
Informix 4GL and Informix SQL

A Guide to the Version 7.20 and 7.30
Feature Enhancements

Abstract

This Informix® 4GL and Informix SQL Feature Enhancements document

describes the new features within the version 7.x releases of these tools. It

reviews the enhancements and gives instruction for using them. Note that

when a reference to Informix 4GL is made, that includes both the compiled

Informix 4GL c-code compiler and the Rapid Development System

p-code compiler.

Table of Contents

INTRODUCTION

ENHANCEMENTS WITHIN THE VERSION 7.20 TOOLSETS

3 Enhancements in connectivity-stream pipe

4 Support for additional environment variables

4 DBCENTURY

7 FET_BUF_SIZE

8 PDQPRIORITY

9 Using 7.2-level SQL syntax in 4GL

10 GLS environment variables

10 Compatibility of Informix 4GL and Informix-ESQL/C

ADDITIONAL ENHANCEMENTS WITHIN THE VERSION 7.30 TOOLSET

11 Global string space

11 I4GL compiler changes

12 DBCENTURY fields

12 SQL grammar extension

14 Direct support for CONNECT, SET CONNECTION, and DISCONNECT

15 Support for the concatenation string operator

15 Control INSERT and DELETE operations in INPUT ARRAY

16 New ATTRIBUTE formats in INPUT ARRAY

16 Dynamically configure size of reports

17 Dynamic control of effective size of a program array (INPUT ARRAY)

17 Current row highlighted automatically

17 Get size of screen array

19 Obtaining user keyboard entry information

19 COMMENT OFF in windows

SUMMARY

1

Informix 4GL 7.30 and Informix SQL 7.30 are the latest versions of the Informix family of

character-based tools in the UNIX environment. This release is an upgrade to the 6.x family

of English and Asian Informix 4GL and Informix SQL products. A recompile of the source

code is necessary to use this new compiler.

These products have all of the functional enhancements and big fixes of the 6.x family of

Informix 4GL and Informix SQL products. In addition, these products support the following

functional enhancements:

Beginning with version 7.20:

• Stream Pipe mode of communication between the client and Informix Dynamic Server™ engine.

• Support for new environment variables:

– DBCENTURY

– FET_BUF_SIZE

– PDQPRIORITY

• Support for the 7.20 SQL syntax in 4GL and SQL through the PREPARE statement.

• GLS environment variables such as:

– GL_DATE

– GL_DATETIME

Beginning with version 7.30:

• Global string space—Releases prior to version 7.30 supported a total of no more than 64 KB

in all of the names of variables in a single 4GL program. In version 7.30, that limit is

now approximately 2 GB. This allows larger applications to be constructed.

• I4GL compiler changes that result in a smaller executable.

• DBCENTURY fields—Before version 7.30, DBCENTURY was set at the environment level

for an entire program. This allows DBCENTURY settings at the field-level within a

single application.

• New 4GL language extensions include:

– SQL grammar extension—extending supported SQL syntax to version 9.2+ through

use of an SQL...END SQL block.

– Direct support for CONNECT, SET CONNECTION, and DISCONNECT statements.

– Support for the concatenation string operator—provides functionality of the standard

“double-pipe” string concatenation operator ("||").

Introduction

• Control INSERT and DELETE operations in INPUT ARRAY—allows the INSERT

and DELETE keys to be enabled or disabled independent of each other.

• New ATTRIBUTE formats in INPUT ARRAY—support for two new functions to set

attribute formats inside a dialog box.

• Dynamically configure size of report—allows the size of the report page and the

report destination to be specified when a report starts.

• Dynamic control of effective size of a program array (INPUT ARRAY)—allows the

size of the INPUT ARRAY to be dynamically controlled.

• Current row highlighted automatically—allows the current row to be highlighted without

requiring any code changes.

• Get size of screen array—declares the size of a named screen array so that the correct

number of values is displayed.

• COMMENT OFF in windows—allows a window with a form to be reduced to one or

two (an input and comment line) lines.

2

3

Enhancements in connectivity-stream pipe

In previous versions of these products, when an Informix server and the Informix 4GL and

Informix SQL products were installed on the same computer, the tools products and the server

were limited to the following modes of communication:

• Shared memory

• Network (local loopback)

The version 7.20 Informix 4GL and Informix SQL adds the stream-pipe interprocess

communications (IPC) mechanism.

Unlike shared-memory connections, stream-pipe connections do not pose the security risk

of being overwritten or read by other programs that explicitly access the same portion of

shared memory.

It should also be noted that stream-pipe connections have the following disadvantages:

• Slower than shared memory connections

• Not available on all computers

For stream-pipe connections, the entry in the nettype field of the sqlhosts file is onipcstr for

an Informix server connection:

server nettype hostname service

alpha onipcstr idcsun33 service1

Enhancements Within the Version 7.20 Toolsets

Support for additional environment variables

This section describes the new environment variables supported in this release and provides

examples for each variable.

DBCENTURY
Until this release, Informix 4GL and Informix SQL products used the current century to

extend the year in a DATE or DATETIME value with less than three digits for the year field.

With DBCENTURY support, it is possible to choose the present, previous, or next century to

extend the year. New algorithms have been introduced for this purpose.

To indicate the algorithm to be used for extending the year, set the DBCENTURY environment

variable to one of the letters listed in the following table. Note that the variable is case sensitive

and if it is unset or mis-set, then the default is used. Also, the current century means that in

1999, 1900 is added; and from 2000 to 2099, 2000 is added.

P Past

F Future

C Closest

R Current (default)

There are two ways to specify the algorithm for the century extension:

• Explicitly set the DBCENTURY environment variable

• Use the default DBCENTURY value, which is R (current)

4

5

DBCENTURY=P (Past)

With this setting, the past and present centuries are used to extend the year value. These two

dates are compared with the current date, and the date prior to the current date is chosen. If

both dates are prior to the current date, the one that is closest is chosen.

Previous Present
Date Type Current Date User Enters Century Century Result

Example 1

DATE 4/6/1996 1/1/10 1/1/1810 1/1/1910 1/1/1910

Analysis: Both results are prior to the current date, but 1/1/1910 is closer.

Example 2

DATE 4/6/2010 1/1/05 1/1/1905 1/1/2005 1/1/2005

Analysis: Both dates are prior to the current date, but 1/1/2005 is closer.

Example 3

DATE 4/6/2010 1/1/50 1/1/1950 1/1/2050 1/1/1950

Analysis: Only 1/1/1950 is prior to the current date.

Example 4

DATETIME 4/6/1996 DATETIME(1-1) 1801-1 1901-1 1901-1
YEAR TO MONTH YEAR TO MONTH

Analysis: Both dates are prior to the current date, but 1901-1 is closer.

DBCENTURY=F (Future)

With this setting, the present and next centuries are used to extend the year value. These two

dates are compared with the current date, and then the date after the current date is chosen.

If both dates are after the current date, the one that is closest is chosen.

Previous Present
Date Type Current Date User Enters Century Century Result

Example 1

DATE 4/6/1996 1/1/90 1/1/1990 1/1/2090 1/1/2090

Analysis: 1/1/2090 is after the current date.

Example 2

DATE 4/6/2051 1/1/50 1/1/2050 1/1/2150 1/1/2150

Analysis: 1/1/2150 is after the current date.

Example 3

DATE 4/6/2010 1/1/25 1/1/2025 1/1/2125 1/1/2025

Analysis: Both dates are after the current date, but 1/1/2025 is closer.

Example 4

DATETIME 4/6/1996 DATETIME(1-1) 1901-1 2001-1 2001-1
YEAR TO MONTH YEAR TO MONTH

Analysis: 2001-1 is after the current date.

DBCENTURY=C (Closest)

With this setting, the past, present, and next centuries are used to extend the year value, and

the date closest to the current date is used.

Data Current User Previous Present
Type Date Enters Century Century Result

Example 1

DATE 4/6/1996 1/1/1 1/1/1801 to 4/6/1996 1/1/1901 to 4/6/1996 1/1/2001

is 71,318 days is 34,794 days

Analysis: 1/1/2001 is closer to the current date.

Example 2

DATE 2/1/2001 4/1/95 4/1/1995 to 2/1/2001 4/1/2095 to 2/1/2001 4/1/1995

is 2,133 days is 34,392 days

Analysis: 4/1/1995 is closer to the current date.

Example 3

Data type: DATETIME YEAR TO MONTH

Current date: 4/6/1996

User enters: DATETIME(1-1) YEAR TO MONTH

The number of months from the current date is calculated:

Previous century extension: 1801-1 to 1996-4 is 2,343 months

Present century extension: 1901-1 to 1996-4 is 1,143 months

Next century extension: 2001-1 to 1996-4 is 57 months

Result: 2001-1

Analysis: 2001-1 is closer to the current date

DBCENTURY=R (Current)

With this setting, the current century is used to extend the year.

Data Current User
Type Date Enters Result

Example 1

DATE 4/6/1996 12/10/1 12/10/1901

Example 2

DATE 4/6/2010 12/10/1 12/10/2001

Example 3

DATETIME 4/6/1996 DATETIME(1-12) 1901-12
YEAR TO MONTH YEAR TO MONTH

6

7

FET_BUF_SIZE
The fetch buffer is the buffer that the server uses to send data (except for blob data) to the

client applications. The buffer resides in the client process. The bigger the buffer, the more

data the server can send to the application before returning control to the application. For a

large number of rows to be returned, or for a few large rows to be returned, the greater the

size of the fetch buffer, the fewer number of times the application needs to wait while the

server retrieves the rows. This generally results in improved performance because the overhead

of refilling the client-side buffer is reduced.

You can set the size of the fetch buffer by setting the FET_BUF_SIZE environment variable

to the desired value anytime prior to runtime. Setting this environment variable sets the fetch

buffer size for the duration of the application.

For example, the following command sets the variable in a C-shell environment to 20,000

bytes (20 KB):

setenv FET_BUF_SIZE 20000

The size should be in bytes, up to a maximum value for a small integer (short) of the system

used. For most 32-bit systems, the value is 32,767 bytes. If the parameter is not set externally,

a default value is used.

For more details, see the Informix ESQL/C Programmer’s Manual version 9.21, page 14-22.

PDQPRIORITY
The PDQPRIORITY value determines the amount of resources an Informix Dynamic Server

allocates to process a query in parallel.

The following are examples of appropriate syntax in the C-shell environment

setenv PDQPRIORITY HIGH/LOW/OFF/percent-of-resources

The options to this command include:

HIGH The server determines respective degree of parallelism

LOW (Default) Data is fetched from partitioned tables in parallel

OFF Parallel data query is turned off

Percentage- An integer between 0 and 100, indicating the percentage of available parallel
of-resources resources that should be allocated for this particular program or query

An example of the different ways to explicitly set PDQPRIORITY inside a 4GL

program includes:

DEFINE setpdq CHAR(255)

-- Directly embedded SQL (4.10 Syntax only)
DATABASE stores7

-- The SET PDQPRIORITY statement was added in OnLine 6.00
-- It cannot be written as a directly embedded SQL statement
LET setpdq = “set pdqpriority low”

-- Prepared and Executed Statement (all versions of I4GL)
PREPARE p_setpdq FROM setpdq
EXECUTE p_setpdq
FREE p_setpdq

-- Alternative way of executing statement in a string
-- Only available from version 7.30
EXECUTE IMMEDIATE setdeb

-- Any preparable SQL statement can be written in an SQL
-- block (enclosed in SQL … END SQL)
SQL

SET PDQPRIORITY LOW
END SQL

8

9

Using 7.2-level SQL syntax in 4GL

Informix 4GL 7.20 directly supports the SQL syntax of legacy Informix 4.1 database servers.

In addition, the PREPARE statement can be used to support all Informix server 7.2-level SQL

statements, with the exception of the statements listed in the following tables:

Data Definition Statements Connection

CREATE PROCEDURE FROM CONNECT

DISCONNECT

Data Manipulation Statements SET CONNECTION

LOAD

UNLOAD Data Integrity

CHECK TABLE

Cursor Manipulation REPAIR TABLE

CLOSE

DECLARE Auxiliary Statements

FETCH INFO

FLUSH GET DIAGNOSTICS

FREE OUTPUT

OPEN WHENEVER

PUT SET DEFERRED PREPARE

Dynamic Management

ALLOCATE DESCRIPTOR

DEALLOCATE DESCRIPTOR

DESCRIBE

EXECUTE

EXECUTE IMMEDIATE

FREE

GET DESCRIPTOR

PREPARE

SET DESCRIPTOR

GLS environment variables

Informix 4GL and Informix SQL products now provide full support of GLS environment

variables, including:

• GL_DATE

• GL_DATETIME

For details and syntax of the GLS environment variables, see the Guide to GLS Functionality.

The glfiles utility (described in Appendix A of the Guide to GLS Functionality and packaged

with Informix 4GL and Informix SQL products) allows you to generate a list of:

• GLS locales available in the system

• Informix code-set conversion files available

• Informix code-set files available

Default values of GLS environment parameters

Default values assumed by Informix 4GL and Informix SQL products (which differ from those

of ALS environments) are described in this section. Default Values of CLIENT_LOCALE and

DB_LOCALE.

The following table shows the values assumed by Informix 4GL and Informix SQL when

you define only some of the required values of locales. (A value of ja-jp.ujis is assumed in

the following example. CL means CLIENT_LOCALE, and DL means DB_LOCALE.)

User Defined Values in Product
CL Defined CL Value DL Defined DL Value CL Value DL Value

No -- No -- en_us.8859 en_us.8859

Yes ja_jp.ujis No -- ja_jp.ujis ja_jp.ujis

Yes ja_jp.ujis Yes ja_jp.ujis ja_jp.ujis ja_jp.ujis

No -- Yes ja_jp.ujis en_us.8859 ja_jp.ujis

If you do not set the DBLANG environment variable, it is set to the value of CLIENT_LOCALE.

Compatibility of Informix 4GL and Informix-ESQL/C

Because Informix 4GL 7.20 and Informix SQL 7.20 are built with version 7.2x of ESQL/C

(which is also part of the 7.2x server products), you can now link the object modules of 7.20

4GL and 7.2x ESQL/C to create binaries.

This is also true for Informix-4GL 7.30, which is built with Informix ClientSDK™ 2.30

(aka ESQL/C 9.21). Developers will be able to employ 9.x functionality in their 4GL application

with the use of the new SQL…END SQL code block.

10

11

Global string space

Releases of 4GL prior to version 7.30 supported a total of no more than 65,535 bytes in all the

names of variables in a single 4GL program, including record members and redefined variables.

In this release, however, the upper limit on global string space (which includes variables, regardless

of their scope, and certain other named 4GL program entities) is now 2 GB (2,048 MB). This

allows you to write larger applications.

Your available system resources might impose a lower limit. In programs that are compiled

to p-code, however, a single 4GL function or report can have a total of no more than 32,767

bytes in the names of all its variables.

I4GL compiler changes

The c4gl script, which is used to compile 4GL programs, has been modified. Previously, whenever

a 4GL program was compiled, c4gl would link the libraries statically, meaning that all the

required libraries were packed into the executable. This release does away with that approach.

7.30 c4gl links these libraries dynamically. This change dramatically reduces the size of the

executable created by c4gl. If you still require statically linked libraries, use the “-static” option.

Symbols are resolved at runtime, so the operating system must be able to locate the shared

library at runtime. This normally means that the environment variable LD_LIBRARY_PATH

must be set to include $INFORMIXDIR/lib/tools and $INFORMIXDIR/lib. The name

LD_LIBRARY_PATH is for Solaris, Linux, and other platforms, but some platforms use

different names. For example, LIBPATH is used by IBM AIX and SHLIB_PATH is used by

HP-UX.

Additional Enhancements Within the Version 7.30 Toolset

DBCENTURY fields

The CENTURY field attribute determines how to expand abbreviated (two-digit, or one digit)

year values in DATE or DATETIME fields of 4GL forms. These features can also expand a

two-digit (or one digit) year in a PROMPT statement.

As in version 7.20 of the 4GL and SQL tools, the use of the DBCENTURY environment variable

allows DATE and DATETIME fields that have a two-digit year entered to be converted to

four digits before further processing. This creates some limitations if different centuries need to be

assumed for different fields on the same form. For example, a date-of-birth field is normally

historical (babies seldom arrive when predicted), so it would be useful to set DBCENTURY to

‘P’ for such fields. By contrast, a planned retirement date or mortgage pay-off date is normally

still in the future, so it would be useful to set DBCENTURY to ‘F’ for such fields. One single

value for DBCENTURY cannot be set to both values. The solution in the version 7.30 tools is

the use of the CENTURY field attribute.

The CENTURY attribute supports the same settings as the DBCENTURY environment variable

and can specify any of the four algorithms to expand abbreviated years into four-digit year

values. However, its scope is restricted to a single field. If the CENTURY and DBCENTURY

settings are different, CENTURY takes precedence.

An example of this syntax is noted below:

f008 = customer.ship_date, CENTURY='C';

The ATTRIBUTES clause that can follow the FOR clause of the PROMPT statement can also

specify CENTURY as an attribute.

PROMPT " Enter date: " for dateval ATTRIBUTE (CENTURY='C')

SQL grammar extension

Most SQL statements that Informix 4.10 databases support can be directly embedded in

4GL source code. So can a few of the non-preparable ESLQ/C statements introduced after

version 4.10, such as CONNECT, CREATE PROCEDURE FROM, DISCONNECT,

FOREACH…WITH REOPTIMIZATION, OPEN…WITH REOPTIMIZATION, and SET

CONNECTION. Other SQL statements that include syntax later than version 4.10 must

be prepared, if the database server can prepare and execute them.

12

13

The SQL…END SQL delimiters provide an alternative facility by which an SQL statement

is automatically prepared, executed, and freed. For example, this ALTER TABLE statement

includes the DISABLED keyword, which was introduced to the Informix implementation of

SQL after the version 4.10 release:

SQL
ALTER TABLE cust_fax MODIFY (lname CHAR(15)
NOT NULL CONSTRAINT lname_notblank DISABLED)
END SQL

A statement like this, which has no input nor output parameters, is simply placed between

the SQL and END SQL keywords. It resembles an embedded SQL statement, except that its

post-4.10 syntax would have produced a compilation error if the SQL…END SQL delimiters

were absent.

Other examples of how SQL blocks are supported include:

• Parameter-less SQL statements
SQL

CREATE TRIGGER t1_sometable UPDATE
FOR SomeTable
REFERENCING NEW AS newrow
ON EVERY ROW (EXECUTE PROCEDURE

LogUpdate(“SomeTable”,
newrow.pk_column))

END SQL

• In using ‘$’ to identify 4GL variables for input
SQL

SELECT TRIM(SomeColumn) || ‘-new’
FROM SomeTable
WHERE PK_Column = $rec.pk_column

END SQL

• In using ‘$’ to identify 4GL variables for output
SQL

EXECUTE PROCEDURE someproc(12, 19)
INTO $var1, $rec.part2,

$arr[i].part3
END SQL

• In using ‘$’ to identify 4GL variables for both input and output
SQL

EXECUTE PROCEDURE someproc($v1, $v2)
INTO $var1, $rec.part2,

$arr[i].part3
END SQL

• In using ‘$’ to identify 4GL variables within a cursor
DECLARE c_select SCROLL CURSOR

WITH HOLD FOR SQL
SELECT TRIM(BOTH SomeCol) || ‘-old’

INTO $str
FROM SomeTable
WHERE OtherCol > $val

END SQL

Direct support for CONNECT, SET CONNECTION, and DISCONNECT

You can now simultaneously connect to different databases. At compile time, you can still only

connect to a single database in any given module using the non-procedural database statement. At

runtime, you can connect to multiple databases; but, since I4GL does not support multithreading,

you can only have one active database at any one time. The others will be dormant. However,

it means that your application could be written to extract data from a SE database into program

variables and then insert the data into an IDS database, without having to repeatly connect to

the two databases. You would simply switch between two connections. Here is a skeletal

example of how to connect to two different databases and switch between the two connections

before disconnecting:

CONNECT TO ‘stores7@dbserver’
AS $conn1
USER $username USING $password
WITH CONCURRENT TRANSACTIONS

BEGIN WORK
CONNECT TO “newdbs” AS ‘conn2’

WHILE …
SET CONNECTION $conn1
…
SET CONNECTION ‘conn2’
…

END WHILE
SET CONNECTION $conn1

COMMIT WORK
DISCONNECT ALL

Databases can be specified with a variable and you should always use a VARCHAR to define

the password variable.

14

15

Support for the concatenation string operator

A new concatenation operator, symbolized by two pipe symbols, "||," has been introduced,

which follows the ANSI rules for concatenation.

If any of the operands of "||" is a NULL, then the resultant is a NULL. The "||" operator has

a lower precedence than +,-, and a higher precedence than MATCHES. The "||" operator takes

precedence over the existing comma concatenation operator used in assignment statements.

An example:

DEFINE a CHAR (28)
LET a = “Informix “ || “Development “ || “Center”
DISPLAY “a=”,a,”*”

This would result in [a=Informix Development Center *]

Control INSERT and DELETE operations in INPUT ARRAY

Controlling INSERT and DELETE key operations on screen arrays:

The new INPUT ARRAY attribute can be set as

INSERT ROW -- signifies that INSERT KEY is enabled
INSERT ROW = TRUE -- signifies that INSERT KEY is enabled
INSERT ROW = FALSE -- signifies that INSERT KEY is disabled

When INSERT ROW = FALSE is specified, the user cannot use the Insert key to perform insert

actions within the INPUT ARRAY statement. (The user can still perform insert actions by

using the TAB, ARROW, and RETURN keys in the last initialized row.)

When INSERT ROW = TRUE is specified, the user is not prevented from using the Insert key to

enter data. The default is TRUE, which corresponds to the behavior of previous 4GL releases.

DELETE ROW -- signifies that DELETE KEY is enabled
DELETE ROW = TRUE -- signifies that DELETE KEY is enabled
DELETE ROW = FALSE -- signifies that DELETE KEY is disabled

When DELETE ROW = FALSE is specified, the user cannot perform any DELETE actions

within the INPUT ARRAY statement.

When DELETE ROW = TRUE is specified, the user is not prevented from using the Delete key to

delete data. The default is TRUE, which corresponds to the behavior of previous 4GL releases.

The following example disables the insert and delete keys on rows of the screen array:

INPUT ARRAY arrayname WITHOUT DEFAULTS FROM s_array.*
ATTRIBUTE(INSERT ROW = FALSE, DELETE ROW = FALSE)

New ATTRIBUTE formats in INPUT ARRAY

Within an INPUT ARRAY, it is now possible to override the INSERT and DELETE operations

in the BEFORE INSERT and BEFORE DELETE clauses respectively:

CANCEL INSERT in the ‘BEFORE INSERT’ clause of INPUT ARRAY
CANCEL DELETE in the ‘BEFORE DELETE’ clause of INPUT ARRAY

As an example, the programmer might want to implement a system where the user is allowed to

delete all but one of the rows, but once a row is deleted, a replacement row cannot be inserted

in its place. The following code implements this design:

DEFINE n_rows INTEGER
DEFINE arrayname ARRAY[100] OF RECORD

. . .
INPUT ARRAY arrayname WITHOUT DEFAULTS FROM s_array.*

ATTRIBUTES(COUNT = n_rows, MAXCOUNT = n_rows,
INSERT ROW = FALSE, DELETE ROW = TRUE

BEFORE INSERT
CANCEL INSERT

BEFORE DELETE
LET n_rows = n_rows - 1
IF n_rows <= 0 THEN

CANCEL DELETE
END IF

END INPUT

Dynamically configure size of reports

The dimensions and destination of output from a 4GL report can be specified at runtime, over-

riding the report definition. Originally, a reports output type and specifications were hardcoded

within the source code, which meant that it was not usually possible to have a single report

that formatted sensibly both on a screen and on a printer.

Example of how this works:

START REPORT reportname
TO OUTPUT “pipe” DESTINATION “lp -dcypress”

WITH PAGE LENGTH = 64, TOP MARGIN = 0,
BOTTOM MARGIN = 0, LEFT MARGIN = 0

Typically, the dimensions and destination are all specified through variables rather

than constants.

16

17

Dynamic control of effective size of a program array (INPUT ARRAY)

In 4GL, all program arrays are static in size. Prior to version 7.30, and INPUT ARRAY statement

always allowed the user to insert as many rows as were defined in the array. Now, with version

7.30, the programmer can control the number of the rows that should be used by an INPUT

ARRAY using the new MAXCOUNT attribute (and the companion COUNT attribute which

supersedes the SET COUNT() function):

INPUT ARRAY prog_array WITHOUT DEFAULTS FROM scr_array.*
ATTRIBUTE(MAXCOUNT = x, COUNT = y)

The COUNT attribute can specify the number of records within a program array that contain

data when the INPUT ARRAY starts. The MAXCOUNT attribute can specify the dynamic or

effective size of the program array. This size can be less than the defined size of the program

array, but must not be smaller than the COUNT value.

If MAXCOUNT is specified as less than one or greater than the declared program array size,

the original program array size is used as the MAXCOUNT value.

You can specify both COUNT and MAXCOUNT in the same ATTRIBUTE clause:

CALL SET_COUNT(5)
INPUT ARRAY prog_array WITHOUT DEFAULTS
FROM scr_array.* ATTRIBUTE(MAXCOUNT = 10, COUNT = 6)

In this example, the COUNT attribute overrides the SET_COUNT() value. The number of

rows initially displayed will be six, but the user will only be able to add up to four new rows,

even if the array prog_array is defined with 100 elements.

Current row highlighted automatically

A new attribute, CURRENT ROW DISPLAY, has been implemented to highlight the current

row during input and output operations of screen arrays, for INPUT ARRAY and DISPLAY

ARRAY statements.

Get size of screen array

The function FGL_SCR_SIZE() accepts as its argument the name of a screen array in the

currently opened form and returns an integer that corresponds to the number of screen records

in that screen array.

The built-in FGL_SCR_SIZE() function returns the declared size of a specified screen array at

runtime. In the following example, a form specification file (called file.per) declares two screen

arrays, called s_rec1 and s_rec2:

DATABASE FORMONLY
SCREEN
{
[f1] [f2]
[f1] [f2]
[f1] [f2]
[f3] [f4]
[f3] [f4]
[f5]
}
ATTRIBUTES
f1 = FORMONLY.a ;
f2 = FORMONLY.b ;
f3 = FORMONLY.c ;
f4 = FORMONLY.d ;
f5 = FORMONLY.e ;
INSTRUCTIONS
DELIMITERS “”
SCREEN RECORD s_rec1[3] (a,b)
SCREEN RECORD s_rec2 (c,d)

The following 4GL program invokes the FGL_SCR_SIZE() function:

MAIN
DEFINE n1,n2 INT

DEFINE ch CHAR(10)
OPEN WINDOW w1 AT 2,3 WITH FORM “file” ATTRIBUTE BORDER)
CALL fgl_scr_size(“s_rec1”) RETURNING n1
LET n1 = fgl_scr_size(“s_rec1”) -- Can also be called

-- in a LET statement
DISPLAY “n1 = “, n1
LET ch = “s_rec2”
CALL fgl_scr_size(ch) RETURNING n2
LET n2 = fgl_scr_size(ch) -- Can also be called

-- in a LET statement
DISPLAY “n2 = “, n2
CLOSE WINDOW w1
END MAIN

This program produces the following output:

n1 = 3
n2 = 2

The proper value is returned even though the array dimension is not specified in the form file.

18

19

Obtaining user keyboard entry information

The function FGL_GETKEY() waits for a key to be pressed and returns the integer code of the

physical key that the user pressed.

The FGL_GETKEY() function generates the same codes for keys that the FGL_KEYVAL()

and FGL_LASTKEY() functions return. FGL_GETKEY() can be invoked whenever the user

is required to enter a single key stroke that will not be interpreted through the current MENU

or INPUT (or CONSTRUCT or DISPLAY ARRAY) statement.

Here is an example of a program fragment that calls both functions, so that FGL_KEYVAL()

evaluates what FGL_GETKEY() returns.

DEFINE key INT
PROMPT “Press the RETURN key to continue. “ ||

“Press any other key to quit.”
LET key = FGL_GETKEY()
IF key = FGL_KEYVAL(“return”) THEN

CALL continue()
ELSE

CALL quit()
END IF

COMMENT OFF in windows

When space is tight and a new window needs to be opened in pre-7.30 4GL, the window

always had a few extra lines that could not be removed. Starting with version 7.30, the comment

line can be turned off in a new window globally throughout the ‘OPTIONS’ section of the

program or at an individual window. The result is a smaller window footprint on the screen.

Syntax:

COMMENT LINE OFF

Example:

OPEN WINDOW ATTRIBUTE (MENU LINE 1, PROMPT LINE 1,
FORM LINE 1, COMMENT LINE OFF, MESSAGE LINE 1)

This turns off the comment line in the selected window. This change does not apply to the

OPTIONS statement.

The release of version 7.30 of Informix 4GL and Informix SQL offers significant

enhancements to the core language. You can review the latest 4GL and SQL manuals

online at www.informix.com/answers. Informix Dynamic 4GL version 3.0 supports all of

the enhancements mentioned in this document except for the increased size of the GSS (which

was never a problem in earlier versions of Dynamic 4GL). Of course, it also provides the ability

to run an application in GUI mode from a Windows PC or through a Web browser.

Summary

20

21

22

About Informix

Based in Menlo Park, California, Informix Corporation specializes in advanced information

management technologies that help enterprises in the i.Economy get to market quickly, generate

new revenue, build a unique strategic advantage, and solve their most complex business problems.

Informix offers customers a complete software infrastructure for the Web that delivers highly scal-

able transaction processing, personalized content management, integrated business intelligence, full

multimedia capabilities, and complete e-commerce solutions.

For more information, contact the sales office nearest you or visit our Web site at www.informix.com.

4100 Bohannon Drive
Menlo Park, CA 94025
Tel. 650.926.6300
www.informix.com

© 2000 Informix Corporation. All rights reserved. The following are trademarks of Informix Corporation or its affiliates, one or more of which may be registered in the
U.S. or other jurisdictions: Informix®, Informix Dynamic Server™, and ClientSDK™.

Printed in U.S.A. 1/00
000-21998-70

I N F O R M I X R E G I O N A L S A L E S O F F I C E S

Asia Pacific 65 298 1716 Japan 81 3 5562 4500
Canada (Toronto) 416 730 9009 Latin America 305 591 9592
Europe/Middle East/Africa 44 208 818 1000 North America 800 331 1763
Federal 703 847 2900 650 926 6300

