score factor
Left bias FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
Regularized 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
Max
Short name 2 2 2 2 2 2 2 2
minimum
length
Short name 6 6 6 6 6 6 6 6
maximum
length
Short name 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
score
Short name 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
validity
factor
Short name 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
validity
ratio
Short name 200 200 200 200 200 200 200 200
validity
maximum

NameHunter comparison parameters (Group cultures):
The following table provides the default comparison parameters for the given
name (GN) and surname (SN) fields for all valid group culture codes:

Southwest Asian
Group culture that contains Afghan, Arabic, Farsi, Pakistani and Turkish
cultures.

Chapter 5. Searching for names 117

European

Group culture that contains Anglo, French, German, Hispanic, and
Portuguese cultures.

Han Group culture that contains Chinese, Korean, and Vietnamese cultures.

Southwest Asian - 38 European - 39 Han - 40

GN SN GN SN GN SN
Name threshold 0.65 0.65 0.65 0.65 0.70 0.70
Field threshold 0.49 0.49 0.49 0.49 0.49 0.49
Field weight 1.00 1.00 0.80 1.00 0.80 1.00
Missing stem 0.99 0.98 0.99 0.98 0.70 0.70
Match variants TRUE TRUE TRUE TRUE TRUE TRUE
Match initials TRUE FALSE TRUE FALSE TRUE FALSE
Initial on initial 0.85 0.00 0.85 0.00 0.85 0.00
Initial on token 0.75 0.00 0.75 0.00 0.85 0.00
Name 0.60 0.75 0.60 0.60 0.60 0.60
unknown
No name 0.60 0.75 0.60 0.60 0.60 0.60
Score mode AVG AVG AVG AVG LOW AVG
Anchor type FIRST NONE NONE NONE NONE NONE
Anchor factor 0.90 1.00 1.00 1.00 1.00 1.00
Oops factor 0.85 0.90 0.90 0.75 0.85 0.75
Compressed TRUE TRUE TRUE TRUE TRUE TRUE
name
Compressed 0.95 0.95 0.95 0.95 0.95 0.95
max
Compressed 1.00 1.00 1.00 1.00 1.00 1.00
score factor
Left bias FALSE FALSE FALSE FALSE FALSE FALSE
Regularized 0.98 0.98 0.98 0.98 0.98 0.98
Max
Short name 2 2 2 2 2 2
minimum
length
Short name 6 6 6 6 6 6
maximum
length
Short name 0.97 0.97 0.97 0.97 0.97 0.97
score
Short name 0.75 0.75 0.75 0.75 0.75 0.75
validity factor
Short name 0.01 0.01 0.01 0.01 0.01 0.01
validity ratio
Short name 200 200 200 200 200 200

validity

maximum

118 1BM InfoSphere Global Name Management: Developer's Guide

Configuring transliteration rule sets for NameHunter

To use the additional transliteration rule sets in NameHunter, you must configure
NameHunter, NHServer, and the Distributed Search process to do so.

Configuring NameHunter to use the transliteration rule files
IBM InfoSphere Global Name Management contains rule files that work with the
transliterate function of NameHunter. Before you can use the rule files, you must
turn transliteration on, and then call the function to load a specific rule file.

Before you begin
* Turn transliteration on using the transliterate function.

* Make sure the rule file that you want to use is in the path.

About this task

After instantiating a NameHunter instance, call the following function
void NameHunter::loadTransRules(const std::string& ruleFileName);
substituting ruleFileName with the location of the appropriate rule file.

Note: For best results, the rule file should be in the path. If the rule file is not in
the path, NameHunter throws an exception.

Example transliteration rule file call
For example, to call the Arabic rule file, call the function

void NameHunter::loadTransRules(const std::string& arabicTransRule.ibm);

Configuring the Distributed Search process to use transliteration
rule files

IBM InfoSphere Global Name Management contains rule files that modify the
transliteration function. After you have modified the Distributed Search process'
configuration file to include the names and locations of the rule files, the
Distributed Search process can match names that are written in the scripts handled
by those rule files.

Procedure

1. Open the Distributed Search process configuration file. The default file is
dsconfig.ini.

2. Under the [searcherCommon] section, specify the transliteration files that you
want to include. The following example includes the transliteration files for
Korean and Japanese.

[searcherCommon]

koreanTransFile=koreanTransRule.ibm
japaneseTransFile=japaeneseTransRule.ibm

Searching for names using Distributed Search

NameHunter Distributed Search allows you to scale up the number of concurrent
searches allowed and the number of names to be searched (up to 200 million) by
adding more processor resources to support additional search servers.

Chapter 5. Searching for names 119

The following chart shows the high level design of Distributed Search. Multiple
clients (not a part of Distributed Search) communicate with a central
communications middleware process via XML over TCP/IP. The middleware
process queues client requests and sends them to a set of search servers. The
middleware process manages responses from the search servers and returns one
aggregated response to the requesting client. Clients are not aware that multiple
servers contributed to the response generated for their requests.

XML over TCP/IP

Middleware
Communication Response Aggregator/
Manager Delete Filter
ds.config
D XML over TCP/IP
L Searcher 1 Searcher 2 Searcher Adds
‘ 5 NH [7‘ Original NH ‘7J Original ‘\‘ NH SearchlList
SearchlList . Data SearchList Data (memory)
(memory) (disk) (memory) (disk)

% NH/Orig Index

(memory)

ot

% NH/Orig Index

(memory)

T

npp.config

B

Name Pre-Processor 4—— [

Customer

Name Data

Figure 4. High level design of Distributed Search

120

Each Distributed Search server manages one portion of a larger name data list. The
data list managed by each Distributed Search server consists of a memory-resident
search list, along with an index to a disk-based repository of the original name
data that you provide. One server is typically allocated to handle any updates that
need to be made to the combined repository of names during a Distributed Search
session, for example when add requests are created.

The data managed by each server is created by a Distributed Search utility called
Name Preprocessor. When provided with a comma-delimited file of name data,
Name Preprocessor parses, classifies, regularizes, remove duplicates, and partitions
a large name file into smaller portions to be shared by all participating Distributed
Search servers. The output from Name Preprocessor is binary and system-specific.

IBM InfoSphere Global Name Management: Developer's Guide

Attention: The Name Preprocessor utility must be run on a system with the same
operating system (OS) and architecture that the Distributed Search processes runs
on. Distributed Search fails if Name Preprocessor is running on a different
operating system.

Name Preprocessor introduction

Name Preprocessor is a utility that converts a comma delimited file of customer
name records into the files that are required by Distributed Search.

Name Preprocessor combines name analysis functions (transliteration, parsing, and
classification) with internal NameHunter preprocessing steps (regularization and
cleansing) to produce a set of names suitable as input to a Distributed Search
process.

Attention: The Name Preprocessor utility must be run on a system with the same
operating system (OS) and architecture that the Distributed Search processes runs
on. Distributed Search fails if Name Preprocessor is running on a different
operating system.

Name Preprocessor data files overview

Several comma-delimited text files are consumed and produced by Name
Preprocessor. Name Preprocessor splits your information into uniform pieces and
removes duplications so that you have singular data entries that are in the format
that Distributed Search and Embedded Search processes expect.

The Customer Data file is input to Name Preprocessor where it is parsed,
classified, regularized, transliterated, and checked for duplications. This initial pass
produces a temporary, comma-delimited file known as the Interim Data file. The
result of the de-duplication process, where the Interim Data file is split into smaller
pieces, produces three output files that are partitioned into the data structures that
are supplied to the Distributed Search and Embedded Search processes:

* NH Search List

* Original Data

* NH Orig Index

Inputting your data to Name Preprocessor is not the default setting when using
Distributed Search. You can bypass Name Preprocessor and load a searcher process
directly with name data if you have already processed your information with
another application. If you want to use Name Preprocessor to process your
information, specify the file that you want to process in the Name Preprocessor
configuration file, npp.config.

Name Preprocessing flow

Consider the following input name record:
Jiri, Valek, 1234

This record would undergo the following processing steps in Name Preprocessor:

1. The name transliteration component removes the extended ASCII characters to
produce this form:

JIRI, VALEK, 1234

2. The NameParser component parses the full name into its given name (GN) and
surname (SN) components, and validates that the order of the name as

Chapter 5. Searching for names 121

122

originally supplied in the customer data is likely to be incorrect. A second,
alternative parse-order for the name is generated:

Valek, Jiri, 1234

3. NameClassifier decides that the SN and GN are each best associated with the
European culture (culture-code 39).

4. Linguistic rules that smooth major patterns of spelling variation on a
culture-by-culture basis (name regularization) can optionally be applied to the
input name.

Thus, the original input name produces the following interim CSV-format output
records in Name Preprocessor:

1234,P,JIRI,VALEK,39,39,Jdir7,Valek,0,0
1234,P,VALEK,JIRI,39,39,Jiri,Valek,1,0

The original name data remains unchanged. During the second pass of processing
performed by Name Preprocessor, the interim file is sorted, de-duped, and
partitioned into the data structures required by the Distributed Search and
Embedded Search servers.

Name list preprocessing with Embedded Search:

Embedded Search exposes NameHunter's search capabilities to IBM NameWorks in
a single process where name data is preprocessed when IBM NameWorks
initializes, rather than in a separate step.

Embedded Search handles name preprocessing to reduce administration overhead
and increase overall performance. Your application can then begin searching
without having to preprocess your data.

Name data files to be used with Embedded Search must be provided in
comma-separated value (CSV) format, with each record including between three
and ten fields. These data files are assumed to be in ASCII or UTF-8 encoding. Text
in other encodings causes error conditions, which result in a BADRECORD
exception (GODWAO033E) being thrown that contains the record number and
contents of the name record.

Important: Embedded Search and Distributed Search both read from the Name
Preprocessor Interim Data file. When preprocessing name data with Name
Preprocessor, every data field must be provided, whereas the data fields are
optional when preprocessing names with Embedded Search.

Name Preprocessor Customer Data file:

The Customer Data file is the input to the Name Preprocessor utility. This file is
processed to produce the Interim Data file that is split into smaller pieces so that it
can be passed to Distributed Search.

The Customer Data file is a comma-delimited file that contains the following fields:

Record ID
Additional data to be associated with this record (such as an ID that points
to the original source of the data). The maximum length is 256 bytes.

Category
Name category that you provide for the name. If left blank Name
Preprocessor will attempt to determine the category. Valid values are:

IBM InfoSphere Global Name Management: Developer's Guide

* B = Both personal and Organization
* O = Organization name

e P = Personal name

Invalid values will cause an error to be reported and the offending name
record will be discarded.

Script type

Provides the script type of the name text, as a number between 1 and 8 to
indicate a specific script type, 0 to indicate no specific script type, or blank
to indicate Name Preprocessor should attempt to determine the script type.
Valid values are:

* 0 = No specific script.

* 1 = Hanzi script (Chinese)

* 2 = Kanji/kana script (Japanese)

* 3 = Devanagari script (Indian)

* 4 = Cyrillic script (Russian)

* 5 = Latin script (European, Anglo)

* 6 = Hangul script (Korean)

* 7 = Arabic script (Arabic, Southwest Asian)
* 8 = Greek script (Greek)

Invalid values will cause an error to be reported and the offending name
record will be discarded.

Surname or full name
If a name record contains only three fields, this field is interpreted as the
full name. If the name record is categorized as an Organization name
(either directly in the data file or indirectly by IBM NameWorks), the given
name and given name culture fields will be ignored. In any other instance,
the name is transliterated, parsed, classified, and added to the data list.

Given name
Given name element, where the previous field is interpreted as the
surname element. If no additional fields are present, the given name and
surname elements are transliterated, parsed, classified, and added to the
data list.

Surname culture code
Surname culture code. If this field is blank or contains a value of -1, IBM
NameWorks classifies the surname element and uses the result of that
classification as the surname culture code. An error condition is reported if
this field contains an invalid value.

Given name culture code
Given name culture code. If this field is blank or contains a value of -1,
IBM NameWorks classifies the given name element and uses the result of
that classification as the given name culture code. An error condition is
reported if this field contains an invalid value.

Original surname
If this field is provided Original surname element. This field contains the
original full name for an Organization name.

Original given name
Original given name element.

Chapter 5. Searching for names 123

124

Alternate parse flag
Indicates that the current record is an alternate parse of the original name,
regardless of what might have been determined by previous fields (0 = no,
1 = yes).

Name Preprocessor Interim Data file:

The Interim Data file is a temporary, comma-delimited file that is the output of the
first pass of the Name Preprocessor utility. This file is the result of applying the
Name Preprocessor (parsing, classifying, etc.) to the Customer Data file so that the
file contains all of the information that is required to produce the input to the
distributed server.

Important: Embedded Search and Distributed Search both read from the Name
Preprocessor Interim Data file. When preprocessing name data with Name
Preprocessor, every data field must be provided, whereas the data fields are
optional when preprocessing names with Embedded Search.

Different fields are included based on the name category (either Personal or
Organization) of the name. If the name is determined to be an Organization name,
then only the following fields are included during name preprocessing:
Organization name interim data format

* Supplementary data

* Category

* Script type

* Name

¢ Culture code

* Original name

The main differences in the interim data format is that Organization names are
stored as a single field.

The data file can contain any of the following fields. The number of provided
fields determine which preprocessing steps are performed.

Supplementary data
Typically, a record identifier that can be used to retrieve other information
about the name record in one or more databases, although this field can
contain additional information about the name record.

Category
A single letter which indicates that the name record should be categorized
as a Personal (P) name, Organization (O) name, or Both (B). If this field is
empty, the name is categorized by IBM NameWorks before any further
processing is applied. An invalid letter results in an error condition.

Script type

Provides the script type of the name text, as a number between 1 and 8 to
indicate a specific script type, 0 to indicate no specific script type, or blank
to indicate Name Preprocessor should attempt to determine the script type.

* 0 = No specific script.

* 1 = Hanzi script (Chinese)

* 2 = Kanji/kana script (Japanese)
* 3 = Devanagari script (Indian)

IBM InfoSphere Global Name Management: Developer's Guide

* 4 = Cyrillic script (Russian)

* 5 = Latin script (European, Anglo)

* 6 = Hangul script (Korean)

* 7 = Arabic script (Arabic, Southwest Asian)
* 8 = Greek script (Greek)

Surname or full name
If a name record contains only three fields, this field is interpreted as the
full name. If the name record is categorized as an Organization name
(either directly in the data file or indirectly by IBM NameWorks), any
additional fields are ignored. In any other instance, the name is
transliterated, parsed, classified, and added to the data list.

Given name
Given name element, where the previous field is interpreted as the
surname element. If this field is blank and the name record is categorized
as an Organization (either directly in the data file or indirectly by IBM
NameWorks), any additional fields are ignored. If no additional fields are
present, the given name and surname elements are transliterated, parsed,
classified, and added to the data list.

Surname culture code
Surname culture code. If this field is blank or contains a value of -1, IBM
NameWorks classifies the surname element and uses the result of that
classification as the surname culture code. An error condition is reported if
this field contains an invalid value.

Given name culture code
Given name culture code. If this field is blank or contains a value of -1,
IBM NameWorks classifies the given name element and uses the result of
that classification as the given name culture code. An error condition is
reported if this field contains an invalid value.

Original surname
Original surname element. This field contains the original full name for an
Organization name.

Original given name
Original given name element.

Alternate parse flag
Indicates that the current record is an alternate parse of the original name,
regardless of what might have been determined by previous fields (0 = no,
1 = yes).

Name Preprocessor Search List file:

The NH Search List file is the input to Distributed Search that contains the
de-duplicated name information.

Search List, Original Data, and NH-Original Index files are the result of the
deduplication process in which the Interim Data file is split into smaller pieces.
Each split of the interim file produces these three files.

The Search List file is a comma-delimited file that is identical to the "Interim Data"
file with two exceptions when unique name mode (createOrig=true in the npp

configuration file) is enabled.

Chapter 5. Searching for names 125

126

* The "Supplementary data" field contains an index value used to locate all
matching records for a unique name.

* An additional value (numOrig) appears as the last field to indicate the number
of original records associated with a unique name.

Supplementary data
Typically, a record identifier that can be used to retrieve other information
about the name record in one or more databases, although this field can
contain additional information about the name record.

Category
A single letter which indicates that the name record should be categorized
as a Personal (P) name, Organization (O) name, or Both (B). If this field is
empty, the name is categorized by IBM NameWorks before any further
processing is applied. An invalid letter results in an error condition.

Script type
Indicates the script type of the name text. An integer between 1 and 8 to
indicate a specific script type or 0 to indicate no specific script type.

Surname or full name
If a name record contains only three fields, this field is interpreted as the
full name. If the name record is categorized as an Organization name
(either directly in the data file or indirectly by IBM NameWorks), any
additional fields are ignored. In any other instance, the name is
transliterated, parsed, classified, and added to the data list.

Given name
Given name element, where the previous field is interpreted as the
surname element. If this field is blank and the name record is categorized
as an Organization (either directly in the data file or indirectly by IBM
NameWorks), any additional fields are ignored. If no additional fields are
present, the given name and surname elements are transliterated, parsed,
classified, and added to the data list.

Surname culture code
Surname culture code. If this field is blank or contains a value of -1, IBM
NameWorks classifies the surname element and uses the result of that
classification as the surname culture code. An error condition is reported if
this field contains an invalid value.

Given name culture code
Given name culture code. If this field is blank or contains a value of -1,
IBM NameWorks classifies the given name element and uses the result of
that classification as the given name culture code. An error condition is
reported if this field contains an invalid value.

Original surname
Original surname element. This field is determined to be the original full
name for an Organization name.

Original given name
Original given name element.

Alternate parse flag
Indicates that the current record is an alternate parse of the original name,
regardless of what might have been determined by previous fields (0 = no,
1 = yes).

numOrig
Indicates the number of original records associated with a unique name.

IBM InfoSphere Global Name Management: Developer's Guide

Name Preprocessor Original Data file:

The Original Data file is customer data with two additional fields that show
preprocessing results.

Search List, Original Data, and NH-Original Index files are the result of the
de-duplication process in which the interim file is split into smaller pieces. Each
split of the interim file produces these three files.

The Original Data file has the following fields:
SN Surname (pre-processed).
GN Given name (pre-processed).

custID
Additional data to be associated with this record (such as an ID that points
to the original source of the data). The maximum length is 256 bytes.

altParseFlag
Did this name generate an alternate name parse (0 = no, 1 = yes)?

regFlag
Did this name need to be regularized (0 = no, 1 = yes)?

Name Preprocessor Original Index file:
The Original Index file ties the NH Search List and Original Data files together.

Search List, Original Data, and NH-Original Index files are the result of the
de-duplication process in which the interim file is split into smaller pieces. Each
split of the interim file produces these three files.

Distributed Search uses the Original Index file to retrieve the original name data
from a NameHunter result. The Original Index file contains two fields:

nhID The unique numeric ID assigned to each unique pre-processed name as it
is stored in the NH Search List.

origOffset
An offset into the Original Data file pointing to the first customer record.

Managing name lists with the Name Loader utility:

You can manage name lists for Enterprise Name Search with the Name Loader
utility. The Name Loader utility is a stand-alone Java-based program that takes in
the raw source names from name lists, analyzes those names using IBM
NameWorks, and stores the names and the results of the name analyses in the ENS
database.

The Name Loader utility for ENS is similar in function to the Name Preprocessor
utility used in Distributed Search, but does not replace it. The Name Loader utility
loads names from a name list file or external data source such as a "Passengers" list
or "Watch List". "Source names" are the names as originally received, with their
original parse and script. This is the form in which results of a search are
displayed.

Source names are analyzed, parsed, and transliterated as appropriate by IBM
NameWorks. The resulting names are referred to as "search" names." Search names
are stored in the ENS database in internal format (upper-case Roman characters)

Chapter 5. Searching for names 127

128

and loaded into IBM NameWorks for use in searches. ENS keeps both forms in
database tables and manages the mapping between them.

In addition, you can use the Name Loader utility to reload or remove names. The
search cell can remain active when using Name Loader to load, reload, and remove
names from a list.

Reading source names from the name list files

Name list files are flat text files in CSV (comma separated values) format. Each
row in the name list represents one source name. The CSV file contains the
following information for each row:

Table 10. Fields in CVS files for incoming names

Field Meaning Example Default Notes

0 Surname “SMITH” blank Either surname or given name can be blank, but not
both.
1 Given “JOHN” blank Either surname or given name can be blank, but not
name both.
2 idData 300011 no Required. An identifier that must be unique within a
default data source.
3 Surname 3 blank Optional
culture
4 Given 3 blank Optional
name
culture
5 Category 0 blank Optional. Indicates the name type, either personal,

organizational, or unspecified.

The name loader analyzer component

The name analyzer component performs the following analysis on each incoming
source name:

* Processes each source name by transliterating the name.

* Categorizes the name into a name type if the "Category" element is blank in the
flat CSV file.

* Finds the best parse for the original form of the name if the Category is
"personal”.

¢ Finds one or more transliterated search names based on the source name.
Source name and search names

Source names are the names as originally loaded from a name list. Whereas search
names are the names resulting from the analysis performed by IBM NameWorks.
The schema stores both source names and search names.

Source names are located in the ENS_SOURCE_NAME table. Search names are
located in the ENS_SEARCH_NAME table. Enterprise Name Search manages the
mapping between the two. For performance reasons, when the name is written to
the schema tables, the writing is done using multiple threads. Each thread uses a
batch database update to add or update multiple records. The number of threads
and the batch size are configurable in the Name Loader utility configuration file.

IBM InfoSphere Global Name Management: Developer's Guide

If two search names are identical except for culture, both search names are stored
separately. For example, “June Park ” with a Korean culture designation is stored
separately from “June Park” with an Anglo culture designation because matching
rules are different for these two cultures.

If two search names are identical except for their alternate parse flag, both are also
stored separately. For example, the source name “Elton John” is distinct from the
source name of “John Elton”. A name search request for “Elton John” finds and
reports both source names, but the source name of John Elton is reported as a
lower match score because it is based on an alternate parse.

loader.config file

The Name Loader utility has its own configuration file, named loader.config, which
specifies the behavior for the IBM NameWorks instance used by Enterprise Name
Search. All options and configuration details for the Name Loader utility are
specified in this file.

Name Preprocessor configuration file

The input, steps, and output of Name Preprocessor are controlled by a
configuration file, npp.config, which is in the format of a standard Microsoft
Windows .ini file.

The NameCategory of the input name determines what data list (Organization or
Personal) the name is added to. If no NameCategory is provided, Name
Preprocessor uses NameSifter to determine the NameCategory. If the
NameCategory is unknown and the sifting option is set to false
(doCategorize=false), Name Preprocessor treats the non-entity associated name as
a Personal name.

To specify external token files, add custom parsing tokens to the [Custom Tokens
i

ection| of the npp.config file.

Sample npp.config file

[npp]

inFile=names.txt
interimFile=names.npp.txt
nppOutFile=names.npp.out
origDataFile=names.orig.dat
origIndexFile=names.orig.idx

sifterRulesFile=SifterRules.ibm

arabicTransFile=arabicTransRule.ibm
cyrillicTransFile=cyrillicTransRule.ibm
greekTransFile=greekTransRule.ibm
koreanTransFile=koreanTransRule.ibm
latinTransFile=latinTransRule.ibm
japaneseTransFile=japaneseTransRule.ibm
chineseTransFile=chineseTransRule.ibm

reportIncrement=100000
doFul1Name=true
doCategorize=false
doTransliterate=true
doParse=true
doClassify=true
doNhClean=true
parseThreshold=0.5

Chapter 5. Searching for names 129

130

maxRecsPerSp1it=2000000
createNpp=true
createNh=true
numNppOutFiles=2
deleteTempFiles=true
deleteNppFile=false
createOrig=true

logDebug=cout
lTogError=cout
logEvent=cout

maxGnCacheSize=4000000
max0OnCacheSize=0
maxSnCacheSize=4000000

Distributed Search process loaded directly

A Distributed Search process can be loaded directly with non-preprocessed name
data so that Name preprocessing is bypassed. In this case, only the NH Search List
is necessary for processing. The Original Data and NH Original Index created by
Name Preprocessor are not used.

In this mode, the NH Search List file is in the following format. All fields in these
CSV-format files support quoted fields, which allow commas to appear in input
files.

Personal name
ID,category,SN,GN,cultureSN,cultureGN,origSN,origGN,altParse,0,count

Organization name
ID,category,ON,origON,altParse,0,count

ID Unique numeric ID assigned to each unique non-preprocessed name

category
Category of the name; either P (personal name) or 0 (organization name)

SN Surname
GN Given name
ON Organization name

cultureSN
Culture code of the surname

cultureGN
Culture code of the given name

origSN
Original surname

origGN
Original given name

altParse
Indicates whether the name was generated from an alternate name parse (0
=no, 1 = yes). Specify a value of 1 if you know that the name is an
alternate parse.

count Indicates the number of records that are referenced to this ID. If you are
running in full search mode, each ID is tied to a record, so the count will
be zero. If you are running in unique name mode, then each record can be
referenced to multiple IDs, and the count will be greater than zero.

IBM InfoSphere Global Name Management: Developer's Guide

Running Name Preprocessor
You can run Name Preprocessor from a command prompt.

Before you begin

If a file name is not specified on the command line, Name Preprocessor opens its
default configuration file, npp.config, in the current directory upon invocation.
This directory is typically where Name Preprocessor is invoked from. For example:

C:> npp

You can specify a different directory for the configuration file on the command line
when you run Name Preprocessor. For example:

C:> npp /usr/GNR/data/npp.config

Name Preprocessor configuration considerations
Deciding how to configure Name Preprocessor requires consideration and some
experimentation to see what works best for your data and computing environment.

Various considerations exist depending on what tasks you want to run against
your data:

Transliterate
Converts names to use only the 26 letters in the basic Latin alphabet.
Transliteration removes accents from accented Latin letters and converts
names that are written in the Arabic, Chinese, Cyrillic, Greek, Kana
(Japanese Hirigana and Katakana), and Hangul (Korean) alphabets to
equivalent forms with characters from the Latin alphabet. If the data to be
processed already uses the basic 26 Latin letters, transliteration can be
disabled to improve preprocessing time.

Parse Divides a single name into its given name (GN) and surname (SN)
components. Parsing generates additional parses of a name if NameParser's
confidence is less than the threshold. Typically, parsing name data
increases the number of names by 10 percent. You can disable parsing and
save preprocessing time by providing names that are already divided in
the GN and SN.

Classify
Runs NameClassifier to assign culture codes to the surnames and given
names. Leaving names unclassified slows down search time and disables
Regularization, so it is strongly suggested that classification be completed.

Regularize
Generates normalized forms of the input names if IBM regularization rules
exist for the culture. Regularization can significantly improve the quality of
the search, but also slows the search process because of a greater number
of input names.

NhClean
NameHunter's clean function removes all characters except spaces and
capital letters, A-Z. Cleaning is quick, and should increase the number of
duplicate entries, which leads to a reduction in the number of records that
Distributed Search must load.

Sizing The number of searchers to run simultaneously is a function of the number
of names, the options you enable, and how many processors are available.
The options that you select determine your basic performance and affect
the number of searchers that you use, based on your requirements. The
following example helps to explain sizing considerations:

Chapter 5. Searching for names 131

132

* Begin with 50,000,000 input names.

* Parsing adds 5,000,000 names, giving a total of 55,000,000.

* Regularization adds 20,000,000 names, giving a new total of 75,000,000.
* Name Preprocessor de-duplication reduces the number of unique names

to 50,000,000. This is a typical reduction, but it but could be much larger
or smaller.

* You have eight processors available for Distributed Searches. One of
these is reserved for additions, so the 50,000,000 unique names can be
divided by seven, providing about 7,000,000 names per processor.
Therefore, you would set the configuration entry, numNppOutFiles, to 7.

You can use Name Preprocessor to split the data list into as many sub-lists
as necessary by setting the numNppOutFiles configuration option.

Distributed Search performance and configuration overview

This section provides information on how to configure, tune, and run Distributed
Search.

Distributed Search is memory and processor intensive. A Distributed Search
process consumes 100% of a computer's processing capacity when processing a
request. Therefore, configure Distributed Search to have at least as many
processors as there are search processes. The communications manager does not
require a dedicated processor as long as the number of searches it supports is
reasonable.

The rate at which Distributed Search can handle queries is directly proportional to
the number of search processes that are operating in parallel. As the number of
searches increases and the size of the data supported by each search decreases, the
performance gain lessens as the cost of message management becomes more and
more significant.

Distributed Search memory
Each Distributed Search process must load all of its name data into memory. If a
search process has to page to disk, performance will be unacceptable.

Estimating the amount of memory consumed by each search process is affected by
many factors, including the average length of the input names, whether or not
regularization is used, and how the names have been pre-processed by Name
Preprocessing. In most cases, if you know how many names will be loaded into a
searcher, you can use the following rule of thumb to estimate memory required:

100 MB + NumberOfNames * 300 = memory required

100 MB is the amount of memory required if you load all the NameHunter
support files. 300 bytes is a conservative estimate of the storage required per name.
So, if you are loading 10 million names, the memory required will be:

100 MB + 10,000,000 = 300 = 3.1 GB

In addition to memory for data names NameHunter also requires memory to store
potential matches while searching. Each search requires up to 1000 bytes for each
potential match found with a score above the match threshold. It may be necessary
to track 40,000 or more potential matches even when only the top 50 are returned,
as all names must be examined to locate those with the highest similarity scores.
Distributed Search servers are currently single-threaded, so only one list of
potential matches is required at any particular moment. It is wise to allow an
additional 100 MB or more for gathering search results.

IBM InfoSphere Global Name Management: Developer's Guide

Distributed Search transaction rate

At sizes of over one million names, the time it takes to perform a search greatly
outweighs the time it takes to manage the XML messages. Assuming that processor
and memory allocation are sufficient, one Distributed Search process can perform
around 10 queries per second against one million names. This equation scales
linearly. With 10 million names, one search process can perform one query per
second. System performance depends on the makeup of your data and processing
power.

For example, a name list of 100 million names would be reduced to 64 million
unique names after name preprocessing. On a server with 8 processors, this list can
be split into subsets of 8 million names. With this setup, Distribute Search can
support more than one query per second. If there are 16 processors, the subset is
reduced to 4 million names, and the transaction rate becomes slightly better than
two queries per second.

Distributed Search configuration file and settings

Distributed Search consists of one process to manage communications (commgr)
and one or more processes to perform searches and updates (searcher). The
searchers each require access to a set of run-time linguistic support files, and they
each need to know where to find their respective portion of name data. The default
configuration file that comes with Distributed Search is named ds.config. This file
contains the configuration settings that each searcher process requires when a new
session starts. Some of these settings are shared by all searchers, and some are
used only by a specific instance of the searcher process.

Sample ds.config file

The default contents of the default configuration file are shown below. These
settings configure a Distributed Search system with three search processes. The
first two processes share portions of the original data file and the third runs
without data, but is configured to process additions.

The file name items expect files to be in the current directory unless you provide
fully-qualified file names with a path (for example, \user\GNR\data\names.txt). All
Boolean items accept the following input as true:

e trueort
* yesory

The items are not case sensitive, and any other value is considered false.

[commgr]
listenPort=2345
ipv6=
sleepMsec=10
waitConnectSec=5
heartbeatSec=60
msgBuffSize=1000000
logDebug=
logError=cout
logEvent=cout
logMessage=
numSearchers=3

[searcherCommon]
compparmsDefaults=compparms.config

ibmTagFile=taq.ibm
ibmGnvFile=gnv.ibm

Chapter 5. Searching for names 133

ibmSnvFile=snv.ibm
ibmOnvFile=onv.ibm
ibmOnTermFile=terms.ibm

custTaqFile=
custGnvFile=
custSnvFile=
custOnvFile=
custOnTermFile=

arabicTransFile=arabicTransRule.ibm
cyrillicTransFile=cyrillicTransRule.ibm
greekTransFile=greekTransRule.ibm
koreanTransFile=koreanTransRule.ibm
latinTransFile=latinTransRule.ibm
japaneseTransFile=japaneseTransRule.ibm

afghaniRegFile=swasianRegRule.ibm
angloRegFile=angloRegRule.ibm
arabicRegFile=swasianRegRule.ibm
chineseRegFile=chineseRegRule.ibm
europeanRegFile=
farsiRegFile=farsiRegRule.ibm
frenchRegFile=frenchRegRule.ibm
genericRegFile=angloRegRule.ibm
germanRegFile=germanRegRule.ibm
hanRegFile=
hispanicRegFile=hispanicRegRule.ibm
indianRegFile=indianRegRule.ibm
indonesianRegFile=indoRegRule.ibm
japaneseRegFile=japaneseRegRule.ibm
koreanRegFile=koreanRegRule.ibm
pakistaniRegFile=swasianRegRule.ibm
russianRegFile=russianRegRule.ibm
southwestAsianRegFile=swasianRegRule.ibm
thaiRegFile=thaiRegRule.ibm
vietnameseRegFile=

yorubanRegFile=

genericOnRegFile=genericOnRegRule.ibm
isUnique=true

doTransliterate=true
doRegularize=true
doOnToPNListSearch=false
doCompressedBitsig=true

defaultMaxResults=100
defaultAltScoreFactor=0.97

numRecords=100000
reportIncrement=100000

allowFnuLnu=false
alTowFnulnit=false
allowInitLnu=false
allowInitInit=false

[searcheri]

hostname=Tocalhost

port=2346

ipv6=

doAdds=false
nameFile=names.nh.txt.1
origDataFile=names.orig.dat.1
origIndexFile=names.orig.idx.1

134 1BM InfoSphere Global Name Management: Developer's Guide

logDebug=
logError=cout
logEvent=cout
logMessage=

[searcher?]
hostname=Tocalhost

port=2347

ipv6=

doAdds=false
nameFile=names.nh.txt.2
origDataFile=names.orig.dat.2
origIndexFile=names.orig.idx.2
logDebug=

logError=cout

logEvent=cout

logMessage=

[searcher3]
hostname=1ocalhost
port=2348
ipvb=
doAdds=true
nameFile=
origDataFile=
origlndexFile=
logDebug=
logError=cout
logEvent=cout
logMessage=

Distributed Search configuration options for communications manager:

Several configuration options exist for the communications manager process of
Distributed Search

The following configuration options control the communications manager
(commgr).

listenPort
The TCP/IP port used by clients to connect with Distributed Server.

ipvé An optional entry that indicates whether the IPv6 protocol should be used
for communicating with calling processes. This setting should match that
used by calling processes, such as in NameWorks configuration data. If not
present or disabled the IPv4 protocol will be used.

sleepMsec
The number of milliseconds the communications manager will sleep
between message processing loops. The default should work fine, but any
value of 10 or above is accepted.

waitConnectSec
The interval between connection attempts by commgr to search processes.

heartBeatSec
The number of seconds between heart beat messages between commgr and
search processes. The heartbeat message keeps a connection fresh during
periods of inactivity.

msgBuffSize
The size in bytes of the TCP/IP buffer used to send and receive messages.
The default of 1,000,000 should be more than sufficient.

Chapter 5. Searching for names 135

136

logDebug, logError, logEvent, logMessage
Distributed Search has four log levels that you can control with the
configuration file. Each entry recognizes the following:

+ filename — the name of the file where you want log entries to be put.

* cout, cerr, clog — the standard output streams.

* blank — nothing tells Distributed Search that this log is not required.

logDebug

Shows debug messages used during development. In production, there will

be very little output to this log.

logError

Shows error conditions such as invalid user input, system errors, and
communication problems.

logEvent

Logs significant events such as startup conditions, message transmission,
and reception.

logMessage

Logs all incoming and outgoing messages. This produces a lot of output
and should be disabled during normal operation.

numSearchers

The number of searches running.

Distributed Search common configuration options:

Several options are common to all Distributed Search processes. These common
options are in the [searcherCommon] section.

The following entries are common to all Distributed Search processes

[searcherCommon]:

Table 11. Distributed Search common options

Entry Description

ibmTagFile Location of the IBM supplied Title, Affix, Qualifier (TAQ) file
(tag.ibm).

ibmGnvFile Location of the IBM supplied Given Name Variant file (gnv.ibm).

ibmSnvFile Location of the IBM supplied Surname Variant file (snv.ibm).

ibmOnvFile Location of the IBM supplied Organization Variant file (onv.ibm).

ibmOnTermFile Location of the IBM supplied term file (terms.ibm).

custOnTermFile Location of a custom term file.

custTagFile Location of a custom Title, Affix, and Qualifier (TAQ) file.

custGnvFile Location of a custom Given Name Variant file.

custSnvFile Location of a custom Surname Variant file.

arabicTransFile Location of the IBM Arabic transliteration rules file
(arabicTransRule.ibm).

cyrillicTransFile Location of the IBM Cyrillic transliteration rules file
(cyrillicTransFile.ibm).

greekTransFile Location of the IBM Greek transliteration rules file
(greekTransFile.ibm).

latinTransFile Location of the IBM Latin transliteration rules file

(latinTransFile.ibm).

IBM InfoSphere Global Name Management: Developer's Guide

Table 11. Distributed Search common options (continued)

Entry Description

angloRegFile Location of the IBM Anglo regularization rules file
(angloRegRule.ibm).

arabicRegFile Location of the IBM Arabic regularization rules file
(arabicRegRule.ibm).

chineseRegFile Location of the IBM Chinese regularization rules file
(chineseRegRule.ibm).

farsiRegFile Location of the IBM Farsi regularization rules file
(farsiRegRule.ibm).

frenchRegFile Location of the IBM French regularization rules file
(frenchRegRule.ibm).

germanRegFile Location of the IBM German regularization rules file
(germanRegRule.ibm).

hispanicRegFile Location of the IBM Hispanic regularization rules file
(hispanicRegRule.ibm).

indianRegFile Location of the IBM Indian regularization rules file
(indianRegRule.ibm).

indonesianRegFile Location of the IBM Indonesian regularization rules file
(indonesianRegRule.ibm).

japaneseRegFile Location of the IBM Japanese regularization rules file
(japaneseRegRule.ibm).

koreanRegFile Location of the IBM Korean regularization rules file
(koreanRegRule.ibm).

russianRegFile Location of the IBM Russian regularization rules file

(russianRegRule.ibm).

southwestasianRegFile

Location of the IBM Southwest Asian regularization rules file
(southwestasianRegRule.ibm).

thaiRegFile Location of the IBM Thai regularization rules file (thaiRegRule.ibm).

genericRegFile Location of the IBM Generic regularization rules file
(genericRegRule.ibm).

isUnique Tells Distributed Search whether or not the input data has been
deduplicated by Name Preprocessor and that there are original data
files.

doTransliterate Indicates whether transliteration is enabled for input names.

doRegularize Indicates whether input names should be regularized.

defaultAltScoreFactor

Default value for a penalty factor that is applied when using an
alternate parse for name matching. This value can be overridden by
search messages and parameter messages.

defaultMaxResults

Default maximum number of results to be returned by a Search
Request. This can be overridden by search and parameter messages.

allowFnuLnu

Controls whether or not queries without surname and given name
are allowed (First Name Unknown, Last Name Unknown).
Normally, this is false, as this query could easily overwhelm the
system with too many responses.

allowFnulnit

Controls whether or not queries with a single surname initial and a
blank given name are allowed. Normally, this is false, as this query
could easily overwhelm the system with too many responses.

Chapter 5. Searching for names 137

138

Table 11. Distributed Search common options (continued)

Entry Description

allowlnitLnu Controls whether or not queries with a single given name initial and
a blank surname are allowed. Normally, this is false, as this query
could easily overwhelm the system with too many responses.

allowlInitInit Controls whether or not queries with a single given name initial and
a single surname initial are allowed. Normally, this is false, as this
query could easily overwhelm the system with too many responses.

Distributed Search options unique to individual searches:

Several configuration options are unique to individual searches. Each header in the
configuration file has a unique number at the end (for example search1). This
indicates the search process that the configuration entries apply to. You must have
one of these sections for each search.

The following entries are unique to individual searches.

hostname
The hostname of the machine running the searcher.

port The port number used to communicate with the communication manager.

ipvé An optional entry that indicates whether the IPv6 protocol should be used
for communicating with the communication manager. If not present or
disabled the IPv4 protocol will be used.

doAdds
Will this search process respond to Add Requests? Only one search should
have this entry set to true.

nameFile
The location of the preprocessed name data. Ideally, this is produced by
Name Preprocessor.

origDataFile
The original data file output from Name Preprocessor that is associated
with the nameFile.

origIndexFile
The original data index output from Name Preprocessor that is associated
with the origDataFile.

logDebug, logError, logEvent, logMessage
Distributed Search has four log levels that you can control with the
configuration file. Each entry recognizes the following:
* filename — the name of the file where you want log entries to be put.
* cout, cerr, clog — the standard output streams.
* blank — nothing tells Distributed Search that this log is not required.

logDebug
Shows debug messages used during development. In production, there will
be very little output to this log.

logError
Shows error conditions such as invalid user input, system errors, and
communication problems.

IBM InfoSphere Global Name Management: Developer's Guide

logEvent
Logs significant events such as startup conditions, message transmission,
and reception.

logMessage
Logs all incoming and outgoing messages. This produces a lot of output
and should be disabled during normal operation.

Running Distributed Search

Before you can run Distributed Search, the name data on which it operates can be
processed with Name Preprocessor. As a part of that process, the original name
data file can be split into any desired number of parts. Alternatively, the original
name data file can be manually divided without use of Name Preprocessor. Each
part requires a dedicated instance of the Distributed Search process and a
dedicated processor for optimal performance and response times.

Before you begin

After the original data file is divided by Name Preprocessor or through manual
division, you must determine whether or not it is necessary to support the
addition of names into the name data list after a Distributed Search server session
begins. If manual division of the original name data file is performed, you can add
the new name or names to one of the parts and then restart the Distributed Search
server. Typically, names must be added with an add message without ending a
Distributed Search session. In such a case, one instance of the search needs to be
configured for add transactions, and a separate processor must be allocated for this
add instance. These resource and runtime support decisions are then registered as
settings in the Distributed Search configuration file.

About this task

Complete the following steps to run Distributed Search:

Procedure

1. Start each configured instance of a Distributed Search process by specifying its
search ID and (optionally) a configuration file. The search ID corresponds to the
number in the Distributed Search configuration file header. For example, 1 uses
the configuration for [searcherl], so the section in the configuration file header
would read searcher 1 ds.config.

2. Start the communications manager from the command line, specifying
(optionally) a configuration file. For example: commgr ds.config.

What to do next

All search processes must finish loading and initialization before the
communications manager (commgr) can be started. A search process is ready when
you see the console message:

waiting for connection on port <port number>

As with search processes, the configuration file argument is optional and, if not
provided, defaults to ds.config in the current directory. If the communication
manager fails to connect with one or more of the searchers, it continually sends a
message that is routed to the console device in the following format:

06:25:53 could not connect to server - Tocalhost:2348

Chapter 5. Searching for names 139

Commgr rejects user connection requests until all of its associated search processes
are successfully connected. After it has connected to all configured search
processes, commgr issues a message to the console device in the following format:

06:25:54 connected to all searchers, waiting for requests

When configured with default logging options (such as log events and errors), a
Distributed Search process prints the following output to the console at session

initialization:

>searcher 1

11:13:26

searcherl.hostname ---------- localhost
searcherl.port -------------- 2346
searcherl.doAdds ------------ 0
searcherl.isUnique----------- 1
searcherl.doRegularize------- 1
searcherl.doTransliterate---- 0
searcherl.namefFile ---------- nameslm.nh.txt.1
searcherl.numRecords--------- 400000
searcherl.reportIncrement---- 100000
searcherl.defaultMaxResults-- 100
searcherl.ibmTagFile--------- taq.ibm
searcherl.ibmGnvFile--------- gnv.ibm
searcherl.ibmSnvFile--------- snv.ibm
searcherl.ibmBnvFile--------- bnv.ibm

searcherl.custTaqFile--------
searcherl.custGnvFile--------
searcherl.custSnvFile--------

searcherl.arabicTransFile --- arabicTransRule.ibm
searcherl.cyrillicTransFile - cyrillicTransRule.ibm
searcherl.greekTransFile ---- greekTransRule.ibm
searcherl.latinTransFile ---- TatinTransRule.ibm
searcherl.angloRegFile ------ angloRegRule.ibm
searcherl.arabicRegFile ----- swAsianRegRule.ibm

searcherl.germanRegFile -----
searcherl.indianRegFile -----
searcherl.russianRegFile ----
searcherl.thaiRegFile -------

searcherl.origDataFile------- nameslm.orig.dat.1
searcherl.origIndexFile------ nameslm.orig.idx.1
searcherl.logDebug ----------

searcherl.logError ---------- cout
searcherl.logEvent ---------- cout

searcherl.logMessage --------

11:13:26 loading tags from taq.ibm

11:13:26 Toading gnv from gnv.ibm

11:13:30 loading snv from snv.ibm

11:13:33 loading Arabic trans file from arabicTransRule.ibm
11:13:35 loading Cyrillic trans file from cyrillicTransRule.ibm
11:13:35 Toading Greek trans file from greekTransRule.ibm
11:13:35 Toading Latin trans file from latinTransRule.ibm
11:13:35 Toading Anglo reg file from angloRegRule.ibm
11:13:35 Toading Arabic reg file from swAsianRegRule.ibm
11:13:35 loading names from nameslm.nh.txt.1l

11:13:35 reserving space for 400000 records

11:13:38 -- num loaded = 100000
11:13:42 -- num loaded = 200000
11:13:46 -- num loaded = 300000
11:13:51 -- num loaded = 400000
11:13:56 -- num loaded = 500000
11:13:57 numlLoaded = 533025

11:13:57 loading orig data
num read = 100000
num read = 200000
num read = 300000

140 1BM InfoSphere Global Name Management: Developer's Guide

num read = 400000

num read = 500000

11:13:58 waiting for a connection on port 2346
11:13:58 connected, waiting for data...

The following example shows what console output from the successful start of a
session for commgr might look like:

>commgr

11:13:58

commgr.listenPort ------------ 2345
commgr.sleepMsec ------------- 10
commgr.logDebug --------------
commgr.logError -------------- cout
commgr.logEvent --------—-—--- cout
commgr.logMessage ------------
commgr.numSearchers ---------- 3

11:13:58 Tistening on port, 2345

11:13:58 connected to searcher localhost:2346
11:14:14 could not connect to server - localhost:2347
11:14:15 could not connect to server - Tocalhost:2347
11:14:15 connected to searcher localhost:2347
11:14:15 connected to searcher localhost:2348
11:14:15 waiting for requests...

Distributed Search configuration options and considerations
Distributed Search is designed to work in a wide variety of operational settings.

Distributed Search can operate just as easily on a single processor machine as it
does on a dedicated server that possesses 32 or 64 processors because of its
simplistic messaging system (TCP/IP connection) and the ability to spread a search
over any available processors. The choice between removing duplicate names and
leaving them in the original name data has important implications for Distributed
Search performance and search results quality. There is no consistent set of best
practices for such decisions because the best outcomes depend on the nature and
characteristics of the original name data records themselves.

When original name data records are processed manually or with the
NamePreprocessor utility to remove duplicates, each search request operates over a
reduced number of candidate names with corresponding improvements in search
response times and transaction throughput levels. NamePreprocessor can reduce a
name list that contains 100 million names to about 33 million names by cleaning
the data and removing duplicates.

The degree of reduction caused by the cleansing and de-duping process varies
from one set of name data to the next. Some data lists have a higher degree of
duplicate names while others tend to have more unique names. Noise, formatting
inconsistencies, and other random or culture-based factors can also have an impact
on the final size of the cleansed, de-duped name list.

The reduction in search time can be offset by the need for each search process to
be followed by some number of original data request transactions, which exchange
the internally generated, unique name ID that is assigned during the de-dupe
process for a set of one or more actual name IDs from the original name data.
However, the time saved in searching a greatly reduced number of names
counteracts the overhead imposed by the original data request transactions. If this
overhead or the preprocessing time required to identify and remove duplicate
names exceeds acceptable limits, Distributed Search can still operate with the

Chapter 5. Searching for names 141

142

original name data that is divided either manually or by NamePreprocessor into
smaller segments that allow increased parallelization and use of more processor
resources for each search request.

Preprocessed name records can also greatly improve search results for common
names. When a search request involves a common name, it is possible that valid
and potentially useful name matches with slight spelling variations might be
eliminated or “choked out” by exact name matches. You must consider this result
any time that a large data list of names is being searched by Distributed Search to
ensure that substantial name matches are not neglected from your search results.

NameHunter Distributed Search XML interface

Distributed Search uses an XML interface to manipulate and search a name data
list. All messages consist of a request from a client and a response from Distributed
Search.

The following XML request and response examples include code samples and
associated replies with descriptions of key elements. Some of the elements are
purely for informational purposes and are not described. For example, version
information is placed in all message headers:

<NHServerMessage protocol_version="4.1">

With the exception of the Search Results response, a response from Distributed
Search is a simple acknowledgment that the associated request has processed
successfully.

All requests between Distributed Search and client applications must be NULL
terminated.

Distributed Search XML requests

Distributed Search XML requests enable you to manipulate and search a name data
list. All requests receive a response from Distributed Search that describe the
outcome of the request.

Add request:

With the Add request, you can ask Distributed Search to add a name to the set of
memory-resident, searchable names. If successful, a response message is returned
with the request ID value that was provided in the associated Add request
message, in order to allow a client process to pair requests and responses.

The Named Entity Category (NEC) field determines the type of name and what
fields to use when updating a search list for Distributed Search:

* O - organization names use the NAME field
* P — personal names use the SN and GN fields
* A - all three fields are used and two names are added

Sample Add request

< NHServerMessage protocol_version="4.1">

<BASIC_REQUEST_INFO request type="A" request id="-1"/>
<NAME_TO_ADD

SN="Acme Light Industries, Inc."

GN=II n

NAME="Acme Light Industries, Inc."

NEC="A"

NAME_ID="123456"

IBM InfoSphere Global Name Management: Developer's Guide

CULTURE_SN="4"
CULTURE_GN="4"
ALT_PARSE="N" />
<DATA_LIST_NAME value=""/>
</ NHServerMessage>

BASIC_REQUEST _INFO

Attribute Required? Limits
request_type Yes Must be ‘A’
request_id No A number that Distributed

Search returns in the
response. Use -1 to tell
Distributed Search to
generate a number.

NAME_TO_ADD

Attribute Required? Limits

SN Yedl Surname, up to 128
characters.

GN Yedl Given name, up to 128
characters.

NAME Yedd Name, up to 128 characters.
Used to hold non-fielded
names like organization
names.

NEC Yes Named Entity Category
(NECQ). Valid values are:

O = Organization
P = Personal
A=Al

NAME_ID Yes ID of the name to be added,
up to 256 alphanumeric
characters. ID does not need
to be unique.

CULTURE_SN No Culture code for the
surname.

CULTURE_GN No Culture code for the given
name.

ALT_PARSE No Alternate parse of a name? (Y
or N)

'Required only if the NEC is P or A.

Required only if the NEC is O or A.

DATA_LIST_NAME

Attribute Required? Limits

value Yes Not currently implemented in

Distributed Server.

Chapter 5. Searching for names 143

144

Delete request:

With the Delete request, you can delete a name or names from Distributed Server.
This request deletes every record in Distributed Server that has the specified
customer-supplied Name_ID. If successful, a Success response message is returned
with the sender's original request ID.

Sample Delete request

<NHServerMessage protocol_version="4.2">
<BASIC_REQUEST_INFO request type="D" request id="-1"/>
<RECORD_ID TO DELETE value="123456"/>
<DATA_LIST_NAME value=""/>

</NHServerMessage>

BASIC_REQUEST _INFO

Attribute Required? Limits
request_type Yes Must be D.
request_id No A number that Distributed

Search returns in the
response. Use -1 to tell
Distributed Search to
generate a number.

RECORD_ID_TO_DELETE

Attribute Required? Limits

value Yes Customer-supplied Name_ID
to be deleted. All names with
this Name_ID are deleted.

DATA_LIST_NAME

Attribute Required? Limits

value No Not currently implemented
for Distributed Search.

Original Data request:

With the Original Data request, you can ask Distributed Search to send all the
original data records for names associated with this match. This request is only
necessary when using Name Preprocessor to de-duplicate your name data. If
successful, a Search Result message is returned with the sender's original request
ID.

Sample Original Data request

<NHServerMessage protocol_version="4.2">
<BASIC_REQUEST_INFO request_type="G" request_id="-1"/>
<DATA_LIST_NAME value=""/>
<NAME_ID value="123456"/>

</NHServerMessage>

BASIC_REQUEST _INFO

IBM InfoSphere Global Name Management: Developer's Guide

Attribute Required? Limits

request_type Yes Must be G.

request_id No A number that Distributed
Search returns in the
response. Use -1 to tell
Distributed Search to
generate a number.

DATA_LIST_NAME

Attribute Required? Limits

value Yes Not currently implemented in
Distributed Server.

NAME_ID
Attribute Required? Limits
value Yes NameHunter ID of the name

for which to retrieve original
data. This value is the
NAME_ID returned in the
Search result message if the
original name-list was
de-duped by Name
Preprocessor.

Search request:

With the Search request, you can ask Distributed Search to search for a name. If
successful, a Search result response is returned with the sender's original request
ID.

Optionally, the Search request might also specify one or more parameter settings to
be entered for the requested search. Any or all settings in each of the following
parameter groups (GENERAL, PARMS, COMP_PARMS_GN, COMP_PARMS_SN,
and COMP_PARMS_ON) can be specified through the Search request. The
comparison parameter (CompParm) overrides and adjustments are applied to the
GnCulture, SnCulture, or OnCulture fields of the search name. If no culture is
specified, the overrides and adjustments are applied to the default culture
(CultureUnknown).

The Named Entity Category (NEC) field determines the type of the query name
and what fields to use when executing a search:

* O - organization names use the NAME field
* P - personal names use the SN and GN fields

The default NEC for a Search request is P (personal name). The NEC A (all) is not
allowed for Search requests, and is mapped to P by IBM NameWorks.

The following example is a typical search that uses an organization name without
parameters.

Sample Search request (no parameters specified)

Chapter 5. Searching for names 145

<NHServerMessage protocol_version="4.1">
<BASIC_REQUEST_INFO request_type="S" request_id="-1"/>
<DATA_LIST NAME value="data list_1"/>
<SEARCH_NAME NAME="Acme Light Industries, Inc."
NEC:IIOII
Srch Opt=3/>
</NHServerMessage>

The following Search request contains adjustment factors for an Organization
name. The adjustment factors are specified by adding _ADJ to a parameter and
specifying a valid value for the adjustment.

Sample Search Request (parameters specified)

<NH_SERVER_MESSAGE protocol_version="false">
<BASIC_REQUEST_INFO request_type='S' request_id='-1'/>
<DATA_LIST_NAME value=''/>
<SEARCH_NAME NAME="Kidder Byron Licensed Land Surveyor"
NEC="0" CULTURE_SN="" CULTURE_GN=""
SRCH_OPT="2" />
<GENERAL_PARMS SHOULD_USE_INDEX="Y" NAME_THRESH="0.75"
MAX_RETURN_NAMES="50" RETURN_ORIG_NAMES="N"/>
<COMP_PARMS_ON INITIAL_TOKEN_SCORE_ADJ="0.98"
INITIAL_INITIAL_SCORE_ADJ="1.0"
NAME_UNKNOWN_SCORE_ADJ="0.98"
NO_NAME_SCORE_ADJ="0.97"
ANCHOR_FACTOR_ADJ="0.98"
00OPS_FACTOR_ADJ="1.05"
COMPRESSED_SCORE_MAX_ADJ="1.0"
FIELD_THRESH_ADJ="0.97"
FIELD_WEIGHT_ADJ="0.98"
MISSING_STEM_FACTOR_ADJ="0.98"
FIELD VARIANT_SCORE_ADJ="1.05" />

</NH_SERVER MESSAGE>

The following Search requests contains specific settings and adjustment factors for
a Personal name.

Sample Search Request (parameters specified)

<NHServerMessage protocol _version="4.1">

<BASIC_REQUEST_INFO request_type="S" request_id="-1"/>

<DATA_LIST_NAME value="data_list_1"/>

<SEARCH_NAME SN="Freeman"

GN="Harlow J"
CULTURE_SN="1"
CULTURE_GN="1"/>
<GENERAL_PARMS
NAME_THRESH="0.600000"
MAX_RETURN_NAMES="15"
RETURN_ORIG_NAMES="N"/>
<COMP_PARMS_GN

SCORE_MODE="1"
OOPS_FACTOR="0.600000"
NO_NAME_SCORE="0.750000"
NAME_UNKNOWN_SCORE="0.750000"
MISSING_TAQ_FACTOR="0.970000"
MISSING_STEM_FACTOR="0.950000"
MATCH_VARIANTS="Y"
MATCH_INITIALS="Y"
LEFT_BIAS="N"
INITIAL_TOKEN_SCORE="0.800000"
INITIAL_INITIAL_SCORE="0.900000"
FIELD_WEIGHT="0.800000"
FIELD_THRESH="0.500000"

146 1BM InfoSphere Global Name Management: Developer's Guide

DO_COMPRESSED_SCORE="Y"

COMPRESSED_SCORE_MAX="0.950000"

DIF_TAQ_FACTOR="0.990000"

CULTURE="4"

ANCHOR_TYPE="1"

ANCHOR_FACTOR="0.600000"

MATCH_FTELD_VARIANTS="Y"

FIELD_VARIANT SCORE="0.95"/>
<COMP_PARMS_SN

SCORE_MODE="0"

00PS_FACTOR="0.750000"

NO_NAME_SCORE="0.750000"

NAME_UNKNOWN_SCORE="0.700000"
MISSING_TAQ_FACTOR="0.980000"
MISSING_STEM_FACTOR="0.960000"

MATCH_VARIANTS="Y"
MATCH_INITIALS="Y"
LEFT_BIAS="N"

INITIAL_TOKEN_SCORE="0.850000"

INITIAL_INITIAL_SCORE="0.900000"

FIELD _WEIGHT="1.000000"
FIELD_THRESH="0.550000"
DO_COMPRESSED_SCORE="Y"

COMPRESSED_SCORE_MAX="0.950000"

DIF_TAQ_FACTOR="0.990000"

CULTURE="4"

ANCHOR_TYPE="1"

ANCHOR_FACTOR="0.800000"

MATCH_FIELD_VARIANTS="Y"

FIELD_VARIANT_SCORE="0.95"/>
</NHServerMessage>

BASIC_REQUEST_INFO

Attribute Required? Limits

request_type Yes Must be S.

request_id No A number that Distributed
Search returns in the
response. Use -1 to tell
Distributed Search to
generate a number.

DATA_LIST_NAME

Attribute Required? Limits

value Yes Not currently implemented in
Distributed Search.

SEARCH_NAME

Attribute Required? Limits

SN Yedl Surname, up to 128
characters.

GN Yedl Given name, up to 128

characters.

Chapter 5. Searching for names 147

Attribute Required? Limits
NAME Yed?

Name, up to 128 characters.
Used to hold non-fielded
names like organization
names.

NEC Yes Named Entity Category. Valid

values are:
O = Organization

P = Personal

CULTURE_GN No Culture code for the given
name. The current parameters
are used if this field is not

supplied.

CULTURE_SN No Culture code for the
surname. The current
parameters are used if this
field is not supplied.

SRCH_OPT No 1 = search on Personal

name list only

2 = search on
Organization list only

3 = search on both
Personal and Organization
name lists

'Required only if NEC is P.

*Required only if NEC is O.

Shutdown request:

With the Shutdown request, you can initiate a controlled shutdown of all Searchers
and the Communication Manager (commgr) for Distributed Search. Queued
transactions are completed before the shutdown is accomplished.

A valid request contains a case-sensitive password that matches the password that
is specified in the Distributed Search configuration file. Just before the commgr
shutdown, a Success response is returned to the requesting client process that
contains the sender's original request ID. Use of this message is intended to be
limited to administrative and support personnel in a typical Distributed Search
operational deployment.

Sample Shutdown Request

<NHServerMessage protocol_version="4.2">

<BASIC REQUEST INFO request_type="X" request id="-1"/>
<SHUTDOWN_PASSWORD value="NHSERVER" />
</NHServerMessage>

BASIC_REQUEST _INFO

Attribute

Required?

Limits

request_type

Yes

Must be X.

IBM InfoSphere Global Name Management: Developer's Guide

Attribute Required? Limits

request_id No A number that Distributed
Search returns in the
response. Use -1 to tell
Distributed Search to
generate a number.

SHUTDOWN_PASSWORD

Attribute Required? Limits

value No Not used.

Status request:

With the Status request, you can ask Distributed Search to report its current
processing and queue status. Distributed Search responds with a Status response
that contains the sender's original request ID.

Sample Status request

<NHServerMessage protocol version="4.2">
<BASIC_REQUEST_INFO request_type="T" request_id="-1"/>
</NHServerMessage>

BASIC_REQUEST _INFO

Attribute Required? Limits
request_type Yes Must be T.
request_id No A number that Distributed

Search returns in the
response. Use -1 to tell
Distributed Search to
generate a number.

Update request:

With the Update request, you can update a name that is already present within a
memory-resident Distributed Search name list (data list) during a Distributed
Search session. If successful, a success response message is returned that contains
the sender's original request ID.

This request modifies all records in the system that have a NAME_ID field that
matches the value that is specified in the RECORD_ID_TO_UPDATE attribute. The
Update request can be slow because it performs a Delete request and then an Add
request. Multiple records can be affected if they share the same NAME_ID.

The Named Entity Category (NEC) field determines the type of name and what
fields to use when updating a search list for Distributed Search:

* O - organization names use the NAME field
* P - personal names use the SN and GN fields
* A - all, meaning that all three fields are used and two names are added

Sample Update request

Chapter 5. Searching for names 149

150

< NHServerMessage protocol_version="4.1">
<BASIC_REQUEST_INFO request_type="U" request_id="-1"/>
<UPDATED_NAME
SN="Acme Light Industries Inc."
GN:II n
NAME="Acme Light Industries Inc."
NEC=IIAII
NAME_ID="123456"
CULTURE_SN="1"
CULTURE_GN="1"
ALT_PARSE="N" />
<RECORD_ID _TO_UPDATE value="123456"/>
<DATA_LIST NAME value=""/>
</ NHServerMessage>

BASIC_REQUEST _INFO

Attribute Required? Limits
request_type Yes Must be U.
request_id No A number that Distributed

Search returns in the
response. Use -1 to tell
Distributed Search to
generate a number.

UPDATED_NAME

Attribute Required? Limits

SN Yedl Surname, up to 128
characters.

GN Yed! Given name, up to 128
characters.

NAME Yed2 Name, up to 128 characters.

Used to hold non-fielded
names like organization
names.

NEC Yes Named Entity Category. Valid
values are:

O = Organization
P = Personal
A=Al
NAME_ID Yes ID of the name to be
updated, up to 256

alphanumeric characters. ID
does not need to be unique.

CULTURE_SN No Culture code for the
surname.

CULTURE_GN No Culture code for the given
name.

ALT_PARSE No Is this an alternate parse of a

name? (Y or N)

'Required only if NEC is P.

*Required only if NEC is O.

IBM InfoSphere Global Name Management: Developer's Guide

RECORD_ID_TO_UPDATE

Attribute Required? Limits

value Yes Name to be updated, up to
256 characters. NAME_ID
must match this field.

DATA_LIST_NAME

Attribute Required? Limits

value No Not currently implemented in
Distributed Search.

Distributed Search XML responses

You receive a response message after issuing a Distributed Search XML request is
processed that describes indicates whether or not the request succeeded or failed.
You can also receive a Status response after issuing a the Status Request.

Error response:

An Error response is returned if Distributed Search encounters an error while
processing a request. The response indicates the sender's original request ID for
which the error occurred. Specific error codes and messages are described in other
sections.

Sample error response

<NHServerMessage server_version="4.2" >
<REQUEST_ID value="4070517"/>
<ERROR supplied_data_list_name=""
severity=""
error_msg="Searcher 3 is not responding"
error_code="GNRDS-123"/>

</NHServerMessage>

REQUEST _ID

Attribute Required? Limits

value N/A The ID of the request that
caused the error.

ERROR

Attribute Required? Limits

severity N/A Not currently implemented in
Distributed Search.

error_msg N/A Description of the error.

error_code N/A Unique code for the error

message.

Chapter 5. Searching for names 151

Search Results response:

A Search Result response is returned after you issue a Search request or an
Original Data request. The response indicates the request by supplying the sender's
original request ID. Most, but not all, of the fields in this response are used by
both requests.

The following example is a Search Results response that contains two matching
names.

Sample Search Results Response

<NHServerMessage protocol version="4.1">
<SEARCH_RESULTS>
<NAME

SN="FREEMAN"
GN="HARLOW J"

NAME=II n

NEC=II PII
NAME_ID="123456"
SN_SCORE="1.000000"
GN_SCORE="1.000000"
FULL_NAME_SCORE="1.000000"
NAME_CNT="1"
IS_REG="N"
ALT_PARSE="N"/>

<NAME

SN=II n
GN=II n

NAME="Acme Light Industries Inc."

NEC=IIOII
NAME_ID="73"
SN_SCORE="0.7700"
GN_SCORE="0.85000"
FULL_NAME_SCORE="0.82000"
NAME_CNT="5"
IS_REG="N"
ALT_PARSE="N"/>

</SEARCH_RESULTS>
<REQUEST_ID value="9070517"/>

</NHServerMessage>
REQUEST_ID
Attribute Required? Limits
value N/A ID of the Search request.

SEARCH_RESULTS_NAME

Attribute Required? Limits

SN N/A Surname, up to 60 characters.

GN N/A Given name, up to 60
characters.

NAME No Name, up to 128 characters.

Used to hold non-fielded
names like organization
names.

152 1BM InfoSphere Global Name Management: Developer's Guide

Attribute Required? Limits

NEC No Named Entity Category. Valid
values are:

O = Organization

P = Personal

NAME_ID N/A For unique names, this value
is the NH_ID; for original
names, this value is the
Customer ID. NAME_ID can
be up to 256 characters.

SN_SCORE N/A Surname score, 0 — 1.00
GN_SCORE N/A Given name score, 0 — 1.00
FULL_NAME_SCORE N/A Full name Score, 0 — 1.00
NAME_CNT N/A The number of original

names to which this unique
name applies. Set to 1 when
the original name is returned.

ALT_PARSE N/A Is this a result of an alternate
name parse? Only used for
original names.

IS_REG N/A Is this a result of name
regularization? Only used for
original names.

Status response:

The Status response returns the current processing and queue status from a Status
request and contains the request ID from the associated Status request.

Sample Status response

<NHServerMessage server_version="4.2" >
<REQUEST_ID value="4070517"/>
<STATUS_MESSAGE
value="Server running with 0 searches running
and 0 queued\"/>"

</NHServerMessage>
REQUEST _ID
Attribute Required? Limits
value N/A ID of the associated Status
request.
STATUS_MESSAGE
Attribute Required? Limits
value N/A Text that describes the state

of Distributed Server.

Chapter 5. Searching for names 153

Success response:

The Success response is the confirmation used by Distributed Search to indicate
that a message has been received and processed successfully. The response
indicates the transaction that succeeded by supplying the sender's original request
ID.

Sample Success response

<NHServerMessage protocol_version="4.2">
<REQUEST_ID value="1070555"/>

</NHServerMessage>
REQUEST _ID
Attribute Required? Limits
value N/A ID of the originating request

message.

Searching for names using Enterprise Name Search

154

Enterprise Name Search (ENS) provides an infrastructure for distributing high
volume, large-scale, enterprise name searches across very large name lists. ENS
leverages IBM NameWorks for efficient name search function, name list
management, and to configure, manage and monitor the name search process. ENS
provides additional options for horizontal scaling based on performance needs,
deployment with high availability and failover, and both SOAP and REST
interfaces for client integration with third-party software and existing legacy
systems.

You can use the search capabilities of ENS from your own client program by
means of the web service API, or you can use the graphical user interface provided
in ENS. Even if you intend to use the web services, the GUI can be helpful in
trying out searches and in understanding the capabilities and behavior of ENS,
since it uses the web services for its searching.

Managing Enterprise Name Search user security

ENS incorporates the WebSphere Liberty application server to host its web
components, and relies on WebSphere Liberty’s security implementation for
authentication and authorization.

By default, WebSphere Liberty uses a simple file-based store for information on
users, groups, and passwords. In ENS, the file containing this information is found
at ensroot/ibm-home/wlp/users.xml. You can add, remove, and manage users by
editing this file. This can be done while the system is running.

Clients with more complex security requirements can change their WebSphere
Liberty configuration after ENS installation to use an LDAP user registry instead of
the simple file-based store. This is beyond the scope of GNM documentation but is
discussed in WebSphere Liberty security documentation.

Additionally, users can change their own ENS passwords on a change-password
GUI screen.

IBM InfoSphere Global Name Management: Developer's Guide

Command line syntax for the wspswd utility

The wspswd utility is a command-line utility that you use to manage the
ens.passwd password file. The password file contains the list of user names,
passwords, and security role groups assigned to each Enterprise Name Search user.

To use the wspswd utility, navigate to the <install>/bin directory and enter
commands from the command line. The syntax for the wspswd utility is as
follows:

* For Linux:
./wspswd optional path location of the password file options
* For Windows:
wspswd.bat optional_path_location_of_the_password_file options

If a path to password._file is not specified, it will default to the ens.passwd file
located in the <install>/ibm-home/ens directory.

Command options

-C username
Create a new user with the specified user name and generate a password for
the user.

-c username password
Create a user with the specified user name and password.

-d username
Delete a user with the specified user name and password. By deleting a user,
you remove the user name and password, and remove the user from all of
security role groups to which they belong.

List all the current users for Enterprise name search by user name.

-p username
Generate a new password for the specified user.

-p username password
Change the password to the specified value for the specified user.

-a username grpl grp2 ...
Assign the user to a security role groups. Security role groups determine which
ENS components users can access and the types of functions that they can
perform.

-r username grpl grp2 ...
Reset the security role groups assigned to the specified user.

-u username grpl grp2 ...

Remove the user from one or more security role groups.

Note: users, passwords, and roles must use characters between a-Z (upper and
lower case) and 0-9.

Example

To create a user, specify a password, and assign a security role groups to the new
user in a Windows environment:

1. Create the user with a username of “ConsoleUserl” and assign a password of
“ens1234”:

Chapter 5. Searching for names 155

wspswd.bat -c ConsoleUserl ensl234
2. Assign the security role group of “admin” to the user:
wspswd.bat -a ConsoleUserl admin

Creating users and assigning security groups
Users and permissions are defined and managed by adding and modifying <user>
and <member> elements in the ensroot/ibm-home/wlp/users.xml file.

About this task

The users.xml file has a section near the top with the comment “List users here”:

<l-- List users here -->
<user name="ensadmin" password="{aes}AICwWs/XAgx70bztj0s09zkS31vubqOrERTNM/081K" />

Users are created by adding a line to this section. Do not remove or modify the
two entries created here at installation time. When you add a new user, you can
give it some plain-text initial password like this:

<user name="smith" password="changeMe"/>

The user name and password must contain only letters (a-z and A-Z) and digits
(0-9). After you add a user entry, the user should change their password as in
“Changing or resetting user passwords.” [Link to that topic]

Setting group membership for a user In addition to adding the <user> element,
you’ll need to list the user in one or more groups to specify which operations the
new user can perform. ENS allows users to be in the following groups:

Table 12.

Group Rights

admins * Use all console operations to view and change the system state.
* Search and manage any name list.
* Use the dashboard.

console_users * Use all console operations to view and change the system state.
* Use the dashboard.

dashboard_users * Use the dashboard to view the system state.

managers_all_lists * Search and manage (add/delete from) any name list.

managersNNN* (e.g. |.

Search and manage name lists for which this manager role was
managers101)

specified when creating the list in the NameLoader.

searchers_all_lists * Search any name list.

searchersNNN * (e.g. |+ Search name lists for which this searcher role was specified
searchers101) when creating the list in the NameLoader.

* Used for fine-grained control.

Membership in the “admins” group provides access to all ENS operations. A user
in this group does not need to be added to any other groups.

Membership in the “managers_all_lists” group lets a user search in and manage all

name lists. A user in this group does not need to be added to any other searchers
Or managers groups.

156 1BM InfoSphere Global Name Management: Developer's Guide

Membership in the “searchers_all_lists” group lets a user search in all name lists. A
user in this group does not need to be added to any other searchers groups.

The “searchersNNN” and “managersNNN”" groups provide for fine-grained
control of access to particular lists. Most ENS installations do not use this feature.
To put a user in a group, find the appropriate <group> element in users.xml and
add a <member> element for the user. For example, we can make an existing user
“smith” a member of the console_users group like this:

<group name="console_users">
<member name="smith"/>
</group>

You can remove “smith” from the console_users group by removing the <member
name="smith"> element.

Changing or resetting user passwords
User passwords for the Enterprise Name Search access are managed through the
users.xml file.

About this task

When an administrator creates a new user by adding a user entry in the users.xml
entry, they can give it an initial plain-text password like this:

<user name="jdoe" password="changeMe"/>

The user can then change their own password by browsing (on a running ENS
server) to the change-password page at http://host:port/changePassword.jsp. They
will be prompted to log in using their old (initial) password, then presented with a
form where they can enter the new password twice. When they do this and click
“Change Password”, the users.xml file is updated to have the new password, now
AES-encoded:

<user name="jdoe" password="{aes}ACdUKKZOyQi09b4jY83d19UNGUmMBbdTIznIT8kmUPmMu3"/>

Passwords must be between 5 and 30 characters in length. A user’s password may
not be the same as their username.

If a user forgets their password, an administrator can reset it by changing their

<user>

entry to have a known plain-text one again, as above:
<user name="jdoe" password="changeMe"/>

after which the user should change it again as above.

Deleting user access to Enterprise Name Search functions

You can remove a user from a particular group (taking away their access to some
part of ENS functionality) by editing the users.xml file and deleting the
<member...> node for that user in the relevant group.

About this task

You can remove a user from ENS entirely by removing them from all groups and
removing their <user> node.

Chapter 5. Searching for names 157

Fine-grained access control for specific lists

The users.xml file in ENS has a group called “searchers_all_lists” whose members
can search in all name lists. It also has a group called “managers_all_lists” whose
members can search in all lists and can also manage them by adding, deleting, and
getting names.

About this task

For many installations, these generic searcher and manager groups — or even the
more generic “admins” group — provide a suitable access control model.

Some clients may want to use a finer-grained model where particular users can
search and/or manage in some name lists and not others. ENS supports this using
numbered “searchersNNN” and “managersNNN” groups.

When you add a name list to ENS using NameLoader, you provide the name of a
searcher role (e.g. “searcher101”) for the list. Any user in the associated group
(“searchers101”) is allowed to search for names in that list.

Similarly, you specify the name of a manager role (e.g. “manager101”) for that list.
Any user in the associated group (“managers101”) is allowed to add and delete
names in that list via web services.

Note that the names of groups as seen in users.xml are pluralized (“searchers101”)
but the corresponding role names seen in NameLoader are singular
(“searcher101”).

These fine-grained roles are optional. You don’t have to use them if you find that
the generic “searchers_all_lists” and “managers_all_lists” groups are sufficient,
though you still need to specify the roles when adding names with NameLoader.

By default, the groups available in users.xml are searchers101 through
searchers120, and managers101 through managers120. If you need a wider range of
groups, up to searcherl-searcher500 and managerl-manager500, you can define
them by adding more <group> elements in the users.xml file and more
<security-role> elements in applications.xml. Both files are found in the
ensroot/ibm-home/w1p folder. See the comments in those files for more information.

When you search for names in ENS, using either the search GUI or web services,

you only see results from name lists for which you have search permissions. For

example, assume that: the CUSTOMERS name list is associated with the

searcher101 role, the EMPLOYEES name list is associated with the searcher102 role,

and user “jdoe” is only a member of the searchers101 group. Then:

* When user jdoe searches for “John Smith”, whether in the ENS search GUI or
using web services, they will only find results from the CUSTOMERS list, not
from EMPLOYEES.

* When user jdoe uses the ENS search GU]I, the list of searchable name lists shown
includes CUSTOMERS but not EMPLOYEES.

* When user jdoe uses the “get namelists” web service, the resulting list includes
CUSTOMERS but not EMPLOYEES.

Managing name lists with the NameLoader utility

You can manage name lists for Enterprise Name Search with the NameLoader
utility. The NameLoader utility is a stand-alone Java-based program that takes in

158 1BM InfoSphere Global Name Management: Developer's Guide

the raw source names from name lists, analyzes those names using IBM
NameWorks, and stores the names and the results of the name analysis in the ENS
database.

The NameLoader utility for ENS is related in function to the Name Preprocessor
utility used in Distributed Search, but does not replace it. The NameLoader utility
loads names from a name list file, and stores them in the database in two distinct
ways: as “source names” and “search names”.

Source names are the names as originally received, with their original parse and
script. NameLoader uses GNM to analyze these source names to produce analyzed
forms, or search names. This analysis includes determination of a category
(personal or organization), culture and (for personal names) a parse separating
given name and surname. NameLoader finds or adds database records to store
source names, search names, and a mapping between them.

You can also use the NameLoader utility to reload or remove names. The ENS cell
can remain active when using NameLoader to load, reload, and remove names
from a list, though for the most efficient removal operation (“clear all”), the cell
must be inactive.

Reading source names from the name list files

Name list files are flat text files in CSV (comma separated values) format. If using
non-Latin characters, the file should use UTF-8 encoding. Each row in the name
list represents one source name, and normally contains the following information:

Table 13. Fields in CVS files for incoming names — normal format

Field Meaning Example Default Notes

0 Surname “SMITH” blank Either surname or given name can be blank, but not
both.
1 Given “JOHN” blank Either surname or given name can be blank, but not
name both.
2 idData 300011 no Required. An identifier that must be unique within a
default data source.
3 Surname 3 blank Optional
culture
4 Given 3 blank Optional
name
culture
5 Category 0 blank Optional. Indicates the name type, either personal,

"1

organizational, or unspecified. Use “p” for personal or
“0” for organization. Alternatively you can use the
digit “0” for personal and “1” for organization, but
the letters may be less likely to cause confusion.

Some examples of valid input lines using normal format:

Smith,John,x101,1,1,p - John Smith, external id x101, Anglo culture for sn/gn.
Personal name.

John Smith,,x102,1,1,p - single field name instead of sn/gn. Note the double
comma.

Chapter 5. Searching for names 159

160

Smith,John,x103,, - omitting culture and category. GNM determines both by
analysis

Smith,John,x104 - ditto. When trailing fields are omitted, commas are not needed.
O,M,x105,,,p - showing that names can use non-Latin script

Smith Corp,,x106,,,0 - organization name in sn field (note double comma), explicit

“u 1

0" category.

Smith Corp,,x107 - organization name, no category marked. GNM determines by
analysis

Reading source names from the name list files — extended input
format

In most cases the normal input format described above is suitable, but there is an
alternative format provided for one situation when using non-Latin script for
input. Most script types can be recognized automatically, but ENS and GNM
cannot automatically distinguish Hanzi from Kanji in input names.

If your name list contains a Japanese organization name written using only
Chinese characters with no Kana, GNM cannot automatically recognize it as a
Japanese name. For a name list including such names, you should use the new
extended file format that lets you specify an explicit script type when needed. This
format puts the fields in a different order, and adds a field where you can specify
script type explicitly. Using this format, the CSV file contains the following
information for each row.

When you run NameLoader with such a file, you'll also need to specify
“-extendedInputFormat” in the NameLoader command line, or
“extendedInputFormat=true” in the loader configuration file.

Table 14. Fields in CVS files for incoming names — Extended format — a data line for a
personal name

Field
Meaning Example Default Notes
0 External ID | 300011 No default |Required. An identifier that must be
unique within a data source.
1 Category 0 blank Optional. Indicates the name type, either
personal, organizational, or unspecified.
Use “p” for personal or “o” for
organization. Alternatively you can use
the digit “0” for personal and “1” for
organization, but the letters may be less
likely to cause confusion.
2 Script type blank For personal names, this field is not used
and should be left blank.
3 Surname or |“Smith” or |blank Either surname or given name can be
full personal | “John blank, but not both.
name Smith”
4 Given name |“JOHN" blank Either surname or given name can be
blank, but not both.
5 Surname 1 blank Optional
culture

IBM InfoSphere Global Name Management: Developer's Guide

Table 14. Fields in CVS files for incoming names — Extended format — a data line for a
personal name (continued)

Field
Meaning Example Default Notes

6 Given name |1 blank Optional
culture

Table 15. Fields in CVS files for incoming names — Extended format — a data line for an
organization name

Field
Meaning Example Default Notes

0 External ID | 300011 No default |Required. An identifier that must be
unique within a data source.

1 Category 0 blank Optional. Indicates the name type, either
personal, organizational, or unspecified.
Use “p” for personal or “0” for
organization. Alternatively you can use
the digit “0” for personal and “1” for
organization, but the letters may be less
likely to cause confusion.

2 Script type Optional explicit scriptType hint, almost
always left blank. Currently the only
intended use for this field is to distinguish
Hanzi from Kanji organization-name input
by specifying CHINESESCRIPT or
JAPANESESCRIPT. Other script types are
determined automatically from the name
text.

3 Organization | “Smith No default |May not be blank

name Corp”

4 Organization | 1 blank Optional

name
culture

The NamelLoader analyzer component

The name analyzer component performs the following analysis on each incoming
source name:

* Processes each source name by transliterating the name.

* Categorizes the name into a name type if the "Category” element is blank in the
flat CSV file.

+ Finds the best parse for the original form of the name if the Category is
"personal”.

¢ Finds one or more transliterated search names based on the source name.
Source name and search names

Source names are the names as originally loaded from a name list. Whereas search
names are the names resulting from the analysis performed by IBM NameWorks.
The schema stores both source names and search names.

Source names are located in the ENS_SOURCE_NAME table. Search names are
located in the ENS_SEARCH_NAME table. Enterprise Name Search manages the

Chapter 5. Searching for names 161

mapping between the two. For performance reasons, when the name is written to
the schema tables, the writing is done using multiple threads. Each thread uses a
batch database update to add or update multiple records. The number of threads
and the batch size are configurable in the NameLoader utility configuration file.

If two search names are identical except for culture, both search names are stored
separately. For example, “June Park ” with a Korean culture designation is stored
separately from “June Park” with an Anglo culture designation because matching
rules are different for these two cultures.

If two search names are identical except for their alternate parse flag, both are also
stored separately. For example, the source name “Elton John” is distinct from the
source name of “John Elton”. A name search request for “Elton John” finds and
reports both source names, but the source name of John Elton is reported as a
lower match score because it is based on an alternate parse.

loader.config file

The NameLoader utility has its own configuration file, named loader.config, which
specifies the behavior for the IBM NameWorks instance used by Enterprise Name
Search. All options and configuration details for the NameLoader utility are
specified in this file.

NamelLoader commands

The NameLoader utility is used to manage name lists for use with Enterprise
Name Search. Run NameLoader by typing a single command at the OS command
prompt to do a particular operation. You can control what NameLoader will do by
means of command-line options and settings specified in the NameLoader
configuration file.

To run the NameLoader utility, navigating to the <install path>/bin/ directory
and entering nameLoader with one or more of the following actions or parameters:

Table 16. ENS NamelLoader commands
Action Effect Examples

-load (Default) Loads source names Load a single name list using default settings:
from a CSV file, processes them <jpsta1] path>/bin/nameLoader -load -nlc EMPLOYEES -n1d "Currer
into search names, and adds or
updates entries in the following Load a single name list using your own loader
tables: configuration file:
* ens_source_name <install path>/bin/nameLoader -load -nlc EMPLOYEES -n1d "Currer
* ens_search_name

Note: You can specify one of your configuration

files as the last command-line argument in any of

these examples.

* ens_search_source_name
* ens_name_list

Optionally it also adds records
to the ens_search_name_revs
and ens_search_name_adds
tables for tracking revisions.

-reload Combination of clear and load. Clear and reload a single name list using default
settings:

<install path>/bin/nameLoader -reload -nlc EMPLOYEES -nld
"Current employees" -in employees.csv

162 1BM InfoSphere Global Name Management: Developer's Guide

Table 16. ENS NameLoader commands (continued)

Action Effect Examples
-clear Removes ens_name_ list and Clear a single name list:
ens_source_name entries for a <install path>/bin/nameLoader -clear -nlc EMPLOYEES

particular name list from the
database. Does not remove any
entries from ens_search_name.

-clearAlRemoves all entries from Clear all name lists:

ens_name_ list, <install path>/bin/nameLoader -clearAll
ens_source_name, and

ens_search_name.

-usage Displays all options for the View additional options for the NameLoader
NameLoader utility. utility:

<install path>/bin/namelLoader -usage

The default 1oader.config file created by the installer has comments that describe
each entry. If dealing with a large number of names, you will probably want to
make adjustments to the performance-related parameters in this file. This can make
a significant difference in NameLoader performance. See comments in the file for
an explanation of each performance parameter.

You can specify a NameLoader configuration file as the last command-line
argument when running the NameLoader. If you omit that, the default
loader.config file will be used.

Most options and configuration details, including the path of the Global Name
Management configuration file, can be specified in the NameLoader configuration
file. Alternatively, you can specify the details that typically vary from one name list
to another as command line arguments. This allows a single configuration file to
be used for multiple name lists.

When you run NameLoader with invalid arguments or with the “-usage”
argument, it displays a summary of the valid command-line arguments.

NameLoader configuration file

NameLoader function is controlled by a combination of a configuration file and
command-line arguments. The NameLoader configuration file is separate from the
Global Name Management configuration file, which specifies NameWorks
behavior. This separation of configuration files allows NameLoader configuration
files for various name lists to share a common Global Name Management
configuration file.

When you install ENS, a default NameLoader configuration file is generated with
appropriate settings for your installation. This file is found in install_path/data/
Toader.config. If you run the nameLoader command without specifying a
different configuration file, it uses this default one. You can edit this file to adjust
the settings found there, or you can make your own configuration files for
different purposes. The default configuration file has comments describing each
setting.

The NameLoader configuration file is specified in a command-line argument when
running the NameLoader. All other options and configuration details, including the
path of the Global Name Management configuration file, can be specified in the
NameLoader configuration file. Alternatively, you can specify the details that

Chapter 5. Searching for names 163

typically vary from one name list to another as command line arguments. This
allows a single configuration file to be used for multiple name lists.

The sample Toader.config file included with ENS has comments that describe
each entry. NameLoader displays information about its command-line arguments
when run with the “-usage” argument or with invalid arguments.

Table 17. ENS NameLoader configuration file entries

Key in
NameLoader
configuration Typical Corresponding
file Type value Notes command-line option
nameListCodétring CUSTOMERSame of the external name -nameListCode or —nlc
list. Normally provided in
command line arguments
unless you are making
per-namelist loader config
files.
nameListDesciptig{ Our Description of the data source. OnameListDescription or
customers” Normally provided in -nld
command line arguments
unless you are making
per-namelist loader config
files.
nameListMan&geirippteanager107ENS user role required to -managerRole or Omr
make changes to this list.
Accepted values are
“manager0” to “manager400”.
nameListSeartenRpENS user ENS user role required to -searcherRole or Osr
role search in this list, or even to
required see that it exists. Legal values
to search are “searcher0” to
in this “searcher400”.
list.
Default
available
range is
“searcher101”
to
“searcher120”.*
inFileName Stringprojectl/ Path of the CSV file to be -inFileName or Qin
badGuys.inised as input.
jdbcDriver Stringcom.ibm.dbName of the JDBC driver
jec.DB2Drivelass.
dbUrl Stringjdbc:db2:ENSRL of the database.
dbSchema Stringens Database schema name.
dbUserld String yourDBUsetiderid for database access. -databaseUserid or Odbu
Can be in command-line
arguments to avoid storing in
the configuration file. If not
specified in either place, the
user is prompted for this in
the console.

164 1BM InfoSphere Global Name Management: Developer's Guide

Table 17. ENS NamelLoader configuration file entries (continued)

Key in

NameLoader

configuration Typical

file Type value Notes

Corresponding
command-line option

dbPassword String yourDBPassiessdvord for database access.
Can be in command-line
arguments to avoid storing in
the configuration file. If not
specified in either place, the
user is prompted for this in
the console.

-databasePassword or —dbp

doFullName Booleamue Controls whether single-field
source names (with surname
but no given name) are
parsed into given name and
surname on loading.

parseThresholthtege65 Controls use of alternate

doFullName is true and a
single-field name is parsed.

0-100 parses on source names, when

doCategorize Booleaalse Controls whether single-field
source names with no
category (person/org) are
categorized by NameWorks
on loading.

gnrConfigFileString /abc/ Path of the Global Name
gnr.config Management configuration
file controlling parsing and

analysis.
numThreads Almabgedr* Number of threads used for
1-64 analysis of names. Adjusted
for performance.
numThreadsWhriteg#&# Number of threads used for
1-64 writing names to database or
output files. Adjusted for
performance.
dbBatchSize**IntegeB2 Number of names processed
1-256 at a time when writing to the
database. Adjusted for
performance.
threadQueueSin&ége250 Number of names held in the
1-9999 queues for analysis or output.

Adjusted for performance.

* - For fine-grained access control as described in [Fine-grained access control for|
—

pecific lists| If the range 101-120 is not sufficient, you can extend it as described in

that section.

** - For hints on adjusting each of these performance parameters, see the
corresponding comments in the loader.config file in your installation.

Chapter 5. Searching for names 165

Name lists

The NameLoader configuration file and command-line arguments specify the
following for a name list:

* Name list code
* Description

* Searcher role

* Manager roles.

If the ENS name list table (ens_name_list) contains an entry with the specified
name list code, it is updated. If not, one is added.

Loading names from name lists using the Name Loader utility
Whenever you have a new name list or updates to a name list, you can use the
Name Loader utility to process and load those names into the database schema.
For updates to an existing name list, you can also use the “addName” and
“deleteName” web services.

About this task

Arguments specified on the command line can override defaults and configuration
file settings. Only the configuration file name is required in the command line.
Everything else may be specified in the configuration file. Once installation
completes, a template of the name loader configuration file is at <install
path>/data/loader.config. It is prefilled with the ENS database connection
information, except for the database user name and password.

Procedure
From a command line, start the Name Loader utility by entering the following

command:

UNIX/Linux
<install path>/bin/namelLoader <options> <configurationFileName>

Windows
<install path>\bin\namelLoader.bat <options> <configurationFileName>

Example

To get a Name Loader usage message containing all options, enter the following:
install_path/bin/nameLoader -usage

which generates the following output:
Usage: namelLoader <options> <configurationFileName>

Options:

-in customers.csv or -inFileName customers.csv

-nlc CUSTOMERS or -namelListCode CUSTOMERS

-nld "Our customers" or -namelListDescription "Our customers"
-sr searcherl0l or -searcherRole searcherl0l

-mr managerl0l or -managerRole managerlOl

-dbu myDatabaseUserid or -dbUserid myDatabaseUserid
-dbp myDatabasePassword or -dbPassword myDatabasePassword
-revtrack or -norevtrack or -revisionTracking or -noRevisionTracking or -autorevtrack or -autoRevisi

-extendedInputFormat (if applicable)

166 1BM InfoSphere Global Name Management: Developer's Guide

-verbose or -trace or -quiet (at most one of these)
-load, -reload, -clear, or -clearAll (at most one of these; the default is -load)

Only configurationFileName is required in the command line. Everything else may
be specified in the configuration file. Or, if you want to use the default
configuration file, you can omit the configuration file from the command line and
specify -nlc, -nld, and -in arguments there, as in:

nameLoader -nlc "CUSTOMERS" -nTd "Our customers" -in customers.csv -dbu mydbuserid -dbp mydbpasswc

If you omit the database userid and password from both places, the program will

prompt for them in the console. Actions:

* -load adds/updates the database without removing anything.

* -reload removes this name list's source names then re-adds source and search
names

* -clear removes this name lists' source names and does not add anything

¢ -clearAll removes ALL source names, search names, and name lists from the
database

Assuming the configuration file only contains settings for your ENS database
connection and performance parameters, here is an example of a command that
loads the CUSTOMERS name list on a UNIX/Linux system while the ENS cell is
down/ off.

install_path/bin/nameLoader -load -in /CUSTOMERS.txt -nlc CUSTOMERS -nld "List with the names of ¢

Where

* -Toad specifies the action to take. Load is the default.

* -in <file path> specifies the path to the CSV formatted name list text file.

* -nlc CUSTOMERS specifies that the "name list code" (name list short identifier) is
"CUSTOMERS"

* -nld <description> specifies a human readable description of the name list.

* -sr <security role>grants read access for this name list to any user with the

"searcher120" security role. These roles must have a format of "searcher1" to
"searcher500".

e -mr <security role> grants write (management) access for this name list to any
user with the "manager120" security role. These roles must have a format of
"managerl” to "manager500".

Here is an example to clear all name lists on UNIX/Linux when the ENS cell is not
running:
<install path>/bin/nameLoader -clearAll <install path>/data/Toader.config

Here is an example of loading the VENDORS name list on UNIX/Linux while the
ENS cell is running:

<install path>/bin/nameLoader -load -revtrack -in /VENDORS.txt -nlc VENDORS -nld "List with the ne

-revtrack turns on revision tracking for the name inserts. This feature allows
Searchers in a running ENS cell to notice the newly inserted names and gradually
add them to their in memory name list partitions. This lets you add names from a
name list while the system is running. If this is not specified when Name Loader is
executed while the ENS cell is running, ENS will not notice the new names until
the cell is restarted.

Chapter 5. Searching for names 167

168

Updating database statistics

Once you use NameLoader to load some names into ENS tables in the database, it
is important to optimize performance by using database commands to update
statistics about the tables that hold names. This lets the database optimize the way
it accesses those tables, and can make a dramatic difference in ENS performance.

About this task

You would do this after loading some names. You may find that it pays to run
statistics after adding 200,000 names, and again at some larger sizes (say after
adding a million names and again after 5 million, etc). The DB2 commands listed
below can be run while NameLoader is still running.

This is normally something done by a DBA. If you are on your own (say in a
demo system), the DB2 commands for doing this, assuming schema name “ENS”,
would be:

RUNSTATS on table ENS.ENS_SEARCH_NAME ON KEY COLUMNS;
RUNSTATS on table ENS.ENS_SOURCE_NAME ON KEY COLUMNS;
RUNSTATS on table ENS.ENS_SEARCH_SOURCE_NAME ON KEY COLUMNS;
RUNSTATS on table ENS.ENS_SEARCH_NAME_ADDS ON KEY COLUMNS;
RUNSTATS on table ENS.ENS_SEARCH_NAME_REVS ON KEY COLUMNS;
COMMIT;

The equivalent Oracle is DBMS_STATS. More information on it is available at:
[http:/ /docs.oracle.com/cd /B19306_01/appdev.102/b14258 /d_stats.htm#i103646 |

Note that some systems automatically run statistics at night to optimize their
operation. If your system does this at a time when your ENS tables happen to be
empty of names, it may effectively undo the effect of your earlier manual statistics
run. In that case you may need to rerun statistics again with names loaded, as
above.

Removing names from the Enterprise Name Search schema
Using the NameLoader utility, you can efficiently delete all names and name lists
from the Enterprise Name Search schema with -clearAl1, or only delete a specific
name list with -clear.

About this task

The -clearAl1 option will delete all names and name lists. This operation requires
that the cell be inactive.

nameLoader -clearAll

The -clear option will delete a single name. The fact that source names from
multiple name lists may be mapped to the same search names means that this
operation is more complex and inherently less efficient than -clearAll.

nameLoader -clear -nlc CUSTOMERS

IBM InfoSphere Global Name Management: Developer's Guide

http://docs.oracle.com/cd/B19306_01/appdev.102/b14258/d_stats.htm#i103646

Chapter 6. Configuring IBM NameWorks

Specifying default settings, overrides, search strategy information, and other
elements affects how IBM NameWorks functions. To use the IBM NameWorks API
effectively, you configure IBM NameWorks by specifying default settings and
configuration information in the IBM NameWorks configuration file, or by using
the Configuration() class.

Deciding to use an external file, like nw.config, or the Configuration() class
depends on your configuration and the number of CPUs that you have available
for processing. Using the Configuration() class might increase performance at
initialization because an external configuration file does not need to be added to
memory, read, and processed. However, this improvement is typically slight and
varies based on different configurations.

IBM NameWorks configuration file

You can specify configuration information for IBM NameWorks by using
configuration settings in a single text file that is read during system initialization.
The information within this text file adheres to the following format, where
bracketed section names separate lists of key/value pairs:

[Section name] Key=Value

Section and key names are not case-sensitive, and values can contain any
characters.

You can control the limit for the number of threads that are required at runtime for
searching in an IBM NameWorks process. A thread-pooling mechanism pools
thread-generation activity to ensure that the number of threads that are spawned
by Embedded Search do not exceed the limit that you specified. You can set this
limit through the MaxThreads= entry in the [General] section of the IBM
NameWorks configuration file.

The recommended approach for specifying comparison parameter overrides is to
create a default comparison parameter override file that is tuned for each data list,
apply that file to the data list, and then use relative overrides in the [Search
Strategy] section of the IBM NameWorks configuration file. After default
overrides are associated with a data list you are not required to specify overrides
with each query.

Note: Using one thread for each CPU core that is available in the target machine
helps to achieve optimal performance of IBM NameWorks.

Configuration() class
By using the Configuration() class of IBM NameWorks, you can specify default
settings and keep them in memory as part of your program rather than using an

external configuration file. You use this class to specify default configuration
settings and then specify overrides by using one of the following options:

© Copyright IBM Corp. 2001, 2013 169

* Create a set of default comparison parameters that are tuned for each data list
by using the Strategy() class, and then implement overrides by using the
override methods, such as addGivenNameOverride(), addSurnameOverride(),

and addOrganizationNameOverride().

* Use the CompParmsOverrides() class to supply individual given name, surname
and organization name comparison parameter overrides to the Scoring.search()

and Scoring.compare() methods.

Using the Configuration() class enables you to store your IBM NameWorks
configuration in a database and to specify new or updated configurations
dynamically. Using this option is beneficial if you want to save your IBM
NameWorks configuration in a database and use another application to create

instances of IBM NameWorks.

Specifying configuration settings by using the IBM NameWorks
configuration file

170

You can set and update configuration information for IBM NameWorks by
modifying settings in the configuration file that is read during system initialization.
This file is expected to be in the UTF-8 encoding.

About this task

This task is typically completed by a system administrator, who makes changes to
the configuration file and restarts the application server for the changes to take
effect. Each section of the IBM NameWorks configuration file contains different
parameters. Refer to the topics in this section for more information about the
parameters that you can modify in each section of the configuration file.

Procedure

1. Navigate to the directory where your IBM NameWorks configuration file exists.

Option

Description

If you are using IBM NameWorks in your
client application

The configuration file exists in whichever
directory you use for your custom client
application.

If you are using IBM NameWorks as a web
service

The default location of the configuration file
is install_dir/data, where install_dir is the
directory where you installed IBM
InfoSphere Global Name Management .

Open the configuration file in a text editor and make the necessary changes.

The sections and parameters that you include vary depending on your

configuration.

3. Save the configuration file.

4. Stop and restart your client application or web service for the changes to take
effect.
Option Description

If you are using IBM NameWorks in your
client application

1. Stop your client application.
2. Restart your client application.

IBM InfoSphere Global Name Management: Developer's Guide

Option Description

If you are using IBM NameWorks as a web | 4
service

. Navigate the directory where you

installed IBM InfoSphere Global Name
Management

Run the stopGNR command to stop the
web service.

Run the startGNR command to restart the
web service.

Sample configuration file

[General]
MaxThreads=4
CompParmsDefaults=/gnr/data/compparms.config

[Custom Tokens]
OR=GivenName
BARONESS=Title

[Datalist:Distributed]
Type=1
Server=localhost|4250|1|

[Datalist:Embedded]

Type=0

List=partl.csv

List=part2.csv

CompressedBitSig=true
TAQ=/gnr/data/taq.ibm
GNV=/gnr/data/gnv.ibm
SNV=/gnr/data/snv.ibm
PNREG=/gnr/data/angloRegRule.ibm,Anglo
PNREG=/gnr/data/swasianRegRule.ibm,Arabic
PNREG=/gnr/data/swasianRegRule.ibm,Pakistani
PNREG=/gnr/data/russianRegRule.ibm,Russian

[DateCompare]
EIT=93

[Strategy:Broad]

[GNParms :Broad]
ANCHOR_FACTOR=0.95
COMPRESSED_SCORE_MAX=1.00
DO_COMPRESSED_SCORE=Y
FIELD_THRESH=0.50
FIELD_WEIGHT=0.40
INITIAL_INITIAL_SCORE=0.70
INITIAL_TOKEN_SCORE=0.75
MATCH_INITIALS=Y
00PS_FACTOR=0.95

[SNParms :Broad]
ANCHOR_FACTOR=0.95
COMPRESSED_SCORE_MAX=1.00
DO_COMPRESSED_SCORE=Y
FIELD_WEIGHT=0.60
NAME_UNKNOWN_SCORE=0.50
00PS_FACTOR=0.95

[Strategy:Narrow]
[GNParms :Narrow]
ANCHOR_FACTOR=0.85
COMPRESSED_SCORE_MAX=0.00
DO_COMPRESSED_SCORE=Y
FIELD_THRESH=0.60

Chapter 6. Configuring IBM NameWorks 171

FIELD_WEIGHT=0.40
INITIAL_INITIAL_SCORE=0.65
INITIAL_TOKEN_SCORE=0.70
NAME_UNKNOWN_SCORE=0.50
00PS_FACTOR=0.85
[SNParms:Narrow]
ANCHOR_FACTOR=0.85
COMPRESSED_SCORE_MAX=1.00
DO_COMPRESSED_SCORE=Y
FIELD WEIGHT=0.60
NAME_UNKNOWN_SCORE=0.40
00PS_FACTOR=0.85

[Strategy:Standard]
[GNParms:Standard]
[SNParms:Standard]
[ONParms:Standard]

[Transliteration Modules]
Module=/gnr/data/arabicTransRule.ibm
Module=/gnr/data/cyrillicTransRule.ibm

[Reference Files]
NameSifter=/gnr/data/SifterRules.ibm

[Comparison Files]

TAQ=/gnr/data/taq.ibm

GNV=/gnr/data/gnv.ibm

SNV=/gnr/data/snv.ibm
PNREG=/gnr/data/angloRegRule.ibm,Anglo
PNREG=/gnr/data/swasianRegRule.ibm,Arabic
PNREG=/gnr/data/swasianRegRule.ibm,Pakistani
PNREG=/gnr/data/russianRegRule.ibm,Russian

General section of the configuration file

The [General] section contains information that is available across all features.
Support for thread pooling and overrides for default comparison parameters
(CompParms) are listed this section of the configuration file.

The following fields are configurable under the [General] section of the
configuration file:

[General]

MaxThreads=

CompParmsDefaults=
DefaultAltScoreFactor=

MaxThreads=n
Indicates the maximum number of threads that are used to support concurrent
searching operations. This value applies to both external search engines and
embedded searches, and can be any positive integer greater than or equal to
(>=) zero. However, values that are larger than the number of processor cores
might cause performance to deteriorate. The default value is MaxThreads=0,
indicating that no separate search threads should be used. An invalid
parameter exception (GODWAO31E) is generated if the value provided is less
than zero, and invalid values result in an error condition.

CompParmsDefaults=file name that contains overrides
Provides the name of a file that contains the overrides for default comparison
parameters. The format of the file is the same as that used by Distributed
Search. The default value is blank, indicating that no override file should be
used. A bad default comparison parameters error (GODWO35E) is generated if
an invalid file name or invalid data is provided.

172 1BM InfoSphere Global Name Management: Developer's Guide

DefaultAltScoreFactor=factor
Indicates the default factor to be applied to the final similarity score for
matches found against alternate parses. This value can be overridden for
specific Datalists. The value must be a positive real (floating-point) value less
than or equal to 1.0, otherwise an invalid parameter exception (GODO031E) will
be generated when an invalid valid is encountered.

Custom tokens section of the configuration file
The [Custom Tokens] section of the configuration file lists the custom parsing token
types.

Custom parsing tokens are listed in the following format under a [Custom Tokens]
section.

[Custom Tokens]
token=type [,comment]

token
Text of the custom token.

type
Token type that can be any of the following types:

Given name
A normal name token, such as John or Michael, that is typically used
as a given name. This type of token can also appear as a surname, but
it is treated as four times more likely to be given names.

Surname
A normal name token, such as McGillicuddy or Wiltshire, that is
typically used as a surname. This type of token can also appear as a
given name, but it is treated as four times more likely to be surnames.

Initial A single letter to be treated as an initial instead of a Roman numeral or
other token type.

Title A string that typically reflects social standing and usually appears
before other name tokens.

Prefix A particle that goes in the same name phrase as the following name
stem token. Tokens such as de and la are prefixes.

Suffix A particle that goes in the same name phrase as the preceding name
stem token. A token such as aldeen is a suffix.

Qualifier
A qualifier that usually indicates generational relationships or social
status. Tokens like, Jr. and Esqg. are qualifiers. Qualifiers are not
included in either given name or surname fields.

Conjunction
Words such as and that join multiple names together.

comment
Optional description of the token.

Datalist section of the configuration file

Data list descriptions are stored in individual [Datalist:name] sections, where the
name value represents the name of the data list that is passed in the datalists
argument of the search() method call.

Chapter 6. Configuring IBM NameWorks 173

174

Per-data list overrides apply to embedded data lists only. You can specify
comparison parameter overrides for individual data lists by adding one or more
CompParmsDefaults= entries to the [Datalist:] section of your configuration file.
By using this option, you can set the default values for specific data lists, whereas
search strategies and overrides that are indicated by the CompParmOverrides class
only override the default values for an individual query.

Distributed Search information in the configuration file
Distributed Search entries are supported by the [Datalist:name] section of the
configuration file, and are used when Distributed Search is enabled.

The following parameters apply to the [Datalist:name] sections of the IBM
NameWorks configuration file for Distributed Search searches.

More than one Server= entry can be provided, indicating that multiple servers
were associated with the given datalist. Therefore, queries should be federated and
multiple results accumulated. If the add flag is associated with a Server= entry,
that server is used for addName() operations. Only one server per datalist can be
configured with the add flag.

[Datalist:Distributed]

Type=1

Server=host |port | listname[|add]

IncludeTAQs=

Type=n
Indicates whether this datalist is a full search (Type=1) or unique name (Type=2)
type. If no Type=n entry is found, the datalist is assumed to be a full search

type.

host
IP address (either symbolic name or numeric) of the host machine. If the IP
address is enclosed in square brackets (as in Server=[host] |port) the IPv6
protocol will be used for communication with the Distributed Search engine
(which must also be configured to use the IPv6 protocol).

port
Decimal IP port address (in the range 0:65535)

listname
Internal datalist name used within the Distributed Search instance. This
parameter is currently not used.

add
Indicates that this server should be used when new name records are added to
a datalist. Any server without the add option will be treated as read-only.

IncludeTAQs=
Single entry to indicate whether or not title and qualifier values should be
included with the data list entries. You can specify this value in the IBM
NameWorks configuration file to be applied to data list entries during add,
update, and search operations by specifying IncludeTAQs=true.

Note: If TAQ information is included, any titles are added to the given name
field and any qualifiers are added to the surname field before name data is
used in search or pair-wise comparison operations.

IBM InfoSphere Global Name Management: Developer's Guide

Embedded Search information in the configuration file

Embedded Search entries are supported by the [Datalist:name] section of the
configuration file, and are used when Embedded Search is enabled. Invalid values
result in an error condition for all parameters.

The following parameters are applicable when searching an embedded data list
with the search() method. All of the entry names can be provided in upper, lower,
or mixed-case format.

[Datalist:Embedded]

Type=0

List=

CompressedBitSig=

TAQ=

GNV=

SNV=

ONV=

PNREG=

ONREG=

ONTERM=

ONTOPN=

NativeTaqg=

NativePnVar=

NativeOnVar=

NativeOnReg=

NativeOnReg=

Type=n
Embedded Search data lists are identified by a Type=0 entry within the Datalist
section of the configuration file. The default value for this entry is Type=0
(Embedded Search data lists). Any Server= entries associated with a Type=0
data list are ignored.

List=name of file that contains name records
Individual name lists that are associated with a Datalist are identified by a
List= entry within the Datalist section of the configuration file. Multiple List=
entries are accepted, and each entry is treated as a separate list of names that is
associated with the Datalist. Name list files must be provided in .csv format. A
specific add list can be specified by appending the string |add to the file name.
The add list receives names that were added after the name list has been
loaded. If an Embedded Search Datalist description includes no List= entries, a
single empty list of names is created, allowing names to be added. The empty
name list is marked as the add list.

A bad data file error (GODWO032E) is generated if an invalid file name is
provided for this parameter.

CompressedBitSig=n
Determines whether bit signatures should be included for compressed forms of
names. This value can be either 0 or 1, where the default value is 1.

An invalid parameter value error (GODWO31E) is generated if an invalid value
is provided.

TAQ=pathname of TAQ list
One or more TAQ override files can be associated with a data list. TAQ
override files are applied to each name list that is associated with a data list.

A NameHunter data list error (GODWO37E) is generated if an invalid file name
is provided, or if the contents of the file cannot be loaded.

Chapter 6. Configuring IBM NameWorks 175

176

GNV= | SNV= | ONV=pathname of variant list
One or more variant files can be associated with a data list. Variant files are
applied to each name list that is associated with a data list.

A NameHunter data list error (GODWO37E) is generated if an invalid file name
is provided, or if the contents of the file cannot be loaded.

PNREG= | ONREG=pathname of regularization rules file, culture name
One or more regularization files can be associated with a data list.
Regularization files are applied to each name list that is associated with a data
list. The format of this entry is the same as similar entries in the [Comparison
Files] section of the IBM NameWorks configuration file.

A NameHunter data list error (GODWO37E) is generated if an invalid file name
is provided, or if the contents of the file cannot be loaded.

ONTERM=pathname of terms file.
One or more terms files can be associated with a data list.

A blank term text data list error (GODHO65E) is generated if a term file has a
blank term. It is possible that the term in the file consists of disallowed
characters

ONTOPN=n
Determines whether additional support for searching Organization names
against Personal names should be included. This value can be either 0 or 1,
where the default value is 0.

An invalid parameter value error (GODWO31E) is generated if an invalid value
is provided.

NativeTaq=pathname of native script TAQ list
One or more native script TAQ override files can be associated with a data list.
Native script TAQ override files are applied to each name list that is associated
with a data list.

A NameHunter data list error (GODWO37E) is generated if an invalid file name
is provided, or if the contents of the file cannot be loaded.

NativePnVar=pathname of native script personal name variant list
One or more native script personal name variant files can be associated with a
data list. Variant files are applied to each name list that is associated with a
data list.

A NameHunter data list error (GODWO037E) is generated if an invalid file name
is provided, or if the contents of the file cannot be loaded.

NativeOnVar=pathname of native script organization name variant list
One or more native script organization name variant files can be associated
with a data list. Variant files are applied to each name list that is associated
with a data list.

A NameHunter data list error (GODWO37E) is generated if an invalid file name
is provided, or if the contents of the file cannot be loaded.

NativePnReg=pathname of native script personal name regularization file,
script name
One or more native script personal name regularization files can be associated
with a data list. Regularization files are applied to each name list that is
associated with a data list. The format of this entry is the same as similar
entries in the [Comparison Files] section of the IBM NameWorks configuration
file.

IBM InfoSphere Global Name Management: Developer's Guide

A NameHunter data list error (GODWO37E) is generated if an invalid file name
is provided, or if the contents of the file cannot be loaded.

NativeOnReg=pathname of native script organization name regularization
file, script name
One or more native script organization name regularization files can be
associated with a data list. Regularization files are applied to each name list
that is associated with a data list. The format of this entry is the same as
similar entries in the [Comparison Files] section of the IBM NameWorks
configuration file.

A NameHunter data list error (GODWO37E) is generated if an invalid file name
is provided, or if the contents of the file cannot be loaded.

Search strategy section of the configuration file
Search Strategy information is stored in multiple sections in the configuration file.
You can set individual parameters for Personal names in the GNParms and SNParms
sections and set parameters for Organization names in the ONParms section.
[Strategy:name]

GNCuTture=

SNCuTture=

ONCulture=

MinScore=

MaxReplies=

SearchOpt=

IncTudeTAQs=

[GNParms : name]
[SNParms :name]

[ONParms :name]

name
The name value references the name of the search strategy. These sections
contain the given name, surname, and Organization name comparison
parameters in the name=value format that is expected by NameHunter
Distributed Search. These sections are ignored if no associated [Strategy:name]
section exists.

GNCulture | SNCulture
Indicates the culture code that should be used for the given name and
surname. Valid values are in the range -1:20. If either of these entries is not
present, their respective values default to -1.

ONCulture
Indicates the culture code that should be used for Organization names. This
value is supported but is not currently used.

MinScore
The minimum name score value for returned matches, in the range of 0:100.
This number is a filter for the top-ranked matches, as sorted by full name
score. If this value is -1, IBM NameWorks checks the specified Search Strategy
for a minScore= override entry, and uses that value if provided. If no override
value is specified, then the NameHunter default value for the given cultures is
used.

MaxReplies
The maximum number of matches to be returned. This number is a filter for

Chapter 6. Configuring IBM NameWorks 177

the top-ranked matches, as sorted by full name score. If this value is -1, IBM
NameWorks checks for a MaxReplies= override entry in the given Search
Strategy, and uses that value if provided. If no override is specified, then the
number of matches is not limited.

SearchOpt
Specifies the type of name list to search against. If this value is 0, then IBM
NameWorks searches all name lists (SearchOpt=3).

* 1 = Search on Personal name list only
* 2 = Search on Organization name list only
* 3 = Search on both Personal and Organization name lists

IncludeTAQs=
Single entry to indicate whether or not title and qualifier values should be
included with the data list entries. You can specify this value in the IBM
NameWorks configuration file to be applied to data list entries during add,
update, and search operations by specifying IncludeTAQs=true.

Note: If TAQ information is included, any titles are added to the given name
field and any qualifiers are added to the surname field before name data is
used in search or pair-wise comparison operations.

Index
Indicates whether the NameHunter index should be used when searching.
Valid values are either Y or N. If this entry is not present the value defaults to
Y.

[GNParms:name] | [SNParms:name] | [ONParms:name]

Date compare section of the configuration file
You can override the score values for various date comparison tests with values in
a [DateCompare] section.

Overrides can appear in the following format:

[DateCompare]

key=value

key
Name value that is taken from the following table. Invalid key values are
ignored.

value
Valid values must be a number in the range 1:100. Values outside this range
are ignored.

Table 18. Date Compare overrides and their descriptions

Key Description Default score
ESS Y=Y, M&D transposed 99
EET Y=Y, M=M, D digits transposed 98
ETE Y=Y, M digits transposed, D=D 97
ETT Y=Y, M digits transposed, D digits transposed 96
EEI Y=Y, M=M, D ignored 95
EIE Y=Y, M ignored, D=D 94
ETI Y=Y, M digits transposed, D ignored 93
EIT Y=Y, M ignored, D digits transposed 92

178 1BM InfoSphere Global Name Management: Developer's Guide

Table 18. Date Compare overrides and their descriptions (continued)

Key Description Default score
VEE Y +/-5, M=M, D=D 91
VET Y +/-5, M=M, D digits transposed 90
VIT Y +/-5, M digits transposed, D digits transposed 89
EII Y=Y, M ignored, D ignored 88
TEE Y digits transposed, M=M, D=D 87
TET Y digits transposed, M=M, D digits transposed 86
TTE Y digits transposed, M digits transposed, D=D 85
TTT Y digits transposed, M digits transposed, D digits 84
transposed
TII Y digits transposed, M ignored, D ignored x 83
VII Y +/-5, M ignored, D ignored 82
XEE Y +/-10, M=M, D=D 81
XET Y +/-10, M=M, D digits transposed x 80
XTE Y +/-10, M digits transposed, D=D 79
XTT Y +/-10, M digits transposed, D digits transposed 78
XII Y +/-10, M ignored, D ignored 77
OB1 date +/- 1 day 76
OB2 date +/- 2 days 75
OB3 date +/- 3 days 74
OB4 date +/- 4 days 73
OB5 date +/- 5 days 72

Transliteration modules section of the configuration file

The Transliteration Modules section lists which transliteration modules are installed.

Installed transliteration modules are listed under a [Transliteration Modules]

section, in the form:

[Transliteration Modules]
Module=pathname of transliteration module

The following transliteration modules are valid for use with IBM InfoSphere Global
Name Management :

e arabicTransRule.ibm

¢ chineseTransRule.ibm

e cyrillicTransRule.ibm

* greekTransRule.ibm

* japaneseTransRule.ibm

* koreanTransRule.ibm

e latinTransRule.ibm

chineseOnTransRule.ibm
cyrillicOnTransRule.ibm
hindiOnTransRule.ibm
japaneseOnTransRule.ibm

Chapter 6. Configuring IBM NameWorks

179

* koreanOnTransRule.ibm
* anyTransRule.ibm*

Note: anyTransRule.ibm is a transliteration module that has been added as a
fallback for exceptional cases. Use of anyTransRule.ibm prevents exceptions when
unsupported scripts are used, and is not recommended for typical installations.

Transliteration modules must be specified in the configuration file in the following
order to ensure rules from one module do not interfere with those in another:

1. Personal name transliteration files
2. Organization name transliteration files
3. anyTransRule.ibm

Reference files section of the configuration file
Reference data file locations are listed under a [Reference Files] section.

The following entries are supported in the Reference Files section of the
configuration file:

[Reference Files]
NameSifter=path name
CustomCultures=path name

path name
The full path name to the list of NameSifter rules files, delimited by
semicolons (;). Colons (:) are also supported on Unix machines.

The full path name to any Custom Cultures (.cc) rules files. If you are using a
directory that has other types of files, include the file name in the path. For
example: CustomerCultures=<path name>/italian.cc

Comparison files section of the configuration file
NameHunter support file locations are listed under a [Comparison Files] section.

The following parameters are applicable when conducting a pair-wise comparison
with the compare() method. This section is optional, but you can use ONREG and
PNREG as attributes if you want to provide specific file names. Each of the forms are
supported in the [Comparison Files] section of the NameWorks configuration file.

[Comparison Files]

TAQ=taq.ibm

GNV=gnv.ibm

SNV=snv.ibm

ONV=onv.ibm

ONTERM=terms.ibm
PNREG=angloRegRule.ibm,Anglo
PNREG=swasianRegRule.ibm,Arabic
PNREG=chineseRegRule.ibm,Chinese
PNREG=frenchRegRule.ibm,French
PNREG=germanRegRule.ibm,German
PNREG=hispanicRegRule.ibm,Hispanic
PNREG=indianRegRule.ibm,Indian
PNREG=koreanRegRule.ibm,Korean
PNREG=swasianRegRule.ibm,Pakistani
PNREG=polishRegRule.ibm,Polish
PNREG=portugueseRegRule.ibm,Portuguese
PNREG=russianRegRule.ibm,Russian
PNREG=thaiRegRule.ibm,Thai
PNREG=turkishRegRule.ibn,Turkish
PNREG=swasianRegRule.ibm,SouthwestAsian
ONREG=genericOnRegRule.ibm,Ambiguous
ONREG=angloOnRegRule.ibm,Anglo

180 1BM InfoSphere Global Name Management: Developer's Guide

ONREG=chineseOnRegRule.ibm,Chinese
ONREG=hispanicOnRegRule.ibm,Hispanic
ONREG=koreanOnRegRule.ibm,Korean
ONREG=polishOnRegRule.ibm,Polish
ONREG=portugueseOnRegRule.ibm,Portuguese
ONREG=russianOnRegRule.ibm,Russian
NativeTag=ctaq.ibm

NativePnVar=cnv.ibm
NativeOnVar=conv.ibm
NativeOnReg=chineseOnRegRule.ibm,Hanzi
NativeOnReg=japaneseOnRegRule.ibm,Kanji

TAQ=file_path_name
Path name of the TAQ list.

GNV<=file_path_name
Path name of the given name variant list.

SNV=file_path_name
Path name of the surname variant list.

ONV=file_path_name
Path name of the organization name variant list.

ONTERM=file_path_name
Path name of the term list list.

ONREG-=file_path_name,culture_name
Path name of the regularization rules file and the culture name. Valid
culture names are listed below.

PNREG=file_path_name,culture_name
Path name of the regularization rule file and the culture name. Valid
culture names are listed below.

NativeTaq=file_path_name
Path name of the native script TAQ list.

NativePnVar=file_path_name
Path name of the native script personal name variant list.

NativeOnVar=file_path_name
Path name of the native script organization name variant list.

NativePnReg=file_path_name,script_name
Path name of a native script personal name regularization rules file and
the associated script name. Valid script names are listed below.

NativeOnReg=file_path_name,script_name
Path name of a native script personal name regularization rules file and
the associated script name. Valid script names are listed below.

Culture names may be one of the following values:
* Afghani

* Anglo

* Arabic

* Chinese

* Farsi

* French

* Generic (or Ambiguous)

* German

Chapter 6. Configuring IBM NameWorks 181

182

* Hispanic

* Indian

* Indonesian
* Japanese

* Korean

» Pakistani
* Polish

* Portuguese
* Russian

* Thai

* Turkish

* Vietnamese

* Yoruban

* European
* Han

¢ SouthwestAsian

* A custom culture identifier (Custom1..Custom?20)

Script names may be one of the following values:
* Hanzi

* Kanji

* Devanagari

* Ciyrillic

* Latin

* Hangul

* Arabic

¢ Greek

Specifying configuration settings by using the Configuration
class

You can set and update configuration information for IBM NameWorks by writing
a program that uses the Configuration class. Using this class enables you to specify
default configuration settings and dynamically specify overrides by using the
CompParmsOverrides class.

About this task

This task is typically completed by a program developer who works directly with
the IBM NameWorks API. Refer to the API Reference documentation for more
information on how to use the Configuration class, its constructors, and other
related methods.

Note: Your program can vary based on the needs of your client application and

how you use the methods of the Configuration class. This information is meant to
provide a high-level description of the steps that are required to use the

IBM InfoSphere Global Name Management: Developer's Guide

Configuration class in place of the IBM NameWorks configuration file. The
following procedure includes code samples for Java, but the steps for creating a
program in C++ are the same.

Procedure

1. Using your development application, create a Configuration object. The
following line of code creates an empty Configuration object. The subsequent
steps illustrate additional information that is part of your Configuration object.
Configuration configuration = new Configuration();

2. Create a Datalist object to specify the data list that you want to use for
searching. The following sample creates a Configuration object that contains a
data list called Customers, and specifies that TAQs should not be included when
searching. You can specify additional parameters, such as adding a list entry to
the data list, depending on the type of the search.

Configuration configuration = new Configuration();
Datalist customers = configuration.addDatalist("Customers");
customers.setIncludeTags(false);

3. Create a Strategy object by using the Strategy class. You call this search strategy
in your program to be used in pair-wise comparisons and searching. The
following sample creates a Broad search strategy with several variables
specified.

Strategy broad = configuration.addStrategy("Broad");
broad.setMinScore(75)

.setMaxReply(1000)

.setSearchOptions(EnumSet.of (NameCategory.PERSONAL)) ;

4. Call various methods to specify configuration data, such as the maximum
number of threads to be used in searching and the name of file that contains
default comparison parameter overrides.
configuration.setMaxThreads (8)

.setDefaultCompParmsOverridesFile("compparms.config");

5. Pass the Configuration object to the Analytics() constructor, the Scoring()
constructor, or both to create Analytics and Scoring objects. After these objects
are created, the Configuration object can be discarded and subsequent changes
have no effect unless you want to use the same Configuration object to create
more Analytics or Scoring objects.

Analytics analytics = new Analytics(configuration);
Scoring scoring = new Scoring(configuration);

Updating your IBM NameWorks configuration to use additional
transliteration rule files

IBM NameWorks uses rule files to determine how names are transliterated. A
system administrator must modify the IBM NameWorks configuration file before
IBM NameWorks can make use of additional rule files. Version 6.0 adds support
for transliteration rules specific to organization names in addition to personal
names. Transliteration rules for organization names include "On" in the file name.

Procedure

1. Modify the IBM NameWorks configuration file to include the rule files under
the [Transliteration Modules] heading using the following syntax:

Module= full path/rule_file_name

where full_path is the full path and directory names and /rule_file_name is the
specific name of the rule file to use.

The following transliteration rule files are valid for use with IBM NameWorks:

Chapter 6. Configuring IBM NameWorks 183

184

arabicTransRule.ibm
Transliteration rules for personal names written in Arabic script.

chineseTransRule.ibm
Transliteration rules for personal names written in Chinese (Hanzi)
script.

cyrillicTransRule.ibm
Transliteration rules for personal names written in Arabic script.

greekTransRule.ibm
Transliteration rules for personal names written in Greek script.

hindiTransRule.ibm
Transliteration rules for personal names written in Devanagari script.

japaneseTransRule.ibm
Transliteration rules for personal names written in Japanese (Kana)
script.

koreanTransRule.ibm
Transliteration rules for personal names written in Korean (Hangul)
script.

chineseOnTransRule.ibm
Transliteration rules for organization names written in Chinese (Hanzi)
script.

cyrillicOnTransRule.ibm
Transliteration rules for organization names written in Cyrillic script.

hindiOnTransRule.ibm
Transliteration rules for organization names written in Devanagari
script.

japaneseOnTransRule.ibm
Transliteration rules for organization names written in Japanese
(Kanji/Kana) script.

koreanOnTransRule.ibm
Transliteration rules for organization names written in Korean (Hangul)
script.

anyTransRule.ibm
A special set of transliteration rules that can process any script, but
only in a rudimentary form often not suited for name analysis and
scoring. This set of transliteration rules should be used only as a
fallback, to prevent unsupported scripts or combinations of scripts from
causing transliteration errors. This file should always be listed last to
ensure it is used only as the last resort, when no other transliteration
module can handle a name.

2. Stop and restart the appropriate servers to re-initialize IBM NameWorks, so that
the servers use the updated configuration file information. The IBM
NameWorks Web service installation includes stop and start commands for
these operations.

Example

For example, to include the Arabic personal name rule file located on the C:\ drive
in the \NW directory, you would update the configuration file as follows:

[Transliteration Modules]
Module=C:\NW\arabicTransRule.ibm

IBM InfoSphere Global Name Management: Developer's Guide

Chapter 7. Troubleshooting and support

To isolate and resolve problems with your installation of IBM InfoSphere Global
Name Management , use the troubleshooting and support information to
determine how to identify the source of a problem, how to gather diagnostic
information, where to get fixes, and which knowledge bases to search.

If you need to contact IBM Support, use this information to gather diagnostic
information that the service technicians need so that they can help you resolve a
problem.

Troubleshooting checklist for IBM InfoSphere Global Name

Management

By answering a set of questions that are structured into a checklist, you can
sometimes identify the cause of a problem and find a resolution to the problem on
your own.

Answering the following questions can help you to identify the source of a
problem that is occurring with IBM InfoSphere Global Name Management :

1. Is the configuration supported? See the [system requirements|to ensure that
your system meets all hardware, operating system, and software requirements.

2. Have you applied the latest fixes for IBM InfoSphere Global Name
Mana fement ? See the [IBM InfoSphere Global Name Management Support|

Eortal

3. What are you doing when the problem occurs?

Does the product installation program prompt you for the wrong CD or

DVD? If so, check to ensure that the complete directory structure is present on
the local hard drive. For the installation program to work, the complete
directory structure through the Diskl directory must be present on the
local hard disk drive. If the only the installation program is on the local
hard drive, then copy the full directory structure from the CD or DVD.

Does the installation program inform you that one or more components were
not successfully installed?
If so, review the installation log files to fix the problem. Then use the
installation program to reinstall those components.

Are you starting IBM NameWorks and did you receive the GODWO033E error
message?
If so, this error message indicates that one or more name records in the
name data file is invalid because it is improperly coded. The error

message contains the name of the problematic data file. Try saving that
data file in the UTFS8 format, and then restart IBM NameWorks.

Is new name data missing when you shut down the product or component?
Are you using Distributed Search?
If so, were you adding names to the search list while running the
product or component? If you use multiple servers to process names
for Distributed Search, check the ds.config file to ensure that you have
the following settings configured:

© Copyright IBM Corp. 2001, 2013 185

http://www-01.ibm.com/support/docview.wss?rs=0&q1&uid=swg27019150
http://www-947.ibm.com/support/entry/portal/Overview/Software/Information_Management/InfoSphere_Global_Name_Management
http://www-947.ibm.com/support/entry/portal/Overview/Software/Information_Management/InfoSphere_Global_Name_Management

* Under the [commgr] section, check the number of searchers
(numSearchers=n). Ensure that n equals the number of lists to search
plus a dedicated Add searcher.

* Ensure that at least one of the configured searchers is dedicated to
adds (at least one searcher is set to doAdds=true).

If you change these settings, restart the Distributed Search servers. See
Distributed Search configuration file and settings in the information center
for more information.

Did you receive the error message GODS054E?
If so, the most common cause for receiving this error message is that
the NameSifter data file name is missing or the specified path is invalid
in the IBM NameWorks configuration file. Look in the configuration file
under [Reference Files] section and check the value configured for
the NameSifter= setting. If the file name and path are correct, the
problem might be that the Java run time is not leaving enough memory
to load the NameSifter data. If you think that this error is not enough
memory, use the -Xmx128m or similar parameter so that there is
sufficient memory.

If you were trying to turn off NameSifter, remove the file name and
path statement in the NameSifter= setting. This setting is located in the
IBM NameWorks configuration file under the [Reference Files]
section. An example of why you might want to turn off NameSifter is
that the name data does not contain organizational names, so you do
not need IBM NameWorks to categorize the name data by persons or
organizations. Additionally, you should specify this entry if you already
know the category of the name to be a personal name or an
organization name.

4. Have you checked the component to see if they contain any messages
about the problem?

5. What, if any, error messages or error codes were issued? See the messages and
error codes information in the information center for more information.

6. Have you reviewed the fproduct knowledge bases| for information that might
resolve the problem?

7. If you have tried each of these applicable options and your problem is still not
resolved, |contact IBM Software Support,

Component API C++ error codes

Numeric error codes are returned when IBM InfoSphere Global Name
Management components encounter an error. When you encounter an error, check
the IBM InfoSphere Global Name Management documentation for the error code
number to obtain information about the type of error, where it occurred, and how
to fix it.

Error code syntax

The exception class, ibmgnr::Exception, is used to report error information. Errors
are divided into three categories — data, input, or internal errors — that can be used
to differentiate between the cause and severity of the error. Several methods are
included with this class that can be used by client applications. Text information
can be retrieved by calling the ibmgnr::Exception::text() method and integer values

186 1BM InfoSphere Global Name Management: Developer's Guide

can be retrieved by calling the ibmgnr::Exception::value() method. The following
example illustrates what a basic catch clause for this type of exception might look
like.

catch (ibmgnr::Exception & e)

{
ibmgnr::Exception Type type = e.type(),
char component = e.component(),
int code = e.code(),
std::string text = e.text(),
reportComplexError(type, component, code, text),
bs
ExceptionType type()
Enumerator that describes what type of error was encountered. Three different
values can be returned for type():

Internal
Internal error, cannot continue.

Reference data
Reference data corruption, cannot continue.

Input
Invalid input data.

component ()
Returns a single-letter code that identifies the IBM InfoSphere Global Name
Management component where the error originated. The following values are
valid for the component () function:

Identifier Component

Country of Association
NameClassifier
Distributed Search
NameHunter

Global error
NameClassifier Country of Association
NameParser
NameSifter
NameTransliterator
NameVariantGenerator
NameWorks

TE<AHLTZTIOOR>

Global errors (001-006) appear as GODInnnE, where nnn is the numeric code that is
returned. The letter I indicates a global error, which can be reported by any component. For
example, the error, GODHO002E means that a file open error (002) occurred in NameHunter
(H). This same error can occur in another component, such as NameParser, where the error
would appear as GODP002E. When referring to the documentation for errors 001-006, check
the single-letter code that precedes the numeric error to identify the component in which the
error occurred.

code()
Returns the error code that is associated with a specific error condition.

const throw()
Returns associated text information that might accompany an error.

value() const
Returns the integer value that might be associated with an error.

id() const throw() | wid() const throw()

Chapter 7. Troubleshooting and support 187

GODD901E « GODTO31E

Returns a string in the format GODcnnnE that identifies the error condition.

GOD

Three-letter error identification prefix that is assigned to IBM InfoSphere
Global Name Management products.

¢ Single-character component identifier that is returned by the char

component () function.

nnn

Numeric error code that is returned by the code() function.

E Standard IBM indicator for error messages.

const throw()

Returns a string that contains both the error condition identifier and any
associated integer value and text information, separated by a single space

character.

Reference data error codes

Reference data errors indicate that there is corruption in a reference data file.
Recurrence of this error indicates the client application is overwriting internal IBM
InfoSphere Global Name Recognition data structures.

GODD9Y01E Invalid configuration or invalid data

Explanation: Invalid data exists in the
NamePreprocessor configuration file, npp.config. This
error is often caused by an attempt to regularize a
non-unique data list. Regularization cannot occur
without creating a unique data list.

System action: GNR modules throw the
ibmgnr::Exception exception.

User response: Read the error message to determine
the problem, then open the npp.config file and fix the
invalid data entry.

GODSO051E NameSifter data error

Explanation: One of the specified rules files is missing
or an I/O error occurred when trying to open the rules
file.

System action: GNR modules throw the
ibmgnr::Exception exception.

User response: Ensure that the rules file exist and that
the file name is spelled correctly.

GODSO052E NameSifter data error

Explanation: One of the specified rules files contains a
syntax error.

System action: GNR modules throw the
ibmgnr::Exception exception.

User response: Correct the syntax error in the rules
file and pass the name to NameSifter again.

GODSO053E NameSifter data error

Explanation: The caller of NameSifter's constructor
specified a main rule list name that does not actually
exist in the specified rules files.

System action: GNR modules throw the
ibmgnr::Exception exception.

User response: Ensure that the main rule list name
exists in the rules file.

GODSO054E NameSifter data error

Explanation: The NameAnalyzer.dat file is missing or
an I/O error occurred when trying to read from the
file.

System action: GNR modules throw the
ibmgnr::Exception exception.

User response: Ensure that the NameAnalyzer.dat file
exists and that the path name is correct. Obtain a new
copy of the affected file if the problem persists.

GODSO055E NameSifter data error

Explanation: The NameAnalyzer.dat file is corrupted
in some way.

System action: GNR modules throw the
ibmgnr::Exception exception.

User response: Obtain a new copy of the
NameAnalyzer.dat file.

GODTO031E Cannot read rules file

Explanation: A transliteration (xxxTransRule.ibm) or
regularization rules (xxxRegRules.ibm) file is corrupted.
This exception is reported only when some component

188 1BM InfoSphere Global Name Management: Developer's Guide

is calling NT to read a file, having passed in a file
name to load.

System action: The line number within the
transliteration file is reported in the exception and can
be retrieved with the ibmgnr::Exception::value()
method.

User response: Ensure that the file is in the proper
location and that the path name is correct. Place the file
in the proper location or fix the erroneous path name.

GODTO032E Header does not include module
property name

Explanation: The module-name property was not
included in the header file. This error typically
indicates that a transliteration (xxxTransRule.ibm) or
regularization rules (xxxRegRules.ibm) file is corrupted.
This exception is reported only when some component
is calling NT to read a file, having passed in a file
name to load.

System action: The line number within the
transliteration file is reported in the exception and can
be retrieved with the ibmgnr::Exception::value()
method.

User response: Obtain a new copy of the affected file.

GODTO033E File read error after transliteration rules

Explanation: A transliteration (xxxTransRule.ibm) or
regularization rules (xxxRegRules.ibm) file is corrupted.
This exception is reported only when some component
is calling NT to read a file, having passed in a file
name to load.

System action: The line number within the
transliteration file is reported in the exception and can
be retrieved with the ibmgnr::Exception::value()
method.

User response: Obtain a new copy of the affected file.

GODTO034E Missing Transliterator rules

Explanation: The Transliterator rules are missing. This
error typically indicates that a transliteration
(xxxTransRule.ibm) or regularization rules
(xxxRegRules.ibm) file is corrupted. This exception is
reported only when some component is calling NT to
read a file, having passed in a file name to load.

System action: The line number within the
transliteration file is reported in the exception and can
be retrieved with the ibmgnr::Exception::value()
method.

User response: Obtain a new copy of the affected file.

GODTO032E « GODTO38E

GODTO035E Last rule set has different name than is
specified in Transliterator-ID attribute

Explanation: A transliteration (xxxTransRule.ibm) or
regularization rules (xxxRegRules.ibm) file is corrupted.
This exception is reported only when some component
is calling NT to read a file, having passed in a file
name to load.

System action: The line number within the
transliteration file is reported in the exception and can
be retrieved with the ibmgnr::Exception::value()
method.

User response: Obtain a new copy of the affected file.

GODTO036E No colon in header line

Explanation: This error typically indicates that a
transliteration (xxxTransRule.ibm) or regularization
rules (xxxRegRules.ibm) file is corrupted. This
exception is reported only when some component is
calling NT to read a file, having passed in a file name
to load.

System action: The line number within the
transliteration file is reported in the exception and can
be retrieved with the ibmgnr::Exception::value()
method.

User response: Obtain a new copy of the affected file.

GODTO037E Empty property name

Explanation: The property name is empty. This error
typically indicates that a transliteration
(xxxTransRule.ibm) or regularization rules
(xxxRegRules.ibm) file is corrupted. This exception is
reported only when some component is calling NT to
read a file, having passed in a file name to load.

System action: The line number within the
transliteration file is reported in the exception and can
be retrieved with the ibmgnr::Exception::value()
method.

User response: Obtain a new copy of the affected file.

GODTO038E Empty property value

Explanation: The property value is empty. This error
typically indicates that a transliteration
(xxxTransRule.ibm) or regularization rules
(xxxRegRules.ibm) file is corrupted. This exception is
reported only when some component is calling NT to
read a file, having passed in a file name to load.

System action: The line number within the
transliteration file is reported in the exception and can
be retrieved with the ibmgnr::Exception::value()
method.

User response: Obtain a new copy of the file.

Chapter 7. Troubleshooting and support 189

GODTO039E « GODTO048E

GODTO039E Invalid property value

Explanation: A transliteration (xxxTransRule.ibm) or

regularization rules (xxxRegRules.ibm) file is corrupted.

This exception is reported only when some component
is calling NT to read a file, having passed in a file
name to load.

System action: The line number within the
transliteration file is reported in the exception and can
be retrieved with the ibmgnr::Exception::value()
method.

User response: Obtain a new copy of the affected file.

GODTO040E Unknown property name

Explanation: A transliteration (xxxTransRule.ibm) or

regularization rules (xxxRegRules.ibm) file is corrupted.

This exception is reported only when some component
is calling NT to read a file, having passed in a file
name to load.

System action: The line number within the
transliteration file is reported in the exception and can
be retrieved with the ibmgnr::Exception::value()
method.

User response: Obtain a new copy of the affected file.

GODTO041E Unknown rule set type

Explanation: The rule set type is unknown. This error
typically indicates that a transliteration
(xxxTransRule.ibm) or regularization rules
(xxxRegRules.ibm) file is corrupted. This exception is
reported only when some component is calling NT to
read a file, having passed in a file name to load.

System action: The line number within the
transliteration file is reported in the exception and can
be retrieved with the ibmgnr::Exception::value()
method.

User response: Obtain a new copy of the affected file.

GODTO042E No transliterator ID specified

Explanation: A transliteration (xxxTransRule.ibm) or

regularization rules (xxxRegRules.ibm) file is corrupted.

This exception is reported only when some component
is calling NT to read a file, having passed in a file
name to load.

System action: The line number within the
transliteration file is reported in the exception and can
be retrieved with the ibmgnr::Exception::value()
method.

User response: Obtain a new copy of the affected file.

GODTO043E Missing fields in the lookup list rule

Explanation: This error typically indicates that a
transliteration (xxxTransRule.ibm) or regularization
rules (xxxRegRules.ibm) file is corrupted. This
exception is reported only when some component is
calling NT to read a file, having passed in a file name
to load.

System action: The line number within the
transliteration file is reported in the exception and can
be retrieved with the ibmgnr::Exception::value()
method.

User response: Obtain a new copy of the affected file.

GODTO045E Invalid UTF-8 characters found

Explanation: The input string to NameTransliterator
contains invalid UTF-8 characters. This error typically
indicates that the input string is in an encoding other
than UTF-8. This exception is reported only when some
component is calling NT to read a file, having passed
in a file name to load.

System action: The line number within the
transliteration file is reported in the exception and can
be retrieved with the ibmgnr::Exception::value()
method.

User response: Remove the invalid characters and
retry passing the input string to NameTransliterator.
The input string and character position appear in the
text and value fields of the ibmgnr::Exception, and also
in the what() string.

GODTO046E Unknown encoding ID

Explanation: Indicates that a caller passed an
unknown encoding ID to NameTransliterator.

System action: The line number within the
transliteration file is reported in the exception and can
be retrieved with the ibmgnr::Exception::value()
method.

User response: Obtain a new copy of the affected file.

GODTO047E Unknown Transliterator ID

Explanation: An invalid Transliterator ID was passed
to NameTransliterator.

System action: GNR modules throw the
ibmgnr::Exception exception.

User response: Obtain a new copy of the affected file.

GODTO048E Cannot transcode input

Explanation: Indicates that an input string was not in
the character encoding specified.

System action: The line number within the
transliteration file is reported in the exception and can

190 1BM InfoSphere Global Name Management: Developer's Guide

be retrieved with the ibmgnr::Exception::value()
method.

User response: Ensure that you are passing a string
that is in the encoding format that NameTransliterator
expects. If you have not specified the encoding, the
encoding should match that of the platform default.

GODTO049E Unable to transliterate input

Explanation: One or more characters within an input
name cannot be transliterated because they are outside

Global error codes

GODTO049E « GODIOO5E

the range of supported characters for the selected
transliteration module.

System action: The character position of the first
unsupported character is reported in the exception and
can be retrieved with the ibmgnr::Exception::value()
method.

User response: Load the transliteration module if it is
not already loaded. Also, remove any unsupported
characters that might exist in the input name.

Global errors can occur in various components and are not necessarily specific to

any aspect of name analysis.

Global errors (001-006) appear as GODInnnE, where nnn is the numeric code that
is returned. The letter I indicates a global error, which can be reported by any
component. For example, the error, GODHOO2E means that a file open error (002)
occurred in NameHunter (H). This same error can occur in another component,
such as NameParser, where the error would appear as GODP0O02E. When referring
to the documentation for errors 001-006, check the single-letter code that precedes
the numeric error to identify the component in which the error occurred.

GODIO01E Assertion error

Explanation: An internal error occurred while trying
to classify a name.

System action: GNR modules throw the
ibmgnr::Exception exception.

User response: Restart your application. Contact IBM
Product Support if the error persists after several
application restarts. Ensure that you capture when and
where the error occurred, as well as what you were
attempting to complete when the error occurred.

GODI002E Cannot open file

Explanation: The specified file could not be opened
from one of the following functions, possibly because it
does not exist:

* ConfigHandler::load()

* NameHunter::loadFieldVariants()

* NameHunter::loadTaqs()

* NameHunter::loadRegRules()

* NameHunter::loadTransRules()

* NameHunter::loadVariants()

System action: Error messages are returned through
one of the functions in NameHunter. For example, the
NameHunter::field VariantError() function returns an

explanation if the addFieldVariant function returns
false.

User response: Verify that the file exists and that you
have the proper permissions to access the file.

GODIO03E Internal analysis error

Explanation: Indicates that an internal error occurred.
For exceptions that report this error, the text () value
contains a keyword that can be used to help diagnose
the cause of the problem.

System action: GNR modules throw the
ibmgnr::Exception exception.

User response: Restart your application. Contact IBM
Product Support if the error persists after several
application restarts. Ensure that you capture when and
where the error occurred, the keyword that is
associated with the error, as well as what you were
attempting to complete at the time of the error.

GODIO04E Internal method error

Explanation: An internal error occurred while trying
to classify a name.

System action: GNR modules throw the
ibmgnr::Exception exception.

User response: Restart your application. Contact IBM
Product Support if the error persists after several
application restarts. Ensure that you capture when and
where the error occurred, as well as what you were
attempting to complete at the time of the error.

GODIO05E Missing NameAnalyzer.dat file

Explanation: The NameAnalyzer.dat file was not
found in the specified location.

System action: GNR modules throw the
ibmgnr::Exception exception.

Chapter 7. Troubleshooting and support 191

GODIOO6E » GODHO13E

User response: Ensure that the file is in the proper
location and that the path name is correct. Place the file
in the proper location or fix the erroneous path name.

GODIO06E Different NameAnalyzer.dat file path
specified

Explanation: One file name was used by a component
to create an object and a different name was used to
create a second object, while the first object was still
active. Possible objects can be generated by the
following components:

Input error codes

* NameParser

* Country of Association (COA)

* NameClassifier COA

* NameVariantGenerator

System action: GNR modules throw the
ibmgnr::Exception exception.

User response: Ensure that the NameAnalyzer.dat
filename is correct and that you have not passed a new
filename to a different component.

Input errors indicate that the input string is in a format that is unreadable. This
error usually occurs from a bad UTF-8 character sequence. You must correct the
input string before processing can continue.

GODHO08E After parsing, GN and SN are blank

Explanation: An empty name was passed to the
SearchList::add() function.

System action: GNR modules throw the
ibmgnr::Exception exception.

User response: Provide a valid name for the entry that
is to be added to the data list and retry the add
function.

GODHO09E First name blank

Explanation: The NameHunter::addVariant() function
found that the first token in the variant pair is blank.

System action: GNR modules throw the
ibmgnr::Exception exception.

User response: Check the following variant files to
locate the blank token.

* ibmGnvFile

* ibmSnvFile

* ibmBnvFile

* ibmFieldVarFile

You must then enter a name for the first token in the
variant pair.

GODHO010E Second name blank

Explanation: The NameHunter::addVariant() function
found that the second token in the variant pair is
blank.

System action: GNR modules throw the
ibmgnr::Exception exception.

User response: Check the following variant files to
locate the blank token.

* ibmGnvFile

¢ ibmSnvFile

* ibmBnvFile
* ibmkFieldVarFile

You must then enter a name for the second token in the
variant pair.

GODHO11E Invalid group name

Explanation: A field variant entry has an empty text
field.

System action: GNR modules throw the
ibmgnr::Exception exception.

User response: Obtain a new copy of the file that the
error occurs in.

GODHO012E Invalid score (must be between 0 and 1)

Explanation: The NameHunter::addVariant() function
found an invalid variant score.

System action: This error code records line number
and error information, which can be fetched by calling
the NameHunter::ConfigHandler::errorList() method.

User response: Check the following variant files to
locate the blank token.

* ibmGnvFile

 ibmSnvFile

* ibmBnvFile

* ibmFieldVarFile

Obtain a new copy of the file that the error occurs in.

GODHO013E Duplicate entry

Explanation: One of the following functions has
encountered a duplicate entry:

* ConfigHandler::load()

* NameHunter::addTaq()

¢ NameHunter::loadTaqgs()

192 1BM InfoSphere Global Name Management: Developer's Guide

* NameHunter::addVariants()
* NameHunter::loadVariants()
System action: This error code records line number

and error information, which can be fetched by calling
the NameHunter::ConfigHandler::errorList() method.

User response: Obtain a new copy of the file that the
error occurs in.

GODHO014E Unknown field type

Explanation: An invalid field type (not a given name
or surname) was passed to the CompParms data
structures (setDefaults() or setParmsDefault()).

System action: GNR modules throw the
ibmgnr::Exception exception.

User response: Input one of the valid field types in
the NameFieldType (NameConstants.h) enum. The
following field types are valid:

¢ GivenName
* SurName

* OrgName

GODHO015E Unknown culture code
Explanation: An invalid culture code was passed to
one of the following functions:

* CompParms::setDefaults()

* NameHunter::loadField Variants()

¢ NameHunter::addTaq()

* NameHunter::loadTaqs()

* NameHunter::addVariant()

* NameHunter::load Variants()

System action: GNR modules throw the
ibmgnr::Exception exception.

User response: Input one of the valid culture codes in
the Culture (NameConstants.h) enum. .

GODHO016E Unknown TAQ type

Explanation: An unknown TAQ type was passed to
NameHunter::addTaq(). Valid TAQ types come from the
Tokentypes field in the NameConstants.h. enum.

System action: GNR modules throw the
ibmgnr::Exception exception.

User response: Input one of the valid field types.

GODHO17E Empty or missing configuration header

Explanation: The ConfigHandler::load() function could
not find a valid header (for example, [ParmsGnAnglo]).
Correct the configuration file.

System action: This error code records line number
and error information, which can be fetched by calling

GODHO014E « GODHO022E

the NameHunter::ConfigHandler::errorList() method.

User response: Correct the configuration file by
providing a valid header.

GODHO18E Could not find tag value delimiter (=)

Explanation: The ConfigHandler::load() function
found a value pair without the delimiter, which is
usually an equal sign (=).

System action: This error code records line number
and error information, which can be fetched by calling
the NameHunter::ConfigHandler::errorList() method.

User response: Correct the configuration file by
providing a valid delimiter (=).

GODHO019E Could not find version header in
reference file

Explanation: An invalid or outdated TAQ file has
been specified for NameHunter to load. This error
typically indicates that the version header could not be
found in the reference file (for example, taq.ibm or
var.ibm).

System action: GNR modules throw the
ibmgnr::Exception exception.

User response: Obtain the most recent version of the
TAQ file (GNR version 4.1 or later).

GODHO020E Invalid TAQ factor type.

Explanation: An invalid TAQ factor type was passed
to NameHunter. The TAQ factor type must be 1
(different) or 2 (missing).

System action: GNR modules throw the
ibmgnr::Exception exception.

User response: Correct the invalid TAQ factor type
and input a valid value.

GODHO021E TAQ text cannot be blank

Explanation: The TAQ text entry is empty. A value
must be provided for TAQ text.

System action: GNR modules throw the
ibmgnr::Exception exception.

User response: Input valid TAQ text and then pass
the name to NameHunter.

GODHO022E Invalid name category provided

Explanation: An invalid name category was passed to
NameHunter.

System action: GNR modules throw the
ibmgnr::Exception exception.

User response: Input a valid name category to

Chapter 7. Troubleshooting and support 193

GODHO65E « GODPO030E

NameHunter. Valid name categories are Personal and
Organization.

GODHO065E Blank text in terms file

Explanation: A blank entry exists in the default terms
file, terms.ibm. This error is sometimes caused by
specifying the field type as given name or surname,
which causes certain organization terms to be removed
as part of the name cleansing process. The entries in
the terms.ibm file are for organization names only.

System action: GNR modules throw the
ibmgnr::Exception exception.

User response: If you want to use the default terms
file, terms. ibm, you must specify the field type for
organization names in the ToadTerms () function. For
example, ToadTerms ("terms.ibm",0rgName).

GODPO026E Error converting from Unicode

Explanation: An error occurred when NameParser

Internal error codes

attempted to convert a string from Unicode.

System action: GNR modules throw the
ibmgnr::Exception exception.

User response: Ensure that you are passing a string
that is in the encoding format that NameParser expects.
If you have not specified the encoding, the encoding
should match that of the platform default.

GODPO028E Error creating Unicode string

Explanation: NameParser received a string in an
unexpected encoding format.

System action: GNR modules throw the
ibmgnr::Exception exception.

User response: Ensure that you are passing a string
that is in the encoding format that NameParser expects.
If you have not specified the encoding, the encoding
should match that of the platform default.

Internal errors indicate that the application has been corrupted in some way. You
must restart your application in order to proceed after an internal error. This type
of error is typically caused by client code overwriting internal IBM InfoSphere
Global Name Recognition data structures.

GODHO007E Memory exhausted

Explanation: A SearchList class reports this error if,
while adding names, it cannot obtain sufficient
memory.

System action: GNR modules throw the
ibmgnr::Exception exception.

User response: Increase the amount of memory
available or reduce the number of names that are
loaded into memory.

GODPO024E Failed to create NameAnalyzer instance

Explanation: A problem occurred when trying to
initialize the NameAnalyzer library. This error typically
indicates that the NameAnalyzer.dat file is not in the
specified location.

System action: GNR modules throw the
ibmgnr::Exception exception.

User response: Ensure that the path name for the
NameAnalyzer.dat file is correct. If the path name is
incorrect, input the correct path name where the
NameAnalyzer.dat file exists.

GODPO025E Error opening converter

Explanation: The caller passed an invalid encoding
name to NameParser.

System action: GNR modules throw the

ibmgnr::Exception exception.

User response: Check your application code and
ensure that the name you passed to NameParser is a
valid Internet Assigned Numbers Authority (IANA)
character set name.

GODPO027E Error converting to UTF-8

Explanation: An internal error occurred when
NameParser attempted to convert a string to UTE-8
format.

System action: GNR modules throw the
ibmgnr::Exception exception.

User response: Ensure that you are passing a string
that is in the encoding format that NameParser expects.
If you have not specified the encoding, the encoding
should match that of the platform default.

GODPO029E Error creating Transliterator

Explanation: A syntax error or an overflow error
occurred in the NameParser noise filter list.

System action: GNR modules throw the
ibmgnr::Exception exception.

User response: Reduce the number of noise filters that
are included in the NameWorks configuration file.

GODPO30E Error creating Transliterator from rules

194 1BM InfoSphere Global Name Management: Developer's Guide

Explanation: Typically, a syntax error has occurred in
one of the filters in the NameParser noise filter list, or
there are too many filters in the filter list.

System action: GNR modules throw the
ibmgnr::Exception exception.

User response: Repair the syntax error for the affected
noise filter. Additionally, you can reduce the number of
noise filters that are included in the NameWorks
configuration file, assuming that you are calling
NameParser through NameWorks.

GODTO044E ICU error
Explanation: The ICU library returned an error.

System action: GNR modules throw the
ibmgnr::Exception exception.

User response: Restart your application. Contact IBM
Product Support if the error persists after several
application restarts. Ensure that you capture when and
where the error occurred, as well as what you were
attempting to complete at the time of the error.

GODVO050E Analysis failed

Explanation: Indicates that an internal error occurred
in NameVariantGenerator when searching the
NameAnalyzer.dat file.

System action: GNR modules throw the
ibmgnr::Exception exception.

User response: Restart your application. Contact IBM
Product Support if the error persists after several
application restarts. Ensure that you capture when and
where the error occurred, as well as what you were
attempting to complete at the time of the error.

GODW101E Invalid culture code

Explanation: An invalid culture code was found in
IBM NameWorks. The culture code number follows the
error message.

System action: GNR modules throw the
ibmgnr::Exception exception.

User response: Restart your application. Contact IBM

GODTO044E « GODW104E

Product Support if the error persists after several
application restarts. Ensure that you capture when and
where the error occurred, as well as what you were
attempting to complete at the time of the error.

GODW102E Invalid culture set bitmap

Explanation: An invalid culture set bitmap was found
in IBM NameWorks. The bitmap integer follows the
error message.

System action: GNR modules throw the
ibmgnr::Exception exception.

User response: Restart your application. Contact IBM
Product Support if the error persists after several
application restarts. Ensure that you capture when and
where the error occurred, as well as what you were
attempting to complete at the time of the error.

GODWI103E Invalid name category code

Explanation: An invalid name category code was
found in IBM NameWorks. The name category code
follows the error message.

System action: GNR modules throw the
ibmgnr::Exception exception.

User response: Restart your application. Contact IBM
Product Support if the error persists after several
application restarts. Ensure that you capture when and
where the error occurred, as well as what you were
attempting to complete at the time of the error.

GODW104E Invalid name category set bitmap

Explanation: An invalid name category set bitmap
was found in IBM NameWorks. The bitmap integer
follows the error message.

System action: GNR modules throw the
ibmgnr::Exception exception.

User response: Restart your application. Contact IBM
Product Support if the error persists after several
application restarts. Ensure that you capture when and
where the error occurred, as well as what you were
attempting to complete at the time of the error.

IBM NameWorks error codes

Numeric error codes are returned when IBM NameWorks encounters an error.
When you encounter an error, check the IBM InfoSphere Global Name
Management documentation for the error code number to obtain information about
the type of error, where it occurred, and how to fix it.

Errors codes are used to differentiate between the cause and severity of the error.

The following exception classes are used to report error information from the IBM
NameWorks Scoring and Analytics classes for C++ and Java. Several methods are
included with these classes that can be used by your applications.

Chapter 7. Troubleshooting and support 195

GODWO001E » GODWO04E

Table 19. C++ and Java exception classes

C++ exception Java exception

ibmgnr: :NwException java.lang.RuntimeException

C++ catch clause example
catch (ibmgnr::NwException & e)

int code = e.code(),
std::string text = e.text(),
reportComplexError(type, code, text),
1
int code() const
Returns the error code that is associated with a specific error condition.

const char *text() const throw()
Returns associated text information that might accompany an error.

const char *what() const throw()
Returns a string that contains both the error condition identifier and any
associated integer value and text information, separated by a single space
character.

Java catch clause example
catch (Throwable exception)

{

StringWriter stackTrace = new StringWriter();
PrintWriter printer = new PrintWriter(stackTrace);
exception.printStackTrace(printer);
printer.close();
reportError(exception.getMessage(), stackTrace);

}

reportError()
Allows a number of different exceptions to be reported.

IBM NameWorks C++ error codes

These errors codes are very specific to individual errors within IBM NameWorks. A
call to one method (for example, Analytics::analyze()) can throw a number of
different errors, depending on the IBM InfoSphere Global Name Management
component in which the error occurred.

User response: Examine the error message, repair the
error, and retry the action that you were trying to
accomplish.

GODWOO01E An error occurred when loading the
configuration file

Explanation: This error typically indicates that the file
name for the configuration file is incorrect.

GODWO003E NameTransliterator lock
System action: IBM NameWorks modules throw the

. . . Explanation: The transliterator object could not be
ibmgnr:NwException exception.

locked for use.
User response: Verify that the file name is correct and

the configuration file is in the correct location. System action: [BM NameWorks modules throw the

ibmgnr::NwException exception.

User response: Retry the action that you were trying

GODWO002E Could not create transliteration object

Explanation: The transliteration object could not be
created.

System action: IBM NameWorks modules throw the
ibmgnr:NwException exception.

to accomplish. If the problem persists, restart your
application.

GODWO04E NameTransliterator error

196 1BM InfoSphere Global Name Management: Developer's Guide

Explanation: A transliteration error occurred. The
NameTransliterator error message is returned through
the what () string (for example, GODTnnnE, where nnn
is the error number) of the ibmgnr:NwException
object.

System action: IBM NameWorks modules throw the
ibmgnr::NwException exception.

User response: Examine the error message, repair the
error, and retry the action that you were trying to
accomplish.

GODWOO05E « GODWO013E

GODWO009E NameVariantGenerator construction
error

Explanation: The NameVariantGenerator object could
not be created.

System action: IBM NameWorks modules throw the
ibmgnr::NwException exception.

User response: Examine the error message, repair the
error, and retry the action that you were trying to
accomplish.

GODWO05E NameParser construction error
Explanation: The parser object could not be created.

System action: IBM NameWorks modules throw the
ibmgnr:NwException exception.

User response: Examine the error message, repair the
error, and retry the action that you were trying to
accomplish.

GODWO006E NameParser lock error

Explanation: The parser object could not be locked for
use.

System action: IBM NameWorks modules throw the
ibmgnr::NwException exception.

User response: Retry the action that you were trying
to accomplish. If the problem persists, restart your
application.

GODWO007E NameParser error

Explanation: A parsing error occurred. The
NameParser error message is returned through the
what() string (for example, GODPnnnE, where nun is
the error number) of the ibmgnr::NwException object.

System action: IBM NameWorks modules throw the
ibmgnr:NwException exception.

User response: Examine the error message, repair the
error, and retry the action that you were trying to
accomplish.

GODWO08E Invalid custom token
Explanation: The custom token or tokens are invalid.

System action: IBM NameWorks modules throw the
ibmgnr:NwException exception.

User response: Correct the custom token information
in the configuration file and restart your application.

GODWO010E NameVariantGenerator lock error

Explanation: The NameVariantGenerator object could
not be locked for use.

System action: IBM NameWorks modules throw the
ibmgnr:NwException exception.

User response: Retry the action that you were trying
to accomplish. If the problem persists, restart your
application.

GODWO11E NameVariantGenerator error

Explanation: The NameVariantGenerator object could
not be created.

System action: IBM NameWorks modules throw the
ibmgnr:NwException exception.

User response: Examine the error message, repair the
error, and retry the action that you were trying to
accomplish.

GODWO012E Country of Association (COA)
construction error

Explanation: The COA object could not be created.

System action: IBM NameWorks modules throw the
ibmgnr:NwException exception.

User response: Examine the error message, repair the
error, and retry the action that you were trying to
accomplish.

GODWO13E Country of Association (COA) lock error

Explanation: The COA object could not be locked for
use.

System action: IBM NameWorks modules throw the
ibmgnr:NwException exception.

User response: Retry the action that you were trying
to accomplish. If the problem persists, restart your
application.

Chapter 7. Troubleshooting and support 197

GODWO014E » GODWO023E

GODWO014E Country of Association (COA) error

Explanation: A parsing error occurred. The COA error
message is returned through the what() string (for
example, GODAnnnE, where nnn is the error number)
of the ibmgnr:NwException object.

System action: IBM NameWorks modules throw the
ibmgnr:NwException exception.

User response: Examine the error message, repair the
error, and retry the action that you were trying to
accomplish.

GODWO15E Analytics implementation construction
error

Explanation: The Analytics object could not be created
due to lack of memory.

System action: IBM NameWorks modules throw the
ibmgnr:NwException exception.

User response: Allocate more memory to the process

and retry the action that you were trying to accomplish.

GODWO016E Scoring implementation construction
error

Explanation: The Scoring object could not be created
due to lack of memory.

System action: IBM NameWorks modules throw the
ibmgnr:NwException exception.

User response: Allocate more memory to the process

and retry the action that you were trying to accomplish.

GODWO019E NameHunter construction error

Explanation: The NameHunter object could not be
created.

System action: IBM NameWorks modules throw the
ibmgnr:NwException exception.

User response: Examine the error message, repair the
error, and retry the action that you were trying to
accomplish.

GODWO020E Name comparison error in NameHunter

Explanation: A parsing error occurred. The
NameHunter error message is returned through the
what() string (for example, GODHnnnE, where nnn is
the error number) of the ibmgnr::NwException object.

System action: IBM NameWorks modules throw the
ibmgnr:NwException exception.

User response: Examine the error message, repair the
error, and retry the compare operation.

GODWO021E Missing data list

Explanation: The provided data list name does not
appear in configuration file.

System action: IBM NameWorks modules throw the
ibmgnr:NwException exception.

User response: Verify that the data list name is
correct. Repair the configuration file or correct the data
list name and retry the action that you were trying to
accomplish.

GODWO017E NameSifter construction error

Explanation: The NameSifter object could not be
created.

System action: IBM NameWorks modules throw the
ibmgnr:NwException exception.

User response: Examine the error message, repair the
error, and retry the action that you were trying to
accomplish.

GODWO18E DateCompare construction error

Explanation: The DateCompare object could not be
created due to lack of memory.

System action: IBM NameWorks modules throw the
ibmgnr:NwException exception.

User response: Allocate more memory to the process

and retry the action that you were trying to accomplish.

GODWO022E Data list with bad server data

Explanation: Incomplete “Server=" entry for a data
list.

System action: IBM NameWorks modules throw the
ibmgnr::NwException exception.

User response: Correct the server data in the
configuration file and restart your application.

GODWO023E Data list with no server data

Explanation: The data list contains no “Server="
entries.

System action: IBM NameWorks modules throw the
ibmgnr:NwException exception.

User response: Correct the configuration file and
restart your application.

198 1BM InfoSphere Global Name Management: Developer's Guide

GODWO024E GODWO034E

GODWO024E Missing search strategy

Explanation: The provided search strategy name does
not appear in the configuration file.

System action: IBM NameWorks modules throw the
ibmgnr:NwException exception.

User response: Verify that the search strategy name is
correct. Repair the configuration file or correct the
search strategy name and retry the action that you were
trying to accomplish.

GODWO025E Searcher construction error

Explanation: Failed to perform a search due to lack of
memory.

System action: IBM NameWorks modules throw the
ibmgnr:NwException exception.

User response: Allocate more memory to the process
and retry the action that you were trying to accomplish.

GODWO026E Search error
Explanation: The search engine returned an error.

System action: IBM NameWorks modules throw the
ibmgnr:NwException exception.

User response: An error in the message indicates that
the Distributed Search process returned error
information. Otherwise, a communication error
occurred and the message contains the error code.
Correct the error and retry the search operation.

GODWO027E Data list add error

Explanation: The add operation failed because no add
server was specified (blank message) or because the
message contains error information from a search
engine.

System action: IBM NameWorks modules throw the
ibmgnr:NwException exception.

User response: An error in the message indicates that
the Distributed Search process returned error
information. Otherwise, a communication error
occurred and the message contains the error code.
Correct the error and retry add operation.

GODWO028E Data list update error

Explanation: The update operation failed due to a
communication error.

System action: IBM NameWorks modules throw the
ibmgnr:NwException exception.

User response: Correct the communication error and
retry the update operation.

GODWO029E Data list delete error

Explanation: The delete operation failed due to a
communication error.

System action: IBM NameWorks modules throw the
ibmgnr:NwException exception.

User response: Correct the communication error and
retry the delete operation.

GODWO30E Data list fetch error

Explanation: The fetch operation failed due to a
communication error.

System action: IBM NameWorks modules throw the
ibmgnr::NwException exception.

User response: Correct the communication error and
retry the fetch operation.

GODWO31E Invalid parameter value

Explanation: The NameVariantGenerator object could
not be created.

System action: IBM NameWorks modules throw the
ibmgnr:NwException exception.

User response: Correct the invalid parameter and
retry the action that you were trying to accomplish.

GODWO032E Bad data file
Explanation: The name data file could not be opened.

System action: IBM NameWorks modules throw the
ibmgnr:NwException exception. This exception is
reported as a Java RunTimeException for the Java APIs
and Web services.

User response: Ensure that the name data file exists
and that the path name is correct. Obtain a new copy
of the affected file if the problem persists.

GODWO33E Bad record

Explanation: An invalid name record exists in the
name data file.

System action: IBM NameWorks modules throw the
ibmgnr:NwException exception. This exception is
reported as a Java RunTimeException for the Java APIs
and Web services.

User response: Correct the invalid record and retry
the action that you were trying to accomplish.

GODWO34E Transaction identifier lock

Explanation: An internal error has occurred for this
transaction.

System action: IBM NameWorks modules throw the
ibmgnr:NwException exception. This exception is

Chapter 7. Troubleshooting and support 199

GODWO35E * gnrds-001

reported as a Java RunTimeException for the Java APIs
and Web services.

User response: Restart your application to resolve the
error.

GODWO35E Bad default comparison parameters

Explanation: An error has occurred in the default
comparison parameters (CompParms) override file.

System action: IBM NameWorks modules throw the
ibmgnr:NwException exception. This exception is
reported as a Java RunTimeException for the Java APIs
and Web services.

User response:

GODWO036E Regularization lock failure

Explanation: An internal regularization error has
occurred.

System action: IBM NameWorks modules throw the
ibmgnr:NwException exception. This exception is
reported as a Java RunTimeException for the Java APIs
and Web services.

User response: Restart your application to resolve the
error.

GODWO37E Invalid CompParm name

Explanation: An invalid comparison parameter
(CompParm) override name exists.

System action: IBM NameWorks modules throw the
ibmgnr:NwException exception. This exception is
reported as a Java RunTimeException for the Java APIs
and Web services.

User response: Repair the invalid CompParm name.
The text string that accompanies the error message lists
the file name where the error occurred.

GODWO038E Invalid CompParm value

Explanation: An invalid comparison parameter
(CompParm) override value exists.

System action: IBM NameWorks modules throw the
ibmgnr:NwException exception. This exception is
reported as a Java RunTimeException for the Java APIs
and Web services.

User response: Repair the invalid CompParm value.
The text string that accompanies the error message lists
the file name where the error occurred.

GODWO39E Invalid datalist type

Explanation: An invalid datalist type exists in the IBM
NameWorks configuration file.

System action: IBM NameWorks modules throw the
ibmgnr:NwException exception. This exception is
reported as a Java RunTimeException for the Java APIs
and Web services.

User response: Correct the invalid datalist type
parameter. The following values are valid entries for
the Type= parameter:

* 0 = embedded search
e 1 = full search

* 2 = unique name search

GODWO040E Duplicate Datalist or Search Strategy
name

Explanation: One or more duplicate Datalist or Search
Strategy names have been found in the IBM
NameWorks configuration file.

System action: IBM NameWorks modules throw the
ibmgnr:NwException exception. This exception is
reported as a Java RunTimeException for the Java APIs
and Web services.

User response: Remove the duplicate entries or
provide unique names for each entry.

GODWO41E Invalid culture override/rule file

Explanation: An attempt to load a culture
override/rule file failed, probably because the file name
is incorrect.

System action: IBM NameWorks modules throw the
ibmgnr:NwException exception. This exception is
reported as a Java RunTimeException for the Java APIs
and Web services.

User response: Correct the culture override/rule file
name in the IBM NameWorks configuration file.

Distributed Search error codes

Distributed Search errors are returned to the client in the <ERROR> tag of the XML
response. Each error reports a severity classification, error code, and message.

gnrds-001 Could not find beginning of message,

discarding

Explanation: Distributed Search could not find the tag
identifying the beginning of a message. The tag is

either <NHServerMessage> or
<NH_SERVER_MESSAGE>. This error is an indication
of a programming or communication error.

User response: You can try to re-send the failed

200 1BM InfoSphere Global Name Management: Developer's Guide

message, but a system restart may be the only solution.

gnrds-002 could not find end of message,

discarding

Explanation: Distributed Search could not find the tag
identifying the end of a message. The tag is either
“/NHServerMessage>" or /NH_SERVER_MESSAGE>".
This error is an indication of a programming or
communication error.

User response: You can try to re-send the failed
message, but a system restart may be the only solution.

gnrds-003 could not determine message type

Explanation: Either the request_type field has an
invalid value, or Distributed Search does not recognize
a response message. This error is an indication of a
programming or communication error.

User response: You can try to re-send the failed
message, but a system restart might be the only
solution.

could not find record header —
RECORD_HEADER

gnrds-004

Explanation: Distributed Search could not find a
required record header (e.g.,,SEARCH_NAME). This
missing header will be shown instead of
“RECORD_HEADER” above. This error is an indication
of a programming error.

gnrds-002 ¢ gnrds-016

gnrds-009 invalid culture code - TAG=VALUE

Explanation: A culture code is outside of the
supported range. See the culture code table for valid
values. The offending TAG and VALUE will be shown
in the message.

gnrds-010 invalid boolean - TAG=VALUE

Explanation: A Boolean value does not contain a valid
value. Distributed Search accepts “T, TRUE, Y, YES,
ON, 1” for true and “F, FALSE, N, NO, OFF, 0” for
false. The values are case insensitive. The offending
TAG and VALUE will be shown in the message.

gnrds-011 must be a number greater than 0 -

TAG=VALUE

Explanation: A number less than 1 has been supplied
in a field which requires a positive number. The
offending TAG and VALUE will be shown in the
message.

gnrds-012 anchor type must be 0, 1 or 2 -

TAG=VALUE
Explanation: The value for ANCHOR_TYPE is invalid.

gnrds-013 score mode must be 0, 1 or 2 —

TAG=VALUE
Explanation: The value for SCORE_MODE is invalid.

gnrds-005 could not find tag - TAG

Explanation: Distributed Search could not find a
required tag (e.g, request_type). The missing tag will
appear in place of “TAG” above. This error is an
indication of a programming error.

gnrds-006 invalid message type — X

Explanation: The value of the “request_type” field is
invalid. The erroneous value will be shown in place of
“X” above.

gnrds-007 must be a number - TAG=VALUE

Explanation: A non-numeric value has been supplied
for a numeric field. The offending TAG and VALUE
will be shown in the message.

must be between 0.0 and 1.0 —
TAG=VALUE

gnrds-008

Explanation: A scale value (e.g., threshold) is outside
of the required range. The offending TAG and VALUE
will be shown in the message.

gnrds-014 no searchers configured to support adds

or updates

Explanation: An add or update request has been
received by Distributed Search, and no searchers
support adds.

User response: If adds are to be supported, one
searcher must have the configuration setting,
“doAdds=true”.

gnrds-015 missing GN, missing SN queries are not

allowed

Explanation: A search request has been received with
a blank GN and a blank SN, and Distributed Search
has been configured to reject this type of query. The
configuration file has the entry, “allowFnuLnu=false”.

gnrds-016 missing GN, SN initial queries are not

allowed

Explanation: A search request has been received with
a blank GN and an single initial for the SN, and
Distributed Search has been configured to reject this
type of query. The configuration file has the entry,
“allowFnulnit=false”.

Chapter 7. Troubleshooting and support 201

gnrds-017 ¢ gnrnh-001

gnrds-017 GN initial, missing SN queries are not

allowed

Explanation: A search request has been received with
a single initial for the GN and a blank SN, and
Distributed Search has been configured to reject this
type of query. The configuration file has the entry,
“allowInitlLnu=false”.

gnrds-018 GN initial, SN initial queries are not

allowed

Explanation: A search request has been received with
a single initial for the GN and a single initial for the
SN, and Distributed Search has been configured to
reject this type of query. The configuration file has the
entry, “alTowInitInit=false”.

one or more searchers are not
responding

gnrds-020

Explanation: One or more searchers are not
responding, and a complete response cannot be created.

User response: Most likely, Distributed Search will
have to be restarted.

gnrds-021 name ID cannot be blank

Explanation: Add and update requests must supply
an ID. When this message is returned, the ID is blank.

gnrds-022 name ID to update cannot be blank

Explanation: Add and update requests must supply
an ID to be updated. When this message is returned,
the ID_TO_UPDATE is blank.

gnrds-023 a searcher response was too large for the

message buffer

Explanation: This is almost certainly due to a search
result message with too many responses going from a
searcher to the commgr.

User response: Queries that generate too many results
should be avoided; however you can increase the
message buffer size via the ds.config setting
msgBuffSize. It defaults to 1Mb.

gnrds-024 could not parse a message

Explanation: NameParser was unable to parse the
message that it received.

gnrds-025 could not transliterate, invalid UTF8

Explanation: NameTransliterator has detected invalid
UTES in the SN or GN fields in a query or add
message. This message can also be written to the error

log during startup and pre-processing if invalid UTF8
is detected in the input file.

gnrds-026 score type must be 0 or 1

Explanation: A value other than 0 or 1 was specified
for the score type in the compparms.config file. This
error is extremely rare and should not occur under
normal operating conditions.

CAUTION:

Altering the score_type value changes the scoring
algorithm that is used by Distributed Search. You
should not alter this value.

gnrds-027 name category must be P, O, or A

Explanation: A name category other than Personal (P),
Organization (O), or All (A) was specified for the query
name.

User response: Remove the invalid value and insert a
valid name category.

gnrds-028 name cannot be empty

Explanation: An empty query name was passed to
Distributed Search.

User response: Provide a valid name for the query
name and retry the search operation.

gnrds-029 search option must be 1, 2, or 3

Explanation: A value other than 1, 2, or 3 was
specified for the SearchOpt= parameter in the Search
Strategy.

User response: Specify a valid value for the
SearchOpt= parameter in the Search Strategy.
* 1 = Search on Personal name list only

* 2 = Search on Organization name list only

* 3 = Search on both Personal and Organization name
lists

gnrds-030 number should not be negative

Explanation: This error can occur for any number
because Distributed Search does not support negative
values.

User response: Correct the invalid value by specifying
a value greater than or equal to zero.

gnrnh-001 after parsing, GN and SN are blank

Explanation: This message indicates that an attempt to
add a record has failed because the given name and
surname are blank. They could have been entered by
the user as blanks, or they could have been converted
to blanks via transliteration

202 1BM InfoSphere Global Name Management: Developer's Guide

Enterprise Name Search error codes

Enterprise Name Search errors are returned to the client in the <ERROR> tag of the
XML response, in an errors list in JSON output, or in a dialog displayed in a GU]I,
and are typically also logged in ENS server logs. When shown in web service
output, an error indication includes an error code and possibly a message.

ENS Console error codes

These messages and related codes may appear in error dialogs in the ENS console
GUI and where applicable in the server log file.

CDHNC1001E
No action was specified.

CDHNC1002E
An exception occurred while starting or stopping the cell. Contact your
system administrator. The product logged a message in the application
server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNC1301E
An internal error occurred, which caused an inconsistent data state.
Contact your system administrator. The product logged a message in the
application server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNC1302E
An internal error occurred: Multiple cells are defined. Contact your system
administrator. The product logged a message in the application server log
file with a date and time stamp of approximately (errorTimestamp).

CDHNC1303E
An internal error occurred: No cell is defined. Contact your system
administrator. The product logged a message in the application server log
file with a date and time stamp of approximately (errorTimestamp).

CDHNC1304E
An internal server error occurred: The product cannot locate the cell.
Contact your system administrator. The product logged a message in the
application server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNC1305E
Illegal value for redundancyType. The value must be one of the following
values: NONE, MIRRORED, or OVERLAPPING.

CDHNC1306E
The mirror count may only be specified when the redundancy type is
MIRRORED, and then the count must be greater than 1.

CDHNC1307E
An internal database error occurred: An update was not successful. Contact
your system administrator. The product logged a message in the
application server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNC1308E
An internal error occurred: The partition was not created. Contact your

Chapter 7. Troubleshooting and support 203

system administrator. The product logged a message in the application
server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNC1309E
An internal error occurred, which caused an inconsistent data state.
Contact your system administrator. The product logged a message in the
application server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNC1310E
You cannot configure a cell in the Active state. Change the state of the cell
to Inactive and then configure the cell.

CDHNC1311E
An internal error occurred, which caused an inconsistent data state.
Contact your system administrator. The product logged a message in the
application server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNC1312E
An internal error occurred, which caused an inconsistent data state.
Contact your system administrator. The product logged a message in the
application server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNC1313E
An internal error occurred, which caused an inconsistent data state.
Contact your system administrator. The product logged a message in the
application server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNC1314E
Use the following format for server ID: ipAddress_ProfileName.

CDHNC1315E
Field (fieldname) must be a non-empty array.

CDHNC1316E
Field (fieldname) must be non-null value of type (type).

CDHNC1317E
An internal error occurred: Unknown exception while gathering cell state.
Possibly the database is not running. Contact your system administrator.
The product logged a message in the application server log file with a date
and time stamp of approximately (errorTimestamp).

CDHNC1318E
The cell now includes server (serverID) which is not listed here. Refresh
this display and try the cell configuration operation again.

CDHNC1319E
An internal error occurred: Server (serverID) which is listed here is no
longer part of the cell. Refresh this display and try the cell configuration
operation. Contact your system administrator. The product logged a
message in the application server log file with a date and time stamp of
approximately (errorTimestamp).

CDHNC1320E
An internal error occurred: Missing (autoStartFlag) for server (serverID).

204 1BM InfoSphere Global Name Management: Developer's Guide

Contact your system administrator. The product logged a message in the
application server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNC1321E
An internal error occurred: Server (serverID) was listed multiple times.
Contact your system administrator. The product logged a message in the
application server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNC1322E
An internal error occurred: At least one searcher must be selected. Contact
your system administrator. The product logged a message in the
application server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNC1323E
An internal error occurred: Invalid mirrorCount input. Contact your system
administrator. The product logged a message in the application server log
file with a date and time stamp of approximately (errorTimestamp).

CDHNC1324E
An internal error occurred: Invalid redundancyType input. Contact your
system administrator. The product logged a message in the application
server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNCI1401E
No action was specified.

CDHNC1402E
An internal error occurred while managing the server. Contact your system
administrator. The product logged a message in the application server log
file with a date and time stamp of approximately (errorTimestamp).

CDHNC1501E
No action was specified.

CDHNC1502E
An internal error occurred while starting or stopping a dispatcher. Contact
your system administrator. The product logged a message in the
application server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNC1601E
No action was specified.

CDHNC1602E
An internal error occurred while managing a searcher. Contact your system
administrator. The product logged a message in the application server log
file with a date and time stamp of approximately (errorTimestamp).

CDHNC1604E
Cannot delete an active searcher.

CDHNC1801E
An internal error occurred while managing the dashboard. Contact your
system administrator. The product logged a message in the application
server log file with a date and time stamp of approximately
(errorTimestamp).

Chapter 7. Troubleshooting and support 205

206

CDHNC1802E
Could not parse serverID as an integer.

CDHNC1803E
Could not retrieve serverlD.

CDHNC1804E
No parameters were defined.

CDHNC1805E
An internal error occurred: More than one server is assigned to the same
ID. Contact your system administrator. The product logged a message in
the application server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNC1806E
An internal error occurred: The product cannot locate a server with this ID
in the database. Contact your system administrator. The product logged a
message in the application server log file with a date and time stamp of
approximately (errorTimestamp).

CDHNC1807E
An internal error occurred: The database could not be successfully
updated. Contact your system administrator. The product logged a
message in the application server log file with a date and time stamp of
approximately (errorTimestamp).

CDHNCI1809E
No action was specified.

CDHNC1901E
An internal error occurred, which caused an inconsistent data state.
Contact your system administrator. The product logged a message in the
application server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNC1902E
No action to be performed.

CDHNC1903E
An internal error occurred: The product found more than one active cell.
Contact your system administrator. The product logged a message in the
application server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNC1904E
An internal error occurred: The product cannot locate a configured cell.
Contact your system administrator. The product logged a message in the
application server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNC1906E
An internal error occurred: The product cannot find the cell to modify.
Contact your system administrator. The product logged a message in the
application server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNC1907E
An internal error occurred: The product could not successfully update the
database. Contact your system administrator. The product logged a
message in the application server log file with a date and time stamp of
approximately (errorTimestamp).

IBM InfoSphere Global Name Management: Developer's Guide

CDHNC1908E
An internal error occurred while transferring the console. Contact your
system administrator. The product logged a message in the application
server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNC2101E
Could not retrieve serverID from URL.

CDHNC2102E
Could not parse serverID.

CDHNC2103E
An internal error occurred: The product found more than one server in the
database with specified ID. Contact your system administrator. The
product logged a message in the application server log file with a date and
time stamp of approximately (errorTimestamp).

CDHNC2104E
The product cannot find the server ID in the database. Contact your
system administrator. The product logged a message in the application
server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNC2105E
Value for parameter (paramName) must be true or false.

CDHNC2106E
The component is already in the process of being started or stopped.

CDHNC2107E
The component cannot be started or stopped, because the server is not
active.

CDHNC2108E
An internal error occurred: The database update was unsuccessful. Contact
your system administrator. The product logged a message in the
application server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNC2109E
An internal error occurred, which caused an inconsistent data state.
Contact your system administrator. The product logged a message in the
application server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNC2110E
Exception when attempting to lock server state table. Contact your system
administrator. The product logged a message in the application server log
file with a date and time stamp of approximately (errorTimestamp).

CDHNC2111E
An internal error occurred while accessing the database. Contact your
system administrator. The product logged a message in the application
server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNC2112E
An internal error occurred while writing to the database. Contact your
system administrator. The product logged a message in the application
server log file with a date and time stamp of approximately
(errorTimestamp).

Chapter 7. Troubleshooting and support 207

208

CDHNC2113E
Partitions must be defined before the searcher can be set for automatic
start.

CDHNC2114E
Partitions must be defined before the searcher can be started.

CDHNC?2115E
No product servers are currently active.

CDHNC2116E
An internal error occurred: The product cannot get the status of the cell.
Contact your system administrator. The product logged a message in the
application server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNC2117E
Cannot determine URL.

CDHNC2118E
Unexpected parameter name was passed to the service. Contact your
system administrator. The product logged a message in the application
server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNC2119E
The mirroredFrom value is identical to the serverID. Cannot mirror server.
Contact your system administrator. The product logged a message in the
application server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNC2120E
Cannot perform start or stop while cell is inactive. Contact your system
administrator. The product logged a message in the application server log
file with a date and time stamp of approximately (errorTimestamp).

CDHNC2121E
The newServer value is identical to the serverID. Cannot transfer console.
Contact your system administrator. The product logged a message in the
application server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNC2122E
Unexpected blank parameter name was passed to the service. Contact your
system administrator. The product logged a message in the application
server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNC2123E
An internal error occurred. Contact your system administrator. The product
logged a message in the application server log file with a date and time
stamp of approximately (errorTimestamp).

CDHNC2124E
This server cannot be mirrored, because the only other servers in the cell
already have corresponding components configured. Contact your system
administrator. The product logged a message in the application server log
file with a date and time stamp of approximately (errorTimestamp).

IBM InfoSphere Global Name Management: Developer's Guide

ENS Search error codes

These messages and related codes may appear in error dialogs in the ENS search
GUI, in web service error responses and where applicable in the server log file.

CDHNS3000E
No response was received from the server in the expected timeout interval.

CDHNS3001E
No name lists were found for which you have search permission.

CDHNS3002E
No strategies were found.

CDHNS3003E
No cultures were found.

CDHNS3010E
An internal error occurred: Cannot reinitialize dispatcher. Contact your
system administrator. The product logged a message in the application
server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNS3011E
The nameType parameter cannot be null or empty.

CDHNS3012E
The nameText parameter cannot be null or empty.

CDHNS3013E
Value for nameType must be PERSON or ORGANIZATION.

CDHNS3014E
An internal error occurred while communicating with the searchers.
Contact your system administrator. The product logged a message in the
application server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNS3015E
An internal error occurred: Some needed searcher components are not
available. Contact your system administrator to check the status of the
servers.

CDHNS3016E
An internal error occurred: The product cannot read the searcher response.
Contact your system administrator. The product logged a message in the
application server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNS3017E
An internal error occurred: The product cannot construct the searcher
request. Contact your system administrator. The product logged a message
in the application server log file with a date and time stamp of
approximately (errorTimestamp).

CDHNS3018E
An internal error occurred: The product cannot obtain the list of active
searchers. Contact your system administrator. The product logged a
message in the application server log file with a date and time stamp of
approximately (errorTimestamp).

CDHNS3019E
An internal error occurred: The product cannot locate the dispatcher

Chapter 7. Troubleshooting and support 209

210

instance on this server. Contact your system administrator. The product
logged a message in the application server log file with a date and time
stamp of approximately (errorTimestamp).

CDHNS3020E
An internal error occurred: The dispatcher is not active. Contact your
system administrator to check the status of the servers.

CDHNS3021E
The nameListCode parameter may not be null or empty.

CDHNS3022E
The externallD parameter may not be null or empty.

CDHNS3023E
Your user ID does not have searcher permissions set for this name list.
Contact your system administrator.

CDHNS3024E
Unable to get name details due to non-unique or missing nameListCodes.

CDHNS3025E
An invalid source name was specified. The name does not exist.

CDHNS3026E
An internal error occurred: The source name should be unique, but the
product found multiple source names. Contact your system administrator.
The product logged a message in the application server log file with a date
and time stamp of approximately (errorTimestamp).

CDHNS3027E
Unable to add name due to missing name criteria.

CDHNS3028E
The externallD specified in the request parameters does not match the
externallD specified in the message body.

CDHNS3029E
The nameListCode specified in the request parameters does not match the
nameListCode specified in the message body.

CDHNS3030E
Your user ID does not have manager permissions set for this name list.
Contact your system administrator.

CDHNS3031E
The nameCategory parameter must not be null or empty.

CDHNS3032E
The nameCategory parameter is not a valid name category.

CDHNS3033E
The name cannot be deleted due to non-unique or missing nameListCodes.
Contact your system administrator. The product logged a message in the
application server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNS3034E
The specified parameters are not permitted when adding a personal name:
paramNames.

CDHNS3035E
The value for the includeAlternateParses parameter must be true or false.

IBM InfoSphere Global Name Management: Developer's Guide

CDHNS3036E
Parameter paramNames is not valid when adding a FULL name type.

CDHNS3037E
Both givenName and surname parameters cannot be null or empty when
adding a PARSED name type.

CDHNS3038E
The name cannot be added due to multiple or missing nameListCodes.
Contact your system administrator. The product logged a message in the
application server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNS3039E
The specified parameters are not permitted when adding an organization
name: paramNames.

CDHNS3040E
The nameText parameter may not be null or empty when adding an
organization name.

CDHNS3041E
Could not retrieve external references due to missing criteria.

CDHNS3042E
An internal error occurred while trying to obtain the searcher port number.
Contact your system administrator. The product logged a message in the
application server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNS3043E
An internal error occurred while trying to establish a SSL connection to a
searcher. Contact your system administrator. The product logged a message
in the application server log file with a date and time stamp of
approximately (errorTimestamp).

CDHNS3044E
An internal error occurred: The SSL session of the searcher is not valid.
Contact your system administrator. The product logged a message in the
application server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNS3045E
An internal error occurred while trying to configure the SSL connection to
a searcher. Contact your system administrator. The product logged a
message in the application server log file with a date and time stamp of
approximately (errorTimestamp).

CDHNS3046E
An internal error occurred: All available searcher components exceeded the
specified timeout interval. Contact an administrator to check the status of
the servers. Contact your system administrator. The product logged a
message in the application server log file with a date and time stamp of
approximately (errorTimestamp).

CDHNS3047E
An internal error occurred: Needed searcher components are not available.
Contact an administrator to check the status of the servers. Contact your
system administrator. The product logged a message in the application
server log file with a date and time stamp of approximately
(errorTimestamp).

Chapter 7. Troubleshooting and support 211

CDHNS3048E
An internal error occurred during name transliteration. Contact your
system administrator. The product logged a message in the application
server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNS3049E
You have specified one or more namelists that either do not exist or cannot
be searched with your current permissions.

CDHNS3050E
There are no namelists for which you have search permission.

CDHNS3051E
An internal error occurred: A searcher returned an error message. Contact
your system administrator. The product logged a message in the
application server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNS3052E
maxResults must be an integer greater than 0 (zero). Alternatively, specify
-1 to use the default maxResults as configured or 0 (zero) for ultimate limit
as configured.

CDHNS3053E
minScore must be an integer greater than or equal to 0 (zero), or specify -1
to use the default minScore as configured.

CDHNS3061E

The name cannot be parsed, possibly because of invalid characters.
CDHNS3062E

The search name cannot be parsed, possibly because of invalid characters.
CDHNS3063E

An internal error occurred: The product cannot check for existing search
name. The product logged a message in the application server log file with
a date and time stamp of approximately (errorTimestamp).

CDHNS3072E

The list of namelists passed to searchName may not have more than the
configured maximum number of entries.

CDHNS3092E
An unknown error has occurred while trying to retrieve the strategy codes.
Contact your system administrator. The product logged a message in the
application server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNS3093E
An unknown error has occurred while trying to retrieve the cultures.
Contact your system administrator. The product logged a message in the
application server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNS3094E
An unknown error has occurred while trying to perform the name search.
Contact your system administrator. The product logged a message in the
application server log file with a date and time stamp of approximately
(errorTimestamp).

IBM InfoSphere Global Name Management: Developer's Guide

CDHNS3095E
An unknown error has occurred while trying to retrieve the name lists.
Contact your system administrator. The product logged a message in the
application server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNS3096E
An unknown error has occurred while trying to retrieve the name details.
Contact your system administrator. The product logged a message in the
application server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNS3097E
An unknown error has occurred while trying to add a name. Contact your
system administrator. The product logged a message in the application
server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNS3098E
An unknown error has occurred while trying to remove a name. Contact
your system administrator. The product logged a message in the
application server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNS3099E
An unknown error has occurred while trying to retrieve external
references. Contact your system administrator. The product logged a
message in the application server log file with a date and time stamp of
approximately (errorTimestamp).

CDHNS4001E
An error occurred on the server. Contact your system administrator. The
product logged a message in the application server log file with a date and
time stamp of approximately (errorTimestamp).

CDHNS4002E
A value must be provided for paramName.

CDHNS4003E
An invalid value was specified for parameter paramName.

CDHNS4004E
minScore must be an integer between 0 and 100 inclusive. Alternately,
specify -1 to use the default value from the search strategy.

CDHNS4005E
maxResults must be an integer greater than zero. Alternately, specify -1 to
use the default value from the search strategy.

CDHNS4006E
A database error occurred on the server. Contact your system
administrator. The product logged a message in the application server log
file with a date and time stamp of approximately (errorTimestamp).

CDHNS4007E
A product error occurred on the server. Contact your system administrator.
The product logged a message in the application server log file with a date
and time stamp of approximately (errorTimestamp).

CDHNS4008E
Unexpected parameters were passed to the search service. Contact your

Chapter 7. Troubleshooting and support 213

system administrator. The product logged a message in the application
server log file with a date and time stamp of approximately
(errorTimestamp).

CDHNS4009E
The specified name includes characters that cannot be transliterated. This
may be due to use of an unsupported character set or a mixture of
different character sets in the same name.

CDHNS4010E
An internal error occurred. Contact your system administrator. The product
logged a message in the application server log file with a date and time
stamp of approximately (errorTimestamp).

Searching knowledge bases

You can often find solutions to problems by searching IBM knowledge bases. You
can optimize your results by using available resources, support tools, and search
methods.

About this task

You can find useful information by searching the information center for IBM
InfoSphere Global Name Management , but sometimes you need to look beyond
the information center to answer your questions or resolve problems.

Procedure

To search knowledge bases for information that you need, use one or more of the
following approaches:

+ Find the content that you need by using the [[BM Support Portal for IBM|
[[nfoSphere Global Name Management |

The IBM Support Portal is a unified, centralized view of all technical support
tools and information for all IBM systems, software, and services. The IBM
Support Portal lets you access the IBM electronic support portfolio from one
place. You can tailor the pages to focus on the information and resources that
you need for problem prevention and faster problem resolution. Familiarize
yourself with the IBM Support Portal by viewing the

(https:/ /www.ibm.com/blogs/SPNA /entry/the_ibm_support_portal_videos)
about this tool. These videos introduce you to the IBM Support Portal, explore
troubleshooting and other resources, and demonstrate how you can tailor the
page by moving, adding, and deleting portlets.

* Search for content about IBM InfoSphere Global Name Management by using
one of the following additional technical resources:
— IBM InfoSphere technotes
— IBM InfoSphere APARs (problem reports)

* Search for content by using the IBM masthead search. You can use the IBM
masthead search by typing your search string into the Search field at the top of
any ibm.com™ page.

* Search for content by using any external search engine, such as Google, Yahoo,
or Bing. If you use an external search engine, your results are more likely to
include information that is outside the ibm.com domain. However, sometimes
you can find useful problem-solving information about IBM products in
newsgroups, forums, and blogs that are not on ibm.com.

214 1BM InfoSphere Global Name Management: Developer's Guide

http://www-947.ibm.com/support/entry/portal/Overview/Software/Information_Management/InfoSphere_Global_Name_Management
http://www-947.ibm.com/support/entry/portal/Overview/Software/Information_Management/InfoSphere_Global_Name_Management
https://www.ibm.com/blogs/SPNA/entry/the_ibm_support_portal_videos

Tip: Include “IBM” and the name of the product in your search if you are
looking for information about an IBM product.

Log files

Information is written to log files when a qualifying condition occurs to a specific
system component, such as the component is installed, started, or when an error
occurs during processing.

You can define the log file names and locations using the configuration files, such
as the IBM NameWorks configuration file. You can also set the level of logging,
including turning on tracing. All tracing information is included in the logs.

IBM NameWorks uses the standard mechanisms found in the java.util.logging
package, so you can enable and control all aspects of the logging and tracing done
by IBM NameWorks functions using the classes found in that Java package. The
default is for logging to be disabled.

The name of the logger that IBM NameWorks uses is com.ibm.gnr.NameWorks. To
get access to the logging control, use code similar to the following code:

java.util.logging.Logger gnrLogger =
java.util.logging.Logger.getLogger("com.ibm.gnr.NameWorks");

Then, use the standard logger methods to set the logging level and the handler.

Tracing

Traces are records of component or transaction processing. The information
collected from a trace can be used to assess problems and performance.

For IBM NameWorks, the trace log file (trace.log) is located in the
/ewas/profiles/NameWorksProfile/logs/NameWorksServer directory in your default
product installation directory.

IBM NameWorks supports most of the log level settings provided by WebSphere
Application Server (for example, Severe, Fine, Finer, and Finest). To change the
trace settings for IBM NameWorks, edit the server.xml file in the
/ewas/profiles/NameWorksProfile/config/cells/DefaultNode/nodes/DefaultNode/
servers/NamelWorksServer directory in your default installation directory and
modify the startupTraceSpecification parameter to include the appropriate log
level setting. For example, to set the trace log setting to fine, specify:
startupTraceSpecification="*=info:com.ibm.gnr.NameWorks=fine".

Contacting IBM Support

IIBM Support provides assistance with product defects, answering FAQs, and
performing rediscovery.

Before you begin

After trying to find your answer or solution by using other self-help options such
as technotes, you can contact IBM Support. Before contacting IBM Support, your
company must have an active IBM maintenance contract, and you must be
authorized to submit problems to IBM. For information about the types of
available support, see the [Support portfolio| topic in the Software Support Handbook.

Chapter 7. Troubleshooting and support 215

http://www14.software.ibm.com/webapp/set2/sas/f/handbook/offerings.html

If you prefer a PDF copy of the handbook, you can download the handbook in
ﬂ

If you prefer a copy of the handbook in another language (such as

Japanese or French), look on the of the Software Support Handbook

under Other languages.
Procedure

Complete the following steps to contact IBM Support with a problem:

1. Define the problem. Describe the problem and symptoms as specifically as
possible. For more information, see the [Getting IBM support] topic in the
Software Support Handbook.

2. Determine the severity level of the problem. If necessary, see the

topic in the Software Support Handbook for helpful definitions of severity
levels.

3. Gather background information, including the following data:
* What version and release level of the product are you using?

* Which levels of software were you running when the problem occurred?
Include the data base and operating system version numbers and service
pack numbers, as well as all related products.

* Has this problem happened before, or is it an isolated problem?

* Can the problem be recreated? If so, what are the steps required to recreate
it?

* Are you the main contact for this problem and how does you prefer to be
contacted (such as email or phone)? Is there more than one phone number,

page, or email address where you can be reached? What is your availability?
When are you able to work on this problem with IBM Software Support?

* Is there a knowledgeable alternate contact with whom IBM Software Support
can speak?

4. Gather any available messages or diagnostic data (such as log files) produced.
It is helpful to have the message numbers of any messages received when you
call support.

5. Submit your problem to IBM Support in one of the following ways:

* Online through the [[BM Support Portalt You can open, update, and view all
your Service Requests from the Service Request portlet on the Service
Request page.

* By phone: For the phone number to call in your country, see the
[worldwide contacts| web page.

Results

If the problem that you submit is for a software defect or for missing or inaccurate
documentation, IBM Support creates an Authorized Program Analysis Report
(APAR). The APAR describes the problem in detail. Whenever possible, IBM
Support provides a workaround that you can implement until the APAR is
resolved and a fix is delivered. IBM publishes resolved APARs on the IBM Support
website daily, so that other users who experience the same problem can benefit
from the same resolution.

Subscribing to Support updates

To stay informed of important information about the IBM products that you use,
you can subscribe to updates.

216 1BM InfoSphere Global Name Management: Developer's Guide

ftp://ftp.software.ibm.com/software/server/handbook/webhndbk.pdf
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/getsupport.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/getsupport.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/getsupport.html
http://www.ibm.com/software/support/
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/

About this task

By subscribing to receive updates, you can receive important technical information
and updates for specific Support tools and resources. You can subscribe to updates
by using one of two approaches:

RSS feeds and social media subscriptions

For general information about RSS, including steps for getting started and
a list of RSS-enabled IBM web pages, visit the [[BM Software Support RSS|

site.

My Notifications

With My Notifications, you can subscribe to Support updates for any IBM
product. You can specify that you want to receive daily or weekly email
announcements. You can specify what type of information you want to
receive (such as publications, hints and tips, product flashes (also known
as alerts), downloads, and drivers). My Notifications enables you to
customize and categorize the products about which you want to be
informed and the delivery methods that best suit your needs.

Procedure

To subscribe to Support updates:

1.

To subscribe to notifications for IBM InfoSphere Global Name Management ,
begin by going to the [BM InfoSphere Global Name Management Support]

rtal.| and clicking Create or update your subscription for this product in the

Notifications portlet.

a.

e.

If you have already registered for My support, sign in and skip to the next
step. If you have not registered, click Register now. Complete the
registration form using your email address as your IBM ID and click
Submit.

In Notify me by, select one or more methods that you want to use to
receive updates, including email and RSS feeds.

If you want to deliver notifications to a specific folder select the folder or
type the name of a folder in Options.

In the Document types list, select as many types of documents as you want
to receive notifications about from the list.

Click Submit.

To subscribe to My Notifications for other IBM products, begin by going to the

[[BM Support Portal|and clicking My Notifications in the Notifications portlet.

a.

If you have already registered for My support, sign in and skip to the next
step. If you have not registered, click Register now. Complete the
registration form using your email address as your IBM ID and click
Submit.

Click Edit profile.

c. Click Add products and choose a product category; for example, Software.

A second list is displayed.

In the second list, select a product segment; for example, Data &
Information Management. A third list is displayed.

In the third list, select a product subsegment, for example, Databases. A list
of applicable products is displayed.

Select the products for which you want to receive updates.
Click Add products.

Chapter 7. Troubleshooting and support 217

http://www.ibm.com/software/support/rss/
http://www.ibm.com/software/support/rss/
http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/InfoSphere_Global_Name_Recognition
http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/InfoSphere_Global_Name_Recognition
http://www.ibm.com/software/support/

h. After selecting all products that are of interest to you, click Subscribe to
email on the Edit profile tab.

i. Select Please send these documents by weekly email.

j. Update your email address as needed.

k. In the Documents list, select the product category; for example, Software.
[. In the Documents list, select the product category; for example, Software.
m. Click Update.

Results

Until you modify your RSS feeds and My Notifications preferences, you receive
notifications of updates that you have requested. You can modify your preferences
when needed (for example, if you stop using one product and begin using another
product).

Related information

[# [[BM Software Support RSS feeds|

[[Subscribe to My Notifications support content updates|

[# My notifications for IBM technical support]

[# My notifications for IBM technical support overview]

218 1BM InfoSphere Global Name Management: Developer's Guide

http://www.ibm.com/software/support/rss/
http://www.ibm.com/software/support/einfo.html
http://www.ibm.com/support/mynotifications
http://www.ibm.com/software/support/viewlet/my_notifications_viewlet_swf.html

Appendix. Glossary

This glossary includes terms and definitions for IBM InfoSphere Global Name
Management.

The following cross-references are used in this glossary:

* See refers you from a term to a preferred synonym, or from an acronym or
abbreviation to the defined full form.

* See also refers you to a related or contrasting term.

To view glossaries for other IBM products, go to www.ibm.com/software/|
[zlobalization /terminology| (opens in new window).

accent mark
A diacritic that is used to mark the pitch of a syllable. See also

affix A dependent element of a name that is added to the beginning (as a
prefix), middle (as an infix), or end (as a suffix) of a name and that
modifies its meaning. An affix can be directly attached to the name (such
as "Mac" in "Macintosh"), separated from the name stem by punctuation
(such as "O" in "O'Connell"), or separated from the name stem by white
space (such as "Abd" in "Abd Allah"). Affixes are most common in family
names and can sometimes identify ethnic origins. See also

alternate parse name
A possible variation of a name, which is used to improve name analysis

and scoring. See also [name varian]

cell A group of managed processes that are federated to the same deployment
manager and can include high-availability core groups.

conjoined names
A grouping of name segments that contains two or more given names, two
or more titles, pairs of titles and given names, two or more entire names,
or any combination of these name elements. For example, "Mr. and Mrs.
John Smith" contains conjoined titles and "Mr. and Mrs. John and Mary
Smith" contains conjoined titles and conjoined given names in the same
construction.

data list
A memory-resident list of names that is constructed from an external data
source. Search requests are performed against one or more data lists.
diacritic
A mark that indicates a change in the phonetic value of a character or a
combination of characters.

© Copyright IBM Corporation 2005, 2011 © IBM 2001, 2013 219

http://www-306.ibm.com/software/globalization/terminology/
http://www-306.ibm.com/software/globalization/terminology/

distributed
Pertaining to programs and computerized sources of information of a
computing environment that are physically located on different computer
systems, while still working together as a single logical unit.

family name

See

first name

The first given name in Anglo names. See |given name| and middle name.

given name
A name that is used to identify an individual within a group, such as a
family. A person can have multiple given names. A given name is the key
element of a personal name. A given name might be the only name
element that is universal across all names around the world. See also
lsurname} [personal name|

honorific
Prefix or suffix that indicates social status that is either attained by a

person or conferred upon a person. See also

initial A name token consisting of a single character which represents the first
character of a name. Single-character name tokens ("initials") are handled
differently than multi-character name tokens ("names").

JavaScript Object Notation (JSON)
A lightweight data-interchange format that is based on the object-literal
notation of JavaScript. JSON is programming-language neutral but uses
conventions from languages that include C, C++, C#, Java, JavaScript, Perl,
Python.

JSON See [JavaScript Object Notation}

220

matronymic
A name element derived from the name of a person's mother or another
female ancestor.

middle name

The second given name in Anglo names. See |given name|and first name.

IBM InfoSphere Global Name Management: Developer's Guide

name field
A data construct that consists of one or more name phrases or name
tokens. See also name phrase} [name token|

name phrase
An inseparable unit that consists of a name stem and any affixes that are
associated with that name stem. Some name phrases might be made up of
multiple stems, as in a Chinese name like Mei-Hui or an English name like
Mary-Anne. One or more name phrases can be combined to create a name
field. See also jname field} name stem| jname token|

name stem
A name element that can stand alone or be combined with affixes or with
other stems to form a complete name or name phrase. See also
[phrase} jname token|

name token
The smallest indivisible element of a name, which is delineated by white
space or punctuation. Name tokens combine to form name phrases and
name fields. One name token might contain multiple name parts. Name
tokens are either affixes or stems. The exact function of a name token

depends upon its placement in the personal name. See also

fname phrase} [name stem|

name variant
An alternative of a specified name that is considered to be equivalent to
that name, but which differs from it in its particular external form. Name
variants arise from spelling variations (for example, "Geoff" and "Jeff"),
nicknames (for example, "Bill" for "William"), abbreviations (for example,
"GPE" for "Guadalupe"), translations (for example, "Peter" for "Pierre"), or
other processes.

nickname
An alternative name, often derived from other name elements, for a
personal name.

organization name
A non-personal name that refers to a structured body of one or more
persons that exists to perform some common function. Organization names
typically include some type of indicator or pattern or words that identify
them as non-personal names.

parsing
A process that analyzes text to determine its structure and divides the text
into individual tokens.

parsed name
A name whose syntactic structure (that is, name phrases, name fields, titles,
and qualifiers) has been defined and represented as output from the
parsing process.

Appendix. Glossary 221

patronymic
A name element derived from the name of a person's father or another
male ancestor. Both family names and given names function as patronymic
names in different parts of the world.

personal name
A name that refers to an individual human being and that consists of one
or more given names, surnames, titles, or qualifiers. A full personal name
refers to an individual and might encode information that indicates social
class, religious and political backgrounds, educational levels, ethnic or
cultural backgrounds, and regional provenance. A personal name is made

up of one or two name fields. See also |given name] [surname} [title} |qualifier]

precision
An information retrieval measurement that specifies the proportion of
relevant data to all retrieved data. Precision is a positive predictive value.
Information retrieval is best measured by using both precision and recall.

See also |recal

prefix An affix that appears at the beginning of a name. For example, in the
family name "de Rosa," the affix "de" is a prefix.

qualifier
A term or phrase that is added to the end of a personal name to
distinguish that name by specifying a generational standing (such as Junior
or Senior, or "fils" in French for Junior), an achievement academic or
religious rank that the person has attained (for example, Ph.D.), or a
professional qualification of some kind (for example, D.D.S.). For
name-matching purposes, a qualifier is considered a peripheral or minor

part of a personal name. See also |honorific|

recall An information retrieval measurement that specifies the percentage of
relevant data that is retrieved, out of all available relevant data. Recall is a
measure of sensitivity. Information retrieval is best measured by using both

precision and recall. See also [precisio

redundancy
The use of several identical functional units, such as several disk drives or
power supply systems, within one computer system in order to provide
data security and a certain degree of fault tolerance in case of hardware
failures.

regularization
The process of normalizing name tokens and adding those normalized
names to a data list. See also [name token| and |data list]

relational marker
A term that is included in a personal name that indicates a familial
relationship between individuals. For example, in the name "Karim bin
Hassan," the relational marker "bin" means "son of."

Representational State Transfer (REST)
A software architectural style for distributed hypermedia systems like the
World Wide Web. The term is also often used to describe any simple

IBM InfoSphere Global Name Management: Developer's Guide

interface that uses XML (or YAML, JSON, plain text) over HTTP without
an additional messaging layer such as SOAP.

REST See [Representational State Transfer]

Romanization

The process of transliterating any non-Roman text into the Roman
alphabet. See also

search strategy
A named collection of comparison parameter values that override existing
or default values and that are used to conduct a search. For example,
existing search strategies include standard (default values), broad (values
that widen the search), and narrow (values that restrict a search).
Administrators can define their own set of comparison parameter values
and save them as a search strategy.

score The result of a computational analysis. See also

scoring
The process of computing how closely the attributes for an incoming
identity match the attributes of an existing entity.

SOAP A lightweight, XML-based protocol for exchanging information in a
decentralized, distributed environment. SOAP can be used to query and
return information and invoke services across the Internet.

stop word
A word that adds no meaning to an organization name and that is not
included in any name comparison or name scoring.

suffix An affix that appears at the end of a name. For example, the affix "eddin"
in "Nur-eddin" is a suffix.

surname
A name that is added to a given name and identifies an individual as part
of a group of people, such as a family, tribe, or caste. A surname is a key
element of a personal name, along with a given name. Surnames are not
used in some parts of the world. See also leiven name} [personal name|

syntax The arrangement of and relationship among the elements of a name (or
other expression or phrase). For example, English name syntax
distinguishes the given names and family names in: Todd Lane and Lane
Todd.

TAQ See [title, affix, and qualifier|

title The part of a personal name that represents a social, religious, or academic
status, such as "Dr.," "Ms.," or "Colonel." A title is an optional part of a
personal name that typically precedes given names. For name-matching
purposes, a title is considered to be a peripheral or minor part of a

personal name. See also jhonorifid]

title, affix, and qualifier (TAQ)
A name token that often helps identify that a string of text represents a
name. While these tokens usually indicate something about the name, only
affixes are part of the actual name. See also [title} [affix} and |qualifier|

Appendix. Glossary 223

transliterate
Converting text from non-Latin alphabets to equivalent Latin characters.
See also [“Romanization” on page 223

224 1BM InfoSphere Global Name Management: Developer's Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing 2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2001, 2013 225

226

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation

Ja6A /G4

555 Bailey Avenue

San Jose, CA 95141-1003
US.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only. This
information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

IBM InfoSphere Global Name Management: Developer's Guide

© Copyright IBM Corp. (2003, 2016). All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Notices 227

228 IBM InfoSphere Global Name Management: Developer's Guide

Trademarks

IBM trademarks and certain non-IBM trademarks are marked on their first
occurrence in this information with the appropriate symbol.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at fwww.ibm.com/legal/copytrade.shtml|

The following terms are trademarks or registered trademarks of other companies:

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

IT Infrastructure Library is a registered trademark of the Central Computer and
Telecommunications Agency, which is now part of the Office of Government
Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

ITIL is a registered trademark and a registered community trademark of the Office
of Government Commerce, and is registered in the U.S. Patent and Trademark
Office.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

The United States Postal Service owns the following trademarks: CASS, CASS
Certified, DPV, LACSLink, ZIP, ZIP + 4, ZIP Code, Post Office, Postal Service,
USPS and United States Postal Service. IBM Corporation is a non-exclusive DPV
and LACSLink licensee of the United States Postal Service.

Other company, product, or service names may be trademarks or service marks of
others.

© Copyright IBM Corp. 2001, 2013 229

http://www.ibm.com/legal/copytrade.shtml

230 1BM InfoSphere Global Name Management: Developer's Guide

Terms and conditions

Permissions for the use of these publications is granted subject to the following
terms and conditions.

Personal use: You may reproduce these publications for your personal,
noncommercial use provided that all proprietary notices are preserved. You may
not distribute, display or make derivative work of these publications, or any
portion thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these publications
solely within your enterprise provided that all proprietary notices are preserved.
You may not make derivative works of these publications, or reproduce, distribute
or display these publications or any portion thereof outside your enterprise,
without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED “AS-IS” AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

© Copyright IBM Corp. 2001, 2013 231

232 IBM InfoSphere Global Name Management: Developer's Guide

Index

Special characters

[Datalist:] section
CompParmsDefaults= 62

A

adding
names to datalists 50
addName()
methods 50
addNameToDatalist() method 50
affixes
description 22
analyze()
methods 37
analyze() method 37
analyzeForSearch()
methods 55, 66
analyzeForSearch() method 55, 66
creating QueryName objects 56
analyzing names 37
performing full analysis on a
name 37
API
error codes 186
arabicTransRule.ibm
configuring to use with
NameHunter 119
configuring to use with the
Distributed Search process 119
architecture, product
Global Name Management 9

C

C++ error codes 196
categorize() method 70
checklists
general product troubleshooting
checklist 185
classifying names
culture 55, 66
client applications 11
codes
culture codes 38
reason codes 70
comments
sending v
compare() method 71
comparing dates
determining differences between dates
using IBM NameWorks 72
using IBM NameWorks 72
comparing names
using IBM NameWorks 71
Comparison Files section 180
comparison parameters 91
overrides 62
CompParmOverrides class 65
Configuration class 65

© Copyright IBM Corp. 2001, 2013

comparison parameters (continued)
overrides (continued)

search strategies

Comparison parameters
Distributed Search 110
110

NameHunter
component
APIs 9

Component error codes

General errors
GODCO001E
GODCO002E
GODCO003E
GODCO004E
GODCO005E
GODCO006E
GODDO001E
GODDO002E
GODDO003E
GODDO004E
GODDO0O05E
GODDO006E
GODHO01E
GODHO002E
GODHO03E
GODHO004E
GODHO05E
GODHO06E
GODLO001E
GODLO002E
GODLO003E
GODLO004E
GODLO05E
GODLO006E
GODPO001E
GODP002E
GODPO003E
GODP004E
GODPO005E
GODPO006E
GODS001E
GODS002E
GODS003E
GODS004E
GODS005E
GODS006E
GODTO001E
GODTO002E
GODTO003E
GODTO004E
GODTO005E
GODTO006E
GODVO001E
GODVO002E
GODVO003E
GODVO004E
GODVO005E
GODVO006E
GODWO001E
GODWO002E
GODWO003E

191
191
191
191
191
192
191
191
191
191
191
192
191
191
191
191
191
192
191
191
191
191
191
192
191
191
191
191
191
192
191
191
191
191
191
192
191
191
191
191
191
192
191
191
191
191
191
192
191
191
191

Component error codes (continued)
General errors (continued)
GODWO04E 191
GODWOO05E 191
GODWO06E 192
CompParms 91
Distributed Search 110
NameHunter 92, 110
CompParmsOverrides class
comparison parameter overrides 65
overrides 62
Configuration class
comparison parameter overrides 65
overrides 62
specifying configuration settings 182
configuration settings
modifying and updating 170
conjoined names 16
contacting
IBM Support 215
country of association
identifying for full names 43
identifying for given names and
surnames 44
identifying using NameWorks 43
identifying using the analyze()
method 37
country of origin
confidence 43
description 43
frequency 43
significance 43
createName() method
creating Name objects 57
culture
analyzeForSearch() method 55, 66
identifying using NameWorks 38
culture identification
description 38
cultures
culture codes 38
identifying for a full name 40
identifying for an organization
name 41
identifying for name fields 40
custom token list
description 26
Custom Tokens section 173
cyrillicTransRule.ibm
configuring to use with
NameHunter 119
configuring to use with the
Distributed Search process 119

D

data lists
deleting names 52
description 49
managing 49

233

data lists (continued)
updating names and associated
information 51
dataFetch()
methods 74
dataFetch() method 74
Datalist section 174
datalists
adding names 50
DateCompare section 178
dateCompare() method 72
dateDifference() method 72
dates
comparing using IBM
NameWorks 72
determining difference between dates
using IBM NameWorks 72
deleteNameFromDatalist()

methods 52
deleteNameFromDatalist() method 52
deleting

names from data lists 52
description 10
Distributed Search 142, 200
error codes 200
IBM NameWorks configuration
file 174
server applications 11
Distributed Search process
configuring to use transliteration rule
files 119
Distributed Search XML message
interface 142
Distributed Search XML requests 142
DS XML requests 142

E

Embedded Search
IBM NameWorks configuration
file 175
name list preprocessing 122
enhancements
Version 6.0 8
Enterprise Name Search 203
access control 158
assigning users to security
groups 156
changing user passwords 157
creating user names and
passwords 156
deleting all names from the Enterprise
Name Search schema 168
deleting names from name lists 168
deleting users 157
error codes 203
loading names from name lists into
the schema 166
managing name lists 127, 159
managing user security 154, 157
managing user security, resetting user
passwords 157
password file (ens.passwd) 154
resetting user passwords 157
security, wspswd utility syntax 155
updating database statistics 168
wspswd utility syntax 155

234

error codes 195, 200, 203

Error codes 186

external token list
description 26

F

features
new in version 6.0 2
files
password file (ens.passwd), Enterprise
Name Search 154
full name searches 73
full searches
description 58

G

gender
identifying for a full name 42
identifying for a name 42
identifying using NameWorks 41
identifying using the analyze()
method 37
genderize() method 42
genderizeField() method 42
General section 172
generating
name variants for name fields 47
name variants of full names 46
getVariants() method 46, 47
given names
description 20
generating name variants 47
identifying the country of
association 43, 44
identifying the culture 40
Global Name Management
Description 1
glossary 219
greekTransRule.ibm
configuring to use with
NameHunter 119
configuring to use with the
Distributed Search process 119

IBM NameWorks
APIs 10
comparison parameter overrides 62
Configuration class 182
configuration file 170
configuring 169
configuring to use transliteration rule

files 183

deleting search strategies 62
Embedded Searching 122
loading updated data 170
managing

search strategies 59
managing data lists 49
migration information 53
search strategies 59

IBM NameWorks configuration file 177
Distributed Search 174

10, 196

IBM InfoSphere Global Name Management: Developer's Guide

IBM NameWorks configuration file
(continued)
Embedded Search 175
IBM Support
contacting 215
ibmgnr::Exception 186
ibmgnr:NwException 195

identifying
country of association for full
names 43

country of association for given names
and surnames 44
culture of a full name 40
culture of an organization name 41
culture of name fields 40
gender of a full name 42
gender of a given name 42
gender using NameWorks 41
name categories 70
identifying culture
description 38
using NameWorks 38
Interim Data file 124
IPv6 connections
IBM NameWorks configuration
file 174

K

knowledge bases
searching for troubleshooting
solutions 214

L

LDAP 154
legal guidelines
publications
reusing 231
terms and conditions 231
log files
setting the trace log level for IBM
NameWorks 215
troubeshooting 215

M

methods
categorize() 70
compare() 71
dateCompare() 72
dateDifference() 72
genderize() 42
genderizeField() 42
getVariants() 46, 47
parse() 33
search() 58

modifying 91

N

name categories 14, 66
reason codes 70

Name data archive
description 26

name fields
description 20
generating the name variants for full
names 46
generating the name variants for
given names and surnames 47
given name 20
identifying the culture of name
fields 40
preceding conjunctions 20
qualifiers 20
surnames 20
titles 20
name lists
custom token list 26
description 26
external token list 26
managing name lists for Enterprise
Name Search 127, 159
Name Loader utility
loading names from name lists 166
name matching
approaches 13
overview 13
Name object
creating 57
name parts 18
name phrases
description 21
identifying the country of
association 43, 44
name preprocessing 124
Name Preprocessor 124
name regularization 85
name tokens
description 21, 83
name variants
description 44
generating for full names 46
generating for given names and
surnames 47
generating using NameWorks 44
NameHunter
comparison parameters 92
CompParms 92
configuring to use transliteration rule
files 119
NameHunter CompParms
Ambiguous-Arabic cultures 111
Business Names 116
Chinese-German cultures 112
group cultures 117
Hispanic-Japanese cultures 114
Korean-Russian cultures 115
Thai-Yoruban cultures 116
NameHunter Developer's Toolkit 87
NameHunter name token variants 81
NameHunter overview 75
NameHunter sample applications 91
NameHunter search sample
application 91
NameHunter TAQ data 76
NameHunter why sample
application 91
NameLoader commands 162
NameLoader configuration file 163

NameLoader utility
deleting all names from the Enterprise
Name Search schema 168
deleting names from name lists 168
names
affixes 22
categories 14, 66
categorizing 70
components and structure 14, 67
conjoined 16
culture identification 38
generating name variants using
NameWorks 44
identifying culture using
NameWorks 38
identifying the culture of full

names 40
identifying the culture of organization
names 41

identifying the gender 42
identifying the gender of a full
name 42

name model 14, 67

organization names 17, 69
overview 13

parsed 19

personal names 14, 67

qualifiers 22
retrieving supplemental data 74
searching 73
stem tokens 26
TAQs 22
titles 22
transliteration 27
NameWorks 195
error codes 195
identifying culture 38
NameWorks configuration file 172, 173,
174, 178, 179, 180
NDA
description 26
new features
Version 6.0 8
new in version 6.0 2
notes
release 2

o)

Organization affix

OA 25
Organization designator
OD 23

Organization name TAQs
Organization affix 25
Organization designator 23
Stop word 25

organization names
description 17, 69
organization affix 23
organization designator 23
stop word 23
TAQs 23

overrides
comparison parameters 62

overview
Global Name Management 1

parse tree
description 18
parse trees
creating 33
parse() method 33
parsing
parsed names 19
using the analyze() method 37
parsing names 33
analyzeForSearch() method 55, 66
for search 55, 66
into individual parts 33
parse tree description 18
using NameWorks 33
personal names
affixes 22
comparing using IBM
NameWorks 71
components and structure 14, 67
name model 14, 67
qualifiers 22
TAQs 22
titles 22
preceding conjunctions
description 20
prerequisite information v
problems and workarounds
searching knowledge bases 214
product enhancements
version 6.0 2

Q

qualifiers
description 20, 22
QueryName object
creating 56

R

reason codes

name categories 70
Reference Files section 180
related information v
RSS feeds

troubleshooting 217
rule files

transliteration 27

S

schemas
deleting all names from the Enterprise
Name Search schema 168
loading names from name lists into
the Enterprise Name Search
schema 166
search strategies
comparison parameter overrides 64
creating
by using the configuration file 61
by using the Strategy class 61
deleting 62
IBM NameWorks 59

235

Index

search strategies (continued)
managing
IBM NameWorks 59
modifying
by using the configuration file 61
search strategy
broad 60
narrow 60
overrides 62
sample
broad 60
narrow 60
Search Strategy section 177
search()
methods 73
search() method 58, 73
searching for names 49
using Enterprise Name Search 154
using IBM NameWorks 58
using NameHunter 75
searching names 73
analyzeForSearch() method 55, 66
retrieving supplemental data 74

security
access control, Enterprise Name
Search 158

assigning role-based security groups
to users, Enterprise Name
Search 156
assigning security groups to users,
Enterprise Name Search 156
changing user passwords, Enterprise
Name Search 157
creating passwords, Enterprise Name
Search 156
creating user names, Enterprise Name
Search 156
deleting users, Enterprise Name
Search 157
password file (ens.passwd), Enterprise
Name Search 154
resetting user passwords, Enterprise
Name Search 157
wspswd utility syntax, Enterprise
Name Search 155
sending comments v
stem tokens
description 26
Stop word
SW 25
Strategy class
overrides 62
subscribing
subscribing to support updates 217
support
contacting 215
searching for troubleshooting
solutions 214
subscribing to support updates 217
surnames
description 20
generating name variants 47
identifying the country of
association 43, 44
identifying the culture 40
system administrator tasks
managing data lists 49

236

T variant names
conversion utility 83

TAQ variants
file format 76, 81 description 44
TAQs generating for full names 46

description 22
organization affix 23
organization designator 23
stop word 23
technical resources
finding 214
subscribing to support updates 217
terms
file format 83
titles
description 20, 22
tokens
stem tokens 26
tools
support tools 214
tracing
setting log level for IBM
NameWorks 215
trademarks 229
transliteration 27
rule files 27
Transliteration Modules section 179
transliteration rule files
configuring to use with IBM
NameWorks 183
configuring to use with
NameHunter 119
configuring to use with the
Distributed Search process 119
troubleshooting
checking log files 215
contacting IBM Support 215
general product troubleshooting
checklist 185
searching knowledge bases 214
subscribing to support updates 217
tracing 215

generating for given names and
surnames 47
generating using NameWorks 44

U

unique name searches 73

description 58

retrieving supplemental data 74
updateName()

methods 51
updateNamelnDatalist() method 51
updating

names on data lists 51
Usage scenarios

searching for names 56
utilities

wspswd utility syntax, Enterprise

Name Search 155

\'}

variant
file format 81
variant name forms
generating a list using the analyze()
method 37

IBM InfoSphere Global Name Management: Developer's Guide

Printed in USA

	Contents
	Preface
	Chapter 1. Overview of IBM InfoSphere Global Name Management
	What's new in Version 6.0
	Version 6.0 - Release Notes
	Version 6.0 - features and enhancements

	Product architecture
	Component APIs
	IBM NameWorks
	Client applications
	Distributed Search

	Chapter 2. Overview of names and name matching
	Approaches to name matching
	Name categories
	Personal names
	Conjoined names

	Organization names

	Name parts
	Parse trees
	Parsed names
	Name fields
	Name phrases
	Name tokens
	Titles, affixes, and qualifiers (TAQs)
	Organization name TAQs
	Stem tokens

	Name lists
	Name data archive
	External token list

	Name transliteration
	Transliteration rule files
	Chinese transliteration overview
	Japanese transliteration overview

	Chapter 3. Parsing names
	Parsing names using NameWorks
	Parsing names into individual parts

	Parsing names using NameParser
	Types of input strings
	NameParser functions for parsing names
	NameParser phrase override list

	Chapter 4. Analyzing names
	Analyzing names using NameWorks
	Identifying the culture of a name using NameWorks
	Culture identification
	Culture codes
	Identifying the culture of a full name
	Identifying the culture of name fields
	Identifying the culture of an organization name

	Identifying the gender of names using NameWorks
	Identifying the gender of a full name
	Identifying the gender of a given name

	Identifying the country of association for names using NameWorks
	Country of association
	Identifying the country of association for full names
	Identifying country of association for given name and surname

	Generating name variants using NameWorks
	Name variants
	Generating a list of name variants for full names
	Generating a list of name variants for given names and surnames

	Analyzing names with the component APIs

	Chapter 5. Searching for names
	Managing data lists in IBM NameWorks
	Data lists
	Adding names to data lists
	Updating names on data lists
	Deleting names from data lists

	Migration of IBM NameWorks
	Preparing names for search
	Scenarios: searching for names
	Creating name objects for name searching
	Creating QueryName objects and searching for names
	Creating a Name object and searching for names

	Searching for names using IBM NameWorks
	Managing search strategies
	Search strategies
	Creating and modifying search strategies by using the IBM NameWorks configuration file
	Creating search strategies by using the Strategy class
	Deleting search strategies from the configuration file

	Overriding comparison parameters
	Comparison parameter overrides options

	Preparing names for search
	Categorizing names, comparing names, and comparing dates using IBM NameWorks
	Name categories
	Categorizing names as personal or non-personal using IBM NameWorks
	Name category reason codes
	Comparing two names using IBM NameWorks
	Comparing two dates using IBM NameWorks
	Determining the difference between two date values using IBM NameWorks

	Searching for names in a data list
	Retrieving supplemental data for names associated with a unique name

	Searching for names using NameHunter
	NameHunter overview
	Culture-specific and configurable NameHunter searches
	Titles, affixes, and qualifier (TAQ) data
	Name token variants
	Terms
	Name regularization
	Integrating the NameHunter API in applications
	Linking to other data

	NameHunter API quick start examples
	NameHunter quick start example: Match two names
	NameHunter quick start example: Score two names
	NameHunter quick start example: Score two names using different cultures, TAQs, and variants
	NameHunter quick start example: Searchlist and Search

	NameHunter sample applications
	NameHunter search sample application
	NameHunter why sample application

	Modifying comparison parameters
	NameHunter comparison parameters overview
	Default comparison parameters

	Configuring transliteration rule sets for NameHunter
	Configuring NameHunter to use the transliteration rule files
	Configuring the Distributed Search process to use transliteration rule files

	Searching for names using Distributed Search
	Name Preprocessor introduction
	Name Preprocessor data files overview
	Name Preprocessor configuration file
	Distributed Search process loaded directly
	Running Name Preprocessor
	Name Preprocessor configuration considerations

	Distributed Search performance and configuration overview
	Distributed Search memory
	Distributed Search transaction rate
	Distributed Search configuration file and settings
	Running Distributed Search
	Distributed Search configuration options and considerations

	NameHunter Distributed Search XML interface
	Distributed Search XML requests
	Distributed Search XML responses

	Searching for names using Enterprise Name Search
	Managing Enterprise Name Search user security
	Command line syntax for the wspswd utility
	Creating users and assigning security groups
	Changing or resetting user passwords
	Deleting user access to Enterprise Name Search functions
	Fine-grained access control for specific lists

	Managing name lists with the NameLoader utility
	NameLoader commands
	NameLoader configuration file
	Loading names from name lists using the Name Loader utility
	Updating database statistics
	Removing names from the Enterprise Name Search schema

	Chapter 6. Configuring IBM NameWorks
	Specifying configuration settings by using the IBM NameWorks configuration file
	General section of the configuration file
	Custom tokens section of the configuration file
	Datalist section of the configuration file
	Distributed Search information in the configuration file
	Embedded Search information in the configuration file
	Search strategy section of the configuration file
	Date compare section of the configuration file
	Transliteration modules section of the configuration file
	Reference files section of the configuration file
	Comparison files section of the configuration file

	Specifying configuration settings by using the Configuration class
	Updating your IBM NameWorks configuration to use additional transliteration rule files

	Chapter 7. Troubleshooting and support
	Troubleshooting checklist for IBM InfoSphere Global Name Management
	Component API C++ error codes
	Reference data error codes
	Global error codes
	Input error codes
	Internal error codes

	IBM NameWorks error codes
	IBM NameWorks C++ error codes

	Distributed Search error codes
	Enterprise Name Search error codes
	ENS Console error codes
	ENS Search error codes

	Searching knowledge bases
	Log files
	Tracing
	Contacting IBM Support
	Subscribing to Support updates

	Appendix. Glossary
	A
	C
	D
	F
	G
	H
	I
	J
	M
	N
	O
	P
	Q
	R
	S
	T

	Notices
	Trademarks
	Terms and conditions
	Index
	Special characters
	A
	C
	D
	E
	F
	G
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V

