
IMS

Common Queue Server

Guide and Reference

Version 9

SC18-7815-00

���

IMS

Common Queue Server

Guide and Reference

Version 9

SC18-7815-00

���

Note

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

187.

First Edition (October 2004) (Softcopy Only)

This edition applies to Version 9 of the IMS (product number 5655–J38) and to all subsequent releases and

modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1997, 2004. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures . vii

Tables . ix

About This Book . xi

Prerequisite Knowledge . xi

IBM Product Names Used in This Information xi

How to Read Syntax Diagrams xii

How to Send Your Comments xiv

Summary of Changes . xv

Changes to This Book for IMS Version 9 xv

Library Changes for IMS Version 9 xv

New and Revised Titles . xv

Organizational Changes . xvi

Terminology Changes . xvi

Accessibility Enhancements xvi

Chapter 1. Introduction . 1

Common Queue Server Overview 1

CQS Benefits . 2

CQS Components . 2

CQS Functions . 3

Structures Managed by CQS 3

CQS Structure Functions . 4

CQS Recovery Functions . 5

CQS Client Requests . 6

Planning for CQS Hardware and Software Requirements 6

Chapter 2. CQS Definition and Tailoring 7

CQS As Part of a Sysplex . 7

CQS and Defining z/OS Policies 7

CQS’s Support of Multiple Clients 11

Determining Structure Size for CQS Connections 12

Preparing to Start CQS . 12

Updating z/OS Program Properties Table for CQS 13

CQS Execution Parameters . 14

CQS Initialization Parameters PROCLIB Member (CQSIPxxx) 16

CQS Local Structure Definition PROCLIB Member (CQSSLxxx) 17

CQS Global Structure Definition PROCLIB Member (CQSSGxxx) 19

CQS Execution Data Sets . 24

CQS System Checkpoint Data Set 24

CQS Structure Recovery Data Sets 25

Chapter 3. CQS Administration 27

Starting CQS . 27

Recording Information Necessary for Starting CQS 28

Restarting CQS Structures . 28

CQS Structure Allocation . 28

CQS Structure Warm Start 28

CQS Structure Cold Start . 29

CQS Structure Recovery for Restarting 29

Restarting CQS . 30

© Copyright IBM Corp. 1997, 2004 iii

||
||
||
||

CQS Warm Start . 30

CQS Cold Start . 31

Using the z/OS Automatic Restart Manager with CQS 31

Restarting CQS after CQS Resource Cleanup Failures 32

Establishing Client Connection to CQS During Failed Client Takeover 32

Authorizing Access To CQS . 33

Authorizing CQS Registration 33

Authorizing Connections to CQS Structures 33

Using Structure Alter for CQS 34

Using CQS System Checkpoint 34

CQS Checkpoint Data Set . 35

How CQS Restarts after System Checkpoint 35

Using CQS Structure Checkpoint 35

Preventing CQS Structure Full 37

CQS Structure Overflow Function 37

CQS Structure Full Monitoring 38

Using Structure Full Monitoring with CQS Structure Overflow 39

Rebuilding Structures in CQS 39

z/OS System-Managed Rebuild and CQS 39

CQS-Managed Rebuild . 40

Initiating Structure Rebuild with z/OS and CQS 40

CQS Structure Repopulation 41

CQS Structure Recovery . 41

CQS Structure Copy . 42

z/OS Structure Duplexing for CQS 42

Deleting a Structure When CQS Is Not Connected 44

Shutting Down CQS . 44

Chapter 4. CQS User-Supplied Exit Routines 47

General User-Supplied Exit Routine Interface Information for CQS 47

CQS Initialization-Termination User-Supplied Exit Routine 48

Contents of Registers on Entry 48

Contents of Registers on Exit 48

CQS Initialization and Termination Parameter Lists 49

CQS Client Connection User-Supplied Exit Routine 49

Contents of Registers on Entry 49

Contents of Registers on Exit 50

CQS Client Connection and Disconnect Parameter Lists 50

Queue Overflow User-Supplied Exit Routine for CQS 51

Contents of Registers on Entry 52

Contents of Registers on Exit 52

CQS Queue Overflow Parameter List 52

CQS Structure Statistics User-Supplied Exit Routine 53

Contents of Registers on Entry 53

Contents of Registers on Exit 54

CQS Structure Statistics User-Supplied Exit Routine Parameter List 54

CQS Structure Process Statistics Record 55

CQS Request Statistics Record 55

Data Object Statistics Record for CQS 56

Queue Name Statistics Record for CQS 57

z/OS Request Statistics Record for CQS 57

Structure Rebuild Statistics Record for CQS 58

Structure Checkpoint Statistics Record for CQS 60

Structure Checkpoint Statistics Gathered by CQS 61

CQS Structure Event User-Supplied Exit Routine 62

Contents of Registers on Entry 63

iv Common Queue Server Guide and Reference

||
||

Contents of Registers on Exit 63

Routine Parameter Lists . 63

CQS Structure Event Exit Routine Parameter List 63

CQS Structure Event Exit Routine Checkpoint Parameter List 64

CQS Structure Event Exit Routine Rebuild Parameter List 65

CQS Structure Event Exit Routine Overflow Parameter List 66

CQS Structure Event Exit Routine Status Change Parameter List 67

CQS Statistics Available through the BPE Statistics User Exit 67

Chapter 5. Writing a CQS Client 69

Introducing CQS Client Requests 69

Sequence of CQS Requests Issued by a Client for Queue Structure 70

Coding CQS Requests . 70

Authorization for CQS . 70

Environmental Requirements for CQS 71

Using Registers with CQS Requests 72

Coding Parameters for CQS Requests 73

Coding Literals for CQS Requests 74

Using an ECB with CQS Requests 74

Using Lists in the CQS Requests 75

Return Codes and Reason Codes for CQS Requests 75

Assembling a Program with CQS Requests 77

CQS Clients and Handling Special Events 77

CQS Cold Start . 77

Registering Interest in Queues with CQSINFRM 78

Working with Objects on the Cold Queue using CQS Requests 78

Initiating Checkpoints using CQS Requests 78

Shutting Down CQS . 78

Tuning to Improve CQS Performance 78

Chapter 6. CQS Client Requests 81

Using CQS Client Requests . 81

CQSBRWSE Request . 82

CQSCHKPT Request . 89

CQSCONN Request . 92

CQSDEL Request . 98

CQSDEREG Request . 102

CQSDISC Request . 103

CQSINFRM Request . 108

CQSMOVE Request . 112

CQSPUT Request . 116

CQSQUERY Request . 123

CQSREAD Request . 132

CQSRECVR Request . 137

CQSREG Request . 142

CQSRSYNC Request . 144

CQSSHUT Request . 151

CQSUNLCK Request . 152

CQSUPD Request . 157

Example of Using a CQS Request: CQSREAD 161

Chapter 7. CQS Client Exit Routines 167

Client CQS Event Exit Routine 167

Contents of Registers on Entry 167

Contents of Registers on Exit 168

CQS Restart Entry Parameter List 168

Contents v

||

||
||
||
||
||
||

CQS Abnormal Termination Parameter List 168

Client Processing after CQS Abnormal Termination or Restart 169

CQS Client Structure Event Exit Routine 169

Contents of Registers on Entry 170

Contents of Registers on Exit 171

Deferred Resync Complete Parameter List for CQS Client Structure Event 171

CQS Resync Parameter List 172

CQS Resync UOW Entry . 172

Checkpoint Parameter List for CQS Client Structure Event 173

Structure Rebuild Parameter List for CQS Client Structure Event 174

Structure Rebuild Lost UOWs Parameter List for CQS Client Structure Event 175

Rebuild Lost UOW Entry for CQS Client Structure Event 175

Structure Overflow Parameter List for CQS Client Structure Event 176

Structure Status Change Parameter List for CQS Client Structure Event 177

CQS Client Structure Inform Exit Routine 178

Contents of Registers on Entry 178

Contents of Registers on Exit 178

Structure Inform Parameter List for CQS Client Structure Inform 179

Chapter 8. CQS Diagnosis . 181

CQS Log Records . 181

Printing CQS Log Records . 183

DD Statements for CQS Diagnosis 183

Control Statements for CQS Diagnosis 183

Limiting Log Data to a Specified Time Range for CQS Diagnosis 184

Copying CQS Log Records for Diagnostics 184

Notices . 187

Programming Interface Information 189

Trademarks . 190

Bibliography . 191

IMS Version 9 Library . 191

Supplementary Publications . 191

Publication Collections . 192

Accessibility Titles Cited in This Library 192

Index . 193

vi Common Queue Server Guide and Reference

Figures

 1. Client Systems, CQS, and the Coupling Facility . 2

 2. Defining IMS Resources in the CFRM Policy . 10

 3. Defining IMS Resources in the LOGR Policy . 11

 4. Defining IMS Resources in the SFM Policy . 11

 5. Entry to Be Added to the z/OS Program Properties Table 13

 6. Specifying IMS and CQS Parameters . 15

 7. Sample CQSIPxxx PROCLIB Member . 16

 8. Sample CQSSLxxx PROCLIB Member . 18

 9. Sample CQSSGxxx PROCLIB Member . 20

10. System Checkpoint Data Set Example . 25

11. Structure Recovery Data Set Example . 26

12. RACF Commands for Authorizing CQS Registration 33

13. RACF Commands to Authorize Connection to CQS Structures 34

14. Display for Structure Full Threshold - Example 1 38

15. Display for Structure Full Threshold - Example 2 38

16. Display for Structure Full Threshold - Example 3 38

17. Passing an Address for Register . 73

18. Passing a value for register . 73

19. Passing an Address for Symbol . 73

20. Passing a Value for Symbol . 73

21. Passing a Value for Symbol Value . 74

22. Passing an Equate for Symbol Value . 74

23. Coding CQSREAD with the OPTWORD1 parameter 74

24. STEPLIB DD Statement to Concatenate IMS.SDFSRESL 77

25. Sample for CQSREAD Request . 162

26. JCL to Print CQS Log Records . 183

27. DD Card to Limit Log Records that are Printed 184

28. DD Card to Add Local Date and Time . 184

29. JCL to Copy CQS Records from a Specific Time Period 185

© Copyright IBM Corp. 1997, 2004 vii

||

||
||

||

viii Common Queue Server Guide and Reference

Tables

 1. Licensed Program Full Names and Short Names xi

 2. Private Queue Types Managed by CQS . 4

 3. CQS Init-Term User-Supplied Exit Routine Parameter List: CQS Initialization 49

 4. CQS Init-Term User-Supplied Exit Routine Parameter List: CQS Termination 49

 5. CQS Client Connection User-Supplied Exit Routine Parameter List: Client Connection 50

 6. CQS Client Connection User-Supplied Exit Routine Parameter List: Client Disconnect 50

 7. CQS Queue Overflow User-Supplied Exit Routine Parameter List 53

 8. CQS Structure Statistics User-Supplied Exit Routine Parameter List 54

 9. CQS Structure Process Statistics Record . 55

10. CQS Request Statistics Record . 55

11. Data Object Statistics Record . 56

12. Queue Name Statistics Record . 57

13. z/OS Request Statistics Record . 57

14. Structure Rebuild Statistics Record . 58

15. Structure Checkpoint Statistics Record . 60

16. Structure Checkpoint Statistics Entry . 61

17. CQS Structure Event User-Supplied Exit Routine Parameter List: Connect 63

18. CQS Structure Event User-Supplied Exit Routine Parameter List: Checkpoint 64

19. CQS Structure Event User-Supplied Exit Routine Parameter List: Rebuild 65

20. CQS Structure Event User-Supplied Exit Routine Parameter List: Overflow 66

21. CQS Structure Event User-Supplied Exit Routine Parameter List: Status Change 67

22. CQS Statistics Header Data . 68

23. Sequence for CQS Requests . 70

24. Environment for CQS Requests (Excluding CQSREG and CQSDEREG) Using the Authorized

Interface . 71

25. Environment for CQS Requests (Excluding CQSREG and CQSDEREG) Using the Non-Authorized

Interface . 71

26. Environment for CQSREG and CQSDEREG Requests Using the Authorized Interface 72

27. Environment for CQSREG and CQSDEREG Requests Using the Non-Authorized Interface 72

28. Return and Reason Codes for Errors Detected by the CQS Interface 76

29. CQSBRWSE Return and Reason Codes . 88

30. CQSCHKPT Return and Reason Codes . 92

31. CQSCONN Return and Reason Codes . 97

32. CQSDEL Return and Reason Codes . 102

33. CQSDEREG Return and Reason Codes . 103

34. CQSDISC Return and Reason Codes . 107

35. CQSINFRM Return and Reason Codes . 112

36. CQSMOVE Return and Reason Codes . 115

37. Actions Taken for Data Objects as a Result of Failures or Structure Activity 118

38. CQSPUT Return and Reason Codes . 122

39. CQSQUERY Return and Reason Codes . 131

40. CQSREAD Return and Reason Codes . 137

41. CQSRECVR Return and Reason Codes . 141

42. CQSREG Return and Reason Codes . 144

43. UOW Status from the Client . 147

44. UOW Status from CQS . 147

45. CQSRSYNC Return and Reason Codes . 149

46. CQSSHUT Return and Reason Codes . 152

47. CQSUNLCK Return and Reason Codes . 156

48. CQSUPD Return and Reason Codes . 161

49. Client CQS Event Exit Routine Parameter List: CQS Restart Entry 168

50. Client CQS Event Exit Routine Parameter List: CQS Abnormal Termination 169

51. Client Structure Event Exit Routine Parameter List: Deferred Resync Complete 171

© Copyright IBM Corp. 1997, 2004 ix

52. Client Structure Event Routine Exit Parameter List: CQS Initiated Resync 172

53. CQS Resync UOW Entry Parameters . 173

54. Client Structure Event Exit Routine Parameter List: Checkpoint 173

55. Client Structure Event Exit Routine Parameter List: Structure Rebuild 174

56. Client Structure Event Exit Routine Parameter List: Structure Rebuild Lost UOWs 175

57. CQS Rebuild Lost UOW Entry Parameters . 175

58. Client Structure Event Exit Routine Parameter List: Structure Overflow 176

59. Client Structure Event Exit Routine Parameter List: Structure Status Change 177

60. Client Structure Inform Exit Routine Parameter List 179

61. CQS Log Records . 181

x Common Queue Server Guide and Reference

About This Book

This information is available as part of the DB2® Information Management Software

Information Center for z/OS® Solutions. To view the information within the DB2

Information Management Software Information Center for z/OS Solutions, go to

http://publib.boulder.ibm.com/infocenter/dzichelp. This information is also available in

PDF or BookManager® formats. To get the most current versions of the PDF and

BookManager formats, go to the IMS™ Library page at

www.ibm.com/software/data/ims/library.html.

This book is designed to help programmers, operators, and system support

personnel perform these tasks:

v Plan for and design the installation of Common Queue Server (CQS).

v Install and operate CQS.

v Diagnose and recover from CQS system problems.

v Write a CQS client.

Prerequisite Knowledge

Before using this book, you should understand:

v Basic IMS concepts

v The IMS environment

v Coupling Facility configuration concepts

v Sysplex configuration concepts

For a list of references to related publications, refer to “Bibliography” on page 191.

Related Reading: For definitions of terminology specific to CQS and used in this

manual, see Chapter 1, “Introduction,” on page 1. Other terms are defined in the

IMS Version 9: Master Index and Glossary.

IBM Product Names Used in This Information

In this information, the licensed programs shown in Table 1 are referred to by their

short names.

 Table 1. Licensed Program Full Names and Short Names

Licensed program full name Licensed program short name

IBM® Application Recovery Tool for IMS and

DB2

Application Recovery Tool

IBM CICS® Transaction Server for OS/390® CICS

IBM CICS Transaction Server for z/OS CICS

IBM DB2 Universal Database™ DB2 Universal Database

IBM DB2 Universal Database for z/OS DB2 UDB for z/OS

IBM Enterprise COBOL for z/OS and OS/390 Enterprise COBOL

IBM Enterprise PL/I for z/OS and OS/390 Enterprise PL/I

IBM High Level Assembler for MVS™ & VM &

VSE

High Level Assembler

IBM IMS Advanced ACB Generator IMS Advanced ACB Generator

© Copyright IBM Corp. 1997, 2004 xi

Table 1. Licensed Program Full Names and Short Names (continued)

Licensed program full name Licensed program short name

IBM IMS Batch Backout Manager IMS Batch Backout Manager

IBM IMS Batch Terminal Simulator IMS Batch Terminal Simulator

IBM IMS Buffer Pool Analyzer IMS Buffer Pool Analyzer

IBM IMS Command Control Facility for z/OS IMS Command Control Facility

IBM IMS Connect for z/OS IMS Connect

IBM IMS Connector for Java™ IMS Connector for Java

IBM IMS Database Control Suite IMS Database Control Suite

IBM IMS Database Recovery Facility for z/OS IMS Databse Recovery Facility

IBM IMS Database Repair Facility IMS Database Repair Facility

IBM IMS DataPropagator™ for z/OS IMS DataPropagator

IBM IMS DEDB Fast Recovery IMS DEDB Fast Recovery

IBM IMS Extended Terminal Option Support IMS ETO Support

IBM IMS Fast Path Basic Tools IMS Fast Path Basic Tools

IBM IMS Fast Path Online Tools IMS Fast Path Online Tools

IBM IMS Hardware Data

Compression-Extended

IMS Hardware Data Compression-Extended

IBM IMS High Availability Large Database

(HALDB) Conversion Aid for z/OS

IBM IMS HALDB Conversion Aid

IBM IMS High Performance Change

Accumulation Utility for z/OS

IMS High Performance Change Accumulation

Utility

IBM IMS High Performance Load for z/OS IMS HP Load

IBM IMS High Performance Pointer Checker

for OS/390

IMS HP Pointer Checker

IBM IMS High Performance Prefix Resolution

for z/OS

IMS HP Prefix Resolution

IBM Tivoli® NetView® for z/OS Tivoli NetView for z/OS

IBM WebSphere® Application Server for z/OS

and OS/390

WebSphere Application Server for z/OS

IBM WebSphere MQ for z/OS WebSphere MQ

IBM WebSphere Studio Application Developer

Integration Edition

WebSphere Studio

IBM z/OS z/OS

How to Read Syntax Diagrams

The following rules apply to the syntax diagrams that are used in this information:

v Read the syntax diagrams from left to right, from top to bottom, following the path

of the line. The following conventions are used:

– The >>--- symbol indicates the beginning of a syntax diagram.

– The ---> symbol indicates that the syntax diagram is continued on the next

line.

– The >--- symbol indicates that a syntax diagram is continued from the

previous line.

– The --->< symbol indicates the end of a syntax diagram.

xii Common Queue Server Guide and Reference

v Required items appear on the horizontal line (the main path).

�� required_item ��

v Optional items appear below the main path.

�� required_item

optional_item
 ��

If an optional item appears above the main path, that item has no effect on the

execution of the syntax element and is used only for readability.

��
 optional_item

required_item

��

v If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main

path.

�� required_item required_choice1

required_choice2
 ��

If choosing one of the items is optional, the entire stack appears below the main

path.

�� required_item

optional_choice1

optional_choice2

 ��

If one of the items is the default, it appears above the main path, and the

remaining choices are shown below.

��

required_item
 default_choice

optional_choice

optional_choice

��

v An arrow returning to the left, above the main line, indicates an item that can be

repeated.

��

required_item

�

repeatable_item

��

If the repeat arrow contains a comma, you must separate repeated items with a

comma.

��

required_item

�

 ,

repeatable_item

��

A repeat arrow above a stack indicates that you can repeat the items in the

stack.

About This Book xiii

v Sometimes a diagram must be split into fragments. The syntax fragment is

shown separately from the main syntax diagram, but the contents of the fragment

should be read as if they are on the main path of the diagram.

�� required_item fragment-name ��

fragment-name:

 required_item

optional_item

v In IMS, a b symbol indicates one blank position.

v Keywords, and their minimum abbreviations if applicable, appear in uppercase.

They must be spelled exactly as shown. Variables appear in all lowercase italic

letters (for example, column-name). They represent user-supplied names or

values.

v Separate keywords and parameters by at least one space if no intervening

punctuation is shown in the diagram.

v Enter punctuation marks, parentheses, arithmetic operators, and other symbols,

exactly as shown in the diagram.

v Footnotes are shown by a number in parentheses, for example (1).

How to Send Your Comments

Your feedback is important in helping us provide the most accurate and highest

quality information. If you have any comments about this or any other IMS

information, you can take one of the following actions:

v Go to the IMS Library page at www.ibm.com/software/data/ims/library.html and

click the Library Feedback link, where you can enter and submit comments.

v Send your comments by e-mail to imspubs@us.ibm.com. Be sure to include the

title, the part number of the title, the version of IMS, and, if applicable, the

specific location of the text on which you are commenting (for example, a page

number in the PDF or a heading in the Information Center).

xiv Common Queue Server Guide and Reference

Summary of Changes

Changes to This Book for IMS Version 9

This edition contains editorial changes. In addition, the Glossary formerly located in

Chapter 1, “Introduction,” on page 1 has been removed. Refer to IMS Version 9

Master Index and Glossary for definitions of the terms previously defined in this

book.

New information on the following enhancement is included:

v Optional EMHQ Structure for Shared Queues: see “CQS Local Structure

Definition PROCLIB Member (CQSSLxxx)” on page 17 and “CQS Global

Structure Definition PROCLIB Member (CQSSGxxx)” on page 19.

In addition, the index has been expanded for enhanced retrievability.

For detailed information about technical enhancements for IMS Version 9, see the

IMS Version 9 Release Planning Guide.

Library Changes for IMS Version 9

Changes to the IMS Library for IMS Version 9 include the addition of one title, a

change of one title, organizational changes, and a major terminology change.

Changes are indicated by a vertical bar (|) to the left of the changed text.

The IMS Version 9 information is now available in the DB2 Information Management

Software Information Center for z/OS Solutions, which is available at

http://publib.boulder.ibm.com/infocenter/dzichelp. The DB2 Information Management

Software Information Center for z/OS Solutions provides a graphical user interface

for centralized access to the product information for IMS, IMS Tools, DB2 Universal

Database (UDB) for z/OS, DB2 Tools, and DB2 Query Management Facility

(QMF™).

New and Revised Titles

The following list details the major changes to the IMS Version 9 library:

v IMS Version 9: IMS Connect Guide and Reference

The library includes new information: IMS Version 9: IMS Connect Guide and

Reference. This information is available in softcopy format only, as part of the

DB2 Information Management Software Information Center for z/OS Solutions,

and in PDF and BookManager formats.

IMS Version 9 provides an integrated IMS Connect function, which offers a

functional replacement for the IMS Connect tool (program number 5655-K52). In

this information, the term IMS Connect refers to the integrated IMS Connect

function that is part of IMS Version 9, unless otherwise indicated.

v The information formerly titled IMS Version 8: IMS Java User’s Guide is now

titled IMS Version 9: IMS Java Guide and Reference. This information is

available in softcopy format only, as part of the DB2 Information Management

Software Information Center for z/OS Solutions, and in PDF and BookManager

formats.

v To complement the IMS Version 9 library, a new book, An Introduction to IMS by

Dean H. Meltz, Rick Long, Mark Harrington, Robert Hain, and Geoff Nicholls

(ISBN # 0-13-185671-5), is available starting February 2005 from IBM Press. Go

to the IMS Web site at www.ibm.com/ims for details.

© Copyright IBM Corp. 1997, 2004 xv

Organizational Changes

Organization changes to the IMS Version 9 library include changes to:

v IMS Version 9: IMS Java Guide and Reference

v IMS Version 9: Messages and Codes, Volume 1

v IMS Version 9: Utilities Reference: System

The chapter titled ″DLIModel Utility″ has moved from IMS Version 9: IMS Java

Guide and Reference to IMS Version 9: Utilities Reference: System.

The DLIModel utility messages that were in IMS Version 9: IMS Java Guide and

Reference have moved to IMS Version 9: Messages and Codes, Volume 1.

Terminology Changes

IMS Version 9 introduces new terminology for IMS commands:

type-1 command

A command, generally preceded by a leading slash character, that can be

entered from any valid IMS command source. In IMS Version 8, these

commands were called classic commands.

type-2 command

A command that is entered only through the OM API. Type-2 commands

are more flexible than type-2 commands and can have a broader scope. In

IMS Version 8, these commands were called IMSplex commands or

enhanced commands.

Accessibility Enhancements

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products. The major accessibility features

in z/OS products, including IMS, enable users to:

v Use assistive technologies such as screen readers and screen magnifier

software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

User Assistive Technologies

Assistive technology products, such as screen readers, function with the IMS user

interfaces. Consult the documentation of the assistive technology products for

specific information when you use assistive technology to access these interfaces.

Accessible Information

Online information for IMS Version 9 is available in BookManager format, which is

an accessible format. All BookManager functions can be accessed by using a

keyboard or keyboard shortcut keys. BookManager also allows you to use screen

readers and other assistive technologies. The BookManager READ/MVS product is

included with the z/OS base product, and the BookManager Softcopy Reader (for

workstations) is available on the IMS Licensed Product Kit (CD), which you can

download from the Web at www.ibm.com.

Keyboard Navigation of the User Interface

Users can access IMS user interfaces using TSO/E or ISPF. Refer to the z/OS

V1R1.0 TSO/E Primer, the z/OS V1R5.0 TSO/E User’s Guide, and the z/OS

V1R5.0 ISPF User’s Guide, Volume 1. These guides describe how to navigate each

xvi Common Queue Server Guide and Reference

interface, including the use of keyboard shortcuts or function keys (PF keys). Each

guide includes the default settings for the PF keys and explains how to modify their

functions.

Summary of Changes xvii

xviii Common Queue Server Guide and Reference

Chapter 1. Introduction

The Common Queue Server Guide and Reference is designed to help

programmers, operators, and system support personnel perform these tasks:

v Plan for and design the installation of Common Queue Server (CQS)

v Install and operate CQS

v Diagnose and recover from CQS system problems

v Write a CQS client

The following topics provide additional information:

v “Common Queue Server Overview”

v “Planning for CQS Hardware and Software Requirements” on page 6

This section contains General-Use Programming Interface information.

Common Queue Server Overview

Common Queue Server (CQS) is a generalized server that manages data objects

on a coupling facility list structure, such as a queue structure or a resource

structure, on behalf of multiple clients. CQS receives, maintains, and distributes

data objects from shared queues on behalf of multiple clients. Each client has its

own CQS access the data objects on the coupling facility list structure. IMS is one

example of a CQS client that uses CQS to manage both its shared queues and

shared resources.

Related Reading: See z/OS MVS Setting Up a Sysplex for complete details about

setting up a sysplex.

CQS runs on a z/OS operating system. The CQS client must also run under the

same z/OS operating system. CQS runs in a separate address space that can be

started by the client.

CQS uses the z/OS coupling facility as a repository for data objects. Storage in a

coupling facility is divided into distinct objects called structures. Authorized

programs use structures to implement data sharing and high-speed serialization.

The coupling facility stores and arranges the data according to list structures.

Queue structures contain collections of data objects that share the same name,

known as queues. Resource structures contain data objects organized as uniquely

named resources.

Clients communicate with CQS using CQS requests that are supported by CQS

macro statements. Using these macros, CQS clients can communicate with CQS

and manipulate client data on shared coupling facility structures. Figure 1 on page 2

shows the communications and the relationship between clients, CQSs, and the

coupling facility.

© Copyright IBM Corp. 1997, 2004 1

|

|

|

Related Reading: CQS requests are described in Chapter 6, “CQS Client

Requests,” on page 81.

CQS Benefits

CQS enables users to take advantage of the benefits of a Parallel Sysplex®

environment. These benefits include:

v Automatic work load balancing

CQS places data objects on shared queues where they can be processed by any

participating client system.

Any participating client system can use CQS to retrieve a data object from the

shared queues.

v Incremental growth

Customers can add new systems as workload increases.

v Reliability

For both shared queues and resources, if one client system fails, the remaining

client systems process the work.

CQS Components

CQS maintains the following components:

v Primary structure

A z/OS coupling facility list structure that contains shared queues.

v Resource structure

A z/OS coupling facility list structure that contains uniquely named resources.

v Overflow structure

A z/OS coupling facility list structure that contains shared queues when the

primary structure reaches an installation-specified overflow threshold. The

overflow structure is optional.

v z/OS log stream

A shared z/OS log stream that contains all CQS log records from all CQSs

connected to a structure pair. This log stream is important for recovery of shared

queues, if necessary. Each structure pair has an associated log stream.

v Checkpoint data set

A local data set that contains CQS system checkpoint information.

Figure 1. Client Systems, CQS, and the Coupling Facility

CQS Overview

2 Common Queue Server Guide and Reference

|
|
|

v Structure recovery data sets (SRDS)

Shared data sets that contain structure checkpoint information for shared queues

on a structure pair. Each structure pair has two associated SRDSs.

CQS Functions

CQS provides the following functions:

v CQS requests

An architected interface that clients use to access CQS or data objects on a

queue structure or a resource structure.

v Notification of work on a queue

Clients register interest in the shared queues. If an empty queue becomes

non-empty, CQS notifies its registered clients.

v Records restart and recovery information

CQS records all the information necessary for restart and recovery in the z/OS

system logger.

v CQS system checkpoint

CQS system checkpoint writes log records relating to a particular CQS to the

CQS log. The log records contain information necessary for CQS to restart and

recover work.

v Structure checkpoint

The structure checkpoint copies the queues from a structure pair into an SRDS

for recovery purposes.

v Structure rebuild

Structure rebuild is a z/OS process that allows another instance of a structure to

be allocated with the same name and data reconstructed from the initial structure

instance.

v Overflow processing

CQS provides an overflow option to help prevent a queue full condition. When

the primary list structure reaches the overflow threshold value, CQS attempts to

dynamically increase the size of the primary structure, offload selected queues to

an overflow structure, or reject requests for selected queues.

Structures Managed by CQS

CQS can manage queue structures, resource structures, or both types of structures.

Queue Structures

A queue structure is a coupling facility list structure that contains a collection of data

objects, some of which might have the same name. Data objects that have the

same name are considered to be on the same queue.

Queue structures support structure overflow, in which an associated overflow

structure can be allocated to prevent the queue structure from becoming full. A

primary queue structure and its associated overflow structure are known as a

structure pair.

CQS physically divides the queue structure list headers into 11 private queue types

for CQS use and 11 client queue types for client use. Client queue types are

defined by the client. A client can group queues associated with a type of work,

such as transactions. A queue type can have a value of 1 to 255. Any queue type

over 11 is mapped into one of the physical queue types.

CQS Overview

Chapter 1. Introduction 3

|
|
|

CQS manages private queues and client queues on queue structures. CQS uses

the private queue types to manipulate client data objects for CQS requests. Each

client queue type can be used by a client for a different type of work. A client

registers interest in only those queue types that it can process, based on the types

of work you define for it.

Five of the private queue types, and the work that a client processes on them, are

shown in Table 2.

 Table 2. Private Queue Types Managed by CQS

Queue Type Description

Cold queue Contains data objects that are in doubt for a client or for a

CQS that cold started

Control queue Contains control list entries that CQS uses to manage list

structures and control processes (such as structure

checkpoint and structure recovery)

Delete queue Intermediate queue used for CQSDEL request processing

Lock queue Contains data objects that are locked by the CQSREAD

request

Move queue Intermediate queue used for CQSMOVE request processing

Resource Structures

A resource structure is a coupling facility list structure, used by the Common

Service Layer’s Resource Manager and managed by CQS, that contains uniquely

named resources. This structure is typically used to maintain global resource

information when multiple Resource Managers exist in an IMSplex. Resource

structures enable CQS to perform resource management in an IMSplex.

CQS physically divides the resource structure list headers into 11 private resource

types for CQS use and 11 client resource types for client use. Client resource types

are defined by the client. A resource type can have a value of 1 to 255. Any

resource type over 11 is mapped into one of the physical resource types.

Clients can use the resource structure to share resource information, control block

information, and other types of information. The resource name is unique within the

structure. Resources can be updated, queried, or deleted. A primary coupling facility

list structure is used to contain the resources.

CQS Structure Functions

CQS provides functions for monitoring structure status and capacity, and enabling

structure recovery. Some of these functions are built-in and do not require

intervention. Other functions are optional, and can be set up or initiated as your

installation needs them.

Structure Overflow

CQS provides a structure overflow function that automatically warns you when a

queue structure is approaching full and takes action to prevent a full structure.

When the usage of a structure reaches the overflow threshold, CQS attempts to

make the structure larger by initiating a structure alter. If the alter fails, CQS either

allocates an overflow structure and moves selected queues to the overflow structure

(if you define an overflow structure), or prevents new data objects from being put on

the selected queues.

CQS Overview

4 Common Queue Server Guide and Reference

Important: Overflow processing is not supported for resource structures.

Related Reading: For detailed information about monitoring queue structure sizes

and customizing CQS behavior in an overflow situation, see “Preventing CQS

Structure Full” on page 37.

Structure Rebuild

Structure rebuild is a z/OS process that allows another instance of a structure to be

allocated with the same name and contain data reconstructed from the initial

structure instance. z/OS supports system-managed rebuild, in which case z/OS

rebuilds the structure. z/OS also supports user-managed rebuild; the user rebuilds

the structure. Structure rebuild can be initiated manually by using an operator

command, or automatically by CQS or z/OS.

CQS allows system-managed rebuild for queue structures and resource structures.

CQS provides user-managed rebuild to support a structure copy function and a

structure recovery function.

Structure copy copies the contents of a structure to another structure for planned

reconfiguration. Structure copy is supported for resource structures and queue

structures.

Structure recovery recovers a structure from the structure checkpoint data set and

the CQS log after a structure failure. Structure recovery is supported for queue

structures.

Related Reading: For more information about rebuilding structures, see “Rebuilding

Structures in CQS” on page 39.

Structure Duplexing

CQS can use the duplexing capabilities of z/OS Version 1 Release 2 or subsequent

versions, releases, and modification levels. Duplexing occurs when the operating

system creates a duplex (backup) copy of a structure, then maintains the two

structures during normal mainline operation. If a structure fails, or a connection to a

structure is lost, the operating system switches to the unaffected structure instance.

Structure duplexing requires z/OS Version 1 Release 2 or subsequent versions,

releases, and modification levels.

Related Reading: Refer to Chapter 3, “CQS Administration,” on page 27 for more

information about setting up and using structure duplexing.

CQS Recovery Functions

CQS provides functions for recovering work-in-progress, queues, and resources in

case of system shutdown or failure. Some of these recovery functions are built-in

and do not require intervention. Other functions are optional and can be set up or

initiated as you need them.

System Checkpoint

To enable CQS restart in the event of failure, CQS periodically takes a ”snapshot”

of all control blocks and tables, and writes that information to the z/OS log. That

process is called system checkpoint. System checkpoint can be initiated by CQS,

the client, or manually with an IMS command.

CQS Overview

Chapter 1. Introduction 5

Related Reading: See “Using CQS System Checkpoint” on page 34 and “CQS

Structure Event User-Supplied Exit Routine” on page 62 for detailed information

about when system checkpoint occurs, the specific data that gets collected, and

how that data is used during recovery.

CQS Logging and the z/OS System Logger

CQS always uses the z/OS system logger to record information necessary for CQS

to recover queue structures and restart. CQS writes log records for each coupling

facility list structure pair that it uses to a separate log stream. The log stream is

shared among all CQS address spaces that share the structure. The system logger

provides a merged log for all CQS address spaces that are sharing queues on a

coupling facility list structure.

Important: Changes to resource structures are not logged.

Related Reading: For more information about logging, see “Recording Information

Necessary for Starting CQS” on page 28.

Structure Checkpoint

To enable queue structure recovery in case of failure, CQS periodically takes a

”snapshot” of the queues on all queue structures. That process is called structure

checkpoint. Structure checkpoint can be initiated by CQS, the client, or manually

with an IMS command.

Important: Structure checkpoint is not supported for resource structures.

Related Reading: See “Using CQS Structure Checkpoint” on page 35 and “CQS

Structure Statistics User-Supplied Exit Routine” on page 53 for detailed information

about when structure checkpoint occurs, what data gets collected, and how that

data is used during recovery.

CQS Client Requests

CQS client systems communicate with CQS using a general use interface

consisting of CQS requests. CQS requests are described in Chapter 6, “CQS Client

Requests,” on page 81.

Planning for CQS Hardware and Software Requirements

Refer to the IMS Version 9: Release Planning Guide for complete information about

the minimum hardware and software requirements, including operating system

requirements, for setting up and running a CQS.

Related Reading: See OS/390 Parallel Sysplex Hardware and Software Migration

for more information on:

v The planning required to migrate to a sysplex that uses a coupling facility

v Hardware configurations of a sysplex

v The software products that can use the coupling facility

v The tasks for migrating to a coupling environment

v Checklists for installing the sysplex hardware and software

CQS Overview

6 Common Queue Server Guide and Reference

Chapter 2. CQS Definition and Tailoring

This section describes the tasks of defining and tailoring CQS. It provides detailed

descriptions of macros, procedures, and other system-oriented information.

The following topics provide additional information:

 “CQS As Part of a Sysplex”

 “CQS and Defining z/OS Policies”

 “CQS’s Support of Multiple Clients” on page 11

 “Determining Structure Size for CQS Connections” on page 12

 “Preparing to Start CQS” on page 12

 “Updating z/OS Program Properties Table for CQS” on page 13

 “CQS Execution Parameters” on page 14

 “CQS Initialization Parameters PROCLIB Member (CQSIPxxx)” on page 16

 “CQS Local Structure Definition PROCLIB Member (CQSSLxxx)” on page 17

 “CQS Global Structure Definition PROCLIB Member (CQSSGxxx)” on page 19

 “CQS Execution Data Sets” on page 24

This section contains Product-sensitive Programming Interface information.

CQS As Part of a Sysplex

An IMS sysplex typically consists of the following software, hardware, and z/OS

policies:

v CQS for managing shared queues and resources

v CQS clients

v z/OS Operating System

v Signaling paths between systems

v Sysplex Couple Data Set that contains z/OS information related to the sysplex

v Sysplex Failure Management (SFM) policy

v Automatic Restart Management (ARM) policy

v System Logger (LOGR) policy

v Coupling facility to contain CQS structures

“CQS and Defining z/OS Policies,” provides guidance on how to define the coupling

facility resource management (CFRM), SFM, and LOGR policies for a typical IMS

sysplex using CQS. “CQS Execution Data Sets” on page 24 and “Using the z/OS

Automatic Restart Manager with CQS” on page 31 provide guidance on using the

Automatic Restart Manager with CQS.

Related Reading: For detailed information about setting up and configuring a

sysplex, refer to z/OS MVS Setting Up a Sysplex.

CQS and Defining z/OS Policies

CQS is a component of IMS. Before you enable a CQS, however, you must define

how the CQS is to use certain z/OS services. The definitions are specified in

policies.

© Copyright IBM Corp. 1997, 2004 7

|

|

|

|

|

|

|

|

|

|

|

|

Definition: A policy is a set of rules and actions that systems in a sysplex must

follow when using certain z/OS services. A policy allows z/OS to manage specific

resources in compliance with your system and resource requirements, but with little

operator intervention. A policy can be set up to govern all systems in the sysplex or

only selected systems. You might need to define more than one policy to allow for

varying workloads, configurations, or other installation requirements at different

times. For example, you might need to define one policy for your prime shift

operations and another policy for other shifts. Although you can define more than

one policy of each type (except for system logger) only one policy of each type can

be active at a time. For system logger, only one LOGR policy is in the sysplex.

The following policies are used by z/OS for systems management in a sysplex

environment and are required for the CQS:

v The automatic restart management (ARM) policy defines how z/OS is to manage

restarts for specific z/OS jobs and started tasks that are registered as elements

of automatic restart management.

v The coupling facility resource management (CFRM) policy allows you to define

how z/OS manages coupling facility resources. One of the definitions in the

CFRM policy is the coupling facility structure sizes. For more information on

determining these sizes, see “Determining Structure Size for CQS Connections”

on page 12.

Users who do not intend to use Shared Expedited Message Handler (Shared

EMH) processing in a sysplex can disable the EMH queue (EMHQ). In a CQS

environment, you must modify the CQSSLxxx and CQSSGxxx PROCLIB

members to disable EMHQ usage. See “CQS Local Structure Definition

PROCLIB Member (CQSSLxxx)” on page 17 and “CQS Global Structure

Definition PROCLIB Member (CQSSGxxx)” on page 19 for additional information.

v The system logger policy (LOGR) allows you to define, update, or delete

structure or log stream definitions.

You must specify the MAXBUFSIZE parameter in the LOGR policy with a value

that is large enough to contain the largest log record written by CQS.

Recommendation:

Specify the MAXBUFSIZE parameter as 65 272 bytes.

v The sysplex failure management (SFM) policy allows you to define responses for

system failures, signalling-connectivity failures in the sysplex and reconfiguring

systems in a Processor Resource/Systems Manager™ (PR/SM™) environment.

The SFM policy is optional.

Figure 2 on page 10 shows an example of a CFRM policy that defines the following

IMS resources:

v EMHQ primary structure

v EMHQ overflow structure

v EMHQ log structure

v

v Message queue (MSGQ) primary structure

v MSGQ overflow structure

v MSGQ log structure

v Resource structure

Figure 3 on page 11 shows an example of how the LOGR policy can be defined.

Figure 4 on page 11 shows an example of how the SFM policy can be defined.

Defining MVS Policies

8 Common Queue Server Guide and Reference

|
|
|
|
|
|

|

Requirement: Run each policy that you create as a separate job. If you attempt to

run all policies together as one job, the job will fail.

Related Reading: For information on defining and activating policies, see:

v z/OS MVS Setting Up a Sysplex for the CFRM, SFM, LOGR, and ARM policies

v z/OS MVS Programming: Assembler Services Guide for the LOGR policy.

The example in Figure 2 on page 10 shows you how to define IMS resources in the

CFRM policy.

Defining MVS Policies

Chapter 2. CQS Definition and Tailoring 9

//CFRMPLCY JOB MSGCLASS=A,REGION=2000K,CLASS=K

// MSGLEVEL=(1,1)

//***

//* This JCL is used for configuration. INITSIZE is *

//* used for the primary MSGQ and EMHQ structures. *

//***

//* 2 CF *

//***

//POLICY EXEC PGM=IXCM2APU

//STEPLIB DD DSN=SYS1.MIGLIB,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSIN DD *

DATA TYPE(CFRM)

DEFINE POLICY

 NAME(CONFIG01)

 REPLACE(YES)

 CF NAME (CF01)

 TYPE(nnnnnn)

 MFG(aa)

 PLANT(nn)

 SEQUENCE(nnnnnnnnnnnn)

 PARTITION(n)

 CPCID(nn)

 CF NAME (CF02)

 TYPE(nnnnnn)

 MFG(aa)

 PLANT(nn)

 SEQUENCE(nnnnnnnnnnnn)

 PARTITION(n)

 CPCID(nn)

 .

 .

 .

STRUCTURE NAME(QMSGIMS01)

 SIZE(16000)

 INITSIZE(8000)

 PREFLIST(CF01,CF02)

 REBUILDPERCENT(1)

STRUCTURE NAME(QMSGIMS01OFLW)

 SIZE(8000)

 PREFLIST(CF01,CF02)

 REBUILDPERCENT(1)

STRUCTURE NAME(QEMHIMS01)

 SIZE(16000)

 INITSIZE(10000)

 PREFLIST(CF01,CF02)

 REBUILDPERCENT(1)

STRUCTURE NAME(QEMHIMS01OFLW)

 SIZE(8000)

 PREFLIST(CF01,CF02)

 REBUILDPERCENT(1)

Figure 2. Defining IMS Resources in the CFRM Policy (Part 1 of 2)

Defining MVS Policies

10 Common Queue Server Guide and Reference

The example in Figure 3 shows you how to define IMS resources in the LOGR

policy.

The example in Figure 4 shows you how to define IMS resources in the SFM policy.

CQS’s Support of Multiple Clients

You can use one CQS address space to support multiple clients. Examples of

clients are IMS and RM.

As many as 32 different clients on the same z/OS image can connect to coupling

facility structures through a single CQS by using the CQSCONN request. For

example, as many as 32 different IMS control regions can specify the same

STRUCTURE NAME(MVSLOGQMSG01)

 SIZE(16000)

 INITSIZE(11000)

 PREFLIST(CF01,CF02)

STRUCTURE NAME(MVSLOGQEMH01)

 SIZE(4000)

 PREFLIST(CF01, CF02)

 REBUILDPERCENT(1)

STRUCTURE NAME(QRSCIMS01)

 SIZE(16000)

 INITSIZE(8000)

 ALLOWAUTOALT(YES)

 FULLTHRESHOLD(60)

 DUPLEX(ALLOWED)

 PREFLIST(CF01,CF02)

 .

 .

 .

Figure 2. Defining IMS Resources in the CFRM Policy (Part 2 of 2)

DATA TYPE(LOGR)

DEFINE STRUCTURE NAME(MVSLOGQMSG01)

 LOGSNUM(1)

 AVGBUFSIZE(4096)

 MAXBUFSIZE(65272)

DEFINE LOGSTREAM NAME (SYSLOG.QMSG01.LOG)

 STRUCTNAME(MVSLOGQMSG01)

 LS_MGMTCLAS(aaa)

 HLQ(IXGLOGR) LS_SIZE(nnn)

Figure 3. Defining IMS Resources in the LOGR Policy

DATA TYPE(SFM)

DEFINE POLICY

 NAME(SFMPOL)

 REPLACE(YES)

 CONNFAIL(YES)

 SYSTEM

 NAME (*)

 WEIGHT(10)

 ISOLATETIME(5)

/*

Figure 4. Defining IMS Resources in the SFM Policy

Defining MVS Policies

Chapter 2. CQS Definition and Tailoring 11

CQS=xxx parameter in the DFSSQxx PROCLIB member. IMS starts the CQS

address space if it is not currently active. If CQS is already active, IMS registers

with the active CQS address space and does not start an additional CQS address

space. Be sure that not more than 32 IMSs or RMs specify the same CQS.

Determining Structure Size for CQS Connections

The size of the structures to which CQS connects is defined in the CFRM policy by

defining the INITSIZE (initial size of the structure) and SIZE (maximum size of the

structure) parameters. The initial size of a structure on the coupling facility is

determined by the value of the INITSIZE parameter in the CFRM policy. When the

first CQS connects to a structure, the size of that structure is the value specified for

INITSIZE. If enough free space does not exist for this INITSIZE value, the size of

the structure becomes that of the available space in the coupling facility.

To determine what structure size to define in the CFRM policy, you can use the

S/390® Coupling Facility Structure Sizer Tool (CFSizer). CFSizer is a Web-based

application that calculates the structure size based on the input data you provide.

The CFSizer tool is available at: www.ibm.com/servers/eserver/zseries/cfsizer.

You can use structure alter to change the structure size or to redistribute the objects

within the structure after it has been defined. For information, see “Using Structure

Alter for CQS” on page 34.

Preparing to Start CQS

Because they are a part of IMS, CQS and Base Primitive Environment (BPE) are

automatically linked into IMS.SDFSRESL when you run the JCLIN jobstream.

Before you start CQS, complete the following tasks:

 1. Create a coupling facility resource management (CFRM) policy that defines the

structures to which you want CQS to connect. The CFRM policy specifies the

name, size, attributes, and location that the structure is to be assigned when it

is allocated.

 2. Define the following z/OS policies:

 Sysplex failure management (SFM) policy – Optional

 System logger (LOGR) policy

 Automatic restart management (ARM) policy – Optional

 3. Activate the CFRM policy using the following command:

SETXCF START,POLICY,TYPE=CFRM,POLNAME=CONFIG01

The structure is then allocated when the first CQS connects to it.

 4. If you are using the SFM policy, activate it using the following command:

SETXCF START,POLICY,TYPE=SFM,POLNAME=SFMPOL

 5. Create the CQS and BPE PROCLIB members. For information on creating

BPE PROCLIB members, see IMS Version 9: Base Primitive Environment

Guide and Reference.

 6. Define all CQS execution data sets.

 7. Customize your CQS environment; determine which exits you want to use and

then write the exits.

 8. Authorize connections to CQS structures.

 9. Update the z/OS program properties table.

Defining MVS Policies

12 Common Queue Server Guide and Reference

10. Plan security.

You must define parameters before the CQS address space is started. These

parameters can be either:

v In the CQSIPxxx PROCLIB member

v CQS execution parameters

To customize and monitor your CQS environment, you can use any of the following

user exit routines:

v CQS Initialization/Termination

v CQS Client Connection

v CQS Queue Overflow

v CQS Structure Statistics

v CQS Structure Event

v BPE Statistics

Related Reading:

v For more information on defining z/OS policies, see “CQS and Defining z/OS

Policies” on page 7.

v For more information on the CQS initialization parameters, see “CQS Initialization

Parameters PROCLIB Member (CQSIPxxx)” on page 16.

v For more information on the CQS user exit routines, see Chapter 4, “CQS

User-Supplied Exit Routines,” on page 47.

v For more information on BPE user exit routines, see the IMS Version 9: Base

Primitive Environment Guide and Reference.

Updating z/OS Program Properties Table for CQS

You must add an entry in the z/OS program properties table (PPT) for CQS. The

steps for doing this are:

1. Edit the SCHEDxx member of the SYS1.PARMLIB data set.

2. Add the entry shown in Figure 5 to the SCHEDxx member:

3. Take one of the following actions to make the SCHEDxx changes effective:

v Re-IPL the z/OS system.

v Issue the z/OS SET SCH= command.

Related Reading: For additional reading about updating the program properties

table, see z/OS MVS Initialization and Tuning Reference.

 PPT PGMNAME(CQSINIT0) /* PROGRAM NAME = CQSINIT0 */

 CANCEL /* PROGRAM CAN BE CANCELED */

 KEY(7) /* PROTECT KEY ASSIGNED IS 7 */

 NOSWAP /* PROGRAM IS NON-SWAPPABLE */

 NOPRIV /* PROGRAM IS NOT PRIVILEGED */

 DSI /* REQUIRES DATA SET INTEGRITY */

 PASS /* CANNOT BYPASS PASSWORD PROTECTION */

 SYST /* PROGRAM IS A SYSTEM TASK */

 AFF(NONE) /* NO CPU AFFINITY */

 NOPREF /* NO PREFERRED STORAGE FRAMES */

Figure 5. Entry to Be Added to the z/OS Program Properties Table

Preparing to Start CQS

Chapter 2. CQS Definition and Tailoring 13

CQS Execution Parameters

You can specify the following execution parameters on the CQS startup procedure.

Read the descriptions of the parameters to determine whether you want to accept

the system defaults or to tailor the system to fit the requirements of your

environment.

ARMRST= Y | N

Specifies whether the z/OS Automatic Restart Manager (ARM) is to be used to

restart the CQS address space after an abend. If you specify Y (yes), ARM

restarts the CQS address space after most system failures. If you specify N

(no), ARM does not restart the CQS address space after any system failure.

 ARM does not restart the CQS address space if the CQS abends before restart

is complete.

 To restart CQS when it has been cancelled by z/OS, you must specify the

ARMRESTART option of either the z/OS CANCEL or FORCE command.

 Related Reading: For information on the CANCEL and FORCE commands,

see z/OS MVS System Commands.

 If you specify this optional parameter, it overrides the value you specified in the

CQSIPxxx PROCLIB member.

BPECFG=

Specifies the 8-character name of the BPE configuration PROCLIB member.

You can specify this parameter only as an execution parameter.

CQSGROUP=

Specifies a 1- to 5-character identifier. CQS concatenates this identifier to the

characters CQS to create the cross-system coupling facility (XCF) CQS group

name. You must use the same identifier for all CQS address spaces that share

the same set of structures. You can also use the same identifier for the

SQGROUP= parameter in the DFSSQxxx PROCLIB member.

 If you specify this optional parameter, it overrides the value specified in the

CQSIPxxx PROCLIB member. You must specify this parameter either as an

execution parameter or in the CQSIPxxx PROCLIB member.

CQSINIT=

Specifies the 3-character suffix for the CQS initialization parameters PROCLIB

member, CQSIPxxx. You can specify this parameter only as an execution

parameter. The default suffix is 000.

SSN=

Specifies the name for the CQS address space. The value must be 1 to 4

alphanumeric characters. If you specify this optional parameter, it overrides the

value specified in the CQSIPxxx PROCLIB member. You must specify this

parameter either as an execution parameter or in the CQSIPxxx PROCLIB

member. This name is also used to create the CQSID, which is used in CQS

processing. The CQSID is the SSN followed by the characters CQS.

 Example: If SSN=ABC, CQSID=ABCCQS.

 Trailing blanks are deleted and the CQSID is padded with blanks.

STRDEFG=

Specifies a 3-character suffix for the CQS global structure definition PROCLIB

member, CQSSGxxx. This member contains the parameters related to the

coupling facility structures that are common to all CQS address spaces that are

CQS Execution Parameters

14 Common Queue Server Guide and Reference

|
|
|
|
|
|

|

|

sharing the queues. If you specify this optional parameter, it overrides the value

specified in the CQSIPxxx PROCLIB member. The default suffix is 000.

STRDEFL=

Specifies a 3-character suffix for the CQS local structure definition PROCLIB

member, CQSSLxxx. This member contains the parameters that are related to

the coupling facility structures and that are unique to an individual CQS address

space. If you specify this optional parameter, it overrides the value specified in

the CQSIPxxx PROCLIB member. The default suffix is 000.

Related Reading: See information in IMS Version 9: Installation Volume 2: System

Definition and Tailoring to see the relationship of IMS PROCLIB members and CQS

PROCLIB members.

Figure 6 shows the general relationship between execution parameters and

PROCLIB members. In the figure, CQSSL001 and CQSSL002 contain structure

definition parameters that are unique to each CQS. CQSSG00A contains the

structure definition parameters that are shared by all CQS address spaces

connected to the shared queues.

Figure 6. Specifying IMS and CQS Parameters

CQS Execution Parameters

Chapter 2. CQS Definition and Tailoring 15

|

|
|
|

CQS Initialization Parameters PROCLIB Member (CQSIPxxx)

Use the CQSIPxxx PROCLIB member to specify parameters that are related to

initialization of the CQS address space. You can use CQS execution parameters to

override certain parameters within CQSIPxxx.

The following rules apply to the format of the CQSIPxxx member:

v The execution member consists of one or more fixed-length character records.

(The configuration data set can be of any logical record length (LRECL) greater

than eight, but it must be of fixed-record format.)

v The rightmost eight columns of each record are ignored and you can use them

for sequence numbers or any other notation. In the remaining columns, you code

the keyword parameters. For example, if your record size is 80, you use columns

1 through 72 for your configuration data. You can use columns 73 through 80 for

sequence numbers.

v Keywords can contain leading and trailing blanks.

v Each record can contain multiple keywords.

v Use commas or spaces to delimit keywords.

v Use an asterisk (*) or pound sign (#) in column one to begin a comment. You

can include a comment anywhere within a statement by enclosing it between a

slash-asterisk and an asterisk-slash pair.

/*This is an example of a comment within a statement*/

v Values coded in this PROCLIB member are case-sensitive.

A sample CQSIPxxx PROCLIB member is shown in Figure 7:

ARMRST= Y | N

Specifies whether the z/OS Automatic Restart Manager (ARM) is used to restart

the CQS address space after an abend. If you specify Y (yes), ARM restarts the

CQS address space after most system failures. If you specify N (no), ARM does

not restart the CQS address space after any system failure.

 ARM does not restart the CQS address space if the CQS abends before restart

is complete.

 To restart the CQS when it has been cancelled by z/OS, you must specify the

ARMRESTART option of either the z/OS CANCEL or FORCE command.

 Related Reading: For information on the CANCEL and FORCE commands,

see z/OS MVS System Commands.

 This parameter can be specified as an execution parameter on the CQS

procedure to override the value in CQSIPxxx.

**

* CQS INITIALIZATION PROCLIB MEMBER *

**

ARMRST=Y /* ARM SHOULD RESTART CQS ON FAILURE */

CQSGROUP=GRUP1 /* GROUP NAME (XCF GROUP = GRUP1CQS) */

SSN=CQS1 /* CQS ADDRESS SPACE (CQSID = CQS1CQS) */

STRDEFG=190 /* GLOBAL STR DEFINITION MEMBER = CQSSG190 */

STRDEFL=191 /* LOCAL STR DEFINITION MEMBER = CQSSL191 */

IMSPLEX(NAME=PLEX1) /* IMSPLEX NAME(CSLPLEX1) */

Figure 7. Sample CQSIPxxx PROCLIB Member

CQSIPxxx

16 Common Queue Server Guide and Reference

CQSGROUP=

Specifies a 1- to 5-character identifier. CQS concatenates this identifier to the

characters CQS to create the group name of the XCF CQS shared queues. You

must use the same identifier for all CQS address spaces that share the same

set of structures. You can also use the same identifier for the SQGROUP=

parameter in the DFSSQxxx PROCLIB member.

 This parameter can be specified as an execution parameter on the CQS

procedure to override the value in CQSIPxxx.

IMSPLEX()

Specifies the IMSplex to which CQS joins. IMSPLEX is an optional parameter.

IMSPLEX does not have a default value. Only one IMSPLEX keyword can be

specified. The IMSPLEX definition parameter follows:

NAME=

A 1- to 5-character identifier that specifies the XCF CSL IMSplex group

name. CQS concatenates this identifier to CSL to create the XCF CSL

IMSplex group name. All OM, RM, SCI, IMS, CQS and similar address

spaces must specify the same to be part of the same IMSPlex. The same

identifier must also be used for the IMSPLEX= parameter in the CSLSIxxx,

CSLOIxxx, CSLRIxxx and DFSCGxxx PROCLIB members.

SSN=

Specifies the name for the CQS address space. The value must be 1 to 4

alphanumeric characters. If you specify this optional parameter, it overrides the

value specified in the CQSIPxxx PROCLIB member. You must specify this

parameter either as an execution parameter or in the CQSIPxxx PROCLIB

member. This name is also used to create the CQSID, which is used in CQS

processing. The CQSID is the SSN followed by the characters CQS.

 Example: If SSN=ABC, CQSID=ABCCQS.

 Trailing blanks are deleted and the CQSID is padded with blanks.

STRDEFG=

Specifies a 3-character suffix for the CQS global structure definition PROCLIB

member, CQSSGxxx. This member contains the parameters related to the

coupling facility structures that are common to all CQS address spaces that are

sharing the queues. If you specify this optional parameter, it overrides the value

specified in the CQSIPxxx PROCLIB member. The default suffix is 000.

STRDEFL=

Specifies a 3-character suffix for the CQS local structure definition PROCLIB

member, CQSSLxxx. This member contains the parameters that are related to

the coupling facility structures and that are unique to an individual CQS address

space. If you specify this optional parameter, it overrides the value specified in

the CQSIPxxx PROCLIB member. The default suffix is 000.

CQS Local Structure Definition PROCLIB Member (CQSSLxxx)

Use the CQSSLxxx PROCLIB member to define local CQS parameters that are

related to one or more coupling facility structures. Each CQS should point to a

different CQSSLxxx member. CQS connects to each defined structure in the

member. The structures defined in the CQSSLxxx member must also be defined in

the CQSSGxxx PROCLIB member.

Important: The CQSSLxxx PROCLIB member applies to queue structures only, not

resource structures. If you do not define queue structures, you do not need to

define the CQSSLxxx PROCLIB member.

CQSIPxxx

Chapter 2. CQS Definition and Tailoring 17

|
|
|
|
|
|

|

|

The following rules apply to the format of the CQSSLxxx member:

v The execution member consists of one or more fixed-length character records.

(The configuration data set can be of any LRECL greater than eight, but it must

be of fixed-record format.)

v The rightmost eight columns of each record are ignored and can be used for

sequence numbers or any other notation. In the remaining columns, you code the

keyword parameters. For example, if your record size is 80, you use columns 1

through 72 for your configuration data. You can use columns 73 through 80 for

sequence numbers.

v Keywords can contain leading and trailing blanks.

v Each record can contain multiple keywords.

v Commas or spaces delimit keywords.

v A comment begins with an asterisk (*) or pound sign (#) in column one. You can

include a comment anywhere within a statement by enclosing it between a

slash-asterisk and an asterisk-slash pair.

/*This is an example of a comment within a statement*/

v Values coded in this PROCLIB member are case-sensitive.

If the STRUCTURE statement for an EMHQ structure is deleted from the

CQSSLxxx PROCLIB member, resources for the EMHQ structure and its associated

CQS data sets are not allocated.

 Use the following keyword parameters to define a structure to CQS. The structure

definition parameters must be enclosed within parentheses. The STRUCTURE

keyword must precede the left parenthesis.

Example: STRUCTURE (STRNAME=strname, CHKPTDSN=chkptdsn, ...)

STRNAME=

The required 1- to 16-character name of the primary coupling facility structure to

which CQS connects.

 The installation must have defined the structure in the coupling facility resource

management (CFRM) administrative policy. The structure name must follow the

naming rules of the CFRM. If the name has fewer than 16 characters, CQS

pads the name with blanks. The valid characters are A-Z, 0-9, and the

characters $, &, # and _. Names must be uppercase and start with an

alphabetic character.

**

* LOCAL STRUCTURE DEFINITION PROCLIB MEMBER *

**

* DEFINITION FOR IMS MESSAGE QUEUE STRUCTURE *

STRUCTURE (

 STRNAME=QMSGIMS01, CHKPTDSN=CQSA.QMSG.IMS01.CHKPT, SYSCHKPT=50000)

* DEFINITION FOR IMS EMH QUEUE STRUCTURE *

STRUCTURE (

 STRNAME=QEMHIMS01, CHKPTDSN=CQSA.QEMH.IMS01.CHKPT, SYSCHKPT=50000)

Figure 8. Sample CQSSLxxx PROCLIB Member

CQSSLxxx

18 Common Queue Server Guide and Reference

|
|
|

Restriction: Avoid using names IBM uses for its structures. Do not begin

structure names with the letters A-I, or the character string SYS.

CHKPTDSN=

The required 1- to 44-character data set name of the cataloged VSAM data set

that is used for the checkpoint data set for the indicated structure. The data set

is dynamically allocated by CQS during CQS initialization. Each structure

defined in CQSSLxxx must have a unique CHKPTDSN.

SYSCHKPT=

Specifies the number of log records CQS writes between system checkpoints.

This value can be from 200 to 2 147 483 647. Each CQS address space that is

connected to a queue structure can specify a different system checkpoint log

record count. This value is not shared between CQS address spaces.

 This parameter has no default. If you do not specify a value, automatic system

checkpoints are only taken during restart, normal shutdown, and after a

structure checkpoint.

CQS Global Structure Definition PROCLIB Member (CQSSGxxx)

The CQSSGxxx PROCLIB member defines global CQS parameters that are related

to one or more coupling facility structures. These parameters are shared by all CQS

address spaces that share the structures. A particular CQS can support queue

structures, resource structures, or a combination of both queue structures and

resource structures. Each CQS sharing a structure must point to a CQSSGxxx

member containing identical structure definition parameters.

Recommendations:

v Point all CQSs to the same CQSSGxxx member to avoid parameter mismatches.

CQS connects to each structure that is defined in the member. The structures

defined in the CQSSGxxx member must also be defined in the CQSSLxxx

PROCLIB member.

v If you are using queue structures, define an overflow structure name

OVFLWSTR= if there is a possibility that you will use an overflow structure. If you

have to add an overflow structure later, the structure and all CQSs must be cold

started.

The following rules apply to the format of the CQSSGxxx member:

v The execution member consists of one or more fixed-length character records.

(The configuration data set can be of any LRECL greater than eight, but it must

be of fixed-record format.)

v The rightmost eight columns of each record are ignored and can be used for

sequence numbers or any other notation. In the remaining columns, you code the

keyword parameters. For example, if your record size is 80, you use columns 1

through 72 for your configuration data. You can use columns 73 through 80 for

sequence numbers.

v Keywords can contain leading and trailing blanks.

v Each record can contain multiple keywords.

v Commas or spaces delimit keywords.

v A comment begins with an asterisk (*) or pound sign (#) in column one. You can

include a comment anywhere within a statement by enclosing it between a

slash-asterisk and an asterisk-slash pair.

/*This is an example of a comment within a statement*/

v Values coded in this PROCLIB member are case-sensitive.

CQSSLxxx

Chapter 2. CQS Definition and Tailoring 19

|
|
|

If the STRUCTURE statement for an EMHQ structure is deleted from the

CQSSGxxx PROCLIB member, resources for the EMHQ structure are not allocated.

These resources include the EMHQ structure’s associated overflow structure,

structure recovery data sets, and CQS log.

A sample CQSSGxxx PROCLIB member that defines both message queue and

resource structures is shown in Figure 9:

 Use the following keywords to define a structure to CQS. At least one STRUCTURE

or RSRCSTRUCTURE definition is required.

STRUCTURE=

Defines a queue structure to CQS. This keyword can be repeated. Keyword

parameters must be enclosed within parentheses.

 Example: STRUCTURE (STRNAME=strname, SRDSDSN1=srsdsn1, ...)

 The following keyword parameters are available to the STRUCTURE definition:

STRNAME=

The required 1- to 16-character name of the primary coupling facility

structure to which CQS connects.

 The installation must have defined the structure name in the CFRM

administrative policy. The structure name must follow the naming rules of

the CFRM. For names with fewer than 16 characters, CQS pads the name

with blanks. The valid characters are A-Z, 0-9, and the characters $, &, #

and _. Names must be uppercase and start with an alphabetic character.

 Restriction: Avoid using names IBM uses for its structures. Do not begin

structure names with the letters A-I, or with the character string SYS.

**

* GLOBAL STRUCTURE DEFINITION PROCLIB MEMBER

**

* DEFINITION FOR IMS MESSAGE QUEUE STRUCTURES *

STRUCTURE (

 STRNAME=QMSGIMS01,

 OVFLWSTR=QMSGIMS01OFLW,

 SRDSDSN1=CQS.QMSG.IMS01.SRDS1

 SRDSDSN2=CQS.QMSG.IMS01.SRDS2,

 LOGNAME=SYSLOG.QMSG01.LOG

 OBJAVGSZ=1024)

* DEFINITION FOR IMS EMH QUEUE STRUCTURES *

STRUCTURE (

 STRNAME=QEMHIMS01,

 OVFLWSTR=QEMHIMS01OFLW,

 SRDSDSN1=CQS.QEMH.IMS01.SRDS1,

 SRDSDSN2=CQS.QEMH.IMS01.SRDS2,

 LOGNAME=SYSLOG.QEMH01.LOG

 OBJAVGSZ=1024)

* DEFINITION FOR IMS RESOURCE STRUCTURE *

RSRCSTRUCTURE (STRNAME=QRSCIMS01)

Figure 9. Sample CQSSGxxx PROCLIB Member

CQSSGxxx

20 Common Queue Server Guide and Reference

|
|
|
|

SRDSDSN1=

Is a required 1- to 44-character data set name of the cataloged VSAM data

set that is used for the first structure recovery data set. The data set name

is used to dynamically allocate the data set when a structure checkpoint is

requested. For a given structure checkpoint request, CQS uses either

structure recovery data set 1 or data set 2. CQS alternates between the two

data sets for structure checkpoint processing.

 All CQS address spaces that connect to a queue structure must use the

same value for this parameter. The value specified by the CQS that initially

allocates the structure is the value that is used for the life of the structure.

SRDSDSN2=

Is a required 1- to 44-character data set name for the cataloged VSAM data

set that is used for the second structure recovery data set. The data set

name is used to dynamically allocate the data set when a structure

checkpoint is requested. For a given structure checkpoint request, CQS

uses either structure recovery data set 1 or data set 2. CQS alternates

between the two data sets for structure checkpoint processing.

 All CQS address spaces that connect to a queue structure must use the

same value for this parameter. The value specified by the CQS that initially

allocates the structure is the value that is used for the life of the structure.

LOGNAME=

Is the required 1- to 26-character name of the z/OS log stream that CQS

uses to record all information related to the structure. The installation must

have previously defined this name to the z/OS system logger.

 All CQS address spaces that connect to a queue structure must use the

same value for this parameter. The value specified by the CQS that initially

allocates the structure is the value that is used for the life of the structure.

OBJAVGSZ=

Specifies the average size of a data object that is written to a queue on this

structure. This value can range from 128 bytes to 61312 bytes or from 1K

to 59K. The following list defines some IMS object sizes:

IMS client

The object size is the size of the IMS message plus some control

information.

IMS queue manager messages

If the user message and the message queue prefix both fit

completely into one queue buffer, the object size is the sum of the

user message and the message queue prefix. If both parts do not

completely fit into one queue buffer, the object size is the size of

the portion of the message and the message queue prefix that do

fit into one queue buffer. The size of an IMS message queue buffer

is specified to the IMS control region by the QBUFSZ execution

parameter.

IMS expedited message handler messages

The object size is the size of the user message plus 240 bytes (the

size of the EMHB global header).

Recommendation: Specify the OBJAVGSZ to be the average of the sizes

of all the objects passed to CQS by a CQSPUT request. CQS adds its own

prefix containing control information to every object placed on the structure.

CQS adds the length of its prefix to the OBJAVGSZ value that you specify

to get the true average object size. Therefore, OBJAVGSZ should reflect

CQSSGxxx

Chapter 2. CQS Definition and Tailoring 21

|
|
|

only the average size of the objects as they are passed to CQS, not the

average size of the object on the coupling facility.

 If the OBJAVGSZ is too small, too much space in the structure is allocated

for control information. The structure becomes full when all of the space for

data is used up, even though space for control information is still available.

 If the OBJAVGSZ is too large, too much space in the structure is allocated

for data. The structure becomes full when all of the control space is used

up, even though space for data is still available.

 Example: Five objects are put on the structure by a CQSPUT request. The

sizes of the objects are:

object 1 134 bytes

object 2 1066 bytes

object 3 3200 bytes

object 4 172 bytes

object 5 345 bytes

The average object size is calculated to be 983 bytes.

 (134 + 1066 + 3200 + 172 + 345)/5 = 983

OVFLWMAX=

Specifies the maximum threshold percentage for overflow processing. This

value indicates the percentage of the structure that must be in use before

CQS goes into overflow mode. This value can be from 50 to 100. For

example, if OVFLWMAX=75, the structure is put into overflow mode when

the structure usage reaches 75% of the structure size. The default is 70%.

 The value specified by the CQS that initially allocates the structure is used

for the life of the structure.

OVFLWSTR=

Is the 1- to 16-character name of the optional coupling facility structure to

which CQS connects for structure overflow processing. The name must

follow the same naming convention as the structure name specified by the

STRNAME= parameter. When CQS is processing in overflow mode,

selected queues are written to this structure instead of to the primary

structure.

 If an overflow structure is not specified and an overflow condition is

detected, CQS rejects requests to add data objects to those queues that

were selected for overflow.

 If an overflow structure is specified, CQS connects to the overflow structure

during CQS initialization and then again during phase one of overflow

threshold processing. If CQS detects that the overflow structure size is less

than 30% of the primary structure size, the overflow structure is considered

to be too small and CQS issues the CQS0268I message. CQS is allowed to

initialize even though the overflow structure is too small. CQS disconnects

from and deletes the overflow structure at the end of CQS initialization.

 CQS does not attempt to connect to the overflow structure again until the

overflow threshold is reached. If at that time the overflow structure size is

still less than 30% of the primary structure size, CQS again issues the

CQS0268I message. CQS goes into overflow mode, but the overflow

structure is not used. Requests to add data objects to those queues that

were selected for overflow are rejected.

CQSSGxxx

22 Common Queue Server Guide and Reference

Recommendation: Define the size of the overflow structure in the CFRM

policy to be at least X% of the primary structure size, where X is the value

specified for the OVFLWMAX= parameter. The value specified for the

OVFLWMAX= parameter indicates the percentage of the primary structure

that must be in use before CQS goes into overflow mode, the overflow

threshold. For example, if the overflow threshold was defined with the

OVFLWMAX= parameter to be 75% of the primary structure size, the size

of the overflow structure should be at least 75% of the primary structure

size. If a value is not specified for the OVFLWMAX= parameter, the

overflow threshold defaults to 70% and the size of the overflow structure

should be at least 70% of the primary structure size.

 An overflow structure name can be defined only when the structure is cold

started. Once structures have been allocated, an overflow structure cannot

be added unless the structure and all CQSs are cold started.

 All CQS address spaces that connect to a queue structure must use the

same value for this parameter. The value specified by the CQS that initially

allocates the structure is used for the life of the structure.

STRMIN=

Specifies the value for the minimum primary structure size to which CQS

can connect. This value is specified in units of 4 KB blocks and can be any

value from 0 to the maximum structure size of 524288 (a 2-GB structure).

 The default value is 0, indicating that CQS accepts the size as allocated by

the coupling facility. If the coupling facility is constrained, the structure can

be allocated to something smaller than that defined by the CFRM policy.

Depending on the size, the structure might overflow sooner than expected.

 Recommendation: Specify a value for STRMIN= that is less than the

structure size that is defined in the policy.

 The value specified by the CQS that initially allocates the structure is used

for the life of the structure.

 When the first CQS connects to an empty structure, that structure is

allocated on the coupling facility. After it is allocated, the structure remains

on the coupling facility regardless of whether a CQS is connected to it.

 If, during connection to a structure, CQS determines that the size of the

structure is smaller than the minimum size and the structure is empty, CQS

terminates. In this case, the installation needs to redefine the use of the

coupling facility to ensure that the required size can be allocated. If CQS

connects to a structure that is smaller than the minimum size, but the

structure contains data objects, CQS does not terminate. CQS attempts to

use the smaller structure because it already contains data. In this case,

CQS issues a message that allows an operator to initiate a structure rebuild

in order to increase the structure size.

RSRCSTRUCTURE=

Defines a resource structure to CQS. An IMSplex can define only one resource

structure; name uniqueness is within one resource structure. Keyword

parameters must be enclosed within parentheses.

 Example: RSRCSTRUCTURE (STRNAME=strname)

 The following keyword parameter is available:

STRNAME=

The required 1- to 16-character name of the coupling facility list structure to

CQSSGxxx

Chapter 2. CQS Definition and Tailoring 23

|
|
|
|

which CQS connects. This parameter defines the name of the resource

structure used by RM to keep IMS resource information.

 The installation must have defined the structure name in the CFRM

administrative policy. The structure name must follow the naming rules of

the CFRM. For names with fewer than 16 characters, CQS pads the name

with blanks. The valid characters are A-Z, 0-9, and the characters $, &, #

and _. Names must be uppercase and start with an alphabetic character.

 Restriction: Avoid using names IBM uses for its structures. Do not begin

structure names with the letters A-I, or with the character string SYS.

CQS Execution Data Sets

CQS uses two types of data sets, the system checkpoint data set and the structure

recovery data set. Both of these data sets must be VSAM entry-sequenced data

sets (ESDSs). These data sets are user data sets (and are not known to SMP/E).

v “CQS System Checkpoint Data Set”

v “CQS Structure Recovery Data Sets” on page 25

CQS System Checkpoint Data Set

Each CQS address space that is connected to a queue structure maintains a

system checkpoint data set for each structure pair. Neither CQS address spaces

nor queue structures share the system checkpoint data set. The CQS initialization

process dynamically allocates the system checkpoint data set.

Use the MVS/DFP™ DEFINE CLUSTER functional command to define the data set to

the installation.

Related Reading: For a description of the DEFINE CLUSTER function command and

its parameters, see z/OS DFSMS Access Method Services for Catalogs.

Requirement: When you use the DEFINE CLUSTER functional command to define the

system checkpoint data set, you must specify the following parameters:

NAME

Specifies the same name that you specify using the CHKPTDSN= parameter of

the CQS local structure definition PROCLIB member.

NONINDEXED

Specifies that the data set is to be an ESDS.

NONSPANNED

Specifies that the records must be contained in a single control interval.

SHAREOPTIONS

Specifies how a cluster can be shared among users.

 Requirement: You must specify SHAREOPTIONS (2,3).

REUSE

Specifies that the cluster can be reused.

Recommendation: The following parameters are recommended when you specify

the DEFINE CLUSTER functional command:

RECORDSIZE

Specifies the average and maximum length in bytes for the records in the

cluster.

CQSSGxxx

24 Common Queue Server Guide and Reference

|

|

|
|
|
|

Recommendation: Both the maximum and minimum length of the

RECORDSIZE should be 7 bytes less than the CONTROLINTERVALSIZE.

CONTROLINTERVALSIZE

Specifies the size of the control interval for the cluster.

 Requirement: The recommended CONTROLINTERVALSIZE is 512; it must be

a multiple of 512.

Example: An example of the system checkpoint data set is shown in Figure 10:

CQS Structure Recovery Data Sets

CQS uses two structure recovery data sets per structure pair for its structure

checkpoint processing.

Structure recovery data sets are not used for the resource structure.

When a structure checkpoint is requested, CQS dynamically allocates the structure

recovery data sets. Structure checkpoint requests alternate between the two

structure recovery data sets. During structure checkpoint processing all recoverable

data objects on a structure are written to the structure recovery data sets. Thus, the

size of each data set should be approximately the size of the primary structure plus

the overflow structure to ensure that the entire structure fits in the data set.

Use the MVS/DFP DEFINE CLUSTER functional command to define the data set to the

installation.

Related Reading: For a description of the DEFINE CLUSTER function command and

its parameters, see z/OS DFSMS Access Method Services for Catalogs.

Requirement: When you use the DEFINE CLUSTER functional command to define the

structure recovery data set, you must specify the following parameters.

NAME

Specify the same name you specify in the CQS global structure definition

PROCLIB member using the SRSDSDSN1= and the SRSDSDSN2=

parameters.

NONINDEXED

Specifies that the data set is to be an ESDS.

NONSPANNED

Specifies that the records must be contained in a single control interval.

SHAREOPTIONS

Specifies how a cluster can be shared among users.

 Requirement: You must specify SHAREOPTIONS (2,3).

REUSE

Specifies that the cluster can be reused.

 DEFINE CLUSTER -

 (NAME (MSGQ.CHKPT) -

 TRK(2,2) VOL (IMSQAV) NONINDEXED SHAREOPTIONS (2,3) -

 RECSZ(505,505) REUSE CISZ (512))

Figure 10. System Checkpoint Data Set Example

Execution Data Sets

Chapter 2. CQS Definition and Tailoring 25

Recommendation: The following parameters are recommended when you specify

the DEFINE CLUSTER functional command:

RECORDSIZE

Specifies the average and maximum length in bytes for the records in the

cluster.

 Recommendation: Both the maximum and minimum length of the

RECORDSIZE should be 7 bytes less than the CONTROLINTERVALSIZE.

CONTROLINTERVALSIZE

Specifies the size of the control interval for the cluster.

 Requirement: The recommended control interval size is 32 768; it must be a

multiple of 512.

Example: An example of the structure recovery data set is shown in Figure 11:

 DEFINE CLUSTER -

 (NAME (MSGQ.SRDS1) -

 TRK(45,5) VOL (DSHR03) NONINDEXED SHAREOPTIONS (2,3) -

 RECSZ(32761,32761) REUSE CISZ (32768)

Figure 11. Structure Recovery Data Set Example

Execution Data Sets

26 Common Queue Server Guide and Reference

Chapter 3. CQS Administration

This section describes the system administration tasks associated with using the

Common Queue Server.

The following topics provide additional information:

 “Starting CQS”

 “Recording Information Necessary for Starting CQS” on page 28

 “Restarting CQS” on page 30

 “Restarting CQS Structures” on page 28

 “Establishing Client Connection to CQS During Failed Client Takeover” on page

32

 “Authorizing Access To CQS” on page 33

 “Using Structure Alter for CQS” on page 34

 “Using CQS System Checkpoint” on page 34

 “Using CQS Structure Checkpoint” on page 35

 “Preventing CQS Structure Full” on page 37

 “Rebuilding Structures in CQS” on page 39

 “Deleting a Structure When CQS Is Not Connected” on page 44

 “Shutting Down CQS” on page 44

This section contains Product-sensitive Programming Interface information.

Starting CQS

You can start CQS in one of three ways:

v As a z/OS task, using the z/OS START command

v As a z/OS batch job

v As a client task — Some clients (such as IMS) automatically start CQS, when

appropriate

Example: If IMS is the client, define the CQS name in the DFSSQxxx

PROCLIB member and specify the CQS name on the SHAREDQ parameter of the

IMS procedure. IMS doesn’t start CQS if the CQS is needed only to manage a

resource structure.

A CQS that supports only a resource structure must be started manually because

IMS does not start this CQS.

Related Reading:

v For information on defining IMS procedures, see DCC Procedures and

DFSSQxxx PROCLIB member in IMS Version 9: Installation Volume 2: System

Definition and Tailoring.

v For information on defining z/OS policies, see “CQS and Defining z/OS Policies”

on page 7.

v For information on the CQS initialization parameters, see “CQS Initialization

Parameters PROCLIB Member (CQSIPxxx)” on page 16.

© Copyright IBM Corp. 1997, 2004 27

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

Recording Information Necessary for Starting CQS

CQS uses the z/OS system logger to record all information necessary for CQS to

recover queue structures and restart. CQS writes log records for each coupling

facility list structure pair that it uses to a separate log stream. The log stream is

shared among all CQS address spaces that share the queue structure. The z/OS

system logger provides a merged log for all CQS address spaces that are sharing

queues on a coupling facility list structure.

Important: Changes to resource structures are not logged.

For CQS to use a z/OS system log, you must first define the log stream and

associated resources to z/OS.

CQS also provides a File Select and Formatting Print utility to print the log records.

Related Reading: For more information on defining the log stream, see z/OS MVS

Setting Up a Sysplex.

For more information on the File Select and Formatting Print utility, see “Printing

CQS Log Records” on page 183.

Restarting CQS Structures

Restarting structures involves restarting a structure pair. The structure restart

function ensures that the data in the structure is correct. Structure restart deals only

with the status of data in a specific coupling facility structure, not units of work

specific to a given CQS.

Before CQS can restart, CQS must recover each queue structure defined to CQS, if

needed. CQS connects to both the primary and the overflow queue structures for

each structure pair defined. CQS determines whether the structures need to be

warm or cold started and performs the necessary recovery functions. If more than

one structure pair is defined to CQS, one structure pair can be warm started and

another can be cold started.

CQS Structure Allocation

A structure is allocated the first time a CQS connects to it. The structure is

persistent. It remains allocated until you explicitly delete it using the z/OS SETXCF

command.

When a CQS connects to a structure, the structure might be empty; that is, it might

contain no data, might contain only CQS control information, or it might contain

client data. The structure can be empty if:

v This is the first time a CQS is accessing the structure.

v You scratched the structure to perform a structure cold start.

v A structure failure occurred and the structure must be recovered.

CQS Structure Warm Start

CQS warm starts both a primary structure and its overflow structure if either the

primary structure contains data, or one SRDS contains valid structure checkpoint

data and the CQS log contains valid data.

Starting CQS

28 Common Queue Server Guide and Reference

|
|
|
|

|
|
|
|
|
|

|

|
|
|

|
|
|

|

|

|

|

|
|
|

During a structure warm start, CQS determines the status of the structure and

initiates a structure recovery if necessary. If a structure recovery is needed, CQS

allocates the structure and repopulates it from either the CQS log and the SRDS,

which contains valid client data from a previous checkpoint, or from the CQS log by

itself.

After a structure warm start has completed, CQS determines whether a future

recovery is possible based on the status of the structure recovery data sets and the

log stream. If the primary structure contains client data, but neither the SRDS nor

the log can be used for future recovery, CQS issues a CQS0009W message.

Recommendation: If CQS issues a CQS0009W message, initiate a structure

checkpoint as soon as possible. If a structure checkpoint does not complete

successfully and the structure fails, CQS cannot recover the structure.

After a structure warm start, CQS can be cold started or warm started. If the log

records needed for the CQS restart have been deleted, you might have to cold start

the CQS.

CQS Structure Cold Start

CQS cold starts both a primary structure and its overflow structure if the primary

structure is empty and both of the structure recovery data sets are empty. During a

structure cold start, CQS deletes:

v The overflow structure

v All the log records in the log stream for the structure

To cold start a structure, you must:

1. Ensure that all CQSs are disconnected from the structure.

2. Delete the primary and overflow structures on the coupling facility.

3. Scratch both structure recovery data sets (SRDS 1 and 2) for the structure.

When structure cold start completes, CQS automatically performs cold start restart

processing.

CQS Structure Recovery for Restarting

A structure might need to be recovered if the structure is empty or if it contains only

CQS control information. Data from the last structure checkpoint and the z/OS log

stream are used to recover a structure. The structure is first repopulated with data

objects from the structure recovery data sets. CQS then reads the log, starting at

the time of the structure checkpoint, and updates the structure with changes that

occurred after the structure checkpoint.

If the primary structure is empty and neither SRDS contains valid structure

checkpoint data, CQS determines whether it can use just the CQS log for recovery.

If the first log record in the log stream is the Beginning of Log record, the log

stream contains all the log records required for recovery, and CQS can use the log

records to complete the structure recovery.

If CQS finds that a previous structure rebuild did not complete successfully, it

initiates another rebuild.

Restarting

Chapter 3. CQS Administration 29

|
|
|
|
|

|
|
|
|

|
|
|

|
|
|

|

|
|
|

|

|

|

|

|

|

|
|

|

|
|
|
|
|
|

|
|
|
|
|

|
|

If the primary structure contains only CQS control information and the first CQS that

connected to the structure (the one that allocated the structure) cannot determine

whether a rebuild is needed, CQS initiates a rebuild if either SRDS is valid or if all

the log records are available.

If neither SRDS is valid and the log records have been deleted by a previous

structure checkpoint, CQS cannot rebuild the structure. When this happens and a

rebuild is necessary, CQS issues write-to-operator-with-reply (WTOR) CQS0034A

message asking what you want to do. You can cold start the structure or cancel this

CQS. For more information on structure recovery, see “CQS Structure Recovery” on

page 41.

Restarting CQS

After CQS completes the structure initialization, it continues with the restart. CQS

can do either a cold restart or a warm restart.

Restarting CQS affects only the units of work that this CQS manages. Restarting

does not back out or restore any units of work owned by another CQS. When you

have completed restarting all structure pairs for a particular CQS, the CQS ready

message is issued (CQS0020I).

Since changes to resource structures are not check pointed or logged, restarting

CQS does not affect units of work for resource structures.

The frequency of system checkpoints affects restart. CQS must read more log

records when checkpoints are infrequent than when checkpoints occur more often.

Also, the amount of logging that one CQS performs can affect another CQS during

restart. All CQSs write to the same log, so a CQS restarting must read all log

records written by all CQSs.

CQS takes an initial system checkpoint at the end of a restart.

CQS Warm Start

During a warm start, CQS reads the log records from the last system checkpoint,

restores the environment for committed data objects, and backs out uncommitted

data objects. Doing so prepares CQS to regain synchronization with the client and

resume processing. Normally, CQS warm start is automatic and you do not need to

take any action.

When CQS warm starts, it reads the checkpoint data set to find the log token

representing the last system checkpoint. When CQS finds this log token, it initiates

a warm start. If CQS fails to find this log token in the checkpoint data set, it reads

the log token from the structure. If CQS finds the log token, CQS issues WTOR

CQS0031A to allow you to confirm the use of this token. At this point, you can do

one of the following:

v Confirm the log token.

v Cold start CQS.

v Cancel CQS.

v Specify a new log token.

If you specify a new log token and CQS fails to find this log token, CQS issues

WTOR CQS0032A. At this point, you can do one of the following:

v Cold start CQS.

Restarting

30 Common Queue Server Guide and Reference

|
|
|
|

|
|
|
|
|
|

|
|

v Cancel CQS.

v Specify a new log token.

Sometimes CQS purges log records that are required for restart. CQS purges log

records in the following situations:

v During a structure checkpoint

v When the log becomes full and no more data sets are available for logging

Related Reading: See “Using CQS Structure Checkpoint” on page 35 for more

details on structure checkpoint and the purging of log records.

Important: CQS might not have any log records if it is only managing resource

structures.

Recommendation: If a CQS does not accept a log token during CQS restart, cold

start the CQS. In cases where multiple CQSs are running, it is possible that log

records for a CQS that previously failed and was not restarted are purged while

another CQS performs a structure checkpoint.

CQS Cold Start

When CQS restarts after a structure cold start, CQS cold start processing is

automatic. You do not need to take any action. CQS takes a system checkpoint and

then CQS restart is complete.

When CQS cold starts after a structure warm start or a structure recovery, CQS

reads the structure to find unresolved work. CQS backs out requests to move data

but completes requests to delete data. CQS performs a system checkpoint and

restart is complete.

No log records are read or processed when CQS is cold started.

To cold start CQS, you must:

1. Scratch the CQS system checkpoint data set for the structure.

2. Reply ″COLD″ to the CQS0031A WTOR.

Using the z/OS Automatic Restart Manager with CQS

CQS, if requested, can register with the z/OS Automatic Restart Manager. The

Automatic Restart Manager (ARM) is a z/OS recovery function that can improve the

availability of started tasks. When a task fails or the system on which it is running

fails, the ARM can restart the task without operator intervention.

Recommendation: Register with the z/OS ARM regardless of the types of

structures CQS is using.

To enable the ARM, you can specify ARMRST=Y in one of two ways:

v In the CQSIPxxx PROCLIB member

v As an execution parameter

An abend table exists in module CQSARM10. The table lists the CQS abends for

which the ARM does not restart CQS after the abend occurs. You can modify this

table.

Restarting

Chapter 3. CQS Administration 31

IBM provides policy defaults for automatic restart management. You can use these

defaults or define an ARM policy to specify how CQS should be restarted. The

policy can specify different actions to be taken when the system fails and when

CQS fails. When ARM is enabled, CQS registers to ARM with an ARM element

name of CQS + cqsssn + CQS. Use this ARM element name in the ARM policy to

define the ARM policy for CQS.

cqsssn is the CQS name. It can be defined either as a CQS execute parameter, or

with the SSN= parameter in the CQSIPxxx PROCLIB member. For example, if

SSN=CQSA, then the ARM element name is CQSCQSACQS.

Related Reading: For more information on using the z/OS ARM with CQS, see

“CQS Execution Parameters” on page 14. See z/OS MVS Setting Up a Sysplex,

GC28-1779 for OS/390 or SA22-7625 for z/OS, for details on z/OS ARM policy.

Restarting CQS after CQS Resource Cleanup Failures

If CQS abends and you receive message CQS0102E with module CQSRSM00, log

records might be missing from the CQS log. Message CQS0102E indicates that a

failure occurred during CQS resource cleanup. This failure might prevent CQS log

records in internal buffers from being externalized to the CQS log.

If this situation occurs, perform one of the following actions:

v If the terminating CQS is the only CQS running for its set of structures, restart

the CQS immediately.

v If other CQSs are running, either immediately restart the terminated CQS or

initiate a structure checkpoint on one of the surviving CQSs. For more

information, see the /CQCHKPT SHAREDQ command in IMS Version 9: Command

Reference.

Successfully restarting the failed CQS or taking a structure checkpoint is necessary

to preserve the state of the data on the shared queues in the event that a structure

rebuild is needed.

Establishing Client Connection to CQS During Failed Client Takeover

When the client (such as IMS) supports XRF takeover capability, one client must

take over the work for a failed client. The CQS connected to this failed client might

not be active. Therefore, during the takeover process, the client taking over work

from a failed client must connect to a different CQS and indicate that it is taking

over work from another client. At this point, CQS must perform a process similar to

CQS restart, using the log records from the CQS connected to the failed client.

Normally, CQS failed client connection restart (warm start) is automatic and you do

not need to take any action.

During a failed client connection, CQS reads the log token from the structure for the

CQS connected to the failed client.

v If CQS finds the log token, CQS performs warm start processing for the failed

client.

v If CQS does not find the log token, CQS issues WTOR CQS0033A. At this point,

you can do one of the following:

– Cold start the client connection.

– Reject the client connection request.

– Specify a new log token.

Restarting

32 Common Queue Server Guide and Reference

|
|
|

|
|
|

|

|
|
|
|

|

|
|

|
|
|
|

|
|
|

Recommendation: If a CQS does not accept a log token during failed client

connection restart, cold start the connection. If multiple CQSs are running, one CQS

structure checkpoint might purge the log records for another CQS that previously

failed and was not restarted.

Authorizing Access To CQS

If RACF® or another security product is installed at your installation, the security

administrator can define profiles that control the ability of clients to connect to and

access CQS structures.

Authorizing CQS Registration

When a client issues the CQSREG request to register with CQS, CQS issues a

RACROUTE REQUEST=AUTH call to determine whether the client is authorized to register

with CQS. RACF checks the user ID of the client that issued the CQSREG request.

This user ID must have at least UPDATE authority to register with CQS.

The RACF security administrator can define profiles in the FACILITY class to

control registration with CQS. The profile names must be of the form CQS.cqs_id,

where cqs_id is the ID of the CQS that is to be protected. The cqs_id value is the

subsystem name (SSN) as defined in the CQSIPxxx PROCLIB member, followed by

the characters CQS. For example, if the SSN is ABC, the cqs_id value is ABCCQS.

Example: To define a profile for CQS to prevent users other than CQSUSER1 and

CQSUSER2 from registering, issue the RACF commands shown in Figure 12:

Authorizing Connections to CQS Structures

When a client issues the CQSCONN request to connect to a CQS structure, CQS

issues a RACROUTE REQUEST=AUTH call to determine whether the client is authorized

to access the structure. RACF checks the user ID of the client that issued the

CQSCONN request. This user ID must have at least UPDATE authority to connect

to the structure through CQS.

The RACF security administrator should define profiles in the FACILITY class to

control the connection to CQS structures. The profile names must be of the form

CQSSTR.structure_name, where structure_name is the name of the primary CQS

structure that is to be protected. Use the same structure name that you define in

the CQSSGxxx and CQSSLxxx PROCLIB members.

The CQSSTR.structure_name profiles only control access to the specified structures

through CQS; they do not control direct access to the structures using IXL macros.

You can provide control over direct structure access by defining RACF profiles of

the form IXLSTR.structure_name. If you create such profiles, you must give the user

IDs under which you run CQS access to the structures.

Related Reading: For information on protecting direct access to coupling facility

structures, see ″Authorizing Coupling Facility Requests″ in the z/OS MVS

Programming: Sysplex Services Guide.

RDEFINE FACILITY CQS.ABCCQS UACC(NONE)

PERMIT CQS.ABCCQS CLASS(FACILITY) ID(CQSUSER1) ACCESS(UPDATE)

PERMIT CQS.ABCCQS CLASS(FACILITY) ID(CQSUSER2) ACCESS(UPDATE)

SETROPTS CLASSACT(FACILITY)

Figure 12. RACF Commands for Authorizing CQS Registration

Restarting

Chapter 3. CQS Administration 33

|
|
|

|

|
|
|
|

|
|
|
|
|

|
|
||

|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

For more information on defining structure names, see “CQS Global Structure

Definition PROCLIB Member (CQSSGxxx)” on page 19 and “CQS Local Structure

Definition PROCLIB Member (CQSSLxxx)” on page 17. CQS does not perform a

separate check on the overflow structure name, because the primary and overflow

structures are considered one unit.

Example: To define a profile for a CQS primary structure named IMSMSGQ01, and

to allow only user CQSUSER to connect to it, issue the RACF commands shown in

Figure 13:

If you do not define a profile for a particular CQS structure, the structure is not

protected, and any user ID can issue a CQSCONN request to access the structure.

Using Structure Alter for CQS

Structure alter is a z/OS process supported by CQS that can be used to alter the

structure size or to redistribute the objects within the structure. CQS supports

structure alter for primary queue structures, overflow queue structures, and

resource structures. CQS allows you to dynamically change the size of a primary or

overflow structure.

To enable structure alter, activate a CFRM policy and define the INITSIZE and SIZE

parameters in this policy. For information on structure size, see “Determining

Structure Size for CQS Connections” on page 12.

To initiate the structure size change, enter the following XES command:

SETXCF START,ALTER,STRNAME=strname,SIZE=size

The value of size must be within the range of values between INITSIZE and SIZE in

the CFRM policy.

Automatic structure alter is a z/OS function that can automatically alter the structure

size or the element to entry ratio when the structure full threshold is reached. CQS

supports automatic structure alter for queue structures and resource structures. To

enable automatic structure alter, activate a CFRM policy defined with INITSIZE,

SIZE, ALLOWAUTOALT(YES).

Important: A structure enabled with automatic structure alter is a candidate to be

contracted in size by z/OS, if the coupling facility storage becomes constrained. Be

careful when enabling automatic structure alter for queue structures. If z/OS

contracts the queue structure size, it might cause the queue structure to go into

overflow unnecessarily. To prevent this happening, define the CFRM policy with a

MINSIZE (minimum size), below which z/OS will not contract the structure.

Using CQS System Checkpoint

This section introduces CQS system checkpoint, the checkpoint data sets that are

used for recovery, and how CQS restarts after system checkpoint.

RDEFINE FACILITY CQSSTR.IMSMSGQ01 UACC(NONE)

PERMIT CQSSTR.IMSMSGQ01 CLASS(FACILITY) ID(CQSUSER) ACCESS(UPDATE)

SETROPTS CLASSACT(FACILITY)

Figure 13. RACF Commands to Authorize Connection to CQS Structures

Authorizing Access

34 Common Queue Server Guide and Reference

|
|
|
|
|

|
|
|
|

|
|

System checkpoint applies to a CQS if it manages at least one queue structure. If a

CQS manages only a resource structure, system checkpoint does not apply.

At a system checkpoint for recovering CQS information, CQS writes log records that

contain restart and recovery information to the CQS log. CQS does not stop activity

while the checkpoint is in progress.

CQS performs a system checkpoint in each of the following situations:

v When a client issues a CQSCHKPT FUNC=CHKPTSYS request

v When the number of log records that CQS writes reaches the value specified on

the SYSCHKPT= parameter in the CQSSLxxx PROCLIB member

v When the client is IMS and you enter the /CQCHKPT SYSTEM command

v When a client RESYNC ends

v When structure checkpoint ends successfully

v At the end of a restart

In addition, CQS takes system checkpoints during significant events, such as a

shutdown.

CQS Checkpoint Data Set

For each structure pair, CQS maintains a checkpoint data set. CQS writes to its

checkpoint data set and uses it during restart.

The checkpoint data set is dynamically allocated during CQS initialization. You

define the checkpoint data set DSNAME for a structure using the CHKPTDSN=

parameter in PROCLIB member CQSSLxxx.

How CQS Restarts after System Checkpoint

During CQS restart, CQS reads the log records from the last system checkpoint

and restores the environment for committed data objects and backs out

uncommitted data objects on queue structures. The frequency of system checkpoint

affects this restart. CQS must read more log records when checkpoints are

infrequent than when the checkpoints occur more often. Because the CQS log is

shared by multiple CQSs, CQS restart time is affected by the number of log records

written by the multiple CQSs, not just the CQS that is being restarted.

CQS takes an initial system checkpoint at the end of a restart.

Using CQS Structure Checkpoint

Structure checkpoint takes a snapshot of the shared queues on a queue structure

and writes the data to the structure recovery data set (SRDS) so that CQS can

recover the queues after a structure failure. Structure checkpoint processing copies

all recoverable data objects from a structure pair to a SRDS. For nonrecoverable

data objects, the queue name, and UOW are copied, but not the actual data object.

The client specifies whether or not a data object is recoverable when the CQSPUT

FUNC=PUT request is issued to insert the data object onto the shared queues. For

example, when IMS is the client, all data objects are marked as recoverable, except

for Fast Path input messages.

Important: Structure checkpoint is not supported for resource structures. It supports

queue structures only.

Using Checkpoint

Chapter 3. CQS Administration 35

When it performs the copy operation, CQS stops all activity against the structure to

ensure that the structure does not change while the checkpoint is being taken. If

CQS receives a request to process work when a structure checkpoint is in

progress, the request is held until after the structure checkpoint is complete.

Recommendation: Because no other work for a structure can be processed while

CQS is taking a checkpoint, consider processing structure checkpoints during

non-peak hours.

After all shared queues are copied to the SRDS, each CQS performs a system

checkpoint to ensure its restart checkpoint has a time stamp that is more recent

than the current structure checkpoint. The structure checkpoint process then deletes

all log records that are not needed for structure recovery, allowing the logger to

reclaim space in the CQS log and preventing the log from becoming full. After log

records are deleted, CQS cannot access these log records and, therefore, cannot

use these records for structure recovery or CQS restart. If only one SRDS contains

valid structure checkpoint data, all log records that were written prior to that

structure checkpoint are deleted. If both SRDSs contain valid structure checkpoint

data, all log records that were written prior to the oldest structure checkpoint are

deleted.

If a CQS was not active at the time of a structure checkpoint, it cannot initiate a

system checkpoint, meaning that its restart checkpoint is older than at least one

structure checkpoint. If both SRDSs contain valid structure checkpoint data, no

problem exists (because the CQS restart checkpoint is still more recent than the

oldest structure checkpoint, so its restart log records are not deleted). However, if

this is the first or only valid structure checkpoint, or a CQS was down across two

structure checkpoints, the log records needed for that CQS to restart are deleted. In

this case, that CQS might need a cold start to restart.

Recommendation: Initiate a structure checkpoint after a structure cold start, or

anytime the SRDSs are deleted and redefined. The structure checkpoint should

start after all CQSs that share the structure are started. This provides the SRDS

with an initial structure checkpoint. Also, to update the snapshot of the shared

queues and to periodically delete log records, initiate a structure checkpoint at

regular intervals.

When a structure recovery is required, the SRDS and the CQS log are used to

recover the shared queues. CQS first repopulates the new structure from the

SRDS. CQS then reads all log records from the time the structure checkpoint

completed. The length of time to read the log records is dependent on how many

log records are in the log. More frequent structure checkpoints reduce the number

of log records that must be read during a structure recovery. Deleting the log

records also helps prevent the log from becoming full. When a log stream becomes

full, CQS deletes all log records older than the oldest structure checkpoint or CQS

system checkpoint. CQS then takes a structure checkpoint.

CQS performs structure checkpoints in each of the following situations:

v When the z/OS log becomes full or approaches full.

v After a successful structure recovery.

v After a successful overflow threshold process.

v When a client issues the CQSCHKPT FUNC=CHKPTSTR request.

v When the client is IMS, and you enter the /CQCHKPT SHAREDQ command.

Recovering CQS and Structures

36 Common Queue Server Guide and Reference

v During CQS normal termination when the client requests it on the CQSDISC

request. When the client is IMS, you can request a structure checkpoint at CQS

termination by entering the /CQSET SHUTDOWN SHAREDQ command. IMS then

passes this request to CQS when IMS terminates normally with a /CHECKPOINT

FREEZE|DUMPQ|PURGE command.

Preventing CQS Structure Full

You should manage structure usage to avoid a structure full condition. If a resource

structure or queue structure becomes full, CQS issues message CQS0205E. There

are two ways to prevent a structure full condition:

v CQS structure overflow function for queue structures

v z/OS structure full monitoring capability, used with CQS, for queue structures and

resource structures

Use these mechanisms to warn when a structure full condition is approaching and

to take action to prevent a full structure.

CQS Structure Overflow Function

CQS provides a structure overflow function that automatically warns you when a

queue structure is approaching full and takes action to prevent a full structure.

When the usage of a structure reaches the overflow threshold, CQS attempts to

make the structure larger by initiating a structure alter. If the alter fails, CQS either

allocates an overflow structure and moves selected queues to the overflow structure

(if you define an overflow structure) or rejects data objects from being put on the

selected queues. CQS stops all activity against the structure during this processing.

Definition: The overflow threshold is the percentage of the primary structure that

must be in use before CQS goes into overflow mode. The default overflow

threshold is 70%, but you can change the default by defining the OVFLWMAX

parameter in the CQSSGxxx PROCLIB member.

Important: Structure overflow is not supported for resource structures.

If CQS does not succeed in altering a structure’s size, the structure goes into

overflow mode. In overflow mode, CQS selects queues using the most space on

the structure as candidates for overflow processing. CQS stops selecting queues

when enough queues have been selected to cause the primary structure usage to

fall 20% below the overflow threshold. Activity against the structure is temporarily

stopped while queues are being selected for overflow. CQS drives the Queue

Overflow User-Supplied exit routine with the candidate queue names, which the exit

then approves or rejects for overflow processing. Queues that get approved are

placed into overflow mode. If an overflow structure is defined, CQS allocates the

overflow structure and moves the approved queues to the overflow structure. If an

overflow structure is not defined, CQS rejects CQSPUT requests for the approved

queues. Overflow structures can be defined in the CQSSGxxx PROCLIB member,

using the OVFLWSTR parameter.

CQS exits overflow mode either after all of the queues have been removed from the

overflow structure (if an overflow structure gets allocated), or when the primary

structure usage has gone 20% below the overflow threshold (if there is no overflow

structure).

Recovering CQS and Structures

Chapter 3. CQS Administration 37

|
|
|

|

|
|

CQS Structure Full Monitoring

The z/OS structure full monitoring capability can be used for queue structures and

resource structures to warn you when a structure is approaching full and to prevent

a full structure.

If structure full monitoring is enabled, z/OS monitors structure usage. When the

number of entries or elements in use reaches the structure full threshold, z/OS

issues a highlighted IXC585E message to warn the system programmer that a

structure full condition is imminent. If automatic altering is enabled, z/OS

automatically initiates a structure alter to increase the structure size or change the

element-to-entry-ratio.

Structure full monitoring is automatically enabled with a default threshold of 80%.

Define a different threshold with the CFRM policy FULLTHRESHOLD parameter.

Define the CFRM policy with FULLTHRESHOLD(0) to disable structure full monitoring.

When the structure usage goes below the threshold, z/OS issues an IXC586I

message.

The following command displays the structure full threshold that is in effect:

D XCF,STRUCTURE,STRNAME=strname

Examples In the example display shown in Figure 14, the command

D XCF,STRUCTURE,STRNAME=IMSRSRC01 is issued and the structure full threshold is

80%.

Figure 15 shows the IXC585E message, indicating the structure is full because all

of the entries are in use:

Figure 16 shows the IXC586I message:

STRNAME: IMSRSRC01

 STATUS: NOT ALLOCATED

 POLICY SIZE : 4096 K

 POLICY INITSIZE : N/A

 FULLTHRESHOLD : 80

 REBUILD PERCENT : N/A

 DUPLEX : DISABLED

 PREFERENCE LIST : LF03

 ENFORCEORDER : NO

 EXCLUSION LIST IS EMPTY

Figure 14. Display for Structure Full Threshold - Example 1

*IXC585E STRUCTURE IMSRSRC01 IN COUPLING FACILITY LF03, 725

 PHYSICAL STRUCTURE VERSION B4704775 92D95302,

 IS AT OR ABOVE STRUCTURE FULL MONITORING THRESHOLD OF 80%.

 ENTRIES: IN USE: 4874 TOTAL: 4874, 100% FULL

 ELEMENTS: IN USE: 19 TOTAL: 4872, 0% FULL

Figure 15. Display for Structure Full Threshold - Example 2

IXC586I STRUCTURE IMSRSRC01 IN COUPLING FACILITY LF03, 772

PHYSICAL STRUCTURE VERSION B4704775 92D95302,

IS NOW BELOW STRUCTURE FULL MONITORING THRESHOLD.

Figure 16. Display for Structure Full Threshold - Example 3

Structure Full

38 Common Queue Server Guide and Reference

|
|
|
|
|
|

|

Related Reading: For more details on structure full monitoring and the

FULLTHRESHOLD and ALLOWAUTOALT keywords in the CFRM policy, see z/OS

MVS Setting Up a Sysplex.

Using Structure Full Monitoring with CQS Structure Overflow

You can use the structure full monitoring function (a z/OS function) with the

structure overflow function (a CQS function) for queue structures.

The overflow threshold is a value defined to CQS. The structure full threshold is a

value defined to z/OS. If the overflow threshold is close to the structure full

threshold and automatic altering is enabled, CQS and z/OS might both try to initiate

a structure alter at the same time to prevent the structure from becoming full.

If a CQS-initiated structure alter is in progress when z/OS detects the structure full

threshold has been reached, z/OS stops the CQS-initiated structure alter and

initiates its own structure alter. When CQS detects that its structure alter has failed,

CQS goes into overflow mode, even if the z/OS-initiated structure alter reduces the

structure usage below the overflow threshold.

Recommendation: Consider your structure full threshold when deciding what

overflow threshold to define, so that you control when a structure goes into overflow

mode. If you use structure full threshold, define it to be lower than the overflow

threshold to avoid going into overflow mode unnecessarily. If the structure full

threshold is lower than the overflow threshold, z/OS can attempt structure full

threshold processing before the structure goes into overflow mode.

 Related Reading:

v For detailed information about the CQSSGxxx PROCLIB member, see “CQS

Global Structure Definition PROCLIB Member (CQSSGxxx)” on page 19.

v For detailed information about the Queue Overflow User-Supplied exit routine,

see “Queue Overflow User-Supplied Exit Routine for CQS” on page 51.

v For detailed information about the CQSPUT request, see “CQSPUT Request” on

page 116.

Rebuilding Structures in CQS

Structure rebuild is a z/OS process that allows another instance of a structure to be

allocated with the same name and data reconstructed from the initial structure

instance. z/OS supports system-managed rebuild, CQS-managed rebuild, and

structure duplexing. CQS supports system-managed rebuild and CQS-managed

rebuild for queue structures and resource structures. Note that CQS stops all

activity against the structure during structure rebuild.

z/OS System-Managed Rebuild and CQS

System-managed rebuild is a z/OS process by which z/OS rebuilds the structure.

z/OS copies the structure contents to a new structure. System-managed rebuild is

supported for queue structures and resource structures. System-managed rebuild is

only done if no CQS is up. If a CQS is up, the CQS performs a user-managed

rebuild and does the structure copy.

Use system-managed rebuild primarily for planned reconfiguration. If the rebuild is

initiated with the SETXCF START,REBUILD command and no CQS is available to

perform the structure copy, z/OS performs the structure copy.

Structure Full

Chapter 3. CQS Administration 39

Restrictions: System-managed rebuild does not address coupling facility failures,

structure failures, or loss of connectivity. CQS-managed rebuild is required to

handle such failures.

To enable a structure for system-managed rebuild, add the following parameter to

your CFRM couple data set utility job, then run the job control language (JCL) to

format the CFRM couple data set with system-managed rebuild capability.

ITEM NAME(SMREBLD) NUMBER(1)

CQS-Managed Rebuild

CQS-managed rebuild is a process by which CQS manages structure rebuild. CQS

supports two variations of CQS-managed rebuild: structure copy and structure

recovery. Structure copy copies the contents of the structure to another structure,

for a planned reconfiguration or connectivity loss. Structure copy can also be used

to activate new CFRM policy attributes. Structure recovery recovers a structure from

the SRDS and the z/OS log after a structure failure.

If one CQS loses connectivity to a structure and another CQS still has connectivity

to that structure, CQS manages the structure rebuild and performs a structure copy.

If all CQSs lose connectivity to a resource structure, structure recovery is

attempted, but fails because structure recovery is not supported for resource

structures.

If a coupling facility or queue structure fails, CQS performs a structure recovery.

If a resource structure fails, it is lost and structure rebuild is not performed. CQS is

not able to perform structure recovery because resource structures do not support

checkpoint and logging. CQS clients can repopulate the failed resource structure.

CQS attempts to allocate a new resource structure.

If a new structure is successfully allocated, CQS drives the client structure event

exit with the repopulate structure event. The CQS client or clients must then

repopulate the structure. If a new structure is not successfully allocated, CQS drives

the structure exit event with the structure failed event. The structure is not

accessible for repopulation. Correct the environmental problem that caused the

structure allocate to fail so that the structure can be allocated and repopulated.

Initiating Structure Rebuild with z/OS and CQS

A structure rebuild can be initiated by a z/OS operator, by CQS, or by z/OS:

v A z/OS operator can initiate a structure rebuild to copy or recover queues using

the following command:

SETXCF START,REBUILD,STRNAME=strname,LOCATION=NORMAL/OTHER

v CQS initiates a structure rebuild if, during CQS initialization, it detects an empty

structure and a valid SRDS (indicating a valid structure checkpoint in the SRDS).

If CQS detects an empty structure and a valid SRDS, it also initiates a structure

rebuild during event notification facility (ENF) 35 event processing.

v z/OS initiates a structure rebuild if the rebuild threshold for loss of connectivity is

reached. The rebuild threshold for loss of connectivity is defined with the CFRM

policy REBUILDPERCENT keyword. The REBUILDPERCENT default is 1. If the

system programmer does not define REBUILDPERCENT, z/OS initiates a rebuild

if any CQS loses connectivity to the structure.

v If structure copy aborts because of a CQS failure and no other CQS can

determine if the failed CQS is the master, then the rebuild starts over as a

structure recovery.

Rebuilding Structures

40 Common Queue Server Guide and Reference

CQS Structure Repopulation

Structure repopulation is a process by which CQS clients repopulate a failed

resource structure. CQS does not support structure recovery for resource structures

because CQS does not log or checkpoint resource updates.

If a resource structure and its duplex fail, the CQS clients can repopulate the

resource structure. CQS attempts to allocate a new structure. If this allocation is

successful, CQS notifies its clients to repopulate. The CQS client or clients must

then repopulate the structure. Any resources that were kept only on the resource

structure are lost.

If CQS fails to allocate a new structure, CQS notifies the client that the structure

failed. If the sysplex environment changes later and CQS is eventually able to

allocate a new resource structure, CQS notifies the client to repopulate at that time.

Alternately, correct the environmental problem that caused the structure allocate to

fail so that the structure can be allocated and repopulated.

CQS does not coordinate resource structure repopulation between CQS clients;

clients must synchronize resource structure repopulation if desired. Structure

repopulation does not guarantee the restoration of all objects; some objects may be

lost.

CQS Structure Recovery

The structure recovery function recovers the data objects on a structure from the

SRDS and the z/OS logs after a structure failure.

Important: Structure recovery is not supported for resource structures.

After a structure failure, the structure might need to be recovered if it is empty or

contains only CQS control information. During structure recovery, CQS allocates a

structure and repopulates it from either the SRDS (containing valid client data from

a previous checkpoint) and the CQS log or the CQS log by itself.

When CQS recovers the structure from a structure checkpoint, it repopulates the

structure with the data objects from the structure recovery data set. CQS reads the

log starting at the time of the structure checkpoint to update the structure with

changes that occurred after the structure checkpoint.

If the primary structure is empty and neither SRDS contains valid structure

checkpoint data, CQS determines whether it can use just the CQS log for recovery.

If the first log record in the log stream is the Beginning of Log log record, the log

stream contains all of the log records required for recovery and CQS can use the

log record to complete the structure recovery.

If CQS finds that a previous structure rebuild did not complete successfully, it

initiates another rebuild.

If the primary structure contains only CQS control information and the CQS that

allocated the structure is not able to determine if a rebuild is necessary, CQS

initiates a rebuild if either SRDS is valid or all log records are available.

If neither SRDS is valid and the log records are deleted by a previous structure

checkpoint, CQS cannot rebuild the structure. In this case, if rebuild is necessary,

CQS issues WTOR CQS0034A to ask you what to do. You can cold start the

structure or cancel this CQS.

Rebuilding Structures

Chapter 3. CQS Administration 41

If no CQS has access to the structure when structure rebuild is initiated, the

structure is recovered from the SRDS and the CQS log. Nonrecoverable data

objects (such as IMS Fast Path input messages) are lost. Data objects are read

from the SRDS and copied into a new structure. CQS then reads the log to bring

the structure back to the point of currency. The log contains all the records

necessary for structure recovery if no structure checkpoint was ever initiated. In this

case, the structure is recovered from just the CQS log.

A client can use the CQSCONN request to specify whether work can be performed

while a structure is being rebuilt. While structure recovery is in progress, CQS stops

all activity against the structure. This means that CQS requests are held until the

structure recovery is complete. You can allow CQS requests to continue during

structure rebuild by specifying WAITRBLD=NO when connecting to the structure with

the CQSCONN request. In this case, structure recovery stops structure activity for

some time, but the structure becomes available much sooner.

CQS Structure Copy

The structure copy function copies all of the data objects (both recoverable and

nonrecoverable) from the structure to a new structure for a planned reconfiguration

or unplanned activity such as loss of connectivity. Structure copy can be used to

change the location of the structure or any other attribute defined in the CFRM

policy, such as SIZE, INITSIZE, and PREFLIST. When a structure rebuild is

initiated, at least one CQS must have access to the structure for structure copy to

be performed.

z/OS Structure Duplexing for CQS

Structure duplexing is an optional z/OS-managed process for failure recovery of

queue structures and resource structures. In this process, z/OS creates a duplex

copy of a structure in advance of a failure, then maintains the structures in a

duplexed state during normal operation.

If a queue structure fails and duplexing is enabled, z/OS switches to the unaffected

structure instance. If a queue structure fails and duplexing is not enabled, CQS

rebuilds the structure based on data from the most recent checkpoint and z/OS log

entries. The advantage of duplexing queue structures in the event of a failure is in

avoiding the overhead of a CQS-managed structure rebuild.

If duplexing is enabled and a resource structure fails, z/OS switches to the

unaffected structure instance. If duplexing is not enabled and a resource structure

fails, the data objects are lost because resource structures do not support

checkpoint or logging. CQS repopulates the resource structure with control

information. CQS notifies its clients to repopulate the structure. It is up to the clients

to repopulate the resource structure if necessary.

Recommendation: Enable structure duplexing for resource structures.

If both instances of a structure fail at the same time, structure duplexing does not

work and all data objects are lost. If the failed structure is a resource structure, the

CQS client must repopulate it. If the failed structure is a queue structure, CQS

recovers the structure using structure rebuild.

Structure duplexing is optional. To use it, you must enable the z/OS 1.2 duplexing

function. Perform the following steps to enable this function:

1. Ensure that the sysplex is defined as duplexing capable.

Rebuilding Structures

42 Common Queue Server Guide and Reference

2. Add the following parameter to your CFRM couple data set format utility:

ITEM NAME(SMDUPLEX) NUMBER(1)

3. Migrate to an environment in which system-managed duplexing is enabled from

a CFRM standpoint. A nondisruptive migration of CFRM couple data sets is

required. Only z/OS systems at a level that supports system-managed duplexing

are capable of using system-managed CFRM couple data sets that are

duplexing-capable. Therefore, take the following steps:

a. Incrementally migrate all systems in the sysplex that are using CFRM to the

z/OS level that supports system-managed duplexing.

b. Format system-managed duplexing-capable CFRM couple data sets and

bring them into use as the primary and alternate CFRM couple data sets for

the configuration.

Important: After you enable z/OS 1.2 duplexing, you cannot return to downlevel

CFRM couple data sets (ones that are not system-managed duplexing-capable)

without disruption. Doing so requires a sysplex-wide IPL of all systems using the

system-managed duplexing-capable data sets.

After an uplevel CFRM couple data set is in use in the sysplex, system-managed

duplexing can be started and stopped in a nondisruptive manner. To turn this

function on or off, even while the CFRM couple data set is in use, modify the CFRM

policy DUPLEX parameter or use the SETXCF START/STOP,REBUILD,DUPLEX operator

command.

To enable system-managed duplexing for a particular structure, the structure must

be defined as duplexing-capable. Defining a structure as duplexing capable also

defines it as system-managed rebuild-capable. Add the following parameter to your

CFRM active policy:

DUPLEX (ENABLED)

or

DUPLEX(ALLOWED)

If DUPLEX(ENABLED) is defined in the CFRM active policy, the system programmer or

z/OS internally can initiate the duplexing rebuild. z/OS triggers the start of duplexing

rebuild based on a timer or upon detection of certain events (such as connect,

disconnect, and policy change). When CQS initializes and connects to a structure

defined with DUPLEX(ENABLED), z/OS starts a duplexing rebuild.

If DUPLEX(ALLOWED) is defined in the CFRM active policy, the duplexing rebuild must

be initialized by the system programmer using the following command:

SETXCF START,REBUILD,DUPLEX,STRNAME=strname

Important: If you define overflow structures with DUPLEX(ENABLED), IMS

initialization allocates the overflow structure and duplexing begins. If IMS

initialization determines that the overflow structure is not needed, it deletes it and

duplexing terminates. If you want to avoid this unnecessary overhead, during CQS

initialization define the overflow structure with DUPLEX(ALLOWED) and initiate

duplexing with a SETXCF command when the structure goes into overflow mode.

Once duplexing is established, the structure remains in that state indefinitely.

Duplexing can be stopped internally by z/OS if an error occurs (such as link failure,

structure failure, and CFRM policy change). The system programmer can explicitly

stop duplexing using the following command:

Rebuilding Structures

Chapter 3. CQS Administration 43

SETXCF STOP,REBUILD,DUPLEX,STRNAME=strname,KEEP=OLD/NEW

where you specify KEEP=OLD to keep the old structure and KEEP=NEW to keep the new

structure.

Planned reconfiguration (such as a CFRM policy change or taking a coupling facility

offline for maintenance) is supported. Structure rebuild is not permitted for a

structure that has established duplexing, so the duplexing must be stopped first.

Perform the following steps:

1. Stop duplexing.

Stop duplexing and switch the structure to simplex mode by issuing the

following command:

SETXCF STOP,REBUILD,DUPLEX,STRNAME=strname,KEEP=OLD/NEW

2. Reconfigure.

Make the change required for planned reconfiguration.

3. Initiate duplexing rebuild.

Initiate a new duplexing rebuild by issuing the following command:

SETXCF START,REBUILD,DUPLEX,STRNAME=strname

Deleting a Structure When CQS Is Not Connected

You can delete a structure when no CQS is connected to it. To delete a structure:

1. Shut down all CQSs connected to the structure.

2. If there are any failed persistent connections, then they must be deleted before

the structure can be deleted. Enter the SETXCF

FORCE,CONNECTION,STRNAME=strname,CONNAME=ALL command.

Attention: When a CQS fails while connected to a structure, it should be

allowed to restart so it can clean up any work that was in process at the time it

failed. This command can be used to terminate the failed connections when you

have to delete the structure.

If this command is used incorrectly, the queues or resources may be lost.

3. Enter the SETXCF FORCE,STRUCTURE,STRNAME=strname command.

Ensure that the strname in this command is the same as the strname specified

in the CQS global structure definition PROCLIB member and the CQS local

structure definition PROCLIB member.

Shutting Down CQS

A CQS client can use the CQSSHUT request, the CQSDISC with the CQSSHUT=YES

parameter to shut down CQS, or you can issue the z/OS STOP command to shut

down CQS.

Related Reading: See “Shutting Down CQS” on page 78 for information on how

the client can shut down CQS.

Normally, when a client disconnects from CQS using the CQSDISC request and

specifying CQSSHUT=YES, CQS shuts down after no clients are connected to it.

In some cases, however, the CQS address space remains active, even when no

clients are connected to it. This can happen under any of the following conditions:

v No client is connected to CQS when CQS is started.

Rebuilding Structures

44 Common Queue Server Guide and Reference

v A client that had been connected to CQS terminates abnormally, without issuing

a CQSDISC request to disconnect from CQS, or issues a CQSDISC request with

CQSSHUT=NO specified.

You can shut down a CQS address space that has no clients connected to it by

issuing the z/OS STOP command, specifying the job name of the CQS address

space.

Example: P cqsjobname

cqsjobname is the job name of the CQS address space you want to stop. If no

clients are connected to a CQS, that CQS shuts down. If clients are connected to

the CQS, the stop command is rejected, and message CQS0300I is issued.

Shutting Down CQS

Chapter 3. CQS Administration 45

46 Common Queue Server Guide and Reference

Chapter 4. CQS User-Supplied Exit Routines

Note: Throughout this section the term “user exit routine” means “user-supplied

exit routine.”

The following topics provide additional information:

 “General User-Supplied Exit Routine Interface Information for CQS”

 “CQS Initialization-Termination User-Supplied Exit Routine” on page 48

 “CQS Client Connection User-Supplied Exit Routine” on page 49

 “Queue Overflow User-Supplied Exit Routine for CQS” on page 51

 “CQS Structure Statistics User-Supplied Exit Routine” on page 53

 “CQS Structure Event User-Supplied Exit Routine” on page 62

 “CQS Statistics Available through the BPE Statistics User Exit” on page 67

This section contains Product-sensitive Programming Interface information.

CQS user exit routines enable you to customize and monitor your CQS

environment. You write these exit routines, no samples are provided. The CQS user

exit routines receive control in the CQS address space in an authorized state. CQS

uses Base Primitive Environment (BPE) services to call and manage the CQS user

exit routines.

A list of the user exit routines and their functions follows:

CQS Initialization-Termination

Called during CQS initialization and CQS normal

termination.

CQS Client Connection Called when a client connects to or disconnects

from a structure.

CQS Queue Overflow Called during overflow processing to verify queue

name eligibility for overflow processing.

CQS Structure Statistics Called at the end of CQS system checkpoint to

allow structure-related statistics gathering.

CQS Structure Event Called during processing for structure

processing-related event notification.

In addition, you can use the BPE Statistics User exit to gather CQS statistics; for

more information see “CQS Statistics Available through the BPE Statistics User

Exit” on page 67

General User-Supplied Exit Routine Interface Information for CQS

CQS uses BPE services to call and manage its user exit routines. BPE allows you

to externally specify the user exit routine modules to be called for a particular exit

routine type using EXITDEF= statements in BPE user exit PROCLIB members.

BPE also provides a common user exit routine execution environment. This

environment includes:

v Standard BPE user exit parameter list

v Static work areas for the routines

v Dynamic work areas for the routines

© Copyright IBM Corp. 1997, 2004 47

|

|

|

|

|

|

|

|

v Callable services for the routines

v A recovery environment to protect against abends in the user exit routines

Recommendation: Write CQS user exit routines in assembler, not in a high level

language. CQS does not support exit routines running under Language

Environment® for z/OS. If you write an exit routine in a high level language, and

that routine is executing in the Language Environment for z/OS, you might have

abends or performance problems. Language Environment for z/OS is designed for

applications running in key 8, problem program state. CQS user exit routines

execute in key 7 supervisor state.

Related Reading

v For complete information about displaying and refreshing user exits, see IMS

Version 9: Base Primitive Environment Guide and Reference.

v For complete information about BPE interfaces and services that are available to

user exits, see IMS Version 9: Base Primitive Environment Guide and Reference.

CQS Initialization-Termination User-Supplied Exit Routine

The Initialization-Termination (Init-Term) exit routine is called during CQS

initialization and CQS normal termination. The Init-Term exit routine is not called

during CQS abnormal termination. This exit routine is optional.

The CQS Init-Term user exit routine is driven for the following events:

v CQS initialization; after CQS has completed its initial processing, but before it

connects to any structures.

v CQS normal termination, during CQS address space termination, after CQS has

disconnected from all structures.

The Init-Term exit routine is defined as TYPE=INITTERM in the EXITDEF statement

in the BPE user exit PROCLIB member. You can specify one or more user exit

routines of this type. When this exit routine is invoked, the exit routines are driven in

the order they are specified by the EXITS= keyword.

Recommendation: Write the Init-Term exit routine so that it is reentrant. It is

invoked AMODE 31.

Contents of Registers on Entry

Register Contents

1 Address of Standard BPE user exit parameter list (mapped by the

BPEUXPL macro). See IMS Version 9: Base Primitive Environment

Guide and Reference for more information.

13 Address of two pre-chained save areas. The first save area can be

used by the exit routine to save registers on entry. The second save

area can be used by routines that are called from the user exit

routine.

14 Return address.

15 Entry point of the exit routine.

Contents of Registers on Exit

Register Contents

General Interface Info

48 Common Queue Server Guide and Reference

15 Return code

0 Always set this to zero.

 All other registers must be restored.

CQS Initialization and Termination Parameter Lists

On entry to the Init-Term exit routine R1 points to a Standard BPE user exit

parameter list. The field UXPL_EXITPLP in this list contains the address of the

Init-Term user exit routine parameter lists (mapped by the CQSINTMX macro). The

parameters are described in Table 3 and in Table 4.

 Table 3. CQS Init-Term User-Supplied Exit Routine Parameter List: CQS Initialization

Field Name Offset Length Field Usage Description

ITXPVSN X'00' X'04' Input Parameter List Version Number (00000001)

ITXFUNC X'04' X'04' Input Function code

1 CQS Initialization (ITXFINIT)

ITXCQSID X'08' X'08' Input CQS identifier

ITXCQSVN X'10' X'04' Input CQS version number

 Table 4. CQS Init-Term User-Supplied Exit Routine Parameter List: CQS Termination

Field Name Offset Length Field Usage Description

ITXPVSN X'00' X'04' Input Parameter List Version Number (00000001)

ITXFUNC X'04' X'04' Input Function code

2 CQS Normal Termination

(ITXFNTRM)

ITXCQSID X'08' X'08' Input CQS identifier

ITXCQSVN X'10' X'04' Input CQS version number

CQS Client Connection User-Supplied Exit Routine

This exit routine is called when a client connects to or disconnects from a structure.

This exit routine is optional.

The Client Connection exit routine is driven for the following events:

v Client connect; after a client successfully connects to one or more structures.

v Client disconnect; after a client disconnects normally or abnormally from one or

more structures.

The Client Connection exit routine is defined as TYPE=CLNTCONN in the EXITDEF

statement in the BPE user exit PROCLIB member. You can specify one or more

user exit routines of this type. When this exit routine is invoked, all user exit

routines of this type are driven in the order specified by the EXITS= keyword.

Recommendation: Write the Client Connection exit routine so that it is reentrant.

It is invoked AMODE 31.

Contents of Registers on Entry

Register Contents

1 Address of Standard BPE user exit parameter list (mapped by the

Init-Term User Exit

Chapter 4. CQS User-Supplied Exit Routines 49

BPEUXPL macro). See IMS Version 9: Base Primitive Environment

Guide and Reference for more information.

13 Address of two pre-chained save areas. The first save area can be

used by the exit routine to save registers on entry. The second save

area can be used by routines that are called from the user exit

routine.

14 Return address.

15 Entry point of the exit routine.

Contents of Registers on Exit

Register Contents

15 Return code

0 Always set this to zero.

 All other registers must be restored.

CQS Client Connection and Disconnect Parameter Lists

On entry to the Client Connection exit routine, R1 points to a Standard BPE user

exit parameter list. The field UXPL_EXITPLP in this list contains the address of the

Client Connection user exit routine parameter list (mapped by the CQSCLNCX

macro). The parameters for client connection are described in Table 5. The

parameters for client disconnect are described in Table 6.

 Table 5. CQS Client Connection User-Supplied Exit Routine Parameter List: Client Connection

Field Name Offset Length

Field

Usage Description

CCXPVSN X'00' X'04' Input Parameter List Version Number (00000001).

CCXFUNC X'04' X'04' Input Function code

1 Client Connect (CCXFCONN).

CCXCQSID X'08' X'08' Input CQS identifier.

CCXCQSVN X'10' X'04' Input CQS version number.

CCXCLNNM X'14' X'08' Input Client name.

CCXCSNUM X'1C' X'04' Input Number of structure name entries in the list.

CCXCSENL X'20' X'04' Input Length of each structure name list entry.

CCXCSLST X'24' X'04' Input Address of first structure name entry. Each entry contains the 16-byte

name of a structure that the client connected to.

 Table 6. CQS Client Connection User-Supplied Exit Routine Parameter List: Client Disconnect

Field Name Offset Length

Field

Usage Description

CCXPVSN X'00' X'04' Input Parameter List Version Number (00000001).

CCXFUNC X'04' X'04' Input Function code

2 Client Disconnect (CCXFDISC).

CCXCQSID X'08' X'08' Input CQS identifier.

CCXCQSVN X'10' X'04' Input CQS version number.

CCXCLNNM X'14' X'08' Input Client name.

CCXDFLG1 X'1C' X'01' Input Flag byte indicates whether the client disconnect is abnormal

X'80' Client disconnect is abnormal (CCXDABND).

Client Connection User Exit

50 Common Queue Server Guide and Reference

Table 6. CQS Client Connection User-Supplied Exit Routine Parameter List: Client Disconnect (continued)

Field Name Offset Length

Field

Usage Description

N/A X'1D' X'03' Reserved.

CCXDSNUM X'20' X'04' Input Number of structure name entries in the list.

CCXDSENL X'24' X'04' Input Length of each structure name list entry.

CCXDSLST X'28' X'04' Input Address of first structure name entry. Each entry contains the 16-byte

name of a structure that the client disconnected from.

Queue Overflow User-Supplied Exit Routine for CQS

The Queue Overflow exit routine is called during overflow queue selection

processing to approve or veto a queue name for overflow processing.

This exit routine is optional.

During overflow processing the Queue Overflow exit routine is called to verify that a

queue name selected by CQS is eligible for overflow processing. When CQS

determines that the structure has reached its overflow threshold, overflow threshold

processing begins. Then CQS determines which queues are using the most storage

in the structure. The queues using the most storage in the structure become

candidates for overflow and are moved to the overflow structure. Or, if no overflow

structure is defined, the queues using the most storage in the structure no longer

allow CQSPUT requests for the queue.

Restriction: The queue overflow user exit does not apply to the resource structure.

During queue selection processing the Queue Overflow exit routine is invoked once

per selected queue name to approve or veto the queue name for overflow

processing. If the exit routine approves the move or the exit routine is not specified,

all data objects for that queue (such as IMS messages for that destination) are

moved to the overflow structure. All additional processing for that queue name is

done in the overflow structure, if the overflow structure exists. If no overflow

structure exists, CQSPUT requests to the queue are rejected. If the move is vetoed,

the queue name is removed from the overflow candidate list, and another queue

name is selected.

The Queue Overflow exit routine is defined as TYPE=OVERFLOW in the EXITDEF

statement in the BPE user exit PROCLIB member. You can specify one or more

user exit routines of this type. When this exit routine is invoked, all such routines

are driven in the order specified by the EXITS= keyword.

Because multiple overflow exit routines might exist, the last exit routine called is the

one that determines whether the queue name is selected for overflow. If an exit

routine accepts a queue name as one that is valid for overflow processing or does

not recognize the name, the exit routine must set R15 to 0 and specify that the next

exit in the list should be called. This allows the next exit routine to have a chance to

veto the name selection. If an exit routine determines that a queue name is

ineligible as a candidate for overflow processing, the exit routine must set R15 to 4

and specify that no more exit routines are to be called.

Within the Standard BPE user exit parameter list is the field UXPL_CALLNEXTP,

which is a pointer to a byte of storage which is set by the exit routine to indicate

whether the next exit routine in the list is to be called. When the byte of storage is

Client Connection User Exit

Chapter 4. CQS User-Supplied Exit Routines 51

set to UXPL_CALLNEXTYES, the next exit is called (if one exists). When the byte

of storage is set to UXPL_CALLNEXTNO, no more exits are called for this queue

name.

If a Queue Overflow exit routine determines that a queue name is not a candidate

for overflow, the exit routine can set the byte pointed to by field UXPL_CALLNEXTP

to the value of UXPL_CALLNEXTNO (X'04') so that no other exit routines are called

for the queue name.

Recommendation: Write the Queue Overflow exit routine so that it is reentrant. It

is invoked AMODE 31.

Contents of Registers on Entry

Register Contents

1 Address of Standard BPE user exit parameter list (mapped by the

BPEUXPL macro). See IMS Version 9: Base Primitive Environment

Guide and Reference for more information.

13 Address of two pre-chained save areas. The first save area can be

used by the exit routine to save registers on entry. The second save

area can be used by routines that are called from the user exit

routine.

14 Return address.

15 Entry point of the exit routine.

Contents of Registers on Exit

Register Contents

15 Return code

0 Allow queue to be moved to overflow structure.

4 Do not move queue to overflow structure; select another

candidate.

 Attention: This return code is ignored unless the exit

routine is the last overflow user exit called for the queue

name.

 An exit routine is considered the last one called when either

of the following are true:

1. The exit routine is the last routine defined in the exit list

for the overflow queue.

2. The exit routine sets the byte pointed to by

UXPL_CALLNEXTP to the value UXPL_CALLNEXTNO.

 All other registers must be restored.

CQS Queue Overflow Parameter List

On entry to the Queue Overflow exit routine, R1 points to a Standard BPE user exit

parameter list. The field UXPL_EXITPLP in this list contains the address of the CQS

Queue Overflow user exit routine parameter list (mapped by the CQSQOFLX

macro). The parameters are described in detail in Table 7 on page 53.

Queue Overflow User Exit

52 Common Queue Server Guide and Reference

Table 7. CQS Queue Overflow User-Supplied Exit Routine Parameter List

Field Name Offset Length

Field

Usage Description

QOXPVSN X'00' X'04' Input Parameter List Version Number (00000001).

QOXFUNC X'04' X'04' Input Function code

1 Queue Name Selection (QOXFQOFL).

QOXQOFL1 X'08' X'01' Input Flag byte indicating whether this is the first overflow exit call for this

overflow threshold process. The exit routine is called once per

selected queue name for each occurrence of overflow threshold

processing. This bit will be on for the first queue name for an

occurrence of overflow threshold processing.

X'80' This is the initial entry for this overflow threshold process

(QOXQ11ST)

N/A X'09' X'03' Reserved.

QOXCQSID X'0C' X'08' Input CQS identifier.

QOXCQSVN X'14' X'04' Input CQS version number.

QOXSTRNM X'18' X'10' Input Structure Name.

QOXQNAME X'28' X'10' Input Queue name selected for overflow processing.

QOXDOBJN X'38' X'04' Input Number of data objects on the selected queue name.

CQS Structure Statistics User-Supplied Exit Routine

The CQS Structure Statistics user exit routine enables you to gather statistics

related to the structure. This exit routine is optional.

The exit routine is driven at the end of a successful system checkpoint. All statistical

data that CQS gathers, including rebuild statistics and checkpoint statistics, are

passed to the Structure Statistics user exit at the end of each successful system

checkpoint. All statistical data is logged in the Structure Statistics log record. You

can also obtain this same statistical data with the CQSQUERY FUNC=STRSTAT

request.

Recommendation: Some statistics about resource structures are passed in the

structure statistics. CQS system checkpoint does not apply to resource structures.

Use the STATINV parameter in the BPE configuration PROCLIB member to define

the time interval so that BPE regularly drives CQS’s statistics user exit. See the

IMS Version 9: Base Primitive Environment Guide and Reference for more

information about the BPE configuration PROCLIB member.

The CQS Structure Statistics user exit routine is defined as TYPE = STRSTAT in

the EXITDEF statement in the BPE user exit PROCLIB member. You can specify

one or more user exit routines of this type. When this exit routine is invoked, all

routines of this type are driven in the order specified by the EXITS= keyword.

Recommendation: Write the CQS Structure Statistics exit routine so that it is

reentrant. It is invoked AMODE 31.

Contents of Registers on Entry

Register Contents

1 Address of Standard BPE user exit parameter list (mapped by the

BPEUXPL macro). See IMS Version 9: Base Primitive Environment

Guide and Reference for more information.

Queue Overflow User Exit

Chapter 4. CQS User-Supplied Exit Routines 53

13 Address of two pre-chained save areas. The first save area can be

used by the exit routine to save registers on entry. The second save

area can be used by routines that are called from the user exit

routine.

14 Return address.

15 Entry point of the exit routine.

Contents of Registers on Exit

Register Contents

15 Return code

0 Always set this to zero.

 All other registers must be restored.

CQS Structure Statistics User-Supplied Exit Routine Parameter List

On entry to the Structure Statistics exit routine, R1 points to a Standard BPE user

exit parameter list. The field UXPL_EXITPLP in this list contains the address of the

CQS Structure Statistics user exit routine parameter list (mapped by the

CQSSTATX macro). The parameters are described in Table 8.

 Table 8. CQS Structure Statistics User-Supplied Exit Routine Parameter List

Field Name Offset Length

Field

Usage Description

SAXPVSN X'00' X'04' Input Parameter List Version Number (00000001).

SAXFUNC X'04' X'04' Input Function code

1 System Checkpoint (SAXFCSYS).

SAXCQSID X'08' X'08' Input CQS identifier.

SAXCQSVN X'10' X'04' Input CQS version number.

SAXSTRNM X'14' X'10' Input Structure name.

SAXSSTT1 X'24' X'04' Input Address of structure process statistics record for activity performed by

CQS processes on this structure for all clients since restart or the last

successful structure checkpoint (mapped by the CQSSSTT1 macro).

See Table 9 on page 55 for a description of the process statistics

record.

SAXSSTT2 X'28' X'04' Input Address of CQS request statistics record for activity performed for

CQS requests for this structure for all clients since restart or the last

successful structure checkpoint (mapped by the CQSSSTT2 macro).

See Table 10 on page 55 for a description of the request statistics

record.

SAXSSTT3 X'2C' X'04' Input Address of data object statistics record for activity performed on data

objects in this structure for all clients since restart or the last

successful structure checkpoint (mapped by the CQSSSTT3 macro).

See Table 11 on page 56 for a description of the object statistics

record.

SAXSSTT4 X'30' X'04' Input Address of queue name statistics record for activity performed on

queue names in this structure for all clients since restart or the last

successful structure checkpoint (mapped by the CQSSSTT4 macro).

See Table 12 on page 57 for a description of the queue name

statistics record.

SAXSSTT5 X'34' X'04' Input Address of z/OS request statistics record for activity performed by

CQS processes on this structure for all clients since restart or the last

successful structure checkpoint (mapped by the CQSSSTT5 macro).

See Table 13 on page 57 for a description of the z/OS request

statistics record.

Structure Statistics User Exit

54 Common Queue Server Guide and Reference

Table 8. CQS Structure Statistics User-Supplied Exit Routine Parameter List (continued)

Field Name Offset Length

Field

Usage Description

SAXSSTT6 X'38' X'04' Input Address of rebuild statistics record containing data from the last

rebuild in which this CQS acted as master (mapped by the

CQSSSTT6 macro). See Table 14 on page 58 for a description of the

rebuild statistics record.

SAXSSTT7 X'3C' X'04' Input Address of structure checkpoint statistics record containing data from

the last three structure checkpoints in which this CQS acted as

master (mapped by the CQSSSTT7 macro). See Table 15 on page 60

for a description of the structure checkpoint statistics record.

CQS Structure Process Statistics Record

Table 9 describes the CQS Structure Statistics user exit routine structure process

statistics record.

 Table 9. CQS Structure Process Statistics Record

Field Name Offset Length

Field

Usage Description

SS1ID X'00' X'08' Input Eyecatcher CQSSSTT1

SS1LN X'08' X'04' Input Length of valid data

SS1PVSN X'0C' X'04' Input Parameter List Version Number (00000002)

SS1STATS X'10' X'04' Input Number of times CQS successfully performed system checkpoint

processing for the structure

SS1TCHKP X'14' X'04' Input Number of times CQS successfully performed structure checkpoint

processing for the structure

SS1RBLD X'18' X'04' Input Number of times CQS successfully performed rebuild processing for

the structure

SS1DUPLX X'20' X'04' Input Number of times CQS successfully established a duplexing rebuild

SS1OFLWT X'1C' X'04' Input Number of times CQS performed overflow threshold processing for

the structure

CQS Request Statistics Record

Table 10 describes the Structure Statistics user exit routine CQS request statistics

record.

 Table 10. CQS Request Statistics Record

Field Name Offset Length

Field

Usage Description

SS2ID X'00' X'08' Input Eyecatcher CQSSSTT2

SS2LN X'08' X'04' Input Length of valid data

SS2PVSN X'0C' X'04' Input Parameter List Version Number (00000002)

SS2BRWSE X'10' X'04' Input Number of CQSBRWSE requests for this structure

SS2CHKPT X'14' X'04' Input Number of CQSCHKPT requests for this structure

SS2CONN X'18' X'04' Input Number of CQSCONN requests for this structure

SS2DEL X'1C' X'04' Input Number of CQSDEL requests for this structure

SS2DISC X'20' X'04' Input Number of CQSDISC requests for this structure

SS2INFRM X'24' X'04' Input Number of CQSINFRM requests for this structure

SS2MOVE X'28' X'04' Input Number of CQSMOVE requests for this structure

SS2PUT X'2C' X'04' Input Number of CQSPUT requests for this structure

SS2QUERY X'30' X'04' Input Number of CQSQUERY requests for this structure

Structure Statistics User Exit

Chapter 4. CQS User-Supplied Exit Routines 55

Table 10. CQS Request Statistics Record (continued)

Field Name Offset Length

Field

Usage Description

SS2READ X'34' X'04' Input Number of CQSREAD requests for this structure

SS2RECVR X'38' X'04' Input Number of CQSRECVR requests for this structure

SS2RSYNC X'3C' X'04' Input Number of CQSRSYNC requests for this structure

SS2UNLCK X'40' X'04' Input Number of CQSUNLCK requests for this structure

SS2UPD X'44' X'04' Input Number of CQSUPD requests for this structure

Data Object Statistics Record for CQS

Table 11 describes the Structure Statistics user exit routine data object statistics

record.

 Table 11. Data Object Statistics Record

Field Name Offset Length

Field

Usage Description

SS3ID X'00' X'08' Input Eyecatcher CQSSSTT3.

SS3LN X'08' X'04' Input Length of valid data.

SS3PVSN X'0C' X'04' Input Parameter List Version Number (00000002).

SS3PTOBJ X'10' X'04' Input Number of data objects added to the structure with COMMIT = NO.

This count does not include data objects added with COMMIT = YES

or RECOVERABLE = NO.

SS3PTCMT X'14' X'04' Input Number of data objects added to the structure with COMMIT = YES.

This count indicates the number of recoverable UOWs added to the

structure. This count plus the number of data objects that are added

with COMMIT = NO is the total number of recoverable data objects

added to the structure.

SS3PTNRO X'18' X'04' Input Number of data objects added to the structure with RECOVERABLE =

NO. This count indicates the number of nonrecoverable UOWs added

to the structure. This count plus the number of data objects that are

added with COMMIT = YES is the total number of UOWs that were

added to the structure.

SS3RDOBJ X'1C' X'04' Input Number of data objects read from the structure.

SS3MVOBJ X'20' X'04' Input Number of data objects moved from one queue to another on the

structure.

SS3ULOBJ X'24' X'04' Input Number of data objects unlocked on the structure.

SS3ENTAL X'30' X'04' Input Number of data entries allocated on the structure. Compare the data

entry in use field to the data entry allocated field to determine how

close the structure is to becoming full.

SS3ENTIN X'34' X'04' Input Number of data entries in use on the structure. Compare the data

entry in use field to the data entry allocated field to determine how

close the structure is to becoming full.

SS3ENTHI X'38' X'04' Input High water mark for number of data entries on the structure. Compare

the data entry in use field to the data entry allocated field to

determine how close the structure is to becoming full.

SS3ENTTM X'3C' X'08' Input Timestamp representing the time the data entry high water mark was

reached for the structure (in STCK format).

SS3ELMAL X'44' X'04' Input Number of data elements allocated on the structure. Compare the

data entry in use field to the data entry allocated field to determine

how close the structure is to becoming full.

SS3ELMIN X'48' X'04' Input Number of data elements in use on the structure. Compare the data

entry in use field to the data entry allocated field to determine how

close the structure is to becoming full.

Structure Statistics User Exit

56 Common Queue Server Guide and Reference

Table 11. Data Object Statistics Record (continued)

Field Name Offset Length

Field

Usage Description

SS3ELMHI X'4C' X'04' Input High water mark for number of data elements on the structure.

Compare the data element high water mark field to the data element

allocated field to determine the closest the structure came to

becoming full.

SS3ELMTM X'50' X'04' Input Timestamp representing the time the data element high water mark

was reached for the structure (in STCK format).

Reserved X'58' X'04' Input

Reserved X'5C' X'04' Input

Queue Name Statistics Record for CQS

Table 12 describes the Structure Statistics user exit routine queue name statistics

record.

Restriction: The queue name statistics record does not apply to resource

structures.

 Table 12. Queue Name Statistics Record

Field Name Offset Length

Field

Usage Description

SS4ID X'00' X'08' Input Eyecatcher CQSSSTT4

SS4LN X'08' X'04' Input Length of valid data

SS4PVSN X'0C' X'04' Input Parameter List Version Number (00000001)

SS4INFQN X'10' X'04' Input Number of queue names for which an inform was performed

SS4UNFQN X'14' X'04' Input Number of queue names for which an uninform was performed

SS4NFYQN X'18' X'04' Input Number of queue name notifications (when a queue goes from empty

to non-empty)

z/OS Request Statistics Record for CQS

Table 13 describes the Structure Statistics user exit routine z/OS request statistics

record.

 Table 13. z/OS Request Statistics Record

Field Name Offset Length

Field

Usage Description

SS5ID X'00' X'08' Input Eyecatcher CQSSSTT5.

SS5LN X'08' X'04' Input Length of valid data.

SS5PVSN X'0C' X'04' Input Parameter List Version Number (00000002).

SS5IXGWR X'10' X'04' Input Number of IXGWRITE requests for the structure. This represents the

number of log records written during processing on the structure.

SS5IXGBR X'14' X'04' Input Number of IXGBRWSE requests for the structure.

SS5IXLDQ X'18' X'04' Input Number of IXLLIST DEQ_EVENTQ requests for the structure.

SS5IXLWR X'1C' X'04' Input Number of IXLLIST WRITE requests for the structure.

SS5IXLRD X'20' X'04' Input Number of IXLLIST READ requests for the structure.

SS5IXLMV X'24' X'04' Input Number of IXLLIST MOVE requests for the structure.

SS5IXLDL X'28' X'04' Input Number of IXLLIST DELETE requests for the structure.

SS5IXLMG X'2C' X'04' Input Number of IXLMG requests for the structure.

SS5IXLUS X'30' X'04' Input Number of IXLUSYNC requests for the structure.

SS5IXEWR X'34' X'04' Input Number of IXLLSTE WRITE requests for the structure.

Structure Statistics User Exit

Chapter 4. CQS User-Supplied Exit Routines 57

Table 13. z/OS Request Statistics Record (continued)

Field Name Offset Length

Field

Usage Description

SS5IXERD X'38' X'04' Input Number of IXLLSTE READ requests for the structure.

SS5IXMRL X'3C' X'04' Input Number of IXLLSTM READ_LIST requests for the structure.

SS5IXEDL X'40' X'04' Input Number of IXLLSTE DELETE requests for the structure.

SS5IXMDL X'44' X'04' Input Number of IXLLSTM DELETE_ENTRYLIST requests for the structure.

Structure Rebuild Statistics Record for CQS

Structure rebuild statistics are gathered only by the CQS that is the master of the

structure rebuild process. A CQS has access only to the data it gathers. Each CQS

keeps structure rebuild statistics for the last rebuild for which it was the master.

Table 14 describes the Structure Statistics user exit routine structure rebuild

statistics record.

 Table 14. Structure Rebuild Statistics Record

Field Name Offset Length

Field

Usage Description

SS6ID X'00' X'08' Input Eyecatcher CQSSSTT6.

SS6LN X'08' X'04' Input Length of valid data.

SS6PVSN X'0C' X'04' Input Parameter List Version Number (00000003).

SS6ELMIO X'10' X'04' Input Data elements in use on old structure.

SS6ELMAO X'14' X'04' Input Data elements allocated on old structure.

SS6ENTIO X'18' X'04' Input Data entries in use on old structure (data object count).

SS6ENTAO X'1C' X'04' Input Data entries allocated on old structure.

SS6MCIO X'20' X'04' Input Event monitoring controls (EMCs) in use on old structure (active

informs).

SS6EMCAO X'24' X'04' Input EMCs in use on old structure (active informs).

SS6SIZEO X'28' X'04' Input Old structure size in 4K blocks.

SS6CFTO X'2C' X'04' Input Old CF total space in 4K blocks.

SS6CFFO X'30' X'04' Input Old CF free space in 4K blocks.

SS6CFNMO X'34' X'08' Input Old CF name in which structure was allocated before rebuild.

X'3C' X'04' Unused.

SS6ELMIN X'40' X'04' Input Data elements in use on new structure.

SS6ELMAN X'44' X'04' Input Data elements allocated on new structure.

SS6ENTIN X'48' X'04' Input Data entries in use on new structure (data object count).

SS6ENTAN X'4C' X'04' Input Data entries allocated on new structure.

SS6EMCIN X'50' X'04' Input EMCs in use on new structure (active informs).

SS6EMCAN X'54' X'04' Input EMCs in use on new structure (active informs).

SS6SIZEN X'58' X'04' Input New structure size in 4K blocks.

SS6CFTN X'5C' X'04' Input New CF total space in 4K blocks.

SS6CFFN X'60' X'04' Input New CF free space in 4K blocks.

SS6CFNMN X'64' X'08' Input New CF name in which structure is allocated after rebuild.

X'6C' X'04' Unused.

SS6RBTIM X'70' X'08' Input Rebuild timestamp (STCK).

SS6POPCT X'78' X'04' Input Repopulation from SRDS count (RCVRY) or objects copied count

(COPY).

SS6MVQCT X'7C' X'04' Input Entries moved to moveq during phase 2 count.

Structure Statistics User Exit

58 Common Queue Server Guide and Reference

Table 14. Structure Rebuild Statistics Record (continued)

Field Name Offset Length

Field

Usage Description

SS6PUTCT X'80' X'04' Input Entries written during phase 3 count.

SS6MOVCT X'84' X'04' Input Entries moved during phase 3 count.

SS6OBJCT X'88' X'04' Input Data objects affected by recovery count (recoverable and

nonrecoverable).

SS6UOWCT X'8C' X'04' Input UOWs affected by recovery count (recoverable and nonrecoverable).

SS6FLAG1 X'90' X'01' Input Flag byte.

X'80' These statistics are for the last rebuild performed for the

structure.

SS6FLAG2 X'91' X'01' Input Rebuild flag.

Indicates the last rebuild or duplexing rebuild event received that

updated these rebuild statistics:

1 Structure rebuild statistics.

2 Duplexing started statistics.

3 Duplexing ended statistics and z/OS switched to simplex

structure (either old or new structure).

X'91' X'03' Unused.

The remaining fields of this table apply to rebuild failures. The CQS0242E message identifies the rebuild failure reason.

The following fields apply to rebuild failures that occurred while rebuild was processing a CQS log record. Use this information to

locate the log record in the CQS log to give to an IBM service representative.

SS6LGTYP X'94' X'01' Input Log record type of log record being processed when rebuild failure

occurred.

SS6LGSUB X'95' X'01' Input Log record subtype of log record being processed when rebuild failure

occurred.

SS6STYPE X'96' X'01' Input Structure type of log record being processed when rebuild failure

occurred.

X'97' X'01' Unused.

SS6LGTIM X'98' X'08' Input Log record time stamp of log record being processed when rebuild

failure occurred.

SS6CQSID X'A0' X'08' Input CQS ID associated with log record being processed when rebuild

failure occurred.

SS6CLNTN X'A8' X'08' Input Client name associated with log record being processed when rebuild

failure occurred.

SS6SRCQ X'B0' X'10' Input Source client or private queue name associated with log record being

processed when rebuild failure occurred.

SS6DSTQ X'C0' X'10' Input Destination queue name associated with log record being processed

when rebuild failure occurred.

SS6UOW X'B0' X'20' Input UOW associated with log record being processed when rebuild failure

occurred.

SS6UNIQ1 X'F0' X'04' Input Information unique to log record or rebuild data object entry when

rebuild failure occurred.

SS6UNIQ2 X'F4' X'04' Input Information unique to log record or rebuild data object entry when

rebuild failure occurred.

SS6UNIQ3 X'F8' X'04' Input Information unique to log record or rebuild data object entry when

rebuild failure occurred.

The following fields apply to rebuild failures that occurred while rebuild was processing an IXL request to access the structure.

SS6IXLMC X'FC' X'01' Input IXL macro that failed and caused rebuild to fail. See CQSTRACE

macro for IXL macro type.

SS6IXLRQ X'FD' X'01' Input IXL request that failed and caused the rebuild to fail.

X'FE' X'02' Unused.

Structure Statistics User Exit

Chapter 4. CQS User-Supplied Exit Routines 59

Table 14. Structure Rebuild Statistics Record (continued)

Field Name Offset Length

Field

Usage Description

SS6IXLRC X'100' X'04' Input IXL return code returned by IXL request that caused rebuild to fail.

SS6IXLRN X'104' X'04' Input IXL reason code returned by IXL request that caused rebuild to fail.

SS6SRVRC X'108' X'04' Input This field applies to rebuild failures that occurred while rebuild was

processing a service (for example, CQSTBL, BPELAGET,

BPECBGET). It provides the return code of the service that failed.

X'10C' X'04' Unused.

SS6VRSNO X'110' X'08' Input Old structure version (rebuild) or primary structure version (duplexing

rebuild).

SS6VRSNN X'118' X'08' Input New structure version (rebuild) or secondary structure version

(duplexing rebuild).

SS6CFLVO X'120' X'04' Input Old structure CF level (rebuild) or primary structure CF level

(duplexing rebuild). For a primary structure CF level, this can be a

composite CF level, which is at least as high as a CF level as that

which has been previously reported back to any CQS as the primary

structure CF level.

SS6CFLVN X'124' X'04' Input New structure CF level (rebuild) or secondary structure CF level

(duplexing rebuild). For a secondary structure CF level, this can be a

composite CF level, which is at least as high as a CF level as that

which has been previously reported back to any CQS as the primary

structure CF level.

SS6CFNMS X'128' X'04' Input CF name in which simplex structure is located (z/OS switched to

simplex structure).

SS6VALFL X'12C' X'02' Input Validity flags (EEPLSSCVALIDITYFLAGS).

X'12E' X'02' Input Not used

SS6DUPST X'130' X'08' Input Last duplexing rebuild start time (STCK). The last duplexing rebuild

for this structure was initiated at this time.

SS6DUPET X'138' X'08' Input Last duplexing rebuild end time (STCK). The last duplexing rebuild

stopped for this structure occurred at this time.

SS6UNAVT X'140' X'08' Input Last structure temporarily unavailable time (STCK). The structure

becomes temporarily unavailable because a system-managed rebuild

has been initiated, a duplexing rebuild has been initiated, or a

duplexing rebuild has stopped.

SS6AVT X'148' X'08' Input Last structure available time (STCK). The structure last became

available at this time, after initiation of a system-managed rebuild,

initiation of a duplexing rebuild, or stopping of a duplexing rebuild.

X'150' X'38' Input Unused

Structure Checkpoint Statistics Record for CQS

Structure checkpoint statistics are gathered only by the CQS that is the master of

the structure checkpoint process. A CQS has access only to the data it gathers.

Each CQS keeps structure checkpoint statistics for the last three checkpoints for

which it was the master. Structure checkpoint data is not reset at the end of a

structure checkpoint.

Table 15 describes the Structure Statistics user exit routine structure checkpoint

statistics record.

 Table 15. Structure Checkpoint Statistics Record

Field Name Offset Length

Field

Usage Description

SS7ID X'00' X'08' Input Eyecatcher CQSSSTT7.

SS7LN X'08' X'04' Input Length of valid data.

Structure Statistics User Exit

60 Common Queue Server Guide and Reference

Table 15. Structure Checkpoint Statistics Record (continued)

Field Name Offset Length

Field

Usage Description

SS7PVSN X'0C' X'04' Input Parameter List Version Number.

SS7FLAG1 X'10' X'01' Input Flag byte.

X'80' These statistics are from last attempted structure checkpoint

taken for the structure.

X'40' Structure Checkpoint is in progress.

X'11' X'03' Unused.

SS7ENCNT X'14' X'04' Input Number of structure checkpoint statistics entries in record.

SS7ENLEN X'18' X'04' Input Length of structure checkpoint statistics entry

SS7CUR X'1C' X'04' Input Offset to current structure checkpoint statistics entry.

SS7STATS X'20' X'' Start of structure checkpoint statistics entries. See Table 16 on page

61 for a description of the structure checkpoint statistics entry.

Structure Checkpoint Statistics Gathered by CQS

Structure checkpoint statistics are gathered only by the CQS that is the master of

the structure checkpoint process. A CQS has access only to the data it gathers.

Each CQS keeps structure checkpoint statistics for the last three checkpoints for

which it was the master. Structure checkpoint data is not reset at the end of a

structure checkpoint.

Table 16 describes the Structure Statistics user exit routine structure checkpoint

statistics entry.

 Table 16. Structure Checkpoint Statistics Entry

Field Name Offset Length

Field

Usage Description

SS7RETCD X'00' X'08' Input Return Code for this Structure Checkpoint

SS7QSCB X'08' X'08' Input Structure quiesce start time in STCK format

SS7QSCE X'10' X'08' Input Structure quiesce complete time in STCK format

SS7DSPB X'18' X'08' Input Start data space/data set capture time in STCK format

SS7DSPE X'20' X'08' Input End data space capture time in STCK format

SS7RSMB X'28' X'08' Input Structure resume start time in STCK format

SS7DSE X'30' X'08' Input End data set capture time in STCK format

SS7CHKE X'38' X'08' Input Time when all system checkpoints completed in STCK format

SS7PELA X'3C' X'04' Input Number of allocated elements on primary structure

SS7PELU X'40' X'04' Input Number of elements in use on primary structure

SS7OELA X'44' X'04' Input Number of allocated elements on overflow structure

SS7PLEA X'4C' X'04' Input Number of allocated list entries on primary structure

SS7PLEU X'50' X'04' Input Number of list entries in use on primary structure

SS7OLEA X'54' X'04' Input Number of allocated list entries on overflow structure

SS7OLEU X'58' X'04' Input Number of list entries in use on overflow structure

SS7WRTS X'5C' X'04' Input Number of SRDS writes required

SS70ELU X'48' X'04' Input Number of elements in use on overflow structure

Structure Statistics User Exit

Chapter 4. CQS User-Supplied Exit Routines 61

CQS Structure Event User-Supplied Exit Routine

The CQS Structure Event user exit routine is called during CQS processing to notify

you of an event related to structure processing. For certain events, it also allows

you to gather statistics related to the structure. This exit routine is optional.

The Structure Event user exit routine applies to both resource and queue

structures, but not all events are applicable to resource structures. The CQS

Structure Event exit routine is driven for the following events:

v Structure Connection

– When structure connect occurs, after CQS connects to a structure, but before

rebuild or restart is performed for the structure.

– At structure disconnect; after CQS disconnects from a structure.

v Checkpoint

– When a system checkpoint begin, end, or failure occurs.

– When a structure checkpoint begin, end, or failure occurs.

Restriction: The Checkpoint event does not apply to resource structures.

v Structure Rebuild

– When a structure copy (rebuild) begin, end, or failure occurs.

– When a structure recovery (rebuild) begin, end, or failure occurs.

Attention: The structure failure event for a resource structure (only) means that

the structure has failed and a new structure could not be reallocated. No

structure recovery is done, because resource structures do not support structure

recovery.

v Structure Overflow

– When one or more queues moved to the overflow structure.

– When one or more queues moved from the overflow structure back to the

primary structure. This event also indicates when the structure is no longer in

overflow mode.

Restriction: The Structure Overflow event does not apply to resource structures.

v Structure Status Change

– When the structure is available again after a loss.

– When the structure fails.

– When CQS loses its connection to the structure.

– When a resource structure fails and is able to allocate a new resource

structure.

– When the log stream becomes available, making the structure available.

v Structure Repopulation

– When the structure fails and CQS is able to allocate a new resource structure.

The Structure Repopulation event does not apply to queue structures. The client

can repopulate the new resource structure with the resource data.

The exit routine is defined as TYPE=STREVENT in the EXITDEF statement in the

BPE user exit PROCLIB member. You can specify one or more exit routines of this

type. When this exit routine is invoked, all routines of this type are driven in the

order specified by the EXITS= keyword.

Recommendation: Write the CQS Structure Event exit routine so that it is

reentrant. It is invoked AMODE 31.

Structure Event User Exit

62 Common Queue Server Guide and Reference

Contents of Registers on Entry

Register Contents

1 Address of BPE user exit parameter list (mapped by the BPEUXPL

macro). See IMS Version 9: Base Primitive Environment Guide and

Reference for more information.

13 Address of two pre-chained save areas. The first save area can be

used by the exit routine to save registers on entry. The second save

area can be used by routines that are called from the user exit

routine.

14 Return address.

15 Entry point of the exit routine.

Contents of Registers on Exit

Register Contents

15 Return code

0 Always set this to zero.

 All other registers must be restored.

Routine Parameter Lists

On entry to the Structure Event exit routine, R1 points to a Standard BPE user exit

parameter list. Field UXPL_EXITPLP in this list contains the address of the CQS

Structure Event user exit routine parameter list (mapped by the CQSSTREX

macro).

CQS Structure Event Exit Routine Parameter List

Table 17 describes the Structure Event user exit routine connect parameter list.

 Table 17. CQS Structure Event User-Supplied Exit Routine Parameter List: Connect

Field Name Offset Length

Field

Usage Description

STXPVSN X'00' X'04' Input Parameter List Version Number (00000001).

STXEVENT X'04' X'04' Input Function code

1 Connect Event (STXCONDS).

STXSCODE X'08' X'04' Input Event Subcode

1 Structure connect (STXCONN).

2 Structure disconnect (STXDISC).

STXCQSID X'0C' X'08' Input CQS identifier.

STXCQSVN X'14' X'04' Input CQS version number.

STXSTRNM X'18' X'10' Input Structure name.

STXSTRVN X'28' X'08' Input Structure version number (mapped by the CQSSTREX macro).

STXDSTT1 X'34' X'04' Input Address of structure process statistics record for activity performed by

CQS processes on this structure for all clients since restart or the last

successful structure checkpoint (mapped by the CQSSSTT1 macro).

See Table 9 on page 55 for a description of the structure process

statistics. For structure disconnect only.

Structure Event User Exit

Chapter 4. CQS User-Supplied Exit Routines 63

Table 17. CQS Structure Event User-Supplied Exit Routine Parameter List: Connect (continued)

Field Name Offset Length

Field

Usage Description

STXDSTT2 X'38' X'04' Input Address of CQS request statistics record for activity performed for

CQS processes on this structure for all clients since restart or the last

successful structure checkpoint (mapped by the CQSSSTT2 macro).

See Table 10 on page 55 for a description of the CQS request

statistics record. For structure disconnect only.

STXDSTT3 X'3C' X'04' Input Address of data object statistics record for activity performed on data

objects in this structure for all clients since restart or the last

successful structure checkpoint (mapped by the CQSSSTT3 macro).

See Table 11 on page 56 for a description of the data object statistics

record. For structure disconnect only.

STXDSTT4 X'40' X'04' Input Address of queue name statistics record for activity performed on

queue names in this structure for all clients since restart or the last

successful structure checkpoint (mapped by the CQSSSTT4 macro).

See Table 12 on page 57 for a description of the queue name

statistics record. For structure disconnect only.

STXDSTT5 X'44' X'04' Input Address of z/OS request statistics record for activity performed by

CQS processes on this structure for all clients since restart or the last

successful structure checkpoint (mapped by the CQSSSTT5 macro).

See Table 13 on page 57 for a description of the z/OS request

statistics record. For structure disconnect only.

STXDSTT6 X'48' X'04' Input Address of rebuild statistics record containing data from the last

rebuild in which this CQS acted as master (mapped by the

CQSSSTT6 macro). See Table 14 on page 58 for a description of the

rebuild statistics record. For structure disconnect only.

STXDSTT7 X'4C' X'04' Input Address of structure checkpoint statistics record containing data from

the last three structure checkpoints in which this CQS acted as

master (mapped by the CQSSSTT7 macro). See Table 15 on page 60

for a description of the structure checkpoint statistics record. For

structure disconnect only.

CQS Structure Event Exit Routine Checkpoint Parameter List

Table 18 describes the Structure Event user exit routine checkpoint parameter list.

 Table 18. CQS Structure Event User-Supplied Exit Routine Parameter List: Checkpoint

Field Name Offset Length

Field

Usage Description

STXPVSN X'00' X'04' Input Parameter List Version Number (00000001).

STXEVENT X'04' X'04' Input Structure Event Code

2 Checkpoint Event (STXCHKPT).

STXSCODE X'08' X'04' Input Structure Event Subcode

1 Structure checkpoint begin (STXCSTRB).

2 Structure checkpoint end (STXCSTRE).

3 Structure checkpoint failure (STXCSTRF).

4 System checkpoint begin (STXCSYSB).

5 System checkpoint end (STXCSYSE).

6 System checkpoint failure (STXCSYSF).

STXCQSID X'0C' X'08' Input CQS identifier.

STXCQSVN X'14' X'04' Input CQS version number.

STXSTRNM X'18' X'10' Input Structure Name.

STXCMCQS X'28' X'08' Input CQS identifier of the master CQS performing the checkpoint process.

For system checkpoint, this is the same as the CQS identifier.

Structure Event User Exit

64 Common Queue Server Guide and Reference

Table 18. CQS Structure Event User-Supplied Exit Routine Parameter List: Checkpoint (continued)

Field Name Offset Length

Field

Usage Description

STXCFLG1 X'30' X'01' Input Flag byte

X'80' This CQS is the master of the process. The CQS

identifier and master CQS identifier are the same

(STXC1MST).

N/A X'31' X'03' Input Reserved.

STXCSTT1 X'34' X'04' Input Address of structure process statistics record for activity performed by

CQS processes on this structure for all clients since restart or the last

successful structure checkpoint (mapped by the CQSSSTT1 macro).

See Table 9 on page 55 for a description of the process statistics

record. For system checkpoint end and structure checkpoint end only.

STXCSTT2 X'38' X'04' Input Address of CQS request statistics record for activity performed for

CQS requests on this structure for all clients since restart or the last

successful structure checkpoint (mapped by the CQSSSTT2 macro).

See Table 10 on page 55 for a description of the CQS request

statistics record. For system checkpoint end and structure checkpoint

end only.

STXCSTT3 X'3C' X'04' Input Address of data object statistics record for activity performed on data

objects in this structure for all clients since restart or the last

successful structure checkpoint (mapped by the CQSSSTT3 macro).

See Table 11 on page 56 for a description of the data object statistics

record. For system checkpoint end and structure checkpoint end only.

STXCSTT4 X'40' X'04' Input Address of queue name statistics record for activity performed on

queue names in this structure for all clients since restart or the last

successful structure checkpoint (mapped by the CQSSSTT4 macro).

See Table 12 on page 57 for a description of the queue name

statistics record. For system checkpoint end and structure checkpoint

end only.

STXCSTT5 X'44' X'04' Input Address of z/OS request statistics record for activity performed by

CQS processes on this structure for all clients since restart or the last

successful structure checkpoint (mapped by the CQSSSTT5 macro).

See Table 13 on page 57 for a description of the z/OS request

statistics record. For system checkpoint end and structure checkpoint

end only.

STXCSTT6 X'48' X'04' Input Address of rebuild statistics record containing data from the last

rebuild in which this CQS acted as master (mapped by the

CQSSSTT6 macro). See Table 14 on page 58 for a description of the

rebuild statistics record. For system checkpoint end and structure

checkpoint end only.

STXCSTT7 X'4C' X'04' Input Address of structure checkpoint statistics record containing data from

the last three structure checkpoints in which this CQS acted as

master (mapped by the CQSSSTT7 macro). See Table 15 on page 60

for a description of the structure checkpoint statistics record. For

system checkpoint end and structure checkpoint end only.

CQS Structure Event Exit Routine Rebuild Parameter List

Table 19 describes the Structure Event user exit routine rebuild parameter list.

 Table 19. CQS Structure Event User-Supplied Exit Routine Parameter List: Rebuild

Field Name Offset Length

Field

Usage Description

STXPVSN X'00' X'04' Input Parameter List Version Number (00000001).

STXEVENT X'04' X'04' Input Structure Event Code

3 Structure Rebuild Event (STXRBLD).

Structure Event User Exit

Chapter 4. CQS User-Supplied Exit Routines 65

Table 19. CQS Structure Event User-Supplied Exit Routine Parameter List: Rebuild (continued)

Field Name Offset Length

Field

Usage Description

STXSCODE X'08' X'04' Input Structure EventSubcode

1 Structure rebuild begin (STXRBLB).

2 Structure rebuild (copy) end (STXCPYE).

3 Structure rebuild (copy) failure (STXCPYF).

4 Structure rebuild failure (STXRBLF).

5 Structure rebuild (recovery) end (STXRCOVE).

6 Structure rebuild (recovery) failure (STXRCOVF).

STXCQSID X'0C' X'08' Input CQS identifier.

STXCQSVN X'14' X'04' Input CQS version number.

STXSTRNM X'18' X'10' Input Structure Name.

STXRMCQS X'28' X'08' Input CQS identifier of the master CQS performing the rebuild process.

STXRFLG1 X'30' X'01' Input Flag byte

X'80' This CQS is the master of the process. The CQS

identifier and master CQS identifier are the same

(STXR1MST).

N/A X'31' X'03' Input Reserved.

CQS Structure Event Exit Routine Overflow Parameter List

Table 20 describes the Structure Event user exit routine overflow parameter list.

 Table 20. CQS Structure Event User-Supplied Exit Routine Parameter List: Overflow

Field Name Offset Length

Field

Usage Description

STXPVSN X'00' X'04' Input Parameter List Version Number (00000001).

STXEVENT X'04' X'04' Input Structure Event Code

4 Structure Overflow Event (STXOVFLW).

STXSCODE X'08' X'04' Input Structure Event Subcode.

1 Move queues to overflow. One or more queues

were selected as candidates to be moved to the

overflow structure and were approved by the

Queue Overflow user exit routine (STXTOOFL).

2 Move queues from overflow. One or more queues

moved from the overflow structure back to the

primary structure, because the queues were

drained on the overflow structure. New work for

these queues is placed on the primary structure

(STXFROFL).

STXCQSID X'0C' X'08' Input CQS identifier.

STXCQSVN X'14' X'04' Input CQS version number.

STXSTRNM X'18' X'10' Input Structure Name.

STXOMCQS X'28' X'08' Input CQS identifier of the master CQS performing the overflow process.

STXOFLG1 X'30' X'01' Input Flag byte

X'80' This CQS is the master of the process. The CQS

identifier and master CQS identifier are the same

(STX01MST).

X'40' The structure is no longer in overflow mode. This

applies only to subcode 2 (STX01END).

Structure Event User Exit

66 Common Queue Server Guide and Reference

Table 20. CQS Structure Event User-Supplied Exit Routine Parameter List: Overflow (continued)

Field Name Offset Length

Field

Usage Description

N/A X'31' X'03' Input Reserved.

STXOLSTN X'34' X'04' Input Number of Queue Names entries in the list.

STXOLSTE X'38' X'04' Input Length of each Queue Name list entry.

STXOLSTA X'3C' X'04' Input Address of Queue Name list. Each Queue Name list entry contains

the 16-byte name of a queue that is being moved to or from the

overflow structure.

CQS Structure Event Exit Routine Status Change Parameter List

Table 21 describes the Structure Event user exit routine status change parameter

list.

 Table 21. CQS Structure Event User-Supplied Exit Routine Parameter List: Status Change

Field Name Offset Length

Field

Usage Description

STXPVSN X'00' X'04' Input Parameter List Version Number (00000003).

STXEVENT X'04' X'04' Input Structure Event Code

5 Structure Status Change Event (STXSCHNG).

STXSCODE X'08' X'04' Input Structure Event Subcode

1 Structure available again after a loss (STXAVAIL).

2 The structure failed (STXFAIL).

3 CQS lost its connection to the structure

(STXLCONN).

4 The log stream is becoming available, making the

structure available (STXAVLOG).

 Important: This subcode applies only to queue

structures.

5 The log stream is becoming available, making the

structure available (STXFLOG).

 Important: This subcode applies only to queue

structures.

6 The structure failed. It needs to be repopulated

because this structure does not support structure

recovery (STXREPOP).

 Important: This subcode applies only to resource

structures.

STXCQSID X'0C' X'08' Input CQS identifier.

STXCQSVN X'14' X'04' Input CQS version number.

STXSTRNM X'18' X'10' Input Structure Name.

STXSTYPE X'28' X'01' Input Input structure type (1 queue structure, 2 resource structures).

STXRSTVN X'40' X'08' Input Input structure version.

CQS Statistics Available through the BPE Statistics User Exit

You can use the BPE Statistics user exit to gather both BPE and CQS statistics.

When the BPE Statistics user exit is driven, field BPESTXP_COMPSTATS_PTR in

the BPE Statistics user-supplied exit parameter list, BPESTXP, contains the pointer

to the CQS statistics header.

Structure Event User Exit

Chapter 4. CQS User-Supplied Exit Routines 67

See the IMS Version 9: Base Primitive Environment Guide and Reference for

detailed information about the BPE Statistics user exit and when it is driven.

Table 22 describes the contents of the CQS Statistics header. The statistics header

is mapped by CQSSSTTX.

 Table 22. CQS Statistics Header Data

Offset Length Field Usage Description

X'00' X'08' Input Eyecatcher ″CQSSTTX″

X'08' X'04' Input Length of header

X'0C' X'04' Input Header version number (00000001)

X'10' X'04' Input Number of structures for which statistics are available

X'14' X'04' Input Number of statistics areas available for each structure

X'18' X'04' Input Length of all statistics areas for each structure

X'1C' X'04' Input Offset to statistics area for first structure (offset from CQSSSTTX)

X'20' X'04' Input CQSSSTAT offset within the statistics area for each structure

X'24' X'04' Input CQSSSTTI offset within the statistics area for each structure

X'28' X'04' Input CQSSSTT2 offset within the statistics area for each structure

X'2C' X'04' Input CQSSSTT3 offset within the statistics area for each structure

X'30' X'04' Input CQSSSTT4 offset within the statistics area for each structure

X'34' X'04' Input CQSSSTT5 offset within the statistics area for each structure

X'38' X'04' Input CQSSSTT6 offset within the statistics area for each structure

X'3C' X'04' Input CQSSSTT7 offset within the statistics area for each structure

X'40' X'04' Input Reserved

X'44' X'04' Input Reserved

X'48' X'04' Input Reserved

X'4C' X'04' Input Reserved

Structure Event User Exit

68 Common Queue Server Guide and Reference

Chapter 5. Writing a CQS Client

If you want to use CQS to manage resource and queues structures for your own

product or service, you must write one or more CQS clients. A CQS client uses

CQS requests to communicate with CQS. See Chapter 6, “CQS Client Requests,”

on page 81 for a complete description of all the CQS requests.

This section explains some of the things you must consider when writing a CQS

client. The information in this section is written for the programmer who will write

the client, but a CQS administrator or system programmer should also read this

section to become aware of some of the issues involved in designing and writing a

CQS client.

The following topics provide additional information:

v “Introducing CQS Client Requests”

v “Sequence of CQS Requests Issued by a Client for Queue Structure” on page 70

v “Coding CQS Requests” on page 70

v “CQS Clients and Handling Special Events” on page 77

This section contains General-Use Programming Interface information.

Introducing CQS Client Requests

Your primary tool for writing a CQS client is the set of client request macros that

CQS provides. These requests allow a client to access CQS or the shared queues

on coupling facility list structures. The following list summarizes the CQS requests:

CQSBRWSE Retrieves a copy of a data object from a queue

CQSCHKPT Takes a checkpoint of internal tables or of all data objects on a

structure

CQSCONN Connects a client to one or more structures

CQSDEL Deletes one or more data objects from a queue

CQSDEREG Deregisters a client from its CQS, terminating communication with it

CQSDISC Disconnects a client from one or more structures

CQSINFRM Registers client interest in one or more queues, notifying the client

when work exists on the queue

CQSMOVE Moves one or more data objects from one queue to another

CQSPUT Places a data object on a queue

CQSQUERY Requests information about a queue or a structure

CQSREAD Retrieves and locks a copy of a data object from a queue

CQSRECVR Recovers data objects that were moved to the cold queue after a

client or CQS cold starts

CQSREG Registers a client with a CQS, establishing communication

CQSRSYNC Resynchronizes in-doubt data between the client and its CQS after

a failure

CQSSHUT Shuts down a CQS

CQSUNLCK Unlocks a data object, making it available to any client

© Copyright IBM Corp. 1997, 2004 69

CQSUPD Updates one or more uniquely named resources on a resource

structure

Important: Some of the requests support either queue or resource structures only.

For detailed information on the CQS client requests, see Chapter 6, “CQS Client

Requests,” on page 81.

Sequence of CQS Requests Issued by a Client for Queue Structure

A client uses CQS requests to make use of CQS services and resources. There are

certain requests the client must issue to request CQS services, and some of the

requests must come in a particular sequence; the sequence of CQS requests is

shown in Table 23. Other requests can be issued multiple times, in any order, based

on the processing requirements of the client.

 Table 23. Sequence for CQS Requests

Order Request Use this request ...

1 CQSREG To establish communications with CQS.

2 CQSCONN To connect to a particular structure.

3 CQSRSYNC To resolve indoubt work with CQS.

4 CQSRECVR1 After a CQS cold start to recover specific data

objects.

5 CQSINFRM To register interest in specific queue names.

6 Other CQS requests To process work. Examples of these other requests

are: CQSBRWSE, CQSPUT, and CQSREAD.

7 CQSDISC To disconnect from a structure.

8 CQSSHUT To request CQS to shutdown. The client could also

use CQSDISC ... CQSSHUT=YES to disconnect from a

structure and request a CQS shutdown, rather than

issuing just the CQSSHUT request.

9 CQSDEREG To end communications with CQS.

Note:

1. A client can issue the CQSRECVR and CQSINFRM requests in any order and at any time

following the CQSRSYNC request. The client should, however, issue both of these requests

before starting any real work with CQS.

Coding CQS Requests

The usage section for each request (see Chapter 6, “CQS Client Requests,” on

page 81) describes the detail for each of the keywords, parameters, and variables

for the CQS requests, but there are a few subjects that apply to all of the requests.

These global usage considerations are described in this section, and are not

described in each request’s usage section.

Authorization for CQS

CQS provides two interfaces for its clients: the authorized interface and the

non-authorized interface. CQS automatically selects and initializes the correct

interface environment based on the client’s state when the client issues a CQSREG

request. If client is authorized (in supervisor state with PSW key 0 to 7), CQS

Introducing CQS Client Requests

70 Common Queue Server Guide and Reference

initializes the authorized interface environment. If client is not authorized (in problem

state with key 8 or greater), CQS initializes the non-authorized interface

environment.

Which interface CQS assigns to the client determines the allowed environments for

all subsequent CQS requests and all client exit routines driven by CQS. In general,

when a client makes a CQS request, its PSW state and key must be the same as

they were when it issued the CQSREG request.

Environmental Requirements for CQS

For CQS requests (other than CQSREG and CQSDEREG), the environmental

requirements depend on the CQS interface assigned to the client.

Table 24 shows the environment for clients using the authorized CQS interface:

 Table 24. Environment for CQS Requests (Excluding CQSREG and CQSDEREG) Using the

Authorized Interface

Environment State

Authorization Supervisor state and PSW key 0-7 (PSW key

must match the PSW key when the CQSREG

request was issued)

Dispatchable unit mode Task

Cross memory mode Any, however, PASN must equal the primary

address space in which the CQSREG request

was issued

AMODE 31

ASC Mode Primary

Home address space Any

Locks No locks held

Interrupt status Enabled for interrupts

Control parameters In primary address space

Table 25 shows the environment for clients using the non-authorized CQS interface:

 Table 25. Environment for CQS Requests (Excluding CQSREG and CQSDEREG) Using the

Non-Authorized Interface

Environment Aspect State

Authorization Problem state or PSW key 8 (PSW key must

match the PSW key when the CQSREG

request was issued)

Dispatchable unit mode Task

Cross memory mode None (PASN=SASN=HASN)

AMODE 31

ASC Mode Primary

Home address space Address space in which CQSREG was

issued

Locks No locks held

Interrupt status Enabled for interrupts

Control parameters In primary address space

Coding CQS Requests

Chapter 5. Writing a CQS Client 71

The environmental requirements for the CQS register and deregister requests

(CQSREG and CQSDEREG) are different from all of the other CQS requests. Authorized

clients must issue CQSREG and CQSDEREG requests in the environment shown in

Table 26.

 Table 26. Environment for CQSREG and CQSDEREG Requests Using the Authorized

Interface

Environment Aspect State

Authorization Supervisor state and PSW key 0-7

Dispatchable unit mode Task

Cross memory mode None (PASN=SASN=HASN)

AMODE 31

ASC Mode Primary

Locks No locks held

Interrupt status Enabled for interrupts

Control parameters In primary address space

Non-authorized clients must issue CQSREG and CQSDEREG requests in the environment

shown in Table 27.

 Table 27. Environment for CQSREG and CQSDEREG Requests Using the Non-Authorized

Interface

Environment Aspect State

Authorization Problem state or PSW key 8

Dispatchable unit mode Task

Cross memory mode None (PASN=SASN=HASN)

AMODE 31

ASC Mode Primary

Locks No locks held

Interrupt status Enabled for interrupts

Control parameters In primary address space

Using Registers with CQS Requests

All CQS requests use registers R0, R1, R14, and R15 as work registers. When a

CQS request returns control to the caller, the contents of these registers are not the

same as they were before the macro call. R15 contains a return code, and R0

contains a reason code from the CQS interface (see “Return Codes and Reason

Codes for CQS Requests” on page 75). The contents of registers R2 through R13

remain unchanged after a CQS request, except for registers specified as output

parameters for the particular request.

All CQS requests require register R13 to point to a standard 72-byte save area. No

other registers are required to contain any particular value when a CQS request is

issued, except for registers specified as input parameters for the particular request.

Coding CQS Requests

72 Common Queue Server Guide and Reference

Coding Parameters for CQS Requests

For all of the parameters (shown in the syntax diagrams as, for example,

parameter) that are not literals, CQS expects either an address or a value. For

example, for the cqstoken on a CQSREAD request, CQS expects the address of

the 16-byte CQS token, but for the buffersize, CQS expects a 4-byte buffer size.

To pass an address or a parameter value to CQS, you can code the parameter for

the CQS request in one of three ways:

1. Use a register

To use a register, you must load the address or the parameter value into one of

the general purpose registers, then use that register (enclosed in parentheses)

for the parameter in the CQS request.

2. Use a symbol

To use a symbol name, you must define a symbol that contains the address or

the parameter value, then use that symbol for the parameter in the CQS

request.

3. Use a symbol value

To use a symbol value, you must define a symbol or an equate that contains the

parameter value, then use that symbol (preceded by the at-sign, @, and

enclosed in parentheses) for the parameter in the CQS request.

 LA 5,TOKEN

 CQSREAD FUNC=READ,CQSTOKEN=(5),...

 ...
TOKEN DS XL16

Figure 17. Passing an Address for Register

 L 4,MYBUFLEN

 CQSREAD FUNC=READ,BUFSIZE=(4),...

 ...
MYBUFLEN DC F’00000024’

Figure 18. Passing a value for register

 CQSREAD FUNC=READ,CQSTOKEN=TOKENADR,...

 ...
 TOKENADR DC A(TOKEN) TOKEN DS XL16

Figure 19. Passing an Address for Symbol

 CQSREAD FUNC=READ,BUFSIZE=MYBUFLEN,...

 ...
 MYBUFLEN DC F’00000024’

Figure 20. Passing a Value for Symbol

Coding CQS Requests

Chapter 5. Writing a CQS Client 73

Coding Literals for CQS Requests

A number of CQS request macros have parameters that use a literal (for example,

the LOCAL parameter on the CQSREAD request macro). A macro invocation can

use either combinations of literal parameters or the OPTWORD1 parameter to pass

4 bytes containing flags that represent the literals. When you use the OPTWORD1

parameter, you obtain the literal equates by using the DSECT function of each

request macro. The equates that represent the literal values are added together in a

regular storage location.

Requirement: A macro invocation can use either the literal parameters or the

OPTWORD1 parameter, not both. When a macro invocation includes the

OPTWORD1 parameter, the value passed on this parameter must include one

equate for each literal parameter supported by the macro. For example, the

CQSREAD request has three literal parameters: LOCAL, PARTIAL, and QPOS. The

value you pass on the OPTWORD1 parameter must include one equate for the

LOCAL parameter, one equate for the PARTIAL parameter, and one equate for the

QPOS parameter.

To code a CQSREAD request using a series of literal parameters, use CQSREAD

FUNC=READ,...,QPOS=FIRST,LOCAL=YES....

To code the same CQSREAD request using the OPTWORD1 parameter, use the

example shown in Figure 23:

Using an ECB with CQS Requests

Some requests allow you to use a z/OS event control block (ECB). If you specify an

ECB (ECB=ecbaddress), the client immediately receives control after issuing the

 CQSREAD FUNC=READ,CQSTOKEN=@(TOKEN),...

 ...
 TOKEN DC XL16’0000A765B55CFF00’

Figure 21. Passing a Value for Symbol Value

 CQSREAD FUNC=READ,BUFSIZE=@(MYBUFLEN),...

 ...
 MYBUFLEN EQU 24

Figure 22. Passing an Equate for Symbol Value

 L R2,=A(CQSREAD_QPOSF+CQSREAD_LCLY+CQSREAD_PRTLY)

 CQSREAD FUNC=READ,...,OPTWORD1=(R2),...

 .

 .

 .

 .

 CQSREAD FUNC=DSECT GENERATE CQSREAD EQUs

Figure 23. Coding CQSREAD with the OPTWORD1 parameter

Coding CQS Requests

74 Common Queue Server Guide and Reference

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|

request, but must at some time be sure to wait for the request to post the ECB. If

you do not specify an ECB, CQS does not return control to the client until CQS

completes its processing for the request.

Related Reading: For information on using an ECB, see the z/OS MVS

Programming: Authorized Assembler Services Guide.

Using Lists in the CQS Requests

Some of the CQS requests have a LIST keyword, which specifies the address of a

parameter list entry. This keyword specifies the address of the first list entry. If you

want to pass multiple list entries, you must ensure that they all reside in contiguous

storage, that is, the next entry must begin at the first byte following the current

entry. All lists must be contiguous, even if they are not aligned on word or fullword

boundaries.

Return Codes and Reason Codes for CQS Requests

With the exception of CQSREG and CQSDEREG, each CQS request returns two

sets of return and reason codes. One set is returned by the CQS interface, and

indicates the success or failure of sending the request to the CQS address space

(these are returned in R15 and R0). The other set is returned by the CQS address

space, and reflects the success or failure of the particular CQS request being made

(these are returned in the fields indicated by the RETCODE and RSNCODE

parameters on the CQS request macro).

When you make a CQS request, the request must travel through the CQS interface

from the client address space to the CQS address space. The CQS interface

returns information about the success or failure of the sending of the request in

registers R15 and R0. After issuing a CQS request macro, have your code check

the value in R15 first. If the value in R15 is zero, then the CQS interface

successfully sent the request to the CQS address space. If R15 is not zero, the

CQS interface was unable to send the request to the CQS address space, and R0

contains a reason code that explains the error.

The return and reason codes from the CQS request itself are returned in the fields

specified with the RETCODE and RSNCODE parameters coded on the CQS

request macro. The values returned in these fields are valid only if the CQS

interface return code (R15) is zero. If the interface return code in R15 is not zero

after you issue a CQS request macro, then the values in the RETCODE and

RSNCODE fields are not predictable, and you should not use them.

For synchronous requests (that is, requests in which the ECB parameter was not

coded), the RETCODE and RSNCODE fields are set after your module receives

control back from the request macro, and you can use them immediately. For

asynchronous requests (that is, requests in which the ECB parameter was coded),

the RETCODE and RSNCODE fields are set only after the ECB is POSTed by

CQS. Do not check the RETCODE and RSNCODE fields until you have issued a

WAIT on the ECB you specified on the request, and that WAIT has returned.

The CQSREG and CQSDEREG requests are exceptions to this. CQSREG and

CQSDEREG register and deregister a client with the CQS interface, but do not

actually send a request across the interface to the CQS address space. CQSREG

and CQSDEREG have only a single set of return and reason codes, and these are

immediately available upon return from the register or deregister request. The return

Coding CQS Requests

Chapter 5. Writing a CQS Client 75

code is set both in register 15 and in the field specified by RETCODE on the

request macro. The reason code is set both in register 0 and in the field specified

by RSNCODE on the request macro.

The CQS interface issues the return and reason codes shown in Table 28. Any

CQS request can receive these return and reason codes. Because the CQS

interface performs more extensive checking for non-authorized clients, some of the

following return and reason codes can only be received if the client is a

non-authorized client.

 Table 28. Return and Reason Codes for Errors Detected by the CQS Interface

Return Code Reason Code Meaning

X'00000008' X'00000210' The cqstoken is invalid.

X'00000008' X'00000214' The connecttoken is invalid.

X'00000010' X'00000430' The CQS address space is not available.

X'00000014' X'00000600' The CQS interface is unable to access internal

blocks.

X'00000014' X'00000604' The client is running in problem state or is using an

incorrect PSW key.

X'00000014' X'00000608' The client passed an invalid function code to the CQS

interface.

X'00000014' X'0000060C' The client specified an invalid CQS request type.

X'00000014' X'00000610' CQS was unable to allocate storage to copy the

request parameters.

X'00000014' X'00000614' The total length of all request parameters passed was

less than the sum of all parameter lengths.

X'00000014' X'00000618' The value passed to the interface for the total length

of all parameters was either zero or negative.

X'00000014' X'0000061C' The value passed to the interface for the total

parameter count was either zero or negative.

X'00000014' X'00000620' The length of one of the request’s parameters was

negative.

X'00000014' X'00000624' The length passed for the structure-call parameter list

was invalid.

X'00000014' X'00000628' Invalid request function code.

X'00000014' X'0000062C' Invalid request parameter list version number.

X'00000014' X'00000630' An incorrect number of parameters was passed for

the requested function.

X'00000014' X'00000634' A parameter was passed with an incorrect length.

X'00000014' X'00000638' A parameter was passed by value instead of by

address.

X'00000014' X'0000063C' A parameter was passed by address instead of by

value.

X'00000014' X'00000640' The CQS request abended before being sent to the

CQS.

X'00000014' X'00000644' The CQS request abended while CQS was copying

the request parameters. This error is usually caused

by the client’s passing bad parameter data.

Coding CQS Requests

76 Common Queue Server Guide and Reference

Table 28. Return and Reason Codes for Errors Detected by the CQS Interface (continued)

Return Code Reason Code Meaning

X'00000014' X'00000648' The interface parameter list version passed by the

CQS request macro was not valid. This error is

probably caused by a difference in versions between

the CQS client and the CQS address space the client

is trying to use.

All CQS requests have a DSECT function that you can use to include equate

statements in your program for all the return and reason codes for the request.

Recommendation: Write a program that specifies FUNC=DSECT for all CQS

requests so you can determine symbolic variable names to use for the return and

reason code values.

Assembling a Program with CQS Requests

The CQS request macros are shipped with IMS and are included in the

IMS.ADFSMAC data set. When you assemble a program that includes CQS request

macros, you must tell the assembler to look for the macros in this data set. You can

also copy the members from the IMS data set to another data set, as necessary.

There are no special requirements for link editing a program that includes CQS

requests, but you do have to ensure that the IMS.SDFSRESL data set is

concatenated with your JOB or STEPLIB DD statement for the client job.

Example: To concatenate the IMS.SDFSRESL data set after your

MYPROGS.SDFSRESL data set, code your STEPLIB DD statement as shown in

Figure 24:

Clients assembled using IMS Version 6 request macros can register with either an

IMS Version 6 or IMS Version 7 CQS.

Attention: Clients assembled using IMS Version 7 macros can only register with an

IMS Version 7 CQS.

CQS Clients and Handling Special Events

A CQS client must be able either to initiate or to participate in many different types

of events. This section describes some of these special events and what the CQS

client can or must do about them.

CQS Cold Start

When CQS cold starts after connecting to a structure that contains data, CQS looks

for unresolved work from CQSMOVE or CQSDEL requests. CQS backs out CQSMOVE

requests and completes CQSDEL requests. CQS then performs a system checkpoint,

and restart is complete.

STEPLIB DD DSN=MYPROGS.SDFSRESL,DISP=SHR

 DSN=IMS.SDFSRESL,DISP=SHR

Figure 24. STEPLIB DD Statement to Concatenate IMS.SDFSRESL

Coding CQS Requests

Chapter 5. Writing a CQS Client 77

|
|
|

|

|
|
|
|

CQS does not resolve work that is initiated using a CQSREAD request. As a result,

data objects might remain on the queues. The client can issue the CQSRSYNC request

to have CQS move these data objects to the cold queue and notify the client that

they exist. The client can then issue a CQSRECVR request to access these data

objects.

Recommendation: Complete all work initiated using CQSPUT requests because

CQS is not aware of these data objects.

Registering Interest in Queues with CQSINFRM

Use the CQSINFRM request to allow CQS to notify the client when a data object

exists on a queue or when the queue becomes non-empty. The client must register

interest in a queue before it will be notified of work on that queue.

Working with Objects on the Cold Queue using CQS Requests

CQS places objects on the cold queue when either CQS or the client is cold started

while there are objects in active structures. A client can use the CQSBRWSE

request to examine objects on the cold queue, and then, using the cold-queue

token and UOW returned by this request, the client can use a CQSRECVR request

to retrieve or delete objects from the cold queue.

When writing a CQS client, you can use the following request to obtain information

about objects on the cold queue, including the qnames, data object count, oldest

data object timestamp, and newest data object timestamp:

CQSQUERY FUNC=QTYPE,QTYPENM=COLDQ

Initiating Checkpoints using CQS Requests

A CQS client can initiate a system checkpoint by issuing a CQSCHKPT

FUNC=CHKPTSYS request. See “Using CQS System Checkpoint” on page 34 for

more information on system checkpoints.

A CQS client can initiate a structure checkpoint by issuing a CQSCHKPT

FUNC=CHKPTSTR request. See “Using CQS Structure Checkpoint” on page 35 for

more information on structure checkpoints.

Shutting Down CQS

To shut down CQS, clients can either issue the CQSSHUT request or the

CQSDISC request with CQSSHUT=YES specified. In either case, CQS terminates

when there are no more structure connections. CQS continues to accept input and

output requests so that in-progress work can complete. Structure checkpoints are

allowed to be issued. New connections are allowed if the CQSDISC request is

issued with CQSSHUT=YES, but they are not allowed if the CQSSHUT request is

issued.

Related Reading:

v For more information on the CQSDISC request, see “CQSDISC Request” on

page 103.

v For more information on the CQSSHUT request, see “CQSSHUT Request” on

page 151.

Tuning to Improve CQS Performance

You can improve CQS performance by carefully selecting the parameters you use

with the CQSQUERY, CQSDEL, and CQSINFRM requests.

Handling Special Events

78 Common Queue Server Guide and Reference

|
|
|
|
|

|
|

|

|
|
|

|

|
|
|
|
|

|
|
|

|

|

|
|
|

|
|
|

|

|
|
|
|
|
|
|

|

|
|

|
|

|

|
|

Related Reading: For more information on these tuning recommendations, see

“CQSQUERY Request” on page 123, see “CQSDEL Request” on page 98, and see

“CQSINFRM Request” on page 108.

Handling Special Events

Chapter 5. Writing a CQS Client 79

|
|
|

80 Common Queue Server Guide and Reference

Chapter 6. CQS Client Requests

The following topics provide additional information:

v “Using CQS Client Requests”

v “CQSBRWSE Request” on page 82

v “CQSCHKPT Request” on page 89

v “CQSCONN Request” on page 92

v “CQSDEL Request” on page 98

v “CQSDEREG Request” on page 102

v “CQSDISC Request” on page 103

v “CQSINFRM Request” on page 108

v “CQSMOVE Request” on page 112

v “CQSPUT Request” on page 116

v “CQSQUERY Request” on page 123

v “CQSREAD Request” on page 132

v “CQSRECVR Request” on page 137

v “CQSREG Request” on page 142

v “CQSRSYNC Request” on page 144

v “CQSSHUT Request” on page 151

v “CQSUNLCK Request” on page 152

v “CQSUPD Request” on page 157

v “Example of Using a CQS Request: CQSREAD” on page 161

This section contains General-Use Programming Interface information.

Using CQS Client Requests

CQS clients communicate with the CQS address space using a general-use

interface consisting of a number of S/390 assembler macros, called CQS requests.

Using these requests, CQS clients can communicate with the CQS and manipulate

client data on shared coupling facility structures.

Use these requests if you are writing or maintaining a CQS client. You do not need

to use them if you are using an IBM-supplied client, such as an IMS control region.

Some CQS requests support wildcard parameters. Wildcard parameters allow you

to specify multiple resources whose names match the wildcard parameter mask.

The size of a wildcard parameter can be from one character to the maximum

number of characters supported for the resource. The alphanumeric name can

include one or more specialized characters and an asterisk or percent sign. An

asterisk can be replaced by zero, one, or more characters to create a valid

resource name. A percent sign can be replaced by exactly one character to create a

valid resource name. The wildcard parameter asterisk (*) represents ’ALL’.

However, depending on the installation, other wildcard parameters can mean all.

For example, the wildcard parameter %%%% means ALL to an installation whose

resource names are all 4 characters long.

© Copyright IBM Corp. 1997, 2004 81

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

CQSBRWSE Request

Format for CQSBRWSE

BROWSE Function of CQSBRWSE: Use the BROWSE function of a

CQSBRWSE request to retrieve a copy of a data object from a specific queue.

BRWSOBJS Function of CQSBRWSE: Use the BRWSOBJS function of a

CQSBRWSE request to browse one or more resource data objects of a specified

type from a resource structure.

COMPLETE Function of CQSBRWSE: Use the COMPLETE function of a

CQSBRWSE request to indicate to CQS that a CQSBRWSE request associated

with a particular browse token is complete.

�� CQSBRWSE FUNC=BROWSE CQSTOKEN=cqstokenaddress �

� CONTOKEN=connecttokenaddress PARM=parmaddress BRWTOKEN=browsetokenaddress �

� QNAME=queuenameaddress

A
 BUFFER=bufferaddress BUFSIZE=buffersize �

� OBJSIZE=dataobjectsizeaddress UOW=uowaddress �

�
TIMESTAMP=timestampaddress

ECB=ecbaddress
 �

� RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ��

A:

 QTYPE=COLD CLDTOKEN=coldqueuetokenaddress

QNAME=queuenameaddress
 �

�
CLIENT=clientnameaddress

�� CQSBRWSE FUNC=BRWSOBJS CQSTOKEN=cqstokenaddress �

� CONTOKEN=connecttokenaddress PARM=parmaddress BRWTOKEN=browsetokenaddress �

�

LIST=resourcelistaddress

COUNT=resourcelistcount
 LISTVER=1

LISTVER=listversion

�

� BUFFER=bufferaddress BUFSIZE=buffersize OBJSIZE=dataobjectsizeaddress �

� RETCODE=returncodeaddress RSNCODE=reasoncodeaddress

ECB=ecbaddress
 ��

CQSBRWSE

82 Common Queue Server Guide and Reference

CONTINUE Function of CQSBRWSE: Use the CONTINUE function of a

CQSBRWSE request if a previous CQSBRWSE request retrieved partial data and

you want to retrieve the rest of the data object.

DSECT Function of CQSBRWSE: Use the DSECT function of a CQSBRWSE

request to include equate (EQU) statements in your program for the CQSBRWSE

parameter list length and CQSBRWSE return and reason codes.

 33333

Usage of CQSBRWSE

A CQSBRWSE FUNC=BROWSE request retrieves a copy of a data object from a

specific queue on a queue structure. The first CQSBRWSE FUNC=BROWSE

request takes a snapshot of the data objects meeting the selection criteria and

passes back a copy of the first data object. The data object is neither deleted nor

locked. It can be accessed by any subsequent CQS request. Each subsequent

CQSBRWSE FUNC=BROWSE request retrieves a copy of the next data object.

The data object is returned in the client buffer provided on the CQSBRWSE

request. The size of the data object is passed to the client.

A browse token maintains the cursor position of the data objects being browsed. A

CQSBRWSE FUNC=BROWSE request with a zero browse token passes back the

first data object. A CQSBRWSE FUNC=BROWSE request with a non-zero browse

token retrieves the next data object on the queue associated with the browse token.

If the data object returned is the last data object on the queue, CQS invalidates the

browse token and frees any data structures associated with that browse token.

A CQSBRWSE FUNC=BRWSOBJS request retrieves information on one or more

data objects from a resource structure. The first CQSBRWSE FUNC=BRWSOBJS

request takes a snapshot of the data objects meeting the selection criteria and

passes back information on one or more of those data objects. As many data object

entries as fit are returned in the client buffer provided on the CQSBRWSE request.

Each subsequent CQSBRWSE FUNC=BRWSOBJS request retrieves the next set

of data object entries. A browse token maintains the cursor position of the data

objects being browsed. A CQSBRWSE FUNC=BRWSOBJS request with a zero

browse token retrieves information on as many data objects as fit in the buffer. A

�� CQSBRWSE FUNC=COMPLETE CQSTOKEN=cqstokenaddress �

� CONTOKEN=connecttokenaddress PARM=parmaddress BRWTOKEN=browsetokenaddress �

�
ECB=ecbaddress

 RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ��

�� CQSBRWSE FUNC=CONTINUE CQSTOKEN=cqstokenaddress �

� CONTOKEN=connecttokenaddress PARM=parmaddress BRWTOKEN=browsetokenaddress �

� BUFFER=bufferaddress BUFSIZE=buffersize OBJSIZE=dataobjectsizeaddress �

�
ECB=ecbaddress

 RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ��

�� CQSBRWSE FUNC=DSECT ��

CQSBRWSE

Chapter 6. CQS Client Requests 83

CQSBRWSE FUNC=BRWSOBJS request with a non-zero browse token retrieves

the next group of data object entries. If the buffer contains information on the last

data object being browsed, CQS invalidates the browse token and frees any data

structures associated with the browse token.

When a CQSBRWSE FUNC=BROWSE request is issued and the buffer passed is

not large enough to hold the next data object, partial data is returned. The buffer is

filled with as much of the data object as can fit. The CQSBRWSE

FUNC=CONTINUE request retrieves the rest of the data object.

Partial data is not returned on a CQSBRWSE FUNC=BRWSOBJS request. The

CQSBRWSE FUNC=CONTINUE request is not supported for a resource structure

because CQSBRWSE FUNC=BRWSOBJS does not return partial data.

A CQSBRWSE FUNC=COMPLETE request indicates to CQS that the CQSBRWSE

request associated with the browse token is complete. The browse token from the

prior CQSBRWSE request is required. CQS invalidates the browse token and frees

any data structures associated with it. The client should issue a CQSBRWSE

FUNC=COMPLETE request if it is not retrieving all of the data objects on the

specified queue.

Attention: The cursor position of a CQSBRWSE FUNC=BROWSE or

CQSBRWSE FUNC=CONTINUE request can be lost due to a CQS restart, a client

restart, structure recovery, structure copy, or the browse table timing out. The

browse table times out after approximately one hour. A CQSBRWSE request is not

recoverable across a CQS or client failure. The client must reissue the CQSBRWSE

request after such a failure. The data object is not locked on a CQSBRWSE

request, so it is possible that one or more of the objects snapped by the first

CQSBRWSE FUNC=BROWSE request are no longer available because of another

CQSREAD, CQSDEL, CQSMOVE request, or overflow threshold processing.

CQSBRWSE FUNC=BROWSE simply skips objects that are no longer available. If

overflow threshold processing occurs after the initial CQSBRWSE FUNC=BROWSE

request and the queue is moved to the overflow structure, any subsequent

CQSBRWSE FUNC=BROWSE request with browse token results in an error that

indicates no objects found. Reissue the CQSBRWSE FUNC=BROWSE request with

a browse token of zeroes, so that CQS can take a snapshot of the queue on the

overflow structure. If the current position is lost because a browse table timed out, a

CQSBRWSE FUNC=CONTINUE request is rejected.

Parameter Description:

BRWTOKEN=browsetokenaddress

Input and output parameter that specifies the address of the 16-byte browse

token. The browse token is used to maintain the cursor position of the data

object or objects being browsed.

 The browse token should be set to zero on the initial CQSBRWSE request.

The browse token returned by CQS on a CQSBRWSE FUNC=BROWSE or

FUNC=BRWSOBJS request should be passed as input on a subsequent

CQSBRWSE=BROWSE, CONTINUE, COMPLETE, or BRWSOBJS request.

 On output, the browse token uniquely identifies the current data object

being browsed, which is returned in the buffer identified by BUFFER.

 For a CQSBRWSE FUNC=CONTINUE, a CQSBRWSE

FUNC=COMPLETE, or a subsequent CQSBRWSE FUNC=BROWSE

request, BRWTOKEN is an input parameter that specifies the browse token

returned by CQS on the prior CQSBRWSE FUNC=BROWSE request.

CQSBRWSE

84 Common Queue Server Guide and Reference

BUFFER=bufferaddress

Four-byte input parameter that specifies the address of a client buffer that

holds information retrieved about one or more data objects.

 For CQSBRWSE FUNC=BROWSE, the client buffer contains a copy of the

data object retrieved from the queue on a queue structure.

 For CQSBRWSE FUNC=BRWSOBJS, the client buffer contains the count of

data object entries and one or more data object entries. Each data object

entry contains information about one resource data object retrieved from the

resource structure. The buffer is filled with as many data object entries as

can fit in the buffer. Each data object entry contains information about a

browsed data object such as the resourceid, the completion code,

resourceid status, version, owner, client data1, optional client data2, and

user data that was passed in the input list. If the size of the information is

greater than the buffer size passed by the client, the buffer is filled with as

many resource entries as can fit. The BUFFER is mapped by the

CQSBRWSB DSECT.

 The resourceid status indicates how the resourceid in the data object entry

is associated with the input parameter. With this information, you can tie the

input parameter to the data object entries that are generated in the output

buffer. The following are possible resourceid status:

v Specific parameter

A specific resourceid. This data object entry contains the resourceid that

matches the input parameter.

v Wildcard parameter

A wildcard parameter was specified. This data object entry contains the

wildcard parameter and a completion code. This data object entry does

not contain information about a specific resourceid. If the completion

code is zero, one or more wildcard match list entries follow.

v Wildcard match

A wildcard parameter was specified. This data object contains information

about one resourceid that matches the input wildcard parameter. All

wildcard match list entries follow contiguously after a wildcard parameter

list entry.

 The following are possible completion codes:

X’00000000’

Request completed successfully.

X’00000020’

Resourceid is invalid. The name type must be a decimal number

from 1 to 255.

X’00000024’

CQS internal error.

X’00000040’

No resources matching either resourceid, resource type, owner, or

some combination of these, were found.

BUFSIZE=buffersize

Four-byte input parameter that specifies the size of the client buffer.

CQSBRWSE

Chapter 6. CQS Client Requests 85

CLDTOKEN=coldqueuetokenaddress

Output parameter that specifies the address of the 16-byte cold-queue

token for the data object, which, along with the UOW, identifies an object on

the cold queue.

 You can use the cold-queue token and UOW on a CQSRECVR request to

retrieve or delete objects on the cold queue.

CLIENT=clientnameaddress

Four-byte output parameter that specifies the address of an 8-byte field to

contain the name of the client that locked the data object with a CQSREAD

request. This parameter is valid only when QTYPE=COLD is specified.

CONTOKEN=connecttokenaddress

Input parameter that specifies the address of the 16-byte connect token that

uniquely identifies the client’s connection to a particular coupling facility

structure managed by this CQS. The connect token is returned by the

CQSCONN request.

CQSTOKEN=cqstokenaddress

Input parameter that specifies the address of the 16-byte CQS registration

token that uniquely identifies the client’s connection to CQS. The

registration token is returned by the CQSREG request.

COUNT=resourcelistcount

Four-byte input parameter that specifies the number of entries in the

resource list.

ECB=ecbaddress

Four-byte input parameter that specifies the address of the z/OS event

control block (ECB) used for asynchronous requests. If ECB is specified,

the request is processed asynchronously; otherwise it is processed

synchronously.

LIST=resourcelistaddress

Address of a variable size input parameter that specifies a resource list

containing one or more entries. Each entry is a separate browse request.

The client must initialize some fields in each entry prior to the CQSBRWSE

request. Other fields are returned by CQS upon completion of the request.

 The CQSBRWSL list entry DSECT maps the list entries and can be used by

the client. Multiple list entries must reside in contiguous storage.

 Each list entry contains the following:

resourceid

Twelve-byte input field that contains the unique identifier of the

resource(s) to be browsed. The resourceid can be a wildcard

parameter. The resourceid is unique in the IMSplex. The resourceid

consists of a 1-byte name type followed by an 11-byte client-defined

name. The name type ensures uniqueness of client-defined names for

resources with the same name type. Resources of different resource

types may have the same name type. A valid value for the name type is

a decimal number from 1 to 255. The client-defined name has meaning

to the client and consists of alphanumeric characters. If you use a

wildcard parameter to specify the resourceid, you should also specify

the resource type to enhance performance. You must specify the

resourceid, resource type, or both.

resourcetype

One-byte input field that specifies the resource type. The resource type

CQSBRWSE

86 Common Queue Server Guide and Reference

is a client-defined physical grouping of resources on the resource

structure. Valid values for the resource type are decimal numbers from

1 to 255. If the resource type is greater than the maximum number of

resource types defined by CQS (11), it is folded into one of the existing

resource types. You must specify the resource type, resourceid, or both.

reserved

Three-byte reserved field.

owner

Eight-byte input parameter that identifies the owner of the resource data

objects to be browsed. The CQSBRWSE request returns only those

resource data objects that are owned by the specific owner. Owner is

an optional parameter.

options

Four-byte input parameter that specifies browse options. Possible

options are:

X’80000000’

Return data2 for the browsed data object(s).

userdata

Four-byte input parameter that specifies user data. This user

data is passed on output for each data object that matches the

input resourceid parameter.

LISTVER=1 | listversion

Input parameter that specifies an equate for the list version. The default

value is 1. Use the DSECT function of a CQSBRWSE request to include

equate (EQU) statements in your program for the CQSBRWSE list versions.

OBJSIZE=dataobjectsizeaddress

Output parameter that specifies the address of a 4-byte area to hold the

size of a data object or data object entry.

 If a CQSBRWSE FUNC=BROWSE request is issued and the size of the

data object is greater than the buffer size passed by the client, the buffer is

filled with as much of the data object as fits. The request receives a return

and reason code indicating partial data returned. The size of the data object

is returned in the location specified by the OBJSIZE parameter. If the size

of the data object is less than or equal to the size of the buffer, the data

object is moved into the buffer and the remainder of the buffer is not

changed.

 If a CQSBRWSE FUNC=BRWSOBJS request is issued, as many data

object entries as can fit are moved into the buffer. The client must then

issue a subsequent CQSBRWSE FUNC=BRWSOBJS request to retrieve

the next data object entries. If the buffer is not large enough to hold the

next data object entry, the request receives a return and reason code

indicating the buffer is too small. The size of the next data object entry to

be returned is saved in the location specified by the OBJSIZE parameter.

PARM=parmaddress

Four-byte input parameter that specifies the address of a parameter list

used by the request to pass parameters to CQS. The length of the storage

area must be at least equal to the EQU value CQSBRWSE_PARM_LEN

(defined using the FUNC=DSECT request).

CQSBRWSE

Chapter 6. CQS Client Requests 87

QNAME=queuenameaddress

Four-byte output parameter that specifies the address of a 16-byte queue

name field.

 For a CQSBRWSE request that specifies QTYPE=COLD and CLDTOKEN,

the queue name field is an output field to contain the original client queue

name for the data object being returned. This client queue name contained

the data object before it was moved to the cold queue.

 For all other CQSBRWSE requests, the queue name field is an input field

that specifies the queue name from which the data object is retrieved for all

CQSBRWSE requests.

QTYPE=COLD

Input parameter that specifies the queue type from which the data object is

to be retrieved.

COLD Indicates the data object is to be retrieved from the cold queue.

RETCODE=returncodeaddress

Output parameter that specifies the address of a 4-byte field to contain the

CQSBRWSE return code.

 If the return code in register 15 is nonzero, the values in the return and

reason code fields are invalid, because the CQS interface detected an error

and was unable to send the request to CQS.

RSNCODE=reasoncodeaddress

Output parameter that specifies the address of a 4-byte field to contain the

CQSBRWSE reason code.

TIMESTAMP=timestampaddress

Four-byte output parameter that specifies the address of an 8-byte field to

contain the timestamp of when the data object was placed on the queues.

UOW=uowaddress

Output parameter that specifies the address of a 32-byte area to hold the

unit of work (UOW) of the data object retrieved from the queue. The UOW

is a unique identifier generated by the client that stored the data object on

the queue (CQSPUT request).

Return and Reason Codes for CQSBRWSE

Table 29 lists the return and reason code combinations that can be returned for

CQSBRWSE requests. Use a CQSBRWSE FUNC=DSECT request to include

equate statements in your program for the return and reason codes.

 Table 29. CQSBRWSE Return and Reason Codes

Return Code Reason Code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000004' X'00000120' The buffer size (buffersize) is less than the data

object size (dataobjectsize). Partial data is returned.

X'00000004' X'00000124' The buffer size (buffersize) is too small to contain the

next resource data object entry. No partial data is

returned.

X'00000004' X'00000128' No data object to retrieve on queue name

(queuename) specified.

X'00000004' X'0000012C' No partial data to return.

X'00000004' X'00000138' Request complete and the last data object is returned.

CQSBRWSE

88 Common Queue Server Guide and Reference

|

Table 29. CQSBRWSE Return and Reason Codes (continued)

Return Code Reason Code Meaning

X'00000004' X'0000013C' No more data objects to return.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000214' connecttoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'0000021C' browsetoken is invalid.

X'00000008' X'00000220' queuename is invalid.

X'00000008' X'00000224' buffer is invalid.

X'00000008' X'00000228' buffersize is invalid.

X'00000008' X'0000022C' dataobjectsize is invalid.

X'00000008' X'00000230' uow is invalid.

X'00000008' X'00000234' browsetoken is invalid.

X'00000008' X'00000250' Count is invalid.

X'00000008' X'00000254' List address is invalid.

X'00000008' X'0000027C' CQSBRWSE FUNC=BROWSE is not allowed for a

resource structure. CQSBRWSE FUNC=CONTINUE

is not allowed for a resource structure. No partial data

is returned from a resource structure.

X'00000008' X'00000280' CQSBRWSE FUNC=BRWSOBJS is not allowed for a

queue structure.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000008' X'00000288' List version is invalid.

X'00000010' X'00000400' A CQSRSYNC is required for this structure.

X'00000010' X'00000404' Structure is inaccessible. Retry request later.

X'00000010' X'00000408' Current position lost, reissue CQSBRWSE request.

X'00000010' X'00000430' No CQS address space.

X'00000014' X'00000500' CQS internal error.

CQSCHKPT Request

Format for CQSCHKPT

CHKPTSTR Function of CQSCHKPT: Use the CHKPTSTR function of a

CQSCHKPT request to initiate a CQS structure checkpoint for a queue structure.

Structure checkpoint is not supported for a resource structure.

CQSBRWSE

Chapter 6. CQS Client Requests 89

CHKPTSYS Function of CQSCHKPT: Use the CHKPTSYS function of a

CQSCHKPT request to initiate a CQS system checkpoint.

DSECT Function of CQSCHKPT: Use the DSECT function of a CQSCHKPT

request to include equate (EQU) statements in your program for the CQSCHKPT

parameter list length and CQSCHKPT return and reason codes.

Usage of CQSCHKPT

A CQS client can use a CQSCHKPT request to initiate either a CQS system

checkpoint or a structure checkpoint.

�� CQSCHKPT FUNC=CHKPTSTR CQSTOKEN=cqstokenaddress PARM=parmaddress �

� COUNT=count LIST=listaddress

ECB=ecbaddress
 RETCODE=returncodeaddress �

� RSNCODE=reasoncodeaddress CQSCHKPT FUNC=CHKPTSTR CQSTOKEN=cqstokenaddress �

� PARM=parmaddress COUNT=count LIST=listaddress

ECB=ecbaddress
 �

� RETCODE=returncodeaddress RSNCODE=reasoncodeaddress �

�
 LISTVER=1

LISTVER=listversion

��

�� CQSCHKPT FUNC=CHKPTSYS CQSTOKEN=cqstokenaddress PARM=parmaddress �

� COUNT=count LIST=listaddress

ECB=ecbaddress
 RETCODE=returncodeaddress �

� RSNCODE=reasoncodeaddress CQSCHKPT FUNC=CHKPTSYS CQSTOKEN=cqstokenaddress �

� PARM=parmaddress COUNT=count LIST=listaddress

ECB=ecbaddress
 �

� RETCODE=returncodeaddress RSNCODE=reasoncodeaddress �

�
 LISTVER=1

LISTVER=listversion

��

�� CQSCHKPT FUNC=DSECT ��

CQSCHKPT

90 Common Queue Server Guide and Reference

For a structure checkpoint, CQS dumps the queues to DASD for each structure

specified in the checkpoint list. If the structure is currently in overflow mode, the

overflow structure is also dumped to DASD.

For a system checkpoint, CQS logs the internal tables for each structure specified

in the checkpoint list. If the structure is currently in overflow mode, CQS also logs

the internal tables for the overflow structure.

Parameter Description:

COUNT=count

Four-byte input parameter that specifies the number of entries in the

checkpoint list.

CQSTOKEN=cqstokenaddress

Input parameter that specifies the address of the 16-byte CQS registration

token that uniquely identifies the client’s connection to CQS. The

registration token is returned by the CQSREG request.

ECB=ecbaddress

Four-byte input parameter that specifies the address of the z/OS event

control block (ECB) used for asynchronous requests. If ECB is specified,

the request is processed asynchronously; otherwise it is processed

synchronously.

LIST=listaddress

Four-byte input parameter that specifies the address of the checkpoint list.

The checkpoint list should contain an entry for each of the structures for

which the client requests a checkpoint.

 The CQSCHKPL list entry DSECT maps the list entries and can be used by

the client. Multiple list entries must reside in contiguous storage.

 Each list entry contains the following:

connecttoken

Sixteen-byte input parameter that specifies the connect token

returned by the CQSCONN request. The connect token uniquely

identifies the client’s connection to a particular coupling facility

structure managed by this CQS. This parameter is required.

compcode

Four-byte output field to receive the completion code from the

request. Possible completion codes are:

X'00000000' Completed successfully.

X'00000004' Connect token is invalid.

X'00000008' CQS checkpoint request not allowed until CQS

restart has successfully completed a system

checkpoint.

X'0000000C' A CQSRSYNC is required for this structure.

X'00000010' Checkpoint already in progress for structure.

X'00000014' Structure is inaccessible. Retry request later.

X'00000018' CQS internal error.

X'00000020' CQSCHKPT FUNC=CHKPTSTR is invalid for a

resource structure.

CQSCHKPT

Chapter 6. CQS Client Requests 91

LISTVER=1 | listversion

Input parameter that specifies an equate for the list version. Use the

DSECT function of a CQSCHKPT request to include equate (EQU)

statements in your program for the CQSCHKPT list versions.

PARM=parmaddress

Four-byte input parameter that specifies the address of a parameter list

used by the request to pass parameters to CQS. The length of the storage

area must be at least equal to the EQU value CQSCHKPT_PARM_LEN

(defined using the FUNC=DSECT request).

RETCODE=returncodeaddress

Output parameter that specifies the address of a 4-byte field to contain the

CQSCHKPT return code.

 If the return code in register 15 is nonzero, the values in the return and

reason code fields are invalid, because the CQS interface detected an error

and was unable to send the request to CQS.

RSNCODE=reasoncodeaddress

Output parameter that specifies the address of a 4-byte field to contain the

CQSCHKPT reason code.

Return and Reason Codes for CQSCHKPT

Table 30 lists the return and reason code combinations that can be returned for

CQSCHKPT requests. Use a CQSCHKPT FUNC=DSECT request to include equate

statements in your program for the return and reason codes.

 Table 30. CQSCHKPT Return and Reason Codes

Return Code Reason Code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'00000250' count is invalid.

X'00000008' X'00000254' listaddress is invalid.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000008' X'00000288' List version is invalid.

X'0000000C' X'00000300' Request succeeded for at least one, but not all, list

entries. See compcode for individual errors.

X'0000000C' X'00000304' Request failed for all list entries. See compcode for

individual errors.

X'00000010' X'0000040C' CQS shutdown is pending. Client-initiated checkpoint

requests are not allowed.

X'00000010' X'00000430' No CQS address space.

CQSCONN Request

Format for CQSCONN

CONNECT Function of CQSCONN: Use the CONNECT function of a CQSCONN

request to connect to one or more coupling facility structures. The coupling facility

structures can be queue structures or resource structures.

CQSCHKPT

92 Common Queue Server Guide and Reference

DSECT Function of CQSCONN: Use the DSECT function of a CQSCONN

request to include equate (EQU) statements in your program for the CQSCONN

parameter list length and CQSCONN return and reason codes.

Usage of CQSCONN

The CQSCONN request connects a client to one or more coupling facility

structures. The client specifies a connect list containing one or more list entries, for

which each entry is a separate connect request. If the connection to a structure is

successful, a connect token is returned to the client, representing the connection to

the structure. The client must specify this token on all subsequent CQS requests for

that structure. A maximum of 32 clients can use a CQS address space to connect

to a coupling facility structure.

Restriction: The CQSCONN request is not logged for resource structures and does

not support the FCCQSSSN keyword. The CQSCONN request does not support the

following connect list parameters for a resource structure:

v structureattributes

v overflowstructurename

v structureinformexit

v structureinformparm

v qtypecnt

v qtypelist

A CQSCONN FUNC=CONNECT request must be issued after a CQSREG

FUNC=REGISTER request and before any other CQS requests. Also, after a CQS

abnormal termination and restart, and after the client has reregistered with CQS, a

CQSCONN FUNC=CONNECT request is required before the client can issue any

other CQS requests.

Parameter Description:

COUNT=count

Four-byte input parameter that specifies the number of list entries in the

connect list.

CQSTOKEN=cqstokenaddress

Input parameter that specifies the address of the 16-byte CQS registration

�� CQSCONN FUNC=CONNECT CQSTOKEN=cqstokenaddress PARM=parmaddress �

�
FCCQSSSN=fccqsssnaddress

 COUNT=count LISTSIZE=listsize �

� LIST=listaddress

ECB=ecbaddress
 RETCODE=returncodeaddress �

�

RSNCODE=reasoncodeaddress
 LISTVER=1

LISTVER=listversion

��

�� CQSCONN FUNC=DSECT ��

CQSCONN

Chapter 6. CQS Client Requests 93

token that uniquely identifies the client’s connection to CQS. The

registration token is returned by the CQSREG request.

ECB=ecbaddress

Four-byte input parameter that specifies the address of the z/OS event

control block (ECB) used for asynchronous requests. If ECB is specified,

the request is processed asynchronously; otherwise it is processed

synchronously.

FCCQSSSN=fccqsssnaddress

Four-byte input parameter that specifies the address of the failed client

CQS subsystem. When one client takes over for another client, this is the

SSN of the CQS that was connected to the failed client.

 This keyword is not applicable to a resource structure.

LIST=listaddress

Four-byte input parameter that specifies the address of a connect list

containing one or more entries. Each entry is a separate request to connect

a client to a coupling facility structure. Some fields for each entry must be

initialized by the client prior to the CQSCONN request. Other fields are

returned by CQS upon completion of the CQSCONN request.

 The CQSCONNL list entry DSECT maps the list entries and can be used by

the client. Multiple list entries must reside in contiguous storage.

 Each list entry contains the following:

compcode

Four-byte output field to receive the completion code from the

request. Possible completion codes are:

X'00000000' Client connection successful. A connect token is

returned to the client.

X'00000004' The client is already connected to the structure

through this CQS. A connect token is returned to

the client.

X'00000008' structurename is invalid.

X'0000000C' The Structure Event exit routine address was not

specified.

X'00000010' The client is already connected to the structure

through another CQS. A client can only be

connected to a given structure through one CQS.

The client is not connected to the structure through

this CQS. This does not affect the status of a client

connection with another CQS.

X'00000014' CQS internal error.

X'00000018' The client specified the FCCQSSSN= parameter to

connect to the structure to take over work for a

failed client. CQS could not find a valid

system-checkpoint log token for the CQS that was

connected to the failed client. CQS issued message

CQS0033A, to which the operator replied REJECT.

X'0000001C' The user ID of the client address space is not

authorized to connect to the structure.

CQSCONN

94 Common Queue Server Guide and Reference

X'00000020' structureinformexit was specified but is not allowed

for a resource structure.

X'00000024' structureinformparm was specified but is not

allowed for a resource structure.

X'0000002C' structureattributes was specified but is not allowed

for a resource structure.

X'00000030' Qtype was specified but is not allowed for a

resource structure.

X'00000034' FCCQSSSN was specified but is not allowed for a

resource structure.

structureattributes

Four-byte input and output parameter field that contains the

structure attributes.

+0 Flag byte 1, with the following bits defined:

X'80' Indicates the specification of the structure

“wait for rebuild” attribute. The first client in

the sysplex to connect to a structure

defines this attribute for all clients. It is

returned on the connect request to allow

clients to verify that the attribute is set

correctly for their needs because it might

have been set by a prior client connection.

 The value specified for structureattributes

remains in effect for the life of the structure,

and cannot be changed.

 When set to 0, indicates that client requests

to write and retrieve data objects from the

structure do not wait for a rebuild to

complete.

 When set to 1, indicates that client requests

to write and retrieve data objects from the

structure must wait for a rebuild to

complete.

The remaining bits in this byte are not used, and must be

set to zero.

+1 The next 3 bytes are not used, and must be set to zero.

structuretype

One-byte output parameter field that specifies the structure type as

either a queue structure or a resource structure.

structureversion

Eight-byte output parameter field that specifies the structure version

of the structure to which the client just connected.

structurename

Sixteen-byte input parameter field that contains the name of the

structure to which the client wants to connect. This parameter is

required.

overflowstructurename

Sixteen-byte output parameter field to receive the name of the

CQSCONN

Chapter 6. CQS Client Requests 95

overflow structure, if one was defined to CQS in the CQS Global

Structure Definition PROCLIB member, CQSSGxxx.

 This parameter is not applicable to a resource structure.

connecttoken

Sixteen-byte output parameter field to receive the connect token

that uniquely identifies the client’s connection to a particular

coupling facility structure managed by this CQS.

structureeventexit

Four-byte input parameter field that contains the Structure Event

exit routine address. This parameter is required.

structureeventparm

Four-byte input parameter field that contains client data that CQS

passes to the Structure Event exit routine every time the exit is

called. This parameter is optional; set it to zero if you do not want

to pass any data to the exit routine.

structureinformexit

Four-byte input parameter field that contains the Structure Inform

exit routine address. This parameter is optional; set it to zero if you

do not have a Structure Inform exit routine.

 This parameter is not applicable to a resource structure.

structureinformparm

Four-byte input parameter field that contains client data that CQS

passes to the Structure Inform exit routine every time the exit is

called. This parameter is optional; set it to zero if you do not want

to pass any data to the exit routine.

 This parameter is not applicable to a resource structure.

qtypecnt

Four-byte input parameter field that contains the number of queue

type entries in the queue type list. This parameter is optional; set it

to zero if you do not have any entries in the queue type list.

 This parameter is not applicable to a resource structure.

qtypelst

Variable length input area for the queue type list.

 This parameter is not applicable to a resource structure.

 The length of this area is equal to the value specified for qtypecnt.

Each queue type entry is a 1-byte value of a queue type that

should not be moved to the overflow structure if the primary

structure goes into overflow mode. This parameter is optional.

 After a queue type is defined, it remains in effect for the life of the

structure, and is not moved to the overflow structure.

 If no queue types are listed, the default is for all queue types to be

eligible for overflow. This list should only be included if there are

certain queue types the client knows should not be moved (perhaps

based on the client’s use of the queue types).

 Recommendation: Clients should exclude from processing those

queue types that allow multiple objects with the same queue name

CQSCONN

96 Common Queue Server Guide and Reference

and UOW. CQS cannot recover multiple objects with the same

queue name and UOW that are allowed to be moved to the

overflow structure.

LISTSIZE=listsize

Four-byte input parameter that specifies the size of the connect list. listsize

specifies the total length of all entries in the list, not the length of a single

entry.

LISTVER=1 | listversion

Input parameter that specifies an equate for the list version. Use the

DSECT function of a CQSCONN request to include equate (EQU)

statements in your program for the CQSCONN list versions.

PARM=parmaddress

Four-byte input parameter that specifies the address of a parameter list

used by the request to pass parameters to CQS. The length of the storage

area must be at least equal to the EQU value CQSCONN_PARM_LEN

(defined using the FUNC=DSECT request).

RETCODE=returncodeaddress

Output parameter that specifies the address of a 4-byte field to contain the

CQSCONN return code.

 If the return code in register 15 is nonzero, the values in the return and

reason code fields are invalid, because the CQS interface detected an error

and was unable to send the request to CQS.

RSNCODE=reasoncodeaddress

Output parameter that specifies the address of a 4-byte field to contain the

CQSCONN reason code.

Return and Reason Codes for CQSCONN

Table 31 lists the return and reason code combinations that can be returned for

CQSCONN requests. Use a CQSCONN FUNC=DSECT request to include equate

statements in your program for the return and reason codes.

 Table 31. CQSCONN Return and Reason Codes

Return Code Reason Code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000004' X'00000100' The client was previously connected to one or more

of the specified structures through this CQS. Client is

connected to all structures.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'00000250' count is invalid.

X'00000008' X'00000254' listaddress is invalid.

X'00000008' X'00000258' listsize is invalid.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000008' X'00000288' List version is invalid.

X'0000000C' X'00000300' Request succeeded for one but not all list entries.

See compcode for individual errors.

X'0000000C' X'00000304' Request failed for all list entries. See compcode for

individual errors.

CQSCONN

Chapter 6. CQS Client Requests 97

Table 31. CQSCONN Return and Reason Codes (continued)

Return Code Reason Code Meaning

X'00000010' X'0000040C' CQS shutdown in progress (CQSSHUT). CQS is

waiting for all clients to disconnect, and no new client

connections are allowed.

X'00000010' X'00000410' The maximum number of clients are connected to this

CQS. This request would exceed the client connection

limit. No further client connections are allowed.

X'00000010' X'00000430' No CQS address space.

X'00000014' X'00000500' CQS internal error.

CQSDEL Request

Format for CQSDEL

DELETE Function of CQSDEL: Use the DELETE function of a CQSDEL request

to delete one or more data objects from a queue structure or a resource structure.

DSECT Function of CQSDEL: Use the DSECT function of a CQSDEL request to

include equate (EQU) statements in your program for the CQSDEL parameter list

length and CQSDEL return and reason codes.

Usage of CQSDEL

A CQSDEL request deletes one or more data objects from a queue structure or a

resource structure. The client specifies a delete list containing one or more list

entries, for which each list entry is a separate delete request (either by lock token,

by queue name, by queue name and UOW, by resourceid, or by resource type and

owner). Each list entry is processed separately and receives its own completion

code.

Parameter Description:

CONTOKEN=connecttokenaddress

Input parameter that specifies the address of the 16-byte connect token that

uniquely identifies the client’s connection to a particular coupling facility

structure managed by this CQS. The connect token is returned by the

CQSCONN request.

�� CQSDELL FUNC=DELETE CQSTOKEN=cqstokenaddress �

� CONTOKEN=connecttokenaddress PARM=parmaddress COUNT=count �

� LIST=listaddress

ECB=ecbaddress
 RETCODE=returncodeaddress �

�

RSNCODE=reasoncodeaddress
 LISTVER=1

LISTVER=listversion

��

�� CQSDELL FUNC=DSECT ��

CQSCONN

98 Common Queue Server Guide and Reference

COUNT=count

Four-byte input parameter that specifies the number of list entries in the

delete list.

CQSTOKEN=cqstokenaddress

Input parameter that specifies the address of the 16-byte CQS registration

token that uniquely identifies the client’s connection to CQS. The

registration token is returned by the CQSREG request.

ECB=ecbaddress

Four-byte input parameter that specifies the address of the z/OS event

control block (ECB) used for asynchronous requests. If ECB is specified,

the request is processed asynchronously; otherwise, it is processed

synchronously.

LIST=listaddress

Four-byte input parameter that specifies the address of a delete list

containing one or more entries. Each entry is a separate delete request.

Some fields in each entry must be initialized by the client prior to the

CQSDEL request. Other fields are returned by CQS upon completion of the

request.

 The CQSDELL list entry DSECT maps the list entries and can be used by

the client. Multiple list entries must reside in contiguous storage.

 Each list entry contains the following:

deletetype

One-byte input parameter field that contains the delete type. This is

a required parameter. deletetype can be one of the following:

1 Delete by lock token.

2 Delete by queue name.

3 Delete by queue name and unit of work.

4 Delete by resourceid and version.

5 Delete by resource type with the specified owner.

Recommendation: For better performance, use delete type 1 or

delete type 2 because they are more efficient than delete type 3.

deleteqpos

One-byte input parameter field that specifies either that all data

objects are to be deleted or the position on the queue of data

objects to be deleted. This parameter is only used for delete type 2.

deleteqpos can be one of the following:

1 Delete all data objects on the queue.

2 Delete the first data object on the queue.

3 Delete the last data object on the queue.

The locktoken, deleteqpos, and uow fields are mutually exclusive.

reserved

Two-byte reserved field.

objdelcnt

Four-byte output parameter field to receive the number of data

objects deleted.

CQSDEL

Chapter 6. CQS Client Requests 99

compcode

Four-byte output field to receive the completion code from the

request. Possible completion codes are:

X'00000000' Request completed successfully.

X'00000004' Invalid deleteqpos (Delete type 2).

X'00000008' Invalid deletetype.

X'0000000C' Invalid locktoken (Delete type 1).

X'00000010' Invalid queuename (Delete type 2 or type 3).

X'00000014' Invalid uow (Delete type 3).

X'0000001C' Structure is inaccessible. Retry request later.

X'00000020' CQS internal error.

X'00000024' Data object not found on queue (Delete type 2) or

on queuename for UOW (Delete type 3), or on

resource structure (Delete type 4). It is up to the

client to determine whether this case should be

treated as an error or not.

X'00000028' Delete type 1, 2, or 3 is invalid for a resource

structure.

X'0000002C' Delete type 4 or 5 is invalid for a queue structure.

X'00000030' Resourceid is invalid. The name type must be a

decimal number from 1 to 255.

X'00000034' Version does not match that of an existing

resource.

X'00000038' Resourcetype is invalid. The resource type must be

a decimal number from 1 to 255.

X'0000003C' Owner is invalid. The owner is required for delete

type 5.

X'00000040' Version is invalid. The version must be a number

greater than zero.

locktoken

Sixteen-byte input parameter field that contains the lock token. The

lock token is returned by the CQSREAD request. This parameter is

only used for delete type 1.

 The locktoken, deleteqpos, and uow fields are mutually exclusive.

The locktoken and queuename fields are also mutually exclusive.

queuename

Sixteen-byte input parameter field that contains the queue name.

This parameter is only used for delete types 2 and 3.

 The locktoken and queuename fields are mutually exclusive.

uow Thirty-two-byte input parameter that contains the unit of work. This

parameter is only used for delete type 3.

 The locktoken, deleteqpos, and uow fields are mutually exclusive.

resourceid

Twelve-byte input parameter that contains the unique identifier of

CQSDEL

100 Common Queue Server Guide and Reference

the resource data object to delete. This parameter is required for

delete type 4. The resourceid, locktoken, queuename, and

resourceytpe fields are mutually exclusive.

version

Eight-byte input and output parameter that contains the version of

the resource to be deleted. The version specified must match the

version of the resource for the delete request to succeed. The

version is a count of the number of times the resource has been

updated. This parameter is required for delete type 4. If the delete

fails because of version mismatch, the version is returned as

output.

resourcetype

One-byte input parameter that contains the resource type. The

resource type is a client-defined physical grouping of resources on

the resource structure. Valid values for the resource type are

decimal numbers from 1 to 255. If the resource type is greater than

the maximum number of resource types defined by CQS (11), it is

folded into one of the existing resource types. This parameter is

required for delete types 4 and 5. Specify zero to delete all

resources of a resource type that are not owned.

reserved

Three-byte reserved field.

owner Eight-byte input parameter that specifies the owner for which to

delete resources of the specified resource type. This parameter is

required for delete type 5.

LISTVER=1 | listversion

Input parameter that specifies an equate for the list version. Use the

DSECT function of a CQSDEL request to include equate (EQU) statements

in your program for the CQSDEL list versions.

PARM=parmaddress

Four-byte input parameter that specifies the address of a parameter list

used by the request to pass parameters to CQS. The length of the storage

area must be at least equal to the EQU value CQSDEL_PARM_LEN (defined

using the FUNC=DSECT request).

RETCODE=returncodeaddress

Output parameter that specifies the address of a 4-byte field to contain the

CQSDEL return code.

 If the return code in register 15 is nonzero, the values in the return and

reason code fields are invalid, because the CQS interface detected an error

and was unable to send the request to CQS.

RSNCODE=reasoncodeaddress

Output parameter that specifies the address of a 4-byte field to contain the

CQSDEL reason code.

Return and Reason Codes for CQSDEL

Table 32 on page 102 lists the return and reason code combinations that can be

returned for CQSDEL requests. Use a CQSDEL FUNC=DSECT request to include

equate statements in your program for the return and reason codes.

CQSDEL

Chapter 6. CQS Client Requests 101

Table 32. CQSDEL Return and Reason Codes

Return Code Reason Code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000214' connecttoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'00000250' count is invalid.

X'00000008' X'00000254' listaddress is invalid.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000008' X'00000288' List version is invalid.

X'0000000C' X'00000300' Request succeeded for at least one, but not all, list

entries. See compcode for individual errors.

X'0000000C' X'00000304' Request failed for all list entries. See compcode for

individual errors.

X'00000010' X'00000400' A CQSRSYNC is required for this structure.

X'00000010' X'00000430' No CQS address space.

X'00000014' X'00000500' CQS internal error.

CQSDEREG Request

Format for CQSDEREG

DEREGISTER Function of CQSDEREG: Use the DEREGISTER function of a

CQSDEREG request to deregister a client from CQS and invalidate the CQS token.

DSECT Function of CQSDEREG: Use the DSECT function of a CQSDEREG

request to include equate (EQU) statements in your program for the CQSDEREG

parameter list length and CQSDEREG return and reason codes.

Usage of CQSDEREG

The CQSDEREG request deregisters a client from CQS and invalidates the

CQSTOKEN. Prior to issuing this request, the client should issue the CQSDISC

request to disconnect from all structures to which the client has a connection. When

this request is successfully completed, no subsequent requests can be made to

CQS until a CQSREG request has been made to get a new CQSTOKEN.

Parameter Description:

CQSTOKEN=cqstokenaddress

Input parameter that specifies the address of the 16-byte CQS registration

token that uniquely identifies the client’s connection to CQS. The

registration token is returned by the CQSREG request.

�� CQSDEREG FUNC=DEREGISTER CQSTOKEN=cqstokenaddress PARM=parmaddress �

� RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ��

�� CQSDEREG FUNC=DSECT ��

CQSDEL

102 Common Queue Server Guide and Reference

PARM=parmaddress

Four-byte input parameter that specifies the address of a parameter list

used by the request to pass parameters to CQS. The length of the storage

area must be at least equal to the EQU value CQSDEREG_PARM_LEN

(defined using the FUNC=DSECT request).

RETCODE=returncodeaddress

Output parameter that specifies the address of a 4-byte field to contain the

CQSDEREG return code. The CQSDEREG return code is returned both in

this field and in register 15.

RSNCODE=reasoncodeaddress

Output parameter that specifies the address of a 4-byte field to contain the

CQSDEREG reason code. The CQSDEREG reason code is returned both

in this field and in register 0.

Return and Reason Codes for CQSDEREG

Table 33 lists the return and reason code combinations that can be returned for

CQSDEREG requests.

 Table 33. CQSDEREG Return and Reason Codes

Return Code Reason Code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000004' X'00000104' Unable to free CQS’s storage in client’s address

space. The cqstoken is now invalid.

X'00000004' X'00000108' Unable to delete z/OS Resource Manager routine.

The cqstoken is now invalid.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000248' The CQSDEREG parameter list version is invalid.

This error is probably caused by a difference in

versions between the CQS client and the CQS

address space the client is trying to use.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000010' X'00000434' Request is active.

X'00000014' X'00000500' CQS internal error. The cqstoken is now invalid.

X'00000014' X'00000504' Storage allocation error for work area.

X'00000014' X'00000518' CQS internal error (unable to create ESTAE).

CQSDISC Request

Format for CQSDISC

DISCABND Function of CQSDISC: Use the DISCABND function of a CQSDISC

request while the client is terminating abnormally to terminate client connections to

all coupling facility structures.

CQSDEREG

Chapter 6. CQS Client Requests 103

DISCNORM Function of CQSDISC: Use the DISCNORM function of a CQSDISC

request while the client is terminating normally to terminate client connections to

one or more coupling facility structures.

DSECT Function of CQSDISC: Use the DSECT function of a CQSDISC request

to include equate (EQU) statements in your program for the CQSDISC parameter list

length, CQSDISC return and reason codes, and literals that can be used to build

the OPTWORD1 parameter.

Usage of CQSDISC

Restriction: The CQSDISC request does not support structure attributes for

resource structures.

�� CQSDISC FUNC=DISCABND CQSTOKEN=cqstokenaddress PARM=parmaddress �

�
 A

OPTWORD1=optionwordvalue

ECB=ecbaddress

�

�
RETCODE=returncodeaddress

RSNCODE=reasoncodeaddress

LISTVER=1
 ��

A:

 CQSSHUT=YES

CQSSHUT=NO

�� CQSDISC FUNC=DISCNORM CQSTOKEN=cqstokenaddress PARM=parmaddress �

�

COUNT=count

LIST=listaddress
 A

OPTWORD1=optionwordvalue

�

�
ECB=ecbaddress

 RETCODE=returncodeaddress RSNCODE=reasoncodeaddress �

�
LISTVER=1

 ��

A:

 CQSSHUT=YES

CQSSHUT=NO

�� CQSDISC FUNC=DSECT ��

CQSDISC

104 Common Queue Server Guide and Reference

The CQSDISC request allows a client to disconnect from one or more coupling

facility structures. CQS disconnects client resources associated with the structures.

The client needs to issue a CQSDEREG request to completely disconnect from

CQS.

A CQSDISC FUNC=DISCABND request, used when the client is terminating

abnormally, terminates client connections to all coupling facility structures.

A CQSDISC FUNC=DISCNORM, used when the client is terminating normally,

terminates client connections to one or more coupling facility structures. The client

specifies a disconnect list containing one or more list entries, for which each entry

is a separate disconnect request. As each structure disconnect is completed, the

connect token for that structure is invalidated and can no longer be used by the

client.

Parameter Description:

COUNT=count

Four-byte input parameter that specifies the number of list entries in the

disconnect list.

CQSSHUT=YES | NO

Input parameter that indicates whether or not the CQS address space

should be shut down after all clients have disconnected.

 If CQSSHUT=YES is specified, new clients continue to be allowed to issue

CQSCONN requests. The CQSSHUT FUNC=QUIESCE request can be

used to prevent new clients from issuing CQSCONN requests.

 The CQSSHUT parameter cannot be used when the OPTWORD1

parameter is specified. If you specify OPTWORD1 instead of CQSSHUT,

you can use the following equate (EQU) symbols to generate the value for

the OPTWORD1 parameter:

CQSDISC_SHUTYEQX CQSSHUT=YES

CQSDISC_SHUTNEQX CQSSHUT=NO

CQSTOKEN=cqstokenaddress

Input parameter that specifies the address of the 16-byte CQS registration

token that uniquely identifies the client’s connection to CQS. The

registration token is returned by the CQSREG request.

ECB=ecbaddress

Four-byte input parameter that specifies the address of the z/OS event

control block (ECB) used for asynchronous requests. If ECB is specified,

the request is processed asynchronously; otherwise it is processed

synchronously.

LIST=listaddress

Four-byte input parameter that specifies the address of a disconnect list

containing one or more entries. Each entry is a separate request to

disconnect a client from a coupling facility structure. Some fields in each

entry must be initialized by the client prior to the CQSDISC request. Other

fields are returned by CQS upon completion of the CQSDISC request.

 The CQSDISCL list entry DSECT maps the list entries and can be used by

the client. Multiple list entries must reside in contiguous storage.

 Each list entry contains the following:

connecttoken

Sixteen-byte input parameter that specifies the connect token that

CQSDISC

Chapter 6. CQS Client Requests 105

uniquely identifies the client’s connection to a particular coupling

facility structure managed by this CQS. The connect token is

returned by the CQSCONN request. This parameter is required.

structureattributes

Four-byte input parameter field that contains the structure attributes.

+0 Flag byte 1, with the following bits defined:

X'80' When set to 0, indicates that CQS should

not perform a structure checkpoint for the

structure.

 When set to 1, indicates that CQS should

perform a structure checkpoint for the

structure.

X'40' When set to 0, indicates that CQS should

not perform disconnect processing for the

structure if there is any inflight work (locked

objects) on the structure. If inflight work is

found, CQS will set completion code

X'00000008' in the compcode field, and will

return a return code of X'0000000C', and a

reason code of either X'00000300' or

X'00000304' for the request.

 When set to 1, indicates that CQS should

disconnect from the structure, even if there

is inflight work (locked objects) on the

structure. If inflight work is found, CQS will

set completion code X'00000008' in the

compcode field, and will return a return code

of X'00000004', and a reason code of

X'00000140' for the request, if no other

errors in disconnect processing occur. Note

that the return and reason code is a

warning only; the disconnect processing is

still performed.

The remaining bits in this byte are not used, and must be

set to zero.

+1 The next 3 bytes are not used, and must be set to zero.

compcode

Four-byte output field to receive the completion code from the

request. Possible completion codes are:

X'00000000'

Request completed successfully.

X'00000004'

connecttoken is invalid.

X'00000008'

The client has inflight work for the structure. If the X'40' bit

in the first byte of the structureattributes parameter was

set to one, the disconnect processing was successful for

the structure, and this completion code is informational.

CQSDISC

106 Common Queue Server Guide and Reference

If the X'40' bit was zero, the disconnect processing was not

done for this structure, and the CQS client should complete

the inflight work before continuing.

X'0000000C'

Structure attributes are not allowed for a resource structure.

LISTVER=1 | listversion

Input parameter that specifies an equate for the list version. Use the

DSECT function of a CQSDISC request to include equate (EQU)

statements in your program for the CQSDISC list versions.

OPTWORD1=optionwordvalue

Four-byte input parameter that specifies the literals for this request. This

parameter can be used instead of CQSSHUT. Equate (EQU) statements for

the literal values are listed under the description of the CQSSHUT

parameter. Equate statements can also be generated by using the DSECT

function. The OPTWORD1 parameter cannot be used if CQSSHUT is

specified.

 Requirement: If you code the OPTWORD1 parameter, you must pass a

value that is composed of one equate value for each literal value supported

by this macro.

PARM=parmaddress

Four-byte input parameter that specifies the address of a parameter list

used by the request to pass parameters to CQS. The length of the storage

area must be at least equal to the EQU value CQSDISC_PARM_LEN

(defined using the FUNC=DSECT request).

RETCODE=returncodeaddress

Output parameter that specifies the address of a 4-byte field to contain the

CQSDISC return code.

 If the return code in register 15 is nonzero, the values in the return and

reason code fields are invalid, because the CQS interface detected an error

and was unable to send the request to CQS.

RSNCODE=reasoncodeaddress

Output parameter that specifies the address of a 4-byte field to contain the

CQSDISC reason code.

Return and Reason Codes for CQSDISC

Table 34 lists the return and reason code combinations that can be returned for

CQSDISC requests. Use a CQSDISC FUNC=DSECT request to include equate

statements in your program for the return and reason codes.

 Table 34. CQSDISC Return and Reason Codes

Return Code Reason Code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000004' X'00000130' Request completed successfully for the requested

structures. Client is still connected to additional

coupling facility structures.

X'00000004' X'00000140' Request completed successfully for the requested

structures. At least one structure had inflight work for

this client, but the client indicated that disconnect

processing was allowed with inflight work at

CQSDISC. The completion code field for those

structures contains X'00000008'.

CQSDISC

Chapter 6. CQS Client Requests 107

Table 34. CQSDISC Return and Reason Codes (continued)

Return Code Reason Code Meaning

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'00000250' count is invalid.

X'00000008' X'00000254' listaddress is invalid.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000008' X'00000288' List version is invalid.

X'0000000C' X'00000300' Request succeeded for at least one but not all list

entries. See compcode for individual errors.

X'0000000C' X'00000304' Request failed for all list entries. See compcode for

individual errors.

X'00000010' X'00000430' No CQS address space.

CQSINFRM Request

Format for CQSINFRM

DSECT Function of CQSINFRM: Use the DSECT function of a CQSINFRM

request to include equate (EQU) statements in your program for the CQSINFRM

parameter list length and CQSINFRM return and reason codes.

INFORM Function of CQSINFRM: Use the INFORM function of a CQSINFRM

request to register a client’s interest in one or more queues on a specific coupling

facility structure.

UNINFORM Function of CQSINFRM: Use the UNINFORM function of a

CQSINFRM request to deregister a client’s interest in one or more queues on a

specific coupling facility structure it previously registered interest for.

�� CQSINFRM FUNC=DSECT ��

�� CQSINFRM FUNC=INFORM CQSTOKEN=cqstokenaddress PARM=parmaddress �

� COUNT=count LISTSIZE=listsize LIST=listaddress

ECB=ecbaddress
 �

� RETCODE=returncodeaddress RSNCODE=reasoncodeaddress �

�
 LISTVER=1

LISTVER=listversion

��

CQSDISC

108 Common Queue Server Guide and Reference

Usage of CQSINFRM

A client uses a CQSINFRM request to register or deregister interest for one or more

queues on a specific coupling facility structure. When a queue goes from empty to

non-empty, CQS notifies all clients that registered interest for the queue of the

change in status by scheduling the Structure Inform Client exit routine.

Restriction: The CQSINFRM request is not supported for resource structures.

Related Reading: For more information on the Structure Inform Client exit routine,

see “CQS Client Structure Inform Exit Routine” on page 178.

The client can issue CQSREAD or CQSBRWSE requests to retrieve data from a

queue. A client can make data objects available on a queue using CQSPUT,

CQSMOVE, or CQSUNLCK requests.

A client that has registered interest in a queue is only notified when the queue goes

from empty to non-empty, or if a data object is available on the queue when the

CQSINFRM request is issued. The client does not receive notification when

additional data objects are placed on a non-empty queue.

After a client deregisters interest in a queue, it is no longer notified when one of the

queues goes from empty to non-empty. Because client notifications occur

asynchronously with CQSINFRM requests, the client should expect to be notified

about new data objects that arrive between the time the client issues the

CQSINFRM FUNC=UNINFORM request and the time CQS processes the request.

Parameter Description:

COUNT=count

Four-byte input parameter that specifies the number of structure list entries

in the structure list.

CQSTOKEN=cqstokenaddress

Input parameter that specifies the address of the 16-byte CQS registration

token that uniquely identifies the client’s connection to CQS. The

registration token is returned by the CQSREG request.

ECB=ecbaddress

Four-byte input parameter that specifies the address of the z/OS event

control block (ECB) used for asynchronous requests. If ECB is specified,

the request is processed asynchronously; otherwise it is processed

synchronously.

�� CQSINFRM FUNC=UNINFORM CQSTOKEN=cqstokenaddress PARM=parmaddress �

� COUNT=count LISTSIZE=listsize LIST=listaddress

ECB=ecbaddress
 �

� RETCODE=returncodeaddress RSNCODE=reasoncodeaddress �

�
 LISTVER=1

LISTVER=listversion

��

CQSINFRM

Chapter 6. CQS Client Requests 109

LIST=listaddress

Four-byte input parameter that specifies the address of the structure list.

The structure list is built in contiguous storage, and the size of the list must

be specified using the LISTSIZE parameter. The structure list should

contain an entry for each coupling facility structure for which the client will

register or deregister interest. Each structure list entry must contain a list of

the queues for which the client will register or deregister interest.

 Each connect token in a structure list entry and queue name in the queue

list entry must be initialized prior to the request. Upon completion of the

request, CQS returns the structure completion code for the structure list and

the queue completion code for the queue list.

 The CQSINFL list entry DSECT maps the queue and structure list entries

and can be used by the client. Multiple list entries must reside in contiguous

storage.

 Each structure list entry contains the following:

connecttoken

Sixteen-byte input parameter that specifies the connect token that

uniquely identifies the client’s connection to CQS and a specific

coupling facility structure. The connect token is returned by the

CQSCONN request. This parameter is required.

structurecompletioncode

Four-byte output field to receive the completion code for the

CQSINFRM request for the structure. Possible structure completion

codes are:

X'00000000' Request completed successfully.

X'00000004' Request completed successfully for all queues. At

least one queue has work on it. See the queue

completion code to determine which queues have

work on them.

X'00000010' connecttoken is invalid.

X'00000014' queuelistcount is invalid.

X'00000018' Inform exit routine does not exist. The Structure

Inform exit routine was not specified on CQSCONN

request for structure.

X'00000020' Request completed successfully for at least one,

but not all queues in queuelist. See

queuecompletioncode for individual errors.

X'00000024' Request failed for all queues in queuelist. See

queuecompletioncode for individual errors or

successes.

X'00000030' A CQSRSYNC is required for this structure.

X'00000034' CQSINFRM is not allowed for a resource structure.

queuelistcount

Four-byte input parameter that specifies the number of queues in

the queue list. This parameter is required.

 Recommendation: For optimum performance, a client that

registers interest in many queues should issue multiple CQSINFRM

requests, in which each request lists no more than 1024 queues.

CQSINFRM

110 Common Queue Server Guide and Reference

queuelist

Variable length input area that contains one or more queue lists. A

queue list, built by the client, should contain an entry for each

queue on the structure for which the client will register or deregister

interest. The queue names must be initialized prior to the request.

This parameter is required.

 Each queue list entry contains the following:

queuename

Sixteen-byte input field that contains the name of the queue

for which the client is registering interest. This parameter is

required.

queuerequestflag

One-byte input field that contains flags specific to this

queue that can be set for this CQSINFRM request.

X'80' Call the client Inform exit routine if there are

data objects on the queue at the time the

client issues the CQSINFRM

FUNC=INFORM request. Applies only to

CQSINFRM FUNC=INFORM requests.

queuecompletioncode

Four-byte output field to receive the completion code for the

specified queue. Possible completion codes are:

X'00000000' Request completed successfully.

X'00000040' Work exists on queue.

X'00000044' queuename is invalid.

X'00000048' CQS internal error.

X'00000050' Structure is full. No more event monitoring

controls (EMC)s are available for queue

registration.

X'00000054' Structure is inaccessible. Retry request.

LISTSIZE=listsize

Four-byte input parameter that specifies the size of the structure list. The

client builds the structure list and must specify the size of the structure list

in this field.

LISTVER=1 | listversion

Input parameter that specifies an equate for the list version. Use the

DSECT function of a CQSINFRM request to include equate (EQU)

statements in your program for the CQSINFRM list versions.

PARM=parmaddress

Four-byte input parameter that specifies the address of a parameter list

used by the request to pass parameters to CQS. The length of the storage

area must be at least equal to the EQU value CQSINFRM_PARM_LEN

(defined using the FUNC=DSECT request).

RETCODE=returncodeaddress

Output parameter that specifies the address of a 4-byte field to contain the

CQSINFRM return code.

CQSINFRM

Chapter 6. CQS Client Requests 111

If the return code in register 15 is nonzero, the values in the return and

reason code fields are invalid, because the CQS interface detected an error

and was unable to send the request to CQS.

RSNCODE=reasoncodeaddress

Output parameter that specifies the address of a 4-byte field to contain the

CQSINFRM reason code.

Return and Reason Codes for CQSINFRM

Table 35 lists the return and reason code combinations that can be returned for

CQSINFRM requests. Use a CQSINFRM FUNC=DSECT request to include equate

statements in your program for the return and reason codes.

 Table 35. CQSINFRM Return and Reason Codes

Return Code Reason Code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000004' X'00000134' Request completed successfully. One or more queues

have work.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'00000250' count is invalid.

X'00000008' X'00000254' listaddress is invalid.

X'00000008' X'00000258' listsize is invalid.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000008' X'00000288' List version is invalid.

X'0000000C' X'00000300' Request succeeded for at least one, but not all, list

entries. Check structurecompletioncode for individual

errors or successes.

X'0000000C' X'00000304' Request failed for all list entries. See

structurecompletioncode for individual errors.

X'00000010' X'00000430' No CQS address space.

CQSMOVE Request

Format for CQSMOVE

DSECT Function of CQSMOVE: Use the DSECT function of a CQSMOVE

request to include equate (EQU) statements in your program for the CQSMOVE

parameter list length, CQSMOVE return and reason codes, and literals that can be

used to build the OPTWORD1 parameter.

MOVE Function of CQSMOVE: Use the MOVE function of a CQSMOVE request

to move one or all data objects from one queue to another. You must code a macro

invocation for each combination of literal parameters.

�� CQSMOVE FUNC=DSECT ��

CQSINFRM

112 Common Queue Server Guide and Reference

You can use the OPTWORD1 parameter to code a single invocation of the macro

and set the options at runtime. However, you cannot use the COUNT, NEWQPOS,

and OLDQPOS parameters if you use the OPTWORD1 parameter.

Usage of CQSMOVE

Restriction: The CQSMOVE request is not supported for resource structures.

A CQSMOVE request moves one or all client data objects from one queue to

another. Data objects can be moved from the first or last position of the old queue

to the first or last position on the new queue. The client identifies the data objects to

be moved either by the old queue name and queue position, or by the lock token.

Do not move multiple objects with the same queue name and UOW; otherwise CQS

cannot recover the objects.

If CQS or the client fails before CQS responds to the client, the CQSMOVE request

might not complete. The client must reconnect to CQS after the failure and may

have to issue the CQSMOVE request again, in case the failure occurred before the

move was committed, or to resume a move with COUNT=ALL.

MOVE Function of CQSMOVE using Literal Parameters

�� CQSMOVE FUNC=MOVE CQSTOKEN=cqstokenaddress CONTOKEN=connecttokenaddress �

�

PARM=parmaddress
 OLDQPOS=FIRST

OLDQ=oldqueuenameaddress

A

OLDQPOS=LAST

LCKTOKEN=locktokenaddress

�

�
 NEWQPOS=LAST

NEWQ=newqueuenameaddress

NEWQPOS=FIRST

ECB=ecbaddress

�

� RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ��

A:

 COUNT=ONE

COUNT=ALL

MVCNT=movecountaddress

MOVE Function of CQSMOVE using OPTWORD1 Parameter

�� CQSMOVE FUNC=MOVE CQSTOKEN=cqstokenaddress CONTOKEN=connecttokenaddress �

� PARM=parmaddress OLDQ=oldqueuenameaddress

MVCNT=movecountaddress

LCKTOKEN=locktokenaddress

 �

� NEWQ=newqueuenameaddress OPTWORD1=optionwordvalue

ECB=ecbaddress
 �

� RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ��

CQSMOVE

Chapter 6. CQS Client Requests 113

Parameter Description:

CONTOKEN=connecttokenaddress

Input parameter that specifies the address of the 16-byte connect token that

uniquely identifies the client’s connection to a particular coupling facility

structure managed by this CQS. The connect token is returned by the

CQSCONN request.

COUNT=ONE | ALL

Input parameter that specifies the number of data objects on the old queue

to be moved; the client can move either one or all of them.

 The COUNT parameter cannot be used when the OPTWORD1 parameter

is specified. If you specify the OPTWORD1 parameter instead of the

COUNT parameter, you can use the following equate (EQU) symbols to

generate the value for the OPTWORD1 parameter:

CQSMOVE_CNT1EQUX COUNT=ONE

CQSMOVE_CNT1EQUX COUNT=ALL

CQSTOKEN=cqstokenaddress

Input parameter that specifies the address of the 16-byte CQS registration

token that uniquely identifies the client’s connection to CQS. The

registration token is returned by the CQSREG request.

ECB=ecbaddress

Four-byte input parameter that specifies the address of the z/OS event

control block (ECB) used for asynchronous requests. If ECB is specified,

the request is processed asynchronously; otherwise it is processed

synchronously.

LCKTOKEN=locktokenaddress

Input parameter that specifies the address of the 16-byte lock token for the

locked data object to be moved. The lock token uniquely identifies a data

object locked by a CQSREAD request.

MVCNT=movecountaddress

Output parameter that specifies the address of a 4-byte field to receive the

number of data objects that were moved. Even when the return or reason

code is non-zero, it is possible that CQS moved some data objects.

NEWQ=newqueuenameaddress

Input parameter that specifies the address of the 16-byte name of the new

queue to which the data object is to be moved.

NEWQPOS=FIRST | LAST

Input parameter that specifies the position on the new queue to which data

objects are moved, either first or last.

 The NEWQPOS parameter cannot be used when the OPTWORD1

parameter is specified. If the OPTWORD1 parameter is specified instead of

NEWQPOS, you can use the following equate (EQU) statements to generate

the value for the OPTWORD1 parameter:

CQSMOVE_NEWQFEQUX NEWQPOS=FIRST

CQSMOVE_NEWQLEQUX NEWQPOS=LAST

OLDQ=oldqueuenameaddress

Input parameter that specifies the address of the 16-byte name of the old

queue from which the data object is to be moved.

OLDQPOS=FIRST | LAST

Input parameter that specifies the position on the old queue from which

data objects are to be moved, either first or last.

CQSMOVE

114 Common Queue Server Guide and Reference

The OLDQPOS parameter cannot be used when the OPTWORD1

parameter is specified. If the OPTWORD1 parameter is specified instead of

OLDQPOS, you can use the following equate (EQU) statements to generate

the value for the OPTWORD1 parameter:

CQSMOVE_OLDQFEQUX OLDQPOS=FIRST

CQSMOVE_OLDQLEQUX OLDQPOS=LAST

OPTWORD1=optionwordvalue

Four-byte input parameter that specifies the literals for this request. This

parameter can be used instead of COUNT, NEWQPOS, and OLDQPOS.

Equate (EQU) statements for the literal values are listed under the COUNT,

NEWQPOS, and OLDQPOS parameter descriptions. Equate statements

can also be generated by using the DSECT function. The OPTWORD1

parameter cannot be used if COUNT, NEWQPOS, or OLDQPOS is

specified.

 Requirement: If you code the OPTWORD1 parameter, you must pass a

value that is composed of one equate value for each literal value supported

by this macro.

PARM=parmaddress

Four-byte input parameter that specifies the address of a parameter list

used by the request to pass parameters to CQS. The length of the storage

area must be at least equal to the EQU value CQSMOVE_PARM_LEN

(defined using the FUNC=DSECT request).

RETCODE=returncodeaddress

Output parameter that specifies the address of a 4-byte field to contain the

CQSMOVE return code.

 If the return code in register 15 is nonzero, the values in the return and

reason code fields are invalid, because the CQS interface detected an error

and was unable to send the request to CQS.

RSNCODE=reasoncodeaddress

Output parameter that specifies the address of a 4-byte field to contain the

CQSMOVE reason code.

Return and Reason Codes for CQSMOVE

Table 36 lists the return and reason code combinations that can be returned for

CQSMOVE requests. Use a CQSMOVE FUNC=DSECT request to include equate

statements in your program for the return and reason codes.

 Table 36. CQSMOVE Return and Reason Codes

Return Code Reason Code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000004' X'00000128' No data object to move for queue name specified.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000214' connecttoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'0000021C' locktoken is invalid.

X'00000008' X'00000220' Queue name is invalid.

X'00000008' X'00000224' Buffer address is invalid.

X'00000008' X'0000027C' CQSMOVE is not allowed for a resource structure.

X'00000008' X'00000284' Parmlist version is invalid.

CQSMOVE

Chapter 6. CQS Client Requests 115

Table 36. CQSMOVE Return and Reason Codes (continued)

Return Code Reason Code Meaning

X'00000010' X'00000400' A CQSRSYNC is required for this structure.

X'00000010' X'00000404' Structure is inaccessible. Retry request later.

X'00000010' X'00000414' Unable to move the data object because the

destination queue is full. CQSMOVE requests for

other queues are allowed.

X'00000010' X'0000041C' Request pending. A structure recovery or CQS restart

might be required to complete.

X'00000010' X'00000430' No CQS address space.

X'00000010' X'00000440' Locked (nonrecoverable) data object lost due to

rebuild.

X'00000014' X'00000500' CQS internal error.

CQSPUT Request

Format for CQSPUT

ABORT Function of CQSPUT: Use the ABORT function of a CQSPUT request to

remove from the queues all uncommitted data objects associated with a

recoverable unit of work.

DSECT Function of CQSPUT: Use the DSECT function of a CQSPUT request to

include equate (EQU) statements in your program for the CQSPUT parameter list

length, CQSPUT return and reason codes, and literals that can be used to build the

OPTWORD1 parameter.

FORGET Function of CQSPUT: Use the FORGET function of a CQSPUT request

to discard any information CQS has on a committed unit of work.

PUT Function of CQSPUT: Use the PUT function of a CQSPUT request to place

a data object on a queue.

�� CQSPUT FUNC=ABORT CQSTOKEN=cqstokenaddress CONTOKEN=connecttokenaddress �

� PARM=parmaddress PUTTOKEN=puttokenaddress

ECB=ecbaddress
 �

� RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ��

�� CQSPUT FUNC=DSECT ��

�� CQSPUT FUNC=FORGET CQSTOKEN=cqstokenaddress �

� CONTOKEN=connecttokenaddress PARM=parmaddress PUTTOKEN=puttokenaddress �

�
ECB=ecbaddress

 RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ��

CQSMOVE

116 Common Queue Server Guide and Reference

Usage of CQSPUT

Restriction: The CQSPUT request is not supported for resource structures.

A CQSPUT request allows a client to place a data object on a queue. The data

object can be either the only one for a unit of work, or it can be one in a series for

a unit of work. The data object can be added to the beginning or to the end of the

queue. After the data object is on the queue, it is available to any client that has

access to that queue.

�� CQSPUT FUNC=PUT CQSTOKEN=cqstokenaddress CONTOKEN=connecttokenaddress �

� PARM=parmaddress PUTTOKEN=puttokenaddress UOW=uowaddress �

�

QNAME=queuenameaddress
 A

OPTWORD1=optionwordvalue

�

� DATAOBJ=dataobjectaddress OBJSIZE=dataobjectsizeaddress �

�
TIMESTAMP=timestampaddress

ECB=ecbaddress
 �

� RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ��

A:

 QPOS=LAST

QPOS=FIRST

B

B:

 RECOVERABLE=YES C

RECOVERABLE=NO

C:

 COMMIT=YES D

COMMIT=NO

D:

 LOCAL=NO

LOCAL=YES

CQSPUT

Chapter 6. CQS Client Requests 117

You can put multiple objects on the same queue for unit of work. Do not move

these objects (CQSMOVE request) or allow these objects to be moved to the

overflow structure (CQSCONN request); otherwise, CQS cannot recover the

objects.

If a unit of work consists of multiple data objects, and they are all on the same

queue, then when CQS places the first data object on the queue, it notifies other

clients that have registered interest in the queue, even though not all of the data

objects for the UOW are on the queue yet and the UOW has not yet been

committed.

Recommendation: To ensure that a client does not retrieve incomplete data,

place the last data object for a UOW on a different queue than any of the previous

data objects for the unit of work, and ensure the client only registers interest in that

queue.

The first request that places a data object on a queue for a unit of work determines

whether that unit of work is recoverable or nonrecoverable. The actions taken for a

data object when a client fails, CQS fails, a structure is copied, or a structure is

recovered depend on whether the unit of work is recoverable and, if so, whether it

has been committed. Table 37 shows the actions taken for each case.

When a data object is put on a queue, a timestamp is stored with the data object.

The source of the timestamp is based on whether TIMESTAMP= is used on the

CQSPUT= request. If TIMESTAMP= is specified on the CQSPUT request, the value

specified for TIMESTAMP= is stored with the data object. If TIMESTAMP= is not

specified on the CQSPUT request, a timestamp representing the current time is

generated and stored with the data object. The timestamp is returned on the

CQSQUERY FUNC=QTYPE request if it is associated with the oldest data object

on the queue or the newest data object on the queue.

 Table 37. Actions Taken for Data Objects as a Result of Failures or Structure Activity

 Nonrecoverable Recoverable and Uncommitted Recoverable and Committed

Client Failure All data objects on the queues

for nonrecoverable units of

work are left on the queues.

All data objects on the queues

that belong to uncommitted units

of work are deleted when the

client terminates.

All data objects on the queues

for the unit of work remain on

the queues.

CQS Failure Any data objects for

non-recoverable units of work

that were placed on the queues

successfully are left on the

queues. If CQS was in the

process of placing a data object

on a queue when the failure

occurred, that data object is not

recovered when CQS restarts.

All data objects on the queues

that belong to uncommitted units

of work are deleted when CQS

restarts.

All data objects on the queues

that belong to committed units

of work remain on the queues.

If CQS was in the process of

placing the final data object for

the unit of work on the queues

when the failure occurred, CQS

restart ensures the data object

is on the queues.

Structure Copy Data objects for

non-recoverable units of work

are copied to the new structure.

All data objects for recoverable

units of work are copied to the

new structure whether the unit of

work is committed or not.

All data objects for recoverable

units of work are copied to the

new structure.

Structure

Recovery

Data objects placed on the

queues for nonrecoverable

units of work are not recovered

to the new structure.

All data objects that were placed

on the queues for recoverable

units of work are recovered to the

new structure whether or not the

unit of work was committed.

All data objects that were

placed on the queues for

recoverable units of work are

recovered to the new structure.

CQSPUT

118 Common Queue Server Guide and Reference

|
|
|
|
|
|
|
|

A CQSPUT FUNC=FORGET request terminates any CQSPUT FUNC=PUT

requests, and causes CQS to discard internal information CQS has about the unit

of work. The unit of work is identified by the put token. The client should make this

request after receiving a response from the final CQSPUT FUNC=PUT request

issued for the unit of work. The CQSPUT FUNC=FORGET request is rejected if the

unit of work is recoverable but not committed.

A CQSPUT FUNC=ABORT request removes from the queues all uncommitted data

objects associated with a recoverable unit of work. The unit of work is identified by

the put token. The request is rejected if the unit of work is nonrecoverable or if the

unit of work is recoverable, but already committed.

Examples: To put a single object for a unit of work on the queues, issue the

following requests:

CQSPUT FUNC=PUT,COMMIT=YES,... ...
CQSPUT FUNC=FORGET,...

To put multiple objects for a unit of work on the queues, issue the following

requests:

CQSPUT FUNC=PUT,COMMIT=NO,... ...
CQSPUT FUNC=PUT,COMMIT=NO,... ...
CQSPUT FUNC=PUT,COMMIT=YES,... ...
CQSPUT FUNC=FORGET,...

Parameter Description:

COMMIT=YES | NO

Input parameter that indicates whether to commit a recoverable unit of

work. One or more data objects can be placed on the queues for a

recoverable unit of work.

 The COMMIT= parameter applies only to recoverable units of work and is

only valid if RECOVERABLE=YES is specified. The parameter is ignored if

RECOVERABLE=NO is specified.

 COMMIT=YES must be specified (either by itself or as part of OPTWORD1)

for the final (or only) CQSPUT FUNC=PUT request issued for a unit of

work. If more than one data object is placed on the queues for a unit of

work, COMMIT=NO must be specified on all except the final CQSPUT

FUNC=PUT request of the series. COMMIT=YES must be specified on the

final CQSPUT FUNC=PUT request.

 The COMMIT parameter cannot be used if the OPTWORD1 parameter is

specified. If the OPTWORD1 parameter is used instead of COMMIT, you

can use the following equate (EQU) statements to generate the value for the

OPTWORD1 parameter:

CQSPUT_CMTYEQUX COMMIT=YES

CQSPUT_CMTNEQUX COMMIT=NO

CONTOKEN=connecttokenaddress

Input parameter that specifies the address of the 16-byte connect token that

uniquely identifies the client’s connection to a particular coupling facility

structure managed by this CQS. The connect token is returned by the

CQSCONN request.

CQSPUT

Chapter 6. CQS Client Requests 119

CQSTOKEN=cqstokenaddress

Input parameter that specifies the address of the 16-byte CQS registration

token that uniquely identifies the client’s connection to CQS. The

registration token is returned by the CQSREG request.

DATAOBJ=dataobjectaddress

Four-byte input parameter that specifies the address of the client data

object to be placed on the specified queue.

ECB=ecbaddress

Four-byte input parameter that specifies the address of the z/OS event

control block (ECB) used for asynchronous requests. If ECB is specified,

the request is processed asynchronously; otherwise it is processed

synchronously.

LOCAL=NO | N | YES | Y

Input parameter that indicates whether the client should keep a local copy

of the data.

NO

Indicates the client wants CQS to place the data object on the specified

client queue and make the object available to other CQSs.

YES

Indicates that the client wants CQS to place the data object on the

shared queues and to lock the object. LOCAL=YES also indicates that

the client will keep a local copy of the data object in a local buffer.

 By keeping a local copy of the data object, the client can reduce the

performance overhead of using shared queues. By keeping the data

object on the shared queues, it can be recovered if the client fails. By

locking the data object, it is not available to any other client.

 The client must issue the CQSREAD LOCAL=YES request to process

the data (retrieve the lock token for the data object and inform CQS that

the client is processing the data). The data object is not returned to the

client on a CQSREAD request because the client has the local copy. If

the client does not issue the CQSREAD LOCAL=YES request and the

connection between the client and CQS is lost, CQS unlocks the data

object and makes it available to any client.

 The LOCAL parameter cannot be used if the OPTWORD1 parameter is

specified. If the OPTWORD1 parameter is used instead of LOCAL, you can

use the following equate (EQU) statements to generate the value for the

OPTWORD1 parameter:

CQSPUT_LCLYEQUX LOCAL=YES

CQSPUT_LCLNEQUX LOCAL=NO

OBJSIZE=dataobjectsizeaddress

Input parameter that specifies the address of a 4-byte area to hold the size

of the client data object to be placed on the queue. The maximum size that

can be specified is 61312 bytes (X'EF80').

OPTWORD1=optionwordvalue

Four-byte input parameter that specifies the literals for this request. This

parameter can be used instead of COMMIT, LOCAL, QPOS, and

RECOVERABLE. Equate (EQU) statements for the literal values are listed

under the descriptions of the COMMIT, LOCAL, QPOS, and

RECOVERABLE parameters. Equate statements can be also generated by

CQSPUT

120 Common Queue Server Guide and Reference

using the DSECT function. The OPTWORD1 parameter cannot be used if

COMMIT, LOCAL, QPOS or RECOVERABLE is specified.

 Requirement: If you code the OPTWORD1 parameter, you must pass a

value that is composed of one equate value for each literal value supported

by this macro.

PARM=parmaddress

Four-byte input parameter that specifies the address of a parameter list

used by the request to pass parameters to CQS. The length of the storage

area must be at least equal to the EQU value CQSPUT_PARM_LEN (defined

using the FUNC=DSECT request).

PUTTOKEN=puttokenaddress

Four-byte input and output parameter that specifies the address of a

16-byte token to be used by CQS to relate a series of CQSPUT requests

for a unit of work. The token must be zero for the initial CQSPUT request of

a series. An updated token is returned by CQS for each CQSPUT request.

The updated token must be returned to CQS on the next CQSPUT request

for the unit of work. The puttoken must also be returned to CQS for any

CQSPUT FUNC=FORGET or CQSPUT FUNC=ABORT requests.

QNAME=queuenameaddress

Input parameter that specifies the address of the 16-byte name of the

queue on which the data object is to be placed. The first byte of the queue

name cannot be zero; it is used to determine the queue type. If the value in

the first byte is greater than the maximum number of queue types defined

by CQS, it is folded into one of the existing queue types. If the last data

object for a unit of work is being put on the structure, the data object must

be put on a different queue than any of the previous data objects for that

unit of work.

QPOS=LAST | FIRST

Input parameter that specifies the position on the queue at which to place

the client data object.

FIRST The data object is added to the beginning of the queue.

LAST The data object is added to the end of the queue.

 The QPOS parameter cannot be used if the OPTWORD1 parameter is

specified. If the OPTWORD1 parameter is specified instead of QPOS, you

can use the following equate (EQU) statements to generate the value for the

OPTWORD1 parameter:

CQSPUT_QPOSFEQUX QPOS=FIRST

CQSPUT_QPOSLEQUX QPOS=LAST

RECOVERABLE=YES | NO

Input parameter that specifies whether the unit of work is recoverable by

CQS. RECOVERABLE=NO indicates the unit of work is nonrecoverable.

Only one data object can be placed on the queues for a nonrecoverable

unit of work. RECOVERABLE=YES indicates the unit of work is

recoverable. One or more data objects can be placed on the queues for a

recoverable unit of work.

 The RECOVERABLE=YES parameter must be specified for each CQSPUT

FUNC=PUT request issued for the unit of work. The unit of work is not

committed until the final (or only) data object for the series is placed on the

queues (COMMIT=YES specified).

CQSPUT

Chapter 6. CQS Client Requests 121

The RECOVERABLE parameter cannot be used if the OPTWORD1

parameter is specified. If the OPTWORD1 parameter is specified instead of

RECOVERABLE, you can use the following equate (EQU) statements to

generate the value for the OPTWORD1 parameter:

CQSPUT_RECVYEQUX RECOVERABLE=YES

CQSPUT_RECVNEQUX RECOVERABLE=NO

RETCODE=returncodeaddress

Output parameter that specifies the address of a 4-byte field to contain the

CQSPUT return code.

 If the return code in register 15 is nonzero, the values in the return and

reason code fields are invalid, because the CQS interface detected an error

and was unable to send the request to CQS.

RSNCODE=reasoncodeaddress

Output parameter that specifies the address of a 4-byte field to contain the

CQSPUT reason code.

TIMESTAMP=timestampaddress

Four-byte input parameter that specifies the address of an 8-byte STCK

value that is stored with the data object as the time the data object was

placed on the queue. If the TIMESTAMP parameter is omitted, the current

time is stored with the data object.

UOW=uowaddress

Input parameter that specifies the address of a 32-byte area to hold the unit

of work. This parameter is required for the initial (or only) CQSPUT

FUNC=PUT request issued for a unit of work. It is ignored for all

subsequent CQSPUT FUNC=PUT requests issued for that unit of work.

 When a value is specified for the UOW= parameter, PUTTOKEN=0 must

also be specified. The value specified for the UOW= parameter cannot be

all zeroes, and must be unique within the shared queues. The client is

responsible for ensuring that the value is unique.

Return and Reason Codes for CQSPUT

Table 38 lists the return and reason code combinations that can be returned for

CQSPUT requests. Use a CQSPUT FUNC=DSECT request to include equate

statements in your program for the return and reason codes.

 Table 38. CQSPUT Return and Reason Codes

Return Code Reason Code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000214' connecttoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'0000021C' puttoken is invalid.

X'00000008' X'00000220' queuename is invalid.

X'00000008' X'00000224' dataobject is invalid.

X'00000008' X'00000228' dataobjectsize is invalid.

X'00000008' X'00000230' uow is invalid.

X'00000008' X'00000238' The queue name is not unique. If more than one data

object is placed on the queues for a unit of work, the

queue name assigned to the last data object must be

unique for that unit of work.

CQSPUT

122 Common Queue Server Guide and Reference

Table 38. CQSPUT Return and Reason Codes (continued)

Return Code Reason Code Meaning

X'00000008' X'00000260' A CQSPUT FUNC=PUT request was issued, but the

unit of work was already committed.

X'00000008' X'00000264' A CQSPUT FUNC=FORGET request was issued for a

recoverable unit of work, but the unit of work was not

committed.

X'00000008' X'00000268' A CQSPUT FUNC=ABORT request was issued for a

nonrecoverable unit of work.

X'00000008' X'0000026C' A CQSPUT FUNC=ABORT request was issued for a

recoverable unit of work but the unit of work was

already committed.

X'00000008' X'00000270' A subsequent CQSPUT FUNC=PUT request was

issued for a unit of work already known to CQS as

non-recoverable. Only one data object can be placed

on the queues for a nonrecoverable unit of work.

X'00000008' X'00000274' RECOVERABLE=NO was specified for a unit of work

that was indicated as recoverable on a previous

CQSPUT FUNC=PUT request.

X'00000008' X'0000027C' CQSPUT is not allowed for a resource structure.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000010' X'00000400' A CQSRSYNC is required for this structure.

X'00000010' X'00000404' Structure inaccessible. Retry request later.

X'00000010' X'00000414' Queue for queuename is full. No more data objects

can be inserted to the structure for this queue name.

CQSPUT requests for other queue names are still

allowed.

X'00000010' X'00000418' Structure is full. All CQSPUT requests are rejected.

X'00000010' X'00000430' No CQS address space.

X'00000014' X'00000500' CQS internal error.

CQSQUERY Request

Format for CQSQUERY

DSECT Function of CQSQUERY: Use the DSECT function of a CQSQUERY

request to include equate (EQU) statements in your program for the CQSQUERY

parameter list length and CQSQUERY return and reason codes.

QNAME Function of CQSQUERY: Use the QNAME function of a CQSQUERY

request to retrieve information about a specific queue managed by CQS.

�� CQSQUERY FUNC=DSECT ��

CQSPUT

Chapter 6. CQS Client Requests 123

QRYOBJS Function of CQSQUERY: Use the QRYOBJS function of a

CQSQUERY request to retrieve the queue counts for a specified list of queue

names.

QTYPE Function of CQSQUERY: Use the QTYPE function of a CQSQUERY

request to retrieve information about all or some of the queues within the specified

queue type.

�� CQSQUERY FUNC=QNAME CQSTOKEN=cqstokenaddress �

� CONTOKEN=connecttokenaddress PARM=parmaddress COUNT=count �

� LIST=listaddress

ECB=ecbaddress
 RETCODE=returncodeaddress �

� RSNCODE=reasoncodeaddress

LISTVER=1
 ��

�� CQSQUERY FUNC=QRYOBJS CQSTOKEN=cqstokenaddress �

� CONTOKEN=connecttokenaddress PARM=parmaddress COUNT=count �

� LIST=listaddress BUFFER=bufferaddress BUFSIZE=buffersize �

� QDATASZ=querydatasizeaddress

ECB=ecbaddress
 RETCODE=returncodeaddress �

�

RSNCODE=reasoncodeaddress
 LISTVER=1

LISTVER=listversion

��

�� CQSQUERY FUNC=QTYPE CQSTOKEN=cqstokenaddress �

� CONTOKEN=connecttokenaddress PARM=parmaddress QTYPE=queuetypeaddress

QTYPENM=COLDQ
 �

� BUFFER=bufferaddress BUFSIZE=buffersize

QAGE=queueagevalue
 �

� QDATASZ=querydatasizeaddress

ECB=ecbaddress
 RETCODE=returncodeaddress �

�

RSNCODE=reasoncodeaddress
 LISTVER=1

LISTVER=listversion

��

CQSQUERY

124 Common Queue Server Guide and Reference

STATISTICS Function of CQSQUERY: Use the STATISTICS function of a

CQSQUERY request to retrieve status information on all the queues managed by

CQS.

STRSTAT Function of CQSQUERY: Use the STRSTAT function of the

CQSQUERY request to retrieve structure related statistics. The STRSTAT function

returns the same statistics data that is given to the Structure Statistics user exit

routine.

Attention: If the CQS that is processing the request is in the middle of a structure

checkpoint, the data returned for the current structure checkpoint might be

incomplete.

Usage of CQSQUERY

The CQSQUERY request retrieves information or status about one or more of the

structures managed by CQS. A CQSQUERY FUNC=QNAME request retrieves

information about one or more specific queues managed by CQS. A CQSQUERY

FUNC=QRYOBJS request retrieves the queue counts for one or more specific

queues or queues whose names match a wildcard parameter. A CQSQUERY

FUNC=QTYPE request retrieves information about all or some of the queues within

the specified queue type. A CQSQUERY FUNC=STATISTICS request retrieves

status information for all queues managed by CQS. A CQSQUERY

�� CQSQUERY FUNC=STATISTICS CQSTOKEN=cqstokenaddress PARM=parmaddress �

� COUNT=count LIST=listaddress BUFFER=bufferaddress BUFSIZE=buffersize �

� STATSZAR=statisticssizeaddress

ECB=ecbaddress
 �

� RETCODE=returncodeaddress RSNCODE=reasoncodeaddress �

�
 LISTVER=1

LISTVER=listversion

��

�� CQSQUERY FUNC=STRSTAT CQSTOKEN=cqstokenaddress �

� CONTOKEN=connecttokenaddress PARM=parmaddress BUFFER=bufferaddress �

� BUFSIZE=buffersize QDATASZ=querydatasizeaddress

ECB=ecbaddress
 �

� RETCODE=returncodeaddress RSNCODE=reasoncodeaddress �

�
 LISTVER=1

LISTVER=listversion

��

CQSQUERY

Chapter 6. CQS Client Requests 125

FUNC=STRSTAT request retrieves structure statistics, such as checkpoint and

rebuild, without having to code a user exit.

Restriction: The CQSQUERY FUNC=QNAME, CQSQUERY FUNC=QRYOBJS,

and CQSQUERY FUNC=QTYPE requests are not supported for resource

structures.

CQSQUERY FUNC=QNAME: For CQSQUERY FUNC=QNAME, the number of

data objects for the queuename specified in LIST= is returned.

If the QAGE parameter is specified, only information for queues older than the

specified queue age is returned. If you are only interested in queue counts, you can

omit the QAGE parameter for better performance of the CQSQUERY request.

CQSQUERY FUNC=QRYOBJS: For CQSQUERY FUNC=QRYOBJS, the number

of data objects for the queuename specified in LIST= is returned. Each queue

name in the list can be up to 16 bytes long. The first byte of the qname is treated

as the QTYPE. The input list for each qname also has 8 bytes of user data that are

copied to the output for each entry that is a match for the input queue name.

The CQSQUERY FUNC=QRYOBJS output is returned both in the input list and the

output buffer. The input list has the completion code for the queue name. If the

completion code is 0, then the queue names that match the input queue name and

their queue counts are returned in the output buffer. If the completion code is

non-zero, no data is passed for that queue name in the output buffer. The input list

has the total queue count found for the queue name. If the queue name is a

wildcard parameter, this queue count is the total queue counts of all the queue

names that match the wildcard parameter. An entry for each queue name that is a

match is passed in the output buffer along with the queue count for the queue

name. If the buffer size specified is too small, the data that fits in the buffer is

passed back, and the actual length required is passed back in the QDATASZ field.

Recommendation: Use the CQSQUERY FUNC=QRYOBJS request carefully,

because it causes CQS to read every data object on the queue type, and thus

could have a significant performance impact.

CQSQUERY FUNC=QTYPE: For CQSQUERY FUNC=QTYPE, information about

all the queues in the queue type is returned, including the queue name, data object

count, oldest data object time stamp, and newest data object time stamp.

Recommendation: Use the CQSQUERY FUNC=QTYPE request carefully,

because it causes CQS to read every data object on the queue type, and thus

could have a significant performance impact.

For CQSQUERY FUNC=QTYPE, CQS does the following if the buffer area is not

large enough to hold all of the requested data:

v Returns as many complete records that can fit into the buffer area

v Sets QDATASZ to the length that is needed to contain the statistics data in its

entirety

v Sets the reason code for ’Partial Data Returned’

The client program can then make another request with a larger buffer.

CQSQUERY FUNC=STATISTICS: For CQSQUERY FUNC=STATISTICS, CQS

returns the following information in the client buffer:

v Status on the current capacity of the primary structure

CQSQUERY

126 Common Queue Server Guide and Reference

v Maximum capacity of the primary structure (if XES dynamic reconfiguration is

available)

v Current operation mode (normal, overflow, or rebuild)

v Elements-to-entries ratio (returned in the buffer passed by the client for this

request)

If an overflow structure is defined and the current operation mode for the primary

structure is overflow mode, CQS also returns the current and maximum capacity for

the associated overflow structure. If the primary structure is not in overflow mode

and an overflow structure is defined, CQS returns the overflow structure name and

a status indicating that the overflow structure is not in use.

If the buffer area is not large enough to contain the statistics data for all of the

requested structures, CQSQUERY FUNC=STATISTICS sets the STATSZAR field to

be the length of a single statistics entry, and sets the reason code to ’Buffer Size

Too Small.’ The size of the buffer that is required to complete the request can be

obtained by multiplying the value returned in STATSZAR by the number of list

entries specified in the request.

CQSQUERY FUNC=STRSTAT: For CQSQUERY FUNC=STRSTAT, CQS returns

the following information:

v Structure process statistics

v CQS request statistics

v Data object statistics

v Queue name statistics

v z/OS request statistics

v Structure rebuild statistics

v Structure checkpoint statistics

For this function, CQS does the following if the buffer area is not large enough to

hold all of the requested data:

v Returns as many complete records that can fit into the buffer area

v Sets QDATASZ to the length that is needed to contain the statistics data in its

entirety

v Sets the reason code for ’Partial Data Returned’

The client program can then make another request with a larger buffer.

 The following keywords apply to the CQSQUERY macro. Note that some of the

information provided here applies to specific CQSQUERY functions.

BUFFER=bufferaddress

Four-byte input parameter that specifies the address of the buffer to hold

information passed to the client.

 For CQSQUERY FUNC=QTYPE, the buffer is mapped by the CQSQRYQT

DSECT. For CQSQUERY FUNC=STATISTICS, the buffer is mapped by the

CQSQRYST DSECT. For CQSQUERY FUNC=STRSTAT, the buffer is

mapped by the CQSQSTAT DSECT. For CQSQUERY FUNC=QRYOBJS,

the buffer is mapped by the CQSQRYQO DSECT.

BUFSIZE=buffersize

Four-byte input parameter that specifies the size of the buffer passed by the

client.

CQSQUERY

Chapter 6. CQS Client Requests 127

CONTOKEN=connecttokenaddress

Input parameter that specifies the address of the 16-byte connect token that

uniquely identifies the client’s connection to a particular coupling facility

structure managed by this CQS. The connect token is returned by the

CQSCONN request.

COUNT=count

Four-byte input parameter that specifies the number of entries in the list.

CQSTOKEN=cqstokenaddress

Input parameter that specifies the address of the 16-byte CQS registration

token that uniquely identifies the client’s connection to CQS. The

registration token is returned by the CQSREG request.

ECB=ecbaddress

Four-byte input parameter that specifies the address of the z/OS event

control block (ECB) used for asynchronous requests. If ECB is specified,

the request is processed asynchronously; otherwise it is processed

synchronously.

LIST=listaddress

Four-byte input parameter that specifies the address of a list containing one

or more entries. For the CQSQUERY FUNC=QNAME and CQSQUERY

FUNC=QRYOBJS requests, this list contains queue names for which to

retrieve information. The list consists of input and output parameters. At

least one list item is required.

 The CQSQRYL list entry DSECT maps the list entries and can be used by

the client. Multiple list entries must reside in contiguous storage.

 For a CQSQUERY FUNC=QNAME request, each list entry contains the

following:

compcode

Four-byte output field to receive the completion code from the

request. Possible completion codes are:

X'00000000' Request completed successfully.

X'00000004' queuename is invalid.

X'00000020' Structure is inaccessible. Retry request.

X'00000024' CQS internal error.

clientdata

Eight-byte input parameter that specifies the client data field. This

parameter is optional. CQS does not use data stored in this entry.

queuename

Sixteen-byte input parameter that specifies the queue name for

which data object count information is to be retrieved. This

parameter is required.

qcnt Four-byte output parameter that specifies a field to contain the data

object count for the queue name specified.

 For a CQSQUERY FUNC=STATISTICS request, each list entry contains the

following:

compcode

Four-byte output field to receive the completion code from the

request. Possible completion codes are:

CQSQUERY

128 Common Queue Server Guide and Reference

X'00000000' Request completed successfully.

X'00000008' connecttoken is invalid.

X'0000000C' A CQSRSYNC is required for this structure.

X'00000020' Structure is inaccessible. Retry request.

X'00000024' CQS internal error.

clientdata

Eight-byte input parameter that specifies the client data field. This

parameter is optional. CQS does not use data stored in this entry.

connecttoken

Sixteen-byte input parameter that specifies the connect token that

uniquely identifies the client’s connection to a particular coupling

facility structure managed by this CQS. The connect token is

returned by the CQSCONN request. This parameter is required.

outputoffset

Four-byte output parameter that specifies the offset of the output

data area for this entry in the output buffer.

 For a CQSQUERY FUNC=QRYOBJS request, each list entry contains the

following:

compcode

Four-byte output field to receive the completion code from the

request. Possible completion codes are:

X'0000' Request completed successfully. A list of resources

that match the qname and their queue counts are

returned in the output buffer.

X'0004' qname is invalid.

X'0010' qname does not have any objects. The queue

count is zero.

X'0020' Retry error for the qname. Retry the CQSQUERY

FUNC=QRYOBJS to obtain the queue counts. The

output returned in the output buffer might be invalid.

X'0024' CQS internal error. Retry the CQSQUERY

FUNC=QRYOBJS to obtain the queue counts. The

output returned in the output buffer might be invalid.

clientdata

Eight-byte input parameter that specifies the client data field. This

parameter is optional. CQS does not use data stored in this entry.

queuename

Sixteen-byte input parameter that specifies the queue name for

which data object count information is to be retrieved. This

parameter is required. The queuename can be a wildcard

parameter.

qcnt Four-byte output parameter that specifies a field to contain the data

object count for the queue name specified. If the queuename is a

wildcard parameter, this parameter specifies a field to contain the

total queue counts of all qnames that match the wildcard parameter.

CQSQUERY

Chapter 6. CQS Client Requests 129

LISTVER=1 | listversion

Input parameter that specifies an equate for the list version. Use the

DSECT function of a CQSQUERY request to include equate (EQU)

statements in your program for the CQSQUERY list versions.

PARM=parmaddress

Four-byte input parameter that specifies the address of a parameter list

used by the request to pass parameters to CQS. The length of the storage

area must be at least equal to the EQU value CQSQUERY_PARM_LEN

(defined using the FUNC=DSECT request).

QAGE=queueageaddress

Input parameter that specifies the address of a 4-byte field to contain the

queue age in days. Valid values for queueage are from X'0' to X'16D' (0 to

365 in decimal).

 Definition: The queue age is determined by the age of its oldest

message, in number of days.

 This parameter is used as a filter for determining which queues the

CQSQUERY FUNC=QTYPE request will process. The CQSQUERY request

returns information for queues containing data objects that are older than

the specified queueage. If you specify 0 for queueage, or omit the QAGE

parameter, the CQSQUERY request processes all queues for the queue

type.

 Important: Specifying QAGE causes all the data objects in the queue to

be read, which incurs additional performance overhead.

QDATASZ=querydatasizeaddress

Output parameter that specifies the address of a 4-byte field to contain the

size of the information returned to the client. If partial data is returned in the

buffer, this field contains the actual buffer size needed to hold the

information.

QTYPE=queuetypeaddress

Input parameter that specifies the address of a 4-byte field that contains the

queue type. Valid values for the queue type are from 1 to 255 (decimal).

QTYPENM=COLDQ

Input parameter that indicates that the CQSQUERY request is for

information about the COLDQ.

 This parameter enables a client to obtain the same type of information for

the cold queue as can be obtained for a client queue using the

CQSQUERY FUNC=QTYPE request with QTYPE=queuetypeaddress

specified.

RETCODE=returncodeaddress

Output parameter that specifies the address of a 4-byte field to contain the

CQSQUERY return code.

 If the return code in register 15 is nonzero, the values in the return and

reason code fields are invalid, because the CQS interface detected an error

and was unable to send the request to CQS.

RSNCODE=reasoncodeaddress

Output parameter that specifies the address of a 4-byte field to contain the

CQSQUERY reason code.

STATSZAR=statisticssizeaddress

Output parameter that specifies the address of a 4-byte field to contain the

CQSQUERY

130 Common Queue Server Guide and Reference

length of a single statistics entry returned in the output buffer for a

CQSQUERY FUNC=STATISTICS request.

 If partial data is returned, the size of the required buffer can be obtained by

multiplying the value returned in this field by the number of list entries

specified.

Return and Reason Codes for CQSQUERY

Table 39 lists the return and reason code combinations that can be returned for

CQSQUERY requests. Use a CQSQUERY FUNC=DSECT request to include

equate statements in your program for the return and reason codes.

 Table 39. CQSQUERY Return and Reason Codes

Return Code Reason Code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000004' X'00000120' The buffer size (buffersize) is less than the query-data

size (querydatasize). Partial data is returned.

querydatasize points to the actual buffer size needed

to contain all the data.

X'00000004' X'00000124' buffersize is too small to contain data for number of

entries specified in list.

X'00000004' X'00000128' No data objects on queue type.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000214' connecttoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'00000224' bufferaddress is invalid.

X'00000008' X'00000228' buffersize is invalid.

X'00000008' X'0000022C' statisticssize or querydatasize is invalid.

X'00000008' X'0000023C' queueage is invalid.

X'00000008' X'00000240' queuetype is invalid.

X'00000008' X'00000250' count is invalid.

X'00000008' X'00000254' listaddress is invalid.

X'00000008' X'0000027C' CQSQUERY FUNC=QNAME, CQSQUERY

FUNC=QTYPE, or CQSQUERY FUNC=QOBJS is not

allowed for a resource structure.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000008' X'00000288' List version is invalid.

X'0000000C' X'00000300' Request completed successfully for at least one, but

not all, list entries. See compcode for individual

errors.

X'0000000C' X'00000304' Request failed for all list entries. See compcode for

individual errors.

X'00000010' X'00000400' A CQSRSYNC is required for this structure.

X'00000010' X'00000404' Structure inaccessible. Retry request later.

X'00000010' X'00000430' No CQS address space.

X'00000014' X'00000500' CQS internal error.

CQSQUERY

Chapter 6. CQS Client Requests 131

CQSREAD Request

Format for CQSREAD

CONTINUE Function of CQSREAD: Use the CONTINUE function of a

CQSREAD request to retrieve the rest of a data object after partial data is returned

for a prior CQSREAD request.

DSECT Function of CQSREAD: Use the DSECT function of a CQSREAD

request to include equate (EQU) statements in your program for the CQSREAD

parameter list length, CQSREAD return and reason codes, and literals that can be

used to build the OPTWORD1 parameter.

READ Function of CQSREAD with LOCAL=NO: Use the CQSREAD request

with the LOCAL=NO parameter to retrieve a copy of the client data object from a

specific queue and lock it.

�� CQSREAD FUNC=CONTINUE CQSTOKEN=cqstokenaddress �

� CONTOKEN=connecttokenaddress PARM=parmaddress LCKTOKEN=locktokenaddress �

� BUFFER=bufferaddress BUFSIZE=buffersize OBJSIZE=dataobjectsizeaddress �

�
ECB=ecbaddress

 RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ��

�� CQSREAD FUNC=DSECT ��

�� CQSREAD FUNC=READ CQSTOKEN=cqstokenaddress CONTOKEN=connecttokenaddress �

� PARM=parmaddress LCKTOKEN=locktokenaddress QNAME=queuenameaddress �

�
 A

OPTWORD1=optionwordvalue

BUFFER=bufferaddress

BUFSIZE=buffersize

�

� OBJSIZE=dataobjectsizeaddress UOW=uowaddress �

�
TIMESTAMP=timestampaddress

ECB=ecbaddress
 �

� RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ��

A:

 QPOS=FIRST

QPOST=LAST

 PARTIAL=YES

PARTIAL=NO

 LOCAL=NO

CQSREAD

132 Common Queue Server Guide and Reference

READ Function of CQSREAD with LOCAL=YES: Use the CQSREAD request

with the LOCAL=YES parameter to retrieve the lock token of a data object

previously stored on the shared queues by a CQSPUT LOCAL=YES request. Using

this request ensures that the data object remains locked, even in the event of client

failure, structure rebuild, or CQS restart.

REREAD Function of CQSREAD: Use the REREAD function of a CQSREAD

request to re-read a locked data object that was read and locked on a prior

CQSREAD FUNC=READ request.

Usage of CQSREAD

A CQSREAD request retrieves a copy of the client data object from a specific

queue. The data object is not deleted from the queue, but for a CQSREAD

FUNC=READ request it is locked, which prevents the data object from being

accessed by subsequent CQS requests (except ones using the proper lock token).

The data object can be retrieved from the beginning or from the end of the queue.

The data object is returned in the client buffer provided for the CQSREAD request.

Restriction: The CQSREAD request is not supported for resource structures.

A lock token is returned to the client and identifies the data object. This token must

be passed to CQS for any requests that act on the locked data object (for example,

CQSDEL, CQSMOVE, CQSREAD, or CQSUNLCK).

If the size of the data object retrieved is greater than the size of the client buffer

and PARTIAL=YES is specified, the amount of data that fits in the client buffer is

returned to the client. A return or reason code is also returned, indicating a partial

data object is returned, as is the actual data object size.

If the size of the data object retrieved is greater than the size of the client buffer

and PARTIAL=NO is specified, no data object is returned. A return and reason code

is returned, indicating that no data object is returned because the client buffer size

is too small. The actual data object size is also returned to the client.

If the size of the data object retrieved is the same size as or smaller than the client

buffer, the complete data object is moved into the buffer, and the rest of the buffer

is not changed. The data object size is also returned to the client.

�� CQSREAD FUNC=READ CQSTOKEN=cqstokenaddress CONTOKEN=connecttokenaddress �

� PARM=parmaddress LCKTOKEN=locktokenaddress QNAME=queuenameaddress �

� UOW=uowaddress LOCAL=YES

OPTWORD1=optionwordvalue

ECB=ecbaddress
 �

� RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ��

�� CQSREAD FUNC=REREAD CQSTOKEN=cqstokenaddress �

� CONTOKEN=connecttokenaddress PARM=parmaddress LCKTOKEN=locktokenaddress �

� BUFFER=bufferaddress BUFSIZE=buffersize OBJSIZE=dataobjectsizeaddress �

�
ECB=ecbaddress

 RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ��

CQSREAD

Chapter 6. CQS Client Requests 133

A CQSREAD FUNC=CONTINUE request retrieves the rest of the data object when

partial data is returned on a prior CQSREAD request.

Attention: This request could result in an error after a CQS restart because the

current position might be lost across CQS restart.

A CQSREAD FUNC=REREAD request re-reads a locked data object that was

previously read and locked (a prior CQSREAD FUNC=READ request). The data

object remains locked.

Related Reading: See “Example of Using a CQS Request: CQSREAD” on page

161 for an example of how to use a CQSREAD request for a CQS client.

Parameter Description:

BUFFER=bufferaddress

Four-byte input parameter that specifies the address of the client buffer that

will hold the data object retrieved from the queue.

BUFSIZE=buffersize

Four-byte input parameter that specifies the size of the client buffer.

CONTOKEN=connecttokenaddress

Input parameter that specifies the address of the 16-byte connect token that

uniquely identifies the client’s connection to a particular coupling facility

structure managed by this CQS. The connect token is returned by the

CQSCONN request.

CQSTOKEN=cqstokenaddress

Input parameter that specifies the address of the 16-byte CQS registration

token that uniquely identifies the client’s connection to CQS. The

registration token is returned by the CQSREG request.

ECB=ecbaddress

Four-byte input parameter that specifies the address of the z/OS event

control block (ECB) used for asynchronous requests. If ECB is specified,

the request is processed asynchronously; otherwise it is processed

synchronously.

LCKTOKEN=locktokenaddress

Input and output parameter that specifies the address of the 16-byte lock

token for the data object that was locked by the CQSREAD request.

 For a CQSREAD FUNC=READ request, the lock token is zero on input. It is

also used as an output area to hold the lock token returned to the client.

For a CQSREAD FUNC=REREAD or FUNC=CONTINUE request, this field

is an input area that contains the lock token returned on a prior CQSREAD

request.

LOCAL=NO | YES

Input parameter that indicates whether or not the client should process a

local copy of the data object from the client address space.

NO

Indicates the client wants CQS to return the data object from the

specified client queue and lock the data object. This causes CQS to

access the coupling facility to retrieve the data object.

YES

Indicates that the client is processing a local copy of a data object from

its local buffers. This request returns the lock token of the data object

CQSREAD

134 Common Queue Server Guide and Reference

which the client can use to access the copy of the data object on the

shared queues. The data object was placed on the shared queues by a

CQSPUT LOCAL=YES request.

 By using a local copy of the data object, the client can reduce the

performance overhead of using shared queues. As long as the data

object is on the shared queues, it can be recovered if the client fails. As

long as the data object remains locked, it is not available to any other

client.

 The data object is not returned to the client on a CQSREAD request

because the client has the local copy. If the client does not issue the

CQSREAD LOCAL=YES request and the connection between the client

and CQS is lost, CQS unlocks the data object and makes it available to

any client.

 Restriction: If you specify LOCAL=YES, you cannot use the

TIMESTAMP parameter.

 The LOCAL parameter cannot be used when the OPTWORD1

parameter is specified. If the OPTWORD1 parameter is specified

instead of LOCAL, you can use the following equate (EQU) statements to

generate the value for the OPTWORD1 parameter:

CQSREAD_LCLYEQUX LOCAL=YES

CQSREAD_LCLNEQUX LOCAL=NO

OBJSIZE=dataobjectsizeaddress

Output parameter to receive the address of a 4-byte field that holds the size

of the data object. If the data object size is greater than the client buffer

size, this field contains the actual data object size. If partial data is returned,

the size of the data object returned is the size of the client buffer specified.

OPTWORD1=optionwordvalue

Four-byte input parameter that specifies the literals for this request. This

parameter can be used instead of LOCAL, PARTIAL, and QPOS. Equate

(EQU) statements for the literal values are listed in the descriptions for the

LOCAL, PARTIAL, and QPOS parameters. Equate statements can also be

generated by using the DSECT function. The OPTWORD1 parameter

cannot be used if LOCAL, PARTIAL, or QPOS is specified.

 Requirement: If you code the OPTWORD1 parameter, you must pass a

value that is composed of one equate value for each literal value supported

by this macro.

PARM=parmaddress

Four-byte input parameter that specifies the address of a parameter list

used by the request to pass parameters to CQS. The length of the storage

area must be at least equal to the EQU value CQSREAD_PARM_LEN

(defined using the FUNC=DSECT request).

PARTIAL=YES | NO

Input parameter that specifies whether partial data is to be retrieved, and

whether the data object is to be locked if the data object size is greater

than the client buffer size.

YES If the data object size is greater than the client buffer size, the data

object is locked and partial data is returned in the client buffer. The

actual size of the data object is returned in dataobjectsize.

NO If the data object size is greater than the client buffer size, the data

CQSREAD

Chapter 6. CQS Client Requests 135

object is neither locked nor retrieved. The actual size of the data

object is returned in dataobjectsize.

 The PARTIAL parameter cannot be used when the OPTWORD1 parameter

is specified. If the OPTWORD1 parameter is specified instead of PARTIAL,

you can use the following equate (EQU) statements to generate the value for

the OPTWORD1 parameter:

CQSREAD_PRTLNEQUX PARTIAL=NO

CQSREAD_PRTLYEQUX PARTIAL=YES

QNAME=queuenameaddress

Input parameter that specifies the address of the 16-byte queue name from

which the data object is to be retrieved. The first byte of the queue name

identifies the queue type.

QPOS=FIRST | LAST

Input parameter that specifies the position on the queue from which the

data object is to be retrieved.

FIRST The data object is retrieved from the beginning of the queue.

LAST The data object is retrieved from the end of the queue.

 The QPOS parameter cannot be used when the OPTWORD1 parameter is

specified. If the OPTWORD1 parameter is specified instead of QPOS, you

can use the following equate (EQU) statements to generate the value for the

OPTWORD1 parameter:

CQSREAD_QPOSLEQUX QPOS=LAST

CQSREAD_QPOSFEQUX QPOS=FIRST

RETCODE=returncodeaddress

Output parameter that specifies the address of a 4-byte field to contain the

CQSREAD return code.

 If the return code in register 15 is nonzero, the values in the return and

reason code fields are invalid, because the CQS interface detected an error

and was unable to send the request to CQS.

RSNCODE=reasoncodeaddress

Output parameter that specifies the address of a 4-byte field to contain the

CQSREAD reason code.

TIMESTAMP=timestampaddress

Four-byte output parameter that specifies the address of an eight-byte field

to contain the timestamp of when the data object was placed on the

queues.

 Attention: If LOCAL=YES is specified, CQS does not read the data object

from the structure, and the timestamp cannot be obtained.

UOW=uowaddress

Output parameter that specifies the address of a 32-byte area to hold the

unit of work (UOW) of the data object retrieved from the queue. The UOW

was generated by the client that put the data object on the queue using a

CQSPUT request.

Return and Reason Codes for CQSREAD

Table 40 on page 137 lists the return and reason code combinations that can be

returned for CQSREAD requests. Use a CQSREAD FUNC=DSECT request to

include equate statements in your program for the return and reason codes.

CQSREAD

136 Common Queue Server Guide and Reference

Table 40. CQSREAD Return and Reason Codes

Return Code Reason Code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000004' X'00000120' The buffer size (buffersize) is less than the data

object size (dataobjectsize). Partial data is returned.

dataobjectsize contains the address of the actual data

object size.

X'00000004' X'00000124' The buffer size (buffersize) is less than the data

object size (dataobjectsize). No data is returned

because PARTIAL=NO was specified. dataobjectsize

contains the address of the actual data object size.

X'00000004' X'00000128' No data object to retrieve on queue name specified.

X'00000004' X'0000012C' No partial data to return.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000214' connecttoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'0000021C' locktoken is invalid.

X'00000008' X'00000220' queuename is invalid.

X'00000008' X'00000224' bufferaddress is invalid.

X'00000008' X'00000228' buffersize is invalid.

X'00000008' X'0000022C' dataobjectsize is invalid.

X'00000008' X'00000230' uow is invalid.

X'00000008' X'00000234' Lock token address is invalid.

X'00000008' X'00000278' The request specified LOCAL=YES, but the requested

object was placed on the structure using LOCAL=NO.

X'00000008' X'0000027C' CQSREAD is not allowed for a resource structure.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000010' X'00000400' A CQSRSYNC is required for this structure.

X'00000010' X'00000404' Structure inaccessible. Retry request later.

X'00000010' X'00000408' Current position lost; cannot process CQSREAD

FUNC=CONTINUE request.

X'00000010' X'00000430' No CQS address space.

X'00000010' X'00000440' Object lost because of rebuild.

X'00000014' X'00000500' CQS internal error.

CQSRECVR Request

Format for CQSRECVR

DELETE Function of CQSRECVR: Use the DELETE function of a CQSRECVR

request to delete one data object associated with a UOW from the cold queue.

CQSREAD

Chapter 6. CQS Client Requests 137

DSECT Function of CQSRECVR: Use the DSECT function of a CQSRECVR

request to include equate (EQU) statements in your program for the CQSRECVR

parameter list length, CQSRECVR return and reason codes, and literals that can be

used to build the OPTWORD1 parameter.

RETRIEVE Function of CQSRECVR: Use the RETRIEVE function of a

CQSRECVR request to retrieve a copy of a data object associated with a UOW

from the cold queue.

UNLOCK Function of CQSRECVR: Use the UNLOCK function of a CQSRECVR

request to unlock a data object associated with a UOW on the cold queue.

�� CQSRECVR FUNC=DELETE CQSTOKEN=cqstokenaddress �

� CONTOKEN=connecttokenaddress PARM=parmaddress �

� CLDTOKEN=coldqueuetokenaddress UOW=uowaddressaddress

ECB=ecbaddress
 �

� RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ��

�� CQSRECVR FUNC=DSECT ��

�� CQSRECVR FUNC=RETRIEVE CQSTOKEN=cqstokenaddress �

� CONTOKEN=connecttokenaddress PARM=parmaddress �

� CLDTOKEN=coldqueuetokenaddress UOW=uowaddress BUFFER=bufferaddress �

� BUFSIZE=buffersize OBJSIZE=dataobjectsizeaddress

ECB=ecbaddress
 �

� RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ��

CQSRECVR

138 Common Queue Server Guide and Reference

Usage of CQSRECVR

The CQSRECVR request allows a client to recover locked data objects that were

moved to the CQS cold queue (a CQS private queue) because CQS or the client

was cold started.

Restriction: The CQSRECVR request is not supported for resource structures.

A CQSRECVR FUNC=DELETE request deletes a data object associated with a

UOW from the cold queue. Only one data object is deleted.

A CQSRECVR FUNC=RETRIEVE request retrieves a copy of the data object

associated with a UOW from the cold queue. The data object remains on the cold

queue, and is available for other CQSRECVR requests. The data object is returned

in the client buffer specified for the CQSRECVR FUNC=RETRIEVE request.

If the data object is the same size as or smaller than the client buffer provided, the

data object is returned in the buffer, and the rest of the buffer is not changed. The

size of the data object is returned to the client.

If the size of the data object is greater than the size of the client buffer, the data

object is not returned. The size of the data object is returned to the client.

A CQSRECVR FUNC=UNLOCK request unlocks a data object associated with a

UOW on the cold queue. The data object is moved from the cold queue to the

original client queue, and is available for other CQS requests. The position to which

the data object should be moved can be specified by the client.

Parameter Description:

BUFFER=bufferaddress

Four-byte input parameter that specifies the address of the client buffer that

will hold the data object retrieved from the queue.

�� CQSRECVR FUNC=UNLOCK CQSTOKEN=cqstokenaddress �

� CONTOKEN=connecttokenaddress PARM=parmaddress �

�

CLDTOKEN=coldqueuetokenaddress

UOW=uowaddress
 A

OPTWORD1=optionwordvalue

�

�
ECB=ecbaddress

 RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ��

A:

 QPOS=SYSTEM

QPOS=FIRST

QPOS=LAST

CQSRECVR

Chapter 6. CQS Client Requests 139

BUFSIZE=buffersize

Four-byte input parameter that specifies the size of the client buffer.

CLDTOKEN=coldqueuetokenaddress

Input parameter that specifies the address of a 16-byte cold-queue token,

which along with the UOW identifies the data object that is to be recovered

from the CQS cold queue (COLDQ).

 The cold-queue token is passed to the client in the SEVX_RETOKEN field

of the Resync entry in the CQS Structure Event exit routine. This exit

routine is called for a CQS-initiated resynchronization when the UOW status

is COLD.

CONTOKEN=connecttokenaddress

Input parameter that specifies the address of a 16-byte connect token that

uniquely identifies the client’s connection to a particular coupling facility

structure managed by this CQS. The connect token is returned by the

CQSCONN request.

CQSTOKEN=cqstokenaddress

Input parameter that specifies address of the 16-byte CQS registration

token that uniquely identifies the client’s connection to CQS. The

registration token is returned by the CQSREG request.

ECB=ecbaddress

Four-byte input parameter that specifies the address of the z/OS event

control block (ECB) used for asynchronous requests. If ECB is specified,

the request is processed asynchronously; otherwise it is processed

synchronously.

OBJSIZE=dataobjectsizeaddress

Output parameter that specifies the address of a 4-byte area to hold the

size of the data object. If the data object size is greater than the client

buffer size, this field contains the actual data object size. If partial data is

returned, the data object returned is the size of the client buffer specified.

OPTWORD1=optionwordvalue

Four-byte input parameter that specifies the literals for this request. This

parameter can be used instead of QPOS. Equate (EQU) statements for the

literal values are listed in the description of the QPOS parameter. Equate

statements can also be generated by using the DSECT function. The

OPTWORD1 parameter cannot be used if QPOS is specified.

 Requirement: If you code the OPTWORD1 parameter, you must pass a

value that is composed of one equate value for each literal value supported

by this macro.

PARM=parmaddress

Four-byte input parameter that specifies the address of a parameter list

used by the request to pass parameters to CQS. The length of the storage

area must be at least equal to the EQU value CQSRECVR_PARM_LEN

(defined using the FUNC=DSECT request).

QPOS=SYSTEM | FIRST | LAST

Input parameter that specifies the position on the queue to which the

unlocked data object is to be added. The default is SYSTEM.

FIRST Indicates the data object is unlocked and added to the beginning of

the queue.

LAST Indicates the data object is unlocked and added to the end of the

queue.

CQSRECVR

140 Common Queue Server Guide and Reference

SYSTEM

Indicates the data object is unlocked and added to either the

beginning or the end of the queue, depending on its original

position. If the CQSREAD request that locked this data object

obtained the data object from the beginning of the queue, the data

object is unlocked and added to the beginning of the queue. If the

CQSREAD request obtained the data object from the end of the

queue, the data object is unlocked and added to the end of the

queue.

 The QPOS parameter cannot be used when the OPTWORD1 parameter is

specified. If the OPTWORD1 parameter is specified instead of QPOS, you

can use the following equate (EQU) statements to generate the value for the

OPTWORD1 parameter:

CQSRECVR_QPOSSEQUX QPOS=SYSTEM

CQSRECVR_QPOSFEQUX QPOS=FIRST

CQSRECVR_QPOSLEQUX QPOS=LAST

RETCODE=returncodeaddress

Output parameter that specifies the address of a 4-byte field to contain the

CQSRECVR return code.

 If the return code in register 15 is nonzero, the values in the return and

reason code fields are invalid, because the CQS interface detected an error

and was unable to send the request to CQS.

RSNCODE=reasoncodeaddress

Output parameter that specifies the address of a 4-byte field to contain the

CQSRECVR reason code.

UOW=uowaddress

Input parameter that specifies the address of a 32-byte area to hold the unit

of work (UOW) of a data object. The UOW, together with the

coldqueuetoken, identifies the data object to be recovered from the cold

queue.

 The UOW is passed to the client in the SEVX_REUOW field of the Resync

entry in the CQS Structure Event exit routine. This exit routine is called for

a CQS-initiated resynchronization when the UOW status is COLD.

Return and Reason Codes for CQSRECVR

Table 41 lists the return and reason code combinations that can be returned for

CQSRECVR requests. Use a CQSRECVR FUNC=DSECT request to include

equate statements in your program for the return and reason codes.

 Table 41. CQSRECVR Return and Reason Codes

Return Code Reason Code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000004' X'00000124' buffersize is too small.

X'00000004' X'00000128' Data object for UOW not found on cold queue.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000214' connecttoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'00000224' bufferaddress is invalid.

X'00000008' X'00000228' buffersize is invalid.

CQSRECVR

Chapter 6. CQS Client Requests 141

Table 41. CQSRECVR Return and Reason Codes (continued)

Return Code Reason Code Meaning

X'00000008' X'0000022C' dataobjectsize is invalid.

X'00000008' X'00000230' uow is invalid.

X'00000008' X'00000234' coldqueuetoken is invalid.

X'00000008' X'0000027C' CQSRECVR is not allowed for a resource structure.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000010' X'00000400' A CQSRSYNC is required for this structure.

X'00000010' X'00000404' Structure is inaccessible. Retry request later.

X'00000010' X'00000414' Unable to unlock the data object because the original

queue is full. No more data objects can be moved to

this queue. CQSRECVR FUNC=UNLOCK requests

for other queues are allowed.

X'00000010' X'00000430' No CQS address space.

X'00000014' X'00000500' CQS internal error.

CQSREG Request

Format for CQSREG

DSECT Function of CQSREG: Use the DSECT function of a CQSREG request to

include equate (EQU) statements in your program for the CQSREG parameter list

length and CQSREG return and reason codes.

REGISTER Function of CQSREG: Use the REGISTER function of a CQSREG

request to register a client with a CQS.

Usage of CQSREG

A CQSREG request registers a client to CQS. If the registration is successful, a

CQS token is returned. This token represents the client’s registration with CQS and

must be used with all subsequent CQS requests to identify the client.

A CQSREG FUNC=REGISTER request must be the first CQS request a client

makes. Also, after a CQS abnormal termination and restart, a CQSREG

FUNC=REGISTER request is required before the client can resume issuing CQS

requests.

Parameter Description:

�� CQSREG FUNC=DSECT ��

�� CQSREG FUNC=REGISTER PARM=parmaddress CQSSSN=cqssubsystemnameaddress �

� CLIENT=clientnameaddress EVENT=cqseventexit

EVENTPARM=eventparmaddress
 �

� CQSTOKEN=cqstokenaddress VERSION=cqsversionaddress �

� RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ��

CQSRECVR

142 Common Queue Server Guide and Reference

CLIENT=clientnameaddress

Input parameter that specifies the address of the 8-byte name of the client

registering to CQS. The client name must be unique among all clients that

are registered to the same CQS and to all the CQSs that are sharing the

same queues.

CQSTOKEN=cqstokenaddress

Output parameter that specifies the address of a 16-byte area to receive

the CQS registration token that uniquely identifies the client’s connection to

CQS. The registration token is returned by a successful CQSREG request.

CQSSSN=cqssubsystemnameaddress

Input parameter that specifies the address of the 4-byte subsystem name of

the CQS to which the client would like to connect. This parameter should

match the SSN= parameter of the CQSIPxxx PROCLIB member for the

CQS to which the client would like to connect.

EVENT=cqseventexit

Four-byte input parameter that specifies the CQS Event exit routine

address.

EVENTPARM=eventparmaddress

Input parameter that specifies the address of a 4-byte area that contains

client data that CQS passes to the CQS Event exit routine every time the

exit is called.

PARM=parmaddress

Four-byte input parameter that specifies the address of a parameter list

used by the request to pass parameters to CQS. The length of the storage

area must be at least equal to the EQU value CQSREG_PARM_LEN

(defined using the FUNC=DSECT request).

RETCODE=returncodeaddress

Output parameter that specifies the address of a 4-byte field to contain the

CQSREG return code. The CQSREG return code is returned both in this

field and in register 15.

RSNCODE=reasoncodeaddress

Output parameter that specifies the address of a 4-byte field to contain the

CQSREG reason code. The CQSREG reason code is returned both in this

field and in register 0.

VERSION=cqsversionaddress

Output parameter that specifies the address of a 4-byte area to receive the

CQS version number. The version number has the following format:

00vvrrmm.

00 This byte is reserved for future use. Currently, it is always 00.

vv Version number.

rr Release number.

mm Modification level or sub-release number.

Example: CQS version 1.1.0 is shown as X'00010100'.

Return and Reason Codes for CQSREG

Table 42 on page 144 lists the return and reason code combinations that can be

returned for CQSREG requests.

CQSREG

Chapter 6. CQS Client Requests 143

Table 42. CQSREG Return and Reason Codes

Return Code Reason Code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000004' X'00000100' Client is already registered to CQS.

X'00000008' X'00000244' clientname is invalid.

X'00000008' X'00000248' The CQSREG parameter list version is invalid. This

error is probably caused by a difference in versions

between the CQS client and the CQS address space

the client is trying to use.

X'00000010' X'0000040C' CQS shutdown is pending.

X'00000010' X'00000430' The CQS address space is not active. The CQS

address space must be started.

X'00000010' X'00000438' Another address space is already registered with

CQS using the client ID (passed on a CQSREG

request).

X'00000010' X'00000440' The user ID of the client address space is not

authorized to register with this CQS.

X'00000014' X'00000500' CQS internal error.

X'00000014' X'00000504' Unable to obtain storage in client’s address space for

CQS’s use.

X'00000014' X'00000508' Unable to obtain storage (CCIB).

X'00000014' X'0000050C' Unable to obtain storage (CRET).

X'00000014' X'00000510' CQS internal error (Loc ASCB).

X'00000014' X'00000514' Unable to establish z/OS Resource Manager routine

to monitor CQS for the registering client.

X'00000014' X'00000518' CQS internal error (ESTAE add).

X'00000014' X'0000051C' CQS internal error (NmTkn Retrv).

X'00000014' X'00000520' CQS internal error (CGCT error).

X'00000014' X'00000524' CQS internal error (TTKN error).

X'00000014' X'00000528' CQS internal error (ALESERV error).

X'00000014' X'0000052C' CQS internal error (BPESVC error).

X'00000014' X'00000530' Unable to establish z/OS Resource Manager routine

to monitor the client for CQS.

X'00000014' X'00000534' An abend occurred during CQSREG processing.

CQSRSYNC Request

Format for CQSRSYNC

DSECT Function of CQSRSYNC: Use the DSECT function of a CQSRSYNC

request to include equate (EQU) statements in your program for the CQSRSYNC

parameter list length and CQSRSYNC return and reason codes.

�� CQSRSYNC FUNC=DSECT ��

CQSREG

144 Common Queue Server Guide and Reference

RSYNCCOLD Function of CQSRSYNC: Use the RSYNCCOLD function of a

CQSRSYNC request when the client is performing a cold start and does not have

information on unresolved UOWs.

RSYNCWARM Function of CQSRSYNC: Use the RSYNCWARM function of a

CQSRSYNC request when the client is performing a warm or emergency restart

and has information on unresolved UOWs that need to be resolved with CQS.

Usage of CQSRSYNC

A CQSRSYNC request allows a client to resynchronize indoubt data for one

structure with CQS. This request must be the first request the client issues following

a CQSCONN request.

Restriction: The CQSRSYNC request is not supported for resource structures.

A CQSRSYNC request is required even if the client does not have any indoubt units

of work (UOWs) to resolve, for example when the client performs a cold start or a

warm start after a normal termination. This request is required because CQS might

have information about a connection and have unresolved UOWs to process.

If there are unresolved UOWs, CQS calls the client’s Structure Event exit routine as

part of resynchronization. CQS calls the routine to inform the client of UOWs that

CQS knows about and that the client did not pass on the CQSRSYNC request. This

process is referred to as CQS-initiated resynchronization.

The exit routine is called during client cold start or restart only if CQS has

unresolved UOWs. The Structure Event exit routine can be called more than once

�� CQSRSYNC FUNC=RSYNCCOLD CQSTOKEN=cqstokenaddress �

� CONTOKEN=connecttokenaddress PARM=parmaddress

ECB=ecbaddress
 �

� RETCODE=returncodeaddress RSNCODE=reasoncodeaddress �

�
 LISTVER=1

LISTVER=listversion

��

�� CQSRSYNC FUNC=RSYNCWARM CQSTOKEN=cqstokenaddress �

� CONTOKEN=connecttokenaddress PARM=parmaddress COUNT=count �

� LIST=listaddress

ECB=ecbaddress
 RETCODE=returncodeaddress �

�

RSNCODE=reasoncodeaddress
 LISTVER=1

LISTVER=listversion

��

CQSRSYNC

Chapter 6. CQS Client Requests 145

for CQS-initiated resynchronization. For each UOW passed to the exit routine, the

client is responsible for taking the correct action to resolve the UOW based on the

status returned by CQS.

If CQS cold started, CQS has no knowledge of client UOWs. In this case, the

resynchronization list is not processed. CQS looks for CQSREAD requests that

were incomplete at the time CQS terminated. If there is incomplete work, the data

objects are moved to the cold queue and the Structure Event exit routine is called

to inform the client of the unresolved UOWs for the data objects.

After the CQSRSYNC request completes, some UOWs might have a deferred

resynchronization status. This status indicates that CQS is still resynchronizing the

UOW. When CQS completes resynchronization, the Structure Event exit routine is

called to indicate the state of the UOW. Deferred resynchronization only applies to

UOWs that CQS cannot resynchronize during the CQSRSYNC request, and does

not occur for a client cold start. The exit routine is called once for each deferred

UOW, and so the exit routine can be called multiple times for deferred

resynchronization.

Parameter Description:

CONTOKEN=connecttokenaddress

Input parameter that specifies the address of the 16-byte connect token that

uniquely identifies the client’s connection to a particular coupling facility

structure managed by this CQS. The connect token is returned by the

CQSCONN request.

COUNT=count

Four-byte input parameter that specifies the number of entries in the resync

list.

CQSTOKEN=cqstokenaddress

Input parameter that specifies the address of the 16-byte CQS registration

token that uniquely identifies the client’s connection to CQS. The

registration token is returned by the CQSREG request.

ECB=ecbaddress

Four-byte input parameter that specifies the address of the z/OS event

control block (ECB) used for asynchronous requests. If ECB is specified,

the request is processed asynchronously; otherwise it is processed

synchronously.

LIST=listaddress

Four-byte input parameter that specifies the address of the resync list. Each

entry contains an indoubt UOW that the client needs to resolve. Some fields

in each entry must be initialized by the client prior to the CQSRSYNC

request. Other fields are returned by CQS upon completion of the

CQSRSYNC request.

 The CQSRSYNL list entry DSECT maps the list entries and can be used by

the client. Multiple list entries must reside in contiguous storage.

 Each list entry contains the following:

clientdata

Four-byte input parameter that specifies the client data field. This

parameter is optional. CQS does not use data stored in this entry.

uow Thirty-two-byte input parameter that specifies the unit of work

CQSRSYNC

146 Common Queue Server Guide and Reference

identifier for the queue. This parameter is required and must be

initialized by the client prior to the CQSRSYNC request.

clientstatus

Two-byte input parameter that contains the status of the UOW. This

status represents the last action the client performed for this UOW.

This parameter is required and must be initialized by the client prior

to the CQSRSYNC request.

 Possible values for the status are shown in Table 43.

 Table 43. UOW Status from the Client

Status Meaning

X'0010' Put Complete

The last (or only) CQSPUT request in a series of CQSPUT requests has been

issued for the UOW. All data objects for the UOW are assumed to be on the

coupling facility.

X'0020' Read

The data object for the UOW is assumed to be locked on the coupling facility.

X'0030' Unlock

A CQSUNLCK request with lock token was issued for the UOW. The data

object is assumed to have been unlocked and made available on the work

queue on the coupling facility.

X'0040' Move

A CQSMOVE request with lock token was issued for the UOW. The data object

is assumed to have been moved to a new queue on the coupling facility.

X'0050' Delete

A CQSDEL request with lock token was issued for the UOW. The data object is

assumed to have been deleted from the coupling facility.

cqsstate

Two-byte output parameter to receive the resulting state of the

UOW from CQS. This parameter is returned by CQS as a result of

the CQSRSYNC request.

 Possible values for the status are shown in Table 44.

 Table 44. UOW Status from CQS

Status Meaning

X'0010' Put Insync

Client status is Put Complete. CQS status is Put Complete. CQS knows about

the UOW and all data objects for the UOW are out on the coupling facility. A put

token is returned for the UOW. The client should use the put token to issue a

CQSPUT FUNC=FORGET request.

CQSRSYNC

Chapter 6. CQS Client Requests 147

Table 44. UOW Status from CQS (continued)

Status Meaning

X'0012' Resync Deferred

Client status is Put Complete. CQS status is Indoubt. This status is only

returned for recoverable UOWs. CQS knows about the UOW but is still in the

process of determining its status. The client should wait until its Structure Event

exit routine is called by CQS. CQS will post the client’s Structure Event exit

routine, passing the UOW and a status for the UOW. If the status is PUT

Insync, a put token for the UOW is also returned. The client should use the put

token to issue a CQSPUT FUNC=FORGET request.

If the status is PUT Failed, the client must reissue the CQSPUT FUNC=PUT

request. If the status is Unknown, the data object might or might not be on the

coupling facility.

X'0020' Read Insync

Client status is Read. CQS status is Read Complete. CQS found the data

object for the UOW to be locked. A lock token is returned for the UOW. The

client should use this lock token on subsequent CQS requests for the data

object with this UOW.

X'0030' Unlock Insync

Client status is Read Unlock. CQS status is Unlock Insync. CQS found the data

object for the UOW to be locked, and unlocked it. No further action is required

by the client.

X'0050' Delete Insync

Client status is Delete. CQS status is Delete Insync. CQS found the data object

for the UOW to be locked and deleted it. No further action is required by the

client.

X'00F1' Locked

One of the following conditions exists:

v Client status is Delete. CQS status is Locked. CQS found the UOW to be

locked, but could not delete the data object from the structure. The data

object remains locked. A lock token is returned for the UOW. The client

should use this lock token and reissue the CQSDEL request.

v Client status is Move. CQS status is Locked. CQS found the data object for

UOW in Locked state. The CQSMOVE could not be completed because the

new queue name is not available. A lock token is returned for the UOW. The

client should use this lock token and reissue the CQSMOVE request.

v Client status is Unlock. CQS status is Locked. CQS found the UOW to be

locked, but could not unlock the data object. The data object remains locked.

A lock token is returned for the UOW. The client should use this lock token

and reissue the CQSUNLCK request.

X'00F2' Unknown

Client status is any valid client status. The UOW is unknown to CQS.

If the client believes the UOW to be in PUT Complete status, the client must

determine whether or not to reissue the CQSPUT request.

If the client believes the UOW to have a status of Delete, Move, Read, or

Unlock, the prior request could have completed.

resynctoken

Sixteen-byte output parameter to receive a token that the client

CQSRSYNC

148 Common Queue Server Guide and Reference

uses to complete processing for the UOW. When the state is Put

Insync, this field contains the put token. When the state is Locked,

this field contains the lock token. This field is returned by CQS as a

result of the CQSRSYNC request.

compcode

Four-byte output field to receive the completion code from the

request. Possible completion codes are:

X'00000000' CQS successfully processed this UOW. Client and

CQS are in sync for this UOW. An Insync state is

returned for this UOW.

X'00000004' CQS successfully processed this UOW. Client and

CQS are not in sync for this UOW. CQS returns its

known state for this UOW.

X'00000008' clientstatus is invalid. CQS could not resynchronize

this UOW. The cqsstate is not returned.

X'0000000C' uow is invalid. CQS could not resynchronize this

UOW. The cqsstate is not returned.

X'00000010' CQS internal error. CQS could not resynchronize

this UOW. The cqsstate is not returned.

LISTVER=1 | listversion

Input parameter that specifies an equate for the list version. Use the

DSECT function of a CQSRSYNC request to include equate (EQU)

statements in your program for the CQSRSYNC list versions.

PARM=parmaddress

Four-byte input parameter that specifies the address of a parameter list

used by the request to pass parameters to CQS. The length of the storage

area must be at least equal to the EQU value CQSRSYNC_PARM_LEN

(defined using the FUNC=DSECT request).

RETCODE=returncodeaddress

Output parameter that specifies the address of a 4-byte field to contain the

CQSRSYNC return code.

 If the return code in register 15 is nonzero, the values in the return and

reason code fields are invalid, because the CQS interface detected an error

and was unable to send the request to CQS.

RSNCODE=reasoncodeaddress

Output parameter that specifies the address of a 4-byte field to contain the

CQSRSYNC reason code.

Return and Reason Codes for CQSRSYNC

Table 45 lists the return and reason code combinations that can be returned for

CQSRSYNC requests. Use a CQSRSYNC FUNC=DSECT request to include

equate statements in your program for the return and reason codes.

 Table 45. CQSRSYNC Return and Reason Codes

Return Code Reason Code Meaning

X'00000000' X'00000000' Request completed successfully and all list entries are

in sync. The Structure Event exit routine is called for

CQS resync. The client can now issue CQS requests

to write or retrieve data for this structure.

CQSRSYNC

Chapter 6. CQS Client Requests 149

Table 45. CQSRSYNC Return and Reason Codes (continued)

Return Code Reason Code Meaning

X'00000004' X'00000110' CQS was cold started. No list entries were processed.

CQS did not find any unresolved UOWs. The

Structure Event exit routine is not called. The client

can now issue CQS requests to write or retrieve data

for this structure.

X'00000004' X'00000114' Client was cold started. CQS did not find any

unresolved UOWs. The Structure Event exit routine is

not called. The client can now issue CQS requests to

write or retrieve data for this structure.

X'00000004' X'00000118' CQS was cold started. No list entries were processed.

CQS did find some unresolved UOWs and marked

them as being in cold status. The Structure Event exit

routine is called to inform the client of the unresolved

UOWs. The client can now issue CQS requests to

write or retrieve data for this structure.

X'00000004' X'0000011C' Client was cold started. CQS did find some

unresolved UOWs. The Structure Event exit routine is

called to inform the client of the unresolved UOWs.

The client can now issue CQS requests to write or

retrieve data for this structure.

X'00000008' X'00000210' cqstoken is invalid. No list entries were processed.

The Structure Event exit routine is not called. The

client must reissue the CQSRSYNC request.

X'00000008' X'00000214' connecttoken is invalid. No list entries were

processed. The Structure Event exit routine is not

called. The client must reissue the CQSRSYNC

request.

X'00000008' X'00000218' FUNC is invalid. The client must reissue the

CQSRSYNC request.

X'00000008' X'00000254' listaddress is invalid. No list entries were processed.

The Structure Event exit routine is not called. The

client must reissue the CQSRSYNC request.

X'00000008' X'0000027C' CQSRSYNC is not allowed for a resource structure.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000008' X'00000288' List version is invalid.

X'0000000C' X'00000300' Request succeeded for at least one, but not all, list

entries. At least one list entry is in sync. See

compcode in each list entry for individual errors. The

Structure Event exit routine is called for CQS resync.

The client can now issue CQS requests to write or

retrieve data for this structure.

X'0000000C' X'00000304' Request failed for all list entries. None of the list

entries are in sync. See compcode in each list entry

for individual errors. The Structure Event exit routine

is called for CQS resync. The client can now issue

CQS requests to write or retrieve data for this

structure.

X'00000010' X'00000430' No CQS address space.

X'00000014' X'00000500' CQS internal error.

CQSRSYNC

150 Common Queue Server Guide and Reference

CQSSHUT Request

Format for CQSSHUT

DSECT Function of CQSSHUT: Use the DSECT function of a CQSSHUT request

to include equate (EQU) statements in your program for the CQSSHUT parameter list

length and CQSSHUT return and reason codes.

QUIESCE Function of CQSSHUT: Use the QUIESCE function of a CQSSHUT

request to terminate CQS.

Usage of CQSSHUT

A CQSSHUT request notifies CQS to terminate after all clients have disconnected.

After the CQSSHUT request is issued, CQS stops accepting CQSCONN requests.

CQS continues to accept input or output requests, so that clients can complete

work in progress. In order to complete the shutdown process, clients must stop

working and issue CQSDISC requests to disconnect from CQS. After all clients

have disconnected, CQS terminates all tasks and returns control to z/OS.

Parameter Description:

CQSTOKEN=cqstokenaddress

Input parameter that specifies the address of the 16-byte CQS registration

token that uniquely identifies the client’s connection to CQS. The

registration token is returned by the CQSREG request.

ECB=ecbaddress

Four-byte input parameter that specifies the address of the z/OS event

control block (ECB) used for asynchronous requests. If ECB is specified,

the request is processed asynchronously; otherwise, it is processed

synchronously.

PARM=parmaddress

Four-byte input parameter that specifies the address of a parameter list

used by the request to pass parameters to CQS. The length of the storage

area must be at least equal to the EQU value CQSSHUT_PARM_LEN

(defined using the FUNC=DSECT request).

RETCODE=returncodeaddress

Output parameter that specifies the address of a 4-byte field to contain the

CQSSHUT return code.

 If the return code in register 15 is nonzero, the values in the return and

reason code fields are invalid, because the CQS interface detected an error

and was unable to send the request to CQS.

RSNCODE=reasoncodeaddress

Four-byte output parameter that specifies the address of a field to contain

the CQSSHUT reason code.

�� CQSSHUT FUNC=DSECT ��

�� CQSSHUT FUNC=QUIESCE CQSTOKEN=cqstokenaddress PARM=parmaddress �

�
ECB=ecbaddress

 RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ��

CQSSHUT

Chapter 6. CQS Client Requests 151

Return and Reason Codes for CQSSHUT

Table 46 lists the return and reason code combinations that can be returned for

CQSSHUT requests. Use a CQSSHUT FUNC=DSECT request to include equate

statements in your program for the return and reason codes.

 Table 46. CQSSHUT Return and Reason Codes

Return Code Reason Code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000010' X'00000444' CQS initialization is in progress. Reissue the

CQSSHUT request after initialization is complete.

CQSUNLCK Request

Format for CQSUNLCK

DSECT Function of CQSUNLCK: Use the DSECT function of a CQSUNLCK

request to include equate (EQU) statements in your program for the CQSUNLCK

parameter list length and CQSUNLCK return and reason codes.

UNLOCK Function of CQSUNLCK: Use the UNLOCK function of a CQSUNLCK

request to unlock one or more data objects and move them to the end or beginning

of the queue.

FORCE Function of CQSUNLCK: Use the FORCE function of a CQSUNLCK

request to forcibly unlock data objects read from the specified queue type by the

specified failed CQS client and clean up CQS’s knowledge of the data objects.

�� CQSUNLCK FUNC=DSECT ��

�� CQSUNLCK FUNC=UNLOCK CQSTOKEN=cqstokenaddress �

� CONTOKEN=connecttokenaddress PARM=parmaddress COUNT=count �

�

LIST=listaddress
 LISTVER=1

LISTVER=listversion

ECB=ecbaddress

�

� RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ��

CQSSHUT

152 Common Queue Server Guide and Reference

||

Usage of CQSUNLCK

Restriction: The CQSUNLCK request is not supported for resource structures.

A CQSUNLCK FUNC=UNLOCK request unlocks one or more data objects and

moves them into the first or last position on the queue. The client passes an unlock

list that contains one or more list entries, where each entry is a separate unlock

request. A successful CQSUNLCK request invalidates the lock token and makes the

data object available to any client for a CQSBRWSE, CQSDEL, CQSMOVE, or

CQSREAD request.

The CQSUNLCK FUNC=FORCE request enables a CQS client to forcibly unlock

data objects read from the specified queue type by the specified failed CQS client,

so that the data objects don’t remain on the LOCKQ until the failed CQS client

restarts. Force unlock also removes the CQS’s knowledge of locked data objects, if

this CQS processed the CQSREAD requests that locked the data objects.

When a CQS client fails, its locked data objects remain on the LOCKQ until the

CQS client restarts, resyncs with CQS, and decides what to do with the locked data

objects, or until a CQS client forcibly unlocks the data objects. Locked data objects

are not accessible by other CQS clients.

Attention: CQS clients should use the CQSUNLCK FUNC=FORCE request with

caution. The CQS clients in an IMSplex must apply the following force unlock rules

consistently. If not used consistently, the CQSRSYNC request might fail, data

objects might remain on the lock queue, read tables might remain in CQS, or data

objects might be moved to the COLDQ. When using CQSUNLCK FUNC=FORCE,

apply the following rules:

v Define IMSplex with CSL.

The IMSplex must be defined with a Common Service Layer, so that CQS clients

are notified when a CQS client fails.

v Select queue type candidates.

Select one or more queue types whose data objects are candidates to be forcibly

unlocked. All of the data objects with the specified queue type are candidates.

There is no way to select specific data objects of a queue type to be forcibly

unlocked.

v Forcibly unlock another CQS client’s data objects when CQS client fails.

When a CQS client fails, it may leave locked data objects on the LOCKQ.

Another CQS client should issue the CQSUNLCK FUNC=FORCE request, so

that data objects don’t remain on the LOCKQ until the failed CQS client restarts.

Issue a CQSUNLCK FUNC=FORCE request only to forcibly unlock data objects

of a CQS client that is currently not active. It is up to the CQS client issuing the

CQSUNLCK FUNC=FORCE request to insure that the target CQS client is not

active.

�� CQSUNLCK FUNC=FORCE CQSTOKEN=cqstokenaddress �

� CONTOKEN=connecttokenaddress PARM=parmaddress CLIENT=clientnameaddress �

� COUNT=count QTYPE=queuetype

ECB=ecbaddress
 RETCODE=returncodeaddress �

� RSNCODE=reasoncodeaddress ��

CQSUNLCK

Chapter 6. CQS Client Requests 153

|

|

It is up to the CQS clients in the IMSplex to ensure that only one CQS client

issues the CQSUNLCK FUNC=FORCE request. All members in an IMSplex

defined with a CSL are notified when a member fails. Multiple CQSUNLCK

FUNC=FORCE requests may have the following undesirable results:

– Unnecessary CF accesses.

The CQSUNLCK FUNC=FORCE request incurs multiple CF accesses to look

at data objects on the candidate queue type. If multiple CQSUNLCK

FUNC=FORCE requests are issued, each request makes the same numerous

CF accesses. These extra CF accesses are unneccessary and incur

additional performance overhead. If the performance overhead of unnecessary

CF accesses is unacceptable, it is up to the CQS clients in the IMSplex to

ensure that only one CQS client issues the CQSUNLCK FUNC=FORCE.

It is up to the CQS clients in the IMSplex to insure that exactly one CQS client

issues the CQSUNLCK FUNC=FORCE request successfully. If a CQS client

issues the CQSUNLCK FUNC=FORCE request and a failure occurs, such as

CQSUNLCK error, structure failure, loss of link, and so on, then the CQS

clients in the IMSplex must insure that the CQSUNLCK FUNC=FORCE

request is issued successfully after the error is corrected.

– Data objects incorrectly unlocked.

If a failed CQS client initializes right away, it might forcibly unlock its own data

objects, resync with CQS, and put new data objects on the queue structure,

before another CQS client attempts to forcibly unlock the failed CQS client’s

data objects. The other CQS client could incorrectly unlock data objects for

UOWs that are in flight. It is up to the CQS clients in the IMSplex to insure

that exactly one CQS client forcibly unlocks data objects for the specified

client.

v Forcibly unlock CQS client’s own data objects when CQS client initializes.

When a CQS client initializes, it should forcibly unlock its own data objects before

issuing CQSRSYNC. This insures that the CQS client’s data objects are

unlocked before resync, in case no other CQS client was available at failure time

to do the force unlock. Force unlock also cleans up CQS’s knowledge of the IMS

client’s locked data objects, since this CQS processed the CQSREAD request

that locked the data objects.

v Resync with CQS, handling UOW’s that are candidates for unlock force.

When building the resync list to pass to CQS on the CQSRSYNC request, mark

all candidates for the UNLOCK FORCE with a CQS client status of forced. CQS

resync checks for the client status of forced and sets the UOWs to a CQS status

of unlock in sync.

v Forcibly unlock other failed CQS clients’ data objects when CQS client initializes.

When a CQS client initializes, it should forcibly unlock the data objects of failed

CQS clients, in case no other CQS client was available to do the force unlock

when the CQS clients failed. After an initializing CQS client resyncs with CQS, it

should issue one CQSUNLCK FUNC=FORCE request per failed CQS client, to

forcibly unlock data objects on the candidate queue types.

Parameter Description:

CLIENT=clientnameaddress

Eight-byte input field that specifies the CQS client for which to forcibly unlock

data objects. The client name is the same name specified on the CQSREG

request when the client registered to CQS. A CQS client can forcibly unlock its

own locked data objects before issuing the CQSRSYNC request. A CQS client

can forcibly unlock another CQS client’s locked data objects after issuing the

CQSRSYNC request.

CQSUNLCK

154 Common Queue Server Guide and Reference

CONTOKEN=connecttokenaddress

Input parameter that specifies the address of the 16-byte connect token that

uniquely identifies the client’s connection to a particular coupling facility

structure managed by this CQS. The connect token is returned by the

CQSCONN request.

COUNT=count

Four-byte input parameter that specifies the number of list entries in the unlock

list or four-byte output parameter to receive the count of data objects that were

forcibly unlocked.

CQSTOKEN=cqstokenaddress

Input parameter that specifies the address of the 16-byte CQS registration

token that uniquely identifies the client’s connection to CQS. The registration

token is returned by the CQSREG request.

ECB=ecbaddress

Four-byte input parameter that specifies the address of the z/OS event control

block (ECB) used for asynchronous requests. If ECB is specified, the request is

processed asynchronously; otherwise it is processed synchronously.

LIST=listaddress

Four-byte input parameter that specifies the address of the unlock list. Each

entry is a separate CQSUNLCK request. Some fields in each entry must be

initialized by the client prior to the CQSUNLCK request. Other fields are

returned by CQS upon completion of the CQSUNLCK request.

 The CQSUNLL list entry DSECT maps the list entries and can be used by the

client. Multiple list entries must reside in contiguous storage.

 Each list entry contains the following:

compcode

Four-byte output field to receive the completion code from the request.

Possible completion codes are:

X'00000000'

Request completed successfully.

X'00000004'

locktoken is invalid.

X'00000008'

Structure inaccessible.

X'0000000C'

Unable to unlock the data object, because the original queue

for the data object is full. No data objects can be moved to the

named queue, but CQSUNLCK requests for other queues are

allowed.

X'00000010'

CQS internal error

X'00000014'

Data object was lost because the structure was rebuilt. The

data object was nonrecoverable and a rebuild occurred after the

data object was locked. The data object is now lost.

qpos One-byte input parameter that indicates the position on the queue to

which the unlocked element is to be added.

X'00' Original client queue position. If the CQSREAD request that

CQSUNLCK

Chapter 6. CQS Client Requests 155

locked this data object read the first data object, this request

unlocks the data object and adds it to beginning of the queue. If

the CQSREAD request read the last data object, this request

unlocks the data object and adds it to the end of the queue.

X'01' End of queue.

X'02' Beginning of queue.

locktoken

Sixteen-byte input parameter that specifies the lock token that uniquely

identifies the data object locked by a CQSREAD request. This

parameter is required.

LISTVER=1 | listversion

Input parameter that specifies an equate for the list version. Use the DSECT

function of a CQSUNLCK request to include equate (EQU) statements in your

program for the CQSUNLCK list versions.

PARM=parmaddress

Four-byte input parameter that specifies the address of a parameter list used by

the request to pass parameters to CQS. The length of the storage area must be

at least equal to the EQU value CQSUNLCK_PARM_LEN (defined using the

FUNC=DSECT request).

QTYPE=queuetype

Four-byte input parameter that specifies the queue type from which the locked

data objects were read. Valid values for the queue type are from 1 to 255

(decimal).

RETCODE=returncodeaddress

Output parameter that specifies the address of a 4-byte field to contain the

CQSUNLCK request return code.

 If the return code in register 15 is nonzero, the values in the return and reason

code fields are invalid, because the CQS interface detected an error and was

unable to send the request to CQS.

RSNCODE=reasoncodeaddress

Output parameter that specifies the address of a 4-byte field to contain the

CQSUNLCK request reason code.

Return and Reason Codes for CQSUNLCK

Table 47 lists the return and reason code combinations that can be returned for

CQSUNLCK requests. Use a CQSUNLCK FUNC=DSECT request to include equate

statements in your program for the return and reason codes.

 Table 47. CQSUNLCK Return and Reason Codes

Return Code Reason Code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000214' connecttoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'00000240' queuetype is invalid.

X'00000008' X'00000244' clientname is invalid.

X'00000008' X'00000250' count is invalid.

X'00000008' X'00000254' listaddress is invalid.

CQSUNLCK

156 Common Queue Server Guide and Reference

Table 47. CQSUNLCK Return and Reason Codes (continued)

Return Code Reason Code Meaning

X'00000008' X'0000027C' CQSUNLCK is not allowed for a resource structure.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000008' X'00000288' List version is invalid.

X'0000000C' X'00000300' Request succeeded for at least one but not all list

entries. See compcode for individual errors.

X'0000000C' X'00000304' Request failed for all list entries. See compcode for

individual errors.

X'00000010' X'00000400' A CQSRSYNC is required for this structure.

X'00000010' X'00000430' No CQS address space.

CQSUPD Request

Format for CQSUPD

DSECT Function of CQSUPD: Use the DSECT function of a CQSUPD request to

include equate (EQU) statements in your program for the CQSUPD parameter list

length, the CQSUPD return and reason codes, the CQSUPD parmlist version, and

the CQSUPD list version.

UPDATE Function of CQSUPD: Use the UPDATE function of a CQSUPD request

to create or update one or more uniquely named resources on a resource structure.

Each resource can optionally include a small client data area (DATA1) or a large

client data area (DATA2).

Usage of CQSUPD

A CQSUPD creates or updates one or more uniquely named resources on a

resource structure. CQSUPD creates a resource if it does not exist, or updates a

resource if it does exist. A resource can be created or updated with or without client

data. Examples of resources include transactions and control blocks.

Parameter Description:

CONTOKEN=connecttokenaddress

Address of a 16-byte input parameter that specifies the connect token that

�� CQSUPD FUNC=DSECT ��

�� CQSUPD FUNC=UPDATE CQSTOKEN=cqstokenaddress �

� CONTOKEN=connecttokenaddress PARM=parmaddress LIST=resourcelistaddress �

�

LISTSIZE=listsize
 LISTVER=1

COUNT=resourcelistcount

�

�
ECB=ecbaddress

 RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ��

CQSUNLCK

Chapter 6. CQS Client Requests 157

uniquely identifies the client’s connection to a particular coupling facility

structure managed by CQS. The connect token is returned by the CQSCONN

request.

COUNT=resourcelistcount

Four-byte input parameter that specifies the number of entries in the list.

CQSTOKEN=cqstokenaddress

Address of a 16-byte input parameter that specifies the CQS registration token

that uniquely identifies the client’s connection to CQS. The registration token is

returned by the CQSREG request.

ECB=ecbaddress

Address of a 4-byte input parameter that specifies the z/OS event control block

(ECB) used for asynchronous requests. If ECB is specified, the request is

processed asynchronously; otherwise, it is processed synchronously.

LISTSIZE=resourcelistsize

Four-byte input parameter that specifies the size of the resource list. The list

size must be specified because each entry in the list might have a variable

length.

LISTVER=1 | listversion

Input parameter that specifies an equate for the list version. Use the DSECT

function of a CQSUPD request to include equate (EQU) statements in your

program for the CQSUPD list versions.

LIST=resourcelistaddress

Address of an input parameter that specifies a variable size resource list

containing one or more entries. Each entry is a separate update request. Some

fields in each entry must be initialized by the client prior to the CQSUPD

request. Other fields are returned by CQS upon completion of the request.

 The CQSUPDL list entry DSECT maps the list entries and can be used by the

client. Multiple list entries must reside in contiguous storage.

 Each list entry contains the following fields:

listentrylength

Four-byte input field that specifies the length of the list entry. The list

entry length is variable, depending upon the data2 length, if specified.

This parameter is required.

resourceid

Twelve-byte input field that contains the unique identifier of the resource

to be created or updated on the resource structure. The resource

identifier is unique in the IMSplex. The resource identifier consists of a

1-byte name type followed by an 11-byte client-defined resource name.

The name type ensures uniqueness of client-defined names for

resources with the same name type. Resources of different resource

types can have the same name type. Valid values for the name type

are decimal numbers from 1 to 255. The client-defined name has

meaning to the client and consists of alphanumeric characters. This

parameter is required.

resourcetype

One-byte field that specifies the resource type. The resource type is a

client-defined physical grouping of resources on the resource structure.

Valid values for the resource type are decimal numbers from 1 to 255. If

CQSUPD

158 Common Queue Server Guide and Reference

the resource type is greater than the maximum number of resource

types defined by CQS (11), it is folded into one of the existing resource

types. This parameter is required.

reserved

Three-byte reserved field.

options

Four-byte input field that specifies update options. This parameter is

optional. Possible options are:

X'80000000'

Return data1 and owner, if update fails because of a version

mismatch. This incurs the performance overhead of an additional

CF access.

X'40000000'

Return data2, data1, and owner if update fails because of version

mismatch. The data2 is returned if data2buffer and data2buffersize

are specified. This incurs the performance overhead of an additional

CF access.

X'20000000'

Delete data2.

compcode

Four-byte output field to receive the completion code from the request.

Possible completion codes are:

X'00000000'

Request completed successfully.

X'00000004'

Request succeeded successfully, but only partial data returned

in data2buffer.

X'00000020'

Resourceid is invalid. The name type must be a decimal

number from 1 to 255.

X'00000024'

CQS internal error.

X'00000028'

Version doesn’t match that of existing resource.

X'00000030'

Resource already exists as a different name type.

X'00000034'

Structure is full.

X'00000038'

Resourcetype is invalid. The resource type must be a decimal

number from 1 to 255.

X'0000003C'

Listentrylength is invalid. The list entry length must be a

non-zero number greater than or equal to the minimum list

entry length. See the CQSUPDL DSECT.

X'00000040'

Structure is inaccessible.

CQSUPD

Chapter 6. CQS Client Requests 159

X'00000044'

No CQS address space.

version

Eight-byte input and output field that specifies the version of a resource.

The version is the number of times the resource has been updated. For

the initial CQSUPD request to create the resource, version must be

zero on input. For a subsequent CQSUPD request to update an existing

resource, version must match the existing resource’s version. The

CQSUPD request increments the version by 1, updates the resource

with the new version, and returns the new version as output. If a

CQSUPD request to update an existing resource fails because of a

version mismatch, CQS returns the correct version to the client as

output. This parameter is required. If the data object is created, version

is ignored on input and a version of 1 is returned as output.

owner Eight-byte input and output field that specifies the owner of a resource.

On input, owner is set for the resource. Specify zeroes to set no owner

of a resource. Only one owner is permitted. If the update request fails

because of a version mismatch and the option to return the owner is

specified, the owner of the existing resource is returned as output. This

parameter is required.

data1 Twenty-four-byte input and output field that specifies data1, a small

piece of client data for the resource to be updated. Specify zeroes to

set no client data in data1. If the CQSUPD request fails because of a

version mismatch and the option to return data1 is specified, data1 of

the existing resource is returned as output. The performance of

accessing the client data specified by data1 is faster than accessing

client data specified by data2. This parameter is required.

data2size

Four-byte input and output field that specifies the size of client data

data2 in data2buffer for the resource to be updated. Specify zero on

input, if there is no data2 to update. If the CQSUPD request fails

because of a version mismatch and the option to return data2 is set,

the data2 size of the existing resource is returned as output. This

parameter is optional.

data2buffersize

Four-byte input field that specifies the size of the data2buffer containing

the client data data2 for the resource to be updated or returned as

output. The maximum size that can be specified is 61312 bytes

(X'EF80'). Specify zero if data2 does not need to be updated or

returned as output. This parameter is optional.

data2buffer

Variable size input and output buffer that specifies data2, a large piece

of client data for the resource to be updated. If the CQSUPD request

fails because of a version mismatch and the option to return data2 is

specified, data2 of the existing resource is returned, as much as fits into

the data2buffer. This parameter is optional.

PARM=parmaddress

Address of an input parameter list used by the request to pass parameters to

CQS. The length of the storage area must be at least equal to the EQU value

CQSUPD_PARM_LEN (defined using the FUNC=DSECT request).

RETCODE=returncodeaddress

Address of a 4-byte output field to contain the CQSUPD return code. If the

CQSUPD

160 Common Queue Server Guide and Reference

return code in register 15 is non-zero, the values returned for

returncodeaddress and reasoncodeaddress are not valid because CQS

detected an error and did not process the request.

RSNCODE=reasoncodeaddress

Address of a 4-byte output field to contain the CQSUPD reason code.

Return and Reason Codes for CQSUPD

Table 48 table lists the return and reason codes that can be returned for CQSUPD

requests. Use a CQSUPD=DSECT request to include equate statements in your

program for the return and reason codes.

 Table 48. CQSUPD Return and Reason Codes

Return Code Reason Code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000214' contoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'00000250' resourcelistcount is invalid.

X'00000008' X'00000254' listaddress is invalid.

X'00000008' X'00000280' Request not allowed for a queue structure.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000008' X'00000288' List version is invalid.

X'0000000C' X'00000300' Request succeeded for at least one but not all list

entries. See compcode for individual errors.

X'0000000C' X'00000304' Request failed for all entries. See compcode for

individual errors.

X'0000000C' X'00000308' Request failed for one or more list entries because of

version mismatch. Those resources already exist as

the resourcetype specified. All other entries were

successful.

X'00000010' X'00000430' No CQS address space.

X'00000014' X'00000500' Internal error.

Example of Using a CQS Request: CQSREAD

Figure 25 on page 162 shows how you can use a CQSREAD request for a client

subsystem.

CQSUPD

Chapter 6. CQS Client Requests 161

* FUNCTION: USE CQSREAD REQUEST TO RETRIEVE A MESSAGE FROM SHARED *

* QUEUES. *

* *

* THE CALLER OF THIS MODULE PASSES THE ADDRESS AND SIZE OF *

* A BUFFER. IF THIS MODULE ENDS WITH RC=0, THAT BUFFER *

* HOLDS THE DATA OBJECT OR PARTIAL DATA. IF THIS MODULE *

* ENDS WITH A NON-ZERO RC, THE BUFFER’S CONTENTS ARE *

* UNPREDICTABLE. *

* *

* REGISTERS ON ENTRY: *

* *

* R2 - READ OBJECT BUFFER ADDRESS (BUFFER TO READ OBJECT INTO) *

* R3 - SIZE OF READ OBJECT BUFFER *

* R4 - CQS REGISTRATION TOKEN ADDRESS *

* R5 - CQS CONNECT TOKEN ADDRESS *

* R9 - ECB ADDRESS *

* R13 - SAVE AREA ADDRESS *

* R14 - RETURN ADDRESS *

* R15 - GETDOBJ ENTRY POINT ADDRESS *

* *

* REGISTERS DURING EXECUTION: *

* *

* R0 - WORK REGISTER *

* R1 - WORK REGISTER *

* R2 - CQSREAD PARMLIST AREA ADDRESS *

* R3 - WORK REGISTER *

* R4 - WORK REGISTER *

* R5 - WORK REGISTER *

* R6 - WORK REGISTER *

* R7 - WORK REGISTER *

* R8 - WORK REGISTER *

* R9 - ECB ADDRESS *

* R10 - WORK REGISTER *

* R11 - WORK REGISTER *

* R12 - BASE REGISTER *

* R13 - SAVE AREA ADDRESS *

* R14 - WORK REGISTER *

* R15 - WORK REGISTER *

* *

* MACROS REFERENCED: *

* WAIT *

* CQSREAD *

* *

* RETURN CODES: *

* R15 - RETURN CODE *

* X’00’ CQSREAD SUCCESSFUL/PARTIAL DATA RETURNED *

* X’08’ INTERFACE PROBLEM *

* X’0C’ NO MESSAGE FOR QNAME *

* X’10’ REQUEST IS UNSUCCESSFUL, UNEXPECTED RETURN OR REASON *

* CODE *

* *

Figure 25. Sample for CQSREAD Request (Part 1 of 4)

Example

162 Common Queue Server Guide and Reference

GETDOBJ CSECT

 STM R14,R12,12(R13) SAVE THE REGS

 LR R12,R15 R12 = PROGRAM BASE REGISTER

 USING GETDOBJ,R12

 LA R14,SAVEAREA CHAIN SAVE AREAS

 ST R13,4(,R14) THIS SAVEAREA BACKWARD PTR

 ST R14,8(,R13) LAST SAVEAREA FORWARD PTR

 LA R13,SAVEAREA THIS ROUTINE’S SAVEAREA

 ST R2,RDRBUFA SAVE A(BUFFER TO READ INTO)

 ST R3,RDRBUFSZ SAVE READ BUFFER SIZE

 MVC RDRRQTK,0(R4) SAVE CQS REGISTRATION TOKEN

 MVC RDRCONTK,0(R5) SAVE CQS CONNECT TOKEN

 ST R9,RDRECBA SAVE A(ECB)

 LA R2,RDRPARM LOAD A(PARAMETER AREA) INTO R2

 XC RDRLCKTK,RDRLCKTK LOCKTOKEN=0 FOR FIRST CQSREAD

 XC 0(4,R9),0(R9) CLEAR CALLER’S ECB

* RETRIEVE RECORD FROM IMS SHARED QUEUES

 CQSREAD FUNC=READ, X

 CQSTOKEN=@(RDRRQTK), A(REGISTRATION TOKEN) X

 PARM=(R2), A(CQSREAD PARMLIST AREA) X

 CONTOKEN=@(RDRCONTK), A(CONNECT TOKEN) X

 ECB=RDRECBA, A(ECB) X

 LCKTOKEN=@(RDRLCKTK), A(LOCK TOKEN) - RETURNED X

 UOW=@(RDRUOW), A(UOW) - RETURNED X

 LOCAL=NO, READ OBJECT FROM SHARED QUEUE X

 QNAME=@(RDRQNAME), A(QUEUE NAME) X

 QPOS=FIRST, READ FIRST OBJECT ON QUEUE X

 OBJSIZE=@(RDROBJSZ), A(DATA OBJECT SIZE) - RETURNED X

 RSNCODE=@(RDRRSN), A(REASON CODE) - RETURNED X

 RETCODE=@(RDRRC), A(RETURN CODE) - RETURNED X

 BUFFER=RDRBUFA, A(CLIENT’S READ BUFFER) X

 BUFSIZE=@(RDRBUFSZ) CLIENT’S READ BUFFER SIZE

 LTR R15,R15 TEST RETURN CODE FROM CQS INTERFACE

 BZ CHECKRC ZERO - CQSREAD OK

* OTHER - RETURN R0, R15 IN PARM LIST

 LA R15,RC08 CQS INTERFACE PROBLEM

 B GOEXIT RETURN TO CALLER

* CHECK CQSREAD RETURN CODE

CHECKRC DS 0H

 WAIT ECB=(R9) WAIT FOR CQSREAD TO COMPLETE

 L R15,RDRRC RETURN CODE

 LTR R15,R15 CQSREAD REQUEST SUCCESSFUL?

 BZ GOEXIT YES - RETURN TO CALLER

Figure 25. Sample for CQSREAD Request (Part 2 of 4)

Example

Chapter 6. CQS Client Requests 163

* CHECK FOR CQS WARNING RETURN CODE

 CLC RDRRC,=AL4(RQRCWARN) CQSREAD WARNING?

 BNE UNEXPECT NO - SET RC AND RETURN TO CALLER

* CQSREAD: WARNING RETURN CODE - CHECK WARNING REASON CODE

* CHECK FOR DATA OBJECT

 CLC RDRRSN,=AL4(RRDNOOBJ) NO DATA OBJECT?

 BNE PARTIAL NO, CHECK NEXT REASON CODE

 LA R15,RC0C SET NO DATA OBJECT RETURN CODE

 B GOEXIT RETURN TO CALLER

* CHECK PARTIAL DATA RETURNED

* PARTIAL DATA RETURNED - RETURN DATA OBJECT - RETURN CODE 0

PARTIAL DS 0H

 CLC RDRRSN,=AL4(RRDPARTL) PARTIAL DATA RETURNED?

 BNE UNEXPECT NO - SET RC AND RETURN TO CALLER

 LA R15,RC00 SET RETURN CODE

 B GOEXIT RETURN TO CALLER

* UNEXPECTED RETURN OR REASON CODE

UNEXPECT DS 0H

 LA R15,RC10 UNEXPECTED RETURN OR REASON CODE

 B GOEXIT RETURN TO CALLER

* STANDARD EXIT *

GOEXIT DS 0H

 L 13,4(,13) GET PREVIOUS SAVE LEVEL

 L 14,12(13) A(RETURN-TO-CALLER)

 LM 0,12,20(13) RESTORE REGS

 OI 15(13),X’01’ SET RETURN FLAG IN CALLER SAVE AREA

 BR 14 RETURN TO CALLER

* CONSTANTS *

*

* GETDOBJ RETURN CODES

*

RC00 EQU 0 CQSREAD SUCCESSFUL -

RC08 EQU 8 INTERFACE PROBLEM

RC0C EQU 12 NO MESSAGE FOR QNAME

RC10 EQU 16 UNEXPECTED RETURN CODE

Figure 25. Sample for CQSREAD Request (Part 3 of 4)

Example

164 Common Queue Server Guide and Reference

*

* REGISTER EQUATES

*

R0 EQU 0

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9

R10 EQU 10

R11 EQU 11

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

* VARIABLES *

 DS 0F

SAVEAREA DS 18F

 DS 0D

RDRRQTK DS XL16 CQS REGISTRATION TOKEN

RDRCONTK DS XL16 CQS CONNECT TOKEN

RDRLCKTK DS XL16 LOCKTOKEN (RETURNED)

RDRUOW DS XL32 UOW (RETURNED)

RDRQNAME DS 0XL16 QUEUE NAME

 DC X’05’ CLIENT QUEUE TYPE 5

 DC CL15’FFSTR01CF02CQ04’

RDROBJSZ DS F OBJECT SIZE (RETURNED)

RDRRSN DS F CQSREAD REASON CODE (RETURNED)

RDRRC DS F CQSREAD RETURN CODE (RETURNED)

RDRBUFA DS A A(READ OBJECT BUFFER)

RDRBUFSZ DS F SIZE OF READ OBJECT BUFFER

RDRECBA DS A A(ECB)

RDRPARM DS XL(CQSREAD_PARM_LEN) CQSREAD PARMLIST

* LITERALS *

 LTORG

 CQSREAD FUNC=DSECT CQSREAD DSECTS & EQUATES

 END GETDOBJ

Figure 25. Sample for CQSREAD Request (Part 4 of 4)

Example

Chapter 6. CQS Client Requests 165

Example

166 Common Queue Server Guide and Reference

Chapter 7. CQS Client Exit Routines

This section describes the Common Queue Server (CQS) client exit routines.

The following topics provide additional information;

 “Client CQS Event Exit Routine”

 “CQS Client Structure Event Exit Routine” on page 169

 “CQS Client Structure Inform Exit Routine” on page 178

This section contains Product-sensitive Programming Interface information.

CQS client exit routines allow a CQS client to monitor the CQS environment. They

are written and supplied by a client (such as IMS). Each client must write its own

exit routines tailored to the needs of that client product, to be supplied as part of the

product. No sample CQS client exit routines are provided. The exit routines are

given control in the client’s address space in one of these two ways:

v For authorized clients (those running in supervisor state, key 0-7), the exits

receive control in service request block (SRB) mode.

v For non-authorized clients (those running in problem state or non-key 0-7), the

exits receive control as an interrupt request block (IRB) under the client task

control block (TCB) that owns the cross memory resources for the address space

(the TCB pointed to by ASCBXTCB).

Because each call to a client exit routine runs under its own SRB, the order in

which the exits are driven is not guaranteed. It is possible for client exit routines to

be driven out of order (different from the order from which CQS scheduled them).

Your exit routines must be able to tolerate events that are received out of order. All

client exit routine parameter lists contain an 8-byte time stamp in STCK format that

is the time when CQS scheduled the SRB for the exit routine. This time stamp can

be used to help determine the original order of events.

Client CQS Event Exit Routine

The CQS Event exit routine is driven when an event occurs in CQS that is related

to CQS itself and might require some action to be taken by the client.

The client loads the exit routine and passes the exit routine address on the

CQSREG request. This exit routine is driven in the client address space, either as

an SRB (for authorized clients), or as an IRB (for non-authorized clients). The CQS

Event exit routine is required.

The following CQS events drive the CQS Event exit routine:

v CQS initialization - client can reconnect to CQS

v CQS termination - abnormal termination

Contents of Registers on Entry

Register Contents

0 Length in bytes of the parameter list pointed to by R1.

1 Address of CQS Event Exit Parameter List (mapped by macro

CQSCEVX).

© Copyright IBM Corp. 1997, 2004 167

|

|

|

|

13 Address of a standard 18-word save area, immediately followed by

an 18-word work area that is available for the exit routine’s use.

The save area and the work area are not chained together. The

save area or work area storage is not cleared on entry to the CQS

Event exit routine.

14 Return address.

15 Entry point of exit routine.

 Restriction: All addresses passed to the CQS Event Exit routine are valid only

until the exit routine returns to its caller. These addresses should never be stored

and used after the CQS Event exit routine has returned. Doing so can cause

unpredictable results, because the storage pointed to by the addresses might have

changed, or it might have been freed.

Contents of Registers on Exit

The CQS Event exit routine must preserve the contents of R13; it does not need to

preserve any other register’s contents. Therefore, it is free to use the save area

pointed to by R13 for any calls to other services as needed (it can also use the

18-word area following the save area for additional save area or work area

storage).

Register Contents

13 The same value it had on entry to the CQS Event exit routine.

15 Return code

0 Always set this to zero.

CQS Restart Entry Parameter List

Table 49 describes the CQS restart entry parameters for the Client CQS Event exit

routine.

 Table 49. Client CQS Event Exit Routine Parameter List: CQS Restart Entry

Field Name Offset Length Description

CEVX_PVSN X'00' X'04' Parameter List Version Number (00000001).

CEVX_EVENT X'04' X'04' CQS Event Code

1 CQS Initialization Event

(CEVX_INIT).

CEVX_SCODE X'08' X'04' CQS Event Subcode

1 Client can re-register and

reconnect to CQS

(CEVX_RESTART).

CEVX_DATA X'0C' X'04' Event exit routine client data that was passed to

CQS on the CQSREG request.

CEVX_CQSID X'10' X'08' CQS identifier.

CEVX_CQSVER X'18' X'04' CQS version number.

CEVX_TSTMP X'1C' X'08' Time stamp representing the time the exit routine

was scheduled (in STCK format).

CQS Abnormal Termination Parameter List

Table 50 on page 169 describes the CQS abnormal termination parameters for the

Client CQS Event exit routine.

CQS Event Client Exit

168 Common Queue Server Guide and Reference

Table 50. Client CQS Event Exit Routine Parameter List: CQS Abnormal Termination

Offset Length Description

X'00' X'04' Parameter List Version Number (00000001).

X'04' X'04' CQS Event Code

2 CQS Termination Event.

X'08' X'04' CQS Event Subcode

1 CQS abnormal termination entry. The CQS

address space is terminating abnormally.

X'0C' X'04' Event exit routine client data that was passed to CQS on the

CQSREG request.

X'10' X'08' CQS identifier.

X'18' X'04' CQS version number.

X'1C' X'08' Time stamp representing the time the exit routine was scheduled

(in STCK format).

X'24' X'04' Abnormal Termination reason code. (CQS abend code)

Client Processing after CQS Abnormal Termination or Restart

If a client is registered with CQS and CQS terminates abnormally, the client’s CQS

Event exit routine is called with a CQS abnormal termination event. The client can

choose to wait for CQS to be restarted, at which time the client’s CQS Event exit

routine is scheduled for a CQS restart event. When the CQS restart event is

received, the client must perform the following steps before it can resume making

CQS requests:

1. The client must reregister with CQS using the CQSREG macro. This step is

necessary to reestablish the cross-memory connections between the client and

CQS. Failure to reregister can result in an S0D6 abend when the next CQS

request is issued.

2. The client must reconnect, using the CQSCONN macro, to any structures it was

using prior to the CQS failure.

3. The client must resync indoubt UOWs with CQS, using the CQSRSYNC macro.

4. The client must register interest in queues, using the CQSINFRM request. If

CQS terminated abnormally, it lost all previous client registration information.

CQS Client Structure Event Exit Routine

The Client Structure Event exit routine is driven when an event occurs concerning a

CQS-managed structure that might require some action to be taken by the client.

The client loads the exit routine and passes the address of the exit routine on the

CQSCONN request. This exit routine is driven in the client address space, either as

an SRB (for authorized clients), or as an IRB (for non-authorized clients). This exit

routine is required, and applies both to resource and queue structures.

The following structure events drive the Client Structure Event exit routine:

v Resync UOW Processing

– When CQS Resync processing completes for an individual UOW, which had

been deferred.

– When CQS Resync processing occurs for the list of client UOWs that were

not passed during the CQS Resync request.

CQS Event Client Exit

Chapter 7. CQS Client Exit Routines 169

– Important: Resync UOW Processing only applies to queue structures.

v Checkpoint Event

– When structure checkpoint begin, end, or failure occurs.

– Important: The Checkpoint event only applies to queue structures.

v Structure Rebuild Event

– When structure copy (rebuild) begin, end, or failure occurs.

– When structure recovery (rebuild) begin, end, or failure occurs.

– When structure recovery lost UOWs occurs.

v Structure Overflow Event

– When one or more queues move to the overflow structure.

– When one or more queues move from the overflow structure. This event also

indicates when the structure is no longer in overflow mode.

– Important: The Structure Overflow event only applies to queue structures.

v Structure Status Change Event

– When the structure is available again after a loss.

– When the structure fails. For resource structures only, failure means that CQS

cannot allocate a new resource structure.

– When CQS is able to repopulate (allocate) a new resource structure.

– When CQS loses its connection to the structure.

– When the log stream becomes available, making the structure available.

The following topics provide additional information:

v “Contents of Registers on Entry”

v “Contents of Registers on Exit” on page 171

v “Deferred Resync Complete Parameter List for CQS Client Structure Event” on

page 171

v “CQS Resync Parameter List” on page 172

v “CQS Resync UOW Entry” on page 172

v “Checkpoint Parameter List for CQS Client Structure Event” on page 173

v “Structure Rebuild Parameter List for CQS Client Structure Event” on page 174

v “Structure Rebuild Lost UOWs Parameter List for CQS Client Structure Event” on

page 175

v “Rebuild Lost UOW Entry for CQS Client Structure Event” on page 175

v “Structure Overflow Parameter List for CQS Client Structure Event” on page 176

v “Structure Status Change Parameter List for CQS Client Structure Event” on

page 177

Contents of Registers on Entry

Register Contents

0 Length in bytes of the parameter list pointed to by R1.

1 Address of Client Structure Event exit routine parameter list

(mapped by macro CQSSEVX).

13 Address of a standard 18-word save area, immediately followed by

an 18-word work area that is available for use by the exit routine.

The save area and the work area are not chained together. The

save area or work area storage is not cleared on entry to the Client

Structure Event exit routine.

Structure Event Client Exit

170 Common Queue Server Guide and Reference

|

|

|

|
|

|

|

|

|

|
|

|

|

|
|

14 Return address.

15 Entry point of exit routine.

 Restriction: All addresses that are passed to the Client Structure Event exit

routine are valid only until the exit routine returns to its caller. These addresses

should never be stored and used after the CQS Client Structure Event exit routine

has returned. Doing so can cause unpredictable results, because the storage

pointed to by the addresses might have changed, or it might have been freed.

Contents of Registers on Exit

The Client Structure Event exit routine must preserve the contents of R13; it does

not need to preserve any other register contents. Therefore, it is free to use the

save area pointed to by R13 for any calls to other services as needed. The exit

routine can also use the 18-word area following the save area for additional save

area or work area storage.

Register Contents

13 The same value it had on entry to the Client Structure Event exit

routine.

15 Return code

0 Always set this to zero.

Deferred Resync Complete Parameter List for CQS Client Structure

Event

Table 51 describes the deferred resync complete parameters for the Client Structure

Event exit routine.

 Table 51. Client Structure Event Exit Routine Parameter List: Deferred Resync Complete

Offset Length Description

X'00' X'04' Parameter List Version Number (00000001).

X'04' X'04' Structure Event Code

1 Resync UOW Event.

X'08' X'04' Structure Event Subcode

1 Deferred Resync complete.

X'0C' X'04' Structure Event exit routine client data that was passed to CQS

on the CQSCONN request.

X'10' X'08' CQS identifier.

X'18' X'04' CQS version number.

X'1C' X'10' Structure Name.

X'2C' X'08' Time stamp representing the time the exit routine was scheduled

(in STCK format).

X'34' X'20' Unit of work (UOW) identifier.

X'54' X'10' Queue Name.

X'64' X'10' Deferred Resync token. This is the Put token that is used for Put

Forget processing.

Structure Event Client Exit

Chapter 7. CQS Client Exit Routines 171

Table 51. Client Structure Event Exit Routine Parameter List: Deferred Resync

Complete (continued)

Offset Length Description

X'74' X'02' CQS UOW State

X'0010' Put Insync

 Client status is Put Complete. CQS status is

Put Complete. CQS knows about the UOW

and all data objects for the UOW are out on

the coupling facility. A PUT token is returned for

the UOW. The client should use the PUT token

to issue the CQSPUT FUNC=FORGET request.

X'00F2' Unknown

 Client status is Put Complete. CQS has no

knowledge of the UOW.

 If the client believes the UOW is in Put

Complete status, the client must determine

whether to reissue the CQSPUT requests.

X'76' X'02' Reserved.

CQS Resync Parameter List

Table 52 describes the CQS initiated resync parameters for the Client Structure

Event exit routine.

 Table 52. Client Structure Event Routine Exit Parameter List: CQS Initiated Resync

Offset Length Description

X'00' X'04' Parameter List Version Number (00000001).

X'04' X'04' Structure Event Code

1 Resync UOW Event.

X'08' X'04' Structure Event Subcode

2 CQS Initiated Resync processing.

X'0C' X'04' Structure Event exit routine client data that was passed to CQS

on the CQSCONN request.

X'10' X'08' CQS identifier.

X'18' X'04' CQS version number.

X'1C' X'10' Structure Name.

X'2C' X'08' Time stamp representing the time the exit routine was scheduled

(in STCK format).

X'34' X'04' Number of unit of work (UOW) list entries.

X'38' X'04' Length of each UOW list entry.

X'3C' X'04' Offset into parmlist of start of UOW list. The parmlist is one

contiguous piece of storage, including the UOW list.

CQS Resync UOW Entry

Table 53 on page 173 describes the CQS resync UOW entry parameters for the

Client Structure Event exit routine.

Structure Event Client Exit

172 Common Queue Server Guide and Reference

Table 53. CQS Resync UOW Entry Parameters

Offset Length Description

X'00' X'20' Unit of work (UOW) identifier.

X'20' X'10' Queue name.

X'30' X'10' Resync token.

v If the CQS UOW status is locked, this field contains a lock

token. This lock token is to be used on subsequent requests,

such as CQSREAD and CQSUNLCK to process the locked

data object.

v If the CQS UOW status is COLD QUEUE, this field contains a

cold queue token. This cold queue token is to be used along

with the UOW on a CQSRECVR request to recover the data

object on the cold queue.

X'40' X'02' CQS UOW Status

X'00F1' Locked. This data object is locked. A lock

token is passed back to the client in the

Resync token field. This token field is required

on subsequent requests to process the locked

data object.

X'00F3' Cold Queue: CQS-Client Cold Start. This data

object is on the cold queue because of either

a CQS cold start or client cold start. A cold

queue token is passed back to the client in the

Resync token field. This token field is required

on a subsequent CQSRECVR request to

process the data object on the cold queue.

X'00F4' Cold Queue: Unknown. This data object is on

the cold queue. CQS warm started after a

structure rebuild from the log took place and

the object was found locked by CQS. A cold

queue token is passed back to the client in the

Resync token field. This token field is required

on a subsequent CQSRECVR request to

process the data object on the cold queue.

X'42' X'02' Reserved.

Checkpoint Parameter List for CQS Client Structure Event

Table 54 describes the checkpoint parameters for the Client Structure Event exit

routine.

 Table 54. Client Structure Event Exit Routine Parameter List: Checkpoint

Offset Length Description

X'00' X'04' Parameter List Version Number (00000001).

X'04' X'04' Structure Event Code

2 Checkpoint Event.

X'08' X'04' Structure Event Subcode

1 Structure checkpoint begin.

2 Structure checkpoint end.

3 Structure checkpoint failure.

Structure Event Client Exit

Chapter 7. CQS Client Exit Routines 173

Table 54. Client Structure Event Exit Routine Parameter List: Checkpoint (continued)

Offset Length Description

X'0C' X'04' Structure Event exit routine client data that was passed to CQS

on the CQSCONN request.

X'10' X'08' CQS identifier.

X'18' X'04' CQS version number.

X'1C' X'10' Structure Name.

X'2C' X'08' Time stamp representing the time the exit routine was scheduled

(in STCK format).

X'34' X'08' CQS identifier of the master CQS performing the checkpoint

process.

X'3C' X'01' Flag byte.

X'80' This CQS is the master of the process. The CQS

identifier and master CQS identifier are the same.

X'3D' X'03' Reserved.

Structure Rebuild Parameter List for CQS Client Structure Event

Table 55 describes the structure rebuild parameters for the Client Structure Event

exit routine.

 Table 55. Client Structure Event Exit Routine Parameter List: Structure Rebuild

Offset Length Description

X'00' X'04' Parameter List Version Number (00000001).

X'04' X'04' Structure Event Code

3 Structure Rebuild Event.

X'08' X'04' Structure Event Subcode

1 Structure rebuild begin.

2 Structure rebuild (copy) end.

3 Structure rebuild (copy) failure.

4 Structure rebuild failure.

5 Structure rebuild (recovery) end.

6 Structure rebuild (recovery) failure.

X'0C' X'04' Structure Event exit routine client data that was passed to CQS

on the CQSCONN request.

X'10' X'08' CQS identifier.

X'18' X'04' CQS version number.

X'1C' X'10' Structure Name.

X'2C' X'08' Time stamp representing the time the exit routine was scheduled

(in STCK format).

X'34' X'08' CQS identifier of the master CQS performing the rebuild

process.

X'3C' X'01' Flag byte.

X'80' This CQS is the master of the process. The CQS

identifier and master CQS identifier are the same.

X'3D' X'03' Reserved.

Structure Event Client Exit

174 Common Queue Server Guide and Reference

Structure Rebuild Lost UOWs Parameter List for CQS Client Structure

Event

Table 56 describes the structure rebuild lost UOW parameters for the Client

Structure Event exit routine. These UOWs are nonrecoverable and were lost by the

last structure recovery. Some of the UOWs in the list might belong to other clients if

the structure recovery occurred while CQS was down.

 Table 56. Client Structure Event Exit Routine Parameter List: Structure Rebuild Lost UOWs

Offset Length Description

X'00' X'04' Parameter List Version Number (00000001).

X'04' X'04' Structure Event Code

3 Structure Rebuild Event.

X'08' X'04' Structure Event Subcode

7 Structure recovery lost UOWs.

 Important: This subcode applies only to queue

structures.

X'0C' X'04' Structure Event exit routine client data that was passed to CQS

on the CQSCONN request.

X'10' X'08' CQS identifier.

X'18' X'04' CQS version number.

X'1C' X'10' Structure Name.

X'2C' X'08' Time stamp representing the time the exit routine was scheduled

(in STCK format).

X'34' X'08' CQS identifier of the master CQS performing the rebuild

process.

X'3C' X'01' Flag byte.

X'80' This CQS is the master of the process. The CQS

identifier and master CQS identifier are the same.

X'3D' X'03' Reserved.

X'40' X'04' Number of Lost UOW list entries.

X'44' X'04' Length of each Lost UOW list entry.

X'48' X'04' Offset into parmlist of start of Lost UOW list. The parmlist is one

contiguous piece of storage, including the Lost UOW list.

Rebuild Lost UOW Entry for CQS Client Structure Event

Table 57 describes the CQS rebuild lost UOW entry parameters for the Client

Structure Event exit routine.

 Table 57. CQS Rebuild Lost UOW Entry Parameters

Offset Length Description

X'00' X'20' Unit of work (UOW) identifier.

X'20' X'10' Client Queue Name.

Structure Event Client Exit

Chapter 7. CQS Client Exit Routines 175

Table 57. CQS Rebuild Lost UOW Entry Parameters (continued)

Offset Length Description

X'30' X'1' Lost UOW status.

X'80' Lost UOW was on client queue.

X'40' Lost UOW was locked.

X'20' Lost UOW was on COLDQ.

X'10' Lost UOW was on CQS private queue.

X'31' X'3' Reserved.

Structure Overflow Parameter List for CQS Client Structure Event

Table 58 describes the structure overflow parameters for the Client Structure Event

exit routine.

 Table 58. Client Structure Event Exit Routine Parameter List: Structure Overflow

Offset Length Description

X'00' X'04' Parameter List Version Number (00000001).

X'04' X'04' Structure Event Code

4 Structure Overflow Event.

X'08' X'04' Structure Event Subcode

1 Move queues to overflow. One or more queues was

selected as candidates to be moved to the overflow

structure and was approved by the Queue Overflow

user exit routine.

2 Move queues from overflow. One or more queues

moved from the overflow structure back to the primary

structure, because the queues were drained on the

overflow structure. New work for these queues is

placed on the primary structure.

X'0C' X'04' Structure Event exit routine client data that was passed to CQS

on the CQSCONN request.

X'10' X'08' CQS identifier.

X'18' X'04' CQS version number.

X'1C' X'10' Structure Name.

X'2C' X'08' Time stamp representing the time the exit routine was scheduled

(in STCK format).

X'34' X'08' CQS identifier of the master CQS performing the overflow

process.

X'3C' X'01' Flag byte.

X'80' This CQS is the master of the process. The CQS

identifier and master CQS identifier are the same.

X'40' The structure is no longer in overflow mode. This value

applies only to subcode 2.

X'3D' X'03' Reserved.

X'40' X'04' Number of Queue Name entries in the list.

X'44' X'04' Length of each Queue Name list entry.

Structure Event Client Exit

176 Common Queue Server Guide and Reference

Table 58. Client Structure Event Exit Routine Parameter List: Structure Overflow (continued)

Offset Length Description

X'48' X'04' Offset into parmlist of start of Queue Name list. Each Queue

Name list entry contains the 16-byte queue name of a queue

that is being moved to the overflow structure. The parmlist is

one contiguous piece of storage, including the Queue Name list.

Structure Status Change Parameter List for CQS Client Structure Event

Table 59 describes the structure status change parameters for the Client Structure

Event exit routine.

 Table 59. Client Structure Event Exit Routine Parameter List: Structure Status Change

Offset Length Description

X'00' X'04' Parameter List Version Number (00000002).

X'04' X'04' Structure Event Code.

5 Structure Status Change Event.

X'08' X'04' Structure Event Subcode

1 Structure available again after a loss.

2 The structure failed.

3 CQS lost its connection to the structure (STXLCONN).

4 The log stream is becoming available, making the

structure available (STXAVLOG).

 Important: This subcode applies only to queue

structures.

5 The log stream is becoming unavailable, making the

structure unavailable (STXFLOG).

 Important: This subcode applies only to queue

structures.

6 Structure repopulation required due to structure failure.

X'0C' X'04' Structure Event exit routine client data that was passed to CQS

on the CQSCONN request.

X'10' X'08' CQS identifier.

X'18' X'04' CQS version number.

X'1C' X'10' Structure Name.

X'2C' X'08' Time stamp representing the time the exit routine was

scheduled (in STCK format).

X'34' X'01' Structure type

1 Queue structure

2 Resource structure

X'38' X'18' Not used.

X'50' X'08' Structure version of new structure that requires repopulation,

because old structure failed.

Structure Event Client Exit

Chapter 7. CQS Client Exit Routines 177

CQS Client Structure Inform Exit Routine

The Structure Inform exit routine is scheduled when work is placed on a queue for

which the client has registered interest with a CQSINFRM request and when a

CQSINFRM request is issued specifying that the exit routine be driven if there is

work on the queue. The exit routine is also scheduled whenever a queue goes from

an empty to non-empty state (when the first data object for a queue is written to the

structure). If additional data objects are added to the queue, the inform exit routine,

which has already been run once, is not notified again while there are still data

objects on the queue.

The client loads the exit routine and passes the address of the exit routine on the

CQSCONN request. This exit routine is driven in the client address space, either as

an SRB (for authorized clients), or as an IRB (for non-authorized clients).

Restriction: This exit routine does not apply to resource structures.

Important: This exit routine is optional; however, if it is not supplied, the client is

not notified when work is placed on the queues.

Contents of Registers on Entry

Register Contents

0 Length in bytes of the parameter list pointed to by R1.

1 Address of CQS Structure Inform Exit Parameter List (mapped by

macro CQSINFX).

13 Address of a standard 18-word save area, immediately followed by

an 18-word work area available for use by the exit routine. The

save area and the work area are not chained together. The save

area or work area storage is not cleared on entry to the Structure

Inform Exit routine.

14 Return address.

15 Entry point of exit routine.

 Restriction: All addresses that are passed to the CQS Structure Inform exit

routine are valid only until the exit routine returns to its caller. These addresses

should never be stored and used after the CQS Structure Inform exit routine has

returned. Doing so can cause unpredictable results, because the storage pointed to

by the addresses might have changed, or it might have been freed.

Contents of Registers on Exit

The CQS Structure Inform exit routine must preserve the contents of R13 and it

does not need to preserve any other register’s contents. Therefore, it is free to use

the save area pointed to by R13 for any calls to other services as needed. It might

also use the 18-word area following the save area for additional save area or work

area storage.

Register Contents

13 Same value as it had on entry to the CQS Structure Inform exit

routine.

15 Return code

0 Always set this to zero.

Structure Inform Client Exit

178 Common Queue Server Guide and Reference

Structure Inform Parameter List for CQS Client Structure Inform

Table 60 describes the parameters for the Client Structure Inform exit routine.

 Table 60. Client Structure Inform Exit Routine Parameter List

Offset Length Description

X'00' X'04' Parameter List Version Number (00000001).

X'04' X'04' Structure Inform exit routine client data that was passed to

CQS on the CQSCONN request.

X'08' X'08' CQS identifier.

X'10' X'04' CQS version number.

X'14' X'10' Structure Name.

X'24' X'08' Time stamp representing the time the exit routine was

scheduled (in STCK format).

X'2C' X'04' Number of Queue Names entries in the list.

X'30' X'04' Length of each Queue Name list entry.

X'34' X'04' Offset into parmlist of start of Queue Name list. Each Queue

Name entry in the list contains the 16-byte queue name for

which a message has been queued. The parmlist is one

contiguous piece of storage, including the Queue Name list.

Structure Inform Client Exit

Chapter 7. CQS Client Exit Routines 179

Structure Inform Client Exit

180 Common Queue Server Guide and Reference

Chapter 8. CQS Diagnosis

This section describes diagnostic information that helps you analyze problems in

CQS.

The following topics provide additional information:

 “CQS Log Records”

 “Printing CQS Log Records” on page 183

CQS Log Records

CQS writes records to the z/OS log stream that contains all CQS log records from

all CQSs that are connected to a structure pair. You can use the log records to:

v Diagnose problems related to the CQS address space.

For CQS internal errors, The IBM support representative will direct you to print

the appropriate log records.

You can sometimes use information in the log records to set up a keyword string

to search APAR descriptions and compare them to your own problem.

v Generate various reports related to the CQS address space, such as statistics

about the number of requests.

By knowing the content and format of the log records, you can set up a

DFSERA10 job to format and print the specific log records you want.

v Restart CQS and recover shared queues, if necessary

Each CQS log record contains a log record prefix, followed by data that is unique to

the record. Macro CQSLGRFX maps the log record prefix.

You can view the CQS log record formats by assembling mapping macro

CQSLGREC with TYPE=ALL.

Table 61 shows the CQS log records. For each CQS log record, the table lists:

v The log record type and subtype

v The macro that maps the record

v The events that cause the record to be written

 Table 61. CQS Log Records

Type Subtype Mapping Macro Conditions for Writing the Log Record

X'03' X'01' CQSLGCON CQSCONN request: The client connect to a structure completed.

X'04' X'01' CQSLGDSC CQSDISC request: The client disconnect from a structure completed.

X'07' X'01'

X'02'

X'03'

X'04'

X'05'

X'06'

X'07'

X'08'

CQSLGPUT CQSPUT OBJECT request completed.

CQSPUT COMMIT request completed.

CQSPUT START request completed.

CQSPUT FORGET request completed.

CQSPUT ABORT request completed.

CQSPUT request failed.

CQSPUT system checkpoint record was written.

CQSPUT FORGET request completed. This is a batched log record.

X'08' X'01'

X'02'

X'03'

CQSLGRD CQSREAD request completed.

CQSREAD request failed.

CQSREAD system checkpoint record was written.

© Copyright IBM Corp. 1997, 2004 181

|
|

|

|

|

Table 61. CQS Log Records (continued)

Type Subtype Mapping Macro Conditions for Writing the Log Record

 CQSLGCHD This system checkpoint header record is not a complete log record, but it

is used in CQSLGPUT and CQSLGRD system checkpoint log records.

X'0B' X'01'

X'02'

X'03'

CQSLGMOV CQSMOVE or CQSUNLCK request completed.

CQSMOVE or CQSUNLCK request failed.

CQSMOVE or CQSUNLCK request moved an object between

the primary and overflow structure.

X'0D' X'01'

X'02'

X'03'

X'04'

CQSLGDEL CQSDEL request: Delete-type 1 (delete by token) completed.

CQSDEL request: Delete-type 2 (delete by queue name) completed.

CQSDEL request: Delete-type 3 (delete by queue name and UOW)

 completed.

CQSDEL request: Delete-type 1 (delete by token) completed. This

is a batched log record.

 CQSLGBHD This batched log record header record is not a complete log record, but is

used in CQSLGPUT and CQSLGDEL batched log records.

X'10' X'01' CQSLGSHT CQSSHUT request completed.

X'32' X'01'

X'02'

X'03'

CQSLGYCH System checkpoint started.

System checkpoint ended.

System checkpoint failed.

X'40' X'01' CQSLGIST Beginning of log stream.

X'42' X'01'

X'02'

X'03'

CQSLGTCH Structure checkpoint started.

Structure checkpoint ended.

Structure checkpoint failed.

X'43' X'01'

X'02'

X'03'

X'04'

CQSLGRBL Structure rebuild started. Statistics about

the old structure, the rebuild structure,

and rebuild failure are mapped by CQSSSTT6.

Structure rebuild ended. Statistics about

the old structure, the rebuild structure,

and rebuild failure are mapped by CQSSSTT6.

Structure rebuild failed. Statistics about

the old structure, the rebuild structure,

and rebuild failure are mapped by CQSSSTT6.

Structure rebuild resulted in a lost UOW list. This record

lists the lost UOWs.

X'44' X'01'

X'02'

X'03'

X'04'

X'06'

X'07'

X'08'

X'09'

X'0A'

X'0B'

X'0C'

CQSLGOFL Overflow threshold began.

Overflow threshold ended.

Overflow threshold failed.

Overflow mode ended.

Qnames were moved to overflow.

Qnames were removed from overflow.

CQSOVERFLOWQNMR, a control list entry containing the list of queue

names deleted from overflow, was deleted.

Overflow Scan Begin.

Overflow Scan End.

Private Queue Scan Begin.

Structure to be deleted.

CQS Log Records

182 Common Queue Server Guide and Reference

Table 61. CQS Log Records (continued)

Type Subtype Mapping Macro Conditions for Writing the Log Record

X'60' X'01'

X'C0'

CQSLGSTT

BPESSTA

Structure statistics were written at the end of system checkpoint.

Internal BPE service statistics were also written at the end of system

checkpoint.

Printing CQS Log Records

To print the CQS log records from the z/OS system log, use the IMS File Select and

Formatting Print utility (DFSERA10) with exit routine CQSERA30. The following

example shows the required JCL to print the log records from a z/OS system log.

This JCL causes the z/OS logger to invoke the default log stream subsystem exit

routine, IXGSEXIT, to copy the log records. The exit routine returns a maximum of

32 760 bytes of data for each log record even though CQS supports larger log

records. You can specify the name of a different exit routine, if necessary.

Example: Use the JCL shown in Figure 26 to print the CQS log records:

DD Statements for CQS Diagnosis

STEPLIB DSN= points to IMS.SDFSRESL, which contains

the IMS File Select and Formatting Print utility,

DFSERA10.

SYSUT1 DSN= points to the CQS log stream name that was

specified in the LOGNAME= parameter in the

CQSSGxxx PROCLIB member.

Control Statements for CQS Diagnosis

H= Specifies the number of log records to print.

H=EOF prints all log records.

EXITR=CQSERA30 The CQS log record routine that is called to format

each log record. This routine prints the record type

and time-stamp information for each record, and

dumps the contents of the record (up to a maximum

of 32 760 bytes (X'7FF8')).

//CQSERA10 JOB MSGLEVEL=1,MSGCLASS=A,CLASS=K

//STEP1 EXEC PGM=DFSERA10

//STEPLIB DD DISP=SHR,DSN=IMS.SDFSRESL

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DSN=SYSLOG.MSGQ01.LOG,

// SUBSYS=(LOGR,IXGSEXIT),

// DCB=(BLKSIZE=32760)

//SYSIN DD *

CONTROL CNTL H=EOF

OPTION PRINT EXITR=CQSERA30

END

//

Figure 26. JCL to Print CQS Log Records

CQS Log Records

Chapter 8. CQS Diagnosis 183

Related Reading: For a complete description of the IMS File Select and Formatting

Print utility, see IMS Version 9: Utilities Reference: System.

For a complete description of the z/OS logger subsystem exit (IXGSEXIT) usage

and parameters, see OS/390 MVS Diagnosis: Tools and Service Aids, GA22-7589.

Limiting Log Data to a Specified Time Range for CQS Diagnosis

You can limit the log records you print to those in a particular interval of time using

the FROM and TO parameters on the SUBSYS statement. The DD card in

Figure 27 illustrates this:

The DD card in Figure 27 would pass only log records from 11:00 to 12:00 on day

42 of the year 2001 to the DFSERA10 program. Dates and times specified in this

manner are in GMT (Greenwich Mean Time). The seconds field of the time values

is optional. If you want to use local dates and times, add the LOCAL keyword to the

statement, as shown in Figure 28:

Copying CQS Log Records for Diagnostics

IBM service sometimes requires a copy of a range of CQS log records for problem

determination. You can use the IEBGENER utility program to copy some or all of

the CQS log for a structure to a BSAM data set to send to IBM service. The copy

made by IEBGENER is a binary image of the log records. The JCL in Figure 29 on

page 185 copies CQS log records between 15:10 and 15:30 local time on day 89 of

2001 to a data set named CQS.LOG.COPY:

//SYSUT1 DD DSN=SYSLOG.MSGQ01.LOG,

// SUBSYS=(LOGR,IXGSEXIT,

// ’FROM=(2001/042,11:00:00),TO=(2001/042,12:00:00)’),

// DCB=(BLKSIZE=32760)

Figure 27. DD Card to Limit Log Records that are Printed

//SYSUT1 DD DSN=SYSLOG.MSGQ01.LOG,

// SUBSYS=(LOGR,IXGSEXIT,

// ’FROM=(2001/042,11:00:00),TO=(2001/042,12:00:00),LOCAL’),

// DCB=(BLKSIZE=32760)

Figure 28. DD Card to Add Local Date and Time

Printing CQS Log Records

184 Common Queue Server Guide and Reference

If you copy CQS log records using IEBGENER, be aware of the following:

v The copied records cannot be used by CQS in any way (such as restart or

recovery). They are for diagnostic purposes only.

v CQS log records that are greater than 32K bytes in length will be truncated. The

SUBSYS exit supports a maximum of a 32K record size.

//CQSCPYLG JOB MSGLEVEL=1,CLASS=K

//***

//* THIS JOB COPIES A CQS LOG STREAM TO A DATASET (MAX 32K / RECORD) *

//***

//STEP1 EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSIN DD DUMMY

//SYSUT1 DD DSN=SYSLOG.MSGQ01.LOG,

// SUBSYS=(LOGR,IXGSEXIT,

// ’FROM=(2001/089,15:10),TO=(2001/089,15:30),LOCAL’),

// DCB=(BLKSIZE=32760)

//SYSUT2 DD DSN=CQS.LOG.COPY,

// DISP=(NEW,KEEP,DELETE),

// VOL=SER=EDSDMP,

// SPACE=(CYL,(10,10)),

// UNIT=SYSDA

Figure 29. JCL to Copy CQS Records from a Specific Time Period

Printing CQS Log Records

Chapter 8. CQS Diagnosis 185

186 Common Queue Server Guide and Reference

Notices

This information was developed for products and services offered in the U.S.A. IBM

may not offer the products, services, or features discussed in this document in other

countries. Consult your local IBM representative for information on the products and

services currently available in your area. Any reference to an IBM product, program,

or service is not intended to state or imply that only that IBM product, program, or

service may be used. Any functionally equivalent product, program, or service that

does not infringe any IBM intellectual property right may be used instead. However,

it is the user’s responsibility to evaluate and verify the operation of any non-IBM

product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you any

license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply to

you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements and/or

changes in the product(s) and/or the program(s) described in this publication at any

time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for this

IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs

© Copyright IBM Corp. 1997, 2004 187

and other programs (including this one) and (ii) the mutual use of the information

which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those

products, their published announcements or other publicly available sources. IBM

has not tested those products and cannot confirm the accuracy of performance,

compatibility or any other claims related to non-IBM products. Questions on the

capabilities of non-IBM products should be addressed to the suppliers of those

products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to IBM,

for the purposes of developing, using, marketing or distributing application programs

conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly

tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,

serviceability, or function of these programs. You may copy, modify, and distribute

these sample programs in any form without payment to IBM for the purposes of

developing, using, marketing, or distributing application programs conforming to

IBM’s application programming interfaces.

188 Common Queue Server Guide and Reference

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

If you are viewing this information softcopy, the photographs and color illustrations

may not appear.

Programming Interface Information

This publication is intended to help the customer perform the following tasks:

v Plan for and design the installation of Common Queue Server (CQS).

v Install and operate CQS.

v Diagnose and recover from CQS system problems.

v Write a CQS client.

The IMS Version 9: Common Queue Server Guide and Reference primarily

documents Product-sensitive Programming Interface and Associated Guidance

Information provided by IMS.

Product-sensitive programming interfaces allow the customer installation to perform

tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or tuning of

IMS. Use of such interfaces creates dependencies on the detailed design or

implementation of the IBM software product. Product-sensitive programming

interfaces should be used only for these specialized purposes. Because of their

dependencies on detailed design and implementation, it is to be expected that

programs written to such interfaces may need to be changed in order to run with

new product releases or versions, or as a result of service.

However, the Common Queue Server Guide and Reference also documents

General-use Programming Interface and Associated Guidance Information and

Diagnosis, Modification or Tuning Information provided by IMS.

General-use programming interfaces allow the customer to write programs that

obtain the services of IMS.

General-use Programming Interface and Associated Guidance Information is

identified where it occurs, either by an introductory statement to a section or by the

following marking: General-use Programming Interface and Associated Guidance

Information....

Diagnosis, Modification or Tuning Information is provided to help the customer

diagnose, modify, or tune IMS.

Attention: Do not use this Diagnosis, Modification or Tuning Information as a

programming interface.

Diagnosis, Modification or Tuning Information is identified where it occurs, either by

an introductory statement to a section or by the following marking: Diagnosis,

Modification or Tuning Information....

Notices 189

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or

other countries or both:

 BookManager CICS

DataPropagator DB2 Universal Database

DB2 IBM

IMS Language Environment

MVS MVS/DFP

MVS/ESA NetView

OS/390 Parallel Sysplex

Processor Resource/Systems Manager PR/SM

RACF S/390

System/390 Tivoli

WebSphere z/OS

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc., in

the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, and service names may be trademarks or service marks

of others.

190 Common Queue Server Guide and Reference

Bibliography

This bibliography lists all of the information in the

IMS Version 9 library.

v External Security Interface (RACROUTE) Macro

Reference, GC28-1366

v z/OS DFSMS Access Method Services for

Catalogs, SC26-7394

v z/OS MVS Initialization and Tuning Reference,

SA22-7592

v MVS Programming: Authorized Assembler

Services Guide, SA22-7608

v MVS Programming: Sysplex Services Guide,

SA22-7617

v z/OS MVS System Commands, SA22-7627

v z/OS MVS Programming: Assembler Services

Guide, SA22-7605

v z/OS MVS Setting Up a Sysplex, SA22-7625

v System/390 MVS: Sysplex Hardware and

Software Migration, GC28-1210

IMS Version 9 Library

 Title Acronym Order

number

IMS Version 9: Administration

Guide: Database Manager

ADB SC18-7806

IMS Version 9: Administration

Guide: System

AS SC18-7807

IMS Version 9: Administration

Guide: Transaction Manager

ATM SC18-7808

IMS Version 9: Application

Programming: Database

Manager

APDB SC18-7809

IMS Version 9: Application

Programming: Design Guide

APDG SC18-7810

IMS Version 9: Application

Programming: EXEC DLI

Commands for CICS and

IMS

APCICS SC18-7811

IMS Version 9: Application

Programming: Transaction

Manager

APTM SC18-7812

IMS Version 9: Base Primitive

Environment Guide and

Reference

BPE SC18-7813

IMS Version 9: Command

Reference

CR SC18-7814

IMS Version 9: Common

Queue Server Guide and

Reference

CQS SC18-7815

Title Acronym Order

number

IMS Version 9: Common

Service Layer Guide and

Reference

CSL SC18-7816

IMS Version 9: Customization

Guide

CG SC18-7817

IMS Version 9: Database

Recovery Control (DBRC)

Guide and Reference

DBRC SC18-7818

IMS Version 9: Diagnosis

Guide and Reference

DGR LY37-3203

IMS Version 9: Failure

Analysis Structure Tables

(FAST) for Dump Analysis

FAST LY37-3204

IMS Version 9: IMS Connect

Guide and Reference

CT SC18-9287

IMS Version 9: IMS Java

Guide and Reference

JGR SC18-7821

IMS Version 9: Installation

Volume 1: Installation

Verification

IIV GC18-7822

IMS Version 9: Installation

Volume 2: System Definition

and Tailoring

ISDT GC18-7823

IMS Version 9: Master Index

and Glossary

MIG SC18-7826

IMS Version 9: Messages

and Codes, Volume 1

MC1 GC18-7827

IMS Version 9: Messages

and Codes, Volume 2

MC2 GC18-7828

IMS Version 9: Open

Transaction Manager Access

Guide and Reference

OTMA SC18-7829

IMS Version 9: Operations

Guide

OG SC18-7830

IMS Version 9: Release

Planning Guide

RPG GC17-7831

IMS Version 9: Summary of

Operator Commands

SOC SC18-7832

IMS Version 9: Utilities

Reference: Database and

Transaction Manager

URDBTM SC18-7833

IMS Version 9: Utilities

Reference: System

URS SC18-7834

Supplementary Publications

 Title Order number

IMS Connector for Java 2.2.2 and

9.1.0.1 Online Documentation for

WebSphere Studio Application

Developer Integration Edition 5.1.1

SC09-7869

© Copyright IBM Corp. 1997, 2004 191

Title Order number

IMS Version 9 Fact Sheet GC18-7697

IMS Version 9: Licensed Program

Specifications

GC18-7825

Publication Collections

 Title Format Order

number

IMS Version 9 Softcopy Library CD LK3T-7213

IMS Favorites CD LK3T-7144

Licensed Bill of Forms (LBOF):

IMS Version 9 Hardcopy and

Softcopy Library

Hardcopy

and CD

LBOF-7789

Unlicensed Bill of Forms

(SBOF): IMS Version 9

Unlicensed Hardcopy Library

Hardcopy SBOF-7790

OS/390 Collection CD SK2T-6700

z/OS Software Products

Collection

CD SK3T-4270

z/OS and Software Products

DVD Collection

DVD SK3T-4271

Accessibility Titles Cited in This

Library

 Title Order number

z/OS V1R1.0 TSO Primer SA22-7787

z/OS V1R5.0 TSO/E User’s Guide SA22-7794

z/OS V1R5.0 ISPF User’s Guide,

Volume 1

SC34-4822

192 Common Queue Server Guide and Reference

Index

A
abnormal termination or restart, client processing

after 169

altering structures 34

assembling a client program 77

authorization
requests 70

authorizing CQS
connections 33

registration 33

Automatic Restart Manager
policy 32

usage 31

B
Base Primitive Environment (BPE)

common user exit routine execution environment 47

defining 12

BPE (Base Primitive Environment)
common user exit routine execution environment 47

defining 12

BPE Statistics user exit 67

C
CFRM (coupling facility resource management)

couple data set format utility 43

policy 8

policy, defining 12, 34

CFSizer 12

checkpoint
client initiating 78

data set 35

structure, initiating 35

system, initiating 34

cleanup failure 32

client
exit routines (CQS) 167

Event 167

Structure Event 169

Structure Inform 178

interface
authorized 70

non-authorized 70

queue type 3

requests 6

Client Connection user-supplied exit routine, CQS 49

client program
assembling 77

writing 69

client requests
assembling a program 77

authorization 70

coding 70

CQSBRWSE 82

CQSCHKPT 89

client requests (continued)
CQSCONN 92

CQSDEL 98

CQSDEREG 102

CQSDISC 103

CQSINFRM 108

CQSMOVE 112

CQSPUT 116

CQSQUERY 123

CQSREAD 132

CQSRECVR 137

CQSREG 142

CQSRSYNC 144

CQSSHUT 151

CQSUNLCK 152

CQSUPD 157

DSECTs, using 77

ECB, using 74

environmental requirements 71

example 161

introduction 69

lists, using 75

literals, coding 74

literals, using 74

parameters, coding 73

requests
CQSCONN 92

return and reason codes 75

sample 161

sequence of 70

Client Structure Event exit 169

Client Structure Event exit parameters 171

Client Structure Inform exit 178

parameters 179

coding requests 70

cold start 31

structures 29

commands for authorizing CQS registration 33

commands to authorize connection to CQS

structures 34

components of a CQS 2

copy
structures 42

copying log records 184

couple data set format utility 43

coupling facility resource management (CFRM)
couple data set format utility 43

policy, defining 12, 34

CQS (Common Queue Server) 7

administration 27

authorization 33

benefits 2

automatic work load balancing 2

incremental growth 2

reliability 2

client connection
establishing 32

© Copyright IBM Corp. 1997, 2004 193

CQS (Common Queue Server) (continued)
client exit routines

Event 167

Structure Event 169

Structure Inform 178

client failure 32

clients 81

components 2

checkpoint data set 2

overflow structure 2

primary structure 2

resource structure 2

structure recovery data set 3

z/OS log stream 2

customizing 13

data sets 24

defining 7, 12

diagnosis 181

diagram of client systems and coupling facility 1

execution data sets 24

structure recovery data set 25

system checkpoint data set 24

execution parameters
specifying 14

exit routines
See CQS user-supplied exit routines

failure 32

functions
overflow processing 3

records restart 3

requests 3

structure checkpoint 3

structure rebuild 3

system checkpoint 3

global structure definition PROCLIB member
keywords 19

information for restart 28

initialization parameters PROCLIB member
specifying 16

JCL for printing log records 183

local structure definition PROCLIB member
specifying 17

log records 181

logging 6

monitoring 13

multiple clients 11

notification of work 3

operating system requirements 1

overview 1

parameters
CQS PROCLIB 16

execution 14

preparing to start 12

printing log records 183

rebuilding structures 39

recovering 39

restarting
cold start 31

description 30

warm start 30

restarting information 28

CQS (Common Queue Server) (continued)
restarting structures

allocation 28

restating after system checkpoint 35

shutting down 44

starting 27

starting manually 27

structure cold start 29

structure overflow function 37

structure types managed 3

structure warm start 28

tailoring 7

CQS benefits 2

CQS Event exit
abnormal termination 169

parameters 168

parameters, abnormal termination 168

CQS statistics
using BPE Statistics user exit 67

CQS user-supplied exit routine
writing in assembler 48

CQS user-supplied exit routines 47

Client Connection
general 49

parameters 50

register contents 49

general information 47

Initialization-Termination (Init-Term)
general 48

parameters 49

register contents 48

Queue Overflow
general 51

parameters 52

register contents 52

Structure Event
checkpoint parameters 64

connection parameters 63

general 62

overflow parameters 66

rebuild parameters 65

register contents 63

routine parameters 63

status change parameters 67

Structure Statistics
CQS request statistics record 55

data object statistics record 56

general 53

parameters 54

queue name statistics record 57

register contents 53

structure checkpoint statistics entry 61

structure checkpoint statistics record 60

structure process statistics record 55

structure rebuild statistics record 58

z/OS request statistics record 57

CQS-managed rebuild 40

CQSBRWSE request
BROWSE function 82

BRWSOBJS function 82

COMPLETE function 82

194 Common Queue Server Guide and Reference

CQSBRWSE request (continued)
CONTINUE function 83

DSECT function 83

functions 82

parameters 84

return and reason codes 88

syntax 82

usage 83

CQSCHKPT request
CHKPTSTR function 89

CHKPTSYS function 90

DSECT function 90

format 89

parameters 91

return and reason codes 92

syntax 89

usage 90

CQSCONN request
CONNECT function 92

DSECT function 93

format 92

parameters 93

restrictions 93

return and reason codes 97

syntax 92

usage 93

CQSDEL request
DELETE function 98

DSECT function 98

format 98

parameter 98

return and reason codes 101

syntax 98

usage 98

CQSDEREG request
DEREGISTER function 102

DSECT function 102

format 102

parameters 102

return and reason codes 103

syntax 102

usage 102

CQSDISC request
DISCABND function 103

DISCNORM function 104

DSECT function 104

format 103

parameters 105

return and reason codes 107

syntax 103

usage 104

CQSINFRM request
DSECT function 108

format 108

INFORM function 108

parameters 109

return and reason codes 112

syntax 108

UNINFORM function 108

usage 109

CQSIPxxx
format rules 16

overview 16

sample PROCLIB member 16

CQSMOVE request
DSECT function 112

format 112

MOVE function 112

parameters 114

return and reason codes 115

syntax 112

usage 113

CQSPUT request
ABORT function 116

actions 118

DSECT function 116

FORGET function 116

format 116

parameters 119

PUT function 116

return and reason codes 122

syntax 116

usage 117

CQSQUERY request
DSECT function 123

format 123

parameters 127

QNAME function 123

QRYOBJS function 124

QTYPE function 124

return and reason codes 131

STATISTICS function 125

STRSTAT function 125

syntax 123

usage 125

CQSREAD request
CONTINUE function 132

DSECT function 132

example 161

format 132

functions 132

parameters 134

READ function 132

REREAD function 133

return and reason codes 136

syntax 132

usage 133

CQSRECVR request
DELETE function 137

DSECT function 138

format 137

functions 137

parameters 139

RETRIEVE function 138

return and reason codes 141

syntax 137

UNLOCK function 138

usage 139

CQSREG request
DSECT function 142

functions 142

Index 195

CQSREG request (continued)
parameters 142

REGISTER function 142

return and reason codes 143

syntax 142

usage 142

CQSRSYNC request
DSECT function 144

format 144

functions 144

parameters 146

return and reason codes 149

RSYNCCOLD function 145

RSYNCWARM function 145

syntax 144

usage 145

CQSSGxxx
formatting rules 19

overview 19

sample PROCLIB member 20

CQSSHUT request
DSECT function 151

format 151

functions 151

parameters 151

QUIESCE function 151

return and reason codes 152

syntax 151

usage 151

CQSSLxxx
formatting rules 18

overview 17

sample PROCLIB member 18

CQSUNLCK request
DSECT function 152

FORCE function 152

format 152

functions 152

parameters 154

return and reason codes 156

syntax 152

UNLOCK function 152

usage 153

CQSUPD request
DSECT function 157

format 157

functions 157

parameters 157

return and reason codes 161

syntax 157

UPDATE function 157

usage 157

cross-system coupling facility 14

D
data sets

CQS execution 24

entry-sequenced 24

IMS.ADFSMAC 77

structure recovery 25

data sets (continued)
system checkpoint 24

defining
BPE 12

CQS 12

policies 8

z/OS policies 7

deleting structures 44

DFSERA10 183

diagnosis
CQS log records 181

printing log records 183

display for structure full threshold 38

duplexing
explicitly stopping 43

structure 5, 42

unnecessary overhead 43

E
ECB (z/OS event control block), using with client

request 74

EMHQ (EMH queue)
disabling 20

EMHQ (EMH queue) structures
disabling 18

ENF 40

entry sequenced data set (ESDS) 24

entry-sequenced data set 24

environment
CQS deregister request 72

CQS register request 72

CQS requests, authorized interface 71

CQS requests, non-authorized interface 71

environments
client requests 71

ESDS (entry sequenced data set) 24

event notification facility 40

example
coding CQSREAD with OPTWORD1 74

CQSIPxxx PROCLIB member 16

CQSREAD request 161

CQSSGxxx PROCLIB member 20

CQSSLxxx sample PROCLIB member 18

DD card to add local time and date 184

DD card to limit log records printed 184

defining IMS resources
in the CFRM policy 11

in the LOGR policy 11

in the SFM policy 11

display for structure full threshold 38

explicitly stopping duplexing 43

JCL to copy CQS records from specific time

period 185

JCL to print CQS log records 183

OBJAVGSZ calculation 22

passing a value
for register 73

for symbol 73

for symbol value 74

196 Common Queue Server Guide and Reference

example (continued)
passing an address

for register 73

for symbol 73

passing an equate for symbol value 74

program properties table 13

RACF commands for authorizing CQS

registration 33

RACF commands to authorize connection to CQS

structures 34

RSRCSTRUCTURE= parameter 23

SSN= parameter 14, 17

starting CQS 27

STEPLIB DD statement to concatenate

IMS.SDFSRESL 77

structure recovery data set 26

system checkpoint data set 25

exit routines
client 167

Event 167

user-supplied, CQS 47

F
FACILITY class 33

file select utility 28

formatting print utility 28

functions of CQS 3

H
hardware requirements 6

I
IMS.ADFSMAC data set 77

Initialization-Termination (Init-Term) user-supplied exit

routine
CQS 48

interface
authorization 70

interrupt request block 167

IRB 167

L
limiting log data 184

lists, using with client request 75

literals
using 74

log records
control statements for printing 183

copying 184

DD statements for printing 183

description 181

JCL (Job Control Language) for printing 183

limiting log data 184

printing 183

table 181

types 181

log records (continued)
viewing format 181

logging 6

logical record length 16

LOGR (system logger) policy 8

LRECL 16

M
managing structure usage 37

MAXBUFSIZE parameter 8

message
CQS0009W 29

CQS0020I 30

CQS0031A 30

CQS0032A 30

CQS0033A 32, 94

CQS0034A 30, 41

CQS0102E 32

CQS0205E 37

CQS0242E 59

CQS0268I 22

CQS0300I 45

IXC585E 38

IXC586I 38

WTOR 30

message queue 8

MSGQ structures 8

O
OPTWORD1 parameter 74

overflow
mode 37

processing 37

threshold 37

overflow processing 5

P
parameter

OPTWORD1 74

parameter lists
abnormal termination 168

Client Connection user exit 50

Client Disconnect user exit 50

Initialization user exit 49

Queue Overflow user exit 52

restart entry 168

Structure Event exit routine
checkpoint 173

Deferred Resync Complete 171

resync, CQS 172

structure overflow 176

structure rebuild 174

structure rebuild lost UOWs 175

structure status change 177

Structure Event user exit 63

checkpoint 64

connect 63

overflow 66

Index 197

parameter lists (continued)
Structure Event user exit (continued)

rebuild 65

status change 67

Structure Inform exit routine 179

Structure Statistics user exit 54

Termination user exit 49

parameters specifying IMS 15

passing a value
for register 73

for symbol 73

for symbol value 74

passing an address
for register 73

for symbol 73

passing an equate for symbol value 74

performance tuning 78

planning for CQS
hardware requirements 6

software requirements 6

policies
ARM 8

CFRM 8

defined 7

defining 8

failing 9

LOGR 8

SFM 8

preventing structure full 37

private queue types managed by CQS 4

program properties table 13

program, assembling 77

Q
queue

cold 4

control 4

delete 4

lock 4

move 4

structure 3

type
client 4

private 4

private, managed by CQS 4

values 3

Queue Overflow user-supplied exit routine
CQS 51

queues
object on the cold queue 78

registering interest in 78

R
rebuild lost UOW entry, CQS 175

rebuilding structures 39

records restart 3

recovery
functions 5

information 3

recovery (continued)
recovering CQS 39

structures 41

structures, for restart 29

register
contents

Client Connection user exit 49, 50

Client Structure Event exit 170, 171

Client Structure Inform exit 178

CQS Event exit 167, 168

Initialization-Termination user exit 48

Queue Overflow user exit 52

Structure Event user exit 63

Structure Statistics user exit 53, 54

registers
client requests 72

using 72, 73

registration, authorizing 33

requests
authorization 70

CQSUPD 157

environmental requirements 71

literals, coding 74

symbol name, using 73

requirements
hardware 6

software 6

resource
cleanup failure 32

structure
changes logged 28

recovery 41

structures 4

structures, and overflow processing 5

restart
structure recovery 29

z/OS Automatic Restart Manager 31

restarting CQS
cold start 31

description 30

structure initialization 28

warm start 30

resync UOW entry, CQS 172

return and reason codes
client requests 75

CQSBRWSE request 88

CQSCHKPT request 92

CQSCONN request 97

CQSDEL request 101

CQSDEREG request 103

CQSDISC request 107

CQSINFRM request 112

CQSMOVE request 115

CQSPUT request 122

CQSQUERY request 131

CQSREAD request 136

CQSRECVR request 141

CQSREG request 143

CQSRSYNC request 149

CQSSHUT request 152

CQSUNLCK request 156

198 Common Queue Server Guide and Reference

return and reason codes (continued)
CQSUPD request 161

routines
client 167

user-supplied, CQS 47

S
sequence of requests 70

setting up a sysplex 7

SFM (sysplex failure management) policy 8

shutting down CQS 44, 78

software requirements 6

special events, handling
See events, handling

starting CQS 12, 27

statistic records
CQS request 57

data object 56

queue name 57

request 55

structure checkpoint 60

structure checkpoint entry 61

structure process 55

structure rebuild 58

z/OS request 57

STEPLIB DD statement to concatenate

IMS.SDFSRESL 77

structure
alter 34

authorizing connections to 33

checkpoint, initiating 35

cold start 29

copy 42

deleting 44

duplexing 5, 42

enabling 43

EMHQ (EMH queue)
CQSSGxxx 20

CQSSLxxx 18

disabling 18, 20

empty 28

full, monitoring 38

functions 4

initialization 28

overflow 4, 39

function 37

structure full monitoring 39

pair 3

rebuild 5

initiating 40

recovery 41

recovery data set, example 26

recovery for restart 29

repopulation 41

restarting CQS 28

size 12, 34

types 3

warm start 28

Structure Event user-supplied exit routine 62

structure full
managing 37

Structure Statistics user-supplied exit routine 53

structure usage
managing 37

structures
resource 4

supporting multiple clients 11

symbol name, using 73

symbol value, using 73

syntax diagram
how to read xii

sysplex
setting up 7

sysplex failure management (SFM) policy 8

system checkpoint data set example 25

system checkpoint, initiating 34

system-managed rebuild 39

U
user exits (CQS)

See CQS user-supplied exit routines

user-managed rebuild 40

user-supplied exit routines
See CQS user-supplied exit routines

utilities
DFSERA10 183

file select 28

formatting print 28

IEBGENER 184

IXGSEXIT 184

printing log records 183

z/OS logger subsystem exit 184

UXPL_EXITPLP
Client Connections exit 50

Init-Term exit 49

Queue Overflow exit 52

Structure Statistics exit 54

W
warm start 30

warm starting structures 28

writing a CQS client 69

WTOR 30

X
XCF 14

Z
z/OS

defining policies 7

program properties table 13

adding CQSINIT0 13

updating 13

z/OS Automatic Restart Manger 31

Index 199

200 Common Queue Server Guide and Reference

����

Program Number: 5655-J38

Printed in USA

SC18-7815-00

Sp
in
e
in
fo
rm
at
io
n:

 �
�

�

IM
S

Co
m

m
on

Q

ue
ue

Se

rv
er

G

ui
de

an

d
R

ef
er

en
ce

Ve

rs
io

n
9

	Contents
	Figures
	Tables
	About This Book
	Prerequisite Knowledge
	IBM Product Names Used in This Information
	How to Read Syntax Diagrams
	How to Send Your Comments

	Summary of Changes
	Changes to This Book for IMS Version 9
	Library Changes for IMS Version 9
	New and Revised Titles
	Organizational Changes
	Terminology Changes
	Accessibility Enhancements
	User Assistive Technologies
	Accessible Information
	Keyboard Navigation of the User Interface

	Chapter 1. Introduction
	Common Queue Server Overview
	CQS Benefits
	CQS Components
	CQS Functions
	Structures Managed by CQS
	Queue Structures
	Resource Structures

	CQS Structure Functions
	Structure Overflow
	Structure Rebuild
	Structure Duplexing

	CQS Recovery Functions
	System Checkpoint
	CQS Logging and the z/OS System Logger
	Structure Checkpoint

	CQS Client Requests

	Planning for CQS Hardware and Software Requirements

	Chapter 2. CQS Definition and Tailoring
	CQS As Part of a Sysplex
	CQS and Defining z/OS Policies
	CQS’s Support of Multiple Clients
	Determining Structure Size for CQS Connections
	Preparing to Start CQS
	Updating z/OS Program Properties Table for CQS
	CQS Execution Parameters
	CQS Initialization Parameters PROCLIB Member (CQSIPxxx)
	CQS Local Structure Definition PROCLIB Member (CQSSLxxx)
	CQS Global Structure Definition PROCLIB Member (CQSSGxxx)
	CQS Execution Data Sets
	CQS System Checkpoint Data Set
	CQS Structure Recovery Data Sets

	Chapter 3. CQS Administration
	Starting CQS
	Recording Information Necessary for Starting CQS
	Restarting CQS Structures
	CQS Structure Allocation
	CQS Structure Warm Start
	CQS Structure Cold Start
	CQS Structure Recovery for Restarting

	Restarting CQS
	CQS Warm Start
	CQS Cold Start
	Using the z/OS Automatic Restart Manager with CQS
	Restarting CQS after CQS Resource Cleanup Failures

	Establishing Client Connection to CQS During Failed Client Takeover
	Authorizing Access To CQS
	Authorizing CQS Registration
	Authorizing Connections to CQS Structures

	Using Structure Alter for CQS
	Using CQS System Checkpoint
	CQS Checkpoint Data Set
	How CQS Restarts after System Checkpoint

	Using CQS Structure Checkpoint
	Preventing CQS Structure Full
	CQS Structure Overflow Function
	CQS Structure Full Monitoring
	Using Structure Full Monitoring with CQS Structure Overflow

	Rebuilding Structures in CQS
	z/OS System-Managed Rebuild and CQS
	CQS-Managed Rebuild
	Initiating Structure Rebuild with z/OS and CQS
	CQS Structure Repopulation
	CQS Structure Recovery
	CQS Structure Copy
	z/OS Structure Duplexing for CQS

	Deleting a Structure When CQS Is Not Connected
	Shutting Down CQS

	Chapter 4. CQS User-Supplied Exit Routines
	General User-Supplied Exit Routine Interface Information for CQS
	CQS Initialization-Termination User-Supplied Exit Routine
	Contents of Registers on Entry
	Contents of Registers on Exit
	CQS Initialization and Termination Parameter Lists

	CQS Client Connection User-Supplied Exit Routine
	Contents of Registers on Entry
	Contents of Registers on Exit
	CQS Client Connection and Disconnect Parameter Lists

	Queue Overflow User-Supplied Exit Routine for CQS
	Contents of Registers on Entry
	Contents of Registers on Exit
	CQS Queue Overflow Parameter List

	CQS Structure Statistics User-Supplied Exit Routine
	Contents of Registers on Entry
	Contents of Registers on Exit
	CQS Structure Statistics User-Supplied Exit Routine Parameter List
	CQS Structure Process Statistics Record
	CQS Request Statistics Record
	Data Object Statistics Record for CQS
	Queue Name Statistics Record for CQS
	z/OS Request Statistics Record for CQS
	Structure Rebuild Statistics Record for CQS
	Structure Checkpoint Statistics Record for CQS
	Structure Checkpoint Statistics Gathered by CQS

	CQS Structure Event User-Supplied Exit Routine
	Contents of Registers on Entry
	Contents of Registers on Exit
	Routine Parameter Lists
	CQS Structure Event Exit Routine Parameter List
	CQS Structure Event Exit Routine Checkpoint Parameter List
	CQS Structure Event Exit Routine Rebuild Parameter List
	CQS Structure Event Exit Routine Overflow Parameter List
	CQS Structure Event Exit Routine Status Change Parameter List

	CQS Statistics Available through the BPE Statistics User Exit

	Chapter 5. Writing a CQS Client
	Introducing CQS Client Requests
	Sequence of CQS Requests Issued by a Client for Queue Structure
	Coding CQS Requests
	Authorization for CQS
	Environmental Requirements for CQS
	Using Registers with CQS Requests
	Coding Parameters for CQS Requests
	Coding Literals for CQS Requests
	Using an ECB with CQS Requests
	Using Lists in the CQS Requests
	Return Codes and Reason Codes for CQS Requests
	Assembling a Program with CQS Requests

	CQS Clients and Handling Special Events
	CQS Cold Start
	Registering Interest in Queues with CQSINFRM
	Working with Objects on the Cold Queue using CQS Requests
	Initiating Checkpoints using CQS Requests
	Shutting Down CQS
	Tuning to Improve CQS Performance

	Chapter 6. CQS Client Requests
	Using CQS Client Requests
	CQSBRWSE Request
	Format for CQSBRWSE
	Usage of CQSBRWSE
	Return and Reason Codes for CQSBRWSE

	CQSCHKPT Request
	Format for CQSCHKPT
	Usage of CQSCHKPT
	Return and Reason Codes for CQSCHKPT

	CQSCONN Request
	Format for CQSCONN
	Usage of CQSCONN
	Return and Reason Codes for CQSCONN

	CQSDEL Request
	Format for CQSDEL
	Usage of CQSDEL
	Return and Reason Codes for CQSDEL

	CQSDEREG Request
	Format for CQSDEREG
	Usage of CQSDEREG
	Return and Reason Codes for CQSDEREG

	CQSDISC Request
	Format for CQSDISC
	Usage of CQSDISC
	Return and Reason Codes for CQSDISC

	CQSINFRM Request
	Format for CQSINFRM
	Usage of CQSINFRM
	Return and Reason Codes for CQSINFRM

	CQSMOVE Request
	Format for CQSMOVE
	Usage of CQSMOVE
	Return and Reason Codes for CQSMOVE

	CQSPUT Request
	Format for CQSPUT
	Usage of CQSPUT
	Return and Reason Codes for CQSPUT

	CQSQUERY Request
	Format for CQSQUERY
	Usage of CQSQUERY
	Return and Reason Codes for CQSQUERY

	CQSREAD Request
	Format for CQSREAD
	Usage of CQSREAD
	Return and Reason Codes for CQSREAD

	CQSRECVR Request
	Format for CQSRECVR
	Usage of CQSRECVR
	Return and Reason Codes for CQSRECVR

	CQSREG Request
	Format for CQSREG
	Usage of CQSREG
	Return and Reason Codes for CQSREG

	CQSRSYNC Request
	Format for CQSRSYNC
	Usage of CQSRSYNC
	Return and Reason Codes for CQSRSYNC

	CQSSHUT Request
	Format for CQSSHUT
	Usage of CQSSHUT
	Return and Reason Codes for CQSSHUT

	CQSUNLCK Request
	Format for CQSUNLCK
	Usage of CQSUNLCK
	Return and Reason Codes for CQSUNLCK

	CQSUPD Request
	Format for CQSUPD
	Usage of CQSUPD
	Return and Reason Codes for CQSUPD

	Example of Using a CQS Request: CQSREAD

	Chapter 7. CQS Client Exit Routines
	Client CQS Event Exit Routine
	Contents of Registers on Entry
	Contents of Registers on Exit
	CQS Restart Entry Parameter List
	CQS Abnormal Termination Parameter List
	Client Processing after CQS Abnormal Termination or Restart

	CQS Client Structure Event Exit Routine
	Contents of Registers on Entry
	Contents of Registers on Exit
	Deferred Resync Complete Parameter List for CQS Client Structure Event
	CQS Resync Parameter List
	CQS Resync UOW Entry
	Checkpoint Parameter List for CQS Client Structure Event
	Structure Rebuild Parameter List for CQS Client Structure Event
	Structure Rebuild Lost UOWs Parameter List for CQS Client Structure Event
	Rebuild Lost UOW Entry for CQS Client Structure Event
	Structure Overflow Parameter List for CQS Client Structure Event
	Structure Status Change Parameter List for CQS Client Structure Event

	CQS Client Structure Inform Exit Routine
	Contents of Registers on Entry
	Contents of Registers on Exit
	Structure Inform Parameter List for CQS Client Structure Inform

	Chapter 8. CQS Diagnosis
	CQS Log Records
	Printing CQS Log Records
	DD Statements for CQS Diagnosis
	Control Statements for CQS Diagnosis
	Limiting Log Data to a Specified Time Range for CQS Diagnosis
	Copying CQS Log Records for Diagnostics

	Notices
	Programming Interface Information
	Trademarks

	Bibliography
	IMS Version 9 Library
	Supplementary Publications
	Publication Collections
	Accessibility Titles Cited in This Library

	Index

