<|lI!

IMS

An Introduction to IMS

Version 9

IBM Confidential ZES1-2350-01

<|lI!

IMS

An Introduction to IMS

Version 9

IBM Confidential ZES1-2350-01

IBM Confidential

Note
Before using this information and the product it supports, be sure to read the general information under [‘Notices” on page|

Quality Partnership Programm (QPP) Edition (April 2004) (Softcopy Only)
| This QPP edition replaces or makes obsolete the previous edition, ZES1-2350-00.This edition is available in softcopy
| format only. The technical changes for this version aresummarized under|“Changes to the Current Edition of this|
[|Book for IMS Version 9” on page xxi.|

© Copyright International Business Machines Corporation 2004. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

IBM Confidential

Contents
Figures. iX
Tables. . Xiii
Foreward . .XV
About This Book . XVl
Who Uses IMS . XVii
Overview of This Book . Xviii
How to Send Your Comments . XX
Summary of Changes . . XXi
Changes to the Current Ed|t|on of th|s Book for IMS VerS|on 9 . . XXi
Library Changes for IMS Version 9 . XX

Part 1. Overview of IMS . .1
Chapter 1. Introduction to IMS . . 3
History of IMS. . .3
Overview of the IMS Product . . 4
Chapter 2. IMS and z/OS . 11
Structure of IMS Subsystems. .11
Running an IMS System .21
Running Multiple IMS Systems . .22
How IMS Uses z/OS Services . 23
Chapter 3. Setting Up and Running IMS. . 27
Installing IMS e .27
Defining an IMS System . 28
Defining IMS Security . 28
IMS Startup . . 29
IMS Logging . .31
IMS Utilities . . 31
IMS Recovery . . 32
IMS Shutdown . . 33

Part 2. IMS Database Manager . 35
Chapter 4. Overview of IMS DB . . 37
Functions of the IMS Database Manager . 37
Implementation of IMS Databases . . 37
Full-Function Databases . 38
Fast Path Databases. . 39
Data in IMS and DB2 . 40
Chapter 5. Overview of the IMS Hierarchical Database Model .41
Basic Segment Types . . 44
Sequence Fields and Access Paths . . 45
Logical Relationships . 45
Secondary Indexing . . 48

© Copyright IBM Corp. 2004

IBM Confidential

Chapter 6. Implementing the IMS Database Model . . b1
Segments, Records, and Pointers . Co. . 52
IMS Hierarchic Access Methods . b3
Physical Segment Design . . 66
Operating System Access Methods . 67
IMS Checkpoints . . 70
Locking. .72
Chapter 7. Choosing the Correct Database Type . 75
Applications Suitable for Full-Function Databases . . 75
Applications Suitable for HSAM and HISAM . .77
Applications Suitable for Fast Path Databases .77
Chapter 8. Data Sharing . . 83
DBRC and Data Sharing . 84
How Applications Share Data . 84
Chapter 9. The Database Reorganization Process . . 85
Purpose of Reorganization . 85
When to Reorganize . . 86
Overview of the Reorganlzatlon Process . 88
Reorganization Utilities . . 99
Chapter 10. The Database Recovery Process . . 101
When Recovery is Needed 101
Overview of the Database Recovery Process . . 101
IMS Backup and Recovery Utilities . . 102
Part 3. IMS Transaction Manager. 111
Chapter 11. Overview of IMS TM . 113
Functions of IMS TM . 113
IMS TM and the Network. . 113
IMS TM Messages . . . 116
Connections to Other IMS and CICS Subsystems . 116
Chapter 12. IMS TM Control Reglon . . 119
IMS Messages .o . . 119
IMS Transaction Flow . . 120
Chapter 13. How IMS TM Processes Input . 123
Input Message Types . Ce e . 123
Terminal Types . 124
Input Message Origin . . 124
Terminal Input Destination . 124
Message Queueing. . 125
Message Scheduling . 128
Transaction Scheduling . 130
Chapter 14. Fast Path Transactions . . 135
Fast Path Exclusive Transactions. . 135
Fast Path Potential Transactions . . 135
Chapter 15. The Master Terminal . . 137
The Primary Master. .o . 138
The Secondary Master . 139

iv

IMS: An Introduction to IMS

IBM Confidential

Using the z/OS Console as the Master Terminal . . 139
Extended MCS/EMCS Console Support . . 139
Chapter 16. Application Program Processing for IMS TM . 141
Flow of Message Processing Programs (MPPSs) . 141
Role of the PSB . . 142
DL/I Message Calls. . 142
Program Isolation and Dynamrc Loggmg . 143
Internal Resource Lock Manager (IRLM) . . 144
Abnormal Application Program Termination . . 144
Conversational Processing . . 145
Output Message Processing . . 145
Logging, Checkpointing, and Restartrng . 145
Message Switching . - . 146
Part 4. IMS Application Development . 147
Chapter 17. Application Programming Overview . . 149
Java Programs .o . 149
Program Structure . . . 149
IMS Setup for Applications . . 156
IMS Database Application Programmmg Interface . 160
IMS Application Calls . . . 161
IMS/DB2 Resource Translate Table . 161
IMS System Service Calls . 162
Chapter 18. Application Programming for the IMS Database Manager 165
Introduction to Database Processing . G . 165
Processing Against a Single Database Structure . . 170
Language Specific Programming Considerations . . 180
Processing Databases with Logical Relationships. . 184
Processing Databases with Secondary Indexes . 185
Loading Databases . . . 187
Using Batch Checkpornt/Restart . . 192
Chapter 19. Application Programming for the IMS Transaction Manager 197
Application Program Processing . . . 197
Transaction Manager Application Design . . 201
Chapter 20. The IMS Message Format Service . . 207
Overview of MFS G e . 207
MFS and 3270 Devices . . 209
Relationships between MFS Control Blocks . 209
MES Functions . . 213
MFS Control Statements . . 218
Generating MFS Control Blocks . . 220
Maintaining the MFS Library . 221
Chapter 21. Application Programming in IMS Java . . 223
Environments that Support IMS Java . S . 223
Describing an IMS Database to IMS Java . 224
Accessing an IMS Database with IMS Java . . 226
Part 5. IMS System Administration. . 229

Contents V

IBM Confidential

Chapter 22. The IMS System Definition Process . . 231
Overview of the IMS System Definition Process . 231
IMS System Definition Macros. . . 235
The Extended Terminal Option (ETO) . . 238
Chapter 23. Customizing IMS . 245
Chapter 24. IMS Security . . 253
History of IMS Security . 253
Security Overview . . 254
Securing Resources . 254
Chapter 25. IMS Logging . . 257
Checkpoints . . 257
Database Recovery Control (DBRC) . 257
IMS Log Components . .o . 257
Chapter 26. Database Recovery Control (DBRC) . . 263
Overview of DBRC . G e e . 263
Using DBRC . 264
Overview of the RECON Data Sets . . 266
Defining and Creating the RECON Data Sets . . 269
Initializing the RECON Data Sets. . 270
Allocating RECON Data Sets to IMS Systems . 270
Placement Considerations for the RECON Data Sets . 271
Maintaining RECON Data Sets . 271
Reorganizing RECON Data Sets . . 273
Recreating RECON Data Sets. . 274
PRILOG Record Size . . . 274
Summary of Recommendations for RECON Data Sets. . 275
DBRC Support for Remote Site Recovery . 275
Chapter 27. Controlling IMS . . 277
Monitoring the System. . . 277
Processing IMS System Log Informat|0n . . 277
Choosing Tools for Detailed Monitoring . 282
Executing Recovery-Related Functions . 286
Modifying and Controlling System Resources . . 288
Gathering Performance-Related Data . . 294
Controlling Data Sharing . . . 296
Controlling Log Data Set Characterlstlcs . . 301
Connecting and Disconnecting Subsystems . . 306
Chapter 28. IMS System Recovery . . 307
Overview of Extended Recovery Facility (XRF). . 308
Overview of Remote Site Recovery (RSR) . 308
Comparison of XRF and RSR . . 309
Chapter 29. IBM IMS Tools . 311
Part 6. IMS in a Parallel Sysplex Environment . 313
Chapter 30. Introduction to Parallel Sysplex. . 315
Goals of a Sysplex Environment . . . 316
IMS and the Sysplex Environment . 316
IMS DB and the Sysplex Environment . . 316

Vi

IMS: An Introduction to IMS

IBM Confidential

IMS TM and the Sysplex Environment.320
Other Advantages of Running IMS TM in a Sysplex Enwronment 329
Chapter 31. IMSplexes .337
Components ofan IMSplex .337
Requirements foran IMSplex33
Operatingan IMSplex .340
Part 7. Appendixes343
Notices34
Trademarks.o B4ar
Product Names ... 347
Bibliography .34
IMS Version 9 Library .34
Index31

Contents Vi

IBM Confidential

Vil IMS: An Introduction to IMS

IBM Confidential

Figures
1. Example of a Hierarchical Data Model .6
2. Interfaces to IMS . . . O - |
3. Structure of an IMS DB/DC Subsystem T
4. Client Systems, CQS, and a Coupling Facility .15
5. Structure of an IMS DBCTL System. .. .19
6. Structure of an IMS Batch Region . . . {0
7. Example of a Hierarchical Dealership Database e X
8. Relational Representation of the Dealership Database42
9. Hierarchical Data Structure . . . e A
10. Segment Types and Their Relatlonshrps 2y
11. Example of Logical and Physical Databases. . . . e46
12. Two Logically Related Physical Databases: PART and ORDER Co Y v 4
13. Two Logical Databases After Relating the PARTS and ORDER Databases e v 4
14. A Database and Its Secondary Index Database49
15. Elements of the Physical Implementation. .bl
16. Example of a Typical Segment Layout .b2
17. Database Record and Pointers. .53
18. HDAM Database in Physical Storage .56
19. HDAM Database Free Space Management .57
20. HIDAM Database in Physical Storage . . . e o 1°)
21. A Logical View of an HDAM and a PHDAM Database e e e e e o.060
22. Overall Structure of a Fast PathDEDB. .63
23. Database Unload Processing . . e 1]
24. Overview of Database Reload Only Process S e X §
25. Overview of Reload Processing With Secondary |ndexes Co A
26. Overview of Database Reload Process When Logical Relatlonshlps EX|st . . 94
27. Overview of the Database Reload Process When Secondary Indexes and Logical Relatlonsh|ps
Exist96
28. Relationship Between DB Records in the Input and Output Data Sets at a Pornt Durrng
Reorganization . . . e 1
29. Overview of the Recovery U'[I|I'[IeS . N (O K
30. Inputs and Outputs for the Image Copy Utrlrty Co Ko
31. Inputs and Outputs for the Database Image Copy 2 Ut|||ty e 10§
32. Inputs and Outputs for the Change Accumulation Utility 107
33. Inputs and Outputs of the Database Recovery Utility 108
34. Inputs and Outputs for the Batch Backout Utility 109
35. Transmission, Message, and Segment Relationships 120
36. Format of a Message Segment . . . T 240
37. The IMS Control Region, Its Control, and Data (Message) FIow e o
38. Input Message Processing. . . e vt
39. Overview of the Message Queuing Process e 24
40. Message Scheduling . . . e 2]
41. Sample APPLCTN Macro Transactlon Def|n|t|on in IMS Stage 1 Input 72
42. Example of MPR PROC Statement R X
43. Example of /ASSIGN CLASS Command. .12
44. Example of /DISPLAY ACTIVE Command .11
45. Master Terminal Screen. . . P RS
46. Sample JCL for the Secondary Master Spool Co e
47. Overview of Basic Flow Through a MPP or BMP Address Space 4
48. Structure of an IMS Application Program .15
49. Application PCB Structure . . . e
50. Example of a Database Applrcatron PCB Mask e e e153
51. Examples of Concatenated Keys .154

© Copyright IBM Corp. 2004 iX

1
1
1
1
1
1
1
1

X

52.
53.
54.
55.
56.
57.
58.
59.

60

00.
01.
02.
03.
04.
05.
06.
07.

IBM Confidential

Example of an Online Application PCB Mask .

Example of a COBOL Application Program Testing Status Codes
IMS Control Block Generation and Usage .

Evaluating Status Codes

Sample Call Presentation .

Basic Get Unique Call

Unqualified Get Next Call .

Qualified Get Next Call .

. Qualified Get Next Call with Qualified SSA
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94,
95.
96.
97.
98.
99.

Basic Replace Call.

Basic Delete Call

Basic Insert Call .

Example of an SSA with D and P Command Codes

Sample Path Retrieve Call. .

Example of a COBOL Batch Program.

Example of a PL/I Batch Program . .

Example of a PSB with a Secondary Index Deflned

Example of a Get Unique Call Using a Secondary Index.
Overview of Loading a Database that has Logical Relationships .
Overview of Loading a Database that has Secondary Indexes.

Overview of Loading a Database that has Logical Relationships and Secondary Indexes

General MPP Structure and Flow

Message Formatting Using MFS.

Overview of Message Format Service Funct|ons

Chained Control Block Linkage . .
Linkage Between Message Fields and Dewce F|elds .
LPAGE - DPAGE Linkage . .

Optional Message Description Lmkage

MFS Input Formatting

MFS Output Formatting .

An Output Message Definition W|th One LPAGE

An Output Message Definition with Multiple Pages .

Overview of Process for Creating MFS Control Blocks
DLIModel Utility Inputs and Outputs

JDBC Application . .
Overview of the Two Stages of System Def|n|t|on Processmg
Static Resources .

ETO Dynamic Resources .

Inputs and Outputs of the IMS Log Arch|ve Ut|||ty

Example of a RECON Data Set Definition .

Example JCL for Allocating RECON Data Sets Dynamlcally
Sample Program lIsolation Trace Report . .
Output from a DISPLAY XCF,STRUCTURE Command .o
Output for DISPLAY XCF,STRUCTURE,STRNAME= Command .

Example of a Data Sharing Configuration with IMS DC/DB, DBCTL, and IMS Batch Jobs

Moving a Dependent Region Between IMSs

Example of a Dependent Region Running with A leferent Control Reglon
Sample FDBR Configuration . .

Example of VTAM USERVAR Exit Routlng IMS Logons .

VTAM Generic Resources Distributing Logons In a Sysplex.

TN3270 Client Connecting to IMS . .

IND Connecting to Multiple IMSs via IMS Connect

Web Connections to IMS Using the Sysplex Distributor and IMS Connect
VTAM Sessions of 3 IMSs Connected to Each Other Using MSC

A Single IMS with a Single Message Queue

Two IMSs Accessing One Message Queue on a Coupllng Facmty

IMS: An Introduction to IMS

. 155
. 156
. 159
. 169
. 170
. 171
. 172
. 173
. 173
. 174
. 175
. 176
. 176
. 177
. 181
. 183
. 186
. 186
. 189
. 190

191

. 198
. 207
. 209
. 210
211
211
. 212
. 213
. 215
. 216
. 216
. 220
. 226
. 228
. 232
. 240
. 240
. 259
. 270
. 271
. 285
. 298
. 299

317

. 318
. 318
. 319
. 322
. 323
. 325
. 325
. 326
. 327
. 328
. 328

IBM Confidential

108

. An SNPS Example Scenario Where a Logon is Not Terminated When Its IMS Fails.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.

An MNPS Example Scenario Where a Logon is Not Terminated When Its IMS Fails
ARM Restarting an IMS that Abended .

ARM Restarting IMS, CICS, and DB2 After a z/OS Fallure . .

Three IMSs on Three z/OSs Sharing One IRLM Structure on a Coupllng FaC|I|ty
IRLM Structure on Failed Coupling Facility is Rebuilt on Another Coupling Facility
IRLM Structure Rebuilt on Another Coupling Facility After a Connectivity Failure .
Shared VSO Structure Duplexed on Two Coupling Facilities

System-Managed Duplicate Shared VSO Structure is Used After a Coupllng Facmty Fallure

Sample IMSplex Configuration with a CSL .
Minimum CSL Configuration for an IMSplex

. 330
. 331
. 332
. 333
. 334
. 335
. 335
. 336

336

. 338
. 340

Figures

Xi

IBM Confidential

Xil IMS: An Introduction to IMS

IBM Confidential

Tables
1. Support for Region Types by IMS Control Reg|on Type
2. OTMA Processing Options
3. Comparing MSC and ISC Functlons
4. Valid Combinations of the EOS, EOM, and EOD Symbols
5. Master Terminal Operator Actions and Associated Commands.
6. IMS Call Argument List . .
7. Summary of IMS DB System Serwce Calls
8. Summary of IMS TM System Service Calls.
9. DL/l Function Descriptions . .
10. Segment Access .
11. Segment Name, Command Code and Quahflcatlons .
12. Relational Operator Values. .
13. Status Codes Associated with Processmg GSAM Databases .
14. Database Load Status Codes.
15. Types of IMS System Definitions
16. IMS DB Exit Routines and Their Uses
17. IMS TM Exits and Their Uses.
18. IMS System Exits and Their Uses .
19. Resources and the Facilities to Protect Them
20. IMS Commands That Affect Telecommunications Line, Physmal Termlnal or Node Resources
21. IMS Commands That Affect Logical Terminal Resources .
22. IMS Commands That Affect Logical Link Resources
23. IMS Commands That Affect Logical Link Path Resources
24. IMS Commands That Affect Transaction Resources
25. IMS Commands That Affect Transaction Class Resources .
26. IMS Commands That Affect Program Resources.
27. IMS Commands That Affect Database Resources
28. IMS Commands That Affect Subsystem Resources. .
29. /DISPLAY Command Keywords That Provide Information about IMS Resources .

DBRC Commands and Functions .
Changing OLDS Characteristics .

Changing WADS Characteristics

Changing RECON Data Set Characterlstlcs
Comparison on XRF and RSR Features.

© Copyright IBM Corp. 2004

.17
. 115
. 118
. 119
. 137
. 155
. 162
. 163
. 166
. 166
. 167
. 168
. 180
. 188
. 232
. 246
. 246
. 250
. 254

289

. 289
. 289
. 290
. 290
. 290
. 291
. 291
. 291
. 297
. 300
. 302
. 304
. 305
. 309

Xiii

IBM Confidential

XiV IMS: An Introduction to IMS

IBM Confidential

Foreward

Forward by Vern Watts will go here sometime before GA.

© Copyright IBM Corp. 2004

XV

IBM Confidential

XVi IMS: An Introduction to IMS

IBM Confidential

About This Book

This softcopy book is available only in PDF and BookManager formats and also as
part of the DB2 Information Management Software Information Center for z/OS
Solutions. To get the most current versions of the PDF and BookManager formats,
go to the IMS Library page at www.ibm.com/software/data/ims/library.html. To view
the information within the DB2 Information Mangement Software Information Center
for z/OS Solutions, go to publib/boulder.ibm.com/infocenter/db2zhelp.

Note: This book is at an early draft level and is new for IMS Version 9. We
welcome your comments about this information, especially regarding coverage,
level of detail, accuracy, and clarity.

IBM Information Management System (IMS) is one of the world’'s premiere software
products. Period.

The purpose of this book is twofold:

* To introduce IMS to those who have not heard about it and provide an basic
education about this cornerstone product

» To re-introduce IMS to the computer science field in general

IMS is not in the news and is barely mentioned in today’s computer science
classes, but it has been and, for the foreseeable future, will continue to be a major,
crucial component of the world’s software infrastructure.

From its beginnings with NASA, IMS has provided the foundation that enables
government agencies and businesses to manage, access, manipulate, and exploit
their vast stores of data. As the Information Age evolves and matures, so does IMS.

Related Reading: For more information about IMS, see the IMS library (listed in
the ['Bibliography” on page 349) and visit the IMS Web site at www.ibm.com/ims.

Who Uses IMS

In spite of rumors that the mainframe and IMS died a long time ago, IMS and the
mainframe are alive and well and you use both of them every day. Over 90 percent
of the top world-wide companies in the following industries use IMS to run their
daily operations:

* Manufacturing

* Finance

* Banking

* Retailing

* Aerospace

» Communications

* Government

* Insurance

» High technology

* Health Care

Here are some interesting facts about how IMS is used.

IMS manages most of the world’s corporate data
* Over 95% of Fortune 1000 companies use IMS
* IMS manages over 15 million gigabytes of production data

© Copyright IBM Corp. 2004 XVii

IBM Confidential

» $2.5 trillion per day are transferred through IMS by one customer

IMS handles over 50 billion transactions per day
* IMS serves over 200 million users every day
* IMS processes over 100 million transactions per day for one customer

* IMS processed over 120 million transactions per day (7 million per hour)
for another customer

* IMS has processed 14,000 transactions per second (over 1 billion per
day) using IMS data sharing and shared queues

* Asingle IMS has handled over 6000 transactions per second over a
TCP/IP connection

Gartner Group Quote
“A large and loyal IMS installed base. Rock-solid reputation of a
transactional workhorse for very large workloads. Successfully proven in
large, Web-based applications. IMS is still a viable, even unmatched,
platform to implement very large OLTP systems and, in combination with
Web Application Server technology, it can be a foundation for a new
generation of Web-based high-workload applications.”

Related Reading: For more examples of the industries and customers that use
IMS, visit the IMS Web site (www.ibm.com/ims) and click on “Featured Customer”,
“IMS Newsletter”, or “Overview".

Overview of This Book

This book is organized in the following manner:
1. Part 1 is a high-level overview the IMS product. Part 1 contains the following
chapters:
« [Chapter 1, “Introduction to IMS,” on page 3|discusses a brief history of IMS,
an overview of the product, and some of its availability and recovery features
« [Chapter 3, “Setting Up and Running IMS,” on page 27| discusses the
installation and operation of IMS
* [Chapter 2, “IMS and z/OS,” on page 11| discusses the relationships between
IMS and the operating system
2. Part 2 is a more detailed look at the IMS Database Manager component of IMS.
Part 2 contains the following chapters:

* [Chapter 4, “Overview of IMS DB,” on page 37| discusses the functions of IMS
DB, the types of IMS databases, and a brief discussion of updating data in
IMS and DB2 databases

. |Chapter 5, “Overview of the IMS Hierarchical Database Model,” on page 4]] is
a more detailed discussion of the IMS hierarchical database model

. |Chapter 6, “Implementing the IMS Database Model,” on page 5]] discusses:
— The various IMS database types that use the hierarchical model

— The relationships between the IMS databases and the operating system
access methods

— A brief discussion of functions that ensure data integrity

|Chapter 7, “Choosing the Correct Database Type,” on page 75|discusses
some of the criteria for choosing the various IMS database types

|Chapter 8, “Data Sharing,” on page 83| is a brief discussion of data sharing
between multiple IMSs

XViil IMS: An Introduction to IMS

IBM Confidential

« [Chapter 9, “The Database Reorganization Process,” on page 85 discusses
the purpose for reorganizing databases, an overview of the process, and a
brief introduction to some of the reorganization utility routines that come with
IMS

Chapter 10, “The Database Recovery Process,” on page 101|introduces the
database recovery process, discusses some of the IMS backup and recovery
utility routines that come with IMS, and briefly discusses backup and recovery
procedures

3. Part 3 is a more detailed look at the IMS Transaction Manager component of
IMS. Part 3 contains the following chapters:

Chapter 11, “Overview of IMS TM,” on page 113| discusses the functions of
IMS TM and the relationships between IMS TM, the network, messages, and
other subsystems

[Chapter 12, “IMS TM Control Region,” on page 119|is a more detailed look at
how messages are handled by IMS TM

[Chapter 13, “How IMS TM Processes Input,” on page 123|discusses how IMS
TM processes input from a variety of sources

+ [Chapter 14, “Fast Path Transactions,” on page 135|introduces Fast Path
transactions and discusses how IMS TM processes them

[Chapter 15, “The Master Terminal,” on page 137 introduces and discuses the
responsibilities and capabilities of the IMS Master Terminal

[Chapter 16, “Application Program Processing for IMS TM,” on page 141
discusses how IMS TM processes application program requests

4. Part 4 is a detailed look at application programming as it relates to IMS. Part 4
contains the following chapters:

* |Chapter 17, “Application Programming Overview,” on page 149 discusses the
components of an IMS application program, the setup needed before running
the application program, and the IMS database application programming
interface

+ [Chapter 18, “Application Programming for the IMS Database Manager,” on|
page 165|discusses database processing that results from application
program calls, application language considerations, and other topics related
to application programming and IMS DB

« [Chapter 19, “Application Programming for the IMS Transaction Manager,” on|
page 197|discusses how IMS TM processes application programs and the
design of IMS TM applications

[Chapter 20, “The IMS Message Format Service,” on page 207| contains an
overview of the Message Format Service (MFS) function of IMS

[Chapter 21, “Application Programming in IMS Java,” on page 223| discusses
the IMS Java environment and provides an overview of writing IMS
applications in Java

5. Part 5 contains information related to administering IMS. Part 5 contains the
following chapters:

Chapter 22, “The IMS System Definition Process,” on page 231|contains an
overview of the types of IMS system definitions, the IMS macros used for
system definition, and a discussion of the Extended Terminal Option (ETO)
function of IMS

Chapter 23, “Customizing IMS,” on page 245| contains an introduction to how
you can customize IMS by using exit routines

About This Book XiX

IBM Confidential

* [Chapter 24, “IMS Security,” on page 253|contains a brief history of IMS
security, a discussion of what resources can be protected, and a list of the
facilities that can be used for security

« [Chapter 25, “IMS Logging,” on page 257| contains discussions on how IMS
records events, the data sets where these events are recorded and
introduces the Database Recovery Control (DBRC) facility of IMS

. |Chapter 26, “Database Recovery Control (DBRC),” on page 263| contains a
detailed discussion of using DBRC, an introduction and discussion of the
RECON data sets, the support built into DBRC for Remote Site Recovery
(RSR), and some recommendations regarding the RECON data sets

. |Chapter 27, “Controlling IMS,” on page 277| discusses various administrative
tasks related to running IMS

. |Chapter 29, “IBM IMS Tools,” on page 311| contains a brief introduction to the
various IBM IMS Tools that are available

6. Part 6 discusses how IMS relates to the Parallel Sysplex environment of z/OS.
Part 6 contains the following chapters:

+ [Chapter 30, “Introduction to Parallel Sysplex,” on page 315| contains an
overview of the Parallel Sysplex environment and how IMS takes advantage
of this environment

+ |Chapter 31, “IMSplexes,” on page 337/ contains a discussion of how multiple
IMSs can be managed as a single unit in the Parallel Sysplex environment

How to Send Your Comments

Your feedback is important in helping us provide the most accurate and highest

quality information. If you have any comments about this or any other IMS

information, you can do one of the following:

* Go to the IMS Library page at www.ibm.com/software/data/ims/library.html and
click the Library Feedback link, where you can enter and submit comments.

* Send your comments by e-mail to imspubs@us.ibm.com. Be sure to include the
title, the part number of the title, the version of IMS, and, if applicable, the
specific location of the text you are commenting on (for example, a page number
in the PDF or a heading in the Information Center).

XX IMS: An Introduction to IMS

IBM Confidential

Summary of Changes

This edition is a draft version of this new book intended for use during the Quality
Partnership Program (QPP). Contents of thisbook are preliminary and under
development.

| Changes to the Current Edition of this Book for IMS Version 9

| This edition of this book contains many updates, most notably in the graphics.

Library Changes for IMS Version 9

Changes to the IMS Library for IMS Version 9 include the addition of new titles, the
change of one title, and a major terminology change. Changes are indicated by a
vertical bar (]) to the left of the changed text.

New and Revised Titles
The following list details the major changes to the IMS Version 9 library:
IMS Version 9: HALDB Online Reorganization Guide and Reference]

The library includes new information: [IMS Version 9: HALDB Online|
|Re0rganization Guide and Reference| This information is available only in PDF
and BookManager formats.

IMS Version 9: An Introduction to IMS|
The library includes new information: [IMS Version 9: An Introduction to IMS|

* The information formerly titled IMS Version 8: IMS Java User’s Guide is now
titled IMS Version 9: IMS Java Guide and Referencel

Terminology Changes
IMS Version 9 introduces new terminology for IMS commands:

type-1 command
A command, generally preceded by a leading slash character, that can be
entered from any valid IMS command source. In IMS Version 8, these
commands were called classic commands.

type-2 command
A command that is entered only through the OM API. Type-2 commands
are more flexible and can have a broader scope than type-1 commands. In
IMS Version 8, these commands were called IMSplex commands or
enhanced commands.

Accessibility Enhancements

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products. The major accessibility features
in z/OS products, including IMS, enable users to:

» Use assistive technologies such as screen readers and screen magnifier
software

» Operate specific or equivalent features using only the keyboard
» Customize display attributes such as color, contrast, and font size

© Copyright IBM Corp. 2004 XXi

XXii

IBM Confidential

User Assistive Technologies

Assistive technology products, such as screen readers, function with the IMS user
interfaces. Consult the documentation of the assistive technology products for
specific information when you use assistive technology to access these interfaces.

Accessible Information

Online information for IMS Version 9 is available in BookManager format, which is
an accessible format. All BookManager functions can be accessed by using a
keyboard or keyboard shortcut keys. BookManager also allows you to use screen
readers and other assistive technologies. The BookManager READ/MVS product is
included with the z/OS base product, and the BookManager Softcopy Reader (for
workstations) is available on the IMS Licensed Product Kit (CD), which you can
download from the Web at www.ibm.com.

Keyboard Navigation of the User Interface

Users can access IMS user interfaces using TSO/E or ISPF. Refer to the z/OS
V1R1.0 TSO/E Primer, the z/OS V1R1.0 TSO/E User’s Guide, and the z/OS
V1R1.0 ISPF User’s Guide, Volume 1. These guides describe how to navigate each
interface, including the use of keyboard shortcuts or function keys (PF keys). Each
guide includes the default settings for the PF keys and explains how to modify their
functions.

IMS: An Introduction to IMS

IBM Confidential

Part 1. Overview of IMS

Chapter 1. Introduction to IMS .
History of IMS. .
Beginnings at NASA .
IMS as a Database Management System
The DL/I Callable Interface .
IMS as a Transaction Manager
Overview of the IMS Product .
IMS Database Manager .
IMS Transaction Manager
IMS System Services .
Accessing IMS
How IMS Relates to z/OS

Chapter 2. IMS and z/OS.
Structure of IMS Subsystems.
IMS Control Region . .
IMS Separate Address Spaces .
Application Dependent Regions.
Batch Application Address Space .
Internal Resource Lock Manager (IRLM)
Running an IMS System G
Running Multiple IMS Systems . .
Running Multiple IMS Systems on One z/OS Image .
Running Multiple IMS Systems on Multiple z/OS Images
How IMS Uses z/OS Services
Transmission Control Protocol/lnternet Protocol (TCP/IP)
Advanced Program-to-Program Communications (APPC)
Resource Access Control Facility (RACF) .
Resource Recovery Services (RRS) .
Parallel Sysplex

Chapter 3. Setting Up and Running IMS.
Installing IMS
IMS Installation Ver|f|cat|on Program (IVP)
Defining an IMS System
Defining IMS Security
IMS Startup . . .
Types of IMS System Starts .
Starting IMS-Associated Regions .
IMS Logging . G
IMS Utilities .
IMS Recovery .
IMS Shutdown .

© Copyright IBM Corp. 2004

O~N~NOOUORRPAPA,WWWW

L1
.11
.11
.14
. 16
. 20
.21
.21
.22
. 22
. 23
. 23
. 24
. 24
. 24
. 24
. 25

.27
.27
.27
. 28
. 28
. 29
. 29
. 30
.31
.31
. 32
. 33

IBM Confidential

2 IMS: An Introduction to IMS

IBM Confidential

Chapter 1. Introduction to IMS

This chapter contains an overview of the entire IMS™ product. It includes both the
Transaction Manager and Database Manager components. The following sections
are covered in this chapter:

+ [‘History of IMS’|
« [‘Overview of the IMS Product” on page 4|

History of IMS

As shown in the next few sections, IMS has been an important part of world-wide
computing since its inception.

Beginnings at NASA

On May 25, 1961, United States President John F. Kennedy challenged American
industry to send an American to the moon and have him return safely to earth. This
feat was to be accomplished before the end of the decade. American Rockwell won
the bid to build the spacecraft for the Apollo Program and, in 1965, they established
a partnership with IBM to fulfill the requirement for an automated system to manage
large bills of material for the construction of the spacecraft.

In 1966, 12 members of the IBM team, along with 10 members from North
American Rockwell and 3 members from Caterpillar Tractor, started the design and
development of the system that was called Information Control System (ICS) and
Data Language/Interface (DL/I). During the design and development process, the
IBM team was moved to Los Angeles and increased to 21 members. This team
completed and shipped the first release of ICS.

In April, 1968, ICS was installed. The first “READY” message was displayed on an
IBM 2740 typewriter terminal at the Rockwell Space Division in Downey California,
on August 14, 1968.

ICS was renamed Information Management System/360™ (IMS/360) in 1969 and
became available to the world.

Since 1968, IMS:
» Helped achieve President Kennedy’s dream.
» Started the database management system revolution.

» Continues to evolve to meet and exceed the data processing requirements
demanded by today’s businesses and governments.

IMS as a Database Management System

The IMS database management system (DBMS) realized the concept of separating
application code from the data. The point of separation was the Data
Language/Interface (DL/I). IMS controlled the access and recovery of the data.

This separation established a new paradigm for application programming. The
application code could now focus on the manipulation of the data and not have the
overhead associated with the access and recovery of the data. This paradigm
virtually eliminated the need for redundant copies of the data. Multiple applications
could access and update a single instance of the data, thus providing current data
for each application.

© Copyright IBM Corp. 2004 3

IBM Confidential

The DL/l Callable Interface

Application programs still access and navigate through the data by using the DL/I
standard callable interface. Online access to the data became possible because the
application code was separated from the data control.

IMS as a Transaction Manager

IBM developed the online component to ICS/DL/I to support data communication
access to the databases. The DL/I callable interface was expanded to the online
component of the product to enable data communication transparency to the
application programs. A message queue function was created to maintain the
integrity of data communication messages and to provide a queuing concept for
scheduling application programs.

The online component to ICS/DL/I ultimately became the Data Communications
(DC) function of IMS. IMS DC became the IMS Transaction Manager (IMS TM) in
IMS Version 4.

Overview of the IMS Product

4

IMS delivers accurate, consistent, timely, and critical information to application
programs, which deliver the information to many end users simultaneously.

IMS has been developed to provide an environment for applications that require
very high levels of performance, throughput, and availability. IMS uses the
maximum facilities that the operating system and hardware have to offer. Currently,
IMS runs on z/OS® and on zSeries hardware.

IMS consists of three components, the Database Manager (IMS DB) component,
the Transaction Manager (IMS TM) component, and a set of system services that
provide common services to the other two components. Together, (known as IMS
DB/DC) they create a complete online transaction processing environment providing
continuous availability and data integrity. The individual functions provided by these
components are described in more detail later in this book.

IMS DB is a DBMS that helps you organize business data with both program and
device independence. With IMS DB:

» Database transactions (inserts, updates, and deletes) are performed as a single
unit of work so that the entire transaction either occurs or does not occur.

* The data in each database is guaranteed to be consistent.

* Multiple database transactions can be performed concurrently with the results of
each transaction kept isolated from the others.

* The data in each database is guaranteed to remain even when the DBMS is not
running.

IMS TM is a message-based transaction processor. IMS TM provides services to:

» Process input messages received from a variety of sources (such as the terminal
network, other IMSs, and the Web).

* Process output messages created by application programs.
* Provide an underlying queueing mechanism for handling these messages.

* Provide high-volume, high-performance, high-capacity, low-cost transaction
processing for both IMS DB’s hierarchical databases and DB2®’s relational
databases.

IMS: An Introduction to IMS

IBM Confidential

IMS TM supports many terminal sessions at extremely high transaction volumes.

IMS TM and IMS DB can be ordered and paid for separately if the functions of the
other component are not required. The appropriate system services are provided for
the component ordered.

IMS has been developed so that each new release of IMS is upwardly compatible,
S0 investment in existing applications is preserved. To accommodate the changing
requirements of IT systems, many new features have been added. This has also
resulted in a number of IMS features being wholly or partially superseded by newer
features that provide better functionality.

Applications written to use IMS functions can be written in a number of
programming languages. Programming languages currently supported are
Assembler, C, COBOL, Java™, Pascal, PL/l and REXX. The IMS resources are
accessed by the application by calling a number of standard IMS functions.
Applications access these functions through a standard application programming
interface (API) for both the Transaction Manager and Database Manager
components. This interface is DL/I.

IMS Database Manager

At the heart of IMS DB are its databases and its data manipulation language (DL/I
calls). IMS DB lets you:

* Maintain data integrity.

» Define the database structure and the relationships among the database
elements.

* Query information in the database.

* Add new information to the database.
* Delete information from the database.
» Update information in the database.

Additionally, IMS DB lets you adapt IMS databases to the requirements of your
many and varied applications. Application programs can access common and,
therefore, consistent data, reducing the need to maintain the same data in multiple
ways in separate files for different applications.

IMS DB provides:

» A central point of control and access for the IMS data that is processed by IMS
applications.

» Facilities for securing (backup and recovery) and maintaining the databases. It
allows multiple tasks (batch and/or online) to access and update the data while
retaining the integrity of that data. It also provides facilities for tuning the
databases by reorganizing and restructuring them.

IMS databases are hierarchical. Data within the database is arranged in a tree
structure, with data at each level of the hierarchy related to, and in some way
dependent upon, data at the higher level of the hierarchy (see [Figure 1 on page 6).
By following this model, a specific data item only needs to be stored within the
database once. The data item is then available to any user who is authorized to use
it. Users do not need to have personal copies of the data.

Chapter 1. Introduction to IMS 5

Level 1

Level 2

Level 3

IBM Confidential

Parent of Stock

Part and Purchase Order

Purchase Child of Part and
Order Parent of Detail

Child of

Detail Purchase Order

Figure 1. Example of a Hierarchical Data Model

IMS databases are accessed internally using a number of IMS’s database
organization access methods. The actual database data is stored on disk storage
using normal z/OS access methods.

IMS DB provides access to these databases from applications running under the
IMS Transaction Manager, CICS® Transaction Server for 0S/390® and z/OS, z/OS
batch jobs, WebSphere® Application Server for z/OS, and DB2 UDB for z/OS stored
procedures.

IMS DB can be ordered separately from the base IMS product. This configuration is
called DB control (DBCTL).

Related Reading: For more information about IMS DB, see [Part 2, “IMS Database]
Manager,” on page 35,

IMS Transaction Manager

IMS TM provides users of a network with access to applications running under IMS.
The users can be people at terminals or workstations, or other application
programs, either on the same z/OS system, on other z/OS systems, or on other
non-z/OS platforms.

A transaction is a specific setup of input data that triggers the execution of a
specific business application program. The message that is destined for an
application program, and the return of any results, is considered one transaction.

When IMS TM is used with IMS DB, it extends the facilities of that database
management system to the online, real-time environment. IMS TM enables
terminals or other devices or subsystems to enter transactions that initiate
application programs, which access IMS DB or DB2 databases and return results.

You can define a variety of online processing options. For example, you can define
transactions for high-volume data-entry applications, others for interactive

6 IMS: An Introduction to IMS

IBM Confidential

applications, and still others to support predefined queries. IMS TM supports a wide
variety of terminals and devices. It also enables you to develop a wide range of
high-volume, rapid-response applications, and to geographically disperse your data
processing locations, while keeping centralized control of your database.

IMS TM can be ordered separately from the base IMS product. This configuration is
called DC control (DCCTL).

Related Reading: For more information about IMS TM, see [Part 3, “IMS|

[Transaction Manager,” on page 111.|

IMS System Services

There are a number of functions that are common to both the Database Manager
and Transaction Manager. These services:

* Recover data
* Restart and recover IMS following failures
* Provide security (controlling access to and modification of IMS resources)

* Manage the application programs (dispatching work, loading application
programs, providing locking services)

* Provide diagnostic and performance information
» Provide facilities for operating IMS

* Provide interfaces to other z/OS subsystems that communicate with IMS
applications

Another IMS system service is Database Recovery Control (DBRC). DBRC provides
the recovery services part of the IMS system. DBRC:

» Controls the allocation and use of all IMS logs in an online environment
» Can provide access control for databases

» Can control database recovery

» Can work closely with the IMS recovery utilities

DBRC uses a set of control data sets, (collectively called the Recovery Control data
sets or the RECON data sets) to store the control information that is required to
fulfill these functions.

Related Reading: A more detailed description of DBRC is found in [Chapter 26,
{‘Database Recovery Control (DBRC),” on page 263.|

Accessing IMS

Network access to IMS Transaction Manager was originally by IBM’s systems,
which evolved into the System Network Architecture (SNA), as implemented in the
VTAM® program product (now a component of z/OS). Now, there are multiple ways
to access IMS resources by networks using Transmission Control Protocol/Internet
Protocol (TCP/IP), as well as other methods (such as IMS’s database resource
adapter (DRA) or through other products like Websphere MQ).

The interfaces to IMS are pictured in|Figure 2 on page 8|

Chapter 1. Introduction to IMS 7

IBM Confidential

3
I DB2
Tables
Distributed z/OS Applications, I
DB2 Stored Procedures, or —
WebSphere Application Server for z/0S I IMS .| CIcs
ODBA Databases DB2 |« m

A 4 A

A I N y
OM API OTMA

y A A y

N A A A N
CICS, or

APPC l«—> ACF/VTAM oS DB2 Stored WepSphere
Procedures
4 A A
A4 y
TCP/IP
A Y
= WebSphere J -ll\-lgtFx:)Prk IMS
Application Z (Web Server DataPropagator
Server for z/OS ’

TN3270 Client)

Figure 2. Interfaces to IMS

How IMS Relates to z/OS

8

IMS runs on IBM zSeries or compatible mainframes that run the z/OS operating
system. In fact, there is a symbiotic relationship between IMS and z/OS. Both are
tailored to provide the most efficient use of the hardware and software components.

IMS runs as a z/OS subsystem and uses several address spaces. There is one
controlling address space (called a control region), several separate address
spaces that provide IMS services, and several address spaces (called dependent
regions) that run IMS application programs. The various components of an IMS
system are explained in more detail in ['Structure of IMS Subsystems” on page 11)

Related Reading: For more information about the relationships between IMS and
z/0S, see|Chapter 2, “IMS and z/OS,” on page 11|For full details on the
compatibility of IMS releases with versions of the operating system and associated
products, see the current release planning guides:

IMS: An Introduction to IMS

IBM Confidential

* IMS Version 7: Release Planning Guide
* IMS Version 8: Release Planning Guide
+ [IMS Version 9: Release Planning Guide|

Parallel Sysplex

IMS exploits the z/OS Parallel Sysplex® environment to enable a more dynamic,
available, manageable, scalable, and well performing environment for database,
transaction, and systems management.

In a Parallel Sysplex environment, you can run multiple IMS subsystems that share
message queues and databases. This sharing enables workload balancing and
insulation from individual IMS outages. If one IMS in the sysplex fails, others
continue to process the workload, so the enterprise is minimally affected.

Related Reading: For more information on this topic, see |Part 6, “IMS in a Parallel
[Sysplex Environment,” on page 313.|

Chapter 1. Introduction to IMS 9

IBM Confidential

10 IMS: An Introduction to IMS

IBM Confidential

Chapter 2. IMS and z/OS

This chapter describes how IMS subsystems are implemented on an z/OS system.
It then gives an overview of IMS’s use of z/OS facilities.

The following sections are covered in this chapter:
« [‘Structure of IMS Subsystems’|

« ['Running an IMS System” on page 21|

+ ['Running Multiple IMS Systems” on page 22

« ['How IMS Uses z/OS Services” on page 23

Structure of IMS Subsystems

This section describes the various types of z/OS address spaces and their
relationship with each other. z/OS address spaces are sometimes called regions, as
in the IMS control region. The term region is synonymous with a z/OS address
space.

The core of an IMS subsystem is the control region, running in one z/OS address
space. For each control region there are multiple separate address spaces that
provide additional services to the control region or in which the IMS application
programs run.

In addition to the control region, some applications and utilities used with IMS run in
separate batch address spaces. These are separate to an IMS subsystem and its
control region and have no connection with it.

IMS Control Region

The control region (CTL) is a z/OS address space that can be initiated through a
z/OS start command, or by submitting JCL.

The IMS control region provides the central point for an IMS subsystem. The control

region:

» Provides the interface to the SNA network for the Transaction Manager functions.

* Provides the Transaction Manager OTMA interface for access to non-SNA
networks.

* Provides the interface to z/OS for the operation of the IMS subsystem.

» Controls and dispatches the application programs running in the dependent
regions.

The control region also provides all logging, restart and recovery functions for the
IMS subsystems. The terminals, message queues, and logs are all attached to this
region, and the Fast Path database data sets are also allocated by the control
region.

A type 2 supervisor call routine (SVC) is used for switching control information,
message and database data between the control region, all other regions, and
back.

There are three different types of IMS control regions, depending on whether the
Database Manager or Transaction Manager components (or both) are being used.
These three control region types are:

© Copyright IBM Corp. 2004 11

12

IBM Confidential

» DB/DC — This is a control region with both Transaction Manager and Database

Manager components installed. It provides the combined functionality of both the
other two types of control regions listed below. Note that when a DB/DC region is
providing access to IMS databases for a CICS region, it is referred to in some
documentation as providing DBCTL services, though it might, in fact, be a full
DB/DC region and not just a DBCTL region. The “DC” in DB/DC is a left over
from when the Transaction Manger was called the Data Communications function
of IMS. As shown in|Figure 3 on page 13|, the DB/DC control region provides
access to the:

— IMS message queues for IMS applications running in the message processing
program (MPP) or Java message processing regions.

— IMS libraries.

— IMS logs.

— Fast Path databases.

— DL/l separate address space.

— Database Recovery Control (DBRC) region.

— IMS Fast Path region (IFP).

— Java message processing program (JMP) region.
— Java batch processing program (JBP) region.

— BMP address spaces.

Related Reading: For more information about the separate address spaces, see
[‘IMS Separate Address Spaces” on page 14| For more information about the
various types of regions for application programs, see [‘Application Dependent
[Regions” on page 16

IMS: An Introduction to IMS

IBM Confidential

IMS
Message Queues
—

C

M

Network

A

S Libraries
S

C

Fast Path
Databases

C

System
A A A A 4 A A
v v
DLI
Separate DBRC
Address Region
Space
0| C
Full-Function RECON
Databases Data Sets
JMP JBP MPP IFP BMP
Application Application Application Application Application
Program Program Program Program Program

Figure 3. Structure of an IMS DB/DC Subsystem

Control
Region
Address
Space

Separate
Address
Spaces

Dependant
Regions

* DBCTL — This is a control region with only the Database Manager component

installed (pronounced DB Control). DBCTL can provide IMS database functions

to batch message programs (BMP and JMP application programs) connected to
the IMS control region, to application transactions running in CICS Transaction

Manager regions, and to other z/OS address spaces (for example, DB2 UDB for
z/0OS stored procedures) by using the Open Database Access (ODBA) interface.

Chapter 2. IMS and z/OS

13

IBM Confidential

* DCCTL — This type of control region has only the Transaction Manager
component installed (pronounced DC Control). DCCTL can also be used as the
Transaction Manager front end for a DB2 UDB for z/OS.

In some of the IMS documentation, the terms DB/DC, DBCTL, and DCCTL are also
used to see what sort of IMS system is being defined during an IMS system
definition; that is, for what functions will be in the IMS libraries after the system
definition process has completed.

IMS Separate Address Spaces

14

The control region has separate address spaces to provide some of the services of
the IMS subsystem.

These regions are automatically started by the IMS control region as part of its
initialization, and the control region will not complete initialization until these
dependent regions have started and connected to the IMS control region. Every
IMS control region has a DBRC region. The other two separate address spaces are
optional, depending on the IMS features used. For DL/I, separate address space
options can be specified at IMS initialization.

DBRC Region

The DBRC region processes all access to the DBRC recovery control (RECON)
data sets. It also performs all generation of batch jobs for DBRC (for example, for
archiving the online IMS log). All IMS control regions have a DBRC address space,
as it is needed, at a minimum, for managing the IMS logs.

DL/l Separate Address Space (DLISAS)

This address space performs most data set access functions for the IMS Database
Manager component (except for the Fast Path DEDB databases, described later).
The full-function database data sets are allocated by this address space. It also
contains some of the control blocks associated with database access and some
database buffers.

This address space is not present with a DCCTL system because the Database
Manager component is not present.

For a DBCTL control region, this address space is required and always present.

For a DB/DC control region, you have the option of having IMS database accesses
performed by the control region or having the DB/DC region start a DL/I separate
address space. For performance and capacity reasons, use a DL/l separate
address space.

Common Queue Server (CQS) Address Space

Common Queue Server (CQS) is a generalized server that manages data objects
on a z/0OS coupling facility on behalf of multiple clients. One CQS is shipped with
every IMS.

CQS uses the z/OS coupling facility as a repository for data objects. Storage in a
coupling facility is divided into distinct objects called structures. Authorized
programs use structures to implement data sharing and high-speed serialization.
The coupling facility stores and arranges the data according to list structures.
Queue structures contain collections of data objects that share the same name,
known as queues. Resource structures contain data objects organized as uniquely
named resources.

IMS: An Introduction to IMS

IBM Confidential

CQS receives, maintains, and distributes data objects from shared queues on
behalf of multiple clients. Each client has its own CQS access the data objects on
the coupling facility list structure. IMS is one example of a CQS client that uses
CQS to manage both its shared queues and shared resources.

CQS runs in a separate address space that can be started by the client (IMS). The
CQS client must run under the same z/OS operating system where the CQS
address space is running.

CQS is used by IMS DCCTL and IMS DB/DC control regions if they are
participating in sysplex sharing of IMS message queues or resource structures.

Clients communicate with CQS using CQS requests that are supported by CQS
macro statements. Using these macros, CQS clients can communicate with CQS
and manipulate client data on shared coupling facility structures. shows the
communications and the relationship between clients, CQSs, and the coupling
facility.

Operating System n

Operating System A |

o

Client 1

A4

CQSs 1 CQSn [*P Clientn

€%
o)

v v

Coupling Facility

Figure 4. Client Systems, CQS, and a Coupling Facility

Related Reading: For complete information about CQS, see the [IMS Version 9
[Common Queue Server Guide and Reference]

Common Service Layer

The IMS Common Service Layer (CSL) is a collection of IMS manager address
spaces that provide the infrastructure needed for systems management tasks. The
CSL address spaces include Operations Manager (OM), Resource Manager (RM),
and Structured Call Interface (SCI). They are briefly described in the following
sections.

The IMS CSL reduces the complexity of managing multiple IMS systems by
providing you with a single-image perspective in an IMSplex. An IMSplex is one or
more IMS subsystems that can work together as a unit. Typically, but not always,
these subsystems:

» Share either databases or resources or message queues (or any combination)
* Run in an z/OS sysplex environment
* Include an IMS CSL

Related Reading: For a further discussion of IMS in a sysplex environment, see:

Chapter 2. IMS and z/0S 15

IBM Confidential

« [Chapter 31, “IMSplexes,” on page 337|
« [IMS Version 9: Administration Guide: System|

For a detailed discussion of IMS in a sysplex environment, see:

* IMS in the Parallel Sysplex: Volume I: Reviewing the IMSplex Technology

* IMS in the Parallel Sysplex: Volume II: Planning the IMSplex

* IMS in the Parallel Sysplex: Volume IlI: IMSplex Implementation and Operations

Operations Manager Address Space: The Operations Manager (OM) controls
the operations of an IMSplex. OM provides an application programming interface
(the OM API) through which commands can be issued and responses received.
With a single point of control (SPOC) interface, you can submit commands to OM.
The SPOC interfaces include the TSO SPOC, the REXX SPOC API, and the IMS
Control Center. You can also write your own application to submit commands.

Related Reading: For a further discussion of OM, see |“Operations Manager” on|

|9age 339.|

Resource Manager Address Space: The Resource Manager (RM) is an IMS
address space that manages global resources and IMSplex-wide processes in a
sysplex on behalf of its clients. IMS is one example of an RM client.

Related Reading: For a further discussion of RM, see ['Resource Manager” on|

|Qage 339.|

Structured Call Interface Address Space: The Structured Call Interface (SCI)
allows IMSplex members to communicate with one another. The communication
between IMSplex members can happen within a single z/OS image or among
multiple z/OS images. Individual IMS components do not need to know where the
other components reside or what communication interface to use.

Related Reading: For a further discussion of SCI, see [‘Structured Call Interface’]

Ign page 339.|

Application Dependent Regions

16

IMS provides dependent region address spaces for the execution of system and
application programs that use IMS services.

The application dependent regions are started as the result of JCL submission to
the operating system by the IMS control region, following an IMS command that
had been entered.

After they are started, the application programs are scheduled and dispatched by
the control region. In all cases, the z/OS address space executes an IMS region
control program. The application program is then loaded and called by the IMS
code.

There can be up to 999 application dependent regions connected to one IMS
control region, made up of any combination of the following dependent region types:

* Message processing region (MPR)
» IMS Fast Path region (IFP), processing Fast Path applications or utilities

» Batch message processing (BMP) region, running with or without HSSP (High
Speed Sequential Processing)

* Java message processing (JMP) region

IMS: An Introduction to IMS

IBM Confidential

» Java batch processing (JBP) region
+ DBCTL thread (DBT)

The combination of what region type can be used in the various types of IMS
control regions, can be found in

Table 1. Support for Region Types by IMS Control Region Type

Application Address

Space Type DCCTL DBCTL DB/DC
MPR Y N

IFP Y N Y
BMP (transaction oriented) |Y & N Y
BMP (batch) N Y Y

JMP Y N Y

JBP Y Y Y
Batch N N N

DBT N Y Y

1. BMP regions attached to a DCCTL control region can only access the IMS
message queues and DB2 UDB for z/OS databases.

Message Processing Region

This type of address space is used to run applications to process messages input
to the IMS Transaction Manager component (that is, online programs). The address
space is started by IMS submitting the JCL as a result of an IMS command. The
address space does not automatically load an application program but will wait until
work becomes available.

There is a complex scheme for deciding which MPR to run the application program.
We will give a brief description below. When the IMS dispatching function
determines that an application is to run in a particular MPR, the application program
is loaded into that region and receives control. It processes the message, and any
further messages for that transaction waiting to be processed. Then, depending on
options specified on the transaction definition, the application either waits for further
input, or another application program will be loaded to process a different
transaction.

Fast Path Region
This type of address spaces runs application programs to process messages for
transactions that have been defined as Fast Path transactions.

Fast Path applications are very similar to the programs that run in an MPR. Like
MPRs, the IFP regions are started by the IMS control region submitting the JCL as
a result of an IMS command. The difference with IFP regions is in the way IMS
loads and dispatches the application program and handles the transaction
messages. To allow for this different processing, IMS imposes restrictions on the
length of the application data that can be processed in an IFP region as a single
message.

IMS employs a user-written exit routine, which you have to write, to determine
whether a transaction message should be processed in an IFP region and which
IFP region it should be processed in. The different dispatching of the transaction
messages by the control region is called Expedited Message Handling (EMH). The

Chapter 2. IMS and z/0S 17

18

IBM Confidential

intention is to speed the processing of the messages by having the applications
loaded and waiting for input messages, and, if the message is suitable, dispatching
it directly in the IFP region, bypassing the IMS message queues. Fast Path was
originally a separately priced function available with IMS, intended to provide faster
response and allow higher volumes of processing. It is now part of the IMS base
product.

Batch Message Processing Region

Unlike the other two types of application dependent regions, the BMP is not started
by the IMS control region, but is started by submitting a batch job, for example by a
user from TSO or by a job scheduler. The batch job then connects to an IMS
control region defined in the execution parameters. There are two types of
applications that can run in BMP address spaces:

* Message Driven BMPs (also called transaction-oriented BMPs) that read and
process messages off the IMS message queue.

* Non-message BMPs (batch-oriented) that do not process IMS messages.

BMPs have access to the IMS full-function databases (not Fast Path), providing that
the control region has the Database Manager component installed. BMPs can also
read and write to z/OS sequential files, with integrity, using the IMS GSAM access
method DBCTL Thread (DBT).

When a CICS system connects to IMS (either as DBCTL or as IMS DB/DC) using
the Database Resource Adapter (DRA), each CICS system will have a pre-defined
number of connections with IMS. Each of these connections is called a thread. See
[Figure 5 on page 19|

IMS: An Introduction to IMS

IBM Confidential

Separate
Address
Spaces

DBRC
Region

v

Network

Control Region
Address Space

RECON
Data Sets

DLI

Space

Separate |

v

Address |

Full-Function
Databases

IMS DBCTL
System

—

CICS

DRA

Application
Program

Figure 5. Structure of an IMS DBCTL System

| Libraries
o= s
El Logs

| Fast Path
- Databases

i
BMP

Application
Program

Dependant Regions

JBP

Application
Program

Although these threads are not jobs in their own right, from IMS’s perspective, each
thread appears just like another dependent region and when CICS requires a DL/I

call to IMS, the program will effectively be running in one of these DBT regions.

Java Dependent Regions
IMS Java application programs run in one of two IMS dependent regions that

provide a Java Virtual Machine (JVM) environment for the Java application. The

Java dependent region types are:

» Java Message Processing (JMP) for message-driven Java applications. JMP
applications can process input messages from the message queue (similar to

MPPs) and can access DB2 data (using RRSAF). JMP regions can run in DB/DC
or DCCTL environments.

» Java Batch Processing (JBP) for non-message-driven Java applications. JBP
applications run in an online batch mode and do not process input messages
(similar to non-message-driven BMP applications), and can access DB2 data.

JBP regions can run in DB/DC, DCCTL, or DBCTL environments.

Chapter 2. IMS and z/OS

19

Batch Applicat

IBM Confidential

Utility Regions

BMP and IFP regions can also be used for other types of work besides running
application programs. BMPs can be used for HSSP processing, and IFPs can be
used for Fast Path utility programs. For further discussion on these, see the
[Version 9: Installation Volume 2: System Definition and Tailoring|

ion Address Space

In addition to the dependent application address spaces discussed inm
Separate Address Spaces” on page 14 and|“AppIicati0n Dependent Regions” on|
page 16,/ IMS application programs that only use IMS Database Manager functions
can be run in a separate z/OS address space, not connected to an IMS control
region. This would normally be done for very long running applications that perform
large numbers of database accesses or for applications that do not perform

syncpoint processing. These batch applications can only access full-function
databases.

This is similar to a BMP, in that the JCL is submitted through TSO or a job
scheduler. However, all IMS code used by the application resides in the address
space that the application is running in. The job executes an IMS batch region
controller that then loads and calls the application. shows an IMS batch
region.

Batch Region Address Space

IMS Batch Region Controller
Application |« > Application
Program Files
A
v
P R IMS
) " Databases
IMS < R RECON
DLI Modules Data Sets
) = ms
X E Logs

Figure 6. Structure of an

20 IMS: An Introduction

IMS Batch Region

The batch address space opens and reads the IMS database data sets directly.

to IMS

IBM Confidential

Attention: If there are requirements for other programs, either running under the
control of an IMS control region or in other batch regions, to access the databases
at the same time, then caution should be exercised to protect data integrity. See
[Chapter 8, “Data Sharing,” on page 83| for more information about how the data can
be updated by multiple applications in a safe manner.

The batch address space writes its own separate IMS log. In the event of a
program failure, it might be necessary to take manual action (for example, submit
jobs to run IMS utilities) to recover the databases to a consistent point. With
dependent application address spaces, this would be done automatically by the IMS
control region. DBRC can be used to track the IMS logs and ensure that correct
recovery action is taken in the event of a failure.

An application can be written so that it can run in both a batch and BMP address
space without change. Some reasons you may want to change programs between
batch and BMP address spaces include length of run time, need of other
applications to access the data at the same time, and your procedures for
recovering from application failures.

Internal Resource Lock Manager (IRLM)

The IRLM address space is only needed if you are going to use block-level or
sysplex data sharing for the IMS databases. The IRLM address space is started
before the IMS control region with the z/OS start command. The IMS control region,
if the start-up parameters specify IRLM, connects to the IRLM specified on startup
and will not complete initialization until connected.

There is one IRLM address space running on each z/OS system to service all IMS
subsystems sharing the same set of databases. For more information on data
sharing in sysplex environment, see:

* IMS in the Parallel Sysplex: Volume I: Reviewing the IMSplex Technology
* IMS in the Parallel Sysplex: Volume II: Planning the IMSplex
* IMS in the Parallel Sysplex: Volume lIl: IMSplex Implementation and Operations

IRLM is delivered as an integral part of the IMS program product, though as
mentioned, you do not have to install or use it unless you need to perform
block-level or sysplex data sharing.

IRLM is also the required the lock manager for DB2 UDB for z/OS.

Do not use the same IRLM address space for IMS and DB2 because the tuning
requirements of IMS and DB2 are different and conflicting. The IRLM code is
delivered with both the IMS and DB2 program products and interacts closely with
both these products. Therefore, you might want to install the IRLM code for IMS
and DB2 separately (that is, in separate SMP/E zones) so you can maintain release
and maintenance levels independently. This can be helpful if you need to install
prerequisite maintenance on IRLM for one database product, as it will not affect the
use of IRLM by the other.

Running an IMS System

The procedures to run IMS address spaces are supplied by IBM. The procedures
are in the IMS.PROCLIB data set. There are procedures for each type of region.

Chapter 2. IMS and z/0S 21

IBM Confidential

These procedures should be modified with the correct data set names for each IMS
system. The following list contains the procedure member names (as found in
IMS.PROCLIB) along with the type of region that each will generate:

Procedure

Member Name Region Name

IMS DB/DC control region

DCC DCCTL control region

DBC DBCTL control region

DLISAS DLI separate address space

DBRC Database Recovery Control
DXRJPROC Internal Resource Lock Manager (IRLM)
DFSMPR Message processing region (MPR)
IMSBATCH IMS batch processing region (BMP)
IMSFP Fast Path region (IFP)

FPUTIL Fast Path utility region

DLIBATCH DLI batch region

DFSJBP IMS Java batch processing (JBP) region
DFSJMP IMS Java message processing (JMP) region
IMSRDR IMS JCL reader region

Related Reading: For details of these and other procedures supplied in
IMS.PROCLIB, see the “Procedures” chapter in the IMS Version 9: Installation|
Volume 2: System Definition and Tailoring|

Running Multiple IMS Systems

Multiple IMS systems can be run on a single z/OS image or on multiple z/OS
images. One instance of an IMS system (control region and all associated
dependent regions) is referred to as one IMS system. In many cases, these would
be production and testing systems.

Running Multiple IMS Systems on One z/OS Image

22

The number of subsystems you can run on a single image of z/OS will depend on
many factors. In most installations, you can run up to four IMS subsystems,
although some installations run as many as eight small ones running concurrently.
The number will vary depending on the size of each IMS system. The amount of
z/OS common service area (CSA) required by each IMS is often one of the most
limiting factors in the equation.

Each IMS subsystem should have unique VTAM ACB and IMSID names. The
application dependent regions use the IMSID to connect to the corresponding IMS
control region. If the dependent region starts and there is no control region running
using that IMSID, the dependent region issues a message to the z/OS system
console and then waits for a reply. Each IMS subsystem can have up to 999
dependent regions. However, there are other limiting factors, such as, storage
limitations because of pool usage.

IMS: An Introduction to IMS

IBM Confidential

Running Multiple IMS Systems on Multiple z/OS Images

There are basically three ways to run multiple IMSs on multiple z/OS images. They

are:

* Multiple Systems Coupling (MSC)
MSC only supports IMS-to-IMS connections. For more information about MSC,
see ['Multiple Systems Coupling (MSC)” on page 116 |

* Inter System Communications (ISC)
ISC is another way to connect multiple subsystems. ISC is more flexible than

MSC, in that ISC supports connections to IMS and other z/OS products, such as
CICS. For more information about ISC, see [‘Intersystem Communications (ISC)”|

on page 117.
» Parallel Sysplex

Running multiple IMSs in a Parallel Sysplex environment is a good way to
balance workload, build scalability into your systems, and provide maximum
availability. For more information on this topic, see [‘Parallel Sysplex” on page 25|
and [Chapter 31, “IMSplexes,” on page 337

How IMS Uses z/OS Services

IMS is designed to make the best use of the features of the z/OS operating system.
This includes:

* Running in multiple address spaces — IMS subsystems (except for IMS batch
applications and utilities) normally consist of a control region address space,
separate address spaces for system services, and dependent address spaces for
application programs. Running in multiple address spaces gives the following
advantages:

— Maximizes use of CPUs when running on a multi-processor CPC. Address
spaces can be dispatched in parallel on different CPUs.

— Isolates the application programs from the IMS systems code. Reduces
outages from application failures.

* Runs multiple tasks in each address space — IMS, particularly in the control
region, creates multiple z/OS subtasks for the various functions to be performed.
This allows other IMS subtasks to be dispatched by z/OS while one IMS subtask
is waiting for system services

* IMS uses z/OS cross memory services to communicate between the various
address spaces making up an IMS system. It also uses the z/OS CSA to store
IMS control blocks that are frequently accessed by the address spaces making
up the IMS system. This minimizes the overhead in running in multiple address
spaces.

* IMS uses the z/OS subsystem feature — IMS dynamically registers itself as a
z/OS subsystem. It uses this facility to detect when dependent address spaces
fail, prevent cancellation of dependent address spaces.

* IMS can make use of an z/OS sysplex. Multiple IMS subsystems can run on the
z/OS systems making up the sysplex and access the same IMS databases and
the same message queue. This gives:

— High availability — z/OS systems and IMS subsystems can be taken in and
out of service without interrupting production.

— High capacity — the multiple IMS subsystems can process far greater
volumes than individual IMSs can.

Related Reading: For further details on sysplex data sharing and shared queues,
see:

Chapter 2. IMS and z/0S 23

IBM Confidential

* IMS in the Parallel Sysplex: Volume I: Reviewing the IMSplex Technology
* IMS in the Parallel Sysplex: Volume II: Planning the IMSplex
* IMS in the Parallel Sysplex: Volume Ill: IMSplex Implementation and Operations

Transmission Control Protocol/Internet Protocol (TCP/IP)

IMS provides support for z/OS TCP/IP communications through a function called
Open Transaction Manager Access (OTMA). Any TCP/IP application can have
access to IMS by using OTMA. A related IBM product, IMS Connect for z/OS, uses
the OTMA interface to connect IMS to Web servers.

Related Reading: For details on OTMA and IMS Connect for z/OS, see:
IMS Version 9: Open Transaction Manager Access Guide and Reference|
* IMS Connect Guide and Reference

Advanced Program-to-Program Communications (APPC)

IMS supports z/0OS CPI communications interface, which defines the Logical Unit
type 6.2 formats and protocols for program-to-program communication. IMS'’s
support for APPC is called APPC/IMS.

APPC/IMS enables applications to be distributed throughout your entire network
and to communicate with each other regardless of the underlying hardware.

Related Reading: For more information about IMS’s support for APPC, see
t‘Advanced Program-to-Program Communication (APPC)” on page 114

Resource Access Control Facility (RACF)

IMS was developed prior to the introduction of RACF® (part of the Security Server
for z/OS) and other security products. As a result, IMS initially incorporated its own
security mechanisms to control user access to the various IMS resources,
transactions, databases, and so forth. This security was controlled by a number of
means. A number of security exits were provided. Also, a series of bitmaps defined
users and their access to resources. This is referred to as a security matrix. These
are load modules produced by the IMS Security Maintenance utility.

With the introduction of RACF, IMS was enhanced to use RACF (or equivalent
product) for controlling access to IMS resources. It is now possible to use the
original IMS security features, the RACF features, and combinations of these.

Recommendation: Use RACF because it provides more flexibility and the Security
Maintenance utility will not be supported in future releases of IMS.

The normal features of RACF can also be used to protect IMS data sets, both
system and database.

Related Reading: For further information about protecting IMS resources, see
[Chapter 24, “IMS Security,” on page 253.| For complete information regarding IMS
and security, see the security chapter in the [IMS Version 9: Administration Guide]

Resource Recovery Services (RRS)

24

With z/OS comes a system resource recovery platform. Resource Recovery
Services (RRS) is the sync-point manager, coordinating the update and recovery of

IMS: An Introduction to IMS

IBM Confidential

multiple protected resources. RRS controls how and when protected resources are
committed by coordinating with the resource managers, such as IMS, that have
registered with RRS.

RRS provides a system resource recovery platform such that applications executing
on z/OS (such as IMS) can have access to local and distributed resources and
have system-coordinated recovery management of these resources. The support
includes:

* A sync-point manager to coordinate the two-phase commit process

+ Implementation of the SAA® Commit and Backout callable services for use by
application programs

* A mechanism to associate resources with an application instance

» Services for resource manager registration and participation in the two-phase
commit process with RRS

» Services to allow resource managers to express interest in an application
instance and be informed of commit and backout requests

» Services to enable resource managers to obtain system data to restore their
resources to consistent state

* A communications resource manager (called APPC/PC for APPC/Protected
Conversations) so that distributed applications can coordinate their recovery with
participating local resource managers

Related Reading: For more information about how IMS uses RRS, see the
Version 9: Administration Guide: System|

Parallel Sysplex

A Parallel Sysplex environment in z/OS is a combination of hardware and software
components that enable sysplex data sharing. In this context, data sharing means
the ability for sysplex member systems and subsystems to store data into, and
retrieve data from a common area known as a coupling facility. In short, a Parallel
Sysplex can have multiple CPCs and multiple applications (like IMS) that can
directly share the workload.

IMS exploits the z/OS Parallel Sysplex environment to enable a more dynamic,
available, manageable, scalable, and well performing environment for database,
transaction, and systems management.

In a Parallel Sysplex environment, you can run multiple IMS subsystems that share
message queues and databases. This sharing enables workload balancing and
insulation from individual IMS outages. If one IMS in the sysplex fails, others
continue to process the workload, so the enterprise is minimally affected.

Related Reading: For more information on this topic, see |Chapter 30, “Introduction
to Parallel Sysplex,” on page 315| and [Chapter 31, “IMSplexes,” on page 337,

Chapter 2. IMS and z/0S 25

IBM Confidential

26 IMS: An Introduction to IMS

IBM Confidential

Chapter 3. Setting Up and Running IMS

This chapter contains general information about installing, defining, and operating
IMS.

The following sections are covered in this chapter:
:

[‘Defining an IMS System” on page 28|
[‘Defining IMS Security” on page 28|

['IMS Installation Verification Program (IVP)’]

« ['IMS Startup” on page 29

* ['IMS Logging” on page 31]

- [1mMs utilities” on page 31:
* ['IMS Recovery” on page 3_2|
+ [IMS Shutdown” on page 33|

Installing IMS

The IMS installation task includes:

* The initial activity of installing IMS on your z/OS system using the SMP/E
installation process.

» Verifying the installation using the IMS-supplied Installation Verification Program
(IVP).

» A variety of other activities (such as, initially tailoring your IMS system,
customizing your IMS system, defining resources to IMS, and so forth).

Most IMS installations involve migrating an existing version of IMS to a newer
version rather than installing just a new instance of IMS. With this scenario, there
are migration, coexistence, and maintenance steps and issues to consider as part
of the installation process. The migration issues are usually version specific.

Related Reading: For the details of installing, verifying the installation, tailoring,
and migrating IMS, see:

* Program Directory for Information Management System Version 9

+ [IMS Version 9: Release Planning Guide]

+ [IMS Version 9: Installation Volume 1: Installation Verification|

+ [IMS Version 9: Installation Volume 2: System Definition and Tailoring|

For more information about customizing IMS, see [Chapter 23, “Customizing IMS,’|

on page 245 and the IMS Version 9: Customization Guide.

IMS Installation Verification Program (IVP)

© Copyright IBM Corp. 2004

The Installation Verification Program (IVP) facility, which comes with IMS, is an
ISPF application that is used to verify the majority of IMS features and functions of
a newly installed IMS. The IVP uses a sample IMS system to perform this
verification.

The IVP provides guidance for performing a combination of the following jobs and
tasks (depending on your environment):

» Allocating data sets

27

IBM Confidential

» Defining the characteristics of an IMS system through the process of system
definition

» Establishing IMS interfaces to z/OS and VTAM

* Preparing the IMS system

» Performing an initial program load (IPL) of z/OS

* Preparing the IVP system and IMS applications

* Initializing the IVP system and running IMS applications

You must define the IMS system and you must establish the interface between your
IMS system and z/OS before you can run IMS.

Related Reading: For complete information about the IVP, see|IMS Version 9:

[nstallation Volume 1: Installation Verification|

Defining an IMS System

Before you can use IMS TM or IMS DB, you must define the elements and
functions that make up the IMS system. These include:

+ Databases
» Application programs
* Terminals

IMS provides macros and procedures that enable you to define your system. IMS
also provides exits (strategic places in IMS’s logic flow) that enable you to
customize what happens at that particular point in the processing.

All optional features of IMS, including what type of control region is required
(DB/DC, DBCTL, DCCTL), must be defined to IMS prior to using it.

Almost all programs, databases, transactions, and terminals (unless the ETO
feature is used) within IMS must also be predefined to IMS. The Extended Terminal
Option (ETO) is a separately-priced feature that allows you to dynamically define
terminals while IMS is running.

You can either customize the sample IMS system that was verified with the IVP
(see['IMS Installation Verification Program (IVP)” on page 27) or copy the sample
IMS system and customize the copy to satisfy your installation’s needs.

Related Reading: For more information about the IMS definition process, see

Chapter 22, “The IMS System Definition Process,” on page 231 and the

\Version 9: Installation Volume 2: System Definition and Tailoring. For more

information about the IMS exits, see [Chapter 23, “Customizing IMS,” on page 245.|

Defining IMS Security

28

Setting up security for the IMS system is part of the system definition process. IMS
itself has security functions built in and also has the ability of providing more
extensive security by employing user-written exit routines, a security product (like
RACF), or both.

Some of the things that can be secured are:
* Sign-on attempts
* Transactions

IMS: An Introduction to IMS

IBM Confidential

* Programs
¢ Commands
* Resources

Related Reading: For more information about IMS security, see [Chapter 24, “IMS|
[Security,” on page 253

IMS Startup

The following two sections describe the types of IMS starts that can be performed
for an IMS system and the methods for starting IMS-associated regions. These
sections are:

* [“Types of IMS System Starts’|
« |“Starting IMS-Associated Regions” on page 30|

Types of IMS System Starts

This section describes the common types of IMS starts that can be performed.
These IMS starting types are applicable to both IMS TM and IMS DB.

Cold start
An IMS control region cold start is done the first time you start the system.
During cold start, IMS formats (initializes) the message queues, the
dynamic log, and the restart data sets.

Automatic restart
With an automatic restart, IMS will startup, using either normal restart or
emergency restart, depending on the previous shutdown status.

If the last IMS shutdown was successful, then a normal restart will be
performed. If the last IMS shutdown was abnormal (from an abend), then
IMS will automatically perform an emergency restart.

For most installations, automatic restart should be the default.

Normal restart
Normal restart or warm start is done from a previous normal IMS
termination. The message queues are preserved in this way.

Emergency restart
In case of failure, IMS is restarted with the logs active at the time of failure.
Restart processing will back-out the full-function database changes of
incomplete transactions. The output messages inserted into the message
gueues by these incomplete transactions will be deleted.

After back-out, the input messages are re-enqueued, and the pending
output messages are (re)-transmitted. Application programs must be
restarted manually. If a BMP or JBP application was active at the time of
failure, it must be resubmitted by using z/OS job management. If the BMP
uses the XRST/CHKP calls, it must be restarted from its last successful
checkpoint. In this way, missing or inconsistent output is avoided.

Other restarts
There are numerous other types of manual starts possible with IMS, each

with unique requirements. For detailed information about these other types
of restarts, see the [IMS Version 9: Operations Guide| and the [IMS Version

9: Command Reference]

Chapter 3. Setting Up and Running IMS 29

IBM Confidential

Starting IMS-Associated Regions

30

The following sections discuss how the various IMS-associated regions are started.

Address Spaces

All the address spaces can either run as a started task or as a job. In most cases
the IMS control region and the separate address spaces will run as started tasks.
The application dependent regions are run as either jobs or started tasks.

When a control region is started, it will issue a z/OS START command to start the
DLISAS and DBRC regions, as shown in the following example:

/START XxXXXXXXX,PARM=(DLS,imsid)
/START xXxxxxXxxX,PARM=(DRC,imsid)

The xxxxxxx fields are the procedure names. These commands will start the
DLISAS and DBRC regions respectively.

Starting Application Dependent Regions

IMS will not automatically start application dependent regions. There are several

ways start these regions.

* The Time Control Option (TCO) of IMS can issue /START REGION commands.
TCO is a time-initiated IMS facility that can generate any valid operator IMS
input.

* Some forms of automation programs can issue either IMS or z/OS start
commands.

* Ajob scheduling system can submit jobs based on time or the notification of IMS
being started. The notification can be in the form of automated messages.

Message Processing Regions
IMS MPR regions are normally started by an IMS start region command as shown
below:

/START REGION XXXXXXXX

The xxxxxx fields are the member names in a library. The members contain the jobs
for the MPR regions. The IMSRDR procedure is used if the MPRs are jobs. The
IMSRDR procedure is customized to point to the correct library to find the job JCL.
If you are running multiple IMS subsystems on a single z/OS system, they normally
use a different version of the IMSRDR procedure each pointing at different libraries.
The procedure name is specified on the IMSCTF macro in the system definition.

Related Reading: For the details of the IMSRDR procedure or the IMSCTF macro,
see the [IMS Version 9: Installation Volume 2: System Definition and Tailoring}, for
more information.

Fast Path Application Regions
Fast Path application (IFP) regions are normally started in a similar fashion as MPR
regions and follow the same rules and procedures.

Batch Message Processing Regions

These regions are almost always started outside of IMS. Most BMPs are scheduled
at appropriate times to meet application requirements. As long as the IMS control
region is available, the BMPs can be run. BMPs can execute even though there are
no MPRs running at the time.

IMS: An Introduction to IMS

IBM Confidential

Java Non-Message Driven Application Processing Region

This region, which is called a Java batch processing (JBP) region, is similar to a
BMP region. The JBP region is started in the same manner as a BMP region. The
default job name is IMSJBP.

Java Message-Driven Application Processing Region

This region, which is called a Java message processing (JMP) region, is similar to
an MPP region. The JMP region is started in the same manner as an MPP region.
The default job name is IMSIMP.

IMS Logging

While IMS is running, IMS records information about everything necessary to restart
the system if a hardware or software failure is encountered. The event information
is recorded on a online log data set (OLDS).

When an OLDS is filled, or some other event switches the OLDS, it is archived to
the system log data set (SLDS). There are a finite number of OLDS data sets
(although this number can be dynamically changed), that are pre-allocated and
redefined to the IMS Control Region. The OLDS are cycled through during the
duration of the control region. There can be an infinite number of SLDS, which are
created and allocated as needed.

Related Reading: For more information about the IMS logging function, see
[Chapter 25, “IMS Logging,” on page 257.|

IMS Utilities

To help run, fine tune, and monitor IMS, there are a lot of utility programs that come
with the product. These utilities help you:

* Generate and maintain IMS system control blocks

* Make online changes to the IMS system

» Allocate, monitor, and recover the IMS log data sets
* Analyze system performance

* Generate and maintain the Message Format Service (MFS)
* Maintain multiple IMS systems

* Maintain time-controlled operations

» Define and maintain databases

* Reorganize databases

» Make backup copies of databases

* Recovery databases

Some of these utilities are discussed in the following sections:
* |"Overview of the Reorganization Process” on page 88|

* ["Generating MFS Control Blocks” on page 220|

* |Chapter 24, “IMS Security,” on page 253|

* [*Archiving” on page 259
* ["Using IMS System Log Utilities” on page 277|

* 'Running Recovery-Related Utilities” on page 288|

Related Reading: For information about all of the IMS utilities, see:

Chapter 3. Setting Up and Running IMS 31

IBM Confidential

« The|IMS Version 9: Utilities Reference: Database and Transaction Manager]
« The |[IMS Version 9: Utilities Reference: System|

IMS Recovery

32

There are also a number of tools and features available with IMS to help in
recovery scenarios:

Extended Recovery Facility (XRF)

With XRF, you can have an alternate IMS standby system ready to take
over within the same site. For more information about XRF, see
lof Extended Recovery Facility (XRF)” on page 308

Remote Site Recovery (RSR)

With RSR, you can recover the complete IMS system (or systems) very
quickly at another site when complete site disasters occur. For more
information about RSR, see |“Overview of Remote Site Recovery (RSR)” on|

Fast Database Recovery (FDBR)

The FDBR provides a solution to sysplex customers who need quick access
to shared database resources that might otherwise be locked by a failed
IMS until the failed system is restarted.

In a sysplex data sharing environment, multiple IMS subsystems can
access a single, shared database resource. If one of the IMS subsystems
fails while it has a lock on the database, the other IMS subsystems must
wait until the failed IMS is restarted and the locks on the resource are
released. Because an emergency restart can take a significant amount of
time, waiting for a full restart is unacceptable in situations that require
continuous availability of database resources.

FDBR creates a separate IMS control region (the Fast DB Recovery region)
that monitors an IMS subsystem, detects failure, and recovers any
database resources that are locked by the failed IMS, making them
available for other IMS subsystems.

Related Reading: For more information about FDBR, see |‘Fast Database

[Recovery” on page 319.|

IMS Database Recovery Facility (DRF)

IMS: An Introduction to IMS

DRF allows you to recover multiple database data sets and Fast Path areas
in an IMS DBCTL or DB/DC environment simultaneously. It simplifies the
database recovery process by eliminating the need to run separate
recovery jobs for each database data set that requires recovery. Recovery
using DRF reduces the time that broken databases and areas are
unavailable by processing input data in parallel and recovering multiple
database data sets and areas simultaneously.

DREF is one of the IMS Tools offered by IBM.

Related Reading: For more information about the this and other IMS tools,
see [Chapter 29, “IBM IMS Tools,” on page 311.|

IBM Confidential

IMS Shutdown

There are also several different ways of shutting down IMS, depending on what
type of control region you are running (DB/BC, DBCTL, or DCCTL), and whether or
not the IMS message queues are required following the next startup.

A common sequence for shutting down the entire online IMS system is:

1. For an IMS DB/DC or DCCTL environment, stop the transactions. For an IMS
DBCTL environment, disconnect from the Coordinated Controller (CCTL).

2. Stop the dependent regions.
3. Stop the control region.

4. For an IMS DB/DC or DBCTL environment, stop the Internal Resource Lock
Manager (IRLM).

5. For a shared-queues environment, shut down the Common Queue Server
(CQYS), if it has not been shut down already.

6. For an IMSplex environment (see [Chapter 31, “IMSplexes,” on page 337), shut
down the IMS components that participate in the IMSplex and then shut down
the Common Service Layer.

Related Reading: For more information about:
+ The process for shutting down an IMSplex, see [‘Operating an IMSplex” on page|

+ The process of shutting down an IMS, see the IMS Version 9: Operations Guide]

» The commands involved in shutting down an IMS, see the |IMS Version 9:

[Command Reference}

Chapter 3. Setting Up and Running IMS 33

IBM Confidential

34 IMS: An Introduction to IMS

IBM Confidential

Part 2. IMS Database Manager

Chapter 4. Overview of IMS DB .
Functions of the IMS Database Manager
Implementation of IMS Databases .
Full-Function Databases

Fast Path Databases.

Data in IMS and DB2

Chapter 5. Overview of the IMS Hierarchical Database Model

Basic Segment Types .
Sequence Fields and Access Paths .
Logical Relationships
Secondary Indexing .

Chapter 6. Implementing the IMS Database Model .

Segments, Records, and Pointers .
IMS Hierarchic Access Methods
HDAM .
HIDAM . .
PHDAM and PHIDAM
Index Databases .
DEDB .
GSAM . .
HSAM and HISAM
Physical Segment Design .
Segment Length

Number of Occurrences Per Segment Per Parent .

Location of Segments in the Hierarchy .
Average Database Record Size.
Operating System Access Methods
VSAM or OSAM .
IMS and System Managed Storage
IMS Checkpoints . .
Locking.

Chapter 7. Choosing the Correct Database Type
Applications Suitable for Full-Function Databases .

When to Choose HDAM

When to Choose HIDAM

When to Choose PHDAM or PHIDAM
Applications Suitable for HSAM and HISAM .
Applications Suitable for Fast Path Databases

Very Large Databases . .

High Availability Requirements .

Highly Active Databases

Limited Data Lifetime

Extreme Performance Levels.

Reduced I/O Usage .

CPU Utilization .

Summary of When to Choose DEDB

Chapter 8. Data Sharing .
DBRC and Data Sharing
How Applications Share Data

© Copyright IBM Corp. 2004

. 37
. 37
. 37
. 38
. 39
. 40

.41
. 44
. 45
. 45
. 48

. 51
. 52
. 53
. 55
. 58
. 60
. 61
. 61
. 65
. 66
. 66
. 66
. 67
. 67
. 67
. 67
. 68
. 69
. 70
.72

. 75
. 75
. 75
. 76
. 76
.77
.77
.79
.79
. 80
. 80
. 80
. 80
. 81
. 81

. 83
. 84
. 84

35

36

Chapter 9. The Database Reorganization Process .

Purpose of Reorganization
When to Reorganize .
Monitoring the Database
Overview of the Reorganization Process
Offline Reorganization .
Fast Path Reorganization .
Online Reorganization .
Reorganization Utilities .
Partial Reorganization
Reorganization Using the Utility Control Facmty

Reorganization Without the Utility Control Facility .

Chapter 10. The Database Recovery Process
When Recovery is Needed . .
Overview of the Database Recovery Process .
Online Programs and Recovery
DL/l Batch Programs and Recovery.
IMS Backup and Recovery Utilities .
Database Image Copy Utility
Database Image Copy 2 Utility
Database Change Accumulation Utility .
Database Recovery Utility
Database Batch Backout Utility

IMS: An Introduction to IMS

IBM Confidential

. 85
. 85
. 86
. 88
. 88
. 88
.97
.97
. 99
.99
. 100
. 100

. 101
. 101
. 101
. 102
. 102
. 102
. 104
. 105
. 106
. 107
. 108

IBM Confidential

Chapter 4. Overview of IMS DB

The IMS Database Manager can be ordered and installed with or without the IMS
Transaction Manager.

The following sections are covered in this chapter:
« ['Functions of the IMS Database Manager’|
[‘Implementation of IMS Databases’
[‘Full-Function Databases” on page 38|

[‘Fast Path Databases” on page 39

[‘Data in IMS and DB2” on page 40|

Functions of the IMS Database Manager

A database management system (DBMS) provides facilities for business application
transaction or process to access stored information. The role of a DBMS is to
provide the following functions:

» Allow access to the data for multiple users from a single instance of the data.

» Control concurrent access to the data so as to maintain integrity for all updates.
* Minimize hardware device and operating systems access method dependencies.
* Reduce data redundancy by maintaining only one instance of the data.

» Interface with the operating system and manage the physical location of the data.
Application programs that access and manipulate the data do not need to know
where the data actually resides.

The IMS Database Manager provides a central point for the control and access to
application data. IMS provides a full set of utility programs to provide all these
functions within the IMS product.

Implementation of IMS Databases

IMS DB supports multiple forms of enterprise databases, so that varied application
requirements can be met by exploiting whichever database technology best suits
the users’ requirements.

The types of databases are:

IMS Full-Function Databases
Used to be known as DL/l databases.

IMS DEDBs
Data Entry databases, often referred to as Fast Path databases.

IMS MSDBs
Main storage databases, another type of Fast Path databases. MSDB
functionality has been superseded by the Virtual Storage Option (VSO) of
the DEDB, so MSDBs are not described in this book, and you are advised
not to use them.

IMS uses a hierarchical model for its database, described in more detail in
|Chapter 5, “Overview of the IMS Hierarchical Database Model,” on page 41.| The
data stored in the IMS databases is organized internally using a number of internal
IMS access methods. Each of these access methods suits certain types of access

© Copyright IBM Corp. 2004 37

IBM Confidential

to the database. The choice of the appropriate access method is discussed in detail
[Chapter 6, “Implementing the IMS Database Model,” on page 51.|

No single technology is the best option for all applications — even though industry
trends might suggest that an organization standardize on only one database type.
To do this, for example, to say that you wish to use only relational database
technology (DB2), would preclude consideration of other technologies that, for
suitable applications, would make massive savings in processing or application
development costs — far in excess of the small additional cost of introducing
DEDBSs to your organization.

Each of the database implementations supported by IMS has different
characteristics:

Full-function databases
Full-function databases provide a hierarchically structured database, that
can be accessed by record or sequentially, and by other sequences that
were planned and provided for when the database was designed.
Full-function databases are limited in size to 4GB or 8GB per data set
unless a portioning database product is used

DEDBs
DEDBs are particularly suited for use where large databases, or very low
processing costs are required, or when particularly high data availability or
very high performance is required. DEDBs were originally part of a
separately priced, optional feature. This results in the documentation and
code being separate from that for the full-function databases.

Note: DB2 UDB for z/OS, as compared to IMS DB, provides well for unstructured
or unplanned access to data and so provides flexibility in the support of future
application requirements. However, DB2 usually has a significantly higher
processing cost than any IMS database.

The IMS access methods are underpinned by the use of operating system access
methods to store data on disk storage. The software access methods which IMS
makes use of are:

* VSAM (Virtual Storage Access Method) - VSAM is a z/OS access method.

* OSAM (Overflow Sequential Access Method) - OSAM is an IMS data
management access method that combines selected characteristics of z/OS
BSAM (Basic Sequential Access Method) and BDAM (Basic Direct Access
Method).

Full-Function Databases

Full-function databases are designed to support most types of database
requirements. These can be used in a wide variety of applications. Most IMS
applications make use of full-function databases unless there are specific
requirements for one of the other types of databases. The major characteristics of
full-function databases are:

» Small or large databases.

» Access to records through unigue or non-unique keys.

* Many types of segments (up to 15 levels allowed).

* Records can be stored in key sequence, but it is not a requirement.

38 IMS: An Introduction to IMS

IBM Confidential

One function associated with full-function databases is called multiple data set
groups. With multiple data set groups, you can put some segments in a database
record in data sets other than the primary data set. This can be done without
destroying the hierarchic sequence of segments in a database record. One reason
to use multiple data set groups is to accommodate the differing needs of your
applications. By using multiple data set groups, you can give an application
program fast access to the segments in which it is interested. The application
program simply bypasses the data sets containing unnecessary segments. Up to 10
data set groups can be defined for a single full-function database.

Prior to IMS Version 7, full-function databases are limited in size: the maximum data
set size is limited to 4 GB for VSAM and 8 GB for OSAM. IMS Version 7 introduced
High Availability Databases (HALDBSs) to address this size limit.

HALDB allows full-function databases to grow much larger. A HALDB is a
partitioned full-function database. Partitioning a database allows the use of smaller
data sets that are easier to manage. Multiple partitions decrease the amount of
unavailable data if a partition fails or is taken offline.

HALDB allows the grouping of full-function database records into sets of partitions
that are treated as a single database while permitting functions to be performed
independently for each partition. Each HALDB partition has the same capacity limit
as a non-HALDB database. Like a non-HALDB database, each partition can consist
of up to 10 data sets, however the number of data sets selected will then apply to
all the partitions in that HALDB. This allows a large amount of data to be contained
in a single partition.

Related Reading: For more information about HALDBSs, see ['PHDAM and
[PHIDAM” on page 60.|

Fast Path Databases

The Data Entry Database (DEDB) was designed to support particularly intensive
IMS database requirements, initially in the banking industry, for:

» Large databases containing millions of records, extending well beyond the
original 4 GB database limits of full-function databases

* Access to each database record by a key field

» Lower processing costs for each database record and update than are required
for full-function databases

* The capability to support higher transaction workloads than full-function
databases can sustain, while maintaining per-transaction cost advantages

* Improved availability, with reduced requirements for database outage, especially
for database maintenance activities such as database reorganizations

* Lower processing costs for particular types of processing, where data is inserted
online and retrieved in batches for further processing, and eventually deleted in
batches

* The possibility of eliminating transaction-related 1/0 from database processing
All the above requirements were satisfied, while maintaining the conventional DL/I

application interface so that application programming for DEDBs is little different
from that for full-function databases.

Chapter 4. Overview of IMS DB~ 39

IBM Confidential

Data in IMS and DB2

40

Some business applications require that the data be kept in both IMS database and
DB2 databases. One such scenario is a high-performance production application
that works with the data in a hierarchical IMS database and a business decision
support application that works with the same data in a relational DB2 database.
Production applications running in IMS TM can update data stored in a DB2
database as well as data stored in an IMS database, but the coordinating of these
updates can be complex to ensure all updates are consistently applied.

IBM IMS DataPropagator™ can automatically duplicate data from IMS databases to
DB2 UDB for z/OS tables.

Related Reading: For more information about the IBM IMS DataPropagator, see
[Chapter 29, “IBM IMS Tools,” on page 311|or go to
www.ibm.com/software/data/dpropnr.

IMS: An Introduction to IMS

IBM Confidential

Chapter 5. Overview of the IMS Hierarchical Database Model

IMS uses a hierarchical model as the basic method of storing data. Unlike the
relational model used by DB2, which was the result of theoretical work, the
hierarchical model was arrived at as a pragmatic way of storing and retrieving data
quickly while using as few computer resources as possible.

In this model, the individual entity types are implemented as segments in a
hierarchical structure. An entity is something that can be uniquely defined and
something you could collect substantial information about.

The hierarchical structure is based on the relationship between the entities and the
access paths required by the applications.

IMS uses the term database slightly differently to its use in other DBMSs. In IMS, a
database is commonly used to describe the implementation of one hierarchy, so
that an application would normally access a large number of IMS databases.
Compared to the relational model, an IMS database is approximately equivalent to
a table.

A database segment definition defines the fields for a set of segment instances
similar to the way a relational table defines columns for a set of rows in a table. In
this regard, segments relate to tables, and fields in a segment relate to columns in
a table, as illustrated by comparing [Figure 7| to [Figure 8 on page 42| Similarly, an
instance of a segment in a database corresponds to a row (or tuple) in a table.
Note that if a segment does not have a unique key, the corresponding relational
table should be viewed as having a generated unique key added to its column
(field) list. Also note that the tables are implicitly joined.

Dealer

O—x DLRNO | DLRNAME |

Model
MODTYPE | |
Order Sales Stock
O—HORDNBR|...| o—nSALDATE|...| o—nSTKVIN|...|

Figure 7. Example of a Hierarchical Dealership Database

© Copyright IBM Corp. 2004 41

IBM Confidential

Dealer

O— DealerNumber | DealerName | DealerAddress | YTDSales

Model

O— ModelTypeCode

TT

Order

O—n OrderNumber

Sales

O DateSold

Stock

O— StockVINumber

O—n Primary Key

Foreign Key

Figure 8. Relational Representation of the Dealership Database

The hierarchical data structure in|[Figure 9 on page 43| describes the data as seen
by the application program. It does not represent the physical storage of the data.
The physical storage is of no concern to the application program.

The basic building element of a hierarchical data structure is the parent/child
relationship between segments of data, also illustrated in|Figure 9 on page 43|

42 IMS: An Introduction to IMS

IBM Confidential

Level 1

Parent of Stock

Level 2

Stock

Level 3

Part and Purchase Order
Purchase
Order 2
Children of Part and
Purchase Parents of Detail Segments
Order 1
Detail 1 Detail 2 Children of

Purchase Orders

Figure 9. Hierarchical Data Structure

Each occurrence (or instance) of a parent segment is associated with O or more
occurrences of a child segment. Each child segment occurrence is associated with
one, and only one, occurrence of a parent segment.

Sometimes it is hecessary to distinguish between a segment type, that is, the kind
of segment; and the segment occurrence, that is, the particular instance of its
contents and location.

As shown in [Figure 9, a parent can have several child segment types. Also, a child
segment can, at the same time, be a parent segment; that is, it can have children
below it. The segment with no parent segment (the one at the top) is called the root
segment.

All the parent and child occurrences for a given root segment are grouped together
in a database record. The collection of all of the database records with the same
root and hierarchical structure (in , each PART segment with its dependent
STOCK, ORDER, and DETAIL segments) is an IMS database (the PARTS
database).

Only one segment can appear at the first level in the hierarchy, but multiple
segments can appear at lower levels in the hierarchy. For example, multiple STOCK
and ORDER segments can exist for one PART segment. Since each dependent
segment in the hierarchy has only one parent, or immediate superior segment, the
hierarchical data structure is sometimes called a tree structure. Each branch of the
tree is called a hierarchical path. A hierarchical path to a segment contains all
consecutive segments from the top of the structure down to that segment.

Through the concept of program sensitivity, IMS allows a program to be restricted to
“seeing” only those segments of information that are relevant to the processing
being performed. For example, an inventory program could be written to see only
the PART and STOCK segments of the database record shown in . The
program need not be aware of the existence of the ORDER segment.

Chapter 5. Overview of the IMS Hierarchical Database Model 43

IBM Confidential

IMS allows a wide variety of data structures. The maximum number of different
segment types is 255 in a single database. A maximum of 15 segment levels can
be defined in a hierarchical data structure. There is no restriction on the number of
occurrences of each segment type, except as imposed by physical access method
limits.

Basic Segment Types

The following list contains a detailed description of the various segment types and
their interrelations within a hierarchical data structure. See|Figure 9 on page 43| and
Figure 10|while reading these description.

* The segment on top of the structure is the root segment. Each root segment
normally has a key field that serves as the unique identifier of that root segment,
and as such, of that particular database record (for example, the part number).

* A dependent segment relies on the segments above it in the hierarchy for its full
meaning and identification.

» A parent/child relationship exists between a segment and its immediate
dependents.

» Different occurrences of a particular segment type under the same parent
segment are twin segments.

* Segment occurrences of different types under the same parent are sibling

segments.
RECORD 1 RECORD 2 RECORD 3
Rootsegments | pART PART PART
one per database
record 1 2 3
STOCK ORDER STOCK ORDER STOCK ORDER
11 11 21 21 ¢ 31 31
STOCK Siblings STOC_K‘ Stock
12 22 32
TWINS Detalil is:
Dependant of ORDER
DETAIL DETAIL Dependant of PART | DETAIL
111 211 Child of ORDER 311
All segments are DETAIL
dependants of part 112

Figure 10. Segment Types and Their Relationships

44

IMS: An Introduction to IMS

IBM Confidential

Sequence Fields and Access Paths

To identify and to provide access to a particular database record and its segments,
IMS uses sequence fields. Each segment normally has one field denoted as the
sequence field. The sequence fields should be unique in value for each occurrence
of a segment type below its parent occurrence. However, not every segment type
need have a sequence field defined. Particularly important is the sequence field for
the root segment, because it serves as the identification for the database record.
Normally, IMS provides a fast, direct access path to the root segment of the
database record based on this sequence field. This direct access is extended to
lower level segments if the sequence fields of the segments along the hierarchical
path are specified, too.

Note: The sequence field is often referred to as the key field, or simply the key.

In|Figure 10 on page 44|, an example of an access path would be the PART,
ORDER and DETAIL segments. It must always start with the root segment. This is
the access path as used by IMS. The application program, however, can directly
request a particular DETAIL segment of a given ORDER of a given PART in one
single DL/I call by specifying a sequence field value for each of the three segment
levels.

In addition to the basic hierarchical data structure discussed so far, IMS provides
two additional methods of defining access paths to a database segment. These are:

Logical relationships
Logical relationships allow a logical view to be defined of one or more
physical databases.To the application this will look like a single database.

Secondary indexes
Secondary indexes give an alternate access path for full-function
databases, by using a root or dependent segment to the database record in
one physical database.

Both provide a method for an application to have a different access path to the
physical databases. They are defined to IMS in addition to the basic hierarchical
structure already defined. The logical relationships and secondary indexes are
automatically maintained by IMS, transparent to the application.

You should only use these extra facilities if there are strong application and/or
performance reasons for doing so. Both involve additional overheads. The following
two sections ('Logical Relationships,’| and [‘Secondary Indexing” on page 48)
describe these facilities in more detail and indicate where you might wish to use
them.

Logical Relationships

Through logical relationships, IMS provides a facility to interrelate segments from
different hierarchies. In doing so, new hierarchical structures are defined that
provide additional access capabilities to the segments involved. These segments
can belong to the same database or to different databases. A new database can be
defined called a logical database. This logical database allows presentation of a
new hierarchical structure to the application program. Notice that although the
connected physical databases could constitute a network data structure, the
application data structure still consists of one or more hierarchical data structures.

Chapter 5. Overview of the IMS Hierarchical Database Model 45

IBM Confidential

For example, given the entities and relationships illustrated in [Figure 11] it may
have been decided that, based on the applications most common access paths, the
data should be implemented as two physical databases, with hierarchies as shown
in [Figure 12 on page 47, However, there are some reasons why other applications
need to use the relationship between the PART and order DETAIL (reasons for
wanting to do this are discussed in the following figures). So a logical relationship is
to be built between PART and DETAIL.

PART PART ordered DETAIL Item ordered PART
PART ORDER
in stock shipped
STOCK SHIPMENT
PART Physical Database ORDER Physical Database
PART/ORDER Logical Database

Figure 11. Example of Logical and Physical Databases

46

The basic mechanism used to build a logical relationship is to specify a dependent
segment as a logical child, by relating it to a second parent, the logical parent.

In|Figure 12 on page 47|, the logical child segment DETAIL exists only once, yet
participates in two hierarchical structures. It has a physical parent, ORDER, and
logical parent, PART. The data in the logical child segment and in its dependents, if
any, is called intersection data.

IMS: An Introduction to IMS

IBM Confidential

ORDER Database

Physical parent

PART Database
t ORDER | ot pETAIL
Logical parent
PART of DETAIL
Logical Relationship i Physical child
DETAIL ysical chieren | sHIpPMENT

STOCK

of ORDER

Logical children
of PART

Logical Twins

Figure 12. Two Logically Related Physical Databases: PART and ORDER

By defining two additional logical databases, two new logical data structures shown
in can be made available for application program processing, even within
one single program.

The DETAIL/PART segment in is a concatenated segment. It consists of
the logical child segment plus the logical parent segment. The DETAIL/ORDER
segment in [Figure 13 is also a concatenated segment, but it consists of the logical
child segment plus the physical parent segment. Logical children with the same
logical parent are called logical twins, for example, all DETAIL segments for a given
PART segment. As can be seen in[Figure 12} the logical child has two access
paths. One via its physical parent, the physical access path, and one via its logical
parent, the logical access path. Both access paths are maintained by IMS and can
be concurrently available to one program.

ORDER/PART PART ORDER
Logical Database Logical Database
ORDER PART
DETAIL PART SHIPMENT STOCK DETAIL ORDER
STOCK SHIPMENT

Figure 13. Two Logical Databases After Relating the PARTS and ORDER Databases

Some reasons you may want to use logical relationships are:

Chapter 5. Overview of the IMS Hierarchical Database Model 47

IBM Confidential

* They provide an alternate access path for the application. For example, they
allow (depending on pointer choice) an application to have direct access from a
segment in one physical database to a lower level segment in another physical
database, without the application having to access the second physical database
directly and read down through the hierarchy.

* They provide an alternate hierarchical database structure for an application so
that different applications, or parts of applications, can have a view of the
physical databases that most closely matches that application’s view of the data.

* They can make IMS enforce a relationship between two segments in two
physically separate databases (that is, it will preserve referential integrity). You
can define the relationship such that a logical parent cannot be deleted if it still
has logical children, and a logical child cannot be added it there is no logical
parent. For example, referring to |Figure 13 on page 47|, you could define the
relationship such that no order DETAIL could be inserted if there were no
corresponding PART, and no PART could be deleted if there were still order
DETAILs for that part. Any application attempting to do this would have the
database call rejected by IMS.

Potential disadvantages in using logical relationships are:

* There are performance overheads in maintaining the pointers used in the logical
relationships. Every time a segment patrticipating in a logical relationship is
updated, the other segment (in another physical database) that participates in the
relationship may need to be updated. This can result in an appreciable increase
in physical I/Os to auxiliary storage.

* When a database needs to be reorganized, except with some very limited pointer
choices, all other databases that are logically related must be reorganized at the
same time, as the pointers used to maintain the logical relationships rely on the
physical position of the segments in that database, which can be altered by the
reorganization.

Before choosing to use logical relationships, you need to carefully weigh up the
performance and administrative overheads against the advantages of using logical
relationships.

Related Reading: For further details on implementing logical relationships see [IMS]
[Version 9: Administration Guide: Database Manager]

Secondary Indexing

48

IMS provides additional access flexibility with secondary index databases. Each
secondary index represents a different access path to the database record other
than via the root key. The additional access paths can result in faster retrieval of
data. For example, the PART and ORDER segments in|Figure 14 on page 49| could
be retrieved based on the order number in the ORDER segment, if an index were
defined for that field. Once an index is defined, IMS will automatically maintain the
index if the data on which the index relies changes, even if the program causing
that change is not aware of the index.

IMS: An Introduction to IMS

IBM Confidential

PART Physical Database ORDER NUMBER Database
Index
Index B Index
Target PART h Pointer
Index P Key Fields
SO Source ORDER 1« From Source

Figure 14. A Database and Its Secondary Index Database

The secondary index is implemented by defining a secondary Index database to
IMS. This contains segments that point to the segment in the main physical
database that contains the key values the constitute the secondary index key. As
this Index database is itself a physical database, it can be accessed independently
by applications.

The segments involved in a secondary index are depicted in [Figure 14|

The index source segment contains the source fields on which the index is
constructed. For example, for the ORDER# segment:

» The index pointer segment is the segment in the index database that points to
the index target segment. The index pointer segments are ordered and accessed
based on the field contents of the index source segment (for example, the order
number). This is the secondary processing sequence of the indexed PARTS
database. There is, in general, one index pointer segment for each index source
segment, but multiple index pointer segments can point to the same index target
segment.

* The index target segment is the segment that becomes initially accessible from
the secondary index. It is in the same hierarchical record as the index source
segment and is pointed to by the index pointer segment in the index database.
Quite often, but not necessarily, it is the root segment.

* The index source and index target segment may be the same, or the index
source segment may be a dependent of the index target segment as shown in

Figure 14

The secondary index key (search field) is made up of one to five fields from the
index source segment. The search field does not have to be a unique value, but
IBM strongly recommends you make it a unique value to avoid the overhead in
storing and searching duplicates. There are a number of fields that can be
concatenated to the end of the secondary index search field to make it unique:

* A subsequence field, consisting of one to five more fields from the index source
segment. This is maintained by IMS but, unlike the search field, cannot be used
by an application for a search argument when using the secondary index.

* A system defined field that uniquely defines the index source segment: the /SX
variable.

» A system defined field that defines the concatenated key (the concatenation of
the key values of all of the segment occurrences in the hierarchical path leading
to that segment) of the index source segment: the /CX variable.

Chapter 5. Overview of the IMS Hierarchical Database Model 49

50

IBM Confidential

Another technique that can be used with secondary indexes is sparse indexing.
Normally IMS will maintain index entries for all occurrences of the secondary index
source segment. However, it is possible to cause IMS to suppress index entries for
some of the occurrences of the index source segment. You might wish to do this if
you were only interested in processing segments that had a non-null value in the
field. In the example in |Figure 14 on page 49, say that the ORDER had a field set
in it to indicate the order could not be fulfilled immediately, but needed to be back
ordered. You could define a secondary index including this field, but suppress all
entries that did not have this field set, giving rapid access to all back orders. As a
general rule, only consider this technique if you expect 20% or less of the index
source segments to be created. The suppression can be done either by specifying
that all bytes in the field should be a specific character (NULLVAL parameter) or by
selection with the Secondary Index Maintenance exit routine.

Some reasons for using secondary indexes are:

* Quick access, particularly random access by online transactions, by a key other
than the primary key of the database.

* Access to the index target segment without having to negotiate the full database
hierarchy (particularly useful if the index target segment is not the root segment).
This is similar to using logical relationships, but provides a single alternate
access path into a single physical database. If this is all that is required, then a
secondary index is the better technique to use.

» Ability to process the index database separately. For example, a batch process
might need to process only the search fields.

» A quick method of accessing a small subset of the database records by using a
sparse index.

Potential disadvantages in using secondary indexes are:

* The performance overheads in updating the secondary index database every
time any of the fields making up the search field in the index source segment is
updated or when the index source segment is inserted or deleted.

* The administrative overheads in setting up, monitoring, backing up, and tuning
the secondary index database.

* When the database containing the index source segment is reorganized, the
secondary index must also be re-built because the pointers used to maintain the
connection between the source segment and the secondary index database rely
on the physical position of the source segment in the database, which can be
altered by the reorganization.

As with logical relationships, consider carefully whether the benefits of using a
secondary index outweigh the performance and administrative overheads.

RELATED READING: For details on implementing secondary indexes, see
Version 9: Administration Guide: Database Manager|

IMS: An Introduction to IMS

IBM Confidential

Chapter 6. Implementing the IMS Database Model

[Chapter 5, “Overview of the IMS Hierarchical Database Model,” on page 41|
described the logical model for IMS databases. This chapter looks at how this
model is physically implemented using the IMS Database Manager and z/OS
services.

Application programs interface with IMS through functions provided by the IMS DL/I
application programming interface (API). This is true for both IMS DB and IMS TM
(see|Figure 15)). The following sections only address the functions relevant to IMS

DB.
Application

A

y
DL/I API

A A

v
IMS
IMS Access Methods Transaction
Manager
A

v

Operation System
Access Methods

A

Disk Storage

IMS Database Manager

Figure 15. Elements of the Physical Implementation

The individual elements that make up the database, segments, and database
records are organized using different IMS access methods. The choice of access
method can influence the functionality available to your application, the order in
which data is returned to the application, the functionality available to the
application, and the performance the application receives from IMS DB.

Underlying the IMS access methods, IMS uses VSAM or OSAM to store the data

on DASD and move the data between the DASD and the buffers in the IMS
address space, where the data is manipulated.

© Copyright IBM Corp. 2004 51

IBM Confidential

The structure of the IMS databases, and a program’s access to them, is defined by
a set of IMS control blocks:

* The database description block (DBD)
» The program specification block (PSB)
* The application control block (ACB)

These are coded as sets of source statements that then have to be generated into
control blocks for use by IMS DB and the application.

Segments, Records, and Pointers

As described in|Chapter 5, “Overview of the IMS Hierarchical Database Model,” on|
|page 41,| a segment is used to represent one entity, or grouping of related fields. In
IMS, unlike DB2 or many other DBMSs, it is not mandatory to define all the fields to
IMS. It is only necessary to define the segment as being long enough to contain all
the application data to be stored. The only fields you must define to IMS are those
you need to use for identifying and searching for segments. Specifying non-search
fields (field-level sensitivity) is optional.

In addition to the application data, each segment will also contain control
information used by IMS. The control information is placed at the beginning of the
segment in a segment prefix. shows the layout of a segment with the
prefix and application data portions. The prefix is automatically maintained by IMS
and is not accessible to the application. The control information in the prefix
consists of various flags, descriptive fields (segment type code and delete byte),
and pointers to implement the hierarchical structure and access paths. The contents
of the prefix will vary, depending on the IMS access method and options chosen
when the database is defined.

Figure 16. Example of a Typical Segment Layout

52

Prefix Data
Segment |Delete RBA RBA RBA Application Data
Type Byte Pointer Pointer | Pointer
Code

These pointers consist of the relative offset (number of bytes) of the segment being
pointed at, from the start of the data set being used to store the data. This is the
relative byte address (RBA). For example, a root segment would contain pointer
fields in the prefix for, at a minimum all of the dependent segment types under the
root. IMS will automatically define the minimum set of pointers to maintain the
hierarchical structure. The database designer has the option to specify additional
pre-defined types of pointers above those necessary for the minimum hierarchical
structure. This pointer selection can influence the performance of applications using
the databases. [Figure 17 on page 53 shows database segments with their pointers.

IMS: An Introduction to IMS

IBM Confidential

Y |

PTF | PTB | PCF | RCF Root 1 PTF | PTB | PCF | RCF Root 2
Y v A\ A v
PTE Dependant 1 PTE Dependant 1 PTE Dependant 1 PTE Dependant 1
Occurence 1 Occurence 1 Occurence 1 Occurence 1
v
PTE Dependant 1 PTE Dependant 1
Occurence 1 Occurence 1
\ 4
PTE Dependant 1
Occurence 1
Figure 17. Database Record and Pointers

IMS Hierarchic Access Methods

There are different IMS access methods you can use to organize and store the data
segments and records. The choice of which access method to use should be made
after a careful analysis of the access requirements of the applications (for example,
the functionality available to the application, the order in which segments are
returned to the application, database performance considerations).

Access methods (VSAM or OSAM) can, in general, be changed during
reorganization without affecting application programs. Choose the access method
carefully because the access method is one of the most critical performance
factors. Database types (HIDAM, HDAM, HISAM) cannot be changed during
reorganization without affecting the application.

The following list describes the most commonly used database organizations.

Database

Type Organization

HDAM Hierarchical Direct Access Method

PHDAM Partitioned Hierarchical Direct Access Method
HIDAM Hierarchical Index Direct Access Method

PHIDAM Partitioned Hierarchical Index Direct Access Method
SHISAM Simple Hierarchical Index Sequential Access Method
HISAM Hierarchical Index Sequential Access Method

Chapter 6. Implementing the IMS Database Model 53

54

IBM Confidential

GSAM Generalized Sequential Access Method
DEDB Data Entry Database

The z/OS access methods, VSAM and OSAM, that underlay the IMS access
methods, are mentioned in this section, but are discussed in more detail in the
following sections.

The three major IMS access methods are:

» Hierarchical Direct — Consisting of the Hierarchical Direct Access Method
(HDAM) and the Hierarchical Indexed Direct Access Method (HIDAM). Both of
these methods are described in ['HDAM” on page 55,and [‘HIDAM” on page 58|

HDAM and HIDAM databases, which have many similarities, are referred to as
HD databases. These HD databases can be partitioned using either the HALDB
Partition Definition utility (%DFSHALDB) or DBRC commands. After you partition
an HDAM database, it becomes a partitioned hierarchical direct access method
(PHDAM) database. After you partition a HIDAM database, it becomes a
partitioned hierarchical indexed direct access method (PHIDAM) database.
PHDAM and PHIDAM databases are generically referred to as High Availability
Large Databases (HALDBS).

For information about HALDBSs, see [‘PHDAM and PHIDAM” on page 60.

» Hierarchical Sequential — Consisting of the Hierarchical Sequential Access
Method (HSAM) and the Hierarchical Indexed Sequential Access Method
(HISAM). These are less used today, as the HD access methods have a number
of advantages. A short description of them, together with their limitations, is given
in[*HSAM and HISAM” on page 66.|

There are also simple variations of HSAM and HISAM, namely SHSAM and
SHISAM. These are also briefly described in[*HSAM and HISAM” on page 66.|

» Data Entry DataBase (DEDB) — DEDB has characteristics that make it suitable
for high performance and high availability applications. However, the application
must be specifically designed and written to make use of these characteristics. It
is described in detail in 'DEDB” on page 61

The Hierarchical Direct (HD) and Hierarchical Sequential (HS) databases are
full-function databases, and DEDB databases are referred to as Fast Path
databases. Because of its original development as a separately orderable feature,
Fast Path functions are normally described in separate sections or chapters in the
IMS manuals.

In addition, there are two more IMS access methods that provide additional
functionality:

* Index Databases — These are used to physically implement secondary indexes
and primary indexes for HIDAM and PHIDAM databases. For more information,
see ['Index Databases” on page 61

* Generalized Sequential Access Method (GSAM) — This is used to extend the
restart/recovery facilities of IMS Database Manager to non-IMS sequential files
being processed by IMS batch programs and BMPs. These files can also be
accessed directly by using z/OS access methods. For more information, see
[‘GSAM” on page 65

Exception: Most types of application regions and access a majority of the database
organization types. The exceptions are:

GSAM GSAM databases cannot be accessed from MPP, JMP, JBP, or CICS
regions.

IMS: An Introduction to IMS

IBM Confidential

HDAM

DEDB DEDB databases cannot be accessed from BMP regions.

See [Figure 18 on page 56| for the following discussion. An HDAM database
normally consists of one VSAM ESDS or OSAM data set. To access the data in an
HDAM database, IMS uses a randomizing module. The randomizing module is used
by IMS to compute the address for the root segment in the database. This address
consists of the relative number of a VSAM control interval (Cl) or OSAM block
within the data set and the number of an anchor point within that block. Anchor
points are located at the beginning of each CI or block. They are used for the
chaining of root segments that randomize to that CI or block. All chaining of
segments is done using a 4-byte address. This address, the relative-byte address
(RBA), is the byte that the segment starts at relative to the start of the data set.

A general randomizing module, DFSHDCA4Q0, is supplied with IMS. This is suitable
for most applications. The IMS Version 9: Customization Guide describes this
module. It also gives details about modifying this module or developing your own
randomizing routines.

The VSAM ESDS or OSAM data set is divided into two areas:

* The root addressable area. This is the first number of Cls or blocks in the data
set. You define it in your database definition (DBD).

* The overflow area is the remaining portion of the data set. The overflow area is
not explicitly defined, but is the remaining space in the data set after space is
allocated for the root addressable area.

The root addressable area (RAA) is used as the primary storage area for segments
in each database record. IMS will always attempt to put new and updated segments
in the RAA. The overflow area is used when IMS is unable to find enough space for
a segment being inserted in the RAA.

IMS uses a number of techniques to distribute free space within the RAA to allow
future segments to be inserted in the most desirable block. Because database
records will vary in length, a the bytes parameter in the RMNAME= keyword (in the
DBD) is used to control the amount of space used for each database record in the
root addressable area. Note that this limitation only applies if the segments in the
record are inserted at the same time. The bytes parameter limits the number of
segments of a database record that can be consecutively inserted into the root
addressable area. When consecutively inserting a root and its dependents, each
segment is stored in the root addressable area until the next segment to be stored
will cause the total space used to exceed the specified number of bytes.

The total space used for a segment is the combined lengths of the prefix and data
portions of the segment. When exceeded, that segment and all remaining segments
in the database record are stored in the overflow area. It should be noted that the
value of the bytes parameter only controls segments consecutively inserted in one
database record. Consecutive inserts are inserts to one database record without an
intervening call to process a segment in a different database record.

Chapter 6. Implementing the IMS Database Model 55

IBM Confidential

HDAM
Root Key Database
Randomiser
Module
v [v [v [v | v
2 PART | STOCK | STOCK | FREE | ORDER | FREE -
P 1 11 12 SPACE 11 SPACE
1 ; A4 v
Root R stock | FREE | PART | FREE | DETAIL | FREE
ﬁddressab'e Al 751 | spacE| 2 |SPACE| 11 | SPACE]
rea P
y [v [v y [
2 PART | STOCK | FREE | PART | ORDER | FREE o
P 3 31 SPACE 4 41 SPACE
I
v |
A [
v [¥ v v
Overflow DETAIL | DETAIL | DETAIL | STOCK | FREE
12 13 41 32 SPACE 7
Data Set - VSAM ESDS
or OSAM
v
RAP - Root Anchor Point Blocks (OSAM)

or Control Intervals (VSAM)
Figure 18. HDAM Database in Physical Storage

When you initially load HDAM databases, you can specify that a percentage of the
space in each block should be left for subsequent segments to be inserted. This
freespace will allow subsequent segments to be inserted close to the database
record they belong to. This freespace percentage is specified on the DBD. You can
also specify in the DBD that a percentage of blocks in the data set are left empty,
but you should not do this with HDAM databases, as this will result in IMS
randomizing segments to a free block, then placing them in another block. This
would result in additional 1/0 (the block they randomize to, plus the block they are
in) each time the segment is retrieved. You should analyze the potential growth of
the database to enable you to arrive at a figure for this free space.

When IMS is inserting segments, it uses the HD space search algorithm to
determine which control interval (CI) block to put the segment in. This attempts to
minimize physical I1/Os while accessing segments in a database record by placing
the segment in a Cl/block as physically close as possible to other segments in the
database record. The HD space search algorithm is described in the chapter,
“Designing Full-Function Databases”, in the IMS Version 9: Administration Guide|
[Database Manager

56 IMS: An Introduction to IMS

IBM Confidential

In addition to organizing the application data segments in an HDAM database, IMS
also manages the freespace in the data set. As segments are inserted and deleted,
areas in the Cl/blocks become free (in addition to the freespace defined when the
database is initially loaded). IMS space management allows this free space to be
re-used for subsequent segment insertion. To enable IMS to quickly determine
which Cl/blocks have space available, IMS maintains a table (bit map) that indicates
which Cl/blocks have a large enough area of contiguous free space to contain the
largest segment type in the database. Note that if a database has segment types
with widely varying segment sizes, even if the Cl/block has room for the smaller
segment types, it would be marked as having no free space if it cannot contain the
largest segment type. The bit map consists of one bit for each Cl/block, set on (1) if
space is available in the Cl/block, set off (0) if space is not available in the Cl/block.
The bit map is in the first (OSAM) or second (VSAM) Cl/block of the data set and
occupies the whole of that Cl/block. illustrates the free space
management.

Free Space Bit Map

._
1101011...
[v [¥
» FSEAP RAP Root Dependent FSE Dependent FSE o
Segment Segment Segment
| 5 5
[¥ [v
> FSEAP | RAP | FSE | o 0% | Dependent | cqp -
Segment Segment
I | 4
[¥ [¥ [¥ [¥
R Root Dependent Dependent Dependent
> FSEAP el Segment Segment Segment Segment

RAP - Root Anchor Point
FSEAP - Free Space Anchor Point

Blocks (OSAM)
Control Intervals (VSAM)

FSE - Free Space Element

Figure 19. HDAM Database Free Space Management

Within the Cl/block itself, IMS maintains a chain of pointers to the areas of
freespace. These are anchored off a Free Space Element Anchor Point (FSEAP).
This contains the offset, in bytes from the start of the Cl/Bock, to the first Free
Space Element (FSE), if freespace exists. Each area of freespace greater than 8
bytes contains a FSE containing the length of the freespace, together with the offset
from start of Cl/block to the next FSE.

Chapter 6. Implementing the IMS Database Model 57

HIDAM

IBM Confidential

All management of free space and application segments in the data sets is done
automatically by IMS and is transparent to the application. You only need to be
aware of these because of the performance and space usage implications.

Related Reading: A full description of the HDAM internal organization is given in
the chapter on Choosing a Database Type in [IMS Version 9: Administration Guide;|
[Database Manager|

The principle features of the HDAM access method are:
» Fast random access to the root segments, via the randomizer

* Quick access to segments in a database record, as IMS attempts to store them
in the same, or physically near, Cl/block

» Automatic re-use of space after segment deletions
* Can have non-unique root segment keys

The principle weaknesses of the HDAM access method are:

» Itis not possible to access the root segments sequentially, unless you create a
randomizing module that randomizes into key sequence, or incur the overhead of
creating and maintaining a secondary index

» |t is slower to load than HIDAM, unless you sort the segments into randomizer
sequence (for example by writing user exits for the sort utility that call the
randomizing module)

» |t is possible to get poor performance if too many keys randomize to the same
anchor point

A HIDAM database in DASD is actually comprised of two physical databases that
are normally referred to collectively as a HIDAM database, see [Figure 20 on page|
@l When defining each through the DBD, one is defined as the HIDAM primary
index database and the other is defined as the main HIDAM database. In the
following discussion the term “HIDAM database” refers to the main HIDAM
database defined through DBD.

58 IMS: An Introduction to IMS

IBM Confidential

HIDAM Primary HIDAM
Index Database Database
[v [v v [v
RBA Root PART | STOCK FREE STOCK | ORDER | DETAIL
Pointer Key 1i 1 11 SPACE 12 11 11
| oy
I
RBA Root
Pointer Key 2 v m h 4 m
PART | STOCK | FREE | DETAIL | DETAIL | ORDER | FREE
2 21 SPACE 12 13 42 SPACE
RBA Root yy
Pointer Key 3
v [¥ [v v [v v
RBA Root PART | STOCK | STOCK | FREE | PART | ORDER | ORDER
Pointer Key 4 3 31 32 SPACE 4 41 43
I
Data Set Data Set
VSAM/KSDS VSAM/ESDS or OSAM

Figure 20. HIDAM Database in Physical Storage

The main HIDAM database is similar to an HDAM database. The main difference is
in the way root segments are accessed. In HIDAM, there is no randomizing module,
and normally no RAPs. Instead, the HIDAM primary index database takes the place
of the randomizer in providing access to the root segments. The HIDAM primary
index is an indexed sequential file (VSAM KSDS) that contains one record for each
root segment, keyed on the root key. This record also contains the pointer (RBA) to
the root segment in the main HIDAM database.

The HIDAM primary index database is used to locate the database records stored
in a HIDAM database. When a HIDAM database is defined through the DBD, a
unigue sequence field must be defined for the root segment type. The value of this
sequence field is used by IMS to create an index segment for each root segment
(record in the KSDS). This segment in the HIDAM primary index database contains,
in its prefix, a pointer to the root segment in the main HIDAM database.

When the HIDAM database is initially loaded, the database records are loaded into
the data set in root key sequence. Providing root anchor points are not specified,
reading the database in root key sequence will also read through the database in
the physical sequence the records are stored in on the DASD. If you are processing
the databases in key sequence like this, and regularly inserting segments and new
database records, you should specify sufficient freespace when the database is
initially loaded so that the new segments/records can be physically inserted
adjacent to other records in the key sequence.

Related Reading: For a full description of the HIDAM internal organization, see the
chapter on “Choosing a Database Type” in[IMS Version 9: Administration Guide|
[Database Manager|

Chapter 6. Implementing the IMS Database Model 59

IBM Confidential

Free space in the main HIDAM database is managed in the same way as in an
HDAM database. IMS keeps track of the free space using Free space elements
anchor points. When segments are inserted, the HD free space search algorithm is
used to locate space for the segment. The HIDAM primary index database id
processed as a hormal VSAM KSDS, and, consequently, a high level of
insert/delete activity will result in CI/CS splits, which may require the index to be
reorganized.

When the HIDAM database is initially loaded, free space can be specified as a
percentage of the Cl/blocks to be left free, and as a percentage of each Cl/block to
be left free. This is specified on the DBD.

The principle advantages of the HIDAM access method are:
» Ability to process the root segments and database records in root key sequence

* Quick access to segments in a database record, as IMS attempts to store them
in the same, or physically near, Cl/block

» Automatic re-use of space after segment deletions

» Ability to reorganize the HIDAM primary index database in isolation from the
main HIDAM database (but NOT the other way round)

The principle weaknesses of the HIDAM access method are:

» Longer access path, compared to HDAM, when reading root segments randomly
by key. There will be at least one additional I/O to get the HIDAM primary index
record, before reading the block containing the root segment (excluding any
buffering considerations)

» Extra DASD space for the HIDAM primary index

 If there is frequent segment insert/delete activity, the HIDAM primary database
will require periodic reorganization to get all database records back to there root
key sequence in physical storage

PHDAM and PHIDAM

60

PHDAM databases are partitioned HDAM databases and PHIDAM databases are
partitioned PHDAM databases. illustrates a logical view of an HDAM and
a PHDAM database.

HDAM PHDAM
w \ Database /’
] J. . Partition N
Partition 1 Partition 2 Partition 3

|
data set .-'1 10 - 10

N S e

Figure 21. A Logical View of an HDAM and a PHDAM Database

HDAM and HIDAM databases are limited in size because segments of the same
type must be in the same data set with the maximum data set size limited to 4 GB
for VSAM and 8 GB for OSAM. HALDBs allows IMS databases to grow much

IMS: An Introduction to IMS

IBM Confidential

larger. Partitioning a database allows the use of smaller elements that are easier to
manage. Multiple partitions decrease the amount of unavailable data if a partition
fails or is taken offline.

HALDB allows the grouping of IMS database records into sets of partitions that are
treated as a single database while permitting functions to be performed
independently for each partition. Each HALDB patrtition has the same capacity limit
as an IMS non-HALDB database. Like an IMS non-HALDB database, each partition
can consist of up to 10 data sets; however the number of data sets selected will
then apply to all the partitions in that HALDB. This allows a large amount of data to
be contained in a single partition. HALDBs can contain up to 1001 partitions.

Each partition must have an indirect list data set (ILDS). The ILDS is a VSAM
KSDS data set. It is the repository for indirect pointers. These pointers eliminate the
need for updating logical relationship or secondary index pointers after a
reorganization. An ILDS contains indirect list entries (ILEs), which are composed of
keys and data. The data parts of ILEs contain direct pointers to the target
segments.

Index Databases

DEDB

Index databases are used to implement secondary indexes, and the primary index
of HIDAM and PHIDAM databases. The index database is always associated with
another HD database. It cannot have an existence by itself. It can, however, be
processed separately by an application program.

The Index database consists of a single VSAM KSDS (Key Sequenced Data Set).
Unlike the VSAM ESDSs used by IMS, which are processed at block (Control
Interval) level, the index database is processed as a normal indexed file. IMS uses
the normal VSAM access method macros to access it.

The records in the KSDS contain the fields that make up the key, and a pointer to
the target segment. For a secondary index, the pointer can be direct (relative byte
address of the target segment) or symbolic (the complete, concatenated key of the
target segment). For a HIDAM primary index, it is always direct.

As the indexes are a normal VSAM KSDS (and no relative address are used for
data in the index database) they can be processed using the normal VSAM Access
Method Services (IDCAMS). For example you could use the REPRO function to
copy the database and remove CI/CA splits or resize the data set, without having to
perform any other IMS reorganization.

The DEDB implementation of the IMS hierarchical database model is broadly the
same as the IMS HDAM access method. However, there are important differences:

* The implementation of the IMS access method onto the operating system access
method data sets is different (and appreciably more complicated) than with
HDAM. This is done to provide the additional features offered by DEDBSs.

* There are various restrictions on facilities available with this access method,
again a trade-off for the additional features provided.

The hierarchical structure of a database record within a DEDB is the same as
HDAM, except for an additional dependent segment type. There is one root
segment in each database record and from 0 to 126 dependent segment types.
One of these segment types can, optionally, be a sequential dependent segment

Chapter 6. Implementing the IMS Database Model 61

62

IBM Confidential

type. As with HDAM, a randomizing module is used to provide initial access to the
database data sets containing the DEDB database.

The highest level in the structure used to implement a DEDB is the area. A DEDB
can consist of from 1 to 2048 areas. Each area is implemented as one VSAM
ESDS data set.

Each DEDB area data set is divided into:

» Aroot addressable part — This contains VSAM Cls that are addressable by the
randomizing middle.

* An independent overflow part.

» A sequential dependent part — This is optional, and is only defined if the DEDB
has a sequential dependent segment defined in the hierarchical structure.

The root addressable part is further subdivided into units of work (UOWS). These
should not be confused with the unit of work that encompasses an application’s
minimum set of updates to maintain application consistency. The DEDB UOW is
similar, however, as it is the smallest unit that some Fast Path utilities (for example,
reorganization) work with, and lock, preventing other transactions accessing them.
Each unit of work consists of from 2 to 32767 CIs, divided into a base section of 1
or more Cls and a dependent overflow section, consisting of the remaining Cls.

[Figure 22 on page 63| shows segments stored in a DEDB area data set.

IMS: An Introduction to IMS

IBM Confidential

Base
Section
of
uow

Dependent
Overflow Section
of UOW

[Area
[Area
Area]
Independent Sequential
Root Addressable Part Overflow Part Dependent Part
il ,_I: ,_I: ,_I:
Cl Cl Cl
Cl Cl Cl
Cl Cl Cl
Cl Cl Cl
Cl Cl Cl
Cl Cl Cl
Cl Cl Cl
Cl Cl Cl
Cl Cl Cl
Cl Cl Cl
c || H cl || H cl J|H| H
One
uow

Figure 22. Overall Structure of a Fast Path DEDB

The randomizing module works in a similar way to an HDAM database. It takes the
key value of the root segment and performs calculations on it to arrive at a value for
a root anchor point. However, for a DEDB this is the root anchor point within the
Area data set. The randomizer must also provide the value of the area data set that
contains the RAP. Again, there is a sample randomizer provided with IMS, although
due to the unique characteristics of DEDBs, you should look closely at whether you
need to code your own.

The randomizer will produce the value of a root anchor point in the base section of
a unit of work. IMS will attempt to store all dependent segments (except sequential

Chapter 6. Implementing the IMS Database Model 63

64

IBM Confidential

dependents) of the root in the same UOW as the root. If more than one root
randomizes to the same RAP, then they are chained off the UOW in key sequence.
If there is insufficient space in the base section, then root and non-sequential
dependent segments are placed in the dependent overflow section of that UOW. If
there is no space in the dependent overflow section in the UOW, a Cl in the
independent overflow part of the DEDB Area is allocated to that UOW and the
segment is stored there. This CI in the independent overflow part is then used
exclusively by that UOW, and is processed with that UOW by the DEDB
reorganization utility.

The free space between the data segments in the Cls in the root addressable part
and Independent overflow part of a DEDB area data set are managed in the same
way as in an HDAM data set. with a free space element anchor point at the start of
the CI pointing to a chain of free space elements. As with HDAM, space from
deleted segments is automatically re-used, and the UOW can be reorganized to
consolidate fragmented free space (without making the database unavailable).
Unlike an HDAM database, there is no free space map. The segments for a
database record can only be allocated in the same UOW (or attached segments in
dependent overflow) as the root segment. An out of space condition results if
insufficient free space is available in the UOW or Independent overflow.

The following, optional, features can also be used with a DEDB:

Virtual Storage Option (VSO)
This stores the Cls of a DEDB in z/OS data spaces and coupling facility
cache structures, eliminating I/O to the DASD system. The data can either
be loaded (partially or completely) when the database is opened, or loaded
into the dataspace as it is referenced.

Shared VSO
You can share VSO DEDB areas, which allows multiple IMSs to
concurrently read and update the same VSO DEDB area. The three main
participants are the coupling facility hardware, the coupling facility policy
software, and the XES and z/OS services.

Multiple Area Data Sets
You can define DEDB areas so that IMS will automatically maintain up to
seven copies of each area. This can be used to provide a backup if I/O
errors occur, allow data sets to be re-defined on a different device without
taking the database offline, or to provide parallelism in 1/0O access for very
busy applications.

High Speed Sequential Processing
This is a function provided by Fast Path to enhance the performance of
programs that are processing segments sequentially in a database. IMS
issues a single 1/0 request that reads one UOW at a time. This causes a
reduction in the overhead of multiple I/O requests and stores the Cls in a
separate buffer pool. HSSP also issues the read request in advance of the
program asking for the data, to provide parallel processing. In this way, the
segments in the database are available to the program without any delays
to wait for 1/O processing. The overall runtime can be significantly reduced,
as long as the database is being read sequentially.

Sequential Dependent Segments
A DEDB database can have one sequential dependent segment type
defined in the database record. This is processed completely separately to
the other dependent segments. Normal application programs can only Insert
new sequential dependent segments or read existing sequential dependent

IMS: An Introduction to IMS

IBM Confidential

GSAM

segments. All other processing of these sequential dependents is performed
by IBM supplied utility programs. The sequential dependents are stored in
the Sequential dependent part of the area data set in chronological
sequence, and processed by the IMS utilities, to read or delete them, in the
same sequence.

The main situations where you might consider using Fast Path DEDBs are:

* Where you have very high volumes of data to store. The DEDB can be spread
over up to 2048 VSAM ESDS data sets, each with a maximum capacity of 4GB.
However not all this space is available for application data as some minimal
space is needed for IMS and VSAM overhead and free space.

* Where you have a small to medium database that needs extremely fast access.
you could use the DEDB VSO option and have the data held in an z/0S
dataspace, making a major reduction in the physical /0O associated with the
database.

» If you needed a database with very high availability. The use of multiple area
data sets, the ability to reorganize online and the DEDBSs tolerance to I/O errors
mean the database can be kept available for extended periods.

* Where an application needs to record large amounts of data very quickly (for
example journaling details of online financial transactions) but does not require to
update this data, except at specified times (for example, an overnight process),
then a DEDB with a sequential dependent segment could provide the solution.

The principal disadvantages of DEDBs are:

» This method is more complicated than other IMS access methods. Consequently,
it requires a higher degree of support both for initial setup and running.

* The person designing the application must understand the restrictions and
special features of DEDBs and design the application accordingly

* The DEDBs are only available for applications running against an IMS control
region (MPP, IFP, BMP and CICS applications). There is no batch support except
indirectly via the IMS supplied utilities to extract the data.

» Fast Path DEDBs do not support logical relationships or secondary indexes, so
these functions must be implemented in the application

Related Reading:

» For more details on using DEDBs, together with samples of their use, see the
ITSO publication IMS Fast Path Solutions Guide.

» The features of DEDBs are described in detail in chapters on designing a Fast
Path database in [MS Version 9: Administration Guide: Database Manager|

* The utilities used with DEDB are described in IMS Version 9: Utilities Reference:|
[Database and Transaction Manager| and the randomizer and other Fast Path
exits are in IMS Version 9: Customization Guide.

A z/OS sequential file being used as an interface to or from an IMS application can
be defined to IMS as a GSAM database. However, the normal concepts of
hierarchical structures do not apply to GSAM, as it just contains the normal data
records, with no IMS information.

These files can be z/OS sequential files, or VSAM ESDSs. Before or after the IMS

application processes them, other applications can process them using the normal
BSAM, QSAM and VSAM access methods.

Chapter 6. Implementing the IMS Database Model 65

IBM Confidential

When using GSAM for sequential input and output files, IMS will control the
physical access and position of those files. This is necessary for the repositioning of
such files in case of program restart. When using GSAM, IMS will, at restart time,
reposition the GSAM files in synchronization with the database contents in your
application program’s working storage. To control this, the application program
should use the restart (XRST) and checkpoint (CHKP) calls. These calls will be
discussed in|“Using Batch Checkpoint/Restart” on page 192.| Note that IMS can not
re-position VSAM ESDS files on restart. There are also some other restrictions on
restarting, detailed in the chapter, “Designing Full-Function Databases” in the
Version 9: Administration Guide: Database Manager|

Whenever you want your program to be restartable, you should use GSAM for its
sequential input and output files. There are two reasons why you should want to do
this. The first is to save time if a program rerun is required in case of program
system failure. This is normally only done for long-running update programs (one or
more hours). The other reason stems from a planned online usage of the
databases.

HSAM and HISAM

The two Hierarchical Sequential (HS) databases, HSAM and HISAM, use the
sequential method of accessing data. All database records and all segments within
each database record are physically adjacent in storage. Unlike HSAM, however,
each HISAM database record is indexed, allowing direct access to a database
record.

HSAM and HISAM have now been superseded by the HD access methods. The HD
access methods have a number of features that would almost always make them a
better choice.

The HSAM access method will not allow updates to a database after it was initially
loaded and the database can only be read sequentially. HSAM was used in the past
to process operating system sequential files, but GSAM is now a better choice.

The HISAM access method offers similar functionality to HIDAM, but has poorer
internal space management than the HD access methods that would normally result
in more I/O to retrieve data, and the need to reorganize the databases much more
frequently.

A simple HSAM (SHSAM) database is an HSAM database containing only one type
of segment, a root segment. Similarly, a simple HISAM (SHISAM) database is a
HISAM database containing only one type of segment, a root segment.

Related Reading: For additional details about the HS access methods, see the
IMS Version 9: Administration Guide: Database Manager

Physical Segment Design

After you decide what access method (or database type) you want to use for a
particular application, you need to design the segments that will be in that
database. When designing segments, the physical parameters are important. The
following sections discuss these details.

Segment Length

IMS will use the segment length as defined in the DBD to store each segment. If
you have left free space at the end of the segment for future use, that space will be

66 IMS: An Introduction to IMS

IBM Confidential

physically hold space on DASD unless you have compressed the segment. If the
application is likely to have additional requirements later, it can be easier to make
use of this free space than to increase the segment length later. You have to
balance the cost of making the change to the databases and programs against the
cost of wasted DASD space.

Number of Occurrences Per Segment Per Parent

Try to avoid long twin chains, that is, many occurrences of a particular segment
type under one parent. Chain lengths should be estimated in terms of blocks
needed to store each such segment.

Location of Segments in the Hierarchy

Try to locate the segments most often used together with the root segment into one
control interval/block. The segments are initially physically stored in hierarchical
sequence, so the most frequently used segments should be on the left of the
structure (low segment codes).

Average Database Record Size

The average database record is calculated by the total bytes of all segments under
the root segment. Small segments with more twins than larger segments with fewer
twins, although having almost the same number of bytes, results in better
performance and space usage.

Operating System Access Methods

To underpin the IMS access methods, IMS uses two operating system access
methods to store the data on disk storage, and move the data between the disk
storage and the buffers in the IMS address space. These are:

Virtual Sequential Access Method (VSAM)
Two of the available VSAM access methods are used, Key Sequenced
Data Sets (KSDS) for Index databases, and Entry Sequenced Data Sets
(ESDS) form the primary data sets for HDAM, HIDAM, etc. The data sets
are defined using the VSAM Access Method Services (AMS) utility program.

Overflow Sequential Access Method (OSAM)
This access method is unique to IMS and is delivered as part of the IMS
product. It consists of a series of channel programs that IMS executes to
use the standard operating system channel I/O interface. The data sets are
defined using JCL statements. As far as the operating system is concerned,
an OSAM data set is described as a physical sequential data set
(DSORG=PS).

For more information about these operating system access methods, see [VSAM o
[OSAM” on page 68)

There are two types of data sets defined using these access methods:

Indexed sequential data sets
These are all defined and accessed as VSAM KSDSs, and are used to
implement primary and secondary index databases. These databases are
processed using the standard record level instructions of VSAM. A
catalogue listing (VSAM LISTCAT) will show all current details of the files.
They are susceptible to the normal performance degradation of VSAM
KSDSs from CI/CS splits caused by insert/delete activity. They can, if
necessary, be processed using AMS utilities such as REPRO.

Chapter 6. Implementing the IMS Database Model 67

IBM Confidential

Sequential data sets
These are defined and accessed either as VSAM ESDSs or using OSAM. It
is important to note that, while these data sets appear as sequential data
sets to the operating system, IMS accesses them randomly. The data sets
do not contain records as such. IMS always processes them at the ClI
(VSAM) or block (OSAM) level. The internal structure within each Cl/block
is arranged as described in |“IMS Hierarchic Access Methods” on page 53.|
Interpreting catalogue listings of these files as if they were sequential files
can, at times, be misleading.

In addition to using VSAM or OSAM, IMS data sets can be managed by Data
Facility Storage Management Subsystem (DFSMS). For more information, see
land System Managed Storage” on page 69)

VSAM or OSAM

68

While most physical databases are implemented over a single VSAM ESDS or
OSAM data set, IMS provides facilities to spread an HDAM or HIDAM physical
database over up to nine additional data sets (multiple data set groups). The is
facility is restricted as, with the current release of IMS, the 1st, primary data set
group, that is always defined, must contain the root segments, and can contain any
dependent segment type. The other (secondary) data set groups can each contain
any dependent (non-root) segment type. However, each dependent segment type
can only be defined in one data set group. This is, aside from performance
implications, transparent to applications. If the database needs to be reorganized,
then all data sets that make up the physical database have to be reorganized at the
same time.

The reasons why you may wish to use secondary data set groups are:

» To separate little used segments from the main data set, to leave more space for
frequently used segments. This will increase the chance the all regularly
accessed segments are in the same block with the root, and enhance
performance. For example, you might have a segment type that has a new
occurrence inserted each month, say month end audit totals. This is only rarely
accessed after insertion. Placing in this segment type in a secondary data set
group, while imposing an overhead on the program that inserted it, could improve
performance of all other programs as there is an increased chance segments
they access are in the same block as the root, and more database records can
be packed into one Cl/block.

» If you have a database with one very large segment type, and a humber of other
small segment types than, as described above, this can result in unusable space
as IMS space management only regards a Cl/block within a data set as having
freespace if it can accommodate the largest segment type stored in that data set.
Putting this large segment type in a secondary data set group means that the
other data set groups will now only be regarded as full if they could not contain
the second largest segment type.

* You can specify different freespace parameters on the different data set groups,
so you could place non-volatile segment types in a data set group with little free
space, to increase packing in a Cl/block, and consequently the chances of
having several segments a program is retrieving in the same block. Volatile
segment types (that is, frequent insert/delete) could be placed in a data set group
with a large freespace specification, allowing segments to be inserted near
related segments.

» For very large databases, you may be approaching the structural limit of the data
set access method (4 GB of data). If you have one or two segment types that

IMS: An Introduction to IMS

IBM Confidential

occur very frequently, the each of these segment types could be placed in one or
more secondary data set groups to provide more space. But in this case, see
also the additional features of OSAM below, and also look closely at DEDBs,
which can be spread over many more data sets.

When performing space calculations, you need to be aware that, in addition to the
overhead for IMS control information (pointers, etc.), VSAM data sets will also
contain a suffix area at the end of the CI that contains VSAM control information.
This makes the space available in the CI for IMS data slightly less than the VSAM
Cl size.

The choice between OSAM and VSAM ESDS for the primary database data sets
will depend, to some extent, on whether your site already uses VSAM and whether
you need to make use of the additional features described below. The choice
between VSAM ESDS and OSAM is not final, as a database can be changed from
one access method to the other by unloading the database, changing and
regenerating the DBD, then re-loading the database.

As the OSAM access method is specific to IMS, it has been optimized for use by
IMS. Reasons you may want to use OSAM are:

» Sequential Buffering (SB). With this feature, IMS will detect when an application
is processing data sequentially and pre-fetch blocks it expects the application to
request from DASD, so they will already be in the buffers in the IMS address
space when the application requests segments in the block. This is manually
activated for specific IMS databases/programs. It can appreciably decrease run
times for applications processing databases sequentially. It is similar to the
sequential prefetch available with some DASD controllers, but has the advantage
that the data if fetched into the address space buffer in main memory, rather than
the DASD controller cache at the other end of the channel

Related Reading: See the “Full-Function DB Design Considerations” chapter in
[IMS Version 9: Administration Guide: Database Manager| for details on sequential
buffering.

* The structural limit on the amount of data that IMS can store in a VSAM ESDS is
4GB of data. OSAM can process a data set up to 8GB in size.

* Overall, OSAM is regarded as more efficient as it is more efficient, buffering,
shorter instruction path.

IMS and System Managed Storage

Most of the IMS data sets can be managed by System Managed Storage (SMS).
The only concern would be the online data sets (OLDS). If they should get migrated
(not very likely in most installations), they might be recalled with different attributes.

Related Reading: For more information about the data sets that IMS uses for
logging events, see |Chapter 25, “IMS Logging,” on page 257.|

OLDS data sets must be allocated in contiguous space. It could also be possible for
both the primary and secondary OLDS data sets to be on the same volume. This is
a major problem if that volume becomes unreadable. You should use management
classes to avoid this.

Write ahead data sets (WADS) have very high write rate and are very sensitive to

slow response. These data sets should be placed with some care. SMS may not
provide a good place to allocate them.

Chapter 6. Implementing the IMS Database Model 69

IBM Confidential

If any OLDS, recovery log data sets (RLDS) or system log data sets (SLDS) or
image copy data sets are SMS managed, the CATDS parameter must be set for the
RECON. This will tell DBRC to use the system catalog to find data sets and not be
concerned if they are not on the same volumes which they were originally allocated.

IMS Checkpoints

70

A database management system, such as IMS, provides facilities to keep all the
application data stored in the databases in a consistent state. This discussion is
principally concerned with keeping the application data consistent, from an
applications point of view. It relies on the application using the facilities provided by
IMS. However, the facilities to consistently update the database also ensure that all
internal IMS information (pointers, free space elements, etc.) are kept consistent,
though this is transparent to the application program.

An application program might make updates to several IMS databases. If a problem
is encountered part of the way through these updates, either the program fails, or
application logic dictates it cannot continue with the processing, then it will need to
restore the data in the databases to the state when it started updating them. For
example, a program adds a detail to the order, in the order database, and then
needs to update the parts database to reduce the quantity of the part available for
ordering. If the program updates the order database, but then fails before updating
the parts database, the order is recorded, but the quantity of the part is still shown
as available for ordering on the parts database. The update to the order database
and the update to the parts database make up a single unit of work (UOW). For the
application data to be consistent, either all the updates in a unit of work must be
written to the database successfully (committed) or none of the updates in the UOW
must be committed.

To maintain database consistency, IMS uses the concept of the application
checkpoint. You should not confuse the application checkpoint, which applies to the
single execution of an application program, with the system checkpoints IMS
subsystems take. System checkpoints are taken to allow the IMS subsystem to
recover from a failure of the complete IMS subsystem. The application checkpoint
indicates to IMS the end of the applications unit of work and causes IMS to commit
all updates made in that UOW.

An application’s UOW commences when the application program starts running. By
default, IMS takes an application checkpoint, and commits all updates when the
application terminates normally. You can also explicitly request a checkpoint, using
the CHKP function of the DL/l APIl. The CHKP call is also taken as starting another
UOW. If an application program terminates abnormally, then all database changes
are backed out to the last commit point (start of program if application checkpoints
are not being used or last CHKP call if they are). The application can also explicitly
back out all updates within the current UOW by using the ROLB, ROLL or ROLS
functions of the DL/I API (the difference between the calls relate to action taken by
the Transaction Manager component, if applicable, and whether the application
regains control after the call).

Related Reading: See the |IMS Version 9: Application Programming: Database|
|Manage[| (under “maintaining database integrity”) for complete descriptions of the
functions mentioned in the previous paragraph.

For long running batch and BMP application programs, you should issue explicit
checkpoint calls at regular intervals. As the programs read database records, details
of these database records (internal IMS addresses) are stored by the IMS

IMS: An Introduction to IMS

IBM Confidential

subsystem until the application reaches a commit point (issues a CHKP or
terminates). This is done to prevent other application programs updating these
database records while the application is working with them. These details are
stored in an internal buffer in the IMS address space. Failure to issues regular
checkpoints can cause the following problems:

* The IMS address space has insufficient storage to contain all the buffers needed
to contain these details, resulting in the application program being terminated

* If the application fails, or issues a ROLL, ROLB or ROLS call, IMS will have to
back out all the updates performed by the application. If it has been running for a
long time without checkpointing, it may well take the same time to back out all
the updates as it took to apply them. Equally, if you then correct the problem and
re-start the program, it will take the same time again to re-process the updates.

* For BMPs, other applications processing the databases by the same IMS control
region might be prevented from accessing these database records. This can
cause severe response-time problems if the other applications are being used by
online users. For Batch jobs, you can encounter similar problems if block level
data sharing is being used. Also, the IMS ENQ/DEQ block supply might become
exhausted, which results in a U0775 abend of all of the application programs that
are running at the time of the abend.

Long running programs should issue checkpoints based on the number of database
calls made. As a rule of thumb, initially issue batch checkpoints at about every 500
database calls. You do not want to checkpoint too frequently, as there is an
overhead in writing out all updates and your application re-positioning itself in all the
IMS databases after the CHKP call. IMS loses the position in the databases after a
CHKP call, so such a call must be followed up with a GU call to the last record
retrieved in databases where such positioning is important to the application logic.

Obviously you cannot CHKP more frequently than the number of calls in one UOW.
As you might need to tune the checkpoint frequency, IBM recommends that you
code the program so it can be easily changed. It is best to code it in the program
as a variable, possibly input as a parameter at run time.

The functions described in the previous paragraphs are referred to as basic
checkpoint. For applications running in Batch and BMP address spaces, there is
also extended checkpoint functionality available. This is referred to as symbolic
checkpointing. Symbolic checkpointing provides the following additional facilities that
enable application programs running in batch or BMP address spaces to be
re-started:

* The XRST function call is made at the start of the program and indicates to IMS
that the application is using symbolic checkpointing

» The CHKP function is extended to allow the application to pass up to seven
areas of program storage to IMS. These areas are saved by IMS and returned to
the program if it is restarted. This can be used for any variables, (for example,
accumulated totals, parameters) that the application would need to resume
processing

» Each CHKP call is identified by an ID that is generated by the application
program. This ID is displayed in an IMS message output to the operating system
log when the checkpoint is successfully complete. While a good programming
practice would be to ensure this ID is unique, nothing in IMS enforces this
practice.

 If the program fails, after correcting the problem, it can be restarted from either
the last or any previous successful checkpoint in that run. IMS will re-position the
databases (including non-VSAM sequential files accessed as GSAM) to the

Chapter 6. Implementing the IMS Database Model 71

IBM Confidential

position they were at when the checkpoint was taken. When the XRST call is
made on re-start, the program will receive the ID of the checkpoint it is re-starting
from, together with any user areas passed to IMS when that CHKP call was
issued

Related Reading: Full details of symbolic checkpointing, along with various
restrictions on what can be done, are in the chapter on maintaining database
integrity in |IMS Version 9: Application Programming: Database Manageri.

Locking

The other main facility a Database Management System (as distinct from the use of
a database) provides, is the ability for more than one application to simultaneously
access the database for update, while preserving database integrity.

This prevents situations such as in the following example: Application A reads a
record. While it is processing it (waiting for a user to respond at a terminal),
application B reads the same record. While application B is processing the record,
application A writes back the updated record. The user of application B now
responds, and application B writes back the updated record, overwriting the update
to the record made by application A.

The mechanism used to prevent this is to lock (enqueue) the database
segments/records until the application has finished processing them successfully,
that is reached the end of a unit of work. While this discussion is mainly concerned
with ensuring application data is updated consistently, the mechanisms used by IMS
also ensure that IMS’s internal information in the databases (pointers, and so forth)
remains consistent.

One problem that can occur from this enqueueing of database segments, is a
deadlock between two application programs. For example, application A reads
database record 1. While A is doing other processing, application B reads database
record 2, then tries to read database record 1, and is suspended waiting for it, as it
is enqueued by application A. Application A now attempts to read database record
2, and is suspended, as it is enqueued by application B. Both applications are now
suspended waiting for a record enqueued by the other — a deadlock. IMS detects
this, and will abnormally terminate (abend) the application it assesses has done the
least work, backing out its updates to the last commit point. The mechanism IMS
uses to detect the deadlock depends on what method of data sharing is being used
(see below). This is either direct detection of the deadlock from the details
enqueued, or by timeout; that is, terminating a task after a (parameter specified)
period of waiting for a database record.

If the application is accessing DB2 tables, DB2 also detects deadlocks by timeouts
and will instruct IMS to abend the program. The abend code issued is the same as
for an IMS database deadlock. What IMS cannot detect is a deadlock between two
applications where the two different resources the applications are trying to get are
being managed by two separate resource managers. This is most common with
CICS applications using IMS/DB databases. For example, CICS task A reads, and
enqueues a database record. CICS task B then issues a CICS ENQ for a resource,
for example to serialize on the use of a TDQ. CICS task B then attempts to read
the database record held by task A, and is suspended, waiting for it. CICS task A
then attempts to serialize on the resource held by task B and is suspended. We
now have a deadlock between task A and B. But neither IMS or CICS is aware of
the problem, as both can only see the half of the deadlock they are managing.
Unless IMS was using one of the data sharing techniques that timed out application

72 IMS: An Introduction to IMS

IBM Confidential

that wait for the database, or CICS was set up to abend tasks after a very short
time suspended, this deadlock would have to be resolved manually.

The person designing an application that uses IMS databases needs to be aware of
the potential problems with database deadlocks, and design the application to avoid
them. If the application also locks resources managed by another product, they also
need to be aware of the potential for a deadlock developing between the IMS
database records and the resources managed by the other product. Unfortunately,
deadlocks often only occur when the application processes very large volumes, as
they often require very precise timing to occur. This means that they are often not
detected during testing with small volumes.

IMS supports three methods of sharing data between a number of application tasks:

Program Isolation (PI)
This can be used where all applications are accessing the IMS databases
via a single IMS control region. IMS maintains tables of all database
records enqueued by the tasks in buffers in the control region address
space. This provides the lowest level of granularity for the locking, and the
minimum chance of a deadlock occurring. Deadlocks are resolved by IMS
checking the tables of database records enqueued to ensure there is not a
deadlock situation, and abending one of the tasks if there is.

Block level data sharing
This allows any IMS control region or batch address space running on an
0S/390 system to share access to the same databases. It uses a separate
feature, the Internal Resource Lock Manager (IRLM). This is delivered as
part of the IMS product, but needs to be separately installed. It runs in its
own address space in the OS/390 system and maintains tables of the locks
in this address space. With block level data sharing IMS locks the
databases for the application at the block level. This locking is at a higher
level than with program isolation (that is, all database records in a block are
locked). Because of this coarser level of locking, there is an increased risk
of deadlocks and contention between tasks for database records.
Deadlocks are resolved by a timeout limit specified to the IRLM. If the disk
storage the databases are on is shared between two OS/390 systems, it is
also possible to share the databases between IMS applications running on
the two OS/390 images, by running an IRLM address space on each of the
two OS/390 images. The IRLMs communicate using VTAM but maintain
lock tables in each IRLM address space. IRLM is also used as the lock
manager for DB2 but, because of the different tuning requirements, you
should use separate IRLM address spaces for DB2 and IMS.

Sysplex data sharing
Where a number of OS/390 systems are connected together in a sysplex,
with databases on DASD shared by the sysplex, it is possible for IMS
control regions and batch jobs to run on any of these 0S/390 images and
share access to the databases. To do this, an IRLM address space, running
version 2 of IRLM, must be running on each OS/390 image the IMS
address spaces are running on. The IRLMs perform the locking at block
level, as in the previous case. However, instead of holding details of the
locks in the IRLM address space, the lock tables are stored in shared
structures in the sysplex coupling facility. Deadlocks are resolved by a
timeout limit specified to IRLM.

Related Reading: For further details on data sharing, see:

« |Chapter 8, “Data Sharing,” on page 83|

Chapter 6. Implementing the IMS Database Model 73

IBM Confidential

« [Chapter 30, “Introduction to Parallel Sysplex,” on page 315|

* The chapter on administering a data sharing environment in{IMS Version 9:
[Administration Guide: System|

74 IMS: An Introduction to IMS

IBM Confidential

Chapter 7. Choosing the Correct Database Type

Some database types will provide a better solution to your business needs than
others. This chpater discuss how to choose the best type of database for your
applications.

The following sections are covered in this chapter:

« ["Applications Suitable for Full-Function Databases’|

« ['Applications Suitable for HSAM and HISAM” on page 77|

- ['Applications Suitable for Fast Path Databases” on page 77|

Applications Suitable for Full-Function Databases

The following sections discuss the advantages and disadvantages of the different
types of full-function databases.

When to Choose HDAM

HDAM is recognized, in practice, to be the most efficient storage organization of an
IMS database. It should be considered first. After looking at all the required access
to the database, if there are not requirements to process a large section of the
database in key sequence, then HDAM should be chosen. If sequential access of
the root keys is required, the process can retrieve the data in physical sequence
and sort the output.

The primary advantages of HDAM are:

» Fast direct access (no index accesses) with few I/O operations
» Single data associated control blocks

» Small working set in main storage for IMS

* Good physical sequential access

Some considerations of using HDAM are:
* You need a randomizing module.

» Sequential access in root key order is not possible if the physical sequence of
database records in storage is not the same as the root key sequence. This is
dependent on the randomizing module and root key characteristics.

» If the database exceeds the space in the RAA (root addressable area), it will
extend into overflow. After it is in overflow, the performance of the access to
these segments can increase drastically.

» To increase the space of the database, a DBDGEN is required to increase the
number of blocks in the RAA. This will also require an ACBGEN to rebuild the
online ACBs for use in the online system. This will require that you take the
database offline (making it unavailable) to complete and coordinate the change.
For more information about DBDGEN and ACBGEN, see [‘Generating IMS|
[Control Blocks” on page 158

In many cases, the disadvantages for HDAM do not apply or can be circumvented.
The effort needed to circumvent should be weighed against the savings in terms of
main storage and CPU usage. There is no doubt, however, that an application with
only HDAM databases is the most compact one. Some possible solutions for the
previously mentioned HDAM disadvantages are:

© Copyright IBM Corp. 2004 75

IBM Confidential

* The IMS provides a general randomizing module, DFSHDC40, which can be
used for any key range

» If heavy sequential processing is required and a randomizing module which
maintains key sequence cannot be designed, then sort techniques can be used:

— If the program is non-input driven, as is the case with many report programs,
simple get-next processing presents all the database records in physical
sequential order. The output could then be sorted in the desired order. Also, in
many instances, only certain selected segments are required. So the output
file of the extract can be a fairly small file

— If there are input transactions which would normally be sorted in root key
sequence. This can be readily done with an E61 sort exit routine which
passes each root key to the randomizing module for address calculation and
then sorts on the generated addresses plus the root key instead of the root
key itself

* A secondary index could be built with the root key as index search argument.
The cost of this should be weighed against the cost of sorting as in 2 above. The
secondary index provides full generic key search capability, however. A
secondary index on the root segment should never be used to process the whole
database, as this will cost a lot more 1/Os than to process the database in
physical sequence.

When to Choose HIDAM

Overall, only choose HIDAM if there are requirements to regularly process the
database in root segment key sequence. If there are also requirements for fast
random access to roots (from online systems), look at alternatives for the sequential
access, such as unload/sort or secondary indexes.

HIDAM is the most common type of database organization. It has the advantages of
space usage like HDAM but also keeps the root keys available in sequence. These
days, with the speed of DASD the extra read of the primary index database can be
incurred without much overhead. The most effective way to do this is to specify
specific buffer pools for use by the primary index database, thus reducing the actual
10 to use the index pointer segments.

HIDAM does not need to be monitored as closely as HDAM.

When to Choose PHDAM or PHIDAM

76

The reasons for choosing PHDAM or PHIDAM are the same as described in
to Choose HDAM” on page 75 and ['When to Choose HIDAM.”| The differences are
the size of the data store and some administrative considerations.

You might not need to change any of your application programs when you migrate
HDAM or PHDAM databases to HALDBS, but there might be exceptions.
Exceptions include the initial loading of logically-related databases and the
processing of secondary indexes as databases.

You might also want to change applications to take advantage of some HALDB
capabilities. These capabilities include processing partitions in parallel, processing
individual partitions, and handling unavailable partitions.

Related Reading: For more complete information about HALDBS, see the following
publications:

« [IMS Version 9: Administration Guide: Database Manager|

IMS: An Introduction to IMS

IBM Confidential

* The Complete IMS HALDB Guide All You Need to Know to Manage HALDBs

Applications Suitable for HSAM and HISAM

HISAM is not a very efficient database organization. All HISAM databases can
easily be converted to HIDAM. The application should receive significant
performance improvements as a result. The only situation where HISAM might be
desirable over a HIDAM database is when it is a root-segment-only database.

Even so, segments are not deleted and free space reclaimed after a segment is
deleted until the next database reorganization.

Applications Suitable for Fast Path Databases

The application area that the DEDB was originally designed—the management of
customer accounts in a retail bank—is an ideal candidate for that database
implementation, but it is far from the only one, and some of functions of the DEDB,
notably the virtual storage option (VSO), extend the application areas that you
should consider using a DEDB.

Many users have not realized the dramatic operational and performance benefits
available with DEDBs and have, for various reasons, not familiarized themselves
with that database implementation. In one example, a customer who preferred to
use only DB2 for new databases was convinced to use a DEDB with a saving of
some 65% in the processor requirements for that very large application.

Initially, it might seem daunting to introduce a DEDB to an organization where the
users are unfamiliar with that technology, but practical experience has shown that
user education is really a small, easily contained issue, and the benefits of the
DEDB for well-suited applications, greatly outweigh the additional effort for the
introduction of this type of database.

The examples in the following list are drawn from many industries and show that,
especially with VSO, the DEDB is very effective.

Account database: retail bank
This application exploits the characteristic effectiveness of the sequential
dependent to collect transactions for reprocessing (posting) at the end of
the business day. The low cost of deletion of the sequential dependent
reduces the overheads for very large numbers of transactions. The DEDB
also allows near-continuous operation and portioning of the data to ensure
manageability of the large databases involved.

Access to the account by account number requires only one 1/0O and almost
all processing can be done, with one read I/O and one write 1/0O because
you can practically ignore the 1/Os for the sequential dependents.

One disadvantage is that the DEDB requires all access to the account be
through the account number (because Fast Path does not support
secondary indexes), so a second database is necessary to access the
account record from another key. This would be the credit card database
mentioned below, and so access via the credit card would require one 1/O
to the credit card database and one to the account database.

Credit card database: retail bank
To provide access to an account DEDB from a credit card number, a
cross-reference database is required and must be maintained manually
(unlike a secondary index, which is maintained by IMS). This is usually a

Chapter 7. Choosing the Correct Database Type 77

78

IBM Confidential

root-only database with little data in each segment: primarily the relevant
account number to which the credit card transactions are to be posted, and
the status of the card itself.

Teller control database: retail bank

Teller transaction journals can be readily kept as sequential dependents,
provided they are not usually required for online access. If online access is
necessary, then a direct dependent segment would be more suitable.

Account database: utility company

A utility company (telephone, electricity, gas, or water) requires very similar
processing to that for a retail bank and a similar data structure is very
suitable. All the remarks above for the banking application are relevant,
though there is one interesting difference. In the case of a telephone utility,
there is a need to see a meter database that is similar to a credit card
database for the banking environment.

Meter database: utility company

This database provides a cross reference from a meter identifier to the
account that is to be billed for usage recorded by that meter. Because
meter readings are input and processed in batches that tend to be quite
predictable, then it could be very effective to exploit this predictability: to put
the meter data into areas that correspond to the batches of data that are
processed in one BMP execution and to switch an area into VSO prior to
each batch run and out of VSO afterwards.

Audit and history database

This database illustrates a good use of the sequential dependent segment
type to provide a historical journal of activities. For a non-shared DEDB, the
sequential dependents will be in absolute time sequence, and if the DEDB
is shared, then the segments can be readily sorted into time sequence.

Status report database

This database was designed to hold a few tens of lines of report data for
each of several thousand destinations. Each report was generated daily,
and access was required to each report for typically three days before it
could be purged. Access to the reports was occasional and a high
percentage of the data was accessed either once or not at all.

By using the sequential dependent to store each report, the detail lines of
each report were kept in the same or adjacent Cls (as they were inserted
within one unit of work), so that online access to them was quite efficient.

As each report was generated, a summary was placed in the report
summary segment so that it could be accessed at the same time as the
root segment.

Bet status database: gambling system

IMS: An Introduction to IMS

This database is designed to support an online totalizer system where the
total of all bets placed on a given horse is required to be kept up to date
with very high concurrency, and sometimes there are high transaction rates
against a few records for a relatively short period. Here, the judicious use of
VSO can allow records that are currently active to be held in VSO, while
less active records will stay on DASD. Note that there is an option to
restrict this database to a root-only design, obeying the constraints of the
old main storage database, and thus allowing the use of FLD calls that can
reduce the scope and duration of data locking. This should substantially
increase the level of maximum concurrency that can be achieved.

IBM Confidential

The following sections discuss the different requirements that should be considered
while evaluating whether a DEDB s likely to be the correct database type for a
particular application.

Very Large Databases

The structure of the DEDB was designed to facilitate handling of very large
databases by implementing each database as 1-240 areas (pre-IMS Version 8),
each of which can be as large as 4 GB. This provides an effective mechanism for
processing and managing large databases as multiple units.

As of IMS Version 8, DEDBs can have up to 2048 areas.

The areas are relatively independent of each other — and for batch-style
processing, multiple areas can easily be processed in parallel, which dramatically
reduces run times for such things as overnight update and report runs (executing as
bumps), image copy jobs, and similar tasks that involve processing entire
databases. If the area breakup can be in processing units, then individual areas can
be processed independently. For example, if an area is dedicated to one subsidiary
within a conglomerate business, then the processing for that subsidiary can be
optimized and performed independently of other subsidiaries.

The algorithm by which data records are assigned to area is entirely under the user
control, so data and application requirements can readily exploit the area structures
by using separate areas for groupings of data that have different characteristics
(and so require different space definitions for optimal performance) or are
processed on different schedules. For example, separate areas could be used for
records representing different business units, or different regions for which
processing is done on different cycles.

The high performance characteristics of the DEDB, discussed below, are particularly
important for large databases, as in many instances, the sheer size of a database
may impose a requirement for high performance, particularly in batch or “whole of
database” processing.

High Availability Requirements

The requirement for extended outages for planned maintenance is dramatically
reduced because the implementation of a DEDB is designed so that almost all
maintenance, such as image copying or database reorganization, can be performed
while the database is online. During a database reorganization, only a small part of
the data, one unit of work (UOW), which might typically be a few tens of control
Intervals, is locked at any particular time. Thus, online processing can generally
proceed with minimal impact during a reorganization.

Additionally, the scheduling of a PSB to access the DEDB does not depend on the
availability of all areas, so even when one area is not available for access, say a
database recovery is in progress, then all other areas are accessible and
transaction and BMP scheduling can occur. In one customer’s retail banking DEDB,
20 areas located on 20 separate DASD device were used, so that even if a single
area or the DASD device on which it was located were unavailable, 95% of the data
should still be accessible.

The DL/I programming interface to the DEDB provides for an application that
attempts to accesses data in an area that is currently not available to be given the
same DL/I status code as for an 1/O error, which now generalizes the meaning of
that status code to be: “The data you requested is temporarily not available”. This

Chapter 7. Choosing the Correct Database Type 79

IBM Confidential

can be meaningfully handled by most existing programs. The net result of this is
that, when one area of database is unavailable, processing for other areas can
proceed normally, which is in contrast with an IMS full-function database, where
unavailability of any part of the database precludes all scheduling.

Another availability feature for DEDBs is the ability to have multiple copies of the
VSAM data sets that contain the data for one area. These data sets are called area
data sets (ADS). Installations can create as many as seven copies (multiple area
data sets, MADS) of each ADS, making the data more available to application
programs. Each copy of an ADS contains exactly the same user data. Fast Path
maintains data integrity by keeping identical data in the copies during application
processing.

Highly Active Databases

If the Virtual Storage Option (VSO) of a non-shared DEDB (local to one IMS) is
exploited for one or more areas, then all records in those areas are held in virtual
storage during database processing. Updates are logged for recoverability and
written to DASD periodically in an asychronous process. If the DEDB is participating
in Parallel Sysplex data sharing, then all database updates are written to structure
in the coupling facility to be shared with other IMSs. These mechanisms avoid 1/0
for most database accesses.

Limited Data Lifetime

A user can define that one segment within a DEDB is stored in a form called the
sequential dependent segment. This is managed by IMS in a very different way
from other data segments in the DEDB (where the storage mechanisms are rather
similar to those used in a full-function database). The data entry segment type is
designed to optimize the interim storage and retrieval of data (as the name
suggests) for which only a short lifetime is normal before the data is reprocessed by
some form of batch processing. The sequential dependent data storage mechanism
is therefore ideally suited to data entry style applications where data may be
inserted progressively over a period, is not accessed heavily by online transactions,
and is extracted for reprocessing in bulk at intervals, and deleted in bulk at some
time after that. This suits such applications as the maintenance of an audit trail or
the collection of transactions for batch reprocessing, sometimes involving very high
rates of data insertion into the database.

Extreme Performance Levels

There are several different aspects of the DEDB that are designed to minimize the
number of 1/0Os necessary for data access and update, to minimize the path length
of instructions used for a DEDB activity, and to ensure parallelism between multiple
nearly simultaneous applications. These improve the performance of online and
BMP processing, thus allowing either higher workloads on any given processor, or
reduced processing costs for a given application workload.

This capacity to handle extreme workloads has been amply demonstrated by
various Fast Path benchmarks showing the capability to exceed 11,000 transactions
per second. More recent work has far exceeded even that performance level. Note
that these benchmarks were achieved on processors that are quite small by today’s
standards.

Reduced I/O Usage

The space search and usage algorithms for the root and direct dependent segment
data in a DEDB are markedly simpler than other database implementations, while

80 IMS: An Introduction to IMS

IBM Confidential

CPU Utilization

usually providing good locality of data, thus reducing the number of 1/Os required
for a given process compared to say a full-function database implementation.

If the sequential dependent segment type is used, the total number of 1/0Os required
for insertion of data and deletion is substantially less than for other segment types
for the typical insert-retrieve-delete sequence of processing.

When DEDB database control intervals are written as the result of
add/update/delete calls, the I/Os are asynchronous to the transaction or BMP unit of
work. The 1/Os are done after the sync point is complete — which results in
improved transaction response times, and improved BMP elapsed times.

If the high speed sequential processing (HSSP) functions of the DEDB are
employed, many of the Read 1/Os to access data are also done asychronously,
which can again greatly reduce BMP elapsed times.

DEDB updates are logged in a slightly different manner from full-function database
updates. During each Sync interval (an online transaction or BMP Checkpoint),
changed data is written to the database only after the sync point processing has
committed the changes. There is no requirement for “before” image data to be
logged as would happen for full-function database updates, thus substantially
reducing the volumes of log data and thus reducing the total I/0O workload.

Since the DEDB implementation uses simpler algorithms for most functions than
does full-function implementation, the CPU utilization for similar processing
workloads is typically approximately one half that of full-function. It is also notable
that almost all processing for an online transaction, or for a BMP, takes place under
the TCB of the region processing that transaction or BMP, thus allowing a very high
degree of transaction parallelism.

All the mechanisms mentioned above to reduce 1/0Os have a secondary effect that
the CPU utilization to perform those 1/Os is similarly reduced.

Summary of When to Choose DEDB

The art of knowing when to use a DEDB depends on understanding the differences
between DEDBs and other database types. The following list describes some
reasons and considerations for choosing DEDBs.

Advantages of areas
Most Fast Path commands and utilities operate on an area level, so they do
not affect the whole database at once (unlike a full-function database). For
example, you can recover one area of a DEDB while the rest of it is in use.

Another reason you might want to use areas is to spread the 1/O load
across several devices (and hopefully several physical paths in the system
I/O configuration).

When to use VSO
Use VSO for your most frequently used databases or those for which fast
access is crucial. It is also good for data you update frequently, even if
several applications want to update the same field at the same time. These
considerations also apply to shared VSO.

Chapter 7. Choosing the Correct Database Type 81

82

IBM Confidential

When to use MADS

Use MADS to ensure that I/O errors do not affect a database. Normally two
copies of each area is sufficient, but you can have up to seven copies if
you need to.

Using MADS is costly because you have several copies of the data. There
is also a cost at execution time because IMS has to update several copies
of the database simultaneously. The transactions using the DEDB do not
notice the extra 1/0 because the output threads handle it asynchronously.
You should use MADS only when you can justify the extra DASD cost.

When to use HSSP

Use HSSP for only those programs that conform to its restrictions because
you get better performance.

Consider using the option to let HSSP take an image copy while it is
running. This will save you time if you would normally take an image copy
after your program finishes. HSSP knows not to log updates for a database
it is copying.

When to use SDEPs

IMS: An Introduction to IMS

You would typically use SDEPs when you want to insert data quickly, but do
not need to read it again until later. For example you might want to use
SDEPs to hold audit records describing sensitive actions the user takes.
You would not use SDEPs to hold data for a long time.

IBM Confidential

Chapter 8. Data Sharing

An IMS system includes a set of databases that are potentially available to all the
declared application programs. Access to an individual database is a characteristic
defined in a program’s PSB. Data sharing support makes it possible for application
programs in separate IMSs to have concurrent access to the same set of
databases. To ensure that database changes at the segment level originating from
one program are fully committed before other programs can access that segment’s
data, IMSs use lock management.

IMS systems can share data in a sysplex environment and in a nonsysplex

environment.

» Sysplex data sharing is data sharing between IMS systems on different operating
systems. A coupling facility is used by IRLM to control access to databases.
Related Reading For more information about IMS and running in a sysplex
environment, see [Chapter 30, “Introduction to Parallel Sysplex,” on page 315,

* Nonsysplex data sharing is data sharing between IMS systems on a single
operating system image. A coupling facility can be used, but is not required.

With data sharing, two levels of control are possible:

* With database-level sharing, an entire database is locked while an application
program is making updates. Locking prevents concurrent database access and
scheduling of application programs that might jeopardize database integrity.

» With block-level sharing, you can use a global block-locking scheme to maintain
database integrity during concurrent access of a database. The blocks are locked
instead of the entire database. Multiple application programs can update a
database at the same time if they are updating different blocks.

Some differences exist in support for data sharing configurations. Generally, a
complete database is regarded as a data resource. When invoked within an IMS
online system, or as a batch IMS system, the data resource must be available for
an individual application program to process. The resource is not available if, for
example, a data resource is used exclusively by one IMS, is flagged as needing
recovery, or backup procedures are in process.

For DEDBSs, the data resource is further divided; each individual area is considered
a unit of data resource. When this chapter refers to “database”, it is equivalent to a
DEDB area unless otherwise noted.

Here are some of the restrictions that apply to data sharing:

» Batch IMS support excludes use of MSDBs and DEDBs.

* Only IMS online systems that use Fast Path can share DEDBs.
» Data sharing support excludes MSDBs and GSAM databases.

Related Reading For more information about the concepts of IMS data sharing,
see [IMS Version 9: Administration Guide: System} For information about operating
an IMS data sharing environment, see [IMS Version 9: Operations Guidel

The following sections are covered in this chapter:
“DBRC and Data Sharing” on page 84|
. |“How Applications Share Data” on page 84|

© Copyright IBM Corp. 2004 83

IBM Confidential

DBRC and Data Sharing

Concurrent access to databases by systems in one or more operating systems is
controlled with a common (shared) Database Recovery Control (DBRC) RECON
data set. IMSs perform an automatic sign-on to DBRC, and this action ensures that
DBRC knows which IMSs and utilities are currently participating in shared access.
Subsequently, a system’s eligibility to be authorized for access to a database
depends on the declared degree of sharing permitted and other status indicators in
the RECON data set.

To maintain data integrity, status indicators in the RECON data set control
concurrent access and recovery actions for the databases. This common RECON
data set is required in a data sharing IMSplex because a given database must have
a DMB number that uniquely identifies it to all the sharing subsystems. The DMB
number that DBRC records in its RECON data set is related to the order in which
databases are registered to DBRC. Using multiple RECON data sets can result in
the same DMB number existing in each RECON data set for different databases.
This condition can result in damage to databases.

Databases that are to take part in data sharing must be registered in RECON. Each
registered database has a current status that reflects whether it can take part in
sharing and the scope of the sharing. The concept of scope combines several
ideas:

* The type of access--read or update
* Whether more than one access can occur within the database simultaneously
* Whether an IMS needing access is in the same or a different operating system

Related Reading For more information about DBRC, see [Chapter 26, “Database|
[Recovery Control (DBRC),” on page 263

How Applications Share Data

84

To understand data sharing, you must understand how applications and IMSs share
data.

The processing options for an application program are declared in the PSB and
express the intent of the program regarding data access and alteration. They are
specified with the PROCOPT keyword as part of the group of statements that make
up the PCB for a particular database access. The PCB declaration implies a
processing intent.

If the application program is to insert, delete, replace, or perform a combination of
these actions, the application program is said to have update access. An online
program having exclusive access, specified as PROCOPT=E, is interpreted as
having update access.

Programs that need access to a database but do not update the data can do so in
two ways. They can access the data with the assurance that any pending changes
have been committed by the program that instigated the change; this is termed read
access (PROCOPT=G). Alternatively, they can read uncommitted data, if the
program does not specify protection of data status. This is termed read-only access
(PROCOPT=GO).

Related Reading For more information about PROCOPT values, see [[MS Version
9: Utilities Reference: System|

IMS: An Introduction to IMS

IBM Confidential

Chapter 9. The Database Reorganization Process

In this chapter, we provide an overview of the database reorganization tasks that
will need to be performed by the IMS database administrator function. We start with
general background information regarding IMS database reorganization, then look in
more detail at reorganizing HD databases.

As of IMS Version 9, you can reorganize HALDB databases without taking them
offline. For more information, see [‘Online Reorganization” on page 97|

Specifically, this chapter:

* Introduces the function of database reorganization in an IMS environment. It is a
first-time general introduction into the requirements for, and the process of, IMS
database reorganization.

» Gives a formal description of the available IMS utilities for reorganizing HD
databases.

* Introduces the use of the utilities for particular situations. It describes what needs
to be run to reorganize an HD database with and without logical relationships or
secondary indexes. It also looks at partial reorganization of HD databases.

* Finally, there is a short discussion on initial loading of databases with logical
relationships and secondary indexes, because this also requires the
reorganization utilities to build the logical relationships and secondary indexes

The following sections are covered in this chapter:

« [“Purpose of Reorganization’]

+ [“When to Reorganize” on page 86|

+ [‘Overview of the Reorganization Process” on page 88
+ [‘Reorganization Utilities” on page 99

Purpose of Reorganization

Reorganization is the process of changing the physical storage and/or structure of a
database to better achieve the application’s performance requirements. We
distinguish between the following two types: physical reorganization, to optimize the
physical storage of the database; and restructuring, to alter the database structure.

The most common reasons a database will need reorganizing are:

» To reclaim and consolidate free space that has become fragmented due to
repeated insertion and deletion of segments

» To optimize the physical storage of the database segments for maximum
performance (get dependent segments that are in distant blocks, increasing
physical 1/0, back in the same block as the parent and/or root). This situation is
normally the result of high update activity on the database

» To alter the structure of the database, change the size of the database data sets,
alter the HDAM root addressable area, add or delete segment types

The first two reasons would be described as reorganization, the last one as
restructuring. The need for reorganization is always due to change, either setting up
a new database, amending the structure of the database as application
requirements change, or as a result of update activity against the database. If you
do not update a database, then once you have gotten it to an optimum state for
performance, there is no further need to reorganize it.

© Copyright IBM Corp. 2004 85

IBM Confidential

Reorganizing and restructuring the databases is only part of the process of tuning
and monitoring access to IMS databases. There are also many things that can be
done to tune the database manager component in the IMS subsystem and the
applications accessing of the databases. This is covered in detail in chapters 11 and
12 of the ITSO publication IMS Version 5 Performance Guide.

When to Reorganize

86

There are no fixed rules about when to reorganize. There are two approaches to
deciding when to reorganize, reactive and proactive. You will probably do a mixture
of both. When you initially install the application and set up the databases, a lot of
the reorganization will be done reactively, as performance and space problems
manifest themselves (while you can reduce this by careful analysis of the databases
and application access to them, there will normally be things that only come to light
after implementation). As you develop a history of the behavior of the application
and the databases, the scheduling of reorganization should become more proactive.

Reactive scheduling of reorganization will normally be a result of perceived
problems with the performance of the application, or problems with shortage of
freespace in the database.

Where there are perceived application performance problems, you need to monitor
closely what the application is doing. The initial thing to look at is, what the average
and maximum online response times and batch run times are. Are they excessive
for the amount of work the application is doing? The ITSO publication IMS Version
5 Performance Guide, SG24-4637 covers in great detail monitoring and
investigating performance of IMS application and subsystems. If there are
performance problems, then go through the process described in the document to
monitor the performance and identify where the problems are.

Only once you have gone through the procedures detailed in this document and
identified potential problems with the databases should you start to look at
reorganizing the database. Do not look only at the total time that the application
program takes for database processing, but also look at the amount of database
calls it is processing. For example, if an online application is taking 10 seconds for
database processing, but is reading 3-4000 database segments, then there may be
little room for database tuning. However, you may want to look more closely at why
(and whether) the application really needs to read all these segments. The solution
to performance problems is normally an interactive process involving the database
administrator, application support function, and the operating system support
function, as all three control areas that affect performance.

When you encounter problems due to shortage of space in database data sets,
there is little you can do but schedule a database reorganization to increase the
database size. However, you should then pursue the growth rate with the
application support function (this is where it is useful to have a history of the volume
of the application data stored in the database over time). Questions to ask are
whether growth will continue at the current rate, or at a different rate, and whether
this data all needs to be online. Remember there are finite architectural limits to the
size of the databases which vary depending on the IMS and operating system
access methods.

The proactive approach to scheduling database reorganization relies on regular
monitoring of the databases. Some products for monitoring the databases are
covered in more detail in [‘Monitoring the Database” on page 88/ In addition, you
should maintain a history of the monitoring information you collect, so you can

IMS: An Introduction to IMS

IBM Confidential

analyze this for trends and schedule database reorganization and restructuring
before any problems occur. When you decide to make a change to a database, only
change one thing at a time, if possible, and then monitor application performance
before and after the change so you can see what effect this one change had.

The main things you will be doing when you look at the monitoring data will be to
try to minimize the physical I/O for each database access, and optimize the free
space available in the database so it is not excessive, but sufficient for normal
update access on the databases.

The physical 1/0 from the disk storage into the buffers in the IMS subsystem is the

major component of the elapsed time for database access. You will want to

minimize this by:

» Making the best use of buffers in the IMS subsystem; the more requests for
database access you satisfy from the buffers, the fewer physical 1/0s are
necessary. This is covered in the IMS Version 5 Performance Guide, SG24-4637

* Minimizing the number of physical I/Os when a segment does have to be
retrieved from disk. For example, trying to place as many dependents as possible
in the same block/ClI as its parent, ensuring HDAM root segments are in the
same block/Cl as the RAP. This is where database reorganization and
restructuring is used

While there are no fixed guidelines for when to reorganize an IMS database, the
following guidelines were used successfully with a medium-sized commercial
application using IMS HD databases stored in VSAM files. You may wish to use
them as a starting point for scheduling database reorganization and, when you have
monitored the effects of the reorganization, adjust these parameters accordingly.

HD databases (HDAM and HIDAM) in general

* Less than 50% of database records have all segments making up the
record (root and dependents) in the same block/Cl

» Limit your freespace to less than 20%. You way want to increase this
limit if you have volatile data or infrequent windows for reorganization

HDAM databases only

* Put less than 75% of root segments in the root addressable area (RAA).
Recalculate the RAA (as described in [Chapter 6, “Implementing the IMS|
[Database Model,” on page 51). Reorganize the database if calculation of
RAA showed it needed to be larger, then restructure at same time.

» Less than 50% of root anchor points (RAPS) point to root segments in
the same block/ClI. That is, the RAP points to a root that has been placed
in another block/Cl because there is not room in this block/Cl. This
causes two 1/0s, one to the RAP block, and one to the block that the
root is in, instead of one /0.

VSAM or OSAM file
Put the file in secondary extents. You may wish to resize the file, if this is
caused by growth.

VSAM KSDS
* When your VSAM KSDS (index) has CA splits or more than 15 CI splits.

* When your VSAM KSDS (index) has less than 20% free space (as IMS
manages freespace in VSAM ESDS, this only applies to a KSDS)

For DEDB databases, reorganize when there are lots of database segments in the
independent overflow (IOVF) portion of the DEDB area.

Chapter 9. The Database Reorganization Process 87

IBM Confidential

Monitoring the Database

Monitor your databases in order to determine when they might need reorganizing.

The database monitoring divides in to two categories. Monitoring program and
subsystem access to the databases, and monitoring the structure, space usage and
pointer chains in the actual database data sets.

The principle tools provided by IMS that are used to monitor database access are:

* The IMS monitor, to gather details of buffer usage and database calls over a
specified time period in an IMS subsystem.

* The //DFSSTAT DD statement, used in batch JCL to provide a summary of buffer
usage and database calls. As there is very little overhead in including this
statement (the details printed to the DD at region termination are accumulated by
the IMS region controller whether they are output or not), it is normally
worthwhile putting this in all batch jobs.

* Running the DB monitor on a batch job, to collect similar details to the IMS
monitor in an online system. As there is an overhead on running this, it would
normally only be turned on when specific problems are being investigated

Related Reading: There are a number of products available to let you monitor the
databases and the data sets in which they are stored. For more information about
these products, click on the “IMS Tools” link on the IMS Web site at
www.ibm.com/ims. For information about monitoring program access to the
database, see IMS Performance Guide.

Overview of the Reorganization Process

The database reorganization process can vary from very simple to very complex,
depending on the databases involved. If the databases involved do not have IMS
logical relationships or secondary indexes, then the process is very simple. When
logical relationships and secondary indexes are involved the process becomes
more involved.

There are three types of reorganization:

« [‘Offline Reorganization’|

« ['Online Reorganization” on page 97|

« [‘Fast Path Reorganization” on page 97|

Offline Reorganization

88

The offline process, in its simplest form, is to unload the database, delete and
redefine the physical data set, and then reload it. If the database is not involved in
any logical relationships and does not have any secondary indexes, then that is the
complete process. Database reorganization of HD databases would normally take
the following steps if both logical relationships and secondary indexes are involved:

1. Back up the databases (both the data and, if you are changing them, the
appropriate control blocks, for example, DBDSSs) so you have a fallback point if
there are any problems during the reorganization. See|Chapter 10, “The|
|Database Recovery Process,” on page 101| for more information.

2. Unload the existing database data sets to sequential files using the IMS utilities.
The process in discussed in [‘Database Unload Process” on page 89.|

3. Delete the database data sets. If you are making any changes to the definitions
of the database data sets, make them now, remembering to save the old
definitions as a fallback.

IMS: An Introduction to IMS

IBM Confidential

Redefine the database data sets.

This step is only necessary if you are making any changes to the database
structure by altering the DBD. Make the changes to the DBD and reassemble it
by running the DBDGEN utility. Then run the ACBGEN utility with DBD=
parameter to ensure all appropriate control blocks are regenerated. It cannot be
overemphasized that you must make sure all programs/utilities use the new
versions of the control blocks if you change the DBD; otherwise, database
corruption will result.

Run the IMS utilities to reload the database. If you have altered the DBD, the
utility, and any subsequent programs/utilities, should use the new DBD.

If the database has secondary indexes, or participates in logical relationships,
then you will need to run additional utilities to rebuild these connections. These
connections (unless using symbolic pointers) rely on the database segments
relative position in the database, which has been altered by the reorganization.
The utilities will determine the new positions and amend the direct pointers in
the indexes and logically related databases.

If your databases are registered with DBRC (and they should be registered),
then you will need to take an image copy of the reorganized databases. This is
for the same reason as above. IMS database forward recovery, using changes
recorded in IMS logs, relies on the position of the segments relative to the start
of the data set, which is altered by the reorganization. You need to take the
image copies to establish a new base from which the databases can be rolled
forward.

Database Unload Process

The unload processing for HD databases is very simple. The HD unload utility will
unload the main database and the primary index data set if the database is HIDAM.
The output of the utility is a sequential data set which is input to the HD reload
utility. If the database is a HIDAM database, then the primary index database must
also be present. The utility can only unload a single database at a time. If there are
logically related databases which are to be reorganized at the same time then the
step should be executed once for each database. [Figure 23] shows a diagram of the
utility.

DB DBLIB
DB Unload RECON
(DFSURGUO0) Data Sets

|

Unloaded Databases

Figure 23. Database Unload Processing

Chapter 9. The Database Reorganization Process 89

90

IBM Confidential

There are some considerations to be kept in mind when planning for the unload
process:

* IBM highly recommends that you make an image copy of the database before
attempting to reorganize it.

* The database is allocated by the DD name(s) in the DBD. Dynamic allocation
cannot be used; the database DD card(s) must be present.

» If a HIDAM database is being unloaded, the primary index database DD
statement must also be present.

» The utility will check with DBRC for database registration. If the database is
registered, then the utility will request RD access authorization. It will be allowed
to authorize the database even if the PROHIBIT AUTH flag is set on.

» If the database is being reorganized to change the structure of the database,
then the old DBD definition should be used.

* Regardless of how many database data set groups the database is divided into,
there is only one output data set.

» The reload utility can only unload one database per job step. To unload multiple
databases, you must use multiple job steps.

Defining Databases

If the access method used for the database is VSAM, then an IDCAMS job step is
required to delete and redefine the VSAM cluster. The reload utility will fail if the
data sets are not empty. If OSAM is used, the a DISP=0OLD can be used to
overwrite the data set. However, if the database is on more than a single DASD
volume, IBM highly recommends that you delete the data set and redefine it
(IEFBR14) to ensure that the correct end-of-file marker is placed.

Database Reload Process

The reload processing can be more complex then the unload processing. If the
database is does not have any secondary indexes and is not involved in a logical
relationship, then the database can simply be reloaded.

The reloading of the database itself is the same. However, there are additional
utility programs that need to be run before and after the database is reorganized to
rebuild logical relationships and secondary indexes so they reflect the new physical
positions of the segments in the reorganized database. Until all this processing is
complete, the logical relationships and secondary indexes are not usable. If you
attempt to use them before completing this process, the applications will fail with
IMS abend codes indicating that there are invalid IMS pointers.

The following sections discuss each combination of reload processing required.
They are:

« [Reload Only’1

* [‘Reload With Secondary Indexes” on page 9]1

+ |'‘Reload With Logical Relationships” on page 93]

* ['Reload With Logical Relationships and Secondary indexes” on page 94|

Reload Only: The reload processing for a HD database without any logical
relationships or secondary indexes is shown in |Figure 24 on page 91,

IMS: An Introduction to IMS

IBM Confidential

Unloaded

Database DBLIB
DB Reload RECON
(DFSURGLO) Data Sets
Database

Figure 24. Overview of Database Reload Only Process

There are some considerations to be kept in mind:

* The database is allocated by the DD name(s) in the DBD. Dynamic allocation
cannot be used; the database DD statement(s) must be present.

» If a HIDAM database is being reloaded, the primary index database DD card
must also be present.

» The utility will check with DBRC for database registration. If the database is
registered, then the utility will request EX access authorization. It will be allowed
to authorize the database even if the PROHIBIT AUTH flag is set on.

» If the database is being reorganized to change the structure of the database,
then the new DBD definition should be used.

* Regardless of how many database data set groups the database is divided into,
there is only one input data set.

* The reload utility can only reload one database per job step. To reload multiple
databases you must use multiple job steps.

* The DFSURWF1 DD statement can be specified as DUMMY.

Reload With Secondary Indexes: The reload processing for an HD database but
with secondary indexes requires the use of the prereorganization utility. It is used to
define which databases are involved in the secondary index relationship. A control
file is created with this information and passed to the subsequent utilities.

The HISAM unload utility will read the DFSURIDX data set which contains the
unload secondary index segments and creates load files for each secondary index.
The secondary index database themselves can be empty.

The HISAM reload utility can reload all the secondary index database unloaded by
the HISAM unload utility in one JOB step. [Figure 25 on page 92| illustrates the
reload process when secondary indexes are involved.

Chapter 9. The Database Reorganization Process 91

IBM Confidential

Prereorg
DBLB | (DFSURPRO)
v !
Unloaded DFSUINPT | DB Reload [RECON
Databases i (DFSURGLO) Data Sets
DFSURGUT DFSURWF1

Databases

A 4

Prefix Resolution

(DFSURG10)
DFSURIDX
A 4
Empty Secondary | —— .| Unload Secondary Index
Index Databases " (DFSURULDO)
— =
DBLIB Unloaded Index
~ Databases
w\ |
Reload Secondary Index
(DFSURRLDO)
Secondary RECON
Index Databases Data Sets

Figure 25. Overview of Reload Processing With Secondary indexes

There are some considerations to be kept in mind:

* The database is allocated by the DD name(s) in the DBD. Dynamic allocation
cannot be used, the database DD statement(s) must be present.

» If a HIDAM database is being reloaded, the primary index database DD card
must also be present.

» The utility will check with DBRC for database registration. If the database is
registered, then the utility will request EX access authorization. It will be allowed
to authorize the database even if the PROHIBIT AUTH flag is set on.

92 IMS: An Introduction to IMS

IBM Confidential

» If the database is being reorganized to change the structure of the database,
then the new DBD definition should be used.

* Regardless of how many database data set groups the database is divided into,
there is only one input data set.

* The reload utility can only reload one database per job step. To reload multiple
databases, you must use multiple job steps.

* The DFSURWF1 DD statement can be specified as DUMMY, but it must be
present.

Reload With Logical Relationships: The reload processing for a HD database
but with logical relationships requires the use of the prereorganization utility. It is
used to define which databases are involved in the logical relationship. A control file
is created with this information and passed to the subsequent utilities. If all the
databases logically related to each other are being reloaded then the DBIL option
on the control card should be used. These will reset all the pointers and logical
parent counters. If not then the DBR option should be used.

All databases involved in the logical relationships should normally be reloaded. The
DFSURWF1 work files from all steps should be passed to the prefix update utility
as illustrated in |[Figure 26 on page 94 The HISAM unload utility will read the
DFSURIDX data set, which contains the unload secondary index segments and
creates load files for each secondary index. The secondary index database
themselves can be empty.

The prefix resolution utility will extract the RBAs from the required segments and
sort them. This file will be passed the prefix update utility to update the database
segment prefixes.

Chapter 9. The Database Reorganization Process 93

IBM Confidential

Prereorg
DBLB | K (DFSURPRO)
v !
Unloaded DFSUINPT | DB Reload [RECON
Databases i (DFSURGLO) Data Sets
DFSURGU1 DFSURWF1

Databases

A 4

Prefix Resolution
(DFSURG10)

DFSURWF3

A 4
RECON [Prefix Update
Data Sets (DFSURGPO0)
Databases DBDLIB

Figure 26. Overview of Database Reload Process When Logical Relationships Exist

There are some considerations to be kept in mind:

* The database is allocated by the DD name(s) in the DBD. Dynamic allocation
cannot be used, the database DD statement(s) must be present.

» If a HIDAM database is being reloaded, the primary index database DD card
must also be present.

» The utility will check with DBRC for database registration. If the database is
registered then the utility will request EX access authorization. It will be allowed
to authorize the database even if the PROHIBIT AUTH flag is set on.

» If the database is being reorganized to change the structure of the database,
then the new DBD definition should be used.

* The reload utility can only reload one database per job step. To reload multiple
databases, you must use multiple job steps.

* The DFSURWF1 DD statement must be present.
» The prefix update utility will acquire EX access to the databases being updated.
* The IMAGE COPY NEEDED flag will be set on by the reload utility.

Reload With Logical Relationships and Secondary indexes: The reload
processing for both secondary indexes and logical relationships is a combination of

94 IMS: An Introduction to IMS

IBM Confidential

both the individual reload processes described in [‘Reload Only” on page 90

‘Reload With Secondary Indexes” on page 91) and [‘Reload With Logicall

Relationships” on page 93,

The reload processing for a HD database but with secondary indexes and logical
relationships requires the use of the prereorganization utility. It is used to define
which databases are involved in the relationships. A control file is created with this
information and passed to the subsequent utilities.

The prefix resolution utility will extract the RBAs from the required segments and
sort them. This file will be passed the prefix update utility to update the database
segment prefixes. It will also create a file with the secondary index information to be
passed the HISAM unload utility.

The HISAM unload utility will read the DFSURIDX data set which contains the
unload secondary index segments and creates load files for each secondary index.
The secondary index database themselves can be empty.

The HISAM reload utility can reload all the secondary index database unloaded by
the HISAM unload utility in one JOB step. [Figure 27 on page 96/ illustrates the
reload process.

Chapter 9. The Database Reorganization Process 95

IBM Confidential

Prereorg
DBLIB > (DFSURPRO)

Databases L (DFSURGLO0) Data Sets

v 1
Unloaded Ej DFSUINPT | DB Reload ’ EjRECON

DFSURGU1 DFSURWF1

Y
Databases L

v DFSURIDX
Prefix Resolution R
(DFSURG10) T

DFSURWF3

v
RECON { Prefix Update
Data Sets (DFSURGPO)

!
Databases |_ DBDLIB
D v
Empty Secondary | —— ,| Unload Secondary Index |,
Index Databases " (DFSURULO)
C)/ Unloaded Index
DBDLIB Datasets
A4
Reload Secondary Index
(DFSURRLDO)
Secondary Index RECON
Databases Data Sets

Figure 27. Overview of the Database Reload Process When Secondary Indexes and Logical Relationships Exist

There are some considerations to be kept in mind:

96 IMS: An Introduction to IMS

IBM Confidential

* The database is allocated by the DD name(s) in the DBD. Dynamic allocation
cannot be used, the database DD statement(s) must be present.

» If a HIDAM database is being reloaded, the primary index database DD card
must also be present.

» The utility will check with DBRC for database registration. If the database is
registered then the utility will request EX access authorization. It will be allowed
to authorize the database even if the PROHIBIT AUTH flag is set on.

 If the database is being reorganized to change the structure of the database,
then the new DBD definition should be used

* The reload utility can only reload one database per job step. To reload multiple
databases you must use multiple job steps.

* The DFSURWF1 DD statement must be present.
» The prefix update utility will acquire EX access to the databases being updated.
* The IMAGE COPY NEEDED flag will be set on by the reload utility.

Fast Path Reorganization

The process for reorganizing a Fast Path DEDB can be appreciably different.

If you are only reorganizing to reclaim fragmented free space and/or get the best
placement of the segments for performance (that is, DBD/data set definitions not
being changed), then you can run the high speed DEDB direct reorganization utility
DBFUHDRO. This can be run without making the database unavailable (that is, no
service outage). See [MS Version 9: Utilities Reference: Database and Transaction|
for further details.

If you are reorganizing a DEDB to alter the structure, then you need to have your
own user-written programs to unload and reload the database data set at the
appropriate points, or use the DEDB unload/reload utility programs from the
separately priced IMS Database Tools (DBT) V2, 5685-093. You also need to run
the DEDB initialization utility, provided with the IMS base product, immediately prior
to reloading the database. However, as the DEDB does not support secondary
indexes and logical relationships, you do not have to worry about running further
utilities after the database is reloaded.

More information about the database reorganization process, and what steps you
have to take to alter specific attributes of the structure of the database are in the
chapter on monitoring and tuning the databases in [[MS Version 9: Administration|
(Guide: Database Manager}

Online Reorganization

With offline reorganization, the database is unavailable during the reorganization
process. With online reorganization, which is available only for HALDB databases,
most of the database remains available for updates during the reorganization
process.

The HALDB Online Reorganization function provides non-disruptive reorganization
of HALDB PHDAM and PHIDAM partitions. Online Reorganization reduces the
planned data outage time, which is the largest amount of time that data is generally
unavailable.

The online reorganization of a HALDB PHDAM or PHIDAM partition, upon
command initiation, will run in the DLISAS address space. The dual data set,

Chapter 9. The Database Reorganization Process 97

98

IBM Confidential

cursor-based, reorganization function is performed non-disruptively. That is,
concurrent IMS updates are allowed while small amounts of data are moved and
reorganized.

Online reorganization has extended the data definition and data set naming
convention established for HALDB. Multiple data set groups in a HALDB database
use the characters A-through-J in the DDNAMESs and data set names of the
supported ten data set groups, and the primary index for a PHIDAM database uses
the character X in these names. This has been expanded by implementing the
characters M-through-V and Y for an alternate (or paired) set of data sets.

Before online reorganization starts, there is a single active set of data sets for the
HALDB partition: either the A-through-J and X set, or the M-through-V and Y set.
The data sets in the other (inactive) set contain no useful information and one or
more of these data sets need not even exist before the reorganization is started.

Ownership of the online reorganization is established during initialization and is
recorded in the partition database record in the RECON data set. After ownership of
an online reorganization is established, no other IMS subsystems are allowed to
obtain ownership. Ownership can be released by this IMS prior to the end of
initialization or prior to the completion of the online reorganization; then another IMS
can obtain ownership and finish the online reorganization.

When the entire initialization process (including the validation or possible automatic
creation of the output data sets) is complete, the active set of data sets is treated
as the input set, and the inactive set becomes the output set. At the end of this
initialization process, the online reorganization of the HALDB partition is recorded in
the RECON data set with line (ONLINE REORG ACTIVE=YES) that shows a
cursor-active status.

When the cursor-active status is recorded, and until this reorganization completes
or until a batch reorganization reload is done, the HALDB partition is comprised of
both the A-through-J and X set of data sets and the M-through-V and Y set of data
sets. During this time, the HALDB partition cannot be accessed unless both sets of
data sets are physically available. Database records are then copied from the input
to the output data sets in multiple units of reorganization. During the reorganization,
IMS application programs can make database changes to the parts of the input
data sets that have not yet been copied to the output data sets and to parts of the
output data sets to which data have already been copied.

[Figure 28 on page 99|illustrates the conceptual relationship between the database
records in the input and output data sets at a point during the reorganization.

IMS: An Introduction to IMS

IBM Confidential

Cursor
A4
Input Database records that have DLc:clged Database records yet to
Data Sets been copied to the output Raeio?dsse be copied to the output

Output Database records that have
Data Sets been copied from the input

Figure 28. Relationship Between DB Records in the Input and Output Data Sets at a Point
During Reorganization

Related Reading: For complete information about HALDB Online Reorganization,
see the IMS Version 9: HALDB Online Reorganization Guide and Reference]

Reorganization Utilities

The IMS utilities available for database reorganization are described in |IMS Versior-‘]

9: Administration Guide: Database Manager| and [MS Version 9: Utilities Reference]]

Database and Transaction Manager| The following sections briefly describe these

utilities.

The reorganization utilities can be classified into three groups, based on the type of
reorganization you plan to perform:

« [‘Partial Reorganization”|
« ['‘Reorganization Using the Utility Control Facility” on page 100
« [‘Reorganization Without the Utility Control Facility” on page 100

Partial Reorganization

If you are reorganizing an HD database, you can reorganize parts of it rather than
the whole database. You would need to reorganize parts, rather than all of it, for
two reasons:

* Only parts of it need to be reorganized.

* By reorganizing only parts of it, you can break the amount of time it takes to do a
total reorganization into smaller pieces.

The utilities that perform a partial reorganization are:

* The Database Surveyor utility, which helps you determine which parts of your
database to reorganize.

* The Partial Database Reorganization utility, which does the actual reorganization.

Note: The Partial Reorganization, Prefix Resolution and Prefix Update utilities do
not apply to HALDBS.

Chapter 9. The Database Reorganization Process 99

IBM Confidential

Reorganization Using the Utility Control Facility

Reorganization can be done using a single program, called the Utility Control
Facility (UCF), or by using various combinations of utilities. When UCF is used, it
acts as a controller, determining which of the various reorganization utilities needs
to be run and then running them. UCF:

* Reduces the number of JCL statements you must create.

* Eliminates the need to sequence the running of the various utilities.
» Allows you to stop and then later restart a job.

* Reduces the number of decisions operations people must make.

Note: The only reorganization utilities that cannot be run under the control of UCF
are the Database Surveyor utility and the Partial Database Reorganization utility.
Also, UCF does not support HALDBS.

Reorganization Without the Utility Control Facility

100

When you do not use UCF, reorganization of the database is done using a
combination of utilities. Which utilities you need to use, and how many, depends on
the type of database and whether it uses logical relationships or secondary indexes.

If your database does not use logical relationships or secondary indexes, you

simply run the appropriate unload and reload utilities, which are as follows:

» For HISAM databases, the HISAM Reorganization Unload utility and the HISAM
Reorganization Reload utility

» For HIDAM index databases (if reorganized separately from the HIDAM
database), the HISAM Reorganization Unload utility and the HISAM
Reorganization Reload utility

* For SHISAM, HDAM, and HIDAM databases, the HD Reorganization Unload
utility and the HD Reorganization Reload utility

If your database does use logical relationships or secondary indexes, you need to
run the HD Reorganization Unload and Reload utilities (even if it is a HISAM
database). In addition, you must run a variety of other utilities to collect, sort, and
restore pointer information from a segment’s prefix. Remember, when a database is
reorganized, the location of segments changes. If logical relationships or secondary
indexes are used, update prefixes to reflect new segment locations. The various
utilities involved in updating segment prefixes are:

» Database Prereorganization utility
» Database Scan utility

» Database Prefix Resolution utility
» Database Prefix Update utility

IMS: An Introduction to IMS

IBM Confidential

Chapter 10. The Database Recovery Process

The following sections provide an overview of the backup and recovery tasks that
are part of administering IMS databases. They give a general background on IMS
database backup and recovery concepts and then discuss additional details of the
processes involved.

This chapter discusses:

 ['When Recovery is Needed’|

« [‘Overview of the Database Recovery Process’|

« ['IMS Backup and Recovery Utilities” on page 102

When Recovery is Needed

Database recovery is normally on done when there has been a failure of some sort.
Most of the time it is done as a result of a system, hardware, or application failure.
However, it can be used to return a database to a point-in-time to recover out of
application logic failures.

In general, a database may need to be recovered under the following
circumstances:

* A DLI batch update job fails after making at least one database update.

» A failure has occurred on a physical DASD device.

» A failure has occurred in a database recovery utility.

» A failure of dynamic backout or batch backout utility has occurred.

* An IMS online system failure and emergency restart has not been completed.

Overview of the Database Recovery Process

Database recovery, in its simplest form, is the restoration of a database after its
(partial) destruction due to some failure. In order to facilitate this process, some
forward planning needs to be done.

Periodically, a copy of the data in the database is saved. This copy is hormally
referred to as a backup or image copy. These image copies can reside on DASD or
cartridges. Though this process can be done anytime, it is normally done when
there is no other database activity at the same time. This creates a complete
backup. There are other strategies for taking a database backup, but they will not
be discussed in this book.

In addition to taking an image copy of the database(s), all changes made to the
data in the database can be logged and saved, at least until the next image copy.
These changes are contained in data sets called log data sets. This provides a
complete recovery environment so that no data is lost in the event of a system or
application failure.

There is an IMS facility called database recovery control (DBRC) that provides
database integrity and can be used to help ensure that there is always a recovery
process available. Using DBRC to control database backup and recovery is not
mandatory, but is highly recommended.

© Copyright IBM Corp. 2004 101

IBM Confidential

Related Reading: For more information about DBRC, see [Chapter 26, “Database]
[Recovery Control (DBRC),” on page 263

The following sections discuss other aspects of the recovery process:
* |[“Online Programs and Recovery”|
» |"'DL/I Batch Programs and Recovery”l

Online Programs and Recovery

IMS online transactions use dynamic backout to “undo” updates done in any
incomplete unit of work. Abending online programs are automatically backed out by
the online system using the log records. In addition, if the system should fail while
an application program is active, any updates made by that program will be
automatically backed out when the system is restarted.

If the program was a BMP, the updates are automatically backed out to its most
recent checkpoint. Because of this automatic backout, the recovery of individual
databases will not be needed.

At IMS restart time, if the emergency restart cannot complete the backout for any
individual transactions, then the databases affect by those updates are stopped,
and DBRC is requested to set the recovery needed flag to ensure that a correct
recovery is completed before the database is opened for more updates. In the case
of dynamic backout failure, a batch backout or database recovery needs to be
performed, depending on the reason for the backout failure.

DL/I Batch Programs and Recovery

DLI Batch update programs can make use of dynamic backout like BMP, provided
the following JCL changes are done:

* The BKO=Y parameter is set in the EXEC statement
* A DASD log data set is provided in the IEFRDER DD statement
* A ROLB Call is issued in the program code for non-system abends

The dynamic backout will then back out the updates to the last checkpoint found on
the log data set.

IMS Backup and Recovery Utilities

102

IMS provides utilities for recovering a database. They are:

[' Database Image Copy Utility” on page 104|
The Database Image Copy utility is used to create image copies of
databases.

[Database Image Copy 2 Utility” on page 105
The Database Image Copy 2 utility is used to take image copies of IMS
databases by using the concurrent copy function of the Data Facility
Storage Management Subsystem (DFSMS).

Online Database Image Copy Utility
The Online Database Image Copy utility is used to create an as-is image
copy of the database while it is being updated by the online system.

|" Database Change Accumulation Utility” on page 106
The Database change accumulation utility is used to accumulate database
changes from DL/I log tapes since the last complete image copy.

IMS: An Introduction to IMS

IBM Confidential

{' Database Recovery Utility” on page 107|
The Database recovery utility is used to restore the database, using a prior
database image copy and the accumulated changes from DL/l log tapes.

[' Database Batch Backout Utility” on page 108|
The Database backout utility is used to remove changes made to
databases by a specific application program.

Another utility program, the system log recovery utility (DFSULTRO), is used to
close a log data set in the event of an operating system or hardware failure, thus
enabling use of the log by the four principal programs of the recovery system.

For those databases which consist of multiple data sets, recovery is done by
individual data set. To recover a complete database composed of multiple data sets,
database recovery must be performed for each of its component data sets.

Figure 29|illustrates the relationship between the backup and recovery utilities.

v
Online DLI Batch
Databases Archive Update
Utility Program
| Image Copy Online
Utility F SLDS/RLDS F Batch RLDS
Data Sets
Data Sets
"""""""""""""""""""""""""""""" Batch
i1—» Backout
Image Copy F Utility
Data Sets . 3
Change
Accumulation
Utility !
| p— Old CA i
Data Set |
Recovery ¢ :
Utility -
New CA
Data Set
Updated F
Databases <

»

RECON
Data Sets

Figure 29. Overview of the Recovery Utilities

103

Chapter 10. The Database Recovery Process

IBM Confidential

Database Image Copy Utility

The database image copy utility (DFSUDMPO) creates a copy of the data sets
within the databases. the output data sets is called an IMAGE COPY. It is a
sequential data set and can only be used as input to the database Recovery utility.
The IMAGE copy utility does not use DLI to process the database. Track 1/O is
used. There is no internal checking to determine if all the IMS internal pointer are
correct. There are tools available to run as part of the image copy utility to do this
checking. IBM recommends that at least periodic checking of these internal pointers
is done.

There can be no changes to the DBD when this databases is recovered using the
IMS recovery utility. In order to make changes to the DBD, a database
reorganization is needed to implement those changes.

Multiple databases and data sets can be copied with one execution of the image
copy utility. All data sets of a database should be copied at the same time. In our
subset, we presume that all database data sets are dumped at the same time, that
is, no intervening database processing.

The Database Recovery Control (DBRC) function of IMS can be used to generate
the JCL to run this utility if required.

Related Reading: For more information about DBRC, see [Chapter 26, “Database]
[Recovery Control (DBRC),” on page 263

A flow diagram of the database image copy utility is shown in[Figure 30|

Databases

DBDLIB

Image Copy RECON
(DFSUDMPO) Data Sets

Y. Image Copy
Ej Data Sets

Figure 30. Inputs and Outputs for the Image Copy Utility

104 MS: An Introduction to IMS

IBM Confidential

Database Image Copy 2 Utility

The Database Image Copy 2 utility (DFSUDMTO) is very similar to the Database
Image Copy utility (DFSUDMPQ). DFSUDMTO has several advantages, however, in
that it can take image copies with databases being unavailable for a very short
time. The Database Image Copy 2 can also take fuzzy KSDS copies, something
that Batch Image Copy cannot do.

The Database Image Copy 2 utility takes image copies of IMS databases by using
the concurrent copy function of the Data Facility Storage Management Subsystem
(DFSMS).

The concurrent copy function of DFSMS is a hardware and software solution that
allows you to back up a database or any collection of data at a point in time and
with minimum down time for the database. The database is unavailable only long
enough for DFSMS to initialize a concurrent copy session for the data, which is a
very small fraction of the time that the complete backup will take.

Related Reading: For more information on DFSMS, see DFSMS V1R5 DFSMSdss
Storage Administration Guide, or DFSMS V1R5 DFSMSdss Storage Administration
Reference.

The functional differences between the two image copy utilities are:

* The data sets to be copied must reside on a subsystem that supports DFSMS
concurrent copy. DBRC is required for this utility. For fuzzy KSDS copies, the
database define cluster must specify BWO(TYPIMS) and the KSDS data sets
must be managed by SMS.

* An Image copy created by the utility is in DFSMS dump format, rather than
standard batch image copy format. The copy is registered with DBRC as an
SMSNOCIC or SMSCIC image copy, depending on the parameters specified
when the image copy was taken.

» Up to four copies of a data set can be created. Only the primary and secondary
(first and second) copies are recorded in the RECON data set.

Related Reading: For more information about the Database Image Copy 2 utility,
see [IMS Version 9: Utilities Reference: Database and Transaction Manager

A flow diagram of the Database Image Copy 2 utility is shown in [Figure 31 on page]

Chapter 10. The Database Recovery Process 105

Databases

IBM Confidential

DBDLIB

Image Copy 2

(DFSUDMTO) RECON

Data Sets

¥, Image Copy
Ej Data sets

| Figure 31. Inputs and Outputs for the Database Image Copy 2 Utility

Database Change Accumulation Utility

106

The function of the Database Change Accumulation utility (DFSUCUMO) is to create
a sequential data set that contains only that database log records from all the log
data sets which are necessary for recovery. This accumulation log data set is to be
used by the database recovery utility. This accumulation is done by sorting only the
required log records in physical record within data set sequence. This provides
efficient database recovery whenever needed. The number of log data sets which
need to be kept will be significantly reduced.

The change accumulation utility can be run independently of DL/I application
programs. The new output database recovery utility.

IBM highly recommends that you use DBRC to create the JCL for each execution of
this utility. DBRC will ensure that a complete set of log data sets is used to create
the change accumulation data set. The logs records must be supplied to in the
correct sequence.

A flow diagram of the change accumulation utility is shown in|Figure 32 on page|

o7

IMS: An Introduction to IMS

IBM Confidential

Online SLDS Batch RLDS
Old CA Data Sets Data Sets

Data Set ED\Ej EDW

A 4
Change Accumulation [RECON
Utility Data Sets

v
New CA
Data Set

Figure 32. Inputs and Outputs for the Change Accumulation Utility

The input to the database change accumulation utility consists of:

» All log data sets created since either the last image copy utility execution or the
last execution of this utility.

* The previous change accumulation data set. This would be the output from the
last execution of this utility. The first change accumulation run after a new image
copy must not include any old change accumulation data set, that is, those
created during the previous period.

* An optional control statement (ID).

Output from the database change accumulation utility consists of a new change
accumulation data set. This is a sequential data set containing the combined
database records for all database data sets.

Database Recovery Utility

The database recovery utility (DFSURDBO) will restore a database data set. This
utility does not provide a means of recovery from application logic errors: it is the
user’s responsibility to ensure the logical integrity of the data in the database.

Unlike the image copy utility, the recovery utility recovers one database data set per
job step. Thus to recover multiple data sets for a database the utility must be run
once for each data set.

It is highly recommended that DBRC be used to create each execution of this
utility. DBRC will ensure that all the correct inputs are supplied.

The recovery utility can be run in a number of ways depending on what input is

required. Generally the main input to the recovery utility is the image copy data set.
Other input can consist of any log data sets or change accumulation data sets

Chapter 10. The Database Recovery Process 107

IBM Confidential

which might be needed. The utility can be run with only the log information as input,
in this case the database already existing would be used.

A flow diagram is shown in |Figure 33|

Change RI[;DtS/gL?S
Image copy accumulation ata Sets

Data Set Data Set F

\ 4
Recovery ’ RECON
DBDLIB g DFSURDBO0 ' 'Ej Data Sets

v

Ej Database

Figure 33. Inputs and Outputs of the Database Recovery Utility

The input to the recovery utility consists of an image copy data set and, optionally,
an accumulated change data set and any log data sets not included in the change
accumulation data set.

The database recovery utility program is executed in a DL/l batch region. It will
allocate the database in exclusive mode so that there can be no other database
activity at the time.

Database Batch Backout Utility

Batch backout, in it simplest form, is the reading of log data set (or sets) to back
out all database updates. This is done by using the “before image data” in the log
record to re-update the database segments. It has the effect of undoing the
previous updates.

Note: The Database Batch Backout utility only supports full-function databases.

The database backout utility removes changes in the database which were made by
a specific failing program. The following limitations apply:

* The log data set of the failing program must be on DASD.

* No other update programs should have been executed against the same
database (s) between the time of the failure and the backout.

108 IMS: An Introduction to IMS

IBM Confidential

The program operates as a normal DL/I batch job. It uses the PSB used by the
program whose effects are to be backed out. All databases updated by the program
must be available to the backout utility.

Figure 34| illustrates the inputs and outputs for the Batch Backout utility.

DBDLIB Batch RLDS

PSBLIB EDW

{ Batch Backout [RECON
Databases

Utility Data Sets

v

Batch RLDS
Data Set

Figure 34. Inputs and Outputs for the Batch Backout Utility

A log data set is created during the backout process. This data set, preceded by the
log data set produced for the failing job, must be included in the next change
accumulation run, as any other log data set. This data set must not be used as
input to any subsequent backout attempt.

Usage Notes for the Batch Backout Utility
Keep the following items in mind when using the Batch Backout utility:

If checkpoint/restart is not used, then backout always backs out all the database
changes of the program.

If checkpoint/ restart is used (program uses XRST and CHKP-ID calls), then
backout will only do backout if the specified CHKP-ID is found on the log data set
during read forward. If no CHKP-ID is specified, then the last one on the log data
set is used (the first one encountered during read backward).

If, when using checkpoint/restart, you want to be able to completely back out a
job (steps), you must issue a CHKP call immediately after the XRST call, that is,
before any real database activity. The CHKP-ID of this call can then be used for
a full backout operation.

To run batch backout for a DLI batch which had completed successfully, the
DBRC="C"” parameter must be added to the EXEC PARM keyword.

Chapter 10. The Database Recovery Process 109

IBM Confidential

110 IMS: An Introduction to IMS

IBM Confidential

Part 3. IMS Transaction Manager

Chapter 11. Overview of IMSTM13
Functions of IMSTM .13
IMS TM and the Network. . . . I I
Advanced Program-to-Program Communlcatlon (APPC) I
Open Transaction Manager Access (OTMA).114
IMS TM Messages16
Connections to Other IMS and CICS Subsystems . e1l16
Multiple Systems Coupling (MSC)116
Intersystem Communications (ISC)17
MSC VersusISC. ...y
Chapter 12. IMS TM Control Region19
IMS Messages . . . K
Multiple and Single Segment Messages e e
IMS TransactionFlow .120
Chapter 13. How IMS TM Processes Input 123
Input Message Types .123
Terminal Types 124
Input Message Origin .. .124
Terminal Input Destination .124
Message Queueing. . . T 24
Queue Size and Performance Con3|derat|ons e X
Multiple Message Queues17
Shared Queues . . . R 2
Fast Path Transactions and Message Queues e e e28
APPC Driven Transactions and Message Queues 128
OTMA Driven Transactions and Message Queues 128
Message Scheduling .128
Transaction Scheduling .130
Scheduling Conditions. . . . P RS {0
Scheduling in a Dependent Reglon RS 10)
Parallel Scheduling. .132
Priority . . . e R
Database Processmg Intent e X
Chapter 14. Fast Path Transactions135
Fast Path Exclusive Transactions.135
Fast Path Potential Transactions.135
Chapter 15. The Master Terminal137
The Primary Master. .138
The Secondary Master . . . R
Using the z/OS Console as the Master Termmal e e o ... 0139
Extended MCS/EMCS Console Support139
Chapter 16. Application Program Processing for IMSTM 141
Flow of Message Processing Programs (MPPs) 141
RoleofthePSB .14
DL/l Message Calls. . . . e vk
Program Isolation and Dynamlc Logglng Y XS
Internal Resource Lock Manager (IRLM)144
Abnormal Application Program Termination 144

© Copyright IBM Corp. 2004 111

IBM Confidential

Conversational Processing .145
Output Message Processing14
Logging, Checkpointing, and Restarting 145
Message Switching. .146

112 IMS: An Introduction to IMS

IBM Confidential

Chapter 11. Overview of IMS TM

IMS TM provides a high-performance transaction processing environment for
database management systems, such as IMS DB and DB2 UDB for z/OS.

IMS TM can be ordered and installed with or without IMS DB.

The following sections are covered in this chapter:

* ['Functions of IMS TM|

 ['lMS TM and the Network’|

 ['lMS TM Messages” on page 116|

« [‘Connections to Other IMS and CICS Subsystems” on page 116]

Functions of IMS TM

IMS TM provides solutions for cooperative processing, distributed database
processing, and continuous operation. IMS TM:

* Enhances system management.
» Simplifies network administration.
* Manages and secures the IMS TM terminal network.

* Routes messages from terminal to terminal, from application to application, and
between application programs and terminals.

* Queues input and output messages, and schedules messages by associating
programs with the transactions they are to process.

» Participates in distributive processing scenarios where other programs (such as
WebSphere Application Studio) have a need to access IMS.

IMS TM and the Network

IMS TM interacts with:

* IBM Systems Network Architecture (SNA) network, as currently implemented by
the Communication Server for z/OS, which includes the functions of VTAM. IMS
TM interacts directly with the Communication Server for z/OS.

» Applications that use the z/OS Advanced Program-to-Program Communication
(APPC) protocol.
Related Reading: For more information about IMS’s support for APPC, see
[‘Advanced Program-to-Program Communication (APPC)” on page 114

* Networks that use Transmission Control Protocol/ Internet Protocol (TCP/IP).
Access by using TCP/IP is achieved by way of a separate z/OS address space.
This address space uses IMS’s Open Transaction Manager Access (OTMA)
protocol. The other address space can be another program product such as
IBM’s Websphere MQ or IMS Connect.

Related Reading: For more information about OTMA, see [‘Open Transaction|
[Manager Access (OTMA)” on page 114.|For further details on the options
available for accessing IMS by using TCP/IP, see:

— [Chapter 30, “Introduction to Parallel Sysplex,” on page 315
— [IMS Version 9: Open Transaction Manager Access Guide and Reference]
— IMS Connect Guide and Reference

© Copyright IBM Corp. 2004 113

IBM Confidential

Advanced Program-to-Program Communication (APPC)

As mentioned in ['Advanced Program-to-Program Communications (APPC)” on page]|
APPC/IMS support for Logical Unit type 6.2 supports the formats and protocols
for program-to-program communication.

APPC/VTAM is part of the Communication Server for z/OS. It facilitates the
implementation of APPC/IMS support. In addition, APPC/MVS works with
APPC/VTAM to implement APPC/IMS functions and communication services in a
z/0S environment. APPC/IMS takes advantage of this structure and uses
APPC/MVS to communicate with LU 6.2 devices. Therefore, all VTAM LU 6.2
devices supported by APPC/MVS can access IMS using LU 6.2 protocols to initiate
IMS application programs, or conversely be initiated by IMS.

APPC/IMS provides compatibility with non-LU 6.2 device types by providing a
device-independent API. This allows an application program to work with all device
types (LU 6.2 and non-LU 6.2) without any new or changed application programs.

IMS supports APPC conversations in two scenarios:

Implicit
In this case, IMS supports only a subset of the APPC functions, but enables
an APPC incoming message to trigger any standard IMS application that is
already defined in the normal manner to IMS, and uses the standard IMS
message queue facilities, to schedule the transaction into any appropriate
dependent region.

Explicit

In this case, the full set of CPI Communications (CPI-C) command verbs
can be used and the IMS application is written specifically to cater only for
APPC triggered transactions. The standard IMS message queues are not
used in this case, and the IMS control region only helps create the APPC
conversation directly between the APPC client and the IMS dependent
region to service this request. The IMS control region takes no further part,
regardless of how much time the conversation might use while active.

Open Transaction Manager Access (OTMA)

114

OTMA provides an open interface to IMS TM customers. With OTMA, a z/OS or
TCP/IP application program can send a transaction or command to IMS without
using SNA or VTAM. Many programs can connect to IMS TM using OTMA:
middleware software, gateway programs, database, and applications written by IMS
customers. Each of the programs or applications that communicate with IMS using
OTMA are considered OTMA clients.

The OTMA interface itself is very flexible. An OTMA client, an application program
of the client, or both, can use OTMA in many different ways. The execution of some
transactions can involve complex “handshaking” between IMS and the client
program; some transactions can simply use the basic protocol.

The following list illustrates the ways that OTMA can be used to process an IMS
transaction:

Commit-then-send
For commit-then-send (CMO0), IMS processes the transaction and commits
the data before sending a response to the OTMA client. Input and output
messages are recoverable.

IMS: An Introduction to IMS

IBM Confidential

Send-then-commit
For send-then-commit (CM1), IMS processes the transaction and sends the
response to the OTMA client before committing the data. Input and output
messages are non-recoverable.

If the application program uses send-then-commit, you must also decide which
synchronization level, or “synclevel” to use. There are three choices:

* None - Output is sent and no response from the client is requested. Data is
committed if send is successful. Data is backed out if the send fails.

» Confirm - Output is sent and response from the client is requested. The OTMA
client must respond with an ACK or NACK. Data is committed if ACK is received.
Data is backed out if NACK is received.

* Syncpt - Output is sent, and response from the client is requested. Use
synclevel=syncpt to coordinate commit processing through RRS. The OTMA
client must respond with an ACK or NACK. Data is committed if ACK is received
and RRS commit is received. Data is backed out if NACK is received or RRS
abort is received.

An application can decide, for example, that inquiry transactions should use
synclevel=none because there are no database updates and that update
transactions should use synclevel=confirm.

The OTMA resynchronization interface ensures that there are no duplicate CMO
input and output messages by using a unique recoverable sequence number in
every CM0O message. The client can optionally initiate this during connection time.
WebSphere MQ is the primary program that exploits this OTMA interface
extensively. A WebSphere MQ application program can send a persistent message
to IMS to take advantage of the resynchronization benefit. However, sending a
WebSphere MQ non-persistent CMO message to IMS bypasses the
resynchronization service.

can be used to help you decide which method is appropriate for your
application.

Table 2. OTMA Processing Options

Type of Processing Commit-then-send (CMO) Send-then-commit (CM1)

Conversational transactions | Not supported Supported

Fast Path transactions Not supported Supported

Remote MCS transactions Supported Supported

Shared queues Supported in IMS V7 and Supported in IMS V8 and

above above

Recoverable output Supported Not supported

Synchronized Tpipes Supported Not supported

Program-to-program switch Supported Supported. However, if more
than one program-to-program
switch is performed, only one
program processes as
send-then-commit. The other
program processes as
commit-then-send.

Chapter 11. Overview of IMSTM 115

IBM Confidential

IMS TM Messages

The network inputs and outputs to IMS Transaction Manager take the form of
messages that are input or output, to or from IMS and the physical terminals (or
application programs) on the network (referred to as destinations).

These messages are processed asynchronously (that is, IMS will not always send a
reply immediately, or ever, when it receives a message, and unsolicited messages
might also be sent from IMS). The messages can be of four types:

» Transactions. The data in these messages is passed to IMS application programs
for processing

* Messages to go to another logical destination (for example, network terminals)
* Commands for IMS to process.

* Messages for APPC/IMS to process. Because IMS uses an asynchronous
protocol for messages and APPC uses synchronous protocols (that is, it always
expects a reply when a message is sent), the IMS TM interface for APPC has to
perform special processing to accommodate this.

If IMS is not able to process an input message immediately, or cannot send an
output message immediately, then the message is stored on a message queue
external to the IMS system. IMS will not normally delete the message from the
message queue until it has received confirmation that an application has processed
the message or that the message has reached its destination.

Connections to Other IMS and CICS Subsystems

IMS has special protocols for connecting to other IMS systems, such as Multiple
Systems Coupling (MSC), and to other CICS and IMS systems, such as
Intersystem Communication (ISC), that allows work to be routed to and from the
other systems for processing.

The MSC connections can be through the network to other IMS systems on the
same or other z/OS systems, by using channel-to-channel connections to the same
or another channel attached z/OS system or by using cross memory services to
another IMS subsystem on the same z/OS system.

The ISC links to other CICS or IMS systems is provided over the network by using
VTAM'’s LU 6.1 protocol.

Multiple Systems Coupling (MSC)

116

MSC is a part of the IMS Transaction Manager that provides the ability to connect
geographically dispersed IMSs. MSC enables programs and operators of one IMS
to access programs and operators of the connected IMSs. Communication can
occur between two or more (up to 2036) IMSs running on any supported
combination of operating systems.

MSC permits you to distribute processing loads and databases. Transactions
entered in one IMS system can be passed to another IMS system for processing
and the results returned to the initiating terminal. Terminal operators are unaware of
these activities; their view of the processing is the same as that presented by
interaction with a single system.

IMS: An Introduction to IMS

IBM Confidential

MSC only supports connecting one IMS to one other IMS. MSC supports
transaction routing between the participating IMSs by options specified in the IMS
system definition process.

The IMS system where the transaction is entered by the terminal user is referred to
as the front-end system. The IMS system where the transaction is processed is
referred to as the back-end system.

The transaction is entered in the front-end system, and based on the definitions in
the IMS stage 1 definition, the transaction is sent to the back-end system. When the
transaction reaches the back-end system, all standard IMS scheduling techniques
apply. After processing, the results are sent back to the front-end system, which
then returns the results to the terminal user, who was unaware that any of this
occurred.

Intersystem Communications (ISC)

ISC is also part of the IMS Transaction Manager and is another way to connect
multiple subsystems. ISC is more flexible than MSC, in that ISC supports the
following connections:

* IMS-to-IMS
* IMS-to-CICS
* IMS-to-user-written VTAM program

The transaction routing specification for ISC is contained in the application program,
instead of in the IMS system definition as in MSC.

ISC links between IMS and CICS use the standard LU 6.1 protocol available within
the network. They can use standard VTAM connections or direct connections.

As defined under SNA, ISC is an LU 6.1 session that:
» Connects different subsystems to communicate at the application level.

» Provides distributed transaction processing permitting a terminal user or
application in one subsystem to communicate with a terminal or application in a
different subsystem and, optionally, to receive a reply. In some cases, the
application is user written; in other cases, the subsystem itself acts as an
application.

» Provides distributed services. Therefore, an application in one subsystem can
use a service (such as a message queue or database) in a different subsystem.

SNA makes communication possible between unlike subsystems and includes
SNA-defined session control protocols, data flow control protocols, and routing
parameters.

MSC Versus ISC

As mentioned in ['Multiple Systems Coupling (MSC)” on page 116{and [Intersystem|
[Communications (ISC),”|both MSC and ISC enable a user to:

* Route transactions
» Distribute transaction processing
* Grow beyond the capacity of one IMS system

Both ISC and MSC take advantage of the parallel session support VTAM provides.
Some key differences exist, however. [Table 3 on page 118|shows the major
functions of MSC and ISC and shows the differences in support.

Chapter 11. Overview of IMSTM 117

118

Table 3. Comparing MSC and ISC Functions

IBM Confidential

MSC Functions

ISC Functions

MSC connects multiple IMS systems only to
each other. These IMS systems can all
reside in one processor, or they can reside in
different processors.

ISC can connect either like or unlike
subsystems, as long as the connected
subsystems both implement ISC. Thus, a
user can couple an IMS subsystem to:

* Another IMS subsystem

* A CICS subsystem

* A user-written subsystem

Communication in the MSC environment is
subsystem-to-subsystem.

Communication is between application
programs in the two subsystems. The
subsystems themselves are session
partners, supporting logical flows between
the applications.

Processing is transparent to the user. That
is, to the user, MSC processing appears as if
it is occurring in a single system.

Message routing requires involvement by the
terminal user or the application to determine
the message destination because ISC
supports coupling of unlike subsystems.
Specified routing parameters can be
overridden, modified, or deleted by Message
Format Service (MFS).

When not using the MSC-directed routing
capability, the terminal operator or application
program does not need to know routing
information. Routing is automatic based on
system definition parameters.

ISC provides a unique message-switching
capability that permits message routing to
occur without involvement of a user
application.

MSC supports the steps of a conversation to
be distributed over multiple IMS subsystems,
transparent to both the source terminal
operator and to each conversational step
(application).

ISC supports the use of MFS in an IMS
subsystem to assist in the routing and
formatting of messages between
subsystems.

MSC does not support the use of the Fast
Path Expedited Message Handler (EMH).

ISC supports the use of Fast Path Expedited
Message Handler (EMH) between IMS
subsystems.

IMS: An Introduction to IMS

IBM Confidential

Chapter 12. IMS TM Control Region

The IMS TM control region is a z/OS address space that can be initiated through an
z/OS START command or by submitting JCL. The terminals, databases, message
queues, and logs are all attached to this region. A type 2 supervisor call routine is
used for switching control information, messages, and database data to the
dependent regions and back.

The control region normally runs as a system task and uses z/OS access methods
for terminal and database access.

The following sections are covered in this chapter:
* [(IMS Messages’]
* ['IMS Transaction Flow” on page 120|

IMS Messages

The goal of IMS TM is to perform online transaction processing. This consists of:

1. Receiving a request for work to be done. The request is entered at a remote
terminal. It is usually made up of a transaction code, which identifies to IMS the
kind of work to be done and some data that is to be used in doing the work.

2. Initiating and controlling a specific program that will use the data in the request
to do the work the remote operator asked to be done, and to prepare some data
for the remote operator in response to the request for work (for example,
acknowledgment of work done or answer a query).

3. Transmission of the data prepared by the program back to the terminal originally
requesting the work.

The above sequence is the simplest form of a transaction. It involves two
messages: an input message from the remote operator requesting that work be
done, and an output message to the remote operator containing results or
acknowledgment of the work done.

Multiple and Single Segment Messages

A message, in the most general sense, is a sequence of transmitted symbols. In the
context of IMS, this is called a transmission. A transmission may have one or more
messages, and a message may have one or more segments. A segment is defined
by an end-of-segment (EOS) symbol, a message is defined by an end-of-message
(EOM) symbol and a transmission is defined by an end-of-data (EOD) symbol. The
valid combinations of the conditions represented by EOS, EOM, and EOD can be

found in

Table 4. Valid Combinations of the EOS, EOM, and EOD Symbols

Condition Represents

EOS End of segment

EOM End of segment / end of message

EOD End of segment / end of message / end of data

The relationship between transmission, message and segment is shown in
[Figure 35 on page 120}

© Copyright IBM Corp. 2004 119

IBM Confidential

Segment

Segment

Segment Segment Segment Segment Segment

EOS

EOM EOS EOS EOM EOS EOD

Figure 35. Transmission, Message, and Segment Relationships

The character values or conditions that represent the end of segment and the end
of the message (or both) depend on the terminal type.

For 3270 terminals, the physical terminal input will always be a single segment
message and transmission. The EOS, EOM, and EOD condition will all be set after
the enter or program function key is pressed and the data is transmitted.

On the output side, a message can be divided into multiple segments. Also an
application program can send different messages to different terminals, that is, a
message to a printer terminal and a message to the input display terminal. Each
segment requires a separate insert call by the application program.

The format of a message segment as presented to or received from an application

program is shown in [Figure 36} where:

LL Total length of the segment in bytes, including the LL and ZZ fields.
zz IMS system field

DATA Application data, including the transaction code

Figure 36. Format of a Message Segment

LL ZZ Data

2 bytes 2 bytes n bytes

IMS Transaction Flow

120

Once the control region is started, it will start the system dependent regions
(DLISAS and DBRC). The MPR and BMP regions can be started by:

* IMS jobs
* JOB submission
» Automated operations commands

The general flow of a message from a message processing program (MPP) is
shown in [Figure 37 on page 121 The intent of this figure is to give a general flow of
the message through the system and not a complete detailed description.

IMS: An Introduction to IMS

IBM Confidential

Control Region Address Space DLI Separate Message Processing
Address Space Region
ACBs Application
Program ACBs Program
Isolation
(P1) GU IOPCB
A ISRT IOPCB
ISRT ALTPCB
WADS Scheduler
Logging DLI
Modules
h OLDS
< Buffers Database GU segment
Changes ISRT segment
REPL segment
DLET segment
OLDS Message MFS Queue
Handler Mgmt]
Message | Tran | ! Database
Input | Buff
LTERM DL
Message MFS QDS
Buffers Pool Buffers
v v
FORMAT Msg Queue
Datasets Databases

Figure 37. The IMS Control Region, Its Control, and Data (Message) Flow

A further description of follows:

1.

The input data from the terminal is read by the data communication modules.
After editing by message format service (MFS), and verifying that the user is
allowed to execute this transaction, this input data is put in the IMS Message
Queues. These are sequenced by destination, which could be either transaction
code (TRAN) or logical terminal (LTERM). In the case of input messages, this
would be the TRAN.

The scheduling modules will determine which MPP is available to process this
transaction, based on a number of system and user specified considerations,
and will then retrieve the message from the IMS message queues, and start the
processing of a transaction in the MPP.

Upon request from an MPP or BMP, the DL/I modules pass a message or
database segment to or from the MPP/BMP.

Note: In z/OS, the DL/I modules, control blocks, and pools reside in the
common storage area (CSA or ECSA) and the control region is not needed for
most DB processing (the exception being Fast Path).

Once the MPP has finished processing, the message output from the MPP is
also put into the IMS Message Queues, in this case, queued against the logical
terminal (LTERM).

Chapter 12. IMS TM Control Region 121

122

IBM Confidential

5. The communication modules retrieve the message from the message queues,

and send it to the output terminal. MFS is used to edit the screen and printer
output.

All changes to the message queues and the databases are recorded on the
logs. In addition, checkpoints for system (emergency) restart and statistical
information are logged.

Notes:

a. The physical logging modules run as a separate task and use z/OS ESTAE
for maximum integrity.

b. The checkpoint identification and log information are recorded in the restart
and RECON data sets.

Program Isolation locking assures database integrity when two or more MPPs or
BMPs update the same database. It also backs out database changes made by
failing programs. This is done by maintaining a short-term, dynamic log of the
old database element images. IRLM is an optional replacement for Pl locking.
IRLM is required, however, if IMS is participating in data sharing.

IMS: An Introduction to IMS

IBM Confidential

Chapter 13. How IMS TM Processes Input

IMS can accept input messages from a variety of sources. Originally, all input was
from 3270 type terminals.

The following sections are covered in this chapter:
* ['Input Message Types’|

« [‘Terminal Types” on page 124

« ["Input Message Origin” on page 124|

« [‘Terminal Input Destination” on page 124

* |'Message Queueing” on page 125|

. :“Message Scheduling” on page 128|

» |[“Transaction Scheduling” on page 130|

See [Figure 38| while reading the sections listed above.

Data Communication :
Modules — 'I(;r:gl:actlon password Text
Master «—»| | Receive
Terminal Queue .
Log Toglc_a | Text
Determine Destination (Sinllak
Format Message
User
Terminal E==m= QU Log /command password Text
Buffers Buffers
A A
A 4 A 4
Message Log
Queue Data Sets
Data Sets

Figure 38. Input Message Processing

Input Message Types

When IMS reads data from a terminal that has come from the telecommunication
access method, IMS first checks the type of input data.

Input from terminals can consist of three types of messages:

An input transaction message

This message is routed to an application program for processing with the
first 1-to-8 bytes of the message identifying the transaction code.

A message switch
This message is routed to another terminal, with the first 1-to-8 bytes used

© Copyright IBM Corp. 2004 123

IBM Confidential

as the name of the destination logical terminal (LTERM). The LTERM can
be a USERID if the Extended Terminal Option (ETO) is used.

A command
A command is processed by IMS itself.

Terminal Types

There are two basic types of terminals that can connect to IMS. They are:

Static The terminal is specifically defined in the IMS system definition, and this
determines what physical terminal name (NODE NAME), and logical
terminal name (LTERM) is available for use.

Dynamic
The terminal is not statically defined in the IMS system definition. IMS can
create a dynamic terminal definition. This requires either the IMS Extended
Terminal Option (ETO), a separately ordered feature of IMS or other
third-party vendor products. Dynamic terminals have not been previously
defined to IMS — their definitions are generated by ETO when the user
logs on/ signs on.

If a terminal user attempts to connect to IMS using a terminal that is defined to IMS
as static, then the user will use the defined NODE NAME / LTERM name
combination.

If a terminal user attempts to connect to IMS using a terminal that is not defined to
IMS as static, and dynamic terminal support is available, then the dynamic terminal
product (such as ETO) will be used to determine what the LTERM name is; and

whether it is based on the user’'s USERID, the NODE NAME, or some other value.

If a terminal user attempts to connect to IMS using a terminal that is not defined to
IMS as static, and dynamic terminal support is not enabled, then the user will be
unable to logon to IMS.

Input Message Origin

IMS maintains the name of the terminal or user from which an input message is
received. When a message is passed to an application program, this is also made
available to that program, via its program communication block (PCB).

This origin is the logical terminal name (LTERM). The LTERM name may be specific
to the user, or may be specific to the physical location, depending on how the IMS
system is defined. See [‘Terminal Types.’|

Terminal Input

Destination

The destination of the terminal input is dependent upon the type of input.

An input command goes directly to the IMS command processor modules, while a
message switch or a transaction are stored on the message queue. When a
3270-based message is received by IMS, the message input is first processed by
message format service (MFS), except when input is from previously cleared or
unformatted screen. MFS provides an extensive format service for both input and
output messages. It is discussed in detail in |Chapter 20, “The IMS Message Formatl
[Service,” on page 207.|

124 MS: An Introduction to IMS

IBM Confidential

When the input message is enqueued to its destination in the message queue, the
input processing is completed. If more that one LTERM is defined or assigned to a
physical terminal, they are maintained in a historical chain: the oldest defined or
assigned first. Any input from the physical terminal is considered to have originated
at the first logical terminal of the chain. If, for some reason (such as security or a
stopped LTERM), the first logical terminal is not allowed to enter the message, all
logical terminals on the input chain are interrogated in a chain sequence for their
ability to enter the message. The first appropriate LTERM found is used as
message origin. If no LTERM can be used, the message is rejected with an error
message.

Message Queueing

All full-function input and output messages in IMS are queued in message queues.
See [Figure 39 on page 126} For Fast Path transactions, see [‘Fast Pat
|Transactions and Message Queues” on page 128.|

Chapter 13. How IMS TM Processes Input 125

IBM Confidential

Queue Management Modules

Data
Communication
Modules Queue Buffers
Input | MSG
Message "| TRANID
TSrtritifa Cugu: MSG
Message | LTERM
Input , MSG
Message TRANID
Dynamic
Terminal Output < MSG
Message USERID
A
Message
Queue
Data Sets

Figure 39. Overview of the Message Queuing Process

The use of message queues allows input processing, output processing, command
processing, and application program processing to be performed asychronously, to
a large extent. This means, for example, that the input processing of message A
can be done in parallel with the database processing for message B and the output
processing for message C. Messages A, B, and C can be different occurrences of
the same or different message types and/or transaction codes.

Messages in the IMS message queues are stored by destination, priority, and the
time of arrival in IMS. A destination can be:

* A message processing program (MPP), which is for transaction input. Ordering is
by transaction code.

* Alogical terminal (LTERM), which is for a message switch, command responses,
and output generated by application programs.

The message queue buffers are maintained in main storage (defined by the
MSQUEUE macro) unless shared queues are used. If the memory-based message

126 IMS: An Introduction to IMS

IBM Confidential

queue buffers become full, messages are then stored on the message queue data
sets on DASD. The queue blocks in main storage and on direct access storage are
reusable. As far as possible messages are stored in the message queue buffers, to
minimize the number of 1/O operations required during processing.

Queue Size and Performance Considerations

Messages in the IMS message queue are primarily held in buffers in main storage.
However, when messages are added to the queues faster than IMS can process
these messages, the message queue buffers can fill. In this situation, any new
messages are written to the message queue data sets. The performance of these
data sets then becomes very important. The data sets should be on a DASD
volume with fast response times, and the data sets should be appropriately sized to
ensure that there is always space available.

Multiple Message Queues

The IMS Queue Manager supports concurrent /O operations to its message queue
data sets, allowing the IMS message queue to be distributed across multiple
physical queue data sets. This enhancement supports the long and short message
gqueue data sets.

This function is activated when more than one DD statement per message queue
data set is provided. You can supply up to ten DD statements for each queue data
set. These DD statements can be allocated on different device types, but LRECL
and BLKSIZE must be the same for all the data sets of a single queue.

IBM strongly recommends that multiple queue data sets be used, so that in an
emergency situation, the IMS systems performance will not degrade while trying to
handle a large volume of messages going to and from the message queue data
sets.

Related Reading: See the IMS Version 9: Installation VVolume 1: Installation
Verification and [IMS Version 9: Installation Volume 2: System Definition and|
[Tailoring] for further detailed guidelines for selecting message queue parameters
such as block sizes, QPOOL size, queue data set allocation and so forth.

Shared Queues

IMS provides the facility for multiple IMS systems in a sysplex to share a single set
of message queues. This function is known as IMS shared queues and the
messages are held in structures in a coupling facility. All the IMS subsystems in the
sysplex share a common set of queues for all non-command messages (that is,
input, output, message switch, and Fast Path messages). A message that is placed
on a shared queue can be processed by any of several IMS subsystems in the
share queues group as long as the IMS has the resources to process the message.

The shared-queues function is optional and you can continue to process with the
non-sysplex message queue buffers and message queue data sets.

The benefits in using shared queues enables automatic workload balancing across
all IMS subsystems in a Sysplex. New IMS subsystems can be dynamically added
to the Sysplex, and share the queues as workload increases, allowing in
incremental growth in capacity The use of shared queues can also provide
increased reliability and failure isolation: if one IMS subsystem in the Sysplex fails,
any of the remaining IMS subsystems can process the work that is waiting in the
shared queues.

Chapter 13. How IMS TM Processes Input 127

IBM Confidential

Related Reading: For more information about IMS and shared queues in a sysplex
environment, see [Chapter 30, “Introduction to Parallel Sysplex,” on page 315

Fast Path Transactions and Message Queues

Fast Path transactions do not use the standard IMS message queues. Fast Path
transactions are scheduled by a separate function within the IMS transaction
manager, called the Expedited Message Handler (EMH). For further scheduling
information, see |Chapter 14, “Fast Path Transactions,” on page 135.|

APPC Driven Transactions and Message Queues

There are two types of APPC transactions, implicit and explicit. With implicit APPC
transactions, IMS receives a transaction request via APPC. This transaction is
placed onto the IMS message queues in the same way as a 3270-generated
transaction. The message is passed to an MPP for processing, and the response is
routed back to the originating APPC partner. The MPP program uses the DL/I
interface to receive the message from the message queue, and put the response
back onto the message queue.

With explicit APPC transactions, IMS schedules a program into an MPR (message
processing region). This program uses APPC verbs to communicate with the APPC
partner program to process the transaction. The standard IMS messages queues
are not used for explicit APPC transactions.

OTMA Driven Transactions and Message Queues

OTMA allows IMS to receive a message through a different communications
protocol (for example, TCP/IP sockets, MQ, remote procedure calls, IMS Connect,
and so forth). The message is received by IMS, and it placed into the IMS message
queue for processing in the usual manner. The response message is passed back
to the originator through OTMA.

Message Scheduling

128

Scheduling is the loading of the appropriate program into a message processing
region. IMS can then pass messages stored on the IMS message queue to this
program when it issues the Get Unique (GU) IOPCB call. For more information
about application calls, see [Chapter 17, “Application Programming Overview,” on|

Once an input message is available in the message queue, it is eligible for

scheduling. Scheduling is the routing of a message in the input queue to its
corresponding application program in the message processing region. See

[Figure 40 on page 129|

IMS: An Introduction to IMS

IBM Confidential

Trans-code A & Message Trans-code B & Message

Linkage defined at IMS system definition
(APPLCTN & TRANSACT Mactros)

DB
Control Block

PSB DB
Control Block Control Block

DB
Control Block

Scheduling based
on transaction class

Message Processing Region (MPR)

Figure 40. Message Scheduling

The linkage between an input message (defined by its transaction code) and an
application program (defined by its name) is established at system definition time.
Multiple transaction codes can be linked to a single application program, but only
one application program can be linked to a given transaction code.

The class in which a transaction code with run is defined in two ways:
* On the APPLCTN macro
* On the MSGTYPE parameter of the TRANSACT macro

If the class is specified on the APPLCTN macro, it need not be defined on the
TRANSACT macro. If it is specified on both, then the class on the TRANSACT
macro will override the APPLCTN macro specification. illustrates the
definition of a transaction.

APPLCTN PSB=DFSIVP1,PGMTYPE=TP
TRANSACT CODE=IVTNO,MODE=SNGL, X
MSGTYPE=(SNGLSEG,NONRESPONSE, 1)
APPLCTN PSB=DFSIVP2,PGMTYPE=(TP,1)
TRANSACT CODE=IVTNOZ,MODE=SNGL, X
MSGTYPE=(SNGLSEG,NONRESPONSE)

Figure 41. Sample APPLCTN Macro Transaction Definition in IMS Stage 1 Input

Notice the following about these transaction definitions:

» Transaction DFSIVP1 has the class defined as the third parameter on the
MSGTYPE parameter on the TRANSACT macro.

» Transaction DFSIVP2 has the class defined on the APPLCTN macro.
* Both transactions are assigned to class 1.

Chapter 13. How IMS TM Processes Input 129

IBM Confidential

Transaction Scheduling

The transaction scheduling algorithm can be a very sophisticated algorithm, as it
needs to make use of all the IMS and system resources in the most efficient
manner possible. However, most users do not need to use the power of the
scheduling algorithms, as the resources available in IMS today (such as the number
of message processing regions) are much greater than when these algorithms were
designed several decades ago.

There are a few parameters on the transaction definition which will affect the
scheduling options. These are:

PROCLIM
PARMLIM
MAXRGN
PRTY

Scheduling Conditions

The following conditions must be met for a successful scheduling:

* An MPR region must be available. Actually, the termination of a prior transaction
running in an MPR region triggers the scheduling process.

* There must be a transaction input message in the queue.
* The transaction and its program are not in a stopped state.

» Enough buffer pool storage is available to load the program specification block
(PSB) and the referenced database control blocks if not already in main storage.

* The database processing intent does not conflict with an already active
application program (a BMP for instance). Processing intent is discussed in more
detail in 'Database Processing Intent” on page 133

If the first transaction code with a ready input message does not meet all the above
conditions, the next available input transaction is interrogated, and so forth. If no
message can be scheduled, the scheduling process is stopped until another input
message is enqueued. If the scheduling is successful, the IMS routines in the
dependent region load the corresponding MPP and pass control to it.

Scheduling in a Dependent Region

130

The IMS scheduler will assign the application transaction processing to a dependent
MPR. The number of MPRs available to an IMS system is 999 dependent regions.

The transactions are assigned to classes. The maximum number of transactions
classes is set at system generation time by the MAXCLAS parameter of the
IMSCTRL macro.

Class Processing

Each dependent MPR can run up to four transaction classes. The order in which
they are specified is a priority sequence. That means that the transaction class
named first is the highest and the one named last is the lowest. Each MPR can
have a different sequence of the same or different transaction combinations. The
classes are named on the PROC statement of the JCL running the MPR.

En page 131f shows an example of the MPR JCL. The MPR can be run as a JOB or

~

a started tas

IMS: An Introduction to IMS

IBM Confidential

//IVP6TM11 EXEC PROC=DFSMPR,TIME=(1440),

// AGN=BMPO1, AGN NAME

// NBA=6,

// 0BA=5,

// SOUT="=", SYSOUT CLASS

// CL1=001, TRANSACTION CLASS 1

// CL2=006, TRANSACTION CLASS 2

// CL3=013, TRANSACTION CLASS 3

// CL4=000, TRANSACTION CLASS 4

// TLIM=10, MPR TERMINATION LIMIT
// SoD=, SPIN-OFF DUMP CLASS

// IMSID=IMSY, IMSID OF IMS CONTROL REGION
// PREINIT=DC, PROCLIB DFSINTXX MEMBER
// PWFI=N PSEUDO=WFI

/1*

Figure 42. Example of MPR PROC Statement

The classes which the MPR runs can be changed while the MPR is running. This is
done through and /ASSIGN command. When the /ASSIGN command is executed,
only those classes specified on the command will be available to that MPR. The
changes will be maintained until the MPR is restarted, at which time the values on
the PROC statement will be used again. illustrates an example of an
/ASSIGN command. Again the order of classes on the command is the priority
sequence of those classes.

/ASSIGN CLASS 1 4 6 9 TO REGION 1

Figure 43. Example of /ASSIGN CLASS Command

To list the classes assigned to an MPR the /DISPLAY ALL command can be used.
shows the /DISPLAY ACTIVE command and the output.

4 N
/DIS ACTIVE
REGID JOBNAME TYPE TRAN/STEP PROGRAM STATUS CLASS IMSY
1 SJIMSYM1 TP WAITING 1, 4, 6, 9 IMSY
2 SJIMSYM2 TP WAITING 2,3,5,1 IMSY
BATCHREG BMP NONE IMSY
FPRGN Fp NONE IMSY
DBTRGN DBT NONE IMSY
SJIMSYDB DBRC IMSY
SJIMSYDL DLS IMSY
VTAM ACB OPEN -LOGONS DISABLED IMSY
IMSLU=N/A.N/A APPC STATUS=DISABLED IMSY
OTMA GROUP=IMSCGRP STATUS=ACTIVE IMSY
APPLID=SCSIM6YA GRSNAME= STATUS=DISABLED IMSY
LINE ACTIVE-IN - 1 ACTIV-OUT - 0 IMSY
NODE ACTIVE-IN - 0 ACTIV-OUT - 0 IMSY
%99298/155826% IMSY
\§ / %

Figure 44. Example of /DISPLAY ACTIVE Command

Note the following from the information from |Figure 44
* There are two MPRs.

* The MPR named SJIMSYML1 run classes 1, 4, 6, and 9.
¢ The MPR named SJIMSYM2 runs classes 2, 3, 5, 1.

* Class 1 has the highest priority in MPR SJIMSYM1 and the lowest in MPR
SJIMSYM2.

Chapter 13. How IMS TM Processes Input 131

IBM Confidential

When an MPR is looking to find the a transaction to schedule, it will use the
following criteria:

1. The highest priority transaction ready in the highest priority class

2. Any other transaction in the highest priority class

3. The highest priority transaction ready in the second highest priority class
4. Any other transaction in the second priority class

This sequence of priorities will be used for all the available classes for this MPR.

Note: If a transaction has a class for which there are no MPRs currently allowed to
run that class, the transaction will not be scheduled and will remain on the input
queue.

PROCLIM Processing

IMS also tries to increase throughput of the MPR by processing more than one
message for the same transaction. This is to make use of the fact that the program
has already been loaded into the MPR’s storage, and the PSB and DBD control
blocks also have been loaded. This will increase the throughput of the number of
messages processed by this MPR, as it will avoid some of the overhead with
reloading the program and control blocks.

At the completion of the transaction, IMS with check the PROCLIM value on the
TRANSACT macro for this transaction. The MPR will process the number of
messages allowed in the first value of this keyword before looking to see what other
transactions are available to be scheduled. This means the MPR can process more
transactions without having to go through the scheduling logic for each transaction.

Parallel Scheduling

Priority

A transaction will only process in one MPR at a time unless parallel processing is
specified. To allow more than one MPR to schedule a transaction type at a time,
code the SCHDTYP parameter on the APPLCTN macro. For example:

APPLCTN PSB=DFSIVP1,PGMTYPE=(TP,1),SCHDTYP=PARALLEL

Unless there are application restrictions on processing the message in strict first-in,

first-out sequence, parallel scheduling should be applied to all transactions. This will
allow IMS to make the best use of IMS resources while providing the best possible

response time to individual transactions.

The PARMLIM parameter on the TRANSACT macro will determine when a
transaction will be scheduled in another region. When the number of messages on
the queue for this transaction exceeds the value on the PARLIM, another region will
be used.

The MAXRGN parameter is used to restrict the number of MPRs which can process
a transaction at any one time. This is done to avoid the situation of all the MPRs
being tied up by a single transaction type.

The PRTY parameter on the TRANSACT macro sets the priority of a transaction.
This is how to differentiate one transaction from another if they run in the same
transaction class. A transaction of a higher priority will be scheduled before a lower
priority one. However an MPR will process a transaction in a higher class (for this
MPR, see [‘Scheduling in a Dependent Region” on page 130| for more details)
before a transaction in a lower class regardless of the priority. A transaction priority

132 IMS: An Introduction to IMS

IBM Confidential

will increase once the number of transactions on the message queue exceed the
value set on the third value of the PRTY keyword. It will increase to the value set
on the second parameter of the PRTY keyword. This has the effect of trying to
avoid a long queue on any single transaction code by giving it a higher priority.

Another factor in transaction scheduling is the PROCLIM value. This is discussed in
FPROCLIM Processing” on page 132

Database Processing Intent

A factor that significantly influences the scheduling process is the intent of an
application program toward the databases it uses. Intent is determined by
examining the intent last associated with the PSB to be scheduled. At initial
selection, this process involves bringing the intent list into the control region. The
location of the intent list is maintained in the PSB directory. If the analysis of the
intent list indicates a conflict in database usage with a currently active program in
MPP or BMP region, the scheduling process will select another transaction and try
again.

The database intent of a program as scheduling time is determined via the
PROCOPT= parameters in the PCB.

An conflicting situation during scheduling will only occur if a segment type is
declared exclusive use (PROCOPT=E) by the program being scheduled and a
already active program references the segment in its PSB (any PROCOPT), or vice
versa.

Scheduling a BMP
A BMP is initiated in a standard z/OS address space via any regular job submission
facility. This could be from either:

* TSO and SUBMITing the job
* Some job scheduling system

However, during its initialization the IMS scheduler in the control region is invoked
to assure the availability of the database resources for the BMP.

Shared Queues

Scheduling of transactions in a shared-queues environment is similar to those in a
non-shared queues environment. All the checks, however, are across all the IMS
systems in the shared-queues environment, and obviously, there are extra
considerations as well.

Related Reading: For further information on scheduling shared queues, see:

* IMS in the Parallel Sysplex: Volume I: Reviewing the IMSplex Technology

* IMS in the Parallel Sysplex: Volume II: Planning the IMSplex

* IMS in the Parallel Sysplex: Volume llI: IMSplex Implementation and Operations

Chapter 13. How IMS TM Processes Input 133

IBM Confidential

134 IMS: An Introduction to IMS

IBM Confidential

Chapter 14. Fast Path Transactions

Apart from standard IMS transactions, there are two types of Fast Path online
transactions. They are:

« [‘Fast Path Exclusive Transactions’|
« [‘Fast Path Potential Transactions’|

Fast Path Exclusive Transactions

Fast Path schedules input messages by associating them with a load balancing
group. A load balancing group (BALG) is a group of Fast Path input messages that
are ready for balanced processing by one or more copies of a Fast Path program.
One LBG exists for each unique Fast Path message-driven application program.

The messages for each LBG are processed by the same Fast Path program. The
EMH controls Fast Path messages by:

* Managing the complete execution of a message on a first-in-first-out basis.

* Retaining the messages that are received in the control program’s storage
without using auxiliary storage or I/O operations.

* Supporting multiple copies of programs for parallel scheduling.
* Requiring that programs operate in a wait-for-input mode.

Fast Path Potential Transactions

Fast Path potential transactions are a mixture of standard IMS full-function and Fast
Path exclusive transactions.

The same transaction code can be used to trigger either a full-function, or a Fast
Path transaction, with an exit used to determine whether this instance of the
transaction will be full-function, or Fast Path.

© Copyright IBM Corp. 2004 135

IBM Confidential

136 IMS: An Introduction to IMS

IBM Confidential

Chapter 15. The Master Terminal

The mission of the Master Terminal Operator (MTO) is to monitor and manage an
individual IMS. As IMSs are joined together into sharing groups (sharing databases,
resources, or message gqueues), system management becomes more complex.
Prior to IMS Version 8, the IMS systems in sharing groups had to be managed
individually.

IMS Version 8 introduced system management enhancements so that a single IMS
or multiple IMS systems could be monitored and managed from a single point of
control. You can issue commands and receive responses from one, many, or all of
the IMSs in the group from this single point of control. For more information about
these enhancements, see [Chapter 31, “IMSplexes,” on page 337

The master terminal operator (MTO) has the following responsibilities:
* Responsibility for running IMS

The MTO starts and shuts down dependent regions and manages the system
log.

* Knowledge of the ongoing status of the IMS subsystem
The MTO continuously monitors processing and detects any error situations.
» Control over contents of the system and network

The MTO can control the network, connect other IMS systems, and perform other
prearranged tasks.

* Privileged commands

In addition to routine work, the MTO responds to error conditions, changes the
scheduling algorithm, alters passwords, and reconfigures the system as
necessary.

shows the actions usually performed by the MTO and the commands
usually reserved for the MTO's use.

Table 5. Master Terminal Operator Actions and Associated Commands

Activity IMS Command
Activate IMS (cold start) /ERESTART COLDSYS
Start a message region /START REGION IMSMSG1
Start communications lines /START LINE ALL
Display message queues /DISPLAY

Start another message region /START REGION IMSMSG3
Prepare for VTAM communication /START DC

Initiate static VTAM sessions /OPNDST NODE ALL
Initiate dynamic VTAM sessions /OPNDST NODE nodename
Send a message to terminals /BROADCAST

Shut down VTAM terminals and IMS /CHECKPOINT FREEZE QUIESCE
Restart IMS (warm start) /NRESTART

When the IMS system is generated, the IMS master terminal MUST be included,
and consists of two components:

* Primary master

© Copyright IBM Corp. 2004 137

IBM Confidential

* Secondary master

All messages are routed to both the primary and secondary master terminals.
Special MFS support is used for the master terminal.

The following sections of this chapter discuss the tasks of monitoring and managing
an individual IMS using the MTO. The sections are:

* [‘The Primary Master|

* |“The Secondary Master” on page 139|

» ["Using the z/OS Console as the Master Terminal” on page 139|
* ["Extended MCS/EMCS Console Support” on page 139|

The Primary Master

Traditionally, the primary master was a 3270 display terminal of 1920 characters (24
lines by 80 columns). A sample traditional IMS master terminal is shown in

03/04/01 14:49:48 IMSC
DFS249 14:43:46 NO INPUT MESSAGE CREATED
DFS9941 COLD START COMPLETED
DFS06531 PROCECTED CONVERSATION PROCESSING WITH RRS/MVS ENABLED
DFS2360I 14:29:28 XCF GROUP JOINED SUCCESSFULLY.

PASSWORD:
___ J

Figure 45. Master Terminal Screen

The display screen of the master terminal is divided into four areas. They are the:

Message area
The message area is for IMS command output (except /DISPLAY and
/RDISPLAY), message switch output that uses a message output descriptor
name beginning with DFSMO (see MFS), and IMS system messages.

Display area
The display area is for /DISPLAY and /RDISPLAY command output.

Warning message area
The warning message area is for the following warning messages:
* MASTER LINES WAITING
* MASTER WAITING
* DISPLAY LINES WAITING
+ USER MESSAGE WAITING

To display these messages or lines, press PA1l. An IMS password can also
be entered in this area after the “PASSWORD?” literal.

User input area
The user input area is for operator input.

138 IMS: An Introduction to IMS

IBM Confidential

Program function key 11 or PA2 requests the next output message and program
function key 12 requests the Copy function if it is a remote terminal.

The Secondary Master

Traditionally, the secondary master was a 3270 printer terminal.

This usage has also been phased out in many sites, who now have the secondary
master defined as spooled devices to IMS, in effect writing the messages to
physical data sets.

In this way, the secondary master can be used as an online log of events within
IMS. To accomplish this, the definitions in needs to be put into the IMS
Stage 1 system definition. These definitions need to follow the COMM macro and
before any VTAM terminal definitions.

*
LINEGRP DDNAME=(SPL1,SPL2),UNITYPE=SPOOL
LINE BUFSIZE=1420
TERMINAL FEAT=AUTOSCH
NAME (SEC,SECONDARY)

Figure 46. Sample JCL for the Secondary Master Spool

To complete the definitions, code SPL1 and SPL2 DD statements in the IMS control
region JCL. The data sets should be allocated with the following DCB information:

DCB=(RECFM=VB,LRECL=1404,BLKSIZE=1414)

Using the z/OS Console as the Master Terminal

IMS always has a communications path with the z/OS system console. The
write-to-operator (WTO) and write-to-operator-with-reply (WTOR) facilities are used
for this. Whenever the IMS control region is active, there is an outstanding message
requesting reply on the z/OS system console. This can be used to enter commands
for the control region. All functions available to the IMS master terminal are
available to the system console. The system console and master terminal can be
used concurrently, to control the system. Usually, however, the system console’s
primary purpose is as a backup to the master terminal. The system console is
defined as IMS line number one by default.

Extended MCS/EMCS Console Support

IMS can be also communicated with using the MCS/EMCS console support.

Any z/OS console can issue a command directly to IMS, using either a command
recognition character (CRC) as defined at IMS startup, or using the 4-character IMS
ID to be able to issue commands.

This interface has the option of using RACF or exit routines for command security.
For further details, see [Chapter 24, “IMS Security,” on page 253

Chapter 15. The Master Terminal 139

IBM Confidential

140 IMS: An Introduction to IMS

IBM Confidential

Chapter 16. Application Program Processing for IMS TM

Once an application program is scheduled in a dependent region, it is loaded into
that region by IMS.

The following sections are covered in this chapter:

* ['Flow of Message Processing Programs (MPPs)’]

[‘Role of the PSB” on page 142|

[‘DL/I Message Calls” on page 142

« [‘Program Isolation and Dynamic Logging” on page 143

« [YInternal Resource Lock Manager (IRLM)” on page 144

» |["“Abnormal Application Program Termination” on page 144|
* |'Conversational Processing” on page 145|
» ["Output Message Processing” on page 14§|

* |'Logging, Checkpointing, and Restarting” on page 145|
« ['Message Switching” on page 146

Flow of Message Processing Programs (MPPs)

The scheduled program in the MPR is given control after it is loaded. The normal
processing steps of an MPP are described in the list that follows |Figure 47 on page|
i

© Copyright IBM Corp. 2004 141

Control Region

DLI Address Space

MPP or BMP Address Space

LTERM [* > DCPCB [[” Get Message |<— GU IOPCB
4 DBPCB GN IOPCB
TRAN
A v
DBD » Access DB GU DBPCB
ISRT DBPCB
REPL DBPCB
DLET DBPCB
»| Send Reply ISRT IOPCB
A 4 y v
Message Queue DBD
Buffer Pool Buffer Pool
A A
v v
DBD
Buffer Pool
Message Databases
Queue
Data Sets

A wbd PR

Figure 47. Overview of Basic Flow Through a MPP or BMP Address Space

Retrieve the input message by using a DL/l message call.
Check the input message for syntax errors.
Process the input message, requesting necessary IMS database accesses.

Send output to the originating and/or other (for example, printer) logical
terminals by using DL/l message calls.

5. Retrieve the next input message or terminate.

IBM Confidential

Role of the PSB

The program specification block (PSB) for an MPP or a BMP contains, one or more
PCBs for logical terminal linkage, in addition to database PCBs. The very first PCB
always identifies the originating logical terminal (IOPCB). This PCB must be
referenced in the get unique (GU) and get next (GN) message calls. It must also be
used when inserting output messages to that LTERM. In addition, one or more
alternate output PCBs can be defined. Their LTERM destinations can be defined in
the PCBs or set dynamically with change destination calls.

142

DL/l Message Calls

The same DL/l language interface that is used for the access of databases is used
to access the message queues.

The principal DL/I message call function codes are:

IMS: An Introduction to IMS

IBM Confidential

GU (get unique)
This call must be used to retrieve the first, or only, segment of the input
message.

GN (get next)
This call must be used to retrieve second and subsequent message
segments.

ISRT (insert)
This call must be used to insert an output message segment into the output
message queue. Note: These output message(s) will not be sent until the
MPP terminates or requests another input message by using a get unique
call.

CHNG (change destination)
This call can be used to set the output destination for subsequent insert
calls.

Program Isolation and Dynamic Logging

When processing DL/l database calls, the IMS program isolation function will
ensure database integrity.

With program isolation, all activity (database modifications and message creation) of
an application program is isolated from any other application programs running in
the system until an application program commits, by reaching a synchronization
point, the data it has modified or created. This ensures that only committed data
can be used by concurrent application programs. A synchronization point is
established with a get unique call for a new input message (single mode) and/or a
checkpoint call (BMP only), or program normal termination (GOBACK or RETURN).

Program isolation allows two or more application programs to concurrently execute
with common data segment types even when processing intent is segment update,
add, or delete. This is done by a dynamic enqueue/dequeue routine which
enqueues the affected database elements (segments, pointers, free space
elements, etc.) between synchronization points.

At the same time, the dynamic log modules log the prior database record images
between those synchronization points. This makes it possible to dynamically back
out the effects of an application program that terminates abnormally, without
affecting the integrity of the databases controlled by IMS. It does not affect the
activity of other application program(s) running concurrently in the system.

With program isolation and dynamic backout, it is possible to provide database
segment occurrence level control to application programs. A means is provided for
resolving possible deadlock situations in a manner transparent to the application
program.

One example of a deadlock occurs in the following sequence of events:

1. Program A updates database element X.

2. Program B updates database element Y.

3. Program A requests Y and must wait for the synchronization point of program B.
4

Program B in turn requests X and must wait for the synchronization point of
program A.

Chapter 16. Application Program Processing for IMS TM 143

IBM Confidential

A deadlock has now occurred: both programs are waiting for each other’s
synchronization point. The dynamic enqueue/dequeue routines of IMS intercept
possible deadlocks during enqueue processing (in the above example, during
enqueue processing of event 4).

When a deadlock situation is detected, IMS abnormally terminates (pseudo abends)
one of the application programs involved in the deadlock. The activity of the
terminated program is dynamically backed out to a previous synchronization point.
Its held resources are freed. This allows the other program to process to
completion. The transaction that was being processed by the abnormal terminated
program is saved. The application program is an MPP, it is rescheduled. For a BMP
region, the job must be restarted. This process is transparent to application
programs and terminal operators.

There are two situations where the enqueue/dequeue routines of program isolation
are not used in processing a database call:

* If PROCOPT=GO (read only) is specified for the referenced segment (s) of the
call.

* If PROCOPT=E (exclusive) is specified for the referenced segment (s) in the call.

Notice that possible conflicts with exclusive extent are resolved during scheduling
time and, as such, cannot occur at call time.

Notes:

1. With the GO option, a program can retrieve data which has been altered or
modified by another program still active in another region, and database
changes made by that program are subject to being backed out.

2. Exclusive intent may be required for long-running BMP programs that do not
issue checkpoint calls. Otherwise, an excessively large enqueue/dequeue table
in main storage may result.

3. Even when PROCOPT=E is specified, dynamic logging will be done for
database changes. The ultimate way to limit the length of the dynamic log chain
in a BMP is by using the XRST/CHKP calls. The chain is deleted at each CHKP
call because it constitutes a synchronization point.

4. If one MPP and one BMP are involved in a deadlock situation, the MPP will be
subject to the abnormal termination, backout, and reschedule process.

Internal Resource Lock Manager (IRLM)

When IMS is involved in a data-sharing environment with other IMS systems, IRLM
is used instead of program isolation for lock management. See [‘Internal Resource|
[Lock Manager (IRLM)” on page 21| for further details.

Abnormal Application Program Termination

144

When a message or batch-message processing application program is abnormally
terminated for other reasons than deadlock resolution, internal commands are
issued to prevent rescheduling. These commands are the equivalent of a /STOP
command. They prevent continued use of the program and the transaction code in
process at the time of abnormal termination. The master terminal operator can
restart either or both stopped resources.

At the time abnormal termination occurs, a message is issued to the master
terminal and to the input terminal that identifies the application program, transaction
code, and input terminal. It also contains the system and user completion codes. In

IMS: An Introduction to IMS

IBM Confidential

addition, the first segment of the input transaction, in process by the application at
abnormal termination, is displayed on the master terminal. The database changes
of a failing program are dynamically backed-out. Also, any of its output messages
that were inserted in the message queue since the last synchronization point are
cancelled.

Conversational Processing

A transaction code can be defined as belonging to a conversational transaction
during IMS system definition. If so, an application program that processes that
transaction, can interrelate messages from a given terminal. The vehicle to
accomplish this is the scratch pad area (SPA). A unique scratch pad area is created
for each physical terminal which starts a conversational transaction. Each time an
input message is entered from a physical terminal in conversational mode, its SPA
is presented to the application program as the first message segment (the actual
input being the second segment).

Before terminating or retrieving another message (from another terminal), the
program must return the SPA to the control region with a message ISRT call. The
first time a SPA is presented to the application program when a conversational
transaction is started from a terminal, IMS will format the SPA with binary zero’s
(X'00". If the program wants to terminate the conversation, it can indicate this by
inserting a blank transaction code into the SPA.

Output Message Processing

As soon as an application reaches a synchronization point, its output messages in
the message queue become eligible for output processing. A synchronization point
is reached whenever the application program terminates or requests a new
message/SPA from the input queue via a GU call.

In general, output messages are processed by the Message Format Service (MFS)
before they are transmitted via the telecommunications access method.

Different output queues can exist for a given LTERM, depending on the message
origin. They are, in transmission priority:

1. Response messages, that is, messages generated as a direct response (same
PCB) to an input message from this terminal.

2. Command responses.
3. Alternate output messages, messages generated via an alternate PCB.

Logging, Checkpointing, and Restarting

To ensure the integrity of its databases and message processing, IMS uses logging
and checkpoint/restart processing. In case of system failure, either software or
hardware, IMS can be restarted. This restart includes the repositioning of users’
terminals, transactions, and databases.

Related Reading: For further information on IMS logging facilities, see [Chapter 25,
FIMS Logging,” on page 257 |

At regular intervals during IMS execution, checkpoints are written to the logs. This
limits the amount of reprocessing required in the case of an emergency restart. A

Chapter 16. Application Program Processing for IMS TM 145

IBM Confidential

checkpoint is taken after a specified number of log records are written to the log
tape after a checkpoint command. A special checkpoint command is available to
stop IMS in an orderly manner.

A special disk restart data set is used to record the checkpoint identification and log
tape volume serial numbers. This restart data set (IMS.RDS) is used during restart
for the selection of the correct restart checkpoint and restart logs.

Message Switching

146

A message switch is when a user wishes to send a message to another user. The
basic format of a message switch is the destination LTERM name followed by a
blank and the message text.

A program-to-program switch or program-to-program message switch is a program
that is already executing that requests a new transaction be put on the IMS
message queues for standard scheduling and execution.

This second transaction can:

» Continue the processing of the first transaction (which, in this case, has probably
terminated), and respond (if required) to the originating terminal, which is
probably still waiting for a response.

* Be a second transaction, purely an offshoot from the first, without any
relationship or communications with the originating terminal. In this case, the
original transaction must respond to the terminal, if required.

IMS: An Introduction to IMS

IBM Confidential

Part 4. IMS Application Development

Chapter 17. Application Programming Overview 149
Java Programs .. .14
Program Structure . . . v 1¢)
Entry to the Application Program P Lo%
PCB Mask oY
CallstoliMs .155
Status Code Processing .156
Termination of the Application 156
IMS Setup for Applications .156
IMS Control Blocks e RSV 4
Generating IMS Control Blocks Coe .« .«158
IMS Database Application Programmmg Interface1e0
IMS Application Calls e A
IMS/DB2 Resource Translate Table T A X
IMS System ServiceCalls .162
Chapter 18. Application Programming for the IMS Database Manager 165
Introduction to Database Processing . . N 1 19)
Application Programming Interfaces to II\/IS1le6
Handling Status Codes .169
Sample Presentation ofa Call. A1
Processing Against a Single Database Structure e 0]
DL/l Positioning .. .170
Retrieving Segments .1711
Updating Segments.174
Calls with Command Codes. 176
Database Positioning AfterDL/ICalls 178
Using Multiple PCBs for One Database 179
Processing GSAM Databases e e
Language Specific Programming C0n3|derat|ons .- -180
COBOL Programming Considerations 180
Java Programming Considerations182
PL/I Programming Considerations . . . T £ S 4
Processing Databases with Logical Relanonshrps RS2
Accessing a Logical Child in a Physical Database 184
Accessing Segments in a Logical Database. 184
Processing Databases with Secondary Indexes 185
Accessing Segments by Using a Secondary Index 185
Creating Secondary Indexes187
Loading Databases. . . < Y4
Overview of Loading Databases Co £ < V4
Loading a Database with Logical Relatronshrps . o« o«ls8
Loading a Database with Secondary Indexes 189
Using Batch Checkpoint/Restart192
Using the RestartCall. .19
Using the CheckpointCall19
Chapter 19. Application Programming for the IMS Transaction Manager 197
Application Program Processing197
RoleofthePSB .19
DL/ Message Calls. .19
Conversational Processing199
Output Message Processing200

© Copyright IBM Corp. 2004 147

148

Application Program Termination .

Logging and Checkpoint/Restart Processmg
Transaction Manager Application Design .

Online Transaction Processing Concepts .

Online Program Design

Basic Screen Design .

Chapter 20. The IMS Message Format Service .
Overview of MFS
MFS and 3270 Devices .
Relationships between MFS Control Blocks
MFS Control Block Chaining
Linkage Between Device Fields and Message Flelds
Linkage Between Logical Pages and Device Pages .
Message Description Linkage .

3270 Device Considerations Relative to Control Block Lmkage .

MES Functions
Input Message Formattlng
Output Message Formatting.
MFS Formats Supplied by IBM

MFS Control Statements . .
Definition Statement for Message Formats .
Definition Statement for Device Formats .
Compiler Statement Definitions

Relationships Between Source Statements and Control Blocks.

Generating MFS Control Blocks .
Steps for Generating MFS Control Blocks
Maintaining the MFS Library

Chapter 21. Application Programming in IMS Java .
Environments that Support IMS Java
IMS Environment Overview .
WebSphere Application Server for z/OS Envwonment OverV|eW
CICS Environment Overview .
DB2 UDB for z/OS Environment Overwew
Describing an IMS Database to IMS Java
Accessing an IMS Database with IMS Java .
Using JDBC to Access an IMS Database .

IMS: An Introduction to IMS

IBM Confidential

. 200
. 201
. 201
. 202
. 204
. 205

. 207
. 207
. 209
. 209
. 210
. 210
. 211
. 212
. 212
. 213
. 213
. 214
. 218
. 218
. 218
. 219
. 219
. 219
. 220
. 220
. 221

. 223
. 223
. 223
. 224
. 224
. 224
. 224
. 226
. 227

IBM Confidential

Chapter 17. Application Programming Overview

This chapter explains the basics for any programming running in an IMS
environment.

IMS programs (online and batch) have a different structure than non-IMS programs
(see[‘Program Structure”). An IMS program is always called as a subroutine of the
IMS region controller. It also has to have a program specification block (PSB)
associated with it. The PSB provides and interface from the program to IMS
services which the program needs to make use of. These services can be:

* Sending or receiving messages from online user terminals
» Accessing database records

* Issuing IMS commands

Issuing IMS service (checkpoint or sync) calls

The IMS services available to any program are determined by the IMS environment
in which the application is running.

The following sections are covered in this chapter:

+ |“Java Programs”|

* |‘Program Structure’|

* 'IMS Setup for Applications” on page 156|

+ [IMS Database Application Programming Interface” on page 160|
[IMS Application Calls” on page 161|

[IMS/DB2 Resource Translate Table” on page 161]

[IMS System Service Calls” on page 162|

Java Programs

IMS Java application support (hereafter called IMS Java) allows you to write Java
application programs that access IMS databases from IMS, IBM WebSphere
Application Server for z/OS and OS/390, IBM CICS Transaction Server for z/OS, or
IBM DB2 Universal Database™ for z/OS stored procedures.

Related Reading: For more information about IMS Java application programs, see
[Chapter 21, “Application Programming in IMS Java,” on page 223.|

Program Structure

During initialization, both the application program and its associated PSB are loaded
from their respective libraries by the IMS system. The IMS modules interpret and
execute database CALL requests issued by the program. These modules may
reside in the same or different z/OS address spaces depending on the environment
in which the application program is executing.

Application programs executing in an online transaction environment are executed
in a dependent region called the message processing region (MPR) or Fast Path
region (IFP). The programs are often called message processing programs (MPP).
The IMS modules that execute online services will run in the control region while
the full-function database services will run in the DLI separate address space
(DLISAS). The association of the application program and the PSB is defined at
IMS system generation time via the APPLTN and TRANSACTION macros.

© Copyright IBM Corp. 2004 149

150

IBM Confidential

Batch application programs can execute in two different types of regions.

» Application programs which need to make use of message processing services
or databases being used by online systems are executed in a batch message
processing region (BMP).

» Application programs which can execute without messages services execute in a
DLI batch region.

For both these types of batch application programs, the association of the
application program to the PSB is done on the PARM keyword on the EXEC
statement.

The application program interfaces with IMS by using the following program
elements:

* An ENTRY statement specifying the PCBs utilized by the program (see
[the Application Program” on page 151))

* A PCB-mask which corresponds to the information maintained in the
pre-constructed PCB and which receives return information from IMS (see
[Mask” on page 151)

An 1/O area for passing data segments to and from the databases

+ Calls to DL/I specifying processing functions (see [‘Calls to IMS” on page 155)

+ Status code processing (see [‘Status Code Processing” on page 156)

A termination statement (see [‘Termination of the Application” on page 156)

The PCB mask(s) and I/O areas are described in the program’s data declaration
portion. Program entry, calls to IMS processing, and program termination are
described in the program'’s procedural portion. Calls to IMS, processing statements,
and program termination can reference PCB mask(s) and/or I/O areas. In addition,
IMS can reference these data areas. [Figure 48 on page 151]illustrates how these
elements are functionally structured in a program and how they relate to IMS.

The individual program elements mentioned in the previous list, are discussed in
the sections that follow [Figure 48 on page 151l

IMS: An Introduction to IMS

IBM Confidential

DLI Modules Application Program
Entry -
» PROGRAM ENTRY
PCB Mask » DEFINE PCB AREAS
) GET INPUT RECORDS FROM INPUT FILE
Call info
from DLI “ » CALLS TO DL/I DB FUNCTIONS
RETRIEVE
INSERT
10 AREA
REPLACE
Segments
to and from < DELETE
Databases
» CHECK STATUS CODES
PUT OUTPUT RECORDS
TERMINATION
Exit <

Figure 48. Structure of an IMS Application Program

Entry to the Application Program

PCB Mask

Referring to when the operating system gives control to the IMS control
facility, the IMS control program eventually passes control to the application
program (through the entry point as defined below). At entry, all the PCB-names
used by the application program are specified. The order of the PCB-names in the
entry statement must be the same as in the PSB for this application program. The
sequence of PCBs in the linkage section or declaration portion of the application
program need not be the same as in the entry statement.

Notes:

1. Batch DL/l programs cannot be passed parameter information using the PARM
field from the EXEC statement.

2. TP PCBs must proceed database PCBs in the PSB.

A mask or skeleton database PCB structure is used by the application program to
access data from a TP or database PCB. One PCB is required for each view of a
database or online service. The program views a hierarchical data structure by
using this mask.

Chapter 17. Application Programming Overview 151

Application Program

IBM Confidential

One PCB is required for each data structure. An example of a database PCB mask
is shown in|Figure 50 on page 153 and explained in the text that follows the figure.
An example of an TP PCB mask is shown in [Figure 52 on page 155|

As the PCB does not actually reside in the application program, care must be taken
to define the PCB mask as an assembler dsect, a COBOL linkage section entry, or
a PL/I based variable.

The PCB provides specific areas used by IMS to inform the application program of
the results of its calls. At execution time, all PCB entries are controlled by IMS.
Access to the PCB entries by the application program is for read-only purposes.
The PCB masks for an TP PCB and a database PCB are different. An example of

both are shown in|Figure 49.

Application Data
Structure
Part
el PCB
MASK
STOCK ORDER
A
01 PCBNAME Bytes Function

02 DBD-NAME PICTURE X (8) .\\
02 SEG-LEVEL PICTURE XX.—_| 8 Database Name

JUSTIFIED RIGHT. T2 Segment Hierarchy level indicator
02 STATUS-CODE PICTURE XX.\\
02 PROC-OPTIONS PICTURE XXXX . 2 DL/l result Status Code
02 RESERVE-DLI PICTURE S9(5). \ . .

COMPUTATIONAL 4 DL/I Processing Options

: . ———»38 Segment Name Feedback Area

02 SEG-NAME-FB PICTURE X (8) .7 |

COMPUTATIONAL.
02 NUMB-SENS-SEGS PICTURE S59(5) .7 T——> 4 Number of Sensitive Segments
02 KEY-FB-AREA PICTURE X(n) .—+——»n Key Feedback Area

Mask Written in COBOL
(Linkage Section)

Figure 49. Application PCB Structure

Database PCB Mask

[Figure 50 on page 153|shows an example of a DLI program’s PCB mask, which
defines the PCB area used by IMS to return the results of the call.

152 IMS: An Introduction to IMS

IBM Confidential

01 PCBNAME.
02 DBD-NAME PICTURE X(8).
02 SEG-LEVEL PICTURE XX.
02 STATUS-CODE PICTURE XX.

02 PROC-OPTIONS PICTURE XXXX.
02 RESERVED-DLI PICTURE S9(5).
02 SEG-NAME PICTURE X(8).
02 LENGTH-FB-KEY PICTURE S9(5).
02 NUMB-SENS-SEGS ~ PICTURE S9(5).
02 KEY-FB-AREA PICTURE X(n).

Figure 50. Example of a Database Application PCB Mask

The following items comprise a PCB for a hierarchical data structure from a
database:

Name of the PCB
This is the name of the area which refers to the entire structure of PCB
fields. It is used in program statements. This name is not a field in the PCB.

It is the 01 level name in the COBOL mask i

Name of the database
This is the first field in the PCB and provides the DBD name from the
library of database descriptions associated with a particular database. It
contains character data and is eight bytes long.

Segment hierarchy level indicator
IMS uses this area to identify the level number of the last segment
encountered which satisfied a level of the call. When a retrieve is
successfully completed, the level number of the retrieved segment is placed
here. If the retrieve is unsuccessful, the level number returned is that of the
last segment that satisfied the search criteria along the path from the root
(the root segment level being ‘01’) to the desired segment. If the call is
completely unsatisfied, the level returned is ‘00’. This field contains
character data: it is two bytes long and is a right-justified numeric value.

DL/I status code
A status code indicating the results of the DL/I call is placed in this field and
remains here until another DL/I call uses this PCB. This field contains two
bytes of character data. When a successful call is executed, DL/I sets this
field to blanks or to an informative status indication. A complete list of DL/I
status codes can be found in the [MS Version 9: Messages and Codes,|

DL/l processing options
This area contains a character code which tells DL/I the “processing intent”
of the program against this database (that is, the kinds of calls that may be
used by the program for processing data in this database). This field is four
bytes long. It is left-justified. It does not change from call to call. It gives the
default value coded in the PCB PROCOPT parameter, although this value
may be different for each segment. DL/I will not allow the application to
change this field, nor any other field in the PCB.

Reserved area for IMS
IMS uses this area for its own internal linkage related to an application
program. This field is one fullword (4 bytes), binary.

Segment name feedback area
IMS fills this area with the name of the last segment encountered which
satisfied a level of the call. When a retrieve call is successful, the name of
the retrieved segment is placed here. If a retrieve is unsuccessful, the name

Chapter 17. Application Programming Overview 153

IBM Confidential

returned is that of the last segment, along the path to the desired segment,
that satisfied the search criteria. This field contains eight bytes of character
data. This field may be useful in GN calls. If the status code is ‘Al' (data
management open error), the DD name of the related data set is returned
in this area.

Length of key feedback area

This entry specifies the current active length of the key feedback area
described below. This field is one fullword (4 bytes), binary.

Number of sensitive segments

This entry specifies the number of segment types in the database to which
the application program is sensitive. This would represent a count of the
number of segments in the logical data structure viewed through this PCB.
This field is one fullword (4 bytes), binary.

Key feedback area

IMS places in this area the concatenated key of the last segment
encountered which satisfied a level of the call. When a retrieve is
successful, the key of the requested segment and the key field of each
segment along the path to the requested segment are concatenated and
placed in this area. The key fields are positioned from left to right, beginning
with the root segment key and following the hierarchical path. When a
retrieve is unsuccessful, the keys of all segments along the path to the
requested segment, for which the search was successful, are placed in this
area. Segments without sequence fields are not represented in this area.

Note: This area is never cleared, so it should not be used after a

completely unsuccessful call. It will contain information from a previous call.
See [Figure 51|for an illustration of concatenated keys.

PART
Sequence Key ——— 01001020

01001020 *——Concatenated Key

STOCK
KBL07010001

"01001020"+"KBL07010001"=
01001020KBL0701001

ORDER
75456-01 '01001020"+"75456-01"=
0100102075456-01
DETAIL
03 '01001020"+"75456-01"+"03"=
0100102075456-0103

Figure 51. Examples of Concatenated Keys

TP PCB Mask

[Figure 52 on page 155|shows an example of an online program’s PCB mask, which

defines the PCB area used by IMS to return the results of the call.

154 MS: An Introduction to IMS

IBM Confidential

Calls to IMS

01 PCBNAME.
02 DBD-NAME PICTURE X(8).
02 SEG-LEVEL PICTURE XX.
02 STATUS-CODE PICTURE XX.

02 PROC-OPTIONS PICTURE XXXX.
02 RESERVED-DLI PICTURE S9(5).
02 SEG-NAME PICTURE X(8).
02 LENGTH-FB-KEY PICTURE S9(5).
02 NUMB-SENS-SEGS ~ PICTURE S9(5).
02 KEY-FB-AREA PICTURE X(n).

Figure 52. Example of an Online Application PCB Mask

Actual processing of IMS messages, commands, databases and services are
accomplished using a set of input/output functional call requests. A call request is
composed of a CALL statement with an argument list. The argument list will vary
depending on the type of call to be made.The argument list will consists of the
following parameters:

* Function call

* PCB name

* 1/O area

* Segment search argument (SAA) (database calls only)

[Table 6] shows a brief explanation of the argument list items. The argument list
items for database processing are discussed in more detail in|Chapter 18,|
['‘Application Programming for the IMS Database Manager,” on page 165.|The online
services and commands argument list items are discussed in more detail in

Chapter 19, “Application Programming for the IMS Transaction Manager,” on page]
197.

Table 6. IMS Call Argument List

Application
Component Description

Function Identifies the DL/I function to be performed. This argument is the
name of the four character field which describes 1/0O operation. The
DL/l functions are described in the individual chapters

PCB name The name of the database program communication block (PCB). It
is the name of the PCB within the PSB that identifies which specific
data structure the application program wishes to process. The PCB
is defined in more detail in|‘PCB Mask” on page 151|

I/O area The name of a I/O work area. This is an area of the application
program into which DL/l puts a requested segment, or from which
DL/ takes a designed segment. If this a common area is used to
process multiple calls it must be long enough to hold the longest
path of segments to be processed

SSAL...SSAn The names of the Segment Search Arguments (SSAs). These are
optional depending on the type of call issued. Used only used for
database calls. The SSA provides information to define the segment
to be retrieved or written.

Chapter 17. Application Programming Overview 155

IBM Confidential

Status Code Processing

Termination of

After each IMS call, a two-byte status code is returned in the PCB which is used for
that call. There are three categories of status codes:

* The blank status code, indicating a successful call

» Exceptional conditions and warning status codes from an application point of
view

» Error status codes, specifying an error condition in the application program
and/or IMS

The grouping of status codes in the above categories is somewhat installation
dependent. This book, however, will give a basic recommendation after each
specific call function discussion. It is also recommended that you use a standard
procedure for status code checking and the handling of error status code. The first

two categories should be handled by the application program after each single call.
Figure 53| gives an example using COBOL.

CALL 'CBLTDLI'" USING

IF PCB-STATUS EQ 'GE' PERFORM PRINT-NOT-FOUND.
IF PCB STATUS NE 'bb' PERFORM STATUS-ERROR.
everything okay, proceed...

Figure 53. Example of a COBOL Application Program Testing Status Codes

Notice that it is more convenient to directly test the regular exceptions in-line
instead of branching to a status code check routine. In this way, you clearly see the
processing of conditions that you wish to handle from an application point of view,
leaving the real error situations to central status code error routine.

the Application

At the end of the processing of the application program, control must be returned to
the IMS control program. The following list shows examples of the termination
statements.

Language Return Statement
Java return;

COBOL GOBACK.

PL/ RETURN;

ASSEMBLER RETURN(14,12),RC=0

Warning: Returning to IMS causes storage that was occupied by your program to
be released because IMS links to your application program. Therefore you should
close all non-DL/I data sets for COBOL and Assembler before return, to prevent
abnormal termination during close processing by z/OS. PL/I automatically causes all
files to be closed upon return.

IMS Setup for Applications

Before you can run an application program under IMS, control blocks must be
defined and generated. The following sections cover this topic.

* ['IMS Control Blocks” on page 157
+ [‘Generating IMS Control Blocks” on page 158

156 IMS: An Introduction to IMS

IBM Confidential

IMS Control Blocks

A program specification block generation (PSBGEN) must be performed to create
the program specification block (PSB) for the application program before the
program can be run. The PSB contains one PCB for each DL/I database (logical or
physical) the application program will access. The PCBs specify which segments
the program will use and the kind of access (retrieve, update, insert, delete) the
program is authorized to. The PSBs are maintained in one or more IMS system
libraries called a PSBLIB library.

All IMS databases require a database descriptor block (DBD) created to have
access to any IMS databases. The details of these control blocks are describe in
r‘Generating IMS Control Blocks” on page 158.| The database DBD is assembled
into a system library called a DBDLIB.

The IMS system needs to combine and expand the PSB and DBD control blocks
into an internal format called access control blocks (ACBs). The Application Control
Blocks Maintenance Utility is used to create the ACBs.

In a batch DLI environment, the ACB blocks are either built dynamically at step
initialization time (as specified in the DLIBATCH procedure) or the ACB blocks are
built by running the ACB maintenance utility (as specified in the DBBBATCH
procedure). In an online environment, the ACB blocks need to be created before an
application can be scheduled and run. The ACB utility is run offline and the resulting
control blocks are placed in an ACB library.

The IMS system needs to access these control blocks (DBDs and PSBs) in order to
define the applications use of the varies IMS resources required. Depending on
which environment the application program is executed in will determine how IMS
accesses those control blocks. See [Figure 54 on page 159|to see a overview of the
processing.

The Transaction Processing (TP) PCB
Besides the default TP PCB, that does not require PCB statement, additional PCBs
can be coded. These PCBs are used to insert output messages to:

* LTERMSs other than the LTERM which originated the input message. A typical use
of an alternate PCB is to send output to a 3270 printer terminal.

* A non-conversational transaction.
e Another USERID.

The destination of the output LTERM can be set in two ways:
» During PSBGEN by specifying the LTERM/TRANNAME in a alternate PCB.

» Dynamically by the MPP during execution, by using a change call against a
modifiable alternate PCB.

The method used depends on the PCB statement.

The PCB Statement: This is the only statement required to generate an alternate
PCB (multiple occurrences are allowed). Its format is:

PCB TYPE=TP,LTERM=name,MODIFY=YES

The following list describes the possible parameters.
Keyword Description
TYPE=TP Required for all alternate PCBs.

Chapter 17. Application Programming Overview 157

IBM Confidential

LTERM=name Specifies this PCB is pointing at a known LTERM
defined in the IMS system. The name is optional.
MODIFY=YES If the modify is specified then the LTERM name

may be changed by a CHANGE call within the
application program.

Note: If MODIFY=YES is specified, the MPP must
specify a valid alternate output LTERM with a
change call before inserting any message via this
PCB.

The Database PCB

The DB PCB for an MPP or BPP can be simple or complex. As compared to the TP
PCB, two additional processing intent options can be specified with the PROCOPT=
keyword of the PCB and/or SENSEG statement.

Here’s an example of a simple database PCB:

PCB TYPE=DB,
DBDNAME=EXCEPTA,
PROCOPT=A,
KEYLEN=24

SENSEG NAME=QBO1,
PARENT=0

In the previous example:

TYPE=DB
Required for all DB PCBs

DBDNAME=name
Specifies the database that this PCB is pointing to

PROCOPT=
Processing options

KEYLENGTH=
The length of the concatenated keys for this database

SENSEG
the SENSEG statement with the database PCB statement to define a
hierarchically related set of data segments

Related Reading: For more information about generating these control blocks, see
the [IMS Version 9: Utilities Reference: System|

Generating IMS Control Blocks

158

In addition to database PCBs, a PSB for MPPs or BMPs contains one or more data
communication PCBs.

The order of the PCBs in the PSB must be:
1. Data communication PCBs

2. Database PCBs

3. GSAM PCBs (not allowed for MPPs)

One data communication PCB is always automatically included by IMS at the
beginning of each PSB of an MPP or BMP. This default data communication PSB is
used to insert output messages back to the originating LTERM or USERID.

IMS: An Introduction to IMS

IBM Confidential

Note: One data communication PCB is always automatically included by IMS at the
beginning of each PSB of an MPP or BMP. This default data communication PSB is

used to insert output messages back to the originating LTERM or USERID.

DBD Source
Library

PSB Source
Library

Assemble and Batch Assemble and
Link Edit » Application [« Link Edit
(DBDGEN) (DLI) (PSBGEN)
DBDLIB PSBLIB
Assemble and
> Link Edit <
(ACBGEN)
Batch
Application ACBLIB
(DBB)
IMS Control
Region
v A4 A4 A4 v
IMS Batch Online Fast Path Java Java
Application Application Application Application Application
(BMP) (MPP) (IFP) (JBP) (JMP)

Figure 54. IMS Control Block Generation and Usage

Note: Multiple BUILD statements can be coded for both DBDs and PSBs, but the

ones for DBDs must be first.

Generating PSBs
The PSBGEN statement is basically the same as for a database PCB. The

IOEROPN= parameter must be omitted, the COMPAT=YES parameter is ignored.

Chapter 17. Application Programming Overview

IBM Confidential

Generating ACBs

Before PSBs and DBDs can be used by the control region, they must be expanded
to an internal control block format. This expansion is done by the application control
block generation (ACBGEN) utility. The expended control blocks are maintained in
the IMS. ACBLIB. This is a standard z/OS partitioned data set. JCL Requirements.

An ACBGEN procedure is placed in IMS.PROCLIB during IMS system definition.

Note: Multiple BUILD statements can be coded for both DBDs and PSBs, but the
ones for DBDs must be first.

Additional Application Processing Intent Options
The PROCOPT= keyword is extended with two additional processing intent options,
“O” AND “E". Their meanings are:

(0] Read only: no dynamic enqueue is done by program isolation for calls
against this database. Can be specified with only the G intent option, as
GO or GOP. This option is only valid for the PCB statement.

CAUTION:

If the ‘O’ option (read-only) is used for a PCB, IMS does not check the
ownership of the segments returned. This means that the read-only
user might get a segment that had been updated by another user. If
the updating user should then abnormal terminate, and he backed out,
the read-only user would have a segment that did not (and never did)
exist in the database. Therefore, the ‘O’ option user should not
perform updates based on data read with that option. An ABEND can
occur with PROCOPT=GO if another program updates pointers when
this program is following the pointers. Pointers are updated during
insert, delete and backout functions.

E Forces exclusive use of this database or segment by the MPP/BMP. No
other program which references this database/segment will be scheduled in
parallel. No dynamic enqueue by program isolation is done, but dynamic
logging of database updates will be done. E can be specified with G, I, D,
B, and A.

IMS Database Application Programming Interface

160

IMS provides a standard set of functions to allow applications to access and
manipulate data managed by the IMS Database Manager. These functions also
allow applications to access and process messages managed by the IMS
Transaction Manager and to perform certain system functions.

Calls to these functions can be made in a number of ways:

» A language specific call interface. There is one for each programming language
that IMS applications can be written in.

* Alanguage independent call interface for applications written in any language
that supports IBM’s language environment product.

» The application interface block (AIB) call interface.

» For CICS applications that access IMS databases, the application can use the
CICS command level interface to provide IMS DB support.

* REXX EXECs can invoke IMS functions by using the IMS adaptor for REXX

IMS: An Introduction to IMS

IBM Confidential

IMS Application Calls
The following list describes the calls that IMS applications can use.

Get Unique (GU)
The GU (get unique) call is used to retrieve a specific segment or path of
segments from a database. At the same time it establishes a position in a
database from which additional segments can be processed in a forward
direction.

Get Next (GN)
The GN (get next) call is used to retrieve the next or path of segments from
the database. The get next call normally moves forward in the hierarchy of
a database from the current position. It can be modified to start at an earlier
position than current position in the database through a command code, but
its normal function is to move forward from a given segment to the next
desired segment in a database.

Hold Form of Get Calls
GHU (get hold unique), or GHN (get hold next), indicates the intent of the
user to issue a subsequent delete or replace call. A get hold call must be
issued to retrieve the segment before issuing a delete or replace call.

Insert (ISRT)
The ISRT (insert) call is used to insert a segment or a path of segments
into a database. It is used to initially load segments in databases, and to
add segments in existing databases.

To control where occurrences of a segment type are inserted into a
database, the user normally defines a unique sequence field in each
segment. When a unique sequence field is defined in a root segment type,
the sequence field of each occurrence of the root segment type must
contain a unique value. When defined for a dependent segment type, the
sequence field of each occurrence under a given physical parent must
contain a unigue value. If no sequence field is defined, a new occurrence is
inserted after the last existing one.

Delete (DLET)
The DLET (delete) call is used to delete a segment from a database. When
a segment is deleted from a DL/l database, its physical dependents, if any
are also deleted.

Replace (REPL)
The REPL (replace) call is used to replace the data in the data portion of a
segment or path of segments in a database. Sequence fields cannot be
changed with a replace call.

System Service Calls
In addition to the functions above, used to manipulate the data, there are a
number of system service calls provided to allow the application to make
use of other facilities provided by IMS. These system service calls are
described in [Table 7 on page 162| and [Table 8 on page 163

IMS/DB2 Resource Translate Table

When an IMS transaction accesses DB2, the plan name used is, by default, the
same as the PSB/APPLCTN name.

It is, however, possible to set up a translation table, the RTT, that translates an
APPLCTN to a different DB2 plan name.

Chapter 17. Application Programming Overview 161

IBM Confidential

This is described in the DB2 (not IMS) documentation for attaching DB2 to IMS.
See Defining DB2 Plans for IMS Applications in DB2 for z/OS Installation Guide. It
is simply a table of macros, associating APPLCTN macros with DB2 plan names.
This is assembled in a CSECT (with the name the same as the label of the 1st
macro in the table). This must then be placed in an APF authorized library in the
IMS.SDFSRESL concatenation of the IMS control region. The RTT is pointed to in
the PROCLIB member that defines the DB2 attachment. If the RTT parameter is
null, the RTT is not used.

The re-assembled table will be picked up the next time IMS is stopped/started or
when a stop (/STO SUBSYS xxxx) and restart (/STA SUBSYS xxxx) of the DB2
connection.

IMS System Service Calls

[Table 7|and [Table 8 on page 163| contain summaries of the IMS system service
calls that application programs can use in the DB and TM environments.

Related Reading: For complete information about the IMS system service calls,
see:

+ [IMS Version 9: Application Programming: Database Manager|
+ [IMS Version 9: Application Programming: Transaction Manager

Table 7. Summary of IMS DB System Service Calls

Function Code Meaning and Use Options Valid for
CHKP (Basic) Basic checkpoint; prepares None DB batch, TM batch, BMP,
for recovery MPP, IFP
CHKP (Symbolic) Symbolic checkpoint; Specifies up to seven DB batch, TM batch, BMP
prepares for recovery program areas to be saved
GMSG Retrieves a message from Waits for an AOl message DB/DC and DCCTL (BMP,
the AO exit routine when none is available MPP, IFP), DB/DC and
DBCTL (DRA thread),
DBCTL (BMP non-message
driven), ODBA
GSCDEonpage 163] Gets address of system None DB Batch, TM Batch
contents directory
ICMD Issues an IMS command and None DB/DC and DCCTL (BMP,
retrieves the first command MPP, IFP), DB/DC and
response segment DBCTL (DRA thread),
DBCTL (BMP non-message
driven), ODBA
INIT Initialize; application receives Checks each PCB DB batch, TM batch, BMP,
data availability and deadlock database for data MPP, IFP, DBCTL, ODBA
occurrence status codes availability
INQY Inquiry; returns information Checks each PCB DB batch, TM batch, BMP,
and status codes about I/O database for data MPP, IFP, ODBA
or alternate PCB destination availability; returns
type, location, and session information and status
status codes about the current
execution environment
LOGH#cn page 163 Log; writes a message to the None DB batch, TM batch, BMP,
system log MPP, IFP, DBCTL, ODBA
PCBtfonpage 163] Specifies and schedules None CICS (DBCTL or DB/DC)

another PSB

162 IMS: An Introduction to IMS

IBM Confidential

Table 7. Summary of IMS DB System Service Calls (continued)

Function Code

Meaning and Use

Options

Valid for

RCMD

Retrieves the second and
subsequent command
response segments resulting
from an ICMD call

None

DB/DC and DCCTL (BMP,
MPP, IFP), DB/DC and
DBCTL (DRA thread),
DBCTL (BMP non-message
driven), ODBA

ROLB Roll back; eliminates Returns last message to DB batch, TM batch, BMP,
database updates ilo area MPP, IFP

ROLL Roll; eliminates database None DB batch, TM batch, BMP,
updates; abend MPP, IFP

ROLS Roll back to SETS; backs out Issues call using name of DB batch, TM batch, BMP,
database changes to SETS DB PCB or i/o PCB MPP, IFP, DBCTL, ODBA
points

SETS/SETU Set a backout point; Cancels all existing DB batch, TM batch, BMP,
establishes as many as nine backout points MPP, IFP, DBCTL, ODBA
intermediate backout points

SNAF2 Collects diagnostic Choose SNAP options DB batch, BMP, MPP, IFP,
information CICS (DCCTL), ODBA

STATE Statistics; retrieves IMS Choose type and format DB batch, BMP, MPP, IFP,
system statistics DBCTL, ODBA

SYNC Synchronization; releases Requests commit-point BMP
locked resources processing

TERM Terminate; releases a PSB None CICS (DBCTL or DB/DC)
so another can be scheduled;
commit database changes

XRST Extended restart; works with ~ Specifies up to seven DB batch, TM batch, BMP
symbolic checkpoint to restart areas to be saved
application program

Note:

1. GSCD is a Product-sensitive programming interface.

2. SNAP is a Product-sensitive programming interface.
3. STAT is a Product-sensitive programming interface.
4. b indicates a blank. All calls must be four characters.

Table 8. Summary of IMS TM System Service Calls

Function Code Meaning and Use Options Valid Usage
APSB Allocate PSB. Allocates a None MPP

PSB for use in CPI-C driven

application programs.
CHKP (Basic) Basic checkpoint. For None batch, BMP, MPP

recovery purposes.

CHKP (Symbolic) Symbolic checkpoint. For Can specify seven program batch, BMP
recovery purposes. areas to be saved.
DPSB Deallocate PSB. Frees a None MPP

PSB in use by a CPI-C
driven application program.

Chapter 17. Application Programming Overview 163

Table 8. Summary of IMS TM System Service Calls (continued)

IBM Confidential

Function Code

Meaning and Use

Options

Valid Usage

GMSG

Retrieve a message from
the AO exit routine.

Can wait for an AOI
message when none is
available.

DB/DC and DCCTL(BMP,
MPP, IFP), DB/DC and
DBCTL(DRA thread),
DBCTL(BMP non-message
driven)

GSCD Get the address of the None batch
system contents directory.

ICMD Issue an IMS command and None DB/DC and DCCTL(BMP,
retrieve the first command MPP, IFP), DB/DC and
response segment. DBCTL(DRA thread),

DBCTL(BMP non-message
driven)

INIT Application receives data Checks each PCB for data batch, BMP, MPP, IFP
availability status codes. availability.

INQY Inquiry. Retrieves None batch, BMP, MPP, IFP
information about output
destinations, session status,
execution environment, and
the PCB address.

LOGHE Log. Write a message to the None batch, BMP, MPP, IFP
system log.

RCMD Retrieve the second and None DB/DC and DCCTL(BMP,
subsequent command MPP, IFP), DB/DC and
response segments DBCTL(DRA thread),
resulting from an ICMD call. DBCTL(BMP non-message

driven)

ROLB Rollback. Backs out Call returns last message to batch, BMP, MPP, IFP
messages sent by the i/o area.
application program.

ROLL Roll. Backs out output None batch, BMP, MPP
messages and terminates
the conversation.

ROLS Returns message queue Issues call with i/o PCB or batch, BMP, MPP, IFP
positions to sync points set aib
by the SETS or SETU call.

SETS Sets intermediate sync Cancels all existing backout batch, BMP, MPP, IFP
(backout) points. points. Can establish up to

9 backout points.

SETU Sets intermediate sync Cancels all existing backout batch, BMP, MPP, IFP

(backout) points. points. Can establish up to
9 backout points.

SYNC Synchronization Request commit point BMP

processing.

XRST Restart. Works with Can specify up to 7 areas to batch, BMP
symbolic CHKP to restart be saved.
application program failure.

Note:

1. GSCD is a Product-sensitive programming interface.

2. b indicates a blank. All calls must be four characters.

164 IMS: An Introduction to IMS

IBM Confidential

Chapter 18. Application Programming for the IMS Database
Manager

There are two ways that application programs can interact with IMS DB:
» Traditional applications can use the DL/l database call interface.

» Java applications can use IMS Java’'s implementation of JDBC or the IMS Java
hierarchical interface, which is a set of classes that you can use in Java that are
similar to DL/I calls.

This chapter discusses the DL/l database call interface. See|Chapter 21,
{‘Application Programming in IMS Java,” on page 223 for information about how
Java applications call IMS.

The following sections are covered in this chapter:

+ [“Introduction to Database Processing’]

* |'Processing Against a Single Database Structure” on page 170|
. “‘Processing Databases with Logical Relationships” on page 184|
* |'Processing Databases with Secondary Indexes” on page 185
. “‘Language Specific Programming Considerations” on page 18(1
* |["Processing Databases with Logical Relationships” on page 184|
* [‘Processing Databases with Secondary Indexes” on page 185|

« [“‘Loading Databases” on page 187|

+ [‘Using Batch Checkpoint/Restart” on page 192|

Introduction to Database Processing

In general, database processing is transaction oriented. An application program
accesses one or more database records for each transaction it processes. There
are two basic types of DL/l application programs:

* The direct access program
* The sequential access program

A direct access program accesses, for every input transaction, some segments in
one or more database records. These accesses are based on database record and
segment identification. This identification is essentially derived from the transaction
input. Normally it is the root-key value an additional (key) field values of dependent
segments. For more complex transactions, segments could be accessed in several
DL/l databases concurrently.

A sequential application program accesses sequentially selected segments of all of
a consecutive subset of a particular database. The sequence is usually determined
by the key of the root-segment. A sequential program can also access other
databases, but those accesses are direct, unless the root-keys of both databases
are the same.

A DL/I application program normally processes only particular segments of the DL/I
databases. The portion that a given program processes is called an application data
structure. This application data structure is defined in the program specification
block (PSB). There is one PSB defined for each application program type. An
application data structure always consists of one or more hierarchical data
structures, each of which is derived from a DL/I physical or logical database.

© Copyright IBM Corp. 2004 165

IBM Confidential

Application Programming Interfaces to IMS

166

During initialization, both the application program and its associated PSB are loaded
from their respective libraries by the IMS batch system The DL/I modules, which
reside together with the application program in one region, interpret and execute
database CALL requests issued by the program.

Calls to DL/

A call request is composed of a CALL statement with an argument list. The
argument list specifies the processing function to be performed, the hierarchic path
to the segment to be accessed, and the segment occurrence of that segment. One
segment may be operated upon with a single DL/I call. However, a single call never
will return more than one occurrence of one segment type.

The arguments contained within any DL/I call request have been defined in
|IMS" on page 155.| The following is a sample for a basic CALL statement for
COBAL:

CALL "CBLTDLI" USING function,PCB-name,I/0 Area, SSAl,...SSAn.

describes some of the components of the CALL statement. Here you will
find the basic DL/I call functions to request DL/l database services.

Table 9. DL/I Function Descriptions

RSF (request service function?) DL/I Call Function
GET UNIQUE 'GUbb’

GET NEXT "GNbb’

GET HOLD UNIQUE 'GHUb’

GET HOLD NEXT "GHNb’

INSERT 'ISRT’

DELETE 'DLET’

REPLACE 'REPL’

Note: b stands for blank. Each CALL function is always 4 characters.

constitutes the various categories of segment access types.

Table 10. Segment Access

Segment Access DL/I Call Function
Retrieve a segment GUbb, GNbb, GHUb, GHNb
Replace (update) a segment REPL

Delete a segment DLET

Insert (add) a segment ISRT

In addition to the above database calls, there are the system service calls. These
are used for requesting systems services such as checkpoint/restart. All of the
above calls and some basic system service calls will be discussed in detail in the
following sections.

IMS: An Introduction to IMS

IBM Confidential

Segment Search Arguments (SSAS)

For each segment accessed in a hierarchical path, one SSA can be provided. The
purpose of the SSA is to identify by segment name and, optionally by field value,
the segment to be accessed.

The basic function of the SSA permits the application program to apply three
different kinds of logic to a call:

* Narrow the field of search to a particular segment type, or to a particular
segment-occurrence.

* Request that either one segment or a path of segments be processed.
» Alter DL/I's position in the database for subsequent call.

Segment Search Argument (SSA) names represent the fourth (fifth for PL/I) through
last arguments (SSAL through SSAN) in the call statement. There can be 0 or 1
SSA per level, and, since DL/I permits a maximum of 15 levels per database, a call
may contain from 0 to 15 SSA names. In our subset, an SSA consists of one, two
or three elements: The segment name, command code(s) and a qualification
statement, as shown in[Table 11} [Table 12 on page 168|shows the values of the
relational operators described in|TabIe 1;].

Table 11. Segment Name, Command Code, and Qualifications

Operator Description

Segment name The segment name must be eight bytes long, left-justified
with trailing blanks required. This is the name of the
segment as defined in a physical and/or logical DBD
referenced in the PCB for this application program.

Command codes The command code are optional. They provide functional
variations to be applied to the call for that segment type.
An asterisk (*) following the segment name indicates the
presence of one or more command codes. A blank or a
left parenthesis is the ending delimiter for command
codes. Blank is use when no qualification statement exists

Qualification statement The presence of a qualification statement is indicated by a
left parenthesis following the segment name or, if present,
command codes. The qualification statement consists of a
field name, a relational-operator, and a comparative-value.

Begin qualification character The Left parenthesis, “(“, indicates the beginning of a
qualification statement. If the SSA is unqualified, the
eight-byte segment name or if used, the command codes,
should be followed by a blank.

Field name The field name is the name of a field which appears in the
description of the specified segment type in the DBD. The
name is up to eight characters long, left-justified with
trailing blanks as required. The named field may be either
the key field or any data field within a segment. The field
name issued for searching the database, and must have
been defined in the physical DBD.

Relational operator The relational operator is a set of two characters which
express the manner in which the contents of the field,
referred to by the field name, is to be tested against the
comparative-value. See XREF TAB 13 for a list of the
values.

Chapter 18. Application Programming for the IMS Database Manager 167

IBM Confidential

Table 11. Segment Name, Command Code, and Qualifications (continued)

Operator Description

Comparative value The comparative value is the value against which the
contents of the field, referred to by the field name, is to be
tested. The length of this field must be equal to the length
of the named field in the segment of the database. That is,
it includes leading or trailing blanks (for alphameric) or
zeros (usually needed for numeric fields) as required. A
collating sequence, not an arithmetic, compare is
performed.

End qualification character The right parenthesis, “)”, indicates the end of the
qualification statement.

Table 12. Relational Operator Values

Operator Meaning

b= or 'EQ’ Must be equal to

>= or 'GE’ Must be greater than or equal to
<=or’'LE’ Must be less than or equal to
'b>" or 'GT’ Must be greater than

'b<’ or LT Must be less than

‘<>’ or 'NE’ Must be not equal to

Note: In[Table 12| the lowercase b represents a blank character.

Qualification

Just as calls are “qualified” by the presence of an SSA, SSAs are categorized as
either “qualified” or “unqualified”, depending on the presence of absence of a
qualification statement. Command codes may be included in or omitted from either
qualified or unqualified SSAs.

In its simplest form, the SSA is unqualified and consists only of the name of a
specific segment type as defined in the DBD. In this form, the SSA provides DL/I
with enough information to define the segment type desired by the call. For
example:

SEGNAMEbb Tast character blank to unqualified.

Qualified SSAs (optional) contain a qualification statement composed of three parts:
» Afield name defined in the DBD

* Arelational operator

* A comparative value

DL/l uses the information in the qualification statement to test the value of the
segment’s key or data fields within the database, and thus to determine whether the
segment meets the user’s specifications. Using this approach. DL/I performs the

database segment searching. The program need process only those segments that
precisely meet some logical criteria. For example:

SEGNAMEb (fieldxxx>=value)
The qualification statement test is terminated either when the test is satisfied by an

occurrence of the segment type, or when it is determined that the request cannot
be satisfied.

168 IMS: An Introduction to IMS

IBM Confidential

Command Codes

Both unqualified and qualified SSAs may contain one or more optional command
codes which specify functional variations applicable to the call function or the
segment qualification. The command codes are discussed in detail later in this
chapter.

General characteristics of segment search arguments:

* An SSA may consist of the segment name only (unqualified). It may optionally
also include one or more command codes and a qualification statement.

» SSAs following the first SSA must proceed down the hierarchical path. Not all
SSAs in the hierarchical path need be specified. That is, there may be missing
levels in the path. DL/l will provide, internally, SSAs for missing levels according
to the rules given later in this chapter. However, it is strongly recommended to
always include SSAs for every segment level.

Examples of SSAs will be given with the sample calls at each DL/I call discussion in
fHandling Status Codes."|

Handling Status Codes

After each DL/I call, a two-byte status code is returned in the PCB which is used for
that call. There are three categories of status codes:

* The blank status code, indicating a successful call

» Exceptional conditions and warning status codes from an application point of
view

» Error status codes, specifying an error condition in the application program
and/or DL/I

The grouping of status codes in the above categories is somewhat installation
dependent. We will, however, give a basic recommendation after each specific call
function discussion. It is also recommended that you use a standard procedure for
status code checking and the handling of error status code. The first two categories
should be handled by the application program after each single call. [Figure 55| gives
an example using COBOL.

CALL 'CBLTDLI'" USING

IF PCB-STATUS EQ 'GE' PERFORM PRINT-NOT-FOUND.
IF PCB STATUS NE 'bb' PERFORM STATUS-ERROR.
everything okay, proceed...

Figure 55. Evaluating Status Codes

Notice that it is more convenient to directly test the regular exceptions in-line
instead of branching to a status code check routine. In this way, you clearly see the
processing of conditions that you wish to handle from an application point of view,
leaving the real error situations to central status code error routine. A detailed
discussion of the error status codes and their handling will be presented later in this
chapter.

Sample Presentation of a Call

DL/l calls will be introduced in the following sections. For each call we will give

samples. These samples will be in a standard format, as shown in

Chapter 18. Application Programming for the IMS Database Manager 169

IBM Confidential

77 GU-FUNC PICTURE XXXX VALUE 'GUbb'

01 SSAGO1-GU-SE1PART.
02 SSAOO1-BEGIN PICTURE ...
02
02

01 IOAREA PICTURE X(256).

bb: succesfull call
--: exceptional but correct condition
other: error condition

Figure 56. Sample Call Presentation

All the calls in the samples are presented in COBOL format. The coding of a call in
P1/I or Assembler will be presented later. Each call example contains three sections:

1. The first section presents the essential elements of working storage as needed
for the call.

2. The second part, the processing section, contains the call itself. Note that the
PCB-NAME parameter should see the selected PCB defined in the Linkage
Section. Sometimes we will add some processing function description before
and/or after the call, in order to show the call in its right context.

3. The third section contains the status codes and their interpretation, which can
be expected after the call.

The last category of status code, labeled “other: error situation,” would normally be
handled by a status code error routine. A discussion of those error status codes
with the presentation of such a routine is later in this chapter.

Processing Against a Single Database Structure

This section discusses processing a single database record. A database record is a
root segment and all of its physically dependent child segments.

DL/I Positioning
To satisfy a call, DL/I relies on two sources of segment identification:

* The established position in the database as set by the previous call against the
PCB.

* The segment search arguments as provided with the call.

The database position is the knowledge of DL/I of the location of the last segment
retrieved and all segments above it in the hierarchy. This position is maintained by
DL/l as an extension of, and reflected in, the PCB. When an application program
has multiple PCBs for a single database, these positions are maintained
independently. For each PCB, the position is represented by the concatenated key
of the hierarchical path from the root segment down to the lowest level segment
accessed. It also includes the positions of non-keyed segments.

170 IMS: An Introduction to IMS

IBM Confidential

If no current position exists in the database, then the assumed current position is
the start of the database. This is the first physical database record in the database.
With HDAM this is not necessarily the root-segment with the lowest key value.

Retrieving Segments
There are two basic ways to retrieve a segment:
* Retrieve a specific segment by using a GU type call
» Retrieve the next segment in hierarchy by using a GN type call

If you know the specific key value of the segment you want to retrieve, then the GU
call will allow to retrieve only the required segment. If you don’t know the key value
or don't care then the GN call will retrieve the next available segment which meets

your requirements.

The Get Unique (GU) Call

The basic get unique (GU) call, function code “GUbb” normally retrieves one
segment in a hierarchical path. The segment retrieved is identified by an SSA for
each level in the hierarchical path down to and including the requested segment.
Each should contain at least the segment name. The SSA for the root-segment
should provide the root-key value. To retrieve more then one segment in the path,
see ['D Command Code” on page 176 ||Figure 57| shows an example of the get
unique call.

77 GU-FUNC PICTURE XXXX VALUE 'GUbb'

01 SSAOO1-GU-SE1PART.
02 SSAOO1-BEGIN PICTURE x(19) VALUE 'SELIPARTb(FEL1PGPNRb='.
02 SSAOO1-FEIPGPNR PICTURE X(8).
02 SS1001-END PICTURE X VALUE ')'.

01 TOAREA PICTURE X(256).

MOVE PART-NUMBER TO SSA0O1-FE1PGPNR.
CALL 'CBLTDLI' USING GU-FUNC,PCB-NAME,IOAREA,SSAQ01-GU-SE1PART.

bb: succesfull call
GE: exceptional but correct condition
other: error condition

Figure 57. Basic Get Unique Call

The main use of the GU call is to position yourself to a database record and obtain
(a path of) segment (s). Typically, the GU call is used only once for each database
record you wish to access. Additional segments within the database record would
then be retrieved by means of get next calls (see [‘The Get Next (GN) Call” on page]
. The GU call can also be used for retrieving a dependent segment, by adding
additional SSAs to the call.

For example, if you add a second SSA which specifies the stock location, you
would retrieve a STOCK segment below the identified part. If the SSA did not
provide a stock location number, this would be the first STOCK segment for this
part.

Chapter 18. Application Programming for the IMS Database Manager 171

172

IBM Confidential

The Get Next (GN) Call

The get next (GN) call, function code ‘GNbb’, retrieves the next segment in the
hierarchy as defined in the PCB. To determine this next segment, DL/I relies on the
previously established position.

The Unqualified Get Next Call

shows a get next call with no SSAs at all that will, if repeated, return the
segments in the database in hierarchical sequence. Only those segments are
returned to which the program is defined sensitive in its PCB.

77 GN-FUNC PICTURE XXXX VALUE 'GNbb'

01 TIOAREA PICTURE X(256).

bb: if previous call retrieved a PART, then a STOCK segment will be
be retrieved

GK: a segment is returned in IOAREA, but it is a different type
at the SAME level, for instance, a PURCHASE ORDER segment
after the last STOCK segment.

GA: segment returned is IOAREA, but it is of a higher level than
the last one, that is, a new PART segment

GB: possible end of database reached, no segment returned

other: error condition

Figure 58. Unqualified Get Next Call

If the call in|Figure 58| was issued after the get unique call in |Figure 57 on page|
, then it would retrieve the first STOCK segment for this part (if one existed).

Subsequent calls would retrieve all other STOCK, PURCHASE ORDER, and
DESCRIPTION segments for this part. After this, the next part would be retrieved
and its dependent segments, etc., until the end of the database is reached. Special
status codes will be returned whenever a different segment type at the same level
or a higher level is returned. No special status code is returned when a different
segment at a lower level is returned. You can check for reaching a lower level
segment type in the segment level indicator in the PCB. Remember, only those
segments to which the program is sensitive via its PCB are available to you.

Although the unqualified GN call illustrated in might be efficient, especially
for report programs, you should use a qualified GN call whenever possible.

The Qualified Get Next Call

This qualified GN call should at least identify the segment you want to retrieve. In
doing so, you will achieve a greater independence toward possible database
structure changes in the future. [Figure 59 on page 173|shows an example of a
qualified GN call. If you supply only the segment name in the SSA, then you will
retrieve all segments of that type from all database records with subsequent get
next calls.

IMS: An Introduction to IMS

IBM Confidential

77 GN-FUNC PICTURE XXXX VALUE 'GNbb'
01 SSAGO2-GN-SEIPPUR PICTURE X(9) VALUE 'SE1PPURbb'

01 TOAREA PICTURE X(256).

MOVE PART-NUMBER TO SSA0O1-FE1PGPNR.
CALL 'CBLTDLI' USING GN-FUNC,PCB-NAME,IOAREA,SSAQ02-GN-SE1PPUR.

bb: next PURCHACE ORDER has been move to the IOAREA
GB: end of database reached, no segment returned
other: error condition

Figure 59. Qualified Get Next Call

Repetition of the above GN call will retrieve all subsequent PURCHASE ORDER
segments of the database, until the end of the database is reached. To limit this to
a specific part, you could add a fully qualified SSA for the PART segment. This
would be the same SSA as used in [Figure 57 on page 171}

An example of a qualified get next call with a qualified SSA is shown in

77 GN-FUNC PICTURE XXXX VALUE 'GNbb'

01 SSAOO1-GU-SE1PART.
02 SSAOO1-BEGIN PICTURE x(19) VALUE 'SE1PARTb(FE1PGPNRb=".
02 SSAGO1-FEIPGPNR PICTURE X(8).
02 SS1001-END PICTURE X VALUE ')'.

01 SSAGO2-GN-SEIPPUR PICTURE X(9) VALUE 'SEIPPURb'.
01 TOAREA PICTURE X(256).

CALL 'CBLTDLI' USING GN-FUNC,PCB-NAME,IOAREA,SSAQO1-GU-SE1PART
SSA002-GN-SE1PPUR.

bb: next PURCHASE ORDER segment is in IOAREA
GE: segment not found; no more purchase orders for this part,
or part number in SSA0O1 does not exist
other: error condition

Figure 60. Qualified Get Next Call with Qualified SSA

This fully qualified get next call should be primarily used. It always clearly identifies
the hierarchical path and the segment you want to retrieve.

The Get Hold Calls

To change the contents of a segment in a database through a replace or delete call,
the program must first obtain the segment. It then changes the segment’s contents
and requests DL/I to replace the segment in the database or to delete it from the
database.

This is done by using the get hold calls. These function codes are like the standard
get function, except the letter ‘H’ immediately follows the letter ‘G’ in the code (that
is, GHU, GHN). The get hold calls function exactly as the corresponding get calls
for the user. For DL/I they indicate a possible subsequent replace or delete call.

Chapter 18. Application Programming for the IMS Database Manager 173

IBM Confidential

After DL/l has provided the requested segment to the user, one or more fields, but
not the sequence field, in the segment may be changed.

After the user has changed the segment contents, he can call DL/l to return the
segment to, or delete it from the database. If, after issuing a get hold call, the
program determines that it is not necessary to change or delete the retrieved
segment, the program may proceed with other processing, and the “hold” will be
released by the next DL/I call against the same PCB.

Updating Segments

174

Segments can be updated by application programs and returned to DL/l for
restoring in the database, with the replace call, function code REPL’ Two conditions
must be met:

* The segment must first be retrieved with a get hold call, (GHU or GHN), no
intervening calls are allowed referencing the same PCB.

* The sequence field of the segment cannot be changed. This can only be done
with combinations of delete and insert calls for the segment and all its
dependents.

shows an example of a combination of GHU and REPL call. Notice that
the replace call must not specify a SSA for the segment to be replaced. If, after
retrieving a segment with a get hold call, the program decides not to update the
segment, it need not issue a replace call. Instead the program can proceed as if it
were a normal get call without the hold.

77 GHU-FUNC PICTURE XXXX VALUE 'GHUb'.
77 REPL-FUNC PICTURE XXXX VALUE 'REPL'.

01 SSAGO1-GU-SE1PART.
02 SSAOO1-BEGIN PICTURE x(19) VALUE 'SE1PARTb(FE1PGPNRb=".
02 SSAGO1-FEIPGPNR PICTURE X(8).

02 SS1001-END PICTURE X VALUE ')"'.
01 SSA0O2-GN-SEIPPUR PICTURE X(9) VALUE 'SEIPPURbb'.
01 IOAREA PICTURE X(256).

MOVE PART-NUMBER TO SSA0O1-FE1PGPNR.
CALL 'CBLTDLI' USING GU-FUNC,PCB-NAME,IOAREA,SSAQO1-GU-SE1PART
SSAQ02-GN-SE1PPUR.
the retrieved PURCHASE ORDER segment can now be changed by the program
in the IOAREA.
CALL 'CBLTDLI' USING REPL-FUNC,PCB-NAME,IOQAREA.

bb: segment is replaced with contents in the IOAREA
other: error condition

Figure 61. Basic Replace Call

Use the get hold call whenever there is a reasonable chance (about 5% or more)
that you will change the segment because there is only a very small performance
difference between the get and the get hold call.

Deleting Segments

To delete the occurrence of a segment from a database, the segment must first be
obtained by issuing a get hold (GHU, GHN) call. Once the segment has been
acquired, the DLET call may be issued.

IMS: An Introduction to IMS

IBM Confidential

No DL/I calls which use the same PCB can intervene between the get hold call and
the DLET call, or the DLET call is rejected. Quite often a program may want to
process a segment prior to deleting it. This is permitted as long as the processing
does not involve a DL/I call which refers to the same database PCB used for the
get hold/delete calls. However, other PCBs may be referred to between the get hold
and DLET calls.

DL/l is advised that a segment is to be deleted when the user issues a call that has
the function DLET. The deletion of a parent, in effect, deletes all the segment
occurrences beneath that parent, whether or not the application program is
sensitive to those segments. If the segment being deleted is a root segment, that
whole database record is deleted. The segment to be deleted must still be in the

IOAREA of the delete call (with which no SSA is used), and its sequence field must
not have been changed. [Figure 62| gives an example of a DLET call.

77 GHU-FUNC PICTURE XXXX VALUE 'GHUb'.
77 DLET-FUNC PICTURE XXXX VALUE 'DLET'.

01 SSAOO1-GU-SE1PART.
02 SSA0O1-BEGIN PICTURE x(19) VALUE 'SE1PARTb(FE1PGPNRb=".
02 SSAGO1-FEIPGPNR PICTURE X(8).

02 SS1001-END PICTURE X VALUE ')'.
01 SSAGO2-GN-SE1PPUR PICTURE X(9) VALUE 'SEIPPURbb'.
01 TIOAREA PICTURE X(256).

MOVE PART-NUMBER TO SSA001-FE1PGPNR.
CALL 'CBLTDLI' USING GU-FUNC,PCB-NAME,IOAREA,SSAQO1-GU-SE1PART
SSA002-GN-SE1PPUR.

the retrieved PURCHASE ORDER segment can now be processed by the
program in the IOAREA.

CALL 'CBLTDLI' USING DLET-FUNC,PCB-NAME,IOAREA.

bb: requested purchase order segment is deleted from the database;
all its dependents, if any, are deleted also.
other: error condition

Figure 62. Basic Delete Call

Inserting Segments
Adding new segment occurrences to a database is done with the insert call,
function code ‘ISRT".

The DL/l insert call is used for two distinct purposes: It is used initially to load the
segments during creation of a database. It is also used to add new occurrences of
an existing segment type into an established database. The processing options field
in the PCB indicates whether the database is being added to or loaded. The format
of the insert call is identical for either use.

When loading or inserting, the last SSA must specify only the name of the segment
being inserted. It should specify only the segment name, not the sequence field.
Thus an unqualified SSA is always required.

Up to a level