
IMS

Open Transaction Manager Access Guide

and Reference

Version 9

SC18-7829-00

���

IMS

Open Transaction Manager Access Guide

and Reference

Version 9

SC18-7829-00

���

Note

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

151.

First Edition (October 2004)

This edition applies to Version 9 of IMS (product number 5655-J38) and to all subsequent releases and modifications

until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1995, 2004. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures . vii

Tables . ix

About This Book . xi

How This Book Is Organized . xi

Prerequisite Knowledge . xi

IBM Product Names Used in This Information xii

How to Send Your Comments xiii

Summary of Changes . xv

Changes to This Book for IMS Version 9 xv

Library Changes for IMS Version 9 xv

New and Revised Titles . xv

Organizational Changes . xvi

Terminology Changes . xvi

Accessibility Enhancements xvi

Chapter 1. Introduction to OTMA 1

What is OTMA? . 1

Capabilities of OTMA . 2

Benefits of Using OTMA . 3

Advantages of the OTMA Protocol 4

How IMS Messages Flow in an OTMA Environment 5

Basic OTMA Message Flow 5

Sample Commit-Then-Send Transaction Processing Flows 7

Using Transaction Pipes with OTMA 8

Differences in Transaction Pipes 9

Message Flow Using Transaction Pipes 10

Chapter 2. The OTMA Client 13

What Is an OTMA Client? . 13

OTMA Naming Conventions . 14

Messages Sent by OTMA Clients 14

Parts of the OTMA Message Prefix 14

OTMA Message-Prefix Rules 15

Sequence Numbers Used by OTMA 15

OTMA Commit Processing . 16

Summary of OTMA Commit Processing 17

Sample OTMA Commit Processing Flows 17

Sample OTMA Message Flows 21

Protecting Transactions with OTMA 27

Initiating Protected Transactions from an OTMA Client 27

Processing Protected Transactions in IMS 28

Client/Server Resynchronization with OTMA 28

Assumptions for OTMA Resynchronization 29

Recoverable OTMA Transactions 30

Unrecoverable OTMA Transactions 30

Summary Results of IMS Transactions and Commands 30

OTMA Resynchronization Protocol 32

Sample OTMA Resynchronization Message Flow 35

Sample OTMA Resynchronization Messages 36

© Copyright IBM Corp. 1995, 2004 iii

||
||
||

Chapter 3. Using IMS with OTMA 39

Installing OTMA . 39

Specifying OTMA-Related Parameters 39

Specifying OTMA Descriptors 41

Customizing IMS for OTMA . 42

OTMA-Supported Exit Routines 42

Using DFSYPRX0 and DFSYDRU0 OTMA Exit Routines to Determine

Destination . 42

Administering IMS for OTMA . 44

IMS Conversations and OTMA 44

MSC and OTMA Transactions 45

Fast Path and OTMA Transactions 45

IMS Restart Processing and OTMA 45

XRF Processing and OTMA 45

Queue Control Facility and OTMA 46

Using Shared Queues with OTMA 47

OTMA Restrictions . 49

Managing System Resources and OTMA 50

IMS Message Queue Data Set Size and OTMA 50

Buffer Pool Usage for OTMA 50

Tpipe Number Recommendations for OTMA 51

Dependent Region Occupancy and OTMA 51

OTMA Security Overhead . 51

Establishing Security for OTMA 51

Using the /SECURE OTMA Command 51

Selecting an OTMA Security Level 52

General OTMA Security Considerations 54

Using DL/I Calls in an OTMA Environment 54

OTMA Program-to-Program Switch Processing 55

OTMA Single-Stream Program Switch 56

OTMA Program Switch without ISRT to I/O PCB 56

OTMA Program Switch with Express PCB 57

OTMA Program Switch to Multiple Programs 57

OTMA Program Switch with OTMAASY Option 58

OTMA Program Switch for Protected Transactions 58

Other OTMA Program Switch Considerations 58

IMS Commands Using OTMA 59

OTMA Terminology . 59

Modified Commands for OTMA 59

IMS Messages Introduced by OTMA 62

Chapter 4. OTMA Diagnostic Information 63

OTMA Sense Codes for NAK Messages 63

OTMA Return Codes . 67

Chapter 5. OTMA Message Prefix 69

OTMA Message-Control Information 69

Format of OTMA Message-Control Information 69

Explanation of OTMA Message-Control Information Fields 73

OTMA State Data . 80

Format of OTMA State Data for Transaction-Related Information 80

Format of OTMA State Data for Server-Available and Client-Bid Commands 81

Format of OTMA State Data for SRVresynch Command 82

Format of OTMA State Data for REQresynch Command 83

Format of OTMA State Data for REPresynch Command 83

Format of OTMA State Data for TBresynch Command 84

iv Open Transaction Manager Access Guide and Reference

|
||

Format of OTMA State Data for Resume Output for Tpipe 85

Format of OTMA State Data for Resume Output for the Special Queue for

Tpipe . 85

Explanation of OTMA State Data Fields 86

OTMA Security Data . 89

Format of OTMA Security Data 89

Explanation of OTMA Security Data Fields 90

OTMA User Data . 91

Format of OTMA User Data 91

Explanation of OTMA User Data Fields 91

OTMA Application Data . 92

Format of OTMA Application Data 92

Explanation of OTMA Application Data Fields 92

Sample OTMA Messages . 92

Chapter 6. OTMA Architected Transaction Attributes 95

Chapter 7. OTMA Callable Interface 99

Introduction to OTMA Callable Interface 99

Getting Started with OTMA C/I 100

OTMA C/I Environment Requirements 101

OTMA C/I Migration and Coexistence 101

OTMA C/I Initialization . 101

OTMA C/I Security . 102

OTMA C/I Restrictions . 102

OTMA C/I Hints and Tips . 102

OTMA C/I APIs . 103

Using otma_create . 104

Using otma_open . 106

Using otma_openx . 107

Using otma_alloc . 108

Using otma_send_receive 109

Using otma_send_receivex 112

Using otma_send_async . 112

Using otma_receive_async 115

Using otma_free . 116

Using otma_close . 117

Codes and Messages Used by OTMA C/I 117

OTMA Post Codes . 118

OTMA Return Codes . 118

OTMA Error Messages . 125

OTMA C/I Sample Programs 126

Warranty and Distribution for OTMA C/I Sample Programs 126

OTMA C/I Sample Program #1: Synchronous Processing 127

OTMA C/I Sample Program #2: Asynchronous Processing 138

Notices . 151

Programming Interface Information 153

Trademarks . 153

Bibliography . 155

IMS Version 9 Library . 155

Supplementary Publications . 156

Publication Collections . 156

Accessibility Titles Cited in This Library 156

Contents v

Index . 157

vi Open Transaction Manager Access Guide and Reference

Figures

 1. Network Architecture Models . 1

 2. IMS communicates with a device using device support implemented within an OTMA Client . . . 3

 3. IMS Message Flow in an OTMA Environment . 6

 4. Standard SLU 2 Transaction Flow . 7

 5. SLU 2 Transaction Flow Using OTMA . 8

 6. How Transaction Pipes Fit in an OTMA Client/Server Environment 9

 7. Basic Transaction-Pipe Message Flow . 10

 8. Use of Queues in the Transaction-Pipe Message Flow 11

 9. Transaction-Pipe Flow in Full-Duplex Environment 12

10. Applications that use XCF to connect to IMS on z/OS 13

11. Commit-Then-Send (IMS Standard) Flow . 18

12. Sample Message Flow for Commit-Then-Send Flow 18

13. Send-Then-Commit Flow . 19

14. Sample Message Flow for Send-Then-Commit Flow 20

15. Send-Then-Commit with Confirm Flow . 21

16. Client-Bid Flow . 22

17. Server-Available Flow . 23

18. Commit-Then-Send Transaction Flow . 25

19. Flow of Resynchronization (Nondeferred) . 33

20. Flow of Resynchronization (Deferred) . 34

21. Sample OTMA Resynchronization Message Flow 35

22. Client-Bid Request with Resynchronization Message 36

23. ACK Message To Acknowledge Receipt of CBresynch 36

24. The SRVresynch Command Message . 37

25. ACK Message To Acknowledge Receipt of SRVresynch 37

26. The REQresynch Command Message . 37

27. The REPresynch Command Message . 37

28. ACK Message for Successful Resynchronization 38

29. How DFSYPRX0 and DFSYDRU0 Determine Message Destination 43

30. OTMA Messages Being Processed on Multiple IMS Systems in a Shared-Queues Group 48

31. Synchronous and Asynchronous Transactions and Their Respective Commit Levels 49

32. Single-Stream Program Switch . 56

33. Race condition resulting from program switch to multiple programs 58

34. OTMA Client-Bid Message . 93

35. OTMA Transaction Message . 93

36. OTMA Response Message . 94

37. OTMA Callable Interface Overview . 100

© Copyright IBM Corp. 1995, 2004 vii

||

||

viii Open Transaction Manager Access Guide and Reference

Tables

 1. Licensed Program Full Names and Short Names xii

 2. Commit-Then-Send versus Send-Then-Commit Processing 17

 3. Contents of Client-Bid Flow Message Prefix . 22

 4. Contents of Server-Available Flow Message Prefix 24

 5. Contents of Commit-Then-Send Transaction Flow Message Prefix 25

 6. Results of IMS Transactions Using a Synchronized Tpipe 30

 7. Results of IMS Transactions Using a Nonsynchronized Tpipe 31

 8. Results of Commands that a Client Issues . 31

 9. Tpipes created when both OTMASP parameter and DFYDRU0 exit used 41

10. Selecting Messages by Category Type . 47

11. IMS Messages introduced by OTMA . 62

12. Reason codes associated with the 001A sense code 65

13. OTMA Message Prefix segments and their Key Fields 69

14. Message-Control Information Summary . 69

15. State Data Format for Transaction-Related Information 80

16. Server-Available and Client-Bid Command Format 82

17. SRVresynch Command Format . 83

18. REQresynch Command Format . 83

19. REPresynch Command Format . 83

20. TBresynch Command Format . 85

21. Resume Output for Tpipes Command Format . 85

22. Resume Output for the Special Queue for Tpipes Command Format 85

23. Content of Security Data Fields . 89

24. Content of User Data Fields . 91

25. Application Data . 92

26. Transaction Attributes Segment . 95

27. OTMA C/I Return Codes and Reason Codes by Function 119

© Copyright IBM Corp. 1995, 2004 ix

x Open Transaction Manager Access Guide and Reference

About This Book

This information is available as part of the DB2® Information Management Software

Information Center for z/OS® Solutions. To view the information within the DB2

Information Management Software Information Center for z/OS Solutions, go to

http://publib.boulder.ibm.com/infocenter/dzichelp. This information is also available in

PDF and BookManager® formats. To get the most current versions of the PDF and

BookManager formats, go to the IMS™ Library page at

www.ibm.com/software/data/ims/library.html.

This book is for IMS system and Transaction Manager administrators responsible

for installation, design, customization, operation, and recovery procedures for Open

Transaction Manager Access (OTMA) servers or clients. It provides reference

information for IMS system definition, customization, application programming, data

communication and system administration for OTMA. It also provides information on

writing an OTMA client.

IMS Version 9 provides an integrated IMS Connect function, which offers a

functional replacement for the IMS Connect tool (program number 5655-K52). In

this information, the term IMS Connect refers to the integrated IMS Connect

function that is part of IMS Version 9, unless otherwise indicated.

How This Book Is Organized

This book introduces OTMA, describes OTMA clients, discusses changes to IMS to

support OTMA, and gives an overview of XCF for OTMA. This book contains the

following chapters:

v Chapter 1, “Introduction to OTMA,” on page 1 introduces the OTMA environment.

v Chapter 2, “The OTMA Client,” on page 13 describes what an OTMA client is.

v Chapter 3, “Using IMS with OTMA,” on page 39 describes how IMS tasks change

when using OTMA.

v Chapter 4, “OTMA Diagnostic Information,” on page 63 describes OTMA sense

codes returned with negative acknowledgement messages.

v Chapter 5, “OTMA Message Prefix,” on page 69 contains the format of the OTMA

message prefix.

v Chapter 6, “OTMA Architected Transaction Attributes,” on page 95 contains the

syntax of architected command output.

v Chapter 7, “OTMA Callable Interface,” on page 99, which was an appendix in

previous releases.

v “Bibliography” on page 155 contains a list of related publications (other than

those in the IMS library).

Prerequisite Knowledge

IBM® offers a wide variety of classroom and self-study courses to help you learn

IMS. For a complete list, see the IMS Web site at: www.ibm.com/ims.

Before using this book, you should understand:

v Basic IMS concepts

v z/OS XCF programming

v The IMS environment

© Copyright IBM Corp. 1995, 2004 xi

v Your installation’s IMS system

v Your installation’s networks

v Administration of the IMS system and Transaction Manager

For definitions of terminology used in this manual and references to related

information in other manuals, see the IMS Version 9: Master Index and Glossary.

IBM Product Names Used in This Information

In this information, the licensed programs shown in Table 1 are referred to by their

short names.

 Table 1. Licensed Program Full Names and Short Names

Licensed program full name Licensed program short name

IBM Application Recovery Tool for IMS and

DB2

Application Recovery Tool

IBM CICS® Transaction Server for OS/390® CICS

IBM CICS Transaction Server for z/OS CICS

IBM DB2 Universal Database™ DB2 Universal Database

IBM DB2 Universal Database for z/OS DB2 UDB for z/OS

IBM Enterprise COBOL for z/OS and OS/390 Enterprise COBOL

IBM Enterprise PL/I for z/OS and OS/390 Enterprise PL/I

IBM High Level Assembler for MVS™ & VM &

VSE

High Level Assember

IBM IMS Advanced ACB Generator IMS Advanced ACB Generator

IBM IMS Batch Backout Manager IMS Batch Backout Manager

IBM IMS Batch Terminal Simulator IMS Batch Terminal Simulator

IBM IMS Buffer Pool Analyzer IMS Buffer Pool Analyzer

IBM IMS Command Control Facility for z/OS IMS Command Control Facility

IBM IMS Connect for z/OS IMS Connect

IBM IMS Connector for Java™ IMS Connector for Java

IBM IMS Database Control Suite IMS Database Control Suite

IBM IMS Database Recovery Facility for z/OS IMS Database Recovery Facility

IBM IMS Database Repair Facility IMS Database Repair Facility

IBM IMS DataPropagator™ for z/OS IMS DataPropagator

IBM IMS DEDB Fast Recovery IMS DEDB Fast Recovery

IBM IMS Extended Terminal Option Support IMS ETO Support

IBM IMS Fast Path Basic Tools IMS Fast Path Basic Tools

IBM IMS Fast Path Online Tools IMS Fast Path Online Tools

IBM IMS Hardware Data

Compression-Extended

IMS Hardware Data Compression-Extended

IBM IMS High Availability Large Database

(HALDB) Conversion Aid for z/OS

IBM IMS HALDB Conversion Aid

IBM IMS High Performance Change

Accumulation Utility for z/OS

IMS High Performance Change Accumulation

Utility

IBM IMS High Performance Load for z/OS IMS HP Load

xii Open Transaction Manager Access Guide and Reference

Table 1. Licensed Program Full Names and Short Names (continued)

Licensed program full name Licensed program short name

IBM IMS High Performance Pointer Checker

for OS/390

IMS HP Pointer Checker

IBM IMS High Performance Prefix Resolution

for z/OS

IMS HP Prefix Resolution

IBM Tivoli® NetView® for z/OS Tivoli NetView for z/OS

IBM WebSphere® Application Server for z/OS

and OS/390

WebSphere Application Server for z/OS

IBM WebSphere MQ for z/OS WebSphere MQ

IBM WebSphere Studio Application Developer

Integration Edition

WebSphere Studio

IBM z/OS z/OS

How to Send Your Comments

Your feedback is important in helping us provide the most accurate and highest

quality information. If you have any comments about this or any other IMS

information, you can take one of the following actions:

v Go to the IMS Library page at www.ibm.com/software/data/ims/library.html and

click the Library Feedback link, where you can enter and submit comments.

v Send your comments by e-mail to imspubs@us.ibm.com. Be sure to include the

title, the part number of the title, the version of IMS, and, if applicable, the

specific location of the text on which you are commenting (for example, a page

number in the PDF or a heading in the Information Center).

About This Book xiii

xiv Open Transaction Manager Access Guide and Reference

Summary of Changes

Changes to This Book for IMS Version 9

This edition contains the following changes:

v Information related to the OTMA ACEE aging value setting, which is described in

Table 14 on page 69 and “Explanation of OTMA Message-Control Information

Fields” on page 73.

v The section “OTMA Program-to-Program Switch Processing” on page 55,

formerly titled IMS Program-to-Program Switch Processing, has been significantly

rewritten.

v The section “OTMA C/I Hints and Tips” on page 102 provides new information for

using OTMA’s callable interface.

v Added new Auto-One option to Table 22 on page 85.

v Description of One Only option is changed in Table 22 on page 85.

v Added client flag to Table 15 on page 80.

v Added explanation of Send Only Message and Reroute Request to “Explanation

of OTMA State Data Fields” on page 86.

v Added new section “Protecting Transactions with OTMA” on page 27.

v New Purge Not Deliverable flag added to 82.

v Information formerly in the section, Frequently Asked Questions, has been moved

to appropriate places in the book. Frequently Asked Questions has been

removed.

Library Changes for IMS Version 9

Changes to the IMS Library for IMS Version 9 include the addition of one title, a

change of one title, organizational changes, and a major terminology change.

Changes are indicated by a vertical bar (|) to the left of the changed text.

The IMS Version 9 information is now available in the DB2 Information Management

Software Information Center for z/OS Solutions, which is available at

http://publib.boulder.ibm.com/infocenter/dzichelp. The DB2 Information Management

Software Information Center for z/OS Solutions provides a graphical user interface

for centralized access to the product information for IMS, IMS Tools, DB2 Universal

Database (UDB) for z/OS, DB2 Tools, and DB2 Query Management Facility

(QMF™).

New and Revised Titles

The following list details the major changes to the IMS Version 9 library:

v IMS Version 9: IMS Connect Guide and Reference

The library includes new information: IMS Version 9: IMS Connect Guide and

Reference. This information is available in softcopy format only, as part of the

DB2 Information Management Software Information Center for z/OS Solutions,

and in PDF and BookManager formats.

IMS Version 9 provides an integrated IMS Connect function, which offers a

functional replacement for the IMS Connect tool (program number 5655-K52). In

this information, the term IMS Connect refers to the integrated IMS Connect

function that is part of IMS Version 9, unless otherwise indicated.

v The information formerly titled IMS Version 8: IMS Java User’s Guide is now

titled IMS Version 9: IMS Java Guide and Reference. This information is

© Copyright IBM Corp. 1995, 2004 xv

available in softcopy format only, as part of the DB2 Information Management

Software Information Center for z/OS Solutions, and in PDF and BookManager

formats.

v To complement the IMS Version 9 library, a new book, An Introduction to IMS by

Dean H. Meltz, Rick Long, Mark Harrington, Robert Hain, and Geoff Nicholls

(ISBN # 0-13-185671-5), is available starting February 2005 from IBM Press. Go

to the IMS Web site at www.ibm.com/ims for details.

Organizational Changes

Organization changes to the IMS Version 9 library include changes to:

v IMS Version 9: IMS Java Guide and Reference

v IMS Version 9: Messages and Codes, Volume 1

v IMS Version 9: Utilities Reference: System

The chapter titled ″DLIModel Utility″ has moved from IMS Version 9: IMS Java

Guide and Reference to IMS Version 9: Utilities Reference: System.

The DLIModel utility messages that were in IMS Version 9: IMS Java Guide and

Reference have moved to IMS Version 9: Messages and Codes, Volume 1.

Terminology Changes

IMS Version 9 introduces new terminology for IMS commands:

type-1 command

A command, generally preceded by a leading slash character, that can be

entered from any valid IMS command source. In IMS Version 8, these

commands were called classic commands.

type-2 command

A command that is entered only through the OM API. Type-2 commands

are more flexible than type-2 commands and can have a broader scope. In

IMS Version 8, these commands were called IMSplex commands or

enhanced commands.

Accessibility Enhancements

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products. The major accessibility features

in z/OS products, including IMS, enable users to:

v Use assistive technologies such as screen readers and screen magnifier

software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

User Assistive Technologies

Assistive technology products, such as screen readers, function with the IMS user

interfaces. Consult the documentation of the assistive technology products for

specific information when you use assistive technology to access these interfaces.

Accessible Information

Online information for IMS Version 9 is available in BookManager format, which is

an accessible format. All BookManager functions can be accessed by using a

keyboard or keyboard shortcut keys. BookManager also allows you to use screen

readers and other assistive technologies. The BookManager READ/MVS product is

xvi Open Transaction Manager Access Guide and Reference

included with the z/OS base product, and the BookManager Softcopy Reader (for

workstations) is available on the IMS Licensed Product Kit (CD), which you can

download from the Web at www.ibm.com.

Keyboard Navigation of the User Interface

Users can access IMS user interfaces using TSO/E or ISPF. Refer to the z/OS

V1R1.0 TSO/E Primer, the z/OS V1R5.0 TSO/E User’s Guide, and the z/OS

V1R5.0 ISPF User’s Guide, Volume 1. These guides describe how to navigate each

interface, including the use of keyboard shortcuts or function keys (PF keys). Each

guide includes the default settings for the PF keys and explains how to modify their

functions.

Summary of Changes xvii

xviii Open Transaction Manager Access Guide and Reference

Chapter 1. Introduction to OTMA

IMS Open Transaction Manager Access (OTMA) is a transaction-based,

connectionless client/server protocol. Though easily generalized, its implementation

is specific to IMS in a z/OS sysplex environment. The domain of the protocol is

restricted to the domain of the z/OS Cross-System Coupling Facility (XCF).

OTMA addresses the problem of connecting a client to a server so that the client

can support a large network, or a large number of sessions, while maintaining high

performance.

Other solutions available today use network-based protocols, such as Systems

Network Architecture (SNA). These protocols require a great amount of overhead

because they are not transaction based.

The following topics provide additional information:

v “What is OTMA?”

v “How IMS Messages Flow in an OTMA Environment” on page 5

v “Using Transaction Pipes with OTMA” on page 8

What is OTMA?

OTMA has similarities to network protocols. There are several architectural models

for networks. Figure 1 shows two. The simplified four-layer model shown on the

right is often used in descriptions of UNIX® networks. In the open systems

interconnection (OSI) model, shown on the left, OTMA is the session layer. Both

models have a Transport, Network, and Data Link layer. The OSI model also

includes layers for Application, Presentation, and Session, and the simplified model

includes a process layer. In the four-layer model, OTMA is the process layer.

 OTMA, however, does not exactly conform to the OSI model, because OTMA can

process several sessions simultaneously using a single transport connection, if the

following are true:

v The z/OS Cross-System Coupling Facility (XCF) is the transport layer.

Figure 1. Network Architecture Models

© Copyright IBM Corp. 1995, 2004 1

|

|

|

|

v A session is the connection between IMS and a client.

v A client or server only creates a single XCF connection.

OTMA performs some of the basic functions of the OSI transport layer (those not

performed by XCF), so it is simplest to think of OTMA as a combined session and

transport layer, with the transport layer comprised of both XCF and OTMA.

Although you can think of OTMA as a session and transport layer in a network

architecture model, OTMA is designed to be a high-performance comprehensive

protocol that allows z/OS programs to access IMS applications.

Definitions: A z/OS program in this case means any z/OS application that is a

member of an XCF group that includes IMS. The XCF group members that IMS

communicates with are called OTMA clients.

Related Reading: For more information on OTMA clients, see Chapter 2, “The

OTMA Client,” on page 13.

By using OTMA, each client (z/OS application) can submit transactions to IMS or

issue IMS commands and receive output from IMS application programs and from

IMS itself.

Definition: Because IMS can communicate with, or serve, many OTMA clients,

IMS is called the server. However, OTMA only operates in the following IMS

environments:

v IMS TM and DB (the IMS DB/DC environment)

v IMS TM with DB2™ UDB for z/OS (the IMS DCCTL environment)

Capabilities of OTMA

This section outlines the capabilities of OTMA

Existing IMS application programs can run without modification and interact with

OTMA clients. APPC/IMS application programs that use IMS SETO calls might need

some modification. Related Reading: For more information on this restriction, see

“OTMA Restrictions” on page 49.

An OTMA client can issue most IMS commands and receive responses as a result

of those commands. Related Reading: For information on the IMS commands that

are supported, see the IMS Version 9: Command Reference.

An OTMA client can indicate that no security checking is to be done for its

messages, thereby minimizing security-processing overhead.

The OTMA message flow and synchronization point protocols can be modified by

an OTMA client for each transaction. In other words, the transaction-processing

protocol used is not dependent on the current session.

The IMS /DISPLAY TRANSACTION command output is in the form of an OTMA

message returned to the client in the application-data section of the message prefix.

OTMA-initiated transactions are identified to z/OS Workload Manager using the

OTMA transaction-pipe name, which identifies the logical connection between IMS

and OTMA.

What Is OTMA?

2 Open Transaction Manager Access Guide and Reference

Benefits of Using OTMA

This section outlines the benefits of OTMA.

Q: Do I need to modify my IMS applications?

A: No, but if you have applications that use SETO calls, you might have to modify

them. The SETO call is relatively new and applies to APPC/IMS and SPOOL/API

processing.

For each OTMA-originated transaction, the SETO call returns a status code. You can

bracket the SETO call with an INQY call if necessary; see “Using DL/I Calls in an

OTMA Environment” on page 54.

Full-duplex processing provides an environment in which transactions and output

messages are sent and processed in parallel.

You can implement IMS device support outside IMS. You can also implement device

support for your IMS subsystem that is different from what IMS provides, or enable

device support that IMS does not provide. Figure 2 illustrates how IMS can

communicate with a device, shown here as a workstation, using device support

implemented within an OTMA client. IMS device support using Virtual

Telecommunications Access Method (VTAM®) is shown for comparison.

Flow-control and transaction-processing attributes are dynamically bound to the

transaction.

Figure 2. IMS communicates with a device using device support implemented within an

OTMA Client

What Is OTMA?

Chapter 1. Introduction to OTMA 3

Clients have high-performance access to IMS:

v OTMA uses the z/OS XCF application programming interface (API).

v OTMA does not use VTAM and IMS device-dependent support.

Transactions based on different protocols (that is, that have different processing

requirements such as being recoverable or irrecoverable) can be associated with a

single transaction pipe. Related Reading: For more information on using

transaction pipes, see “Using Transaction Pipes with OTMA” on page 8.

You can connect up to 255 clients to the OTMA group.

Messages can be extended using the user-data section of the message prefix,

allowing additional user information to be sent with the transaction.

User information and transaction pipe name are included within the messages

themselves.

Different clients can specify the same transaction pipe names, instead of needing to

use uniquely named resources.

You do not need to use networking architectures, such as SNA (Systems Network

Architecture).

Advantages of the OTMA Protocol

OTMA treats transactions as data objects that have attributes independent of

application-, session-, or transport-layer considerations. OTMA is, in effect, a

transaction layer, independent of other layers. As a unique layer, OTMA offers

flexibility, simplicity, and performance that other solutions do not offer. This section

outlines the transaction-specific services that OTMA provides the client.

Grouping of transactions using transaction pipes.

Security options (for example, the client can verify security or let the server verify

the user ID).

Dynamically-bound flow control and processing. The client can decide how

transaction requests and responses are to be processed by the server.

The ability for the client to query the server for transactions that the server

supports.

Treating transactions as objects. The client can include any pertinent user data with

the transaction, and allow that data to stay with all messages generated by the

transaction.

The ability for the client to specify a client token with each transaction to correlate

input with output.

The ability for the client to control transaction processing performed by the server,

in terms of:

v Performance (the client can eliminate security-checking that the server performs).

v Transaction grouping, using the transaction-pipe token.

What Is OTMA?

4 Open Transaction Manager Access Guide and Reference

Client routing. An IMS exit routine can reroute an output message that is inserted to

an alternate PCB to any OTMA client or to IMS.

Architected command output. The client can use the IMS /DISPLAY TRANSACTION

command to query the server’s transaction attributes and receive the reply in a

structured format. Therefore, the need for automated operator scripting to control

processing is reduced.

Unlike APPC, when using message flow through transaction pipes, no concept

exists of a session that contains the flow-control parameters for all transactions and

associated output data for the session.

How IMS Messages Flow in an OTMA Environment

Definition: The key to message flow for OTMA is the transaction pipe, the logical

connection between the server and the OTMA client. An OTMA client includes the

transaction-pipe name in the message-control information section of the message

prefix for the input message. IMS then associates application output for an OTMA

client with a specific transaction pipe.

Related Reading: For more information on transaction pipes, see “Using

Transaction Pipes with OTMA” on page 8.

Basic OTMA Message Flow

The basic message flow is:

1. The client submits a transaction or command to IMS.

2. IMS accepts IMS transactions as input from any client.

The IMS transaction code is specified in the application-data section of the input

message.

If the client is submitting an IMS command, the command is included in the

application-data section of the input message.

3. The input message is processed.

An IMS transaction is enqueued to the appropriate application program using an

IMS scheduler message block (SMB).

An IMS command is processed by IMS. The output is sent to the client

synchronously or asynchronously, depending on the type of request.

4. Application output is sent to the client.

Generation of output and commit are coordinated based on the commit mode

specified in the state-data section of the message prefix for the input message.

The application output is enqueued to a dynamically created IMS

transaction-pipe structure (specific to that client) before being sent to the client.

For an OTMA-submitted transaction, IOPCB output is returned to the OTMA

client. By default, all alternate PCB output is also sent to the OTMA client. You

can change this by coding the OTMA Prerouting exit routine (DFSYPRX0) or the

client’s OTMA Destination Resolution exit routine (DFSYDRU0). You can also

use these exit routines to route alternate PCB output from non-OTMA-submitted

transactions to OTMA clients.

IMS delivers segmented messages in order, even though XCF does not

guarantee sequential delivery of messages.

Figure 3 on page 6 shows an example of the message flow in an OTMA

environment. Two clients are shown side by side in the example; they can be a

What Is OTMA?

Chapter 1. Introduction to OTMA 5

TCP/IP client, an WebSphere MQ Queue Manager client, or a client of any other

network type. Message flow starts with the client, goes through the XCF group, and

to IMS. Within the IMS address space, a control region contains OTMA; the

message flow ends at a transaction-pipe. The IMS application program issues a Get

Unique (GU) call in the dependent region.

 The notes in Figure 3 are as follows:

1. The message prefix is always attached to the input transaction, even in the

case of segmented input. This prefix contains important information, such as the

transaction-pipe name and the client token.

A client application program can send several transactions specifying the same

transaction-pipe name. The client token must always be present in the prefix, so

that the client application program knows how to process the IMS output it

receives.

2. OTMA clients do not need to predefine transaction pipes. Two different clients

can use the same transaction-pipe name (as shown in Figure 3). Although many

clients can use the same transaction-pipe name, each transaction pipe is

unique. (In Figure 3, client 1 and client 2 both use tpipe1, yet each is a

unique transaction pipe.)

A client can create and use as many transaction pipes as it needs.

3. The transaction-pipe structure is created dynamically when OTMA receives

output and is used as an anchor for the application output.

Figure 3. IMS Message Flow in an OTMA Environment

How IMS Messages Flow in an OTMA Environment

6 Open Transaction Manager Access Guide and Reference

4. The IMS application program has no knowledge of the OTMA message prefix

when it issues the GU call.

IMS supports a full-duplex message flow for a client/server session. The client can

instead request a half-duplex message flow, but this flow must be implemented and

managed by the client itself:

v A correlator token in the state-data section of the message prefix can be used to

uniquely identify a transaction. IMS maintains this field in the message prefix for

a transaction.

v The client can set the response-requested flag in the message-control

information section of the message prefix to receive a response for a message.

v Any unsolicited output from IMS is easily identified by a client, because the

message prefix specifies only the transaction-pipe name. The client can ask IMS

to discard the output.

Unsolicited output should not interfere with half-duplex processing. That is, the

client must be prepared for full-duplex flows while still maintaining a half-duplex

flow on a user-token level. Contention should not be an error condition.

Sample Commit-Then-Send Transaction Processing Flows

Figure 4 shows a non-OTMA environment: a secondary logical unit type 2 (SLU 2)

device communicates with IMS using VTAM and IMS device support (DDMs). The

transactions are enqueued to the IMS message queues. Transaction output is

returned to the SLU 2 device.

 Figure 5 on page 8 shows the same transaction flow in an OTMA environment. The

transaction still comes from a SLU 2 device, but the device communicates with IMS

using an OTMA client, through an XCF group, rather than VTAM.

Figure 5 on page 8 only shows the input flow, which begins with the SLU 2 device,

goes to the OTMA client, through the XCF group, and ends at the OTMA server.

The transaction is placed on the message queue, and the application issues get

unique, insert, and get unique calls. Output follows the same path, in reverse. Of

course, if a client is to send output to the SLU 2 device, the SLU 2 device must be

defined to the client, and the client must be able to drive that device.

Figure 4. Standard SLU 2 Transaction Flow

How IMS Messages Flow in an OTMA Environment

Chapter 1. Introduction to OTMA 7

It might seem that the OTMA flow is more complex, and for a SLU 2 device,

perhaps it is. But you can use OTMA to allow any type of device to communicate

with IMS, not just VTAM-supported devices. An OTMA client can also act as a

gateway for another network, such as a TCP/IP network.

Using Transaction Pipes with OTMA

An IMS transaction represents a request for IMS to do some work. Many

transactions also require a response, after IMS has completed the work. So, each

transaction has a source (the requester) and often a destination (for the response).

IMS uses the concept of a logical terminal (LTERM) to ensure that responses are

associated with the correct requesters. An LTERM uses a queue where the

transaction output is kept before it is returned to the requester.

Definition: For each LTERM, IMS maintains a connection between the queue and

the physical node that receives the output. OTMA does not use an LTERM but still

must maintain a connection between the client and IMS. This connection is the

transaction pipe, or tpipe.

Q: What is a tpipe?

A: A transaction pipe (tpipe) is a logical connection between a client and the

server. It is analogous to an IMS logical terminal (LTERM).

Transaction pipes enable a client to associate its transactions with a

transaction-pipe name. IMS uses the transaction-pipe name to associate all input

and output with a particular client. The association between the transaction output

and its ultimate destination (for example, a user at a terminal or a printer) is not

made within IMS (as is the case with LTERMs), but is the responsibility of the client.

Figure 5. SLU 2 Transaction Flow Using OTMA

How IMS Messages Flow in an OTMA Environment

8 Open Transaction Manager Access Guide and Reference

|
|
|
|
|

By using a transaction pipe, IMS does not know anything about the actual user of

the transaction, often a user of the client application. Because IMS does not know

anything about the actual user, the client has complete control over the output of

transactions.

OTMA’s use of transaction pipes provides:

v Flexibility

Many transaction outputs can flow through the same transaction pipe.

v Performance

Transaction pipes give the client the ability to specify and distinguish transactions

based on their message-flow control and synchronization.

v Resynchronization between a client and IMS

Transaction pipes can be either synchronized or non-synchronized. For a

synchronized transaction pipe, all output messages are serialized through a

single process, and sequence numbers can be assigned to messages. By

logging these serialized messages, IMS and the client can resynchronize in the

event of an outage.

No resynchronization is required for a non-synchronized transaction pipe.

v Object orientation

A transaction can be thought of as an object because OTMA keeps the

transaction message information (such as user data and transaction-pipe name)

within the message.

Figure 6 illustrates how transaction pipes fit in an OTMA client/server environment.

As shown in Figure 6, transaction-pipe structures reside in the OTMA layer only for

the server. XCF, which resides in the transport layer, can be thought of as an

interprocess communication layer, because it provides communication between the

client process and the server process.

Differences in Transaction Pipes

IMS LTERMs and UNIX pipes both provide a one-way flow for message traffic. An

OTMA transaction pipe provides a two-way flow.

The concept of a transaction pipe is applicable to any protocol. In a general way,

the transaction pipe replaces the IMS LTERM because:

v Processing is full duplex.

v Multiple flow-control mechanisms are possible.

v The logical output entity (in other words, the LTERM) is dissociated from the

node of the actual user.

Figure 6. How Transaction Pipes Fit in an OTMA Client/Server Environment

Using Transaction Pipes

Chapter 1. Introduction to OTMA 9

v The transaction pipe is implemented as a protocol rather than as an API, which

facilitates a client/server architecture.

v The transaction pipe sets up a data-control mechanism independent of session

characteristics, and is therefore transaction specific.

Message Flow Using Transaction Pipes

The flow control of transactions is handled by the client. The client dynamically

binds flow-control parameters to the transaction by querying the transaction

attributes in the server. Transaction pipes are not usually associated with flow

control (except for synchronized transaction pipes using half-duplex processing).

Figure 7 shows the basic message flow between a client and a server, using XCF.

The order of processing is:

1. The client sends a transaction as input to the server (IMS).

2. The server returns transaction output messages to the client.

 Within the server, the input transaction and the output messages are organized and

synchronized using IMS queues, as shown in Figure 8 on page 11. The figure

illustrates a commit-then-send transaction flow for a non-Fast Path environment.

The order of processing is:

1. The client sends a transaction to the server, and the server enqueues the

transaction on a message queue.

2. The transaction is submitted to an application program for processing.

3. The application program prepares any output for the transaction and commits

the output during sync-point processing.

4. The output is returned to the client.

Related Reading: For information on commit-then-send transactions, see “OTMA

Commit Processing” on page 16.

Figure 7. Basic Transaction-Pipe Message Flow

Using Transaction Pipes

10 Open Transaction Manager Access Guide and Reference

In a full-duplex environment, transactions and output messages are being sent and

processed in parallel, as shown in Figure 9 on page 12. This parallelism can be

maximized by creating a process for every transaction and output message. The

order of processing is:

1. The client sends a transaction (Tran 1) to the server, and the server’s

transaction pipe enqueues the transaction.

2. The transaction (Tran 1) is submitted to an application program for processing.

3. The application program enqueues any output (Message 1) for the transaction

(Tran 1).

4. The client sends a second transaction (Tran 2) to the server and the server’s

transaction pipe enqueues the transaction.

5. The second transaction (Tran 2) is submitted to an application program for

processing.

6. The output (Message 1) for Tran 1 is returned to the client.

7. The application program enqueues the output (Message 2) for the second

transaction (Tran 2).

8. The output (Message 2) for Tran 2 is returned to the client.

Figure 8. Use of Queues in the Transaction-Pipe Message Flow

Using Transaction Pipes

Chapter 1. Introduction to OTMA 11

Q: Does specifying a transaction pipe as synchronized make the communication

flow half-duplex?

A: No. Transaction pipes are always full-duplex.

Whether the communication flow is actually half-duplex depends on the client. For a

synchronized transaction pipe, IMS processes all output messages in the order

received. No new messages are sent for the transaction until IMS has received an

ACK message for the previous message. A NAK message causes IMS to halt all

output processing for that transaction.

While this output processing is taking place, the client could be sending new input

transaction messages to IMS on that synchronized transaction pipe. If the client

coordinates the sending of transactions with the receipt of IMS output, the client can

effect half-duplex processing.

Figure 9. Transaction-Pipe Flow in Full-Duplex Environment

Using Transaction Pipes

12 Open Transaction Manager Access Guide and Reference

Chapter 2. The OTMA Client

The OTMA environment includes a server and one or more clients. This chapter

explains how a client interacts with the server to process IMS transactions.

The following topics provide additional information:

v “What Is an OTMA Client?”

v “OTMA Naming Conventions” on page 14

v “Messages Sent by OTMA Clients” on page 14

v “OTMA Commit Processing” on page 16

v “Protecting Transactions with OTMA” on page 27

v “Client/Server Resynchronization with OTMA” on page 28

v “OTMA Resynchronization Protocol” on page 32

What Is an OTMA Client?

Definition: An OTMA client is a z/OS application program that sends transactions

to an IMS server and receives output. The application program must be a member

of an XCF group and use the OTMA protocol.

Heterogeneous (non-z/OS) networks can connect with z/OS in many ways.

Figure 10 shows some of the possible applications that use XCF. These include:

v WebSphere MQ applications

v OEM applications

v IMS Connect applications

v DCE/RPC applications

v Other IBM applications

Any of these can connect to an OTMA client to communicate with IMS.

Figure 10. Applications that use XCF to connect to IMS on z/OS

© Copyright IBM Corp. 1995, 2004 13

|

An OTMA client is the gateway by which transactions from outside IMS can enter

IMS.

OTMA processing involves:

1. A client sends a transaction or command to the server (IMS).

2. The server returns output to the client.

OTMA Naming Conventions

When naming either a client or a transaction pipe, you must adhere to the following

conventions. The name:

v Must be character type A (A-Z, 0-9, @, $)

v Must begin with a non-blank character

v Must be padded with blanks if shorter than the maximum length (16 for a client

name, 8 for a transaction-pipe name)

v Cannot contain embedded blanks

v Cannot be a reserved word (for example, “TO” or “SECURITY”)

v Cannot begin with “DFS” or “DBCDM”

v Cannot be an IMS keyword (for example, “LINE” or “NODE”)

In addition, transaction-pipe names cannot:

v Duplicate an IMS transaction name.

v Have the same name as the z/OS system console (for example, “WTOR”), IMS

MTO, or secondary MTO.

IMS does not perform uppercase translation. If lowercase characters are used, the

client receives a negative acknowledgment (NAK) response from the server.

Messages Sent by OTMA Clients

An OTMA client communicates with IMS by sending messages. First, a user enters

application data using a device or program that is connected to the client. Next, the

client adds some information (the message prefix) and sends the message to IMS.

Output from IMS is sent to the client as a message, and the client uses the

message prefix to route the data to the correct device or program.

Parts of the OTMA Message Prefix

The OTMA message prefix has the following sections:

v Message-control information

This section includes the transaction-pipe name, message type, sequence

numbers (if any), and various flags and indicators.

v State data

This section includes a destination override (if any), map name, synchronization

level, commit mode, tokens, and server state.

v Security data

This section includes the user ID, user token, and security flags.

v User data

This section includes any special information needed by the client.

What Is a Client?

14 Open Transaction Manager Access Guide and Reference

Following the message prefix is the application-data section of the message. This

section contains either the data to be sent to IMS for processing or the IMS

response.

Related Reading: For more information on the OTMA message prefix, see

Chapter 5, “OTMA Message Prefix,” on page 69.

OTMA Message-Prefix Rules

Because a message can have a single segment or multiple segments, the following

rules apply to OTMA message prefixes:

v Single-segment messages can have the full prefix (message-control information,

state data, security data, and user data).

v Only the first segment of multi-segment messages has the full prefix. Subsequent

segments are sent with only the message-control information and

application-data sections.

v Acknowledgment (ACK or NAK) messages sent by IMS only return the first input

buffer. This message carries the full prefix, and the application-data section (if it

is included in the client request).

Sequence Numbers Used by OTMA

OTMA uses two types of sequence numbers for messages: send-sequence

numbers and recoverable sequence numbers. Send-sequence numbers and

recoverable sequence numbers are used differently in OTMA.

Using Send-Sequence Numbers

Send-sequence numbers are used for input and output messages. Send-sequence

numbers should be incremented by a client for every input message. When IMS

sends output to a client, the send-sequence numbers in the output message are

also incremented. The send-sequence numbers are used for all the OTMA

input/output messages. The send-sequence numbers in the input messages are

also used to identify multi-segments.

Example: There is a two-segment OTMA input message. The first segment

message will have send-sequence number=XXX and segment number=1. The second

segment message should have the same send-sequence number=XXX and segment

number=2. OTMA chains the two-segment message together because the send

sequence numbers are the same.

OTMA uses send-sequence numbers in the following ways:

v All ACK and NAK messages from IMS use the send-sequence numbers

submitted by the client on input.

v All OTMA commands that IMS sends to the client have send-sequence number 0

(zero). And, except for the resynchronization flows, these OTMA commands are

all single segment.

v Send-sequence numbers for IMS error messages and IMS transaction output are

set for each transaction pipe. The send-sequence number for a given transaction

pipe is incremented by one for each message, and it is never 0 (zero). When the

sequence number exceeds 4 294 967 295 (the 32-bit maximum), it is reset to 1.

Using Recoverable Sequence Numbers

Recoverable sequence numbers are used only to control resynchronization. If a

client does not support resynchronization, recoverable sequence number=0 (zero).

Resynchronization is only valid for synchronized tpipe and commit-then-send

input/output. The recoverable sequence numbers are also incremented for every

Sending Messages

Chapter 2. The OTMA Client 15

input/output message. Resynch support has an added logic to check if the

recoverable sequence numbers are properly incremented. If the sequence numbers

are not properly incremented, a NAK is sent. Because the resynch is dependent on

the recoverable sequence numbers, the resynch must be correct for every

input/output. Recoverable sequence numbers apply to transaction pipes, which use

them to control resynchronization.

Related Reading: For more information on resynchronization, see “Client/Server

Resynchronization with OTMA” on page 28.

OTMA Commit Processing

OTMA can control how IMS commits transactions: they can be either

commit-then-send or send-then-commit.

Definitions:

v For commit-then-send transactions (the IMS standard flow), IMS processes the

transaction and commits the data before sending a response to the OTMA client.

v For send-then-commit transactions, IMS processes the transaction and sends a

response to the OTMA client before committing the data.

Q: What is the major difference between the commit-then-send processing option

and the send-then-commit processing option?

A: The commit-then-send processing option commits the transaction output as part

of sync-point processing, and then delivers the output to the client later.

The send-then-commit processing option delivers the transaction output first,

receives an acknowledgment from the client, and then completes the sync-point

processing.

Q: What happened to the commit mode 0 and commit mode 1 processing

options?

A: Commit mode 0 is now called “commit-then-send”, and commit mode 1 is

called “send-then-commit”. Because the terms “commit-then-send” and

“send-then-commit” are more intuitive when referring to these processing options,

the terms “commit mode 0” and “commit mode 1” are no longer used.

Related Reading: For more information on these two commit modes, see “Sample

OTMA Commit Processing Flows” on page 17.

For an OTMA transaction, a client can receive one of the following from IMS:

v An ACK message for the input, followed by any output messages.

In addition send-then-commit transactions will also receive an ACK message

followed by a “deallocate” flow (indicated when the commit-confirmation flag in

the message-control information section of the message prefix is set to either

Committed or Aborted).

v A NAK message with a sense code.

v A NAK message with the processing flag set to Error Message Follows in the

message-control information section of the message prefix. The subsequent

message has the same message prefix as the NAK message and has the IMS

error message in the application-data section of the message prefix.

Sending Messages

16 Open Transaction Manager Access Guide and Reference

Summary of OTMA Commit Processing

Table 2 summarizes the differences between commit-then-send and

send-then-commit processing. Several variables are listed in the first column; the

differences between processing options are described in the next two columns.

Following Table 2 are some usage notes to be aware of.

 Table 2. Commit-Then-Send versus Send-Then-Commit Processing

Variables Commit-then-send Send-then-commit

Conversational Client receives a NAK

message.

Supported.

Fast Path Client receives a NAK

message.

Supported.

Non-conversational and

non-Fast Path transactions

IMS commits after enqueuing

the output to the client. The

output is delivered later.

IMS sends output to the client

and then commits.

Enqueue the input? Yes. Yes.

Enqueue the output? Yes. No.

Synchronized transaction pipe

specified?

Supported. Client receives a NAK

message.

Notes:

v IMS conversations cannot use the commit-then-send commit mode.

v Send-then-commit input and output is irrecoverable.

v For irrecoverable output (send-then-commit), IMS requests an acknowledgement

if the synchronization level is set to Confirm.

v For a recoverable transaction, IMS always requests an acknowledgement for an

output message.

v For commit-then-send transactions, IMS always requests an acknowledgement.

v Synchronized transaction pipes can only be used for commit-then-send

transactions.

Sample OTMA Commit Processing Flows

In order to explain the differences between the two commit modes, this section

shows sample flows of data between IMS and clients for each commit mode.

Related Reading: For more detailed message flows, see “Sample OTMA Message

Flows” on page 21.

Commit-Then-Send Flow

The commit-then-send flow, also known as the IMS standard flow, enqueues IMS

output before sending it to the client. Use this flow for standard transaction

processing. To use the standard flow, specify Commit Mode 0 in the state-data

section of the message prefix. This sample flow assumes the following:

v The transaction pipe is synchronized. IMS maintains sequence numbers for

recoverable input and output for the transaction pipe.

v Acknowledgment is always requested (by both IMS and the client).

If NAK is received by IMS, then the output is returned to the queue and will be

delivered later.

Commit Processing

Chapter 2. The OTMA Client 17

The flow is illustrated in Figure 11. Following Figure 11 is a sequential list that

provides more details on the flow.

 The sequence of the flow illustrated in Figure 11 is:

 1. Transaction initiated (response required/synchronized tpipe)

 2. Transaction is inserted to SMB

 3. ACK

 4. GU call followed by ISRT to IOPCB

 5. Sync Point

 6. Output is enqueued to tpipe, and DB is committed

 7. Transaction completes

 8. Output is sent with response requested

 9. ACK

10. Output is dequeued.

An example of the flow of the message activity for a single commit-then-send

transaction pipe is shown in Figure 12. Following Figure 12 is a sequential list that

provides more details on the flow.

 The sequence of flow shown in Figure 12 is:

 1. Tran1

 2. ACK to Tran1

Figure 11. Commit-Then-Send (IMS Standard) Flow

Figure 12. Sample Message Flow for Commit-Then-Send Flow

Commit Processing

18 Open Transaction Manager Access Guide and Reference

3. Tran2

 4. Output of Tran1

 5. ACK to Tran2

 6. Tran3

 7. ACK to Tran3

 8. Tran4

 9. ACK to output of Tran1

10. ACK to Tran4.

Send-Then-Commit Flow

The send-then-commit flow sends IMS output before IMS completes

synchronization-point (hereafter referred to as sync-point) processing. To use the

send-then-commit flow, specify Commit Mode 1 in the state-data section of the

message prefix. This sample flow assumes the following:

v The transaction pipe is not synchronized.

v The synchronization level is specified as None in the state-data section.

Therefore, IMS does not request a response (an ACK) when sending output.

The flow is illustrated in Figure 13. Following Figure 13 is a sequential list that

provides more details on the flow.

 The sequence of flow shown in Figure 13 is:

1. Transaction initiated

2. Transaction inserted to SMB

3. GU call followed by ISRT to IOPCB

4. Sync point started

5. Output is sent. No response is requested; response is requested only when

sync=confirm is specified.

6. Commit confirmed; IMS completed sync point

7. Transaction completes

An example of the flow of the message activity for a single transaction pipe is

illustrated in Figure 14 on page 20. Following Figure 14 on page 20 is a sequential

list that provides more details on the flow.

Figure 13. Send-Then-Commit Flow

Commit Processing

Chapter 2. The OTMA Client 19

The sequence of flow shown in Figure 14 is:

 1. Tran1

 2. Tran2 request/response

 3. Tran3 request/response

 4. ACK to Tran3

 5. Output of Tran1

 6. ACK to Tran2

 7. Tran4

 8. Output of Tran4

 9. Confirm of Tran4

10. Output of Tran2

11. Output of Tran3

12. Confirm of Tran1

13. Confirm of Tran3

14. Confirm of Tran2

As shown in Figure 14, the client can receive a confirmation for output before

receiving the actual output, because XCF does not guarantee that all messages are

sent in sequential order. The client must be able to handle this situation during

message-receipt processing or by using the XCF Message exit routine.

Q: How can a client know whether or not a send-then-commit transaction ran

successfully?

A: OTMA sends message DFS2082 to the client if the IMS transaction ends

unsuccessfully and does not perform an insert to the IOPCB.

Figure 14. Sample Message Flow for Send-Then-Commit Flow

Commit Processing

20 Open Transaction Manager Access Guide and Reference

Send-Then-Commit Flow with Confirm

The send-then-commit flow assumes no synchronization for the transactions as they

are processed by IMS. This section shows a flow in which all transactions are

confirmed as they are received (each message requests a response). The sample

illustrated in Figure 15 assumes the following:

v Commit Mode 1 is specified in the state-data section of the message prefix.

v The transaction pipe is not synchronized.

v The Synchronization Level is specified as Confirm in the state-data section.

If NAK is received by IMS, then a user 119ABEND occurs in the application and

IMS issues a DFS554 message to the client.

Following Figure 15 is a sequential list that provides more details on the flow.

 The sequence of flow shown in Figure 15 is:

1. Transaction initiated

2. Transaction inserted to SMB

3. GU call followed by ISRT to IOPCB

4. Sync point start

5. Output sent; response requested

6. ACK

7. DB is committed; commit is confirmed; IMS completed sync point

8. Transaction completed

Sample OTMA Message Flows

This section shows some sample message flows, and describes how various fields

in the message prefix are set. In the figures, the following abbreviations are used

for parts of the message prefix:

MC Message-control information section

SD State-data section

SE Security-data section

US User-data section

AP Application-data section

Figure 15. Send-Then-Commit with Confirm Flow

Commit Processing

Chapter 2. The OTMA Client 21

The sample flow diagrams show which parts of the prefix are mandatory for a given

message and which are not applicable. Optional fields and prefix sections are

enclosed in parentheses.

For transactions submitted by clients, the following principles apply:

v After IMS sends an ACK message to a client, IMS sends a commit confirmation

(indicating that the transaction committed successfully or was aborted).

v The commit confirmation terminates a client transaction.

Related Reading: For examples that show what the message prefixes look like for

various types of messages, see “Sample OTMA Messages” on page 92.

Client-Bid Message Flow

Figure 16 shows a client-bid flow, where the client attempts to connect to the server.

This flow can occur when the client has already joined the XCF group and notices

that a server has joined the group. The client-bid flow is:

1. Client-Bid: MC, SD, SE

2. ACK: MC, SD, SE

 Table 3 shows the contents of the message prefix.1 The flow step is listed, with the

message flow type, message prefix section, and associated contents of the

message prefix section for the prefixes MC, SD, and SE.

 Table 3. Contents of Client-Bid Flow Message Prefix

Flow Step

Message

Flow

Message

Prefix

Section Contents of Prefix Section

1 Client-Bid MC Architecture level = 1

Message type = command

Response flag = response requested

Command type = client-bid

Prefix flag = state data + security data

SD The state data format for command

messages applies to these fields:

Length

Member name

Originator’s token

Destination token

(DRU exit name)

MaxBlocksize

Aging value

Hash table size

SE (Utoken)

1. The numbers used to show sequence (shown in Figure 16 and in the table text) are not part of the actual message prefix.

Figure 16. Client-Bid Flow

Commit Processing

22 Open Transaction Manager Access Guide and Reference

Table 3. Contents of Client-Bid Flow Message Prefix (continued)

Flow Step

Message

Flow

Message

Prefix

Section Contents of Prefix Section

2 ACK MC Architecture level = 1

Message type = command and response

Response flag = ACK

Command type = client-bid

Prefix flag = state data + security data

SD The state data format for command

messages applies to these fields:

Length

Member name

Originator’s token

Destination token

(DRU exit name)

MaxBlocksize

Aging value

Hash table size

SE Utoken

Server-Available Flow

Figure 17 shows a Server-Available flow, where the server attempts to connect to

the client. This flow only occurs when the server is already joined to the XCF group

and recognizes that a client joins the group. A client should not wait for the server

to recognize that it has joined the XCF group; the client should send its client-bid

message as soon as it joins the group.

The client should ignore a Server-Available message after it has successfully

completed its client-bid request and connected to the XCF group. The flow shown

is:

1. Server-available: MC, SD, SE

2. Client-Bid: MC, SD, SE

3. ACK: MC, SD, SE

 Table 4 on page 24 shows the contents of the message prefix.

2 The flow step is

listed, with the message flow type, message prefix section, and associated contents

of the message prefix section for the prefixes MC, SD, and SE.

2. The numbers used to show sequence (shown in Figure 17 and in the table text) are not part of the actual message prefix.

Figure 17. Server-Available Flow

Commit Processing

Chapter 2. The OTMA Client 23

Table 4. Contents of Server-Available Flow Message Prefix

Flow Step

Message

Flow

Message

Prefix

Section Content of Prefix Section

1 Server

Available

MC Architecture level = 1

Message type = command

No response flag

Command type = Server Available

SD The state data format for command

messages applies to these fields:

Length

Member name

Originator’s token

Destination token

2 Client-bid MC Architecture level = 1

Message type = command

Response flag = response requested

Command type = client-bid

Prefix flag = state data + security data

SD The state data format for command

messages applies to these fields:

Length

Member name

Originator’s token

Destination token

(DRU exit name)

MaxBlocksize

Aging value

Hash table size

SE (Utoken)

3 ACK MC Architecture level = 1

Message type = command and response

Response flag = ACK

Command type = client-bid

Prefix flag = state data + security data

SD The state data format for command

messages applies to these fields:

Length

Member name

Originator’s token

Destination token

(DRU exit name)

MaxBlocksize

Aging value

Hash table size

SE Utoken

Commit-Then-Send Transaction Flow

Figure 18 on page 25 shows the flow for a commit-then-send transaction, where the

client submits a transaction to the server for processing. The flow is:

1. Transaction ABC: MD, SD, SE, (US), AP

2. ACK: MC, SD, SE, (US)

3. Transaction output: MC, SD, (US), AP

4. ACK: MC, SD

Commit Processing

24 Open Transaction Manager Access Guide and Reference

Table 5 shows the contents of the message prefix.

3 The flow step is listed, with the

message flow type, message prefix section, and associated contents of the

message prefix section for the prefixes MC, SD, SE, US, and AP.

 Table 5. Contents of Commit-Then-Send Transaction Flow Message Prefix

Flow

Step Message Flow

Message

Prefix

Section Content of Prefix Section

1 Transaction

’ABC’

MC Architecture level = 1

Message type = transaction

Response flag = response requested

Transaction-pipe name

Prefix flag = SD/SE/(US)/AP

Send-sequence number

SD Length

Synchronization flag = Commit Mode 0

Synchronization level = Confirm or None

(Map name)

(Correlator)

Length of server user data = 0

SE Length

(Security flag)

Length of fields

User ID length

(User ID type = 02)

(User ID)

Profile length

(Profile type = 03)

(RACF® group)

Utoken length

(Utoken type = 00)

(Utoken)

(US) This optional section is returned

with the transaction output:

Length

User data

AP Length

ZZ

application data ('ABC' in the example)

3. The numbers used to show sequence (shown in Figure 18 and in the table text) are not part of the actual message prefix.

Figure 18. Commit-Then-Send Transaction Flow

Commit Processing

Chapter 2. The OTMA Client 25

Table 5. Contents of Commit-Then-Send Transaction Flow Message Prefix (continued)

Flow

Step Message Flow

Message

Prefix

Section Content of Prefix Section

2 ACK MC Architecture level = 1

Message type = transaction and response

Response flag = ACK

Transaction-pipe name

Prefix flag = SD/SE

Send-sequence number

SD Length

Synchronization flag = Commit Mode 0

Synchronization level = Confirm or None

(Map name)

(Correlator)

Length of server user data = 0

SE Length

(Security flag)

Length of fields

User ID length

(User ID type = 02)

(User ID)

Profile length

(Profile type = 03)

(RACF group)

Utoken length

(Utoken type = 00)

(Utoken)

(US) This optional section is returned with the

transaction output:

Length

User data

3 Transaction

Output

MC Architecture level = 1

Message type = data

Response flag = response requested

Transaction-pipe name

Prefix flag = SD/(US)/AP

Send-sequence number

Server token

SD Length

Synchronization flag = Commit Mode 0

Synchronization level = Confirm or None

(Map name)

Server token

(Correlator)

Length of server user Data

(Server user data)

(US) This optional section is returned with the

transaction output:

Length

(User data)

AP Length

ZZ

Transaction output data

Commit Processing

26 Open Transaction Manager Access Guide and Reference

Table 5. Contents of Commit-Then-Send Transaction Flow Message Prefix (continued)

Flow

Step Message Flow

Message

Prefix

Section Content of Prefix Section

4 ACK MC Architecture level = 1

Message type = data and response

Response flag = ACK

Transaction-pipe name

Prefix flag = SD

Send-sequence number

SD Length

Synchronization flag = Commit Mode 0

Synchronization level = Confirm or None

(Map name)

Server token

(Correlator)

Length of server user data

(Server user data)

Protecting Transactions with OTMA

This section describes protected transactions, how to use them, and the role of

OTMA, APPC/IMS, and RRS in protecting transactions.

In a z/OS environment, this resource protection and recovery is managed by

Resource Recovery Services (RRS), part of z/OS Recovery Resource Management

Services (RRMS). RRS can apply coordinated changes across multiple

mission-critical resources.

OTMA is one of two components that enable IMS to support protected transactions.

The second component is APPC/IMS.

To process protected transactions, specify RRS=Y on the control region JCL. IMS

then registers as a Resource Manager (RM) with RRMS using the CRGGRM

service; it also sets its exits with the Context Services and RRS exit managers

using the CRGSEIF service. IMS supports the following RRS exit routines:

v PREPARE

v COMMIT

v BACKOUT

v EXIT_FAILED

v ONLY_AGENT

v SUBORDINATE_FAILED

During initialization, IMS issues message DFS0653I to indicate that it has

successfully connected with RRS and that it can now process protected

transactions.

Initiating Protected Transactions from an OTMA Client

Following are the steps to initiate protected transactions from an OTMA client.

1. Specify Synclevel=2 (Syncpt) in the OTMA message prefix.

2. Obtain or reuse a context token. To obtain a context token, use the CTXBEGC

service.

Commit Processing

Chapter 2. The OTMA Client 27

|

|
|

|
|
|
|

|
|

|
|
|
|

|

|

|

|

|

|

|
|
|

|

|

|

|
|

3. Set the context token in the OTMA message prefix.

4. Express interest in the UR using ATREINT.

5. Send the message to the OTMA client.

6. Wait for the output from the IMS transaction.

7. Send an acknowledgement (ACK) to IMS after the output is received.

8. Initiate the RRS commit (ATRACMT) or backout (ATRABCK).

The OTMA client assumes the server distributed syncpoint RM (SDSRM) role. This

means that the OTMA client owns the context and is the only RM allowed to initiate

or invoke the RRS commit. The flow is similar to that of an APPC/IMS-protected

transaction, with the following exceptions:

v The OTMA client initiates the commit using the RRS Commit_Agent_UR service

(ATRACMT).

v RRS then directly informs IMS to take a commit. As a result of the previous

ATRACMT call, RRS drives the commit exits of all interested RMs.

Processing Protected Transactions in IMS

IMS receives the protected transaction and extracts the context token from the

OTMA message header. IMS saves the context token in its own control block before

placing the protected transaction on the IMS message queue. Also, before placing

the protected transaction on the message queue, IMS expresses interest in the

context using the Express_Context_Interest service (CTXEINT). IMS will therefore

be informed if anything happens to the context while the protected transaction is

queued on the message queue.

When IMS schedules the protected transaction into a dependent region, IMS

switches the context token to the dependent region TCB using the Switch_Context

service (CTXSWCH); it also expresses protected interest in the UR using ATREINT.

IMS then presents the protected transaction to an application program that

processes that particular transaction. The application contains the business logic

(for example, update databases, send messages, and others). After the application

completes its work, it reaches a commit point. IMS then sends the application

output back to the OTMA client and waits for a commit or backout event from RRS.

Client/Server Resynchronization with OTMA

In order to guarantee that client transactions are processed and that they are

processed only once, OTMA provides a protocol for synchronizing transactions.

Using a synchronized commit-then-send (Commit Mode 0) transaction pipe, the

client and IMS can regain message flow in the event of a client or IMS outage.

Resynchronization occurs when either IMS or the client terminates normally or

abnormally.

Transaction resynchronization achieves the following:

v Prevents data from being reprocessed

v Detects that data has not been received and causes the client to resend the data

v Detects that resynchronization might not be possible

v Allows the client to decide what actions to take in order to resynchronize

Commit Processing

28 Open Transaction Manager Access Guide and Reference

|

|

|

|

|

|

|
|
|
|

|
|

|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

OTMA resynchronization is not symmetrical, and a system’s behavior depends on

its role: client or IMS. Resynchronization also does not maintain symmetry for send-

or receive-sequence numbers. For example, the differences for the input and output

sides of an IMS flow are:

Input IMS logs the client sequence numbers when the transaction is

enqueued, and from that moment, the client has no control over

dequeuing the transaction.

Output The application output is enqueued to a synchronized transaction

pipe, but the output sequence numbers are not logged at that time.

Only after sending the output and receiving an acknowledgment

from the client does IMS finally dequeue the message and log the

incremented sequence numbers.

All output using a synchronized transaction pipe is sequenced. The second output

message is not sent until the ACK message from the client is received for the first

output message.

Q: Why would I use a synchronized tpipe versus a nonsynchronized tpipe?

A: Use a synchronized tpipe to ensure that client transactions are processed only

once in the case of a client or IMS failure. Therefore, synchronized tpipes ensure

better transaction recoverability. However, in order to guarantee transaction

recovery, you are required to implement resynchronization logic with synchronized

tpipes.

Use a nonsynchronized tpipe when the recoverability of a transaction is less of a

concern. For nonsynchronized tpipes, the client does not require the

resynchronization logic.

Assumptions for OTMA Resynchronization

The OTMA resynchronization process is based on the following assumptions:

v Neither client nor IMS sends an ACK message until it has logged a transaction

message.

v The client decides what resynchronization actions IMS should take.

v Both client and IMS can determine whether a transaction and its output

messages are recoverable. The client can determine a transaction’s recoverability

using the architected form of the /DISPLAY TRANSACTION command.

v Recoverable OTMA messages include a value for the recoverable sequence

number in the message-control information section of the message prefix. This

value is incremented by 1 every time a recoverable message is sent using a

tpipe (see Table 6 on page 30, Table 7 on page 31, and Table 8 on page 31).

v A 0 (zero) is not a valid recoverable sequence number.

v Recoverable send- and receive-sequence numbers are maintained on a per

transaction pipe basis.

v IMS does not support resynchronization for any IMS command input. If the client

needs to submit IMS commands using a synchronized transaction pipe, the

recoverable sequence number must be set to 0 (zero). If the recoverable

sequence number is not set to 0 (zero), IMS rejects the command input with

sense code X’0023’.

Client/Server Resynchronization

Chapter 2. The OTMA Client 29

Recoverable OTMA Transactions

The recoverability of OTMA-initiated transactions and commands is determined by

the following factors:

v Is it a recoverable or unrecoverable transaction?

v Is it a recoverable or unrecoverable command?

v Is the recoverable sequence number 0 (zero) or not?

v Is it a synchronized or nonsynchronized transaction pipe?

v Is it Commit Mode 0 (commit-then-send) or Commit Mode 1 (send-then-commit)?

A recoverable IMS transaction submitted using the send-then-commit transaction

flow is not rejected. However, send-then-commit transactions are discarded during

IMS restart (they are unrecoverable).

Q: Are transactions using synchronized transaction pipes recoverable?

A: Yes. Input messages are not recoverable for send-then-commit transactions,

and requesting an ACK message has no effect on whether a transaction is

recoverable. You should request ACK messages for proper synchronization of the

synchronized transaction pipe.

Also, when a transaction reaches IMS, its recoverability depends on how it is

defined to IMS.

Unrecoverable OTMA Transactions

The following is true for unrecoverable transactions:

v The client must know that the transaction is unrecoverable, process it, and then

forget about it.

v Send-then-commit output is unrecoverable, and it is not resynchronized.

v Send-then-commit transactions must be associated with nonsynchronized

transaction pipes.

Summary Results of IMS Transactions and Commands

Table 6 summarizes the results of IMS transactions that a client submits under

various processing conditions using a synchronized tpipe. The summarization

differentiates recoverable sequence numbers of zero and non-zero, and shows the

differences between recoverable and unrecoverable transactions for commit modes

0 and 1 for both the zero and non-zero sequence.

 Table 6. Results of IMS Transactions Using a Synchronized Tpipe

Recoverable

Sequence Number

Commit-Then-Send (Commit Mode 0) Send-Then-Commit (Commit Mode 1)

Recoverable

Transaction

Unrecoverable

Transaction

Recoverable

Transaction

Unrecoverable

Transaction

0 (zero) Client receives ACK

message. Output is

recoverable, and no

input/output

recoverable sequence

is updated.

Client receives ACK

message. Output is

not recoverable and

no input/output

recoverable sequence

number is updated.

Client receives NAK

message with sense

code X'001C'.

Client receives NAK

message with sense

code X'001C'.

Client/Server Resynchronization

30 Open Transaction Manager Access Guide and Reference

|
|
|
|
|
|

Table 6. Results of IMS Transactions Using a Synchronized Tpipe (continued)

Recoverable

Sequence Number

Commit-Then-Send (Commit Mode 0) Send-Then-Commit (Commit Mode 1)

Recoverable

Transaction

Unrecoverable

Transaction

Recoverable

Transaction

Unrecoverable

Transaction

Not 0 (zero) If the recoverable

sequence number is

valid, client receives

ACK message. If it is

not valid, client

receives NAK

message with sense

code X'001F'.

Transaction and

output are

recoverable.

Client receives NAK

message with sense

code X'0023'. Client

should set

recoverable sequence

number to 0 (zero).

Client receives NAK

message with sense

code X'001C'.

Client receives NAK

message with sense

code X'001C'.

Table 7 summarizes the results of IMS transactions that a client submits under

various processing conditions using a nonsynchronized tpipe. The summarization

differentiates recoverable sequence numbers of zero and non-zero, and shows the

differences between recoverable and unrecoverable transactions for commit modes

0 and 1 for both the zero and non-zero sequence.

 Table 7. Results of IMS Transactions Using a Nonsynchronized Tpipe

Recoverable

Sequence Number

Commit-Then-Send (Commit Mode 0) Send-Then-Commit (Commit Mode 1)

Recoverable

Transaction

Unrecoverable

Transaction

Recoverable

Transaction

Unrecoverable

Transaction

0 (zero) Client receives ACK

message. Transaction

and output are

recoverable.

Client receives ACK

message. Transaction

and output are not

recoverable.

Client receives ACK

message. Transaction

and output are not

recoverable.

Client receives ACK

message. Transaction

and output are not

recoverable.

Not 0 (zero) Client receives NAK

message with sense

code X'0023'. Client

should set

recoverable sequence

number to 0 (zero).

Client receives NAK

message with sense

code X'0023'. Client

should set

recoverable sequence

number to 0 (zero).

Client receives NAK

message with sense

code X'0023'. Client

should set

recoverable sequence

number to 0 (zero).

Client receives NAK

message with sense

code X'0023'. Client

should set

recoverable sequence

number to 0 (zero).

Table 8 summarizes the results of commands that a client issues under various

processing conditions using a synchronized tpipe or a nonsynchronized tpipe. The

summarization differentiates recoverable sequence numbers of zero and non-zero,

and shows the differences between commit modes 0 and 1 for both synchronized

and nonsynchronized tpipes.

 Table 8. Results of Commands that a Client Issues

Recoverable

Sequence Number

Synchronized Tpipe Nonsynchronized Tpipe

Commit-Then-Send

(Commit Mode 0)

Send-Then-Commit

(Commit Mode 1)

Commit-Then-Send

(Commit Mode 0)

Send-Then-Commit

(Commit Mode 1)

0 (zero) Client receives ACK

message. Command

output is recoverable

and output

recoverable sequence

number is updated.

Client receives NAK

message with sense

code X'001C'.

Client receives ACK

message. Output is

not recoverable.

Client receives ACK

message. Output is

not recoverable.

Client/Server Resynchronization

Chapter 2. The OTMA Client 31

Table 8. Results of Commands that a Client Issues (continued)

Recoverable

Sequence Number

Synchronized Tpipe Nonsynchronized Tpipe

Commit-Then-Send

(Commit Mode 0)

Send-Then-Commit

(Commit Mode 1)

Commit-Then-Send

(Commit Mode 0)

Send-Then-Commit

(Commit Mode 1)

Not 0 (zero) Client receives NAK

message with sense

code X'0023'. Client

should set

recoverable sequence

number to 0 (zero).

Client receives NAK

message with sense

code X'001C'.

Client receives NAK

message with sense

code X'0023'. Client

should set

recoverable sequence

number to 0 (zero).

Client receives NAK

message with sense

code X'0023'. Client

should set

recoverable sequence

number to 0 (zero).

 Related Reading:

v For information on the differences between recoverable and unrecoverable IMS

transactions, see IMS Version 9: Administration Guide: Transaction Manager.

v For information on recoverability of APPC transactions in these circumstances,

see “Integrity Tables” in IMS Version 9: Application Programming: Design Guide.

OTMA Resynchronization Protocol

OTMA resynchronization is based on the following command exchanges for each

client:

CBresynch (Client_Bid resynch)

CBresynch is sent by the client to request resynchronization with IMS after

both the client and IMS have successfully joined the XCF group.

SRVresynch (Server resynch)

SRVresynch must be initiated from IMS to the client after the client has

successfully joined the XCF group and issued CBresynch. SRVresynch

contains all synchronized tpipe names of which IMS is aware.

REQresynch (Request resynch)

REQresynch must be issued from IMS to the client for each Synchronized

tpipe. REQresynch contains the tpipe name, the IMS recoverable

send-sequence number for the tpipe, and the IMS recoverable receive

sequence number for the tpipe.

REPresynch (Reply resynch)

REPresynch is issued from the client for each tpipe. REPresynch is a reply

to the REQresynch request from IMS.

TBresynch (tpipe_Bid resynch)

Tpipe_Bid resynch is issued by the client to initiate resynchronization with

IMS for a particular tpipe.

IMS keeps track of the send and receive numbers in the tpipe structure. The send

and receive numbers are updated for each input and output message. When

resynch occurs, both the client and IMS share their send and receive numbers to

verify that both sides are synchronized. The REQresynch command from IMS

releases the send and receive numbers from IMS. The client accepts the numbers

and does a comparison to the client’s send and receive numbers. If the send and

receive numbers are not the same, then the client specifies an action to IMS with

the REPresynch command. If both sides have the same send and receive numbers,

then the resynch completes successfully. If resynch fails, then the failing tpipe is

identified and is not used.

Client/Server Resynchronization

32 Open Transaction Manager Access Guide and Reference

Command message exchange for resynchronization must follow the OTMA

resynchronization protocol. Normally, the sequence of events that occurs during

resynchronization is:

1. The client issues CBresynch when the client attempts to resynchronize with

IMS.

2. IMS sends an ACK to acknowledge receipt of CBresynch. From this point on,

IMS quiesces any non-resynch type of input or output for all synchronized

tpipes. If IMS receives input while resynchronization is in progress for a

synchronized transaction pipe (tpipe), the input is rejected with sense code

X’0025’.

3. IMS builds the SRVresynch command and sends it to the client. The

SRVresynch command lists all synchronized tpipe names of which IMS is aware

for that client.

4. The client receives the SRVresynch command and issues an ACK or NAK

message to IMS.

5. If IMS receives an ACK message, IMS begins the resynchronization process for

each tpipe. IMS sends the REQresynch command that contains the tpipe name,

the IMS recoverable send-sequence number for the tpipe, and the IMS

recoverable receive-sequence number for the tpipe.

If IMS receives a NAK message from the SRVresynch command, IMS sends the

DFS2393 message to the MTO and waits for a client-bid request or a

CBresynch command from the client.

6. The client receives the REQresynch request. By comparing the information from

the REQresynch request with its own information of the tpipe, the client sends

the REPresynch reply to IMS and informs IMS about the tpipe

Related Reading: For more information on REPresynch format, see “Format of

OTMA State Data for REPresynch Command” on page 83.

7. IMS receives the REPresynch reply and takes actions on the tpipe, based on

the information from the client. IMS sends an ACK message to the client after it

has taken actions dictated by the client. IMS enables the tpipe to handle input

and output. If IMS cannot perform what the client has requested, IMS stops the

tpipe and sends a NAK message to the client.

8. If more than one tpipe exists, steps 5 to 7 are repeated in parallel for each

tpipe. Other tpipes that are not included in the SRVresynch request can send

output in either direction anytime after step 4.

Figure 19 illustrates the flow of nondeferred resynchronization. Following Figure 19

is a sequential list that provides high-level flow description.

 1. Client-bid request with resynchronization

2. ACK message

Figure 19. Flow of Resynchronization (Nondeferred)

OTMA Resynchronization Protocol

Chapter 2. The OTMA Client 33

3. SRVresynch command

4. ACK message

5. REQresynch command

6. REPresynch command

7. ACK or NAK message

If the client determines that resynchronization must be deferred for a particular

tpipe, the sequence of events for that tpipe differs slightly:

In the REPresynch command, the client can set the “stop and wait for

resynchronization” indicator, and can request that IMS defer any input or output

while waiting for the TBresynch command from the client. Assuming steps 1 on

page 33 to 4 on page 33 have completed, the events following are:

1. IMS sends the REQresynch command that contains the tpipe name, the IMS

recoverable send-sequence number and the IMS recoverable receive sequence

number.

2. The client receives the REQresynch request. However, due to any

product-specific reasons, the client defers resynchronization for this tpipe by

sending the REPresynch command with the “stop and wait for TBresynch”

indicator on.

3. IMS sends an ACK message to acknowledge receipt of the REPresynch

command and waits for TBresynch. Meanwhile, IMS quiesces input and output

for the tpipe. If IMS receives any input while waiting for TBresynch, IMS sends a

NAK message to the client with sense code X’0025’.

4. The client sends the TBresynch command and requests IMS to resume

resynchronization for this tpipe.

5. IMS sends the REQresynch command that contains the tpipe name, the IMS

recoverable send-sequence number, and the IMS recoverable receive-sequence

number. If the associated tpipe cannot be located using the client’s TBresynch

command, the client receives a NAK message with sense code X'0025'.

6. The client receives the REQresynch request. By comparing the information from

REQresynch request with its own information about the tpipe, the client sends

the REPresynch reply to IMS and informs IMS about the tpipe.

7. IMS receives the REPresynch reply and takes actions on the tpipe, based on

what the client has requested. IMS sends an ACK message to the client if it has

taken actions dictated by the client. Otherwise, IMS sends a NAK message to

the client with sense code X'0025' or X'0026'.

Figure 20 shows the flow of deferred resynchronization. Following Figure 20 is a

sequential list that provides high-level flow description.

Figure 20. Flow of Resynchronization (Deferred)

OTMA Resynchronization Protocol

34 Open Transaction Manager Access Guide and Reference

1. REQresynch command

2. REPresynch command with STOP AND WAIT for TBresynch

3. ACK message

4. TBresynch command

5. REQresynch command

6. REPresynch command

7. ACK or NAK message

Sample OTMA Resynchronization Message Flow

This section provides a sample message flow for OTMA resynchronization.

Figure 21 shows the flow of messages through a synchronized transaction pipe.

Receive- and send-sequence numbers for each side (IMS and client) are

represented by the letters R and S, which are set in the message-control

information section of the message prefix. These numbers apply to the entire

message (including multi-segment messages). R and S are not necessarily related.

 �1� After the client submits the transaction, IMS enqueues the transaction, and

the transaction runs. The receive-sequence number is incremented by 1.

 �2� IMS sends the client an ACK message to acknowledge receiving and

enqueuing the transaction.

 �3� IMS enqueues the output and sends the data to the client.

 �4� The client sends an ACK message to IMS to acknowledge receiving the

output; however, IMS never receives this ACK to message 15 because of an

IMS failure.

Resynchronization proceeds as follows:

 �5� The client sends a client-bid request to IMS to initiate resynchronization.

 �6� IMS sends an ACK message to the client that resynchronization will begin.

 �7� IMS sends the SRVresynch command to the client to begin

resynchronization.

Figure 21. Sample OTMA Resynchronization Message Flow

OTMA Resynchronization Protocol

Chapter 2. The OTMA Client 35

�8� The client sends an ACK message to IMS to acknowledge receiving the

SRVresynch command.

 �9� IMS sends the REQresynch command to the client to update the receive-

and send-sequence numbers to (9,14).

 �10� The client sends the REPresynch command to IMS to update the receive-

and send-sequence numbers to (15,9), and to tell IMS to dequeue the last

output message. IMS dequeues message 15 and updates S to 15.

 �11� IMS sends an ACK message to the client.

Sample OTMA Resynchronization Messages

This section provides sample OTMA resynchronization messages.

Related Reading: For information on the format of these messages, see Chapter 5,

“OTMA Message Prefix,” on page 69.

Figure 22 shows the OTMA client-bid request with the resynchronization message.

 Figure 23 shows the ACK message to acknowledge receipt of CBresynch.

 Figure 24 on page 37 shows the SRVresynch command message.

MESSAGE CONTROL INFORMATION:

01102000 0C004040 40404040 4040A0C0 |...... .{|

00000000 00000000 00000000 00000000 |................|

STATE DATA:

0036D4D8 E7C3C6F6 40404040 40404040 |..MQXCF6 |

40400100 00010002 00010100 00020002 | |

0002C4C6 E2E8C4D9 E4F00800 00007FFF |..DFSYDRU0....".|

FFFF0000 00650056 C3525100 5001A051 |........C...&...|

Figure 22. Client-Bid Request with Resynchronization Message

MESSAGE CONTROL INFORMATION:

01308000 0C004040 40404040 4040A0C0 |...... .{|

00000000 00000000 00000000 00000000 |................|

STATE DATA:

0036D4D8 E7C3C6F6 40404040 40404040 |..MQXCF6 |

40400100 00010002 00010100 00020002 | |

0002C4C6 E2E8C4D9 E4F00800 00007FFF |..DFSYDRU0....".|

FFFF0000 00650056 C3525100 5001A051 |........C...&...|

Figure 23. ACK Message To Acknowledge Receipt of CBresynch

OTMA Resynchronization Protocol

36 Open Transaction Manager Access Guide and Reference

Figure 25 shows the ACK message sent by client to acknowledge receipt of

SRVresynch.

 Figure 26 shows the REQresynch command message.

 Figure 27 shows the REPresynch command message.

 Figure 28 on page 38 shows the ACK message sent by IMS to inform the client that

resynchronization on a tpipe successfully completed.

MESSAGE CONTROL INFORMATION:

01102000 2C000000 00000000 0000A080 |................|

00000000 00000000 00000000 00010000 |................|

STATE DATA:

000AD1C2 D1F0F0F0 F0C50000 00000000 |..JBJ0000E......|

Figure 24. The SRVresynch Command Message

MESSAGE CONTROL INFORMATION:

0130A000 2C000000 00000000 0000A080 |................|

00000000 00000000 00000000 00010000 |................|

STATE DATA:

000AD1C2 D1F0F0F0 F0C50000 00000000 |..JBJ0000E......|

Figure 25. ACK Message To Acknowledge Receipt of SRVresynch

MESSAGE CONTROL INFORMATION:

01100000 3000D1C2 D1F0F0F0 F0C5A080 |......JBJ0000E..|

00000000 00000000 00000000 00000000 |................|

STATE DATA:

001AD1C2 D1F0F0F0 F0C50000 00020000 |..JBJ0000E......|

00020000 00000000 00000000 00000000 |................|

Figure 26. The REQresynch Command Message

MESSAGE CONTROL INFORMATION:

01100000 3400D1C2 D1F0F0F0 F0C5A080 |......JBJ0000E..|

00000003 00000000 00000000 00000000 |................|

STATE DATA:

001AD1C2 D1F0F0F0 F0C50000 00020000 |..JBJ0000E......|

00020000 00000000 00000000 00000000 |................|

Figure 27. The REPresynch Command Message

OTMA Resynchronization Protocol

Chapter 2. The OTMA Client 37

MESSAGE CONTROL INFORMATION:

01308000 3400D1C2 D1F0F0F0 F0C5A080 |......JBJ0000E..|

00000003 00000000 00000000 00000000 |................|

STATE DATA:

001AD1C2 D1F0F0F0 F0C50000 00020000 |..JBJ0000E......|

00020000 00000000 00000000 00000000 |................|

Figure 28. ACK Message for Successful Resynchronization

38 Open Transaction Manager Access Guide and Reference

Chapter 3. Using IMS with OTMA

This chapter describes changes to IMS tasks for the OTMA environment, as well as

how IMS operates in an OTMA environment.

The following topics provide additional information:

v “Installing OTMA”

v “Customizing IMS for OTMA” on page 42

v “Administering IMS for OTMA” on page 44

v “OTMA Restrictions” on page 49

v “Managing System Resources and OTMA” on page 50

v “Establishing Security for OTMA” on page 51

v “General OTMA Security Considerations” on page 54

v “Using DL/I Calls in an OTMA Environment” on page 54

v “OTMA Program-to-Program Switch Processing” on page 55

v “IMS Commands Using OTMA” on page 59

v “IMS Messages Introduced by OTMA” on page 62

Installing OTMA

Q: What software do I need to use OTMA?

A: You need the following software:

v IMS: minimally IMS/ESA® Version 5, or subsequent versions, releases, and

modification levels.

v An operating system: minimally MVS/ESA™ Version 5, or subsequent versions,

releases and modification levels.

v An OTMA client: use a client provided by IBM, by another vendor, or write your

own client.

OTMA is not installed using the IMS INSTALL/IVP Dialog. To enable IMS to use

OTMA, specify the XCF group name during system definition. To start OTMA, you

can use the OTMA=Y startup parameter in the IMS procedure during IMS system

definition.

Related Reading: For more information on IMS system definition, see IMS Version

9: Installation Volume 2: System Definition and Tailoring.

Specifying OTMA-Related Parameters

These are the OTMA-related parameters that you must specify in IMS PROCLIB

member DFSPBxxx:

GRNAME=

Specifies the XCF group IMS is to join. The group name is one to eight

uppercase alphanumeric characters or other valid characters ($, @).

 IMS joins the XCF group either during IMS initialization (if OTMA=Y is specified)

or as a result of an IMS /START OTMA command. If GRNAME= is not specified and

OTMA=N is specified, IMS cannot join the XCF group.

© Copyright IBM Corp. 1995, 2004 39

If you specify GRNAME= and OTMA is started, you can use the /DISPLAY OTMA

command to display the XCF status. You are not required to define any XCF

information.

 All OTMA clients must know the XCF group name. The group name for the

OTMA clients and the IMS server must be the same.

 If you use RACF for security, the IMSXCF.group.member (client member name)

must be defined in the RACF FACILITY class.

OTMA=

Specifies whether OTMA is to be enabled. Values are Y|N. The default is N.

 If you specify a valid group name for GRNAME=, you can use the /START OTMA

command to enable OTMA later, even if you specify OTMA=N during system

definition.

OTMAASY=

 Specifies that a non-response transaction originating from a

program-to-program switch be scheduled asynchronously. This parameter is for

send-then-commit messages only. A DFS2082 message is not issued for a

transaction scheduled asynchronously.

 OTMAASY= can also be used in a multiple program-to-program switch

environment to ensure that only the response transaction be scheduled

synchronously.

 The default is OTMAASY=N.

OTMANM=

Specifies the XCF member name that IMS uses for the group when IMS is not

using Extended Recovery Facility (XRF) or RSR. The member name is 1 to 16

uppercase alphanumeric characters or other valid characters ($, @).

 The OTMANM name can be specified in the IMS procedure or in the DFSPBxxx

member. If OTMANM is not specified, IMS uses the IMS APPLID for the

member name.

 If IMS is using XRF or RSR, the XCF member name that IMS uses comes from

the USERVAR name specified in the IMS procedure, in the DFSPBxxx member,

or in the DFSHSBxx member. The OTMANM name is not used in this case.

 Recommendation: Do not change the group name or the IMS member name

during an IMS emergency or normal restart.

OTMAMD=

Specifies whether you want to have the member override function in the

DFSYPRX0 user exit for a transaction invoked from an OTMA client. The

parameter values are Y (Yes) or N (No). N means that for transactions that are

invoked from a non-OTMA lterm, you can use the 16-byte member override field

of the user exit parameter list to specify the OTMA client member name. You

cannot, however, use the member override field for transactions that are

invoked from an OTMA client. N is the default setting for the OTMAMD

parameter. Y means that you can use the member override field of the user exit

parameter list for both OTMA and non-OTMA invoked transactions.

OTMASP=

Using the OTMASP parameter provides the same function as setting the output

flag of the OTMA destination resolution exit DFSYDRU0. Using an output flag in

DFSYDRU0 indicates whether a synchronized tpipe needs to be created for

OTMA output. If the only reason you code DFSYDRU0 is to set that output flag,

you can use the OTMASP parameter instead.

Installing OTMA

40 Open Transaction Manager Access Guide and Reference

The OTMASP parameter values are Y (Yes) or N (No). N, which is the default,

means that non-synchronized tpipes are to be created for the OTMA output. Y

means that synchronized tpipes are to be created for OTMA output.
If your organization uses both the DFSYDRU0 exit and the OTMASP parameter

to control the kind of tpipe that gets created for OTMA output, the following

table shows when synchronized tpipes will get created. Table 9 describes which

tpipes are created when the DFYDRU0 exit is used, and when OTMASP=Y or

OTMASP=N.

 Table 9. Tpipes created when both OTMASP parameter and DFYDRU0 exit used

DFSYDRU0 is set to... If OTMASP=Y, result is... If OTMASP=N, result is...

Create synchronized tpipe Synchronized tpipe Synchronized tpipe

Create non-synchronized

tpipe

Synchronized tpipe Non-synchronized tpipe

OTMASE=

Specifies the type of OTMA RACF security that you want to use, if any. The

parameter values are as follows:

C OTMA RACF security is CHECK. IMS commands are checked against

the CIMS class. IMS transactions are checked against the TIMS class.

F OTMA RACF security is FULL. The same type of security as CHECK,

but additional checking is performed against dependent regions. F is

the default value for the OTMASE parameter.

N OTMA RACF security is NONE. No calls to RACF are made.

P OTMA RACF security is PROFILE. Each OTMA message defines the

level of security checking to be done.

Important: The /SECURE OTMA command overrides the value specified in the

OTMASE parameter.

Specifying OTMA Descriptors

OTMA descriptors relate the client name with the OTMA Destination Resolution exit

routine to be used. OTMA descriptors are optional. If no client descriptor is

specified, the default exit routine, DFSYDRU0, is used. DFSYDRU0 can be

overridden during a client-bid request.

OTMA descriptors are built during IMS initialization. The descriptors are included in

DFSYDTx members of IMS.PROCLIB (“x” is the IMS nucleus suffix). All parameters

are delimited with a blank. The following is the format of a descriptor:

Column Contents

1 Descriptor type. M is for an OTMA descriptor.

2 Blank.

3-18 1- to 16-character client name, left-justified and padded with blanks

if necessary. This is a required and positional parameter. Duplicate

names are not allowed.

 The client name should follow the resource naming conventions.

 Related Reading: For more information on the naming

conventions, see “OTMA Naming Conventions” on page 14.

19 Blank.

Installing OTMA

Chapter 3. Using IMS with OTMA 41

20-23 DRU=

24-31 OTMA Destination Resolution exit routine name. This is a required

parameter. Duplicate exit routine names are allowed.

73-80 Sequence numbers. These columns are ignored by IMS.

 If you have multiple clients at the same IMS system, list each client name on a

separate line. Ensure that columns 3-18 are different for each client.

Customizing IMS for OTMA

This section describes the exit routines that you can use to customize IMS for

OTMA.

OTMA-Supported Exit Routines

Three new exit routines support OTMA:

v OTMA Destination Resolution (DFSYDRU0)

v OTMA Input/Output Edit (DFSYIOE0)

v OTMA Prerouting (DFSYPRX0)

In addition, the following exit routines are supported by OTMA:

v Command Authorization (DFSCCMD0)

v Input Message Routing (DFSNPRT0)

v Queue Space Notification (DFSQSPC0)

v Transaction Authorization (DFSCTRN0)

Related Reading: For more information on the exit routines, see IMS Version 9:

Customization Guide.

Using DFSYPRX0 and DFSYDRU0 OTMA Exit Routines to Determine

Destination

OTMA allows transaction pipe names to be the same as IMS LTERM names or

APPC/IMS TP names. To clarify whether a destination is for OTMA, IMS provides

OTMA exit routines that can specify where IMS should look to resolve the

destination names. The exit routines cannot change the actual destination name.

In an IMS subsystem, you can have many Destination Resolution exit routines, but

only a single Prerouting exit routine.

Determining the destination for an OTMA message requires two phases. In each

phase, an OTMA exit routine can be called:

Phase 1 The Prerouting exit routine (DFSYPRX0) is called to determine the

initial destination for the output.

 The exit routine can determine whether the message should be

directed to an OTMA client or to IMS TM for processing. The exit

routine cannot determine the final destination (because insufficient

parameters are passed to it).

Phase 2 The Destination Resolution exit routine (DFSYDRU0) is called to

determine the final destination for the output. Each client can

specify a separate Destination Resolution exit routine.

Installing OTMA

42 Open Transaction Manager Access Guide and Reference

|

|

|
|

The name of the DFSYDRU0 exit is determined by the user or an

OTMA client. Each client can have its own dedicated DFSYDRU0

exit.

Both of these exit routines receive control when an IMS application program issues

an ISRT call to an alternate program communication block (PCB), or issues CHNG or

PURG calls. But if the destination is the name of an IMS scheduler message block

(SMB), the Destination Resolution exit routine does not receive control. Figure 29

illustrates the two phases of message destination determination.

Recommendations:

v Because of the potential conflict with the SMB name, OTMA clients should avoid

using a transaction pipe name as either the transaction name or the routing key.

v DFSYPRX0 and DFSYDRU0 exits should be the same for the front-end and

back-end IMS systems within a shared queues group. If the exit routines are

different for one or more back-end IMS systems, asynchronous output might be

sent to different destinations, depending on which back-end IMS system

processed the input.

To ensure prompt delivery of the output, enable OTMA on every back-end IMS

system in the shared queues group. If a back-end IMS system does not have

Figure 29. How DFSYPRX0 and DFSYDRU0 Determine Message Destination

Customizing IMS for OTMA

Chapter 3. Using IMS with OTMA 43

|
|
|

|

OTMA enabled, any asynchronous OTMA output that is inserted into an alternate

PCB is simply queued and not delivered until the operator issues a /STA OTMA

command.

v Specifying OTMAMD=Y in the IMS PROCLIB member DFSPBxxx can direct your

OTMA message from the DFSYPRX0 exit to a different DFSYDRU0 exit without

rerouting.

v Specifying OTMASP=Y in the IMS PROCLIB member DFSPBxxx always creates

a SYNC tpipe for the ALT-PCB output message.

Notes:

1. The SCD and PST addresses are available in the input parameter for both

OTMA user exits.

2. The address of the first segment of the output message is not passed to either

user exit.

Administering IMS for OTMA

This section describes IMS administration considerations for OTMA.

Related Reading: For more information on administering IMS, see IMS Version 9:

Administration Guide: Transaction Manager and IMS Version 9: Administration

Guide: System.

The following topics provide additional information:

v “IMS Conversations and OTMA”

v “MSC and OTMA Transactions” on page 45

v “Fast Path and OTMA Transactions” on page 45

v “IMS Restart Processing and OTMA” on page 45

v “XRF Processing and OTMA” on page 45

v “Queue Control Facility and OTMA” on page 46

v “Using Shared Queues with OTMA” on page 47

IMS Conversations and OTMA

OTMA-to-IMS conversations are send-then-commit and are nonrecoverable.

IMS creates a unique conversation ID for each transaction pipe that is saved in the

Server token field in the OTMA state-data section of the message. This ID must be

passed to IMS with all subsequent client input for the conversation using that

transaction pipe.

The server-state flag is set to Conversational State in the state-data section of the

message prefix when IMS acknowledges the transaction. This flag must be set for

all subsequent client input during the conversation.

OTMA does not support the /EXIT command. If a client wants to terminate the IMS

conversation, it sends a message with the commit-confirmation flag set in the

message-control information section of the message prefix (indicating a deallocate

flow). IMS then terminates the IMS conversation. A deallocate flow must specify

Conversational State for the server-state flag in the state-data section of the

message prefix; it must also set the server token field.

Customizing IMS for OTMA

44 Open Transaction Manager Access Guide and Reference

|
|
|

|
|

|

|
|

|
|

MSC and OTMA Transactions

You can use IMS Multiple Systems Coupling (MSC) with OTMA transactions. All

IMS subsystems in the MSC network that process OTMA transactions must run

under IMS/ESA Version 5 or later; if you are using IMS shared queues, all IMS

subsystems in the MSC network must run under IMS/ESA Version 6 or later. MSC

processing in an OTMA environment is similar to MSC processing in an APPC/IMS

environment:

v A client sends a transaction to IMS. If the transaction is defined as remote for

that IMS system, it is sent to a remote IMS system for processing. If the

transaction is defined as a local transaction and performs a message switch to

another IMS system, the switched message is sent to that remote IMS system for

processing.

v Output from the remote application program is returned to the originating IMS.

v IMS recognizes that the data is OTMA data and uses the transaction pipe to

send the data to the client.

If the remote application inserts to an alternate PCB that is a remote destination,

the data is not routed to an OTMA destination. The remote destination does not

route the output message to the OTMA client, even though the message has a

prefix. If the message is to be properly routed back to the original client, the remote

IMS must insert to a remote transaction. That transaction (at the original IMS site)

must then send the message to the OTMA client using an alternate PCB and a

Prerouting exit routine.

You can use MSC with OTMA in a shared-queues environment, as long as the MSC

link exists in the front-end IMS subsystem that is connected to the OTMA client.

Fast Path and OTMA Transactions

Fast Path transactions must run as send-then-commit transactions. Any parameters

with the OTMA transaction that contradict this commit mode cause the transaction

to be rejected. Existing Fast Path application programs can run with OTMA if the

client-entered transaction is properly defined.

IMS Restart Processing and OTMA

If an IMS subsystem connected to an XCF group must be restarted, IMS

reconnects to the group during restart, but all clients must send new client-bid

requests to IMS.

XRF Processing and OTMA

Recommendation: The active and alternate IMS subsystems should be in the

same XCF group. If they are not in the same XCF group, after an XRF takeover,

the client must connect to the new XCF group. If they are in the same XCF group,

after an XRF takeover, the client is automatically reconnected to the XCF group.

The active IMS joins the XCF group specifying the IMS USERVAR name as its

member name. The alternate IMS joins the group only after an XRF takeover, and

connects using the same USERVAR name as the member name. If the active and

XRF alternate subsystems are in the same XCF group, during XRF takeover, the

new active IMS:

v Ensures that the old IMS member is disconnected

v Rejoins the group

Administering IMS

Chapter 3. Using IMS with OTMA 45

v Begins delivering any queued output destined for an OTMA client, following

client-bid processing for that client

IMS XRF does not track the /START OTMA and /STOP OTMA commands. The IMS

procedures for both the active and alternate IMS should both specify OTMA=Y in

order to ensure that IMS automatically rejoins the XCF group during XRF takeover.

In an XRF environment, OTMA clients are equivalent to Class 3 terminals and are

not automatically reconnected to IMS. The clients detect that IMS has left the XCF

group and wait for IMS (or the XRF alternate) to rejoin the group. Then the clients

send new client-bid requests to IMS.

The alternate system in an XRF complex does not track when resynchronization

has begun or the resynchronization of a particular tpipe. If IMS fails during

resynchronization, the client should detect the IMS failure, and try to resynchronize

with the new XRF active system.

Queue Control Facility and OTMA

The IMS Queue Control Facility (QCF) replaces Message Requeuer (MRQ). MRQ

processes messages in the background based on criteria that you provide;

however, it is accessible only with control statements issued in a BMP environment.

You can access QCF both online with an ISPF interface and with control statements

in a BMP environment.

The IMS QCF supports OTMA messages. You can use QCF to switch between all

supported IMS releases, or between Shared Queues and non-Shared Queues.

TMEMBER and TPIPE are the operands for the INCLUDE and EXCLUDE control

statements.

tmember A 1- to 16-character OTMA transaction member (client) name. You

can generically specify groups of names that begin with the same

characters by using an asterisk (*) after the characters that are the

same. An asterisk as the first character will include or exclude all

OTMA transactions.

tpipe A 1- to 8-character OTMA transaction pipe name. You can

generically specify groups of names that begin with the same

characters by using an asterisk (*) after the characters that are the

same.

To selectively recover OTMA messages, use the INCLUDE and EXCLUDE control

statements. The format of the INCLUDE and EXCLUDE statements with OTMA

operands is:

INCLUDE operand(,)

EXCLUDE operand(,)

operand must start in column 10 and is one of the following:

v TMEMBER=tmember

v TPIPE=tpipe

Example: To select all OTMA messages using transaction pipe name S4A1BV6,

specify:

INCLUDE TMEMBER=*,

 TPIPE=S4A1BV6

Administering IMS

46 Open Transaction Manager Access Guide and Reference

All messages with the same tmember are grouped together, and the count is

reported by the tpipe name.

Example:

 **** MESSAGES INSERTED BY DESTINATION ****

 BY OTMA DESTINATION

 TMEMBERNAME

 TPIPE1 count

 TPIPE2 count

If a client-bid request changes the name of the current OTMA Destination

Resolution exit routine, any transactions enqueued before IMS terminates that are

then reprocessed by the Message Requeuer might not use the changed exit routine

name. Inserts to alternate PCBs use the exit routine name in the client descriptor.

With QCF, you can identify a category of message as well as the message type.

Table 10 describes category parameters, and the supported message types and

keywords associated with the parameter.

 Table 10. Selecting Messages by Category Type

Category parameter Description

Supported message types

and keywords

DESTYPE Checks the destination of a

message for a selected

message type

APPC, LTERM, MSC, OTMA,

LTRAN, RTRAN, TRANS,

VSP

SRCETYPE Checks the source of the

message for a selected

message type

APPC, MSC, OTMA, VSP

MSGTYPE Checks the source or

destination of the message

for the selected message

type

APPC, LTERM, MSC, OTMA,

VSP

Related Reading: For more information about message selection by category in

QCF, refer to IMS Queue Control Facility for z/OS: User’s Guide and Reference.

Using Shared Queues with OTMA

This section describes general information about using IMS shared queues with

OTMA.

To ensure delivery of alternate PCB processing, enable OTMA on all IMS systems;

assign each IMS system in the shared queue group a unique XCF member name.

Use the /DISPLAY TRANS ALL QCNT to view all the OTMA transactions currently in the

shared queue group waiting to be processed.

As the result of a temporary shortage in the HIOP storage pool, you might receive

message DFS1269E, which notifies you of an internal IMS failure to register a shared

queue resource. To re-register the shared queue resource for OTMA, issue the IMS

commands /STOP OTMA and /START OTMA.

Related Reading: For more information on message DFS1269E, see IMS Version

9: Diagnosis Guide and Reference and IMS Version 9: Messages and Codes,

Volume 2.

Administering IMS

Chapter 3. Using IMS with OTMA 47

Related Reading: For more information on how IMS determines whether a

message is for OTMA, see “Using DFSYPRX0 and DFSYDRU0 OTMA Exit

Routines to Determine Destination” on page 42.

OTMA Commit-Then-Send Messages

OTMA commit-then-send (commit mode 0) messages can be processed on any

IMS system in the shared-queues group. Program-to-program switches can also be

run on any IMS.

OTMA Unsolicited Messages

OTMA clients must connect to every IMS system in the shared queue group in

order to receive unsolicited messages. The OTMA client connections are necessary

because transactions that might cause unsolicited messages can run on any IMS

within the shared-queues group.

If the IMS that processes an unsolicited message (the backend system) is a

different IMS than the one that receives the message, the unsolicited message is

delivered by the back-end system. Therefore, OTMA must also be enabled on the

backend IMS. For example, message DFS555I, which notifies you that an application

program abend occurred during transaction processing, is an unsolicited message

that might be delivered by the back-end system.

OTMA Send-Then-Commit Messages

 OTMA send-then-commit messages can also be processed on any IMS system in

the shared queue group. This is shown in Figure 30. Synchronous and

asynchronous transactions created by a program-to-program switch from an input

synchronous transaction always run on the same IMS system as the transaction

that initiated the program-to-program switch.

In addition, program-to-program switching is not allowed for protected conversations

(sync level 2). For more information on program-to-program switching, see “OTMA

Program-to-Program Switch Processing” on page 55.

Synchronous transactions which use send-then-commit processing support the

following commit levels:

v NONE

v CONFIRM

v SYNCPT

Figure 30. OTMA Messages Being Processed on Multiple IMS Systems in a Shared-Queues

Group

Administering IMS

48 Open Transaction Manager Access Guide and Reference

|
|
|
|
|

|
|

|

|

|

Asynchronous transactions which use commit-then-send processing support the

following commit levels:

v RESYNC

v NO RESYNC

The commit levels for synchronous and asynchronous transactions are shown in

Figure 31.

All of the IMS systems in the shared queue group must be on IMS Version 8 or 9,

with z/OS Version 1 Release 2 or above, to enable the shared queue function for

send-then-commit messages.

Use the DBRC INIT.RECON MINVERS(81) or CHANGE.RECON MINVERS(81) command to

ensure that all of the IMS systems are Version 8 or above.

Use the /DISPLAY ACTIVE command to determine whether the shared queue

function for OTMA send-then-commit is active.

Using Other IMS Commands

The IMS command /DISPLAY TMEMBER membernameTPIPE tpipename QCNT shows the

tpipe status and the output message queue count in a shared queue for a particular

IMS system.

OTMA Restrictions

This topic outlines general restrictions for the OTMA environment.

The maximum total length of all prefixes for an OTMA message is 4096 bytes. This

length does not include any application data.

Existing IMS application programs that use SETO calls might not run as expected.

APPC/IMS application programs using SETO calls might require modification to use

implicit OTMA support.

IMS conversational and Fast Path transactions must be defined as

send-then-commit. Existing Fast Path applications can run with OTMA.

Figure 31. Synchronous and Asynchronous Transactions and Their Respective Commit

Levels

Administering IMS

Chapter 3. Using IMS with OTMA 49

|
|

|

|

|
|
|

|
|
|

A transaction from an IMS terminal (for example, a SLU 2 terminal) cannot route

output directly to a client, but must use an OTMA Prerouting exit routine

(DFSYPRX0).

OTMA does not support the IMS Message Format Service (MFS). However, the

MFS message output descriptor (MOD) name can be specified by the client in the

prefix of an OTMA message.

OTMA does not support IMS Front-End Switch.

OTMA messages cannot be encrypted.

All user IDs must be verified by RACF, unless the client specifies no security

checking in the security-data section of the message prefix.

IMS modules that contain XCF macros must be reassembled for new releases of

IMS.

OTMA has read only access to the main storage data base (MSDB). No update

access is available to MSDB from OTMA.

OTMA does not operate in the IMS DBCTL environment.

OTMA does not allow IMS terminal control commands like but not limited to

/FORMAT, /HOLD, /RCL, and /SIGN commands.

Managing System Resources and OTMA

In an IMS-OTMA environment, several things can influence how IMS system

resources are used. This section describes these system resource considerations.

IMS Message Queue Data Set Size and OTMA

Messages entering IMS from OTMA contain both the OTMA message prefix and

other existing IMS message prefixes. The OTMA message prefix is variable in

length. Excluding the user data section, the OTMA message prefix can become

very large, sometimes over 200 bytes in length. The OTMA message prefix,

including the user data section, is stored on IMS message queue data sets, which

increases usage of the queue buffer pool.

Recommendation: Because of this increase in queue buffer pool usage, try to

increase the size of the message queue data sets.

Buffer Pool Usage for OTMA

If an IMS-OTMA environment has heavy OTMA traffic, a significant increase in

LUMP and HIOP pool usage can occur. Because LUMP and HIOP pools are

allocated from private storage, you might need to increase the size of the IMS

control region. Also, certain OTMA control blocks are allocated from extended

common service area (ECSA), another limited resource.

Recommendation: Increase the ECSA size according to your workload. For

example, if a client is sending more than 20 messages over 100 tpipes within a few

seconds, try increasing the IMS control region size to 200MB or more, and increase

the ECSA size to 50MB or more. If you cannot increase the IMS control region size

or the ECSA size, try balancing your workload to allow IMS to reuse its buffers

more effectively.

Administering IMS

50 Open Transaction Manager Access Guide and Reference

Tpipe Number Recommendations for OTMA

Because tpipes consume significant amounts of IMS resources and processing

time, try to limit the number of tpipes for each tmember.

Recommendation: Restrict the number of tpipes to 100 or less for each tmember.

Dependent Region Occupancy and OTMA

A send-then-commit transaction remains in a dependent region while the output is

being sent (before a sync point occurs).

Recommendations:

v If many of your transactions are send-then-commit transactions, increase the

number of dependent regions to improve throughput performance.

v Use as many commit-then-send OTMA transactions as possible.

OTMA Security Overhead

You can reduce security overhead in IMS by letting the clients perform all security

checking. If you set the no-security-checking flag in the security-data section of the

message prefix, you can avoid much of the RACF overhead and improve IMS

performance.

Related Reading: For more information on security, see “Establishing Security for

OTMA.”

Establishing Security for OTMA

This section describes usage information for the /SECURE OTMA command, what

the four OTMA security levels are, and lists some general security considerations

for OTMA.

Using the /SECURE OTMA Command

This section describes usage information for the /SECURE OTMA command. Complete

information for how to use this command is provided in IMS Version 9: Command

Reference.

The client-bid request for a client includes the following:

v The access control environment element (ACEE)

After RACF returns an ACEE address for a verified user ID to IMS, the ACEE is

used in a subsequent (or second) call to RACF. It is used to determine the user

ID’s authorization to the IMS command or IMS transaction requested in the input

message. The ACEE for each user ID and the ACEE expiration value are saved

in an OTMA table. The ACEE expiration value is specified during the client-bid

time. If a user ID is revoked and the ACEE is not expired, you must issue /STOP

and /START OTMA to rebuild the ACEE table.

v The access control environment element (ACEE) aging value

v The client user token

The user token is optional (except when RACF security is used) and is identified

in the security-data section of the message prefix.

v Add transactions or commands that must be protected to the TIMS or CIMS

classes, respectively. If the transaction is not in the TIMS class, or the command

is not in the CIMS class, the transaction is allowed regardless of the option you

set with the /SECURE OTMA command.

Managing System Resources

Chapter 3. Using IMS with OTMA 51

When you enter an OTMA command, OTMA issues a RACHECK to validate the

command. OTMA passes only the command verb to DFSCCMD0 for verification,

not the entire CVB control block.

v Use the IMS startup/execution parameter of OTMASE to globally specify the

OTMA security level for all the OTMA clients. Alternately, issue the /SEC OTMA

command to specify the security after IMS is started. However, you cannot set

the OTMA security level for an individual OTMA client.

If you specify /SECURE OTMA NONE, IMS does not use RACF for security verification,

regardless of what security is specified by the class for a client-bid request or for

transactions. The REFRESH option allows you to dynamically refresh cached

security ACEE values for user IDs of one individual OTMA member or multiple

OTMA members. Therefore, the only commands that can be used are the following

default commands:

v BRO

v LOC

v LOG

v RDI

v UNL

Selecting an OTMA Security Level

This section describes the five security levels common to OTMA. There are five

OTMA security levels, but only 1 OTMA security level can be in effect at any point

in time. The OTMA security levels are NONE, PROFILE, CHECK, FULL, and

REFRESH:

NONE A system-wide security level. RACF is not called for messages

received through OTMA. Specifically:

 RACF is not called when IMS receives the connection request

(client-bid) from WebSphere MQ or IMS Connect.

 RACF is not called to verify that the user ID in the incoming

message is a valid user ID (one that has been defined to RACF).

 RACF is not called to verify that the user ID in the incoming

message is authorized to the IMS command or IMS transaction

requested in the message.

 The user ID caching scheme is not used.

PROFILE A message-by-message security level. In other words, each

incoming message entered through OTMA is checked to determine

whether or not RACF will be called. IMS checks each incoming

message independently to see if the security value is set to NONE,

CHECK, or FULL. Specifically:

 Messages entered from IMS Connect will contain a 1-byte security

flag field. The value in this field determines whether or not RACF is

called.

 Messages entered from the WebSphere MQ-IMS Bridge application

will contain a SecurityScope field in the MQIIH structure. The value

in this field will determine whether or not RACF is called.

 Tip: Consider using the PROFILE security level for situations when

application developers set the RACF security level as N (NONE), C

(CHECK), or F (FULL) in each incoming message. In this case, the

security level set in each message determines whether IMS calls

RACF for security checking related to that message. You might not

Managing System Resources

52 Open Transaction Manager Access Guide and Reference

|
|
|

want application programmers deciding on the security for IMS

commands and IMS transactions. RACF is called when IMS

receives the connection request (client-bid) from WebSphere MQ or

IMS Connect.

CHECK A system-wide security level, which means that RACF is called for

messages received through OTMA. Specifically, RACF is called:

v For client-bid connection requests. A cache, or hash table, is

built for each OTMA client if the client-bid is successful.

A user ID caching scheme is used in IMS/OTMA environments.

The caching scheme also improves authorization checking

performance.

A cache, or hash table, is used to store previously verified user

IDs. Each OTMA client (IMS Connect, WebSphere MQ for z/OS,

etc.) has a hash table created in the IMS control region after a

successful client bid. Use of the hash table minimizes the

number of calls to RACF to VERIFY user IDs. This way, if the

same user ID enters multiple messages destined for IMS/OTMA,

IMS can check the hash table for a valid entry for the user ID

and might be able to avoid the VERIFY call to RACF. The entry

for the user ID in the hash table contains a pointer to the ACEE

for the user ID. The ACEE that is pointed to can be used for

resource (command and transaction) FASTAUTH calls to RACF.

v To VERIFY that the user ID in the incoming message is a valid

user ID (one that has been defined to RACF).

If the OTMA client (IMS Connect or WebSphere MQ for z/OS)

supplied a UTOKEN in the incoming message, IMS supplies the

address of the UTOKEN on the VERIFY call to RACF. Use of the

UTOKEN in VERIFY processing improves performance. RACF

returns an ACEE security control block to IMS for verified user

IDs.

v To verify that the user ID in the incoming message is authorized

to the IMS command or IMS transaction requested in the

message. The address of the ACEE, previously built by RACF

during verify authorization processing, is supplied by IMS on the

FASTAUTH call to RACF.

v To verify that the user ID in the incoming message is authorized

to the IMS transaction code set as the destination on a DL/I

CHNG or AUTH call. However, an existing ACEE is not used for

these calls; therefore, another call is made to RACF to

dynamically build an ACEE for the CHNG or AUTH call. If you

know the application will issue many CHNG or AUTH calls,

consider using a different OTMA security level to overcome the

performance impact.

FULL A system-wide security level, which means that RACF will be called

for messages received through OTMA.

 FULL has the same characteristics as CHECK, with two exceptions:

v During the verify processing, RACF is called a second time to

build an additional ACEE security control block in the dependent

region.

v If the application program that processes the OTMA-entered

transaction issues one or more CHNG calls (or AUTH calls with

the destination set to a different transaction code), the security

Managing System Resources

Chapter 3. Using IMS with OTMA 53

environment already exists in the dependent region and does not

have to be dynamically built. Alternately, if the application does

not issue these calls, a security level of FULL is not needed, and

you might consider an OTMA security level of CHECK or

PROFILE.

 Related Reading: For more information on IMS security, see IMS Version 9:

Administration Guide: System.

For more information on the values NONE, FULL, or CHECK, see the /SEC OTMA

command in IMS Version 9: Command Reference.

General OTMA Security Considerations

v If you use RACF (or an equivalent product) for security, define the

IMSXCF.group.client_member_name in the FACILITY class.

If you define the IMSXCF.group.client_member_name in the FACILITY class, and if

IMS security is not set to NONE, the user token for the client-bid request must be

valid and the user must have READ access to the FACILITY class.

If the user token for a client-bid request fails RACF verification, the client

receives a NAK message from the server.

v Authorize the XCF client for z/OS.

v If you define your OTMA applications with full security, the security environment

is kept until the application ends.

v After IMS receives messages received from OTMA, when OTMA security is

activated, IMS calls RACF to verify that the user ID in the incoming message is a

valid RACF user ID. IMS is not passed a password for the user ID, so the call to

RACF is to verify the user ID only. If the user’s password has not been validated

before IMS receives the message, the password cannot be validated.

v IMS uses the UTOKEN in the input message in the call to RACF not only to

verify the user ID, but also to create a security control block in the IMS control

region to represent each verified user ID. The security control blocks built in the

IMS control region, representing verified RACF user IDs, are called accessor

control elements or ACEEs.

Using DL/I Calls in an OTMA Environment

This section describes the DL/I calls that are used in an OTMA environment:

CHNG If a CHNG call is issued from an OTMA submitted transaction, the destination

is assumed to be the same OTMA client (the tpipe name is set by the CHNG

call). This behavior can be altered by the OTMA Prerouting and Destination

Resolution exit routines.

 An IMS application program that issues a CHNG call to an alternate PCB

(specifying an options list) does not cause IMS to call the OTMA Prerouting

and Destination Resolution exit routines to determine the destination.

However, an IMS application program that issues a CHNG call to an alternate

PCB (specifying an APPC descriptor) does cause IMS to call the OTMA exit

routines to determine the destination.

 The application program can still issue ISRT calls to the I/O PCB to send

data to an OTMA destination.

 OTMA application programs can use CHNG and ISRT calls for APPC

destinations.

Managing System Resources

54 Open Transaction Manager Access Guide and Reference

INQY (null)

An INQY call issued for an OTMA destination returns the following

information: the transaction pipe name, the client XCF member name, the

user ID, the group name, and the synchronization levels.

PURG An IMS application program that issues a PURG call causes IMS to call the

OTMA Prerouting and the Destination Resolution exit routines to determine

the destination.

SETO An IMS application program that issues a SETO call does not cause IMS to

call the OTMA Prerouting and the Destination Resolution exit routines to

determine the destination.

 Existing IMS application programs that issue SETO calls might not run as

expected because a return code is returned to the program if it is

processing an OTMA-originated transaction. APPC/IMS application

programs that issue SETO calls might need modification if they require

implicit OTMA support.

 One way to make these application programs work is to use an INQY call

before issuing the SETO call. The application program can use the output

from the INQY call to determine if a transaction originated from an OTMA

client, and not issue the SETO call.

 For those DL/I calls that cause IMS to call one of the OTMA exit routines, IMS only

calls the exit routines if the destination has not yet been set (for example, by

another DL/I call).

Related Reading: For more information on these calls, see IMS Version 9:

Application Programming: Transaction Manager.

To initiate protected conversations (such as accessing multiple resource managers’

resources under one unit of recovery in an RRS/MVS environment), the

client-adapter code (OTMA user) must acquire and own a private context and

provide the context ID in the state-data section of the message prefix.

Definition: A context is a z/OS entity under which resource managers perform

work; a private context is required in this environment.

During message traffic between IMS and the client, if the context-ID field in the

message header is non-zero, protected conversation processing occurs.

OTMA Program-to-Program Switch Processing

This section describes how OTMA program-to-program (P2P) message switches

occur. Two types of message switch occur in OTMA: commit-then-send, and

send-then-commit. Each type is described briefly below. This section focuses

primarily on the send-then-commit message switch and provides usage scenarios

for different send-then-commit message switches.

For OTMA commit-then-send input messages (also called asynchronous or CM0

messages), the program switch always results in another CM0 message. For OTMA

send-then-commit input messages (also called synchronous or CM1 messages), the

program switch results vary, depending on whether:

v there is an ISRT call to the I/O PCB

v an express PCB is used for the switch

v there is a switch to multiple programs

v the IMS start-up parameter OTMAASY=Y is specified

Managing System Resources

Chapter 3. Using IMS with OTMA 55

v the transaction is protected

A P2P switch for a CM1 input message, therefore, could be another CM1 message,

a DFS2082 message, or a CM0 message. In addition, some OTMA clients, for

example WebSphere MQ, can accept a CM0 output message for a CM1 input

message; others, however, may not.

The usage scenarios that follow apply only to send-then-commit messages.

The following topics provide additional information:

v “OTMA Single-Stream Program Switch”

v “OTMA Program Switch without ISRT to I/O PCB”

v “OTMA Program Switch with Express PCB” on page 57

v “OTMA Program Switch to Multiple Programs” on page 57

v “OTMA Program Switch with OTMAASY Option” on page 58

v “OTMA Program Switch for Protected Transactions” on page 58

v “Other OTMA Program Switch Considerations” on page 58

OTMA Single-Stream Program Switch

This basic switch is shown in Figure 32. Program A switches to program B, and

Program B switches to Program C, which then inserts back to the I/O PCB. This

model of program flow delivers the send-then-commit output message successfully.

Single-stream means that the program switches occur one after another. No

express PCBs are used in the P2P message switches.

OTMA Program Switch without ISRT to I/O PCB

When several switches occur in sequence and none inserts back to the I/O PCB,

message DFS2082 is sent back to the OTMA client. The last program switched to,

Program C, does not insert back to the I/O PCB. IMS therefore generates message

DFS2082 for the OTMA client.

Figure 32. Single-Stream Program Switch

OTMA Program-to-Program Switch Processing

56 Open Transaction Manager Access Guide and Reference

|
|
|
|

Attention: If program C runs in a remote IMS through MSC and does not insert

back to the I/O PCB, the remote IMS does not issue message DFS2082. However, in

this case, the OTMA client program might hang and the front-end IMS control

region will experience a build up of its control blocks. This kind of build up could

result in a storage-related system outage. Restarting IMS releases the control

blocks.

OTMA Program Switch with Express PCB

A P2P message switch with an express PCB can lead to a commit-then-send output

message. Program A uses an express PCB rather than a non-express PCB to

perform the P2P message switch. The output from Program B is commit-then-send

because using the express PCB forces Program B to be processed asynchronously.

When a program is processed asynchronously and inserts back to the I/O PCB, the

output message is sent as a commit-then-send message. However, if Program A

also switches to Program C using a non-express PCB, Program C then inserts back

to the I/O PCB. The output from C will be a send-then-commit message.

OTMA Program Switch to Multiple Programs

After a program inserts back to the I/O PCB, the rest of the P2P message switch, if

any, is processed asynchronously. Program A switches to Program B, which inserts

back to the I/O PCB. The output from Program B will be a send-then-commit

message. Program B then switches to program C, which will be processed

asynchronously.

A “race” condition can occur when a program switches to multiple programs.

Program A switches to multiple programs using non-express PCBs. Only one

switched-to program, the one scheduled first, is processed synchronously. The rest

of the switched-to programs are processed asynchronously. If the program

processed synchronously inserts back to the I/O PCB, the output message is a

send-then-commit message.

In some cases, one of the multiple programs could be a remote program. This

program flow is shown in Figure 33 on page 58. Program A switches to remote

Program B through MSC. Program B first launches a new program, Program C, in

the local IMS and then inserts a response to the OTMA client through the local IMS.

Depending on what happens first (scheduling of Program C or the processing of the

response for the OTMA client) in the local IMS, an unwanted DFS2082 message

could be sent to the client. This is also a race condition. If Program C gets

processed first in the local IMS, a DFS2082 message is sent. If the response is

processed first, the expected output from Program B is delivered synchronously

using send-then-commit.

OTMA Program-to-Program Switch Processing

Chapter 3. Using IMS with OTMA 57

|
|
|
|
|
|

To avoid creating the race condition in these circumstances, you can do any one of

the following:

v Modify your programs to avoid multiple program-to-program switches within the

same transaction for send-then-commit (CM1).

v Use commit-then-send (CM0) input when performing multiple program-to-program

switches within the same transaction.

v Use the IMS start-up parameter OTMAASY to serialize P2P message switch

processing, described in “OTMA Program Switch with OTMAASY Option.”

OTMA Program Switch with OTMAASY Option

The IMS start-up parameter OTMAASY can be used to serialize P2P message

switch processing to prevent a potential race condition. To avoid the race condition

OTMAASY is used to create a program switch model similar to the single-stream

model. Program B, for which the response mode transaction is processed

synchronously, can deliver the send-then-commit (synchronous) output message.

Program C, which is running with a non-response mode transaction, processes the

message asynchronously. With this method, the race condition described in “OTMA

Program Switch to Multiple Programs” on page 57 can be avoided.

OTMA Program Switch for Protected Transactions

For a non-conversational program that performs a P2P message switch for a

protected transaction, ABENDU0711, with reason code 1D, will be returned. For a

conversational program, the program receives an X6 status code.

Other OTMA Program Switch Considerations

The following considerations also apply to P2P switching:

v The P2P message switch is not supported for OTMA protected messages

(send-then-commit input with synclevel = SyncPt).

Figure 33. Race condition resulting from program switch to multiple programs

OTMA Program-to-Program Switch Processing

58 Open Transaction Manager Access Guide and Reference

|
|

v If a non-conversational program performs a P2P message switch to a program in

a Shared Queues environment, the program in the SQ environment must be

running on the same IMS where the first program gets scheduled.

IMS Commands Using OTMA

OTMA clients can enter IMS commands.

Restrictions: OTMA clients cannot enter IMS commands from the following:

v An IMS Remote Site Recovery (RSR) tracking subsystem

v An IMS Extended Recovery Facility (XRF) alternate subsystem

v A CICS-IMS DBCTL subsystem

Only certain commands are valid from OTMA.

Related Reading: For more information on supported IMS commands, see IMS

Version 9: Command Reference.

OTMA Terminology

The following terms apply to this section :

tpipe Is analogous to an LTERM. It is a logical structure that represents

an anchor point for client transactions and output. The tpipe name

is unique within a client structure.

tmember Is the name of a client that connects to an OTMA group. The group

is created by the first member to join it, usually IMS. All members

are clients, except IMS, which is the server. Clients communicate

with IMS using the XCF interface by sending transactions to IMS.

IMS then returns the output to those clients.

OTMA Represents the logical collection of all XCF members associated

with a given group name.

The initial letter “T” in tpipe and tmember represents “Transaction.”

Modified Commands for OTMA

The following commands have been modified for OTMA.

v /DISPLAY ACTIVE

This command displays OTMA group status. Only one OTMA group can be

active at a time.

v /DISPLAY OTMA

This command displays the following information for OTMA clients and servers:

– Each member in the XCF group

– The XCF status for each member

– The user status for each member

– The security status for each server

If the IMS application program uses the alternate PCB, the exit routine

determines the destination, and the member name is displayed, even when it is

not in the same group. The status can be either active or not defined.

After the client-bid request is received from a tmember, IMS creates a tmember

control block for that tmember. If the command is issued prior to the client-bid

request, the tmember is not displayed.

OTMA Program-to-Program Switch Processing

Chapter 3. Using IMS with OTMA 59

v /DISPLAY SHUTDOWN STATUS

This command displays shutdown status of OTMA processing. The following

OTMA information is displayed:

– The current phase of OTMA shutdown processing

– Whether the transaction is commit-then-send or send-then-commit

– Which clients and transaction pipes are in progress and thus preventing

shutdown from completing

v /DISPLAY STATUS TMEMBER

This command displays all transaction pipes that are stopped.

v /DISPLAY TMEMBER ALL

This command displays the following information for OTMA clients and servers:

– Each member in the XCF group

– The XCF status for each member

– The user status for each member

– The security status for each server

v /DISPLAY TMEMBER QCNT

This command displays the number of asynchronous output messages on the

global queue for the specified OTMA member. The QCNT keyword is valid only in

a shared-queues environment.

v /DISPLAY TMEMBER tmembername TPIPE tpipename | ALL

This command displays tpipe status for each tmember, including:

– Enqueue and dequeue counts

– Current queue count

– Current status

v /DISPLAY TMEMBER tmembername QCNT TPIPE tpipename

This command displays the number of asynchronous output messages on the

global queue for the specified OTMA member and transaction pipe. The QCNT

keyword is valid only in a shared-queues environment.

v /DISPLAY TRACE TMEMBER

This command displays all the transaction pipes that are currently being traced

for the specified client.

v /DISPLAY TRANSACTION

This command, when issued by an OTMA client, sends its output directly to the

client, not to the IMS master terminal. Depending on the setting of the

extended-response-requested flag in the message-control information section of

the message prefix, the output is either in an architected format (only supported

for this command) or in the standard IMS format.

Related Reading:

– For more information on the message prefix, see Chapter 5, “OTMA Message

Prefix,” on page 69.

– For information on the transaction attributes provided in the application-data

area, see Chapter 6, “OTMA Architected Transaction Attributes,” on page 95.

v /DEQUEUE TMEMBER TPIPE

This command dequeues messages from the transaction-pipe structure

associated with the transaction pipe.

v /SECURE OTMA

IMS Commands

60 Open Transaction Manager Access Guide and Reference

|

|
|
|

|
|
|

This command is used to control the RACF security level for OTMA

client-originated transactions. You can specify that RACF be used or bypassed. If

RACF is bypassed and NONE is specified, you can issue only the following

default unsecured commands:

– BRO

– LOC

– LOG

– RDI

– UNL

You can also use the PROFILE keyword to specify or bypass RACF security for

individual transactions. This can be important if you do not want the performance

overhead of processing security for your entire transaction workload. You specify

the security for each transaction by setting the values in the security-data section

of the OTMA message prefix.

The /DISPLAY OTMA command shows the security option currently in effect.

v /START OTMA

This command causes IMS to join the XCF group (and create the group if

necessary). All clients must know the group name, which is specified on the

GRNAME= parameter in the IMS PROCLIB member DFSPBxxx. The XCF group is

created and joined according to the following rules:

– In the IMS procedure, if OTMA=N and GRNAME= is set to blanks, the XCF group

can be neither created nor joined.

– If OTMA=N and GRNAME= is set to a valid value, the XCF group is created and

joined when you issue the /START OTMA command.

– If OTMA=Y, the XCF group is both created and joined as part of IMS

initialization. In this case, the /START OTMA command is used to rejoin a group

after a /STOP OTMA command has caused IMS to leave the group.

It is assumed that all clients know the names of the servers with which they are

to communicate.

/START OTMA initiates the following processing:

1. IMS joins the XCF group.

2. After a successful client-bid request, IMS sends an ACK message to the

client.

3. IMS begins sending all commit-then-send output to the client.

v /STOP OTMA

This command causes IMS to leave the XCF group (but it does not stop the

group itself). All clients must know the group name, which is specified on the

GRNAME= parameter in the IMS procedure.

v /START TMEMBER tmembername TPIPE tpipename | ALL

This command causes IMS to send one of the following OTMA commands to the

client:

– “resume input for tpipename”

– “resume input for all tpipenames”

IMS then resumes sending output to the client.

v /STOP TMEMBER tmembername TPIPE tpipename | ALL

This command causes IMS to send one of the following OTMA commands to the

client:

– “suspend input for tpipename”

– “suspend input for all tpipenames”

IMS Commands

Chapter 3. Using IMS with OTMA 61

IMS then does not send any more output to the client.

v /TRACE SET ON|OFF TABLE OTMT

This command starts or stops online tracing to the OTMA trace table (OTMT).

v /TRACE SET ON|OFF TMEMBER TPIPE

This command starts or stops online tracing of OTMA client activity and

transaction-pipe activity for clients.

A temporary tpipe is created when you issue a /TRACE tpipe or /STOP tpipe

command against a tpipe that does not exist. A temporary tpipe is converted to a

permanent tpipe if an input message reaches IMS through the tpipe or if an

output message is queued to the output queue of the tpipe.

When you issue a /DISPLAY tpipe command against a temporary tpipe, the

status of TMP is displayed.

Generally, an OTMA client should use the send-then-commit flow to process IMS

commands. However, to process any of the following commands, the client must

use the commit-then-send flow:

v /DBDUMP DATABASE

v /DBRECOVERY AREA|DATABASE

v /START AREA|DATABASE

v /START REGION

v /STOP AREA|DATABASE

v /STOP REGION

Recommendation: Because the client must use the commit-then-send flow, the

output from these commands cannot be tied to the input command. The OTMA

prefixes are not replicated (the only field common to both the input and the output is

the transaction-pipe name). Therefore, it is recommended that the client submit IMS

commands using a transaction pipe that the client reserves for IMS command

processing.

IMS Messages Introduced by OTMA

The IMS messages (DFSnnnn) that are introduced by OTMA are listed in Table 11.

Related Reading: For more information on these messages, see IMS Version 9:

Messages and Codes, Volume 2.

 Table 11. IMS Messages introduced by OTMA

DFS1268 DFS1269E DFS1280E DFS1281E DFS1282E

DFS1283E DFS1284E DFS1285E DFS1286E DFS1287E

DFS1288E DFS1289E DFS1290E DFS1291E DFS1292E

DFS1293E DFS1294E DFS1295E DFS1296E DFS1297E

DFS2224 DFS2360I DFS2361I DFS2362I DFS2363I

DFS2364I DFS2365I DFS2368I DFS2369I DFS2370I

DFS2371I DFS2372I DFS2373I DFS2374W DFS2375W

DFS2376W DFS2384E DFS2385E DFS2389I DFS2390I

DFS2391I DFS2392I DFS2393I DFS2394I DFS2395I

DFS2396I

In addition, messages DFS3657 and DFS3659X are modified for OTMA to include

the 16-byte descriptor name.

IMS Commands

62 Open Transaction Manager Access Guide and Reference

Chapter 4. OTMA Diagnostic Information

This chapter provides diagnostic information for OTMA.

The following topics provide additional information:

v “OTMA Sense Codes for NAK Messages”

v “OTMA Return Codes” on page 67

OTMA Sense Codes for NAK Messages

This section lists the sense codes that accompany OTMA negative

acknowledgement (NAK) messages. Codes X'0000' through X'0FFF' and X'9000'

through X'FFFF' are reserved for IBM use. Codes X'1000' through X'8FFF' are

reserved for customer use.

0001

Explanation: IMS received a message from a client,

but the message is not part of the OTMA sign-on

protocol. The client is not yet ready for message

processing.

Programmer Response: Make sure that the client has

sent the client-bid request and successfully received an

ACK for that client-bid request.

0002

Explanation: IMS received a message from a client,

but the client cannot send or receive messages.

Programmer Response: Make sure that the client is

not stopped.

0003

Explanation: Either the client-bid request did not

correctly set the length of the state-data section, or the

application-data section is present.

Programmer Response: Make sure that the length of

the state-data section and the XCF length fields are

correct. The application-data section should not be

included in the client-bid request.

0004

Explanation: Reserved

0005

Explanation: IMS received a message for a

multi-segment message that duplicated an existing

segment.

Programmer Response: Make sure that the segment

number is not duplicated.

0006

Explanation: IMS received a return code from XCF

after attempting to receive the message. The return

code is saved in the reason code field of the

message-control information section of the message

prefix.

Programmer Response: Refer to the appropriate

z/OS programming manual for action.

0007

Explanation: The maximum number (255) of clients

was reached. No new client structure is created.

Programmer Response: Make sure the client name is

correct and that you have not exceeded the limit of 255

clients.

0008

Explanation: The security check by IMS rejected the

client-bid request.

Programmer Response: Make sure the security data

specified in the client-bid request is valid and correct. In

addition, verify RACF definitions and the IMS security

exit routine.

0009

Explanation: IMS received an invalid OTMA

command.

Programmer Response: Verify the OTMA command.

For a list of allowable commands, see “OTMA

Message-Control Information” on page 69.

000A

Explanation: IMS received an OTMA data message.

IMS only accepts transaction, command, response, or

commit messages. A data message must be a

© Copyright IBM Corp. 1995, 2004 63

|

|

|

continuation of an IMS conversational transaction.

Programmer Response: Verify the data message

being sent. The data flag in byte 1 of the OTMA control

data could have been set incorrectly, or the

conversation iteration message was sent to a

terminated IMS conversational transaction.

000B

Explanation: IMS received an invalid message type.

An OTMA message must be a transaction, command,

response, data, or commit message.

Programmer Response: Make sure the Message

Type in the message-control information section of the

message prefix is set properly.

000C

Explanation: Reserved

000D

Explanation: IMS received an OTMA data message

for continuation of an IMS conversation using a

nonexistent transaction pipe.

Programmer Response: Make sure the transaction

pipe exists and that the first iteration of the IMS

conversation is successfully completed.

000E

Explanation: IMS was unable to create the transaction

pipe to process the message.

 The synchronized tpipe flag in the processing flag of the

OTMA message-control-information prefix was set

incorrectly on or off an existing tpipe. After a tpipe is

created for an input or output OTMA message, the

synchronized tpipe setting for the tpipe cannot be

changed for the subsequent input or output OTMA

message.

Programmer Response: Make sure IMS storage

pools are properly allocated and available.

000F

Explanation: The transaction pipe for the message

was stopped.

Programmer Response: Find out why the transaction

pipe was stopped. Issue an IMS /START command to

restart the transaction pipe.

0010

Explanation: The OTMA message had no state data.

Programmer Response: Verify that the state-data flag

is set and that state data is present.

0011

Explanation: IMS received the OTMA commit

message, but the request was not to terminate the

conversation. IMS only allows commit-type messages

for terminating IMS conversations (equivalent to the IMS

/EXIT command).

Programmer Response: Make sure the commit

message is used to terminate an IMS conversation.

0012

Explanation: The OTMA message prefix was too

large. The maximum size of the OTMA prefix is 4 KB.

Programmer Response: Check the size of the OTMA

message prefix.

0013

Explanation: The client-bid request did not set the

size of the message hash table. This size is a required

field, which is to be set by the client for client-bid

requests.

Programmer Response: Set the message hash table

size in the client-bid request.

0014

Explanation: The client sent a second client-bid

request while the first client-bid request was still active.

Programmer Response: Make sure the client leaves

and joins the XCF group before sending a new

client-bid request to IMS.

0015

Explanation: IMS was unable to allocate storage for

the message hash table.

Programmer Response: Check the specified size of

the message hash table; it might be too large.

0016

Explanation: Client was not yet active and ready for

message processing.

Programmer Response: Make sure the client-bid

request was sent and successfully completed. Also

check that the XCF state is active.

0017

Explanation: The OTMA message specified an invalid

synchronization level in the state-data section of the

message prefix. The synchronization-level field should

be either None, Commit, or SYNCPT.

Programmer Response: Make sure the

synchronization level is valid.

OTMA Sense Codes for NAK Messages

64 Open Transaction Manager Access Guide and Reference

|
|
|
|
|

0018

Explanation: The OTMA message had an invalid

transaction-pipe name. See “OTMA Naming

Conventions” on page 14 for the naming rules for

transaction pipes.

Programmer Response: Correct the transaction-pipe

name.

0019

Explanation: The OTMA message had an invalid

client name. See “OTMA Naming Conventions” on page

14 for the naming rules for clients.

Programmer Response: Correct the client name.

001A

Explanation: IMS detected an error and canceled the

message before putting it on the IMS queue for

processing. Usually, an IMS message (accompanying

the NAK) describes the problem.

Programmer Response: See the reason code that

accompanies the NAK code.

 Table 12 lists the reason codes.

 Table 12. Reason codes associated with the 001A

sense code

Hex: Decimal: Explanation:

X'15' 21 The message segment length or ZZ

field cannot be changed by

DFSNPRT0 exit.

X'16' 22 Invalid security option specified in the

message prefix.

X'17' 23 Invalid command from an OTMA client.

See DFS1285E.

X'18' 24 Transaction currently not available for

use. See DFS3470E.

X'19' 25 SMB transaction/LTERM is stopped.

See DFS065.

X'1A' 26 Invalid CPIC transaction. See

DFS1286E.

X'1B' 27 Invalid remote destination (RCNT). See

DFS1287E.

X'1C' 28 Invalid CNT name specified. See

DFS1288E.

X'1D' 29 SMB not found. See DFS064.

X'1E' 30 Invalid security. See DFS1292E.

X'1F' 31 System error requested.

X'20' 32 System error message.

X'21' 33 User error message.

Table 12. Reason codes associated with the 001A

sense code (continued)

Hex: Decimal: Explanation:

X'22' 34 Single-segment message. See

DFS1290E.

X'23' 35 All messages discarded. See DFS249.

X'24' 36 Null segment sent. See DFS249. One

cause for this error maybe the length

specified on the MSGLEN key

parameter of the IXCMSGO macro

does not match the length of the

OTMA data. No extra or null data can

be padded at the end of the application

data section.

X'25' 37 Queue overflow as unsuccessful insert.

X'26' 38 Commit mode 0 not allowed for IMS

conversational or Fast Path

transaction. See DFS1291E.

X'27' 39 IMS conversation is stopped, similar to

an /EXIT command.

X'28' 40 DFSNPRT0 requested that a message

be rerouted to a remote system, but

failed. See DFS064.

X'29' 41 DFSNPRT0 requested that a message

be rerouted to a remote system, but

failed. See DFS070.

X'32' 50 The length specified in the application

data section or the segment length for

multi-segment input data exceeds the

length specified on the MSGLEN key

parameter of the XCF IXCMSGO

macro.

001B

Explanation: IMS rejected the message, because IMS

is shut down.

Programmer Response: Resend the message when

IMS is restarted.

001C

Explanation: IMS rejected the message, because the

synchronization flag was not set in the state-data

section of the message prefix.

Programmer Response: Set the synchronization flag

before sending the message to IMS.

001D

Explanation: IMS rejected the message, because the

length of the user-data section of the message prefix

exceeded the maximum allowable length (1024 bytes).

OTMA Sense Codes for NAK Messages

Chapter 4. OTMA Diagnostic Information 65

Programmer Response: Check the length of the

user-data section of the message prefix.

001E

Explanation: IMS rejected the message, because the

length of the server user data in the state-data section

of the message prefix exceeded the maximum allowable

length (256 bytes).

Programmer Response: Check the length of the

server user data.

001F

Explanation: IMS rejected the message, because the

recoverable sequence number in the message-control

information section of the message prefix does not

match the IMS sequence number for the synchronized

transaction pipe.

 If IMS receives 001F from a client, IMS stops the tpipe.

Programmer Response: Check the recoverable

sequence number in the message and ensure it is at

least one greater than the current recoverable sequence

number for the synchronized transaction pipe.

0020

Explanation: IMS rejected the message, because the

message did not have any application data.

Programmer Response: Check the application-data

section of the message prefix and ensure it has a

transaction code or a valid IMS command.

0021

Explanation: IMS rejected the message, because the

chain flag was not set in the message-control

information section of the message prefix.

Programmer Response: Ensure the chain flag is set

properly.

0022

Explanation: IMS was unable to find the transaction

pipe associated with the Server token to process the

conversational message.

Programmer Response: Ensure that the Server token

is passed correctly to the server with the conversational

state bit on.

0023

Explanation: The input recoverable sequence number

is invalid.

Programmer Response: If one of the following

conditions exists, IMS sends this NAK message in

response to the input message:

v The tpipe is synchronized, the transaction is defined

as recoverable, and the input recoverable sequence

number is 0.

v The tpipe is synchronized, the transaction is defined

as irrecoverable, and the input recoverable sequence

number is not 0.

v The tpipe is not synchronized, and the input

recoverable sequence number is not 0.

v The tpipe is synchronized for command input, the

commit mode is 0, and the input recoverable

sequence number is not 0.

0024

Explanation: A conversational program has not yet

responded to the last input message. Multiple

conversational messages were received by OTMA;

subsequent messages were rejected because the first

message is still being processed. IMS discards

subsequent messages, and responds to the accepted

input message.

Programmer Response: Modify the client program to

wait for the conversational transaction output before

sending the next input message.

0025

Explanation: IMS has detected a resynchronization

protocol violation during the resynchronization process.

Programmer Response: If one of the following

conditions exists, IMS sends this NAK message in

response to the input message:

v The client’s resynchronization logic does not follow

the OTMA resynchronization protocol.

v The client’s message prefix specifies the incorrect

tpipe name or member name.

0026

Explanation: During resynchronization, IMS tried to

dequeue messages without success.

Programmer Response: Contact your IBM Support

Center for assistance.

0027

Explanation: During resynchronization, IMS tried to

reset recoverable sequence numbers without success.

Programmer Response: Contact your IBM Support

Center for assistance.

002C

Explanation: The OTMA message specified an invalid

commit mode with a synchronized tpipe in the

state-data section of the message prefix. You must use

the Commit-then-Send commit mode.

OTMA Sense Codes for NAK Messages

66 Open Transaction Manager Access Guide and Reference

Programmer Response: Make sure that you choose

the Commit-then-Send commit mode.

002D

Explanation: An incompatibility between the

synchronization level and the commit level was

indicated in the message prefix. A send-then-commit

level is required with a sync level of SYNCPT.

Programmer Response: Correct the incompatibility in

the message prefix.

002E

Explanation: The OTMA message prefix indicated an

incompatibility between the sync level field and the

context ID field. the context_id field must only be

supplied with a sync level of SYNCPT.

Programmer Response: Correct the incompatibility in

the message prefix.

002F

Explanation: IMS was unable to express unprotected

interest in the context contained in the context_id field

of the OTMA message prefix.

Programmer Response: Contact your IBM Support

Center for assistance.

OTMA Return Codes

If an error occurs in an IMS OTMA exit routine, the IMS application program can

retrieve a status code for the IMS call. The X'67D0' records are written to the IMS

log, and the return codes include the following:

Code: Explanation:

X'1C' An internal interface error occurred.

X'20' DFSYDRU0 overrides exceed the maximum limit.

X'24' DFSYDRU0 specifies an invalid destination.

X'28' DFSYDRU0 specifies an invalid return code.

X'2C' DFSYPRX0 returned an invalid XCF member name.

X'30' DFSYPRX0 required an XCF member name that was not returned.

X'34' DFSYPRX0 returned an invalid return code.

X'38' The destination is in a different client, and the XCF member name from

DFSYDRU0 is invalid.

X'3C' DFSYDRU0 returned an invalid user data length.

OTMA Sense Codes for NAK Messages

Chapter 4. OTMA Diagnostic Information 67

OTMA Return Codes

68 Open Transaction Manager Access Guide and Reference

Chapter 5. OTMA Message Prefix

This chapter describes the syntax of OTMA messages. OTMA messages are

mapped by the DFSYMSG DSECT in IMS.ADFSMAC. The maximum length for a

message prefix is 4096 bytes; this length does not include the application data.

Table 13 shows the segments of the OTMA message prefix and lists the locations of

some of the key fields within those prefix segments. In this table, the term “Server”

refers to IMS.

 Table 13. OTMA Message Prefix segments and their Key Fields

Message Control

Information State Data Security Data User Data

Application

Data

Tpipe name

Message type

Sequence numbers

Processing flag

Response Indicator

Chaining Indicator

Destination

override

Map name

Sync Flags

Sync_level

Commit Mode

Tokens

Server State

User ID

Utoken

Security Flags

The following topics provide additional information:

v “OTMA Message-Control Information”

v “OTMA State Data” on page 80

v “OTMA Security Data” on page 89

v “OTMA User Data” on page 91

v “OTMA Application Data” on page 92

v “Sample OTMA Messages” on page 92

OTMA Message-Control Information

For every message, you must provide message-control information on the

MSGCNTL parameter of the XCF IXCMSGO macro.

Format of OTMA Message-Control Information

Table 14 is a summary of the content of the message-control information section of

the message prefix (column 1 from Table 13). The summary includes byte, length,

content, hexadecimal value, the meaning, and includes usage comments. More

information about the content follows the table in “Explanation of OTMA

Message-Control Information Fields” on page 73.

 Table 14. Message-Control Information Summary

Byte Length Content Value Meaning Comments

0 1 Architecture Level X'01' OTMA release level. Mandatory for all messages.

1 1 Message Type Mandatory for all messages.

Data X'80' Server output data

(output from an IMS

application program).

This data is not a transaction.

© Copyright IBM Corp. 1995, 2004 69

|

|

|

|

|

|

|

Table 14. Message-Control Information Summary (continued)

Byte Length Content Value Meaning Comments

Transaction X'40' Transaction or IMS

command input to the

server.

The actual transaction name is

specified in the application-data

section of the prefix.

Response X'20' A response message.

Command X'10' An OTMA command

(not an IMS

command).

Commit Confirmation X'08' Commit complete. Used by the server to notify the

client of sync point completion.

Only used for send-then-commit

transactions. See

“commit-confirmation flag” below.

2 1 Response flag Response flags are mutually

exclusive.

ACK X'80' Positive

acknowledgement.

NAK X'40' Negative

acknowledgement.

A NAK can be accompanied by

an additional sense code.

Response Requested X'20' A response is

requested for this

message.

Extended Response

Requested

X'10' Requests architected

transaction or

command attributes

to be returned to the

client.

3 1 Commit-
confirmation flag

Committed X'80' Server committed

successfully.

Aborted X'40' Server aborted

commit.

4 1 Command Type

Client-Bid X'04' Sent by a client to

the server.

The response-requested flag

and the appropriate state data

fields (for example, Member Name)

must also be set.

Server Available X'08' Sent by a the server

to a client.

The appropriate state data fields

(for example, Member Name) must

also be set.

CBresynch X'0C' Sent by a client to

the server to request

a resynchronization.

This client-bid request with

resynchronization to follow is

optional, and causes the server

to send an SRVresynch

command to the client.

Suspend Processing

for All Tpipes

X'14' The server sends this

command to suspend

all message activity

with the client.

Message-Control Information

70 Open Transaction Manager Access Guide and Reference

Table 14. Message-Control Information Summary (continued)

Byte Length Content Value Meaning Comments

Resume Processing

for All Tpipes

X'18' The server sends this

command to resume

message processing

with the client.

Suspend Input for

Tpipe

X'1C' The server sends this

command when it is

overloaded.

Resume Input for

Tpipe

X'20' The server sends this

command when it is

ready for client input

(following a Suspend

Input for tpipe

command).

Resume Output for

Tpipe

X'24' Sent by a client to

the server to request

queued tpipe output

be resent.

SRVresynch X'2C' Sent by the server to

a client who has sent

a CBresynch.

This command identifies all

synchronized tpipes within the

server.

Resume Output for

the Special Queue for

Tpipe

X'28' Sent by a client to

the server to request

messages from the

special queue for

tpipe.

REQresynch X'30' Sent by the server to

a client to specify the

state of a

synchronized tpipe.

REPresynch X'34' Sent by a client to

the server to indicate

the type of

resynchronization to

be performed by the

server.

TBresynch X'38' Sent by a client to

the server to initiate

resynchronization for

a particular tpipe.

5 1 Processing flag

Message in Special

Queue

X'08' One or more

messages in the

special queue for

tpipe.

Synchronized Tpipe X'40' Input and output

sequence numbers

are maintained for

the transaction pipe.

Asynchronous output X'20' The server is sending

unsolicited queued

data messages.

Message-Control Information

Chapter 5. OTMA Message Prefix 71

Table 14. Message-Control Information Summary (continued)

Byte Length Content Value Meaning Comments

Error Message

Follows

X'10' An error data

message follows.

Set by the server when sending

a NAK.

6 8 Tpipe Name OTMA identification

and processing

control token.

This name is used to override

the LTERM name on the I/O

PCB for an IMS application

program.

14 1 Chain flag This flag is mandatory for

multi-segment messages.

First-In-Chain X'80' The first segment of

a multi-segment

message.

A message of only one segment

is indicated by setting both the

first-in-chain and last-in-chain

flags.

Middle-In-Chain X'40' Part of a

multi-segment

message.

Last-In-Chain X'20' The last segment of a

multi-segment

message.

Discard Chain X'10' Discard the current

chain of message

segments.

15 1 Prefix flag Indicates which sections of the

message prefix are attached to

this message.

State Data X'80' The state-data

section is included

with the message.

State data section is mandatory

for each message.

Security X'40' The security section

is included with the

message.

User Data X'20' The user-data section

is included with the

message.

This data is specified by an

OTMA client.

Application Data X'10' The application-data

section is included

with the message.

16 4 Send-sequence

number

The sequence

number for the

transaction pipe.

Incremented on every send for

each transaction pipe.

20 2 Sense Code Accompanies a NAK

message.

22 2 Reason Code Accompanies a NAK

message.

20 4 Aging Value Aging value for the

input user ID.

The aging value specifies how

often the cached user ID ACEE

should be refreshed. The aging

value flag in byte 5 of the State

Data must also be set. This

value does not apply to an ACK

or NAK message.

Message-Control Information

72 Open Transaction Manager Access Guide and Reference

|
|
|
|
|
|
|

Table 14. Message-Control Information Summary (continued)

Byte Length Content Value Meaning Comments

24 4 Recoverable

Sequence Number

The recoverable

sequence number for

the transaction pipe.

Incremented on every send of a

recoverable message using a

synchronized transaction pipe.

Required for resynchronization

only.

28 2 Segment Sequence

Number

Sequence number for

segments of a

multi-segment OTMA

message.

30 2 Reserved

Explanation of OTMA Message-Control Information Fields

This section provides explanations for the fields in the message-control information

section of the message prefix.

Architecture level

Specifies the OTMA architecture level. The client specifies an

architecture level, and the server indicates in the response

message which architecture level it is using. The architecture levels

used by a client and a server must match.

 With IMS Version 6, the only valid value is X'01'.

 Mandatory for all messages.

Message type Specifies the message type. Every OTMA message must specify a

value for the message type. The values are not mutually exclusive.

For example, when the server sends an ACK message to a

client-submitted transaction, both the transaction and response

flags are set.

Data Specifies server output data sent to the client. If the

client specifies synchronization level Confirm in the

state-data section of the message prefix, the server

also sets Response Requested for the response flag.

If the client does not specify a synchronization

level, the server uses the default, Confirm.

Transaction Specifies client input data to the server.

 Whether the server replies with an ACK or NAK

message depends only on whether Response

Requested is also set for the response flag.

Response Specifies the message type as response message,

and is set when the message response flag

specifies Response Requested.

 If this flag is set, the response flag specifies either

ACK or NAK.

 The send-sequence numbers must match for the

original data message and the response message.

Chained transaction input messages to the server

must always request a response before the next

transaction (for a particular transaction pipe) is sent.

Message-Control Information

Chapter 5. OTMA Message Prefix 73

Command Specifies an OTMA protocol command. OTMA

commands must always specify Response

Requested for the Response flag.

Commit Confirmation

Specifies that commit is complete. This is sent by

the server when a sync point has completed, and is

only applicable for send-then-commit transactions.

This flag can also be set by an OTMA client to

inform the OTMA server to end the IMS

conversational transaction.

Response Flag

Specifies either that the message is a response message or that a

response is requested.

 Acknowledgements to transactions include attributes (for that

transaction) in the application-data section of the message prefix

only if the transaction specifies Extended Response Requested.

ACK Specifies a positive acknowledgement.

NAK Specifies a negative acknowledgement.

 See the sense code field for more information on

the reason for the NAK.

Response Requested

Specifies that a response is requested for this

message. This can be set for message types of

Data, Transaction, or Command.

 When sending send-then-commit IMS command

output, IMS does not request an ACK regardless of

the synchronization level.

Extended Response Requested

Specifies that an extended response is requested

for this message. Can be set by a client only for

transactions (or for transactions that specify an IMS

command instead of a transaction code).

 If this flag is set for a transaction, IMS returns the

architected attributes for that transaction in the

application-data section of the ACK message.

 If this flag is set for a command, IMS returns the

architected attributes in the application-data section

of the ACK message. This flag can be set for the

IMS commands /DISPLAY TRANSACTION and

/DISPLAY TRANSACTION ALL.

Commit-Confirmation Flag

Specifies the success of a commit request. Sent by the server to

the client in a commit-confirmation message. These messages are

only applicable for send-then-commit transactions, and are not

affected by the synchronization-level flag in the state-data section of

the message prefix.

Committed Specifies that the server committed successfully.

Aborted Specifies that the server aborted the commit.

Message-Control Information

74 Open Transaction Manager Access Guide and Reference

|
|
|

Command Type

Specifies the OTMA protocol command type.

 IMS MTO commands are specified in the application-data section of

the message.

Client-Bid Specifies the first message a client sends to the

OTMA server. This command must also set the

response-requested flag and the security flag in the

message-control information section of the

message prefix. The appropriate state-data fields

(for example, Member Name) must also be set.

 The security-data prefix must specify a Utoken field

so the OTMA server can validate the client’s

authority to act as an OTMA client.

 Because the server can respond to the client-bid

request, this message should not be sent until the

client is ready to start accepting data messages.

Server Available

Specifies the first message the server sends to a

client. It is sent when the server has connected to

the XCF group before the client has connected. The

client replies to the Server Available message with

a client-bid request. The appropriate state data

fields (for example, Member Name) must also be set.

 If the client connects first, it is notified by XCF when

the server connects, and begins processing with a

client-bid request.

CBresynch Specifies a client-bid message with a request by

the client for resynchronization. This command is

optional and causes the server to send an

SRVresynch message to the client. The CBresynch

command is the first message that a client sends to

the OTMA server when it attempts to resynchronize

with IMS and existing synchronized tpipes exist for

the client. Other than the CBresynch message

indicator in the message prefix, the information

required for the message prefix should be identical

to the client-bid command.

 If IMS receives a client-bid request from the client

and IMS is aware of existing synchronized tpipes,

IMS issues informational message DFS2394I to the

MTO. IMS resets the recoverable send- or

receive-sequence numbers to 0 (zero) for all the

synchronized tpipes.

 Related Reading: For more information on

resynchronization, see “Client/Server

Resynchronization with OTMA” on page 28.

Suspend Processing for All Tpipes

Specifies that the server is suspending all message

activity with the client. All subsequent data input

receives a NAK message from the server. Similarly,

Message-Control Information

Chapter 5. OTMA Message Prefix 75

the client should send a NAK message for any

subsequent server messages.

 If a client wishes to suspend processing for a

particular transaction pipe, it must submit a /STOP

TPIPE command as an OTMA message.

Resume Processing for All Tpipes

Specifies that the server is resuming message

activity with the client.

 If a client wishes to resume processing for a

particular transaction pipe that has been stopped, it

must submit a /START TPIPE command as an

OTMA message.

Suspend Input for Tpipe

Specifies that the server is overloaded and is

temporarily suspending input for the transaction

pipe. All subsequent client input receives NAK

messages for the transaction pipe specified in the

message-control information section of the

message prefix. A response is not requested for this

command.

 This command is also sent by IMS when the master

terminal operator enters a /STOP TPIPE command.

Resume Input for Tpipe

Specifies that the server is ready to resume client

input following an earlier Suspend Input for tpipe

command. A response is not requested for this

command.

 This command is also sent by IMS when the IMS

master terminal operator issues a /START TPIPE

command.

Resume Output for Tpipe

Specifies one or multiple tpipe names to the OTMA

server. All queued output on the tpipes will be

resent again.

Resume Output for the Special Queue for Tpipe

Specifies that a client is requesting to retrieve

messages from the special queue for tpipe. There

are command options to retrieve messages. See

“Format of OTMA State Data for Resume Output for

the Special Queue for Tpipe” on page 85 for more

information about the available command options.

SRVresynch Specifies the server’s response to a client’s

CBresynch command. This command specifies the

states of synchronized transaction pipes within the

server (the send- and receive-sequence numbers).

 This command is sent as a single message (with

single or multiple segments), and an ACK is

requested.

REQresynch Specifies the send-sequence number and the

Message-Control Information

76 Open Transaction Manager Access Guide and Reference

receive sequence for a particular tpipe.

REQresynch is sent from IMS to a client.

REPresynch Specifies the client’s desired state information for a

tpipe. A client sends the REPresynch command to

IMS in response to the REQresynch command

received from IMS.

TBresynch Specifies that the client is ready to receive the

REQresynch command from IMS.

Processing Flag

Specifies options by which a client or server can control message

processing.

Synchronized Tpipe

Specifies that the transaction pipe is to be

synchronized. Allows the client to resynchronize a

transaction pipe if there is a failure. Only valid for

commit-then-send transactions.

 This flag causes input and output sequence

numbers to be maintained for the transaction pipe.

All transactions routed through the transaction pipe

must specify this flag consistently (either on or off).

Asynchronous Output

Specifies that the server is sending unsolicited

queued output to the client. This can occur when

IMS inserts a message to an alternate PCB.

 Certain IMS commands, when submitted as

commit-then-send, can cause IMS to send the

output to a client with this flag set. In this case, the

OTMA prefixes contain no identifying information

that the client can use to correlate the output to the

originating command message. These command

output data messages simply identify the

transaction-pipe name. IMS can also send some

unsolicited error messages with only the

transaction-pipe name.

Error Message Follows

Specifies that an error message follows this

message. This flag is set for NAK messages from

the server. An additional error message is then sent

to the client.

 The asynchronous-output flag is not set in the error

data message, because the output is not generated

by an IMS application.

Message in the Special Queue

Specifies that one or more messages exist in the

special queue for the tpipe to be delivered. This flag

is always on for an IMS output message that has

been sent from the special queue for tpipe.

Therefore, this flag can be used to determine

whether there is any message in the special queue

for an IMS output message that has been sent from

the regular queue for tpipe.

Message-Control Information

Chapter 5. OTMA Message Prefix 77

To determine whether the IMS output message is

sent from the regular queue or from the special

queue, check the “From Special Queue” flag in the

Server State of the State Data.

 To retrieve one or more messages from the special

queue, issue the “Resume Output for the Special

Queue for tpipe” protocol command.

Tpipe Name Specifies the transaction-pipe name. For IMS, this name is used to

override the LTERM name on the I/O PCB. This field is applicable

for all transaction, data, and commit-confirmation message types. It

is also applicable for certain response and command message

types.

 Related Reading: See also the Destination Override field in

“Explanation of OTMA State Data Fields” on page 86.

Chain Flag Specifies how many segments are in the message. This flag is

applicable to transaction and data message types, and it is

mandatory for multi-segment messages.

First-In-Chain Specifies the first segment in a chain of segments

which comprise a multi-segment message.

Subsequent segments of the message only need

the message-control information section of the

message prefix. Other applicable prefix segments

(for example, those specified by the client on the

transaction message) are sent only with the first

segment (with the first-in-chain flag set).

 If the OTMA message has only one segment, the

last-in-chain flag should also be set.

Middle-In-Chain

Specifies a segment that is neither first nor last in a

chain of segments that comprise a multi-segment

message. These segments only need the

message-control information section of the

message prefix.

 Restriction: Because the client and server tokens

are in the state-data section of the message prefix,

they cannot be used to correlate and combine

segmented messages. The transaction-pipe name

and send-sequence numbers can be used for this

purpose; they are in the message-control

information section of the message prefix for each

segment.

Last-In-Chain Specifies the last segment of a multi-segment

message.

Discard Chain

Specifies that the entire chain of a multi-segment

message is to be discarded. The last-in-chain flag

must also be set.

Prefix Flag Specifies the sections of the message prefix that are attached to

the OTMA message. Every message must have the

Message-Control Information

78 Open Transaction Manager Access Guide and Reference

message-control information and state-data sections, but any

combination of other sections can be sent with an OTMA message.

State data Specifies that the message includes the state-data

section of the message prefix. See “OTMA State

Data” on page 80.

Security data Specifies that the message includes the

security-data section of the message prefix. See

“OTMA Security Data” on page 89.

User data Specifies that the message includes the user-data

section of the message prefix. See “OTMA User

Data” on page 91.

Application data

Specifies that the message includes the

application-data section of the message prefix. See

“OTMA Application Data” on page 92.

Send-Sequence Number

Specifies the sequence number for a transaction pipe. This

sequence number is updated by the client and server when sending

messages or transactions.

 Recommendation: Increment the number separately for each

transaction pipe.

 This number can also be used to match an ACK or NAK message

with the specific message being acknowledged.

Sense Code Specifies the sense code that accompanies a NAK message. See

Chapter 4, “OTMA Diagnostic Information,” on page 63.

Reason Code Specifies the reason code that accompanies a NAK message. This

code can further qualify a sense code.

Userid Aging Value

Specifies the aging value in seconds for the input user ID. This field

is different from the aging value specified in the OTMA client-bid

command for OTMA connection. The aging value in the client-bid

command sets the default aging value for all the OTMA user IDs;

however, the Userid Aging Value overrides the default aging value

for a specific user ID.

Recoverable Sequence Number

Specifies the recoverable sequence number for a transaction pipe.

Incremented on every send of a recoverable message using a

synchronized transaction pipe. Both the client and the server

increment their recoverable send-sequence numbers and maintain

them separately from the send-sequence number. Required for

resynchronization only.

 Related Reading: For more information on resynchronization, see

“Client/Server Resynchronization with OTMA” on page 28.

Segment Sequence Number

Specifies the sequence number for a segment of a multi-segment

message. This number must be updated for each segment,

because messages are not necessarily delivered sequentially by

XCF.

Message-Control Information

Chapter 5. OTMA Message Prefix 79

|
|
|
|
|
|
|

This number must have a value of 1 if the message has only one

segment.

OTMA State Data

The state data is mandatory for any message. It immediately follows the

message-control information section in the message prefix. It contains

transaction-related information.

The state-data section has different formats for transaction-related information and

for commands. State data for commands can be followed by a security-data

section.

The following topics provide additional information:

v “Format of OTMA State Data for Transaction-Related Information”

v “Format of OTMA State Data for Server-Available and Client-Bid Commands” on

page 81

v “Format of OTMA State Data for SRVresynch Command” on page 82

v “Format of OTMA State Data for REQresynch Command” on page 83

v “Format of OTMA State Data for REPresynch Command” on page 83

v “Format of OTMA State Data for TBresynch Command” on page 84

v “Format of OTMA State Data for Resume Output for Tpipe” on page 85

v “Format of OTMA State Data for Resume Output for the Special Queue for

Tpipe” on page 85

v “Explanation of OTMA State Data Fields” on page 86

Format of OTMA State Data for Transaction-Related Information

Table 15 shows the format of state data (column 2 from Table 13 on page 69) for

transaction-related information. The summary includes byte, length, content,

hexadecimal value, the meaning, and includes usage comments. The state data

fields are defined in “Explanation of OTMA State Data Fields” on page 86.

 Table 15. State Data Format for Transaction-Related Information

Byte Length Content Value Meaning Comments

0 2 Length Length of the

state-data section.

Includes the length field itself.

2 1 Server State

Conversational State X'80' For a conversational

transaction.

Set by the server and client

when sending conversational

data.

Response Mode X'40' For a response-mode

transaction.

Set by the server when sending

output.

From Special Queue X'20' Output from the

special queue for

tpipe.

Set by the server when sending

output.

3 1 Synchronization flag

Commit-then-send X'40' A commit-then-send

transaction.

The server commits output

before sending it.

Send-then-commit X'20' A send-then-commit

transaction.

The server sends output before

committing it.

Message-Control Information

80 Open Transaction Manager Access Guide and Reference

Table 15. State Data Format for Transaction-Related Information (continued)

Byte Length Content Value Meaning Comments

4 1 Synchronization

Level

The default is Confirm.

None X'00' No synchronization. Server application does not

request an ACK message when

sending output to a client.

Confirm X'01' Synchronize. Server sends transaction output

with the Response Requested

flag set.

Syncpt X'02' This message is part

of a protected

conversation.

The resources updated under

this conversation use the

two-phase commit protocol.

5 1 Client Flags

Send Only Message X'80' This is a send only

message; the

response is placed

on the special queue.

This flag is valid only if the client

requested a special queue

during open.

Set Aging Value X'40' To accept the aging

value.

This flag instructs IMS to accept

the aging value specified at byte

X'14' of the message control

information.

Reroute Request X'20' Reroute Requested. Setting this flag reroutes CM0

output to the destination that is

specified in the Destination

Override field.

6 8 Map Name Data format map

used by the server to

map application input

or output.

Optional.

14 16 Server Token Server name. Must be returned by the client to

the server on responses.

30 16 Correlator Token A client token to

correlate input with

output.

Optional.

46 16 Context ID RRS Context ID Used with SYNCLVL=02 and

protected conversations.

62 8 Destination

Override

Override the

destination name for

server output.

Optional.

70 2 Server user data

length

Length of the server

data

The length does not include the

length field itself.

72 * Server user data Any data needed by

the server.

Variable length. Optional.

Format of OTMA State Data for Server-Available and Client-Bid

Commands

Table 16 on page 82 summarizes the format for state data for command messages.

The summary includes byte, length, content, hexadecimal value, the meaning, and

includes usage comments.

State Data

Chapter 5. OTMA Message Prefix 81

||
|
|
|

|

|
|

Table 16. Server-Available and Client-Bid Command Format

Byte Length Content Value Meaning Comments

0 2 Length Length of the

state-data section.

Includes the length field itself.

2 16 Member Name XCF member name

of originating server.

18 8 Originator’s Token XCF member token

of the originator of

the message.

26 8 Destination Token XCF member token

of the destination of

the message.

Note: The following fields are present only for client-bid commands.

34 8 DRU Exit Name Destination

Resolution exit

routine name.

42 2 MaxBlocksize Maximum block size

for XCF

transmissions from

server to client.

Optional.

44 1 Client-Bid Flag

Purge Not

Deliverable

X'20' Specifies that OTMA

delete the CM0

IOPCB output

response if IMS

Connect is down or

leaves the XCF

group.

Special Queue X'80' Specifies that a

special queue for a

tpipe is needed.

45 1 Reserved

46 4 Aging value ACEE aging value in

seconds.

The minimum value for caching

support is 300 seconds (5

minutes).

50 4 Hash Table Size Hash table size is

used for processing

multi-segment

messages.

Suggested value is X'00000065',

Format of OTMA State Data for SRVresynch Command

The SRVresynch command is sent by IMS to pass all its known synchronized tpipe

names to the client. If the command data can not fit into a single buffer, chained

multi-segment buffers will be sent instead. Table 17 on page 83 summarizes the

format of state data for the SRVresynch command. The summary includes byte,

length, content, hexadecimal value, the meaning, and includes usage comments.

The state data fields are defined in “Explanation of OTMA State Data Fields” on

page 86.

State Data

82 Open Transaction Manager Access Guide and Reference

|

|
|
|

Table 17. SRVresynch Command Format

Byte Length Content Value Meaning Comments

0 2 Length Length of the

state-data section.

Includes the length field itself.

2 8 Tpipe Name The transaction pipe

name.

The tpipe name can be repeated

as necessary.

Format of OTMA State Data for REQresynch Command

The REQresynch command is used by IMS to pass the send-sequence number and

the receive sequence for a specific tpipe to the client. Table 18 summarizes the

format of state data for the REQresynch command. The summary includes byte,

length, content, hexadecimal value, the meaning, and includes usage comments.

The state data fields are defined in “Explanation of OTMA State Data Fields” on

page 86.

 Table 18. REQresynch Command Format

Byte Length Content Value Meaning Comments

0 2 Length Length of the

state-data section.

Includes the length field itself.

2 8 Tpipe Name The transaction pipe

name.

10 4 Send-sequence

number

IMS recoverable

send-sequence

number for the

transaction pipe.

14 4 Receive-sequence

number

IMS recoverable

receive-sequence

number for the

transaction pipe.

18 1 Tpipe Flag 1 Reserved for future

use.

19 1 Tpipe Flag 2 Reserved for future

use.

20 6 RESERVED

Format of OTMA State Data for REPresynch Command

The REPresynch command is sent by the client in reply to the REQresynch request

from IMS. It contains the desired state information for a tpipe. Table 19 summarizes

the format of state data for the REPresynch command. The summary includes byte,

length, content, hexadecimal value, the meaning, and includes usage comments.

The state data fields are defined in “Explanation of OTMA State Data Fields” on

page 86.

 Table 19. REPresynch Command Format

Byte Length Content Value Meaning Comments

0 2 Length Length of the

state-data section.

Includes the length field itself.

2 8 Tpipe Name The transaction pipe

name.

State Data

Chapter 5. OTMA Message Prefix 83

Table 19. REPresynch Command Format (continued)

Byte Length Content Value Meaning Comments

10 4 Send-sequence

number

Client recoverable

send-sequence

number for the

transaction pipe.

14 4 Receive-sequence

number

Client recoverable

receive-sequence

number for the

transaction pipe.

18 1 Tpipe Flag 1 Mutually exclusive values.

Continue X'00' The last message

has been received

and IMS continues

processing for this

synchronized

transaction pipe.

Dequeue Last Output X'04' IMS can dequeue the

last output message.

The recoverable

send-sequence

number is updated.

Reset Sequence

Numbers

X'08' IMS resets the

recoverable

send-sequence

number and the

recoverable

receive-sequence

number, as passed in

this command.

Stop Tpipe X'0C' IMS stops this

synchronized

transaction pipe.

Stop Tpipe & wait for

TBresynch

X'10' IMS stops this

synchronized

transaction pipe and

waits for TBresynch

from the client.

19 1 Tpipe Flag 2 Reserved.

20 6 Reserved

Format of OTMA State Data for TBresynch Command

The TBresynch command is sent by the client to IMS if the client decides it is ready

to receive REQresynch from IMS. The TBresynch command can be issued in the

following two situations:

v The client has received an ACK message after sending REPresynch with “stop

and wait for TBresynch” to IMS.

v The client may request a TBresynch with IMS at any time after the initial

nondeferred resynchronization has completed for this tpipe.

Table 20 on page 85 summarizes the format of state data for the TBresynch

command. The summary includes byte, length, content, hexadecimal value, the

State Data

84 Open Transaction Manager Access Guide and Reference

meaning, and includes usage comments. The state data fields are defined in

“Explanation of OTMA State Data Fields” on page 86.

 Table 20. TBresynch Command Format

Byte Length Content Value Meaning Comments

0 2 Length Length of the

state-data section.

Includes the length field itself.

2 8 Tpipe Name The transaction pipe

name.

Format of OTMA State Data for Resume Output for Tpipe

This command is sent by the client to force any queued output to be resent again.

The number of tpipes and tpipe names are needed in the command.

If the special queue for the tpipe exists and holds messages, those messages will

also be sent to the client. Table 21 summarizes the format of state data for Resume

Output for tpipe. The summary includes byte, length, content, hexadecimal value,

the meaning, and includes usage comments.

 Table 21. Resume Output for Tpipes Command Format

Byte Length Content Value Meaning Comments

0 2 Length Length of the

state-data section.

2 2 Tpipe Count Number of tpipe

names in the

command.

4 8 Tpipe Name The transaction tpipe

name.

Different tpipe names can be

added as necessary.

Format of OTMA State Data for Resume Output for the Special Queue

for Tpipe

An OTMA client sends the command to inform IMS to deliver one or all queued

messages on the special queue for tpipe. If this command is not issued, messages

will be held in the special queue. However, the option specified in the command can

be used to request how IMS holds and delivers messages. One of the four options

in Table 22 can be specified in the State Data. If the client or XCF returns a NAK

message to IMS, the current option is reset to No-Auto, which is the default.

Table 22 summarizes the format of state data for Resume Output for the special

queue tpipe. The summary includes, as appropriate, byte, length, content,

hexadecimal value, and the meaning. The state data fields are defined in

“Explanation of OTMA State Data Fields” on page 86.

 Table 22. Resume Output for the Special Queue for Tpipes Command Format

Byte Length Content Value Meaning

0 2 Length Length of the state-data

section.

2 1 Option

State Data

Chapter 5. OTMA Message Prefix 85

|
|
|
|
|
|

Table 22. Resume Output for the Special Queue for Tpipes Command Format (continued)

Byte Length Content Value Meaning

No-Auto X'00' Exhaust all the messages in

the queue only when the

command is issued. This is the

default.

One Only X'01' Deliver one message in the

queue when the command is

issued.

Auto X'02' Exhaust all the messages in

the queue. After that,

automatically deliver messages

when they are queued.

Auto-One X'04' Deliver one message

automatically when a message

is available in the queue. The

message could already be in

the queue or it might be

delivered later. After the

message is delivered, this

option is reset to No-Auto.

Explanation of OTMA State Data Fields

This section provides explanations for the content of the state data fields of the

message prefix:

Length Specifies the total length of the state-data section of the message

prefix, including the length field.

Server State Specifies the mode in which the transaction is running.

Conversational State

Specifies a conversational mode transaction. The server sets

this state when processing a conversational-mode transaction.

This state is also set by the client when sending subsequent

IMS conversational data messages to IMS.

Response Mode

Specifies a response-mode transaction. Set by the server when

processing a response-mode transaction.

 This state has little significance for an OTMA server, because

OTMA does not use sessions or terminals.

From Special Queue

Specifies that the output message was sent from the IMS

special queue for the tpipe. The server initially sets this flag

when sending a commit-then-send output message. The client

also needs to set this flag when sending the subsequent ACK

or NAK to IMS.

Synchronization Flag

Specifies the commit mode of the transaction. This flag controls and

synchronizes the flow of data between the client and server.

State Data

86 Open Transaction Manager Access Guide and Reference

|||||
|
|
|
|
|
|
|

Commit-then-Send

Specifies a commit-then-send transaction. The server commits

output before sending it; for example, IMS inserts the output to

the IMS message queue.

Send-then-Commit

Specifies a send-then-commit transaction. The server sends

output to the client before committing it.

Synchronization Level

Specifies the transaction synchronization level, the way in which the

client and server transaction program (for example, IMS application

program) interacts with program output messages.

 The default is Confirm. IMS always requests a response when

sending commit-then-send output to a client.

None

Specifies that no synchronization is requested. The server

application program does not request an ACK message when it

sends output to a client.

 None is only valid for send-then-commit transactions.

Confirm

Specifies that synchronization is requested. The server sends

transaction output with the response flag set to Response

Requested in the message-control information section of the

message prefix.

 Confirm can be used for either commit-then-send or

send-then-commit transactions.

Syncpt

Specifies that the programs participate in coordinated commit

processing on resources updated during the conversation under

the RRS/MVS recovery platform. A conversation with this level

is also called a protected conversation.

Client Flags Specifies optional processing requested by the client.

Send-Only Message

This is a send only message; the response is placed on the

special queue. This flag is valid only if the client requested a

special queue during open.

Reroute Request

Setting this flag reroutes CM0 output to the destination that is

specified in the Destination Override field.

Map Name Specifies the formatting map used by the server to map output data

streams (for example, 3270 data streams). Although OTMA does

not provide MFS support, you can use the map name to define the

output data stream. The name is an 8-byte MOD name that is

placed in the I/O PCB. IMS replaces this field in the prefix with the

map name in the I/O PCB when the message is inserted.

 The map name is optional.

Server Token Specifies the server name. The Server Token must be returned by

the client to the server on response messages (ACKs or NAKs).

For conversational transactions, the Server Token must also be

returned by the client on subsequent conversational input.

State Data

Chapter 5. OTMA Message Prefix 87

||

|
|
|
|

|
|
|

Correlator Token

Specifies a client token to correlate input with output. This token is

optional and is not used by the server.

 Recommendation: Clients should use this token to help manage

their transactions.

Context ID Specifies the RRS/MVS token that is used with SYNCLVL=02 and

protected conversations.

Destination Override

Specifies an LTERM name used to override the LTERM name in

the IMS application program’s I/O PCB. This override is used if the

client does not want to override the LTERM name in the I/O PCB

with the transaction-pipe name.

 This optional override is not used if it begins with a blank.

Server User Data Length

Specifies the length of the server user data, if any. The maximum

length of the server user data is 256 bytes. The server user data

length is not included in the length calculation.

Server User Data

Specifies any data needed by the server. If included in a transaction

message by the client, it is returned by the server in the output data

messages.

Member Name

Specifies the XCF-member name of the originating server.

Originator’s Token

Specifies the XCF-member token of the originator (either client or

server) of the message.

Destination Token

Specifies the XCF-member token of the destination (either client or

server) of the message.

DRU Exit Name

Specifies the name of the OTMA Destination Resolution exit

routine.

MaxBlocksize Specifies the maximum block size for XCF conversations between

the server and the client.

Client-Bid Flag

Specifies the options for the client-bid flag. There is currently one

option available.

Special Queue

Specifies that a special queue for a tpipe is needed. The

special queue can hold commit-then-send output that is NAK’d,

as well as alternate PCB output for an OTMA client. The output

messages in the queue will not be delivered until the client

requests that those messages be delivered. Use of the special

queue is optional. Without the special queue, a regular queue

for the tpipe will be used to hold and deliver all the

Commit-then-send output messages. The default is no special

queue for a tpipe.

 OTMA resynchronization protocol currently does not support the

special queue.

State Data

88 Open Transaction Manager Access Guide and Reference

Aging Value Specifies the access control environment element (ACEE) aging

value, in seconds. IMS creates an ACEE if the age of the current

ACEE is greater than this value.

 The minimum value for caching support is 300 seconds (5 minutes).

If the aging value specified is less than the minimum, IMS always

creates a non-cached ACEE.

Set Aging Value

Specifies that the user ID aging value is to be used to refresh the

cached user ID ACEE. This flag is reset for the output message.

 Q: Is the ACEE refresh age controlled on a client basis or a user

basis? How can the client or user refresh the ACEE?

 A: The access control environment element (ACEE) is refreshed

for each client based on the aging value set in the state-data

section of the message prefix. This value applies to the client, not

to specific users.

 To refresh the ACEE, a client should send a command message

with the aging value set to 0 (zero) to request that IMS call RACF

to refresh the ACEE. A client should not leave and rejoin the XCF

group to cause the ACEE refresh.

Hash Table Size

Defines the size of the IMS OTMA hash table for processing

multi-segment messages input. The table is used to correctly chain

all the input segments together. IMS will create the table based on

the size specified. Suggested value is X'00000065'.

OTMA Security Data

The security-data section is mandatory for every transaction or command, and is

optional for OTMA protocol commands.

Format of OTMA Security Data

Table 23 is a summary of the content of the security-data section of the message

prefix. The summary includes, as appropriate, byte, length, content, hexadecimal

value, the meaning, and includes usage comments. More information about the

content follows the table in “Explanation of OTMA Security Data Fields” on page 90.

 Table 23. Content of Security Data Fields

Byte Length Content Value Meaning Comments

0 2 Length Length of the

security-data section.

Includes the length field itself.

2 1 Security flag

No Security N No RACF checking is

done.

It is assumed that the user ID

and password are already

verified.

Check C RACF checks

transactions and

commands.

Transaction and command

authorization RACCHECKs are

performed (TCLASS and

CCLASS).

State Data

Chapter 5. OTMA Message Prefix 89

|
|
|

|
|
|

|
|

|
|
|
|

|
|
|
|

Table 23. Content of Security Data Fields (continued)

Byte Length Content Value Meaning Comments

Full F RACF checks

transactions,

commands, and

regions.

Transaction, IMS command, and

MPP region authorization

RACCHECKs are performed.

3 1 Reserved

1 Utoken Length Length of Utoken

plus the length of

Utoken Type.

Length does not include length

field itself.

1 Utoken Type X'00' Type of data to

follow.

* Utoken The user token. Variable length, from 1 to 80

bytes.

1 User ID Length Length of the user ID

plus the length of the

User ID Type.

Length does not include length

field itself.

1 User ID Type X'02' Type of data to

follow.

* User ID The user ID. Variable length, from 1 to 8

bytes.

u Profile Length Length of the profile

plus the length of the

Profile Type.

Length does not include length

field itself.

1 Profile Type X'03' Type of data to

follow.

* Profile The SAF profile. Variable length, from 1 to 8

bytes.

Explanation of OTMA Security Data Fields

The following information provides additional detail on the content of the

security-data section of the message prefix:

Length Specifies the length of the security-data section of the message

prefix, including the length field.

Security Flag Specifies the type of security checking to be performed. It is

assumed that the user ID and password are already verified.

No Security Specifies that no security checking is to be done.

Check Specifies that transaction and command security

checking is to be performed.

Full Specifies that transaction, command, and MPP

region security checking is to be performed.

Reserved After the reserved field, the following three fields can be omitted or

appear in any order. Each field has the following structure:

v Length field

v Field type

v Data field

Security Data

90 Open Transaction Manager Access Guide and Reference

The length field is not calculated in the length calculation. The

actual length of the user ID or profile should not be less than the

value specified for the length of each field.

Utoken Length

Specifies the length of the user token plus the length of the user

token type.

Utoken Type Specifies that this field contains a user token.

Utoken Specifies the user token. The user ID and profile are used to create

the user token. The user token is passed along to the IMS

dependent region.

 If the client has already called RACF, it should pass the Utoken with

field type X'00' so that RACF is not called again.

User ID Length

Specifies the length of the User ID plus the User ID type.

User ID Type Specifies that this field contains a user ID.

User ID Specifies the actual user ID.

Profile Length

Specifies the length of the profile plus the length of the profile type.

Profile Type Specifies that this field contains a profile.

Profile Specifies the system authorization facility (SAF) profile. For RACF,

this is the group name.

OTMA User Data

The user-data section is variable length and follows the security-data section of the

message prefix. It can contain any data.

Format of OTMA User Data

Table 24 is a summary of the content of the user-data section of the message

prefix. The summary includes, as appropriate, byte, length, content, hexadecimal

value, the meaning, and includes usage comments. More information about the

content follows the table in “Explanation of OTMA User Data Fields.”

 Table 24. Content of User Data Fields

Byte Length Content Value Meaning Comments

0 2 Length Length of the

user-data section.

The length includes the length

field itself.

2 * User data The user data. Optional; variable length.

Explanation of OTMA User Data Fields

The following information provides additional detail on the content of the user-data

section of the message prefix:

Length Specifies the length of the user-data section of the message prefix,

including the length field. The maximum length of the user data is

1024 bytes.

User Data Specifies the optional user data. This data is managed by the client,

Security Data

Chapter 5. OTMA Message Prefix 91

and can be created and updated using the DFSYDRU0 exit routine.

The server returns this section unchanged to the client as the first

segment of any output messages.

OTMA Application Data

The application-data section is variable length and follows the user-data section of

the message prefix. You include IMS commands and transactions in the

application-data section. The data in this section is unchanged by the receiver

(server or client), and is transmitted directly to the server application program or to

the client application program.

Format of OTMA Application Data

Table 25 is a summary of the content of the application-data section of the message

prefix. The summary includes, as appropriate, byte, length, content, hexadecimal

value, the meaning, and includes usage comments. More information about the

content follows the table in “Explanation of OTMA Application Data Fields.”

 Table 25. Application Data

Byte Length Content Value Meaning Comments

0 2 Length Length of the

application-data

section.

The length includes the length

field itself. The maximum length

is 32KB (32767 bytes).

2 2 ZZ Application data IMS

ZZ fields.

4 * Application data The application data. Variable length. The maximum

length of application data is

32KB-4.

Explanation of OTMA Application Data Fields

The following information provides additional detail on the content of the

application-data section of the message prefix:

Length Specifies the length of the application-data section of the message

prefix, including the length field.

Application data

Specifies the optional application data.

 Multiple send requests might be required for a server output

segment. For a client’s transaction, the transaction code is specified

in the first 8 bytes of the data area following the LLZZ. For

transactions specified with MULTSEG, the standard IMS LLZZ format

is required for each segment. The transaction code is only required

in the first segment.

Sample OTMA Messages

This section shows three sample OTMA messages. They are not necessarily

related to each other, but are intended to show what OTMA messages look like

when fully constructed, including the parts of the message prefix.

User Data

92 Open Transaction Manager Access Guide and Reference

Figure 34 shows an OTMA client-bid message. The total length of the state-data

section plus the security-data section of the message prefix is X'8C' bytes.

 Figure 35 shows an OTMA transaction message. The total length of the state-data,

security-data, and application-data sections of the message prefix is X'D6' bytes.

 Figure 36 on page 94 shows an OTMA response message. The total length of the

state-data, security-data, and application-data sections of the message prefix is

X'EE' bytes.

MESSAGE CONTROL INFORMATION:

 01102000 04004040 40404040 4040A0C0 |...... ff{|

 00000000 00000000 00000000 00000400 |................|

STATE DATA + SECURITY DATA:

 0036C3D3 C9C5D5E3 F1404040 40404040 |..CLIENT1 |

 40400100 00010003 00020100 00010003 | |

 0001C4C6 E2E8C4D9 E4F02000 00007FFF |..DFSYDRU0....".|

 FFFF0000 00650056 C3525100 50018059 |........C...&...|

 15569555 55555555 55555555 B7B686B0 |..n.........%&f[|

 81A61515 1B1B1B1B 1B1B1B1B B7B686B0 |aw..........%&f[|

 81A61515 55555555 55555555 8C918CA4 |aw.........._j_u|

 15151515 55555555 55555555 09151515 |................|

 15151515 15151515 15151515 |................|

Figure 34. OTMA Client-Bid Message

MESSAGE CONTROL INFORMATION:

 01402000 0000E3D7 C9D7C5F1 4040A0D0 |.TPIPE1 ff}|

 00000001 00000000 00000001 00010000 |................|

STATE DATA + SECURITY DATA + APPLICATION DATA:

 00480020 0100E3C5 E2E3D4C1 D7400000 |......TESTMAP ..|

 00000000 00000000 00000000 0000C9D4 |..............IM|

 E2F0F0F0 F0F10000 00000000 00004040 |S00001........ |

 40404040 40404040 40404040 40404040 | |

 40404040 40400000 0056C652 51005001 | F...&.|

 80465551 95555555 55555555 55555555 |....n...........|

 55555555 55555555 55555555 55555555 |................|

 55555555 55555555 55555555 555586A3 |..............ft|

 A781B0B7 A4155555 55555555 5555B1B7 |xa[%u.........&%|

 8CB6A5A5 A415B7BD B7A41515 15150038 |%&vvu.%"%u......|

 0000C1D7 D6D3F1F8 4040E2C1 E840C8C5 |..APOL18 SAY HE|

 D3D3D640 40404040 40404040 40404040 |LLO |

 40404040 40404040 40404040 40404040 | |

 40404040 4040 | |

Figure 35. OTMA Transaction Message

Sample OTMA Messages

Chapter 5. OTMA Message Prefix 93

MESSAGE CONTROL INFORMATION:

 01A08000 0000E3D7 C9D7C5F1 404080D0 |.ff....TPIPE1 .}|

 00000001 00000000 00000001 00010000 |................|

STATE DATA + SECURITY DATA + APPLICATION DATA:

 00480020 0100E3C5 E2E3D4C1 D740AB7F |......TESTMAP %"|

 28EB9FAD 9A024040 40404040 4040C9D4 |.. Y.. IM|

 E2F0F0F0 F0F10000 00000000 00004040 |S00001........ |

 40404040 40404040 40404040 40404040 | |

 40404040 40400000 0056C652 51005001 | F...&.|

 80465551 95555555 55555555 55555555 |....n...........|

 55555555 55555555 55555555 55555555 |................|

 55555555 55555555 55555555 555586A3 |..............ft|

 A781B0B7 A4155555 55555555 5555B1B7 |xa[%u.........&%|

 8CB6A5A5 A415B7BD B7A41515 15150050 |%&vvu.%"%u.....&|

 0300D6E4 E3E2C5C7 40D5D67E F0F0F0F0 |..OUTSEG NO=0000|

 F140E2D7 C5C3C9C6 C9C5C440 E2C5C7E2 |1 SPECIFIED SEGS|

 C9E9C57E F0F0F0F8 F06B40E2 C5C7D5D6 |IZE=00080, SEGNO|

 7EF0F0F0 F0F34040 40404040 40F67EC3 |=00003 6=C|

 D6D340F6 F04040F7 7EC3D6D3 40F7 |OL 60 7=COL 7..|

Figure 36. OTMA Response Message

94 Open Transaction Manager Access Guide and Reference

Chapter 6. OTMA Architected Transaction Attributes

This chapter describes the syntax of architected command output.

When you issue an IMS /DISPLAY TRANSACTION command from OTMA, the output is

in the form of an OTMA message, returned to the client in the application-data

section of the message prefix. Table 26 shows the Attributes Segment for a given

transaction. The description includes byte, length, content, hexadecimal value, the

meaning, and includes usage comments where appropriate.

 Table 26. Transaction Attributes Segment

Byte Length Content Value Meaning Comments

0 2 Length Length of the

Transaction Attributes

Segment (LL).

This length includes the length

field itself.

2 2 ZZ

4 8 Transaction Code The 8-byte IMS

transaction code.

12 1 Transaction type

flag 1

The flag 1 values are mutually

exclusive.

Valid X'00' A valid OTMA

transaction.

CPIC X'04' A CPI-C (APPC)

transaction.

FPX X'08' A Fast Path-exclusive

transaction.

FPP X'0C' A Fast Path-potential

transaction.

MSC X'10' An MSC remote

transaction.

Invalid Syntax X'FE' Syntax error. The data area contains the text

of the error.

Invalid X'FF' Transaction not

found, or invalid.

13 1 Transaction type

flag 2

The flag 2 values are not

mutually exclusive.

Response X'80' An IMS response

mode transaction.

Conversation X'40' An IMS

conversational

transaction.

Update X'20' The transaction has

update capability.

Irrecoverable X'10' The transaction is

defined as

irrecoverable.

Multi-Segment X'08'a The transaction has

multiple segments.

Uppercase X'04' Uppercase translation

requested.

© Copyright IBM Corp. 1995, 2004 95

Table 26. Transaction Attributes Segment (continued)

Byte Length Content Value Meaning Comments

14 1 Transaction Status The indicated values are not

mutually exclusive.

STOP X'80' The transaction input

queueing is stopped.

One of the following IMS

commands was issued for the

transaction:

v /STOP

v /PURGE

OLC X'40' The transaction input

queueing is stopped.

One of the following IMS

commands was issued for the

transaction:

v /MOD PREPARE

v /MOD COMMIT

NOSCH X'20' IMS scheduling is

stopped.

One of the following IMS

commands was issued for the

transaction:

v /PSTOP

v /LOCK

15 1 Reserved

16 2 Length Length (LL) of error

text, if any.

If there is error text, it replaces

all subsequent sections of the

message.

18 * Error Text Text of the error

message.

Variable length. The error test

section is applicable only if

transaction type flag 1 is set to

Invalid Syntax (X'FE')

16 8 PSB Name IMS PSB name. Only present if there is no error

text.

24 1 Class SMB message class

for IMS scheduling.

25 1 Current® Priority Current SMB priority.

26 1 Normal Priority Normal SMB priority.

27 1 Limit Priority SMB limit priority.

28 2 Enqueue Count Number of messages

enqueued.

30 2 Dequeue Count Number of messages

dequeued.

32 2 Enqueue Limit Enqueue limit count.

34 2 Processing Limit

Count

Processing limit

count.

36 2 Output Max

Segment Length

The maximum output

segment length.

38 2 Output Limit of

Message Segments

The output limit of

message segments.

40 2 Parallel Limit The PARLIM value

from TRANSACTION

statement.

Architected Transaction Attributes

96 Open Transaction Manager Access Guide and Reference

Table 26. Transaction Attributes Segment (continued)

Byte Length Content Value Meaning Comments

42 1 Region Count The number of

regions in which the

transaction is

currently scheduled.

Architected Transaction Attributes

Chapter 6. OTMA Architected Transaction Attributes 97

Architected Transaction Attributes

98 Open Transaction Manager Access Guide and Reference

Chapter 7. OTMA Callable Interface

This chapter introduces the OTMA Callable Interface, and describes how to use it.

The following topics provide additional information:

v “Introduction to OTMA Callable Interface”

v “Getting Started with OTMA C/I” on page 100

v “OTMA C/I APIs” on page 103

v “Codes and Messages Used by OTMA C/I” on page 117

v “OTMA C/I Sample Programs” on page 126

Introduction to OTMA Callable Interface

The IMS OTMA Callable Interface (C/I), which became available with IMS Version

6, provides a high-level interface for access to IMS applications from other z/OS

subsystems. The interface consists of API calls that are available to a C/C++

program. The API calls are used to join the IMS/OTMA XCF group, to connect to

IMS, to allocate communication sessions, to send IMS transactions/commands, to

receive output from IMS, to close communication sessions, and to leave the XCF

group.

Figure 37 on page 100 provides an overview of the OTMA C/I. Shown from left to

right, in a sample z/OS environment, are sample C and C++ API calls (for example,

OTMA_OPEN). The API calls pass through an object stub, the SVC interface

routine, the API (for example, DFSYOPEN), and finally through the XCF group to

IMS OTMA.

© Copyright IBM Corp. 1995, 2004 99

|

|

|

|

|

|

The program that invokes the API calls can be running from an authorized or

unauthorized library in problem or supervisor state. DFSYC0, a C header file, is

provided to define the API calls. DFSYCRET, a load module, contains the entry

points for each API call and is linked with the application program. OTMA C/I uses

BPE SVC Services to process the API call.

Benefits:A key benefit of OTMA C/I is that it is easy to use.

Other reasons to use OTMA C/I are that it:

v Extracts out the details of OTMA and XCF

v Submits IMS transactions and commands

v Enables programs running from other z/OS subsystems to connect to multiple

IMSs

v Calls the APIs from an authorized or unauthorized library

v Connects to all IMS OTMA releases

Getting Started with OTMA C/I

This section describes the information that you need to begin using the OTMA C/I.

In this Section:

v “OTMA C/I Environment Requirements” on page 101

v “OTMA C/I Migration and Coexistence” on page 101

v “OTMA C/I Initialization” on page 101

v “OTMA C/I Security” on page 102

v “OTMA C/I Restrictions” on page 102

Figure 37. OTMA Callable Interface Overview

Introduction to OTMA C/I

100 Open Transaction Manager Access Guide and Reference

OTMA C/I Environment Requirements

To initialize and install OTMA C/I, OS/390 Release 3 or above and IMS Version 6 or

above are required.

OTMA C/I Migration and Coexistence

OTMA C/I requires IMS Version 6 or above for initialization and installation. OTMA

C/I can coexist with all OTMA releases.

RAS criteria, design elements, support plan, and hardware programming support

remain consistent with IMS Version 6.

OTMA C/I Initialization

OTMA C/I provides a stand-alone program, DFSYSVI0, that must be run after the

z/OS IPL to initialize the OTMA C/I. DFSYSVI0 invokes DFSYSVC0, one of the

OTMA C/I modules. DFSYSVC0 loads and registers the SVC services by an

authorized address space running on the same z/OS image as the application

programs accessing it.

You must add an entry in the z/OS program properties table (PPT) for the OTMA

Callable Interface initialization program. The steps for doing this are:

1. Edit the SCHEDxx member of the SYS1.PARMLIB data set.

2. Add the following entry to the SCHEDxx member:

PPT PGMNAME(DFSYSVI0) /* PROGRAM NAME = DFSYSVI0 */

 CANCEL /* PROGRAM CAN BE CANCELED */

 KEY(7) /* PROTECT KEY ASSIGNED IS 7 */

 SWAP /* PROGRAM IS SWAPPABLE */

 NOPRIV /* PROGRAM IS NOT PRIVILEGED */

 DSI /* REQUIRES DATA SET INTEGRITY */

 PASS /* CANNOT BYPASS PASSWORD PROTECTION */

 SYST /* PROGRAM IS A SYSTEM TASK */

 AFF(NONE) /* NO CPU AFFINITY */

 NOPREF /* NO PREFERRED STORAGE FRAMES */

3. Take one of the following actions to make the SCHEDxx changes effective:

 Re-IPL the z/OS system.

or

 Issue the MVS SET SCH= command.

Related Reading: For additional reading about updating the program properties

table, see z/OS MVS Initialization and Tuning Reference.

A sample JCL procedure for running DFSYSVI0 is as follows:

//OTMAINIT PROC RGN=3000K,SOUT=A,

// PARM1=

//*

//IEFPROC EXEC PGM=DFSYSVI0,

// REGION=&RGN

//*

//STEPLIB DD DISP=SHR,UNIT=SYSDA,

// DSN=IMSVS.SDFSRESL

//*

//SYSPRINT DD SYSOUT=&SOUT

//SYSUDUMP DD SYSOUT=&SOUT

//*

Getting Started

Chapter 7. OTMA Callable Interface 101

OTMA C/I Security

To protect XCF groups from any non-authorized caller use IMSXCF.OTMACI, a RACF

resource, defined in the RACF facility class for the OTMA C/I. When the RACF

resource is defined, RACF RACHECK is invoked before OTMA C/I performs a XCF JOIN.

This method protects the access to XCF, the XCF group, and the member. This

RACF checking is performed only when a non-authorized caller is using OTMA C/I.

Additional security characteristics remain consistent with OTMA in IMS 6.1.

OTMA C/I Restrictions

These restrictions apply to the OTMA C/I:

v OTMA C/I must be initialized and installed in IMS 6.1 and above, but OTMA C/I

can connect to all IMS OTMA releases.

v Application program languages other than C and C++ are not currently supported

by OTMA C/I.

v All OTMA calls must be made in the same state (PSW key, supervisor or

problem state, authorized or non-authorized) as the otma_open call. For example:

If you were authorized when you did the otma_open call, you must be authorized

for all subsequent calls.

v The resynchronization feature of IMS OTMA is not supported.

v IMS command /SECURE OTMA PROFILE, is not currently supported.

OTMA C/I Hints and Tips

This section describes several usage tips for the OTMA C/I.

v C/I must be installed in an OS/390 or z/OS environment before it can be invoked.

If C/I is not installed and invoked, an F92 abend occurs when otma_create or

otma_open is issued. If C/I is not properly installed, a DFS3911E error message

occurs.

v otma_open, otma_openx, otma_send_receive, otma_send_receivex,

otma_send_async, and otma_receive_async each have an ECB parameter. This

ECB is posted by the function or by an SRB routine that the function precipitates.

The caller must check the ECB and wait for it to be posted before inspecting the

return code and output data. Be sure to initialize the ECB with 0 before passing

to the C/I call.

v Each otma_alloc call creates an independent session for the subsequent

otma_send_receive call. One of the otma_alloc calls can be used to specify the

name of IMS transaction or IMS command to be sent to IMS. The maximum

length of the transaction name is 8 characters. If no transaction name or

command is specified in the otma_alloc call, the transaction name, followed by

one or more blanks, or command needs be specified in the beginning of the send

buffer of the otma_send_receive call. After the otma_send_receive call,

otma_free is required, except for the IMS conversation transaction. See the

invocation sample C for sending a conversation transaction.

v C/I builds the standard LLZZ part of IMS application data format. You do not

need to worry about the LLZZ at all.

v To send a multi-segment message to IMS, the send segment list of the

otma_send_receive call must identify the length of each input segment. The first

element in the segment list specifies the number of the segment. The first

element is then followed by the length of segment 1, the length of segment 2,

and so on.

v When a multi-segment output message is received, an output segment list is

provided for the otma_send_receive call. The first element in the output segment

Security

102 Open Transaction Manager Access Guide and Reference

list contains the number of the output segment. The first element is then followed

by the length of output segment 1, the length of output segment 2, and so on.

v Sample programs (DFSYCSMP) are shipped with IMS. See also “OTMA C/I

Sample Program #1: Synchronous Processing” on page 127 and “OTMA C/I

Sample Program #2: Asynchronous Processing” on page 138.

v C/I can be used to send a protected transaction to IMS by passing a context

token to the otma_send_receive call.

v Because some of the C/I calls require the calling program to wait, implementing

the time-out routine in the calling program is highly recommended to avoid long

running transactions in IMS and the internal C/I hang.

v To run the C/I application efficiently, limit the number of otma_open and

otma_close calls in the application. Also, for all otma_open and otma_create

calls, try to use the same member name rather than generating a different

member name for each call.

v If the size of the output receive buffer specified in the otma_send_receive call is

too small, the actual data returned is limited by the size of the receive buffer. The

output can be rejected if a special option, SyncLevel1, is specified in the

otma_alloc call. However, if the size of the output receive buffer is too small for

the otma_receive_async call, C/I always rejects the output.

v C/I can support various program-to-program switches in IMS. See “OTMA

Program-to-Program Switch Processing” on page 55 for more information.

v C/I could return a bad return code to inform the caller about an abnormal

condition. Logging or saving the bad return code for debugging purpose is

recommended.

v The otma_send_receive call sends an OTMA send-then-commit message with

synclevel=none to IMS. The caller can set a synclevel=confirm for

otma_send_receive.

v When an input RRS context token is given in the otma_send_receive call, the

synclevel is then changed to SYNCPT to support the protected transaction.

v For complex program-to-program switches in IMS, a send-then-commit input

message could result in a commit-then-send output message instead of the

expected send-then-commit output message. C/I works in this special scenario.

See “OTMA Program-to-Program Switch Processing” on page 55 for more

information on program-to-program switches.

v The otma_send_async call sends an OTMA commit-then-send message to IMS.

v The otma_receive_async call receives an OTMA commit-then-send output

message from IMS.

v C/I does not support either the OTMA resync protocol or the OTMA security

PROFILE option.

OTMA C/I APIs

This section gives a detailed description of all of the OTMA callable interface

application programming interfaces (APIs).

Using the Header File DFSYC0.H:

The header file included in the API calling program declares each API invocation

and variables used for the invocation.

For a C/C++ program using OTMA Callable Interface, the C/C++ header file,

DFSYC0.H, needs to be included in the C/C++ program.

Security

Chapter 7. OTMA Callable Interface 103

|

|

Load Module DFSYCRET:

The object stub, DFSYCRET, receives all the API invocations and issues a SVC call

to perform the requested function. The object stub needs to be available during the

link-editing of the API invoking program. DFSYCRET can be found in SDFSRESL or

ADFSLOAD data sets.

The functions implemented by the API are:

CALL FUNCTION

otma_create Creates storage structures to support

communications but does not establish a

connection with IMS.

otma_open Establishes a connection with IMS. Issue an

otma_create prior to establishing an otma_open call.

otma_openx Provides the same function as otma_open API, with

an added parameter to specify OTMA Destination

Resolution User (DRU) exit name routine and

special options.

otma_alloc Creates an independent transaction session.

otma_send_receive Sends to IMS and passes parameters for receive

functions.

otma_send_receivex Provides the same function as otma_send_receive

API, with an added parameter to pass OTMA user

data.

otma_send_async Sends input (transaction or IMS command) only to

IMS.

otma_receive_async Receives unsolicited or queued output from IMS.

otma_free Releases the independent transaction session.

otma_close Ends the connection with IMS.

In this Section:

v “Using otma_create”

v “Using otma_open” on page 106

v “Using otma_openx” on page 107

v “Using otma_alloc” on page 108

v “Using otma_send_receive” on page 109

v “Using otma_send_receivex” on page 112

v “Using otma_send_async” on page 112

v “Using otma_receive_async” on page 115

v “Using otma_free” on page 116

v “Using otma_close” on page 117

Using otma_create

Description

The otma_create API is to allocate storages for XCF and IMS communications.

After the call, an anchor will be returned. The anchor must be used for the

subsequent calls. Invoking otma_create is not required. During the otma_open,

OTMA Callable Interfaces

104 Open Transaction Manager Access Guide and Reference

OTMA C/I will allocate storages for communication, if it detects that otma_create

has not been called. If otma_create is invoked first, the same input parameters

need to be used again for the subsequent otma_open call.

Invocation

Called by the client in TCB mode.

Input

*ecb Pointer to the next event control block.

*group_name Pointer to the string containing the XCF group name. (char[8])

*member_name

Pointer to the string containing the XCF member name for this

member. (char[16])

*partner_name

Pointer to the string containing the XCF member name for IMS.

(char[16])

*sessions Number of parallel sessions that are intended to be supported with

IMS. Long integer from 001 to 999.

*tpipe_prefix First 1 to 4 characters of the tpipe names. (char[4])

 For more information on OTMA tpipe naming conventions, see

“OTMA Naming Conventions” on page 14.

 Attention: For the input fields group_name, member_name, and partner_name,

all XCF names that are pointed to must be left justified, filled with blanks, and

consist of legal upper case EBCDIC characters. If any of those naming rules are

violated, underlying XCF errors will be reported.

Output

*anchor Pointer to the anchor word.

*retrsn Pointer to the return code structure.

C-Language Function Prototype

otma_create(

 otma_anchor_t *anchor, [out]

 otma_retrsn_t *retrsn, [out]

 ecb_t *ecb, [in]

 otma_grp_name_t *group_name, [in]

 otma_clt_name *member_name, [in]

 otma_srv_name *partner_name, [in]

 signed long int *sessions, [in]

 unsigned char *tpipe_name); [in]

Return Values (rc value)

The rc and reason are valid after ECB has been posted. For the complete

description of each error, see Table 27 on page 119.

0 The call was completed successfully.

8 User error.

12 Storage obtain failure.

OTMA Callable Interfaces

Chapter 7. OTMA Callable Interface 105

Using otma_open

Description

The caller must call otma_open to connect when IMS is available. The caller must

wait on the ECB, that is posted when the connection is completed or when the

attempt has failed. When IMS is not up or OTMA is not started the attempt will fail.

The caller can cancel the attempt to connect with IMS by issuing an otma_close call

at any time. The ECB will be posted accordingly.

If IMS fails after this connection is established, any call to a function interface will

receive a return code to indicate that IMS is no longer listening for messages. If

IMS resumes before a close is performed, the connection will be reestablished

without any action from the client. The otma_close and otma_open interfaces may be

called again to reestablish communications with IMS. All existing conversations will

have been terminated. This implementation does not use OTMA Resynchronization

Protocol.

An extended version of the otma_open API, which is called otma_openx, provides

extended functionality. See “Using otma_openx” on page 107 for more details about

the otma_openx API.

Invocation

Called by the client in TCB mode.

Input

*anchor Pointer to the anchor word. If otma_create is not used to set up the

anchor environment, the anchor word must be initialized with a

zero.

*group_name Pointer to the string containing the XCF group name. (char[8])

*member_name

Pointer to the string containing the XCF member name for this

member. (char[16])

*partner_name

Pointer to the string containing the XCF member name for IMS.

(char[16])

*sessions Number of parallel sessions that are intended to be supported with

IMS. Long integer from 001 to 999.

*tpipe_prefix First 1 to 4 characters of the tpipe names. (char[4]).

 For more information on OTMA tpipe naming conventions, see

“OTMA Naming Conventions” on page 14.

 Attention: For the input fields group_name, member_name, and partner_name,

all XCF names that are pointed to must be left justified, filled with blanks, and

consist of legal upper case EBCDIC characters. If any of those naming rules are

violated, underlying XCF errors will be reported.

Output

*anchor Pointer to the anchor word to receive the address of global storage.

*retrsn Pointer to the return code structure.

OTMA Callable Interfaces

106 Open Transaction Manager Access Guide and Reference

*ecb Pointer to the event control block to be posted when the open

completes.

C-Language Function Prototype

otma_open(

 otma_anchor_t *anchor [in/out]

 otma_retrsn_t *retrsn, [out]

 ecb_t *ecb, [out]

 otma_grp_name_t *group_name, [in]

 otma_clt_name_t *member_name, [in]

 otma_srv_name_t *partner_name, [in]

 signed long int *sessions, [in]

 unsigned char *tpipe_name); [in]

Post Codes

The caller of the OPEN routine must check the ECB that was provided to OPEN. If

this ECB is not already posted, the caller must wait for this ECB (for the OPEN

protocol to complete).

0 XCF OPEN completes successfully.

4 IMS is not ready. Try again later.

8 Your XCF group and member are already active.

12 A system error occurred.

Return Values (rc value)

The rc and reason are valid after ECB has been posted.

0 XCF JOIN was successful, client-bid was sent, and acknowledgment

received. For the complete description of each error, see Table 27 on page

119.

4 IMS is not ready. Try again later.

8 Your XCF group and member are already active.

12 A system error occurred.

Using otma_openx

Description

The otma_openx API has the same functionality as the otma_open API, with the

following extended features:

v The ability to specify an OTMA DRU exit routine

v Added capability for future enhancements to the API

Invocation

Same as for the otma_open API.

Input

Same as for the otma_open API, with the following additional parameters:

*ims_dru_name

Pointer to the string containing the user-defined OTMA Destination

Resolution User Exit Routine.

*special_options

Pointer to an area codifying non-standard options. Currently, there

are no special options supported. Specify a NULL for this

parameter.

OTMA Callable Interfaces

Chapter 7. OTMA Callable Interface 107

Output

Same as for the otma_open API.

C-Language Function Prototype

otma_openx(

 otma_anchor_t *anchor, [out]

 otma_retrsn_t *retrsn, [out]

 ecb_t *ecb, [out]

 otma_grp_name_t *group_name, [in]

 otma_clt_name_t *member_name, [in]

 otma_srv_name_t *partner_name, [in]

 signed long int *sessions, [in]

 tpipe_prfx_t *tpipe_prefix, [in]

 otma_dru_name_t *ims_dru_name, [in]

 otma_profile4_t *special_options); [in]

Post Codes

Same as for the otma_open API.

Return Values (rc value)

Same as for the otma_open API.

Using otma_alloc

Description

The otma_alloc API is called to create an independent session to exchange

messages.

Invocation

Called by the client in TCB mode.

Input

*anchor Pointer to anchor word that was set up by otma_open.

*username Pointer to string holding the RACF username for

transaction/commands.

 For calls from authorized programs, the input username is trusted

and passed to IMS. For calls from unauthorized programs, OTMA

C/I invokes a RACF call with the current ACEE context to obtain the

username. The input username, if any, will be ignored. A NULL can

be specified for callers from unauthorized programs.

*transaction Name of IMS transaction or command to be sent to IMS.

 If the IMS command entered is longer than eight characters, the

first eight characters of the command can be provided in this

parameter. The rest of the characters of the command need to be

provided in the beginning of the send buffer of the subsequent

otma_send_receive API.

 If this parameter is left blank, then the IMS transaction name or

command must be specified (left aligned) in the beginning of the

send buffer of the subsequent otma_send_receive API.

*prfname Pointer to a string holding the RACF group name for

transactions/commands.

OTMA Callable Interfaces

108 Open Transaction Manager Access Guide and Reference

*special_options

Pointer to the processing options for the subsequent

otma_send_receive or otma_send_receivex API call. The supported

processing options include:

Bit 0 SyncOnReturn - with this option, IMS is asked to process

the message without the RRS context token; in this case,

the user ID is obtained when RRS CTXRDTA is invoked.

Bit 1 SyncLevel1 - with this option, OTMA send_then_commit

sync level 1 is used instead of sync level 0, which is the

default for OTMA C/I. Refer to the DFSYCO header file for

additional information.

Output

*retrsn Pointer to return code structure.

*session_handle

Pointer to session handle that uniquely identifies the session for the

subsequent otma_send_receive.

C-Language Function Prototype

otma_alloc(

 otma_anchor_t *anchor, [in]

 otma_retrsn_t *retrsn, [out]

 sess_handle_t *session_handle, [out]

 otma_profile_t *special_options, [in]

 tran_name_t *transaction, [in]

 racf_uid_t *username, [in]

 racf_prf_t *prfname); [in]

Return Values (rc value)

The rc and reason are valid after ECB has been posted. For the complete

description of each error, see Table 27 on page 119.

0 Success.

4 Session limit reached.

8 Null anchor.

Using otma_send_receive

Description

The otma_send_receive API is invoked to initiate a message exchange with IMS.

The caller gives buffer definitions for both send and receive. Both send buffer and

receive buffer information is provided. By providing receive information at the same

time as send there are no unexpected messages from IMS, greatly simplifying the

protocol. When the reply arrives from IMS the ECB will be posted. All the work of

buffer management is handled in the message exit routine.

An extended version of the otma_send_receive API, which is called

otma_send_receivex, provides extended functionality. See “Using

otma_send_receivex” on page 112 for more details about the otma_send_receivex

API.

Invocation

Called by the client in TCB mode.

OTMA Callable Interfaces

Chapter 7. OTMA Callable Interface 109

Input

*anchor Pointer to anchor word that was set up by otma_open.

*session_handle

Pointer to session handle for tpipe returned by otma_alloc.

*lterm Pointer to lterm name field. On input is passed to IMS. Will be

updated on output to lterm field returned by IMS. Can be blank in

both cases.

*modname Pointer to MODname name field. On input is passed to IMS. Will be

updated on output to MODname field returned by IMS. May be blank

in both cases.

 If the input modname is DFSM01, DFSMO2, or DFSM05, it will be

treated as blanks.

*send_buffer Pointer to the data to be sent to IMS. When a NULL is specified for

the transaction parameter, the client code must provide the

transaction name or command, and a blank, to the data in this

buffer when sending to IMS.

*send_length Length of send data.

*send_segment_list

An array of lengths of message segments to be sent to IMS. First

element is count of following segment lengths. Optional: If a single

segment is to be sent, either the first element or the address of the

array can be zero.

*receive_buffer

Pointer to buffer to receive reply message from IMS.

*receive_length

Length of buffer available to receive message.

*receive_segment_list

An array to hold the number of segments sent by IMS. First

element must be set as the number of elements in the array.

Optional: If a single segment is to be received, either the first

element or the address of the array can be zero. In which case all

segments will be received contiguously without indication of

segmentation boundaries.

*context_id Null or Distributed Sync Point Context ID from RRS.

v For an authorized caller, OTMA C/I passes the Context ID

directly to IMS and does not validate the Context ID data.

v For an unauthorized caller, OTMA C/I invokes the CTXSWCH

call to disassociate the token and to validate if the token is

current for a task. When OTMA C/I receives a response from

IMS, it switches the context back onto the task before returning

control to the caller.

Output

*retrsn Pointer to return code structure.

*ecb Event Control block to be posted when the message exchange is

complete.

OTMA Callable Interfaces

110 Open Transaction Manager Access Guide and Reference

*received_length

Field to receive length of data received to receive_buffer. Should

be equal to the sum of the segment lengths.

*receive_segment_list

An array of lengths of message segments received from IMS. First

element is count of following segment lengths and must be set by

client to indicate maximum length of array. It will be modified by

receive.

*error_message

Address of the pointer to the error message field. It is provided by

the user to receive error or informational messages from IMS. If the

post code returns a 20, then this field will contain data.

C-Language Function Prototype

 otma_send_receive(

 otma_anchor_t *anchor, [in]

 otma_retrsn_t *retrsn, [out]

 ecb_t *ecb, [out]

 sess_handle_t *session_handle, [in]

 lterm_name_t *lterm, [in/out]

 mod_name_t *modname, [in/out]

 char *send_buffer, [in]

 data_leng_t *send_length, [in]

 ioseg_list_t *send_seg_list, [in]

 char *receive buffer, [in]

 data_leng_t *receive_length, [in]

 data_leng_t *received_length, [out]

 ioseg_list_t *receive_segment_list, [in/out]

 context_t *context_id, [in]

 char *error_message); [out]

Post Codes

0 Normal completion.

8 No anchor/bad session handle/segment too large.

12 Send failed.

16 Receive has been cancelled.

20 Error from IMS.

Return Values (rc value)

The rc and reason are valid after ECB has been posted. For the complete

description of each error, see Table 27 on page 119.

0 Normal completion.

8 No anchor/bad session handle/segment too large.

12 Send failed.

16 Receive has been cancelled.

20 Error from IMS.

OTMA Callable Interfaces

Chapter 7. OTMA Callable Interface 111

Using otma_send_receivex

Description

The otma_send_receivex API has the same functionality as the otma_send_receive

API, but adds the extended ability to pass OTMA user data.

Invocation

Same as for the otma_send_receive API.

Input

Same as for the otma_send_receive API, with the following additional parameter:

*otma_user_data

Pointer to the OTMA user data. The OTMA user data field can

contain any user data that is used to identify the user input, or to

correlate input with output. If a value is specified in this field, the

data is sent to IMS. IMS user exits DFSYIOE0 and DFSYDRU0 can

read or change the data. The data is returned to the user if the

otma_receive_async API with otma_user_data is issued.

 If there is no OTMA user data, specify a NULL for this field.

Output

Same as for the otma_send_receive API.

C-Language Function Prototype

 otma_send_receivex(

 otma_anchor_t *anchor, [in]

 otma_retrsn_t *retrsn, [out]

 ecb_t *ecb, [out]

 sess_handle_t *session_handle, [in]

 lterm_name_t *lterm, [in/out]

 mod_name_t *modname, [in/out]

 char *send_buffer, [in]

 data_leng_t *send_length, [in]

 data_leng_t *send_segment_list, [in]

 char *receive buffer, [in]

 data_leng_t *receive_length, [in]

 data_leng_t *received_length, [out]

 data_leng_t *receive_segment_list, [in/out]

 context_t *context_id, [in]

 char *error_message, [out]

 otma_user_t *otma_userdata); [in/out]

Post Codes

Same as for the otma_send_receive API.

Return Values (rc value)

Same as for the otma_send_receive API.

Using otma_send_async

Description

The otma_send_async API is invoked to send a transaction or command to IMS.

OTMA Callable Interfaces

112 Open Transaction Manager Access Guide and Reference

Restriction: This API cannot be used to submit an IMS fast path transaction, a

protected transaction (the transactions with RRS context IDs), or an IMS

conversational transaction. For these three types of transactions, use the

otma_send_receive API instead.

Invocation

Called by the client in TCB mode.

Input

*anchor Pointer to anchor word that was set up by otma_open.

*lterm Pointer to lterm name field. If there is no input lterm, specify a

NULL.

*modname Pointer to MODname name field. If there is no input MODname, specify a

NULL.

*otma_user_data

Pointer to the OTMA user data. This 1022-byte field is optional. The

OTMA user data field can contain any user data that is used to

identify the user input, or to correlate input with output. If a value is

specified in this field, the data is sent to IMS. IMS user exits

DFSYIOE0 and DFSYDRU0 can read or change the data. The data

is returned to the user if the otma_receive_async API with

otma_user_data is issued.

 If there is no OTMA user data, specify a NULL for this field.

*prfname Pointer to string holding the RACF group name for

transactions/commands. This parameter is optional. If there is no

input RACF group name, specify a NULL.

*send_buffer Pointer to the data to be sent to IMS. When a NULL is specified for

the transaction parameter, the client code must provide the

transaction name or command, and a blank, to the data in this

buffer when sending to IMS.

*send_length Length of send data.

*send_segment_list

An array of lengths of message segments to be sent to IMS. This

parameter is required for multi-segment input messages. If

specified, the first element needs to contain the count of total input

segments. This field is optional for single segment input. If a single

segment is to be sent, either the first element or the address of the

array can be zero.

*special_options

Pointer to an area codifying non-standard options. Currently, no

special options are supported. Specify a NULL for this parameter.

*tpipe_name Pointer to OTMA tpipe name field. This name must be different from

the tpipe name specified for the otma_create and otma_open APIs.

*transaction Name of IMS transaction or command to be sent to IMS.

 If the IMS command entered is longer than eight characters, the

first eight characters of the command can be provided in this

parameter. The rest of the characters of the command need to be

provided in the beginning of the send buffer.

OTMA Callable Interfaces

Chapter 7. OTMA Callable Interface 113

If NULL or blanks are specified in this parameter, OTMA C/I expects

the user to include the IMS transaction name or command in the

beginning of the send buffer.

*username Pointer to a string holding the RACF username for

transaction/commands.

 For calls from authorized programs, the input username is trusted

and passed to IMS. For calls from unauthorized programs, OTMA

C/I invokes a RACF call with the current ACEE context to obtain the

username. The input username, if any, will be ignored. A NULL can

be specified for callers from unauthorized programs.

Output

*ecb Event Event control block to be posted when IMS receives or rejects the

input.

*error_message

Address of the pointer to the error message field. It is provided by

the user to receive error or informational messages from IMS. If the

post code returns a 20, then this field will contain data.

*retrsn Pointer to return/reason code structure. If IMS OTMA rejects the

input, the NAK code and its associated reason code are available in

OTMA C/I reason codes 2 and 3. See “OTMA Return Codes” on

page 67 for an explanation of the NAK code.

C-Language Function Prototype

 otma_send_async(

 otma_anchor_t *anchor, [in]

 otma_retrsn_t *retrsn, [out]

 ecb_t *ecb, [out]

 tpipe_name_t *tpipe_name, [in]

 tran_name_t *transaction, [in]

 racf_uid_t *username, [in]

 racf_prf_t *prfname, [in]

 lterm_name_t *lterm, [in]

 mod_name_t *modname, [in]

 otma_user_t *otma_userdata, [in]

 char *send_buffer, [in]

 data_leng_t *send_length, [in]

 data_leng_t *send_segment_list[], [in]

 char *error_message, [out]

 void *special_options); [in]

Post Codes

0 Normal completion.

8 Invalid input.

12 Input failed.

16 Input cancelled (IMS is down or OTMA is stopped).

20 Error or information message from IMS.

Return Values (rc value)

The rc and reason are valid after ECB has been posted. For the complete

description of each error, see Table 27 on page 119.

0 Normal completion.

OTMA Callable Interfaces

114 Open Transaction Manager Access Guide and Reference

8 No anchor/bad input.

12 Send failed.

16 Input cancelled (IMS is down or OTMA is stopped).

20 Error or information message from IMS.

Using otma_receive_async

Description

The otma_receive_async API is invoked to receive an IMS output message or an

unsolicited message. The caller provides the buffer definitions to receive the IMS

message. When the IMS message arrives, the ECB is posted.

Invocation

Called by the client in TCB mode.

Input

*anchor Pointer to anchor word that was set up by otma_open.

*tpipe_name Pointer to OTMA tpipe name field. This name must be different from

the tpipe name specified for the otma_create and otma_open APIs.

receive_length

Length of buffer available to receive message.

Output

*ecb Event Event control block to be posted when IMS receives the reply.

*error_message

Address of the pointer to the error message field. It is provided by

the user to receive error or informational messages from IMS. If the

post code returns a 20, then this field will contain data.

*lterm Pointer to lterm name field. Can be updated with lterm value that

is returned by IMS.

*modname Pointer to MODname name field. Can be updated with MODname value

that is returned by IMS.

*otma_user_data

Pointer to the OTMA user data. This 1022-byte field is optional. If

the field is specified and IMS returns the OTMA user data, the data

is passed back to the caller.

 The OTMA user data received is either provided in the

otma_send_async API or created by the IMS DRU exit DFSYDRU0.

*receive_buffer

Pointer to buffer to receive reply message from IMS.

*received_length

Field to receive length of data received to receive_buffer. Should be

equal to the sum of the segment lengths.

*receive_segment_list

An array of lengths of message segments received from IMS. The

client must set the first element to indicate the maximum number of

message segments that can be received. After all the segments are

OTMA Callable Interfaces

Chapter 7. OTMA Callable Interface 115

received, the first array element indicates the actual number of

segments received, and the rest of the array elements indicate the

length of each segment received.

*retrsn Pointer to return/reason code structure.

*special_options

Pointer to an area codifying non-standard options. Currently, no

special are options supported. Specify a NULL for this parameter.

C-Language Function Prototype

 otma_receive_async(

 otma_anchor_t *anchor, [in]

 otma_retrsn_t *retrsn, [out]

 ecb_t *ecb, [out]

 tpipe_name_t *tpipe_name, [in]

 lterm_name_t *lterm, [out]

 mod_name_t *modname, [out]

 otma_user_t *otma_userdata, [out]

 char *receive_buffer, [out]

 data_leng_t *receive_length, [in]

 data_leng_t *received_length, [out]

 data_leng_t *receive_segment_list[], [in/out]

 void *special_options); [in]

Post Codes

0 Normal completion.

12 Receive failed.

Return Values (rc value)

The rc and reason are valid after ECB has been posted. For the complete

description of each error, see Table 27 on page 119.

0 Normal completion.

8 No anchor/bad session handle/segment too large.

12 Send failed.

Using otma_free

Description

The otma_free API is called to free an independent session created by otma_alloc.

Invocation

Called by the client in TCB mode.

Input

*anchor Pointer to anchor word returned by otma_open.

*session_handle

Pointer to session handle returned by otma_alloc.

Output

*retrsn Pointer to return code structure.

*session_handle

Pointer to session handle will be nulled by otma_free.

OTMA Callable Interfaces

116 Open Transaction Manager Access Guide and Reference

C-Language Function Prototype

otma_free(

 otma_anchor_t *anchor, [in]

 otma_retrsn_t *retrsn, [out]

 sess_handle_t *session_handle); [in/out]

Return Values (rc value)

The rc and reason are valid after ECB has been posted. For the complete

description of each error, see Table 27 on page 119.

0 Success.

4 Not allocated session.

8 Incorrect anchor.

Using otma_close

Description

The otma_close API is called to free storages for communication and to leave XCF

group. This function may be called when communications are in flight or an open is

processing. In these cases all relevant ECBs will be posted with a canceled post

code.

Invocation

Called by the client in TCB mode.

Input

*anchor

Pointer to anchor word returned by otma_open.

Output

*anchor

Pointer to anchor word returned by otma_open.

*retrsn

Pointer to return code.

C-Language Function Prototype

otma_close(

 otma_anchor_t *anchor, [in/out]

 otma_retrsn_t *retrsn); [out]

Return Values (rc value)

The rc and reason are valid after ECB has been posted. For the complete

description of each error, see Table 27 on page 119.

0 Success.

4 Null anchor.

8 Cannot leave XCF group.

Codes and Messages Used by OTMA C/I

The OTMA C/I uses a number of specific messages and codes. Detailed

information is provided in the following topics:

v “OTMA Post Codes” on page 118

v “OTMA Return Codes” on page 118

OTMA Callable Interfaces

Chapter 7. OTMA Callable Interface 117

|
|

|

|

v “OTMA Error Messages” on page 125

OTMA Post Codes

The asynchronous nature of OTMA message delivery and communication state

change requires that the program that uses the OTMA C/I use Event Signaling

methods. The functions otma_open and otma_send_receive are asynchronous, the

other APIs are not.

The otma_open, otma_openx, otma_send_receive, otma_send_receivex,

otma_send_async, and otma_receive_async APIs each have an ECB parameter. This

ECB is posted by the function or by an SRB that the function precipitates. The

caller of otma_open, otma_openx, otma_send_receive, otma_send_receivex,

otma_send_async, and otma_receive_async functions must check this ECB and wait

for it to be posted before releasing or inspecting any of the output fields mentioned

in the API, except for the return code in the return code structure. The return code

from all six functions indicates failure to initiate communications with a non-zero

value. The ECB has the same value in these cases.

The general meanings of the POST codes are as follows:

0 Data transfer or state change expected is completed.

4 Transient problem detected. Try again later.

8 User error.

12 System error.

16 Client or XCF has aborted the function.

20 Error from IMS.

OTMA Return Codes

The return code structure consists of a return code that indicates the status of a

request.

0 Function completed normally.

4 Transient problem detected. Try again later.

8 User error.

12 System error.

16 Function cancelled.

20 Error from IMS.

 The return code is part of a data structure used by all the API calls and is the post

code found in any posted ECB. All numerical values are in decimals.

Four reason code fields are available.

Reason 1

Indicates what area in the OTMA client API reported the error. The value

depends on the function that was called and is listed in Table 27 on page

119. All numerical values are in decimals.

Reason 2, Reason 3

Provides additional information about the problem. All numerical values are

in decimals.

Codes and Messages

118 Open Transaction Manager Access Guide and Reference

|

Reason 4

Indicates the API that was issued.

A vector of reason codes describes the details of any failed or partial result. The

meanings are specific to the function and are described in Table 27.

Table 27 describes OTMA C/I return codes and reason codes by function. The

description of each function includes the return code (in decimal), four possible

reason codes (in decimal), and a general description.

 Table 27. OTMA C/I Return Codes and Reason Codes by Function

Function Return

Code

(Decimal)

Reason 1

(Decimal)

Reason 2

(Decimal)

Reason 3

(Decimal)

Reason 4

(Decimal)

Description

CREATE 0 1 Normal completion.

8 4 1 The user is not allowed to use OTMA C/I

because the user is not permitted to use

the RACF IMSXCF.OTMACI resource.

8 20 1 OTMA C/I was used in OS/390 R2 or

below. OTMA C/I should be used on

OS/390 R3 or above.

8 28 1 The session number that is specified is

greater than the maximum number

allowed (999).

12 12 BPESVC

return

code

1 The OTMA C/I service call was rejected

by the BPESVC service. See “BPE

Codes” in IMS Version 9: Messages and

Codes, Volume 1 for more information on

BPESVC return codes.

12 800 1 Storage obtain failure.

OPEN and

OPENX

0 2 Normal completion.

0 1xx xcf ixcjoin

rc

xcf ixcjoin

rsn

2 Member state changed. For more

information, see OS/390 MVS

Programming: Sysplex Services

Reference.

4 80 xcf ixcjoin

rc

xcf ixcjoin

rsn

2 IMS OTMA is not started, an invalid XCF

group name was specified, or an invalid

XCF member name was specified. Try

again later. Server member is not active.

For more information, see OS/390 MVS

Programming: Sysplex Services

Reference.

8 0 xcf ixcjoin

rc

xcf ixcjoin

rsn

2 Your member name is already active. For

more information, see OS/390 MVS

Programming: Sysplex Services

Reference.

8 4 2 The user is not allowed to use OTMA C/I

because the user is not permitted to use

the RACF IMSXCF.OTMACI resource.

Codes and Messages

Chapter 7. OTMA Callable Interface 119

|
|
|
|
|

Table 27. OTMA C/I Return Codes and Reason Codes by Function (continued)

Function Return

Code

(Decimal)

Reason 1

(Decimal)

Reason 2

(Decimal)

Reason 3

(Decimal)

Reason 4

(Decimal)

Description

8 8 2 The user is not allowed to specify the

input anchor. The input anchor should be

returned from the otma_create API or a

new anchor should be initialized with 0. If

the input anchor is correct, ensure that

the input group name, the input member

name, and the input partner name are the

same as the names specified in the

otma_create API.

8 12 2 Client bid is refused.

8 16 2 Client bid is refused due to security

failure.

8 20 2 OTMA C/I was used in OS/390 R2 or

below. OTMA C/I should be used on

OS/390 R3 or above.

8 28 2 The session number that is specified is

greater than the maximum number

allowed (999).

8 112 xcf ixcjoin

rc

xcf ixcjoin

rsn

2 Member is in an unknown state. For more

information, see OS/390 MVS

Programming: Sysplex Services

Reference.

12 10x xcf ixcjoin

rc

xcf ixcjoin

rsn

2 Join sysplex failed. For more information,

see OS/390 MVS Programming: Sysplex

Services Reference.

12 11x xcf ixcjoin

rc

xcf ixcjoin

rsn

2 Join local failed. For more information,

see OS/390 MVS Programming: Sysplex

Services Reference.

12 12 BPESVC

return

code

2 The OTMA C/I service call was rejected

by the BPESVC service. See “BPE

Codes” in IMS Version 9: Messages and

Codes, Volume 1 for more information on

BPESVC return codes.

12 400 xcf

ixcquery rc

xcf

ixcquery

rsn

2 Query sysplex failed. For more

information, see z/OS MVS Programming:

Sysplex Services Guide.

12 800 0 0 3 Getmain failure.

ALLOC 0 0 0 0 5 Normal.

4 12 8 0 5 The OTMA C/I cannot dynamically

allocate a session because either:

v The number of existing sessions is

already the maximum allowed, or

v C/I cannot obtain any free storage from

subpool 230 for the session usage.

8 4 0 0 5 Null anchor.

8 16 5 Incorrect input anchor.

8 20 5 A transaction name or command was

entered. However, it was not left-justified.

Codes and Messages

120 Open Transaction Manager Access Guide and Reference

Table 27. OTMA C/I Return Codes and Reason Codes by Function (continued)

Function Return

Code

(Decimal)

Reason 1

(Decimal)

Reason 2

(Decimal)

Reason 3

(Decimal)

Reason 4

(Decimal)

Description

8 24 Caller’s

new state

Caller’s

old state

5 Caller changed the program state or key

-- see reason codes 3 and 4. Program

state and key should remain the same for

all API calls.

12 12 BPESVC

return

code

5 The OTMA C/I service call was rejected

by the BPESVC service. See “BPE

Codes” in IMS Version 9: Messages and

Codes, Volume 1 for more information on

BPESVC return codes.

SEND

RECEIVE

and SEND

RECEIVEX

0 0 7 Normal.

0 4 7 Conversational.

0 44 Maximum

number of

multi-
segments

specified

in the

receive

segment

list

Actual

number of

multi-
segments

sent from

IMS

7 The first array element of the receive

segment list specifies the maximum

number of multi-segments that can be

received from IMS.

If IMS sends more multi-segments than

the number specified in the receive

segment list, the last element in the

receive segment list will include the size

of the rest of the multi-segments. All of

the multi-segments will be stored in the

receive buffer.

0 48 Length of

the receive

buffer

specified.

Length of

the receive

buffer

needed to

contain all

of the

output.

7 The size of the buffer is too short. The

actual data returned is limited by the size

of the receive buffer.

8 4 7 No anchor.

8 8 7 Bad session handle.

8 12 Session

state

7 Invalid session state.

8 16 7 Incorrect input anchor.

8 24 Caller’s

new state

Caller’s

old state

7 Caller changed the program state or key

-- see reason codes 3 and 4. Program

state and key should remain the same for

all API calls.

8 32 Segment

number

Maximum

Size

7 Segment is too large.

8 40 7 Buffer!=segments.

Codes and Messages

Chapter 7. OTMA Callable Interface 121

Table 27. OTMA C/I Return Codes and Reason Codes by Function (continued)

Function Return

Code

(Decimal)

Reason 1

(Decimal)

Reason 2

(Decimal)

Reason 3

(Decimal)

Reason 4

(Decimal)

Description

8 44 The

maximum

number of

multi-
segments

specified

in the

receive

segment

list.

Actual

number of

multi-
segments

sent from

IMS.

7 The client specified SyncLevel1 in the

special option parameter of the

otma_alloc API. C/I rejected the IMS

output because the size of the receive

segment list is too small.

8 48 Length of

receive

buffer

specified.

Length of

receive

buffer

needed to

include all

the output.

7 The size of the receive buffer is too short.

Check the receive_buffer and

receive_length parameter, and correct the

application program to use the buffer size

returned in reason code 3. This error

occurs only when the client specifies

SyncLevel1 in the special option

parameter of the otma_alloc API.

8 52 7 Either input Iterm or modname is NULL.

The Iterm and modname fields are

updated on output so they cannot be set

to NULL on input. Leave these fields

blank if they are not to be used.

8 56 rrs ctxswc

rc

7 Switch off failed. For more information,

see OS/390 MVS Programming:

Resource Recovery.

8 60 7 Input Native token.

8 64 7 Non-current token.

8 68 7 The input send length is 0 or less than 0.

8 80 7 Input rejected. An attempt was made to

send a new input message for a

non-conversational transaction on an

existing session handle. You must free

the previous session handle by issuing an

OTMA_FREE and then issue an

OTMA_ALLOC for the new transaction.

12 8 Send

return

code.

Send

return

code.

7 Send failed.

12 12 BPESVC

return

code

7 The OTMA C/I service call was rejected

by the BPESVC service. See “BPE

Codes” in IMS Version 9: Messages and

Codes, Volume 1 for more information on

BPESVC return codes.

12 16 rrs ctxswc

rc

7 Switch on failed. For more information,

see z/OS V1R4.0 MVS Programming:

Resource Recovery .

16 Receive has been cancelled by IMS.

Either IMS is down, or OTMA is stopped.

Codes and Messages

122 Open Transaction Manager Access Guide and Reference

Table 27. OTMA C/I Return Codes and Reason Codes by Function (continued)

Function Return

Code

(Decimal)

Reason 1

(Decimal)

Reason 2

(Decimal)

Reason 3

(Decimal)

Reason 4

(Decimal)

Description

20 NAK code NAK

reason

Either IMS rejected the input message, or

a backout was performed.

SEND

ASYNC

0 0 10 Normal.

8 4 10 No anchor.

8 16 10 Incorrect input anchor.

8 20 10 Invalid Trancode.

8 24 Caller’s

new state

Caller’s

old state

10 Caller changed the program state or key

-- see reason codes 3 and 4. Program

state and key should remain the same for

all API calls.

8 32 Segment

number

Maximum

size

10 Segment is too large.

8 40 10 Buffer!=segments.

8 56 10 Invalid send buffer length.

8 60 10 Missing tpipe name.

8 64 10 Invalid tpipe name.

8 68 10 Invalid tpipe name. First four characters

of name share the same tpipe prefix in

otma_open or otma_openx.

8 72 10 Invalid error message parameter

specified.

12 8 Send

return

code

Send

return

code

10 Send failed.

12 12 BPESVC

return

code

10 The OTMA C/I service call was rejected

by the BPESVC service. See “BPE

Codes” in IMS Version 9: Messages and

Codes, Volume 1 for more information on

BPESVC return codes.

16 Send has been cancelled by IMS. Either

IMS is down, or OTMA is stopped.

20 NAK code NAK

reason

Either IMS rejected the input message, or

a backout was performed.

RECEIVE

ASYNC

0 0 11 Normal.

0 44 Maximum

number of

multi-
segments

specified

in the

receive

segment

list

Actual

number of

multi-
segments

sent from

IMS

11 The first array element of the receive

segment list specifies the maximum

number of multi-segments that can be

received from IMS.

If IMS sends more multi-segments than

the number specified in the receive

segment list, the last element in the

receive segment list will include the size

of the rest of the multi-segments. All of

the multi-segments will be stored in the

receive buffer.

Codes and Messages

Chapter 7. OTMA Callable Interface 123

Table 27. OTMA C/I Return Codes and Reason Codes by Function (continued)

Function Return

Code

(Decimal)

Reason 1

(Decimal)

Reason 2

(Decimal)

Reason 3

(Decimal)

Reason 4

(Decimal)

Description

4 80 11 The IMS OTMA function is not started.

8 16 11 Incorrect input anchor.

8 20 11 Invalid Trancode.

8 24 Caller’s

new state

Caller’s

old state

11 Caller changed the program state or key

-- see reason codes 3 and 4. Program

state and key should remain the same for

all API calls.

8 48 Length of

receive

buffer

specified.

Length of

receive

buffer

needed to

include all

the output.

11 The size of the receive buffer is too short.

Check the receive_buffer and

receive_length parameters, and correct

the application program to use the buffer

size returned in reason code 3.

8 56 11 Invalid send buffer length.

8 60 11 Missing tpipe name.

8 64 11 Invalid tpipe name.

8 68 11 Invalid tpipe name. First four characters

of name share the same tpipe prefix in

otma_open or otma_openx.

12 12 BPESVC

return

code

11 The OTMA C/I service call was rejected

by the BPESVC service. See “BPE

Codes” in IMS Version 9: Messages and

Codes, Volume 1 for more information on

BPESVC return codes.

16 Receive has been cancelled by IMS.

Either IMS is down, or OTMA is stopped.

FREE 0 0 14 Normal.

4 0 14 Not allocated.

4 4 14 Quitting.

8 4 14 Null anchor.

8 8 14 Obsolete handle.

8 16 14 Incorrect input anchor.

8 24 Caller’s

new state

Caller’s

old state

14 Caller changed the program state or key

-- see reason codes 3 and 4. Program

state and key should remain the same for

all API calls.

12 12 BPESVC

return

code

14 The OTMA C/I service call was rejected

by the BPESVC service. See “BPE

Codes” in IMS Version 9: Messages and

Codes, Volume 1 for more information on

BPESVC return codes.

CLOSE 0 0 xcf ixcleav

rc

xcf ixcleav

rsn

15 Normal completion. For more information,

see z/OS MVS Programming: Sysplex

Services Guide.

8 4 0 0 15 Null anchor.

8 16 15 Incorrect input anchor.

Codes and Messages

124 Open Transaction Manager Access Guide and Reference

Table 27. OTMA C/I Return Codes and Reason Codes by Function (continued)

Function Return

Code

(Decimal)

Reason 1

(Decimal)

Reason 2

(Decimal)

Reason 3

(Decimal)

Reason 4

(Decimal)

Description

12 8 xcf ixcleav

rc

xcf ixcleav

rsn

15 Non-zero return code from IXCLEAV. For

more information, see OS/390 MVS

Programming: Sysplex Services

Reference.

12 12 15 One of the OTMA C/I service routines

abended. The abend could be caused by

incorrect input parameters. If not, save

the dump and contact your IBM Support

Center for assistance.

OTMA Error Messages

DFS3908E ABEND code IN OTMA SVC INIT

MODULE DFSYSVI0, PSW=psw1psw2

Explanation: An abend occurred while module

DFSYSVI0 was in control. Module DFSYSVI0 is the

module that initializes the OTMA Callable Services SVC

service, and is typically run as a stand-alone job prior to

running applications that use the OTMA Callable

Services. DFSYSVI0 processing is protected by an

internal ESTAE, which attempts to retry from the abend

and clean up any global resources (such as common

storage) that DFSYSVI0 obtained. Message DFS3908E

is issued to alert the operator that an abend occurred.

 In the message text:

code The abend code. For system abends, the

format of code is Sxxx, where xxx is the 3-digit

abend code in hexadecimal. For user abends,

the format of code is Udddd, where dddd is the

4-digit abend code in decimal.

psw1 The first word of the PSW at abend.

psw2 The second word of the PSW at abend.

System Action: The DFSYSVI0 ESTAE collects

diagnostic data about the abend, and then resumes

execution in a cleanup routine within DFSYSVI0. This

routine attempts to release any global resources that

DFSYSVI0 obtained as a part of its processing.

DFSYSVI0 then issues message DFS3911E and returns

to its caller. Typically, unless the abend occurred at the

very end of DFSYSVI0 processing, the OTMA SVC

routine is not initialized.

 The first time that DFSYSVI0 abends, its ESTAE takes

an SDUMP of the address space, and causes a record

to be written to the SYS1.LOGREC data set to

document the abend. If DFSYSVI0 abends a second

time or more (within one execution), its ESTAE does not

take another SDUMP. However, it does write another

record to SYS1.LOGREC.

System Programmer Response: Save any dump,

SYSLOG, and SYS1.LOGREC information and contact

the IBM Support Center.

Module: DFSYSVI0

DFS3911E ERROR INITIALIZING OTMA SVC -

details

Explanation: An error occurred in module DFSYSVI0.

Module DFSYSVI0 is the module that initializes the

OTMA Callable Services SVC service, and is typically

run as a stand-alone job prior to running applications

that use the OTMA Callable Services. When DFSYSVI0

cannot complete the OTMA callable services

initialization, it issues message DFS3911E to indicate

why initialization failed.

 In the message text:

details A short summary of the reason why the OTMA

Callable Services SVC initialization failed.

details corresponds with the return code issued

by the DFSYSVI0 module, and may be one of

the following:

 NOT EXECUTING IN PSW KEY 7

 DFSYSVI0 was not given control in PSW key

7. DFSYSVI0 must run as an authorized

program in PSW key 7. This is accomplished

by adding DFSYSVI0 to the program properties

table. Refer to the IMS Version 9 Open

Transaction Manager Access Guide and

Reference for instructions on how to add

DFSYSVI0 to the program properties table.

 ESTAE CREATE FAILED, RC=rc

 DFSYSVI0 attempted to establish a z/OS

recovery routine (ESTAE), but the create

ESTAE call failed. rc is the return code from

the z/OS ESTAE macro.

 BPESVC INIT FAILED, RC=rc

Codes and Messages

Chapter 7. OTMA Callable Interface 125

DFSYSVI0 could not initialize the BPE SVC

service. rc is the return code from the BPESVC

initialization call.

 BLDL FOR DFSYSVC0 FAILED, RC=rc

 A z/OS BLDL call for module DFSYSVC0

failed. Ensure that DFSYSVC0 is included in

the library from which you are running

DFSYSVI0. rc is the return code from the z/OS

BLDL macro call.

 GET FOR STORAGE FAILED, RC=rc

 DFSYSVI0 could not get storage required for

the OTMA Callable Services SVC module. rc is

the return code from the z/OS STORAGE

macro call.

 LOAD FOR DFSYSVC0 FAILED, RC=rc

 A z/OS LOAD call for module DFSYSVC0

failed. rc is the return code from the z/OS

LOAD macro call.

 BPESVC REGISTRATION FAILED, RC=rc

 Registration of the OTMA Callable Services

SVC routine with BPESVC (BPE SVC services)

failed. rc is the return code from the BPESVC

REGISTER macro call.

ABEND OCCURRED DURING

INITIALIZATION

 An abend occurred during DFSYSVI0

processing. This message should be preceded

by a DFS3908E message indicating the abend

code and PSW, and by an SDUMP of the

DFSYSVI0 job’s address space.

System Action: Module DFSYSVI0 terminates. The

OTMA Callable Services SVC is not initialized (or, if it

was previously initialized, is not replaced).

System Programmer Response: For environmental

errors (such as DFSYSVC0 not being in the same

library as the one from which you are running

DFSYSVI0), correct the error and re-run DFSYSVI0. For

NOT EXECUTING IN PSW KEY 7 error, ensure that the

library where DFSYSVC0 resides is APF authorized. For

other problems contact the IBM Support Center.

Module: DFSYSVI0

OTMA C/I Sample Programs

The two sample C programs that are shown in this section are for display purposes

only. The code for the two sample programs is available to licensed customers of

IMS Version 6 and above in PTF number UQ23685.

The following topics provide additional information:

v “Warranty and Distribution for OTMA C/I Sample Programs”

v “OTMA C/I Sample Program #1: Synchronous Processing” on page 127

v “OTMA C/I Sample Program #2: Asynchronous Processing” on page 138

Warranty and Distribution for OTMA C/I Sample Programs

The code is provided “AS IS.” IBM makes no warranties, express or implied,

including but not limited to the implied warranties of merchantability and fitness for a

particular purpose, regarding the function or performance of this code. IBM shall not

be liable for any damages arising out of your use of the sample code, even if they

have been advised of the possibility of such damages.

The sample code can be freely distributed, copied, altered, and incorporated into

other software, provided that it bears the following Copyright notices and

DISCLAIMER OF WARRANTIES intact.

(c) Copyright IBM Corp.

2000 All Rights Reserved. Licensed Materials - Property of IBM

DISCLAIMER OF WARRANTIES.

The following "enclosed" code is sample code created by IBM Corporation.

This sample code is not part of any standard or IBM product and is provided

to you solely for the purpose of assisting you in the development

of your applications.

Codes and Messages

126 Open Transaction Manager Access Guide and Reference

OTMA C/I Sample Program #1: Synchronous Processing

The program shown below illustrates how OTMA C/I can be used for synchronous

(one in-one out) processing. In this sample program, the otma_send_receive API is

used to send and receive IMS data.

#pragma langlvl(extended)

/***/

/* */

/* Callable Interface sample program using synchronous APIs */

/* */

/* Parameters: */

/* Server Name */

/* Client Name */

/* User Name */

/* Iterations */

/* Transaction */

/* User Group */

/* OTMA Data */

/* */

/* Note: The send buffer is sent as a file with a ddname of */

/* SENDBUFn in the invoking JCL. */

/* */

/* Example: //SENDBUF0 DD *,DLM=$$ */

/* SEND OTMA TO SKS1 */

/* $$ */

/* */

/* Note: COMPAR1 is the DDNAME of an input file used to compare */

/* actual output with expected output. ’?’ is used to delimit */

/* the compare string and ’|’ is used to ignore a char compare */

/* */

/* Example: //COMPAR0 DD *,DLM=$$ */

/* SEND OTMA TO SKS1? */

/* $$ */

/* */

/***/

/**/

/* Entry... */

/* */

/* This test program is callable from JCL */

/* */

/* //NA1OTMA JOB CLASS=A,MSGLEVEL=(1,1),MSGCLASS=H,REGION=2M */

/* //** */

/* //* PARM=server_member_name tpipe_name client_member_name */

/* //* iterations command groupid OTMA_Data */

/* //MINISAMP EXEC PGM=NA1OTMA, */

/* // PARM=’TRAP(OFF)/IMS61CR1 IMSTESR G214992 1 /DISP groupid */

/* // OTMAData’ */

/* //STEPLIB DD DISP=SHR,DSN=OTMA.TEST.LOAD */

/* //SYSUDUMP DD SYSOUT=* */

/* //STDOUT DD SYSOUT=* */

/* //STDERR DD SYSOUT=* */

/* //CEEDUMP DD SYSOUT=* */

/* //COMPAR1 DD *,DLM=$$ */

/* EXPECTED OUTPUT GOES HERE */

/* $$ */

/* //SENDBUF0 DD *,DLM=$$ */

/* SEND DATA GOES HERE */

/* $$ */

/* */

/* Note: TRAP(OFF)/ Passes LE run-time option TRAP(OFF) which turns */

/* off LE condition handling. To get a LE dump on abend set */

/* TRAP ON and provide a CEEDUMP DDNAME. */

/* */

/* Note: COMPAR1 is the DDNAME of an input file used to compare */

/* actual output with expected output. ’?’ is used to delimit */

OTMA C/I Sample Programs

Chapter 7. OTMA Callable Interface 127

/* the compare string and ’|’ is used to ignore a char compare*/

/* */

/**/

/***/

/* An example for using the OTMA Client API in C lang. */

/* This program is broken into the following parts: */

/* Declarations for special support */

/* Process invocation parameters */

/* Setup for C signal handling */

/* Do XCF open processing and analysis */

/* Do session allocate processing */

/* Execute a command or transaction per invocation parm */

/* Do session free processing */

/* Do close */

/* End */

/***/

/***/

/* API’s for non-authorized OTMA caller */

/***/

#include "dfsyc0.h" /* Non-authorized OTMA API’s */

#include <stdlib.h> /* Standard C Header file */

#include <stddef.h> /* Standard C Header file */

#include <stdio.h> /* Standard C Header file */

/***/

/* Internal functions */

/***/

int memc(char *comp_buf, char *rec_buf1);

/* macro to move string to blank filled left justified char field */

#define splat(t,s) \

 {\

 memset((char*)&(t),’ ’,sizeof(t));\

 strncpy((char*)&(t), s ,strlen(s));}

/* standard math routines */

#define min(a,b) ((a)<(b)?(a):(b))

#define max(a,b) ((a)>(b)?(a):(b))

main(int argc,char *argv[])

{

 /* Following fields used by all Functions */

 otma_anchor_t anchor; /* Handle returned by create */

 /* and used by all others. */

 otma_retrsn_t retrsn; /* Return code returned by all. */

 long int retsave; /* Return code save area */

 /* Following fields used by several Functions */

 sess_handle_t sess_handle; /* Handle returned by allocate */

 /* used by send_receive and free. */

 otma_grp_name_t grp_name; /* API XCF Group Member Name. */

 otma_clt_name_t clt_name; /* API XCF Client Member Name. */

 otma_srv_name_t srv_name; /* API XCF Server Member Name. */

 /* (IMS’s XCF member name). */

 racf_uid_t userid; /* Our z/OS logon ID. */

 racf_prf_t groupid; /* RACF Group ID */

 otma_user_t otma_data; /* Otma Data */

 lterm_name_t lterm; /* Lterm name */

 mod_name_t modname; /* ModName */

 unsigned char error_message_text[120];/* IMS error msg field */

OTMA C/I Sample Programs

128 Open Transaction Manager Access Guide and Reference

/* A place to receive any IMS */

 /* DFS error messages. */

 unsigned char *error_message = (unsigned char*)&error_message_text;

 /* a pointer to which is parameter */

 /* on send_receive. */

 char *tran; /* Transaction Name / IMS Command */

 tran_name_t tran_name; /* Transaction Name / IMS Command */

#define BUFFER_LEN 4096 /* set our buffer sizes */

#define NUM_BUFFER 60

#define COM_BUFFER 80

#define GROUP_NAME "HARRY" /* Set XCF group name to join */

 char compare_buf[NUM_BUFFER + 1]; /* Compare buffer */

 int long buffer_length = 0;

 int long rec_buffer_len = BUFFER_LEN;

 char rec_buf[BUFFER_LEN];

 long int rec_data_len = 0;

 char send_buf[BUFFER_LEN];

 char temp_buf[NUM_BUFFER];

 context_t context = {0x00000000000000000000000000000000};

 /* This test is not distributed sync point. */

 /* Too complicated for here. */

 /* Normally this is obtained from RRS */

/***/

/* The callable interface makes use of z/OS Event Control Blocks. */

/* Any language which call the interface must deal with this. */

/***/

 unsigned long *(ecb_list[2]); /* z/OS pause stuff */

 unsigned long **pecb_list;

 ecb_t ecbOPEN = 0L; /* ecb to be posted by OTMA API */

 ecb_t ecbIO = 0L; /* ecb to be posted by OTMA API */

 ecb_t signal = 0L; /* ecb to be posted by C runtime */

 ecb_t temp_ecb = 0L; /* used by compare and swap */

 ecb_t reset_ecb = 0L; /* used by compare and swap */

/***/

/* Local variables */

/***/

 int iterations;

 int loop_count;

 int compare_result;

 long int retcode;

 signed long sessions; /* number of sessions to support */

 tpipe_prfx_t tpipe_prefix; /* first part of tpipe NAME */

 FILE * stream;

 int num; /* number of characters read from stream */

/***/

/* To support test functions - names of parms */

/* Print the parms out for documentation */

/***/

 char * argdefs[8]={ "pgm name", /* 1 */

 "server name", /* 2 */

 "client name", /* 3 */

 "userid ", /* 4 */

OTMA C/I Sample Programs

Chapter 7. OTMA Callable Interface 129

"iterations ", /* 5 */

 "transaction", /* 6 */

 "group id ", /* 7 */

 "otma data ", /* 8 */

 };

/***/

/* Declare an array of compare file ddnames to */

/* compare actual output received with expected output. */

/***/

 char * infiledd[4]={"DD:COMPAR0", /* 1 */

 "DD:COMPAR1" , /* 2 */

 "DD:COMPAR2" , /* 3 */

 "DD:COMPAR3" , /* 4 */

 };

/***/

/* Declare an array of send file ddnames to */

/* send application data to OTMA. */

/***/

 char * sndfiledd[4]= {"DD:SENDBUF0", /* 1 */

 "DD:SENDBUF1" , /* 2 */

 "DD:SENDBUF2" , /* 3 */

 "DD:SENDBUF3" , /* 4 */

 };

/* -- */

/* Anounce the startup of the test program. */

/* -- */

 printf("Otmci01 Starting, version %s %s\n" ,__DATE__,__TIME__);

/* -- */

/* z/OS Pause Init - do this first, in case it fails bail out. */

/* This sets up a C environment for signaling from the API. */

/* -- */

 ecb_list[0] = (unsigned long *) &(signal); /* post by C signal */

 ecb_list[1] = (unsigned long *) /* post by OTMA */

 ((unsigned long)&(ecbOPEN) |

 (unsigned long)0x80000000);/* end of list */

 pecb_list = &ecb_list[0]; /* pointer to list */

 /* define callable I/F */

/***/

/* Begin Test Case... */

/* Anounce the startup of the test program. */

/***/

 printf("OTMCI01 Run Date: %s Run Time: %s\n" ,__DATE__,__TIME__);

/***/

/* Process parms/command line arguments. */

/***/

 /* First, print the parameters. */

 printf("Invocation parameters = \n");

 for (i=1 ; i<(min(8,argc));i++)

 {

 printf("%d %s = ", i, argdefs[i]);

 printf("%s.\n", argv[i]);

 }

 if (argc>1) splat(srv_name, argv[1]) /* XCF memname of IMS */

 else splat(srv_name, "IMS61CR1"); /* hard coded default */

 if (argc>2) splat(clt_name, argv[2]) /* Client name */

 else splat(clt_name, "XCFTEST"); /* hard coded default */

OTMA C/I Sample Programs

130 Open Transaction Manager Access Guide and Reference

if (argc>3) splat(userid , argv[3]) /* ID to use */

 else splat(userid , "XCFTEST"); /* hard coded default */

 if (argc>4) iterations = atoi(argv[4]); /* loop count */

 else iterations = 1; /* hard coded default */

 if (argc>5) tran = argv[5]; /* Transaction/IMS CMD*/

 else tran = ""; /* hard coded default */

 if (argc>6) splat(groupid, argv[6]) /* Group ID to use */

 else splat(groupid, " "); /* hard coded default */

 if (argc>7) splat(otma_data, argv[7]) /* OTMA Data */

 else splat(otma_data, ""); /* hard coded default */

 /* ---*/

 /* Open the file with the ddname SENDBUF0 supplied in the */

 /* JCL which invoked this C driver. Then read the file into */

 /* temp_buf. */

 /* ---*/

 if ((stream = fopen("DD:SENDBUF0","rb")) != NULL)

 {

 num = fread(temp_buf, sizeof(char), NUM_BUFFER, stream);

 printf("BUFF SIZE = %d.\n", num);

 if (num == NUM_BUFFER) {

 printf("Number of characters read = %i\n", num);

 fclose(stream);

 }

 else {

 if (ferror(stream))

 printf("Error reading DDNAME sendbuf0/n");

 else if (feof(stream)) {

 printf("EOF found\n");

 printf("Number of characters read %d\n", num);

 printf("temp_buf = %.*s\n", num, temp_buf);

 fclose(stream);

 }

 }

 }

 else

 printf("ERROR opening DDNAME sendbuf0/n");

 /* Initialize API parameters and buffers. */

 splat(grp_name,GROUP_NAME); /* XCF Group Name */

 splat(tpipe_prefix,"TPAS"); /* Tpipe Prefix Name */

 splat(tran_name,tran); /* do scan here */

 strncat(send_buf, temp_buf,num); /* Copy temp_buf into send_buf */

 buffer_length = strlen(send_buf); /* Set send buffer length */

 /***/

 /* Example of setting up parms to Open the XCF Link */

 /***/

 retrsn.ret = -1;

 retrsn.rsn[0] = -1;

 retrsn.rsn[1] = -1;

 retrsn.rsn[2] = -1;

 retrsn.rsn[3] = -1;

 sessions = 10; /* OTMA supports multiple parallel */

 /* sessions (TPIPES) How many do you want?*/

 /***/

 /*BEGIN: */

 /* We have a CREATE function to set up storage and */

 /* an OPEN function to start the protocol. */

 /* If you don’t need to customize the environment you can start */

 /* with the OPEN function, the CREATE will be done by OPEN. */

 /***/

OTMA C/I Sample Programs

Chapter 7. OTMA Callable Interface 131

printf("-\n");

 otma_create(&anchor, /* (out) ptr to addr to receive ancho*/

 &retrsn, /* (out) return code */

 (ecb_t *) &ecbOPEN,/* not posted by create but stored */

 &grp_name, /* (in) ptr to valid groupname */

 &clt_name, /* (in) Our member name */

 &srv_name, /* (in) Our server name */

 &sessions, /* (in) number of sessions to support*/

 &tpipe_prefix /* (in) first part of tpipe name */

);

 printf("OTMA_CREATE issued. ret = %d rsn = %.8x,%.8x,%.8x,%.8x\n"

 " anchor is at %.8x.\n",

 retrsn.ret,

 retrsn.rsn[0],

 retrsn.rsn[1],

 retrsn.rsn[2],

 retrsn.rsn[3],

 anchor);

 printf("-\n");

 /***/

 /* Connect to IMS */

 /***/

 otma_open(&anchor, /* out ptr to addr to receive anchor */

 &retrsn, /* out return code */

 (ecb_t *)&ecbOPEN, /* out posted by open if failure */

 /* else posted by exit pgm */

 &grp_name, /* in ptr to valid XCF groupname */

 &clt_name, /* in Our member name */

 &srv_name, /* in Our server name */

 &sessions, /* in number of sessions to support */

 &tpipe_prefix /* in first part of tpipe name */

);

 printf("OTMA_OPEN issued. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x\n"

 " Waiting for ecb at %.8x.=%.8x.\n",

 retrsn.ret,

 retrsn.rsn[1],

 retrsn.rsn[2],

 retrsn.rsn[3],

 ecb_list[1],

 *ecb_list[1]

);

 printf("-\n");

 /* -- */

 /* Here we wait for Open to signal complete */

 /* -- */

 DFSYCWAT(ecb_list[1]); /* WAIT on ecb */

 printf("OPEN_OTMA done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x \n"

 "\nEcb at %.8x.= %.8x.\n",

 retrsn.ret,

 retrsn.rsn[0],

 retrsn.rsn[1],

 retrsn.rsn[2],

 retrsn.rsn[3],

 ecb_list[1], *ecb_list[1]

);

OTMA C/I Sample Programs

132 Open Transaction Manager Access Guide and Reference

printf("Local Area Anchor at %8.8X = %8.8X\n",

 &anchor, anchor);

 printf("-\n");

 /* ---*/

 /* The post code from open indicates success or failure */

 /* ---*/

 if (0!=(0x00ffffff & ecbOPEN))

 {

 printf("OPEN_OTMA ecb is posted failure.\n");

 return(retrsn.rsn[0]);

 }

 /* ---*/

 /* Set userid to blanks if userid = bobdavis */

 /* ---*/

 printf(" Trans = %.8s,\n ", tran_name);

 printf(" Userid = %.8s,\n ", userid);

 printf("Groupid = %.8s,\n ", groupid);

 /**/

 /* Like CREATE the ALLOC function just creates control blocks */

 /* and stores data in them. Other functions may be invented */

 /* to modify these structures before the command-of-execution,*/

 /* SEND_RECEIVE is issued. */

 /**/

 otma_alloc(

 &anchor, /* in ptr to global word */

 &retrsn, /* out rc,reason(1-4) */

 &sess_handle, /* out session id */

 NULL, /* in default overrides */

 &tran_name, /* in IMS tp name or cmd */

 &userid, /* in RACFid or blanks */

 &groupid /* in RACF group id or blnk*/

);

 printf("OTMA_ALLOC done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x\n",

 retrsn.ret,

 retrsn.rsn[0],

 retrsn.rsn[1],

 retrsn.rsn[2],

 retrsn.rsn[3]

);

 /**/

 /* Even if ALLOC fails we go on here just to prove the */

 /* API will reject the call. */

 /**/

 /**/

 /* This is the call that sends the data and prepares to */

 /* receive the answer from IMS. */

 /* */

 /* This test program can iterate with multiple calls here. */

 /**/

 /* ___Send message wait for reply______________________ */

 for (loop_count = 0 ; loop_count<iterations ; loop_count++)

 {

 /* ___Change the environment to wait for ecbIO */

 ecbIO = 0; /* clear ecb for reuse */

OTMA C/I Sample Programs

Chapter 7. OTMA Callable Interface 133

ecb_list[1] = (unsigned long *) /* posted by OTMA */

 ((unsigned long)&(ecbIO) |

 (unsigned long)0x80000000); /* end of list */

 if (loop_count != 0)

 {

 /* ---*/

 /* If looping more than once open the next file to send */

 /* and read it into the send_buf. */

 /* ---*/

 if ((stream = fopen(sndfiledd[loop_count],"rb")) != NULL)

 {

 num = fread(temp_buf, sizeof(char), NUM_BUFFER, stream);

 printf("BUFF SIZE = %d.\n", num);

 if (num == NUM_BUFFER) {

 fclose(stream);

 }

 else {

 if (ferror(stream))

 printf("Error opening file %s\n",sndfiledd[loop_count]);

 else if (feof(stream)) {

 printf("EOF found\n");

 printf("Number of characters read %d\n", num);

 printf("temp_buf = %.*s\n", num, temp_buf);

 fclose(stream);

 }

 }

 }

 else

 printf("Error opening file %s\n", sndfiledd[loop_count]);

 /* Initialize send and receiving buffers. */

 memset(rec_buf ,0, sizeof(rec_buf));

 memset(send_buf ,0, sizeof(send_buf));

 strcat(send_buf, temp_buf);

 strcat(send_buf, " ");

 buffer_length = strlen(send_buf);

 printf("%s\n",send_buf);

 printf ("buffer length = %d\n", buffer_length);

 } /* end if loop_count != 0 */

 /* Print otma_send_receive parms and start of API */

 memset(error_message_text ,0, sizeof(error_message_text));

 printf("Send buf at %.8x.\n", &send_buf);

 printf("Send buf = %s.\n", send_buf);

 printf("Receive buf at %.8x.\n", &rec_buf);

 printf("Lterm = %.8s.\n", lterm);

 printf("Modname = %.8s.\n", modname);

 printf("-\n");

 otma_send_receivex(

 &anchor, /* (in) anchor block */

 &retrsn, /* (out) return status */

 &ecbIO, /* (in) ecb address */

 &sess_handle, /* (in) session handle */

 <erm, /* (in/out) logical terminal */

 &modname, /* (in/out) module name */

 (unsigned char *) &send_buf, /* (in) send buffer */

 &buffer_length, /* (in) size of send buffer */

 0, /* (in) send_segment_list */

 (unsigned char *) &rec_buf, /* (in) receive buffer */

 &rec_buffer_len, /* (in) size of buffer */

 &rec_data_len, /* (out) received data length */

OTMA C/I Sample Programs

134 Open Transaction Manager Access Guide and Reference

0, /* (in/out) receive seg list */

 &context, /* (in) context id */

 &error_message, /* (out) ims message */

 &otma_data); /* (in) Otma Data */

 printf("OTMA_SEND done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x\n",

 retrsn.ret,

 retrsn.rsn[0],

 retrsn.rsn[1],

 retrsn.rsn[2],

 retrsn.rsn[3]);

 /* -- */

 /* Here we wait for receive to signal complete */

 /* An application can go do other thing while IMS is processing and */

 /* while the XCF scheduled SRBs are returning data to the caller’s */

 /* buffers. DO NOT DEALLOCATE THE BUFERS WHILE THIS IS GOING ON! */

 /* None of the output areas of the SEND_RECIEVE can be freed until */

 /* the ECB is posted complete. */

 /* -- */

 DFSYCWAT(ecb_list[1]); /* WAIT on ecb */

 retsave = retrsn.ret; /* Save Receive return code */

 printf("OTMA_RECEIVE done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x\n"

 "\nEcb at %.8x.= %.8x.\n",

 retrsn.ret,

 retrsn.rsn[0],

 retrsn.rsn[1],

 retrsn.rsn[2],

 retrsn.rsn[3],

 ecb_list[1],

 *ecb_list[1]

);

 if (retrsn.ret != 0)

 {

 /* ___Error path Free allocated session _____________________ */

 printf("-error path retrsn.ret=%d\n",retrsn.ret);

 printf("-\n");

 printf("Error message = %s\n", error_message);

 otma_free(

 & anchor, /* (out) ptr to global word */

 & retrsn, /* (out) rc,reason (1-4) */

 & sess_handle /* (in) unique path id */

);

 printf("OTMA_FREE done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x \n",

 retrsn.ret,

 retrsn.rsn[0],

 retrsn.rsn[1],

 retrsn.rsn[2],

 retrsn.rsn[3]

);

 /* ___Sever IMS connection ____________________________ */

 printf("-\n");

 otma_close(

 & anchor, /* (in,out) tr to otma anchor */

 & retrsn /* (out) rc,reason (1-4) */

);

 printf("OTMA_CLOSE done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x\n",

 retrsn.ret,

OTMA C/I Sample Programs

Chapter 7. OTMA Callable Interface 135

retrsn.rsn[0],

 retrsn.rsn[1],

 retrsn.rsn[2],

 retrsn.rsn[3]

);

 return (retsave); /* EXIT with receive API return code */

 }

 /* ---*/

 /* If SEND_RECEIVE worked .. */

 /* ---*/

 /* ---*/

 /* Open the compare file containing the expected output */

 /* of the receive buffer. Compare the expected output */

 /* with the actual output and return the result. */

 /* ---*/

 rec_buf[0] = ’ ’; /* Remove possible NL ie x’15’ */

 printf("infiledd = %s\n", infiledd[loop_count]);

 if ((stream = fopen(infiledd[loop_count],"rb")) != NULL)

 {

 num = fread(compare_buf, sizeof(char), COM_BUFFER, stream);

 if (num == COM_BUFFER) { /* fread success */

 printf("compare_buf = %s\n", compare_buf);

 printf(" rec_buf = %s\n", rec_buf);

 fclose(stream);

 compare_result = memc(compare_buf, rec_buf);

 printf("compare_result = %i\n",compare_result);

 if (compare_result != 0)

 return(compare_result); /* Exit if NO COMPARE */

 }

 else { /* fread() failed */

 if (ferror(stream)) /* possibility 1 */

 printf("Error reading file %s\n", infiledd[loop_count]);

 else if (feof(stream)) { /* possibility 2 */

 printf("EOF found\n");

 printf("Number of characters read %d\n", num);

 printf("compare_buf = %.*s\n", num, compare_buf);

 }

 }

 }

 else

 printf("Error opening file %s\n", infiledd[loop_count]);

} /* end of loop */

 /***/

 /* Once a message is sent to IMS and the answer received it */

 /* is usual to release the tpipe for use by other transactions. */

 /* For conversational trans an application would keep using */

 /* the handle to continue a conversational transaction with IMS. */

 /* The Transaction name is specified in the ALLOC and it is */

 /* intended that a FREE be done at the end of each transaction */

 /* and a new ALLOC be done for the next one. This is not */

 /* expensive. */

 /***/

 printf("-\n");

 otma_free(

 & anchor, /* (out) ptr to global word */

 & retrsn, /* (out) rc,reason (1-4) */

 & sess_handle /* (in) unique path id */

);

OTMA C/I Sample Programs

136 Open Transaction Manager Access Guide and Reference

printf("OTMA_FREE done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x \n",

 retrsn.ret,

 retrsn.rsn[0],

 retrsn.rsn[1],

 retrsn.rsn[2],

 retrsn.rsn[3]

);

 printf("-\n");

 /* */

 /* Finally, CLOSE severs the connection with IMS and frees the */

 /* Storage used by the OTMA API. */

 /* This will be done at job-step termination but its untidy. */

 /* */

 otma_close(

 & anchor, /* (in,out) ptr to otma anchor */

 & retrsn /* (out) rc,reason (1-4) */

);

 printf("OTMA_CLOSE done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x \n",

 retrsn.ret,

 retrsn.rsn[0],

 retrsn.rsn[1],

 retrsn.rsn[2],

 retrsn.rsn[3]

);

 return (compare_result); /* Retern return code */

} /* end of main */

/*===*/

/* Subroutine to compare expected results(compare_buf) */

/* with actual results(err_msg) the "|" is used to signify */

/* an ignore compare and "?" is used to mark the end of string. */

/* Note: Compare starts using an index i=1 ie. the 2nd character */

/* because the 1st character was blanked out. (NL x’15’) */

/*===*/

int memc(char *comp_buf, char *rec_buf1)

{

 int j;

 int i;

 j = 0;

 for (i=1;

 ((j==0) && (comp_buf[i] != ’?’));

 i++)

 {

 if(comp_buf[i] != ’|’) /* Ignore compare */

 {

 if(comp_buf[i] != rec_buf1[i]) /* compare ok ? */

 {

 j++; /* No */

 printf("MISCOMPARE !!! \n");

 printf("comp_buf[%d] = %c\n", i, comp_buf[i]);

 printf("rec_buf1[%d] = %c\n", i, rec_buf1[i]);

 }

 else

 ;

 }

 else

 ; /* Else null */

OTMA C/I Sample Programs

Chapter 7. OTMA Callable Interface 137

}

 return (j);

}

OTMA C/I Sample Program #2: Asynchronous Processing

The following program illustrates how OTMA C/I can be used for asynchronous

(unsolicited) processing. In this sample program, one otma_send_asynch and one

otma_receive_asynch call are performed in a loop.

Recommendation: If you will be using synchronous (one in-one out) processing

exclusively, use the otma_send_receive API. The otma_send_receive API provides

the most efficient means of synchronous processing.

#pragma langlvl(extended)

/***/

/*

/* Callable Interface sample program using asynchronous APIs */

/*

/* Parameters: */

/* Server Name */

/* Client Name */

/* Transaction

/* User Name

/* User Group

/* Lterm

/* Mod Name

/* OTMA Data

/* Iterations

/* */

/* Note: The send buffer is sent as a file with a ddname of */

/* SENDBUFn in the invoking JCL. */

/* */

/* Example: //SENDBUF0 DD *,DLM=$$ */

/* SEND OTMA TO SKS1 */

/* $$ */

/* */

/* Note: COMPAR1 is the DDNAME of an input file used to compare */

/* actual output with expected output. ’?’ is used to delimit */

/* the compare string and ’|’ is used to ignore a char compare */

/* */

/* Example: //COMPAR0 DD *,DLM=$$ */

/* SEND OTMA TO SKS1? */

/* $$ */

/* */

/* Note: TPIPBUFn is the DDNAME of an input file used to specify */

/* the tpipe name to be used for each iteration. */

/* */

/* Example: //TPIPEBUF0 DD *,DLM=$$ */

/* TPIPE001 */

/* $$ */

/* */

/***/

/**/

/* Entry... */

/* */

/* This test program is callable from JCL */

/* */

/* //NA1OTMA JOB CLASS=A,MSGLEVEL=(1,1),MSGCLASS=H,REGION=2M */

/* //** */

/* //* PARM=server_member_name client_member_name transaction */

/* //* user_name group_name lterm_name ModName OTMA_Data */

/* //* iterations */

OTMA C/I Sample Programs

138 Open Transaction Manager Access Guide and Reference

/* //** */

/* //MINISAMP EXEC PGM=NA1OTMA, */

/* // PARM=’TRAP(OFF)/IMS61CR1 IMSTESR G214992 /DISP user01 groupid */

/* // Lterm ModName OTMAData 1’ */

/* //STEPLIB DD DISP=SHR,DSN=OTMA.TEST.LOAD */

/* //SYSUDUMP DD SYSOUT=* */

/* //STDOUT DD SYSOUT=* */

/* //STDERR DD SYSOUT=* */

/* //CEEDUMP DD SYSOUT=* */

/* //COMPAR1 DD *,DLM=$$ */

/* EXPECTED OUTPUT GOES HERE */

/* $$ */

/* //SENDBUF0 DD *,DLM=$$ */

/* SEND DATA GOES HERE */

/* $$ */

/* //TPIPBUF0 DD *,DLM=$$ */

/* TPIPE NAME GOES HERE */

/* $$ */

/* */

/* Note: TRAP(OFF)/ Passes LE run-time option TRAP(OFF) which turns */

/* off LE condition handling. To get a LE dump on abend set */

/* TRAP ON and provide a CEEDUMP DDNAME. */

/* */

/* Note: COMPAR1 is the DDNAME of an input file used to compare */

/* actual output with expected output. ’?’ is used to delimit */

/* the compare string and ’|’ is used to ignore a char compare */

/* */

/**/

/***/

/* An example for using the OTMA Client API in C lang. */

/* This program is broken into the following parts: */

/* Declarations for special support */

/* Process invocation parameters */

/* Setup for C signal handling */

/* Do XCF open processing and analysis */

/* Execute an API to send data per invocation parm */

/* Execute an API to receive data per invocation parm */

/* Do close */

/* End */

/***/

/***/

/* Header Definitions. */

/***/

#include "dfsyc0.h" /* Non-authorized OTMA API’s */

#include <stdlib.h> /* Standard C Header file */

#include <stddef.h> /* Standard C Header file */

#include <stdio.h> /* Standard C Header file */

/***/

/* Internal functions */

/***/

/* memory comparison macro. */

int memc(char *comp_buf, char *rec_buf1);

/* macro to move string to blank filled left justified char field */

#define splat(t,s) \

 {\

 memset((char*)&(t),’ ’,sizeof(t));\

 strncpy((char*)&(t), s ,strlen(s));}

/* standard math routines */

#define min(a,b) ((a)<(b)?(a):(b))

#define max(a,b) ((a)>(b)?(a):(b))

/***/

OTMA C/I Sample Programs

Chapter 7. OTMA Callable Interface 139

/* */

/* This OTMA C/I Program */

/* */

/* Note: TRAP(OFF)/ Passes LE run-time option TRAP(OFF) which turns */

/* off LE condition handling. To get a LE dump on abend set */

/* TRAP ON and provide a CEEDUMP DDNAME. */

/* */

/* Note: COMPAR1 is the DDNAME of an input file used to compare */

/* actual output with expected output. ’?’ is used to delimit */

/* the compare string and ’|’ is used to ignore a char compare */

/* */

/***/

main(int argc,char *argv[])

{

/***/

/* Fields used by OTMA C/I APIs. */

/***/

 /* The following fields used by all the OTMA C/I API’s. */

 otma_anchor_t anchor; /* Handle returned by create */

 /* and used by all others. */

 otma_retrsn_t retrsn; /* Return code returned by all. */

 /* The following fields are used by the otma_create and */

 /* otma_open API’s. */

 otma_grp_name_t grp_name; /* API XCF Group Member Name. */

 otma_clt_name_t clt_name; /* API XCF Client Member Name. */

 otma_srv_name_t srv_name; /* API XCF Server Member Name. */

 /* (IMS’s XCF member name). */

 signed long sessions; /* number of sessions to support */

 tpipe_prfx_t tpipe_prefix; /* first part of tpipe NAME */

 /* The following fields are used by otma_send_async API. */

 tpipe_name_t tpipe; /* User Tpipe Name. */

 tran_name_t trans; /* IMS Trancode or CMD. */

 racf_uid_t user_name; /* RACF UserID. */

 racf_prf_t user_prf; /* RACF Groupname. */

 lterm_name_t lterm; /* Input Lterm. */

 mod_name_t modname; /* Input Modname. */

 otma_user_t otma_data; /* OTMA Userdata. */

 char send_buf[BUFFER_LEN];

int long buffer_length = 0; /* Send Buffer length. */

unsigned char error_message_text[120]; /* IMS error msg field - */

 /* A place to receive any IMS */

 /* DFS error messages. */

 unsigned char *error_message = (unsigned char*)&error_message_text;

 /* a pointer to which is parameter */

 /* on send_receive. */

 otma_profile2_t send_options; /* Send Special Options. */

 /* The following fields are used by otma_receive_async API. */

 lterm_name_t rec_lterm; /* Output Lterm. */

 mod_name_t rec_modname; /* Output Modname. */

 otma_user_t rec_otma_data; /* OTMA Userdata. */

 char rec_buf[BUFFER_LEN];

 int long rec_buffer_len = BUFFER_LEN;

 long int rec_data_len = 0;

 otma_profile3_t rec_options; /* Receive Special Options. */

/***/

/* The callable interface makes use of z/OS Event Control Blocks. */

/* Any language which call the interface must deal with this. */

/***/

OTMA C/I Sample Programs

140 Open Transaction Manager Access Guide and Reference

unsigned long *(ecb_list[2]); /* z/OS pause ecb list */

 unsigned long **pecb_list;

 ecb_t ecbOPEN = 0L; /* ecb to be posted by OTMA API */

 ecb_t ecbIO = 0L; /* ecb to be posted by OTMA API */

 ecb_t signal = 0L; /* ecb to be posted by C runtime */

 ecb_list[0] = (unsigned long *) &(signal); /* post by C signal */

 ecb_list[1] = (unsigned long *) /* post by OTMA */

 ((unsigned long)&(ecbOPEN) |

 (unsigned long)0x80000000); /* end of list */

 pecb_list = &ecb_list[0]; /* pointer to list */

 /* define callable I/F */

/***/

/* Local Variables */

/***/

 long int retsave; /* Return code save area */

int iterations; /* Number of iterations to use */

int loop_count; /* Number of iterations used */

int compare_result; /* Return Code result of the */

 /* comparison for buffers. */

/***/

/* Local Constants */

/***/

 #define BUFFER_LEN 4096 /* Set our buffer sizes */

 #define NUM_BUFFER 80 /* Set the number of buffers */

 #define GROUP_NAME "HARRY" /* Set XCF group name to join */

 char temp_buf[NUM_BUFFER]; /* Swapping buffer */

 char compare_buf[NUM_BUFFER + 1]; /* Compare buffer */

 FILE * stream;

 int num; /* number of characters read from stream */

/***/

/* To support test functions - names of parms in order to pring */

/* the parms out for documentation. */

/***/

char * argdefs[10]={"Program Name", /* 1 */

 "Server Name", /* 2 */

 "Client Name", /* 3 */

 "Transaction", /* 4 */

 "User Name ", /* 5 */

 "User Group ", /* 6 */

 "Lterm ", /* 7 */

 "Mod Name ", /* 8 */

 "OTMA Data ", /* 9 */

 "Iterations ", /* 10 */

 };

/***/

/* Declare an array of compare file ddnames to */

/* compare actual output received with expected output. */

/***/

 char * infiledd[4]={"DD:COMPAR0", /* 1 */

 "DD:COMPAR1" , /* 2 */

 "DD:COMPAR2" , /* 3 */

 "DD:COMPAR3" , /* 4 */

 };

/***/

/* Declare an array of send file ddnames to */

OTMA C/I Sample Programs

Chapter 7. OTMA Callable Interface 141

/* send application data to OTMA. */

/***/

 char * sndfiledd[4]= {"DD:SENDBUF0", /* 1 */

 "DD:SENDBUF1" , /* 2 */

 "DD:SENDBUF2" , /* 3 */

 "DD:SENDBUF3" , /* 4 */

 };

/***/

/* Declare an array of tpipe names ddnames for the */

/* otma_send_async API. */

/***/

 char * tpipefiledd[4]= {"DD:TPIPBUF0", /* 1 */

 "DD:TPIPBUF1" , /* 2 */

 "DD:TPIPBUF2" , /* 3 */

 "DD:TPIPBUF3" , /* 4 */

 };

/***/

/* Begin Test Case... */

/* Anounce the startup of the test program. */

/***/

 printf("OTMCI02 Run Date: %s Run Time: %s\n" ,__DATE__,__TIME__);

/***/

/* Process parms/command line arguments. */

/*

/* Note: If not a parameter is not used, then "NONE" is used in */

/* its place. */
/*

/***/

 /* First, print the parameters. */

 printf("Invocation parameters = \n");

 for (i=1 ; i<(min(11,argc));i++)

 {

 printf("%d %s = ", i, argdefs[i]);

 printf("%s.\n", argv[i]);

 }

 printf("\n");

 if (argc>1 && strcmp(argv[1],"NONE") != 0)

 splat(srv_name, argv[1]) /* Server Name. */

 else

 splat(srv_name, "IMS61CR1"); /* Hard coded default */

 if (argc>2 && strcmp(argv[2],"NONE") != 0)

 splat(clt_name, argv[2]) /* Client name */

 else

 splat(clt_name, "XCFTEST"); /* Hard coded default */

 if (argc>3 && strcmp(argv[3],"NONE") != 0)

 splat(trans, argv[3]) /* IMS Tran/Cmd to use*/

 else

 splat(trans, ""); /* Hard coded default */

 if (argc>4 && strcmp(argv[4],"NONE") != 0)

 splat(user_name, argv[4]) /* RACF Username */

 else

 splat(user_name, ""); /* Hard coded default */

 if (argc>5 && strcmp(argv[5],"NONE") != 0)

 splat(user_prf, argv[5]) /* RACF Group ID */

 else

 splat(user_prf, ""); /* Hard coded default */

 if (argc>6 && strcmp(argv[6],"NONE") != 0)

 splat(lterm , argv[6]) /* Lterm to use */

OTMA C/I Sample Programs

142 Open Transaction Manager Access Guide and Reference

else

 splat(lterm , ""); /* Hard coded default */

 if (argc>7 && strcmp(argv[7],"NONE") != 0)

 splat(modname , argv[7]) /* ModName to use */

 else

 splat(modname , ""); /* Hard coded default */

 if (argc>8 && strcmp(argv[8],"NONE") != 0)

 splat(otma_data, argv[8]) /* OTMAData to use */

 else

 splat(otma_data, ""); /* Hard coded default */

 if (argc>9 && strcmp(argv[9],"NONE") != 0)

 iterations = atoi(argv[9]); /* Loop count */

 else

 iterations = 1; /* Hard coded default */

 /* ---*/

 /* Open the file with the ddname SENDBUF0 supplied in the */

 /* JCL which invoked this C driver. Then read the file into */

 /* temp_buf. */

 /* ---*/

 if ((stream = fopen("DD:SENDBUF0","rb")) != NULL)

 {

 num = fread(temp_buf, sizeof(char), NUM_BUFFER, stream);

 if (num == NUM_BUFFER) {

 printf("Number of characters read = %i\n", num);

 fclose(stream);

 }

 else {

 if (ferror(stream))

 printf("Error reading DDNAME sendbuf0/n");

 else if (feof(stream)) {

 printf("EOF found\n");

 printf("Number of characters read %d\n", num);

 printf("temp_buf = %.*s\n", num, temp_buf);

 fclose(stream);

 }

 }

 }

 else

 printf("ERROR opening DDNAME sendbuf0/n");

 /*---*/

 /* Initialize parameters for the otma_create and otma_open */

 /* APIs. */

 /*---*/

 splat(grp_name,GROUP_NAME); /* XCF Group Name */

 splat(tpipe_prefix,"TPAS"); /* XCF Group Name */

 strcat(send_buf, temp_buf); /* Copy temp_buf into send_buf */

 strcat(send_buf, " "); /* add a blank for strlen */

 buffer_length = strlen(send_buf);

 /***/

 /* Example of setting up parms to Open the XCF Link */

 /***/

 retrsn.ret = -1;

 retrsn.rsn[0] = -1;

 retrsn.rsn[1] = -1;

 retrsn.rsn[2] = -1;

 retrsn.rsn[3] = -1;

 r = 0;

 sessions = 10; /* OTMA supports multiple parallel */

 /* sessions (TPIPES) How many do you want?*/

 /***/

OTMA C/I Sample Programs

Chapter 7. OTMA Callable Interface 143

/*BEGIN: */

 /* We have a CREATE function to set up storage and */

 /* an OPEN function to start the protocol. */

 /* If you don’t need to customize the environment you can start */

 /* with the OPEN function, the CREATE will be done by OPEN. */

 /***/

 otma_create(&anchor, /* (out) ptr to addr to receive ancho*/

 &retrsn, /* (out) return code */

 (ecb_t *) &ecbOPEN,/* not posted by create but stored */

 &grp_name, /* (in) ptr to valid groupname */

 &clt_name, /* (in) Our member name */

 &srv_name, /* (in) Our server name */

 &sessions, /* (in) number of sessions to support*/

 &tpipe_prefix /* (in) first part of tpipe name */

);

 printf("OTMA_CREATE issued. ret = %d rsn = %.8x,%.8x,%.8x,%.8x\n"

 " anchor is at %.8x.\n",

 retrsn.ret,

 retrsn.rsn[0],

 retrsn.rsn[1],

 retrsn.rsn[2],

 retrsn.rsn[3],

 anchor);

 printf("-\n");

 /***/

 /* Time to try to connect to IMS */

 /***/

 /* ___start XCF connection_____________________________ */

 otma_open(&anchor, /* out ptr to addr to receive anchor */

 &retrsn, /* out return code */

 (ecb_t *)&ecbOPEN, /* out posted by open if failure */

 /* else posted by exit pgm */

 &grp_name, /* in ptr to valid XCF groupname */

 &clt_name, /* in Our member name */

 &srv_name, /* in Our server name */

 &sessions, /* in number of sessions to support */

 &tpipe_prefix /* in first part of tpipe name */

);

 printf("OTMA_OPEN issued. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x\n"

 " Waiting for ecb at %.8x.=%.8x.\n",

 retrsn.ret,

 retrsn.rsn[1],

 retrsn.rsn[2],

 retrsn.rsn[3],

 ecb_list[1],

 *ecb_list[1]

);

 printf("-\n");

 /* -- */

 /* Here we wait for Open to signal complete */

 /* -- */

 DFSYCWAT(ecb_list[1]); /* WAIT on ecb */

OTMA C/I Sample Programs

144 Open Transaction Manager Access Guide and Reference

printf("OTMA_OPEN done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x \n"

 "\nEcb at %.8x.= %.8x.\n",

 retrsn.ret,

 retrsn.rsn[0],

 retrsn.rsn[1],

 retrsn.rsn[2],

 retrsn.rsn[3],

 ecb_list[1], *ecb_list[1]

);

 printf("Local Area Anchor at %8.8X = %8.8X\n",

 &anchor, anchor);

 /* ---*/

 /* The post code from open indicates success or failure */

 /* ---*/

 if (0!=(0x00ffffff & ecbOPEN))

 {

 printf("OPEN_OTMA ecb is posted failure.\n");

 return(retrsn.rsn[0]);

 }

 /**/

 /* This is the loop that sends and receives data. */

 /* */

 /* This test program can iterate with multiple calls here. */

 /**/

 for (loop_count = 0 ; loop_count<iterations ; loop_count++)

 {

 /* Change the environment to wait for ecbIO */

 ecbIO = 0; /* clear ecb for reuse */

 ecb_list[1] = (unsigned long *) /* posted by OTMA */

 ((unsigned long)&(ecbIO) |

 (unsigned long)0x80000000); /* end of list */

 if (loop_count != 0)

 {

 /* ---*/

 /* If looping more than once open the next file to send */

 /* and read it into the send_buf. */

 /* ---*/

 if ((stream = fopen(sndfiledd[loop_count],"rb")) != NULL)

 {

 num = fread(temp_buf, sizeof(char), NUM_BUFFER, stream);

 if (num == NUM_BUFFER) {

 fclose(stream);

 }

 else {

 if (ferror(stream))

 printf("Error opening file %s\n",sndfiledd[loop_count]);

 else if (feof(stream)) {

 printf("EOF found\n");

 printf("Number of characters read %d\n", num);

 printf("temp_buf = %.*s\n", temp_buf);

 fclose(stream);

 }

 }

 }

 else

 printf("Error opening file %s\n", sndfiledd[loop_count]);

OTMA C/I Sample Programs

Chapter 7. OTMA Callable Interface 145

/* Put data in to Send Buffer. */

 memset(error_message_text ,0, sizeof(error_message_text));

 memset(send_buf ,0, sizeof(send_buf));

 strcat(send_buf, temp_buf);

 strcat(send_buf, " ");

 buffer_length = strlen(send_buf);

 } /* end if loop_count != 0 */

 /* ---*/

 /* If looping more than once open the next tpipe to use */

 /* and read it into the tpipe. */

 /* ---*/

 if ((stream = fopen(tpipefiledd[loop_count],"rb")) != NULL)

 {

 num = fread(temp_buf, sizeof(char), NUM_BUFFER, stream);

 if (num == NUM_BUFFER) {

 fclose(stream);

 }

 else {

 if (ferror(stream))

 printf("Error opening file %s\n",sndfiledd[loop_count]);

 else if (feof(stream)) {

 printf("EOF found\n");

 printf("Number of characters read %d\n", num);

 printf("temp_buf = %.*s\n", temp_buf);

 fclose(stream);

 }

 }

 }

 else

 printf("Error opening file %s\n", sndfiledd[loop_count]);

 memcpy(tpipe, temp_buf, 8);

 /* Print announcement of send API. */

 printf("-\n-\n- Iteration #%d Send API ---------------\n-\n",

 loop_count+1);

 printf("Tpipe Name = %.8s.\n", tpipe);

 printf("Transaction = %.8s.\n", trans);

 printf("RACF UserID = %.8s.\n", user_name);

 printf("RACF Group = %.8s.\n", user_prf);

 printf("Lterm = %.8s.\n", lterm);

 printf("Modname = %.8s.\n", modname);

 printf("OTMA Data = %.50s.\n", otma_data);

 printf("Send buf = %s.\n", send_buf);

 printf("Send buf at %.8x.\n", &send_buf);

 printf ("Buffer length = %d.\n", buffer_length);

 printf ("Waiting for ecb at %.8x.=%.8x.\n", ecb_list[1],

 *ecb_list[1]);

 otma_send_async(

 &anchor, /* (in) anchor block */

 &retrsn, /* (out) return status */

 &ecbIO, /* (out) ecb address */

 &tpipe, /* (in) user tpipe name */

 &trans, /* (in) IMS trancode or cmd */

 &user_name, /* (in) RACF userid */

 &user_prf, /* (in) RACF group name */

 <erm, /* (in) logical terminal */

 &modname, /* (in) module name */

 &otma_data, /* (in) OTMA user data */

 (unsigned char *) &send_buf, /* (in) send buffer */

OTMA C/I Sample Programs

146 Open Transaction Manager Access Guide and Reference

&buffer_length, /* (in) size of send buffer */

 0, /* (in) send_segment_list */

 &error_message, /* (out) IMS Error msg. */

 &send_options); /* (in) send special options */

 DFSYCWAT(ecb_list[1]); /* WAIT on ecb */

 /* Print results of send API. */

 printf("OTMA_SEND_ASYNC done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x\n"

 "Ecb at %.8x.=%.8x.\n",

 retrsn.ret,

 retrsn.rsn[0],

 retrsn.rsn[1],

 retrsn.rsn[2],

 retrsn.rsn[3],

 ecb_list[1],

 *ecb_list[1]

);

 retsave = retrsn.ret; /* Save otma_send_async Return Code. */

 /* Error Processing for OTMA_SEND_ASYNC API. */

 if (retrsn.ret != 0)

 {

 /* ___Error path Free allocated session _____________________ */

 printf("-Error send_async API retrsn.ret=%d\n",retrsn.ret);

 printf("Error message = %s\n", error_message);

 if ((stream = fopen(infiledd[loop_count],"rb")) != NULL)

 {

 num = fread(compare_buf, sizeof(char), NUM_BUFFER, stream);

 if (num == NUM_BUFFER) { /* fread success */

 printf("Compare_buf = %.80s.\n", compare_buf);

 printf("Error_buf = %.80s.\n", error_message);

 fclose(stream);

 compare_result = memc(compare_buf, error_message);

 printf("compare_result = %i\n",compare_result);

 if (compare_result != 0)

 return(compare_result); /* Exit if NO COMPARE */

 }

 else { /* fread() failed */

 if (ferror(stream)) /* possibility 1 */

 printf("Error reading file %s\n", infiledd[loop_count]);

 else if (feof(stream)) { /* possibility 2 */

 printf("EOF found\n");

 printf("Number of characters read %d\n", num);

 printf("Receive compare_buf = %.*s\n", num, compare_buf);

 }

 }

 }

 else

 printf("Error opening file %s\n", infiledd[loop_count]);

 printf("-\n");

 /* ___Sever IMS connection ____________________________ */

 printf("-\n");

 otma_close(

 & anchor, /* (in,out) tr to otma anchor */

 & retrsn /* (out) rc,reason (1-4) */

);

 printf("OTMA_CLOSE done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x\n",

 retrsn.ret,

 retrsn.rsn[0],

OTMA C/I Sample Programs

Chapter 7. OTMA Callable Interface 147

retrsn.rsn[1],

 retrsn.rsn[2],

 retrsn.rsn[3]

);

 return (retsave); /* EXIT with receive API return code */

 }

 /* Initialize otma_receive_async parameters. */

 splat(rec_lterm , "");

 splat(rec_modname , "");

 splat(rec_otma_data , "");

 ecbIO = 0; /* clear ecb for reuse */

 ecb_list[1] = (unsigned long *) /* posted by OTMA */

 ((unsigned long)&(ecbIO) |

 (unsigned long)0x80000000); /* end of list */

 /* Print announcement of receive API. */

 printf("-\n-\n- Iteration #%d Receive API ---------------\n-\n",

 loop_count+1);

 printf("Tpipe Name = %.8s.\n", tpipe);

 printf("Waiting for ecb at %.8x=%.8x.\n", ecb_list[1],

 *ecb_list[1]);

 otma_receive_async(

 &anchor, /* (in) anchor block */

 &retrsn, /* (out) return status */

 &ecbIO, /* (out) ecb address */

 &tpipe, /* (in) user tpipe name */

 &rec_lterm, /* (in) logical terminal */

 &rec_modname, /* (in) module name */

 &rec_otma_data, /* (in) OTMA user data */

 (unsigned char *) &rec_buf, /* (out) Receive buffer */

 &rec_buffer_len, /* (in) size of rec buffer */

 &rec_data_len, /* (in) send_segment_list */

 0, /* (in/out) rec multiple seg */

 &rec_options); /* (in) rec special options */

 DFSYCWAT(ecb_list[1]); /* WAIT on ecb */

 /* Print results of receive API. */

 printf("OTMA_REC_ASYNC done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x\n"

 "Ecb at %.8x.=%.8x.\n",

 retrsn.ret,

 retrsn.rsn[0],

 retrsn.rsn[1],

 retrsn.rsn[2],

 retrsn.rsn[3],

 ecb_list[1],

 *ecb_list[1]);

 printf("Lterm = %.8s.\n", rec_lterm);

 printf("Modname = %.8s.\n", rec_modname);

 printf("OTMA Data = %.50s.\n", rec_otma_data);

 printf("Receive buf = %.80s.\n", rec_buf);

 printf("Receive buf at %.8x.\n", &rec_buf);

 printf("Data length = %d.\n", rec_data_len);

 printf("Buffer length = %d.\n", rec_buffer_len);

 retsave = retrsn.ret; /* Save otma_receive_async Return Code. */

 /* Error Processing for OTMA_RECEIVE_ASYNC API. */

 if (retrsn.ret != 0)

 {

 /* ___Error path Free allocated session _____________________ */

OTMA C/I Sample Programs

148 Open Transaction Manager Access Guide and Reference

printf("-error path retrsn.ret=%d\n",retrsn.ret);

 printf("-\n");

 /* ___Sever IMS connection ____________________________ */

 printf("-\n");

 otma_close(

 & anchor, /* (in,out) tr to otma anchor */

 & retrsn /* (out) rc,reason (1-4) */

);

 printf("OTMA_CLOSE done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x\n",

 retrsn.ret,

 retrsn.rsn[0],

 retrsn.rsn[1],

 retrsn.rsn[2],

 retrsn.rsn[3]

);

 return (retsave); /* EXIT with receive API return code */

 }

 /* ---*/

 /* Open the compare file containing the expected output */

 /* of the receive buffer. Compare the expected output */

 /* with the actual output and return the result. */

 /* ---*/

 printf("-\n-\n- Iteration #%d Data Validation -----------\n-\n",

 loop_count+1);

 if ((stream = fopen(infiledd[loop_count],"rb")) != NULL)

 {

 num = fread(compare_buf, sizeof(char), NUM_BUFFER, stream);

 if (num == NUM_BUFFER) { /* fread success */

 printf("compare_buf = %.80s.\n", compare_buf);

 printf(" rec_buf = %.80s.\n", rec_buf);

 fclose(stream);

 compare_result = memc(compare_buf, rec_buf);

 printf("compare_result = %i\n",compare_result);

 if (compare_result != 0)

 return(compare_result); /* Exit if NO COMPARE */

 }

 else { /* fread() failed */

 if (ferror(stream)) /* possibility 1 */

 printf("Error reading file %s\n", infiledd[loop_count]);

 else if (feof(stream)) { /* possibility 2 */

 printf("EOF found\n");

 printf("Number of characters read %d\n", num);

 printf("Receive compare_buf = %.*s\n", num, compare_buf);

 }

 }

 }

 else

 printf("Error opening file %s\n", infiledd[loop_count]);

 memset(rec_buf ,’ ’, sizeof(rec_buf));

 printf("End of loop \n");

} /* end of loop */

 printf("-\n");

 /***/

 /* Finally, CLOSE severs the connection with IMS and frees the */

 /* Storage used by the OTMA API. */

OTMA C/I Sample Programs

Chapter 7. OTMA Callable Interface 149

/* This will be done at job-step termination but its untidy. */

 /***/

 otma_close(

 & anchor, /* (in,out) ptr to otma anchor */

 & retrsn /* (out) rc,reason (1-4) */

);

 printf("OTMA_CLOSE done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x \n",

 retrsn.ret,

 retrsn.rsn[0],

 retrsn.rsn[1],

 retrsn.rsn[2],

 retrsn.rsn[3]

);

 return (compare_result); /* We’re done */

} /* end of main */

/*===*/

/* Subroutine to compare expected results(compare_buf) */

/* with actual results(err_msg) the "|" is used to signify */

/* an ignore compare and "?" is used to mark the end of string. */

/* Note: Compare starts using an index i=1 ie. the 2nd character */

/* because the 1st character was blanked out. (NL x’15’) */

/*===*/

int memc(char *comp_buf, char *rec_buf1)

{

 int j;

 int i;

 j = 0;

 for (i=1;

 ((j==0) && (comp_buf[i] != ’?’));

 i++)

 {

 if(comp_buf[i] != ’|’) /* Ignore compare */

 {

 if(comp_buf[i] != rec_buf1[i]) /* compare ok ? */

 {

 j++; /* No */

 printf("MISCOMPARE !!! \n");

 printf("comp_buf[%d] = %c\n", i, comp_buf[i]);

 printf("rec_buf1[%d] = %c\n", i, rec_buf1[i]);

 }

 else

 ;

 }

 else

 ; /* Else null */

 }

 return (j);

}

OTMA C/I Sample Programs

150 Open Transaction Manager Access Guide and Reference

Notices

This information was developed for products and services offered in the U.S.A. IBM

may not offer the products, services, or features discussed in this document in other

countries. Consult your local IBM representative for information on the products and

services currently available in your area. Any reference to an IBM product, program,

or service is not intended to state or imply that only that IBM product, program, or

service may be used. Any functionally equivalent product, program, or service that

does not infringe any IBM intellectual property right may be used instead. However,

it is the user’s responsibility to evaluate and verify the operation of any non-IBM

product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you any

license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply to

you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements and/or

changes in the product(s) and/or the program(s) described in this publication at any

time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for this

IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs

© Copyright IBM Corp. 1995, 2004 151

and other programs (including this one) and (ii) the mutual use of the information

which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those

products, their published announcements or other publicly available sources. IBM

has not tested those products and cannot confirm the accuracy of performance,

compatibility or any other claims related to non-IBM products. Questions on the

capabilities of non-IBM products should be addressed to the suppliers of those

products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to IBM,

for the purposes of developing, using, marketing or distributing application programs

conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly

tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,

serviceability, or function of these programs. You may copy, modify, and distribute

these sample programs in any form without payment to IBM for the purposes of

developing, using, marketing, or distributing application programs conforming to

IBM’s application programming interfaces.

152 Open Transaction Manager Access Guide and Reference

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

If you are viewing this information softcopy, the photographs and color illustrations

may not appear.

Programming Interface Information

This book is intended to help you use IMS Open Transaction Manager Access

(OTMA) and can be used to write an OTMA client. This book documents

General-use Programming Interface and Associated Guidance Information provided

by IMS.

General-use programming interfaces allow the customer to write programs that

obtain the services of IMS.

General-use Programming Interface and Associated Guidance Information is

identified where it occurs by an introductory statement to a section or topic.

Trademarks

The following terms are trademarks of International Business Machines Corporation

in the United States, other countries, or both:

 BookManager

CICS

DataPropagator

DB2

DB2 Universal Database

IBM

IMS

IMS/ESA

MQSeries

MVS

MVS/ESA

NetView

OS/390

RACF

Tivoli

VTAM

WebSphere

z/OS

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in

the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

 Other company, product or service names may be trademarks or service marks of

others.

Notices 153

154 Open Transaction Manager Access Guide and Reference

Bibliography

This bibliography lists all of the information in the

IMS Version 9 library.

v IMS Queue Control Facility for z/OS: User’s

Guide and Reference, SC26-9685

v IMS Message Requeuer Program

Description/Operations Manual, SH21-1089

v z/OS MVS Programming: Authorized Assembler

Services Guide, GC28-1763

v z/OS MVS Programming: Authorized Assembler

Services Reference, Volume 1, SA22-7609

v z/OS MVS Programming: Authorized Assembler

Services Reference, Volume 2, SA22-7610

v z/OS MVS Programming: Authorized Assembler

Services Reference, Volume 3, SA22-7611

v z/OS MVS Programming: Authorized Assembler

Services Reference, Volume 4, SA22-7612

v z/OS MVS Programming: Resource Recovery,

GC28-1739

v z/OS MVS Programming: Sysplex Services

Reference, GC28-1772

v z/OS MVS System Commands, SA22-7627

v z/OS MVS Initialization and Tuning Reference,

SA22-7592

IMS Version 9 Library

 Title Acronym Order

number

IMS Version 9: Administration

Guide: Database Manager

ADB SC18-7806

IMS Version 9: Administration

Guide: System

AS SC18-7807

IMS Version 9: Administration

Guide: Transaction Manager

ATM SC18-7808

IMS Version 9: Application

Programming: Database

Manager

APDB SC18-7809

IMS Version 9: Application

Programming: Design Guide

APDG SC18-7810

IMS Version 9: Application

Programming: EXEC DLI

Commands for CICS and

IMS

APCICS SC18-7811

IMS Version 9: Application

Programming: Transaction

Manager

APTM SC18-7812

IMS Version 9: Base Primitive

Environment Guide and

Reference

BPE SC18-7813

IMS Version 9: Command

Reference

CR SC18-7814

Title Acronym Order

number

IMS Version 9: Common

Queue Server Guide and

Reference

CQS SC18-7815

IMS Version 9: Common

Service Layer Guide and

Reference

CSL SC18-7816

IMS Version 9: Customization

Guide

CG SC18-7817

IMS Version 9: Database

Recovery Control (DBRC)

Guide and Reference

DBRC SC18-7818

IMS Version 9: Diagnosis

Guide and Reference

DGR LY37-3203

IMS Version 9: Failure

Analysis Structure Tables

(FAST) for Dump Analysis

FAST LY37-3204

IMS Version 9: IMS Connect

Guide and Reference

CT SC18-9287

IMS Version 9: IMS Java

Guide and Reference

JGR SC18-7821

IMS Version 9: Installation

Volume 1: Installation

Verification

IIV GC18-7822

IMS Version 9: Installation

Volume 2: System Definition

and Tailoring

ISDT GC18-7823

IMS Version 9: Master Index

and Glossary

MIG SC18-7826

IMS Version 9: Messages

and Codes, Volume 1

MC1 GC18-7827

IMS Version 9: Messages

and Codes, Volume 2

MC2 GC18-7828

IMS Version 9: Open

Transaction Manager Access

Guide and Reference

OTMA SC18-7829

IMS Version 9: Operations

Guide

OG SC18-7830

IMS Version 9: Release

Planning Guide

RPG GC17-7831

IMS Version 9: Summary of

Operator Commands

SOC SC18-7832

IMS Version 9: Utilities

Reference: Database and

Transaction Manager

URDBTM SC18-7833

IMS Version 9: Utilities

Reference: System

URS SC18-7834

© Copyright IBM Corp. 1995, 2004 155

Supplementary Publications

 Title Order number

IMS Connector for Java 2.2.2 and

9.1.0.1 Online Documentation for

WebSphere Studio Application

Developer Integration Edition 5.1.1

SC09-7869

IMS Version 9 Fact Sheet GC18-7697

IMS Version 9: Licensed Program

Specifications

GC18-7825

Publication Collections

 Title Format Order

number

IMS Version 9 Softcopy Library CD LK3T-7213

IMS Favorites CD LK3T-7144

Licensed Bill of Forms (LBOF):

IMS Version 9 Hardcopy and

Softcopy Library

Hardcopy

and CD

LBOF-7789

Unlicensed Bill of Forms

(SBOF): IMS Version 9

Unlicensed Hardcopy Library

Hardcopy SBOF-7790

OS/390 Collection CD SK2T-6700

z/OS Software Products

Collection

CD SK3T-4270

z/OS and Software Products

DVD Collection

DVD SK3T-4271

Accessibility Titles Cited in This

Library

 Title Order number

z/OS V1R1.0 TSO Primer SA22-7787

z/OS V1R5.0 TSO/E User’s Guide SA22-7794

z/OS V1R5.0 ISPF User’s Guide,

Volume 1

SC34-4822

156 Open Transaction Manager Access Guide and Reference

Index

Special characters
/DISPLAY

command output 95

TMEMBER command 49

TRANSACTION command 2

/EXIT command 44

/SECURE OTMA NONE command 52

/START OTMA command 46

/STOP OTMA command 46

Numerics
119ABEND code 21

A
access control environment element 89

cached user ID aging value 72

ACEE
See access control environment element

administering
Fast Path 45

IMS conversations 44

IMS restart processing 45

MSC 45

queue control facility 46

XRF 45

aging value 72

API
otma_alloc 108

otma_close 117

otma_create 104

otma_free 116

otma_open 106

otma_openx 107

otma_receive_async 115

otma_send_async 112

otma_send_receive 109

otma_send_receivex 112

APPC/IMS
and protected transactions 27

application programming, with OTMA 54

application programs, IMS 2

application-data section of message prefix 92

architected message 60

architected transaction attributes 95

architecture level 73

ATRABCK service 28

ATRACMT service 28

ATREINT service 28

B
buffer pool

HIOP 50

LUMP 50

C
caching scheme, user ID 53

Callable Interface (C/I) 99

error codes and messages 117

introduction to 99

otma_alloc API 108

otma_close API 117

otma_create API 104

otma_free API 116

otma_open API 106

otma_openx API 107

otma_receive_async API 115

otma_send_async API 112

otma_send_receive API 109

otma_send_receivex API 112

sample programs 126

CBresynch 32

CBresynch command 75

CHECK security level 53

CHNG call 54

client
commands issued 32

definition 2, 13

high-performance access to IMS 4

naming conventions for 14

number that can connect to OTMA 4

OTMA, in XRF environment 46

routing 5

security checking 51

Client_Bid resynch 32

client-bid message flow 22

command
/DBDUMP DATABASE 62

/DBRECOVERY AREA 62

/DEQUEUE TMEMBER TPIPE 60

/DISPLAY TMEMBER 49

/DISPLAY TRANSACTION 2

/SECURE OTMA 60

/SECURE OTMA NONE 52

/START AREA 62

/START OTMA 61

/START REGION 62

/START TMEMBER 61

/STOP AREA 62

/STOP OTMA 61

/STOP REGION 62

/STOP TMEMBER 61

/TRACE SET 62

architected output 5

CBresynch 32

IMS 59

issued by client 32

OTMA
/DISPLAY ACTIVE 59

/DISPLAY OTMA 59

/DISPLAY SHUTDOWN STATUS 60

/DISPLAY STATUS TMEMBER 60

© Copyright IBM Corp. 1995, 2004 157

command (continued)
OTMA (continued)

/DISPLAY TMEMBER ALL 60

/DISPLAY TMEMBER QCNT 60

/DISPLAY TRACE TMEMBER 60

/DISPLAY TRANSACTION 60

REPresynch 32

REQresynch 32

SRVresynch 32

TBresynch 32

validation 52

commit
mode 16

processing 16

sample flows 17

summary of processing 17

commit-then-send flow 17, 24

context 55

conversations
protected 55

correlator token 7

coupling facility
cross system 1

XCF 1

CRGGRM service 27

CRGSEIF service 27

cross system coupling facility.
See XCF (Cross System Couping Facility).

CTXBEGC service 27

CTXEINT service 28

CTXSWCH service 28

customizing IMS 42

D
DBCTL 50

dependent region 51

descriptor 41

destination
determination message 42

token, explanation 88

Destination Resolution exit routine (DFSYDRU0) 42

DFS554 message 21

DFSCCMD0 42

DFSCTRN0 42

DFSNPRT0 42

DFSPBxxx 39

DFSQSP0 42

DFSYDRU0 exit routine 42

DFSYIOE0 exit routine 42

DFSYMSG DSECT 69

DFSYPRX0 exit routine 42

diagnostic information 63

DISPLAY command output 95

DL/I calls 54

CHNG 54

INQY 55

PURG 55

SETO 55

E
ECSA 50

encrypting messages 50

environments supported, IMS 2

exit routines, with OTMA 42

express PCB
and program switch 57

express_context_interest service.
See CTXEINT service

Extended Recovery Facility
See XRF (Extended Recovery Facility)

F
Fast Path, administering 45

flow
client-bid message 22

commit-then-send 17, 24

of resynchronization 33

send-then-commit 19

send-then-commit with Confirm 21

Server-Available 23

front-end switch 50

FULL security level 53

full-duplex message flow 7

G
GRNAME parameter 39

H
half-duplex message flow 7

HIOP storage pool 47

I
I/O PCB, and program switch 56

IMS
application programs 2

CICS-IMS DBCTL 59

command
restrictions 59

control region size 50

conversation
and commit-then-send mode 17

conversations, administering 44

customizing for OTMA 42

device support with OTMA 3

emergency restart 40

Front-End Switch 50

high-performance access 4

IMS.ADFSMAC 69

Message Format Service 50

OTMA parameter
GRNAME 39

OTMA 40

OTMAMD 40

OTMANM 40

OTMASE 41

158 Open Transaction Manager Access Guide and Reference

IMS (continued)
OTMA parameter (continued)

OTMASP 40

OTMAASY start-up parameter 58

processing protected transactions 28

PROCLIB member DFSPBxxx 39

Remote Site Recovery 59

Resource Recovery Services exits supported 27

restart processing 45

resynchronization support 29

scheduler message block (SMB) 5

standard flow 17

terminal control commands 50

transactions
using a nonsynchronized tpipe 31

using a synchronized tpipe 31

use of OTMA 39

XRF 59

Input/Output Edit exit routine (DFSYIOE0) 42

installing OTMA 39

introduction to OTMA 1

IOPCB 5

irrecoverable output 17

IXCMSGO macro
MSGCNTL parameter 69

J
JCL

to protect transactions 27

L
LTERM 8

M
macros, XCF 50

message
architected form 60

control information summary 69

destination determination 42

encryption 50

examples of how to select 46

extending 4

field
architecture level 73

chain flag 78

command type 75

commit-confirmation flag 74

message type 73

prefix flag 78

processing flag 77

reason code 79

recoverable sequence number 79

response flag 74

segment sequence number 79

send-sequence number 79

sense code 79

tpipe name 78

message (continued)
flow

client-bid 22

commit-then-send 17, 24

deallocate 16

definition 5

in full-duplex environment 12

resynchronization 35

send-then-commit 19

send-then-commit with Confirm 21

Server-Available 23

use of queues in tpipe 11

using transaction pipes 10

using XCF 10

flow in an OTMA environment 6

format service 50

full-duplex flow 7

half-duplex flow 7

IMS 62

prefix
application data 92

contents 22, 23, 24, 25, 26, 27

overview 14

security data 89

state-data section 80

syntax 69

user data section 91

queue data set size 50

recoverable 29

requeuer 46

resynchronization
sample 36

sample 92

acknowledge receipt of CBresynch 36

acknowledge receipt of SRVresynch 37

client-bid request with resynchronization 36

REPresynch command 37

REQresynch command 37

SRVresynch command 37

successful resynchronization 38

sample flows 21

security checking 2

selective recovery 46

sending 14

sequence numbers 15

sequential order 20

switch 55

in shared queues environment 59

type
command 73

commit confirmation 74

data 73

response 73

transaction 73

message-control information section of message

prefix 69

monitoring performance 50

MSC (Multiple Systems Coupling) 45

MSDB 50

Index 159

N
NAK codes 63

network architecture models 1

non-conversational program 58

NONE security level 52

O
open systems interconnection 1

originator’s token, explanation of 88

OTMA (IMS Open Transaction Manager Access)
benefits 3

Callable Interface (C/I) 99

error codes and messages 117

getting started with 100

initializing 101

introduction to 99

otma_alloc API 108

otma_close API 117

otma_create API 104

otma_free API 116

otma_open API 106

otma_openx API 107

otma_receive_async API 115

otma_send_async API 112

otma_send_receive API 109

otma_send_receivex API 112

restrictions 102

sample programs 126

security for 102

capabilities 2

client 2, 13

in XRF environment 46

initiating protected transactions 27

comparison of protocols 4

descriptor 41

differences from other protocols 4

IMS application programs 2

IMS environments supported 2

installing 39

introduction 1

message
prefix length 49

message switch 55

parameter 40

Prerouting exit routine (DFSYPRX0) 5

program switch 55

protected messages 58

restrictions 49

resynchronization protocol 32

security levels 52

server 2

support for /EXIT command 44

OTMA (Open Transaction Manager Access)
sample messages 92

otma_alloc API 108

otma_close API 117

otma_create API 104

otma_free API 116

otma_open API 106

otma_openx API 107

otma_receive_async API 115

otma_send_async API 112

otma_send_receive API 109

otma_send_receivex API 112

OTMAASY option 58

OTMAMD parameter 40

OTMANM parameter 40

OTMASE parameter 41

OTMASP parameter 40

P
parameter

GRNAME 39

OTMA 40

OTMAMD 40

OTMANM 40

OTMASE 41

OTMASP 40

performance 50

prefix
of message 14

rules 15

syntax 69

Prerouting exit routine (DFSYPRX0)
basic message flow 5

customizing IMS for OTMA 42

usage restrictions 50

private context 55

PROFILE security level 52

program switch 55

CM0 messages 55

CM1 messages 55

race condition 57

usage scenarios 56

for protected transactions 58

single-stream 56

to multiple programs 57

with express PCB 57

with OTMAASY option 58

without ISRT to I/O PCB 56

program-to-program (P2P) 55

program-to-program switch 48

protected
conversations 55

transactions 27

PURG call 55

Q
QCF

See queue control facility

queue control facility 46

identifying message categories 47

support for non-shared queues 46

support for shared queues 46

160 Open Transaction Manager Access Guide and Reference

R
race condition

avoiding 58

defined 57

RACF (Resource Access Control Facility)
establishing security 51

FACILITY class definition 40

restrictions 50

recoverable
resources 27

transactions 30

recoverable messages 29

recovering send-then-commit 17

recovery of OTMA messages, selective 46

reply resynch 32

REPresynch 32

REPresynch command 83

REQresynch 32

REQresynch command 83

request resynch 32

Resource Recovery Services
and protected transactions 27

exits supported by IMS 27

restart, IMS 45

restrictions 49

resynchronization
assumptions 29

deferred 34

flow 33

OTMA protocol 32

overview 28

sample message 36

RRS.
See Resource Recovery Services

S
sample

code
asynchronous processing 138

synchronous processing 127

message 92

client-bid 93

response 94

transaction 93

scheduler message block (SMB) 5

security
data section of message prefix 89

format of data section 89

RACF 53

security checking 2

security for OTMA 51

security levels 52

CHECK 53

FULL 53

NONE 52

PROFILE 52

send-then-commit
flow 19

with Confirm flow 21

sense codes 63

sequence numbers
definition 15

recoverable 15

send-sequence numbers 15

server resynch 32

server token, explanation of 87

Server-Available flow 23

server, definition 2

services
ATRABCK 28

ATRACMT 28

ATREINT 28

CRGGRM 27

CRGSEIF 27

CTXBEGC 27

CTXEINT 28

CTXSWCH 28

SETO call 55

shared queues
commit-then-send messages 48

enabling OTMA 43

output message queue count 47

program-to-program message switch 59

program-to-program switch 48

send-then-commit messages 48

tpipe status 49

unsolicited messages 48

single-stream program switch 56

SLU 2 Transaction flow
standard 7

with OTMA 8

SRVresynch 32

SRVresynch command 82

state-data
field explanations 86

format
client-bid commands 81

for resume output for special queue for tpipe 85

for resume output for tpipe 85

REPresynch commands 83

REQresynch commands 83

server-available commands 81

SRVresynch commands 82

TBresynch commands 84

transaction-related information 80

section of message prefix 80

storage shortage 47

switch_context service.
See CTXSWCH service

syntax, message prefix 69

system resources 50

T
TBresynch 32

TBresynch command 84

temporary transaction pipe 62

terminal control commands 50

tmember operand 46

Index 161

token
correlator 88

destination 88

originator’s 88

server 87

tpipe operand 46

tpipe_Bid resynch 32

tpipe.
See transaction pipe

transaction attributes, architected 95

transaction pipe
and message flow 10

definition 5, 8

differences from LTERMs 9

differences from UNIX pipes 9

flow in full-duplex environment 12

in an OTMA client/server environment 9

limit per tmember 51

naming conventions for 14

non-synchronized 9

number a client can create 6

synchronized 9

temporary 62

use of queues and message flow 11

using 8

transactions
and correlator token 88

commit-then-send 16, 18

Fast Path 49

flow for standard 17

grouping 4

IMS conversational 49

IMS, using a nonsynchronized tpipe 31

IMS, using a synchronized tpipe 31

protecting 27

recoverable 30

send-then-commit 16, 19

unrecoverable 30

U
UNIX pipes 9

unrecoverable transactions 30

user abend 119ABEND 21

User ID caching scheme 53

user-data section of message prefix 91

V
VTAM support 4

X
XCF (Cross System Coupling Facility)

basic message flow 10

group name 39

macros 50

XRF (Extended Recovery Facility)
processing with OTMA 45

Z
z/OS

applications using XCF 13

z/OS program 2

162 Open Transaction Manager Access Guide and Reference

����

Program Number: 5655-J38

Printed in USA

SC18-7829-00

Sp
in
e
in
fo
rm
at
io
n:

 �
�

�

IM
S

O
pe

n
Tr

an
sa

ct
io

n
M

an
ag

er

Ac

ce
ss

G

ui
de

an

d
R

ef
er

en
ce

Ve

rs
io

n
9

	Contents
	Figures
	Tables
	About This Book
	How This Book Is Organized
	Prerequisite Knowledge
	IBM Product Names Used in This Information
	How to Send Your Comments

	Summary of Changes
	Changes to This Book for IMS Version 9
	Library Changes for IMS Version 9
	New and Revised Titles
	Organizational Changes
	Terminology Changes
	Accessibility Enhancements
	User Assistive Technologies
	Accessible Information
	Keyboard Navigation of the User Interface

	Chapter 1. Introduction to OTMA
	What is OTMA?
	Capabilities of OTMA
	Benefits of Using OTMA
	Advantages of the OTMA Protocol

	How IMS Messages Flow in an OTMA Environment
	Basic OTMA Message Flow
	Sample Commit-Then-Send Transaction Processing Flows

	Using Transaction Pipes with OTMA
	Differences in Transaction Pipes
	Message Flow Using Transaction Pipes

	Chapter 2. The OTMA Client
	What Is an OTMA Client?
	OTMA Naming Conventions
	Messages Sent by OTMA Clients
	Parts of the OTMA Message Prefix
	OTMA Message-Prefix Rules
	Sequence Numbers Used by OTMA
	Using Send-Sequence Numbers
	Using Recoverable Sequence Numbers

	OTMA Commit Processing
	Summary of OTMA Commit Processing
	Sample OTMA Commit Processing Flows
	Commit-Then-Send Flow
	Send-Then-Commit Flow
	Send-Then-Commit Flow with Confirm

	Sample OTMA Message Flows
	Client-Bid Message Flow
	Server-Available Flow
	Commit-Then-Send Transaction Flow

	Protecting Transactions with OTMA
	Initiating Protected Transactions from an OTMA Client
	Processing Protected Transactions in IMS

	Client/Server Resynchronization with OTMA
	Assumptions for OTMA Resynchronization
	Recoverable OTMA Transactions
	Unrecoverable OTMA Transactions
	Summary Results of IMS Transactions and Commands

	OTMA Resynchronization Protocol
	Sample OTMA Resynchronization Message Flow
	Sample OTMA Resynchronization Messages

	Chapter 3. Using IMS with OTMA
	Installing OTMA
	Specifying OTMA-Related Parameters
	Specifying OTMA Descriptors

	Customizing IMS for OTMA
	OTMA-Supported Exit Routines
	Using DFSYPRX0 and DFSYDRU0 OTMA Exit Routines to Determine Destination

	Administering IMS for OTMA
	IMS Conversations and OTMA
	MSC and OTMA Transactions
	Fast Path and OTMA Transactions
	IMS Restart Processing and OTMA
	XRF Processing and OTMA
	Queue Control Facility and OTMA
	Using Shared Queues with OTMA
	OTMA Commit-Then-Send Messages
	OTMA Unsolicited Messages
	OTMA Send-Then-Commit Messages
	Using Other IMS Commands

	OTMA Restrictions
	Managing System Resources and OTMA
	IMS Message Queue Data Set Size and OTMA
	Buffer Pool Usage for OTMA
	Tpipe Number Recommendations for OTMA
	Dependent Region Occupancy and OTMA
	OTMA Security Overhead

	Establishing Security for OTMA
	Using the /SECURE OTMA Command
	Selecting an OTMA Security Level

	General OTMA Security Considerations
	Using DL/I Calls in an OTMA Environment
	OTMA Program-to-Program Switch Processing
	OTMA Single-Stream Program Switch
	OTMA Program Switch without ISRT to I/O PCB
	OTMA Program Switch with Express PCB
	OTMA Program Switch to Multiple Programs
	OTMA Program Switch with OTMAASY Option
	OTMA Program Switch for Protected Transactions
	Other OTMA Program Switch Considerations

	IMS Commands Using OTMA
	OTMA Terminology
	Modified Commands for OTMA

	IMS Messages Introduced by OTMA

	Chapter 4. OTMA Diagnostic Information
	OTMA Sense Codes for NAK Messages
	OTMA Return Codes

	Chapter 5. OTMA Message Prefix
	OTMA Message-Control Information
	Format of OTMA Message-Control Information
	Explanation of OTMA Message-Control Information Fields

	OTMA State Data
	Format of OTMA State Data for Transaction-Related Information
	Format of OTMA State Data for Server-Available and Client-Bid Commands
	Format of OTMA State Data for SRVresynch Command
	Format of OTMA State Data for REQresynch Command
	Format of OTMA State Data for REPresynch Command
	Format of OTMA State Data for TBresynch Command
	Format of OTMA State Data for Resume Output for Tpipe
	Format of OTMA State Data for Resume Output for the Special Queue for Tpipe
	Explanation of OTMA State Data Fields

	OTMA Security Data
	Format of OTMA Security Data
	Explanation of OTMA Security Data Fields

	OTMA User Data
	Format of OTMA User Data
	Explanation of OTMA User Data Fields

	OTMA Application Data
	Format of OTMA Application Data
	Explanation of OTMA Application Data Fields

	Sample OTMA Messages

	Chapter 6. OTMA Architected Transaction Attributes
	Chapter 7. OTMA Callable Interface
	Introduction to OTMA Callable Interface
	Getting Started with OTMA C/I
	OTMA C/I Environment Requirements
	OTMA C/I Migration and Coexistence
	OTMA C/I Initialization
	OTMA C/I Security
	OTMA C/I Restrictions
	OTMA C/I Hints and Tips

	OTMA C/I APIs
	Using otma_create
	Description
	Invocation
	Input
	Output
	C-Language Function Prototype
	Return Values (rc value)

	Using otma_open
	Description
	Invocation
	Input
	Output
	C-Language Function Prototype
	Post Codes
	Return Values (rc value)

	Using otma_openx
	Description
	Invocation
	Input
	Output
	C-Language Function Prototype
	Post Codes
	Return Values (rc value)

	Using otma_alloc
	Description
	Invocation
	Input
	Output
	C-Language Function Prototype
	Return Values (rc value)

	Using otma_send_receive
	Description
	Invocation
	Input
	Output
	C-Language Function Prototype
	Post Codes
	Return Values (rc value)

	Using otma_send_receivex
	Description
	Invocation
	Input
	Output
	C-Language Function Prototype
	Post Codes
	Return Values (rc value)

	Using otma_send_async
	Description
	Invocation
	Input
	Output
	C-Language Function Prototype
	Post Codes
	Return Values (rc value)

	Using otma_receive_async
	Description
	Invocation
	Input
	Output
	C-Language Function Prototype
	Post Codes
	Return Values (rc value)

	Using otma_free
	Description
	Invocation
	Input
	Output
	C-Language Function Prototype
	Return Values (rc value)

	Using otma_close
	Description
	Invocation
	Input
	Output
	C-Language Function Prototype
	Return Values (rc value)

	Codes and Messages Used by OTMA C/I
	OTMA Post Codes
	OTMA Return Codes
	OTMA Error Messages

	OTMA C/I Sample Programs
	Warranty and Distribution for OTMA C/I Sample Programs
	OTMA C/I Sample Program #1: Synchronous Processing
	OTMA C/I Sample Program #2: Asynchronous Processing

	Notices
	Programming Interface Information
	Trademarks

	Bibliography
	IMS Version 9 Library
	Supplementary Publications
	Publication Collections
	Accessibility Titles Cited in This Library

	Index

