
IMS

IMS

Java

Guide

and

Reference

Version

9

ZES1-2347-01IBM

Confidential

���

IMS

IMS

Java

Guide

and

Reference

Version

9

ZES1-2347-01IBM

Confidential

���

Note

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

general

information

under

“Notices”

on

page

131.

Quality

Partnership

Program

(QPP)

Edition

(August

2004)

(Softcopy

Only)

This

QPP

edition

applies

to

Version

9

of

IMS

(product

number

5655-J38)

and

to

all

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

©

Copyright

International

Business

Machines

Corporation

2000,

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

IBM

Confidential

Contents

Figures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

Tables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ix

About

This

Book

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xi

Prerequisite

Knowledge

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xi

How

to

Read

Syntax

Diagrams

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xi

How

to

Send

Your

Comments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xiii

Summary

of

Changes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xv

Changes

to

This

Book

for

IMS

Version

9

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xv

Library

Changes

for

IMS

Version

9

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xv

New

and

Revised

Titles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xv

Organizational

Changes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xvi

Terminology

Changes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xvi

Accessibility

Enhancements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xvi

User

Assistive

Technologies

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xvi

Accessible

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xvi

Keyboard

Navigation

of

the

User

Interface

.

.

.

.

.

.

.

.

.

.

.

.

. xvi

Chapter

1.

Getting

Started

with

IMS

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

IMS

Java

System

Requirements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Installing

IMS

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 2

Downloading

Apache

Open

Source

XML

Libraries

.

.

.

.

.

.

.

.

.

.

.

. 3

Administering

IMS

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

IMS

Java

Class

Library

Summary

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 5

General

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 5

Where

to

Find

More

Information

about

IMS

Java

.

.

.

.

.

.

.

.

.

.

.

.

. 6

Chapter

2.

JMP

and

JBP

Applications

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 7

Running

the

IMS

Java

IVP

in

a

JMP

Region

.

.

.

.

.

.

.

.

.

.

.

.

.

. 8

Running

the

IMS

Java

IVP

in

a

JBP

Region

.

.

.

.

.

.

.

.

.

.

.

.

.

. 10

Running

the

IMS

Java

Sample

Application

from

a

JMP

Region

.

.

.

.

.

.

. 12

Configuring

JMP

and

JBP

Regions

for

DB2

UDB

for

z/OS

Database

Access

13

Developing

JMP

Applications

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Subclassing

the

IMSFieldMessage

Class

to

Define

Input

Messages

.

.

.

. 15

Subclassing

the

IMSFieldMessage

Class

to

Define

Output

Messages

.

.

.

. 16

Implementing

the

main

Method

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 17

JMP

Programming

Models

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 17

JMP

Application

Without

Rollback

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 18

JMP

Application

that

Uses

Rollback

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 18

JMP

Application

that

Accesses

IMS

or

DB2

UDB

for

z/OS

Data

.

.

.

.

. 19

Additional

Message

Handling

Considerations

for

JMP

Applications

.

.

.

.

. 19

Conversational

Transactions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

Handling

Multi-Segment

Messages

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

Coding

and

Accessing

Messages

with

Repeating

Structures

.

.

.

.

.

. 22

Flexible

Reading

of

Multiple

Input

Messages

.

.

.

.

.

.

.

.

.

.

.

. 23

Developing

JBP

Applications

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 26

Symbolic

Checkpoint

and

Restart

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 26

JBP

Programming

Models

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 27

JBP

Application

without

Rollback

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 27

JBP

Application

with

Symbolic

Checkpoint

and

Restart

.

.

.

.

.

.

.

. 27

JBP

Application

using

Rollback

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

IBM

Confidential

©

Copyright

IBM

Corp.

2000,

2004

iii

||
||
||

||

||
||

||

||

||

JBP

Application

that

Accesses

DB2

UDB

for

z/OS

or

IMS

Data

.

.

.

.

. 28

Enterprise

COBOL

Interoperability

with

JMP

and

JBP

Applications

.

.

.

.

.

. 29

Enterprise

COBOL

as

a

Back-End

Application

in

a

JMP

or

JBP

Region

.

.

. 30

Enterprise

COBOL

as

a

Front-End

Application

in

a

JMP

or

JBP

Region

.

.

. 30

Performance

Consideration

for

OO

COBOL

in

a

JMP

or

JBP

Region

.

.

.

. 31

Recommendation

against

Accessing

Databases

with

Both

Java

and

COBOL

31

Accessing

DB2

UDB

for

z/OS

Databases

from

JMP

or

JBP

Applications

.

.

.

. 32

Chapter

3.

WebSphere

Application

Server

for

z/OS

Applications

.

.

.

.

. 35

System

Requirements

for

WebSphere

Application

Server

for

z/OS

.

.

.

.

.

. 36

Restrictions

for

WebSphere

Application

Server

for

z/OS

.

.

.

.

.

.

.

.

.

. 36

Configuring

WebSphere

Application

Server

V5

for

z/OS

for

IMS

Java

.

.

.

.

. 36

Configuring

WebSphere

Application

Server

for

z/OS

to

Access

IMS

.

.

.

. 37

Adding

the

Required

XML

Files

to

the

WebSphere

Application

Server

for

z/OS

Classpath

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 37

Installing

the

IMS

JDBC

Resource

Adapter

.

.

.

.

.

.

.

.

.

.

.

.

. 38

Installing

the

Custom

Service

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 38

Running

the

IMS

Java

IVP

on

WebSphere

Application

Server

for

z/OS

.

.

.

. 39

Installing

the

Data

Source

for

the

IMS

Java

IVP

.

.

.

.

.

.

.

.

.

.

.

. 40

Installing

the

IMS

Java

IVP

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 41

Testing

the

IMS

Java

IVP

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 41

Running

the

IMS

Java

Sample

Applications

on

WebSphere

Application

Server

for

z/OS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 42

Installing

the

Data

Source

for

the

IMS

Java

Samples

.

.

.

.

.

.

.

.

.

. 42

Installing

the

IMS

Java

Sample

Applications

.

.

.

.

.

.

.

.

.

.

.

.

. 43

Testing

the

IMS

Java

Sample

Applications

.

.

.

.

.

.

.

.

.

.

.

.

.

. 45

Running

Your

Applications

on

WebSphere

Application

Server

for

z/OS

.

.

.

. 46

Setting

the

WebSphere

Application

Server

for

z/OS

Classpath

.

.

.

.

.

. 46

Installing

the

Data

Source

for

Your

Application

.

.

.

.

.

.

.

.

.

.

.

. 46

Installing

Your

Application

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 47

Enabling

J2EE

Tracing

with

WebSphere

Application

Server

for

z/OS

.

.

.

. 48

Specifying

the

Level

of

Tracing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

Specifying

the

Application

Server

and

the

Package

to

Trace

.

.

.

.

.

. 49

Developing

Enterprise

Applications

that

Access

IMS

DB

.

.

.

.

.

.

.

.

.

. 49

Bean-Managed

EJBs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 50

Transaction

Demarcation

Using

the

javax.transaction.UserTransaction

Interface

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 50

Transaction

Demarcation

Using

the

java.sql.Connection

Interface

.

.

.

. 51

Container-Managed

EJBs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

Servlets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 52

Chapter

4.

Remote

Data

Access

with

WebSphere

Application

Server

Applications

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

System

Requirements

for

WebSphere

Application

Server

.

.

.

.

.

.

.

.

. 55

Downloading

IMS

Java

Files

for

Remote

Database

Services

.

.

.

.

.

.

.

. 55

Configuring

the

Application

Servers

for

IMS

Java

Remote

Database

Services

55

Installing

the

Data

Source

on

WebSphere

Application

Server

for

z/OS

.

.

. 56

Installing

the

EAR

file

on

WebSphere

Application

Server

for

z/OS

.

.

.

.

. 56

Installing

the

IMS

Distributed

JDBC

Resource

Adapter

.

.

.

.

.

.

.

.

. 57

Running

the

IMS

Java

IVP

for

Remote

Database

Services

.

.

.

.

.

.

.

.

. 58

Setting

the

WebSphere

Application

Server

for

z/OS

Classpath

.

.

.

.

.

. 58

Installing

the

Data

Source

for

the

IVP

on

the

Client

Side

.

.

.

.

.

.

.

. 58

Installing

the

IVP

on

the

Client

Side

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 59

Testing

the

IVP

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 60

Running

the

IMS

Java

Sample

Applications

for

Remote

Database

Services

61

Setting

the

WebSphere

Application

Server

for

z/OS

Classpath

.

.

.

.

.

. 61

IBM

Confidential

iv

IMS

Java

Guide

and

Reference

||

||

|
||

||
||

||
||
||
||
||
|
||
||
||
||

|
||
||
||
||
||
||
||
||
||
||
||
||
||
||

Installing

the

Data

Source

for

the

IMS

Java

Samples

on

the

Client

Side

.

.

. 62

Installing

the

IMS

Java

Sample

Applications

on

the

Client

Side

.

.

.

.

.

. 63

Testing

the

Phonebook

Sample

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 64

Testing

the

Dealership

Sample

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 65

Running

Your

Application

on

WebSphere

Application

Server

.

.

.

.

.

.

.

. 65

Setting

the

WebSphere

Application

Server

for

z/OS

Classpath

.

.

.

.

.

. 65

Installing

the

Data

Source

on

the

Client

Side

.

.

.

.

.

.

.

.

.

.

.

.

. 65

Installing

the

Application

on

the

Client

Side

.

.

.

.

.

.

.

.

.

.

.

.

. 67

Enabling

J2EE

Tracing

with

WebSphere

Application

Server

.

.

.

.

.

.

.

. 68

Specifying

the

Level

of

Tracing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 68

Specifying

the

Application

Server

and

the

Package

to

Trace

.

.

.

.

.

.

. 68

WebSphere

Application

Server

EJBs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 69

Transaction

Semantics

and

Server-Side

EJB

Types

.

.

.

.

.

.

.

.

.

. 69

Client-Side

EJB

Security

Semantics

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 70

Chapter

5.

DB2

UDB

for

z/OS

Stored

Procedures

.

.

.

.

.

.

.

.

.

.

. 71

Configuring

DB2

UDB

for

z/OS

for

IMS

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

. 71

Running

the

IMS

Java

IVP

from

DB2

UDB

for

z/OS

.

.

.

.

.

.

.

.

.

.

. 73

Running

the

IMS

Java

Sample

Application

on

DB2

UDB

for

z/OS

.

.

.

.

.

. 75

Running

Your

Stored

Procedure

from

DB2

UDB

for

z/OS

.

.

.

.

.

.

.

.

. 76

Developing

DB2

UDB

for

z/OS

Stored

Procedures

that

Access

IMS

DB

.

.

.

. 78

Chapter

6.

CICS

Applications

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

Configuring

CICS

for

IMS

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

Running

the

IMS

Java

IVP

on

CICS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 80

Running

the

IMS

Java

Sample

Application

on

CICS

.

.

.

.

.

.

.

.

.

.

. 81

Running

Your

Applications

on

CICS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 82

Developing

CICS

Applications

that

Access

IMS

DB

.

.

.

.

.

.

.

.

.

.

. 83

Chapter

7.

JDBC

Access

to

IMS

Data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 85

Comparison

of

Hierarchical

and

Relational

Databases

.

.

.

.

.

.

.

.

.

. 85

Supported

SQL

Keywords

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 88

SELECT

Statement

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 89

Selecting

Multiple

Segments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 91

Selecting

All

Fields

in

a

Segment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 91

Segment-Qualified

Fields

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 92

Retrieving

XML

Using

the

SELECT

Statement

.

.

.

.

.

.

.

.

.

.

. 92

Summary

of

SELECT

Statement

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

. 92

INSERT

Statement

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 93

DELETE

Statement

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 93

UPDATE

Statement

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 94

FROM

Clause

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 94

PCB-Qualified

SQL

Queries

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 94

Summary

of

FROM

Clause

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 95

WHERE

Clause

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 95

Summary

of

WHERE

Clause

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 96

Supported

SQL

Aggregate

Functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 96

SQL

Extensions

for

XML

Storage

and

Retrieval

.

.

.

.

.

.

.

.

.

.

.

.

. 97

retrieveXML

UDF

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 97

storeXML

UDF

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 99

Supported

JDBC

Interfaces

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 100

JDBC

Prepared

Statements

for

SQL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 102

Supported

JDBC

Data

Types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 102

General

Mappings

from

COBOL

Copybook

Types

to

IMS

Java

and

Java

Data

Types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 104

JDBC

Recommendations

for

IMS

Databases

.

.

.

.

.

.

.

.

.

.

.

.

. 105

IBM

Confidential

Contents

v

||
||
||
||
||
||
||
||
||
||
||
||
||
||

||
||
||
||
||

||
||
||
||

||

||
||
||
||
||

||
||
||
||
||
||
||
||
||

||

Java

Metadata

Classes

for

IMS

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

. 105

Sample

Application

that

Uses

JDBC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 108

Imported

Packages

for

JDBC

Access

to

IMS

Databases

.

.

.

.

.

.

.

. 109

Connections

to

IMS

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 109

Chapter

8.

XML

Storage

in

IMS

Databases

.

.

.

.

.

.

.

.

.

.

.

.

. 111

Decomposed

Storage

Mode

for

XML

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 112

Intact

Storage

Mode

for

XML

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 114

Side

Segments

for

Secondary

Indexing

.

.

.

.

.

.

.

.

.

.

.

.

.

. 115

DBDs

for

Intact

XML

Storage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 115

XML

Schema

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 116

XML

Type

Representation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 117

JDBC

Interface

for

Storing

and

Retrieving

XML

.

.

.

.

.

.

.

.

.

.

.

. 118

Chapter

9.

Problem

Determination

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 119

Exceptions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 119

How

Exceptions

Map

to

DL/I

Status

Codes

.

.

.

.

.

.

.

.

.

.

.

.

. 119

SQLException

Objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 120

XML

Tracing

for

IMS

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 120

WebSphere

Application

Server

Security

Requirements

for

XML

Tracing

121

Enabling

XML

Tracing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 121

Tracing

the

IMS

Java

Library

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 121

Tracing

Your

Application

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 122

Debugging

an

Unresettable

JVM

in

a

JMP

or

JBP

Region

.

.

.

.

.

.

.

. 122

Appendix

A.

Preparing

to

Run

the

Dealership

Samples

.

.

.

.

.

.

.

. 123

Modifying

IMS

Stage

1

Input

Statements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 123

Loading

the

Dealership

Sample

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

. 123

Appendix

B.

SQL

Keywords

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 127

Appendix

C.

IMS

Java

Hierarchical

Database

Interface

.

.

.

.

.

.

.

. 129

Application

Programming

Using

the

DLIConnection

Object

.

.

.

.

.

.

.

. 129

Creating

a

DLIConnection

Object

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 129

Creating

an

SSAList

Object

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 130

Accessing

IMS

Data

Using

SSAs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 130

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 131

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 133

Product

Names

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 133

Bibliography

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 135

IMS

Version

9

Library

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 135

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 137

IBM

Confidential

vi

IMS

Java

Guide

and

Reference

||

||
||
||
||
||
||
||
||

||
||
||
||
||
||
||

||
||
||

||

||

Figures

1.

JMP

or

JBP

Application

That

is

Using

IMS

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 8

2.

IVP

Screen

for

IMS

Java

JMP

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 10

3.

Subclass

IMSFieldMessage:

Input

Message

Sample

Code

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 16

4.

Subclass

IMSFieldMessage:

Output

Message

Sample

Code

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 16

5.

main

Method

Sample

Code

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 17

6.

Defining

a

SPA

Message

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 20

7.

Reading

a

SPA

Message

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 20

8.

Writing

a

SPA

Message

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

9.

Sample

Output

Message

with

Repeating

Structures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 23

10.

Defining

the

Primary

Input

Message

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 24

11.

Defining

Separate

Input

Messages

for

Each

Request

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 25

12.

Message-Reading

Logic

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 26

13.

WebSphere

Application

Server

for

z/OS

EJB

Using

IMS

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

14.

IMS

Java

and

WebSphere

Application

Server

Components

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

15.

DB2

UDB

for

z/OS

Stored

Procedure

Using

IMS

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 71

16.

Sample

JAVAENV

Data

Set

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 72

17.

CICS

Application

Using

IMS

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

18.

Sample

Dealership

Database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 86

19.

Relational

Representation

of

the

Dealership

Database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 87

20.

Segment

Occurrences

in

the

Dealership

Database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 88

21.

Relational

Representation

of

Segment

Occurrences

in

the

Dealership

Database

.

.

.

.

.

.

. 88

22.

Example

of

SELECT

Statement

Query

Results

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 90

23.

Sample

Relational

Database

Query

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 91

24.

Sample

Hierarchical

Database

Query

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 91

25.

Simple

Way

to

Select

All

Fields

in

a

Segment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 92

26.

Long

Way

to

Select

All

Fields

in

a

Segment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 92

27.

Sample

INSERT

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 93

28.

Sample

DELETE

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 94

29.

Sample

UPDATE

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 94

30.

PCB-Qualified

SQL

Query

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 94

31.

Creating

XML

Using

the

retrieveXML

UDF

and

the

getClob

Method

.

.

.

.

.

.

.

.

.

.

.

. 98

32.

Sample

SQL

Query

that

Uses

the

retrieveXML

UDF

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 98

33.

Establishing

a

Connection

to

the

Dealership

Database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 100

34.

Sample

PSB

for

the

Dealership

Sample

Application

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 106

35.

DBD

for

the

Sample

Dealership

Database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 106

36.

Sample

DLIModel

IMS

Java

Report

for

the

Dealership

Sample

Database

.

.

.

.

.

.

.

.

. 107

37.

Example

JDBC

Application

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 109

38.

Overview

of

XML

Storage

in

IMS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 112

39.

How

XML

is

Decomposed

XML

and

Stored

in

IMS

Segments

.

.

.

.

.

.

.

.

.

.

.

.

.

. 113

40.

Intact

Storage

of

XML

with

a

Secondary

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 115

41.

DBD

for

Intact

XML

Storage

and

No

Secondary

Indexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 115

42.

DBD

for

Intact

XML

Storage

and

Two

Secondary

Indexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 116

43.

Secondary

Index

DBD

for

Intact

XML

Storage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 116

44.

IMSException

Class

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 120

45.

Setting

a

Trace

within

a

Static

Method

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 122

46.

Creating

a

DLIConnection

Object

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 130

47.

Creating

an

SSAList

Object

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 130

IBM

Confidential

©

Copyright

IBM

Corp.

2000,

2004

vii

||

||
||

||

||

||
||
||
||

||

||
||
||
||

||
||
||
||
||
||

||

IBM

Confidential

viii

IMS

Java

Guide

and

Reference

Tables

1.

Relationship

between

the

Transaction

Context

and

the

Transaction

Semantics

.

.

.

.

.

.

.

. 70

2.

Supported

SQL

Aggregate

Functions

and

Their

Supported

Data

Types

.

.

.

.

.

.

.

.

.

.

. 97

3.

Supported

JDBC

Data

Types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 102

4.

ResultSet.getxxx

Methods

to

Retrieve

JDBC

Types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 103

5.

Mapping

from

COBOL

Formats

to

DLITypeInfo

Constants

and

Java

Data

Types

.

.

.

.

.

.

. 104

6.

DLITypeInfo

Constants

and

Java

Data

Types

Based

on

the

PICTURE

Clause

.

.

.

.

.

.

.

. 104

7.

Copybook

Formats

Mapped

to

DLITypeInfo

Constants

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 104

8.

Primary

Intact

Field

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 114

9.

IMS

Java-Supported

XML

Schema

Data

Types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 117

IBM

Confidential

©

Copyright

IBM

Corp.

2000,

2004

ix

||

||

||
||

IBM

Confidential

x

IMS

Java

Guide

and

Reference

About

This

Book

This

softcopy

book

is

available

only

in

PDF

and

BookManager®

formats.

This

book

is

available

on

the

IMS™

Version

9

Licensed

Product

Kit

(LK3T-7213).

To

get

the

most

current

versions

of

the

PDF

and

BookManager

formats,

go

to

the

IMS

Web

site

at

www.ibm.com/ims

and

link

to

the

Library

page.

This

book

provides

application

development

and

deployment

information

for

IMS

Java™,

a

function

of

IMS

that

allows

you

to

write

Java

application

programs

that

access

IMS

databases

from

multiple

systems.

This

book

also

explains

the

DLIModel

utility

and

XML

support

for

IMS

databases.

Information

about

IMS

Java

is

also

available

from

the

IMS

Web

site.

Go

to

www.ibm.com/ims

and

link

to

the

IMS

Java

page.

Prerequisite

Knowledge

To

configure

your

system

for

IMS

Java,

you

must

understand

system

administration

for

your

system

(IMS,

WebSphere®

Application

Server

for

z/OS®,

CICS®,

or

DB2®

UDB

for

z/OS).

For

IMS

system

administration,

you

should

know

the

concepts

in

IMS

Version

9:

Administration

Guide:

System.

To

create

IMS

Java

metadata

classes,

which

is

a

required

step

in

writing

IMS

Java

applications,

you

must

understand

IMS

databases.

IMS

database

concepts

are

described

in

IMS

Version

9:

Administration

Guide:

Database

Manager.

To

write

Java

applications,

you

must

thoroughly

understand

the

Java

language

and

JDBC.

This

book

assumes

that

you

know

Java

and

JDBC.

It

does

not

explain

any

Java

or

JDBC

concepts.

To

write

applications

that

store

or

retrieve

XML,

you

must

understand

XML

and

its

related

technologies,

such

as

XML

Schemas.

How

to

Read

Syntax

Diagrams

The

following

rules

apply

to

the

syntax

diagrams

that

are

used

in

this

information:

v

Read

the

syntax

diagrams

from

left

to

right,

from

top

to

bottom,

following

the

path

of

the

line.

The

following

conventions

are

used:

–

The

>>---

symbol

indicates

the

beginning

of

a

syntax

diagram.

–

The

--->

symbol

indicates

that

the

syntax

diagram

is

continued

on

the

next

line.

–

The

>---

symbol

indicates

that

a

syntax

diagram

is

continued

from

the

previous

line.

–

The

---><

symbol

indicates

the

end

of

a

syntax

diagram.

v

Required

items

appear

on

the

horizontal

line

(the

main

path).

��

required_item

��

v

Optional

items

appear

below

the

main

path.

��

required_item

optional_item

��

IBM

Confidential

©

Copyright

IBM

Corp.

2000,

2004

xi

|
|
|
|

|
|

|
|

If

an

optional

item

appears

above

the

main

path,

that

item

has

no

effect

on

the

execution

of

the

syntax

element

and

is

used

only

for

readability.

��

optional_item

required_item

��

v

If

you

can

choose

from

two

or

more

items,

they

appear

vertically,

in

a

stack.

If

you

must

choose

one

of

the

items,

one

item

of

the

stack

appears

on

the

main

path.

��

required_item

required_choice1

required_choice2

��

If

choosing

one

of

the

items

is

optional,

the

entire

stack

appears

below

the

main

path.

��

required_item

optional_choice1

optional_choice2

��

If

one

of

the

items

is

the

default,

it

appears

above

the

main

path,

and

the

remaining

choices

are

shown

below.

��

required_item

default_choice

optional_choice

optional_choice

��

v

An

arrow

returning

to

the

left,

above

the

main

line,

indicates

an

item

that

can

be

repeated.

��

required_item

�

repeatable_item

��

If

the

repeat

arrow

contains

a

comma,

you

must

separate

repeated

items

with

a

comma.

��

required_item

�

,

repeatable_item

��

A

repeat

arrow

above

a

stack

indicates

that

you

can

repeat

the

items

in

the

stack.

v

Sometimes

a

diagram

must

be

split

into

fragments.

The

syntax

fragment

is

shown

separately

from

the

main

syntax

diagram,

but

the

contents

of

the

fragment

should

be

read

as

if

they

are

on

the

main

path

of

the

diagram.

��

required_item

fragment-name

��

fragment-name:

IBM

Confidential

xii

IMS

Java

Guide

and

Reference

required_item

optional_item

v

In

IMS,

a

b

symbol

indicates

one

blank

position.

v

Keywords,

and

their

minimum

abbreviations

if

applicable,

appear

in

uppercase.

They

must

be

spelled

exactly

as

shown.

Variables

appear

in

all

lowercase

italic

letters

(for

example,

column-name).

They

represent

user-supplied

names

or

values.

v

Separate

keywords

and

parameters

by

at

least

one

space

if

no

intervening

punctuation

is

shown

in

the

diagram.

v

Enter

punctuation

marks,

parentheses,

arithmetic

operators,

and

other

symbols,

exactly

as

shown

in

the

diagram.

v

Footnotes

are

shown

by

a

number

in

parentheses,

for

example

(1).

How

to

Send

Your

Comments

Your

feedback

is

important

in

helping

us

provide

the

most

accurate

and

highest

quality

information.

If

you

have

any

comments

about

this

or

any

other

IMS

information,

you

can

take

one

of

the

following

actions:

v

Go

to

the

IMS

Library

page

at

www.ibm.com/software/data/ims/library.html

and

click

the

Library

Feedback

link,

where

you

can

enter

and

submit

comments.

v

Send

your

comments

by

e-mail

to

imspubs@us.ibm.com.

Be

sure

to

include

the

title,

the

part

number

of

the

title,

the

version

of

IMS,

and,

if

applicable,

the

specific

location

of

the

text

on

which

you

are

commenting

(for

example,

a

page

number

in

the

PDF

or

a

heading

in

the

Information

Center).

IBM

Confidential

About

This

Book

xiii

IBM

Confidential

xiv

IMS

Java

Guide

and

Reference

Summary

of

Changes

Changes

to

This

Book

for

IMS

Version

9

This

edition

is

a

draft

version

of

this

book

intended

for

use

during

the

Quality

Partnership

Program

(QPP).

Contents

of

this

book

are

preliminary

and

under

development.

The

version

contains

information

about

the

following

enhancements

to

IMS

Version

9:

v

Support

for

XML

storage

and

retrieval

from

IMS

databases

v

Access

to

IMS

databases

from

WebSphere

Application

Server

on

non-z/OS

platforms

v

Symbolic

checkpoint

and

restart

for

JBP

applications

The

chapter

″DLIModel

Utility″

has

moved

to

the

IMS

Version

9:

Utilities

Reference:

System.

This

book

also

contains

major

organizational

changes.

To

get

the

latest

information

about

IMS

Java,

including

enhancements

to

the

product

and

corrections

to

the

information,

go

to

www.ibm.com/ims

and

link

to

the

IMS

Java

page.

Library

Changes

for

IMS

Version

9

Changes

to

the

IMS

Library

for

IMS

Version

9

include

the

addition

of

one

title,

a

change

of

one

title,

organizational

changes,

and

a

major

terminology

change.

Changes

are

indicated

by

a

vertical

bar

(|)

to

the

left

of

the

changed

text.

New

and

Revised

Titles

The

following

list

details

the

major

changes

to

the

IMS

Version

9

library:

v

IMS

Version

9:

IMS

Connect

Guide

and

Reference

The

library

includes

new

information:

IMS

Version

9:

IMS

Connect

Guide

and

Reference.

This

information

is

available

in

softcopy

format

only,

as

part

of

the

DB2

Information

Management

Software

Information

Center

for

z/OS

Solutions,

and

in

PDF

and

BookManager

formats.

IMS

Version

9

provides

an

integrated

IMS

Connect

function,

which

offers

a

functional

replacement

for

the

IMS

Connect

tool

(program

number

5655-K52).

In

this

information,

the

term

IMS

Connect

refers

to

the

integrated

IMS

Connect

function

that

is

part

of

IMS

Version

9,

unless

otherwise

indicated.

v

The

information

formerly

titled

IMS

Version

8:

IMS

Java

User’s

Guide

is

now

titled

IMS

Version

9:

IMS

Java

Guide

and

Reference.

This

information

is

available

in

softcopy

format

only,

as

part

of

the

DB2

Information

Management

Software

Information

Center

for

z/OS

Solutions,

and

in

PDF

and

BookManager

formats.

v

To

complement

the

IMS

Version

9

library,

a

new

book,

An

Introduction

to

IMS

by

Dean

H.

Meltz,

Rick

Long,

Mark

Harrington,

Robert

Hain,

and

Geoff

Nicholls

(ISBN

#

0-13-185671-5),

is

available

starting

February

2005

from

IBM

Press.

Go

to

the

IMS

Web

site

at

www.ibm.com/ims

for

details.

IBM

Confidential

©

Copyright

IBM

Corp.

2000,

2004

xv

|
|

|

|
|

|
|
|

Organizational

Changes

Organization

changes

to

the

IMS

Version

9

library

include

changes

to:

v

IMS

Version

9:

IMS

Java

Guide

and

Reference

v

IMS

Version

9:

Messages

and

Codes,

Volume

1

v

IMS

Version

9:

Utilities

Reference:

System

The

chapter

titled

″DLIModel

Utility″

has

moved

from

IMS

Version

9:

IMS

Java

Guide

and

Reference

to

IMS

Version

9:

Utilities

Reference:

System.

The

DLIModel

utility

messages

that

were

in

IMS

Version

9:

IMS

Java

Guide

and

Reference

have

moved

to

IMS

Version

9:

Messages

and

Codes,

Volume

1

Terminology

Changes

IMS

Version

9

introduces

new

terminology

for

IMS

commands:

type-1

command

A

command,

generally

preceded

by

a

leading

slash

character,

that

can

be

entered

from

any

valid

IMS

command

source.

In

IMS

Version

8,

these

commands

were

called

classic

commands.

type-2

command

A

command

that

is

entered

only

through

the

OM

API.

Type-2

commands

are

more

flexible

than

type-2

commands

and

can

have

a

broader

scope.

In

IMS

Version

8,

these

commands

were

called

IMSplex

commands

or

enhanced

commands.

Accessibility

Enhancements

Accessibility

features

help

a

user

who

has

a

physical

disability,

such

as

restricted

mobility

or

limited

vision,

to

use

software

products.

The

major

accessibility

features

in

z/OS

products,

including

IMS,

enable

users

to:

v

Use

assistive

technologies

such

as

screen

readers

and

screen

magnifier

software

v

Operate

specific

or

equivalent

features

using

only

the

keyboard

v

Customize

display

attributes

such

as

color,

contrast,

and

font

size

User

Assistive

Technologies

Assistive

technology

products,

such

as

screen

readers,

function

with

the

IMS

user

interfaces.

Consult

the

documentation

of

the

assistive

technology

products

for

specific

information

when

you

use

assistive

technology

to

access

these

interfaces.

Accessible

Information

Online

information

for

IMS

Version

9

is

available

in

BookManager

format,

which

is

an

accessible

format.

All

BookManager

functions

can

be

accessed

by

using

a

keyboard

or

keyboard

shortcut

keys.

BookManager

also

allows

you

to

use

screen

readers

and

other

assistive

technologies.

The

BookManager

READ/MVS

product

is

included

with

the

z/OS

base

product,

and

the

BookManager

Softcopy

Reader

(for

workstations)

is

available

on

the

IMS

Licensed

Product

Kit

(CD),

which

you

can

download

from

the

Web

at

www.ibm.com.

Keyboard

Navigation

of

the

User

Interface

Users

can

access

IMS

user

interfaces

using

TSO/E

or

ISPF.

Refer

to

the

z/OS

V1R1.0

TSO/E

Primer,

the

z/OS

V1R5.0

TSO/E

User’s

Guide,

and

the

z/OS

V1R5.0

ISPF

User’s

Guide,

Volume

1.

These

guides

describe

how

to

navigate

each

IBM

Confidential

xvi

IMS

Java

Guide

and

Reference

interface,

including

the

use

of

keyboard

shortcuts

or

function

keys

(PF

keys).

Each

guide

includes

the

default

settings

for

the

PF

keys

and

explains

how

to

modify

their

functions.

IBM

Confidential

Summary

of

Changes

xvii

IBM

Confidential

xviii

IMS

Java

Guide

and

Reference

Chapter

1.

Getting

Started

with

IMS

Java

IMS

Java

is

a

function

of

IMS

that

allows

you

to

write

Java

application

programs

that

access

IMS

databases

from

many

different

locations:

v

IMS

JMP

(Java

message

processing)

and

JBP

(Java

batch

processing)

dependent

regions

v

IBM

WebSphere

Application

Server

for

z/OS

v

WebSphere

Application

Server

that

is

running

on

a

non-z/OS

platform

v

IBM

CICS

Transaction

Server

for

z/OS

v

IBM

DB2

Universal

Database™

for

z/OS

stored

procedures

IMS

Java

implements

the

JDBC

API,

which

is

the

standard

Java

interface

for

database

access.

JDBC

uses

SQL

(structured

query

language)

calls.

The

IMS

Java

implementation

of

JDBC

supports

a

selected

subset

of

the

full

facilities

of

the

JDBC

2.1

API.

IMS

Java

also

extends

the

JDBC

interface

for

storage

and

retrieval

of

XML

documents

in

IMS.

For

more

information,

see

Chapter

8,

“XML

Storage

in

IMS

Databases,”

on

page

111.

In

addition

to

JDBC,

IMS

Java

has

another

interface

to

the

IMS

databases

called

the

IMS

Java

hierarchical

database

interface.

This

interface

is

similar

to

the

standard

IMS

DL/I

database

call

interface,

and

provides

lower-level

access

to

IMS

database

functions

than

the

JDBC

interface.

However,

JDBC

is

the

recommended

access

interface

to

IMS

databases

and

this

book

focuses

on

JDBC.

For

information

about

the

IMS

Java

hierarchical

database

interface,

see

Appendix

C,

“IMS

Java

Hierarchical

Database

Interface,”

on

page

129.

The

following

topics

provide

additional

information:

v

“IMS

Java

System

Requirements”

v

“Installing

IMS

Java”

on

page

2

v

“Administering

IMS

Java”

on

page

3

v

“IMS

Java

Class

Library

Summary”

on

page

5

v

“General

Restrictions”

on

page

5

v

“Where

to

Find

More

Information

about

IMS

Java”

on

page

6

IMS

Java

System

Requirements

To

use

IMS

Java

to

write

application

programs

that

access

IMS

databases,

the

following

software

and

z/OS

components

are

required:

v

IMS

Version

9

with

the

IMS

Java

FMID

v

IBM

SDK

for

z/OS

Java

2

Technology

Edition,

Version

1.3.1

or

later

v

z/OS

Version

1

Release

4

or

later

v

UNIX®

System

Services

available

at

runtime

v

Hierarchic

File

System

(HFS)

on

z/OS.

For

information

about

preparing

an

HFS,

see

z/OS:

UNIX

System

Services

File

System

Interface

Reference.

v

Xalan-Java

version

2.6.0

or

later

from

the

Apache

Software

Foundation

(www.apache.org)

XML

Project

(xml.apache.org),

or

equivalent

code

function.

See

“Downloading

Apache

Open

Source

XML

Libraries”

on

page

3.

IBM

Confidential

©

Copyright

IBM

Corp.

2000,

2004

1

|
|

|
|

|

|

|

|

|
|
|
|

|

|

|

|

|

|

|

|

|
|
|

Installing

IMS

Java

IMS

Java

is

delivered

in

a

separate

FMID.

Before

you

can

install

the

IMS

Java

FMID

with

SMP/E,

you

must

prepare

HFS,

which

is

described

in

this

topic.

Prerequisite:

Install

IMS

Version

9

and

run

the

standard

IMS

IVPs.

For

details

about

how

to

run

the

IMS

IVPs,

see

IMS

Version

9:

Installation

Volume

1:

Installation

Verification.

To

install

IMS

Java:

1.

Allocate

a

data

set

for

HFS:

//HFSALLOC

JOB

parameters

//**/

//*

To

run

this

job:

*/

//*

1)

Add

JOB

statement

parameters

to

meet

your

requirements.

*/

//*

2)

For

DSNAME,

change

hfsdsn

to

the

name

of

the

new

file

*/

//*

system.

*/

//*

3)

For

VOLUME,

change

volid

to

the

volser

ID

of

the

DASD

*/

//*

that

will

contain

the

IMS

Java

HFS

data

set.

*/

//**/

//ALLOCATE

EXEC

PGM=IDCAMS,DYNAMNBR=200

//SYSPRINT

DD

SYSOUT=*

//SYSIN

DD

*

ALLOCATE

-

DSNAME(’hfsdsn’)

-

RECFM(U)

-

LRECL(0)

-

BLKSIZE(32760)

-

DSORG(PO)

-

VOLUME(volid)

-

DSNTYPE(HFS)

-

NEW

CATALOG

-

SPACE(15,5)

CYL

-

DIR(200)

-

UNIT(SYSALLDA)

/*

2.

Defines

the

mount

point

directory

to

mount

the

HFS:

//HFSMOUNT

JOB

parameters

//**/

//*

To

run

this

job:

*/

//*

1)

Add

JOB

statement

parameters

to

meet

your

requirements.

*/

//*

2)

For

FILESYSTEM,

change

hfsdsn

to

the

name

of

the

file

*/

//*

system

that

you

specified

in

the

HFSALLOC

job.

*/

//*

3)

For

MOUNTPOINT,

change

/PathPrefix

to

the

high-level

*/

//*

directory

name.

The

directory

name

must

be

preceded

with*/

//*

a

forward

slash

(/),

for

example,

/apps

or

/ims/apps.

*/

//*

This

string

must

match

the

PathPrefix

*/

//*

string

in

the

DFSJSMKD

job.

*/

//**/

//MOUNT

EXEC

PGM=IKJEFT01

//SYSTSPRT

DD

SYSOUT=*

//SYSTSIN

DD

*

MOUNT

FILESYSTEM(’hfsdsn’)

/*

MOUNT

HFS

*/

+

MOUNTPOINT(’/PathPrefix’)

TYPE(HFS)

MODE(RDWR)

/*

3.

Run

the

sample

installation

job

DFSJSMKD.

DFSJSMKD

runs

the

DFSJKMDR

REXX

script,

which

creates

the

HFS

paths

for

IMS

Java.

4.

Using

SMP/E,

install

the

IMS

Java

FMID.

Next:

“Downloading

Apache

Open

Source

XML

Libraries”

on

page

3

Installing

IMS

Java IBM

Confidential

2

IMS

Java

Guide

and

Reference

|

|
|

|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|

Downloading

Apache

Open

Source

XML

Libraries

IMS

Java

and

the

DLIModel

utility

require

Xalan-Java

version

2.6.0

or

later

from

the

Apache

Software

Foundation

(www.apache.org)

XML

Project

(xml.apache.org),

or

equivalent

code

function.

The

Apache

XML

Project

is

a

collaborative

software

development

project

that

licenses

open

source

software

at

no

charge.

The

following

open

source

files

(or

equivalent

code

function)

are

required

by

IMS

Java

and

the

DLIModel

utility:

xercesImpl.jar

XML

parser

that

is

required

for

IMS

Java

and

the

DLIModel

utility

xalan.jar

XSLT

processor

that

is

required

for

IMS

Java

to

create

XML

and

transform

XML

documents

xml-apis.jar

XML

APIs

that

are

required

for

IMS

Java

and

the

DLIModel

utility

Prerequisite:

“Installing

IMS

Java”

on

page

2

To

download

the

required

open

source

files

for

IMS

Java

and

the

DLIModel

utility

from

xml.apache.org:

1.

Go

to

http://xml.apache.org.

2.

Following

the

links

to

the

Xalan-Java

2

page.

3.

Follow

the

links

to

download

the

zipped

binary

file

for

Xalan-Java

version

2.6.0

or

later.

4.

Uncompress

the

zipped

Xalan-Java

file.

5.

Move

the

following

files

to

the

HFS

directory

pathprefix/usr/lpp/ims/imsjava91/lib:

v

xercesImpl.jar

v

xalan.jar

v

xml-apis.jar

Next:

The

next

step

varies

depending

on

the

environment

that

you

your

application

will

run

in:

v

JMP

region:

“Running

the

IMS

Java

IVP

in

a

JMP

Region”

on

page

8

v

JBP

region:

“Running

the

IMS

Java

IVP

in

a

JBP

Region”

on

page

10

v

WebSphere

Application

Server

for

z/OS:

“Configuring

WebSphere

Application

Server

V5

for

z/OS

for

IMS

Java”

on

page

36

v

WebSphere

Application

Server

on

a

non-z/OS

platform:

“Configuring

WebSphere

Application

Server

V5

for

z/OS

for

IMS

Java”

on

page

36

v

DB2

UDB

for

z/OS

stored

procedure:

“Configuring

DB2

UDB

for

z/OS

for

IMS

Java”

on

page

71

v

CICS:

“Configuring

CICS

for

IMS

Java”

on

page

79

Administering

IMS

Java

This

topic

provides

the

high-level

tasks

to

administer

IMS

Java

from

installing

IMS

Java

to

deploying

your

application.

This

topic

does

not

contain

application

programming

information.

To

administer

IMS

Java:

Downloading

Open

Source

LibrariesIBM

Confidential

Chapter

1.

Getting

Started

with

IMS

Java

3

|

|
|
|
|

|
|

|
|

|
|
|

|
|

|

|
|

|

|

|
|

|

|

|

|

|

|
|

|

|

|
|

|
|

|
|

|

|
|

|
|
|

|

1.

Install

and

configure

the

required

z/OS

software

for

IMS

Java.

See

“IMS

Java

System

Requirements”

on

page

1

for

a

list

of

required

software

and

z/OS

components

that

must

be

installed

before

you

can

use

IMS

Java.

2.

Install

IMS

Java:

“Installing

IMS

Java”

on

page

2

3.

Download

and

install

the

required

open

source

files:

“Downloading

Apache

Open

Source

XML

Libraries”

on

page

3

4.

If

you

are

using

the

remote

database

services

of

IMS

Java,

install

additional

files

from

the

IMS

Java

Web

site:

“Downloading

IMS

Java

Files

for

Remote

Database

Services”

on

page

55

5.

Continue

configuration

for

your

environment,

if

necessary:

v

WebSphere

Application

Server

for

z/OS:

“Configuring

WebSphere

Application

Server

V5

for

z/OS

for

IMS

Java”

on

page

36

v

WebSphere

Application

Server

on

a

non-z/OS

platform:

“Configuring

WebSphere

Application

Server

V5

for

z/OS

for

IMS

Java”

on

page

36

and

“Configuring

the

Application

Servers

for

IMS

Java

Remote

Database

Services”

on

page

55

v

DB2

UDB

for

z/OS

stored

procedure:

“Configuring

DB2

UDB

for

z/OS

for

IMS

Java”

on

page

71

v

CICS:

“Configuring

CICS

for

IMS

Java”

on

page

79

6.

Run

the

IVP

for

your

environment:

v

JMP

region:

“Running

the

IMS

Java

IVP

in

a

JMP

Region”

on

page

8

v

JBP

region:

“Running

the

IMS

Java

IVP

in

a

JBP

Region”

on

page

10

v

WebSphere

Application

Server

for

z/OS:

“Running

the

IMS

Java

IVP

on

WebSphere

Application

Server

for

z/OS”

on

page

39

v

WebSphere

Application

Server

on

a

non-z/OS

platform:

“Running

the

IMS

Java

IVP

on

WebSphere

Application

Server

for

z/OS”

on

page

39

and

“Running

the

IMS

Java

IVP

for

Remote

Database

Services”

on

page

58

v

DB2

UDB

for

z/OS

stored

procedure:

“Running

the

IMS

Java

IVP

from

DB2

UDB

for

z/OS”

on

page

73

v

CICS:

“Running

the

IMS

Java

IVP

on

CICS”

on

page

80

7.

Write

the

PSB,

and

generate

the

DBDs,

PSB,

and

ACB

for

the

application.

8.

Using

the

DBDs

and

PSB

as

input,

write

control

statements

for

the

DLIModel

utility.

See

the

IMS

Version

9:

Utilities

Reference:

System.

9.

Run

the

DLIModel

utility,

which

uses

the

DBDs,

PSB,

and

other

input

to

generate

Java

metadata

class

that

the

application

uses

to

access

the

databases.

The

DLIModel

utility

is

a

Java

application,

so

you

can

run

it

from

the

UNIX

System

Services

prompt,

or

you

can

run

it

using

the

z/OS-provided

BPXBATCH

utility.

See

the

IMS

Version

9:

Utilities

Reference:

System.

10.

Compile

the

Java

source

file

of

the

Java

metadata

class

that

is

generated

to

create

a

Java

class

file.

11.

Provide

the

Java

metadata

classes,

the

DLIModel

IMS

Java

Report,

which

provides

the

information

about

the

IMS

database,

and

optionally

the

generated

XML

schema

to

the

Java

application

developer.

12.

Update

the

IMS

system

definition

with

a

new

APPLCTN

macro

statement

for

the

Java

application.

13.

Deploy

your

application:

v

JMP

region:

Using

the

IMS

Java

IVP

and

sample

application

as

models,

start

a

JMP

region

with

your

specific

requirements.

See

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring

for

all

of

the

available

options.

Administering

IMS

Java IBM

Confidential

4

IMS

Java

Guide

and

Reference

|
|
|

|

|
|

|
|
|

|

|
|

|
|
|
|

|
|

|

|

|

|

|
|

|
|
|

|
|

|

|

|
|

|
|
|
|
|

|
|

|
|
|

|
|

|

|
|
|
|

v

JBP

region:

Using

the

IMS

Java

IVP

as

a

model,

start

a

JBP

region

with

your

specific

requirements.

See

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring

for

all

of

the

available

options.

v

WebSphere

Application

Server

for

z/OS:

“Running

Your

Applications

on

WebSphere

Application

Server

for

z/OS”

on

page

46

v

WebSphere

Application

Server

on

a

non-z/OS

platform:

“Running

Your

Application

on

WebSphere

Application

Server”

on

page

65

v

DB2

UDB

for

z/OS

stored

procedure:

“Running

Your

Stored

Procedure

from

DB2

UDB

for

z/OS”

on

page

76

v

CICS:

“Running

Your

Applications

on

CICS”

on

page

82

IMS

Java

Class

Library

Summary

Your

Java

application

uses

the

IMS

Java

class

library,

which

includes

the

following

packages:

com.ibm.ims.base

Provides

classes

for

basic

IMS

Java

functions

and

for

problem

determination.

com.ibm.connector2.ims.db

Provides

classes

for

connecting

to

IMS

databases

from

WebSphere

Application

Server

for

z/OS.

com.ibm.ims.application

Provides

classes

for

processing

IMS

messages,

and

performs

commits

and

rollbacks

for

JMP

and

JBP

applications.

com.ibm.ims.db

Provides

classes

for

the

JDBC

driver

and

for

the

IMS

Java

hierarchical

database

interface.

com.ibm.ims.rds

Provides

classes

for

client-side

WebSphere

Application

Server

support

of

remote

database

services.

com.ibm.ims.rds.host

Provides

classes

for

server-side

WebSphere

Application

Server

support

of

remote

database

services.

com.ibm.ims.rds.util

Provides

classes

for

storing

data

that

is

passed

between

the

client

and

server

components

for

remote

data

access

support.

com.ibm.ims.xms

Provides

classes

for

storing

and

retrieving

XML

in

Java

applications.

Related

Reading:

For

more

information

about

the

IMS

Java

class

library,

see

the

IMS

Java

API

Specification

(Javadoc).

Go

to

the

IMS

Web

site

at

www.ibm.com/ims

and

link

to

the

IMS

Java

page.

General

Restrictions

The

following

restrictions

apply

to

applications

that

use

IMS

Java:

v

The

z/OS

JVM

restricts

the

classpath

length

to

255.

Do

not

create

classpaths

longer

than

255

characters.

v

IMS

Java

applications

cannot

run

in

an

IMS

batch

environment.

Administering

IMS

JavaIBM

Confidential

Chapter

1.

Getting

Started

with

IMS

Java

5

|
|
|

|
|

|
|

|
|

|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|

|

|
|

v

For

IMS

Version

8

and

later,

IMS

Java

does

not

support

High

Performance

Java

(HPJ).

v

IMS

does

not

support

local

transactions,

but

IMS

Java

emulates

local

transaction

semantics,

depending

on

the

type

of

EJB

deployed,

with

remote

database

services

support.

Therefore,

the

commit,

rollback,

and

setAutoCommit

methods

on

an

IMS

Java

JDBC

Connection

object

are

not

supported

and

throw

an

SQLException

object.

Where

to

Find

More

Information

about

IMS

Java

The

information

in

this

book

is

only

one

of

the

resources

available

for

IMS

Java

information.

The

IMS

Java

Web

site

contains

frequently

updated

information

about

IMS

Java

and

links

to

the

resources

described

in

this

section.

The

Web

site

also

has

links

to

presentation

materials

from

recent

conferences,

downloads,

and

announcements

of

IMS

Java

enhancements.

Go

to

the

IMS

Web

site

at

www.ibm.com/ims

and

link

to

the

IMS

Java

page.

The

IMS

Java

API

specification

is

available

on

the

IMS

Java

Web

site.

The

specification

contains

information

about

the

packages

described

in

“IMS

Java

Class

Library

Summary”

on

page

5.

The

IMS

Support

Web

site

contains

a

broad

range

of

information

about

IMS,

including

IMS

Java.

Go

to

http://www.ibm.com/software/data/ims/support.html.

The

following

Redbooks™

contain

information

about

IMS

Java

and

related

technologies:

v

IMS

Version

7

Java

Update

(SG24-6536):

Contains

IMS

Version

7

level

information

about

running

applications

from

JMP

regions,

JBP

regions,

DB2

stored

procedures,

and

CICS.

v

IMS

e-business

Connectors:

A

Guide

to

IMS

Connectivity

(SG24-6514):

Contains

a

chapter

on

setting

up

ODBA.

v

ABCs

of

System

Programming

Volume

9

(SG24-6989):

Describes

UNIX

System

Services

(z/OS

UNIX).

It

will

help

you

install,

tailor,

configure,

and

use

the

z/OS

Version

1

Release

4

version

of

z/OS

UNIX.

General

Restrictions IBM

Confidential

6

IMS

Java

Guide

and

Reference

|
|

Chapter

2.

JMP

and

JBP

Applications

Two

IMS

dependent

regions

provide

a

Java

Virtual

Machine

(JVM)

environment

for

Java

applications:

Java

message

processing

(JMP)

regions

JMP

regions

are

similar

to

MPP

regions,

but

JMP

regions

allow

the

scheduling

only

of

Java

message-processing

applications.

A

JMP

application

is

started

when

there

is

a

message

in

the

queue

for

the

JMP

application

and

IMS

schedules

the

message

to

be

processed.

JMP

applications

are

executed

through

transaction

codes

submitted

by

users

at

terminals

and

from

other

applications.

Each

transaction

code

represents

a

transaction

that

the

JMP

application

processes.

A

single

application

can

also

be

started

from

multiple

transaction

codes.

JMP

applications

are

very

flexible

in

how

they

process

transactions

and

where

they

send

the

output.

JMP

applications

send

any

output

messages

back

to

the

message

queues

and

process

the

next

message

with

the

same

transaction

code.

The

program

continues

to

run

until

there

are

no

more

messages

with

the

same

transaction

code.

JMP

applications

share

the

following

characteristics:

v

They

are

small.

v

They

can

produce

output

that

is

needed

immediately.

v

They

can

access

IMS

or

DB2

data

in

a

DB/DC

environment

and

DB2

data

in

a

DCCTL

environment.

Java

batch

processing

(JBP)

regions

JBP

regions

run

flexible

programs

that

perform

batch-type

processing

online

and

can

access

the

IMS

message

queues

for

output

(similar

to

non-message–driven

BMP

applications).

JBP

applications

are

started

by

submitting

a

job

with

JCL

or

from

TSO.

JBP

applications

are

like

BMP

applications,

except

that

they

cannot

read

input

messages

from

the

IMS

message

queue.

For

example,

there

is

no

IN=

parameter

in

the

startup

procedure.

Similarly

to

BMP

applications,

JBP

applications

can

use

symbolic

checkpoint

and

restart

calls

to

restart

the

application

after

an

abend.

JBP

applications

can

access

IMS

or

DB2

data

in

a

DB/DC

or

DBCTL

environment

and

DB2

data

in

a

DCCTL

environment

Important:

JMP

and

JBP

regions

are

not

necessary

if

your

application

runs

in

WebSphere

Application

Server,

DB2

UDB

for

z/OS,

or

CICS.

These

regions

are

needed

only

if

your

application

is

going

to

run

in

an

IMS

dependent

region.

Figure

1

on

page

8

shows

a

Java

application

that

is

running

in

a

JMP

or

JBP

region.

JDBC

or

IMS

Java

hierarchical

interface

calls

are

passed

to

the

IMS

Java

layer,

which

converts

the

calls

to

DL/I

calls.

IBM

Confidential

©

Copyright

IBM

Corp.

2000,

2004

7

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

JMP

and

JBP

regions

can

run

applications

written

in

Java,

object-oriented

COBOL,

or

a

combination

of

the

two.

See

“Enterprise

COBOL

Interoperability

with

JMP

and

JBP

Applications”

on

page

29.

JMP

and

JBP

applications

can

access

DB2

UDB

for

z/OS

databases

in

addition

to

IMS

databases.

See

“Configuring

JMP

and

JBP

Regions

for

DB2

UDB

for

z/OS

Database

Access”

on

page

13.

This

chapter

uses

the

sample

applications

that

are

shipped

with

IMS

Java

to

show

how

to

write

and

deploy

IMS

Java

applications

that

run

in

JMP

and

JBP

regions.

The

following

topics

provide

additional

information:

v

“Running

the

IMS

Java

IVP

in

a

JMP

Region”

v

“Running

the

IMS

Java

IVP

in

a

JBP

Region”

on

page

10

v

“Running

the

IMS

Java

Sample

Application

from

a

JMP

Region”

on

page

12

v

“Configuring

JMP

and

JBP

Regions

for

DB2

UDB

for

z/OS

Database

Access”

on

page

13

v

“Developing

JMP

Applications”

on

page

15

v

“Developing

JBP

Applications”

on

page

26

v

“Enterprise

COBOL

Interoperability

with

JMP

and

JBP

Applications”

on

page

29

v

“Accessing

DB2

UDB

for

z/OS

Databases

from

JMP

or

JBP

Applications”

on

page

32

Running

the

IMS

Java

IVP

in

a

JMP

Region

To

verify

that

IMS

Java

is

properly

installed

and

that

the

JMP

region

is

properly

configured,

run

the

IMS

Java

IVP.

Details

about

the

PROCLIB

members

and

procedure

parameters

are

in

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

Prerequisites:

v

Ensure

that

the

standard

IMS

IVPs

have

been

run.

These

IVPs

prepare

the

DBD

for

the

IVP

database,

named

DFSIVD2,

and

load

the

IVP

database.

They

also

prepare

the

IMS

Java

application

PSB

(named

DFSIVP37),

build

ACBs,

prepare

the

MFS

format

(named

DFSIVF37),

and

prepare

other

IMS

control

blocks

required

by

the

IMS

Java

IVPs.

For

details

about

how

to

run

the

IMS

IVPs,

see

IMS

Version

9:

Installation

Volume

1:

Installation

Verification.

Figure

1.

JMP

or

JBP

Application

That

is

Using

IMS

Java

IBM

Confidential

8

IMS

Java

Guide

and

Reference

|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|

v

“Installing

IMS

Java”

on

page

2

To

run

the

IMS

Java

IVP

in

a

JMP

region:

1.

Edit

the

sample

JVM

member

DFSJVMMS:

a.

For

-Dibm.jvm.trusted.middleware.class.path=,

change

“ImsjavaPath”

to

pathprefix/usr/lpp/ims/imsjava91

b.

For

-Dibm.jvm.shareable.application.class.path=,

change

“SamplePath”

to

pathprefix/usr/lpp/ims/imsjava91

c.

If

you

are

using

SDK

1.4.1,

add

the

following

JVM

property:

-Djava.endorsed.dirs=pathprefix/usr/lpp/ims/imsjava91/lib

2.

Edit

the

sample

JVM

member

DFSJVMEV:

a.

Change

“JavaHome”

to

the

SDK

directory.

b.

Change

“imsjavaPath”

to

pathprefix/usr/lpp/ims/imsjava91

3.

Create

two

HFS

files:

one

for

the

JMP

output

and

one

for

errors.

The

following

sample

job

creates

the

files

JVM.out

and

JVM.err:

//name

JOB

parameters

//TCHMOD

PROC

TPARM=

//BPX

EXEC

PGM=BPXBATCH,PARM=’&TPARM’

//SYSPRINT

DD

SYSOUT=*

//STDOUT

DD

PATH=’path/tchmod.out’,

//

PATHOPTS=(OWRONLY,OCREAT,OTRUNC),PATHMODE=SIRWXU

//STDERR

DD

PATH=’path/tchmod.err’,

//

PATHOPTS=(OWRONLY,OCREAT,OTRUNC),PATHMODE=SIRWXU

//

PEND

//STEP1

EXEC

TCHMOD,TPARM=’sh

touch

path/JVM.out’

//*

//STEP2

EXEC

TCHMOD,

//

TPARM=’sh

chmod

777

path/JVM.out’

//*

//STEP3

EXEC

TCHMOD,TPARM=’sh

touch

path/JVM.err’

//*

//STEP4

EXEC

TCHMOD,TPARM=’sh

chmod

777

path/JVM.err’

4.

Edit

the

DFSJMP

procedure,

which

is

in

IMS.PROCLIB:

a.

Set

the

JAVAOUT

and

JAVAERR

DD

statements

to

point

to

the

JVM.out

and

JVM.err

files.

For

example:

//JAVAOUT

DD

PATH=’/path/JVM.out’

//JAVAERR

DD

PATH=’/path/JVM.err’

b.

Set

the

STEPLIB

DD

statement

to

point

to

the

PDSE

data

set

that

contains

the

DFSCLIB

member.

c.

Set

the

following

parameters:

v

JVMOPMAS=

data

set

member

DFSJVMMS

(master

JVM

options)

v

JVMOPWKR=

data

set

member

DFSJVMWK

(worker

JVM

options)

v

ENVIRON=

data

set

member

DFSJVMEV

(LIBPATH

options)

v

XPLINK=Y

if

you

use

SDK

1.4.1

d.

Set

any

other

parameters

that

are

required

by

your

installation.

For

complete

information

about

the

available

parameters

and

DD

statements

for

the

DFSJMP

procedure,

see

the

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

5.

Run

the

JMP

procedure.

The

JMP

region

is

started.

6.

From

an

IMS

terminal,

invoke

the

formatted

screen

for

the

transaction

by

issuing

the

following

command:

/format

IVTCM

Running

the

IMS

Java

IVP

in

a

JMP

RegionIBM

Confidential

Chapter

2.

JMP

and

JBP

Applications

9

|

|

|
|

|
|

|
|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|
|

|

|
|
|
|

|
|

|

An

input

screen,

as

shown

in

Figure

2,

is

displayed.

7.

In

the

PROCESS

CODE

field,

type:

RUNIVP

If

the

IVP

was

successful,

it

displays

IVP

PASSED.

If

the

IVP

was

not

successful,

it

displays

IVP

FAILED

or

IVP

INCOMPLETE.

See

the

JVM.out

file

for

the

results

of

the

individual

tests

that

are

performed

by

the

IVP.

8.

Optionally,

move

the

JVM.out

and

JVM.err

files

from

HFS

to

a

partitioned

data

set

member

by

submitting

the

following

job:

//name

JOB

//MV2PSD

EXEC

PGM=IKJEFT01

//SYSPRINT

DD

SYSOUT=*

//SYSTSPRT

DD

SYSOUT=*

//O1

DD

DISP=SHR,DSN=hlq.dataset(JVMOUT)

//I1

DD

PATH=’pathPrefix/JVM.out’

//O2

DD

DISP=SHR,DSN=hlq.dataset(JVMERR)

//I2

DD

PATH=’pathPrefix/JVM.err’

//SYSTSIN

DD

*

OCOPY

INDD(I1)

OUTDD(O1)

OCOPY

INDD(I2)

OUTDD(O2)

OCOPY

INDD(I3)

OUTDD(O3)

/*

You

can

also

use

this

application

as

a

phonebook

sample.

From

the

input

screen,

you

can

enter

the

process

codes

that

are

listed

on

the

right

side

of

the

screen.

Running

the

IMS

Java

IVP

in

a

JBP

Region

To

verify

that

IMS

Java

is

properly

installed

and

that

the

JBP

region

is

properly

configured,

run

the

IMS

Java

IVP.

Details

about

the

PROCLIB

members

and

procedure

parameters

are

in

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

**

*

IMS

INSTALLATION

VERIFICATION

PROCEDURE

*

**

TRANSACTION

TYPE

:

CONVERSATIONAL

DATE

:

12/11/04

PROCESS

CODE

(*1)

:

(*1)

PROCESS

CODE

LAST

NAME

:

RUNIVP

ADD

FIRST

NAME

:

DELETE

UPDATE

EXTENSION

NUMBER

:

DISPLAY

END

INTERNAL

ZIP

CODE

:

SEGMENT#

:

Figure

2.

IVP

Screen

for

IMS

Java

JMP

Running

the

IMS

Java

IVP

in

a

JMP

Region IBM

Confidential

10

IMS

Java

Guide

and

Reference

|
|

|

|

|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

Prerequisites:

v

Ensure

that

the

standard

IMS

IVPs

have

been

run.

These

IVPs

prepare

the

DBD

for

the

IVP

database,

named

DFSIVD2,

and

load

the

IVP

database.

They

also

prepare

the

IMS

Java

application

PSB

(named

DFSIVP67)

and

prepare

other

IMS

control

blocks

required

by

the

IMS

Java

IVPs.

For

details

about

how

to

run

the

IMS

IVPs,

see

IMS

Version

9:

Installation

Volume

1:

Installation

Verification.

v

“Installing

IMS

Java”

on

page

2

To

run

the

IMS

Java

IVP

in

a

JBP

region:

1.

Edit

the

sample

JVM

member

DFSJVMMS:

a.

For

-Dibm.jvm.trusted.middleware.class.path=,

change

“ImsjavaPath”

to

pathprefix/usr/lpp/ims/imsjava91

b.

For

-Dibm.jvm.shareable.application.class.path=,

change

“SamplePath”

to

pathprefix/usr/lpp/ims/imsjava91

c.

If

you

are

using

SDK

1.4.1,

add

the

following

JVM

property:

-Djava.endorsed.dirs=pathprefix/usr/lpp/ims/imsjava91/lib

2.

Edit

the

sample

JVM

member

DFSJVMEV:

a.

Change

“JavaHome”

to

the

SDK

directory.

b.

Change

“imsjavaPath”

to

pathprefix/usr/lpp/ims/imsjava91

3.

Create

two

HFS

files:

one

for

the

JMP

output

and

one

for

errors.

The

following

sample

job

creates

the

files

JVM.out

and

JVM.err:

//name

JOB

parameters

//TCHMOD

PROC

TPARM=

//BPX

EXEC

PGM=BPXBATCH,PARM=’&TPARM’

//SYSPRINT

DD

SYSOUT=*

//STDOUT

DD

PATH=’path/tchmod.out’,

//

PATHOPTS=(OWRONLY,OCREAT,OTRUNC),PATHMODE=SIRWXU

//STDERR

DD

PATH=’path/tchmod.err’,

//

PATHOPTS=(OWRONLY,OCREAT,OTRUNC),PATHMODE=SIRWXU

//

PEND

//STEP1

EXEC

TCHMOD,TPARM=’sh

touch

path/JVM.out’

//*

//STEP2

EXEC

TCHMOD,

//

TPARM=’sh

chmod

777

path/JVM.out’

//*

//STEP3

EXEC

TCHMOD,TPARM=’sh

touch

path/JVM.err’

//*

//STEP4

EXEC

TCHMOD,TPARM=’sh

chmod

777

path/JVM.err’

4.

Edit

the

DFSJBP

procedure,

which

is

in

IMS.PROCLIB:

a.

Set

the

JAVAOUT

and

JAVAERR

DD

statements

to

point

to

the

JVM.out

and

JVM.err

files.

For

example:

//JAVAOUT

DD

PATH=’/path/JVM.out’

//JAVAERR

DD

PATH=’/path/JVM.err’

b.

Set

the

STEPLIB

DD

statement

to

point

to

the

PDSE

data

set

that

contains

the

DFSCLIB

member.

c.

Set

the

following

parameters:

v

JVMOPMAS=

data

set

member

DFSJVMMS

(master

JVM

options)

v

JVMOPWKR=

data

set

member

DFSJVMWK

(worker

JVM

options)

v

ENVIRON=

data

set

member

DFSJVMEV

(LIBPATH

options)

v

XPLINK=Y

if

you

use

SDK

1.4.1

d.

Set

the

following

EXEC

statement

parameters

to

the

following:

PSB=DFSIVP67

and

MBR=DFSJBP.

Running

the

IMS

Java

IVP

in

a

JBP

RegionIBM

Confidential

Chapter

2.

JMP

and

JBP

Applications

11

|
|
|
|
|
|
|

|

|

|
|

|
|

|
|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|
|

|

|
|

e.

Set

any

other

parameters

that

are

required

by

your

installation.

For

complete

information

about

the

available

parameters

and

DD

statements

for

the

DFSJBP

procedure,

see

the

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

5.

Run

the

JBP

procedure.

The

JBP

region

is

started,

the

IVP

runs,

and

output

is

sent

to

the

JVM.out

file.

6.

Optionally,

move

the

JVM.out

and

JVM.err

files

from

HFS

to

a

partitioned

data

set

member

by

submitting

the

following

job:

//name

JOB

//MV2PSD

EXEC

PGM=IKJEFT01

//SYSPRINT

DD

SYSOUT=*

//SYSTSPRT

DD

SYSOUT=*

//O1

DD

DISP=SHR,DSN=hlq.dataset(JVMOUT)

//I1

DD

PATH=’pathPrefix/JVM.out’

//O2

DD

DISP=SHR,DSN=hlq.dataset(JVMERR)

//I2

DD

PATH=’pathPrefix/JVM.err’

//SYSTSIN

DD

*

OCOPY

INDD(I1)

OUTDD(O1)

OCOPY

INDD(I2)

OUTDD(O2)

OCOPY

INDD(I3)

OUTDD(O3)

/*

7.

Check

the

JVMOUT

data

set

or

JVM.out

file.

If

the

IVP

was

successful,

it

displays

IVP

PASSED.

If

the

IVP

was

not

successful,

it

displays

IVP

FAILED

or

IVP

INCOMPLETE.

Running

the

IMS

Java

Sample

Application

from

a

JMP

Region

The

IMS

Java

sample

application

can

run

in

a

JMP

region.

The

sample

application

processes

the

sample

dealership

database

based

on

the

six

available

command

codes.

For

an

MFS-formatted

sample,

you

can

use

the

IVP

application

as

a

phonebook

sample.

From

the

input

screen

of

the

IVP,

you

can

enter

the

process

codes

that

are

listed

on

the

right

side

of

the

screen.

The

source

files

for

the

sample

application

are

in

the

HFS

directory

pathprefix/usr/lpp/ims/imsjava91/samples/dealership/ims.

Prerequisites:

v

“Running

the

IMS

Java

IVP

in

a

JMP

Region”

on

page

8

v

Appendix

A,

“Preparing

to

Run

the

Dealership

Samples,”

on

page

123

To

run

the

IMS

Java

sample

application

from

a

JMP

region:

1.

Edit

the

sample

JVM

member

DFSJVMAP

by

adding

the

following

line:

AUTPSB11=samples/dealership/ims/IMSAuto

2.

Following

the

directions

provided

in

the

sample

JVM

members,

edit

the

following

three

sample

JVM

members:

DFSJVMAP,

DFSJVMMS,

and

DFSJVMEV.

3.

Create

two

HFS

files:

one

for

the

JMP

output

and

one

for

errors.

The

following

sample

job

creates

the

files

JVM.out

and

JVM.err:

//name

JOB

parameters

//TCHMOD

PROC

TPARM=

//BPX

EXEC

PGM=BPXBATCH,PARM=’&TPARM’

//SYSPRINT

DD

SYSOUT=*

//STDOUT

DD

PATH=’path/tchmod.out’,

//

PATHOPTS=(OWRONLY,OCREAT,OTRUNC),PATHMODE=SIRWXU

//STDERR

DD

PATH=’path/tchmod.err’,

//

PATHOPTS=(OWRONLY,OCREAT,OTRUNC),PATHMODE=SIRWXU

Running

the

IMS

Java

IVP

in

a

JBP

Region IBM

Confidential

12

IMS

Java

Guide

and

Reference

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

|
|
|
|
|

|
|

|

|

|
|

|

|

|

|
|

|
|

|
|
|
|
|
|
|
|

//

PEND

//STEP1

EXEC

TCHMOD,TPARM=’sh

touch

path/JVM.out’

//*

//STEP2

EXEC

TCHMOD,

//

TPARM=’sh

chmod

777

path/JVM.out’

//*

//STEP3

EXEC

TCHMOD,TPARM=’sh

touch

path/JVM.err’

//*

//STEP4

EXEC

TCHMOD,TPARM=’sh

chmod

777

path/JVM.err’

4.

Edit

the

DFSJMP

procedure,

which

is

in

IMS.PROCLIB:

a.

Set

the

JAVAOUT

and

JAVAERR

DD

statements

to

point

to

the

files

that

are

created

in

step

3

on

page

12.

For

example:

//JAVAOUT

DD

PATH=’/path/JVM.out’

//JAVAERR

DD

PATH=’/path/JVM.err’

b.

Set

the

STEPLIB

DD

statement

to

point

to

the

SDFSJLIB

data

set.

This

data

set

contains

the

DFSCLIB

member.

c.

Set

the

following

parameters:

v

JVMOPMAS=

data

set

member

DFSJVMMS

(master

JVM

options)

v

JVMOPWKR=

data

set

member

DFSJVMWK

(worker

JVM

options)

v

ENVIRON=

data

set

member

DFSJVMEV

(LIBPATH

options)

v

XPLINK=Y

if

you

use

SDK

1.4.1

d.

Set

any

other

parameters

that

are

required

by

your

installation.

For

complete

information

about

the

available

parameters

and

DD

statements

for

the

DFSJMP

procedure,

see

the

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

5.

Run

the

JMP

procedure.

The

JMP

region

is

started.

6.

From

an

IMS

terminal,

execute

the

application

by

issuing

one

of

the

following

six

commands

and

parameters:

v

LISTMODELS.

For

example:

LISTMODELS

v

FINDCAR.

For

example:

FINDCAR

FORD

V234567890123456789V

v

MODELDETAILS.

For

example:

MODELDETAILS

VOLVO

S40

2002

v

RECORDSALE.

For

example:

RECORDSALE

1235

S999302042002LAST9

V987654321123456782VVOLVO

S40

v

ACCEPTORDER.

For

example:

ACCEPTORDER

123457LAST9

FIRST9

05-18-200111:23:34

v

CANCELORDER.

For

example:

CANCELORDER

1234571235

v

RETRIEVEXML.

For

example:

RETRIEVEXML

1235

Configuring

JMP

and

JBP

Regions

for

DB2

UDB

for

z/OS

Database

Access

JMP

and

JBP

applications

can

access

DB2

UDB

for

z/OS

databases.

For

JMP

or

JBP

applications

to

have

DB2

UDB

for

z/OS

access,

you

must

attach

DB2

UDB

for

z/OS

to

IMS

using

the

DB2

Recoverable

Resource

Manager

Services

attachment

facility

(RRSAF).

Unlike

other

dependent

regions,

JMP

and

JBP

regions

do

not

use

the

External

Subsystem

Attach

Facility

(ESAF).

Running

the

Sample

Application

from

a

JMP

RegionIBM

Confidential

Chapter

2.

JMP

and

JBP

Applications

13

|
|
|
|
|
|
|
|
|

|

|
|

|
|

|
|

|

|

|

|

|

|
|
|
|

|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

|
|
|
|
|

DB2

UDB

provides

different

JDBC

drivers:

v

JDBC/SQLJ

driver

for

DB2

for

OS/390®

and

z/OS

with

JDBC

2.0

support

(called

the

DB2

JDBC/SQLJ

2.0

driver),

which

allows

access

to

DB2

UDB

for

z/OS

databases

only

when

IMS

is

the

same

z/OS

image

as

DB2

UDB

for

z/OS.

This

is

a

type

2

JDBC

driver.

v

JDBC/SQLJ

driver

for

DB2

for

OS/390

and

z/OS

with

JDBC

1.2

support

(called

the

DB2

JDBC/SQLJ

1.2

driver),

which

allows

access

to

DB2

UDB

for

z/OS

databases

only

when

IMS

is

the

same

z/OS

image

as

DB2

UDB

for

z/OS.

This

is

a

type

2

JDBC

driver.

v

DB2

Universal

JDBC

driver,

which

allows

access

to

DB2

UDB

for

z/OS

databases

from

IMSs

that

are

on

different

z/OS

images

from

DB2

UDB

for

z/OS

when

you

use

the

Universal

Driver

type

4

connectivity.

You

can

also

use

the

type

2

implementation

of

this

driver

for

access

to

DB2

UDB

for

z/OS

databases

when

IMS

is

the

same

z/OS

image

as

DB2

UDB

for

z/OS.

All

of

these

drivers

are

referred

to

in

this

topic

as

DB2

JDBC

drivers.

For

type

2

JDBC

drivers,

you

must

use

the

default

connection

URL

in

the

application

program.

For

example,

jdbc:db2os390:

or

db2:default:connection.

For

type

4

JDBC

drivers,

you

can

use

a

specific

connection

URL

in

the

application

program.

With

RRSAF,

the

dependent

region

builds

an

attachment

thread

to

DB2

UDB

for

z/OS

using

RRS.

RRS

coordinates

the

commits

of

the

updates

that

the

application

program

makes

to

both

IMS

and

DB2

resources.

IMS

is

a

participant,

not

the

coordinator,

of

these

updates

and

commits.

To

attach

a

DB2

UDB

for

z/OS

subsystem

to

IMS

using

RRSAF

for

JMP

or

JBP

access

to

DB2

databases:

1.

Create

an

IMS.PROCLIB

member

for

information

about

the

DB2

UDB

for

z/OS

subsystem.

The

member

name

must

follow

the

same

naming

conventions

you

follow

when

you

attach

DB2

UDB

for

z/OS

with

ESAF.

In

the

IMS.PROCLIB

member,

define

the

following

three

parameters

for

the

DB2

subsystem

that

JMP

and

JBP

applications

need

access

to:

SST=DB2,SSN=db2name,COORD=RRS

2.

In

the

trusted

middleware

class

path

of

the

DFSJVMMS

IMS.PROCLIB

member,

add

the

following

paths:

v

Path

to

the

ZIP

file

of

the

DB2

JDBC

driver

v

Path

to

the

ZIP

file

and

ZIP

file

name

of

the

DB2

JDBC

driver

For

example:

-Dibm.jvm.trusted.middleware.class.path=>

/usr/lpp/db2/db2710/classes:

>

/usr/lpp/db2/db2710/classes/db2j2classes.zip

3.

In

the

DFSJVMEV

IMS.PROCLIB

member,

add

the

path

to

the

SO

file

of

the

DB2

JDBC

driver

to

the

LIBPATH=

environment

variable.

For

example:

LIBPATH=/usr/lpp/db2/db2710/lib

4.

Add

the

following

parameters

to

the

IMS

control

region

EXEC

statement:

SSM=name

RRS=Y

5.

In

the

DFSJMP

or

DFSJBP

procedure

of

the

region

that

has

access

to

DB2

UDB

for

z/OS,

add

the

DFSDB2AF

DD

statement

to

point

to

the

DB2

UDB

for

z/OS

libraries,

which

must

be

APF-authorized.

Running

the

Sample

Application

from

a

JMP

Region IBM

Confidential

14

IMS

Java

Guide

and

Reference

|

|
|
|
|

|
|
|
|

|
|
|
|
|

|

|
|

|
|

|
|
|
|

|
|

|
|
|

|
|

|

|
|

|

|

|

|
|
|

|
|

|

|

|
|

|
|
|

Related

Reading:

For

details

about

the

IMS.PROCLIB

member

and

procedure

parameters,

see

the

external

subsystem

information

of

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

For

information

about

the

DB2

JDBC

drivers,

see

DB2

Universal

Database

for

OS/390

and

z/OS:

Application

Programming

Guide

and

Reference

for

Java.

Developing

JMP

Applications

JMP

applications

access

the

IMS

message

queue

to

receive

messages

to

process

and

to

send

output

messages.

Therefore,

you

must

define

input

and

out

message

classes

by

subclassing

the

IMSFieldMessage

class.

The

IMS

Java

class

libraries

provide

the

capability

to

process

IMSFieldMessage

objects.

JMP

applications

commit

or

rollback

the

processing

of

each

message

by

calling

IMSTransaction.getTransaction().commit()

or

IMSTransaction.getTransaction().rollback().

Related

Reading:

For

details

about

the

classes

you

use

to

develop

a

JMP

application,

see

the

IMS

Java

API

Specification,

which

is

available

on

the

IMS

Java

Web

site.

Go

to

http://www.ibm.com/ims

and

link

to

the

IMS

Java

page.

The

following

topics

provide

additional

information:

v

“Subclassing

the

IMSFieldMessage

Class

to

Define

Input

Messages”

v

“Subclassing

the

IMSFieldMessage

Class

to

Define

Output

Messages”

on

page

16

v

“Implementing

the

main

Method”

on

page

17

v

“JMP

Programming

Models”

on

page

17

v

“Additional

Message

Handling

Considerations

for

JMP

Applications”

on

page

19

Subclassing

the

IMSFieldMessage

Class

to

Define

Input

Messages

Figure

3

on

page

16

gives

an

example

of

subclassing

the

IMSFieldMessage

class.

This

class

defines

an

input

message

that

accepts

a

2-byte

type

code

of

a

car

model

to

query

a

car

dealership

database

for

available

car

models.

This

example

code

subclasses

the

IMSFieldMessage

class

to

make

the

fields

in

the

message

available

to

the

program

and

creates

an

array

of

DLITypeInfo

objects

for

the

fields

in

the

message.

For

the

DLITypeInfo

class,

the

code

identifies

first

the

field

name,

then

the

data

type,

the

position,

and

finally

the

length

of

the

individual

fields

within

the

array.

This

allows

the

application

to

use

the

access

functions

within

the

IMSFieldMessage

class

hierarchy

to

automatically

convert

the

data

from

its

format

in

the

message

to

a

Java

type

that

the

application

can

process.

In

addition

to

the

message-specific

fields

it

defines,

the

IMSFieldMessage

class

provides

access

functions

that

allow

it

to

determine

the

transaction

code

and

the

length

of

the

message.

Running

the

Sample

Application

from

a

JMP

RegionIBM

Confidential

Chapter

2.

JMP

and

JBP

Applications

15

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|

Subclassing

the

IMSFieldMessage

Class

to

Define

Output

Messages

Figure

4

gives

a

sample

of

subclassing

IMSFieldMessage

to

define

an

output

message

that

displays

the

available

car

models

from

a

type

code

query.

This

sample

code

creates

an

array

of

DLITypeInfo

objects

and

then

passes

that

array,

the

byte

array

length,

and

the

boolean

value

false,

which

indicates

a

non-SPA

message,

to

the

IMSFieldMessage

constructor.

For

each

DLITypeInfo

object,

you

must

first

identify

the

field

data

type,

then

the

field

name,

the

field

offset

in

the

byte

array,

and

finally

the

length

of

the

byte

array.

package

dealership.application;

import

com.ibm.ims.db.*;

import

com.ibm.ims.base.*;

import

com.ibm.ims.application.*;

/*

Subclasses

IMSFieldMessage

to

define

application’s

input

messages

*/

public

class

InputMessage

extends

IMSFieldMessage

{

/*

Creates

array

of

DLITypeInfo

objects

for

the

fields

in

message

*/

final

static

DLITypeInfo[]fieldInfo={

new

DLITypeInfo("ModelTypeCode",

DLITypeInfo.CHAR,

1,

2)

};

public

InputMessage()

{

super(fieldInfo,

2,

false);

}

}

Figure

3.

Subclass

IMSFieldMessage:

Input

Message

Sample

Code

package

dealership.application;

import

com.ibm.ims.db.*;

import

com.ibm.ims.base.*;

import

com.ibm.ims.application.*;

/*Subclasses

IMSFieldMessage

to

define

application’s

output

messages

*/

public

class

ModelOutput

extends

IMSFieldMessage

{

/*

Creates

array

of

DLITypeInfo

objects

for

the

fields

in

message

*/

final

static

DLITypeInfo[]

fieldInfo={

new

DLITypeInfo("Type",

DLITypeInfo.CHAR,

1,

2),

new

DLITypeInfo("Make",

DLITypeInfo.CHAR,

3,

10),

new

DLITypeInfo("Model",

DLITypeInfo.CHAR,

13,

10),

new

DLITypeInfo("Year",

DLITypeInfo.DOUBLE,

23,

4),

new

DLITypeInfo("CityMiles",

DLITypeInfo.CHAR,

27,

4),

new

DLITypeInfo("HighwayMiles",

DLITypeInfo.CHAR,

31,

4),

new

DLITypeInfo("Horsepower",

DLITypeInfo.CHAR,

35,

4)

};

public

ModelOutput()

{

super(fieldInfo,

38,false);

}

}

Figure

4.

Subclass

IMSFieldMessage:

Output

Message

Sample

Code

Developing

JMP

Applications IBM

Confidential

16

IMS

Java

Guide

and

Reference

Implementing

the

main

Method

The

main

method

(public

static

void

main(String[]

args))

is

the

entry

point

into

all

JMP

and

JBP

applications.

The

sample

code

shown

in

Figure

5

demonstrates

how

to

perform

the

following

actions:

1.

Query

the

database

for

a

specific

model

that

matches

the

input

model

type

code.

This

method

is

not

implemented

yet

and

is

explained

more

fully

in

Chapter

7,

“JDBC

Access

to

IMS

Data,”

on

page

85.

2.

Return

detailed

information

about

that

specific

model

as

output

if

it

is

available

at

the

dealership.

3.

Return

an

error

message

if

the

model

is

not

available

at

the

dealership.

Note:

The

IMSMessageQueue.getUniqueMessage

method

returns

true

if

a

message

was

read

from

the

queue

and

false

if

one

was

not.

Also,

the

IMSTransaction.getTransaction().commit

method

must

be

called

before

receiving

subsequent

messages

from

the

queue.

JMP

Programming

Models

JMP

applications

get

input

messages

from

the

IMS

message

queue,

access

IMS

databases,

commit

transactions,

and

can

send

output

messages.

package

dealership.ims;

import

com.ibm.ims.application.*;

public

static

void

main(String

args[])

{

IMSMessageQueue

messageQueue

=

null;

InputMessage

inputMessage

=

null;

ModelOutput

modelOutput

=

null;

messageQueue

=

new

IMSMessageQueue();

inputMessage

=

new

InputMessage();

modelOutput

=

new

ModelOutput();

while(messageQueue.getUniqueMessage(inputMessage))

{

if

(!inputMessage.getString

("ModelTypeCode").trim().equals("")){

if

(getModelDetails(inputMessage,

modelOutput))

//

1

messageQueue.insertMessage(modelOutput);

//

2

}

else

{

reply("Invalid

Input");

//

3

}

IMSTransaction.getTransaction().commit();

}

}

public

void

reply(String

errmsg)

throws

IMSException{

ErrorMessage

errorMessage

=

new

ErrorMessage();

errorMessage.setString("MessageText",errmsg);

messageQueue.insertMessage(errorMessage);

}

}

Figure

5.

main

Method

Sample

Code

Developing

JMP

ApplicationsIBM

Confidential

Chapter

2.

JMP

and

JBP

Applications

17

|

|
|

|
|

|
|
|

|
|

|

|

|
|
|
|

JMP

applications

are

started

when

IMS

receives

a

message

with

a

transaction

code

for

the

JMP

application

and

schedules

the

message.

JMP

applications

end

when

there

are

no

more

messages

with

that

transaction

code

to

process.

JMP

Application

Without

Rollback

A

transaction

begins

when

the

application

gets

an

input

message

and

ends

when

the

application

commits

the

transaction.

To

get

an

input

message,

the

application

calls

the

getUniqueMessage

method.

The

application

must

commit

or

rollback

any

database

processing.

The

application

must

issue

a

commit

call

immediately

before

calling

subsequent

getUniqueMessage

methods.

public

static

void

main(String

args[])

{

conn

=

DriverManager.getConnection(...);

//Establish

DB

connection

while(MessageQueue.getUniqueMessage(...)){

//Get

input

message,

which

//starts

transaction

results=statement.executeQuery(...);

//Perform

DB

processing

...

MessageQueue.insertMessage(...);

//Send

output

messages

...

IMSTransaction.getTransaction().commit();

//Commit

and

end

transaction

}

conn.close();

//Close

DB

connection

return;

}

JMP

Application

that

Uses

Rollback

A

JMP

application

can

roll

back

database

processing

and

output

messages

any

number

of

times

during

a

transaction.

A

rollback

call

backs

out

all

database

processing

and

output

messages

to

the

most

recent

commit.

The

transaction

must

end

with

a

commit

call

when

the

program

issues

a

rollback

call,

even

if

no

further

database

or

message

processing

occurs

after

the

rollback

call.

public

static

void

main(String

args[])

{

conn

=

DriverManager.getConnection(...);

//Establish

DB

connection

while(MessageQueue.getUniqueMessage(...)){

//Get

input

message,

which

//starts

transaction

results=statement.executeQuery(...);

//Perform

DB

processing

...

MessageQueue.insertMessage(...);

//Send

output

messages

...

IMSTransaction.getTransaction().rollback();

//Roll

back

DB

processing

//and

output

messages

results=statement.executeQuery(...);

//Perform

more

DB

processing

//(optional)

...

MessageQueue.insertMessage(...);

//Send

more

output

messages

//(optional)

...

IMSTransaction.getTransaction().commit();

//Commit

and

end

transaction

}

conn.close();

//Close

DB

connection

return;

}

Developing

JMP

Applications IBM

Confidential

18

IMS

Java

Guide

and

Reference

|
|
|
|
|

|
|
|
|
|

JMP

Application

that

Accesses

IMS

or

DB2

UDB

for

z/OS

Data

When

a

JMP

application

accesses

only

IMS

data,

it

needs

to

open

a

database

connection

only

once

to

process

multiple

transactions,

as

shown

in

“JMP

Application

Without

Rollback”

on

page

18.

However,

a

JMP

application

that

accesses

DB2

UDB

for

z/OS

data

must

open

and

close

a

database

connection

for

each

message

that

is

processed.

The

following

model

is

valid

for

DB2

UDB

for

z/OS

database

access,

IMS

database

access,

or

both

DB2

UDB

for

z/OS

and

IMS

database

access.

Related

Reading:

For

more

information

about

accessing

DB2

data

from

a

JMP

application,

see

“Accessing

DB2

UDB

for

z/OS

Databases

from

JMP

or

JBP

Applications”

on

page

32.

public

static

void

main(String

args[])

{

while(MessageQueue.getUniqueMessage(...)){

//Get

input

message,

which

//starts

transaction

conn

=

DriverManager.getConnection(...);

//Establish

DB

connection

results=statement.executeQuery(...);

//Perform

DB

processing

...

MessageQueue.insertMessage(...);

//Send

output

messages

...

conn.close();

//Close

DB

connection

IMSTransaction.getTransaction().commit();

//Commit

&

end

transaction

}

return;

}

Additional

Message

Handling

Considerations

for

JMP

Applications

JMP

applications

access

the

IMS

message

queue

in

addition

to

IMS

or

DB2

UDB

for

z/OS

databases.

This

topic

provides

information

about

specific

programming

considerations

for

the

IMS

message

queue.

In

this

topic:

v

“Conversational

Transactions”

v

“Handling

Multi-Segment

Messages”

on

page

21

v

“Coding

and

Accessing

Messages

with

Repeating

Structures”

on

page

22

v

“Flexible

Reading

of

Multiple

Input

Messages”

on

page

23

Conversational

Transactions

A

conversational

program

runs

in

a

JMP

region

and

processes

conversational

transactions

that

are

made

up

of

several

steps.

It

does

not

process

the

entire

transaction

at

the

same

time.

A

conversational

program

divides

processing

into

a

connected

series

of

terminal-to-program-to-terminal

interactions.

Use

conversational

processing

when

one

transaction

contains

several

parts.

A

nonconversational

program

receives

a

message

from

a

terminal,

processes

the

request,

and

sends

a

message

back

to

the

terminal.

A

conversational

program

receives

a

message

from

a

terminal

and

replies

to

the

terminal,

but

it

saves

the

data

from

the

transaction

in

a

scratch

pad

area

(SPA).

Then,

when

the

person

at

the

terminal

enters

more

data,

the

program

has

the

data

it

saved

from

the

last

message

in

the

SPA,

so

it

can

continue

processing

the

request

without

the

person

at

the

terminal

having

to

enter

the

data

again.

The

application

package

classes

enable

applications

to

be

built

using

IMS

Java.

Developing

JMP

ApplicationsIBM

Confidential

Chapter

2.

JMP

and

JBP

Applications

19

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

Related

Reading:

For

more

information

about

conversational

and

nonconversational

transaction

processing,

see

IMS

Version

9:

Administration

Guide:

Transaction

Manager.

Defining

a

SPA

Message

in

a

Conversational

Program:

To

define

a

SPA

message

in

a

conversational

program:

1.

Define

the

SPA

message

(including

the

boolean

as

a

SPA

parameter).

By

default,

all

messages

going

to

(input)

and

from

(output)

a

Java

application

are

transmitted

as

EBCDIC

character

data.

To

use

a

different

type

of

encoding,

you

must

call

the

IMSFieldMessage

class

inherited

method

setDefaultEncoding

and

provide

the

new

encoding

type.

This

encoding

can

be

any

Java-supported

encoding

type.

In

Figure

6,

the

default

encoding

is

specified

as

UTF-8.

2.

Read

the

SPA

message

before

reading

the

application

messages:

3.

Write

the

SPA

message

before

sending

any

output

messages:

public

class

SPAMessage

extends

IMSFieldMessage

{

static

DLITypeInfo[]

fieldInfo

=

{

new

DLITypeInfo("SessionNumber",DLITypeInfo.SMALLINT,1,

2),

new

DLITypeInfo("ProcessCode",

DLITypeInfo.CHAR,

3,

8),

new

DLITypeInfo("LastName",

DLITypeInfo.CHAR,

11,10),

new

DLITypeInfo("FirstName",

DLITypeInfo.CHAR,

21,10),

new

DLITypeInfo("Extension",

DLITypeInfo.CHAR,

31,10),

new

DLITypeInfo("ZipCode",

DLITypeInfo.CHAR,

41,

7),

new

DLITypeInfo("Reserved",

DLITypeInfo.CHAR,

48,19)

};

public

SPAMessage()

{

super(fieldInfo,

66,

true);

setDefaultEncoding("UTF-8");

}

}

Figure

6.

Defining

a

SPA

Message

try

{

//

Get

the

SPA

data

msgReceived

=

msgQ.getUniqueMessage(spaMessage);

}

catch

(IMSException

e)

{

if

(e.getStatusCode()

!=

JavaToDLI.MESSAGE_QUEUED_PRIOR_TO_LAST_START)

throw

e;

}

if

(!msgReceived)

outputMessage.setString("Message","UNABLE

TO

READ

SPA");

else

if

(!msgQ.getNextMessage(inputMessage))

//

No

input

message

received

outputMessage.setString("Message","NO

INPUT

MESSAGE");

else

if

((spaMessage.getShort("SessionNumber")==0)

&&

(!inputMessage.getString("ProcessCode").trim().equals("END"))

&&

(inputMessage.getString("LastName").trim().equals("")))

//

New

Conversation.

User

has

to

specify

last

name.

outputMessage.setString("Message","LAST

NAME

WAS

NOT

SPECIFIED");

else

{

{

Figure

7.

Reading

a

SPA

Message

Developing

JMP

Applications IBM

Confidential

20

IMS

Java

Guide

and

Reference

|
|
|
|
|
|
|

4.

End

the

conversation

by

using

the

version

of

the

insertMessage

method

that

contains

a

boolean

isLast

argument

set

to

true:

msgQ.insertMessage(spaMessage,

true);

Conversational

Transaction

Sequence

of

Events:

When

the

message

is

a

conversational

transaction,

the

following

sequence

of

events

occurs:

1.

IMS

removes

the

transaction

code

and

places

it

at

the

beginning

of

a

message

segment.

The

message

segment

is

equal

in

length

to

the

SPA

that

was

defined

for

this

transaction

during

system

definition.

This

is

the

first

segment

of

the

input

message

that

is

made

available

to

the

program.

The

second

through

the

nth

segments

from

the

terminal,

minus

the

transaction

code,

become

the

remainder

of

the

message

that

is

presented

to

the

application

program.

2.

After

the

conversational

program

prepares

its

reply,

it

inserts

the

SPA

to

IMS.

The

program

then

inserts

the

actual

text

of

the

reply

as

segments

of

an

output

message.

3.

IMS

saves

the

SPA

and

routes

the

message

to

the

input

LTERM

(logical

terminal).

4.

If

the

SPA

insert

specifies

that

another

program

is

to

continue

the

same

conversation,

the

total

reply

(including

the

SPA)

is

retained

on

the

message

queue

as

input

to

the

next

program.

This

program

then

receives

the

message

in

a

similar

form.

5.

A

conversational

program

must

be

scheduled

for

each

input

exchange.

The

other

processing

continues

while

the

operator

at

the

input

terminal

examines

the

reply

and

prepares

new

input

messages.

6.

To

terminate

a

conversation,

the

program

places

blanks

in

the

transaction

code

field

of

the

SPA

and

inserts

the

SPA

to

IMS.

In

IMS

Java

this

happens

when

you

call

IMSMessageQueue.insertMessage

with

the

boolean

parameter

isLast

set

to

true.

7.

The

conversation

can

also

be

terminated

if

the

transaction

code

in

the

SPA

is

replaced

by

any

non-conversational

program’s

transaction

code,

and

the

SPA

is

inserted

to

IMS.

After

the

next

terminal

input,

IMS

routes

that

message

to

the

other

program’s

queue

in

the

normal

way.

Handling

Multi-Segment

Messages

Message-driven

applications

can

have

multi-segment

input

messages.

That

is,

more

than

one

message

needs

to

be

read

from

the

message

queue

in

order

to

retrieve

the

entire

message.

When

this

occurs,

you

must

provide

a

mapping

for

each

message

that

is

to

be

read

from

the

queue

and

use

the

appropriate

methods

available

from

the

IMSMessageQueue

class.

//

Set

spa

data

fields

spaMessage.setString("ProcessCode",

inputMessage.getString("ProcessCode"));

spaMessage.setString("LastName",

inputMessage.getString("LastName"));

spaMessage.setString("FirstName",

inputMessage.getString("FirstName"));

spaMessage.setString("Extension",

inputMessage.getString("Extension"));

spaMessage.setString("ZipCode",

inputMessage.getString("ZipCode"));

spaMessage.incrementSessionNumber();

msgQ.insertMessage(spaMessage);

Figure

8.

Writing

a

SPA

Message

Developing

JMP

ApplicationsIBM

Confidential

Chapter

2.

JMP

and

JBP

Applications

21

The

following

code

defines

two

input

messages

that

comprise

a

multi-segment

message:

public

class

InputMessage1

extends

IMSFieldMessage

{

final

static

DLITypeInfo[]

segmentInfo

=

{

new

DLITypeInfo("Field1",

DLITypeInfo.CHAR,

1,

10),

new

DLITypeInfo("Field2",

DLITypeInfo.INTEGER,

11,

4)

};

public

InputMessage1()

{

super(segmentInfo,

14,

false);

}

}

public

class

InputMessage2

extends

IMSFieldMessage

{

final

static

DLITypeInfo[]

segmentInfo

=

{

new

DLITypeInfo("Field1",

DLITypeInfo.CHAR,

1,

10),

new

DLITypeInfo("Field2",

DLITypeInfo.CHAR,

11,

8)

};

public

InputMessage2()

{

super(segmentInfo,

18,

false);

}

}

The

following

code

shows

how

the

message

queue

is

used

to

retrieve

both

messages:

//Create

a

message

queue

IMSMessageQueue

messageQueue

=

new

IMSMessageQueue();

//Create

the

first

input

message

InputMessage1

input1

=

new

InputMessage1();

//Create

the

second

input

message

InputMessage2

input2

=

new

InputMessage2();

try

{

//Read

the

first

message

from

the

queue

messageQueue.getUniqueMessage(input1);

...

//Read

the

second

message

from

the

queue

messageQueue.getNextMessage(input2);

...

}

catch

(IMSException

e)

{

...

}

Coding

and

Accessing

Messages

with

Repeating

Structures

Messages

with

repeating

structures

can

be

defined

by

using

the

DLITypeInfoList

class.

With

the

DLITypeInfoList

class,

you

can

specify

a

repeating

list

of

fields

and

the

maximum

number

of

times

the

list

can

be

repeated.

These

repeating

structures

can

contain

repeating

structures.

Figure

9

on

page

23

is

a

sample

output

message

that

contains

a

set

of

Make,

Model,

and

Color

fields,

with

a

count

field

to

identify

how

many

occurrences

were

stored:

Developing

JMP

Applications IBM

Confidential

22

IMS

Java

Guide

and

Reference

|
|
|
|

To

access

the

nested

structures

that

are

defined

in

a

DLITypeInfoList

object,

use

a

dotted

notation

to

specify

the

fields

and

the

index

of

the

field

within

a

repeating

structure.

This

dotted

notation

can

use

either

the

field

names

or

field

indexes.

For

example,

the

“Color”

field

in

the

fourth

“Models”

definition

in

the

ModelOutput

object

is

accessed

as

“Models.4.Color”

within

the

ModelOutput

message.

The

following

code

sets

the

fourth

“Color”

in

the

ModelOutput

message

to

“Red.”

ModelOutput

output=

new

ModelOutput();

output.setString("Models.4.Color",

"Red");

The

following

code

uses

field

indexes

instead

of

field

names

to

make

the

same

change

to

the

ModelOutput

message:

ModelOutput

output=

new

ModelOutput();

output.setString("2.4.3",

"Red");

Flexible

Reading

of

Multiple

Input

Messages

There

are

times

when

an

application

needs

to

process

multiple

input

messages

that

require

different

input

data

types.

For

example,

the

car

dealership

sample

application

supports

requests

to

list

models,

show

model

details,

find

cars,

cancel

orders,

and

record

sales.

Each

of

these

requests

requires

different

input

data.

The

following

steps

explain

how

to

define

the

messages

to

support

these

requests,

and

how

to

access

the

messages

from

the

application.

1.

Define

the

primary

input

message.

The

primary

input

message

is

the

message

that

you

pass

to

the

IMSMessageQueue.getUniqueMessage

method

to

retrieve

all

of

your

input

messages.

Your

primary

input

message

must

have

an

I/O

area

that

is

large

enough

to

contain

any

of

the

input

requests

that

your

application

might

receive.

It

must

also

contain

at

least

one

field

in

common

with

all

of

your

input

messages.

This

common

field

allows

you

to

determine

the

input

request.

In

the

example

in

Figure

10

on

page

24,

the

common

field

is

CommandCode,

and

the

maximum

length

of

each

message

is

64

(the

number

passed

to

the

IMSFieldMessage

constructor):

public

class

ModelOutput

extends

IMSFieldMessage

{

static

DLITypeInfo[]

modelTypeInfo

=

{

new

DLITypeInfo("Make",

DLITypeInfo.CHAR,

1,

20),

new

DLITypeInfo("Model",

DLITypeInfo.CHAR,

21,

20),

new

DLITypeInfo("Color",

DLITypeInfo.CHAR,

41,

20),

};

static

DLITypeInfo[]

modelTypeInfoList

=

{

new

DLITypeInfo("ModelCount",

DLITypeInfo.INTEGER,

1,

4),

new

DLITypeInfoList("Models",

modelTypeInfo,

5,

60,

100),

};

public

ModelOutput()

{

super(modelOutputTypeInfo,

6004,

false);

}

}

Figure

9.

Sample

Output

Message

with

Repeating

Structures

Developing

JMP

ApplicationsIBM

Confidential

Chapter

2.

JMP

and

JBP

Applications

23

|
|
|
|
|
|

|
|

2.

Define

separate

input

messages

for

each

request.

Each

of

these

input

messages

contains

the

same

CommandCode

field

as

its

first

field.

Each

of

these

input

messages

also

uses

an

IMSFieldMessage

constructor

that

takes

an

IMSFieldMessage

object

and

a

DLITypeInfo

array.

The

IMSFieldMessage

constructor

allows

you

to

remap

the

contents

of

the

primary

input

message

using

the

same

type

of

information

with

each

request;

therefore,

you

do

not

copy

the

I/O

area

of

the

message,

only

a

reference

to

this

area.

Figure

11

on

page

25

illustrates

code

that

creates

the

input

messages

for

the

requests

ShowModelDetails,

FindACar,

and

CancelOrder.

public

class

InputMessage

extends

IMSFieldMessage

{

final

static

DLITypeInfo[]

fieldInfo

=

{

new

DLITypeInfo("CommandCode",

DLITypeInfo.CHAR,

1,

20),

�A�};

public

InputMessage(DLITypeInfo[]

fieldInfo)

{

super(fieldInfo,

64,

false);

�B�

}

}

Figure

10.

Defining

the

Primary

Input

Message

Developing

JMP

Applications IBM

Confidential

24

IMS

Java

Guide

and

Reference

Note

the

following

about

Figure

10

on

page

24

and

Figure

11:

v

The

CommandCode

field

is

defined

within

every

class

at

lines

�A�,

�C�,

�E�,

and

�G�.

This

field

must

be

defined

in

every

message

that

reads

the

command

code.

If

you

do

not

define

the

field,

you

must

adjust

the

offsets

of

the

following

fields

to

account

for

the

existence

of

the

CommandCode

in

the

byte

array.

For

example,

you

can

delete

the

DLITypeInfo

entry

for

CommandCode

in

the

CancelOrderInput

class,

but

the

OrderNumber

field

must

still

start

at

offset

21.

v

The

length

of

the

base

class

InputMessage

must

be

large

enough

to

contain

any

of

its

subclasses.

In

this

example,

the

InputMessage

class

is

65

bytes

because

the

fields

of

the

FindACarInput

method

require

it

�B�.

v

Each

InputMessage

subclass

must

provide

a

constructor

to

create

itself

from

an

InputMessage

object,

as

in

lines

�D�,

�F�,

and

�H�.

This

constructor

uses

a

new

constructor

in

the

IMSFieldMessage

class,

called

a

copy

constructor.

public

class

ShowModelDetailsInput

extends

IMSFieldMessage

{

final

static

DLITypeInfo[]

fieldInfo

=

{

new

DLITypeInfo("CommandCode",

DLITypeInfo.CHAR,

1,

20),

�C�

new

DLITypeInfo("ModelTypeCode",

DLITypeInfo.CHAR,

21,

2),

};

public

ShowModelDetailsInput(InputMessage

inputMessage)

{

�D�

super(inputMessage,

fieldInfo);

}

}

public

class

FindACarInput

extends

IMSFieldMessage

{

final

static

DLITypeInfo[]

fieldInfo

=

{

new

DLITypeInfo("CommandCode",

DLITypeInfo.CHAR,

1,

20),

�E�

new

DLITypeInfo("Make",

DLITypeInfo.CHAR,

21,

10),

new

DLITypeInfo("Model",

DLITypeInfo.CHAR,

31,

10),

new

DLITypeInfo("Year",

DLITypeInfo.CHAR,

41,

4),

new

DLITypeInfo("LowPrice",

DLITypeInfo.PACKEDDECIMAL,

45,

5),

new

DLITypeInfo("HighPrice",

DLITypeInfo.PACKEDDECIMAL,

50,

5),

new

DLITypeInfo("Color",

DLITypeInfo.CHAR,

55,

10),

};

public

FindACarInput(InputMessage

inputMessage)

{

�F�

super(inputMessage,

fieldInfo);

}

}

public

class

CancelOrderInput

extends

IMSFieldMessage

{

final

static

DLITypeInfo[]

fieldInfo

=

{

new

DLITypeInfo("CommandCode",

DLITypeInfo.CHAR,

1,

20),

�G�

new

DLITypeInfo("OrderNumber",

DLITypeInfo.CHAR,

21,

6),

new

DLITypeInfo("DealerNumber",

DLITypeInfo.CHAR,

21,

6),

};

public

CancelOrderInput(InputMessage

inputMessage)

�H�

{

super(inputMessage,

fieldInfo);

}

Figure

11.

Defining

Separate

Input

Messages

for

Each

Request

Developing

JMP

ApplicationsIBM

Confidential

Chapter

2.

JMP

and

JBP

Applications

25

Given

this

design,

an

application

can

provide

message-reading

logic

similar

to

that

shown

in

Figure

12.

Developing

JBP

Applications

JBP

applications

do

not

access

the

IMS

message

queue,

and

therefore

you

do

not

need

to

subclass

the

IMSFieldMessage

class.

Related

Reading:

For

details

about

the

classes

you

use

to

develop

a

JBP

application,

see

the

IMS

Java

API

Specification,

which

is

available

on

the

IMS

Java

Web

site.

Go

to

http://www.ibm.com/ims

and

link

to

the

IMS

Java

page.

The

following

topics

provide

additional

information:

v

“JBP

Programming

Models”

on

page

27

v

“Symbolic

Checkpoint

and

Restart”

Symbolic

Checkpoint

and

Restart

Similarly

to

BMP

applications,

JBP

applications

can

use

symbolic

checkpoint

and

restart

calls

to

restart

the

application

after

an

abend.

The

primary

methods

for

symbolic

checkpoint

and

restart

are:

v

IMSTransaction().checkpoint()

v

IMSTransaction().restart()

These

methods

perform

analogous

functions

to

the

DL/I

system

service

calls:

(symbolic)

CHKP

and

XRST.

A

JBP

application

connects

to

a

database,

makes

a

restart

call,

performs

database

processing,

periodically

checkpoints,

and

disconnects

from

the

database

at

the

end

of

the

program.

The

program

must

issue

a

final

commit

before

ending.

On

an

initial

application

start,

the

IMSTransaction().restart()

method

notifies

IMS

that

symbolic

checkpoint

and

restart

is

to

be

enabled

for

the

application.

The

application

then

issues

periodic

IMSTransaction().checkpoint()

calls

to

take

checkpoints.

The

IMSTransaction().checkpoint()

method

allows

the

application

to

provide

a

com.ibm.ims.application.SaveArea

object

that

contains

one

or

more

other

application

Java

objects

whose

state

is

to

be

saved

with

the

checkpoint.

If

a

restart

is

required,

it

is

initiated

in

a

similar

way

to

BMP

applicatoins:

the

checkpoint

ID

is

provided

either

with

the

IMSTransaction().restart()

call

(similar

to

providing

the

id

to

the

XRST

call

in

IMS),

or

with

in

the

CKPTID=

parameter

of

while

(getUniqueMessage(inputMessage))

{

string

commandCode=inputMsg.getString("CommandCode").trim();

if

(commandCode.equals("ShowModelDetails"))

{

showModelDetails(new

ShowModelDetailsInput(inputMessage));

}

else

if(commandCode.equals("FindACar"))

{

findACar(new

FindACarInput(inputMessage));

}

else

{

//process

an

error

}

}

Figure

12.

Message-Reading

Logic

Developing

JMP

Applications IBM

Confidential

26

IMS

Java

Guide

and

Reference

|
|

|

|
|
|

|

|

|
|

|
|
|
|
|
|
|
|
|

|
|
|

the

JBP

region

JCL.

The

restart()

method

returns

a

SaveArea

object

that

contains

the

application

objects

in

the

same

order

in

which

they

were

originally

checkpointed.

Related

Reading:

For

the

programming

model

for

symbolic

checkpoint

and

restart,

see

“JBP

Application

with

Symbolic

Checkpoint

and

Restart.”

JBP

Programming

Models

JBP

applications

are

similar

to

JMP

applications,

except

that

JBP

applications

do

not

receive

input

messages

from

the

IMS

message

queue.

The

program

should

periodically

issue

commit

calls,

except

for

applications

that

have

the

PSB

PROCOPT=GO

parameter.

Unlike

BMP

application,

JBP

applications

must

be

non-message-driven

applications.

JBP

Application

without

Rollback

A

JBP

application

connects

to

a

database,

performs

database

processing,

periodically

commits,

and

disconnects

from

the

database

at

the

end

of

the

program.

The

program

must

issue

a

final

commit

before

ending.

public

static

void

main(String

args[])

{

conn

=

DriverManager.getConnection(...);

//Establish

DB

connection

repeat

{

repeat

{

results=statement.executeQuery(...);

//Perform

DB

processing

...

MessageQueue.insertMessage(...);

//Send

output

messages

...

}

IMSTransaction.getTransaction().commit();

//Periodic

commits

divide

work

}

conn.close();

//Close

DB

connection

return;

}

JBP

Application

with

Symbolic

Checkpoint

and

Restart

A

JBP

application

connects

to

a

database,

makes

a

restart

call,

performs

database

processing,

periodically

checkpoints,

and

disconnects

from

the

database

at

the

end

of

the

program.

The

program

must

issue

a

final

commit

before

ending.

public

static

void

main(String

args[])

{

conn

=

DriverManager.getConnection(...);

//Establish

DB

connection

IMSTransaction.getTransaction().retart();

//Restart

application

//after

abend

from

last

//checkpoint

repeat

{

repeat

{

results=statement.executeQuery(...);

//Perform

DB

processing

...

MessageQueue.insertMessage(...);

//Send

output

messages

...

}

IMSTransaction.getTransaction().checkpoint();

//Periodic

checkpoints

//

divide

work

}

Developing

JBP

ApplicationsIBM

Confidential

Chapter

2.

JMP

and

JBP

Applications

27

|
|

|
|

|
|
|
|

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

conn.close();

//Close

DB

connection

return;

}

JBP

Application

using

Rollback

Similarly

to

JMP

applications,

JBP

applications

can

also

roll

back

database

processing

and

output

messages.

A

final

commit

call

is

required

before

the

application

can

end,

even

if

no

further

database

processing

occurs

or

output

messages

are

sent

after

the

last

rollback

call.

public

static

void

main(String

args[])

{

conn

=

DriverManager.getConnection(...);

//Establish

DB

connection

repeat

{

repeat

{

results=statement.executeQuery(...);

//Perform

DB

processing

...

MessageQueue.insertMessage(...);

//Send

output

messages

...

IMSTransaction.getTransaction().rollback();

//Roll

out

DB

//processing

and

output

//messages

results=statement.executeQuery(...);

//Perform

more

DB

//processing

(optional)

...

MessageQueue.insertMessage(...);

//Send

more

output

//messages

(optional)

...

}

IMSTransaction.getTransaction().commit();

//Periodic

commits

divide

work

}

conn.close();

//Close

DB

connection

return;

}

JBP

Application

that

Accesses

DB2

UDB

for

z/OS

or

IMS

Data

Like

a

JBP

application

that

accesses

IMS

data,

a

JBP

application

that

accesses

DB2

UDB

for

z/OS

data

connects

to

a

database,

performs

database

processing,

periodically

commits,

and

disconnects

from

the

database

at

the

end

of

the

application.

However,

the

application

must

also

issue

a

final

commit

after

closing

the

database

connection.

The

following

model

is

valid

for

DB2

UDB

for

z/OS

database

access,

IMS

database

access,

or

both

DB2

UDB

for

z/OS

and

IMS

database

access.

Related

Reading:

For

more

information

about

accessing

DB2

UDB

for

z/OS

data

from

a

JBP

application,

see

“Configuring

JMP

and

JBP

Regions

for

DB2

UDB

for

z/OS

Database

Access”

on

page

13.

public

void

doBegin()

...

{

//Application

logic

runs

//doBegin

method

conn

=

DriverManager.getConnection(...);

//Establish

DB

connection

repeat

{

repeat

{

results=statement.executeQuery(...);

//Perform

DB

processing

...

MessageQueue.insertMessage(...);

//Send

output

messages

...

Developing

JBP

Applications IBM

Confidential

28

IMS

Java

Guide

and

Reference

|
|
|
|

|
|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|

}

IMSTransaction.getTransaction().commit();

//Periodic

commits

divide

work

}

conn.close();

//Close

DB

connection

IMSTransaction.getTransaction().commit();

//Commit

the

DB

connection

close

return;

}

Enterprise

COBOL

Interoperability

with

JMP

and

JBP

Applications

IMS

Enterprise

COBOL

for

z/OS

and

OS/390

Version

3

Release

2

supports

interoperation

between

COBOL

and

Java

languages

when

running

in

a

JMP

or

JBP

region.

With

this

support,

you

can:

v

Call

an

object-oriented

(OO)

COBOL

application

from

an

IMS

Java

application

by

building

the

front-end

application,

which

processes

messages,

in

Java

and

the

back

end,

which

processes

databases,

in

OO

COBOL.

v

Build

an

OO

COBOL

application

containing

a

main

routine

that

can

invoke

Java

routines.

Restriction:

COBOL

applications

that

run

in

an

IMS

Java

dependent

region

must

use

the

AIB

interface,

which

requires

that

all

PCBs

in

a

PSB

definition

have

a

name.

You

can

access

COBOL

code

in

a

JMP

or

JBP

region

because

Enterprise

COBOL

provides

object-oriented

language

syntax

that

enables

you

to:

v

Define

classes

with

methods

and

data

implemented

in

COBOL

v

Create

instances

of

Java

and

COBOL

classes

v

Invoke

methods

on

Java

and

COBOL

objects

v

Write

classes

that

inherit

from

Java

classes

or

other

COBOL

classes

v

Define

and

invoke

overloaded

methods

In

Enterprise

COBOL

programs,

you

can

call

the

services

provided

by

the

JNI

to

obtain

Java-oriented

capabilities

in

addition

to

the

basic

OO

capabilities

available

directly

in

the

COBOL

language.

In

Enterprise

COBOL

classes,

you

can

code

CALL

statements

that

interface

with

procedural

COBOL

programs.

Therefore,

COBOL

class

definition

syntax

can

be

especially

useful

for

writing

wrapper

classes

for

procedural

COBOL

logic,

enabling

existing

COBOL

code

to

be

accessed

from

Java.

Java

code

can

create

instances

of

COBOL

classes,

invoke

methods

of

these

classes,

and

can

extend

COBOL

classes.

Related

Reading:

For

details

building

applications

that

use

Enterprise

COBOL

and

that

run

in

an

IMS

Java

dependent

region,

see

Enterprise

COBOL

for

z/OS

and

OS/390:

Programming

Guide

The

following

topics

provide

additional

information:

v

“Enterprise

COBOL

as

a

Back-End

Application

in

a

JMP

or

JBP

Region”

on

page

30

v

“Enterprise

COBOL

as

a

Front-End

Application

in

a

JMP

or

JBP

Region”

on

page

30

Developing

JBP

ApplicationsIBM

Confidential

Chapter

2.

JMP

and

JBP

Applications

29

|
|
|
|
|
|
|
|
|

v

“Performance

Consideration

for

OO

COBOL

in

a

JMP

or

JBP

Region”

on

page

31

v

“Recommendation

against

Accessing

Databases

with

Both

Java

and

COBOL”

on

page

31

v

Enterprise

COBOL

as

a

Back-End

Application

in

a

JMP

or

JBP

Region

When

you

define

an

OO

COBOL

class

and

compile

it

with

the

Enterprise

COBOL

compiler,

the

compiler

generates

a

Java

class

definition

|with

native

methods

and

the

object

code

that

implements

the

native

methods.

After

compiling

the

class,

you

can

create

an

instance

and

invoke

the

methods

of

the

class

from

a

Java

program

that

runs

in

a

JMP

or

JBP

region.

For

example,

|you

can

define

an

OO

COBOL

class

with

the

appropriate

DL/I

call

in

COBOL

to

access

an

IMS

database.

When

Java

is

the

front-end

language,

you

must

perform

all

message-queue

and

message-synchronization

processing

in

Java.

For

example,

you

must

call

both

the

IMSMessageQueue.getUniqueMessage

method

(to

read

messages

from

the

queue)

and

the

IMSTransaction.getTransaction().commit()

method

(to

commit

changes)

before

reading

subsequent

messages

from

the

message

queue

or

exiting

the

application.

In

the

back-end

application,

you

can

access

IMS

databases

by

either

using

Java

or

calling

a

COBOL

routine.

You

can

use

the

COBOL

STOP

RUN

statement

in

the

COBOL

part

of

an

application

that

runs

in

an

JMP

or

JBP

region.

However,

this

statement

terminates

all

COBOL

and

Java

routines,

including

the

JVM,

and

returns

control

immediately

to

IMS

with

both

the

program

and

transaction

left

in

a

stopped

state

Important:

Do

not

mix

the

languages

that

are

used

to

read

messages

from

the

message

queue

or

to

commit

resources.

The

IMS

Java

library

tracks

the

calls

that

are

made

in

Java

to

ensure

that

the

syncpoint

rules

are

followed,

but

it

does

not

track

calls

made

in

COBOL.

To

implement

a

COBOL

class

as

a

back-end

to

a

Java

application:

For

example,

you

can

define

an

OO

COBOL

class

with

the

appropriate

DL/I

call

in

COBOL

to

access

an

IMS

database.

To

make

the

implementation

of

this

class

available

to

an

IMS

Java

program:

1.

Compile

the

COBOL

class

with

the

Enterprise

COBOL

compiler

to

generate

a

Java

source

file,

which

contains

the

class

definition,

and

an

object

module,

which

contains

the

implementation

of

the

native

methods.

2.

Compile

the

generated

Java

source

file

with

the

Java

compiler

to

create

the

application

class

file.

3.

Link

the

object

module

into

a

dynamic

link

library

(DLL)

in

the

HFS

file

(.so).

4.

Update

the

application

class

path

(ibm.jvm.application.class.path)

for

the

JMP

or

JBP

region

to

allow

access

to

the

Java

class

file.

5.

Update

the

library

path

for

the

JMP

or

JBP

region

to

allow

access

to

the

DLL.

Enterprise

COBOL

as

a

Front-End

Application

in

a

JMP

or

JBP

Region

The

object-oriented

syntax

of

Enterprise

COBOL

enables

you

to

build

COBOL

applications

with

a

main

method,

which

can

be

run

directly

in

an

IMS

Java

COBOL

Interoperability IBM

Confidential

30

IMS

Java

Guide

and

Reference

dependent

region.

The

IMS

Java

dependent

region

locates,

instantiates,

and

invokes

this

main

method

in

the

same

way

it

does

for

the

main

method

of

the

IMSApplication

subclass.

You

can

write

an

application

for

an

IMS

Java

dependent

region

entirely

with

OO

COBOL,

but

a

more

likely

use

for

a

front-end

COBOL

application

is

to

call

a

Java

routine

from

a

COBOL

application.

When

running

within

the

JVM

of

an

IMS

Java

dependent

region,

Enterprise

COBOL

run-time

support

automatically

locates

and

uses

this

JVM

to

invoke

methods

on

Java

classes.

A

front-end

OO

COBOL

application

with

a

main

routine

that

runs

in

a

JMP

or

JBP

region

|has

the

same

requirements

as

a

Java

program

that

runs

in

a

JMP

or

JBP

region.

The

COBOL

application

must

commit

resources

before

reading

subsequent

messages

or

exiting

the

application.

A

COBOL

GU

call

does

not

implicitly

commit

resources

when

the

program

is

running

in

an

JMP

or

JBP

region

as

it

does

when

the

program

is

running

in

an

MPP

region.

Use

Dl/I

calls

for

message

processing

(GU

and

GN)

and

transaction

synchronization

(CHKP).

A

CHKP

call

in

an

IMS

Java

dependent

region

does

not

automatically

retrieve

a

message

from

the

message

queue.

You

can

use

the

COBOL

STOP

RUN

statement

in

the

COBOL

part

of

an

application

that

runs

in

an

JMP

or

JBP

region.

However,

this

statement

terminates

all

COBOL

and

Java

routines,

including

the

JVM,

and

returns

control

immediately

to

IMS

with

both

the

program

and

transaction

left

in

a

stopped

state.

Performance

Consideration

for

OO

COBOL

in

a

JMP

or

JBP

Region

COBOL

code

in

an

IMS

Java

dependent

region

affects

performance.

Because

COBOL

class

methods

are

implemented

in

native

code,

the

JVM

cannot

be

reset

after

a

transaction

that

uses

COBOL

routines

runs.

IBM’s

Persistent

Reusable

Java

Virtual

Machine

is

specifically

designed

to

treat

applications

that

invoke

native

code

as

untrusted.

After

a

transaction

runs

that

contains

COBOL

routines,

IMS

Java

ends

the

current

JVM

and

creates

a

fresh

JVM

before

scheduling

the

next

transaction.

Only

classes

in

the

trusted

middleware

class

path

ibm.jvm.middleware.class.path

can

call

native

routines

without

affecting

JVM

reset.

Related

Reading:

For

more

information

about

the

Persistent

Reusable

Java

Virtual

Machine,

see

IBM®

Developer

Kit

for

OS/390,

Java

2

Technology

Edition:

New

IBM

Technology

featuring

Persistent

Reusable

Java

Virtual

Machines.

Recommendation

against

Accessing

Databases

with

Both

Java

and

COBOL

IBM

recommends

that

you

do

not

access

the

same

DB

PCB

from

both

Java

and

COBOL.

The

COBOL

and

Java

parts

of

an

application

share

a

single

database

pointer

(or

cursor).

If

the

same

DB

PCB

is

accessed

by

both

Java

and

COBOL,

database

positioning

as

a

result

of

calls

in

one

language

affect

the

database

positioning

for

calls

in

the

other

language.

COBOL

InteroperabilityIBM

Confidential

Chapter

2.

JMP

and

JBP

Applications

31

For

example,

if

you

build

a

SQL

SELECT

clause

and

use

JDBC

to

query

and

retrieve

results,

the

IMS

Java

class

library

constructs

the

appropriate

request

to

IMS

to

establish

the

correct

position

in

the

database.

If

you

then

call

a

COBOL

routine,

which

builds

an

SSA

and

runs

a

GU

request

to

IMS

against

the

same

DB

PCB,

the

GU

request

will

likely

change

the

position

in

the

database

for

that

DB

PCB.

If

the

position

is

changed,

subsequent

JDBC

requests

using

the

same

SQL

SELECT

clause

to

retrieve

more

records

will

be

wrong

because

the

database

position

has

changed.

If

you

must

access

the

same

DB

PCB

from

multiple

languages,

establish

database

positioning

again

when

returning

from

an

inter-language

call

before

accessing

more

records

in

the

database.

Note:

Although

IBM

advises

caution

for

language

interoperability,

the

behavior

described

in

this

section

is

not

related

to

the

programming

languages

themselves.

Two

parts

of

the

same

application

that

both

access

the

same

DB

PCB

can

have

the

same

behavior

described

in

this

section

even

if

both

parts

are

written

in

the

same

language.

Accessing

DB2

UDB

for

z/OS

Databases

from

JMP

or

JBP

Applications

A

JMP

or

JBP

application

can

access

DB2

UDB

for

z/OS

databases

by

using

the

DB2

JDBC/SQLJ

2.0

driver

or

the

DB2

JDBC/SQLJ

1.2

driver.

The

JMP

or

JBP

region

that

the

application

is

running

in

must

also

be

defined

with

DB2

UDB

for

z/OS

attached

by

the

DB2

Recoverable

Resource

Manager

Services

attachment

facility

(RRSAF).

Related

Reading:

For

information

about

attaching

DB2

UDB

for

z/OS

to

IMS

for

JMP

or

JBP

application

access

to

DB2

UDB

for

z/OS

databases,

see

“Configuring

JMP

and

JBP

Regions

for

DB2

UDB

for

z/OS

Database

Access”

on

page

13.

Accessing

DB2

UDB

for

z/OS

data

from

a

JMP

or

JBP

application

is

similar

to

accessing

IMS

data.

When

writing

a

JMP

or

JBP

application

that

accesses

DB2

UDB

for

z/OS

data,

consider

both

the

differences

from

IMS

database

access

and

the

differences

from

accessing

DB2

data

in

other

environments:

v

You

can

have

only

one

active

DB2

UDB

for

z/OS

connection

open

at

any

time.

v

For

type

2

JDBC

drivers,

you

must

use

the

default

connection

URL

in

the

application

program.

For

example,

jdbc:db2os390:

or

db2:default:connection.

v

For

type

4

JDBC

drivers,

you

can

use

a

specific

connection

URL

in

the

application

program.

v

To

commit

or

roll

back

work,

you

must

use

the

IMSTransaction.getTransaction().commit()

method

or

the

IMSTransaction.getTransaction().rollback()

method.

For

JMP

applications,

theIMSTransaction.getTransaction().commit()

method

commits

all

work:

SQL

calls

and

connection

closures.

For

JBP

applications,

the

IMSTransaction.getTransaction().commit()

method

commits

SQL

calls.

v

Because

RRS

is

the

coordinator,

you

cannot

use

the

Connection.setAutoCommit

or

Connection.commit

method

of

the

DB2

JDBC

driver.

v

You

must

always

call

IMSTransaction.getTransaction().commit()

after

closing

a

connection

to

DB2

UDB

for

z/OS

to

commit

the

connection

closure.

v

You

cannot

use

COBOL

to

access

DB2

UDB

for

z/OS

in

a

JMP

or

JBP

region.

Related

Reading:

For

a

JMP

programming

model,

see

“JMP

Application

that

Accesses

IMS

or

DB2

UDB

for

z/OS

Data”

on

page

19.

For

a

JBP

programming

COBOL

Interoperability IBM

Confidential

32

IMS

Java

Guide

and

Reference

|

|
|
|
|
|

|
|
|

|
|
|
|

|

|
|

|
|

|
|
|
|
|
|

|
|

|
|

|

|
|

model,

see

“JBP

Application

that

Accesses

DB2

UDB

for

z/OS

or

IMS

Data”

on

page

28.

DB2

UDB

for

z/OS

Database

AccessIBM

Confidential

Chapter

2.

JMP

and

JBP

Applications

33

|
|

DB2

UDB

for

z/OS

Database

Access IBM

Confidential

34

IMS

Java

Guide

and

Reference

Chapter

3.

WebSphere

Application

Server

for

z/OS

Applications

You

can

write

applications

that

run

on

WebSphere

Application

Server

for

z/OS

and

access

IMS

databases

when

WebSphere

Application

Server

for

z/OS

and

IMS

are

on

the

same

LPAR

(logical

partition).

To

deploy

an

application

on

WebSphere

Application

Server

for

z/OS,

you

must

install

the

IMS

JDBC

resource

adaptor

(the

IMS

Java

class

libraries)

on

WebSphere

Application

Server

for

z/OS,

and

configure

both

IMS

open

database

access

(ODBA)

and

the

database

resource

adapter

(DRA).

Figure

13

shows

an

Enterprise

JavaBean

(EJB)

that

is

accessing

IMS

data.

JDBC

or

IMS

Java

hierarchical

interface

calls

are

passed

to

the

IMS

Java

layer,

which

converts

the

calls

to

DL/I

calls.

The

IMS

Java

layer

passes

these

calls

to

ODBA,

which

uses

the

DRA

to

access

the

DL/I

region

in

IMS.

The

following

topics

provide

additional

information:

v

“System

Requirements

for

WebSphere

Application

Server

for

z/OS”

on

page

36

v

“Restrictions

for

WebSphere

Application

Server

for

z/OS”

on

page

36

v

“Configuring

WebSphere

Application

Server

V5

for

z/OS

for

IMS

Java”

on

page

36

v

“Running

the

IMS

Java

IVP

on

WebSphere

Application

Server

for

z/OS”

on

page

39

v

“Running

the

IMS

Java

Sample

Applications

on

WebSphere

Application

Server

for

z/OS”

on

page

42

v

“Running

Your

Applications

on

WebSphere

Application

Server

for

z/OS”

on

page

46

Figure

13.

WebSphere

Application

Server

for

z/OS

EJB

Using

IMS

Java

IBM

Confidential

©

Copyright

IBM

Corp.

2000,

2004

35

|
|
|

|
|
|
|

|

|

|

|

|
|

|
|

|
|

|
|

System

Requirements

for

WebSphere

Application

Server

for

z/OS

In

addition

to

the

software

listed

in

“IMS

Java

System

Requirements”

on

page

1,

the

following

software

is

required:

v

WebSphere

Application

Server

V5.0

for

z/OS

or

later.

If

you

have

WebSphere

Application

Server

V5.0.2

for

z/OS,

you

must

install

either

V5.0.2.1

or

APAR

PQ81944.

The

following

z/OS

components

are

required:

v

RRS

(resource

recovery

services)

for

z/OS

The

following

IMS

components

are

required:

v

Open

database

access

(ODBA)

v

Database

resource

adapter

(DRA)

To

access

IMS

databases

from

WebSphere

Application

Server

on

a

non-z/OS

platform,

you

must

have

WebSphere

Application

Server

V5.0

for

z/OS

installed

on

the

same

logical

partition

(LPAR)

as

IMS.

You

must

configure

WebSphere

Application

Server

for

z/OS

as

well

as

WebSphere

Application

Server

on

the

non-z/OS

platform.

For

information

about

setting

up

both

of

these

servers,

see

Chapter

4,

“Remote

Data

Access

with

WebSphere

Application

Server

Applications,”

on

page

53.

Restrictions

for

WebSphere

Application

Server

for

z/OS

The

following

restrictions

apply

to

WebSphere

Application

Server

for

z/OS

EJBs

that

access

IMS

databases:

v

IMS

Java

does

not

support

container-managed

signon

or

component-managed

signon.

v

IMS

Java

does

not

support

shared

connections.

v

The

java.sql.Connection

object

must

be

acquired,

used,

and

closed

within

a

transaction

boundary.

v

A

global

transaction

must

exist

before

you

create

a

Connection

object

from

a

JDBC

connection.

Either

specify

container-demarcated

transactions

in

the

EJB

deployment

descriptor

or

explicitly

begin

a

global

transaction

by

calling

thejavax.transaction.UserTransaction

API

before

creating

a

JDBC

connection.

Configuring

WebSphere

Application

Server

V5

for

z/OS

for

IMS

Java

This

section

assumes

that

you

are

familiar

with

WebSphere

Application

Server

V5

for

z/OS

and

its

administrative

console.

Prerequisite:

“Installing

IMS

Java”

on

page

2

To

configure

WebSphere

Application

Server

V5

for

z/OS:

1.

“Configuring

WebSphere

Application

Server

for

z/OS

to

Access

IMS”

on

page

37

2.

“Adding

the

Required

XML

Files

to

the

WebSphere

Application

Server

for

z/OS

Classpath”

on

page

37

3.

“Installing

the

IMS

JDBC

Resource

Adapter”

on

page

38

4.

“Installing

the

Custom

Service”

on

page

38

Next:

“Running

the

IMS

Java

IVP

on

WebSphere

Application

Server

for

z/OS”

on

page

39

System

Requirements IBM

Confidential

36

IMS

Java

Guide

and

Reference

|
|
|

|
|
|
|
|
|
|

|

|
|

|
|
|
|

|
|

|

|
|

|

Configuring

WebSphere

Application

Server

for

z/OS

to

Access

IMS

To

use

JDBC

to

access

IMS

DB

from

WebSphere

Application

Server

for

z/OS,

you

first

must

configure

WebSphere

Application

Server

for

z/OS

to

access

IMS

databases

using

ODBA.

ODBA

uses

the

database

resource

adapter

(DRA)

to

access

IMS

databases.

Related

Reading:

For

details

about

the

steps

in

this

section,

see

the

ODBA

section

of

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

To

configure

WebSphere

Application

Server

for

z/OS

to

access

IMS

databases:

1.

If

not

already

done,

create

a

DRA

startup

table.

The

DRA

startup

table

module

name

must

have

the

following

naming

convention:

v

Bytes

1-3:

“DFS”

v

Bytes

4-7:

1-

to

4-byte

ID

v

Byte

8:

“0”

Recommendation:

The

1-

to

4-byte

ID

should

be

the

IMS

system

ID.

2.

If

not

already

done,

link

the

DRA

startup

table

into

a

load

library.

3.

Update

the

JCL

for

WebSphere

Application

Server

for

z/OS

by

adding

to

the

STEPLIB

the

following:

v

The

load

library

that

contains

the

DRA

startup

table

and

the

ODBA

run-time

code

v

The

data

set

that

contains

the

DFSCLIB

member.

4.

Note

the

DRA

name,

which

is

defined

by

the

MBR

parameter.

You

will

need

to

know

bytes

4-7,

which

are

usually

the

IMS

system

ID,

when

you

install

the

data

source.

Next:

“Adding

the

Required

XML

Files

to

the

WebSphere

Application

Server

for

z/OS

Classpath”

Adding

the

Required

XML

Files

to

the

WebSphere

Application

Server

for

z/OS

Classpath

Prerequisite:

“Downloading

Apache

Open

Source

XML

Libraries”

on

page

3

In

the

WebSphere

Application

Server

for

z/OS

/classes

directory,

add

the

following

three

required

XML

files:

v

xml-apis.jar

v

xalan.jar

v

xercesImpl.jar

IMS

Java

requires

Xalan-Java

2.6.0

or

later

(or

equivalent

code

function).

WebSphere

Application

Server

V5.1

for

z/OS

has

SDK

1.4.1,

which

does

not

have

the

required

version

of

Xalan.

Therefore,

if

you

use

WebSphere

Application

Server

V5.1

for

z/OS,

you

must

add

the

JVM

environment

variable

java.endorsed.dirs

and

set

it

to

the

location

of

the

required

XML

files

(for

example,

java.endorsed.dirs=pathprefix/usr/lpp/ims/imsjava91/lib).

Next:

“Installing

the

IMS

JDBC

Resource

Adapter”

on

page

38

Configuring

WebSphere

Application

Server

V5

for

z/OSIBM

Confidential

Chapter

3.

WebSphere

Application

Server

for

z/OS

Applications

37

|
|
|
|

|
|

|

|

|

|

|

|
|

|
|

|

|
|
|

|

|

|

|
|

|

|

|

|
|
|
|
|
|

|

Installing

the

IMS

JDBC

Resource

Adapter

After

you

configure

WebSphere

Application

Server

for

z/OS

to

have

access

to

IMS

databases,

you

must

install

the

IMS

JDBC

resource

adapter

on

WebSphere

Application

Server

for

z/OS.

Prerequisite:

“Configuring

WebSphere

Application

Server

for

z/OS

to

Access

IMS”

on

page

37

To

install

the

IMS

JDBC

resource

adapter:

1.

From

the

WebSphere

Application

Server

for

z/OS

administrative

console,

click

Resources,

and

then

click

Resource

Adapters.

A

list

of

resource

adapters

is

displayed.

2.

Click

Install

RAR.

A

dialog

for

installing

the

resource

adapter

is

displayed.

3.

Select

Server

path

and

type

the

path

to

the

imsjava91.rar

file:

pathprefix/usr/lpp/ims/imsjava91/imsjava91.rar

4.

Click

Next.

A

configuration

dialog

is

displayed.

5.

Type

the

following

information:

Name:

a

name

for

the

resource

adapter

Classpath:

the

path

to

imsjava.jar,

including

the

file

name:

pathprefix/usr/lpp/ims/imsjava91/imsjava.jar

6.

Click

OK.

The

IMS

JDBC

resource

adapter

is

listed.

7.

Click

Save.

The

Save

page

is

displayed.

8.

Under

Save

to

Master

Configuration,

click

Save

to

ensure

that

the

changes

have

been

made.

Next:

“Installing

the

Custom

Service”

Installing

the

Custom

Service

Prerequisite:

“Installing

the

IMS

JDBC

Resource

Adapter”

When

WebSphere

Application

Server

for

z/OS

is

started,

the

custom

service

initializes

the

ODBA

environment.

When

the

server

is

stopped,

the

custom

service

terminates

the

ODBA

environment.

After

a

server

is

started,

every

application

that

is

running

in

the

server

uses

the

initialized

ODBA

environment.

To

install

the

custom

service:

1.

Modify

the

WebSphere

Application

Server

for

z/OS

server.policy

file,

which

is

in

the

properties

directory

of

the

WebSphere

Application

Server

installation

directory,

by

adding

the

following

code:

grant

codeBase

"file:/pathprefix/usr/lpp/ims/imsjava91/-"

{

//Allows

the

IMS

JDBC

resource

adapter

and

the

custom

service

to

read

and

//write

environment

properties

.

permission

java.util.PropertyPermission

"*",

"read,

write";

//Allows

the

IMS

JDCB

resource

adapter

and

the

custom

service

to

use

the

JavTDLI

//load

library

during

runtime.

permission

java.lang.RuntimePermission

"loadLibrary.JavTDLI";

};

Configuring

WebSphere

Application

Server

V5

for

z/OS IBM

Confidential

38

IMS

Java

Guide

and

Reference

|
|

|
|
|

|

|

|
|

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

2.

In

the

left

frame

of

the

WebSphere

Application

Server

for

z/OS

administrative

console,

click

Servers,

and

then

click

Application

Servers.

A

list

of

application

servers

is

displayed.

3.

Click

the

name

of

the

server

on

which

you

want

to

deploy

your

enterprise

application.

4.

Under

Additional

Properties,

click

Custom

Services.

A

list

of

custom

services

is

displayed.

5.

Click

New.

A

configuration

dialog

is

displayed.

6.

Select

the

Startup

check

box.

If

you

do

not

select

the

Startup

check

box,

the

custom

service

is

not

invoked

when

you

start

the

server.

7.

Type

the

following

information:

Classname:

com.ibm.connector2.ims.db.IMSJdbcCustomService

Display

Name:

a

name

for

the

custom

service

Classpath:

the

path

to

the

directory

that

contains

imsjava.jar

and

libJavTDLI.so:

pathprefix/usr/lpp/ims/imsjava91

8.

Click

OK.

The

custom

service

is

listed.

9.

Click

Save.

The

Save

page

is

displayed.

10.

Under

Save

to

Master

Configuration,

click

Save

to

ensure

that

the

changes

have

been

made.

11.

Restart

the

server

in

order

for

the

custom

service

to

take

effect.

Next:

“Running

the

IMS

Java

IVP

on

WebSphere

Application

Server

for

z/OS”

Running

the

IMS

Java

IVP

on

WebSphere

Application

Server

for

z/OS

Prerequisites:

v

“Configuring

WebSphere

Application

Server

V5

for

z/OS

for

IMS

Java”

on

page

36

v

Ensure

that

the

standard

IMS

IVPs

have

been

run.

The

IMS

IVPs

prepare

the

DBD

for

the

IVP

database,

named

IVPDB2,

and

load

the

IVP

database.

They

also

prepare

the

IMS

Java

application

PSB

(named

DFSIVP37),

build

ACBs,

and

prepare

other

IMS

control

blocks

that

are

required

by

the

IMS

Java

IVPs.

For

details

about

how

to

run

the

IMS

IVPs,

see

IMS

Version

9:

Installation

Volume

1:

Installation

Verification.

To

run

the

IMS

Java

IVP

for

WebSphere

Application

Server

for

z/OS:

1.

“Installing

the

Data

Source

for

the

IMS

Java

IVP”

on

page

40

2.

“Installing

the

IMS

Java

IVP”

on

page

41

3.

“Testing

the

IMS

Java

IVP”

on

page

41

Next:

“Running

the

IMS

Java

Sample

Applications

on

WebSphere

Application

Server

for

z/OS”

on

page

42

or

“Running

Your

Applications

on

WebSphere

Application

Server

for

z/OS”

on

page

46.

Or,

to

continue

configuration

for

Configuring

WebSphere

Application

Server

V5

for

z/OSIBM

Confidential

Chapter

3.

WebSphere

Application

Server

for

z/OS

Applications

39

|
|

|

|
|

|
|

|
|

|

|

|
|

remote

database

services:

“Configuring

the

Application

Servers

for

IMS

Java

Remote

Database

Services”

on

page

55

Installing

the

Data

Source

for

the

IMS

Java

IVP

The

DataSource

facility

is

a

factory

for

connections

to

a

physical

data

source,

or

database.

A

data

source

is

registered

with

a

naming

service

based

on

the

Java

Naming

and

Directory

(JNDI)

API.

DataSource

objects

have

properties

that

pertain

to

the

actual

data

source

that

an

application

needs

to

access.

Requirement:

You

must

use

the

DataSource

facility,

which

replaces

the

DriverManager

facility,

because

the

DriverManager

facility

is

not

supported

by

the

J2EE

Connection

Architecture

Specification.

To

install

the

data

source

for

the

IVP:

1.

In

the

left

frame

of

the

WebSphere

Application

Server

for

z/OS

administrative

console,

click

Resources,

and

then

click

Resource

Adapters.

A

list

of

resource

adapters

is

displayed.

2.

Click

the

the

name

of

IMS

JDBC

resource

adapter

that

you

chose

when

you

installed

the

adapter.

A

configuration

dialog

is

displayed.

3.

Under

Additional

Properties,

click

J2C

Connection

Factories.

4.

Click

New.

A

configuration

dialog

is

displayed.

5.

Type

the

following

information:

Name:

name

for

the

data

source

JNDI

Name:

imsjavaIVP

6.

Click

OK.

The

data

source

is

listed

in

the

J2C

Connection

Factories.

7.

Click

the

name

of

the

data

source

that

you

installed

in

step

5.

8.

Under

Additional

Properties,

click

Custom

Properties.

Six

properties

are

listed

in

a

table.

9.

In

the

DRAName

row,

click

the

dash

symbol

in

the

Value

column.

10.

In

the

Value

field,

type

bytes

4-7

of

the

DRA

startup

table

module

name

(usually

the

IMS

system

ID).

For

more

information

about

the

DRA

startup

table,

see

“Configuring

WebSphere

Application

Server

for

z/OS

to

Access

IMS”

on

page

37.

11.

Click

OK.

The

properties

table

displays

the

DRA

name

that

you

just

entered.

12.

In

the

DatabaseViewName

row,

click

the

dash

symbol

in

the

Value

column.

13.

In

the

Value

field,

type

samples.ivp.DFSIVP37DatabaseView

14.

Click

OK.

The

properties

table

displays

the

host

name

that

you

just

entered.

15.

Click

Save.

The

Save

page

is

displayed.

16.

Under

Save

to

Master

Configuration,

click

Save.

17.

Restart

the

server

to

ensure

that

the

changes

have

been

made.

Next:

“Installing

the

IMS

Java

IVP”

on

page

41

WebSphere

Application

Server

for

z/OS

IVP IBM

Confidential

40

IMS

Java

Guide

and

Reference

|
|
|
|

|
|
|

|
|

|

|
|
|

|

|

|

Installing

the

IMS

Java

IVP

Prerequisite:

“Installing

the

Data

Source

for

the

IMS

Java

IVP”

on

page

40
This

section

describes

how

to

deploy

the

IMS

Java

IVP

on

WebSphere

Application

Server

for

z/OS.

To

install

the

IMS

Java

IVP:

1.

From

the

WebSphere

Application

Server

for

z/OS

administrative

console,

click

Applications,

and

then

click

Install

New

Application.

A

dialog

for

installing

the

application

is

displayed.

2.

Select

Server

path

and

type

the

path

to

IMSJavaIVP.ear:

pathprefix/usr/lpp/ims/imsjava91/samples/ivp/was/imsjavaIVP.ear

3.

Click

Next.

4.

Accept

the

defaults

and

click

Next.

The

Install

New

Application

wizard

is

started.

Step

1,

″Provide

options

to

perform

the

installation,″

is

displayed.

5.

Clear

the

Create

MBeans

for

Resources

check

box.

6.

Click

Next.

Step

2,

″Provide

JNDI

Names

for

Beans,″

is

displayed.

7.

In

the

JNDI

Name

field,

verify

that

the

name

is

as

follows:

ejb/samples/ivp/was/IMSJavaIVPSessionHome

8.

Click

Next.

Step

3,

″Map

resource

references

to

resources,″

is

displayed.

9.

In

the

JNDI

Name

field,

verify

that

the

name

is

as

follows:

imsjavaIVP

10.

Click

Next.

Step

4,

″Map

virtual

hosts

for

web

modules,″

is

displayed.

11.

Accept

the

defaults

and

click

Next.

Step

5,

″Map

modules

to

application

servers,″

is

displayed.

12.

Accept

the

defaults

and

click

Next.

Step

6,

″Ensure

all

unprotected

2.0

methods

have

the

correct

level

of

protection,″

is

displayed.

13.

Make

any

necessary

changes

and

click

Next.

The

options

that

you

specified

are

displayed

in

Step

7,

″Summary,″

of

the

Install

New

Application

wizard.

14.

Verify

that

the

options

are

correct,

and

then

click

Finish.

A

message

is

displayed

that

indicates

first

that

the

application

is

being

installed,

and

then

that

the

installation

was

successful.

15.

Click

Save

to

Master

Configuration.

The

Save

page

is

displayed.

16.

Under

Save

to

Master

Configuration,

click

Save.

17.

Restart

the

server

to

ensure

that

the

changes

have

been

made.

Next:

“Testing

the

IMS

Java

IVP”

Testing

the

IMS

Java

IVP

Prerequisite:

“Installing

the

IMS

Java

IVP”

WebSphere

Application

Server

for

z/OS

IVPIBM

Confidential

Chapter

3.

WebSphere

Application

Server

for

z/OS

Applications

41

|
|
|

|

|
|

|
|

|

|

|

|

|

|
|

|

|
|

|

|

|

|

This

section

describes

how

to

test

the

IVP

on

WebSphere

Application

Server

for

z/OS.

To

test

the

IMS

Java

IVP:

1.

From

the

WebSphere

Application

Server

for

z/OS

administrative

console,

click

Applications,

and

then

click

Enterprise

Applications.

The

application

IMSJava

IVP

is

listed

with

a

red

X,

which

indicates

that

the

application

is

stopped.

2.

Select

IMSJava

IVP.

3.

Click

Start.

The

application

IMSJava

IVP

is

listed

with

a

green

arrow,

which

indicates

that

the

application

is

started.

4.

Open

a

Web

browser.

5.

Type

the

Web

address:

http://host_IP_address:port/IMSJavaIVPWeb/IMSJavaIVP.html

An

input

Web

page

opens.

6.

Click

Run

the

IVP.

If

WebSphere

Application

Server

for

z/OS

is

configured

properly,

the

IVP

displays

″The

IVP

was

SUCCESSFUL″

and

the

results

of

checks

performed

by

the

IVP.

If

WebSphere

Application

Server

for

z/OS

is

not

configured

properly,

the

IVP

displays

″The

IVP

was

NOT

SUCCESSFUL″

and

the

results

of

checks

performed

by

the

IVP.

Running

the

IMS

Java

Sample

Applications

on

WebSphere

Application

Server

for

z/OS

Prerequisite:

“Running

the

IMS

Java

IVP

on

WebSphere

Application

Server

for

z/OS”

on

page

39

To

run

the

IMS

Java

sample

applications

on

WebSphere

Application

Server

for

z/OS:

1.

“Installing

the

Data

Source

for

the

IMS

Java

Samples”

2.

“Installing

the

IMS

Java

Sample

Applications”

on

page

43

3.

“Testing

the

IMS

Java

Sample

Applications”

on

page

45

Next:

“Running

Your

Applications

on

WebSphere

Application

Server

for

z/OS”

on

page

46

Installing

the

Data

Source

for

the

IMS

Java

Samples

The

DataSource

facility

is

a

factory

for

connections

to

a

physical

data

source,

or

database.

A

data

source

is

registered

with

a

naming

service

based

on

the

Java

Naming

and

Directory

(JNDI)

API.

DataSource

objects

have

properties

that

pertain

to

the

actual

data

source

that

an

application

needs

to

access.

Requirement:

You

must

use

the

DataSource

facility,

which

replaces

the

DriverManager

facility,

because

the

DriverManager

facility

is

not

supported

by

the

J2EE

Connection

Architecture

Specification.

To

install

the

data

source

for

the

IMS

Java

samples:

WebSphere

Application

Server

for

z/OS

IVP IBM

Confidential

42

IMS

Java

Guide

and

Reference

|
|

|

|

|
|
|
|

|
|
|

1.

In

the

left

frame

of

the

WebSphere

Application

Server

for

z/OS

administrative

console,

click

Resources,

and

then

click

Resource

Adapters.

A

list

of

resource

adapters

is

displayed.

2.

Click

the

name

of

IMS

JDBC

resource

adapter

that

you

chose

when

you

installed

the

adapter.

A

configuration

dialog

is

displayed.

3.

Under

Additional

Properties,

click

J2C

Connection

Factories.

4.

Click

New.

A

configuration

dialog

is

displayed.

5.

Type

the

following

information:

Name:

name

for

the

data

source

JNDI

Name:

path

to

the

data

source.

–

For

the

phonebook

sample,

type:

imsjavaPhonebook

–

For

the

dealership

sample,

type:

jdbc/DealershipSample

6.

Click

OK.

The

data

source

is

listed

in

the

J2C

Connection

Factories.

7.

Click

the

name

of

the

data

source

that

you

installed

in

step

5.

8.

Under

Additional

Properties,

click

Custom

Properties.

Six

properties

are

listed

in

a

table.

9.

In

the

DRAName

row,

click

the

dash

symbol

in

the

Value

column.

10.

In

the

Value

field,

type

bytes

4-7

of

the

DRA

startup

table

module

name

(usually

the

IMS

system

ID).

For

more

information

about

the

DRA

startup

table,

see

“Configuring

WebSphere

Application

Server

for

z/OS

to

Access

IMS”

on

page

37.

11.

Click

OK.

The

properties

table

displays

the

DRA

name

that

you

just

entered.

12.

In

the

DatabaseViewName

row,

click

the

dash

symbol

in

the

Value

column.

13.

In

the

Value

field,

type

the

fully-qualified

DLIDatabaseView

subclass

name.

v

For

the

phonebook

sample,

type:

samples.ivp.DFSIVP37DatabaseView

v

For

the

dealership

sample,

type:samples.dealership.AUTPSB11DatabaseView

14.

Click

OK.

The

properties

table

displays

the

host

name

that

you

just

entered.

15.

Optionally,

set

the

trace

level

for

the

applications.

See

“Enabling

J2EE

Tracing

with

WebSphere

Application

Server”

on

page

68.

16.

Click

Save.

The

Save

page

is

displayed.

17.

Under

Save

to

Master

Configuration,

click

Save.

Next:

“Installing

the

IMS

Java

Sample

Applications”

Installing

the

IMS

Java

Sample

Applications

Prerequisite:

“Installing

the

Data

Source

for

the

IMS

Java

Samples”

on

page

42

This

topic

describes

how

to

install

one

of

the

IMS

Java

sample

applications

on

WebSphere

Application

Server

for

z/OS.

The

two

sample

applications

are

the

phonebook

sample

and

the

dealership

sample.

You

must

perform

this

task

once

for

each

sample.

WebSphere

Application

Server

for

z/OS

IVPIBM

Confidential

Chapter

3.

WebSphere

Application

Server

for

z/OS

Applications

43

|
|

|

|
|

|

|
|
|
|
|

|

|

|

|
|
|
|

To

install

the

sample

applications:

1.

From

the

WebSphere

Application

Server

for

z/OS

administrative

console,

click

Applications,

and

then

click

Install

New

Application.

A

dialog

for

installing

a

new

application

is

displayed.

2.

Select

Server

path

and

type

the

path

to

the

EAR

file:

v

For

the

phonebook

sample,

type

the

path

to

IMSJavaPhonebook.ear:

pathprefix/usr/lpp/ims/imsjava91/samples/ivp/was/imsjavaIVP.ear

v

For

the

dealership

sample,

type

the

path

to

imsjavaDealershipEAR.ear:

pathprefix/usr/lpp/ims/imsjava91/samples/dealership/was/imsjavaDealershipEAR.ear

3.

Click

Next.

4.

Accept

the

defaults

and

click

Next.

The

Install

New

Application

wizard

is

started.

Step

1,

″Provide

options

to

perform

the

installation,″

is

displayed.

5.

Clear

the

Create

MBeans

for

Resources

check

box.

6.

Click

Next.

Step

2,

″Provide

JNDI

Names

for

Beans,″

is

displayed.

7.

In

the

JNDI

Name

field,

type

the

path

to

the

EJB

home

interface.

v

For

the

phonebook

sample,

verify

that

name

is

as

follows:

ejb/samples/phonebook/was/IMSJavaPhonebookSessionHome

v

For

the

dealership

sample,

type:

samples.dealership.was.DealershipSessionHome

8.

Click

Next.

Step

3,

″Map

resource

references

to

resources,″

is

displayed.

9.

For

the

phonebook

sample,

verify

that

the

JNDI

name

of

resource

references

of

the

IMSJava

phSample

EJB

module

is

imsjavaPhonebook.

For

the

dealership

sample,

in

the

JNDI

Name

field

for

the

IMSDealershipWeb

module,

type:

jdbc/DealershipSample

10.

Click

Next.

Step

4,

″Map

virtual

hosts

for

web

modules,″

is

displayed.

11.

Accept

the

defaults

and

click

Next.

Step

5,

″Map

modules

to

application

servers,″

is

displayed.

12.

Accept

the

defaults

and

click

Next.

Step

6,

″Ensure

all

unprotected

2.0

methods

have

the

correct

level

of

protection,″

is

displayed.

13.

Make

any

necessary

changes

and

click

Next.

The

options

that

you

specified

are

displayed

in

Step

7,

″Summary,″

of

the

Install

New

Application

wizard.

14.

Verify

that

the

options

are

correct,

and

then

click

Finish.

A

message

is

displayed

that

indicates

first

that

the

application

is

being

installed,

and

then

that

the

installation

was

successful.

15.

Click

Save

to

Master

Configuration.

The

Save

page

is

displayed.

16.

Under

Save

to

Master

Configuration,

click

Save.

17.

Restart

the

server

to

ensure

that

the

changes

have

been

made.

Next:

“Testing

the

IMS

Java

Sample

Applications”

on

page

45

WebSphere

Application

Server

for

z/OS

IVP IBM

Confidential

44

IMS

Java

Guide

and

Reference

|

|
|

|
|

|
|

|

|

|

|

|

|

|
|

|

|
|

|

|

|

Testing

the

IMS

Java

Sample

Applications

Prerequisite:

“Installing

the

IMS

Java

Sample

Applications”

on

page

43

This

section

describes

how

to

test

the

phonebook

or

dealership

sample

application

on

WebSphere

Application

Server

for

z/OS.

To

test

the

phonebook

or

dealership

sample:

1.

From

the

WebSphere

Application

Server

for

z/OS

administrative

console,

click

Applications,

and

then

click

Enterprise

Applications.

The

application

that

you

installed

is

listed

with

a

red

X,

which

indicates

that

the

application

is

stopped.

2.

Select

the

application.

v

For

the

phonebook

sample,

select

IMSJava

pbSample.

v

For

the

dealership

sample,

select

IMSDealershipEAR.

3.

Click

Start.

The

application

is

listed

with

a

green

arrow,

which

indicates

that

the

application

is

started.

4.

Open

a

Web

browser.

5.

Type

the

Web

address

of

the

application.

v

For

the

phonebook

sample,

type:

http://host_IP_address:port/IMSJavaPhonebookWeb/IMSJavaPhonebook.html

v

For

the

dealership

sample,

type:

http://host_IP_address:port/IMSDealershipWeb/dealership.html

An

input

Web

page

opens.

v

For

the

phonebook

sample,

the

page

is

titled

WebSphere

Phonebook

Sample

for

IMS

Java.

v

For

the

dealership

sample,

the

page

is

titled

Find

a

car

in

stock.

6.

Type

input.

v

For

the

phonebook,

type

the

following

information:

Last

Name:

LAST1

v

For

the

dealership

sample,

verify

that

Car

Make

and

VIN

Number

fields

contain

the

following

information:

Car

Make:

FORD

VIN

Number:

V234567890123456789V

7.

Click

Submit.

If

WebSphere

Application

Server

for

z/OS

is

configured

properly,

the

output

is

displayed.

v

For

the

phonebook,

the

following

information

is

displayed:

Result:

Person

found!

FirstName:

FIRST1

LastName:

LAST1

Extension:

8-111-1111

ZipCode:

D01/R01

v

For

the

dealership

sample,

a

message

indicating

that

the

query

was

successful

is

displayed.

WebSphere

Application

Server

for

z/OS

IVPIBM

Confidential

Chapter

3.

WebSphere

Application

Server

for

z/OS

Applications

45

|
|

|

|
|

|
|

|

|

Running

Your

Applications

on

WebSphere

Application

Server

for

z/OS

Prerequisite:

“Running

the

IMS

Java

IVP

on

WebSphere

Application

Server

for

z/OS”

on

page

39

To

deploy

your

applications

on

WebSphere

Application

Server

for

z/OS:

1.

“Setting

the

WebSphere

Application

Server

for

z/OS

Classpath”

2.

“Installing

the

Data

Source

for

Your

Application”

3.

“Installing

Your

Application”

on

page

47

4.

“Enabling

J2EE

Tracing

with

WebSphere

Application

Server

for

z/OS”

on

page

48

Setting

the

WebSphere

Application

Server

for

z/OS

Classpath

Your

application

can

include

the

IMS

Java

metadata

class

(DLIDatabaseView

subclass)

or

the

metadata

class

can

be

stored

elsewhere.

If

your

application

does

not

include

the

metadata

class,

you

must

set

the

WebSphere

Application

Server

for

z/OS

classpath

to

the

location

of

the

IMS

Java

metadata

class

that

is

used

by

the

application.

One

way

to

set

the

classpath

is

to

add

these

files

to

the

IMS

JDBC

resource

adapter

classpath.

To

add

the

required

files

to

the

IMS

JDBC

resource

adapter

classpath:

1.

From

the

WebSphere

Application

Server

for

z/OS

administrative

console,

click

Resources,

and

then

click

Resource

Adapters.

A

list

of

resource

adapters

is

displayed.

2.

Click

the

name

of

the

IMS

JDBC

resource

adapter.

A

configuration

dialog

is

displayed.

3.

In

the

Classpath

field,

add

the

path

to

the

required

files.

Include

the

file

name

for

JAR

files.

Do

not

delete

imsjava.jar.

4.

Click

OK.

Installing

the

Data

Source

for

Your

Application

The

DataSource

facility

is

a

factory

for

connections

to

a

physical

data

source,

or

database.

A

data

source

is

registered

with

a

naming

service

based

on

the

Java

Naming

and

Directory

(JNDI)

API.

DataSource

objects

have

properties

that

pertain

to

the

actual

data

source

that

an

application

needs

to

access.

Requirement:

You

must

use

the

DataSource

facility,

which

replaces

the

DriverManager

facility,

because

the

DriverManager

facility

is

not

supported

by

the

J2EE

Connection

Architecture

Specification.

To

install

the

data

source

for

your

application:

1.

In

the

left

frame

of

the

WebSphere

Application

Server

for

z/OS

administrative

console,

click

Resources,

and

then

click

Resource

Adapters.

A

list

of

resource

adapters

is

displayed.

2.

Click

the

the

name

of

IMS

JDBC

resource

adapter

that

you

chose

when

you

installed

the

adapter.

A

configuration

dialog

is

displayed.

3.

Under

Additional

Properties,

click

J2C

Connection

Factories.

Running

Applications

on

WebSphere

Application

Server

for

z/OS IBM

Confidential

46

IMS

Java

Guide

and

Reference

|

|
|

|
|
|

|
|

|

|
|

|

|

|

|
|

|

|

|
|
|
|

|
|
|

|

|
|

|

|
|

|

4.

Click

New.

A

configuration

dialog

is

displayed.

5.

Type

the

following

information:

Name:

name

for

the

data

source

JNDI

Name:

path

to

the

data

source.

6.

Click

OK.

The

data

source

is

listed

in

the

J2C

Connection

Factories.

7.

Click

the

name

of

the

data

source

that

you

installed

in

step

5.

8.

Under

Additional

Properties,

click

Custom

Properties.

Six

properties

are

listed

in

a

table.

9.

In

the

DRAName

row,

click

the

dash

symbol

in

the

Value

column.

10.

In

the

Value

field,

type

bytes

4-7

of

the

DRA

startup

table

module

name

(usually

the

IMS

system

ID).

For

more

information

about

the

DRA

startup

table,

see

“Configuring

WebSphere

Application

Server

for

z/OS

to

Access

IMS”

on

page

37.

11.

Click

OK.

The

properties

table

displays

the

DRA

name

that

you

just

entered.

12.

In

the

DatabaseViewName

row,

click

the

dash

symbol

in

the

Value

column.

13.

Optional:

In

the

Value

field,

type

the

fully-qualified

DLIDatabaseView

subclass

name.

If

you

do

set

the

subclass

name,

you

must

either

create

a

data

source

for

every

PSB

an

application

accesses,

or

you

must

override

the

DLIDatabaseView

subclass

name

in

the

DataSource

object

by

calling

the

setDatabaseView

method

and

providing

the

fully-qualified

name

of

the

subclass.

If

you

do

not

set

the

subclass

name,

you

need

to

create

a

data

source

only

for

each

IMS.

In

the

application,

define

the

DLIDatabaseView

subclass

name

in

the

DataSource

object

by

calling

the

setDatabaseView

method

and

providing

the

fully-qualified

name

of

the

subclass.

14.

Click

OK.

The

properties

table

displays

the

host

name

that

you

just

entered.

15.

Optionally,

set

the

trace

level

for

the

applications.

See

“Enabling

J2EE

Tracing

with

WebSphere

Application

Server

for

z/OS”

on

page

48.

16.

Click

Save.

The

Save

page

is

displayed.

17.

Under

Save

to

Master

Configuration,

click

Save.

18.

Restart

the

server

to

ensure

that

the

changes

have

been

made.

Next:

“Installing

Your

Application”

Installing

Your

Application

Prerequisite:

“Installing

the

Data

Source

for

Your

Application”

on

page

46

This

section

describes

how

to

deploy

an

application

on

WebSphere

Application

Server

for

z/OS.

To

install

your

application:

1.

From

the

WebSphere

Application

Server

for

z/OS

administrative

console,

click

Applications,

and

then

click

Install

New

Application.

A

dialog

for

installing

a

new

application

is

displayed.

Running

Applications

on

WebSphere

Application

Server

for

z/OSIBM

Confidential

Chapter

3.

WebSphere

Application

Server

for

z/OS

Applications

47

|
|
|

|

|
|

|
|
|
|

|
|
|
|

|

|

|

|
|

2.

Type

the

path

to

the

EAR

file.

3.

Click

Next.

4.

Accept

the

defaults

and

click

Next.

The

Install

New

Application

wizard

is

started.

Step

1,

″Provide

options

to

perform

the

installation,″

is

displayed.

5.

Clear

the

Create

MBeans

for

Resources

check

box.

6.

Click

Next.

Step

2,

″Provide

JNDI

Names

for

Beans,″

is

displayed.

7.

In

the

JNDI

Name

field,

type

the

path

to

the

EJB

home

interface.

8.

Click

Next.

Step

3,

″Map

resource

references

to

resources,″

is

displayed.

9.

Type

the

JNDI

name

for

the

data

source

that

you

created

in

“Installing

the

Data

Source

for

Your

Application”

on

page

46.

10.

Click

Next.

Step

4,

″Map

modules

to

application

servers,″

is

displayed.

11.

Accept

the

defaults

and

click

Next.

Step

5,

″Correct

use

of

System

Identity,″

is

displayed.

12.

Verify

that

no

role

is

selected

and

click

Next.

Step

6,

″Ensure

all

unprotected

2.0

methods

have

the

correct

level

of

protection,″

is

displayed.

13.

Make

any

necessary

changes

and

click

Next.

The

options

that

you

specified

are

displayed

in

Step

7,

″Summary,″

of

the

Install

New

Application

wizard.

14.

Verify

that

the

options

are

correct,

and

then

click

Finish.

A

message

is

displayed

that

indicates

first

that

the

application

is

being

installed,

and

then

that

the

installation

was

successful.

15.

Click

Save

to

Master

Configuration.

The

Save

page

is

displayed.

16.

Under

Save

to

Master

Configuration,

click

Save.

17.

Restart

the

server

to

ensure

that

the

changes

have

been

made.

Enabling

J2EE

Tracing

with

WebSphere

Application

Server

for

z/OS

You

can

trace

the

IMS

library

classes

by

using

the

WebSphere

Application

Server

for

z/OS

tracing

service.

This

topic

documents

one

way

to

enable

tracing,

which

requires

that

you

restart

your

server

for

it

to

take

effect.

You

can

also

use

runtime

tracing,

which

is

documented

in

the

WebSphere

Application

Server

Information

Center.

You

can

also

trace

the

IMS

library

classes

or

your

applications

using

the

com.ibm.ims.base.XMLTrace

class.

The

XMLTrace

class

is

an

IMS

Java-provided

class

that

represents

the

trace

as

an

XML

document.

You

can

trace

different

levels

of

the

code

depending

on

the

trace

level.

For

more

information,

see

the

IMS

Java

API

Specification.

To

enable

tracing:

1.

“Specifying

the

Level

of

Tracing”

on

page

49

2.

“Specifying

the

Application

Server

and

the

Package

to

Trace”

on

page

49

Running

Applications

on

WebSphere

Application

Server

for

z/OS IBM

Confidential

48

IMS

Java

Guide

and

Reference

|
|

|

|

|

|

|
|

|

|
|

|

|

|

|

|
|
|
|
|

|
|
|
|
|

|

|

|

Specifying

the

Level

of

Tracing

To

specify

the

level

of

tracing:

1.

In

the

left

frame

of

the

WebSphere

Application

Server

for

z/OS

administrative

console,

click

Resources,

and

then

click

Resource

Adapters.

A

list

of

resource

adapters

is

displayed.

2.

Click

IMS

JDBC

resource

adapter.

A

configuration

dialog

is

displayed.

3.

Under

Additional

Properties,

click

J2C

Connection

Factories.

A

list

of

connection

factories

is

displayed.

4.

Click

the

name

of

the

J2C

connection

factory

for

which

you

want

to

enable

tracing.

A

configuration

dialog

is

displayed.

5.

Under

Additional

Properties,

click

Custom

Properties.

Properties

are

listed

in

a

table.

6.

In

the

Trace

Level

row,

click

the

number

in

the

Value

column.

7.

In

the

Value

field,

type

the

trace

level.

8.

Click

OK.

The

properties

table

displays

the

trace

level

that

you

just

entered.

9.

Click

Save.

The

Save

page

is

displayed.

10.

Under

Save

to

Master

Configuration,

click

Save

to

ensure

that

the

changes

are

made.

Specifying

the

Application

Server

and

the

Package

to

Trace

To

specify

the

application

server

and

the

package

to

trace:

1.

In

the

left

frame

of

the

WebSphere

Application

Server

for

z/OS

administrative

console,

click

Servers,

and

then

click

Application

Servers.

A

list

of

application

servers

is

displayed.

2.

Click

the

name

of

the

server

on

which

you

want

to

enable

tracing.

3.

Under

Additional

Properties,

click

Diagnostic

Trace

Service.

A

configuration

dialog

for

Diagnostic

Trace

Service

is

displayed.

4.

Select

the

Enable

Trace

check

box.

5.

In

the

Trace

Specification

field

after

any

other

traces

that

are

listed,

type:

com.ibm.connector2.ims.db.*=all=enabled

6.

Click

Apply.

7.

Click

Save.

The

Save

page

is

displayed.

8.

Under

Save

to

Master

Configuration,

click

Save

to

ensure

that

the

changes

are

made.

9.

Restart

the

server.

Developing

Enterprise

Applications

that

Access

IMS

DB

Enterprise

applications

that

access

IMS

DB

can

be

servlets

or

EJBs.

The

EJBs

can

be

bean-managed

or

container-managed.

This

topic

describes

the

programming

models

for

these

different

types

of

enterprise

applications.

These

programming

models

apply

to

enterprise

applications

that

run

on

either

WebSphere

Application

Server

for

z/OS

or

WebSphere

Application

Server

on

a

non-z/OS

platform.

Running

Applications

on

WebSphere

Application

Server

for

z/OSIBM

Confidential

Chapter

3.

WebSphere

Application

Server

for

z/OS

Applications

49

|
|

|
|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|
|

|
|

|
|

|

|

|

|

|

|
|

|

|

|

|
|

|

|

|
|
|
|
|

In

this

topic:

v

“Bean-Managed

EJBs”

v

“Container-Managed

EJBs”

on

page

51

v

“Servlets”

on

page

52

Bean-Managed

EJBs

In

bean-managed

EJBs,

you

programmatically

define

the

transaction

boundaries.

To

define

an

EJB

as

bean-managed,

set

the

transaction-type

property,

which

is

in

the

ejb-jar.xml

file

of

the

EJB

jar

file,

to

Bean.

You

must

manage

the

scope

of

the

transaction

by

using

either

the

javax.transaction.UserTransaction

or

java.sql.Connection

interface.

This

topic

describes

how

to

use

both

interfaces:

v

“Transaction

Demarcation

Using

the

javax.transaction.UserTransaction

Interface”

v

“Transaction

Demarcation

Using

the

java.sql.Connection

Interface”

on

page

51

Transaction

Demarcation

Using

the

javax.transaction.UserTransaction

Interface

The

programming

model

applies

to

either

to

applications

that

run

on

WebSphere

Application

Server

on

a

non-z/OS

platform

or

to

applications

that

run

on

WebSphere

Application

Server

for

z/OS.

With

the

javax.transaction.UserTransaction

interface,

you

can

define

when

the

scope

of

the

transaction

begins

and

ends,

and

when

the

transaction

commits

or

rolls

back.

The

EJB

container

supplies

the

EJB

with

a

javax.ejb.SessionContext

object

that

allows

the

javax.transaction.UserTransaction

interface

to

perform

the

required

operations

to

manage

the

transaction.

try

{

//

Use

the

javax.ejb.SessionContext

set

by

the

EJB

container

to

instantiate

a

new

UserTransaction

javax.transaction.UserTransaction

userTransaction

=

sessionContext.getUserTransaction();

//

Begin

the

scope

of

this

transaction

userTransaction.begin();

//

Perform

JNDI

lookup

to

obtain

the

data

source

(the

IVP

datasource

for

example)

and

cast

javax.sql.DataSource

dataSource

=

(javax.sql.DataSource)

initialContext.lookup("java:comp/env/jdb

//

Get

a

connection

to

the

data

source

java.sql.Connection

connection

=

dataSource.getConnection();

//

Create

an

SQL

statement

using

the

connection

java.sql.Statement

statement

=

connection.createStatement();

//

Acquire

a

result

set

by

executing

the

query

using

the

statement

java.sql.ResultSet

results

=

statement.executeQuery(...);

//

Commit

and

complete

the

scope

of

this

transaction

userTransaction.commit();

//

Close

the

connection

connection.close();

}

catch

(Throwable

t)

{

//

If

an

exception

occurs,

roll

back

the

transaction

userTransaction.rollback();

//

Close

the

connection

connection.close();

}

Running

Applications

on

WebSphere

Application

Server

for

z/OS IBM

Confidential

50

IMS

Java

Guide

and

Reference

|

|

|

|

|

|
|
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Transaction

Demarcation

Using

the

java.sql.Connection

Interface

The

programming

model

applies

only

to

applications

that

run

on

WebSphere

Application

Server

on

a

non-z/OS

platform

and

that

use

the

remote

database

services

of

IMS

Java.

With

the

java.sql.Connection

interface,

you

commit

or

roll

back

a

transaction

that

is

started

by

the

creation

of

a

data

source

connection.

The

IMS

Java

EJB

that

is

on

the

server

side

automatically

starts

a

transaction

if

one

does

not

exist

when

a

connection

is

created.

You

can

then

use

this

connection

to

commit

or

rollback

the

transaction

without

using

the

javax.transaction.UserTransaction

interface.

Use

this

programming

model

only

if

you

do

not

use

the

javax.transaction.UserTransaction

interface.

When

you

perform

the

JNDI

lookup,

specify

"java:comp/env/sourceName"

where

sourceName

is

the

name

of

the

data

source.

try

{

//

Perform

JNDI

lookup

to

obtain

the

data

source

(the

IVP

data

source

for

example)

and

cast

javax.sql.DataSource

dataSource

=

(javax.sql.DataSource)

initialContext.lookup("java:comp/env/

//

Get

a

connection

to

the

data

source

and

begin

the

transaction

scope

java.sql.Connection

connection

=

dataSource.getConnection();

//

Create

an

SQL

statement

using

the

connection

java.sql.Statement

statement

=

connection.createStatement();

//

Acquire

a

result

set

by

executing

the

query

using

the

statement

java.sql.ResultSet

results

=

statement.executeQuery(...);

//

Commit

and

complete

the

scope

of

this

transaction

connection.commit();

//

Close

the

connection

connection.close();

}

catch

(Throwable

t)

{

//

If

an

exception

occurs,

rollback

the

transaction

connection.rollback();

//

Close

the

connection

connection.close();

}

Container-Managed

EJBs

In

container-managed

EJBs,

the

container

manages

the

transaction

demarcation.

The

demarcation

is

defined

in

the

ejb-jar.xml

file

of

the

EJB.

To

define

an

EJB

as

container-managed,

set

the

transaction-type

property,

which

is

in

the

ejb-jar.xml

file

of

the

EJB

jar

file,

to

Container.

Because

the

container

manages

the

transaction

demarcation,

this

programming

model

does

not

have

any

transaction

logic.

try

{

//

Perform

JNDI

lookup

to

obtain

the

data

source

(the

IVP

data

source

for

example)

and

cast

javax.sql.DataSource

dataSource

=

(javax.sql.DataSource)

initialContext.lookup("java:comp/env/

//

Get

a

connection

to

the

data

source

java.sql.Connection

connection

=

dataSource.getConnection();

//

Create

an

SQL

statement

using

the

connection

java.sql.Statement

statement

=

connection.createStatement();

//

Acquire

a

result

set

by

executing

the

query

using

the

statement

Running

Applications

on

WebSphere

Application

Server

for

z/OSIBM

Confidential

Chapter

3.

WebSphere

Application

Server

for

z/OS

Applications

51

|
|
|
|
|
|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

java.sql.ResultSet

results

=

statement.executeQuery(...);

//

Close

the

connection

connection.close();

}

catch

(Throwable

t)

{

//

Close

the

connection

connection.close();

}

Servlets

Similarly

to

the

bean-managed

EJBs,

the

servlet

programming

model

uses

the

UserTransaction

interface

to

begin,

commit,

or

rollback

the

transaction.

Because

the

servlet

resides

outside

of

the

EJB

container

and

cannot

use

an

EJBContext

object,

the

initial

context

requires

an

additional

JNDI

lookup

to

locate

and

instantiate

the

UserTransaction

interface.

try

{

//

Establish

an

initial

context

to

manage

the

environment

properties

and

JNDI

names

javax.naming.InitialContext

initialContext

=

new

InitialContext();

//

Locate

and

instantiate

a

UserTransaction

object

that

is

associated

with

the

initial

context

us

javax.transaction.UserTransaction

userTransaction

=

(UserTransaction)

ic.lookup("java:comp/UserTr

//

Begin

the

scope

of

this

transaction

userTransaction.begin();

//

Perform

JNDI

lookup

to

obtain

the

data

source

(the

IVP

data

source

for

example)

and

cast

javax.sql.DataSource

dataSource

=

(javax.sql.DataSource)

initialContext.lookup("java:comp/env/jdb

//

Get

a

connection

to

the

datasource

java.sql.Connection

connection

=

dataSource.getConnection();

//

Create

an

SQL

statement

using

the

connection

java.sql.Statement

statement

=

connection.createStatement();

//

Acquire

a

result

set

by

executing

the

query

using

the

statement

java.sql.ResultSet

results

=

statement.executeQuery(...);

//

Commit

and

complete

the

scope

of

this

transaction

userTransaction.commit();

//

Close

the

connection

connection.close();

}

catch

(Throwable

t)

{

//

If

an

exception

occurs,

roll

back

the

transaction

userTransaction.rollback();

//

Close

the

connection

connection.close();

}

Running

Applications

on

WebSphere

Application

Server

for

z/OS IBM

Confidential

52

IMS

Java

Guide

and

Reference

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Chapter

4.

Remote

Data

Access

with

WebSphere

Application

Server

Applications

With

IMS

Java

remote

database

services,

you

can

develop

and

deploy

applications

that

run

on

non-z/OS

platforms

and

access

IMS

databases

remotely.

Unlike

other

Java

solutions

for

IMS,

you

do

not

need

to

develop

a

z/OS

application

or

access

a

legacy

z/OS

application

to

have

access

to

IMS

data.

Therefore,

IMS

Java

is

an

ideal

solution

for

IMS

application

development

in

a

WebSphere

environment.

Figure

14

shows

the

components

that

are

required

for

an

enterprise

application

(in

this

case,

an

EJB)

on

a

non-z/OS

platform

to

access

IMS

DB.

The

components

are

described

following

the

figure.

The

following

components

are

used

for

an

enterprise

application

on

a

non-z/OS

platform

to

access

IMS

DB:

non-z/OS

platform

The

operating

system

that

WebSphere

Application

Server

V5

runs

on.

WebSphere

Application

Server

WebSphere

Application

Server

V5.0.2

on

which

the

client

application

runs.

EJB

The

enterprise

application

(an

EJB

in

this

case)

that

contains

your

business

logic,

and

is

deployed

on

WebSphere

Application

Server.

This

enterprise

Figure

14.

IMS

Java

and

WebSphere

Application

Server

Components

IBM

Confidential

©

Copyright

IBM

Corp.

2000,

2004

53

|

|

|

|
|
|
|
|

|
|
|
|

|
|

|
|

|
|

||
|

application

can

be

either

container

managed

or

bean

managed.

The

enterprise

application

can

be

transactional.

IMS

distributed

JDBC

resource

adapter

The

resource

adapter

that

is

deployed

on

the

non-z/OS

platform.

It

contains

a

type-3

JDBC

driver.

IIOP

(Internet

Inter-ORB

Protocol)

IIOP

is

the

protocol

that

can

be

used

between

WebSphere

Application

Server

for

z/OS

and

WebSphere

Application

Server

running

on

another

platform.

IIOP

allows

the

servers

to

exchange

data.

Data

is

securely

transferred

across

the

Internet

using

the

SSL

(Secure

Sockets

Layer)

protocol.

WebSphere

Application

Server

for

z/OS

WebSphere

Application

Server

V5.0.2

for

z/OS

is

required

to

manage

transaction

protocol

and

communication

with

RRS.

It

must

reside

on

the

same

z/OS

LPAR

(logical

partition)

as

IMS.

IMS

Java

EJB

One

of

two

IMS

Java-supplied

EJBs

is

the

host-side

component

that

facilitates

communication

with

and

passes

transaction

information

to

the

IMS

JDBC

resource

adapter.

These

EJBs

act

as

listeners

for

remote

requests.

Depending

on

whether

there

is

a

transaction

context

on

the

non-z/OS

platform,

either

a

container-managed

or

bean-managed

IMS

Java

EJB

is

used.

IMS

JDBC

resource

adapter

The

IMS

JDBC

resource

adapter

that

is

deployed

on

the

z/OS

platform.

It

contains

a

type-3

JDBC

driver.

ODBA

Open

Database

Access

is

the

IMS

callable

interface

for

access

to

IMS

DB.

DRA

The

database

resource

adapter

(DRA)

is

the

bridge

between

the

external

subsystem

and

IMS.

DL/I

DL/I

is

the

standard

interface

to

IMS

data.

The

following

topics

provide

additional

information:

v

“System

Requirements

for

WebSphere

Application

Server”

on

page

55

v

“Downloading

IMS

Java

Files

for

Remote

Database

Services”

on

page

55

v

“Configuring

the

Application

Servers

for

IMS

Java

Remote

Database

Services”

on

page

55

v

“Running

the

IMS

Java

IVP

for

Remote

Database

Services”

on

page

58

v

“Running

the

IMS

Java

Sample

Applications

for

Remote

Database

Services”

on

page

61

v

“Running

Your

Application

on

WebSphere

Application

Server”

on

page

65

v

“Enabling

J2EE

Tracing

with

WebSphere

Application

Server”

on

page

68

v

“WebSphere

Application

Server

EJBs”

on

page

69

Related

Reading:

Application

programming

for

distributed

enterprise

applications

is

the

same

as

for

z/OS

enterprise

applications.

For

information

on

developing

enterprise

applications

for

either

WebSphere

Application

Server

for

z/OS

or

WebSphere

Application

Server

on

a

non-z/OS

platform,

see

“Developing

Enterprise

Applications

that

Access

IMS

DB”

on

page

49.

IBM

Confidential

54

IMS

Java

Guide

and

Reference

|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|

||

||
|

||

|

|

|

|
|

|

|
|

|

|

|

|
|
|
|
|

System

Requirements

for

WebSphere

Application

Server

In

addition

to

the

software

listed

in

“IMS

Java

System

Requirements”

on

page

1,

the

following

software

is

required:

v

WebSphere

Application

Server

V5.0

for

z/OS

or

later.

If

you

have

WebSphere

Application

Server

V5.0.2

for

z/OS,

you

must

install

either

V5.0.2.1

or

APAR

PQ81944.

v

Either:

–

WebSphere

Application

Server

V5.0.2.2

with

cumulative

fixes

that

include

PQ79485

–

WebSphere

Application

Server

V5.0.2.3

or

later

The

following

protocols

and

z/OS

components

are

required:

v

RRS

(resource

recovery

services)

for

z/OS

v

RACF®

or

equivalent

product

The

following

IMS

components

are

required:

v

ODBA

v

DRA

Downloading

IMS

Java

Files

for

Remote

Database

Services

To

use

IMS

Java

remote

database

services

to

access

IMS

databases

from

applications

that

run

on

WebSphere

Application

Server

on

a

non-z/OS

platform,

you

must

download

IMS

Java

files

from

the

IMS

Java

Web

site.

These

files

are

required

in

addition

to

the

files

that

are

installed

as

part

of

the

SMP/E

installation

of

the

IMS

Java

FMID.

To

download

the

required

IMS

Java

files,

go

to

the

IMS

Web

site

at

http://www.ibm.com/ims

and

link

to

the

IMS

Java

Web

page

for

more

information.

Configuring

the

Application

Servers

for

IMS

Java

Remote

Database

Services

Prerequisites:

v

“Downloading

IMS

Java

Files

for

Remote

Database

Services”

v

“Configuring

WebSphere

Application

Server

V5

for

z/OS

for

IMS

Java”

on

page

36

v

“Running

the

IMS

Java

IVP

on

WebSphere

Application

Server

for

z/OS”

on

page

39

To

configure

the

application

servers

for

IMS

Java

remote

database

services:

1.

“Installing

the

Data

Source

on

WebSphere

Application

Server

for

z/OS”

on

page

56

2.

“Installing

the

EAR

file

on

WebSphere

Application

Server

for

z/OS”

on

page

56

3.

“Installing

the

IMS

Distributed

JDBC

Resource

Adapter”

on

page

57

Next:

“Running

the

IMS

Java

IVP

for

Remote

Database

Services”

on

page

58

System

RequirementsIBM

Confidential

Chapter

4.

Remote

Data

Access

with

WebSphere

Application

Server

Applications

55

|
|

|
|

|
|
|

|

|
|

|

|

|

|

|

|

|

|
|

|
|
|
|
|

|
|

|
|

|

|

|

|
|

|
|

|

|
|

|

|

|

Installing

the

Data

Source

on

WebSphere

Application

Server

for

z/OS

Unlike

the

data

source

for

z/OS

applications,

this

data

source

does

not

have

values

for

the

IMS-specific

properties.

At

runtime,

the

client

application’s

data

source

properties

will

be

propagated

to

an

instance

of

this

data

source.

To

install

the

data

source

on

WebSphere

Application

Server

for

z/OS:

1.

In

the

left

frame

of

the

WebSphere

Application

Server

for

z/OS

administrative

console,

click

Resources,

and

then

click

Resource

Adapters.

A

list

of

resource

adapters

is

displayed.

2.

Click

the

name

of

IMS

JDBC

resource

adapter

that

you

chose

when

you

installed

the

adapter.

A

configuration

dialog,

″Preparing

for

the

application

installation,″

is

displayed.

3.

Under

Additional

Properties,

click

J2C

Connection

Factories.

4.

Click

New.

A

configuration

dialog

is

displayed.

5.

Type

the

following

information:

Name:

the

name

for

the

data

source

JNDI

Name:

rdsDataSource

6.

Click

OK.

The

data

source

is

listed

in

the

J2C

Connection

Factories.

7.

Click

Save

to

Master

Configuration.

The

Save

to

Master

Configuration

dialog

is

displayed.

8.

Click

Save.

Next:

“Installing

the

EAR

file

on

WebSphere

Application

Server

for

z/OS”

Installing

the

EAR

file

on

WebSphere

Application

Server

for

z/OS

The

EAR

file

contains

the

two

IMS

Java-provided

EJBs.

These

stateful

session

beans

act

as

server-side

extensions

of

the

IMS

distributed

JDBC

resource

adapter.

Prerequisite:

“Installing

the

Data

Source

on

WebSphere

Application

Server

for

z/OS”

To

install

the

EAR

file

on

WebSphere

Application

Server

for

z/OS:

1.

From

the

WebSphere

Application

Server

for

z/OS

administrative

console,

click

Applications,

and

then

click

Install

New

Application.

A

dialog

for

installing

a

new

application

is

displayed.

2.

Type

the

path

to

the

EAR

file

named

imsjavaRDS.ear.

3.

Click

Next.

A

dialog,″

Preparing

for

application

installation,″

is

displayed.

4.

Accept

the

defaults

and

click

Next.

The

Install

New

Application

wizard

starts.

Step

1,

″Provide

options

to

perform

the

installation,″

is

displayed.

5.

Clear

the

Create

MBeans

for

Resources

check

box.

6.

Click

Next.

Step

2,

″Provide

JNDI

Names

for

Beans,″

is

displayed.

7.

In

the

JNDI

Name

field,

verify

that

the

JNDI

names

are

as

follows:

v

ejb/com/ibm/ims/rds/host/HostBeanManagedSessionHome

IMS

Java

Remote

Database

Services

Configuration IBM

Confidential

56

IMS

Java

Guide

and

Reference

|

|
|
|

|

|
|

|

|
|

|

|

|

|

|
|
|

|

|

|

|

|

|

|

|
|

|
|

|

|
|

|

|

|

|

|

|
|

|

|

|

|

|

v

ejb/com/ibm/ims/rds/host/HostContainerManagedSessionHome

8.

Click

Next.

Step

3,

″Map

resource

references

to

resources,″

is

displayed.

9.

Verify

that

the

JNDI

name

of

the

resource

reference

for

both

EJBs

of

the

IMS

Java

Remote

Database

Services

EJB

module

is

rdsDataSource.

10.

Click

Next.

Step

4,

″Map

modules

to

application

servers,″

is

displayed.

11.

Accept

the

defaults

and

click

Next.

Step

5,

″Correct

use

of

System

Identity,″

is

displayed.

12.

Verify

that

no

role

has

been

selected

and

click

Next.

Step

6,

″Ensure

all

unprotected

2.0

methods

have

the

correct

level

of

protection,″

is

displayed.

13.

Make

any

necessary

changes

and

click

Next.

The

options

that

you

specified

are

displayed

in

Step

7,

″Summary,″

of

the

Install

New

Application

wizard.

14.

Verify

that

the

options

are

correct,

and

then

click

Finish.

A

message

is

displayed

that

indicates

first

that

the

imsjavaRDS

application

is

being

installed,

and

then

that

the

installation

was

successful.

15.

Click

Save

to

Master

Configuration.

The

Save

page

is

displayed.

16.

Under

Save

to

Master

Configuration,

click

Save.

17.

Restart

WebSphere

Application

Server

for

z/OS

to

ensure

that

changes

to

the

data

source

have

been

made

and

to

start

the

IMS

Java

Remote

Database

Services

EJBs.

Installing

the

IMS

Distributed

JDBC

Resource

Adapter

Before

deploying

applications,

you

must

first

set

up

WebSphere

Application

Server

on

the

non-z/OS

client

side

by

installing

the

IMS

distributed

JDBC

resource

adapter.

The

WebSphere

Application

Server

on

the

client

side

requires

only

the

IMS

distributed

JDBC

resource

adapter,

imsjavaRDS.rar.

To

install

the

IMS

distributed

JDBC

resource

adapter:

1.

From

the

client-side

WebSphere

Application

Server

administrative

console,

click

Resources,

and

then

click

Resource

Adapters.

A

list

of

resource

adapters

is

displayed.

2.

Click

Install

RAR.

A

dialog

for

installing

the

resource

adapter

is

displayed.

3.

Type

the

path

to

the

imsjavaRDS.rar

file.

4.

Click

Next.

A

configuration

dialog

is

displayed.

5.

Click

OK.

The

IMS

distributed

JDBC

resource

adapter

is

listed.

6.

Click

Save

to

Master

Configuration.

The

Save

to

Master

Configuration

dialog

is

displayed.

7.

Click

Save.

IMS

Java

Remote

Database

Services

ConfigurationIBM

Confidential

Chapter

4.

Remote

Data

Access

with

WebSphere

Application

Server

Applications

57

|

|

|

|
|

|

|

|

|

|

|
|

|

|
|

|

|
|

|

|

|

|
|
|

|

|
|

|
|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

Running

the

IMS

Java

IVP

for

Remote

Database

Services

Prerequisite:

“Configuring

the

Application

Servers

for

IMS

Java

Remote

Database

Services”

on

page

55

To

run

the

IMS

Java

IVP

for

remote

database

services:

v

“Setting

the

WebSphere

Application

Server

for

z/OS

Classpath”

v

“Installing

the

Data

Source

for

the

IVP

on

the

Client

Side”

v

“Installing

the

IVP

on

the

Client

Side”

on

page

59

v

“Testing

the

IVP”

on

page

60

Next:

“Running

the

IMS

Java

Sample

Applications

for

Remote

Database

Services”

on

page

61

Setting

the

WebSphere

Application

Server

for

z/OS

Classpath

You

must

set

the

WebSphere

Application

Server

for

z/OS

classpath

to

the

location

of

the

IMS

Java

metadata

class,

which

is

in

the

file

samples.jar.

One

way

to

set

the

classpath

is

to

add

samples.jar

to

the

IMS

JDBC

resource

adapter

classpath.

To

add

the

samples.jar

file

to

the

IMS

JDBC

resource

adapter

classpath:

1.

From

the

WebSphere

Application

Server

for

z/OS

administrative

console,

click

Resources,

and

then

click

Resource

Adapters.

A

list

of

resource

adapters

is

displayed.

2.

Click

the

name

of

the

IMS

JDBC

resource

adapter.

A

configuration

dialog

is

displayed.

3.

In

the

Classpath

field,

add

pathprefix/usr/lpp/ims/imsjava91/samples/samples.jar.

Do

not

delete

imsjava.jar.

4.

Click

OK.

Installing

the

Data

Source

for

the

IVP

on

the

Client

Side

To

install

the

data

source

on

the

client

side:

1.

In

the

left

frame

of

the

client-side

WebSphere

Application

Server

administrative

console,

click

Resources,

and

then

click

Resource

Adapters.

A

list

of

resource

adapters

is

displayed.

2.

Click

the

IMS

distributed

JDBC

resource

adapter.

A

configuration

dialog

is

displayed.

3.

Under

Additional

Properties,

click

J2C

Connection

Factories.

4.

Click

New.

A

configuration

dialog

is

displayed.

5.

Type

the

following

information:

Name:

imsjavaRDSIVP

JNDI

Name:

imsjavaRDSIVP

Note:

To

avoid

messages

J2CA0107I

and

J2CA0114W,

both

of

which

can

be

ignored,

set

default

values

for

component-managed

authentication

alias

and

container-managed

authentication

alias.

6.

Click

OK.

Remote

Database

Services

IVP IBM

Confidential

58

IMS

Java

Guide

and

Reference

|
|

|
|

|

|

|

|

|

|
|

|

|
|

|
|

|

|
|

|

|

|

|
|
|

|

|

|

|
|

|

|

|

|

|

|

|
|
|

|
|
|

|

The

data

source

is

listed

in

the

J2C

Connection

Factories.

7.

Click

the

name

of

the

data

source

that

you

installed

in

step

5.

8.

Under

Additional

Properties,

click

Custom

Properties.

Six

properties

are

listed

in

a

table.

9.

In

the

DRAName

row,

click

the

dash

symbol

in

the

Value

column.

10.

In

the

Value

field,

type

bytes

4-7

of

the

DRA

startup

table

module

name

(usually

the

IMS

system

ID).

For

more

information

about

the

DRA

startup

table,

see

“Configuring

WebSphere

Application

Server

for

z/OS

to

Access

IMS”

on

page

37.

11.

Click

OK.

The

properties

table

displays

the

DRA

name

that

you

entered.

12.

In

the

DatabaseViewName

row,

click

the

dash

symbol

in

the

Value

column.

13.

In

the

Value

field,

type:

samples.ivp.DFSIVP37DatabaseView

14.

In

the

HostName

row,

click

the

dash

symbol

in

the

Value

column.

15.

In

the

Value

field,

type

the

name

or

IP

address

of

the

host

machine.

16.

Click

OK.

The

properties

table

displays

the

host

name

that

you

entered.

17.

In

the

PortNumber

row,

click

the

dash

symbol

in

the

Value

column.

18.

In

the

Value

field,

type

the

IIOP

port

number

of

the

host

machine’s

server.

For

example:

2809

19.

Click

OK.

The

properties

table

displays

the

port

number

that

you

entered.

20.

Optionally,

set

the

trace

level

for

the

applications.

See

“Enabling

J2EE

Tracing

with

WebSphere

Application

Server”

on

page

68.

21.

Click

Save.

The

Save

page

is

displayed.

22.

Under

Save

to

Master

Configuration,

click

Save

to

ensure

that

the

changes

are

made.

Next:

“Installing

the

IVP

on

the

Client

Side”

Installing

the

IVP

on

the

Client

Side

This

section

describes

how

to

deploy

an

application

on

WebSphere

Application

Server

on

a

non-z/OS

platform.

Prerequisite:

“Installing

the

Data

Source

for

the

IVP

on

the

Client

Side”

on

page

58

To

install

the

application:

1.

From

the

WebSphere

Application

Server

administrative

console,

click

Applications,

and

then

click

Install

New

Application.

A

dialog

for

installing

a

new

application

is

displayed.

2.

Type

the

path

to

the

EAR

file.

v

For

the

IVP,

type

the

path

to

IMSJavaRDSIVP.ear.

v

For

the

phonebook

sample,

type

the

path

to

IMSJavaRDSPhonebook.ear.

3.

Click

Next.

4.

Accept

the

defaults

and

click

Next.

Remote

Database

Services

IVPIBM

Confidential

Chapter

4.

Remote

Data

Access

with

WebSphere

Application

Server

Applications

59

|

|

|

|

|

|
|
|
|

|

|

|

|

|

|

|

|

|

|
|

|

|

|
|

|

|

|
|

|

|

|
|

|
|

|

|
|

|

|

|

|

|

|

The

Install

New

Application

wizard

starts.

Step

1,

″Provide

options

to

perform

the

installation,″

is

displayed.

5.

Clear

the

Create

MBeans

for

Resources

check

box.

6.

Click

Next.

Step

2,

″Provide

JNDI

Names

for

Beans,″

is

displayed.

7.

In

the

JNDI

Name

fields,

verify

that

the

JNDI

name

is

the

path

to

the

EJB

home

interface.

v

For

the

IVP,

verify

that

the

names

are

as

follows:

–

ejb/samples/ivp/rds/IMSJavaRDSIVPCMSessionHome

–

ejb/samples/ivp/rds/IMSJavaRDSIVPBMSessionHome

v

For

the

phonebook

sample,

verify

that

the

names

are

as

follows:

–

ejb/samples/phonebook/rds/IMSJavaRDSPBStatefulBMNoTXSessionHome

–

ejb/samples/phonebook/rds/IMSJavaRDSPBStatefulBMTXSessionHome

–

ejb/samples/phonebook/rds/IMSJavaRDSPBStatefulCMSessionHome

–

ejb/samples/phonebook/rds/IMSJavaRDSPBStatelessCMSessionHome

8.

Click

Next.

Step

3,

″Map

resource

references

to

resources,″

is

displayed.

9.

Verify

the

JNDI

name

for

the

resource

references.

v

For

the

IVP,

verify

that

the

JNDI

name

of

resource

references

of

the

two

EJBs

within

the

IMSJavaRDS

IVP

EJB

module

are

both

imsjavaRDSIVP.

v

For

the

phonebook

sample,

verify

that

the

JNDI

name

of

resource

references

of

the

IMSJavaRDS

pbSample

EJB

modules

are

all

imsjavaRDSPhonebook.

10.

Accept

the

defaults

and

click

Next.

Step

5,

″Map

modules

to

application

servers,″

is

displayed.

11.

Accept

the

defaults

and

click

Next.

Step

6,

″Ensure

all

unprotected

2.0

methods

have

the

correct

level

of

protection,″

is

displayed.

12.

Make

any

necessary

changes

and

click

Next.

The

options

that

you

specified

are

displayed

in

Step

7,

″Summary,″

of

the

Install

New

Application

wizard.

13.

Verify

that

the

options

are

correct,

and

then

click

Finish.

A

message

is

displayed

that

indicates

first

that

the

application

is

being

installed,

and

then

that

the

installation

was

successful.

14.

Click

Save

to

Master

Configuration.

The

Save

to

Master

Configuration

dialog

is

displayed.

15.

Click

Save.

16.

Restart

the

server

to

ensure

that

the

changes

have

been

made

to

the

data

source

and

to

start

the

IMS

Java

IVP

enterprise

application.

Next:

“Testing

the

IVP”

Testing

the

IVP

This

section

describes

how

to

test

the

IVP

on

WebSphere

Application

Server

on

a

non-z/OS

platform.

The

IVP

tests

both

a

container-managed

EJB

and

a

bean-managed

EJB.

Prerequisite:

“Installing

the

IVP

on

the

Client

Side”

on

page

59

Remote

Database

Services

IVP IBM

Confidential

60

IMS

Java

Guide

and

Reference

|
|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|
|

|
|
|

|

|

|

|
|

|

|
|

|

|
|

|

|

|

|
|

|

|

|
|
|

|

To

test

the

IVP:

1.

Open

a

Web

browser.

2.

Type

the

Web

address

of

the

IVP:

http://host_IP_address:port/IMSJavaRDSIVPWeb/IMSJavaRDSIVP.html

An

input

Web

page

opens

titled

IMS

Java

IVP

for

Remote

Database

Services.

3.

Select

Container

managed

and

then

click

Submit.

If

WebSphere

Application

Server

is

configured

properly,

the

following

information

is

displayed:

Result:

IVP

successful

for

the

container

managed

EJB.

If

WebSphere

Application

Server

is

not

configured

properly,

the

IVP

displays

an

exception

and

a

stack

trace.

4.

Select

Bean

managed

and

then

click

Submit.

If

WebSphere

Application

Server

is

configured

properly,

the

following

information

is

displayed:

Result:

IVP

successful

for

the

bean

managed

EJB.

If

WebSphere

Application

Server

is

not

configured

properly,

the

IVP

displays

an

exception

and

a

stack

trace.

If

you

successfully

run

the

IVP,

IMS

Java

and

WebSphere

Application

Server

are

installed

and

configured

properly.

Running

the

IMS

Java

Sample

Applications

for

Remote

Database

Services

Prerequisite:

“Running

the

IMS

Java

IVP

for

Remote

Database

Services”

on

page

58

To

run

the

IMS

Java

sample

applications

for

remote

database

services:

1.

“Setting

the

WebSphere

Application

Server

for

z/OS

Classpath”

2.

“Installing

the

Data

Source

for

the

IMS

Java

Samples

on

the

Client

Side”

on

page

62

3.

“Installing

the

IMS

Java

Sample

Applications

on

the

Client

Side”

on

page

63

4.

“Testing

the

Phonebook

Sample”

on

page

64

or

“Testing

the

Dealership

Sample”

on

page

65

Setting

the

WebSphere

Application

Server

for

z/OS

Classpath

You

must

set

the

WebSphere

Application

Server

for

z/OS

classpath

to

the

location

of

the

IMS

Java

metadata

class,

which

is

in

the

file

samples.jar.

One

way

to

set

the

classpath

is

to

add

samples.jar

to

the

IMS

JDBC

resource

adapter

classpath.

To

add

the

samples.jar

file

to

the

IMS

JDBC

resource

adapter

classpath:

1.

From

the

WebSphere

Application

Server

for

z/OS

administrative

console,

click

Resources,

and

then

click

Resource

Adapters.

A

list

of

resource

adapters

is

displayed.

2.

Click

the

name

of

the

IMS

JDBC

resource

adapter.

A

configuration

dialog

is

displayed.

Remote

Database

Services

IVPIBM

Confidential

Chapter

4.

Remote

Data

Access

with

WebSphere

Application

Server

Applications

61

|

|

|

|

|

|

|
|

|

|
|

|

|
|

|

|
|

|
|

|
|

|

|
|

|

|

|
|

|

|
|

|

|
|

|
|

|

|
|

|

|

|

3.

In

the

Classpath

field,

add

pathprefix/usr/lpp/ims/imsjava91/samples/samples.jar.

Do

not

delete

imsjava.jar.

4.

Click

OK.

Installing

the

Data

Source

for

the

IMS

Java

Samples

on

the

Client

Side

To

install

the

data

source

on

the

client

side:

1.

In

the

left

frame

of

the

WebSphere

Application

Server

administrative

console,

click

Resources,

and

then

click

Resource

Adapters.

A

list

of

resource

adapters

is

displayed.

2.

Click

the

IMS

distributed

JDBC

resource

adapter.

A

configuration

dialog

is

displayed.

3.

Under

Additional

Properties,

click

J2C

Connection

Factories.

4.

Click

New.

A

configuration

dialog

is

displayed.

5.

Type

the

following

information:

Name:

name

for

the

data

source

–

For

the

dealership

sample,

type:

imsjavaRDSDealership

–

For

the

phonebook

sample,

type:

imsjavaRDSPhonebook

JNDI

Name:

path

to

the

data

source

–

For

the

dealership

sample,

type:

imsjavaRDSDealership

–

For

the

phonebook

sample,

type:

imsjavaRDSPhonebook

Note:

To

avoid

messages

J2CA0107I

and

J2CA0114W,

both

of

which

can

be

ignored,

set

default

values

for

component-managed

authentication

alias

and

container-managed

authentication

alias.

6.

Click

OK.

The

data

source

is

listed

in

the

J2C

Connection

Factories.

7.

Click

the

name

of

the

data

source

that

you

installed

in

step

5.

8.

Under

Additional

Properties,

click

Custom

Properties.

Six

properties

are

listed

in

a

table.

9.

In

the

DRAName

row,

click

the

dash

symbol

in

the

Value

column.

10.

In

the

Value

field,

type

bytes

4-7

of

the

DRA

startup

table

module

name

(usually

the

IMS

system

ID).

For

more

information

about

the

DRA

startup

table,

see

“Configuring

WebSphere

Application

Server

for

z/OS

to

Access

IMS”

on

page

37.

11.

Click

OK.

The

properties

table

displays

the

DRA

name

that

you

entered.

12.

In

the

DatabaseViewName

row,

click

the

dash

symbol

in

the

Value

column.

13.

In

the

Value

field,

type

the

fully-qualified

DLIDatabaseView

subclass

name.

v

For

the

phonebook

sample,

type:

samples.ivp.DFSIVP37DatabaseView

v

For

the

dealership

sample,

type:

samples.dealership.AUTPSB11DatabaseView

14.

In

the

HostName

row,

click

the

dash

symbol

in

the

Value

column.

15.

In

the

Value

field,

type

the

name

or

IP

address

of

the

host

machine.

16.

Click

OK.

The

properties

table

displays

the

host

name

that

you

entered.

17.

In

the

PortNumber

row,

click

the

dash

symbol

in

the

Value

column.

Sample

Application

for

Remote

Database

Services IBM

Confidential

62

IMS

Java

Guide

and

Reference

|
|
|

|

|

|

|
|

|

|

|

|

|

|

|
|
|
|
|
|
|

|
|
|

|

|

|

|

|

|

|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

18.

In

the

Value

field,

type

the

IIOP

port

number

of

the

host

machine’s

server.

For

example:

2809

19.

Click

OK.

The

properties

table

displays

the

port

number

that

you

entered.

20.

Optionally,

set

the

trace

level

for

the

applications.

See

“Enabling

J2EE

Tracing

with

WebSphere

Application

Server”

on

page

68.

21.

Click

Save.

The

Save

page

is

displayed.

22.

Under

Save

to

Master

Configuration,

click

Save

to

ensure

that

the

changes

are

made.

Next:

“Installing

the

IMS

Java

Sample

Applications

on

the

Client

Side”

Installing

the

IMS

Java

Sample

Applications

on

the

Client

Side

Prerequisite:

“Installing

the

Data

Source

for

the

IMS

Java

Samples

on

the

Client

Side”

on

page

62

This

section

describes

how

to

deploy

an

application

on

WebSphere

Application

Server

on

a

non-z/OS

platform.

To

install

the

application:

1.

From

the

WebSphere

Application

Server

administrative

console,

click

Applications,

and

then

click

Install

New

Application.

A

dialog

for

installing

a

new

application

is

displayed.

2.

Type

the

path

to

the

EAR

file.

v

For

the

phonebook

sample,

type

the

path

to

IMSJavaRDSPhonebook.ear.

v

For

the

dealership

sample,

type

the

path

to

IMSJavaRDSDealership.ear.

3.

Click

Next.

4.

Accept

the

defaults

and

click

Next.

An

application

security

warning

is

displayed.

This

warning

indicates

that

the

phonebook

or

dealership

sample

will

write

trace

files

to

the

/tmp

directory.

5.

Click

Continue.

The

Install

New

Application

wizard

starts.

Step

1,

″Provide

options

to

perform

the

installation,″

is

displayed.

6.

Clear

the

Create

MBeans

for

Resources

check

box.

7.

Click

Next.

Step

2,

″Provide

JNDI

Names

for

Beans,″

is

displayed.

8.

In

the

JNDI

Name

fields,

type

the

path

to

the

EJB

home

interface.

v

For

the

dealership

sample,

verify

that

the

names

are

as

follows:

ejb/samples/dealership/rds/IMSJavaRDSDealershipSessionHome

v

For

the

phonebook

sample,

verify

that

the

names

are

as

follows:

–

ejb/samples/phonebook/rds/IMSJavaRDSPBStatefulCMSessionHome

–

ejb/samples/phonebook/rds/IMSJavaRDSPBStatefulBMTXSessionHome

–

ejb/samples/phonebook/rds/IMSJavaRDSPBStatefulBMNoTXSessionHome

–

ejb/samples/phonebook/rds/IMSJavaRDSPBStatelessCMSessionHome

9.

Click

Next.

Step

3,

″Map

resource

references

to

resources,″

is

displayed.

Sample

Application

for

Remote

Database

ServicesIBM

Confidential

Chapter

4.

Remote

Data

Access

with

WebSphere

Application

Server

Applications

63

|
|

|

|

|
|

|

|

|
|

|

|

|
|

|
|

|

|
|

|

|

|

|

|

|

|
|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

10.

Verify

the

name

of

the

JNDI

name

for

the

resource

references.

v

For

the

dealership

sample,

verify

that

the

JNDI

name

of

resource

reference

of

the

IMSJavaRDS

dSample

EJB

modules

is

imsjavaRDSDealership.

v

For

the

phonebook

sample,

verify

that

the

JNDI

name

of

resource

references

of

the

two

EJBs

within

the

IMSJavaRDS

pbSample

EJB

modules

are

both

imsjavaRDSPhonebook.

11.

Click

Next.

Step

4,

″Map

virtual

hosts

for

web

modules,″

is

displayed.

12.

Accept

the

defaults

and

click

Next.

Step

6,

″Ensure

all

unprotected

2.0

methods

have

the

correct

level

of

protection,″

is

displayed.

13.

Make

any

necessary

changes

and

click

Next.

The

options

that

you

specified

are

displayed

in

Step

7,

″Summary,″

of

the

Install

New

Application

wizard.

14.

Verify

that

the

options

are

correct,

and

then

click

Finish.

A

message

is

displayed

that

indicates

first

that

the

application

is

being

installed,

and

then

that

the

installation

was

successful.

15.

Click

Save

to

Master

Configuration.

The

Save

to

Master

Configuration

dialog

is

displayed.

16.

Click

Save.

17.

Restart

the

server

to

ensure

that

the

changes

have

been

made

to

the

data

source

and

to

start

the

sample

enterprise

application.

Next:

“Testing

the

Phonebook

Sample”

or

“Testing

the

Dealership

Sample”

on

page

65

Testing

the

Phonebook

Sample

This

section

describes

how

to

test

the

phonebook

sample

on

WebSphere

Application

Server

on

a

non-z/OS

platform.

Prerequisite:

“Installing

the

IMS

Java

Sample

Applications

on

the

Client

Side”

on

page

63

To

test

the

phonebook

sample:

1.

Open

a

Web

browser.

2.

Type

the

Web

address

of

the

phonebook

sample:

http://host_IP_address:port/IMSJavaRDSPhonebookWeb/IMSJavaRDSPhonebook.html

An

input

Web

page

opens

titled

IMS

Java

Phonebook

Sample

for

Remote

Database

Services.

3.

Select

the

type

of

EJB

to

test,

such

as

Stateful,

Container

managed,

and

type

the

following

information:

Last

Name:

LAST1

4.

Select

Display

an

entry

and

click

Submit.

If

WebSphere

Application

Server

is

configured

properly,

the

following

information

is

displayed:

Person

found!

Last

Name:

LAST1

First

Name:

FIRST1

Extension:

8-111-1111

Zip

code:

D01/R01

5.

Optionally,

test

other

EJB

types

and

commands.

Sample

Application

for

Remote

Database

Services IBM

Confidential

64

IMS

Java

Guide

and

Reference

|

|
|

|
|
|

|

|

|

|
|

|

|
|

|

|
|

|

|

|

|
|

|
|

|

|
|

|
|

|

|

|

|

|
|

|
|

|

|

|
|

|
|
|

|

Testing

the

Dealership

Sample

This

section

describes

how

to

test

the

IMS

Java

dealership

sample

on

WebSphere

Application

Server

on

a

non-z/OS

platform.

Prerequisite:

“Installing

the

IMS

Java

Sample

Applications

on

the

Client

Side”

on

page

63

To

test

the

dealership

sample:

1.

Open

a

Web

browser.

2.

Type

the

Web

address

of

the

dealership

sample:

http://host_IP_address:port/IMSJavaRDSDealershipWeb/IMSJavaRDSDealership.html

An

input

Web

page

opens

that

is

titled

Find

a

car

in

stock.

3.

Verify

that

Car

Make

and

VIN

Number

fields

contain

the

following

information:

Car

Make:

FORD

VIN

Number:

V234567890123456789V

4.

Click

Submit.

A

message

indicating

that

the

query

was

successful

is

displayed.

5.

Click

on

the

query

options

on

the

left

to

test

the

applications.

Submit

the

queries

with

the

default

values

or

enter

your

own

query

values.

Running

Your

Application

on

WebSphere

Application

Server

Prerequisite:

“Running

the

IMS

Java

IVP

for

Remote

Database

Services”

on

page

58

To

deploy

your

own

application:

v

“Setting

the

WebSphere

Application

Server

for

z/OS

Classpath”

v

“Installing

the

Data

Source

on

the

Client

Side”

v

“Installing

the

Application

on

the

Client

Side”

on

page

67

Setting

the

WebSphere

Application

Server

for

z/OS

Classpath

You

must

set

the

WebSphere

Application

Server

for

z/OS

classpath

to

the

location

of

the

IMS

Java

metadata

class

(DLIDatabaseView

subclass)

that

is

used

by

the

application.

One

way

to

set

the

classpath

is

to

add

these

files

to

the

IMS

JDBC

resource

adapter

classpath.

To

add

the

required

files

to

the

IMS

JDBC

resource

adapter

classpath:

1.

From

the

WebSphere

Application

Server

for

z/OS

administrative

console,

click

Resources,

and

then

click

Resource

Adapters.

A

list

of

resource

adapters

is

displayed.

2.

Click

the

name

of

the

IMS

JDBC

resource

adapter.

A

configuration

dialog

is

displayed.

3.

In

the

Classpath

field,

add

the

path

to

the

required

files.

Include

the

file

name

for

JAR

files.

Do

not

delete

imsjava.jar.

4.

Click

OK.

Installing

the

Data

Source

on

the

Client

Side

To

install

the

data

source

on

the

client

side:

Sample

Application

for

Remote

Database

ServicesIBM

Confidential

Chapter

4.

Remote

Data

Access

with

WebSphere

Application

Server

Applications

65

|

|
|

|
|

|

|

|

|

|

|

|
|

|

|

|
|

|
|

|
|

|

|

|

|

|

|
|
|

|
|

|

|
|

|

|

|

|
|

|

|

|

1.

In

the

left

frame

of

the

WebSphere

Application

Server

administrative

console,

click

Resources,

and

then

click

Resource

Adapters.

A

list

of

resource

adapters

is

displayed.

2.

Click

the

IMS

distributed

JDBC

resource

adapter.

A

configuration

dialog

is

displayed.

3.

Under

Additional

Properties,

click

J2C

Connection

Factories.

4.

Click

New.

A

configuration

dialog

is

displayed.

5.

Type

the

following

information:

Name:

the

name

for

the

data

source

JNDI

Name:

the

path

to

the

data

source

Note:

To

avoid

messages

J2CA0107I

and

J2CA0114W,

both

of

which

can

be

ignored,

set

default

values

for

component-managed

authentication

alias

and

container-managed

authentication

alias.

6.

Click

OK.

The

data

source

is

listed

in

the

J2C

Connection

Factories.

7.

Click

the

name

of

the

data

source

that

you

installed

in

step

5.

8.

Under

Additional

Properties,

click

Custom

Properties.

Six

properties

are

listed

in

a

table.

9.

In

the

DRAName

row,

click

the

dash

symbol

in

the

Value

column.

10.

In

the

Value

field,

type

bytes

4-7

of

the

DRA

startup

table

module

name

(usually

the

IMS

system

ID).

For

more

information

about

the

DRA

startup

table,

see

“Configuring

WebSphere

Application

Server

for

z/OS

to

Access

IMS”

on

page

37.

11.

Click

OK.

The

properties

table

displays

the

DRA

name

that

you

entered.

12.

In

the

DatabaseViewName

row,

click

the

dash

symbol

in

the

Value

column.

13.

Optional:

In

the

Value

field,

type

the

fully-qualified

DLIDatabaseView

subclass

name.

If

you

do

set

the

subclass

name,

you

must

either

create

a

data

source

for

every

PSB

an

application

accesses,

or

you

must

override

the

DLIDatabaseView

subclass

name

in

the

DataSource

object

by

calling

the

setDatabaseView

method

and

providing

the

fully-qualified

name

of

the

subclass.

If

you

do

not

set

the

subclass

name,

you

need

to

create

a

data

source

only

for

each

IMS.

In

the

application,

define

the

DLIDatabaseView

subclass

name

in

the

DataSource

object

by

calling

the

setDatabaseView

method

and

providing

the

fully-qualified

name

of

the

subclass.

14.

In

the

HostName

row,

click

the

dash

symbol

in

the

Value

column.

15.

In

the

Value

field,

type

the

name

or

IP

address

of

the

host

machine.

16.

Click

OK.

The

properties

table

displays

the

host

name

that

you

entered.

17.

In

the

PortNumber

row,

click

the

dash

symbol

in

the

Value

column.

18.

In

the

Value

field,

type

the

IIOP

port

number

of

the

host

machine’s

server.

For

example:

2809

19.

Click

OK.

The

properties

table

displays

the

port

number

that

you

entered.

20.

Optionally,

set

the

trace

level

for

the

applications.

See

“Enabling

J2EE

Tracing

with

WebSphere

Application

Server”

on

page

68.

Running

Application

on

WebSphere

Application

Server IBM

Confidential

66

IMS

Java

Guide

and

Reference

|
|

|

|

|

|

|

|

|
|
|

|
|
|

|

|

|

|

|

|

|
|
|
|

|

|

|

|
|

|
|
|
|

|
|
|
|

|

|

|

|

|

|
|

|

|

|
|

21.

Click

Save.

The

Save

page

is

displayed.

22.

Under

Save

to

Master

Configuration,

click

Save

to

ensure

that

the

changes

are

made.

Next:

“Installing

the

Application

on

the

Client

Side”

Installing

the

Application

on

the

Client

Side

Prerequisite:

“Installing

the

Data

Source

on

the

Client

Side”

on

page

65

This

section

describes

how

to

deploy

an

application

on

WebSphere

Application

Server

on

a

non-z/OS

platform.

To

install

the

application:

1.

From

the

WebSphere

Application

Server

administrative

console,

click

Applications,

and

then

click

Install

New

Application.

A

dialog

for

installing

a

new

application

is

displayed.

2.

Type

the

path

to

the

EAR

file.

3.

Click

Next.

4.

Accept

the

defaults

and

click

Next.

The

Install

New

Application

wizard

starts.

Step

1,

″Provide

options

to

perform

the

installation,″

is

displayed.

5.

Clear

the

Create

MBeans

for

Resources

check

box.

6.

Click

Next.

Step

2,

″Provide

JNDI

Names

for

Beans,″

is

displayed.

7.

In

the

JNDI

Name

fields,

type

the

path

to

the

EJB

home

interface.

8.

Click

Next.

Step

3,

″Map

resource

references

to

resources,″

is

displayed.

9.

For

the

module

that

you

want

to

install,

type

the

JNDI

name.

10.

Click

Next.

Step

4,

″Map

virtual

hosts

for

web

modules,″

is

displayed.

11.

Accept

the

defaults

and

click

Next.

Step

5,

″Map

modules

to

application

servers,″

is

displayed.

12.

Accept

the

defaults

and

click

Next.

Step

6,

″Ensure

all

unprotected

2.0

methods

have

the

correct

level

of

protection,″

is

displayed.

13.

Make

any

necessary

changes

and

click

Next.

The

options

that

you

specified

are

displayed

in

Step

7,

″Summary,″

of

the

Install

New

Application

wizard.

14.

Verify

that

the

options

are

correct,

and

then

click

Finish.

A

message

is

displayed

that

indicates

first

that

the

application

is

being

installed,

and

then

that

the

installation

was

successful.

15.

Click

Save

to

Master

Configuration.

The

Save

to

Master

Configuration

dialog

is

displayed.

16.

Click

Save.

17.

Restart

the

server

to

ensure

that

the

changes

have

been

made

to

the

data

source

and

to

start

the

enterprise

application.

Running

Application

on

WebSphere

Application

ServerIBM

Confidential

Chapter

4.

Remote

Data

Access

with

WebSphere

Application

Server

Applications

67

|

|

|
|

|

|

|

|
|

|

|
|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|
|

|

|
|

|

|

|

|
|

Enabling

J2EE

Tracing

with

WebSphere

Application

Server

You

can

trace

the

IMS

library

classes

by

using

the

WebSphere

Application

Server

for

z/OS

tracing

service.

This

topic

documents

one

way

to

enable

tracing,

which

requires

that

you

restart

your

server

for

it

to

take

effect.

You

can

also

use

runtime

tracing,

which

is

documented

in

the

WebSphere

Application

Server

Information

Center.

You

can

also

trace

the

IMS

library

classes

or

your

applications

using

the

com.ibm.ims.rds.XMLTrace

class.

XMLTrace

is

an

IMS

Java-provided

class

that

represents

the

trace

as

an

XML

document.

You

can

trace

different

levels

of

the

code

depending

on

the

trace

level.

For

more

information,

see

the

IMS

Java

API

Specification.

To

enable

tracing:

1.

“Specifying

the

Level

of

Tracing”

2.

“Specifying

the

Application

Server

and

the

Package

to

Trace”

Specifying

the

Level

of

Tracing

To

specify

the

level

of

tracing:

1.

In

the

left

frame

of

the

WebSphere

Application

Server

administrative

console,

click

Resources,

and

then

click

Resource

Adapters.

A

list

of

resource

adapters

is

displayed.

2.

Click

IMS

distributed

JDBC

resource

adapter.

A

configuration

dialog

is

displayed.

3.

Under

Additional

Properties,

click

J2C

Connection

Factories.

A

list

of

connection

factories

is

displayed.

4.

Click

the

name

of

the

J2C

connection

factory

for

which

you

want

to

enable

tracing.

A

configuration

dialog

is

displayed.

5.

Under

Additional

Properties,

click

Custom

Properties.

Properties

are

listed

in

a

table.

6.

In

the

Trace

Level

row,

click

the

number

in

the

Value

column.

7.

In

the

Value

field,

type

the

trace

level.

8.

Click

OK.

The

properties

table

displays

the

trace

level

that

you

entered.

9.

Click

Save.

The

Save

page

is

displayed.

10.

Under

Save

to

Master

Configuration,

click

Save

to

ensure

that

the

changes

are

made.

Specifying

the

Application

Server

and

the

Package

to

Trace

To

specify

the

application

server

and

the

package

to

trace:

1.

In

the

left

frame

of

the

WebSphere

Application

Server

administrative

console,

click

Servers,

and

then

click

Application

Servers.

A

list

of

application

servers

is

displayed.

2.

Click

the

name

of

the

server

on

which

you

want

to

enable

tracing.

3.

Under

Additional

Properties,

click

Diagnostic

Trace

Service.

A

list

of

custom

services

is

displayed.

Tracing

for

WebSphere

Application

Server IBM

Confidential

68

IMS

Java

Guide

and

Reference

|
|

|
|
|
|
|

|
|
|
|
|

|

|

|

|

|

|
|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|
|

|

|

|
|

|

|

|

|

4.

Click

New.

A

configuration

dialog

for

Diagnostic

Trace

Service

is

displayed.

5.

Select

the

Enable

Trace

check

box.

6.

In

the

Trace

Specification

field,

add:

com.ibm.ims.rds.*=all=enabled

7.

Click

New.

8.

Click

Save.

The

Save

page

is

displayed.

9.

Under

Save

to

Master

Configuration,

click

Save

to

ensure

that

the

changes

are

made.

10.

Restart

the

server.

WebSphere

Application

Server

EJBs

When

you

design

EJBs

that

access

IMS,

there

are

three

IMS-specific

considerations:

v

Transaction

semantics

and

how

that

affects

commits

and

rollbacks

(“Transaction

Semantics

and

Server-Side

EJB

Types”).

v

Security

semantics

and

how

that

affects

security

identity

and

application

access

(“Client-Side

EJB

Security

Semantics”

on

page

70).

v

IMS

Java

JDBC

implementation

and

how

that

affects

SQL

calls

(Chapter

7,

“JDBC

Access

to

IMS

Data,”

on

page

85).

Restriction:

The

IMS

distributed

JDBC

resource

adapter

does

not

support

shared

connections.

Transaction

Semantics

and

Server-Side

EJB

Types

There

are

two

server-side

EJB

types:

container

managed

and

bean

managed.

These

EJBs

act

as

listeners

for

distributed

requests

that

come

from

the

IMS

distributed

JDBC

resource

adapter.

The

type

of

EJB

that

is

created

depends

on

whether

there

is

a

transaction

context

when

the

client-side

EJB

makes

the

first

SQL

call.

Applications

do

not

manage

these

EJBs

because

they

are

created

and

managed

by

the

IMS

distributed

JDBC

resource

adapter.

When

a

client-side

EJB

executes

the

first

SQL

request

to

a

database,

the

IMS

distributed

JDBC

resource

adapter

checks

to

see

if

there

is

a

transaction

started.

If

there

is

a

transaction

context,

global

transaction

semantics

are

followed.

However,

if

there

is

no

transaction

context,

then

local

transaction

semantics

are

followed.

If

there

is

a

transaction

context

on

the

client

side,

the

IMS

distributed

JDBC

resource

adapter

creates

a

container-managed

EJB

on

the

server

side

that

joins

the

existing

transaction.

Global

transaction

semantics

are

followed,

meaning

that

if

the

client-side

application

is

container-managed,

the

container

commits

and

rolls

back

work,

and

if

the

client-side

EJB

is

bean

managed,

the

application

commits

and

rolls

back

work

with

the

UserTransaction

class.

All

work

is

committed

and

rolled

back.

If

there

is

no

transaction

context

on

the

client

side,

the

IMS

distributed

JDBC

resource

adapter

starts

a

bean-managed

EJB

on

the

server

side,

which

starts

a

transaction

for

each

connection.

Local

transaction

semantics

are

followed

meaning

that

the

client

application

can

commit

and

roll

back

individual

connections

using

the

java.sql.Connection

object.

Table

1

on

page

70

summarizes

the

relationship

between

the

transaction

context

and

the

transaction

semantics.

Tracing

for

WebSphere

Application

ServerIBM

Confidential

Chapter

4.

Remote

Data

Access

with

WebSphere

Application

Server

Applications

69

|

|

|

|

|

|

|

|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|

Table

1.

Relationship

between

the

Transaction

Context

and

the

Transaction

Semantics

Transaction

Context?

Server-Side

EJB

Transaction

Type

Transaction

Semantics

Transaction

Boundary

Delimiter

Yes

Container

managed

Global

EJB

container

or

javax.transaction.UserTransaction

No

Bean

managed

Local

java.sql.Connection

Related

Reading:

For

more

information

about

transaction

contexts,

see

the

Java

Transaction

Service

(JTA)

Specification

and

the

Java

Transaction

API

(JTA)

Specification.

Client-Side

EJB

Security

Semantics

There

are

three

areas

to

consider

for

client-side

EJB

security:

v

Access

to

client-side

EJB:

Deploy

the

client-side

EJB

with

the

run-as

deployment

property

set

to

system.

Restrict

access

to

the

client-side

EJB.

For

information

about

run-as

options

and

other

security

issues,

see

the

WebSphere

Application

Server

information

center.

v

Network

security:

You

can

use

identity

assertion

or

SSL

to

secure

the

network

communication

between

the

two

application

servers.

v

Security

between

WebSphere

Application

Server

for

z/OS

and

IMS:

ODBA

requires

a

pre-verified

ACEE

(access

control

environment

element),

which

WebSphere

Application

Server

for

z/OS

places

on

the

execution

thread.

WebSphere

Application

Server

EJBs IBM

Confidential

70

IMS

Java

Guide

and

Reference

||

|
|
|
|
|
||

||||
|

||||
|

|
|
|

|

|

|
|
|
|

|
|

|
|
|

Chapter

5.

DB2

UDB

for

z/OS

Stored

Procedures

You

can

write

DB2

UDB

for

z/OS

Java

stored

procedures

that

access

IMS

databases.

To

deploy

a

Java

stored

procedure

on

DB2

UDB

for

z/OS,

you

must

configure

IMS

Java,

ODBA,

and

DRA.

Figure

15

shows

a

DB2

UDB

for

z/OS

stored

procedure

using

IMS

Java,

ODBA,

and

DRA

to

access

IMS

databases.

The

following

topics

provide

additional

information:

v

“Configuring

DB2

UDB

for

z/OS

for

IMS

Java”

v

“Running

the

IMS

Java

IVP

from

DB2

UDB

for

z/OS”

on

page

73

v

“Running

the

IMS

Java

Sample

Application

on

DB2

UDB

for

z/OS”

on

page

75

v

“Developing

DB2

UDB

for

z/OS

Stored

Procedures

that

Access

IMS

DB”

on

page

78

Configuring

DB2

UDB

for

z/OS

for

IMS

Java

Access

to

IMS

databases

from

DB2

UDB

for

z/OS

stored

procedures

requires

IBM

DB2

Universal

Database

for

z/OS

and

OS/390

Version

7

with

APARs

PQ46673

and

PQ50443.

You

also

must

have

the

DB2

for

OS/390

and

z/OS

SQLJ/JDBC

driver

with

APAR

PQ48383

installed

or

the

DB2

Universal

JDBC

Driver.

Prerequisite:

“Installing

IMS

Java”

on

page

2

To

configure

DB2

UDB

for

z/OS

for

IMS

Java:

1.

Create

a

data

set

with

the

following

attributes.

This

data

set

is

the

JAVAENV

DD

statement

data

set.

v

Organization:

PS

v

Record

format:

VB

Figure

15.

DB2

UDB

for

z/OS

Stored

Procedure

Using

IMS

Java

IBM

Confidential

©

Copyright

IBM

Corp.

2000,

2004

71

|
|

|

|

|

|

|
|

|

|
|
|
|

|

|

|
|

|

|

v

Record

length:

1028

v

Block

size:

6144

2.

In

the

data

set

that

you

created

in

step

1

on

page

71,

add

the

ENVAR

keyword

with

following

parameters:

JAVA_HOME=

The

HFS

directory

of

the

JVM.

DB2_HOME=

The

HFS

directory

of

the

JDBC

driver

for

DB2

UDB

for

z/OS.

CLASSPATH=

The

HFS

directories

of

the

client

application

Java

class

files.

You

do

not

specify

the

CLASSPATH=

if

you

specify

the

client

application

Java

class

files

in

the

stored

procedure

definition.

LIBPATH=

The

HFS

directory

of

the

file

libJavTDLI.so.

TMSUFFIX=

The

HFS

directories

of

the

IMS

Java

and

XML

class

libraries:

TMPREFIX=pathprefix/usr/lpp/ims/imsjava91/imsjava.jar

:pathprefix/usr/lpp/ims/imsjava91/lib/xalan.jar

:pathprefix/usr/lpp/ims/imsjava91/lib/xml-apis.jar

:pathprefix/usr/lpp/ims/imsjava91/lib/xercesImpl.jar

Figure

16

shows

a

sample

JAVAENV

data

set.

3.

Set

DB2

UDB

for

z/OS

environment

variables

in

UNIX

System

Services

by

issuing

the

following

commands:

export

SQLJ_HOME=location

of

the

DB2

SQLJ

driver

(for

example

/usr/lpp/db2/db2710)

export

JDBC_HOME=location

of

the

DB2

JDBC

driver

(for

example

/usr/lpp/db2/db2710)

export

JAVA_HOME=location

of

SDK1.3

(for

example

/usr/lpp/java/J1.3)

export

DB2SQLJPROPERTIES=/path/db2sqljjdbc.properties

(you

will

create

this

file

later)

export

CLASSPATH=$JDBC_HOME/classes/db2jdbcclasses.zip

export

CLASSPATH=$CLASSPATH:$SQLJ_HOME/classes/db2sqljruntime.zip

export

CLASSPATH=$CLASSPATH:$SQLJ_HOME/classes/db2sqljclasses.zip

export

CLASSPATH=$CLASSPATH:pathprefix/usr/lpp/ims/imsjava91/imsjava.jar

export

CLASSPATH=$CLASSPATH:$JAVA_HOME/lib:.

export

LIBPATH=$SQLJ_HOME/lib:$JDBC_HOME/lib

export

LIBPATH=:$JAVA_HOME/lib:$LIBPATH

export

LD_LIBRARY_PATH=.:$SQLJ_HOME/bin:$JDBC_HOME/lib

export

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$JAVA_HOME/lib

export

PATH=$SQLJ_HOME/bin:$PATH

ENVAR("CLASSPATH=/usr/lpp/ims/imsjava91/samples.jar",

"DB2_HOME=/usr/lpp/db2/db27",

"JAVA_HOME=/usr/lpp/J1.3",

"LIBPATH=/usr/lpp/ims/imsjava91",

"TMSUFFIX=/usr/lpp/ims/imsjava91/imsjava.jar

:/usr/lpp/ims/imsjava91/lib/xalan.jar

:/usr/lpp/ims/imsjava91/lib/xml-apis.jar

:/usr/lpp/ims/imsjava91/lib/xercesImpl.jar")

Figure

16.

Sample

JAVAENV

Data

Set

Configuring

DB2

UDB

for

z/OS IBM

Confidential

72

IMS

Java

Guide

and

Reference

|

|

|
|

|
|

|
|

|
|
|
|

|
|

|
|

|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

export

STEPLIB=yourDB2HLQ.DSNEXIT:yourDB2HLQ.SDSNLOAD:

export

STEPLIB=yourDB2HLQ.SDSNLOD2:yourDB2HLQ.SDSNLINK:$STEPLIB

4.

If

you

are

using

SDK

1.4,

which

does

not

have

the

required

version

of

Xalan,

you

must

add

the

JVM

environment

variable

java.endorsed.dirs

and

set

it

to

the

location

of

the

required

XML

files

(for

example,

java.endorsed.dirs=pathprefix/usr/lpp/ims/imsjava91/lib).

IMS

Java

requires

Xalan-Java

2.6.0

or

later

(or

equivalent

code

function).

Next:

“Running

the

IMS

Java

IVP

from

DB2

UDB

for

z/OS”

Running

the

IMS

Java

IVP

from

DB2

UDB

for

z/OS

To

verify

that

DB2

UDB

for

z/OS

is

configured

correctly

and

that

IMS

Java

is

installed

correctly,

run

the

IMS

Java

installation

verification

program

(IVP)

on

DB2

UDB

for

z/OS.

The

IMS

Java

IVP

for

DB2

UDB

for

z/OS

is

two

programs:

v

The

Java

application

DB2IvpClient,

which

runs

under

UNIX

System

Services

v

The

stored

procedure

DB2IvpStoredProcedure,

which

runs

in

a

WLM-managed

address

space.

Prerequisites:

v

“Configuring

DB2

UDB

for

z/OS

for

IMS

Java”

on

page

71

v

Ensure

that

the

standard

IMS

IVPs

have

been

run.

These

IVPs

prepare

the

DBD

for

the

IVP

database,

named

IVPDB2,

and

load

the

IVP

database.

They

also

prepare

the

IMS

Java

application

PSB

(named

DFSIVP37),

build

ACBs,

and

prepare

other

IMS

control

blocks

required

by

the

IMS

Java

IVPs.

For

details

of

how

to

run

the

IMS

IVPs,

see

IMS

Version

9:

Installation

Volume

1:

Installation

Verification.

To

run

the

IMS

Java

IVP

on

DB2

UDB

for

z/OS:

1.

In

the

JAVAENV

data

set,

modify

the

CLASSPATH=

parameter

to

pathprefix/usr/lpp/ims/imsjava91/samples.jar.

2.

Edit

the

IMS-provided

V7AWLM

procedure

as

follows

(if

IMS.SDFSRESL

does

not

contain

the

DRA

startup

table,

add

that

data

set

to

the

DFSRESLB

DD

statement):

//V71AWLM

PROC

RGN=0M,APPLENV=,

//

DB2SSN=,NUMTCB=

//*

Define

the

V71AWLM

procedure

parameters

here

on

in

the

service

policy.

//IEFPROC

EXEC

PGM=DSNX9WLM,REGION=&RGN,TIME=NOLIMIT,

//

PARM=’&DB2SSN,&NUMTCB,&APPLENV’

//STEPLIB

DD

DISP=SHR,DSN=CEE.SCEERUN

//*

DB2

Library

//

DD

DISP=SHR,DSN=yourDB2HLQ.SDSNLOAD

//

DD

DISP=SHR,DSN=yourDB2HLQ.SDSNLOD2

//

DD

DISP=SHR,DSN=yourDB2HLQ.RUNLIB.LOAD

//*

DBRM

library

//

DD

DISP=SHR,DSN=yourHLQ.SDSNDBRM

//DFSRESLB

DD

DISP=SHR,DSN=IMS.SDFSRESL

//JAVAENV

DD

DISP=SHR,DSN=data

set

with

ENVAR

settings

//JSPDEBUG

DD

SYSOUT=*

//CEEDUMP

DD

SYSOUT=*

//SYSPRINT

DD

SYSOUT=*

//SYSOUT

DD

SYSOUT=*

Configuring

DB2

UDB

for

z/OSIBM

Confidential

Chapter

5.

DB2

UDB

for

z/OS

Stored

Procedures

73

|
|
|

|
|
|
|
|

|

|

|
|
|

|

|

|
|

|

|

|
|
|
|
|
|
|

|

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

3.

Create

a

new

service

policy

for

WLM.

You

can

define

the

V71AWLM

procedure

parameters

in

the

service

policy

or

you

can

modify

the

procedure

itself.

4.

Define

the

procedure

V71AWLM

to

RACF.

5.

Start

DB2

UDB

for

z/OS,

the

WLM-managed

address

space,

and

IMS

DB.

6.

Define

the

stored

procedure

to

DB2

UDB

for

z/OS

by

running

the

following

job

(Your_WLM_Environment_Name

must

match

the

APPLENV=

parameter

of

the

V71ALWM

procedure):

//CREATIVP

JOB

,’name’,

//

MSGCLASS=H,TIME=3,

//

USER=SYSADM,PASSWORD=XXXXXXXX,

//

MSGLEVEL=(1)

//CREATJSP

EXEC

PGM=IKJEFT01,DYNAMNBR=20

//STEPLIB

DD

DISP=SHR,DSN=DB2HLQ.DSNEXIT

//

DD

DISP=SHR,DSN=DB2HLQ.SDSNLOAD

//SYSTSPRT

DD

SYSOUT=*

//SYSTSIN

DD

*

DSN

SYSTEM(DB2_Subsystem_Name)

RUN

PROGRAM(DSNTIAD)

PLAN(DSNTIA71)

-

LIB(’DB2HLQ.RUNLIB.LOAD’)

-

PARM(’RC0’)

//SYSPRINT

DD

SYSOUT=*

//SYSUDUMP

DD

SYSOUT=*

//SYSIN

DD

*

CREATE

PROCEDURE

IVPStoredProc(VARCHAR

(50)

IN,VARCHAR(800)

OUT)

FENCED

NO

SQL

LANGUAGE

JAVA

DYNAMIC

RESULT

SET

0

EXTERNAL

NAME

’samples.ivp.db2.DB2IvpStoredProcedure.execute’

PARAMETER

STYLE

JAVA

COLLID

DSNJDBC

WLM

ENVIRONMENT

Your_WLM_Environment_Name;

GRANT

EXECUTE

ON

PROCEDURE

IVPStoredProc

TO

PUBLIC;

7.

Create

a

DB2

plan

that

runs

the

client

program

by

running

the

following

job:

//BNDIVPCL

JOB

,’YOUR

NAME’,

//

MSGCLASS=H,TIME=3,

//

USER=SYSADM,PASSWORD=XXXXXXXX,

//

MSGLEVEL=(1)

//BINDCLNT

EXEC

PGM=IKJEFT01,DYNAMNBR=20

//STEPLIB

DD

DISP=SHR,DSN=DB2HLQ.DSNEXIT

//

DD

DISP=SHR,DSN=DB2HLQ.SDSNLOAD

//DBRMLIB

DD

DISP=SHR,DSN=DB2HLQ.SDSNDBRM

//SYSTSPRT

DD

SYSOUT=*

//SYSPRINT

DD

SYSOUT=*

//SYSUDUMP

DD

SYSOUT=*

//SYSTSIN

DD

*

DSN

SYSTEM(DB2ID)

BIND

PACKAGE

(DSNJDBC)

MEMBER(DSNJDBC1)

ISOLATION(UR)

-

ACTION(REPLACE)

VALIDATE(BIND)

BIND

PACKAGE

(DSNJDBC)

MEMBER(DSNJDBC2)

ISOLATION(CS)

-

ACTION(REPLACE)

VALIDATE(BIND)

BIND

PACKAGE

(DSNJDBC)

MEMBER(DSNJDBC3)

ISOLATION(RS)

-

ACTION(REPLACE)

VALIDATE(BIND)

BIND

PACKAGE

(DSNJDBC)

MEMBER(DSNJDBC4)

ISOLATION(RR)

-

ACTION(REPLACE)

VALIDATE(BIND)

BIND

PLAN(DB2IVPCL)

KEEPDYNAMIC(YES)

ACTION(REPLACE)

-

PKLIST(DSNJDBC.DSNJDBC1,

-

DSNJDBC.DSNJDBC2,

-

DSNJDBC.DSNJDBC3,

-

DSNJDBC.DSNJDBC4)

RUN

PROGRAM(DSNTEP2)

PLAN(DSNTEP71)

-

LIB(’DB2HLQ.RUNLIB.LOAD’)

END

IMS

Java

IVP

for

DB2

UDB

for

z/OS IBM

Confidential

74

IMS

Java

Guide

and

Reference

|
|

|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

//SYSIN

DD

*

GRANT

EXECUTE

ON

PLAN

DB2IVPCL

TO

PUBLIC;

/*

//

8.

In

UNIX

System

Services,

in

the

directory

that

you

specified

by

the

export

DB2SQLJPROPERTIES

command,

create

the

file

db2sqljjdbc.properties

that

contains

the

following:

DB2SQLJSSID=yourDB2ID

DB2SQLJPLANNAME=DB2IVPCL

DB2SQLJATTACHTYPE=RRSAF

DB2SQLJDBRMLIB=DB2HLQ.SDSNDBRM

9.

Run

the

client

application

by

issuing

following

command

from

UNIX

System

Services:

java

samples.ivp.db2.DB2IvpClient

IMSID

The

IVP

displays

the

results

of

the

tests

that

it

performs.

If

the

IVP

was

successful,

it

displays

IVP

PASSED.

If

the

IVP

was

not

successful,

it

displays

IVP

FAILED

or

IVP

INCOMPLETE.

Fix

any

errors

and

rerun

the

IVP.

Running

the

IMS

Java

Sample

Application

on

DB2

UDB

for

z/OS

IMS

Java

provides

a

sample

dealership

application

in

addition

to

the

IVP.

The

IMS

Java

sample

application

for

DB2

UDB

for

z/OS

is

two

programs:

v

The

Java

application

DB2AutoClient,

which

runs

under

UNIX

System

Services

v

The

stored

procedure

DB2Auto,

which

runs

in

a

WLM-managed

address

space.

Prerequisites:

v

Appendix

A,

“Preparing

to

Run

the

Dealership

Samples,”

on

page

123

v

“Running

the

IMS

Java

IVP

from

DB2

UDB

for

z/OS”

on

page

73

To

the

IMS

Java

sample

dealership

application:

1.

Ensure

that

the

DB2

UDB

for

z/OS

environment

is

configured

and

running

as

required

by

the

IVP.

If

the

DB2

UDB

for

z/OS

environment

is

not

configured

and

running

for

the

IVP,

perform

steps

1

through

5

in

“Running

the

IMS

Java

IVP

from

DB2

UDB

for

z/OS”

on

page

73

before

continuing.

2.

Define

the

stored

procedure

to

DB2

UDB

for

z/OS

by

running

the

following

job

(Your_WLM_Environment_Name

must

match

the

APPLENV=

parameter

of

the

V71ALWM

procedure):

//CREATDLR

JOB

,’name’,

//

MSGCLASS=H,TIME=3,

//

USER=SYSADM,PASSWORD=XXXXXXXX,

//

MSGLEVEL=(1)

//CREATJSP

EXEC

PGM=IKJEFT01,DYNAMNBR=20

//STEPLIB

DD

DISP=SHR,DSN=DB2HLQ.DSNEXIT

//

DD

DISP=SHR,DSN=DB2HLQ.SDSNLOAD

//SYSTSPRT

DD

SYSOUT=*

//SYSTSIN

DD

*

DSN

SYSTEM(DB2_Subsystem_Name)

RUN

PROGRAM(DSNTIAD)

PLAN(DSNTIA71)

-

LIB(’DB2HLQ.RUNLIB.LOAD’)

-

PARM(’RC0’)

//SYSPRINT

DD

SYSOUT=*

//SYSUDUMP

DD

SYSOUT=*

//SYSIN

DD

*

IMS

Java

IVP

for

DB2

UDB

for

z/OSIBM

Confidential

Chapter

5.

DB2

UDB

for

z/OS

Stored

Procedures

75

|
|
|
|

|
|
|

|
|
|
|

|
|

|

|

|

|
|

|

|

|

|

|

|

|
|

|

|

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

CREATE

PROCEDURE

AutoListModels(VARCHAR

(100)

IN,VARCHAR

(100)

OUT,

VARCHAR

(100)

OUT,VARCHAR(100)

OUT,

VARCHAR

(100)

OUT,VARCHAR(100)

OUT)

FENCED

NO

SQL

LANGUAGE

JAVA

DYNAMIC

RESULT

SET

0

EXTERNAL

NAME

’samples.dealership.db2.DB2Auto.listModels’

PARAMETER

STYLE

JAVA

COLLID

DSNJDBC

WLM

ENVIRONMENT

Your_WLM_Environment_Name;

GRANT

EXECUTE

ON

PROCEDURE

AutoListModels

TO

PUBLIC;

3.

Create

a

DB2

plan

that

runs

the

client

program

by

running

the

following

job:

//BNDIVPCL

JOB

,’name’,

//

MSGCLASS=H,TIME=3,

//

USER=SYSADM,PASSWORD=XXXXXXXX,

//

MSGLEVEL=(1)

//BINDCLNT

EXEC

PGM=IKJEFT01,DYNAMNBR=20

//STEPLIB

DD

DISP=SHR,DSN=DB2HLQ.DSNEXIT

//

DD

DISP=SHR,DSN=DB2HLQ.SDSNLOAD

//DBRMLIB

DD

DISP=SHR,DSN=DB2HLQ.SDSNDBRM

//SYSTSPRT

DD

SYSOUT=*

//SYSPRINT

DD

SYSOUT=*

//SYSUDUMP

DD

SYSOUT=*

//SYSTSIN

DD

*

DSN

SYSTEM(DB2ID)

BIND

PACKAGE

(DSNJDBC)

MEMBER(DSNJDBC1)

ISOLATION(UR)

-

ACTION(REPLACE)

VALIDATE(BIND)

BIND

PACKAGE

(DSNJDBC)

MEMBER(DSNJDBC2)

ISOLATION(CS)

-

ACTION(REPLACE)

VALIDATE(BIND)

BIND

PACKAGE

(DSNJDBC)

MEMBER(DSNJDBC3)

ISOLATION(RS)

-

ACTION(REPLACE)

VALIDATE(BIND)

BIND

PACKAGE

(DSNJDBC)

MEMBER(DSNJDBC4)

ISOLATION(RR)

-

ACTION(REPLACE)

VALIDATE(BIND)

BIND

PLAN(DB2IVPCL)

KEEPDYNAMIC(YES)

ACTION(REPLACE)

-

PKLIST(DSNJDBC.DSNJDBC1,

-

DSNJDBC.DSNJDBC2,

-

DSNJDBC.DSNJDBC3,

-

DSNJDBC.DSNJDBC4)

RUN

PROGRAM(DSNTEP2)

PLAN(DSNTEP71)

-

LIB(’DB2HLQ.RUNLIB.LOAD’)

END

//SYSIN

DD

*

GRANT

EXECUTE

ON

PLAN

DB2IDLRCL

TO

PUBLIC;

/*

//

4.

In

UNIX

System

Services,

edit

the

file

db2sqljjdbc.properties

by

changing

the

DB2SQLJPLANNAME=

parameter

to

DB2DLRCL:

DB2SQLJSSID=yourDB2ID

DB2SQLJPLANNAME=DB2IDLRCL

DB2SQLJATTACHTYPE=RRSAF

DB2SQLJDBRMLIB=DB2HLQ.SDSNDBRM

5.

Run

the

client

application

by

issuing

following

command

from

UNIX

System

Services:

java.samples.dealership.db2.DB2AutoCLient

IMSID

The

sample

application

displays

information

about

models

of

cars.

Running

Your

Stored

Procedure

from

DB2

UDB

for

z/OS

Prerequisite:

“Running

the

IMS

Java

IVP

from

DB2

UDB

for

z/OS”

on

page

73

To

run

your

Java

application

that

access

IMS

DB

on

DB2

UDB

for

z/OS:

Sample

Application

for

DB2

UDB

for

z/OS IBM

Confidential

76

IMS

Java

Guide

and

Reference

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

|
|

|
|

|

|

|

1.

In

the

JAVAENV

data

set,

modify

the

CLASSPATH=

parameter

to

point

to

your

application

files.

If

your

application

files

are

in

JAR

files,

include

the

file

names.

If

the

application

files

are

not

in

JAR

files,

do

not

include

the

file

names.

2.

Edit

the

IMS-provided

V7AWLM

procedure

as

follows

(if

IMS.SDFSRESL

does

not

contain

the

DRA

startup

table,

add

that

data

set

to

the

DFSRESLB

DD

statement):

//V71AWLM

PROC

RGN=0M,APPLENV=,

//

DB2SSN=,NUMTCB=

//*

Define

the

V71AWLM

procedure

parameters

here

on

in

the

service

policy.

//IEFPROC

EXEC

PGM=DSNX9WLM,REGION=&RGN,TIME=NOLIMIT,

//

PARM=’&DB2SSN,&NUMTCB,&APPLENV’

//STEPLIB

DD

DISP=SHR,DSN=CEE.SCEERUN

//*

DB2

Library

//

DD

DISP=SHR,DSN=yourDB2HLQ.SDSNLOAD

//

DD

DISP=SHR,DSN=yourDB2HLQ.SDSNLOD2

//

DD

DISP=SHR,DSN=yourDB2HLQ.RUNLIB.LOAD

//*

DBRM

library

//

DD

DISP=SHR,DSN=yourHLQ.SDSNDBRM

//DFSRESLB

DD

DISP=SHR,DSN=IMS.SDFSRESL

//JAVAENV

DD

DISP=SHR,DSN=data

set

with

ENVAR

settings

//JSPDEBUG

DD

SYSOUT=*

//CEEDUMP

DD

SYSOUT=*

//SYSPRINT

DD

SYSOUT=*

//SYSOUT

DD

SYSOUT=*

3.

Create

a

new

service

policy

for

WLM.

You

can

define

the

V71AWLM

procedure

parameters

in

the

service

policy

or

you

can

modify

the

procedure

itself.

4.

Define

the

procedure

V71AWLM

to

RACF.

5.

Start

DB2

UDB

for

z/OS,

the

WLM-managed

address

space,

and

IMS

DB.

6.

Define

the

stored

procedure

to

DB2

UDB

for

z/OS

by

running

the

following

job

(Your_WLM_Environment_Name

must

match

the

APPLENV=

parameter

of

the

V71ALWM

procedure):

//CREATIVP

JOB

,’name’,

//

MSGCLASS=H,TIME=3,

//

USER=user,PASSWORD=XXXXXXXX,

//

MSGLEVEL=(1)

//CREATJSP

EXEC

PGM=IKJEFT01,DYNAMNBR=20

//STEPLIB

DD

DISP=SHR,DSN=DB2HLQ.DSNEXIT

//

DD

DISP=SHR,DSN=DB2HLQ.SDSNLOAD

//SYSTSPRT

DD

SYSOUT=*

//SYSTSIN

DD

*

DSN

SYSTEM(DB2_Subsystem_Name)

RUN

PROGRAM(DSNTIAD)

PLAN(DSNTIA71)

-

LIB(’DB2HLQ.RUNLIB.LOAD’)

-

PARM(’RC0’)

//SYSPRINT

DD

SYSOUT=*

//SYSUDUMP

DD

SYSOUT=*

//SYSIN

DD

*

CREATE

PROCEDURE

StoredProcName(...

IN,...

OUT)

FENCED

NO

SQL

LANGUAGE

JAVA

DYNAMIC

RESULT

SET

0

EXTERNAL

NAME

’package.StoredProcedure.targetMethod’

PARAMETER

STYLE

JAVA

COLLID

DSNJDBC

WLM

ENVIRONMENT

Your_WLM_Environment_Name;

GRANT

EXECUTE

ON

PROCEDURE

StoredProcName

TO

PUBLIC;

7.

Create

a

DB2

plan

that

runs

the

client

program

by

running

the

following

job:

//BNDIVPCL

JOB

,’name’,

//

MSGCLASS=H,TIME=3,

//

USER=user,PASSWORD=XXXXXXXX,

Running

Your

Stored

ProcedureIBM

Confidential

Chapter

5.

DB2

UDB

for

z/OS

Stored

Procedures

77

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

//

MSGLEVEL=(1)

//BINDCLNT

EXEC

PGM=IKJEFT01,DYNAMNBR=20

//STEPLIB

DD

DISP=SHR,DSN=DB2HLQ.DSNEXIT

//

DD

DISP=SHR,DSN=DB2HLQ.SDSNLOAD

//DBRMLIB

DD

DISP=SHR,DSN=DB2HLQ.SDSNDBRM

//SYSTSPRT

DD

SYSOUT=*

//SYSPRINT

DD

SYSOUT=*

//SYSUDUMP

DD

SYSOUT=*

//SYSTSIN

DD

*

DSN

SYSTEM(DB2ID)

BIND

PACKAGE

(DSNJDBC)

MEMBER(DSNJDBC1)

ISOLATION(UR)

-

ACTION(REPLACE)

VALIDATE(BIND)

BIND

PACKAGE

(DSNJDBC)

MEMBER(DSNJDBC2)

ISOLATION(CS)

-

ACTION(REPLACE)

VALIDATE(BIND)

BIND

PACKAGE

(DSNJDBC)

MEMBER(DSNJDBC3)

ISOLATION(RS)

-

ACTION(REPLACE)

VALIDATE(BIND)

BIND

PACKAGE

(DSNJDBC)

MEMBER(DSNJDBC4)

ISOLATION(RR)

-

ACTION(REPLACE)

VALIDATE(BIND)

BIND

PLAN(DB2IVPCL)

KEEPDYNAMIC(YES)

ACTION(REPLACE)

-

PKLIST(DSNJDBC.DSNJDBC1,

-

DSNJDBC.DSNJDBC2,

-

DSNJDBC.DSNJDBC3,

-

DSNJDBC.DSNJDBC4)

RUN

PROGRAM(DSNTEP2)

PLAN(DSNTEP71)

-

LIB(’DB2HLQ.RUNLIB.LOAD’)

END

//SYSIN

DD

*

GRANT

EXECUTE

ON

PLAN

plan_name

TO

PUBLIC;

/*

//

8.

In

UNIX

System

Services,

in

the

directory

that

you

specified

by

the

export

DB2SQLJPROPERTIES

command,

create

the

file

db2sqljjdbc.properties

that

contains

the

following:

DB2SQLJSSID=yourDB2ID

DB2SQLJPLANNAME=plan_name

DB2SQLJATTACHTYPE=RRSAF

DB2SQLJDBRMLIB=DB2HLQ.SDSNDBRM

9.

Run

the

client

application.

Developing

DB2

UDB

for

z/OS

Stored

Procedures

that

Access

IMS

DB

The

stored

procedure

must

perform

the

following

tasks

in

the

order

listed.

An

example

is

given

for

each

step:

1.

Load

the

IMS

JDBC

driver:

Class.forName("com.ibm.ims.db.DLIDriver");

2.

Create

IMS

JDBC

connection:

connection

=

DriverManager.getConnection

("jdbc:dli:package.DatabaseViewName/DRAname");

3.

Create

a

statement:

Statement

statement

=

connection.createStatement();

4.

Query

theIMS

database:

ResultSet

results

=

statement.executeQuery(query);

5.

Move

results

to

output

parameters:

parmOut[...]=...;

6.

Close

connection:

connection.close();

Running

Your

Stored

Procedure IBM

Confidential

78

IMS

Java

Guide

and

Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|

|

|
|

|

|

|

|
|

|

|

|

|

|

|

|

|

Chapter

6.

CICS

Applications

Java

applications

that

run

on

CICS

Transaction

Server

for

z/OS

can

access

IMS

databases

by

using

IMS

Java.

Java

applications

use

the

IMS

Java

class

libraries

to

access

IMS.

Other

than

the

IMS

Java

layer,

access

to

IMS

from

a

Java

application

is

the

same

as

for

a

non-Java

application.

Figure

17

shows

a

JCICS

application

accessing

IMS

database

using

ODBA

and

IMS

Java.

The

following

topics

provide

additional

information:

v

“Configuring

CICS

for

IMS

Java”

v

“Running

the

IMS

Java

IVP

on

CICS”

on

page

80

v

“Running

the

IMS

Java

Sample

Application

on

CICS”

on

page

81

v

“Running

Your

Applications

on

CICS”

on

page

82

v

“Developing

CICS

Applications

that

Access

IMS

DB”

on

page

83

Configuring

CICS

for

IMS

Java

To

run

Java

applications

that

access

IMS

databases

in

a

CICS

environment,

you

must

have

CICS

Transaction

Server

for

z/OS

Version

2

or

later

installed.

Prerequisite:

“Installing

IMS

Java”

on

page

2

To

configure

CICS

for

IMS

Java:

1.

Build

the

CICSPSB

DLL:

a.

Modify

the

Makefile,

which

is

in

the

pathprefix/usr/lpp/ims/imsjava91/cics

directory,

by

changing

both

occurrences

of

your.pdse.loadlib

to

the

data

set

that

will

store

the

CICSPSB

module.

b.

Set

the

CICS

library

to

the

_CXX_LSYSLIB

environment

variable

by

issuing

the

following

command

from

the

UNIX

System

Services

prompt:

export

_CXX_LSYSLIB=CICS_library_location

Figure

17.

CICS

Application

Using

IMS

Java

IBM

Confidential

©

Copyright

IBM

Corp.

2000,

2004

79

|

|
|
|

|

|

|

|

|

|

|
|

|

|

|
|
|

|
|

|

c.

Run

the

Makefile

by

issuing

the

following

command

from

the

UNIX

System

Services

prompt:

make

d.

In

the

data

set

that

you

specified

in

the

Makefile,

creates

two

data

set

members

named

CICSPSB

and

DFSCLIB.

e.

Add

the

data

set

that

you

specified

in

the

Makefile

to

CICS

STEPLIB

concatenation.

2.

Modify

the

CICS

environment

member

DFHJVMPR,

which

is

the

JVM

profile:

a.

Add

a

TMPREFIX

variable,

which

adds

libraries

to

the

beginning

of

the

middleware

path.

b.

To

the

TMPREFIX

variable,

add

the

path

to

the

IMS

Java

and

XML

class

libraries

as

follows:

TMPREFIX=pathprefix/usr/lpp/ims/imsjava91/imsjava.jar

:pathprefix/usr/lpp/ims/imsjava91/lib/xalan.jar

:pathprefix/usr/lpp/ims/imsjava91/lib/xml-apis.jar

:pathprefix/usr/lpp/ims/imsjava91/lib/xercesImpl.jar

c.

Update

the

LIBPATH

variable

so

that

it

contains

the

path

to

the

file

libJavTDLI.so

as

follows:

LIBPATH=pathprefix/usr/lpp/ims/imsjava91

3.

If

you

are

using

SDK

1.4,

which

does

not

have

the

required

version

of

Xalan,

you

must

add

the

JVM

environment

variable

java.endorsed.dirs

and

set

it

to

the

location

of

the

required

XML

files

(for

example,

java.endorsed.dirs=pathprefix/usr/lpp/ims/imsjava91/lib).

IMS

Java

requires

Xalan-Java

2.6.0

or

later

(or

equivalent

code

function).

Next:

“Running

the

IMS

Java

IVP

on

CICS”

Related

Reading:

For

detailed

information

about

CICS

system

definition,

see

the

CICS

Transaction

Server

for

z/OS:

CICS

System

Definition

Guide.

Running

the

IMS

Java

IVP

on

CICS

After

you

configure

CICS

to

run

Java

applications

that

access

IMS

databases,

verify

that

IMS

Java

is

installed

correctly

and

that

CICS

is

configured

correctly

by

running

the

IMS

Java

installation

verification

program,

which

is

named

CICSIVP.

Prerequisites:

v

“Configuring

CICS

for

IMS

Java”

on

page

79

v

Ensure

that

the

standard

IMS

IVPs

have

been

run.

These

IVPs

prepare

the

DBD

for

the

IVP

database,

named

IVPDB2,

and

load

the

IVP

database.

They

also

prepare

the

IMS

Java

application

PSB

(named

DFSIVP37),

build

ACBs,

and

prepare

other

IMS

control

blocks

required

by

the

IMS

Java

IVPs.

For

details

of

how

to

run

the

IMS

IVP

procedures,

see

IMS

Version

9:

Installation

Volume

1:

Installation

Verification.

To

run

the

IMS

Java

IVP

on

CICS:

1.

Create

an

HFS

file

named

dfjjvmpr.props

that

contains

the

following

class

path:

ibm.jvm.shareable.application.class.path=

/pathprefix/usr/lpp/ims/imsjava91/samples/samples.jar

If

you

need

to

debug

your

application,

you

can

also

add

the

JVM

debug

options

in

this

file.

Configuring

CICS

for

IMS

Java IBM

Confidential

80

IMS

Java

Guide

and

Reference

|
|

|

|
|

|
|

|
|
|
|
|

|

|
|
|

|

|

|
|
|
|
|
|
|

|

|

|
|

|
|

2.

In

the

DFHJVMPR

member

of

the

DFHJVM

data

set,

add:

JVMPROPS=path/dfjjvmpr.props

STDOUT=path

STDERR=path

3.

Start

IMS

DB

and

CICS.

4.

Turn

off

the

uppercase

translation

feature

of

CICS

by

entering

CEOT

NOUCTRAN.

By

default,

everything

you

type

on

the

CICS

terminal

is

converted

to

uppercase.

However,

the

samples.jar

file

and

path

contain

lowercase

letters

that

must

remain

in

lowercase.

5.

Define

a

program

that

can

run

the

CICSIVP

application

(JVM

class):

a.

From

the

CICS

terminal,

enter:

CEDA

DEFINE

PROGRAM

b.

In

the

list

of

program

attributes,

type

the

following:

PROGram

==>

cicsivp

Group

==>

ivp

COncurrency

==>

Threadsafe

JVM

==>

Yes

JVMClass

==>

samples.ivp.cics.CICSIVP

c.

Press

F3

to

return

to

main

CICS

terminal.

6.

Define

a

transaction

that

can

run

the

program:

a.

From

the

CICS

terminal,

enter:

CEDA

DEFINE

TRANSACTION

b.

In

the

list

of

transaction

attributes,

type

the

following:

TRANSaction

==>

civp

Group

==>

ivp

PROGram

==>

cicsivp

c.

Press

F3

to

return

to

main

CICS

terminal.

7.

Install

the

program

that

you

defined

in

step

5:

a.

From

the

CICS

terminal,

enter:

CEDA

INSTALL

b.

In

the

list

of

program

attributes,

type

the

following:

PROGram

=>

cicsivp

Group

=>

ivp

c.

Press

F3

to

return

to

main

CICS

terminal.

8.

Install

the

transaction

that

you

defined

in

step

6:

a.

From

the

CICS

terminal,

enter:

CEDA

INSTALL

b.

In

the

list

of

transaction

attributes,

type

the

following:

TRANSaction

=>

civp

Group

=>

ivp

c.

Press

F3

to

return

to

main

CICS

terminal.

9.

Run

the

transaction

by

entering:

civp

If

the

IVP

was

successful,

it

displays

IVP

PASSED.

If

the

IVP

was

not

successful,

it

displays

IVP

FAILED

or

IVP

INCOMPLETE.

See

the

STDOUT

data

set

for

the

results

of

the

individual

tests

that

are

performed

by

the

IVP.

Running

the

IMS

Java

Sample

Application

on

CICS

IMS

Java

provides

the

dealership

sample

application

to

run

on

CICS.

The

dealership

sample

files

for

CICS

are

location

in

pathprefix/usr/lpp/ims/imsjava91/samples/dealership/cics.

Prerequisites:

v

“Running

the

IMS

Java

IVP

on

CICS”

on

page

80

Running

the

IMS

Java

IVP

on

CICSIBM

Confidential

Chapter

6.

CICS

Applications

81

|

|
|
|
|

|

|
|
|

|

|

|

|
|
|
|
|

|

|

|

|

|
|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|
|
|

|

|

v

Appendix

A,

“Preparing

to

Run

the

Dealership

Samples,”

on

page

123

To

run

the

IMS

Java

dealership

sample

on

CICS:

1.

Modify

the

HFS

dfjjvmpr.props

file

to

set

the

ibm.jvm.shareable.application.class.path=

parameter

to

the

path

of

the

application.

The

location

of

the

dfjjvmpr.props

file

is

specified

by

the

JVMPROPS

variable

in

the

CICS

JVM

profile:

ibm.jvm.shareable.application.class.path=

/pathprefix/usr/lpp/ims/imsjava91/samples/samples.jar

2.

Start

IMS

DB

and

CICS.

3.

Turn

off

the

uppercase

translation

feature

of

CICS

by

entering:

CEOT

NOUCTRAN

4.

Define

a

program

that

can

run

the

IMS

Java

sample

application

(JVM

class):

a.

From

the

CICS

terminal,

enter:

CEDA

DEFINE

PROGRAM

b.

In

the

list

of

program

attributes,

type

the

following:

PROGram

==>

cicsauto

Group

==>

imsj

COncurrency

==>

Threadsafe

JVM

==>

Yes

JVMClass

==>

samples.ivp.cics.CICSAuto

c.

Press

F3

to

return

to

main

CICS

terminal.

5.

Define

a

transaction

that

can

run

the

program:

a.

From

the

CICS

terminal,

enter:

CEDA

DEFINE

TRANSACTION

b.

In

the

list

of

transaction

attributes,

type

the

following:

TRANSaction

==>

cicssamp

Group

==>

imsj

PROGram

==>

cicsauto

c.

Press

F3

to

return

to

main

CICS

terminal.

6.

Install

the

program

that

you

defined

in

step

4:

a.

From

the

CICS

terminal,

enter:

CEDA

INSTALL

b.

In

the

list

of

program

attributes,

type

the

following:

PROGram

=>

cicsauto

Group

=>

imsj

c.

Press

F3

to

return

to

main

CICS

terminal.

7.

Install

the

transaction

that

you

defined

in

step

5:

a.

From

the

CICS

terminal,

enter:

CEDA

INSTALL

b.

In

the

list

of

transaction

attributes,

type

the

following:

TRANSaction

=>

cicssamp

Group

=>

ivp

c.

Press

F3

to

return

to

main

CICS

terminal.

8.

Run

the

transaction

by

entering:

cicssamp

The

sample

application

displays

information

about

models

of

cars.

Running

Your

Applications

on

CICS

Prerequisite:

“Running

the

IMS

Java

IVP

on

CICS”

on

page

80

To

run

your

Java

application

that

accesses

IMS

DB

from

CICS:

1.

Modify

the

HFS

dfjjvmpr.props

file

to

set

the

ibm.jvm.shareable.application.class.path=

parameter

to

the

path

of

the

IMS

Java

Sample

Application

on

CICS IBM

Confidential

82

IMS

Java

Guide

and

Reference

|
|

|

|
|
|
|

|
|

|

|

|

|

|

|
|
|
|
|

|

|

|

|

|
|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|

|

|
|

application.

The

location

of

the

dfjjvmpr.props

file

is

specified

by

the

JVMPROPS

variable

in

the

CICS

JVM

profile.

2.

Start

IMS

DB

and

CICS.

3.

Turn

off

the

uppercase

translation

feature

of

CICS

by

entering:

CEOT

NOUCTRAN

4.

Define

a

program

that

can

run

the

Java

application

(JVM

class).

5.

Define

a

transaction

that

can

run

the

program.

6.

Install

the

program

that

you

defined

in

step

4.

7.

Install

the

transaction

that

you

defined

in

step

5.

Developing

CICS

Applications

that

Access

IMS

DB

The

following

programming

model

outlines

the

supported

structure

for

JCICS

applications

that

use

IMS

Java.

The

model

is

not

complete,

but

it

shows

the

normal

flow

of

the

application

for

both

the

JDBC

and

SSA

access

methods.

In

a

CICS

environment,

only

one

PSB

can

be

allocated

at

a

time.

Therefore,

an

application

can

have

only

one

active

JDBC

connection

at

a

time.

The

application

must

close

the

JDBC

connection

before

it

opens

another

JDBC

connection.

public

static

void

main(CommAreaHolder

cah)

{

//Receives

control

conn

=

DriverManager.getConnection(...);

//Establish

DB

connection

repeat

{

results

=

statement.executeQuery(...);

//Perform

DB

processing

...

//send

output

to

terminal

}

conn.close();

//Close

DB

connection

return;

}

Running

Your

Applications

on

CICSIBM

Confidential

Chapter

6.

CICS

Applications

83

|
|

|

|

|

|

|

|

|

Developing

CICS

Applications IBM

Confidential

84

IMS

Java

Guide

and

Reference

Chapter

7.

JDBC

Access

to

IMS

Data

JDBC

is

the

SQL-based

standard

interface

for

data

access

in

the

Java

2

SDK

Standard

Edition

and

Enterprise

Edition.

IMS

Java’s

implementation

of

JDBC

supports

a

selected

subset

of

the

full

facilities

of

the

JDBC

2.1

API.

IMS

Java

supports

a

subset

of

SQL

keywords.

Some

keywords

have

specific

IMS

usage

requirements.

For

this

usage

information

see

“Supported

SQL

Keywords”

on

page

88

Recommendation:

Use

JDBC

to

access

IMS

data

instead

of

the

IMS

Java

hierarchical

database

interface.

This

chapter

uses

the

sample

dealership

applications

that

are

shipped

with

IMS

Java

to

describe

how

to

use

JDBC

to

access

an

IMS

database.

The

following

topics

provide

additional

information:

v

“Comparison

of

Hierarchical

and

Relational

Databases”

v

“Supported

SQL

Keywords”

on

page

88

v

“Supported

SQL

Aggregate

Functions”

on

page

96

v

“SQL

Extensions

for

XML

Storage

and

Retrieval”

on

page

97

v

“Supported

JDBC

Interfaces”

on

page

100

v

“JDBC

Prepared

Statements

for

SQL”

on

page

102

v

“Supported

JDBC

Data

Types”

on

page

102

v

“General

Mappings

from

COBOL

Copybook

Types

to

IMS

Java

and

Java

Data

Types”

on

page

104

v

“JDBC

Recommendations

for

IMS

Databases”

on

page

105

v

“Java

Metadata

Classes

for

IMS

Databases”

on

page

105

v

“Sample

Application

that

Uses

JDBC”

on

page

108

Comparison

of

Hierarchical

and

Relational

Databases

A

database

segment

definition

defines

the

fields

for

a

set

of

segment

instances

similar

to

the

way

a

relational

table

defines

columns

for

a

set

of

rows

in

a

table.

In

this

way,

segments

relate

to

relational

tables,

and

fields

in

a

segment

relate

to

columns

in

a

relational

table.

The

name

of

an

IMS

segment

becomes

the

table

name

in

an

SQL

query,

and

the

name

of

a

field

becomes

the

column

name

in

the

SQL

query.

A

fundamental

difference

between

segments

in

a

hierarchical

database

and

tables

in

a

relational

database

is

that,

in

a

hierarchical

database,

segments

are

implicitly

joined

with

each

other.

In

a

relational

database,

you

explicitly

join

two

tables.

A

segment

instance

in

a

hierarchical

database

is

already

joined

with

its

parent

segment

and

its

child

segments,

which

arre

all

along

the

same

hierarchical

path.

In

a

relational

database,

this

relationship

between

tables

is

captured

by

foreign

and

primary

keys.

This

section

compares

the

dealership

sample

database,

which

is

shipped

with

IMS

Java,

to

a

relational

representation

of

the

database.

IBM

Confidential

©

Copyright

IBM

Corp.

2000,

2004

85

|
|
|

|
|
|

|
|

|
|

|
|
|
|

|
|

|
|
|
|
|
|
|

The

dealership

sample

database

contains

five

segment

types,

which

are

shown

in

Figure

18.

The

root

segment

is

the

Dealer

segment.

Under

the

Dealer

segment

is

its

child

segment,

the

Model

segment.

Under

the

Model

segment

are

its

children:

the

segments

Order,

Sales,

and

Stock.

See

Figure

35

on

page

106

for

the

database

description

(DBD)

of

the

dealership

sample

database.

The

Dealer

segment

identifies

a

dealer

selling

cars,

and

the

segment

contains

a

dealer

name

and

a

unique

dealer

number

in

the

fields

DLRNAME

and

DLRNO.

Dealers

carry

car

types,

each

of

which

has

a

corresponding

Model

segment.

A

Model

segment

contains

a

type

code

in

the

field

MODTYPE.

There

is

an

Order

segment

for

each

car

that

is

ordered

for

the

dealership.

A

Stock

segment

is

created

for

each

car

that

is

available

for

sale

in

the

dealer’s

inventory.

When

the

car

is

sold,

a

Sales

segment

is

created.

Figure

19

on

page

87

shows

a

relational

representation

of

the

IMS

database

record

shown

in

Figure

18.

Important:

This

figure

is

only

to

help

you

understand

how

to

use

JDBC

calls

in

a

hierarchical

environment.

IMS

Java

does

not

change

the

structure

of

IMS

data

in

any

way.

Figure

18.

Sample

Dealership

Database

Hierarchical

and

Relational

Databases IBM

Confidential

86

IMS

Java

Guide

and

Reference

|
|
|
|
|

|
|

|
|

|
|
|

|
|

If

a

segment

does

not

have

a

unique

key,

which

is

similar

to

a

primary

key

in

relational

databases,

view

the

corresponding

relational

table

as

having

a

generated

primary

key

added

to

its

column

(field)

list.

An

example

of

a

generated

primary

key

is

in

the

Model

table

(segment)

of

Figure

19.

Similar

to

referential

integrity

in

relational

databases,

you

cannot

insert,

for

example,

an

Order

(child)

segment

to

the

database

without

it

being

a

child

of

a

specific

Model

(parent)

segment.

Also

note

that

the

field

(column)

names

have

been

renamed.

You

can

rename

segments

and

fields

to

more

meaningful

names

using

the

DLIModel

utility.

An

occurrence

of

a

segment

in

a

hierarchical

database

corresponds

to

a

row

(or

tuple)

of

a

table

in

a

relational

database.

Figure

20

on

page

88

shows

three

dealership

database

records.

The

Dealer

segment

occurrences

have

dependent

Model

segment

occurrences.

The

relational

representation

of

these

segment

occurrences

is

shown

in

Figure

21

on

page

88.

Figure

19.

Relational

Representation

of

the

Dealership

Database

Hierarchical

and

Relational

DatabasesIBM

Confidential

Chapter

7.

JDBC

Access

to

IMS

Data

87

|
|
|
|
|
|

|
|
|
|
|

The

following

example

shows

the

SELECT

statement

of

an

SQL

call.

Model

is

a

segment

name

that

is

used

as

a

table

name

in

the

query:

SELECT

*

FROM

Model

In

the

following

example,

ModelTypeCode

is

the

name

of

a

field

contained

in

the

Model

segment

and

it

is

used

in

the

SQL

query

as

a

column

name:

SELECT

*

FROM

Model

WHERE

ModelTypeCode

=

’062579’

In

both

of

the

preceding

examples,

Model

and

ModelTypeCode

are

alias

names

that

you

assign

by

using

the

DLIModel

utility.

These

names

will

likely

not

be

the

same

8–character

names

used

in

the

database

description

(DBD)

for

IMS.

Alias

names

act

as

references

to

the

8

character

names

that

are

described

in

the

DBD.

Supported

SQL

Keywords

The

following

portable

SQL

keywords

are

currently

supported

by

IMS

Java.

IMS-specific

usage

for

frequently-used

keywords

is

described

in

this

section.

None

of

keywords

is

case-sensitive.

These

keywords

are

a

subset

of

all

SQL

keywords,

which

are

listed

in

Appendix

B,

“SQL

Keywords,”

on

page

127.

Figure

20.

Segment

Occurrences

in

the

Dealership

Database

Figure

21.

Relational

Representation

of

Segment

Occurrences

in

the

Dealership

Database

Hierarchical

and

Relational

Databases IBM

Confidential

88

IMS

Java

Guide

and

Reference

|

|
|
|
|

|

|
|
|
|

ALL

AND

AS

ASC

AVG

COUNT

DELETE

DESC

DISTINCT

FROM

GROUP

BY

INSERT

INTO

MAX

MIN

OR

ORDER

BY

SELECT

SUM

UPDATE

WHERE

Important:

Because

the

IMS

Java

SQL

parser

supports

portable

SQL,

you

cannot

use

any

SQL

keywords

as

Java

aliases

for

PCBs,

fields,

or

segments.

When

you

define

Java

aliases,

do

not

use

an

SQL

keyword.

If

a

PCB,

segment,

or

field

has

the

same

name

as

an

SQL

keyword,

you

must

explicitly

define

a

different

Java

alias

for

it.

If

you

use

an

SQL

keyword

as

an

alias

for

a

PCB,

segment,

or

field,

your

application

will

receive

an

error

when

it

attempts

an

SQL

query.

For

a

complete

list

of

SQL

keywords,

see

Appendix

B,

“SQL

Keywords,”

on

page

127.

The

following

topics

provide

additional

usage

information

about

SQL

keywords:

v

“SELECT

Statement

Usage”

v

“INSERT

Statement

Usage”

on

page

93

v

“DELETE

Statement

Usage”

on

page

93

v

“UPDATE

Statement

Usage”

on

page

94

v

“FROM

Clause

Usage”

on

page

94

v

“WHERE

Clause

Usage”

on

page

95

SELECT

Statement

Usage

A

SELECT

statement

is

a

query

used

as

a

top-level

SQL

statement.

A

SELECT

statement

can

be

executed

against

a

Statement

or

PreparedStatement

object,

which

returns

the

results

as

a

ResultSet

object.

Figure

22

on

page

90

shows

sample

code

that

uses

the

results

of

a

SELECT

query

to

update

the

modelOutput

object

with

the

model

information.

This

example

requires

an

inputMessage

object

with

the

ModelTypeCode

field

information.

Supported

SQL

KeywordsIBM

Confidential

Chapter

7.

JDBC

Access

to

IMS

Data

89

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|

Notice

that

the

PCB

reference

name,

DealershipDB,

qualifies

the

Model

segment

name

in

the

query

string.

You

qualify

the

segment

name

with

the

PCB

name

because

a

PSB

can

contain

multiple

PCBs,

and

the

PCBs

can

have

segments

with

the

same

name.

When

you

use

the

PCB

name

to

indicate

the

exact

segment

to

access,

you

avoid

the

ambiguity

checking

and

improve

the

performance

of

your

application.

Note:

The

method

trim()

is

used

because

IMS

character

fields

are

padded

with

blanks

if

they

are

not

long

enough.

The

method

trims

off

the

extra

blanks.

Figure

22

illustrates

the

use

of

a

Statement

object

to

execute

an

SQL

query.

You

can

also

use

a

PreparedStatement

object

to

execute

an

SQL

query.

A

PreparedStatement

object

has

two

advantages

over

a

Statement

object:

v

The

SQL

can

be

parsed

one

time

for

many

executions

of

the

query.

v

You

can

build

the

query

and

use

substitute

values

with

each

execution.

public

boolean

getModelDetails(InputMessage

inputMessage,

ModelOutput

modelOutput)

throws

IMSException

{

//

Parse

the

input

message

for

ModelTypeCode

String

queryString

=

"SELECT

*

FROM

DealershipDB.Model

WHERE

ModelTypeCode

=

"

+

"’"

+

inputMessage.getString("ModelTypeCode").trim()

+

"’";

//

Create

a

statement

and

execute

it

to

get

a

ResultSet

try

{

Statement

statement

=

connection.createStatement();

ResultSet

results

=

statement.executeQuery(queryString);

//

Send

back

the

result

of

the

query

//

Note:

because

"ModelTypeCode"

is

unique

-

only

1

row

//

is

returned

if

(results.next())

{

modelOutput.setString("ModelTypeCode",

results.getString("Type").trim());

modelOutput.setString("Make",

results.getString("CarMake").trim());

modelOutput.setString("Model",

results.getString("CarModel").trim());

modelOutput.setString("Year",

results.getString("CarYear"));

modelOutput.setString("CityMiles",

results.getString("EPACityMileage").trim());

modelOutput.setString("HighwayMiles",results.getString

("EPAHighwayMileage").trim());

modelOutput.setString("Price",

results.getString("Price").trim());

modelOutput.setString("Horsepower",

results.getString("Horsepower").trim());

return

true;

}

else

{

reply("Unknown

Type");

return

false;

}

}

catch

(SQLException

e)

{

reply("Query

Failed:"+

e.toString());

return

false;

}

}

Figure

22.

Example

of

SELECT

Statement

Query

Results

Supported

SQL

Keywords IBM

Confidential

90

IMS

Java

Guide

and

Reference

|
|
|
|
|
|

|
|

Selecting

Multiple

Segments

By

using

IMS

Java

to

write

IMS

applications,

you

can

avoid

the

long

process

of

coding

segment

search

arguments

(SSAs)

for

every

segment

in

the

path

that

leads

to

the

segment

being

queried.

Instead,

you

can

use

the

IMS

Java

JDBC

driver

for

SQL

queries

to

retrieve

results

from

any

segment

in

the

path

that

leads

to

the

segment

being

queried.

The

primary

difference

between

SQL

queries

to

relational

databases

and

SQL

queries

to

IMS

using

IMS

Java

is

that

the

hierarchical

structure

of

an

IMS

database

eliminates

the

need

for

the

join

that

is

required

for

tables

in

relational

databases.

For

example,

Figure

23

is

a

query

to

a

relational

database

for

the

address

of

a

dealership

that

sells

a

particular

car

model

(AnyCarModel):

In

a

relational

database

query,

you

must

query

two

independent

tables

(Dealer

and

Model)

and

indicate

how

they

are

joined

using

a

WHERE

clause.

This

query

is

not

valid

against

an

IMS

database.

In

an

IMS

Java

application,

you

can

write

the

query

in

Figure

24

to

access

the

same

data

in

a

hierarchical

database

using

a

WHERE

clause:

In

a

hierarchical

database,

all

data

in

segments

along

the

hierarchical

path

from

the

root

segment

to

the

target

segment

are

implicitly

included

in

the

query

results,

and

therefore

they

do

not

need

to

be

explicitly

stated.

In

Figure

24,

the

information

about

the

Dealer

segment

is

included

in

the

result

set

because

it

is

along

the

hierarchical

path

to

the

Model

segment.

Requirement:

This

implicit

inclusion

of

segments

is

called

a

path

call.

For

a

path

call

to

be

made,

the

PROCOPT

parameter

in

the

PCB

or

SENSEG

statement

of

the

PSB

source

must

include

’P’.

If

P

is

not

included

in

the

PROCOPT

parameter

and

you

issue

a

query

that

requires

a

path

call

to

be

made,

an

SQLException

object

is

generated.

Selecting

All

Fields

in

a

Segment

You

can

select

all

fields

in

a

segment

by

using

the

asterisk

(*)

operator

in

the

SELECT

statement.

In

the

following

sample

query,

all

of

the

fields

from

the

Model

segment

are

retrieved.

SELECT

*

FROM

DealershipDB.Model

If

you

want

all

of

the

fields

in

more

than

one

segment,

use

the

asterisk

operator

with

the

segments

that

you

want

to

retrieve

all

the

fields

from.

The

SELECT

statement

in

Figure

25

on

page

92

shows

an

example

where

all

of

the

fields

from

SELECT

Dealer.Address

FROM

DealershipDB.Dealer,DealershipDB.Model

WHERE

Model.CarMake

=

’AnyCarModel’

AND

Dealer.DealerName

=

Model.CarrierName

Figure

23.

Sample

Relational

Database

Query

SELECT

Dealer.Address

FROM

DealershipDB.Model

WHERE

Model.CarMake

=

'AnyCarModel’

Figure

24.

Sample

Hierarchical

Database

Query

Supported

SQL

KeywordsIBM

Confidential

Chapter

7.

JDBC

Access

to

IMS

Data

91

|
|
|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|

|
|
|

both

the

Dealer

and

Model

segments

are

retrieved.

Figure

26

shows

an

equivalent

query

without

using

the

asterisk

operator.

Segment-Qualified

Fields

SQL

dictates

that

whenever

a

field

is

common

between

two

tables

in

an

SQL

query,

the

desired

field

must

be

table-qualified

to

resolve

the

ambiguity.

Similarly,

whenever

a

field

name

is

common

in

any

two

segments

along

a

hierarchical

path,

the

field

must

be

segment-qualified.

For

example,

if

a

PCB

has

two

segments,

segment

ROOT

and

segment

CHILD,

and

both

possess

a

field

named

id,

any

query

that

references

the

id

field

must

be

segment-qualified.

The

following

example

is

incorrect

because

the

id

field

is

not

segment-qualified:

SELECT

id

FROM

PCBName.CHILD

WHERE

id=’10’

The

following

example

is

correct

because

the

id

field

is

segment-qualified:

SELECT

CHILD.id

FROM

PCBName.CHILD

WHERE

ROOT.id='10’

Recommendations:

v

For

performance

reasons,

always

qualify

fields

by

prefixing

the

field

names

with

a

segment.

This

improves

performance

because

IMS

Java

does

not

need

to

search

through

all

the

segments

to

locate

the

field

and

check

for

ambiguity.

v

Although

you

do

not

need

to

provide

the

PCB

reference

name

on

the

query

unless

the

query

is

ambiguous

without

it,

you

should

always

provide

the

PCB

references

name

to

remove

ambiguity

and

to

eliminate

the

need

for

checking.

Retrieving

XML

Using

the

SELECT

Statement

You

can

retrieve

XML

from

an

IMS

database

using

the

retrieveXML

user-defined

function

(UDF)

in

the

SELECT

statement.

You

can

retrieve

an

intact

XML

document

or

compose

an

XML

document

from

standard

IMS

segments.

For

example,

the

following

SELECT

statement

returns

the

Model

fields

in

XML:

SELECT

retrieveXML(Model)

FROM

DealershipDB.Model

Related

Reading:

For

more

information

about

the

retrieveXML

UDF,

see

“SQL

Extensions

for

XML

Storage

and

Retrieval”

on

page

97.

Summary

of

SELECT

Statement

Usage

When

using

the

SELECT

statement

in

SQL

calls

to

IMS

databases:

v

Qualify

fields

by

prefixing

them

with

segment

names.

SELECT

Dealer.*,Model.*

FROM

DealershipDB.Model

Figure

25.

Simple

Way

to

Select

All

Fields

in

a

Segment

SELECT

Dealer.DealerNo,

Dealer.DealerCity,

Dealer.Zip,

Dealer.Phone,

Model.ModelType,

Model.Make,

Model.Model,

Model.Year,

Model.MSRP,

Model.Count

FROM

DealershipDB.Model

Figure

26.

Long

Way

to

Select

All

Fields

in

a

Segment

Supported

SQL

Keywords IBM

Confidential

92

IMS

Java

Guide

and

Reference

|
|

|
|
|

|
|
||

|

|
|
|

|
|
|

|
|
|
|

|

|
|

|
|

|
|

|

v

Retrieve

or

create

XML

using

the

retrieveXML

UDF.

v

Select

fields

that

are

in

any

segment

from

the

root

segment

down

to

the

segment

in

the

FROM

clause.

INSERT

Statement

Usage

An

INSERT

statement

inserts

a

segment

instance

with

the

specified

data

under

any

number

of

parent

segments

that

match

the

criteria

specified

in

the

WHERE

clause.

All

field

names

must

be

specified

in

the

statement,

unless

you

set

a

default

value

in

the

IMS

Java

metadata

class

with

the

DLIModel

utility

control

statements.

For

more

information

about

the

DLIModel

control

statements,

see

the

IMS

Version

9:

Utilities

Reference:

System.

Figure

27

shows

an

example

of

an

INSERT

statement

that

inserts

a

segment

occurrence

in

the

database

using

the

DealershipDB

PCB:

You

can

set

a

default

value

for

any

field

in

a

segment

by

using

the

FIELD

control

statement

when

running

the

DLIModel

utility.

For

more

information,

see

the

description

of

the

Default

parameter

of

the

DLIModel

utility

in

IMS

Version

9:

Utilities

Reference:

System.

One

difference

between

JDBC

queries

to

relational

databases

and

to

IMS

is

that

standard

SQL

does

not

have

a

WHERE

clause

in

an

INSERT

statement

because

tuples

are

being

inserted

into

the

table

that

is

specified

by

the

INTO

keyword.

In

an

IMS

database,

you

are

actually

inserting

a

new

instance

of

the

specified

segment,

so

you

need

to

know

where

in

the

database

this

segment

occurrence

should

be

placed.

With

an

INSERT

statement,

the

WHERE

clause

is

always

necessary,

unless

you

are

inserting

a

root

segment.

With

a

prepared

statement,

the

list

of

values

can

include

a

question

mark

(?)

as

the

value

that

can

be

substituted

before

the

statement

is

executed.

For

example:

INSERT

INTO

DealershipDB.Model(ModelTypeCode,

CarMake,

CarModel,

CarYear,

Price,

EPACityMileage,

EPAHighwayMileage,

Horsepower)

VALUES

(?,?,?,?,?,?,?,?)

WHERE

Dealer.DealerNumber=?

DELETE

Statement

Usage

A

DELETE

statement

can

delete

any

number

of

segment

occurrences

that

match

the

criteria

specified

in

the

WHERE

clause.

A

DELETE

statement

with

a

WHERE

clause

also

deletes

the

child

segments

of

the

matching

segments.

If

no

WHERE

clause

is

specified,

all

of

the

segment

occurrences

of

that

type

are

deleted

as

are

all

of

their

child

segment

occurrences.

Figure

28

on

page

94

shows

an

example

of

a

DELETE

statement:

INSERT

INTO

DealershipDB.Sales

(DateSold,

PurchaserLastName,

PurchaserFirstName,

PurchaserAddress,

SoldBy,

StockVINNumber)

VALUES

(’07032000’,

’Beier’,

’Otto’,

’101

W.

1st

Street’,

’Springfield,

OH’,

’S123’,

’1ABCD23E4G5678901234’)

WHERE

Dealer.DealerNumber

=

’A123’

AND

Model.ModelTypeCode

=

’K1’

Figure

27.

Sample

INSERT

Statement

Supported

SQL

KeywordsIBM

Confidential

Chapter

7.

JDBC

Access

to

IMS

Data

93

|
|
|
|
|
|

|

|
|

|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

UPDATE

Statement

Usage

An

UPDATE

statement

modifies

the

value

of

the

fields

in

any

number

of

segment

occurrences.

An

UPDATE

statement

applies

its

SET

operation

to

each

instance

of

a

specified

segment

with

matching

criteria

in

the

WHERE

clause.

If

the

UPDATE

statement

does

not

have

a

WHERE

clause,

the

SET

operation

is

applied

to

all

instances

of

the

specified

segment.

A

SET

clause

contains

at

least

one

assignment.

In

each

assignment,

the

values

to

the

right

of

the

equal

sign

are

computed

and

assigned

to

columns

to

the

left

of

the

equal

sign.

For

example,

the

UPDATE

statement

in

Figure

29

is

called

to

accept

an

order.

When

a

customer

accepts

an

order,

the

Order

segment’s

SerialNo

and

DeliverDate

fields

are

updated.

FROM

Clause

Usage

A

FROM

clause

in

IMS

Java

differs

from

standard

SQL

in

that

explicit

joins

are

not

required

or

allowed.

Instead,

the

lowest-level

segment

in

the

query

(in

the

SELECT

statement

and

WHERE

clause)

must

be

the

only

segment

that

is

listed

in

the

FROM

clause.

The

lowest-level

segment

in

the

FROM

clause

is

equivalent

to

a

join

of

all

the

segments,

starting

with

the

one

that

is

listed

in

the

FROM

clause

up

the

hierarchy

to

the

root

segment.

For

example,

the

FROM

clause

FROM

DealershipDB.Order

is

equivalent

to

the

following

FROM

clause

in

a

relational

query:

FROM

DealershipDB.Order,DealershipDB.Model,DealershipDB.Dealer

PCB-Qualified

SQL

Queries

In

IMS

Java,

connections

are

made

to

PSBs.

Because

there

are

multiple

database

PCBs

in

a

PSB,

there

must

be

a

way

to

specify

which

PCB

(using

its

alias)

in

a

PSB

to

use

when

executing

an

SQL

query

on

the

java.sql.Connection

object.

To

specify

which

PCB

to

use,

always

qualify

segments

that

are

referenced

in

the

FROM

clause

of

an

SQL

statement

by

prefixing

the

segment

name

with

the

PCB

name.

You

can

omit

the

PCB

name

only

if

the

PSB

contains

only

one

PCB.

Figure

30

shows

a

PCB-qualified

SQL

query.

DELETE

FROM

DealershipDB.Order

WHERE

Dealer.DealerNumber

=

’123’

AND

OrderNumber

=

’345’

Figure

28.

Sample

DELETE

Statement

UPDATE

DealershipDB.Order

SET

SerialNo

=

’93234’,

DeliverDate

=

’12/11/2004’

WHERE

OrderNumber

=

’123’

Figure

29.

Sample

UPDATE

Statement

SELECT

*

FROM

DealershipDB.Model

Figure

30.

PCB-Qualified

SQL

Query

Example

Supported

SQL

Keywords IBM

Confidential

94

IMS

Java

Guide

and

Reference

|
|

|
|
|

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|

Recommendation:

For

clarity

and

performance

reasons,

always

qualify

segments

in

the

FROM

clause

by

using

the

PCB

alias.

Summary

of

FROM

Clause

Usage

When

using

the

FROM

clause

in

SQL

calls

to

IMS

databases:

v

Do

not

join

segments

in

the

FROM

clause.

v

List

only

one

segment

in

the

FROM

clause.

v

List

the

lowest-level

segment

that

is

used

in

the

SELECT

list

and

WHERE

clause.

v

Qualify

the

segment

in

the

FROM

clause

by

using

the

PCB

alias.

WHERE

Clause

Usage

IMS

Java

converts

the

WHERE

clause

in

an

SQL

query

to

an

SSA

list

when

querying

a

database.

SSA

rules

restrict

the

type

of

conditions

you

can

specify

in

the

WHERE

clause.

This

section

describes

how

you

must

form

your

WHERE

clause

so

that

it

can

be

converted

into

SSA

lists.

The

WHERE

clause

can

contain

fields

only

from

the

segment

in

the

FROM

clause

or

segments

that

are

higher

in

the

hierarchy.

The

fields

in

the

WHERE

clause

must

be

in

the

DBD.

The

fields

that

are

in

the

DBD

are

marked

in

the

DLIModel

IMS

Java

Report

as

being

either

primary

key

fields

or

search

fields.

You

cannot

use

fields

that

were

added

by

COBOL

copybooks

or

DLIModel

utility

control

statements.

You

cannot

use

parentheses

in

the

WHERE

clause

because

SSAs

do

not

support

parentheses.

Fields

in

the

WHERE

clause

can

be

compared

only

to

values,

not

to

other

fields.

You

can

use

the

following

operators

between

field

names

and

values

in

the

individual

qualification

statements:

<

<=

=

=<

<

!=

For

example,

the

following

WHERE

clause

will

fail

because

it

is

trying

to

compare

two

fields:

WHERE

Sales.SoldBy=Sales.PurchaserFirstName

The

following

example

is

valid

because

the

WHERE

clause

is

comparing

a

field

to

a

value:

WHERE

Sales.SoldBy='Lauren'

When

using

prepared

statements,

you

can

use

the

question

mark

(?)

character,

which

is

later

filled

in

with

a

value.

For

example,

the

following

WHERE

clause

is

valid:

WHERE

Sales.Soldby=

?

You

can

combine

multiple

qualification

statements

with

AND

and

OR

operators,

but

you

must

follow

special

rules.

Because

separate

SSAs

are

created

for

each

segment,

list

all

qualification

statements

for

a

segment

together

and

combine

qualification

statements

for

different

segments

with

an

AND

operator.

Supported

SQL

KeywordsIBM

Confidential

Chapter

7.

JDBC

Access

to

IMS

Data

95

|
|

|
|

|

|

|
|

|

|

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|

|

|
|

|

|
|
|

|

|
|
|
|

Qualification

statements

that

are

combined

with

an

AND

operator

make

up

a

qualification

set.

For

a

qualification

set

to

be

satisfied

(true),

all

qualification

statements

in

the

set

must

be

satisfied.

For

the

WHERE

clause

(and,

therefore,

the

SSA

qualification)

to

be

satisfied,

at

least

one

qualification

set

must

be

satisfied.

The

OR

operator

can

be

used

only

between

qualification

statements

that

contain

fields

from

the

same

segment.

Because

of

the

way

SSA

lists

are

created,

you

cannot

use

the

OR

operator

across

segments.

For

example,

the

following

WHERE

clause

will

fail

because

the

Soldby

field

and

DealerName

fields

are

in

different

segments:

WHERE

Sales.SoldBy='Kiran'

OR

Dealer.DealerName='Bach'

However,

the

following

WHERE

clause

is

valid

because

the

OR

operator

is

between

two

qualification

statements

for

the

same

segment:

WHERE

Sales.SoldBy='Kyle'

OR

Sales.PurchaserFirstName='Chris'

Summary

of

WHERE

Clause

Usage

When

using

the

WHERE

clause

in

SQL

calls

to

IMS

databases:

v

Use

fields

that

are

defined

in

the

DBD.

v

Use

fields

that

are

in

any

segment

from

the

root

segment

down

to

the

segment

in

the

FROM

clause.

v

Qualify

fields

with

segment

names.

v

Compare

fields

to

values,

not

other

fields.

v

Do

not

use

parentheses.

v

List

all

qualification

statements

for

a

segment

together.

v

Combine

qualification

statements

for

different

segments

with

an

AND

operator.

v

Do

not

use

the

OR

operator

across

segments.

Supported

SQL

Aggregate

Functions

IMS

Java

supports

the

following

SQL

aggregate

functions

and

related

keywords:

AS

ASC

AVG

COUNT

DESC

GROUP

BY

MAX

MIN

ORDER

BY

SUM

Important:

The

field

names

that

are

specified

in

a

GROUP

BY

or

ORDER

BY

clause

must

match

exactly

the

field

name

that

is

specified

in

the

SELECT

statement.

The

supported

SQL

aggregate

functions

accept

only

a

single

field

name

in

a

segment

as

the

argument

(the

DISTINCT

keyword

is

not

allowed).

Table

2

on

page

97

shows

the

data

types

of

the

fields

that

are

accepted

by

the

aggregate

functions,

along

with

the

resulting

data

type

in

the

result

set.

Supported

SQL

Keywords IBM

Confidential

96

IMS

Java

Guide

and

Reference

|
|
|
|

|
|
|
|
|

|

|
|

|

|
|

|

|
|

|

|

|

|

|

|

|

Table

2.

Supported

SQL

Aggregate

Functions

and

Their

Supported

Data

Types

Function

Argument

Type

Result

Type

SUM

and

AVG

Byte

Long

Short

Long

Integer

Long

Long

Long

Single-precision

floating

point

Double-precision

floating

point

Double-precision

floating

point

Double-precision

floating

point

MIN

and

MAX

Any

type

except

BIT,

BLOB,

or

BINARY

Same

as

argument

type

COUNT

Any

type

Long

The

result

set

column

name

from

an

aggregate

function

is

a

combination

of

the

aggregate

function

name

and

the

field

name

separated

by

an

underscore

character

(_).

For

example,

the

statement

SELECT

MAX(age)

results

in

a

column

name

MAX_age.

Use

this

column

name

in

all

subsequent

references—for

example,

resultSet.getInt("MAX_age").

If

the

aggregate

function

argument

field

is

segment-qualified,

the

result-set

column

name

is

the

combination

of

the

aggregate

function

name,

the

segment

name,

and

the

field

name,

separated

by

underscore

characters

(_).

For

example,

SELECT

MAX(Employee.age)

results

in

a

column

name

MAX_Employee_age.

You

can

use

the

AS

keyword

to

rename

the

aggregate

function

column

in

the

result

set

or

any

other

field

in

the

SELECT

statement.

You

cannot

use

the

AS

keyword

to

rename

a

segment

in

the

FROM

clause.

When

you

use

the

AS

keyword

to

rename

the

field,

you

must

use

this

new

name

to

refer

to

the

field.

For

example,

if

you

specify

SELECT

MAX(age)

AS

oldest,

a

subsequent

reference

to

the

aggregate

function

column

is

resultSet.getInt("oldest").

The

result

set

type

for

aggregate

functions

and

ORDER

BY

and

GROUP

BY

clauses

is

always

TYPE_SCROLL_INSENSITIVE,

even

if

they

are

defined

explicitly

as

TYPE_FORWARD_ONLY.

A

TYPE_SCROLL_INSENSITIVE

result

set

is

not

sensitive

to

any

changes

in

the

database

when

the

result

set

is

open.

SQL

Extensions

for

XML

Storage

and

Retrieval

IMS

Java

has

two

SQL99

extensions

for

user-defined

functions

(UDFs):

retrieveXML

and

storeXML.

These

UDFs

are

used

during

JDBC

calls

to

store

and

retrieve

XML

from

IMS

databases.

This

interface

is

independent

of

the

physical

storage

of

the

data.

In

this

topic:

v

“retrieveXML

UDF”

v

“storeXML

UDF”

on

page

99

retrieveXML

UDF

The

retrieveXML

UDF

creates

an

XML

document

from

an

IMS

database

and

returns

an

object

that

implements

the

java.sql.Clob

interface.

It

does

not

matter

to

the

application

whether

the

data

is

decomposed

into

standard

IMS

segments

or

the

data

is

in

intact

XML

documents

in

the

IMS

database.

SQL

Aggregate

FunctionsIBM

Confidential

Chapter

7.

JDBC

Access

to

IMS

Data

97

|

|
|
|
|

|

|

|

|

|
|
|
|

The

Clob

JDBC

type

stores

a

Character

Large

Object

as

a

column

value

in

a

row

of

the

result

set.

The

getClob

method

retrieves

the

XML

document

from

the

result

set.

Figure

31

shows

the

relationship

between

the

retrieveXML

UDF

and

the

getClob

method.

To

create

an

XML

document,

use

a

retrieveXML

UDF

in

the

SELECT

statement

of

your

JDBC

call.

Pass

in

the

name

of

the

segment

that

will

be

the

root

element

of

the

XML

document

(for

example,

retrieveXML(Model)).

The

dependent

segments

of

the

segment

that

you

pass

in

will

be

in

the

generated

XML

document

if

they

match

the

criteria

listed

in

the

WHERE

clause.

The

segment

that

you

specify

to

be

the

root

element

of

the

XML

document

does

not

have

to

be

the

root

segment

of

the

IMS

record.

The

dependent

segments

are

mapped

to

the

XML

document

based

on

the

generated

XML

schema.

Within

a

single

application

program,

you

can

issue

SELECT

calls

that

contain

retrieveXML

UDFs

against

multiple

PCBs

in

an

application’s

PSB.

You

can

also

issue

multiple

retrieveXML

UDFs

that

pass

in

various

segments

along

the

requested

hierarchical

path

from

a

single

SELECT

call.

From

a

single

SELECT

call,

you

can

also

retrieve

other

types

of

data

in

addition

to

the

XML

document

(for

example,

SELECT

retrieveXML(Model),

Dealer.DealerNo).

The

following

example

creates

an

XML

document

that

has

the

root

element

of

Model:

The

XML

document

that

is

created

has

the

root

element

of

the

Model

segment

that

has

the

CarYear

field

of

2004.

The

XML

document

that

is

retrieved

is

stored

in

the

result

set.

For

each

row

in

the

result

set,

the

UDF

creates

an

implementation

of

the

JDBC

java.sql.Clob

interface,

and

places

it

in

the

corresponding

result

set

column.

This

Clob

object

encapsulates

the

XML

document

created

from

the

database.

Figure

31.

Creating

XML

Using

the

retrieveXML

UDF

and

the

getClob

Method

SELECT

retrieveXML(Model)

FROM

DealershipDB.Model

WHERE

Model.CarYear

=

'2004'

Figure

32.

Sample

SQL

Query

that

Uses

the

retrieveXML

UDF

JDBC

Extensions

for

XML

Storage

and

Retrieval IBM

Confidential

98

IMS

Java

Guide

and

Reference

|

|
|
|

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

|
|

|
|
|
|

The

storage

requirements

for

the

XML

document

Clob

objects

in

a

result

set

depend

on

whether

the

result

set

is

forward-only

or

scroll-insensitive.

If

the

Clob

object

is

returned

to

a

forward-only

ResultSet

object,

data

is

retrieved

from

the

database

and

composed

into

XML

only

when

the

application

requests

the

data.

For

example,

if

the

application

invokes

the

getAsciiStream

or

getCharacterStream

method,

the

application

receives

a

Stream

object.

As

the

application

reads

the

XML

stream,

the

segments

are

retrieved

from

the

database

and

composed

into

XML.

At

the

end

of

the

stream,

the

entire

XML

document

has

been

returned

to

the

application

having

never

been

fully

materialized

in

the

Clob

object.

If

the

Clob

object

is

returned

to

a

scroll-insensitive

ResultSet

object,

the

whole

document

is

materialized

in

the

Clob.

This

option

requires

more

memory

than

forward-only

result

sets,

especially

for

large

XML

documents

and

result

sets

with

a

lot

of

rows.

To

retrieve

the

XML

document

from

the

result

set,

use

the

getClob

method.

The

following

example

retrieves

an

XML

document,

encapsulated

by

the

Clob

object,

from

the

result

set:

Clob

xmlDoc

=

resultSet.getClob(1);

Using

the

getClob

interface,

you

can,

for

example,

retrieve

all

or

part

of

document

content

as

a

String

object,

or

request

a

Stream

or

Reader

object

for

the

document.

With

the

Stream

or

Reader

object,

you

can

send

the

document

to

an

output

queue

or

as

a

response

to

an

HTTP

or

SOAP

request,

or

save

it

in

a

local

HFS

file.

You

can

also

selectively

retrieve

elements

using

a

selected

subset

of

XPath

expressions,

or

transform

the

document

using

XSLT.

storeXML

UDF

The

storeXML

UDF

inserts

an

XML

document

into

an

IMS

database

at

the

position

in

the

database

that

the

WHERE

clause

indicates.

IMS,

not

the

application,

uses

the

XML

schema

and

the

Java

metadata

class

to

determine

the

physical

storage

of

the

data

into

the

database.

It

does

not

matter

to

the

application

whether

the

XML

is

stored

intact

or

decomposed

into

standard

IMS

segments.

An

XML

document

must

be

valid

before

in

can

be

stored

into

a

database.

The

storeXML

UDF

validates

the

XML

document

against

the

XML

schema

before

storing

it.

If

you

know

that

the

XML

document

is

valid

and

you

do

not

want

IMS

to

revalidate

it,

use

the

storeXML(false)

UDF.

To

store

an

XML

document,

use

the

storeXML

UDF

in

the

INSERT

INTO

clause

of

a

JDBC

prepared

statement.

Within

a

single

application

program,

you

can

issue

INSERT

calls

that

contain

storeXML

UDFs

against

multiple

PCBs

in

an

application’s

PSB.

The

SQL

query

must

have

the

following

syntax:

INSERT

INTO

PCB.Segment

(storeXML())

VALUES

(

?

)

WHERE

Segment.Field

=

value

Because

an

XML

document

is

not

a

valid

argument

in

the

VALUES

clause

of

the

INSERT

statement,

you

must

use

a

prepared

statement.

JDBC

Extensions

for

XML

Storage

and

RetrievalIBM

Confidential

Chapter

7.

JDBC

Access

to

IMS

Data

99

|
|

|
|
|
|
|
|
|
|

|
|
|
|

|

|
|

|

|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|

|
|
|
|

|

|
|
|

|
|

The

following

example

stores

the

XML

document

named

myDoc.xml

from

the

file

system

into

an

IMS

database

using

the

Dealership

PCB.

A

new

Model

segment,

which

is

the

root

of

the

XML

document,

is

inserted

under

the

Dealer

segment

that

has

the

number

A123.

The

rest

of

the

XML

document

is

stored

as

dependent

segments

of

Model

as

specified

by

the

XML

Schema.

InputStreamReader

myXMLDoc

=

new

InputStreamReader(new

FileInputStream("myDoc.xml"));

String

query

=

"INSERT

INTO

Dealership.Model

(storeXML())"

+

"

VALUES

(

?

)"

+

"

WHERE

Dealer.DealerNumber

=

’A123’

";

PreparedStatement

pstmt

=

conn.preparedStatement(query);

pstmt.setCharacterStream(1,

myXMLDoc,

-1);

Supported

JDBC

Interfaces

The

following

list

describes

the

required

interfaces

by

JDBC

2.1that

are

implemented

in

the

database

package,

and

it

describes

the

limitations

in

the

IMS

Java

implementation

of

these

interfaces.

java.sql.Connection

java.sql.Connection

is

an

object

that

represents

the

connection

to

the

database.

A

Connection

reference

is

retrieved

from

the

DriverManager

object

that

is

implemented

in

the

java.sql

package.

The

DriverManager

object

obtains

a

Connection

reference

by

querying

its

list

of

registered

Driver

instances

until

it

finds

one

that

supports

the

universal

resource

locator

(URL)

that

is

passed

to

the

DriverManager.getConnection

method.

Restriction:

IMS

does

not

support

the

local,

connection-based

commit

scope

that

is

defined

in

the

JDBC

model.

Therefore,

the

IMS

Java

implementation

of

the

methods

Connection.commit,

Connection.rollback,

and

Connection.setAutoCommit

result

in

an

SQL

exception

when

these

methods

are

called.

Figure

33

shows

the

sample

dealership

application

code

that

establishes

a

connection

to

the

sample

database:

java.sql.DatabaseMetaData

The

DatabaseMetaData

interface

defines

a

set

of

methods

for

querying

information

about

the

database,

including

capabilities

the

database

might

or

might

not

support.

The

class

is

provided

for

tool

developers

and

is

normally

not

used

in

client

programs.

Much

of

the

functionality

is

specific

to

relational

databases

and

is

not

implemented

for

DL/I

databases.

java.sql.Driver

The

Driver

interface

itself

is

not

usually

used

in

client

applications,

although

an

application

must

dynamically

load

a

particular

Driver

implementation

by

name.

One

of

the

first

lines

in

an

IMS

JDBC

program

for

IMS

access

must

be:

Class.forName("com.ibm.ims.db.DLIDriver");

connection

=

DriverManager.getConnection

("jdbc:dli:dealership.application.DealerDatabaseView");

Figure

33.

Establishing

a

Connection

to

the

Dealership

Database

JDBC

Extensions

for

XML

Storage

and

Retrieval IBM

Confidential

100

IMS

Java

Guide

and

Reference

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

|

This

code

loads

the

IMS

Java

driver

and

causes

the

Driver

implementation

to

register

itself

with

the

DriverManager

object

so

that

the

driver

can

later

be

found

by

DriverManager.getConnection.

The

Driver

implementation

creates

and

returns

a

Connection

object

to

the

DriverManager

object.

The

IMS

Java

implementation

of

JDBC

is

not

fully

JDBC-compliant

and

the

Driver

object

method

jdbcCompliant

returns

a

value

of

false.

java.sql.Statement

A

Statement

interface

is

returned

from

the

Connection.createStatement

method.

The

Statement

class

and

its

subclass,

PreparedStatement,

define

the

interfaces

that

accept

SQL

statements

and

return

tables

as

ResultSet

objects.

The

code

to

create

a

Statement

object

is

as

follows:

Statement

statement

=

connection.createStatement();

Restriction:

The

IMS

Java

implementation

of

the

Statement

interface

does

not

support:

v

Named

cursors.

Therefore,

the

method

Statement.setCursorName

throws

an

SQL

exception.

v

Aborting

a

DL/I

operation.

Therefore,

the

method

Statement.cancel

throws

an

SQL

exception.

v

Setting

a

time-out

for

DL/I

operations.

Therefore,

the

methods

Statement.setQueryTimeout

and

Statement.getQueryTimeout

throw

SQL

exceptions.

java.sql.ResultSet

The

ResultSet

interface

defines

an

iteration

mechanism

to

retrieve

the

data

in

the

rows

of

a

table,

and

to

convert

the

data

from

the

type

defined

in

the

database

to

the

type

required

in

the

application.

For

example,

ResultSet.getString

converts

an

integer

or

decimal

data

type

to

an

instance

of

a

Java

String.

The

code

to

return

ResultSet

object

is

as

follows:

ResultSet

results

=

statement.executeQuery(queryString);

Rather

than

building

a

complete

set

of

results

after

a

query

is

run,

the

IMS

Java

implementation

of

ResultSet

interface

retrieves

a

new

segment

occurrence

each

time

the

method

ResultSet.next

is

called.

Restriction:

The

IMS

Java

implementation

of

ResultSet

does

not

support:

v

Returning

data

as

an

ASCII

stream.

Therefore

the

method

ResultSet.getAsciiStream

throws

an

SQL

exception.

v

Named

cursors.

Therefore

the

method

ResultSet.getCursorName

throws

an

SQL

exception.

v

The

method

ResultSet.getUnicodeStream,

which

is

deprecated

in

JDBC

2.1.

java.sql.ResultSetMetaData

The

java.sql.ResultSetMetaData

interface

defines

methods

to

provide

information

about

the

types

and

properties

in

a

ResultSet

object.

It

includes

methods

such

as

getColumnCount,

isSigned,

getPrecision,

and

getColumnName.

java.sql.PreparedStatement

The

PreparedStatement

interface

extends

the

Statement

interface,

adding

support

for

pre-compiling

an

SQL

statement

(the

SQL

statement

is

provided

at

construction

instead

of

execution),

and

for

substituting

values

in

the

SQL

statement

(for

example,

UPDATE

Suppliers

SET

Status

=

?

WHERE

City

=

?).

Supported

JDBC

InterfacesIBM

Confidential

Chapter

7.

JDBC

Access

to

IMS

Data

101

|
|
|
|
|
|

|
|
|
|

|

|
|

|
|

|
|

|
|
|

|
|
|
|
|

|

|
|
|

|

|
|

|
|

|
|

|
|
|
|
|

JDBC

Prepared

Statements

for

SQL

To

improve

performance

of

your

IMS

Java

application,

use

JDBC

prepared

statements

for

the

SQL.

The

PreparedStatement

class

completes

the

initial

steps

in

preparing

queries

only

once

so

that

you

need

to

provide

the

parameters

only

before

each

repeated

database

call.

The

PreparedStatement

object

performs

the

following

actions

only

once

before

repeated

database

calls

are

made:

1.

Parses

the

SQL.

2.

Cross-references

the

SQL

with

the

IMS

Java

DLIDatabaseView

object.

3.

Builds

SQL

into

SSAs

before

a

database

call

is

made.

Important:

You

must

use

a

prepared

statement

when

you

store

XML

into

a

database.

For

more

information,

see

“storeXML

UDF”

on

page

99.

Supported

JDBC

Data

Types

IMS

Java

supports

the

JDBC

data

types

that

are

listed

in

Table

3.

The

DLIModel

IMS

Java

Report

indicates

the

JDBC

type

that

is

assigned

to

each

field

in

the

DLIDatabaseView

subclass.

Table

3

also

lists

the

supported

Java

data

types

for

each

JDBC

type.

Table

3.

Supported

JDBC

Data

Types

JDBC

Data

Type

Java

Data

Type

CHAR

String

CLOB

Clob

(supported

only

for

storage

and

retrieval

of

XML)

VARCHAR

String

BIT

boolean

TINYINT

byte

SMALLINT

short

INTEGER

int

BIGINT

long

FLOAT

float

DOUBLE

double

BINARY

byte[]

PACKEDDECIMAL

java.math.BigDecimal

ZONEDDECIMAL

java.math.BigDecimal

DATE

java.sql.Date

TIME

java.sql.Time

TIMESTAMP

java.sql.Timestamp

Table

4

on

page

103

shows

the

get

methods

that

are

available

for

accessing

different

types

of

JDBC

data.

The

methods

that

are

marked

with

“X”

are

methods

that

are

designed

for

accessing

the

given

data

type.

No

truncation

or

data

loss

occurs

when

you

use

those

methods.

The

methods

that

are

marked

with

“O”

are

all

other

legal

calls.

Data

JDBC

Prepared

Statements

for

SQL IBM

Confidential

102

IMS

Java

Guide

and

Reference

|
|
|
|

|
|

||

||

||

||
|

||

||

||

||

||

||

||

||

||

||

||

||

||

||
|

|
|

integrity

is

not

be

ensured

when

you

use

these

methods.

If

the

box

is

does

not

contain

an

“X”

or

an

“O”,

using

that

get

method

for

that

data

type

results

in

an

exception.

Table

4.

ResultSet.getxxx

Methods

to

Retrieve

JDBC

Types

ResultSet.getxx

Methods

JDBC

Types

T
IN

Y
IN

T
 S

M
A

L
L

IN
T

 IN
T

E
G

E
R

 B
IG

IN
T

 F
L

O
A

T
 D

O
U

B
L

E
 B

IT
 C

H
A

R
 VA

R
C

H
A

R
 PA

C
K

E
D

D
E

C
IM

A
L

1
 Z

O
N

E
D

E
C

IM
A

L
1

 C
L

O
B

2
 B

IN
A

R
Y

 D
A

T
E

 T
IM

E
 T

IM
E

S
TA

M
P

getByte

X

O

O

O

O

O

O

O

O

O

O

getShort

O

X

O

O

O

O

O

O

O

O

O

getInt

O

O

X

O

O

O

O

O

O

O

O

getLong

O

O

O

X

O

O

O

O

O

O

O

getFloat

O

O

O

O

X

O

O

O

O

O

O

getDouble

O

O

O

O

O

X

O

O

O

O

O

getBoolean

O

O

O

O

O

O

X

O

O

O

O

getString

O

O

O

O

O

O

O

X

X

O

O

O

O

O

O

getBigDecimal

O

O

O

O

O

O

O

O

O

X

X

getClob

X

getBytes

X

getDate

O

O

X

O

getTime

O

O

X

O

getTimestamp

O

O

O

O

X

Notes®:

1.

PACKEDDECIMAL

and

ZONEDDECIMAL

are

IMS

Java

JDBC

types.

All

other

types

are

standard

SQL

types

defined

in

SQL92.

Restriction:

PACKEDDECIMAL

and

ZONEDDECIMAL

data

types

do

not

support

the

Sign

Leading

or

Sign

Separate

modes.

For

these

two

data

types,

sign

information

is

always

stored

with

the

Sign

Trailing

method.

2.

CLOB

is

supported

only

for

the

storage

and

retrieval

of

XML.

If

the

field

type

is

either

PACKEDDECIMAL

or

ZONEDDECIMAL,

the

type

qualifier

is

the

PICTURE

string

that

represents

the

layout

of

the

field.

All

COBOL

PICTURE

strings

that

contain

valid

combinations

of

9s,

Ps,

Vs,

and

Ss

are

supported.

Expansion

of

PICTURE

strings

is

handled

automatically.

For

example,

’9(5)’

is

a

valid

PICTURE

string.

For

zoned

decimal

numbers,

the

decimal

point

can

also

be

used

in

the

PICTURE

string.

If

the

field

contains

DATE,

TIME,

or

TIMESTAMP

data,

the

type

qualifier

specifies

the

format

of

the

data.

For

example,

a

type

qualifier

of

ddMMyyyy

indicates

that

the

data

is

formatted

as

follows:

11122004

is

December

11,

2004

For

DATE

and

TIME

types,

all

formatting

options

in

the

java.text.SimpleDateFormat

class

are

supported.

Supported

JDBC

Data

TypesIBM

Confidential

Chapter

7.

JDBC

Access

to

IMS

Data

103

|

|

|
|
|
|
|
|

|
|
|

|

|
|

For

the

TIMESTAMP

type,

the

formatting

option

’f’

is

available

for

nanoseconds.

TIMESTAMP

can

contain

up

to

nine

’f’s

and

replaces

the

’S’

options

for

milliseconds.

Instead,

’fff’

indicates

milliseconds

of

precision.

An

example

TIMESTAMP

format

is

as

follows:

yyyy-mm-dd

hh:mm:ss.fffffffff

General

Mappings

from

COBOL

Copybook

Types

to

IMS

Java

and

Java

Data

Types

Table

5

describes

how

COBOL

copybook

types

are

mapped

to

DLITypeInfo

constants

and

Java

data

types.

Table

5.

Mapping

from

COBOL

Formats

to

DLITypeInfo

Constants

and

Java

Data

Types

Copybook

Format

DLITypeInfo

Constant

Java

Data

Type

PIC

X

CHAR

java.lang.String

PIC

9

BINARY1

See

Table

6.2

See

Table

6.2

COMP-1

FLOAT

float

COMP-2

DOUBLE

double

PIC

9

COMP-33

PACKEDDECIMAL

java.math.BigDecimal

PIC

9

DISPLAY4

ZONEDDECIMAL

java.math.BigDecimal

Notes:

1.

Synonyms

for

BINARY

data

items

are

COMP

and

COMP-4.

2.

For

BINARY

data

items,

the

DLITypeInfo

constant

and

Java

type

depend

on

the

number

of

digits

in

the

PICTURE

clause.

Table

6

describes

the

type

based

on

PICTURE

clause

length.

3.

PACKED-DECIMAL

is

a

synonym

for

COMP-3.

4.

If

the

USAGE

clause

is

not

specified

at

either

the

group

or

elementary

level,

it

is

assumed

to

be

DISPLAY.

Table

6

shows

the

DLITypeInfo

constants

and

the

Java

data

types

based

on

the

PICTURE

clause.

Table

6.

DLITypeInfo

Constants

and

Java

Data

Types

Based

on

the

PICTURE

Clause

Digits

in

PICTURE

Clause

Storage

Occupied

DLITypeInfo

Constant

Java

Data

Type

1

through

4

2

bytes

SMALLINT

short

5

through

9

4

bytes

INTEGER

int

10

through

18

8

bytes

BIGINT

long

Table

7

shows

examples

of

specific

copybook

formats

mapped

to

DLITypeInfo

constants.

Table

7.

Copybook

Formats

Mapped

to

DLITypeInfo

Constants

Copybook

Format

DLITypeInfo

Constant

PIC

X(25)

CHAR

PIC

S9(04)

COMP

SMALLINT

PIC

S9(06)

COMP-4

INTEGER

PIC

S9(12)

BINARY

BIGINT

Supported

JDBC

Data

Types IBM

Confidential

104

IMS

Java

Guide

and

Reference

|
|
|
|

|

Table

7.

Copybook

Formats

Mapped

to

DLITypeInfo

Constants

(continued)

Copybook

Format

DLITypeInfo

Constant

COMP-1

FLOAT

COMP-2

DOUBLE

PIC

S9(06)V99

ZONEDDECIMAL

PIC

9(06).99

ZONEDDECIMAL

PIC

S9(06)V99

COMP-3

PACKEDDECIMAL

JDBC

Recommendations

for

IMS

Databases

Although

the

JDBC

interface

to

an

IMS

database

closely

follows

the

relational

database

paradigm,

the

segments

are

physically

stored

in

a

hierarchical

database,

which

affects

the

semantics

of

your

JDBC

calls

to

some

extent.

To

avoid

unexpected

results

or

potential

performance

problems,

follow

these

recommendations:

v

When

you

code

a

SELECT

list,

generally

try

to

supply

predicates

in

the

WHERE

clause

for

all

levels

down

the

hierarchy

to

your

target

segment.

If

you

supply

a

predicate

in

the

WHERE

clause

for

a

target

segment

somewhere

down

the

hierarchy

and

omit

predicates

for

its

parents,

IMS

must

scan

all

candidate

segments

at

the

parent

levels

in

an

attempt

to

match

the

predicate

that

you

supplied.

For

example,

if

you

are

retrieving

a

second-level

segment

and

you

supply

a

predicate

for

that

second-level

segment,

but

do

not

supply

one

for

the

root

segment,

IMS

might

perform

a

full

database

scan,

testing

every

second-level

segment

under

every

root

against

the

predicate.

This

has

performance

implications,

particularly

at

the

root

level,

and

also

might

result

in

unexpected

segments

being

retrieved.

A

similar

consideration

applies

to

locating

segments

for

UPDATE

clauses.

v

When

you

insert

a

new

segment,

generally

try

to

supply

predicates

in

the

WHERE

clause

for

all

levels

down

the

hierarchy

to

your

target

new

segment.

If

you

omit

a

predicate

for

any

level

down

to

the

insert

target

segment,

IMS

chooses

the

first

occurrence

of

a

segment

at

that

level

that

allows

it

to

satisfy

remaining

predicates,

and

performs

the

insert

in

that

path.

This

might

not

be

what

you

intended.

For

example

,

in

a

three-level

database,

if

you

insert

a

third-level

segment,

and

supply

a

predicate

for

the

root

but

none

at

the

second-level,

your

new

segment

will

always

be

inserted

under

the

first

second-level

segment

under

the

specified

root.

v

If

you

delete

a

segment

that

is

not

a

bottom-level

(leaf)

segment

in

its

hierarchy,

you

also

delete

the

remaining

segments

in

that

hierarchical

subtree.

The

entire

family

of

segments

of

all

types

that

are

located

hierarchically

below

your

target

deleted

segment

are

also

usually

deleted.

v

When

you

provide

predicates

to

identify

a

segment,

the

search

is

generally

faster

if

the

predicate

is

qualified

on

a

primary

or

secondary

index

key

field,

rather

than

simply

on

a

search

field.

Primary

and

secondary

key

fields

are

identified

for

each

segment

in

the

DLIModel

IMS

Java

Report.

Java

Metadata

Classes

for

IMS

Databases

To

access

a

set

of

IMS

databases

using

JDBC,

you

must

describe

to

IMS

Java

the

application’s

view

of

the

databases.

The

application

view

information

is

in

the

program

specification

block

(PSB),

but

you

must

first

convert

this

information

into

a

form

that

you

can

use

in

your

Java

application:

a

subclass

of

General

Mappings

from

COBOL

Copybook

TypesIBM

Confidential

Chapter

7.

JDBC

Access

to

IMS

Data

105

|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|

|
|
|
|

com.ibm.ims.db.DLIDatabaseView.

This

subclass

is

called

the

IMS

Java

metadata

class.

When

you

establish

the

JDBC

database

connection,

you

pass

the

name

of

this

class

to

IMS

Java.

Create

the

metadata

class

for

a

PSB

by

providing

the

application

PSB

source

and

related

DBD

source

files

to

the

DLIModel

utility

so

that

the

utility

can

generate

the

IMS

Java

metadata

class.

The

DLIModel

utility

is

described

in

IMS

Version

9:

Utilities

Reference:

System.

The

examples

used

throughout

this

chapter

are

based

on

the

sample

application.

The

PSB

for

the

sample

dealership

application

is

shown

in

Figure

34.

The

physical

that

is

DBD

referenced

by

the

PSB

in

Figure

34

is

shown

in

Figure

35.

The

DLIModel

utility

generates

a

subclass

of

DLIDatabaseView

from

the

PSB

and

DBD.

It

also

produces

a

report,

called

the

DLIModel

IMS

Java

Report,

that

provides

information

about

the

metadata

class.

Figure

36

on

page

107

shows

an

example

of

a

DLIModel

IMS

Java

Report.

DLR_PCB1

PCB

TYPE=DB,DBDNAME=DEALERDB,PROCOPT=GO,KEYLEN=42

SENSEG

NAME=DEALER,PARENT=0

SENSEG

NAME=MODEL,PARENT=DEALER

SENSEG

NAME=ORDER,PARENT=MODEL

SENSEG

NAME=SALES,PARENT=MODEL

SENSEG

NAME=STOCK,PARENT=MODEL

PSBGEN

PSBNAME=DLR_PSB,MAXQ=200,LANG=JAVA

END

Figure

34.

Sample

PSB

for

the

Dealership

Sample

Application

DBD

NAME=DEALERDB,ACCESS=(HDAM,OSAM),RMNAME=(DFSHDC40.1.10)

SEGM

NAME=DEALER,PARENT=0,BYTES=94,

FIELD

NAME=(DLRNO,SEQ,U),BYTES=4,START=1,TYPE=C

FIELD

NAME=DLRNAME,BYTES=30,START=5,TYPE=C

SEGM

NAME=MODEL,PARENT=DEALER,BYTES=43

FIELD

NAME=(MODTYPE,SEQ,U),BYTES=2,START=1,TYPE=C

FIELD

NAME=MAKE,BYTES=10,START=3,TYPE=C

FIELD

NAME=MODEL,BYTES=10,START=13,TYPE=C

FIELD

NAME=YEAR,BYTES=4,START=23,TYPE=C

FIELD

NAME=MSRP,BYTES=5,START=27,TYPE=P

SEGM

NAME=ORDER,PARENT=MODEL,BYTES=127

FIELD

NAME=(ORDNBR,SEQ,U),BYTES=6,START=1,TYPE=C

FIELD

NAME=LASTNME,BYTES=25,START=50,TYPE=C

FIELD

NAME=FIRSTNME,BYTES=25,START=75,TYPE=C

SEGM

NAME=SALES,PARENT=MODEL,BYTES=113

FIELD

NAME=(SALDATE,SEQ,U),BYTES=8,START=1,TYPE=C

FIELD

NAME=LASTNME,BYTES=25,START=9,TYPE=C

FIELD

NAME=FIRSTNME,BYTES=25,START=34,TYPE=C

FIELD

NAME=STKVIN,BYTES=20,START=94,TYPE=C

SEGM

NAME=STOCK,PARENT=MODEL,BYTES=62

FIELD

NAME=(STKVIN,SEQ,U),BYTES=20,START=1,TYPE=C

FIELD

NAME=COLOR,BYTES=10,START=37,TYPE=C

FIELD

NAME=PRICE,BYTES=5,START=47,TYPE=C

FIELD

NAME=LOT,BYTES=10,START=52,TYPE=C

DBDGEN

FINISH

END

Figure

35.

DBD

for

the

Sample

Dealership

Database

Java

Metadata

Classes

for

IMS IBM

Confidential

106

IMS

Java

Guide

and

Reference

|
|
|

|
|
|
|

|
|
|

|
|
|
|

The

report

supplements

the

information

in

the

generated

metadata

class

and

the

original

PSB

and

DBD

source

files.

Use

this

information

when

you

write

JDBC

calls

to

IMS

databases.

The

DLIModel

IMS

Java

Report

provides

you

with

the

following

information:

v

The

name

of

the

metadata

class

(DealerDatabaseView

in

this

example)

to

use

when

you

establish

a

connection

to

the

database.

v

The

hierarchy

of

segments

for

each

PCB.

v

The

fields

within

each

segment,

which

are

specified

by

the

DBD,

by

any

COBOL

copybooks,

or

by

control

statements.

For

example,

the

fields

DealerAddress

and

YTDSales

in

the

Dealer

segment

are

added

fields.

DLIModel

IMS

Java

Report

========================

Class:

DealerDatabaseView

in

package:

com.ibm.ims.tooling

generated

for

PSB:

AUTPSB11

==

PCB:

DealershipDB

==

Segment:

Dealer

Field:

DealerNumber

Type=CHAR

Length=4

++

Primary

Key

Field

++

Field:

DealerName

Type=CHAR

Length=30

Field:

DealerAddress

Type=CHAR

Length=50

Field:

YTDSales

Type=PACKEDDECIMAL

Type

Qualifier=S9(18)

==

Segment:

Model

Field:

ModelTypeCode

Type=CHAR

Length=2

++

Primary

Key

Field

++

Field:

CarMake

Type=CHAR

Length=10

(Search

Field)

Field:

CarModel

Type=CHAR

Length=10

(Search

Field)

Field:

CarYear

Type=CHAR

Length=4

(Search

Field)

Field:

Price

Type=CHAR

Length=5

(Search

Field)

Field:

EPACityMilage

Type=CHAR

Length=4

Field:

EPAHighwayMilage

Type=CHAR

Length=4

Field:

Horsepower

Type=CHAR

Length=4

==

Segment:

Order

Field:

OrderNumber

Type=CHAR

Length=6

++

Primary

Key

Field

++

Field:

PurchaserLastName

Type=CHAR

Length=25

(Search

Field)

Field:

PurchaserFirstName

Type=CHAR

Length=25

(Search

Field)

Field:

Options

Type=CHAR

Length=30

Field:

Price

Type=ZONEDDECIMAL

Type

Qualifier=99999

Field:

OrderDate

Type=CHAR

Length=8

Field:

SerialNo

Type=CHAR

Length=8

Field:

DeliverDate

Type=CHAR

Length=8

==

Segment:

Sales

Field:

DateSold

Type=CHAR

Length=8

++

Primary

Key

Field

++

Field:

PurchaserLastName

Type=CHAR

Length=25

(Search

Field)

Field:

PurchasetFirstName

Type=CHAR

Length=25

(Search

Field)

Field:

StockVINumber

Type=CHAR

Length=20

(Search

Field)

Field:

PurchaserAddress

Type=CHAR

Length=25

Field:

SoldBy

Type=CHAR

Start=84

Length=10

==

Segment:

Stock

Field:

StockVINumber

Type=CHAR

Length=20

++

Primary

Key

Field

++

Field:

Color

Type=CHAR

Length=10

(Search

Field)

Field:

Price

Type=ZONEDDECIMAL

Type

Qualifier=99999

Field:

Lot

Type=CHAR

Length=10

(Search

Field)

Field:

DateIn

Type=CHAR

Length=8

Field:

DateOut

Type=CHAR

Length=8

Figure

36.

Sample

DLIModel

IMS

Java

Report

for

the

Dealership

Sample

Database

Java

Metadata

Classes

for

IMSIBM

Confidential

Chapter

7.

JDBC

Access

to

IMS

Data

107

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|
|

v

The

names

of

PCBs,

segments,

and

fields

to

use

in

your

JDBC

calls.

These

names

may

be

alias

names

that

are

assigned

to

the

IMS

entities.

Alias

names

are

intended

to

be

more

representative

and

intuitive

identifiers

for

your

Java

application

to

use

rather

than

the

8-character

names

in

the

PSB

and

DBDs.

In

the

example,

the

name

DealershipDB

replaces

the

PCB

name

DLR_PCB1

from

the

PSB.

A

comparison

of

the

names

of

the

segments

and

the

fields

in

the

report

with

their

names

in

the

DBD

shows

that

they

have

all

been

assigned

more

meaningful

names.

v

The

data

types

of

fields.

The

data

types

of

the

fields

are

based

on

the

simple

TYPE

property

of

fields

in

the

DBD

and

the

DLIModel

utility

control

statements.

For

example,

the

field

YTDSales

in

the

Dealer

segment

is

type

PACKEDDECIMAL

with

a

type

qualifier

(format

descriptor)

of

S9(18).

v

The

fields

in

each

segment,

which

are

identified

as

primary

or

secondary

index

fields,

search

fields,

or

other

fields.

Sample

Application

that

Uses

JDBC

Because

IMS

is

a

hierarchical

database,

IMS

Java

does

not

fully

implement

the

JDBC

API.

This

section

describes

the

IMS

Java

implementation

of

JDBC

with

a

sample

application.

To

use

JDBC

to

read,

update,

insert,

and

delete

segment

instances,

an

application

must:

1.

Obtain

a

connection

to

the

database.

Load

the

DLIDriver

and

retrieve

a

Connection

object

from

the

DriverManager.

2.

Retrieve

a

Statement

or

PreparedStatement

object

from

the

Connection

object

and

execute

it.

An

example

of

this

step

is

in

Figure

37

on

page

109.

3.

Iterate

the

ResultSet

object

returned

from

the

Statement

or

PreparedStatement

object

to

retrieve

specific

field

results.

An

example

of

this

step

is

in

Figure

37

on

page

109.

Figure

37

on

page

109,

which

is

part

of

an

sample

method

showModelDetails,

obtains

a

Connection

object,

retrieves

a

PreparedStatement

object,

makes

SQL

calls

to

the

database,

and

then

iterates

the

ResultSet

object

that

is

returned

from

the

PreparedStatement

object.

Java

Metadata

Classes

for

IMS IBM

Confidential

108

IMS

Java

Guide

and

Reference

|
|
|
|

|
|

|
|
|

Imported

Packages

for

JDBC

Access

to

IMS

Databases

To

use

unqualified

class

names

instead

of

fully-qualified

names

in

your

program,

include

import

statements

at

the

top

of

the

Java

file.

Use

the

following

import

statement

to

make

IMS

database

access

classes

available

by

their

unqualified

class

names:

import

com.ibm.ims.db.*;

Use

the

following

import

statement

to

make

JDBC

classes

available

by

their

unqualified

class

names:

import

java.sql.*;

Connections

to

IMS

Databases

Provide

the

name

of

the

DLIDatabaseView

subclass

when

retrieving

a

JDBC

Connection

object.

When

the

following

code

is

executed,

DLIDriver,

a

class

in

com.ibm.ims.db,

registers

itself

with

the

JDBC

DriverManager

object:

Class.forName("com.ibm.ims.db.DLIDriver");

When

the

following

code

is

executed,

the

JDBC

DriverManager

object

determines

which

of

the

registered

drivers

supports

the

supplied

string:

public

ModelDetailsOutput

showModelDetails(ModelDetailsInput

input)

throws

NamingException,

SQLException,

IMSException

{

//

Extract

the

key

from

the

input

String

modelKey

=

input.getModelKey();

ModelDetailsOutput

output

=

new

ModelDetailsOutput();

//

Validate

the

key

if

(modelKey

!=

null

&&

!modelKey.trim().equals(""))

{

//

Build

the

SQL

query.

String

query

=

"SELECT

*

FROM

Dealer.ModelSegment

WHERE

"

+

"ModelSegment.ModelKey

=

’"

+

input.getModelKey()

+

"’";

//

Execute

the

query

Statement

statement

=

connection.createStatement();

ResultSet

results

=

statement.executeQuery(query);

//

Store

the

results

in

the

output

object

and

send

it

//

back

to

the

caller

of

this

method.

if

(results.next())

{

output.setMake(results.getString("Make"));

output.setModelType(results.getString("ModelType"));

output.setModel(results.getString("Model"));

output.setYear(results.getString("Year"));

output.setPrice(results.getString("MSRP"));

output.setCount(results.getString("Counter"));

}

}

return

output;

}

Figure

37.

Example

JDBC

Application

Sample

JDBC

ApplicationIBM

Confidential

Chapter

7.

JDBC

Access

to

IMS

Data

109

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

connection

=

DriverManager.getConnection

("jdbc:dli:dealership.application.DealerDatabaseView");

Because

the

supplied

string

begins

with

jdbc:dli:,

the

JDBC

DriverManager

object

locates

the

DLIDriver

instance

and

requests

that

it

create

a

connection.

Sample

JDBC

Application IBM

Confidential

110

IMS

Java

Guide

and

Reference

Chapter

8.

XML

Storage

in

IMS

Databases

Because

XML

and

IMS

databases

are

both

hierarchical,

IMS

is

a

natural

database

management

system

for

managing

XML

documents.

IMS

allows

you

to

easily

receive

and

store

incoming

XML

documents

as

well

as

compose

XML

documents

from

existing,

legacy

information

stored

that

is

in

IMS

databases.

For

example,

you

can:

v

Compose

XML

documents

from

all

types

of

existing

IMS

databases,

to

support,

for

example,

business-to-business

on

demand

transactions

and

intra-organizational

sharing

of

data.

v

Receive

incoming

XML

documents

and

store

them

in

IMS

databases.

These

databases

can

be

legacy

databases

or

new

databases.

XML

documents

are

stored

decomposed:

the

document

is

parsed

and

element

data

and

attributes

are

stored

in

fields

in

segments

as

normal

IMS

data.

This

is

appropriate

for

data-centric

documents.

You

can

store

XML

documents

decomposed,

intact,

or

a

in

combination

of

decomposed

and

intact.

In

decomposed

storage

mode,

the

incoming

document

is

parsed

and

element

data

and

attributes

are

stored

in

fields

as

normal

IMS

data.

Decomposed

storage

is

appropriate

for

data-centric

documents.

In

intact

storage,

the

incoming

document,

including

its

tags,

is

stored

directly

in

the

database

without

IMS

being

aware

of

its

structure.

Intact

storage

is

appropriate

for

document-centric

documents.

To

store

XML

in

an

IMS

database

or

to

retrieve

XML

from

IMS,

you

must

first

generate

an

XML

schema

and

the

IMS

Java

metadata

class

using

the

DLIModel

utility.

The

metadata

and

schema

are

used

during

the

storage

and

retrieval

of

XML.

Your

application

uses

the

IMS

Java

JDBC

user-defined

functions

storeXML

and

retrieveXML

to

store

XML

in

IMS

databases,

create

XML

from

IMS

data,

or

to

retrieve

XML

documents

from

IMS

databases.

Figure

38

on

page

112

shows

the

overall

process

for

storing

and

retrieving

XML

in

IMS.

IBM

Confidential

©

Copyright

IBM

Corp.

2000,

2004

111

|

|

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

The

following

topics

provide

additional

information:

v

“Decomposed

Storage

Mode

for

XML”

v

“Intact

Storage

Mode

for

XML”

on

page

114

v

“XML

Schema”

on

page

116

v

“XML

Type

Representation”

on

page

117

v

“JDBC

Interface

for

Storing

and

Retrieving

XML”

on

page

118

Decomposed

Storage

Mode

for

XML

In

decomposed

storage

mode,

all

elements

and

attributes

are

stored

as

regular

fields

in

optionally

repeating

DL/I

segments.

During

parsing,

all

tags

and

other

XML

syntactic

information

is

checked

for

validity

and

then

discarded.

The

parsed

data

is

physically

stored

in

the

database

as

standard

IMS

data,

meaning

that

each

defined

field

in

the

segment

is

of

an

IMS

standard

type.

Because

all

XML

data

is

composed

of

string

types

(typically

Unicode)

with

type

information

existing

in

the

validating

XML

schema,

each

parsed

data

element

and

attribute

can

be

converted

to

the

corresponding

IMS

standard

field

value

and

stored

into

the

target

database.

Inversely,

during

XML

retrieval,

DL/I

segments

are

retrieved,

fields

are

converted

to

the

destination

XML

encoding,

tags

and

XML

syntactic

information

(stored

in

the

XML

schema)

are

added,

and

the

XML

document

is

composed.

Figure

39

on

page

113

shows

how

XML

elements

are

decomposed

and

stored

into

IMS

segments.

Figure

38.

Overview

of

XML

Storage

in

IMS

IBM

Confidential

112

IMS

Java

Guide

and

Reference

|

|

|

|

|

|

|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|

Decomposed

storage

mode

is

suitable

for

data-centric

XML

documents,

where

the

elements

and

attributes

from

the

document

typically

are

either

character

or

numeric

items

of

known

short

or

medium

length

that

lend

themselves

to

mapping

to

fields

in

segments.

Lengths

are

typically,

though

not

always,

fixed.

The

XML

document

data

can

start

at

any

segment

in

the

hierarchy,

which

is

the

root

element

in

the

XML

document.

The

segments

in

the

subtree

below

this

segment

are

also

included

in

the

XML

document.

Elements

and

attributes

of

the

XML

document

are

stored

in

the

dependent

segments

of

the

root

element

segment.

Any

other

segments

in

the

hierarchy

that

are

not

dependent

segments

of

that

root

element

segment

are

not

part

of

the

XML

document

and,

therefore,

are

not

described

in

the

describing

XML

schema.

When

an

XML

document

is

stored

in

the

database,

the

value

of

all

segment

fields

is

extracted

directly

from

the

XML

document.

Therefore,

any

unique

key

fields

in

any

of

the

XML

segments

must

exist

in

the

XML

document

as

an

attribute

or

simple

element.

The

XML

hierarchy

is

defined

by

a

PCB

hierarchy

that

is

based

on

either

a

physical

or

a

logical

database.

Logical

relationships

are

supported

for

retrieval

and

composition

of

XML

documents,

but

not

for

inserting

documents.

For

a

legacy

database,

either

the

whole

database

hierarchy,

or

any

subtree

of

the

hierarchy

can

be

considered

as

a

decomposed

data-centric

XML

document.

The

segments

and

fields

that

comprise

the

decomposed

XML

data

are

determined

only

by

the

definition

of

a

mapping

(the

XML

schema)

between

those

segments

and

fields

and

a

document.

One

XML

schema

is

generated

for

each

database

PCB.

Therefore,

multiple

documents

may

be

derived

from

a

physical

database

hierarchy

through

different

XML

Schemas.

There

are

no

restrictions

on

how

these

multiple

documents

overlap

and

share

common

segments

or

fields.

Figure

39.

How

XML

is

Decomposed

XML

and

Stored

in

IMS

Segments

Decomposed

Storage

ModeIBM

Confidential

Chapter

8.

XML

Storage

in

IMS

Databases

113

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

A

new

database

can

be

designed

specifically

to

store

a

particular

type

of

data-centric

XML

documents

in

decomposed

form.

Intact

Storage

Mode

for

XML

In

intact

storage

mode,

all

or

part

of

an

XML

document

is

stored

intact

in

a

field.

The

XML

tags

are

not

removed

and

IMS

does

not

parse

the

document.

XML

documents

can

be

large,

so

the

documents

can

span

the

primary

intact

field,

which

contains

the

XML

root

element,

and

fields

in

overflow

segments.

The

segments

that

contain

the

intact

XML

documents

are

standard

IMS

segments

and

can

be

processed

like

any

other

IMS

segments.

The

fields,

because

they

contain

unparsed

XML

data,

cannot

be

processed

like

standard

IMS

fields.

However,

intact

storage

of

documents

has

the

following

advantages

over

decomposed

storage

mode:

v

IMS

does

not

need

to

compose

or

decompose

the

XML

during

storage

and

retrieval.

Therefore,

you

can

process

intact

XML

documents

faster

than

decomposed

XML

documents.

v

You

do

not

need

to

match

the

XML

document

content

with

IMS

field

data

types

or

lengths.

Therefore,

you

can

store

XML

documents

with

different

structure,

content,

and

length

within

the

same

IMS

database.

Intact

XML

storage

requires

a

new

IMS

database

or

an

extension

of

an

existing

database

because

the

XML

document

must

be

stored

in

segments

and

fields

that

are

specifically

tailored

for

storing

intact

XML.

To

store

all

or

part

of

an

XML

document

intact

in

an

IMS

database,

the

database

must

define

a

base

segment,

which

contains

the

root

element

of

the

intact

XML

sub-tree.

The

rest

of

the

intact

XML

sub-tree

is

stored

in

overflow

segments,

which

are

child

segments

of

the

the

base

segment.

The

base

segment

contains

the

root

element

of

the

intact

XML

sub-tree

and

any

decomposed

or

non-XML

fields.

Table

8

shows

the

format

of

the

primary

intact

field.

This

format

is

defined

in

the

DBD,

which

is

described

in

“DBDs

for

Intact

XML

Storage”

on

page

115.

Table

8.

Primary

Intact

Field

Format

Byte

Content

1

0x01

2

Reserved

3–4

Bit

1

indicates

whether

there

are

overflow

segments

Bit

2–16

indicate

the

length

of

the

XML

data

in

this

field

rest

of

field

XML

data

The

overflow

segment

contains

only

the

only

the

overflow

XML

data

field.

This

format

is

defined

in

the

DBD,

which

is

described

in

“DBDs

for

Intact

XML

Storage”

on

page

115.

Byte

Content

1–2

Key

field

sequence

number

2–4

Bit

1

indicates

whether

there

more

overflow

segments

after

this

segment

Bit

2–16

indicate

the

length

of

the

XML

data

in

this

field

rest

of

field

Continuation

of

XML

data

Decomposed

Storage

Mode IBM

Confidential

114

IMS

Java

Guide

and

Reference

|
|

|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|

||

||

||

||

||
|

||
|

|
|
|

|||

||

||
|

||
|

Side

Segments

for

Secondary

Indexing

IMS

cannot

search

intact

XML

documents

for

specific

elements

within

the

document.

However,

you

can

create

a

side

segment

that

contains

specific

XML

element

data.

IMS

stores

the

XML

document

intact,

and

also

decomposed

a

specific

piece

XML

data

into

a

standard

IMS

segment.

This

segment

can

then

be

searched

with

a

secondary

index.

Figure

40shows

a

base

segment,

an

overflow

segment,

and

the

side

segment

for

secondary

indexing.

For

information

about

the

DBDs

for

side

segments

see

Figure

42

on

page

116

in

“DBDs

for

Intact

XML

Storage.”

DBDs

for

Intact

XML

Storage

The

DBD

shown

in

Figure

41

defines

a

base

segment

and

an

overflow

segment.

The

XML

intact

field

in

the

base

segment

contains

a

4–byte

header,

so

you

must

define

the

field

to

be

greater

than

4

bytes.

The

XML

intact

field

in

the

overflow

segment

contains

a

2–byte

header

for

the

length,

so

you

must

define

the

field

to

be

greater

than

2

bytes.

Figure

40.

Intact

Storage

of

XML

with

a

Secondary

Index

DBD

NAME=dbdname,ACCESS=(PHDAM,VSAM),RMNAME=(DFSHDC40,1,5,numcis)

*Base

segment

SEGM

NAME=segname1,PARENT=0,BYTES=seglen1

*

XML

intact

field,

which

contains

a

4-byte

header

FIELD

NAME=INTDATA,BYTES=length,START=startpos,TYPE=C

*

Additional

non-intact

fields

can

be

specified

in

segment

*

*

Overflow

Segment

SEGM

NAME=segname2,PARENT=segname1,BYTES=seglen2

FIELD

NAME=(SEQNO,SEQ,U),BYTES=2,START=1,TYPE=C

*

XML

intact

field,

which

contains

a

2-byte

header

for

length

FIELD

NAME=INTDATA,BYTES=1,START=3,TYPE=C

DBDGEN

FINISH

END

Figure

41.

DBD

for

Intact

XML

Storage

and

No

Secondary

Indexes

Intact

Storage

ModeIBM

Confidential

Chapter

8.

XML

Storage

in

IMS

Databases

115

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|
|
|
|

|
|
|

|
|

|

|
|
|
|
|
|

The

DBD

shown

in

Figure

42

defines

a

base

segment,

and

overflow

segment,

and

a

side

segment

that

is

used

by

two

secondary

indexes.

Figure

43

shows

a

secondary

index

for

the

DBD

shown

in

Figure

42.

XML

Schema

The

generated

XML

schema

is

an

XML

document

that

describes

an

IMS

database

based

on

a

PCB.

In

order

to

retrieve

or

store

XML

in

IMS,

an

XML

schema

is

required

.

IMS

uses

the

XML

schema

to

validate

an

XML

document

that

is

either

being

stored

into

IMS

or

being

retrieved

from

IMS.

The

XML

schema,

not

the

application

program,

determines

the

structural

layout

of

the

XML

in

the

database.

The

DLIDatabaseView

subclass

determines

how

the

data

is

physically

stored

in

the

database.

The

DLIModel

utility

generates

a

schema

that

is

based

on

a

PCB.

For

information

about

generating

an

XML

schema,

see

IMS

Version

9:

Utilities

Reference:

System.

DBD

NAME=dbdname,ACCESS=(PHDAM,VSAM),RMNAME=(DFSHDC40,1,5,200)

*

Base

segment

SEGM

NAME=segname1,PARENT=0,BYTES=seglen1

*

XML

intact

field,

which

contains

a

4-byte

header

FIELD

NAME=INTDATA,BYTES=length,START=startpos,TYPE=C

*

LCHILD

NAME=(issegname1,isdbd1),POINTER=INDX

XDFLD

NAME=issrch1,SRCH=iskey1,SEGMENT=ssegname1

LCHILD

NAME=(issegname2,isdbd2),POINTER=INDX

XDFLD

NAME=issrch2,SRCH=iskey2,SEGMENT=ssegname2

*

Overflow

segment

SEGM

NAME=segname2,PARENT=segname1,BYTES=seglen2

FIELD

NAME=(SEQNO,SEQ,U),BYTES=2,START=1,TYPE=C

*

XML

intact

field,

which

contains

a

2-byte

header

for

length

FIELD

NAME=INTDATA,BYTES=1,START=3,TYPE=C

*

*

Index

side

segment

1

SEGM

NAME=ssegname1,PARENT=segname1,BYTES=iseglen1

FIELD

NAME=(iskey1,SEQ,U),BYTES=islen1,START=1,TYPE=C

*

*

Index

side

segment

2

SEGM

NAME=ssegname2,PARENT=segname1,BYTES=iseglen2

FIELD

NAME=(iskey2,SEQ,U),BYTES=islen2,START=1,TYPE=C

*

DBDGEN

FINISH

END

Figure

42.

DBD

for

Intact

XML

Storage

and

Two

Secondary

Indexes

DBD

NAME=isdbd1,ACCESS=(PSINDEX,VSAM)

SEGM

NAME=issegname1,PARENT=0,BYTES=iseglen

FIELD

NAME=(isfld1,SEQ,U),BYTES=islen1,START=1,TYPE=C

LCHILD

NAME=(ssegname1,dbdname),INDEX=issrch1

DBDGEN

FINISH

END

Figure

43.

Secondary

Index

DBD

for

Intact

XML

Storage

Intact

Storage

Mode IBM

Confidential

116

IMS

Java

Guide

and

Reference

|
|
|

|
|

|
|

|
|
|
|
|
|
|

|
|

The

generated

XML

schema

must

be

made

available

at

run

time

to

provide

the

XML

structure

of

the

data

retrieved

from

the

database

or

of

an

incoming

XML

document

being

stored

into

IMS.

By

default,

a

schema

is

loaded

from

the

HFS

root

directory

based

on

the

PSB

and

PCB

names

that

are

used

in

the

retrieveXML

or

storeXML

query.

To

override

the

default

location,

which

is

the

root

file

system,

define

the

environment

variable

″http://www.ibm.com/ims/schema-resolver/file/path″

with

the

value

of

the

XML

schema

locations.

For

example,

if

the

XML

schemas

are

located

in

the

directory

/user/schemas,

define

an

environment

variable

to

the

SDK

as

follows:

-Dhttp://www.ibm.com/ims/schema-resolver/file/path=/chris/schema/

You

can

also

specify

the

XML

schema

in

the

application

program

by

setting

the

system

property.

For

example:

System.setProperty("http://www.ibm.com/ims/schema-resolver/file/path",

"/chris/schema");

XML

Type

Representation

IMS

has

no

inherent

type

information

and

stores

all

of

its

segments

as

a

simple

array

of

bytes.

Therefore,

it

is

up

to

all

application

programs

that

access

an

IMS

segment

to

agree

on

three

pieces

of

information:

v

A

list

of

fields

that

are

represented

within

each

segment

v

What

data

type

each

field

stores

v

How

each

data

type

is

represented

as

bytes,

including

field

redefinitions

In

order

for

IMS

to

correctly

produce

XML

documents

from

the

database

and

to

breakdown

and

store

XML

documents

into

the

database,

it

also

needs

to

satisfy

these

conditions.

In

addition

to

the

type

of

the

field,

each

XML

schema

document

lists

every

field

as

one

of

the

allowed

42

XML

types.

This

information

instructs

any

user

of

a

valid

XML

document

how

to

interpret

the

information

within

it,

and

informs

IMS

in

how

to

generate

an

outgoing,

or

decompose

an

incoming,

XML

document.

The

retrieveXML

and

storeXML

UDFs

validate

XML

documents,

according

to

the

generated

XML

schema,

and

use

the

XML

schema

with

the

IMS

Java

metadata

to

determine

how

to

extract

element

and

attribute

values

to

populate

fields

and

segments.

Table

9

lists

the

IMS

Java-supported

XML

schema

data

types.

Table

9.

IMS

Java-Supported

XML

Schema

Data

Types

JDBC

Data

Type

XML

Schema

Data

Type

CHAR

xsd:string

VARCHAR

xsd:string

BIT

xsd:boolean

TINYINT

xsd:byte

SMALLINT

xsd:short

INTEGER

xsd:int

BIGINT

xsd:long

FLOAT

xsd:float

XML

SchemaIBM

Confidential

Chapter

8.

XML

Storage

in

IMS

Databases

117

|
|
|

|
|

|
|
|
|
|

|

|
|

|

|
|

|
|
|

|

|

|

|
|
|

|
|
|
|
|
|
|
|

|

||

||

||

||

||

||

||

||

||

||

Table

9.

IMS

Java-Supported

XML

Schema

Data

Types

(continued)

JDBC

Data

Type

XML

Schema

Data

Type

DOUBLE

xsd:double

BINARY

Not

supported

PACKEDDECIMAL

xsd:decimal

ZONEDECIMAL

xsd:decimal

DATE

xsd:gYear

(for

yyyy-MM)

xsd:date

(for

yyyy)

xsd:gYearMonth

(for

yyyy-MM-dd)

TIME

xsd:time

TIMESTAMP

xsd:dateTime

JDBC

Interface

for

Storing

and

Retrieving

XML

A

Java

application

program

that

is

running

in

any

of

the

following

environments

can

store

XML

in

IMS

and

retrieve

XML

from

IMS:

v

IMS

dependent

region

(JMP

or

JBP)

v

WebSphere

Application

Server

for

z/OS

v

WebSphere

Application

Server

on

a

non-z/OS

platform

v

DB2

UDB

for

z/OS

stored

procedure

v

CICS

JCICS

region

The

IMS

Java

JDBC

interface

has

been

extended

to

support

storage

and

retrieval

of

XML.

For

more

information,

see

“SQL

Extensions

for

XML

Storage

and

Retrieval”

on

page

97.

XML

Type

Representation IBM

Confidential

118

IMS

Java

Guide

and

Reference

|

||

||

||

||

||

||
|

||

||
|

|
|

|
|

|

|

|

|

|

|
|
|

Chapter

9.

Problem

Determination

This

chapter

describes

how

to

debug

your

Java

applications

that

use

IMS

Java

and

determine

the

source

of

problems

within

your

applications.

The

following

topics

provide

additional

information:

v

“Exceptions”

v

“XML

Tracing

for

IMS

Java”

on

page

120

v

“Debugging

an

Unresettable

JVM

in

a

JMP

or

JBP

Region”

on

page

122

Exceptions

Exceptions

are

thrown

as

a

result

of

non-blank

status

codes

and

non-zero

return

codes

(in

cases

when

there

were

no

PCBs

to

deliver

status

codes)

from

IMS

DL/I

calls.

Even

though

an

exception

is

thrown

by

the

JavaToDLI

class

for

every

non-blank

status

code,

some

of

these

exceptions

are

caught

by

the

application

or

database

packages

and

converted

to

return

values.

How

Exceptions

Map

to

DL/I

Status

Codes

The

com.ibm.ims.base.IMSException

class

extends

the

java.lang.Exception

class.

The

DLIException

class

extends

the

IMSException

class.

The

DLIException

class

includes

all

errors

that

occur

within

the

IMS

Java

library

that

are

not

a

result

of

any

call

to

IMS.

You

can

use

the

following

methods

to

get

information

from

an

IMSException

object:

getAIB

Returns

the

IMS

application

interface

block

(AIB)

from

the

DL/I

call

that

caused

the

exception.

The

IMS

AIB

is

null

for

the

DLIException

object.

The

methods

on

the

AIB

can

be

called

to

return

other

information

at

the

time

of

the

failure,

including

the

resource

or

PCB

name

and

the

PCB

itself.

getStatusCode

Returns

the

IMS

status

code

from

the

DL/I

call

that

caused

the

exception.

This

method

works

with

the

JavaToDLI

set

of

constants.

The

status

code

is

zero

(0)

for

a

DLIException

object.

getFunction

Returns

the

IMS

function

from

the

DL/I

call

that

caused

the

exception.

The

function

is

zero

(0)

for

a

DLIException

object.

The

following

database

access

methods

of

the

DLIConnection

class

return

false

if

they

receive

a

GB

status

code

(no

more

such

segments

or

segment

not

found)

or

a

GE

status

code

(no

such

segment

or

end

of

database):

v

DLIConnection.getUniqueSegment

v

DLIConnection.getNextSegment

v

DLIConnection.getUniqueRecord

v

DLIConnection.getNextRecord

v

DLIConnection.getNextSegmentInParent

IBM

Confidential

©

Copyright

IBM

Corp.

2000,

2004

119

|
|
|
|
|

|
|
|

The

IMSMessageQueue.getUniqueMessage

method

returns

false

if

it

receives

a

QC

(no

more

messages)

status

code.

The

IMSMessageQueue.getNextMessage

method

returns

false

if

it

receives

a

QD

status

code,

which

means

that

there

are

no

more

segments

for

multi-segment

messages.

The

example

in

Figure

44

extracts

information

from

an

IMSException

object:

Related

Reading:

For

more

information

about

DL/I

status

codes,

see

IMS

Version

9:

Application

Programming:

Database

Manager

and

IMS

Version

9:

Application

Programming:

Transaction

Manager.

SQLException

Objects

An

SQLException

object

is

thrown

to

indicate

that

an

error

has

occurred

either

in

the

Java

address

space

or

during

database

processing.

Each

SQLException

provides

the

following

information:

v

A

string

that

describes

the

error.

–

This

string

is

available

through

the

use

of

the

getMessage()

method.

v

An

“SQLstate”

string

that

follows

XOPEN

SQLstate

conventions.

–

The

values

of

the

SQLstate

string

are

described

in

the

XOPEN

SQL

specification.

v

A

link

to

the

next

SQL

exception

if

more

than

one

was

generated.

–

The

next

exception

is

used

as

a

source

of

additional

error

information.

XML

Tracing

for

IMS

Java

Using

the

com.ibm.ims.base.XMLTrace

class

for

z/OS

applications

or

com.ibm.ims.rds.XMLTrace

for

distributed

applications,

you

can

debug

your

Java

applications

by

tracing,

or

documenting,

the

flow

of

control

throughout

your

application.

By

setting

up

trace

points

throughout

your

application

for

output,

you

can

isolate

problem

areas

and,

therefore,

know

where

to

make

adjustments

to

produce

the

results

you

expect.

In

addition,

because

the

XMLTrace

class

supports

writing

input

parameters

and

results,

and

the

IMS

Java

library

methods

use

this

feature,

you

can

verify

that

correct

results

occur

across

method

boundaries.

The

XMLTrace

class

is

different

from

the

DLIModel

utility

trace.

For

information

about

how

to

enable

tracing

for

the

DLIModel

utility,

see

the

OPTIONS

statement

of

the

DLIModel

utility

in

IMS

Version

9:

Utilities

Reference:

System.

Note:

The

XMLTrace

class

replaces

the

IMSTrace

class.

However,

applications

that

use

the

IMSTrace

class

will

still

function

properly.

try

{

DealerDatabaseView

dealerView

=

new

DealerDatabaseView();

DLIConnection

connection

=

DLIConnection.createInstance(dealerView);

connection.getUniqueSegment(dealerSegment,

dealerSSAList);

}

catch

(IMSException

e

)

{

short

statusCode

=

e.getStatusCode();

String

failingFunction

=

e.getFunction();

}

Figure

44.

IMSException

Class

Example

Exceptions IBM

Confidential

120

IMS

Java

Guide

and

Reference

|

|

|
|
|
|
|
|
|
|

|
|
|

|
|

WebSphere

Application

Server

Security

Requirements

for

XML

Tracing

Before

you

can

trace

your

application

that

runs

on

WebSphere

Application

Server

V5.0

for

z/OS

or

WebSphere

Application

Server

V5.0

on

a

non-z/OS

platform,

you

must

add

permissions

to

the

WebSphere

Application

Server

for

z/OS

server.policy

file

and

create

a

was.policy

for

the

application

EAR

file.

To

add

permissions

to

the

WebSphere

Application

Server

for

z/OS

server.policy

file:

1.

Open

the

WebSphere

Application

Server

for

z/OS

server.policy

file,

which

is

in

the

properties

directory

of

the

WebSphere

Application

Server

installation

directory,

and

find

the

following

code,

which

was

added

when

you

installed

the

custom

service

(if

this

code

is

not

in

the

file,

add

it):

grant

codeBase

"file:/imsjava/-"

{

permission

java.util.PropertyPermission

"*",

"read,

write";

permission

java.lang.RuntimePermission

"loadLibrary.JavTDLI";

permission

java.io.FilePermission

"/tmp/*",

"read,

write";

};

2.

Below

permission

java.io.FilePermission

"/tmp/*",

"read,

write";,

add

the

following

permission,

replacing

traceOutputDir

with

the

directory

name

for

the

trace

output

file:

permission

java.io.FilePermission

"/traceOutputDir/*",

"read,

write";

To

create

the

was.policy

file:

1.

Create

a

new

file

named

was.policy

that

contains

the

following

code,

replacing

traceOutputDir

with

the

directory

name

for

the

trace

output

file:

grant

codeBase

"file:${application}"

{

permission

java.io.FilePermission

"/traceOutputDir/*",

"read,

write";

};

2.

Put

the

was.policy

file

in

the

META-INF

directory

of

your

application’s

EAR

file.

Enabling

XML

Tracing

To

debug

with

XMLTrace,

you

must

first

turn

on

the

tracing

function

by

calling

one

of

the

XMLTrace.enable

methods.

Because

tracing

does

not

occur

until

this

variable

is

set,

it

is

best

to

do

so

within

a

static

block

of

your

main

application

class.

Then,

you

must

decide

how

closely

you

want

to

trace

the

IMS

Java

library’s

flow

of

control

and

how

much

tracing

you

want

to

add

to

your

application

code.

You

can

determine

the

amount

of

tracing

in

the

IMS

Java

library

by

providing

the

trace

level

in

the

XMLTrace.enable

method.

By

default,

this

value

is

set

to

XMLTrace.TRACE_EXCEPTIONS,

which

traces

the

construction

of

IMS

Java-provided

exceptions.

XMLTrace

also

defines

constants

for

three

types

of

additional

tracing.

These

constants

provide

successively

more

tracing

from

IMSTrace.TRACE_CTOR1

(level

one

tracing

of

constructions)

to

IMSTrace.TRACE_DATA3

(level

three

tracing

of

data).

Tracing

the

IMS

Java

Library

Methods

To

enable

the

tracing

that

is

shipped

with

IMS

Java

library

methods:

1.

Call

the

XMLTrace.enable

method

and

specify

the

root

element

name

and

the

trace

level.

For

example:

XMLTrace.enable("MyTrace",

XMLTrace.TRACE_METHOD1);

2.

Set

an

output

stream

(a

print

stream

or

a

character

output

writer)

as

the

current

trace

stream.

For

example:

a.

Set

the

system

error

stream

as

the

current

trace

stream:

XMLTrace.setOutputStream(System.err);

XML

TracingIBM

Confidential

Chapter

9.

Problem

Determination

121

|

|
|
|
|

|

|
|
|
|

|
|
|
|
|

|
|
|

|

|

|
|

|
|
|

|

|

|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|

|
|

|

|

b.

Set

a

StringWriter

object

(or

any

other

type

of

writer)

as

the

current

trace

stream:

StringWriter

stringWriter

=

new

StringWriter();

XMLTrace.setOutputWriter(stringWriter);

3.

Close

the

XML

trace:

XMLTrace.close();

Steps

1

and

2

are

best

implemented

within

a

static

block

of

your

main

application

class,

as

shown

in

Figure

45.

Tracing

Your

Application

You

can

add

trace

statements

to

your

application,

similar

to

those

provided

by

the

IMS

Java

library,

by

defining

an

integer

variable

that

you

test

prior

to

writing

trace

statements.

Using

a

variable

other

than

XMLTrace.libTraceLevel

enables

you

to

control

the

level

of

tracing

in

your

application

independently

of

the

tracing

in

the

IMS

Java

library.

For

example,

you

can

turn

off

the

tracing

of

IMS

Java

Library

routines

by

setting

XMLTrace.libTraceLevel

to

zero

but

still

trace

your

application

code.

To

enable

tracing

for

your

application:

1.

Define

an

integer

variable

to

contain

the

trace

level

for

application-provided

code:

public

int

applicationTraceLevel

=

XMLTrace.TRACE_CTOR3;

2.

Set

up

the

XMLTrace

method

to

trace

methods,

parameters,

and

return

values

as

necessary.

Debugging

an

Unresettable

JVM

in

a

JMP

or

JBP

Region

If

you

need

to

debug

reset

trace

events

for

the

persistent

reusable

JVM

in

a

JBP

or

JMP

region,

you

need

to

run

the

JVM

in

debug

mode.

The

following

messages

in

your

job

log

indicate

that

you

should

run

in

debug

mode

to

determine

the

problem:

DFSJVM00:

ResetJavaVM()

RC=-1

DFSJVM00:

DestroyJavaVM()

RC=-1

To

run

the

JVM

in

debug

mode,

add

DEBUG=Y

to

the

DFSJVMEV

sample

member,

or

the

member

that

is

specified

by

the

DFSJMP

or

DFSJBP

ENVIRON=

parameter.

Related

Reading:

v

For

more

information

about

running

the

JVM

in

debug

mode,

see

IBM

Developer

Kit

for

OS/390,

Java

2

Technology

Edition:

New

IBM

Technology

featuring

Persistent

Reusable

Java

Virtual

Machines.

v

For

more

information

about

the

DFSJVMEV

member

and

the

ENVIRON=

parameter,

see

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

public

static

void

main(String

args[]){

static

{

XMLTrace.enable("MyTrace",

XMLTrace.TRACE_METHOD1);

XMLTrace.setOutputStream(System.err);

}

}

Figure

45.

Setting

a

Trace

within

a

Static

Method

XML

Tracing IBM

Confidential

122

IMS

Java

Guide

and

Reference

|
|

|
|

|

|

|
|
||

|
|
|
|
|
|
|
|

|

|
|

|

|
|

|

|
|
|

|
|

|
|

|

|
|
|

|
|
|

Appendix

A.

Preparing

to

Run

the

Dealership

Samples

To

run

the

dealership

sample,

you

must

prepare

IMS

by

modifying

the

stage

1

input

statements

and

loading

the

databases.

An

IMS

Java

metatdata

class,

which

is

a

Java

class

that

describes

the

IMS

databases,

is

required

for

all

applications.

The

IMS

Java

metadata

class

for

the

dealership

sample

applications,

AUTPSB11DatabaseView,

is

provided

compiled

and

is

included

with

the

application

files.

You

do

not

have

to

do

anything

to

further

to

in

prepare

this

file.

The

following

topics

provide

additional

information:

v

“Modifying

IMS

Stage

1

Input

Statements”

v

“Loading

the

Dealership

Sample

Databases”

Modifying

IMS

Stage

1

Input

Statements

Before

you

can

access

the

sample

dealership

databases

with

the

sample

applications,

you

must

modify

the

IMS

system

definition

stage

1

input

statements.

To

modify

the

stage

1

input

statements:

1.

Add

the

following

DATABASE

macro

statements

to

the

IMS

stage

1

input

statements:

DATABASE

DBD=AUTODB,ACCESS=UP

DATABASE

DBD=EMPDB2,ACCESS=UP

DATABASE

DBD=SINDEX11,ACCESS=UP

DATABASE

DBD=SINDEX22,ACCESS=UP

2.

Add

a

APPLCTN

macro

statement

to

the

IMS

stage

1

input

statements

for

the

sample

application’s

program

resource

requirements.

The

sample

applications

use

AUTPSB11

as

the

PSB.

All

sample

applications

require

an

APPLCTN

statement

for

the

AUTPSB11

PSB.

For

example:

APPLCTN

PSB=AUTPSB11,PGMTYPE=TP,SCHEDTYP=PARALLEL

3.

If

you

are

running

the

JMP

version

of

the

dealership

sample

application,

add

the

TRANSACT

macro

statement

following

the

APPLCTN

macro

statement.

The

JMP

dealership

sample

application

is

nonconversational.

For

example:

TRANSACT

CODE=AUTRAN11,PRTY=(7,10,2),INQUIRY=NO,MODE=SNGL,

X

MSGTYPE=(SNGLSEG,NONRESPONSE,1)

Loading

the

Dealership

Sample

Databases

To

run

the

sample

dealership

applications,

you

must

first

load

the

databases

that

the

applications

access.

The

files

that

are

needed

to

load

these

databases

are

in

the

samples

directory:

pathprefixusr/lpp/ims/imsjava91/samples/dealership/databases.

To

use

these

files,

however,

you

must

move

them

from

HFS

files

to

PDS

members.

The

following

steps

prove

sample

jobs

that

move

the

files.

If

you

use

these

sample

jobs,

replace

path

with

pathprefixusr/lpp/ims/imsjava91/samples/dealership/databases.

To

load

the

dealership

sample

databases:

1.

Move

the

following

DBD

source

files

(HFS)

to

your

DBD

source

library

(PDS

members):

v

AUTODB

(physical

DBD

of

the

auto

database)

v

EMPDB2

(physical

DBD

of

the

employee

database)

IBM

Confidential

©

Copyright

IBM

Corp.

2000,

2004

123

|

|

|
|

|
|
|
|
|

|

|

|

|
|

|
|

|

|
|

|
|
|
|

|
|
|
|

|

|
|
|

|
|

|
|

|
|
|
|
|
|
|

|

|
|

|

|

v

SINDEX11

(first

secondary

index)

v

SINDEX22

(second

secondary

index)

v

AUTOLDB

(logical

DBD

of

the

auto

database)

v

EMPLDB2

(logical

DBD

of

the

employee

database)

The

following

sample

job

moves

these

DBDs

to

PDS

members:

//name

JOB

parameters

//MV2PDS1

EXEC

PGM=IKJEFT01

//SYSPRINT

DD

SYSOUT=*

//SYSTSNT

DD

SYSOUT=*

//O1

DD

DISP=SHR,DSN=hlq.dbdsrc(AUTODB)

//I1

DD

DISP=SHR,PATH=’path/AUTODB’

//O2

DD

DISP=SHR,DSN=hlq.dbdsrc(EMPDB2)

//I2

DD

DISP=SHR,PATH=’path/EMPDB2’

//O3

DD

DISP=SHR,DSN=hlq.dbdsrc(SINDEX11)

//I3

DD

DISP=SHR,PATH=’path/SINDEX11’

//O4

DD

DISP=SHR,DSN=hlq.dbdsrc(SINDEX22)

//I4

DD

DISP=SHR,PATH=’path/SINDEX22’

//O5

DD

DISP=SHR,DSN=hlq.dbdsrc(AUTOLDB)

//I5

DD

DISP=SHR,PATH=’path/AUTOLDB’

//O6

DD

DISP=SHR,DSN=hlq.dbdsrc(EMPLDB2)

//I6

DD

DISP=SHR,PATH=’path/EMPLDB2’

//SYSTIN

DD*

OCOPY

INDD(I1)

OUTDD(01)

OCOPY

INDD(I2)

OUTDD(02)

OCOPY

INDD(I3)

OUTDD(03)

OCOPY

INDD(I4)

OUTDD(04)

OCOPY

INDD(I5)

OUTDD(05)

OCOPY

INDD(I6)

OUTDD(06)

/*

2.

Generate

the

DBDs

using

the

DBDGEN

utility:

a.

Move

the

JCL

file

named

AUTDBD

to

a

partitioned

data

set

from

which

it

can

be

run.

b.

Edit

the

JCL

statements

as

necessary.

c.

Run

the

job,

which

executes

the

DBDGEN

procedure.

3.

Move

the

following

PSB

source

files

(HFS)

to

your

PSB

source

library

(PDS

members):

v

AUTPSBAL

(for

loading

the

auto

database)

v

AUTPSBEL

(for

loading

the

employee

database)

v

AUTPSB11

(for

processing

the

databases)

The

following

example

moves

these

PSBs

to

PDS

members:

//name

JOB

parameters

//MV2PDS2

EXEC

PGM=IKJEFT01

//SYSPRINT

DD

SYSOUT=*

//SYSTSNT

DD

SYSOUT=*

//O1

DD

DISP=SHR,DSN=hlq.psbsrc(AUTPSBAL)

//I1

DD

DISP=SHR,PATH=’path/AUTPSBAL’

//O2

DD

DISP=SHR,PATH=’path/AUTPSBEL’

//O3

DD

DISP=SHR,DSN=hlq.psbsrc(AUTPSB11)

//I3

DD

DISP=SHR,PATH=’path/AUTPSB11’

//SYSTIN

DD*

OCOPY

INDD(I1)

OUTDD(01)

OCOPY

INDD(I2)

OUTDD(02)

OCOPY

INDD(I3)

OUTDD(03)

/*

4.

Generate

the

PSBs

by

using

the

PSBGEN

utility:

a.

Move

the

JCL

file

named

AUTPSB

to

a

partitioned

data

set

from

which

it

can

be

run.

b.

Edit

the

JCL

statements

if

necessary.

Loading

the

Dealership

Sample

Databases IBM

Confidential

124

IMS

Java

Guide

and

Reference

|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|

|
|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

c.

Run

the

job,

which

executes

the

PSBGEN

procedure.

5.

Generate

the

ACBs

for

the

IMS

system

that

are

used

when

running

the

sample

application:

a.

Ensure

that

DFSACBCP

is

available

in

a

partitioned

data

set.

b.

Move

the

JCL

file

named

AUTACB

to

a

partitioned

data

set

from

which

it

can

be

run.

c.

Edit

the

JCL

statements

if

necessary.

d.

Run

the

job,

which

executes

the

ACBGEN

procedure.

6.

Initial

load

the

databases:

a.

Move

the

JCL

files

named

AUTLOAD

and

IV3H103A

to

a

partitioned

data

set

from

which

they

can

be

run.

The

following

sample

job

moves

AUTLOAD

and

IV3H103A

to

PDS

members:

//name

JOB

parameters

//MV2PDS3

EXEC

PGM=IKJEFT01

//SYSPRINT

DD

SYSOUT=*

//SYSTSNT

DD

SYSOUT=*

//O1

DD

DISP=SHR,DSN=hlq.library(AUTLOAD)

//I1

DD

DISP=SHR,PATH=’path/AUTLOAD’

//O2

DD

DISP=SHR,DSN=hlq.library(IV3H103A)

//I2

DD

DISP=SHR,PATH=’path/IV3H103A’

//SYSTIN

DD*

OCOPY

INDD(I1)

OUTDD(01)

OCOPY

INDD(I2)

OUTDD(02)

/*

b.

Edit

the

JCL

statements

by

adding

the

high-level

qualifiers

to

the

data

set

names

and

the

volume

information,

in

addition

to

any

other

necessary

changes

required

by

your

installation.

c.

Run

the

AUTLOAD

job,

which

is

an

IMS

batch

job.

System

data

sets

must

be

available

and

the

control

region

must

not

be

running.

This

job

completes

the

following

steps:

v

Scratches

old

database

data

sets.

v

Allocates

new

database

data

sets.

v

Loads

the

physical

AUTDB

and

EMPDB2

databases.

v

Resolves

and

updates

logical

relationships.

v

Builds

the

two

secondary

indexes.

Because

no

data

exists

in

the

databases

yet,

the

final

three

steps

are

null

operations

and

therefore,

0004

return

codes

are

acceptable.

7.

Add

data

to

the

initialized

databases:

a.

Move

the

JCL

file

named

AUTSEED

to

a

partitioned

data

set

from

which

it

can

be

run.

The

following

sample

job

moves

AUTSEED

to

a

PDS

member:

//name

JOB

parameters

//MV2PDS4

EXEC

PGM=IKJEFT01

//SYSPRINT

DD

SYSOUT=*

//SYSTSNT

DD

SYSOUT=*

//O1

DD

DISP=SHR,DSN=hlq.library(AUTSEED)

//I1

DD

DISP=SHR,PATH=’path/AUTSEED’

//SYSTIN

DD*

OCOPY

INDD(I1)

OUTDD(01)

/*

b.

Edit

the

JCL

statements

in

AUTSEED

if

necessary.

Loading

the

Dealership

Sample

DatabasesIBM

Confidential

Appendix

A.

Preparing

to

Run

the

Dealership

Samples

125

|

|
|

|

|
|

|

|

|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|

|

|

|

|
|

|

|
|

|

|
|
|
|
|
|
|
|
|
|

c.

Run

the

AUTSEED

job,

which

executes

the

DFSDDLT0

procedure.

This

job

completes

the

following

steps:

v

Deletes

the

root

segments,

if

present.

v

Adds

roots

and

dependent

segments

to

the

database

using

the

AUTPSB11

PSB.

You

can

run

this

job

repeatedly

without

re-running

the

AUTLOAD

job.

8.

Optionally,

confirm

that

the

databases

loaded

correctly:

a.

Move

the

JCL

file

named

AUTLIST

to

a

partitioned

data

set

from

which

it

can

be

run.

The

following

sample

job

moves

AUTLIST

to

a

PDS

member:

name

JOB

parameters

//MV2PDS5

EXEC

PGM=IKJEFT01

//SYSPRINT

DD

SYSOUT=*

//SYSTSNT

DD

SYSOUT=*

//O1

DD

DISP=SHR,DSN=hlq.library(AUTLIST)

//I1

DD

DISP=SHR,PATH=’path/AUTLIST’

//SYSTIN

DD*

OCOPY

INDD(I1)

OUTDD(01)

/*

b.

Edit

the

JCL

statements

if

necessary.

c.

Run

the

job,

which

executes

the

DFSDDLT0

procedure.

This

job

lists

segments

to

the

database

using

the

AUTPSB11

PSB.

9.

Compile

the

dynamic

allocation

members

for

the

databases:

a.

Move

the

JCL

file

named

AUTODA

to

a

partitioned

data

set

from

which

it

can

be

run.

The

following

sample

job

moves

AUTODA

to

a

PDS

member:

//name

JOB

parameters

//MV2PDS6

EXEC

PGM=IKJEFT01

//SYSPRINT

DD

SYSOUT=*

//SYSTSNT

DD

SYSOUT=*

//O1

DD

DISP=SHR,DSN=hlq.library(AUTODA)

//I1

DD

DISP=SHR,PATH=’path/AUTODA’

//SYSTIN

DD*

OCOPY

INDD(I1)

OUTDD(01)

/*

b.

Edit

the

JCL

statements

if

necessary.

c.

Run

the

job.

Loading

the

Dealership

Sample

Databases IBM

Confidential

126

IMS

Java

Guide

and

Reference

|
|

|

|
|

|

|

|
|

|

|
|
|
|
|
|
|
|
|
|

|
|

|

|
|

|

|
|
|
|
|
|
|
|
|
|

|

Appendix

B.

SQL

Keywords

Because

the

IMS

Java

SQL

parser

supports

portable

SQL,

you

cannot

use

any

SQL

keywords

as

Java

aliases

for

PCBs,

segments,

or

fields.

When

you

define

Java

aliases,

do

not

use

an

SQL

keyword.

If

a

PCB,

segment,

or

field

has

the

same

name

as

an

SQL

keyword,

you

must

explicitly

define

a

different

Java

alias

for

it.

For

information

on

defining

Java

aliases,

see

IMS

Version

9:

Utilities

Reference:

System.

If

you

use

an

SQL

keyword

as

a

name

of

a

PCB,

segment,

or

field,

your

application

program

receives

an

error

when

it

attempts

an

SQL

query.

The

following

SQL

keywords

cannot

be

used

as

PCB,

segment,

or

field

names:

ABORT

ANALYZE

AND

ALL

ALLOCATE

ALTER

AND

ANY

ARE

AS

ASC

ASSERTION

AT

AVG

BEGIN

BETWEEN

BINARY

BIT

BOOLEAN

BOTH

BY

CASCADE

CAST

CHAR

CHARACTER

CHECK

CLOSE

CLUSTER

COLLATE

COLUMN

COMMIT

CONSTRAINT

COPY

COUNT

CREATE

CROSS

CURRENT

CURSOR

DECIMAL

DECLARE

DEFAULT

DELETE

DESC

DISTINCT

DO

DOUBLE

DROP

END

EXECUTE

EXISTS

EXPLAIN

EXTRACT

EXTEND

FALSE

FIRST

FLOAT

FOR

FOREIGN

FROM

FULL

GRANT

GROUP

HAVING

IN

INNER

INSERT

INT

INTEGER

INTERVAL

INTO

IS

JOIN

LAST

LEADING

LEFT

LIKE

LISTEN

LOAD

LOCAL

LOCK

MAX

MIN

MOVE

NAMES

NATIONAL

NATURAL

NCHAR

NEW

NO

NONE

NOT

NOTIFY

NULL

NUMERIC

ON

OR

ORDER

OUTER

PARTIAL

POSITION

PRECISION

PRIMARY

PRIVILEGES

PROCEDURE

PUBLIC

REAL

REFERENCES

RESET

REVOKE

RIGHT

ROLLBACK

SELECT

SET™

SETOF

SHOW

SMALLINT

SUBSTRING

SUM

TABLE

TO

TRAILING

TRANSACTION

TRIM

TRUE

UNION

UNIQUE

UNLISTEN

UNTIL

UPDATE

USER

USING

VACUUM

VALUES

VARCHAR

VARYING

VERBOSE

VIEW

WHERE

WITH

WORK

IBM

Confidential

©

Copyright

IBM

Corp.

2000,

2004

127

IBM

Confidential

128

IMS

Java

Guide

and

Reference

Appendix

C.

IMS

Java

Hierarchical

Database

Interface

The

IMS

Java

hierarchical

database

interface

is

more

closely

related

to

the

standard

DL/I

database

call

interface

that

is

used

with

other

languages,

and

provides

a

lower-level

access

to

IMS

database

functions

than

the

JDBC

interface.

Using

IMS

Java

hierarchical

database

interface,

you

can

build

segment

search

arguments

(SSAs)

and

call

the

functions

of

the

DLIConnection

object

to

read,

insert,

update,

or

delete

segments.

The

application

has

full

control

to

navigate

the

segment

hierarchy.

Although

you

can

use

the

IMS

Java

hierarchical

database

interface

to

access

IMS

data,

it

is

recommended

that

you

use

JDBC.

However,

you

can

use

this

package

if

you

need

more

controlled

access

than

the

higher-level

JDBC

package

provides.

Related

Reading:

For

detailed

information

about

the

classes

in

the

IMS

Java

hierarchical

database

interface,

see

the

IMS

Java

API

Specification

(Javadoc).

Go

to

the

IMS

Web

site

at

www.ibm.com/ims

and

link

to

the

IMS

Java

page.

The

following

topics

provide

additional

information:

v

“Application

Programming

Using

the

DLIConnection

Object”

v

“Creating

a

DLIConnection

Object”

v

“Creating

an

SSAList

Object”

on

page

130

v

“Accessing

IMS

Data

Using

SSAs”

on

page

130

Application

Programming

Using

the

DLIConnection

Object

To

use

a

DLIConnection

object

to

read,

update,

insert,

and

delete

segment

instances,

your

application

must:

1.

Acquire

a

DLISegment

object

for

each

segment

using

the

cloneSegment

method

on

the

DLIDatabaseView

subclass.

2.

Provide

a

subclass

of

DLIDatabaseView

that

defines

the

segment

hierarchy

accessed

by

the

application.

3.

Create

a

DLIConnection

object

to

access

the

database.

4.

Create

an

SSAList

object.

5.

Invoke

the

database

access

methods

of

the

DLIConnection

class

to

read,

write,

or

delete

segments

from

the

database.

Create

the

required

classes

by

running

the

DLIModel

utility

(see

IMS

Version

9:

Utilities

Reference:

System).

Creating

a

DLIConnection

Object

You

must

create

aDLIConnection

object

in

one

of

two

ways:

v

By

providing

a

DLIDatabaseView

object

v

By

providing

the

fully-qualified

name

of

the

DLIDatabaseView

subclass

When

you

code

directly

to

a

DLIConnection

object,

it

is

faster

to

create

and

pass

the

DLIDatabaseView

object

because

it

simplifies

finding

the

class

by

its

name.

Figure

46

on

page

130

illustrates

how

to

create

a

DLIConnection

object:

IBM

Confidential

©

Copyright

IBM

Corp.

2000,

2004

129

|

|
|
|

|
|
|

|
|

Creating

an

SSAList

Object

SSAs

identify

the

segment

to

which

a

DL/I

call

applies.

Because

of

the

hierarchical

structure

of

IMS

databases,

you

often

have

to

specify

several

levels

of

SSAs

to

access

a

segment

at

a

low

level

in

the

hierarchy.

An

SSAList

object

is

a

collection

of

one

or

more

SSA

object.

Use

the

SSAList

object

when

you

make

DL/I

calls.

The

SSAList

object

is

also

where

you

specify

which

database

that

you

want

to

access

within

a

DLIDatabaseView

object

by

providing

the

PCB

reference

name.

Figure

47

shows

how

to

create

an

SSAList

object

that

will

find

all

“Alpha”

cars

that

were

made

in

2004:

Accessing

IMS

Data

Using

SSAs

After

you

create

an

SSAList

object,

you

can

issue

database

calls

by

invoking

the

access

method

on

the

DLIConnection

object

and

passing

in

the

following:

v

The

SSAList

object.

v

An

instance

of

the

segment,

which

is

the

intended

target

of

the

database

call

results.

Get

the

passed-in

instance

of

the

segment

by

calling

the

cloneSegment

method

on

the

DLIDatabaseView

subclass.

The

following

example

how

to

call

and

print

the

results

using

the

SSAList

object

that

was

built

in

“Creating

an

SSAList

Object”:

DLISegment

model

=

dealerView.cloneSegment("Model");

boolean

recordRead

=

connection.getUniqueSegment(model,

modelSSAList);

while

(recordRead)

{

System.out.println("Car

Name:

"

+

model.getString("ModelName"));

recordRead

=

connection.getNextSegment(model,

modelSSAList);

}

DealerDatabaseView

dealerView

=

new

DealerDatabaseView();

DLIConnection

connection

=

DLIConnection.createInstance(dealerView);

Figure

46.

Creating

a

DLIConnection

Object

//

Create

an

SSAList

SSAList

modelSSAList

=

SSAList.createInstance("DealershipDB");

//

Construct

an

unqualified

SSA

for

the

Dealer

segment

SSA

dealerSSA

=

SSA.createInstance("Dealer");

//

Construct

a

qualified

SSA

for

the

Model

segment

SSA

modelSSA

=

SSA.createInstance("Model",

"CarMake",

SSA.EQUALS,

"Alpha");

//

Add

an

additional

qualification

statement

modelSSA.addQualification(SSA.AND,

"CarYear",

SSA.EQUALS,

"1989");

//

Add

the

SSAs

to

the

SSAList

modelSSAList.addSSA(dealerSSA);

modelSSAList.addSSA(modelSSA);

Figure

47.

Creating

an

SSAList

Object

Creating

an

SSAList

Object IBM

Confidential

130

IMS

Java

Guide

and

Reference

|

|
|
|
|
|
|

|
|

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

IBM

Confidential

©

Copyright

IBM

Corp.

2000,

2004

131

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Corporation

J46A/G4

555

Bailey

Avenue

San

Jose,

CA

95141-1003

U.S.A.

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

information

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

the

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurement

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements

or

other

publicly

available

sources.

IBM

has

not

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

All

statements

regarding

IBM’s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

This

information

is

for

planning

purposes

only.

The

information

herein

is

subject

to

change

before

the

products

described

become

available.

This

information

contains

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

contains

sample

application

programs

in

source

language,

which

illustrates

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM,

for

the

purposes

of

developing,

using,

marketing

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

IBM’s

application

programming

interfaces.

IBM

Confidential

132

IMS

Java

Guide

and

Reference

Each

copy

or

any

portion

of

these

sample

programs

or

any

derivative

work,

must

include

a

copyright

notice

as

follows:

©

(your

company

name)

(year).

Portions

of

this

code

are

derived

from

IBM

Corp.

Sample

Programs.

©

Copyright

IBM

Corp.

_enter

the

year

or

years_.

All

rights

reserved.

If

you

are

viewing

this

information

softcopy,

the

photographs

and

color

illustrations

may

not

appear.

Trademarks

The

following

terms

are

trademarks

of

the

IBM

Corporation

in

the

United

States

or

other

countries

or

both:

BookManager

DB2

CICS

IBM

IMS

IMS/ESA

Library

Reader

MVS

OS/390

RACF

WebSphere

z/OS

Rational

Rose

is

a

trademark

of

International

Business

Machines

Corporation

and

Rational

Software

Corporation,

in

the

United

States,

other

countries

or

both.

Java

and

all

Java-based

trademarks

and

logos

are

trademarks

of

Sun

Microsystems,

Inc.,

in

the

United

States,

other

countries,

or

both.

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Other

company,

product,

and

service

names

may

be

trademarks

or

service

marks

of

others.

Product

Names

In

this

book,

the

licensed

program

IBM

DB2

Universal

Database

for

z/OS

is

referred

to

as

DB2

UDB

for

z/OS.

The

licensed

program

IBM

WebSphere

Application

Server

for

z/OS

and

OS/390

is

referred

to

as

WebSphere

Application

Server

for

z/OS.

The

licensed

program

IBM

CICS

Transaction

Server

for

z/OS

is

referred

to

as

CICS.

Supported

versions

of

these

products

are

listed

in

the

IMS

Version

9:

Release

Planning

Guide.

IBM

Confidential

Notices

133

IBM

Confidential

134

IMS

Java

Guide

and

Reference

Bibliography

This

bibliography

includes

all

the

publications

cited

in

this

book,

including

the

publications

in

the

IMS

library.

DB2

Universal

Database

for

OS/390

and

z/OS:

Application

Programming

Guide

and

Reference

for

Java,

xxxx-xxxx

Enterprise

COBOL

for

z/OS

and

OS/390:

Programming

Guide,

SC27-1412

IBM

Developer

Kit

for

OS/390,

Java

2

Technology

Edition:

New

IBM

Technology

featuring

Persistent

Reusable

Java

Virtual

Machines,

SC34-6034

z/OS:

UNIX

System

Services

Command

Reference,

SA22-7802

z/OS:

UNIX

System

Services

File

System

Interface

Reference,

SA22-7808

z/OS:

UNIX

System

Services

User’s

Guide,

SA22-7801

CICS

Transaction

Server

for

z/OS:

CICS

System

Definition

Guide,

SC34-5988

WebSphere

Application

Server

V4.0.1

for

z/OS

and

OS/390

:

Assembling

Java

2

Platform,

Enterprise

Edition

(J2EE)

Applications,

SA22-7836

WebSphere

Application

Server

V4.0.1

for

z/OS

and

OS/390

:

System

Management

User

Interface,

SA22-7838

IMS

Version

9

Library

SC18-7806

ADB

IMS

Version

9:

Administration

Guide:

Database

Manager

SC18-7807

AS

IMS

Version

9:

Administration

Guide:

System

SC18-7808

ATM

IMS

Version

9:

Administration

Guide:

Transaction

Manager

SC18-7809

APDB

IMS

Version

9:

Application

Programming:

Database

Manager

SC18-7810

APDG

IMS

Version

9:

Application

Programming:

Design

Guide

SC18-7811

APCICS

IMS

Version

9:

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

SC18-7812

APTM

IMS

Version

9:

Application

Programming:

Transaction

Manager

SC18-7813

BPE

IMS

Version

9:

Base

Primitive

Environment

Guide

and

Reference

SC18-7814

CR

IMS

Version

9:

Command

Reference

SC18-7815

CQS

IMS

Version

9:

Common

Queue

Server

Guide

and

Reference

SC18-7816

CSL

IMS

Version

9:

Common

Service

Layer

Guide

and

Reference

SC18-7817

CG

IMS

Version

9:

Customization

Guide

SC18-7818

DBRC

IMS

Version

9:

Database

Recovery

Control

(DBRC)

Guide

and

Reference

LY37-3203

DGR

IMS

Version

9:

Diagnosis

Guide

and

Reference

LY37-3204

FAST

IMS

Version

9:

Failure

Analysis

Structure

Tables

(FAST)

for

Dump

Analysis

SC18-9287

CT

IMS

Version

9:

IMS

Connect

Guide

and

Reference

SC18-7821

JGR

IMS

Version

9:

IMS

Java

Guide

and

Reference

GC18-7822

IIV

IMS

Version

9:

Installation

Volume

1:

Installation

Verification

GC18-7823

ISDT

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring

SC18-7826

MIG

IMS

Version

9:

Master

Index

and

Glossary

GC18-7827

MC1

IMS

Version

9:

Messages

and

Codes,

Volume

1

GC18-7828

MC2

IMS

Version

9:

Messages

and

Codes,

Volume

2

SC18-7829

OTMA

IMS

Version

9:

Open

Transaction

Manager

Access

Guide

and

Reference

SC18-7830

OG

IMS

Version

9:

Operations

Guide

GC17-7831

RPG

IMS

Version

9:

Release

Planning

Guide

SC18-7833

URDBTM

IMS

Version

9:

Utilities

Reference:

Database

and

Transaction

Manager

SC18-7834

URS

IMS

Version

9:

Utilities

Reference:

System

Supplementary

Publications

SC09-7869

IMS

Connector

for

Java

2.2.2

and

9.1.0.1

Online

Documentation

for

WebSphere

Studio

Application

Developer

Integration

Edition

5.1.1

GC18-7697

IMS

Version

9

Fact

Sheet

IBM

Confidential

©

Copyright

IBM

Corp.

2000,

2004

135

|
|
|

|
|

|
|

|
|

Supplementary

Publications

GC18-7825

LPS

IMS

Version

9:

Licensed

Program

Specifications

SC18-7832

SOC

IMS

Version

9:

Summary

of

Operator

Commands

Publication

Collections

LK3T-7213

CD

IMS

Version

9

Softcopy

Library

LK3T-7144

CD

IMS

Favorites

LBOF-7789

Hardcopy

and

CD

Licensed

Bill

of

Forms

(LBOF):

IMS

Version

9

Hardcopy

and

Softcopy

Library

SBOF-7790

Hardcopy

Unlicensed

Bill

of

Forms

(SBOF):

IMS

Version

9

Unlicensed

Hardcopy

Library

SK2T-6700

CD

OS/390

Collection

SK3T-4270

CD

z/OS

Software

Products

Collection

SK3T-4271

DVD

z/OS

and

Software

Products

DVD

Collection

Accessibility

Titles

Cited

in

this

Book

SA22-7787

z/OS

V1R1.0

TSO

Primer

SA22-7794

z/OS

V1R5.0

TSO/E

User’s

Guide

SC34-4822

z/OS

V1R5.0

ISPF

User’s

Guide,

Volume

1

IBM

Confidential

136

IMS

Java

Guide

and

Reference

Index

A
aggregate

functions

96

AS

96

ASC

96

AVG

96

COUNT

96

data

types

97

DESC

96

GROUP

BY

96

MAX

96

MIN

96

ORDER

BY

96

renaming

97

result

set

column

97

result

set

type

97

SUM

96

AND

operator
IMS

rules

95

Apache

open

source

XML

libraries
about

3

downloading

3

applications
message

processing,

building

15

programming

129

AS

keyword

96,

97

ASC

keyword

96

asterisk

operator

91

AVG

keyword

96

B
BIGINT

data

type

102

BINARY

data

type

102

BIT

data

type

102

byte

data

type

102

C
CHAR

data

type

102

CICS
_CXX_LSYSLIB

environment

variable

79

application
sample

81

applications
IVP

80

running

82

writing

83

CICSPSB

DLL

79

configuring

for

IMS

Java

79

DFHJVMPR

environment

member

80

dfjjvmpr.props

80

IMS

Java

overview

79

IVP

80

LIBPATH

variable

80

Makefile

79

running

applications

82

sample

application

81

CICS

(continued)
writing

applications

83

CLASSPATH

ENVAR

keyword

72

Clob

interface
result

set

98

retrieveXML

97

COBOL
See

also

Enterprise

COBOL

copybook

types

104

mapping

to

IMS

104

columns
fields,

compared

to

85

relational

representation,

in

86

com.ibm.connector2.ims.db

package

5

com.ibm.ims.application

package

5

com.ibm.ims.base

package

5

com.ibm.ims.db

package

5

com.ibm.ims.db.DLIDatabaseView

class

105

com.ibm.ims.rds

package

5

com.ibm.ims.rds.host

package

5

com.ibm.ims.rds.util

package

5

com.ibm.ims.xms

package

5

Connection

object

108

conversational

transactions

19

copybook

types

104

COUNT

keyword

96

custom

service,

installing

38

D
data

types
aggregate

functions

97

conversion

102

mapped

to

COBOL

104

databases
describing

to

IMS

Java

105

DATE

data

type

102

DB2

Recoverable

Resource

Manager

Services

attachment

facility

13

DB2

UDB

for

z/OS

access
application

programming

32

committing

work

32

drivers

32

FSDB2AF

DD

statement

14

IMS

databases,

compared

to

32

JBP

region,

from

a
configuring

13

programming

model

28

JMP

region,

from

a
configuring

13

programming

model

19

rolling

back

work

32

RRSAF

13

DB2

UDB

for

z/OS

stored

procedures
developing

78

environment

variables

72

IVP

73

JAVAENV

data

set

71

IBM

Confidential

©

Copyright

IBM

Corp.

2000,

2004

137

DB2

UDB

for

z/OS

stored

procedures

(continued)
overview

with

IMS

Java

71

running

76

sample

application
running

75

system

requirements

71

DB2_HOME

ENVAR

keyword

72

DB2Auto

application
running

75

DB2AutoClient

application
running

75

db2sqljjdbc.properties

75

DBD

(database

description),

sample

106

DD

statements
DFSDB2AF

14

DFSRESLB

73

JAVAERR

9

JAVAOUT

9

STEPLIB

9

dealership

sample

application
DB2

UDB

for

z/OS

stored

procedures

75

dealership

samples
DBD

106

PSB

106

DEBUG=Y
for

JVM

debugging

122

debugging
XMLTrace

120

DELETE

keyword

93

example

93

DESC

keyword

96

dfjjvmpr.props

file

80

DFSJMP

procedure

9

DFSJVMEV

member
DB2

JDBC

driver

14

IVP

changes

9

DFSJVMMS
DB2

JDBC

driver

14

DFSJVMMS

member
IVP

changes

9

DFSRESLB

DD

statement

73

DL/I

data,

accessing

130

DL/I

status

codes
mapping

to

exceptions

119

DLIConnection
creating

129

DLIConnection

class

119

DLIDatabaseView

class

105

DLIDriver
loading

108

registering

109

DLIException

class

119

DLIModel

IMS

Java

Report

106

DLIModel

utility
DLIModel

IMS

Java

Report

106

using

105

DLITypeInfoList

class

22

DOUBLE

data

type

102

driver
registering

with

DriverManager

109

DriverManager

facility

100

E
Enterprise

COBOL

29

back

end

29

implementing

30

CALL

statement

29

compiler

30

front

end

29,

30

JVM,

locating

31

main

method

30

object

oriented

syntax

29

performance

31

exceptions
description

119

IMSException

object
getAIB

method

119

getFunction

method

119

getStatusCode

method

119

mapping

to

DL/I

status

codes

119

F
fields

columns,

compared

to

85

default

value

93

in

SQL

queries

88

segment

qualified

92

float

data

type

102

FROM

keyword

94

joins

94

FSDB2AF

DD

statement

14

G
getAIB

method

119

getFunction

method

119

getNextException

120

getStatusCode

method

119

GROUP

BY

keyword

96

H
HFS

(Hierarchic

File

System)
allocating

data

set

for

2

mounting

directory

2

Hierarchic

File

System

(HFS)
allocating

data

set

for

2

mounting

directory

2

hierarchical

database
example

86

relational

database,

compared

to

85

High

Performance

Java

(HPJ)

6

HPJ

(High

Performance

Java)

6

I
IBM

Developer

Kit

for

OS/390,

Java

2

Technology

Edition

1

importing

packages

109

IMS

distributed

JDBC

resource

adapter,

installing

57

IBM

Confidential

138

IMS

Java

Guide

and

Reference

IMS

Java
administering

3

class

library

5

data

type

support

102

exceptions

119

IMS

Java

API

Specification

5

installing

2

DFSJSMKD

job

2

DFSJSMKDR

REXX

script

2

HFS

data

set

2

HFS

mount

point

2

SMP/E

2

Javadoc

5

JDBC

application

108

JDBC

support

1

overview

1

packages

5

com.ibm.connector2.ims.db

5

com.ibm.ims.application

5

com.ibm.ims.base

5

com.ibm.ims.db

5

com.ibm.ims.rds

5

com.ibm.ims.rds.host

5

com.ibm.ims.rds.util

5

com.ibm.ims.xms

5

IMS

Java

API

Specification

5

Javadoc

5

problem

determination

119

Redbooks

6

remote

database

services
about

53

components

53

restrictions

5

supported

environments

1

system

requirements

1

IMS

Java

API

Specification

5

IMS

Java

hierarchical

database

interface
about

1

using

129

IMS

JDBC

resource

adapter,

installing

38

IMSException

class

119

IMSFieldMessage

24

IMSFieldMessage

class
subclassing

15,

16

IMSMessageQueue

120

input

messages,

defining

15

INSERT

keyword

93

example

93

WHERE

clause

93

installation

verification

programs

(IVPs)
CICS

80

DB2

UDB

for

z/OS

stored

procedures

73

JBP

region

10

JMP

region

8

WebSphere

Application

Server

(non-z/OS)

58

WebSphere

Application

Server

for

z/OS

39

installing

IMS

Java
DFSJSMKD

job

2

DFSJSMKDR

REXX

script

2

HFS

data

set

2

HFS

mount

point

2

installing

IMS

Java

(continued)
SMP/E

2

int

data

type

102

INTEGER

data

type

102

IVPs

(installation

verification

programs)
CICS

80

DB2

UDB

for

z/OS

stored

procedures

73

JBP

region

10

JMP

region

8

WebSphere

Application

Server

(non-z/OS)

58

WebSphere

Application

Server

for

z/OS

39

J
Java

batch

processing

(JBP)

regions

i

DB2

UDB

for

z/OS

access
application

programming

32

configuring

13

programming

model

28

description

7

IVP

10

programming

models

27

restart

26

symbolic

checkpoint

26

Java

data

types

102

Java

message

processing

(JMP)

regions

i

DB2

UDB

for

z/OS

access
application

programming

32

configuring

13

programming

model

19

description

7

IVP

8

DFSJMP

procedure

9

DFSJVMEV

member

9

DFSJVMMS

member

9

JVM.out

file

9

programming

models

17

JAVA_HOME

ENVAR

keyword

72

java.math.BigDecimal

102

java.sql.Clob
See

Clob

interface

java.sql.Connection

interface

100

java.sql.DatabaseMetaData

interface

100

java.sql.Date

102

java.sql.Driver

interface

100

java.sql.PreparedStatement

interface

101

java.sql.ResultSet

interface

101

java.sql.ResultSetMetaData

interface

101

java.sql.Statement

interface

101

java.sql.Time

102

java.sql.Timestamp

102

JAVAENV

data

set
creating

71

sample

72

JAVAERR

DD

statement

9

JAVAOUT

DD

statement

9

JBP

(Java

batch

processing)

regions

i

DB2

UDB

for

z/OS

access
application

programming

32

configuring

13

programming

model

28

IBM

Confidential

Index

139

JBP

(Java

batch

processing)

regions

(continued)
description

7

IVP

10

programming

models

27

restart

26

symbolic

checkpoint

26

JDBC
connecting

to

IMS

database

109

Connection

object,

returning

109

data

types

102

explanation

85

importing

packages

109

interfaces
java.sql.Connection

100

java.sql.DatabaseMetaData

100

java.sql.Driver

100

java.sql.PreparedStatement

101

java.SQL.ResultSet

101

java.sql.ResultSetMetaData

101

java.sql.Statement

101

interfaces,

limitations

100

jdbc:dli

109

sample

application

108

SQL

keywords,

supported

88

using

108

writing

an

application

108

XML,

extension

for

97

JDBC

drivers
DB2

JDBC/SQLJ

1.2

driver

14

DB2

JDBC/SQLJ

2.0

driver

14

DB2

Universal

JDBC

driver

14

JMP

(Java

message

processing)

regions

i

DB2

UDB

for

z/OS

access
application

programming

32

configuring

13

programming

model

19

description

7

IVP

8

DFSJMP

procedure

9

DFSJVMEV

member

9

DFSJVMMS

member

9

JVM.out

file

9

programming

models

17

JMP

applications
message

handling
conversational

transactions

19

multi-segment

messages

21

multiple

input

messages

23

repeating

structures

22

programming

models

17

joining

segments

91

JVM,

debugging
DEBUG=Y

122

log

messages

122

reset

trace

events

122

L
LIBPATH

ENVAR

keyword

72

long

data

type

102

M
main()

method

17

MAX

keyword

96

message

processing

application
building

15

messages
input,

defining

15

multi-segment

21

output,

defining

16

repeating

structures
defining

in

IMS

Java

22

SPA

19

subsequent

21

MIN

keyword

96

multi-segment

messages

21

O
object

DLIConnection,

creating

129

OR

operator
IMS

rules

95

ORDER

BY

keyword

96

output

messages,

defining

16

P
PACKEDDECIMAL

data

type

102

path

call

91

Persistent

Reusable

Java

Virtual

Machine

1

prepared

statements
java.sql.PreparedStatement

interface

101

PreparedStatement

object

108

Problem

Determination

119

programming

models
JBP

applications
symbolic

checkpoint

and

restart

27

with

rollback

28

without

rollback

27

JMP

applications

17

DB2

UDB

for

z/OS

data

access

19

IMS

data

access

19

with

rollback

18

without

rollback

18

WebSphere

Application

Server

(non-z/OS)

applications
bean-managed

EJBs

50

container-managed

EJBs

51

servlets

52

WebSphere

Application

Server

for

z/OS

applications
bean-managed

EJBs

50

container-managed

EJBs

51

servlets

52

PSB

(program

specification

block)
sample

106

R
Recoverable

Resource

Manager

Services

attachment

facility

(RRSAF)

13

IBM

Confidential

140

IMS

Java

Guide

and

Reference

relational

database
hierarchical

database,

compared

to

85

remote

database

services
configuring

55

repeating

structures
accessing

22

DLITypeInfoList

class

22

dotted

notation

23

sample

output

message

22

ResultSet
aggregate

data

types

97

iterating

108

TYPE_FORWARD_ONLY

97

TYPE_SCROLL_INSENSITIVE

97

ResultSet.getAsciiStream

method

101

ResultSet.getCursorName

method

101

ResultSet.getUnicodeStream

method

101

rows
relational

representation,

in

88

segment

instances,

compared

to

85

RRSAF

(Recoverable

Resource

Manager

Services

attachment

facility)

13

S
sample

applications
DB2

UDB

for

z/OS

stored

procedures

75

samples
message

processing

application

15

segments
in

SQL

queries

88

tables,

compared

to

85

segments,

selecting

multiple

91

SELECT

keyword
asterisk

operator

91

description

89

example

89

example

query

88

retrieveXML

92

selecting

all

fields

in

a

segment

91

selecting

multiple

segments

91

short

data

type

102

SMALLINT

data

type

102

SPA

19

message,

defining

20

SPA

(scratch

pad

area)

19

conversational

transactions

for

IMS

Java

21

SQL

(Structured

Query

Language)
aggregate

functions

96

argument

types

97

result

types

97

AS

96,

97

ASC

96

AVG

96

COUNT

96

DELETE

93

DESC

96

example

query

88

FROM

94

GROUP

BY

96

IMS

requirements

for

88

SQL

(Structured

Query

Language)

(continued)
INSERT

93

keyword

list

127

MAX

96

MIN

96

ORDER

BY

96

PCB-qualified

query

94

prepared

statements

102

recommendations
PCB-qualified

query

95

segment-qualified

fields

92

segment-qualified

fields

92

SELECT

keyword

requirements

89

SUM

96

supported

keywords

88

UPDATE

94

WHERE

95

SQLException

120

SQLstate

120

SSA

(segment

search

argument)

91

WHERE

clause,

relation

to

95

SSAList
creating

an

130

DL/I

data,

accessing

130

Statement

object
retrieving

108

status

codes
mapping

119

stored

procedures
See

DB2

UDB

for

z/OS

stored

procedures

String

data

type
boolean

data

type

102

SUM

keyword

96

syntax

diagram
how

to

read

xi

system

requirements
DB2

UDB

for

z/OS

stored

procedures

71

T
tables

relational

representation,

in

86

segments,

compared

to

85

TIME

data

type

102

TIMESTAMP

data

type

102

TINYINT

data

type

102

TMSUFFIX

ENVAR

keyword

72

tracing
IMS

Java

library

methods

121

J2EE

48

Trace

statements,

adding

122

WebSphere

Application

Server

(non-z/OS)

68

WebSphere

Application

Server

for

z/OS

48

XMLTrace

120

transactions
conversational

19

types
data,

mapped

to

COBOL

104

supported

102

IBM

Confidential

Index

141

U
UPDATE

keyword

94

example

94

V
VARCHAR

data

type

102

W
WebSphere

Application

Server

(non-z/OS)
application,

installing

59

applications
IVP

58

sample

61

configuring
data

source,

installing

56

EAR

file,

installing

on

server

side

56

IMS

distributed

JDBC

resource

adapter,

installing

57

prerequisites

55

data

source,

installing

58,

65

downloading

IMS

Java

files

55

EJB
client

side

70

server

side

69

EJB

considerations

69

IVP

58

application,

installing

on

the

client

side

59

data

source,

installing

on

the

client

side

58

prerequisites

58

testing

60

running

your

application
application,

installing

67

data

source,

installing

65

prerequisites

65

tracing

68

sample

application
application,

installing

63

data

source,

installing

62

prerequisite

61

testing

dealership

sample

65

testing

phonebook

sample

64

system

requirements

54

tracing

with

XMLTrace

68

tracing,

enabling

68

WebSphere

Application

Server

for

z/OS
applications

35

IVP

39

samples

42

classpath,

setting

46

configuring
access

to

IMS

37

custom

service,

installing

38

IMS

JDBC

resource

adapter,

installing

38

prerequisites

36

IVP

39

application,

installing

41

data

source,

installing

40

prerequisites

39

WebSphere

Application

Server

for

z/OS

(continued)
IVP

(continued)
testing

42

overview

35

restrictions
container-managed

signon

36

java.sql.Connection

object

36

shared

connections

36

running

your

application
application,

installing

47

classpath,

setting

46

data

source,

installing

46

prerequisites

46

sample

applications
application,

installing

43

data

source,

installing

42

prerequisites

42

testing

45

server.policy

file

38

system

requirements

36

tracing

48

WHERE

keyword

95

fields,

valid

95

operators,

valid

95

SSAs,

relation

to

95

X
xalan.jar

3

Xalan–Java

version

2.6.0

3

xercesImpl.jar

3

XML

(Extensible

Markup

Language)
composition

111

data-centric

documents

113

decomposed

storage

mode

112

IMS,

and

111

intact

storage

mode
about

114

base

segment

114

database

for

114

DBD

example

115

overflow

segment

114

side

segment

115

JDBC

extensions

for

97

legacy

databases,

and

113

open

source

files

for

IMS

Java

3

overview

111

retrieveXML

97

Clob

interface

98

example

98

storeXML

99

example

100

SQL

syntax

99

storing

111

supported

environments

118

type

representation

117

UDFs

97

xalan.jar

3

Xalan–Java

version

2.6.0

3

xercesImpl.jar

3

xml-apis.jar

3

IBM

Confidential

142

IMS

Java

Guide

and

Reference

XML

schema
data

types

117

overview

116

xml-apis.jar

3

XMLTrace
application

122

enabling

121

WebSphere

Application

Server

(non-z/OS)

applications

68

XMLTrace

class

120

XMLTrace.enable

121

XMLTrace.IMS

Java

library

methods

121

XMLTrace.libTraceLevel

122

Z
ZONEDECIMAL

data

type

102

IBM

Confidential

Index

143

IBM

Confidential

144

IMS

Java

Guide

and

Reference

����

Program

Number:

5655-J38

IBM

Confidential

Printed

in

USA

ZES1-2347-01

Sp
in
e

in
fo
rm
at
io
n:

 �
�

�

IM
S

IM
S

Ja
va

G
ui

de

an
d

R
ef

er
en

ce

Ve
rs

io
n

9

	Contents
	Figures
	Tables
	About This Book
	Prerequisite Knowledge
	How to Read Syntax Diagrams
	How to Send Your Comments

	Summary of Changes
	Changes to This Book for IMS Version 9
	Library Changes for IMS Version 9
	New and Revised Titles
	Organizational Changes
	Terminology Changes
	Accessibility Enhancements
	User Assistive Technologies
	Accessible Information
	Keyboard Navigation of the User Interface

	Chapter 1. Getting Started with IMS Java
	IMS Java System Requirements
	Installing IMS Java
	Downloading Apache Open Source XML Libraries
	Administering IMS Java
	IMS Java Class Library Summary
	General Restrictions
	Where to Find More Information about IMS Java

	Chapter 2. JMP and JBP Applications
	Running the IMS Java IVP in a JMP Region
	Running the IMS Java IVP in a JBP Region
	Running the IMS Java Sample Application from a JMP Region
	Configuring JMP and JBP Regions for DB2 UDB for z/OS Database Access
	Developing JMP Applications
	Subclassing the IMSFieldMessage Class to Define Input Messages
	Subclassing the IMSFieldMessage Class to Define Output Messages
	Implementing the main Method
	JMP Programming Models
	JMP Application Without Rollback
	JMP Application that Uses Rollback
	JMP Application that Accesses IMS or DB2 UDB for z/OS Data

	Additional Message Handling Considerations for JMP Applications
	Conversational Transactions
	Defining a SPA Message in a Conversational Program
	Conversational Transaction Sequence of Events

	Handling Multi-Segment Messages
	Coding and Accessing Messages with Repeating Structures
	Flexible Reading of Multiple Input Messages

	Developing JBP Applications
	Symbolic Checkpoint and Restart
	JBP Programming Models
	JBP Application without Rollback
	JBP Application with Symbolic Checkpoint and Restart
	JBP Application using Rollback
	JBP Application that Accesses DB2 UDB for z/OS or IMS Data

	Enterprise COBOL Interoperability with JMP and JBP Applications
	Enterprise COBOL as a Back-End Application in a JMP or JBP Region
	Enterprise COBOL as a Front-End Application in a JMP or JBP Region
	Performance Consideration for OO COBOL in a JMP or JBP Region
	Recommendation against Accessing Databases with Both Java and COBOL

	Accessing DB2 UDB for z/OS Databases from JMP or JBP Applications

	Chapter 3. WebSphere Application Server for z/OS Applications
	System Requirements for WebSphere Application Server for z/OS
	Restrictions for WebSphere Application Server for z/OS
	Configuring WebSphere Application Server V5 for z/OS for IMS Java
	Configuring WebSphere Application Server for z/OS to Access IMS
	Adding the Required XML Files to the WebSphere Application Server for z/OS Classpath
	Installing the IMS JDBC Resource Adapter
	Installing the Custom Service

	Running the IMS Java IVP on WebSphere Application Server for z/OS
	Installing the Data Source for the IMS Java IVP
	Installing the IMS Java IVP
	Testing the IMS Java IVP

	Running the IMS Java Sample Applications on WebSphere Application Server for z/OS
	Installing the Data Source for the IMS Java Samples
	Installing the IMS Java Sample Applications
	Testing the IMS Java Sample Applications

	Running Your Applications on WebSphere Application Server for z/OS
	Setting the WebSphere Application Server for z/OS Classpath
	Installing the Data Source for Your Application
	Installing Your Application
	Enabling J2EE Tracing with WebSphere Application Server for z/OS
	Specifying the Level of Tracing
	Specifying the Application Server and the Package to Trace

	Developing Enterprise Applications that Access IMS DB
	Bean-Managed EJBs
	Transaction Demarcation Using the javax.transaction.UserTransaction Interface
	Transaction Demarcation Using the java.sql.Connection Interface

	Container-Managed EJBs
	Servlets

	Chapter 4. Remote Data Access with WebSphere Application Server Applications
	System Requirements for WebSphere Application Server
	Downloading IMS Java Files for Remote Database Services
	Configuring the Application Servers for IMS Java Remote Database Services
	Installing the Data Source on WebSphere Application Server for z/OS
	Installing the EAR file on WebSphere Application Server for z/OS
	Installing the IMS Distributed JDBC Resource Adapter

	Running the IMS Java IVP for Remote Database Services
	Setting the WebSphere Application Server for z/OS Classpath
	Installing the Data Source for the IVP on the Client Side
	Installing the IVP on the Client Side
	Testing the IVP

	Running the IMS Java Sample Applications for Remote Database Services
	Setting the WebSphere Application Server for z/OS Classpath
	Installing the Data Source for the IMS Java Samples on the Client Side
	Installing the IMS Java Sample Applications on the Client Side
	Testing the Phonebook Sample
	Testing the Dealership Sample

	Running Your Application on WebSphere Application Server
	Setting the WebSphere Application Server for z/OS Classpath
	Installing the Data Source on the Client Side
	Installing the Application on the Client Side

	Enabling J2EE Tracing with WebSphere Application Server
	Specifying the Level of Tracing
	Specifying the Application Server and the Package to Trace

	WebSphere Application Server EJBs
	Transaction Semantics and Server-Side EJB Types
	Client-Side EJB Security Semantics

	Chapter 5. DB2 UDB for z/OS Stored Procedures
	Configuring DB2 UDB for z/OS for IMS Java
	Running the IMS Java IVP from DB2 UDB for z/OS
	Running the IMS Java Sample Application on DB2 UDB for z/OS
	Running Your Stored Procedure from DB2 UDB for z/OS
	Developing DB2 UDB for z/OS Stored Procedures that Access IMS DB

	Chapter 6. CICS Applications
	Configuring CICS for IMS Java
	Running the IMS Java IVP on CICS
	Running the IMS Java Sample Application on CICS
	Running Your Applications on CICS
	Developing CICS Applications that Access IMS DB

	Chapter 7. JDBC Access to IMS Data
	Comparison of Hierarchical and Relational Databases
	Supported SQL Keywords
	SELECT Statement Usage
	Selecting Multiple Segments
	Selecting All Fields in a Segment
	Segment-Qualified Fields
	Retrieving XML Using the SELECT Statement
	Summary of SELECT Statement Usage

	INSERT Statement Usage
	DELETE Statement Usage
	UPDATE Statement Usage
	FROM Clause Usage
	PCB-Qualified SQL Queries
	Summary of FROM Clause Usage

	WHERE Clause Usage
	Summary of WHERE Clause Usage

	Supported SQL Aggregate Functions
	SQL Extensions for XML Storage and Retrieval
	retrieveXML UDF
	storeXML UDF

	Supported JDBC Interfaces
	JDBC Prepared Statements for SQL
	Supported JDBC Data Types
	General Mappings from COBOL Copybook Types to IMS Java and Java Data Types
	JDBC Recommendations for IMS Databases
	Java Metadata Classes for IMS Databases
	Sample Application that Uses JDBC
	Imported Packages for JDBC Access to IMS Databases
	Connections to IMS Databases

	Chapter 8. XML Storage in IMS Databases
	Decomposed Storage Mode for XML
	Intact Storage Mode for XML
	Side Segments for Secondary Indexing
	DBDs for Intact XML Storage

	XML Schema
	XML Type Representation
	JDBC Interface for Storing and Retrieving XML

	Chapter 9. Problem Determination
	Exceptions
	How Exceptions Map to DL/I Status Codes
	SQLException Objects

	XML Tracing for IMS Java
	WebSphere Application Server Security Requirements for XML Tracing
	Enabling XML Tracing
	Tracing the IMS Java Library Methods
	Tracing Your Application

	Debugging an Unresettable JVM in a JMP or JBP Region

	Appendix A. Preparing to Run the Dealership Samples
	Modifying IMS Stage 1 Input Statements
	Loading the Dealership Sample Databases

	Appendix B. SQL Keywords
	Appendix C. IMS Java Hierarchical Database Interface
	Application Programming Using the DLIConnection Object
	Creating a DLIConnection Object
	Creating an SSAList Object
	Accessing IMS Data Using SSAs

	Notices
	Trademarks
	Product Names

	Bibliography
	IMS Version 9 Library

	Index

