
IMS

An

Introduction

to

IMS

Version

9

ZES1-2350-01IBM

Confidential

���

IMS

An

Introduction

to

IMS

Version

9

ZES1-2350-01IBM

Confidential

���

Note

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

general

information

under

“Notices”

on

page

345.

Quality

Partnership

Programm

(QPP)

Edition

(April

2004)

(Softcopy

Only)

This

QPP

edition

replaces

or

makes

obsolete

the

previous

edition,

ZES1-2350-00.This

edition

is

available

in

softcopy

format

only.

The

technical

changes

for

this

version

aresummarized

under

“Changes

to

the

Current

Edition

of

this

Book

for

IMS

Version

9”

on

page

xxi.

©

Copyright

International

Business

Machines

Corporation

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

IBM

Confidential

|
|
|

Contents

Figures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ix

Tables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xiii

Foreward

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xv

About

This

Book

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xvii

Who

Uses

IMS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xvii

Overview

of

This

Book

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xviii

How

to

Send

Your

Comments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xx

Summary

of

Changes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xxi

Changes

to

the

Current

Edition

of

this

Book

for

IMS

Version

9

.

.

.

.

.

.

. xxi

Library

Changes

for

IMS

Version

9

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xxi

Part

1.

Overview

of

IMS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Chapter

1.

Introduction

to

IMS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

History

of

IMS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Overview

of

the

IMS

Product

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

Chapter

2.

IMS

and

z/OS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

Structure

of

IMS

Subsystems

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

Running

an

IMS

System

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

Running

Multiple

IMS

Systems

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 22

How

IMS

Uses

z/OS

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 23

Chapter

3.

Setting

Up

and

Running

IMS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 27

Installing

IMS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 27

Defining

an

IMS

System

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

Defining

IMS

Security

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

IMS

Startup

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 29

IMS

Logging

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 31

IMS

Utilities

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 31

IMS

Recovery

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 32

IMS

Shutdown

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

Part

2.

IMS

Database

Manager

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Chapter

4.

Overview

of

IMS

DB

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 37

Functions

of

the

IMS

Database

Manager

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 37

Implementation

of

IMS

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 37

Full-Function

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 38

Fast

Path

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 39

Data

in

IMS

and

DB2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 40

Chapter

5.

Overview

of

the

IMS

Hierarchical

Database

Model

.

.

.

.

.

. 41

Basic

Segment

Types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 44

Sequence

Fields

and

Access

Paths

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 45

Logical

Relationships

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 45

Secondary

Indexing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 48

IBM

Confidential

©

Copyright

IBM

Corp.

2004

iii

||

Chapter

6.

Implementing

the

IMS

Database

Model

.

.

.

.

.

.

.

.

.

.

. 51

Segments,

Records,

and

Pointers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 52

IMS

Hierarchic

Access

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

Physical

Segment

Design

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 66

Operating

System

Access

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 67

IMS

Checkpoints

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 70

Locking

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 72

Chapter

7.

Choosing

the

Correct

Database

Type

.

.

.

.

.

.

.

.

.

.

. 75

Applications

Suitable

for

Full-Function

Databases

.

.

.

.

.

.

.

.

.

.

.

. 75

Applications

Suitable

for

HSAM

and

HISAM

.

.

.

.

.

.

.

.

.

.

.

.

.

. 77

Applications

Suitable

for

Fast

Path

Databases

.

.

.

.

.

.

.

.

.

.

.

.

. 77

Chapter

8.

Data

Sharing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 83

DBRC

and

Data

Sharing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 84

How

Applications

Share

Data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 84

Chapter

9.

The

Database

Reorganization

Process

.

.

.

.

.

.

.

.

.

.

. 85

Purpose

of

Reorganization

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 85

When

to

Reorganize

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 86

Overview

of

the

Reorganization

Process

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 88

Reorganization

Utilities

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 99

Chapter

10.

The

Database

Recovery

Process

.

.

.

.

.

.

.

.

.

.

.

. 101

When

Recovery

is

Needed

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 101

Overview

of

the

Database

Recovery

Process

.

.

.

.

.

.

.

.

.

.

.

.

. 101

IMS

Backup

and

Recovery

Utilities

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 102

Part

3.

IMS

Transaction

Manager

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

Chapter

11.

Overview

of

IMS

TM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 113

Functions

of

IMS

TM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 113

IMS

TM

and

the

Network

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 113

IMS

TM

Messages

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 116

Connections

to

Other

IMS

and

CICS

Subsystems

.

.

.

.

.

.

.

.

.

.

.

. 116

Chapter

12.

IMS

TM

Control

Region

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 119

IMS

Messages

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 119

IMS

Transaction

Flow

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 120

Chapter

13.

How

IMS

TM

Processes

Input

.

.

.

.

.

.

.

.

.

.

.

.

. 123

Input

Message

Types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 123

Terminal

Types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 124

Input

Message

Origin

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 124

Terminal

Input

Destination

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 124

Message

Queueing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 125

Message

Scheduling

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 128

Transaction

Scheduling

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 130

Chapter

14.

Fast

Path

Transactions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 135

Fast

Path

Exclusive

Transactions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 135

Fast

Path

Potential

Transactions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 135

Chapter

15.

The

Master

Terminal

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 137

The

Primary

Master

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 138

The

Secondary

Master

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 139

IBM

Confidential

iv

IMS:

An

Introduction

to

IMS

Using

the

z/OS

Console

as

the

Master

Terminal

.

.

.

.

.

.

.

.

.

.

.

. 139

Extended

MCS/EMCS

Console

Support

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 139

Chapter

16.

Application

Program

Processing

for

IMS

TM

.

.

.

.

.

.

. 141

Flow

of

Message

Processing

Programs

(MPPs)

.

.

.

.

.

.

.

.

.

.

.

. 141

Role

of

the

PSB

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 142

DL/I

Message

Calls

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 142

Program

Isolation

and

Dynamic

Logging

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 143

Internal

Resource

Lock

Manager

(IRLM)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 144

Abnormal

Application

Program

Termination

.

.

.

.

.

.

.

.

.

.

.

.

.

. 144

Conversational

Processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 145

Output

Message

Processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 145

Logging,

Checkpointing,

and

Restarting

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 145

Message

Switching

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 146

Part

4.

IMS

Application

Development

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 147

Chapter

17.

Application

Programming

Overview

.

.

.

.

.

.

.

.

.

.

. 149

Java

Programs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 149

Program

Structure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 149

IMS

Setup

for

Applications

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 156

IMS

Database

Application

Programming

Interface

.

.

.

.

.

.

.

.

.

.

. 160

IMS

Application

Calls

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 161

IMS/DB2

Resource

Translate

Table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 161

IMS

System

Service

Calls

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 162

Chapter

18.

Application

Programming

for

the

IMS

Database

Manager

165

Introduction

to

Database

Processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 165

Processing

Against

a

Single

Database

Structure

.

.

.

.

.

.

.

.

.

.

.

. 170

Language

Specific

Programming

Considerations

.

.

.

.

.

.

.

.

.

.

.

. 180

Processing

Databases

with

Logical

Relationships

.

.

.

.

.

.

.

.

.

.

.

. 184

Processing

Databases

with

Secondary

Indexes

.

.

.

.

.

.

.

.

.

.

.

. 185

Loading

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 187

Using

Batch

Checkpoint/Restart

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 192

Chapter

19.

Application

Programming

for

the

IMS

Transaction

Manager

197

Application

Program

Processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 197

Transaction

Manager

Application

Design

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 201

Chapter

20.

The

IMS

Message

Format

Service

.

.

.

.

.

.

.

.

.

.

.

. 207

Overview

of

MFS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 207

MFS

and

3270

Devices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 209

Relationships

between

MFS

Control

Blocks

.

.

.

.

.

.

.

.

.

.

.

.

.

. 209

MFS

Functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 213

MFS

Control

Statements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 218

Generating

MFS

Control

Blocks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 220

Maintaining

the

MFS

Library

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 221

Chapter

21.

Application

Programming

in

IMS

Java

.

.

.

.

.

.

.

.

.

. 223

Environments

that

Support

IMS

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 223

Describing

an

IMS

Database

to

IMS

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

. 224

Accessing

an

IMS

Database

with

IMS

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

. 226

Part

5.

IMS

System

Administration

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 229

IBM

Confidential

Contents

v

Chapter

22.

The

IMS

System

Definition

Process

.

.

.

.

.

.

.

.

.

.

. 231

Overview

of

the

IMS

System

Definition

Process

.

.

.

.

.

.

.

.

.

.

.

. 231

IMS

System

Definition

Macros

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 235

The

Extended

Terminal

Option

(ETO)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 238

Chapter

23.

Customizing

IMS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 245

Chapter

24.

IMS

Security

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 253

History

of

IMS

Security

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 253

Security

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 254

Securing

Resources

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 254

Chapter

25.

IMS

Logging

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 257

Checkpoints

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 257

Database

Recovery

Control

(DBRC)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 257

IMS

Log

Components

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 257

Chapter

26.

Database

Recovery

Control

(DBRC)

.

.

.

.

.

.

.

.

.

.

. 263

Overview

of

DBRC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 263

Using

DBRC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 264

Overview

of

the

RECON

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 266

Defining

and

Creating

the

RECON

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

. 269

Initializing

the

RECON

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 270

Allocating

RECON

Data

Sets

to

IMS

Systems

.

.

.

.

.

.

.

.

.

.

.

.

. 270

Placement

Considerations

for

the

RECON

Data

Sets

.

.

.

.

.

.

.

.

.

. 271

Maintaining

RECON

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 271

Reorganizing

RECON

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 273

Recreating

RECON

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 274

PRILOG

Record

Size

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 274

Summary

of

Recommendations

for

RECON

Data

Sets

.

.

.

.

.

.

.

.

.

. 275

DBRC

Support

for

Remote

Site

Recovery

.

.

.

.

.

.

.

.

.

.

.

.

.

. 275

Chapter

27.

Controlling

IMS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 277

Monitoring

the

System

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 277

Processing

IMS

System

Log

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 277

Choosing

Tools

for

Detailed

Monitoring

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 282

Executing

Recovery-Related

Functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 286

Modifying

and

Controlling

System

Resources

.

.

.

.

.

.

.

.

.

.

.

.

. 288

Gathering

Performance-Related

Data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 294

Controlling

Data

Sharing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 296

Controlling

Log

Data

Set

Characteristics

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 301

Connecting

and

Disconnecting

Subsystems

.

.

.

.

.

.

.

.

.

.

.

.

.

. 306

Chapter

28.

IMS

System

Recovery

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 307

Overview

of

Extended

Recovery

Facility

(XRF)

.

.

.

.

.

.

.

.

.

.

.

.

. 308

Overview

of

Remote

Site

Recovery

(RSR)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 308

Comparison

of

XRF

and

RSR

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 309

Chapter

29.

IBM

IMS

Tools

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 311

Part

6.

IMS

in

a

Parallel

Sysplex

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 313

Chapter

30.

Introduction

to

Parallel

Sysplex

.

.

.

.

.

.

.

.

.

.

.

.

. 315

Goals

of

a

Sysplex

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 316

IMS

and

the

Sysplex

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 316

IMS

DB

and

the

Sysplex

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 316

IBM

Confidential

vi

IMS:

An

Introduction

to

IMS

||

IMS

TM

and

the

Sysplex

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 320

Other

Advantages

of

Running

IMS

TM

in

a

Sysplex

Environment

.

.

.

.

.

. 329

Chapter

31.

IMSplexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 337

Components

of

an

IMSplex

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 337

Requirements

for

an

IMSplex

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 339

Operating

an

IMSplex

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 340

Part

7.

Appendixes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 343

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 345

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 347

Product

Names

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 347

Bibliography

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 349

IMS

Version

9

Library

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 349

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 351

IBM

Confidential

Contents

vii

||

IBM

Confidential

viii

IMS:

An

Introduction

to

IMS

Figures

1.

Example

of

a

Hierarchical

Data

Model

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 6

2.

Interfaces

to

IMS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 8

3.

Structure

of

an

IMS

DB/DC

Subsystem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

4.

Client

Systems,

CQS,

and

a

Coupling

Facility

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

5.

Structure

of

an

IMS

DBCTL

System

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

6.

Structure

of

an

IMS

Batch

Region

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 20

7.

Example

of

a

Hierarchical

Dealership

Database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 41

8.

Relational

Representation

of

the

Dealership

Database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 42

9.

Hierarchical

Data

Structure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 43

10.

Segment

Types

and

Their

Relationships

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 44

11.

Example

of

Logical

and

Physical

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 46

12.

Two

Logically

Related

Physical

Databases:

PART

and

ORDER

.

.

.

.

.

.

.

.

.

.

.

.

.

. 47

13.

Two

Logical

Databases

After

Relating

the

PARTS

and

ORDER

Databases

.

.

.

.

.

.

.

.

. 47

14.

A

Database

and

Its

Secondary

Index

Database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

15.

Elements

of

the

Physical

Implementation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

16.

Example

of

a

Typical

Segment

Layout

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 52

17.

Database

Record

and

Pointers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

18.

HDAM

Database

in

Physical

Storage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 56

19.

HDAM

Database

Free

Space

Management

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 57

20.

HIDAM

Database

in

Physical

Storage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 59

21.

A

Logical

View

of

an

HDAM

and

a

PHDAM

Database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 60

22.

Overall

Structure

of

a

Fast

Path

DEDB

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 63

23.

Database

Unload

Processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 89

24.

Overview

of

Database

Reload

Only

Process

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 91

25.

Overview

of

Reload

Processing

With

Secondary

indexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 92

26.

Overview

of

Database

Reload

Process

When

Logical

Relationships

Exist

.

.

.

.

.

.

.

.

.

. 94

27.

Overview

of

the

Database

Reload

Process

When

Secondary

Indexes

and

Logical

Relationships

Exist

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 96

28.

Relationship

Between

DB

Records

in

the

Input

and

Output

Data

Sets

at

a

Point

During

Reorganization

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 99

29.

Overview

of

the

Recovery

Utilities

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 103

30.

Inputs

and

Outputs

for

the

Image

Copy

Utility

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 104

31.

Inputs

and

Outputs

for

the

Database

Image

Copy

2

Utility

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 106

32.

Inputs

and

Outputs

for

the

Change

Accumulation

Utility

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 107

33.

Inputs

and

Outputs

of

the

Database

Recovery

Utility

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 108

34.

Inputs

and

Outputs

for

the

Batch

Backout

Utility

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 109

35.

Transmission,

Message,

and

Segment

Relationships

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 120

36.

Format

of

a

Message

Segment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 120

37.

The

IMS

Control

Region,

Its

Control,

and

Data

(Message)

Flow

.

.

.

.

.

.

.

.

.

.

.

.

. 121

38.

Input

Message

Processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 123

39.

Overview

of

the

Message

Queuing

Process

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 126

40.

Message

Scheduling

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 129

41.

Sample

APPLCTN

Macro

Transaction

Definition

in

IMS

Stage

1

Input

.

.

.

.

.

.

.

.

.

.

. 129

42.

Example

of

MPR

PROC

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 131

43.

Example

of

/ASSIGN

CLASS

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 131

44.

Example

of

/DISPLAY

ACTIVE

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 131

45.

Master

Terminal

Screen

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 138

46.

Sample

JCL

for

the

Secondary

Master

Spool

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 139

47.

Overview

of

Basic

Flow

Through

a

MPP

or

BMP

Address

Space

.

.

.

.

.

.

.

.

.

.

.

.

. 142

48.

Structure

of

an

IMS

Application

Program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 151

49.

Application

PCB

Structure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 152

50.

Example

of

a

Database

Application

PCB

Mask

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 153

51.

Examples

of

Concatenated

Keys

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 154

IBM

Confidential

©

Copyright

IBM

Corp.

2004

ix

||
||

||

||

||

||

||

52.

Example

of

an

Online

Application

PCB

Mask

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 155

53.

Example

of

a

COBOL

Application

Program

Testing

Status

Codes

.

.

.

.

.

.

.

.

.

.

.

. 156

54.

IMS

Control

Block

Generation

and

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 159

55.

Evaluating

Status

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 169

56.

Sample

Call

Presentation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 170

57.

Basic

Get

Unique

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 171

58.

Unqualified

Get

Next

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 172

59.

Qualified

Get

Next

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 173

60.

Qualified

Get

Next

Call

with

Qualified

SSA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 173

61.

Basic

Replace

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 174

62.

Basic

Delete

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 175

63.

Basic

Insert

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 176

64.

Example

of

an

SSA

with

D

and

P

Command

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 176

65.

Sample

Path

Retrieve

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 177

66.

Example

of

a

COBOL

Batch

Program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 181

67.

Example

of

a

PL/I

Batch

Program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 183

68.

Example

of

a

PSB

with

a

Secondary

Index

Defined

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 186

69.

Example

of

a

Get

Unique

Call

Using

a

Secondary

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 186

70.

Overview

of

Loading

a

Database

that

has

Logical

Relationships

.

.

.

.

.

.

.

.

.

.

.

.

. 189

71.

Overview

of

Loading

a

Database

that

has

Secondary

Indexes

.

.

.

.

.

.

.

.

.

.

.

.

.

. 190

72.

Overview

of

Loading

a

Database

that

has

Logical

Relationships

and

Secondary

Indexes

191

73.

General

MPP

Structure

and

Flow

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 198

74.

Message

Formatting

Using

MFS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 207

75.

Overview

of

Message

Format

Service

Functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 209

76.

Chained

Control

Block

Linkage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 210

77.

Linkage

Between

Message

Fields

and

Device

Fields

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 211

78.

LPAGE

-

DPAGE

Linkage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 211

79.

Optional

Message

Description

Linkage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 212

80.

MFS

Input

Formatting

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 213

81.

MFS

Output

Formatting

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 215

82.

An

Output

Message

Definition

with

One

LPAGE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 216

83.

An

Output

Message

Definition

with

Multiple

Pages

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 216

84.

Overview

of

Process

for

Creating

MFS

Control

Blocks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 220

85.

DLIModel

Utility

Inputs

and

Outputs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 226

86.

JDBC

Application

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 228

87.

Overview

of

the

Two

Stages

of

System

Definition

Processing

.

.

.

.

.

.

.

.

.

.

.

.

.

. 232

88.

Static

Resources

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 240

89.

ETO

Dynamic

Resources

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 240

90.

Inputs

and

Outputs

of

the

IMS

Log

Archive

Utility

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 259

91.

Example

of

a

RECON

Data

Set

Definition

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 270

92.

Example

JCL

for

Allocating

RECON

Data

Sets

Dynamically

.

.

.

.

.

.

.

.

.

.

.

.

.

. 271

93.

Sample

Program

Isolation

Trace

Report

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 285

94.

Output

from

a

DISPLAY

XCF,STRUCTURE

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 298

95.

Output

for

DISPLAY

XCF,STRUCTURE,STRNAME=

Command

.

.

.

.

.

.

.

.

.

.

.

.

. 299

96.

Example

of

a

Data

Sharing

Configuration

with

IMS

DC/DB,

DBCTL,

and

IMS

Batch

Jobs

317

97.

Moving

a

Dependent

Region

Between

IMSs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 318

98.

Example

of

a

Dependent

Region

Running

with

A

Different

Control

Region

.

.

.

.

.

.

.

.

. 318

99.

Sample

FDBR

Configuration

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 319

100.

Example

of

VTAM

USERVAR

Exit

Routing

IMS

Logons

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 322

101.

VTAM

Generic

Resources

Distributing

Logons

In

a

Sysplex

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 323

102.

TN3270

Client

Connecting

to

IMS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 325

103.

IND

Connecting

to

Multiple

IMSs

via

IMS

Connect

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 325

104.

Web

Connections

to

IMS

Using

the

Sysplex

Distributor

and

IMS

Connect

.

.

.

.

.

.

.

.

. 326

105.

VTAM

Sessions

of

3

IMSs

Connected

to

Each

Other

Using

MSC

.

.

.

.

.

.

.

.

.

.

.

. 327

106.

A

Single

IMS

with

a

Single

Message

Queue

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 328

107.

Two

IMSs

Accessing

One

Message

Queue

on

a

Coupling

Facility

.

.

.

.

.

.

.

.

.

.

.

. 328

IBM

Confidential

x

IMS:

An

Introduction

to

IMS

||

||

||
||
||
||

||

||
||
||

108.

An

SNPS

Example

Scenario

Where

a

Logon

is

Not

Terminated

When

Its

IMS

Fails

.

.

.

.

.

. 330

109.

An

MNPS

Example

Scenario

Where

a

Logon

is

Not

Terminated

When

Its

IMS

Fails

.

.

.

.

. 331

110.

ARM

Restarting

an

IMS

that

Abended

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 332

111.

ARM

Restarting

IMS,

CICS,

and

DB2

After

a

z/OS

Failure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 333

112.

Three

IMSs

on

Three

z/OSs

Sharing

One

IRLM

Structure

on

a

Coupling

Facility

.

.

.

.

.

.

. 334

113.

IRLM

Structure

on

Failed

Coupling

Facility

is

Rebuilt

on

Another

Coupling

Facility

.

.

.

.

.

. 335

114.

IRLM

Structure

Rebuilt

on

Another

Coupling

Facility

After

a

Connectivity

Failure

.

.

.

.

.

.

. 335

115.

Shared

VSO

Structure

Duplexed

on

Two

Coupling

Facilities

.

.

.

.

.

.

.

.

.

.

.

.

.

. 336

116.

System-Managed

Duplicate

Shared

VSO

Structure

is

Used

After

a

Coupling

Facility

Failure

336

117.

Sample

IMSplex

Configuration

with

a

CSL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 338

118.

Minimum

CSL

Configuration

for

an

IMSplex

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 340

IBM

Confidential

Figures

xi

||
||
||
||

||
||

||

IBM

Confidential

xii

IMS:

An

Introduction

to

IMS

Tables

1.

Support

for

Region

Types

by

IMS

Control

Region

Type

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 17

2.

OTMA

Processing

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 115

3.

Comparing

MSC

and

ISC

Functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 118

4.

Valid

Combinations

of

the

EOS,

EOM,

and

EOD

Symbols

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 119

5.

Master

Terminal

Operator

Actions

and

Associated

Commands

.

.

.

.

.

.

.

.

.

.

.

.

.

. 137

6.

IMS

Call

Argument

List

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 155

7.

Summary

of

IMS

DB

System

Service

Calls

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 162

8.

Summary

of

IMS

TM

System

Service

Calls

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 163

9.

DL/I

Function

Descriptions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 166

10.

Segment

Access

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 166

11.

Segment

Name,

Command

Code,

and

Qualifications

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 167

12.

Relational

Operator

Values

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 168

13.

Status

Codes

Associated

with

Processing

GSAM

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

. 180

14.

Database

Load

Status

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 188

15.

Types

of

IMS

System

Definitions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 232

16.

IMS

DB

Exit

Routines

and

Their

Uses

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 246

17.

IMS

TM

Exits

and

Their

Uses

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 246

18.

IMS

System

Exits

and

Their

Uses

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 250

19.

Resources

and

the

Facilities

to

Protect

Them

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 254

20.

IMS

Commands

That

Affect

Telecommunications

Line,

Physical

Terminal,

or

Node

Resources

289

21.

IMS

Commands

That

Affect

Logical

Terminal

Resources

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 289

22.

IMS

Commands

That

Affect

Logical

Link

Resources

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 289

23.

IMS

Commands

That

Affect

Logical

Link

Path

Resources

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 290

24.

IMS

Commands

That

Affect

Transaction

Resources

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 290

25.

IMS

Commands

That

Affect

Transaction

Class

Resources

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 290

26.

IMS

Commands

That

Affect

Program

Resources

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 291

27.

IMS

Commands

That

Affect

Database

Resources

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 291

28.

IMS

Commands

That

Affect

Subsystem

Resources

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 291

29.

/DISPLAY

Command

Keywords

That

Provide

Information

about

IMS

Resources

.

.

.

.

.

.

. 297

30.

DBRC

Commands

and

Functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 300

31.

Changing

OLDS

Characteristics

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 302

32.

Changing

WADS

Characteristics

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 304

33.

Changing

RECON

Data

Set

Characteristics

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 305

34.

Comparison

on

XRF

and

RSR

Features

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 309

IBM

Confidential

©

Copyright

IBM

Corp.

2004

xiii

||

IBM

Confidential

xiv

IMS:

An

Introduction

to

IMS

Foreward

Forward

by

Vern

Watts

will

go

here

sometime

before

GA.

IBM

Confidential

©

Copyright

IBM

Corp.

2004

xv

IBM

Confidential

xvi

IMS:

An

Introduction

to

IMS

About

This

Book

This

softcopy

book

is

available

only

in

PDF

and

BookManager

formats

and

also

as

part

of

the

DB2

Information

Management

Software

Information

Center

for

z/OS

Solutions.

To

get

the

most

current

versions

of

the

PDF

and

BookManager

formats,

go

to

the

IMS

Library

page

at

www.ibm.com/software/data/ims/library.html.

To

view

the

information

within

the

DB2

Information

Mangement

Software

Information

Center

for

z/OS

Solutions,

go

to

publib/boulder.ibm.com/infocenter/db2zhelp.

Note:

This

book

is

at

an

early

draft

level

and

is

new

for

IMS

Version

9.

We

welcome

your

comments

about

this

information,

especially

regarding

coverage,

level

of

detail,

accuracy,

and

clarity.

IBM

Information

Management

System

(IMS)

is

one

of

the

world’s

premiere

software

products.

Period.

The

purpose

of

this

book

is

twofold:

v

To

introduce

IMS

to

those

who

have

not

heard

about

it

and

provide

an

basic

education

about

this

cornerstone

product

v

To

re-introduce

IMS

to

the

computer

science

field

in

general

IMS

is

not

in

the

news

and

is

barely

mentioned

in

today’s

computer

science

classes,

but

it

has

been

and,

for

the

foreseeable

future,

will

continue

to

be

a

major,

crucial

component

of

the

world’s

software

infrastructure.

From

its

beginnings

with

NASA,

IMS

has

provided

the

foundation

that

enables

government

agencies

and

businesses

to

manage,

access,

manipulate,

and

exploit

their

vast

stores

of

data.

As

the

Information

Age

evolves

and

matures,

so

does

IMS.

Related

Reading:

For

more

information

about

IMS,

see

the

IMS

library

(listed

in

the

“Bibliography”

on

page

349)

and

visit

the

IMS

Web

site

at

www.ibm.com/ims.

Who

Uses

IMS

In

spite

of

rumors

that

the

mainframe

and

IMS

died

a

long

time

ago,

IMS

and

the

mainframe

are

alive

and

well

and

you

use

both

of

them

every

day.

Over

90

percent

of

the

top

world-wide

companies

in

the

following

industries

use

IMS

to

run

their

daily

operations:

v

Manufacturing

v

Finance

v

Banking

v

Retailing

v

Aerospace

v

Communications

v

Government

v

Insurance

v

High

technology

v

Health

Care

Here

are

some

interesting

facts

about

how

IMS

is

used.

IMS

manages

most

of

the

world’s

corporate

data

v

Over

95%

of

Fortune

1000

companies

use

IMS

v

IMS

manages

over

15

million

gigabytes

of

production

data

IBM

Confidential

©

Copyright

IBM

Corp.

2004

xvii

|
|
|
|
|
|

|
|

v

$2.5

trillion

per

day

are

transferred

through

IMS

by

one

customer

IMS

handles

over

50

billion

transactions

per

day

v

IMS

serves

over

200

million

users

every

day

v

IMS

processes

over

100

million

transactions

per

day

for

one

customer

v

IMS

processed

over

120

million

transactions

per

day

(7

million

per

hour)

for

another

customer

v

IMS

has

processed

14,000

transactions

per

second

(over

1

billion

per

day)

using

IMS

data

sharing

and

shared

queues

v

A

single

IMS

has

handled

over

6000

transactions

per

second

over

a

TCP/IP

connection

Gartner

Group

Quote

“A

large

and

loyal

IMS

installed

base.

Rock-solid

reputation

of

a

transactional

workhorse

for

very

large

workloads.

Successfully

proven

in

large,

Web-based

applications.

IMS

is

still

a

viable,

even

unmatched,

platform

to

implement

very

large

OLTP

systems

and,

in

combination

with

Web

Application

Server

technology,

it

can

be

a

foundation

for

a

new

generation

of

Web-based

high-workload

applications.”

Related

Reading:

For

more

examples

of

the

industries

and

customers

that

use

IMS,

visit

the

IMS

Web

site

(www.ibm.com/ims)

and

click

on

“Featured

Customer”,

“IMS

Newsletter”,

or

“Overview”.

Overview

of

This

Book

This

book

is

organized

in

the

following

manner:

1.

Part

1

is

a

high-level

overview

the

IMS

product.

Part

1

contains

the

following

chapters:

v

Chapter

1,

“Introduction

to

IMS,”

on

page

3

discusses

a

brief

history

of

IMS,

an

overview

of

the

product,

and

some

of

its

availability

and

recovery

features

v

Chapter

3,

“Setting

Up

and

Running

IMS,”

on

page

27

discusses

the

installation

and

operation

of

IMS

v

Chapter

2,

“IMS

and

z/OS,”

on

page

11

discusses

the

relationships

between

IMS

and

the

operating

system

2.

Part

2

is

a

more

detailed

look

at

the

IMS

Database

Manager

component

of

IMS.

Part

2

contains

the

following

chapters:

v

Chapter

4,

“Overview

of

IMS

DB,”

on

page

37

discusses

the

functions

of

IMS

DB,

the

types

of

IMS

databases,

and

a

brief

discussion

of

updating

data

in

IMS

and

DB2

databases

v

Chapter

5,

“Overview

of

the

IMS

Hierarchical

Database

Model,”

on

page

41

is

a

more

detailed

discussion

of

the

IMS

hierarchical

database

model

v

Chapter

6,

“Implementing

the

IMS

Database

Model,”

on

page

51

discusses:

–

The

various

IMS

database

types

that

use

the

hierarchical

model

–

The

relationships

between

the

IMS

databases

and

the

operating

system

access

methods

–

A

brief

discussion

of

functions

that

ensure

data

integrity

v

Chapter

7,

“Choosing

the

Correct

Database

Type,”

on

page

75

discusses

some

of

the

criteria

for

choosing

the

various

IMS

database

types

v

Chapter

8,

“Data

Sharing,”

on

page

83

is

a

brief

discussion

of

data

sharing

between

multiple

IMSs

IBM

Confidential

xviii

IMS:

An

Introduction

to

IMS

v

Chapter

9,

“The

Database

Reorganization

Process,”

on

page

85

discusses

the

purpose

for

reorganizing

databases,

an

overview

of

the

process,

and

a

brief

introduction

to

some

of

the

reorganization

utility

routines

that

come

with

IMS

v

Chapter

10,

“The

Database

Recovery

Process,”

on

page

101

introduces

the

database

recovery

process,

discusses

some

of

the

IMS

backup

and

recovery

utility

routines

that

come

with

IMS,

and

briefly

discusses

backup

and

recovery

procedures

3.

Part

3

is

a

more

detailed

look

at

the

IMS

Transaction

Manager

component

of

IMS.

Part

3

contains

the

following

chapters:

v

Chapter

11,

“Overview

of

IMS

TM,”

on

page

113

discusses

the

functions

of

IMS

TM

and

the

relationships

between

IMS

TM,

the

network,

messages,

and

other

subsystems

v

Chapter

12,

“IMS

TM

Control

Region,”

on

page

119

is

a

more

detailed

look

at

how

messages

are

handled

by

IMS

TM

v

Chapter

13,

“How

IMS

TM

Processes

Input,”

on

page

123

discusses

how

IMS

TM

processes

input

from

a

variety

of

sources

v

Chapter

14,

“Fast

Path

Transactions,”

on

page

135

introduces

Fast

Path

transactions

and

discusses

how

IMS

TM

processes

them

v

Chapter

15,

“The

Master

Terminal,”

on

page

137

introduces

and

discuses

the

responsibilities

and

capabilities

of

the

IMS

Master

Terminal

v

Chapter

16,

“Application

Program

Processing

for

IMS

TM,”

on

page

141

discusses

how

IMS

TM

processes

application

program

requests

4.

Part

4

is

a

detailed

look

at

application

programming

as

it

relates

to

IMS.

Part

4

contains

the

following

chapters:

v

Chapter

17,

“Application

Programming

Overview,”

on

page

149

discusses

the

components

of

an

IMS

application

program,

the

setup

needed

before

running

the

application

program,

and

the

IMS

database

application

programming

interface

v

Chapter

18,

“Application

Programming

for

the

IMS

Database

Manager,”

on

page

165

discusses

database

processing

that

results

from

application

program

calls,

application

language

considerations,

and

other

topics

related

to

application

programming

and

IMS

DB

v

Chapter

19,

“Application

Programming

for

the

IMS

Transaction

Manager,”

on

page

197

discusses

how

IMS

TM

processes

application

programs

and

the

design

of

IMS

TM

applications

v

Chapter

20,

“The

IMS

Message

Format

Service,”

on

page

207

contains

an

overview

of

the

Message

Format

Service

(MFS)

function

of

IMS

v

Chapter

21,

“Application

Programming

in

IMS

Java,”

on

page

223

discusses

the

IMS

Java

environment

and

provides

an

overview

of

writing

IMS

applications

in

Java

5.

Part

5

contains

information

related

to

administering

IMS.

Part

5

contains

the

following

chapters:

v

Chapter

22,

“The

IMS

System

Definition

Process,”

on

page

231

contains

an

overview

of

the

types

of

IMS

system

definitions,

the

IMS

macros

used

for

system

definition,

and

a

discussion

of

the

Extended

Terminal

Option

(ETO)

function

of

IMS

v

Chapter

23,

“Customizing

IMS,”

on

page

245

contains

an

introduction

to

how

you

can

customize

IMS

by

using

exit

routines

IBM

Confidential

About

This

Book

xix

v

Chapter

24,

“IMS

Security,”

on

page

253

contains

a

brief

history

of

IMS

security,

a

discussion

of

what

resources

can

be

protected,

and

a

list

of

the

facilities

that

can

be

used

for

security

v

Chapter

25,

“IMS

Logging,”

on

page

257

contains

discussions

on

how

IMS

records

events,

the

data

sets

where

these

events

are

recorded

and

introduces

the

Database

Recovery

Control

(DBRC)

facility

of

IMS

v

Chapter

26,

“Database

Recovery

Control

(DBRC),”

on

page

263

contains

a

detailed

discussion

of

using

DBRC,

an

introduction

and

discussion

of

the

RECON

data

sets,

the

support

built

into

DBRC

for

Remote

Site

Recovery

(RSR),

and

some

recommendations

regarding

the

RECON

data

sets

v

Chapter

27,

“Controlling

IMS,”

on

page

277

discusses

various

administrative

tasks

related

to

running

IMS

v

Chapter

29,

“IBM

IMS

Tools,”

on

page

311

contains

a

brief

introduction

to

the

various

IBM

IMS

Tools

that

are

available

6.

Part

6

discusses

how

IMS

relates

to

the

Parallel

Sysplex

environment

of

z/OS.

Part

6

contains

the

following

chapters:

v

Chapter

30,

“Introduction

to

Parallel

Sysplex,”

on

page

315

contains

an

overview

of

the

Parallel

Sysplex

environment

and

how

IMS

takes

advantage

of

this

environment

v

Chapter

31,

“IMSplexes,”

on

page

337

contains

a

discussion

of

how

multiple

IMSs

can

be

managed

as

a

single

unit

in

the

Parallel

Sysplex

environment

How

to

Send

Your

Comments

Your

feedback

is

important

in

helping

us

provide

the

most

accurate

and

highest

quality

information.

If

you

have

any

comments

about

this

or

any

other

IMS

information,

you

can

do

one

of

the

following:

v

Go

to

the

IMS

Library

page

at

www.ibm.com/software/data/ims/library.html

and

click

the

Library

Feedback

link,

where

you

can

enter

and

submit

comments.

v

Send

your

comments

by

e-mail

to

imspubs@us.ibm.com.

Be

sure

to

include

the

title,

the

part

number

of

the

title,

the

version

of

IMS,

and,

if

applicable,

the

specific

location

of

the

text

you

are

commenting

on

(for

example,

a

page

number

in

the

PDF

or

a

heading

in

the

Information

Center).

IBM

Confidential

xx

IMS:

An

Introduction

to

IMS

Summary

of

Changes

This

edition

is

a

draft

version

of

this

new

book

intended

for

use

during

the

Quality

Partnership

Program

(QPP).

Contents

of

thisbook

are

preliminary

and

under

development.

Changes

to

the

Current

Edition

of

this

Book

for

IMS

Version

9

This

edition

of

this

book

contains

many

updates,

most

notably

in

the

graphics.

Library

Changes

for

IMS

Version

9

Changes

to

the

IMS

Library

for

IMS

Version

9

include

the

addition

of

new

titles,

the

change

of

one

title,

and

a

major

terminology

change.

Changes

are

indicated

by

a

vertical

bar

(|)

to

the

left

of

the

changed

text.

New

and

Revised

Titles

The

following

list

details

the

major

changes

to

the

IMS

Version

9

library:

v

IMS

Version

9:

HALDB

Online

Reorganization

Guide

and

Reference

The

library

includes

new

information:

IMS

Version

9:

HALDB

Online

Reorganization

Guide

and

Reference.

This

information

is

available

only

in

PDF

and

BookManager

formats.

v

IMS

Version

9:

An

Introduction

to

IMS

The

library

includes

new

information:

IMS

Version

9:

An

Introduction

to

IMS.

v

The

information

formerly

titled

IMS

Version

8:

IMS

Java

User’s

Guide

is

now

titled

IMS

Version

9:

IMS

Java

Guide

and

Reference.

Terminology

Changes

IMS

Version

9

introduces

new

terminology

for

IMS

commands:

type-1

command

A

command,

generally

preceded

by

a

leading

slash

character,

that

can

be

entered

from

any

valid

IMS

command

source.

In

IMS

Version

8,

these

commands

were

called

classic

commands.

type-2

command

A

command

that

is

entered

only

through

the

OM

API.

Type-2

commands

are

more

flexible

and

can

have

a

broader

scope

than

type-1

commands.

In

IMS

Version

8,

these

commands

were

called

IMSplex

commands

or

enhanced

commands.

Accessibility

Enhancements

Accessibility

features

help

a

user

who

has

a

physical

disability,

such

as

restricted

mobility

or

limited

vision,

to

use

software

products.

The

major

accessibility

features

in

z/OS

products,

including

IMS,

enable

users

to:

v

Use

assistive

technologies

such

as

screen

readers

and

screen

magnifier

software

v

Operate

specific

or

equivalent

features

using

only

the

keyboard

v

Customize

display

attributes

such

as

color,

contrast,

and

font

size

IBM

Confidential

©

Copyright

IBM

Corp.

2004

xxi

|

|

User

Assistive

Technologies

Assistive

technology

products,

such

as

screen

readers,

function

with

the

IMS

user

interfaces.

Consult

the

documentation

of

the

assistive

technology

products

for

specific

information

when

you

use

assistive

technology

to

access

these

interfaces.

Accessible

Information

Online

information

for

IMS

Version

9

is

available

in

BookManager

format,

which

is

an

accessible

format.

All

BookManager

functions

can

be

accessed

by

using

a

keyboard

or

keyboard

shortcut

keys.

BookManager

also

allows

you

to

use

screen

readers

and

other

assistive

technologies.

The

BookManager

READ/MVS

product

is

included

with

the

z/OS

base

product,

and

the

BookManager

Softcopy

Reader

(for

workstations)

is

available

on

the

IMS

Licensed

Product

Kit

(CD),

which

you

can

download

from

the

Web

at

www.ibm.com.

Keyboard

Navigation

of

the

User

Interface

Users

can

access

IMS

user

interfaces

using

TSO/E

or

ISPF.

Refer

to

the

z/OS

V1R1.0

TSO/E

Primer,

the

z/OS

V1R1.0

TSO/E

User’s

Guide,

and

the

z/OS

V1R1.0

ISPF

User’s

Guide,

Volume

1.

These

guides

describe

how

to

navigate

each

interface,

including

the

use

of

keyboard

shortcuts

or

function

keys

(PF

keys).

Each

guide

includes

the

default

settings

for

the

PF

keys

and

explains

how

to

modify

their

functions.

IBM

Confidential

xxii

IMS:

An

Introduction

to

IMS

Part

1.

Overview

of

IMS

Chapter

1.

Introduction

to

IMS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

History

of

IMS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Beginnings

at

NASA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

IMS

as

a

Database

Management

System

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

The

DL/I

Callable

Interface

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

IMS

as

a

Transaction

Manager

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

Overview

of

the

IMS

Product

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

IMS

Database

Manager

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 5

IMS

Transaction

Manager

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 6

IMS

System

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 7

Accessing

IMS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 7

How

IMS

Relates

to

z/OS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 8

Chapter

2.

IMS

and

z/OS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

Structure

of

IMS

Subsystems

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

IMS

Control

Region

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

IMS

Separate

Address

Spaces

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 14

Application

Dependent

Regions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 16

Batch

Application

Address

Space

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 20

Internal

Resource

Lock

Manager

(IRLM)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

Running

an

IMS

System

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

Running

Multiple

IMS

Systems

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 22

Running

Multiple

IMS

Systems

on

One

z/OS

Image

.

.

.

.

.

.

.

.

.

. 22

Running

Multiple

IMS

Systems

on

Multiple

z/OS

Images

.

.

.

.

.

.

.

. 23

How

IMS

Uses

z/OS

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 23

Transmission

Control

Protocol/Internet

Protocol

(TCP/IP)

.

.

.

.

.

.

.

. 24

Advanced

Program-to-Program

Communications

(APPC)

.

.

.

.

.

.

.

. 24

Resource

Access

Control

Facility

(RACF)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 24

Resource

Recovery

Services

(RRS)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 24

Parallel

Sysplex

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 25

Chapter

3.

Setting

Up

and

Running

IMS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 27

Installing

IMS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 27

IMS

Installation

Verification

Program

(IVP)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 27

Defining

an

IMS

System

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

Defining

IMS

Security

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

IMS

Startup

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 29

Types

of

IMS

System

Starts

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 29

Starting

IMS-Associated

Regions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 30

IMS

Logging

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 31

IMS

Utilities

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 31

IMS

Recovery

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 32

IMS

Shutdown

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

IBM

Confidential

©

Copyright

IBM

Corp.

2004

1

IBM

Confidential

2

IMS:

An

Introduction

to

IMS

Chapter

1.

Introduction

to

IMS

This

chapter

contains

an

overview

of

the

entire

IMS™

product.

It

includes

both

the

Transaction

Manager

and

Database

Manager

components.

The

following

sections

are

covered

in

this

chapter:

v

“History

of

IMS”

v

“Overview

of

the

IMS

Product”

on

page

4

History

of

IMS

As

shown

in

the

next

few

sections,

IMS

has

been

an

important

part

of

world-wide

computing

since

its

inception.

Beginnings

at

NASA

On

May

25,

1961,

United

States

President

John

F.

Kennedy

challenged

American

industry

to

send

an

American

to

the

moon

and

have

him

return

safely

to

earth.

This

feat

was

to

be

accomplished

before

the

end

of

the

decade.

American

Rockwell

won

the

bid

to

build

the

spacecraft

for

the

Apollo

Program

and,

in

1965,

they

established

a

partnership

with

IBM

to

fulfill

the

requirement

for

an

automated

system

to

manage

large

bills

of

material

for

the

construction

of

the

spacecraft.

In

1966,

12

members

of

the

IBM

team,

along

with

10

members

from

North

American

Rockwell

and

3

members

from

Caterpillar

Tractor,

started

the

design

and

development

of

the

system

that

was

called

Information

Control

System

(ICS)

and

Data

Language/Interface

(DL/I).

During

the

design

and

development

process,

the

IBM

team

was

moved

to

Los

Angeles

and

increased

to

21

members.

This

team

completed

and

shipped

the

first

release

of

ICS.

In

April,

1968,

ICS

was

installed.

The

first

“READY”

message

was

displayed

on

an

IBM

2740

typewriter

terminal

at

the

Rockwell

Space

Division

in

Downey

California,

on

August

14,

1968.

ICS

was

renamed

Information

Management

System/360™

(IMS/360)

in

1969

and

became

available

to

the

world.

Since

1968,

IMS:

v

Helped

achieve

President

Kennedy’s

dream.

v

Started

the

database

management

system

revolution.

v

Continues

to

evolve

to

meet

and

exceed

the

data

processing

requirements

demanded

by

today’s

businesses

and

governments.

IMS

as

a

Database

Management

System

The

IMS

database

management

system

(DBMS)

realized

the

concept

of

separating

application

code

from

the

data.

The

point

of

separation

was

the

Data

Language/Interface

(DL/I).

IMS

controlled

the

access

and

recovery

of

the

data.

This

separation

established

a

new

paradigm

for

application

programming.

The

application

code

could

now

focus

on

the

manipulation

of

the

data

and

not

have

the

overhead

associated

with

the

access

and

recovery

of

the

data.

This

paradigm

virtually

eliminated

the

need

for

redundant

copies

of

the

data.

Multiple

applications

could

access

and

update

a

single

instance

of

the

data,

thus

providing

current

data

for

each

application.

IBM

Confidential

©

Copyright

IBM

Corp.

2004

3

The

DL/I

Callable

Interface

Application

programs

still

access

and

navigate

through

the

data

by

using

the

DL/I

standard

callable

interface.

Online

access

to

the

data

became

possible

because

the

application

code

was

separated

from

the

data

control.

IMS

as

a

Transaction

Manager

IBM

developed

the

online

component

to

ICS/DL/I

to

support

data

communication

access

to

the

databases.

The

DL/I

callable

interface

was

expanded

to

the

online

component

of

the

product

to

enable

data

communication

transparency

to

the

application

programs.

A

message

queue

function

was

created

to

maintain

the

integrity

of

data

communication

messages

and

to

provide

a

queuing

concept

for

scheduling

application

programs.

The

online

component

to

ICS/DL/I

ultimately

became

the

Data

Communications

(DC)

function

of

IMS.

IMS

DC

became

the

IMS

Transaction

Manager

(IMS

TM)

in

IMS

Version

4.

Overview

of

the

IMS

Product

IMS

delivers

accurate,

consistent,

timely,

and

critical

information

to

application

programs,

which

deliver

the

information

to

many

end

users

simultaneously.

IMS

has

been

developed

to

provide

an

environment

for

applications

that

require

very

high

levels

of

performance,

throughput,

and

availability.

IMS

uses

the

maximum

facilities

that

the

operating

system

and

hardware

have

to

offer.

Currently,

IMS

runs

on

z/OS®

and

on

zSeries

hardware.

IMS

consists

of

three

components,

the

Database

Manager

(IMS

DB)

component,

the

Transaction

Manager

(IMS

TM)

component,

and

a

set

of

system

services

that

provide

common

services

to

the

other

two

components.

Together,

(known

as

IMS

DB/DC)

they

create

a

complete

online

transaction

processing

environment

providing

continuous

availability

and

data

integrity.

The

individual

functions

provided

by

these

components

are

described

in

more

detail

later

in

this

book.

IMS

DB

is

a

DBMS

that

helps

you

organize

business

data

with

both

program

and

device

independence.

With

IMS

DB:

v

Database

transactions

(inserts,

updates,

and

deletes)

are

performed

as

a

single

unit

of

work

so

that

the

entire

transaction

either

occurs

or

does

not

occur.

v

The

data

in

each

database

is

guaranteed

to

be

consistent.

v

Multiple

database

transactions

can

be

performed

concurrently

with

the

results

of

each

transaction

kept

isolated

from

the

others.

v

The

data

in

each

database

is

guaranteed

to

remain

even

when

the

DBMS

is

not

running.

IMS

TM

is

a

message-based

transaction

processor.

IMS

TM

provides

services

to:

v

Process

input

messages

received

from

a

variety

of

sources

(such

as

the

terminal

network,

other

IMSs,

and

the

Web).

v

Process

output

messages

created

by

application

programs.

v

Provide

an

underlying

queueing

mechanism

for

handling

these

messages.

v

Provide

high-volume,

high-performance,

high-capacity,

low-cost

transaction

processing

for

both

IMS

DB’s

hierarchical

databases

and

DB2®’s

relational

databases.

IBM

Confidential

4

IMS:

An

Introduction

to

IMS

|
|

|
|

|

|
|

|
|

|
|

IMS

TM

supports

many

terminal

sessions

at

extremely

high

transaction

volumes.

IMS

TM

and

IMS

DB

can

be

ordered

and

paid

for

separately

if

the

functions

of

the

other

component

are

not

required.

The

appropriate

system

services

are

provided

for

the

component

ordered.

IMS

has

been

developed

so

that

each

new

release

of

IMS

is

upwardly

compatible,

so

investment

in

existing

applications

is

preserved.

To

accommodate

the

changing

requirements

of

IT

systems,

many

new

features

have

been

added.

This

has

also

resulted

in

a

number

of

IMS

features

being

wholly

or

partially

superseded

by

newer

features

that

provide

better

functionality.

Applications

written

to

use

IMS

functions

can

be

written

in

a

number

of

programming

languages.

Programming

languages

currently

supported

are

Assembler,

C,

COBOL,

Java™,

Pascal,

PL/I

and

REXX.

The

IMS

resources

are

accessed

by

the

application

by

calling

a

number

of

standard

IMS

functions.

Applications

access

these

functions

through

a

standard

application

programming

interface

(API)

for

both

the

Transaction

Manager

and

Database

Manager

components.

This

interface

is

DL/I.

IMS

Database

Manager

At

the

heart

of

IMS

DB

are

its

databases

and

its

data

manipulation

language

(DL/I

calls).

IMS

DB

lets

you:

v

Maintain

data

integrity.

v

Define

the

database

structure

and

the

relationships

among

the

database

elements.

v

Query

information

in

the

database.

v

Add

new

information

to

the

database.

v

Delete

information

from

the

database.

v

Update

information

in

the

database.

Additionally,

IMS

DB

lets

you

adapt

IMS

databases

to

the

requirements

of

your

many

and

varied

applications.

Application

programs

can

access

common

and,

therefore,

consistent

data,

reducing

the

need

to

maintain

the

same

data

in

multiple

ways

in

separate

files

for

different

applications.

IMS

DB

provides:

v

A

central

point

of

control

and

access

for

the

IMS

data

that

is

processed

by

IMS

applications.

v

Facilities

for

securing

(backup

and

recovery)

and

maintaining

the

databases.

It

allows

multiple

tasks

(batch

and/or

online)

to

access

and

update

the

data

while

retaining

the

integrity

of

that

data.

It

also

provides

facilities

for

tuning

the

databases

by

reorganizing

and

restructuring

them.

IMS

databases

are

hierarchical.

Data

within

the

database

is

arranged

in

a

tree

structure,

with

data

at

each

level

of

the

hierarchy

related

to,

and

in

some

way

dependent

upon,

data

at

the

higher

level

of

the

hierarchy

(see

Figure

1

on

page

6).

By

following

this

model,

a

specific

data

item

only

needs

to

be

stored

within

the

database

once.

The

data

item

is

then

available

to

any

user

who

is

authorized

to

use

it.

Users

do

not

need

to

have

personal

copies

of

the

data.

IBM

Confidential

Chapter

1.

Introduction

to

IMS

5

|

IMS

databases

are

accessed

internally

using

a

number

of

IMS’s

database

organization

access

methods.

The

actual

database

data

is

stored

on

disk

storage

using

normal

z/OS

access

methods.

IMS

DB

provides

access

to

these

databases

from

applications

running

under

the

IMS

Transaction

Manager,

CICS®

Transaction

Server

for

OS/390®

and

z/OS,

z/OS

batch

jobs,

WebSphere®

Application

Server

for

z/OS,

and

DB2

UDB

for

z/OS

stored

procedures.

IMS

DB

can

be

ordered

separately

from

the

base

IMS

product.

This

configuration

is

called

DB

control

(DBCTL).

Related

Reading:

For

more

information

about

IMS

DB,

see

Part

2,

“IMS

Database

Manager,”

on

page

35.

IMS

Transaction

Manager

IMS

TM

provides

users

of

a

network

with

access

to

applications

running

under

IMS.

The

users

can

be

people

at

terminals

or

workstations,

or

other

application

programs,

either

on

the

same

z/OS

system,

on

other

z/OS

systems,

or

on

other

non-z/OS

platforms.

A

transaction

is

a

specific

setup

of

input

data

that

triggers

the

execution

of

a

specific

business

application

program.

The

message

that

is

destined

for

an

application

program,

and

the

return

of

any

results,

is

considered

one

transaction.

When

IMS

TM

is

used

with

IMS

DB,

it

extends

the

facilities

of

that

database

management

system

to

the

online,

real-time

environment.

IMS

TM

enables

terminals

or

other

devices

or

subsystems

to

enter

transactions

that

initiate

application

programs,

which

access

IMS

DB

or

DB2

databases

and

return

results.

You

can

define

a

variety

of

online

processing

options.

For

example,

you

can

define

transactions

for

high-volume

data-entry

applications,

others

for

interactive

Figure

1.

Example

of

a

Hierarchical

Data

Model

IBM

Confidential

6

IMS:

An

Introduction

to

IMS

|

|
|
|
|
|
|

applications,

and

still

others

to

support

predefined

queries.

IMS

TM

supports

a

wide

variety

of

terminals

and

devices.

It

also

enables

you

to

develop

a

wide

range

of

high-volume,

rapid-response

applications,

and

to

geographically

disperse

your

data

processing

locations,

while

keeping

centralized

control

of

your

database.

IMS

TM

can

be

ordered

separately

from

the

base

IMS

product.

This

configuration

is

called

DC

control

(DCCTL).

Related

Reading:

For

more

information

about

IMS

TM,

see

Part

3,

“IMS

Transaction

Manager,”

on

page

111.

IMS

System

Services

There

are

a

number

of

functions

that

are

common

to

both

the

Database

Manager

and

Transaction

Manager.

These

services:

v

Recover

data

v

Restart

and

recover

IMS

following

failures

v

Provide

security

(controlling

access

to

and

modification

of

IMS

resources)

v

Manage

the

application

programs

(dispatching

work,

loading

application

programs,

providing

locking

services)

v

Provide

diagnostic

and

performance

information

v

Provide

facilities

for

operating

IMS

v

Provide

interfaces

to

other

z/OS

subsystems

that

communicate

with

IMS

applications

Another

IMS

system

service

is

Database

Recovery

Control

(DBRC).

DBRC

provides

the

recovery

services

part

of

the

IMS

system.

DBRC:

v

Controls

the

allocation

and

use

of

all

IMS

logs

in

an

online

environment

v

Can

provide

access

control

for

databases

v

Can

control

database

recovery

v

Can

work

closely

with

the

IMS

recovery

utilities

DBRC

uses

a

set

of

control

data

sets,

(collectively

called

the

Recovery

Control

data

sets

or

the

RECON

data

sets)

to

store

the

control

information

that

is

required

to

fulfill

these

functions.

Related

Reading:

A

more

detailed

description

of

DBRC

is

found

in

Chapter

26,

“Database

Recovery

Control

(DBRC),”

on

page

263.

Accessing

IMS

Network

access

to

IMS

Transaction

Manager

was

originally

by

IBM’s

systems,

which

evolved

into

the

System

Network

Architecture

(SNA),

as

implemented

in

the

VTAM®

program

product

(now

a

component

of

z/OS).

Now,

there

are

multiple

ways

to

access

IMS

resources

by

networks

using

Transmission

Control

Protocol/Internet

Protocol

(TCP/IP),

as

well

as

other

methods

(such

as

IMS’s

database

resource

adapter

(DRA)

or

through

other

products

like

Websphere

MQ).

The

interfaces

to

IMS

are

pictured

in

Figure

2

on

page

8.

IBM

Confidential

Chapter

1.

Introduction

to

IMS

7

|

How

IMS

Relates

to

z/OS

IMS

runs

on

IBM

zSeries

or

compatible

mainframes

that

run

the

z/OS

operating

system.

In

fact,

there

is

a

symbiotic

relationship

between

IMS

and

z/OS.

Both

are

tailored

to

provide

the

most

efficient

use

of

the

hardware

and

software

components.

IMS

runs

as

a

z/OS

subsystem

and

uses

several

address

spaces.

There

is

one

controlling

address

space

(called

a

control

region),

several

separate

address

spaces

that

provide

IMS

services,

and

several

address

spaces

(called

dependent

regions)

that

run

IMS

application

programs.

The

various

components

of

an

IMS

system

are

explained

in

more

detail

in

“Structure

of

IMS

Subsystems”

on

page

11.

Related

Reading:

For

more

information

about

the

relationships

between

IMS

and

z/OS,

see

Chapter

2,

“IMS

and

z/OS,”

on

page

11.

For

full

details

on

the

compatibility

of

IMS

releases

with

versions

of

the

operating

system

and

associated

products,

see

the

current

release

planning

guides:

Figure

2.

Interfaces

to

IMS

IBM

Confidential

8

IMS:

An

Introduction

to

IMS

|

|
|
|

v

IMS

Version

7:

Release

Planning

Guide

v

IMS

Version

8:

Release

Planning

Guide

v

IMS

Version

9:

Release

Planning

Guide

Parallel

Sysplex

IMS

exploits

the

z/OS

Parallel

Sysplex®

environment

to

enable

a

more

dynamic,

available,

manageable,

scalable,

and

well

performing

environment

for

database,

transaction,

and

systems

management.

In

a

Parallel

Sysplex

environment,

you

can

run

multiple

IMS

subsystems

that

share

message

queues

and

databases.

This

sharing

enables

workload

balancing

and

insulation

from

individual

IMS

outages.

If

one

IMS

in

the

sysplex

fails,

others

continue

to

process

the

workload,

so

the

enterprise

is

minimally

affected.

Related

Reading:

For

more

information

on

this

topic,

see

Part

6,

“IMS

in

a

Parallel

Sysplex

Environment,”

on

page

313.

IBM

Confidential

Chapter

1.

Introduction

to

IMS

9

IBM

Confidential

10

IMS:

An

Introduction

to

IMS

Chapter

2.

IMS

and

z/OS

This

chapter

describes

how

IMS

subsystems

are

implemented

on

an

z/OS

system.

It

then

gives

an

overview

of

IMS’s

use

of

z/OS

facilities.

The

following

sections

are

covered

in

this

chapter:

v

“Structure

of

IMS

Subsystems”

v

“Running

an

IMS

System”

on

page

21

v

“Running

Multiple

IMS

Systems”

on

page

22

v

“How

IMS

Uses

z/OS

Services”

on

page

23

Structure

of

IMS

Subsystems

This

section

describes

the

various

types

of

z/OS

address

spaces

and

their

relationship

with

each

other.

z/OS

address

spaces

are

sometimes

called

regions,

as

in

the

IMS

control

region.

The

term

region

is

synonymous

with

a

z/OS

address

space.

The

core

of

an

IMS

subsystem

is

the

control

region,

running

in

one

z/OS

address

space.

For

each

control

region

there

are

multiple

separate

address

spaces

that

provide

additional

services

to

the

control

region

or

in

which

the

IMS

application

programs

run.

In

addition

to

the

control

region,

some

applications

and

utilities

used

with

IMS

run

in

separate

batch

address

spaces.

These

are

separate

to

an

IMS

subsystem

and

its

control

region

and

have

no

connection

with

it.

IMS

Control

Region

The

control

region

(CTL)

is

a

z/OS

address

space

that

can

be

initiated

through

a

z/OS

start

command,

or

by

submitting

JCL.

The

IMS

control

region

provides

the

central

point

for

an

IMS

subsystem.

The

control

region:

v

Provides

the

interface

to

the

SNA

network

for

the

Transaction

Manager

functions.

v

Provides

the

Transaction

Manager

OTMA

interface

for

access

to

non-SNA

networks.

v

Provides

the

interface

to

z/OS

for

the

operation

of

the

IMS

subsystem.

v

Controls

and

dispatches

the

application

programs

running

in

the

dependent

regions.

The

control

region

also

provides

all

logging,

restart

and

recovery

functions

for

the

IMS

subsystems.

The

terminals,

message

queues,

and

logs

are

all

attached

to

this

region,

and

the

Fast

Path

database

data

sets

are

also

allocated

by

the

control

region.

A

type

2

supervisor

call

routine

(SVC)

is

used

for

switching

control

information,

message

and

database

data

between

the

control

region,

all

other

regions,

and

back.

There

are

three

different

types

of

IMS

control

regions,

depending

on

whether

the

Database

Manager

or

Transaction

Manager

components

(or

both)

are

being

used.

These

three

control

region

types

are:

IBM

Confidential

©

Copyright

IBM

Corp.

2004

11

v

DB/DC

—

This

is

a

control

region

with

both

Transaction

Manager

and

Database

Manager

components

installed.

It

provides

the

combined

functionality

of

both

the

other

two

types

of

control

regions

listed

below.

Note

that

when

a

DB/DC

region

is

providing

access

to

IMS

databases

for

a

CICS

region,

it

is

referred

to

in

some

documentation

as

providing

DBCTL

services,

though

it

might,

in

fact,

be

a

full

DB/DC

region

and

not

just

a

DBCTL

region.

The

“DC”

in

DB/DC

is

a

left

over

from

when

the

Transaction

Manger

was

called

the

Data

Communications

function

of

IMS.

As

shown

in

Figure

3

on

page

13,

the

DB/DC

control

region

provides

access

to

the:

–

IMS

message

queues

for

IMS

applications

running

in

the

message

processing

program

(MPP)

or

Java

message

processing

regions.

–

IMS

libraries.

–

IMS

logs.

–

Fast

Path

databases.

–

DL/I

separate

address

space.

–

Database

Recovery

Control

(DBRC)

region.

–

IMS

Fast

Path

region

(IFP).

–

Java

message

processing

program

(JMP)

region.

–

Java

batch

processing

program

(JBP)

region.

–

BMP

address

spaces.

Related

Reading:

For

more

information

about

the

separate

address

spaces,

see

“IMS

Separate

Address

Spaces”

on

page

14.

For

more

information

about

the

various

types

of

regions

for

application

programs,

see

“Application

Dependent

Regions”

on

page

16.

IBM

Confidential

12

IMS:

An

Introduction

to

IMS

v

DBCTL

—

This

is

a

control

region

with

only

the

Database

Manager

component

installed

(pronounced

DB

Control).

DBCTL

can

provide

IMS

database

functions

to

batch

message

programs

(BMP

and

JMP

application

programs)

connected

to

the

IMS

control

region,

to

application

transactions

running

in

CICS

Transaction

Manager

regions,

and

to

other

z/OS

address

spaces

(for

example,

DB2

UDB

for

z/OS

stored

procedures)

by

using

the

Open

Database

Access

(ODBA)

interface.

Figure

3.

Structure

of

an

IMS

DB/DC

Subsystem

IBM

Confidential

Chapter

2.

IMS

and

z/OS

13

v

DCCTL

—

This

type

of

control

region

has

only

the

Transaction

Manager

component

installed

(pronounced

DC

Control).

DCCTL

can

also

be

used

as

the

Transaction

Manager

front

end

for

a

DB2

UDB

for

z/OS.

In

some

of

the

IMS

documentation,

the

terms

DB/DC,

DBCTL,

and

DCCTL

are

also

used

to

see

what

sort

of

IMS

system

is

being

defined

during

an

IMS

system

definition;

that

is,

for

what

functions

will

be

in

the

IMS

libraries

after

the

system

definition

process

has

completed.

IMS

Separate

Address

Spaces

The

control

region

has

separate

address

spaces

to

provide

some

of

the

services

of

the

IMS

subsystem.

These

regions

are

automatically

started

by

the

IMS

control

region

as

part

of

its

initialization,

and

the

control

region

will

not

complete

initialization

until

these

dependent

regions

have

started

and

connected

to

the

IMS

control

region.

Every

IMS

control

region

has

a

DBRC

region.

The

other

two

separate

address

spaces

are

optional,

depending

on

the

IMS

features

used.

For

DL/I,

separate

address

space

options

can

be

specified

at

IMS

initialization.

DBRC

Region

The

DBRC

region

processes

all

access

to

the

DBRC

recovery

control

(RECON)

data

sets.

It

also

performs

all

generation

of

batch

jobs

for

DBRC

(for

example,

for

archiving

the

online

IMS

log).

All

IMS

control

regions

have

a

DBRC

address

space,

as

it

is

needed,

at

a

minimum,

for

managing

the

IMS

logs.

DL/I

Separate

Address

Space

(DLISAS)

This

address

space

performs

most

data

set

access

functions

for

the

IMS

Database

Manager

component

(except

for

the

Fast

Path

DEDB

databases,

described

later).

The

full-function

database

data

sets

are

allocated

by

this

address

space.

It

also

contains

some

of

the

control

blocks

associated

with

database

access

and

some

database

buffers.

This

address

space

is

not

present

with

a

DCCTL

system

because

the

Database

Manager

component

is

not

present.

For

a

DBCTL

control

region,

this

address

space

is

required

and

always

present.

For

a

DB/DC

control

region,

you

have

the

option

of

having

IMS

database

accesses

performed

by

the

control

region

or

having

the

DB/DC

region

start

a

DL/I

separate

address

space.

For

performance

and

capacity

reasons,

use

a

DL/I

separate

address

space.

Common

Queue

Server

(CQS)

Address

Space

Common

Queue

Server

(CQS)

is

a

generalized

server

that

manages

data

objects

on

a

z/OS

coupling

facility

on

behalf

of

multiple

clients.

One

CQS

is

shipped

with

every

IMS.

CQS

uses

the

z/OS

coupling

facility

as

a

repository

for

data

objects.

Storage

in

a

coupling

facility

is

divided

into

distinct

objects

called

structures.

Authorized

programs

use

structures

to

implement

data

sharing

and

high-speed

serialization.

The

coupling

facility

stores

and

arranges

the

data

according

to

list

structures.

Queue

structures

contain

collections

of

data

objects

that

share

the

same

name,

known

as

queues.

Resource

structures

contain

data

objects

organized

as

uniquely

named

resources.

IBM

Confidential

14

IMS:

An

Introduction

to

IMS

|
|
|
|

|
|
|
|
|
|
|

CQS

receives,

maintains,

and

distributes

data

objects

from

shared

queues

on

behalf

of

multiple

clients.

Each

client

has

its

own

CQS

access

the

data

objects

on

the

coupling

facility

list

structure.

IMS

is

one

example

of

a

CQS

client

that

uses

CQS

to

manage

both

its

shared

queues

and

shared

resources.

CQS

runs

in

a

separate

address

space

that

can

be

started

by

the

client

(IMS).

The

CQS

client

must

run

under

the

same

z/OS

operating

system

where

the

CQS

address

space

is

running.

CQS

is

used

by

IMS

DCCTL

and

IMS

DB/DC

control

regions

if

they

are

participating

in

sysplex

sharing

of

IMS

message

queues

or

resource

structures.

Clients

communicate

with

CQS

using

CQS

requests

that

are

supported

by

CQS

macro

statements.

Using

these

macros,

CQS

clients

can

communicate

with

CQS

and

manipulate

client

data

on

shared

coupling

facility

structures.

Figure

4

shows

the

communications

and

the

relationship

between

clients,

CQSs,

and

the

coupling

facility.

Related

Reading:

For

complete

information

about

CQS,

see

the

IMS

Version

9:

Common

Queue

Server

Guide

and

Reference.

Common

Service

Layer

The

IMS

Common

Service

Layer

(CSL)

is

a

collection

of

IMS

manager

address

spaces

that

provide

the

infrastructure

needed

for

systems

management

tasks.

The

CSL

address

spaces

include

Operations

Manager

(OM),

Resource

Manager

(RM),

and

Structured

Call

Interface

(SCI).

They

are

briefly

described

in

the

following

sections.

The

IMS

CSL

reduces

the

complexity

of

managing

multiple

IMS

systems

by

providing

you

with

a

single-image

perspective

in

an

IMSplex.

An

IMSplex

is

one

or

more

IMS

subsystems

that

can

work

together

as

a

unit.

Typically,

but

not

always,

these

subsystems:

v

Share

either

databases

or

resources

or

message

queues

(or

any

combination)

v

Run

in

an

z/OS

sysplex

environment

v

Include

an

IMS

CSL

Related

Reading:

For

a

further

discussion

of

IMS

in

a

sysplex

environment,

see:

Figure

4.

Client

Systems,

CQS,

and

a

Coupling

Facility

IBM

Confidential

Chapter

2.

IMS

and

z/OS

15

|
|
|
|

|
|
|

|
|

|
|
|
|
|
|

|
|

v

Chapter

31,

“IMSplexes,”

on

page

337

v

IMS

Version

9:

Administration

Guide:

System

For

a

detailed

discussion

of

IMS

in

a

sysplex

environment,

see:

v

IMS

in

the

Parallel

Sysplex:

Volume

I:

Reviewing

the

IMSplex

Technology

v

IMS

in

the

Parallel

Sysplex:

Volume

II:

Planning

the

IMSplex

v

IMS

in

the

Parallel

Sysplex:

Volume

III:

IMSplex

Implementation

and

Operations

Operations

Manager

Address

Space:

The

Operations

Manager

(OM)

controls

the

operations

of

an

IMSplex.

OM

provides

an

application

programming

interface

(the

OM

API)

through

which

commands

can

be

issued

and

responses

received.

With

a

single

point

of

control

(SPOC)

interface,

you

can

submit

commands

to

OM.

The

SPOC

interfaces

include

the

TSO

SPOC,

the

REXX

SPOC

API,

and

the

IMS

Control

Center.

You

can

also

write

your

own

application

to

submit

commands.

Related

Reading:

For

a

further

discussion

of

OM,

see

“Operations

Manager”

on

page

339.

Resource

Manager

Address

Space:

The

Resource

Manager

(RM)

is

an

IMS

address

space

that

manages

global

resources

and

IMSplex-wide

processes

in

a

sysplex

on

behalf

of

its

clients.

IMS

is

one

example

of

an

RM

client.

Related

Reading:

For

a

further

discussion

of

RM,

see

“Resource

Manager”

on

page

339.

Structured

Call

Interface

Address

Space:

The

Structured

Call

Interface

(SCI)

allows

IMSplex

members

to

communicate

with

one

another.

The

communication

between

IMSplex

members

can

happen

within

a

single

z/OS

image

or

among

multiple

z/OS

images.

Individual

IMS

components

do

not

need

to

know

where

the

other

components

reside

or

what

communication

interface

to

use.

Related

Reading:

For

a

further

discussion

of

SCI,

see

“Structured

Call

Interface”

on

page

339.

Application

Dependent

Regions

IMS

provides

dependent

region

address

spaces

for

the

execution

of

system

and

application

programs

that

use

IMS

services.

The

application

dependent

regions

are

started

as

the

result

of

JCL

submission

to

the

operating

system

by

the

IMS

control

region,

following

an

IMS

command

that

had

been

entered.

After

they

are

started,

the

application

programs

are

scheduled

and

dispatched

by

the

control

region.

In

all

cases,

the

z/OS

address

space

executes

an

IMS

region

control

program.

The

application

program

is

then

loaded

and

called

by

the

IMS

code.

There

can

be

up

to

999

application

dependent

regions

connected

to

one

IMS

control

region,

made

up

of

any

combination

of

the

following

dependent

region

types:

v

Message

processing

region

(MPR)

v

IMS

Fast

Path

region

(IFP),

processing

Fast

Path

applications

or

utilities

v

Batch

message

processing

(BMP)

region,

running

with

or

without

HSSP

(High

Speed

Sequential

Processing)

v

Java

message

processing

(JMP)

region

IBM

Confidential

16

IMS:

An

Introduction

to

IMS

|

|
|

v

Java

batch

processing

(JBP)

region

v

DBCTL

thread

(DBT)

The

combination

of

what

region

type

can

be

used

in

the

various

types

of

IMS

control

regions,

can

be

found

in

Table

1.

Table

1.

Support

for

Region

Types

by

IMS

Control

Region

Type

Application

Address

Space

Type

DCCTL

DBCTL

DB/DC

MPR

Y

N

Y

IFP

Y

N

Y

BMP

(transaction

oriented)

Y

(1)

N

Y

BMP

(batch)

N

Y

Y

JMP

Y

N

Y

JBP

Y

Y

Y

Batch

N

N

N

DBT

N

Y

Y

1.

BMP

regions

attached

to

a

DCCTL

control

region

can

only

access

the

IMS

message

queues

and

DB2

UDB

for

z/OS

databases.

Message

Processing

Region

This

type

of

address

space

is

used

to

run

applications

to

process

messages

input

to

the

IMS

Transaction

Manager

component

(that

is,

online

programs).

The

address

space

is

started

by

IMS

submitting

the

JCL

as

a

result

of

an

IMS

command.

The

address

space

does

not

automatically

load

an

application

program

but

will

wait

until

work

becomes

available.

There

is

a

complex

scheme

for

deciding

which

MPR

to

run

the

application

program.

We

will

give

a

brief

description

below.

When

the

IMS

dispatching

function

determines

that

an

application

is

to

run

in

a

particular

MPR,

the

application

program

is

loaded

into

that

region

and

receives

control.

It

processes

the

message,

and

any

further

messages

for

that

transaction

waiting

to

be

processed.

Then,

depending

on

options

specified

on

the

transaction

definition,

the

application

either

waits

for

further

input,

or

another

application

program

will

be

loaded

to

process

a

different

transaction.

Fast

Path

Region

This

type

of

address

spaces

runs

application

programs

to

process

messages

for

transactions

that

have

been

defined

as

Fast

Path

transactions.

Fast

Path

applications

are

very

similar

to

the

programs

that

run

in

an

MPR.

Like

MPRs,

the

IFP

regions

are

started

by

the

IMS

control

region

submitting

the

JCL

as

a

result

of

an

IMS

command.

The

difference

with

IFP

regions

is

in

the

way

IMS

loads

and

dispatches

the

application

program

and

handles

the

transaction

messages.

To

allow

for

this

different

processing,

IMS

imposes

restrictions

on

the

length

of

the

application

data

that

can

be

processed

in

an

IFP

region

as

a

single

message.

IMS

employs

a

user-written

exit

routine,

which

you

have

to

write,

to

determine

whether

a

transaction

message

should

be

processed

in

an

IFP

region

and

which

IFP

region

it

should

be

processed

in.

The

different

dispatching

of

the

transaction

messages

by

the

control

region

is

called

Expedited

Message

Handling

(EMH).

The

IBM

Confidential

Chapter

2.

IMS

and

z/OS

17

intention

is

to

speed

the

processing

of

the

messages

by

having

the

applications

loaded

and

waiting

for

input

messages,

and,

if

the

message

is

suitable,

dispatching

it

directly

in

the

IFP

region,

bypassing

the

IMS

message

queues.

Fast

Path

was

originally

a

separately

priced

function

available

with

IMS,

intended

to

provide

faster

response

and

allow

higher

volumes

of

processing.

It

is

now

part

of

the

IMS

base

product.

Batch

Message

Processing

Region

Unlike

the

other

two

types

of

application

dependent

regions,

the

BMP

is

not

started

by

the

IMS

control

region,

but

is

started

by

submitting

a

batch

job,

for

example

by

a

user

from

TSO

or

by

a

job

scheduler.

The

batch

job

then

connects

to

an

IMS

control

region

defined

in

the

execution

parameters.

There

are

two

types

of

applications

that

can

run

in

BMP

address

spaces:

v

Message

Driven

BMPs

(also

called

transaction-oriented

BMPs)

that

read

and

process

messages

off

the

IMS

message

queue.

v

Non-message

BMPs

(batch-oriented)

that

do

not

process

IMS

messages.

BMPs

have

access

to

the

IMS

full-function

databases

(not

Fast

Path),

providing

that

the

control

region

has

the

Database

Manager

component

installed.

BMPs

can

also

read

and

write

to

z/OS

sequential

files,

with

integrity,

using

the

IMS

GSAM

access

method

DBCTL

Thread

(DBT).

When

a

CICS

system

connects

to

IMS

(either

as

DBCTL

or

as

IMS

DB/DC)

using

the

Database

Resource

Adapter

(DRA),

each

CICS

system

will

have

a

pre-defined

number

of

connections

with

IMS.

Each

of

these

connections

is

called

a

thread.

See

Figure

5

on

page

19.

IBM

Confidential

18

IMS:

An

Introduction

to

IMS

|
|
|
|

Although

these

threads

are

not

jobs

in

their

own

right,

from

IMS’s

perspective,

each

thread

appears

just

like

another

dependent

region

and

when

CICS

requires

a

DL/I

call

to

IMS,

the

program

will

effectively

be

running

in

one

of

these

DBT

regions.

Java

Dependent

Regions

IMS

Java

application

programs

run

in

one

of

two

IMS

dependent

regions

that

provide

a

Java

Virtual

Machine

(JVM)

environment

for

the

Java

application.

The

Java

dependent

region

types

are:

v

Java

Message

Processing

(JMP)

for

message-driven

Java

applications.

JMP

applications

can

process

input

messages

from

the

message

queue

(similar

to

MPPs)

and

can

access

DB2

data

(using

RRSAF).

JMP

regions

can

run

in

DB/DC

or

DCCTL

environments.

v

Java

Batch

Processing

(JBP)

for

non-message-driven

Java

applications.

JBP

applications

run

in

an

online

batch

mode

and

do

not

process

input

messages

(similar

to

non-message-driven

BMP

applications),

and

can

access

DB2

data.

JBP

regions

can

run

in

DB/DC,

DCCTL,

or

DBCTL

environments.

Figure

5.

Structure

of

an

IMS

DBCTL

System

IBM

Confidential

Chapter

2.

IMS

and

z/OS

19

Utility

Regions

BMP

and

IFP

regions

can

also

be

used

for

other

types

of

work

besides

running

application

programs.

BMPs

can

be

used

for

HSSP

processing,

and

IFPs

can

be

used

for

Fast

Path

utility

programs.

For

further

discussion

on

these,

see

the

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

Batch

Application

Address

Space

In

addition

to

the

dependent

application

address

spaces

discussed

in

“IMS

Separate

Address

Spaces”

on

page

14

and

“Application

Dependent

Regions”

on

page

16,

IMS

application

programs

that

only

use

IMS

Database

Manager

functions

can

be

run

in

a

separate

z/OS

address

space,

not

connected

to

an

IMS

control

region.

This

would

normally

be

done

for

very

long

running

applications

that

perform

large

numbers

of

database

accesses

or

for

applications

that

do

not

perform

syncpoint

processing.

These

batch

applications

can

only

access

full-function

databases.

This

is

similar

to

a

BMP,

in

that

the

JCL

is

submitted

through

TSO

or

a

job

scheduler.

However,

all

IMS

code

used

by

the

application

resides

in

the

address

space

that

the

application

is

running

in.

The

job

executes

an

IMS

batch

region

controller

that

then

loads

and

calls

the

application.

Figure

6

shows

an

IMS

batch

region.

The

batch

address

space

opens

and

reads

the

IMS

database

data

sets

directly.

Figure

6.

Structure

of

an

IMS

Batch

Region

IBM

Confidential

20

IMS:

An

Introduction

to

IMS

|
|
|
|

|
|
|
|
|
|
|
|

Attention:

If

there

are

requirements

for

other

programs,

either

running

under

the

control

of

an

IMS

control

region

or

in

other

batch

regions,

to

access

the

databases

at

the

same

time,

then

caution

should

be

exercised

to

protect

data

integrity.

See

Chapter

8,

“Data

Sharing,”

on

page

83

for

more

information

about

how

the

data

can

be

updated

by

multiple

applications

in

a

safe

manner.

The

batch

address

space

writes

its

own

separate

IMS

log.

In

the

event

of

a

program

failure,

it

might

be

necessary

to

take

manual

action

(for

example,

submit

jobs

to

run

IMS

utilities)

to

recover

the

databases

to

a

consistent

point.

With

dependent

application

address

spaces,

this

would

be

done

automatically

by

the

IMS

control

region.

DBRC

can

be

used

to

track

the

IMS

logs

and

ensure

that

correct

recovery

action

is

taken

in

the

event

of

a

failure.

An

application

can

be

written

so

that

it

can

run

in

both

a

batch

and

BMP

address

space

without

change.

Some

reasons

you

may

want

to

change

programs

between

batch

and

BMP

address

spaces

include

length

of

run

time,

need

of

other

applications

to

access

the

data

at

the

same

time,

and

your

procedures

for

recovering

from

application

failures.

Internal

Resource

Lock

Manager

(IRLM)

The

IRLM

address

space

is

only

needed

if

you

are

going

to

use

block-level

or

sysplex

data

sharing

for

the

IMS

databases.

The

IRLM

address

space

is

started

before

the

IMS

control

region

with

the

z/OS

start

command.

The

IMS

control

region,

if

the

start-up

parameters

specify

IRLM,

connects

to

the

IRLM

specified

on

startup

and

will

not

complete

initialization

until

connected.

There

is

one

IRLM

address

space

running

on

each

z/OS

system

to

service

all

IMS

subsystems

sharing

the

same

set

of

databases.

For

more

information

on

data

sharing

in

sysplex

environment,

see:

v

IMS

in

the

Parallel

Sysplex:

Volume

I:

Reviewing

the

IMSplex

Technology

v

IMS

in

the

Parallel

Sysplex:

Volume

II:

Planning

the

IMSplex

v

IMS

in

the

Parallel

Sysplex:

Volume

III:

IMSplex

Implementation

and

Operations

IRLM

is

delivered

as

an

integral

part

of

the

IMS

program

product,

though

as

mentioned,

you

do

not

have

to

install

or

use

it

unless

you

need

to

perform

block-level

or

sysplex

data

sharing.

IRLM

is

also

the

required

the

lock

manager

for

DB2

UDB

for

z/OS.

Do

not

use

the

same

IRLM

address

space

for

IMS

and

DB2

because

the

tuning

requirements

of

IMS

and

DB2

are

different

and

conflicting.

The

IRLM

code

is

delivered

with

both

the

IMS

and

DB2

program

products

and

interacts

closely

with

both

these

products.

Therefore,

you

might

want

to

install

the

IRLM

code

for

IMS

and

DB2

separately

(that

is,

in

separate

SMP/E

zones)

so

you

can

maintain

release

and

maintenance

levels

independently.

This

can

be

helpful

if

you

need

to

install

prerequisite

maintenance

on

IRLM

for

one

database

product,

as

it

will

not

affect

the

use

of

IRLM

by

the

other.

Running

an

IMS

System

The

procedures

to

run

IMS

address

spaces

are

supplied

by

IBM.

The

procedures

are

in

the

IMS.PROCLIB

data

set.

There

are

procedures

for

each

type

of

region.

IBM

Confidential

Chapter

2.

IMS

and

z/OS

21

|
|
|
|
|

These

procedures

should

be

modified

with

the

correct

data

set

names

for

each

IMS

system.

The

following

list

contains

the

procedure

member

names

(as

found

in

IMS.PROCLIB)

along

with

the

type

of

region

that

each

will

generate:

Procedure

Member

Name

Region

Name

IMS

DB/DC

control

region

DCC

DCCTL

control

region

DBC

DBCTL

control

region

DLISAS

DLI

separate

address

space

DBRC

Database

Recovery

Control

DXRJPROC

Internal

Resource

Lock

Manager

(IRLM)

DFSMPR

Message

processing

region

(MPR)

IMSBATCH

IMS

batch

processing

region

(BMP)

IMSFP

Fast

Path

region

(IFP)

FPUTIL

Fast

Path

utility

region

DLIBATCH

DLI

batch

region

DFSJBP

IMS

Java

batch

processing

(JBP)

region

DFSJMP

IMS

Java

message

processing

(JMP)

region

IMSRDR

IMS

JCL

reader

region

Related

Reading:

For

details

of

these

and

other

procedures

supplied

in

IMS.PROCLIB,

see

the

“Procedures”

chapter

in

the

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

Running

Multiple

IMS

Systems

Multiple

IMS

systems

can

be

run

on

a

single

z/OS

image

or

on

multiple

z/OS

images.

One

instance

of

an

IMS

system

(control

region

and

all

associated

dependent

regions)

is

referred

to

as

one

IMS

system.

In

many

cases,

these

would

be

production

and

testing

systems.

Running

Multiple

IMS

Systems

on

One

z/OS

Image

The

number

of

subsystems

you

can

run

on

a

single

image

of

z/OS

will

depend

on

many

factors.

In

most

installations,

you

can

run

up

to

four

IMS

subsystems,

although

some

installations

run

as

many

as

eight

small

ones

running

concurrently.

The

number

will

vary

depending

on

the

size

of

each

IMS

system.

The

amount

of

z/OS

common

service

area

(CSA)

required

by

each

IMS

is

often

one

of

the

most

limiting

factors

in

the

equation.

Each

IMS

subsystem

should

have

unique

VTAM

ACB

and

IMSID

names.

The

application

dependent

regions

use

the

IMSID

to

connect

to

the

corresponding

IMS

control

region.

If

the

dependent

region

starts

and

there

is

no

control

region

running

using

that

IMSID,

the

dependent

region

issues

a

message

to

the

z/OS

system

console

and

then

waits

for

a

reply.

Each

IMS

subsystem

can

have

up

to

999

dependent

regions.

However,

there

are

other

limiting

factors,

such

as,

storage

limitations

because

of

pool

usage.

IBM

Confidential

22

IMS:

An

Introduction

to

IMS

|
|
|
|
|
|
|

Running

Multiple

IMS

Systems

on

Multiple

z/OS

Images

There

are

basically

three

ways

to

run

multiple

IMSs

on

multiple

z/OS

images.

They

are:

v

Multiple

Systems

Coupling

(MSC)

MSC

only

supports

IMS-to-IMS

connections.

For

more

information

about

MSC,

see

“Multiple

Systems

Coupling

(MSC)”

on

page

116.

v

Inter

System

Communications

(ISC)

ISC

is

another

way

to

connect

multiple

subsystems.

ISC

is

more

flexible

than

MSC,

in

that

ISC

supports

connections

to

IMS

and

other

z/OS

products,

such

as

CICS.

For

more

information

about

ISC,

see

“Intersystem

Communications

(ISC)”

on

page

117.

v

Parallel

Sysplex

Running

multiple

IMSs

in

a

Parallel

Sysplex

environment

is

a

good

way

to

balance

workload,

build

scalability

into

your

systems,

and

provide

maximum

availability.

For

more

information

on

this

topic,

see

“Parallel

Sysplex”

on

page

25

and

Chapter

31,

“IMSplexes,”

on

page

337.

How

IMS

Uses

z/OS

Services

IMS

is

designed

to

make

the

best

use

of

the

features

of

the

z/OS

operating

system.

This

includes:

v

Running

in

multiple

address

spaces

—

IMS

subsystems

(except

for

IMS

batch

applications

and

utilities)

normally

consist

of

a

control

region

address

space,

separate

address

spaces

for

system

services,

and

dependent

address

spaces

for

application

programs.

Running

in

multiple

address

spaces

gives

the

following

advantages:

–

Maximizes

use

of

CPUs

when

running

on

a

multi-processor

CPC.

Address

spaces

can

be

dispatched

in

parallel

on

different

CPUs.

–

Isolates

the

application

programs

from

the

IMS

systems

code.

Reduces

outages

from

application

failures.

v

Runs

multiple

tasks

in

each

address

space

—

IMS,

particularly

in

the

control

region,

creates

multiple

z/OS

subtasks

for

the

various

functions

to

be

performed.

This

allows

other

IMS

subtasks

to

be

dispatched

by

z/OS

while

one

IMS

subtask

is

waiting

for

system

services

v

IMS

uses

z/OS

cross

memory

services

to

communicate

between

the

various

address

spaces

making

up

an

IMS

system.

It

also

uses

the

z/OS

CSA

to

store

IMS

control

blocks

that

are

frequently

accessed

by

the

address

spaces

making

up

the

IMS

system.

This

minimizes

the

overhead

in

running

in

multiple

address

spaces.

v

IMS

uses

the

z/OS

subsystem

feature

—

IMS

dynamically

registers

itself

as

a

z/OS

subsystem.

It

uses

this

facility

to

detect

when

dependent

address

spaces

fail,

prevent

cancellation

of

dependent

address

spaces.

v

IMS

can

make

use

of

an

z/OS

sysplex.

Multiple

IMS

subsystems

can

run

on

the

z/OS

systems

making

up

the

sysplex

and

access

the

same

IMS

databases

and

the

same

message

queue.

This

gives:

–

High

availability

—

z/OS

systems

and

IMS

subsystems

can

be

taken

in

and

out

of

service

without

interrupting

production.

–

High

capacity

—

the

multiple

IMS

subsystems

can

process

far

greater

volumes

than

individual

IMSs

can.

Related

Reading:

For

further

details

on

sysplex

data

sharing

and

shared

queues,

see:

IBM

Confidential

Chapter

2.

IMS

and

z/OS

23

v

IMS

in

the

Parallel

Sysplex:

Volume

I:

Reviewing

the

IMSplex

Technology

v

IMS

in

the

Parallel

Sysplex:

Volume

II:

Planning

the

IMSplex

v

IMS

in

the

Parallel

Sysplex:

Volume

III:

IMSplex

Implementation

and

Operations

Transmission

Control

Protocol/Internet

Protocol

(TCP/IP)

IMS

provides

support

for

z/OS

TCP/IP

communications

through

a

function

called

Open

Transaction

Manager

Access

(OTMA).

Any

TCP/IP

application

can

have

access

to

IMS

by

using

OTMA.

A

related

IBM

product,

IMS

Connect

for

z/OS,

uses

the

OTMA

interface

to

connect

IMS

to

Web

servers.

Related

Reading:

For

details

on

OTMA

and

IMS

Connect

for

z/OS,

see:

v

IMS

Version

9:

Open

Transaction

Manager

Access

Guide

and

Reference

v

IMS

Connect

Guide

and

Reference

Advanced

Program-to-Program

Communications

(APPC)

IMS

supports

z/OS

CPI

communications

interface,

which

defines

the

Logical

Unit

type

6.2

formats

and

protocols

for

program-to-program

communication.

IMS’s

support

for

APPC

is

called

APPC/IMS.

APPC/IMS

enables

applications

to

be

distributed

throughout

your

entire

network

and

to

communicate

with

each

other

regardless

of

the

underlying

hardware.

Related

Reading:

For

more

information

about

IMS’s

support

for

APPC,

see

“Advanced

Program-to-Program

Communication

(APPC)”

on

page

114.

Resource

Access

Control

Facility

(RACF)

IMS

was

developed

prior

to

the

introduction

of

RACF®

(part

of

the

Security

Server

for

z/OS)

and

other

security

products.

As

a

result,

IMS

initially

incorporated

its

own

security

mechanisms

to

control

user

access

to

the

various

IMS

resources,

transactions,

databases,

and

so

forth.

This

security

was

controlled

by

a

number

of

means.

A

number

of

security

exits

were

provided.

Also,

a

series

of

bitmaps

defined

users

and

their

access

to

resources.

This

is

referred

to

as

a

security

matrix.

These

are

load

modules

produced

by

the

IMS

Security

Maintenance

utility.

With

the

introduction

of

RACF,

IMS

was

enhanced

to

use

RACF

(or

equivalent

product)

for

controlling

access

to

IMS

resources.

It

is

now

possible

to

use

the

original

IMS

security

features,

the

RACF

features,

and

combinations

of

these.

Recommendation:

Use

RACF

because

it

provides

more

flexibility

and

the

Security

Maintenance

utility

will

not

be

supported

in

future

releases

of

IMS.

The

normal

features

of

RACF

can

also

be

used

to

protect

IMS

data

sets,

both

system

and

database.

Related

Reading:

For

further

information

about

protecting

IMS

resources,

see

Chapter

24,

“IMS

Security,”

on

page

253.

For

complete

information

regarding

IMS

and

security,

see

the

security

chapter

in

the

IMS

Version

9:

Administration

Guide:

System.

Resource

Recovery

Services

(RRS)

With

z/OS

comes

a

system

resource

recovery

platform.

Resource

Recovery

Services

(RRS)

is

the

sync-point

manager,

coordinating

the

update

and

recovery

of

IBM

Confidential

24

IMS:

An

Introduction

to

IMS

multiple

protected

resources.

RRS

controls

how

and

when

protected

resources

are

committed

by

coordinating

with

the

resource

managers,

such

as

IMS,

that

have

registered

with

RRS.

RRS

provides

a

system

resource

recovery

platform

such

that

applications

executing

on

z/OS

(such

as

IMS)

can

have

access

to

local

and

distributed

resources

and

have

system-coordinated

recovery

management

of

these

resources.

The

support

includes:

v

A

sync-point

manager

to

coordinate

the

two-phase

commit

process

v

Implementation

of

the

SAA®

Commit

and

Backout

callable

services

for

use

by

application

programs

v

A

mechanism

to

associate

resources

with

an

application

instance

v

Services

for

resource

manager

registration

and

participation

in

the

two-phase

commit

process

with

RRS

v

Services

to

allow

resource

managers

to

express

interest

in

an

application

instance

and

be

informed

of

commit

and

backout

requests

v

Services

to

enable

resource

managers

to

obtain

system

data

to

restore

their

resources

to

consistent

state

v

A

communications

resource

manager

(called

APPC/PC

for

APPC/Protected

Conversations)

so

that

distributed

applications

can

coordinate

their

recovery

with

participating

local

resource

managers

Related

Reading:

For

more

information

about

how

IMS

uses

RRS,

see

the

IMS

Version

9:

Administration

Guide:

System.

Parallel

Sysplex

A

Parallel

Sysplex

environment

in

z/OS

is

a

combination

of

hardware

and

software

components

that

enable

sysplex

data

sharing.

In

this

context,

data

sharing

means

the

ability

for

sysplex

member

systems

and

subsystems

to

store

data

into,

and

retrieve

data

from

a

common

area

known

as

a

coupling

facility.

In

short,

a

Parallel

Sysplex

can

have

multiple

CPCs

and

multiple

applications

(like

IMS)

that

can

directly

share

the

workload.

IMS

exploits

the

z/OS

Parallel

Sysplex

environment

to

enable

a

more

dynamic,

available,

manageable,

scalable,

and

well

performing

environment

for

database,

transaction,

and

systems

management.

In

a

Parallel

Sysplex

environment,

you

can

run

multiple

IMS

subsystems

that

share

message

queues

and

databases.

This

sharing

enables

workload

balancing

and

insulation

from

individual

IMS

outages.

If

one

IMS

in

the

sysplex

fails,

others

continue

to

process

the

workload,

so

the

enterprise

is

minimally

affected.

Related

Reading:

For

more

information

on

this

topic,

see

Chapter

30,

“Introduction

to

Parallel

Sysplex,”

on

page

315

and

Chapter

31,

“IMSplexes,”

on

page

337.

IBM

Confidential

Chapter

2.

IMS

and

z/OS

25

IBM

Confidential

26

IMS:

An

Introduction

to

IMS

Chapter

3.

Setting

Up

and

Running

IMS

This

chapter

contains

general

information

about

installing,

defining,

and

operating

IMS.

The

following

sections

are

covered

in

this

chapter:

v

“Installing

IMS”

v

“Defining

an

IMS

System”

on

page

28

v

“Defining

IMS

Security”

on

page

28

v

“IMS

Installation

Verification

Program

(IVP)”

v

“IMS

Startup”

on

page

29

v

“IMS

Logging”

on

page

31

v

“IMS

Utilities”

on

page

31

v

“IMS

Recovery”

on

page

32

v

“IMS

Shutdown”

on

page

33

Installing

IMS

The

IMS

installation

task

includes:

v

The

initial

activity

of

installing

IMS

on

your

z/OS

system

using

the

SMP/E

installation

process.

v

Verifying

the

installation

using

the

IMS-supplied

Installation

Verification

Program

(IVP).

v

A

variety

of

other

activities

(such

as,

initially

tailoring

your

IMS

system,

customizing

your

IMS

system,

defining

resources

to

IMS,

and

so

forth).

Most

IMS

installations

involve

migrating

an

existing

version

of

IMS

to

a

newer

version

rather

than

installing

just

a

new

instance

of

IMS.

With

this

scenario,

there

are

migration,

coexistence,

and

maintenance

steps

and

issues

to

consider

as

part

of

the

installation

process.

The

migration

issues

are

usually

version

specific.

Related

Reading:

For

the

details

of

installing,

verifying

the

installation,

tailoring,

and

migrating

IMS,

see:

v

Program

Directory

for

Information

Management

System

Version

9

v

IMS

Version

9:

Release

Planning

Guide

v

IMS

Version

9:

Installation

Volume

1:

Installation

Verification

v

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring

For

more

information

about

customizing

IMS,

see

Chapter

23,

“Customizing

IMS,”

on

page

245

and

the

IMS

Version

9:

Customization

Guide.

IMS

Installation

Verification

Program

(IVP)

The

Installation

Verification

Program

(IVP)

facility,

which

comes

with

IMS,

is

an

ISPF

application

that

is

used

to

verify

the

majority

of

IMS

features

and

functions

of

a

newly

installed

IMS.

The

IVP

uses

a

sample

IMS

system

to

perform

this

verification.

The

IVP

provides

guidance

for

performing

a

combination

of

the

following

jobs

and

tasks

(depending

on

your

environment):

v

Allocating

data

sets

IBM

Confidential

©

Copyright

IBM

Corp.

2004

27

|
|
|
|

|

v

Defining

the

characteristics

of

an

IMS

system

through

the

process

of

system

definition

v

Establishing

IMS

interfaces

to

z/OS

and

VTAM

v

Preparing

the

IMS

system

v

Performing

an

initial

program

load

(IPL)

of

z/OS

v

Preparing

the

IVP

system

and

IMS

applications

v

Initializing

the

IVP

system

and

running

IMS

applications

You

must

define

the

IMS

system

and

you

must

establish

the

interface

between

your

IMS

system

and

z/OS

before

you

can

run

IMS.

Related

Reading:

For

complete

information

about

the

IVP,

see

IMS

Version

9:

Installation

Volume

1:

Installation

Verification.

Defining

an

IMS

System

Before

you

can

use

IMS

TM

or

IMS

DB,

you

must

define

the

elements

and

functions

that

make

up

the

IMS

system.

These

include:

v

Databases

v

Application

programs

v

Terminals

IMS

provides

macros

and

procedures

that

enable

you

to

define

your

system.

IMS

also

provides

exits

(strategic

places

in

IMS’s

logic

flow)

that

enable

you

to

customize

what

happens

at

that

particular

point

in

the

processing.

All

optional

features

of

IMS,

including

what

type

of

control

region

is

required

(DB/DC,

DBCTL,

DCCTL),

must

be

defined

to

IMS

prior

to

using

it.

Almost

all

programs,

databases,

transactions,

and

terminals

(unless

the

ETO

feature

is

used)

within

IMS

must

also

be

predefined

to

IMS.

The

Extended

Terminal

Option

(ETO)

is

a

separately-priced

feature

that

allows

you

to

dynamically

define

terminals

while

IMS

is

running.

You

can

either

customize

the

sample

IMS

system

that

was

verified

with

the

IVP

(see

“IMS

Installation

Verification

Program

(IVP)”

on

page

27)

or

copy

the

sample

IMS

system

and

customize

the

copy

to

satisfy

your

installation’s

needs.

Related

Reading:

For

more

information

about

the

IMS

definition

process,

see

Chapter

22,

“The

IMS

System

Definition

Process,”

on

page

231

and

the

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

For

more

information

about

the

IMS

exits,

see

Chapter

23,

“Customizing

IMS,”

on

page

245.

Defining

IMS

Security

Setting

up

security

for

the

IMS

system

is

part

of

the

system

definition

process.

IMS

itself

has

security

functions

built

in

and

also

has

the

ability

of

providing

more

extensive

security

by

employing

user-written

exit

routines,

a

security

product

(like

RACF),

or

both.

Some

of

the

things

that

can

be

secured

are:

v

Sign-on

attempts

v

Transactions

IBM

Confidential

28

IMS:

An

Introduction

to

IMS

|
|
|

|
|
|
|

|
|
|

|
|
|
|

v

Programs

v

Commands

v

Resources

Related

Reading:

For

more

information

about

IMS

security,

see

Chapter

24,

“IMS

Security,”

on

page

253.

IMS

Startup

The

following

two

sections

describe

the

types

of

IMS

starts

that

can

be

performed

for

an

IMS

system

and

the

methods

for

starting

IMS-associated

regions.

These

sections

are:

v

“Types

of

IMS

System

Starts”

v

“Starting

IMS-Associated

Regions”

on

page

30

Types

of

IMS

System

Starts

This

section

describes

the

common

types

of

IMS

starts

that

can

be

performed.

These

IMS

starting

types

are

applicable

to

both

IMS

TM

and

IMS

DB.

Cold

start

An

IMS

control

region

cold

start

is

done

the

first

time

you

start

the

system.

During

cold

start,

IMS

formats

(initializes)

the

message

queues,

the

dynamic

log,

and

the

restart

data

sets.

Automatic

restart

With

an

automatic

restart,

IMS

will

startup,

using

either

normal

restart

or

emergency

restart,

depending

on

the

previous

shutdown

status.

If

the

last

IMS

shutdown

was

successful,

then

a

normal

restart

will

be

performed.

If

the

last

IMS

shutdown

was

abnormal

(from

an

abend),

then

IMS

will

automatically

perform

an

emergency

restart.

For

most

installations,

automatic

restart

should

be

the

default.

Normal

restart

Normal

restart

or

warm

start

is

done

from

a

previous

normal

IMS

termination.

The

message

queues

are

preserved

in

this

way.

Emergency

restart

In

case

of

failure,

IMS

is

restarted

with

the

logs

active

at

the

time

of

failure.

Restart

processing

will

back-out

the

full-function

database

changes

of

incomplete

transactions.

The

output

messages

inserted

into

the

message

queues

by

these

incomplete

transactions

will

be

deleted.

After

back-out,

the

input

messages

are

re-enqueued,

and

the

pending

output

messages

are

(re)-transmitted.

Application

programs

must

be

restarted

manually.

If

a

BMP

or

JBP

application

was

active

at

the

time

of

failure,

it

must

be

resubmitted

by

using

z/OS

job

management.

If

the

BMP

uses

the

XRST/CHKP

calls,

it

must

be

restarted

from

its

last

successful

checkpoint.

In

this

way,

missing

or

inconsistent

output

is

avoided.

Other

restarts

There

are

numerous

other

types

of

manual

starts

possible

with

IMS,

each

with

unique

requirements.

For

detailed

information

about

these

other

types

of

restarts,

see

the

IMS

Version

9:

Operations

Guide

and

the

IMS

Version

9:

Command

Reference.

IBM

Confidential

Chapter

3.

Setting

Up

and

Running

IMS

29

|
|
|
|
|
|

Starting

IMS-Associated

Regions

The

following

sections

discuss

how

the

various

IMS-associated

regions

are

started.

Address

Spaces

All

the

address

spaces

can

either

run

as

a

started

task

or

as

a

job.

In

most

cases

the

IMS

control

region

and

the

separate

address

spaces

will

run

as

started

tasks.

The

application

dependent

regions

are

run

as

either

jobs

or

started

tasks.

When

a

control

region

is

started,

it

will

issue

a

z/OS

START

command

to

start

the

DLISAS

and

DBRC

regions,

as

shown

in

the

following

example:

/START

xxxxxxxx,PARM=(DLS,imsid)

/START

xxxxxxxx,PARM=(DRC,imsid)

The

xxxxxxx

fields

are

the

procedure

names.

These

commands

will

start

the

DLISAS

and

DBRC

regions

respectively.

Starting

Application

Dependent

Regions

IMS

will

not

automatically

start

application

dependent

regions.

There

are

several

ways

start

these

regions.

v

The

Time

Control

Option

(TCO)

of

IMS

can

issue

/START

REGION

commands.

TCO

is

a

time-initiated

IMS

facility

that

can

generate

any

valid

operator

IMS

input.

v

Some

forms

of

automation

programs

can

issue

either

IMS

or

z/OS

start

commands.

v

A

job

scheduling

system

can

submit

jobs

based

on

time

or

the

notification

of

IMS

being

started.

The

notification

can

be

in

the

form

of

automated

messages.

Message

Processing

Regions

IMS

MPR

regions

are

normally

started

by

an

IMS

start

region

command

as

shown

below:

/START

REGION

xxxxxxxx

The

xxxxxx

fields

are

the

member

names

in

a

library.

The

members

contain

the

jobs

for

the

MPR

regions.

The

IMSRDR

procedure

is

used

if

the

MPRs

are

jobs.

The

IMSRDR

procedure

is

customized

to

point

to

the

correct

library

to

find

the

job

JCL.

If

you

are

running

multiple

IMS

subsystems

on

a

single

z/OS

system,

they

normally

use

a

different

version

of

the

IMSRDR

procedure

each

pointing

at

different

libraries.

The

procedure

name

is

specified

on

the

IMSCTF

macro

in

the

system

definition.

Related

Reading:

For

the

details

of

the

IMSRDR

procedure

or

the

IMSCTF

macro,

see

the

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring,

for

more

information.

Fast

Path

Application

Regions

Fast

Path

application

(IFP)

regions

are

normally

started

in

a

similar

fashion

as

MPR

regions

and

follow

the

same

rules

and

procedures.

Batch

Message

Processing

Regions

These

regions

are

almost

always

started

outside

of

IMS.

Most

BMPs

are

scheduled

at

appropriate

times

to

meet

application

requirements.

As

long

as

the

IMS

control

region

is

available,

the

BMPs

can

be

run.

BMPs

can

execute

even

though

there

are

no

MPRs

running

at

the

time.

IBM

Confidential

30

IMS:

An

Introduction

to

IMS

Java

Non-Message

Driven

Application

Processing

Region

This

region,

which

is

called

a

Java

batch

processing

(JBP)

region,

is

similar

to

a

BMP

region.

The

JBP

region

is

started

in

the

same

manner

as

a

BMP

region.

The

default

job

name

is

IMSJBP.

Java

Message-Driven

Application

Processing

Region

This

region,

which

is

called

a

Java

message

processing

(JMP)

region,

is

similar

to

an

MPP

region.

The

JMP

region

is

started

in

the

same

manner

as

an

MPP

region.

The

default

job

name

is

IMSJMP.

IMS

Logging

While

IMS

is

running,

IMS

records

information

about

everything

necessary

to

restart

the

system

if

a

hardware

or

software

failure

is

encountered.

The

event

information

is

recorded

on

a

online

log

data

set

(OLDS).

When

an

OLDS

is

filled,

or

some

other

event

switches

the

OLDS,

it

is

archived

to

the

system

log

data

set

(SLDS).

There

are

a

finite

number

of

OLDS

data

sets

(although

this

number

can

be

dynamically

changed),

that

are

pre-allocated

and

redefined

to

the

IMS

Control

Region.

The

OLDS

are

cycled

through

during

the

duration

of

the

control

region.

There

can

be

an

infinite

number

of

SLDS,

which

are

created

and

allocated

as

needed.

Related

Reading:

For

more

information

about

the

IMS

logging

function,

see

Chapter

25,

“IMS

Logging,”

on

page

257.

IMS

Utilities

To

help

run,

fine

tune,

and

monitor

IMS,

there

are

a

lot

of

utility

programs

that

come

with

the

product.

These

utilities

help

you:

v

Generate

and

maintain

IMS

system

control

blocks

v

Make

online

changes

to

the

IMS

system

v

Allocate,

monitor,

and

recover

the

IMS

log

data

sets

v

Analyze

system

performance

v

Generate

and

maintain

the

Message

Format

Service

(MFS)

v

Maintain

multiple

IMS

systems

v

Maintain

time-controlled

operations

v

Define

and

maintain

databases

v

Reorganize

databases

v

Make

backup

copies

of

databases

v

Recovery

databases

Some

of

these

utilities

are

discussed

in

the

following

sections:

v

“Overview

of

the

Reorganization

Process”

on

page

88

v

“Generating

MFS

Control

Blocks”

on

page

220

v

Chapter

24,

“IMS

Security,”

on

page

253

v

“Archiving”

on

page

259

v

“Using

IMS

System

Log

Utilities”

on

page

277

v

“Running

Recovery-Related

Utilities”

on

page

288

Related

Reading:

For

information

about

all

of

the

IMS

utilities,

see:

IBM

Confidential

Chapter

3.

Setting

Up

and

Running

IMS

31

|
|
|
|

|
|
|
|

|
|
|
|
|
|

v

The

IMS

Version

9:

Utilities

Reference:

Database

and

Transaction

Manager

v

The

IMS

Version

9:

Utilities

Reference:

System

IMS

Recovery

There

are

also

a

number

of

tools

and

features

available

with

IMS

to

help

in

recovery

scenarios:

Extended

Recovery

Facility

(XRF)

With

XRF,

you

can

have

an

alternate

IMS

standby

system

ready

to

take

over

within

the

same

site.

For

more

information

about

XRF,

see

“Overview

of

Extended

Recovery

Facility

(XRF)”

on

page

308.

Remote

Site

Recovery

(RSR)

With

RSR,

you

can

recover

the

complete

IMS

system

(or

systems)

very

quickly

at

another

site

when

complete

site

disasters

occur.

For

more

information

about

RSR,

see

“Overview

of

Remote

Site

Recovery

(RSR)”

on

page

308.

Fast

Database

Recovery

(FDBR)

The

FDBR

provides

a

solution

to

sysplex

customers

who

need

quick

access

to

shared

database

resources

that

might

otherwise

be

locked

by

a

failed

IMS

until

the

failed

system

is

restarted.

In

a

sysplex

data

sharing

environment,

multiple

IMS

subsystems

can

access

a

single,

shared

database

resource.

If

one

of

the

IMS

subsystems

fails

while

it

has

a

lock

on

the

database,

the

other

IMS

subsystems

must

wait

until

the

failed

IMS

is

restarted

and

the

locks

on

the

resource

are

released.

Because

an

emergency

restart

can

take

a

significant

amount

of

time,

waiting

for

a

full

restart

is

unacceptable

in

situations

that

require

continuous

availability

of

database

resources.

FDBR

creates

a

separate

IMS

control

region

(the

Fast

DB

Recovery

region)

that

monitors

an

IMS

subsystem,

detects

failure,

and

recovers

any

database

resources

that

are

locked

by

the

failed

IMS,

making

them

available

for

other

IMS

subsystems.

Related

Reading:

For

more

information

about

FDBR,

see

“Fast

Database

Recovery”

on

page

319.

IMS

Database

Recovery

Facility

(DRF)

DRF

allows

you

to

recover

multiple

database

data

sets

and

Fast

Path

areas

in

an

IMS

DBCTL

or

DB/DC

environment

simultaneously.

It

simplifies

the

database

recovery

process

by

eliminating

the

need

to

run

separate

recovery

jobs

for

each

database

data

set

that

requires

recovery.

Recovery

using

DRF

reduces

the

time

that

broken

databases

and

areas

are

unavailable

by

processing

input

data

in

parallel

and

recovering

multiple

database

data

sets

and

areas

simultaneously.

DRF

is

one

of

the

IMS

Tools

offered

by

IBM.

Related

Reading:

For

more

information

about

the

this

and

other

IMS

tools,

see

Chapter

29,

“IBM

IMS

Tools,”

on

page

311.

IBM

Confidential

32

IMS:

An

Introduction

to

IMS

IMS

Shutdown

There

are

also

several

different

ways

of

shutting

down

IMS,

depending

on

what

type

of

control

region

you

are

running

(DB/BC,

DBCTL,

or

DCCTL),

and

whether

or

not

the

IMS

message

queues

are

required

following

the

next

startup.

A

common

sequence

for

shutting

down

the

entire

online

IMS

system

is:

1.

For

an

IMS

DB/DC

or

DCCTL

environment,

stop

the

transactions.

For

an

IMS

DBCTL

environment,

disconnect

from

the

Coordinated

Controller

(CCTL).

2.

Stop

the

dependent

regions.

3.

Stop

the

control

region.

4.

For

an

IMS

DB/DC

or

DBCTL

environment,

stop

the

Internal

Resource

Lock

Manager

(IRLM).

5.

For

a

shared-queues

environment,

shut

down

the

Common

Queue

Server

(CQS),

if

it

has

not

been

shut

down

already.

6.

For

an

IMSplex

environment

(see

Chapter

31,

“IMSplexes,”

on

page

337),

shut

down

the

IMS

components

that

participate

in

the

IMSplex

and

then

shut

down

the

Common

Service

Layer.

Related

Reading:

For

more

information

about:

v

The

process

for

shutting

down

an

IMSplex,

see

“Operating

an

IMSplex”

on

page

340.

v

The

process

of

shutting

down

an

IMS,

see

the

IMS

Version

9:

Operations

Guide.

v

The

commands

involved

in

shutting

down

an

IMS,

see

the

IMS

Version

9:

Command

Reference.

IBM

Confidential

Chapter

3.

Setting

Up

and

Running

IMS

33

IBM

Confidential

34

IMS:

An

Introduction

to

IMS

Part

2.

IMS

Database

Manager

Chapter

4.

Overview

of

IMS

DB

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 37

Functions

of

the

IMS

Database

Manager

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 37

Implementation

of

IMS

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 37

Full-Function

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 38

Fast

Path

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 39

Data

in

IMS

and

DB2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 40

Chapter

5.

Overview

of

the

IMS

Hierarchical

Database

Model

.

.

.

.

.

. 41

Basic

Segment

Types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 44

Sequence

Fields

and

Access

Paths

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 45

Logical

Relationships

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 45

Secondary

Indexing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 48

Chapter

6.

Implementing

the

IMS

Database

Model

.

.

.

.

.

.

.

.

.

.

. 51

Segments,

Records,

and

Pointers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 52

IMS

Hierarchic

Access

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

HDAM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 55

HIDAM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 58

PHDAM

and

PHIDAM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 60

Index

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 61

DEDB

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 61

GSAM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 65

HSAM

and

HISAM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 66

Physical

Segment

Design

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 66

Segment

Length

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 66

Number

of

Occurrences

Per

Segment

Per

Parent

.

.

.

.

.

.

.

.

.

.

. 67

Location

of

Segments

in

the

Hierarchy

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 67

Average

Database

Record

Size

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 67

Operating

System

Access

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 67

VSAM

or

OSAM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 68

IMS

and

System

Managed

Storage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 69

IMS

Checkpoints

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 70

Locking

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 72

Chapter

7.

Choosing

the

Correct

Database

Type

.

.

.

.

.

.

.

.

.

.

. 75

Applications

Suitable

for

Full-Function

Databases

.

.

.

.

.

.

.

.

.

.

.

. 75

When

to

Choose

HDAM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 75

When

to

Choose

HIDAM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 76

When

to

Choose

PHDAM

or

PHIDAM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 76

Applications

Suitable

for

HSAM

and

HISAM

.

.

.

.

.

.

.

.

.

.

.

.

.

. 77

Applications

Suitable

for

Fast

Path

Databases

.

.

.

.

.

.

.

.

.

.

.

.

. 77

Very

Large

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

High

Availability

Requirements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

Highly

Active

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 80

Limited

Data

Lifetime

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 80

Extreme

Performance

Levels

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 80

Reduced

I/O

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 80

CPU

Utilization

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 81

Summary

of

When

to

Choose

DEDB

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 81

Chapter

8.

Data

Sharing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 83

DBRC

and

Data

Sharing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 84

How

Applications

Share

Data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 84

IBM

Confidential

©

Copyright

IBM

Corp.

2004

35

Chapter

9.

The

Database

Reorganization

Process

.

.

.

.

.

.

.

.

.

.

. 85

Purpose

of

Reorganization

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 85

When

to

Reorganize

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 86

Monitoring

the

Database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 88

Overview

of

the

Reorganization

Process

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 88

Offline

Reorganization

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 88

Fast

Path

Reorganization

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 97

Online

Reorganization

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 97

Reorganization

Utilities

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 99

Partial

Reorganization

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 99

Reorganization

Using

the

Utility

Control

Facility

.

.

.

.

.

.

.

.

.

.

. 100

Reorganization

Without

the

Utility

Control

Facility

.

.

.

.

.

.

.

.

.

.

. 100

Chapter

10.

The

Database

Recovery

Process

.

.

.

.

.

.

.

.

.

.

.

. 101

When

Recovery

is

Needed

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 101

Overview

of

the

Database

Recovery

Process

.

.

.

.

.

.

.

.

.

.

.

.

. 101

Online

Programs

and

Recovery

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 102

DL/I

Batch

Programs

and

Recovery

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 102

IMS

Backup

and

Recovery

Utilities

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 102

Database

Image

Copy

Utility

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 104

Database

Image

Copy

2

Utility

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 105

Database

Change

Accumulation

Utility

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 106

Database

Recovery

Utility

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 107

Database

Batch

Backout

Utility

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 108

IBM

Confidential

36

IMS:

An

Introduction

to

IMS

Chapter

4.

Overview

of

IMS

DB

The

IMS

Database

Manager

can

be

ordered

and

installed

with

or

without

the

IMS

Transaction

Manager.

The

following

sections

are

covered

in

this

chapter:

v

“Functions

of

the

IMS

Database

Manager”

v

“Implementation

of

IMS

Databases”

v

“Full-Function

Databases”

on

page

38

v

“Fast

Path

Databases”

on

page

39

v

“Data

in

IMS

and

DB2”

on

page

40

Functions

of

the

IMS

Database

Manager

A

database

management

system

(DBMS)

provides

facilities

for

business

application

transaction

or

process

to

access

stored

information.

The

role

of

a

DBMS

is

to

provide

the

following

functions:

v

Allow

access

to

the

data

for

multiple

users

from

a

single

instance

of

the

data.

v

Control

concurrent

access

to

the

data

so

as

to

maintain

integrity

for

all

updates.

v

Minimize

hardware

device

and

operating

systems

access

method

dependencies.

v

Reduce

data

redundancy

by

maintaining

only

one

instance

of

the

data.

v

Interface

with

the

operating

system

and

manage

the

physical

location

of

the

data.

Application

programs

that

access

and

manipulate

the

data

do

not

need

to

know

where

the

data

actually

resides.

The

IMS

Database

Manager

provides

a

central

point

for

the

control

and

access

to

application

data.

IMS

provides

a

full

set

of

utility

programs

to

provide

all

these

functions

within

the

IMS

product.

Implementation

of

IMS

Databases

IMS

DB

supports

multiple

forms

of

enterprise

databases,

so

that

varied

application

requirements

can

be

met

by

exploiting

whichever

database

technology

best

suits

the

users’

requirements.

The

types

of

databases

are:

IMS

Full-Function

Databases

Used

to

be

known

as

DL/I

databases.

IMS

DEDBs

Data

Entry

databases,

often

referred

to

as

Fast

Path

databases.

IMS

MSDBs

Main

storage

databases,

another

type

of

Fast

Path

databases.

MSDB

functionality

has

been

superseded

by

the

Virtual

Storage

Option

(VSO)

of

the

DEDB,

so

MSDBs

are

not

described

in

this

book,

and

you

are

advised

not

to

use

them.

IMS

uses

a

hierarchical

model

for

its

database,

described

in

more

detail

in

Chapter

5,

“Overview

of

the

IMS

Hierarchical

Database

Model,”

on

page

41.

The

data

stored

in

the

IMS

databases

is

organized

internally

using

a

number

of

internal

IMS

access

methods.

Each

of

these

access

methods

suits

certain

types

of

access

IBM

Confidential

©

Copyright

IBM

Corp.

2004

37

|
|
|

|
|
|
|

to

the

database.

The

choice

of

the

appropriate

access

method

is

discussed

in

detail

Chapter

6,

“Implementing

the

IMS

Database

Model,”

on

page

51.

No

single

technology

is

the

best

option

for

all

applications

—

even

though

industry

trends

might

suggest

that

an

organization

standardize

on

only

one

database

type.

To

do

this,

for

example,

to

say

that

you

wish

to

use

only

relational

database

technology

(DB2),

would

preclude

consideration

of

other

technologies

that,

for

suitable

applications,

would

make

massive

savings

in

processing

or

application

development

costs

—

far

in

excess

of

the

small

additional

cost

of

introducing

DEDBs

to

your

organization.

Each

of

the

database

implementations

supported

by

IMS

has

different

characteristics:

Full-function

databases

Full-function

databases

provide

a

hierarchically

structured

database,

that

can

be

accessed

by

record

or

sequentially,

and

by

other

sequences

that

were

planned

and

provided

for

when

the

database

was

designed.

Full-function

databases

are

limited

in

size

to

4GB

or

8GB

per

data

set

unless

a

portioning

database

product

is

used

DEDBs

DEDBs

are

particularly

suited

for

use

where

large

databases,

or

very

low

processing

costs

are

required,

or

when

particularly

high

data

availability

or

very

high

performance

is

required.

DEDBs

were

originally

part

of

a

separately

priced,

optional

feature.

This

results

in

the

documentation

and

code

being

separate

from

that

for

the

full-function

databases.

Note:

DB2

UDB

for

z/OS,

as

compared

to

IMS

DB,

provides

well

for

unstructured

or

unplanned

access

to

data

and

so

provides

flexibility

in

the

support

of

future

application

requirements.

However,

DB2

usually

has

a

significantly

higher

processing

cost

than

any

IMS

database.

The

IMS

access

methods

are

underpinned

by

the

use

of

operating

system

access

methods

to

store

data

on

disk

storage.

The

software

access

methods

which

IMS

makes

use

of

are:

v

VSAM

(Virtual

Storage

Access

Method)

-

VSAM

is

a

z/OS

access

method.

v

OSAM

(Overflow

Sequential

Access

Method)

-

OSAM

is

an

IMS

data

management

access

method

that

combines

selected

characteristics

of

z/OS

BSAM

(Basic

Sequential

Access

Method)

and

BDAM

(Basic

Direct

Access

Method).

Full-Function

Databases

Full-function

databases

are

designed

to

support

most

types

of

database

requirements.

These

can

be

used

in

a

wide

variety

of

applications.

Most

IMS

applications

make

use

of

full-function

databases

unless

there

are

specific

requirements

for

one

of

the

other

types

of

databases.

The

major

characteristics

of

full-function

databases

are:

v

Small

or

large

databases.

v

Access

to

records

through

unique

or

non-unique

keys.

v

Many

types

of

segments

(up

to

15

levels

allowed).

v

Records

can

be

stored

in

key

sequence,

but

it

is

not

a

requirement.

IBM

Confidential

38

IMS:

An

Introduction

to

IMS

|

|
|
|
|

One

function

associated

with

full-function

databases

is

called

multiple

data

set

groups.

With

multiple

data

set

groups,

you

can

put

some

segments

in

a

database

record

in

data

sets

other

than

the

primary

data

set.

This

can

be

done

without

destroying

the

hierarchic

sequence

of

segments

in

a

database

record.

One

reason

to

use

multiple

data

set

groups

is

to

accommodate

the

differing

needs

of

your

applications.

By

using

multiple

data

set

groups,

you

can

give

an

application

program

fast

access

to

the

segments

in

which

it

is

interested.

The

application

program

simply

bypasses

the

data

sets

containing

unnecessary

segments.

Up

to

10

data

set

groups

can

be

defined

for

a

single

full-function

database.

Prior

to

IMS

Version

7,

full-function

databases

are

limited

in

size:

the

maximum

data

set

size

is

limited

to

4

GB

for

VSAM

and

8

GB

for

OSAM.

IMS

Version

7

introduced

High

Availability

Databases

(HALDBs)

to

address

this

size

limit.

HALDB

allows

full-function

databases

to

grow

much

larger.

A

HALDB

is

a

partitioned

full-function

database.

Partitioning

a

database

allows

the

use

of

smaller

data

sets

that

are

easier

to

manage.

Multiple

partitions

decrease

the

amount

of

unavailable

data

if

a

partition

fails

or

is

taken

offline.

HALDB

allows

the

grouping

of

full-function

database

records

into

sets

of

partitions

that

are

treated

as

a

single

database

while

permitting

functions

to

be

performed

independently

for

each

partition.

Each

HALDB

partition

has

the

same

capacity

limit

as

a

non-HALDB

database.

Like

a

non-HALDB

database,

each

partition

can

consist

of

up

to

10

data

sets,

however

the

number

of

data

sets

selected

will

then

apply

to

all

the

partitions

in

that

HALDB.

This

allows

a

large

amount

of

data

to

be

contained

in

a

single

partition.

Related

Reading:

For

more

information

about

HALDBs,

see

“PHDAM

and

PHIDAM”

on

page

60.

Fast

Path

Databases

The

Data

Entry

Database

(DEDB)

was

designed

to

support

particularly

intensive

IMS

database

requirements,

initially

in

the

banking

industry,

for:

v

Large

databases

containing

millions

of

records,

extending

well

beyond

the

original

4

GB

database

limits

of

full-function

databases

v

Access

to

each

database

record

by

a

key

field

v

Lower

processing

costs

for

each

database

record

and

update

than

are

required

for

full-function

databases

v

The

capability

to

support

higher

transaction

workloads

than

full-function

databases

can

sustain,

while

maintaining

per-transaction

cost

advantages

v

Improved

availability,

with

reduced

requirements

for

database

outage,

especially

for

database

maintenance

activities

such

as

database

reorganizations

v

Lower

processing

costs

for

particular

types

of

processing,

where

data

is

inserted

online

and

retrieved

in

batches

for

further

processing,

and

eventually

deleted

in

batches

v

The

possibility

of

eliminating

transaction-related

I/O

from

database

processing

All

the

above

requirements

were

satisfied,

while

maintaining

the

conventional

DL/I

application

interface

so

that

application

programming

for

DEDBs

is

little

different

from

that

for

full-function

databases.

IBM

Confidential

Chapter

4.

Overview

of

IMS

DB

39

|
|
|
|
|
|
|
|
|

Data

in

IMS

and

DB2

Some

business

applications

require

that

the

data

be

kept

in

both

IMS

database

and

DB2

databases.

One

such

scenario

is

a

high-performance

production

application

that

works

with

the

data

in

a

hierarchical

IMS

database

and

a

business

decision

support

application

that

works

with

the

same

data

in

a

relational

DB2

database.

Production

applications

running

in

IMS

TM

can

update

data

stored

in

a

DB2

database

as

well

as

data

stored

in

an

IMS

database,

but

the

coordinating

of

these

updates

can

be

complex

to

ensure

all

updates

are

consistently

applied.

IBM

IMS

DataPropagator™

can

automatically

duplicate

data

from

IMS

databases

to

DB2

UDB

for

z/OS

tables.

Related

Reading:

For

more

information

about

the

IBM

IMS

DataPropagator,

see

Chapter

29,

“IBM

IMS

Tools,”

on

page

311

or

go

to

www.ibm.com/software/data/dpropnr.

IBM

Confidential

40

IMS:

An

Introduction

to

IMS

Chapter

5.

Overview

of

the

IMS

Hierarchical

Database

Model

IMS

uses

a

hierarchical

model

as

the

basic

method

of

storing

data.

Unlike

the

relational

model

used

by

DB2,

which

was

the

result

of

theoretical

work,

the

hierarchical

model

was

arrived

at

as

a

pragmatic

way

of

storing

and

retrieving

data

quickly

while

using

as

few

computer

resources

as

possible.

In

this

model,

the

individual

entity

types

are

implemented

as

segments

in

a

hierarchical

structure.

An

entity

is

something

that

can

be

uniquely

defined

and

something

you

could

collect

substantial

information

about.

The

hierarchical

structure

is

based

on

the

relationship

between

the

entities

and

the

access

paths

required

by

the

applications.

IMS

uses

the

term

database

slightly

differently

to

its

use

in

other

DBMSs.

In

IMS,

a

database

is

commonly

used

to

describe

the

implementation

of

one

hierarchy,

so

that

an

application

would

normally

access

a

large

number

of

IMS

databases.

Compared

to

the

relational

model,

an

IMS

database

is

approximately

equivalent

to

a

table.

A

database

segment

definition

defines

the

fields

for

a

set

of

segment

instances

similar

to

the

way

a

relational

table

defines

columns

for

a

set

of

rows

in

a

table.

In

this

regard,

segments

relate

to

tables,

and

fields

in

a

segment

relate

to

columns

in

a

table,

as

illustrated

by

comparing

Figure

7

to

Figure

8

on

page

42.

Similarly,

an

instance

of

a

segment

in

a

database

corresponds

to

a

row

(or

tuple)

in

a

table.

Note

that

if

a

segment

does

not

have

a

unique

key,

the

corresponding

relational

table

should

be

viewed

as

having

a

generated

unique

key

added

to

its

column

(field)

list.

Also

note

that

the

tables

are

implicitly

joined.

Figure

7.

Example

of

a

Hierarchical

Dealership

Database

IBM

Confidential

©

Copyright

IBM

Corp.

2004

41

The

hierarchical

data

structure

in

Figure

9

on

page

43

describes

the

data

as

seen

by

the

application

program.

It

does

not

represent

the

physical

storage

of

the

data.

The

physical

storage

is

of

no

concern

to

the

application

program.

The

basic

building

element

of

a

hierarchical

data

structure

is

the

parent/child

relationship

between

segments

of

data,

also

illustrated

in

Figure

9

on

page

43.

Figure

8.

Relational

Representation

of

the

Dealership

Database

IBM

Confidential

42

IMS:

An

Introduction

to

IMS

Each

occurrence

(or

instance)

of

a

parent

segment

is

associated

with

0

or

more

occurrences

of

a

child

segment.

Each

child

segment

occurrence

is

associated

with

one,

and

only

one,

occurrence

of

a

parent

segment.

Sometimes

it

is

necessary

to

distinguish

between

a

segment

type,

that

is,

the

kind

of

segment;

and

the

segment

occurrence,

that

is,

the

particular

instance

of

its

contents

and

location.

As

shown

in

Figure

9,

a

parent

can

have

several

child

segment

types.

Also,

a

child

segment

can,

at

the

same

time,

be

a

parent

segment;

that

is,

it

can

have

children

below

it.

The

segment

with

no

parent

segment

(the

one

at

the

top)

is

called

the

root

segment.

All

the

parent

and

child

occurrences

for

a

given

root

segment

are

grouped

together

in

a

database

record.

The

collection

of

all

of

the

database

records

with

the

same

root

and

hierarchical

structure

(in

Figure

9,

each

PART

segment

with

its

dependent

STOCK,

ORDER,

and

DETAIL

segments)

is

an

IMS

database

(the

PARTS

database).

Only

one

segment

can

appear

at

the

first

level

in

the

hierarchy,

but

multiple

segments

can

appear

at

lower

levels

in

the

hierarchy.

For

example,

multiple

STOCK

and

ORDER

segments

can

exist

for

one

PART

segment.

Since

each

dependent

segment

in

the

hierarchy

has

only

one

parent,

or

immediate

superior

segment,

the

hierarchical

data

structure

is

sometimes

called

a

tree

structure.

Each

branch

of

the

tree

is

called

a

hierarchical

path.

A

hierarchical

path

to

a

segment

contains

all

consecutive

segments

from

the

top

of

the

structure

down

to

that

segment.

Through

the

concept

of

program

sensitivity,

IMS

allows

a

program

to

be

restricted

to

“seeing”

only

those

segments

of

information

that

are

relevant

to

the

processing

being

performed.

For

example,

an

inventory

program

could

be

written

to

see

only

the

PART

and

STOCK

segments

of

the

database

record

shown

in

Figure

9.

The

program

need

not

be

aware

of

the

existence

of

the

ORDER

segment.

Figure

9.

Hierarchical

Data

Structure

IBM

Confidential

Chapter

5.

Overview

of

the

IMS

Hierarchical

Database

Model

43

|

|
|
|

IMS

allows

a

wide

variety

of

data

structures.

The

maximum

number

of

different

segment

types

is

255

in

a

single

database.

A

maximum

of

15

segment

levels

can

be

defined

in

a

hierarchical

data

structure.

There

is

no

restriction

on

the

number

of

occurrences

of

each

segment

type,

except

as

imposed

by

physical

access

method

limits.

Basic

Segment

Types

The

following

list

contains

a

detailed

description

of

the

various

segment

types

and

their

interrelations

within

a

hierarchical

data

structure.

See

Figure

9

on

page

43

and

Figure

10

while

reading

these

description.

v

The

segment

on

top

of

the

structure

is

the

root

segment.

Each

root

segment

normally

has

a

key

field

that

serves

as

the

unique

identifier

of

that

root

segment,

and

as

such,

of

that

particular

database

record

(for

example,

the

part

number).

v

A

dependent

segment

relies

on

the

segments

above

it

in

the

hierarchy

for

its

full

meaning

and

identification.

v

A

parent/child

relationship

exists

between

a

segment

and

its

immediate

dependents.

v

Different

occurrences

of

a

particular

segment

type

under

the

same

parent

segment

are

twin

segments.

v

Segment

occurrences

of

different

types

under

the

same

parent

are

sibling

segments.

Figure

10.

Segment

Types

and

Their

Relationships

IBM

Confidential

44

IMS:

An

Introduction

to

IMS

Sequence

Fields

and

Access

Paths

To

identify

and

to

provide

access

to

a

particular

database

record

and

its

segments,

IMS

uses

sequence

fields.

Each

segment

normally

has

one

field

denoted

as

the

sequence

field.

The

sequence

fields

should

be

unique

in

value

for

each

occurrence

of

a

segment

type

below

its

parent

occurrence.

However,

not

every

segment

type

need

have

a

sequence

field

defined.

Particularly

important

is

the

sequence

field

for

the

root

segment,

because

it

serves

as

the

identification

for

the

database

record.

Normally,

IMS

provides

a

fast,

direct

access

path

to

the

root

segment

of

the

database

record

based

on

this

sequence

field.

This

direct

access

is

extended

to

lower

level

segments

if

the

sequence

fields

of

the

segments

along

the

hierarchical

path

are

specified,

too.

Note:

The

sequence

field

is

often

referred

to

as

the

key

field,

or

simply

the

key.

In

Figure

10

on

page

44,

an

example

of

an

access

path

would

be

the

PART,

ORDER

and

DETAIL

segments.

It

must

always

start

with

the

root

segment.

This

is

the

access

path

as

used

by

IMS.

The

application

program,

however,

can

directly

request

a

particular

DETAIL

segment

of

a

given

ORDER

of

a

given

PART

in

one

single

DL/I

call

by

specifying

a

sequence

field

value

for

each

of

the

three

segment

levels.

In

addition

to

the

basic

hierarchical

data

structure

discussed

so

far,

IMS

provides

two

additional

methods

of

defining

access

paths

to

a

database

segment.

These

are:

Logical

relationships

Logical

relationships

allow

a

logical

view

to

be

defined

of

one

or

more

physical

databases.To

the

application

this

will

look

like

a

single

database.

Secondary

indexes

Secondary

indexes

give

an

alternate

access

path

for

full-function

databases,

by

using

a

root

or

dependent

segment

to

the

database

record

in

one

physical

database.

Both

provide

a

method

for

an

application

to

have

a

different

access

path

to

the

physical

databases.

They

are

defined

to

IMS

in

addition

to

the

basic

hierarchical

structure

already

defined.

The

logical

relationships

and

secondary

indexes

are

automatically

maintained

by

IMS,

transparent

to

the

application.

You

should

only

use

these

extra

facilities

if

there

are

strong

application

and/or

performance

reasons

for

doing

so.

Both

involve

additional

overheads.

The

following

two

sections

(“Logical

Relationships,”

and

“Secondary

Indexing”

on

page

48)

describe

these

facilities

in

more

detail

and

indicate

where

you

might

wish

to

use

them.

Logical

Relationships

Through

logical

relationships,

IMS

provides

a

facility

to

interrelate

segments

from

different

hierarchies.

In

doing

so,

new

hierarchical

structures

are

defined

that

provide

additional

access

capabilities

to

the

segments

involved.

These

segments

can

belong

to

the

same

database

or

to

different

databases.

A

new

database

can

be

defined

called

a

logical

database.

This

logical

database

allows

presentation

of

a

new

hierarchical

structure

to

the

application

program.

Notice

that

although

the

connected

physical

databases

could

constitute

a

network

data

structure,

the

application

data

structure

still

consists

of

one

or

more

hierarchical

data

structures.

IBM

Confidential

Chapter

5.

Overview

of

the

IMS

Hierarchical

Database

Model

45

|
|
|

For

example,

given

the

entities

and

relationships

illustrated

in

Figure

11,

it

may

have

been

decided

that,

based

on

the

applications

most

common

access

paths,

the

data

should

be

implemented

as

two

physical

databases,

with

hierarchies

as

shown

in

Figure

12

on

page

47.

However,

there

are

some

reasons

why

other

applications

need

to

use

the

relationship

between

the

PART

and

order

DETAIL

(reasons

for

wanting

to

do

this

are

discussed

in

the

following

figures).

So

a

logical

relationship

is

to

be

built

between

PART

and

DETAIL.

The

basic

mechanism

used

to

build

a

logical

relationship

is

to

specify

a

dependent

segment

as

a

logical

child,

by

relating

it

to

a

second

parent,

the

logical

parent.

In

Figure

12

on

page

47,

the

logical

child

segment

DETAIL

exists

only

once,

yet

participates

in

two

hierarchical

structures.

It

has

a

physical

parent,

ORDER,

and

logical

parent,

PART.

The

data

in

the

logical

child

segment

and

in

its

dependents,

if

any,

is

called

intersection

data.

Figure

11.

Example

of

Logical

and

Physical

Databases

IBM

Confidential

46

IMS:

An

Introduction

to

IMS

By

defining

two

additional

logical

databases,

two

new

logical

data

structures

shown

in

Figure

13

can

be

made

available

for

application

program

processing,

even

within

one

single

program.

The

DETAIL/PART

segment

in

Figure

13

is

a

concatenated

segment.

It

consists

of

the

logical

child

segment

plus

the

logical

parent

segment.

The

DETAIL/ORDER

segment

in

Figure

13

is

also

a

concatenated

segment,

but

it

consists

of

the

logical

child

segment

plus

the

physical

parent

segment.

Logical

children

with

the

same

logical

parent

are

called

logical

twins,

for

example,

all

DETAIL

segments

for

a

given

PART

segment.

As

can

be

seen

in

Figure

12,

the

logical

child

has

two

access

paths.

One

via

its

physical

parent,

the

physical

access

path,

and

one

via

its

logical

parent,

the

logical

access

path.

Both

access

paths

are

maintained

by

IMS

and

can

be

concurrently

available

to

one

program.

Some

reasons

you

may

want

to

use

logical

relationships

are:

Figure

12.

Two

Logically

Related

Physical

Databases:

PART

and

ORDER

Figure

13.

Two

Logical

Databases

After

Relating

the

PARTS

and

ORDER

Databases

IBM

Confidential

Chapter

5.

Overview

of

the

IMS

Hierarchical

Database

Model

47

v

They

provide

an

alternate

access

path

for

the

application.

For

example,

they

allow

(depending

on

pointer

choice)

an

application

to

have

direct

access

from

a

segment

in

one

physical

database

to

a

lower

level

segment

in

another

physical

database,

without

the

application

having

to

access

the

second

physical

database

directly

and

read

down

through

the

hierarchy.

v

They

provide

an

alternate

hierarchical

database

structure

for

an

application

so

that

different

applications,

or

parts

of

applications,

can

have

a

view

of

the

physical

databases

that

most

closely

matches

that

application’s

view

of

the

data.

v

They

can

make

IMS

enforce

a

relationship

between

two

segments

in

two

physically

separate

databases

(that

is,

it

will

preserve

referential

integrity).

You

can

define

the

relationship

such

that

a

logical

parent

cannot

be

deleted

if

it

still

has

logical

children,

and

a

logical

child

cannot

be

added

it

there

is

no

logical

parent.

For

example,

referring

to

Figure

13

on

page

47,

you

could

define

the

relationship

such

that

no

order

DETAIL

could

be

inserted

if

there

were

no

corresponding

PART,

and

no

PART

could

be

deleted

if

there

were

still

order

DETAILs

for

that

part.

Any

application

attempting

to

do

this

would

have

the

database

call

rejected

by

IMS.

Potential

disadvantages

in

using

logical

relationships

are:

v

There

are

performance

overheads

in

maintaining

the

pointers

used

in

the

logical

relationships.

Every

time

a

segment

participating

in

a

logical

relationship

is

updated,

the

other

segment

(in

another

physical

database)

that

participates

in

the

relationship

may

need

to

be

updated.

This

can

result

in

an

appreciable

increase

in

physical

I/Os

to

auxiliary

storage.

v

When

a

database

needs

to

be

reorganized,

except

with

some

very

limited

pointer

choices,

all

other

databases

that

are

logically

related

must

be

reorganized

at

the

same

time,

as

the

pointers

used

to

maintain

the

logical

relationships

rely

on

the

physical

position

of

the

segments

in

that

database,

which

can

be

altered

by

the

reorganization.

Before

choosing

to

use

logical

relationships,

you

need

to

carefully

weigh

up

the

performance

and

administrative

overheads

against

the

advantages

of

using

logical

relationships.

Related

Reading:

For

further

details

on

implementing

logical

relationships

see

IMS

Version

9:

Administration

Guide:

Database

Manager.

Secondary

Indexing

IMS

provides

additional

access

flexibility

with

secondary

index

databases.

Each

secondary

index

represents

a

different

access

path

to

the

database

record

other

than

via

the

root

key.

The

additional

access

paths

can

result

in

faster

retrieval

of

data.

For

example,

the

PART

and

ORDER

segments

in

Figure

14

on

page

49

could

be

retrieved

based

on

the

order

number

in

the

ORDER

segment,

if

an

index

were

defined

for

that

field.

Once

an

index

is

defined,

IMS

will

automatically

maintain

the

index

if

the

data

on

which

the

index

relies

changes,

even

if

the

program

causing

that

change

is

not

aware

of

the

index.

IBM

Confidential

48

IMS:

An

Introduction

to

IMS

The

secondary

index

is

implemented

by

defining

a

secondary

Index

database

to

IMS.

This

contains

segments

that

point

to

the

segment

in

the

main

physical

database

that

contains

the

key

values

the

constitute

the

secondary

index

key.

As

this

Index

database

is

itself

a

physical

database,

it

can

be

accessed

independently

by

applications.

The

segments

involved

in

a

secondary

index

are

depicted

in

Figure

14.

The

index

source

segment

contains

the

source

fields

on

which

the

index

is

constructed.

For

example,

for

the

ORDER#

segment:

v

The

index

pointer

segment

is

the

segment

in

the

index

database

that

points

to

the

index

target

segment.

The

index

pointer

segments

are

ordered

and

accessed

based

on

the

field

contents

of

the

index

source

segment

(for

example,

the

order

number).

This

is

the

secondary

processing

sequence

of

the

indexed

PARTS

database.

There

is,

in

general,

one

index

pointer

segment

for

each

index

source

segment,

but

multiple

index

pointer

segments

can

point

to

the

same

index

target

segment.

v

The

index

target

segment

is

the

segment

that

becomes

initially

accessible

from

the

secondary

index.

It

is

in

the

same

hierarchical

record

as

the

index

source

segment

and

is

pointed

to

by

the

index

pointer

segment

in

the

index

database.

Quite

often,

but

not

necessarily,

it

is

the

root

segment.

v

The

index

source

and

index

target

segment

may

be

the

same,

or

the

index

source

segment

may

be

a

dependent

of

the

index

target

segment

as

shown

in

Figure

14.

The

secondary

index

key

(search

field)

is

made

up

of

one

to

five

fields

from

the

index

source

segment.

The

search

field

does

not

have

to

be

a

unique

value,

but

IBM

strongly

recommends

you

make

it

a

unique

value

to

avoid

the

overhead

in

storing

and

searching

duplicates.

There

are

a

number

of

fields

that

can

be

concatenated

to

the

end

of

the

secondary

index

search

field

to

make

it

unique:

v

A

subsequence

field,

consisting

of

one

to

five

more

fields

from

the

index

source

segment.

This

is

maintained

by

IMS

but,

unlike

the

search

field,

cannot

be

used

by

an

application

for

a

search

argument

when

using

the

secondary

index.

v

A

system

defined

field

that

uniquely

defines

the

index

source

segment:

the

/SX

variable.

v

A

system

defined

field

that

defines

the

concatenated

key

(the

concatenation

of

the

key

values

of

all

of

the

segment

occurrences

in

the

hierarchical

path

leading

to

that

segment)

of

the

index

source

segment:

the

/CX

variable.

Figure

14.

A

Database

and

Its

Secondary

Index

Database

IBM

Confidential

Chapter

5.

Overview

of

the

IMS

Hierarchical

Database

Model

49

Another

technique

that

can

be

used

with

secondary

indexes

is

sparse

indexing.

Normally

IMS

will

maintain

index

entries

for

all

occurrences

of

the

secondary

index

source

segment.

However,

it

is

possible

to

cause

IMS

to

suppress

index

entries

for

some

of

the

occurrences

of

the

index

source

segment.

You

might

wish

to

do

this

if

you

were

only

interested

in

processing

segments

that

had

a

non-null

value

in

the

field.

In

the

example

in

Figure

14

on

page

49,

say

that

the

ORDER

had

a

field

set

in

it

to

indicate

the

order

could

not

be

fulfilled

immediately,

but

needed

to

be

back

ordered.

You

could

define

a

secondary

index

including

this

field,

but

suppress

all

entries

that

did

not

have

this

field

set,

giving

rapid

access

to

all

back

orders.

As

a

general

rule,

only

consider

this

technique

if

you

expect

20%

or

less

of

the

index

source

segments

to

be

created.

The

suppression

can

be

done

either

by

specifying

that

all

bytes

in

the

field

should

be

a

specific

character

(NULLVAL

parameter)

or

by

selection

with

the

Secondary

Index

Maintenance

exit

routine.

Some

reasons

for

using

secondary

indexes

are:

v

Quick

access,

particularly

random

access

by

online

transactions,

by

a

key

other

than

the

primary

key

of

the

database.

v

Access

to

the

index

target

segment

without

having

to

negotiate

the

full

database

hierarchy

(particularly

useful

if

the

index

target

segment

is

not

the

root

segment).

This

is

similar

to

using

logical

relationships,

but

provides

a

single

alternate

access

path

into

a

single

physical

database.

If

this

is

all

that

is

required,

then

a

secondary

index

is

the

better

technique

to

use.

v

Ability

to

process

the

index

database

separately.

For

example,

a

batch

process

might

need

to

process

only

the

search

fields.

v

A

quick

method

of

accessing

a

small

subset

of

the

database

records

by

using

a

sparse

index.

Potential

disadvantages

in

using

secondary

indexes

are:

v

The

performance

overheads

in

updating

the

secondary

index

database

every

time

any

of

the

fields

making

up

the

search

field

in

the

index

source

segment

is

updated

or

when

the

index

source

segment

is

inserted

or

deleted.

v

The

administrative

overheads

in

setting

up,

monitoring,

backing

up,

and

tuning

the

secondary

index

database.

v

When

the

database

containing

the

index

source

segment

is

reorganized,

the

secondary

index

must

also

be

re-built

because

the

pointers

used

to

maintain

the

connection

between

the

source

segment

and

the

secondary

index

database

rely

on

the

physical

position

of

the

source

segment

in

the

database,

which

can

be

altered

by

the

reorganization.

As

with

logical

relationships,

consider

carefully

whether

the

benefits

of

using

a

secondary

index

outweigh

the

performance

and

administrative

overheads.

RELATED

READING:

For

details

on

implementing

secondary

indexes,

see

IMS

Version

9:

Administration

Guide:

Database

Manager.

IBM

Confidential

50

IMS:

An

Introduction

to

IMS

Chapter

6.

Implementing

the

IMS

Database

Model

Chapter

5,

“Overview

of

the

IMS

Hierarchical

Database

Model,”

on

page

41

described

the

logical

model

for

IMS

databases.

This

chapter

looks

at

how

this

model

is

physically

implemented

using

the

IMS

Database

Manager

and

z/OS

services.

Application

programs

interface

with

IMS

through

functions

provided

by

the

IMS

DL/I

application

programming

interface

(API).

This

is

true

for

both

IMS

DB

and

IMS

TM

(see

Figure

15).

The

following

sections

only

address

the

functions

relevant

to

IMS

DB.

The

individual

elements

that

make

up

the

database,

segments,

and

database

records

are

organized

using

different

IMS

access

methods.

The

choice

of

access

method

can

influence

the

functionality

available

to

your

application,

the

order

in

which

data

is

returned

to

the

application,

the

functionality

available

to

the

application,

and

the

performance

the

application

receives

from

IMS

DB.

Underlying

the

IMS

access

methods,

IMS

uses

VSAM

or

OSAM

to

store

the

data

on

DASD

and

move

the

data

between

the

DASD

and

the

buffers

in

the

IMS

address

space,

where

the

data

is

manipulated.

Figure

15.

Elements

of

the

Physical

Implementation

IBM

Confidential

©

Copyright

IBM

Corp.

2004

51

The

structure

of

the

IMS

databases,

and

a

program’s

access

to

them,

is

defined

by

a

set

of

IMS

control

blocks:

v

The

database

description

block

(DBD)

v

The

program

specification

block

(PSB)

v

The

application

control

block

(ACB)

These

are

coded

as

sets

of

source

statements

that

then

have

to

be

generated

into

control

blocks

for

use

by

IMS

DB

and

the

application.

Segments,

Records,

and

Pointers

As

described

in

Chapter

5,

“Overview

of

the

IMS

Hierarchical

Database

Model,”

on

page

41,

a

segment

is

used

to

represent

one

entity,

or

grouping

of

related

fields.

In

IMS,

unlike

DB2

or

many

other

DBMSs,

it

is

not

mandatory

to

define

all

the

fields

to

IMS.

It

is

only

necessary

to

define

the

segment

as

being

long

enough

to

contain

all

the

application

data

to

be

stored.

The

only

fields

you

must

define

to

IMS

are

those

you

need

to

use

for

identifying

and

searching

for

segments.

Specifying

non-search

fields

(field-level

sensitivity)

is

optional.

In

addition

to

the

application

data,

each

segment

will

also

contain

control

information

used

by

IMS.

The

control

information

is

placed

at

the

beginning

of

the

segment

in

a

segment

prefix.

Figure

16

shows

the

layout

of

a

segment

with

the

prefix

and

application

data

portions.

The

prefix

is

automatically

maintained

by

IMS

and

is

not

accessible

to

the

application.

The

control

information

in

the

prefix

consists

of

various

flags,

descriptive

fields

(segment

type

code

and

delete

byte),

and

pointers

to

implement

the

hierarchical

structure

and

access

paths.

The

contents

of

the

prefix

will

vary,

depending

on

the

IMS

access

method

and

options

chosen

when

the

database

is

defined.

Prefix

Data

Segment

Type

Code

Delete

Byte

RBA

Pointer

RBA

Pointer

RBA

Pointer

Application

Data

These

pointers

consist

of

the

relative

offset

(number

of

bytes)

of

the

segment

being

pointed

at,

from

the

start

of

the

data

set

being

used

to

store

the

data.

This

is

the

relative

byte

address

(RBA).

For

example,

a

root

segment

would

contain

pointer

fields

in

the

prefix

for,

at

a

minimum

all

of

the

dependent

segment

types

under

the

root.

IMS

will

automatically

define

the

minimum

set

of

pointers

to

maintain

the

hierarchical

structure.

The

database

designer

has

the

option

to

specify

additional

pre-defined

types

of

pointers

above

those

necessary

for

the

minimum

hierarchical

structure.

This

pointer

selection

can

influence

the

performance

of

applications

using

the

databases.

Figure

17

on

page

53

shows

database

segments

with

their

pointers.

Figure

16.

Example

of

a

Typical

Segment

Layout

IBM

Confidential

52

IMS:

An

Introduction

to

IMS

|
|
|
|
|
|
|
|
|
|

|||

|
|
|

|
|
|
|
|
|
|
|
|

|

|

IMS

Hierarchic

Access

Methods

There

are

different

IMS

access

methods

you

can

use

to

organize

and

store

the

data

segments

and

records.

The

choice

of

which

access

method

to

use

should

be

made

after

a

careful

analysis

of

the

access

requirements

of

the

applications

(for

example,

the

functionality

available

to

the

application,

the

order

in

which

segments

are

returned

to

the

application,

database

performance

considerations).

Access

methods

(VSAM

or

OSAM)

can,

in

general,

be

changed

during

reorganization

without

affecting

application

programs.

Choose

the

access

method

carefully

because

the

access

method

is

one

of

the

most

critical

performance

factors.

Database

types

(HIDAM,

HDAM,

HISAM)

cannot

be

changed

during

reorganization

without

affecting

the

application.

The

following

list

describes

the

most

commonly

used

database

organizations.

Database

Type

Organization

HDAM

Hierarchical

Direct

Access

Method

PHDAM

Partitioned

Hierarchical

Direct

Access

Method

HIDAM

Hierarchical

Index

Direct

Access

Method

PHIDAM

Partitioned

Hierarchical

Index

Direct

Access

Method

SHISAM

Simple

Hierarchical

Index

Sequential

Access

Method

HISAM

Hierarchical

Index

Sequential

Access

Method

Figure

17.

Database

Record

and

Pointers

IBM

Confidential

Chapter

6.

Implementing

the

IMS

Database

Model

53

|
|
|
|
|

GSAM

Generalized

Sequential

Access

Method

DEDB

Data

Entry

Database

The

z/OS

access

methods,

VSAM

and

OSAM,

that

underlay

the

IMS

access

methods,

are

mentioned

in

this

section,

but

are

discussed

in

more

detail

in

the

following

sections.

The

three

major

IMS

access

methods

are:

v

Hierarchical

Direct

—

Consisting

of

the

Hierarchical

Direct

Access

Method

(HDAM)

and

the

Hierarchical

Indexed

Direct

Access

Method

(HIDAM).

Both

of

these

methods

are

described

in

“HDAM”

on

page

55,

and

“HIDAM”

on

page

58.

HDAM

and

HIDAM

databases,

which

have

many

similarities,

are

referred

to

as

HD

databases.

These

HD

databases

can

be

partitioned

using

either

the

HALDB

Partition

Definition

utility

(%DFSHALDB)

or

DBRC

commands.

After

you

partition

an

HDAM

database,

it

becomes

a

partitioned

hierarchical

direct

access

method

(PHDAM)

database.

After

you

partition

a

HIDAM

database,

it

becomes

a

partitioned

hierarchical

indexed

direct

access

method

(PHIDAM)

database.

PHDAM

and

PHIDAM

databases

are

generically

referred

to

as

High

Availability

Large

Databases

(HALDBs).

For

information

about

HALDBs,

see

“PHDAM

and

PHIDAM”

on

page

60.

v

Hierarchical

Sequential

—

Consisting

of

the

Hierarchical

Sequential

Access

Method

(HSAM)

and

the

Hierarchical

Indexed

Sequential

Access

Method

(HISAM).

These

are

less

used

today,

as

the

HD

access

methods

have

a

number

of

advantages.

A

short

description

of

them,

together

with

their

limitations,

is

given

in

“HSAM

and

HISAM”

on

page

66.

There

are

also

simple

variations

of

HSAM

and

HISAM,

namely

SHSAM

and

SHISAM.

These

are

also

briefly

described

in

“HSAM

and

HISAM”

on

page

66.

v

Data

Entry

DataBase

(DEDB)

—

DEDB

has

characteristics

that

make

it

suitable

for

high

performance

and

high

availability

applications.

However,

the

application

must

be

specifically

designed

and

written

to

make

use

of

these

characteristics.

It

is

described

in

detail

in

“DEDB”

on

page

61.

The

Hierarchical

Direct

(HD)

and

Hierarchical

Sequential

(HS)

databases

are

full-function

databases,

and

DEDB

databases

are

referred

to

as

Fast

Path

databases.

Because

of

its

original

development

as

a

separately

orderable

feature,

Fast

Path

functions

are

normally

described

in

separate

sections

or

chapters

in

the

IMS

manuals.

In

addition,

there

are

two

more

IMS

access

methods

that

provide

additional

functionality:

v

Index

Databases

—

These

are

used

to

physically

implement

secondary

indexes

and

primary

indexes

for

HIDAM

and

PHIDAM

databases.

For

more

information,

see

“Index

Databases”

on

page

61.

v

Generalized

Sequential

Access

Method

(GSAM)

—

This

is

used

to

extend

the

restart/recovery

facilities

of

IMS

Database

Manager

to

non-IMS

sequential

files

being

processed

by

IMS

batch

programs

and

BMPs.

These

files

can

also

be

accessed

directly

by

using

z/OS

access

methods.

For

more

information,

see

“GSAM”

on

page

65.

Exception:

Most

types

of

application

regions

and

access

a

majority

of

the

database

organization

types.

The

exceptions

are:

GSAM

GSAM

databases

cannot

be

accessed

from

MPP,

JMP,

JBP,

or

CICS

regions.

IBM

Confidential

54

IMS:

An

Introduction

to

IMS

|
|
|
|
|
|
|
|

|
|

DEDB

DEDB

databases

cannot

be

accessed

from

BMP

regions.

HDAM

See

Figure

18

on

page

56

for

the

following

discussion.

An

HDAM

database

normally

consists

of

one

VSAM

ESDS

or

OSAM

data

set.

To

access

the

data

in

an

HDAM

database,

IMS

uses

a

randomizing

module.

The

randomizing

module

is

used

by

IMS

to

compute

the

address

for

the

root

segment

in

the

database.

This

address

consists

of

the

relative

number

of

a

VSAM

control

interval

(CI)

or

OSAM

block

within

the

data

set

and

the

number

of

an

anchor

point

within

that

block.

Anchor

points

are

located

at

the

beginning

of

each

CI

or

block.

They

are

used

for

the

chaining

of

root

segments

that

randomize

to

that

CI

or

block.

All

chaining

of

segments

is

done

using

a

4-byte

address.

This

address,

the

relative-byte

address

(RBA),

is

the

byte

that

the

segment

starts

at

relative

to

the

start

of

the

data

set.

A

general

randomizing

module,

DFSHDC40,

is

supplied

with

IMS.

This

is

suitable

for

most

applications.

The

IMS

Version

9:

Customization

Guide

describes

this

module.

It

also

gives

details

about

modifying

this

module

or

developing

your

own

randomizing

routines.

The

VSAM

ESDS

or

OSAM

data

set

is

divided

into

two

areas:

v

The

root

addressable

area.

This

is

the

first

number

of

CIs

or

blocks

in

the

data

set.

You

define

it

in

your

database

definition

(DBD).

v

The

overflow

area

is

the

remaining

portion

of

the

data

set.

The

overflow

area

is

not

explicitly

defined,

but

is

the

remaining

space

in

the

data

set

after

space

is

allocated

for

the

root

addressable

area.

The

root

addressable

area

(RAA)

is

used

as

the

primary

storage

area

for

segments

in

each

database

record.

IMS

will

always

attempt

to

put

new

and

updated

segments

in

the

RAA.

The

overflow

area

is

used

when

IMS

is

unable

to

find

enough

space

for

a

segment

being

inserted

in

the

RAA.

IMS

uses

a

number

of

techniques

to

distribute

free

space

within

the

RAA

to

allow

future

segments

to

be

inserted

in

the

most

desirable

block.

Because

database

records

will

vary

in

length,

a

the

bytes

parameter

in

the

RMNAME=

keyword

(in

the

DBD)

is

used

to

control

the

amount

of

space

used

for

each

database

record

in

the

root

addressable

area.

Note

that

this

limitation

only

applies

if

the

segments

in

the

record

are

inserted

at

the

same

time.

The

bytes

parameter

limits

the

number

of

segments

of

a

database

record

that

can

be

consecutively

inserted

into

the

root

addressable

area.

When

consecutively

inserting

a

root

and

its

dependents,

each

segment

is

stored

in

the

root

addressable

area

until

the

next

segment

to

be

stored

will

cause

the

total

space

used

to

exceed

the

specified

number

of

bytes.

The

total

space

used

for

a

segment

is

the

combined

lengths

of

the

prefix

and

data

portions

of

the

segment.

When

exceeded,

that

segment

and

all

remaining

segments

in

the

database

record

are

stored

in

the

overflow

area.

It

should

be

noted

that

the

value

of

the

bytes

parameter

only

controls

segments

consecutively

inserted

in

one

database

record.

Consecutive

inserts

are

inserts

to

one

database

record

without

an

intervening

call

to

process

a

segment

in

a

different

database

record.

IBM

Confidential

Chapter

6.

Implementing

the

IMS

Database

Model

55

|

When

you

initially

load

HDAM

databases,

you

can

specify

that

a

percentage

of

the

space

in

each

block

should

be

left

for

subsequent

segments

to

be

inserted.

This

freespace

will

allow

subsequent

segments

to

be

inserted

close

to

the

database

record

they

belong

to.

This

freespace

percentage

is

specified

on

the

DBD.

You

can

also

specify

in

the

DBD

that

a

percentage

of

blocks

in

the

data

set

are

left

empty,

but

you

should

not

do

this

with

HDAM

databases,

as

this

will

result

in

IMS

randomizing

segments

to

a

free

block,

then

placing

them

in

another

block.

This

would

result

in

additional

I/O

(the

block

they

randomize

to,

plus

the

block

they

are

in)

each

time

the

segment

is

retrieved.

You

should

analyze

the

potential

growth

of

the

database

to

enable

you

to

arrive

at

a

figure

for

this

free

space.

When

IMS

is

inserting

segments,

it

uses

the

HD

space

search

algorithm

to

determine

which

control

interval

(CI)

block

to

put

the

segment

in.

This

attempts

to

minimize

physical

I/Os

while

accessing

segments

in

a

database

record

by

placing

the

segment

in

a

CI/block

as

physically

close

as

possible

to

other

segments

in

the

database

record.

The

HD

space

search

algorithm

is

described

in

the

chapter,

“Designing

Full-Function

Databases”,

in

the

IMS

Version

9:

Administration

Guide:

Database

Manager.

Figure

18.

HDAM

Database

in

Physical

Storage

IBM

Confidential

56

IMS:

An

Introduction

to

IMS

In

addition

to

organizing

the

application

data

segments

in

an

HDAM

database,

IMS

also

manages

the

freespace

in

the

data

set.

As

segments

are

inserted

and

deleted,

areas

in

the

CI/blocks

become

free

(in

addition

to

the

freespace

defined

when

the

database

is

initially

loaded).

IMS

space

management

allows

this

free

space

to

be

re-used

for

subsequent

segment

insertion.

To

enable

IMS

to

quickly

determine

which

CI/blocks

have

space

available,

IMS

maintains

a

table

(bit

map)

that

indicates

which

CI/blocks

have

a

large

enough

area

of

contiguous

free

space

to

contain

the

largest

segment

type

in

the

database.

Note

that

if

a

database

has

segment

types

with

widely

varying

segment

sizes,

even

if

the

CI/block

has

room

for

the

smaller

segment

types,

it

would

be

marked

as

having

no

free

space

if

it

cannot

contain

the

largest

segment

type.

The

bit

map

consists

of

one

bit

for

each

CI/block,

set

on

(1)

if

space

is

available

in

the

CI/block,

set

off

(0)

if

space

is

not

available

in

the

CI/block.

The

bit

map

is

in

the

first

(OSAM)

or

second

(VSAM)

CI/block

of

the

data

set

and

occupies

the

whole

of

that

CI/block.

Figure

19

illustrates

the

free

space

management.

Within

the

CI/block

itself,

IMS

maintains

a

chain

of

pointers

to

the

areas

of

freespace.

These

are

anchored

off

a

Free

Space

Element

Anchor

Point

(FSEAP).

This

contains

the

offset,

in

bytes

from

the

start

of

the

CI/Bock,

to

the

first

Free

Space

Element

(FSE),

if

freespace

exists.

Each

area

of

freespace

greater

than

8

bytes

contains

a

FSE

containing

the

length

of

the

freespace,

together

with

the

offset

from

start

of

CI/block

to

the

next

FSE.

Figure

19.

HDAM

Database

Free

Space

Management

IBM

Confidential

Chapter

6.

Implementing

the

IMS

Database

Model

57

All

management

of

free

space

and

application

segments

in

the

data

sets

is

done

automatically

by

IMS

and

is

transparent

to

the

application.

You

only

need

to

be

aware

of

these

because

of

the

performance

and

space

usage

implications.

Related

Reading:

A

full

description

of

the

HDAM

internal

organization

is

given

in

the

chapter

on

Choosing

a

Database

Type

in

IMS

Version

9:

Administration

Guide:

Database

Manager.

The

principle

features

of

the

HDAM

access

method

are:

v

Fast

random

access

to

the

root

segments,

via

the

randomizer

v

Quick

access

to

segments

in

a

database

record,

as

IMS

attempts

to

store

them

in

the

same,

or

physically

near,

CI/block

v

Automatic

re-use

of

space

after

segment

deletions

v

Can

have

non-unique

root

segment

keys

The

principle

weaknesses

of

the

HDAM

access

method

are:

v

It

is

not

possible

to

access

the

root

segments

sequentially,

unless

you

create

a

randomizing

module

that

randomizes

into

key

sequence,

or

incur

the

overhead

of

creating

and

maintaining

a

secondary

index

v

It

is

slower

to

load

than

HIDAM,

unless

you

sort

the

segments

into

randomizer

sequence

(for

example

by

writing

user

exits

for

the

sort

utility

that

call

the

randomizing

module)

v

It

is

possible

to

get

poor

performance

if

too

many

keys

randomize

to

the

same

anchor

point

HIDAM

A

HIDAM

database

in

DASD

is

actually

comprised

of

two

physical

databases

that

are

normally

referred

to

collectively

as

a

HIDAM

database,

see

Figure

20

on

page

59.

When

defining

each

through

the

DBD,

one

is

defined

as

the

HIDAM

primary

index

database

and

the

other

is

defined

as

the

main

HIDAM

database.

In

the

following

discussion

the

term

“HIDAM

database”

refers

to

the

main

HIDAM

database

defined

through

DBD.

IBM

Confidential

58

IMS:

An

Introduction

to

IMS

The

main

HIDAM

database

is

similar

to

an

HDAM

database.

The

main

difference

is

in

the

way

root

segments

are

accessed.

In

HIDAM,

there

is

no

randomizing

module,

and

normally

no

RAPs.

Instead,

the

HIDAM

primary

index

database

takes

the

place

of

the

randomizer

in

providing

access

to

the

root

segments.

The

HIDAM

primary

index

is

an

indexed

sequential

file

(VSAM

KSDS)

that

contains

one

record

for

each

root

segment,

keyed

on

the

root

key.

This

record

also

contains

the

pointer

(RBA)

to

the

root

segment

in

the

main

HIDAM

database.

The

HIDAM

primary

index

database

is

used

to

locate

the

database

records

stored

in

a

HIDAM

database.

When

a

HIDAM

database

is

defined

through

the

DBD,

a

unique

sequence

field

must

be

defined

for

the

root

segment

type.

The

value

of

this

sequence

field

is

used

by

IMS

to

create

an

index

segment

for

each

root

segment

(record

in

the

KSDS).

This

segment

in

the

HIDAM

primary

index

database

contains,

in

its

prefix,

a

pointer

to

the

root

segment

in

the

main

HIDAM

database.

When

the

HIDAM

database

is

initially

loaded,

the

database

records

are

loaded

into

the

data

set

in

root

key

sequence.

Providing

root

anchor

points

are

not

specified,

reading

the

database

in

root

key

sequence

will

also

read

through

the

database

in

the

physical

sequence

the

records

are

stored

in

on

the

DASD.

If

you

are

processing

the

databases

in

key

sequence

like

this,

and

regularly

inserting

segments

and

new

database

records,

you

should

specify

sufficient

freespace

when

the

database

is

initially

loaded

so

that

the

new

segments/records

can

be

physically

inserted

adjacent

to

other

records

in

the

key

sequence.

Related

Reading:

For

a

full

description

of

the

HIDAM

internal

organization,

see

the

chapter

on

“Choosing

a

Database

Type”

in

IMS

Version

9:

Administration

Guide:

Database

Manager.

Figure

20.

HIDAM

Database

in

Physical

Storage

IBM

Confidential

Chapter

6.

Implementing

the

IMS

Database

Model

59

Free

space

in

the

main

HIDAM

database

is

managed

in

the

same

way

as

in

an

HDAM

database.

IMS

keeps

track

of

the

free

space

using

Free

space

elements

anchor

points.

When

segments

are

inserted,

the

HD

free

space

search

algorithm

is

used

to

locate

space

for

the

segment.

The

HIDAM

primary

index

database

id

processed

as

a

normal

VSAM

KSDS,

and,

consequently,

a

high

level

of

insert/delete

activity

will

result

in

CI/CS

splits,

which

may

require

the

index

to

be

reorganized.

When

the

HIDAM

database

is

initially

loaded,

free

space

can

be

specified

as

a

percentage

of

the

CI/blocks

to

be

left

free,

and

as

a

percentage

of

each

CI/block

to

be

left

free.

This

is

specified

on

the

DBD.

The

principle

advantages

of

the

HIDAM

access

method

are:

v

Ability

to

process

the

root

segments

and

database

records

in

root

key

sequence

v

Quick

access

to

segments

in

a

database

record,

as

IMS

attempts

to

store

them

in

the

same,

or

physically

near,

CI/block

v

Automatic

re-use

of

space

after

segment

deletions

v

Ability

to

reorganize

the

HIDAM

primary

index

database

in

isolation

from

the

main

HIDAM

database

(but

NOT

the

other

way

round)

The

principle

weaknesses

of

the

HIDAM

access

method

are:

v

Longer

access

path,

compared

to

HDAM,

when

reading

root

segments

randomly

by

key.

There

will

be

at

least

one

additional

I/O

to

get

the

HIDAM

primary

index

record,

before

reading

the

block

containing

the

root

segment

(excluding

any

buffering

considerations)

v

Extra

DASD

space

for

the

HIDAM

primary

index

v

If

there

is

frequent

segment

insert/delete

activity,

the

HIDAM

primary

database

will

require

periodic

reorganization

to

get

all

database

records

back

to

there

root

key

sequence

in

physical

storage

PHDAM

and

PHIDAM

PHDAM

databases

are

partitioned

HDAM

databases

and

PHIDAM

databases

are

partitioned

PHDAM

databases.

Figure

21

illustrates

a

logical

view

of

an

HDAM

and

a

PHDAM

database.

HDAM

and

HIDAM

databases

are

limited

in

size

because

segments

of

the

same

type

must

be

in

the

same

data

set

with

the

maximum

data

set

size

limited

to

4

GB

for

VSAM

and

8

GB

for

OSAM.

HALDBs

allows

IMS

databases

to

grow

much

Figure

21.

A

Logical

View

of

an

HDAM

and

a

PHDAM

Database

IBM

Confidential

60

IMS:

An

Introduction

to

IMS

larger.

Partitioning

a

database

allows

the

use

of

smaller

elements

that

are

easier

to

manage.

Multiple

partitions

decrease

the

amount

of

unavailable

data

if

a

partition

fails

or

is

taken

offline.

HALDB

allows

the

grouping

of

IMS

database

records

into

sets

of

partitions

that

are

treated

as

a

single

database

while

permitting

functions

to

be

performed

independently

for

each

partition.

Each

HALDB

partition

has

the

same

capacity

limit

as

an

IMS

non-HALDB

database.

Like

an

IMS

non-HALDB

database,

each

partition

can

consist

of

up

to

10

data

sets;

however

the

number

of

data

sets

selected

will

then

apply

to

all

the

partitions

in

that

HALDB.

This

allows

a

large

amount

of

data

to

be

contained

in

a

single

partition.

HALDBs

can

contain

up

to

1001

partitions.

Each

partition

must

have

an

indirect

list

data

set

(ILDS).

The

ILDS

is

a

VSAM

KSDS

data

set.

It

is

the

repository

for

indirect

pointers.

These

pointers

eliminate

the

need

for

updating

logical

relationship

or

secondary

index

pointers

after

a

reorganization.

An

ILDS

contains

indirect

list

entries

(ILEs),

which

are

composed

of

keys

and

data.

The

data

parts

of

ILEs

contain

direct

pointers

to

the

target

segments.

Index

Databases

Index

databases

are

used

to

implement

secondary

indexes,

and

the

primary

index

of

HIDAM

and

PHIDAM

databases.

The

index

database

is

always

associated

with

another

HD

database.

It

cannot

have

an

existence

by

itself.

It

can,

however,

be

processed

separately

by

an

application

program.

The

Index

database

consists

of

a

single

VSAM

KSDS

(Key

Sequenced

Data

Set).

Unlike

the

VSAM

ESDSs

used

by

IMS,

which

are

processed

at

block

(Control

Interval)

level,

the

index

database

is

processed

as

a

normal

indexed

file.

IMS

uses

the

normal

VSAM

access

method

macros

to

access

it.

The

records

in

the

KSDS

contain

the

fields

that

make

up

the

key,

and

a

pointer

to

the

target

segment.

For

a

secondary

index,

the

pointer

can

be

direct

(relative

byte

address

of

the

target

segment)

or

symbolic

(the

complete,

concatenated

key

of

the

target

segment).

For

a

HIDAM

primary

index,

it

is

always

direct.

As

the

indexes

are

a

normal

VSAM

KSDS

(and

no

relative

address

are

used

for

data

in

the

index

database)

they

can

be

processed

using

the

normal

VSAM

Access

Method

Services

(IDCAMS).

For

example

you

could

use

the

REPRO

function

to

copy

the

database

and

remove

CI/CA

splits

or

resize

the

data

set,

without

having

to

perform

any

other

IMS

reorganization.

DEDB

The

DEDB

implementation

of

the

IMS

hierarchical

database

model

is

broadly

the

same

as

the

IMS

HDAM

access

method.

However,

there

are

important

differences:

v

The

implementation

of

the

IMS

access

method

onto

the

operating

system

access

method

data

sets

is

different

(and

appreciably

more

complicated)

than

with

HDAM.

This

is

done

to

provide

the

additional

features

offered

by

DEDBs.

v

There

are

various

restrictions

on

facilities

available

with

this

access

method,

again

a

trade-off

for

the

additional

features

provided.

The

hierarchical

structure

of

a

database

record

within

a

DEDB

is

the

same

as

HDAM,

except

for

an

additional

dependent

segment

type.

There

is

one

root

segment

in

each

database

record

and

from

0

to

126

dependent

segment

types.

One

of

these

segment

types

can,

optionally,

be

a

sequential

dependent

segment

IBM

Confidential

Chapter

6.

Implementing

the

IMS

Database

Model

61

type.

As

with

HDAM,

a

randomizing

module

is

used

to

provide

initial

access

to

the

database

data

sets

containing

the

DEDB

database.

The

highest

level

in

the

structure

used

to

implement

a

DEDB

is

the

area.

A

DEDB

can

consist

of

from

1

to

2048

areas.

Each

area

is

implemented

as

one

VSAM

ESDS

data

set.

Each

DEDB

area

data

set

is

divided

into:

v

A

root

addressable

part

—

This

contains

VSAM

CIs

that

are

addressable

by

the

randomizing

middle.

v

An

independent

overflow

part.

v

A

sequential

dependent

part

—

This

is

optional,

and

is

only

defined

if

the

DEDB

has

a

sequential

dependent

segment

defined

in

the

hierarchical

structure.

The

root

addressable

part

is

further

subdivided

into

units

of

work

(UOWs).

These

should

not

be

confused

with

the

unit

of

work

that

encompasses

an

application’s

minimum

set

of

updates

to

maintain

application

consistency.

The

DEDB

UOW

is

similar,

however,

as

it

is

the

smallest

unit

that

some

Fast

Path

utilities

(for

example,

reorganization)

work

with,

and

lock,

preventing

other

transactions

accessing

them.

Each

unit

of

work

consists

of

from

2

to

32767

CIs,

divided

into

a

base

section

of

1

or

more

CIs

and

a

dependent

overflow

section,

consisting

of

the

remaining

CIs.

Figure

22

on

page

63

shows

segments

stored

in

a

DEDB

area

data

set.

IBM

Confidential

62

IMS:

An

Introduction

to

IMS

The

randomizing

module

works

in

a

similar

way

to

an

HDAM

database.

It

takes

the

key

value

of

the

root

segment

and

performs

calculations

on

it

to

arrive

at

a

value

for

a

root

anchor

point.

However,

for

a

DEDB

this

is

the

root

anchor

point

within

the

Area

data

set.

The

randomizer

must

also

provide

the

value

of

the

area

data

set

that

contains

the

RAP.

Again,

there

is

a

sample

randomizer

provided

with

IMS,

although

due

to

the

unique

characteristics

of

DEDBs,

you

should

look

closely

at

whether

you

need

to

code

your

own.

The

randomizer

will

produce

the

value

of

a

root

anchor

point

in

the

base

section

of

a

unit

of

work.

IMS

will

attempt

to

store

all

dependent

segments

(except

sequential

Figure

22.

Overall

Structure

of

a

Fast

Path

DEDB

IBM

Confidential

Chapter

6.

Implementing

the

IMS

Database

Model

63

dependents)

of

the

root

in

the

same

UOW

as

the

root.

If

more

than

one

root

randomizes

to

the

same

RAP,

then

they

are

chained

off

the

UOW

in

key

sequence.

If

there

is

insufficient

space

in

the

base

section,

then

root

and

non-sequential

dependent

segments

are

placed

in

the

dependent

overflow

section

of

that

UOW.

If

there

is

no

space

in

the

dependent

overflow

section

in

the

UOW,

a

CI

in

the

independent

overflow

part

of

the

DEDB

Area

is

allocated

to

that

UOW

and

the

segment

is

stored

there.

This

CI

in

the

independent

overflow

part

is

then

used

exclusively

by

that

UOW,

and

is

processed

with

that

UOW

by

the

DEDB

reorganization

utility.

The

free

space

between

the

data

segments

in

the

CIs

in

the

root

addressable

part

and

Independent

overflow

part

of

a

DEDB

area

data

set

are

managed

in

the

same

way

as

in

an

HDAM

data

set.

with

a

free

space

element

anchor

point

at

the

start

of

the

CI

pointing

to

a

chain

of

free

space

elements.

As

with

HDAM,

space

from

deleted

segments

is

automatically

re-used,

and

the

UOW

can

be

reorganized

to

consolidate

fragmented

free

space

(without

making

the

database

unavailable).

Unlike

an

HDAM

database,

there

is

no

free

space

map.

The

segments

for

a

database

record

can

only

be

allocated

in

the

same

UOW

(or

attached

segments

in

dependent

overflow)

as

the

root

segment.

An

out

of

space

condition

results

if

insufficient

free

space

is

available

in

the

UOW

or

Independent

overflow.

The

following,

optional,

features

can

also

be

used

with

a

DEDB:

Virtual

Storage

Option

(VSO)

This

stores

the

CIs

of

a

DEDB

in

z/OS

data

spaces

and

coupling

facility

cache

structures,

eliminating

I/O

to

the

DASD

system.

The

data

can

either

be

loaded

(partially

or

completely)

when

the

database

is

opened,

or

loaded

into

the

dataspace

as

it

is

referenced.

Shared

VSO

You

can

share

VSO

DEDB

areas,

which

allows

multiple

IMSs

to

concurrently

read

and

update

the

same

VSO

DEDB

area.

The

three

main

participants

are

the

coupling

facility

hardware,

the

coupling

facility

policy

software,

and

the

XES

and

z/OS

services.

Multiple

Area

Data

Sets

You

can

define

DEDB

areas

so

that

IMS

will

automatically

maintain

up

to

seven

copies

of

each

area.

This

can

be

used

to

provide

a

backup

if

I/O

errors

occur,

allow

data

sets

to

be

re-defined

on

a

different

device

without

taking

the

database

offline,

or

to

provide

parallelism

in

I/O

access

for

very

busy

applications.

High

Speed

Sequential

Processing

This

is

a

function

provided

by

Fast

Path

to

enhance

the

performance

of

programs

that

are

processing

segments

sequentially

in

a

database.

IMS

issues

a

single

I/O

request

that

reads

one

UOW

at

a

time.

This

causes

a

reduction

in

the

overhead

of

multiple

I/O

requests

and

stores

the

CIs

in

a

separate

buffer

pool.

HSSP

also

issues

the

read

request

in

advance

of

the

program

asking

for

the

data,

to

provide

parallel

processing.

In

this

way,

the

segments

in

the

database

are

available

to

the

program

without

any

delays

to

wait

for

I/O

processing.

The

overall

runtime

can

be

significantly

reduced,

as

long

as

the

database

is

being

read

sequentially.

Sequential

Dependent

Segments

A

DEDB

database

can

have

one

sequential

dependent

segment

type

defined

in

the

database

record.

This

is

processed

completely

separately

to

the

other

dependent

segments.

Normal

application

programs

can

only

Insert

new

sequential

dependent

segments

or

read

existing

sequential

dependent

IBM

Confidential

64

IMS:

An

Introduction

to

IMS

|
|
|
|
|

segments.

All

other

processing

of

these

sequential

dependents

is

performed

by

IBM

supplied

utility

programs.

The

sequential

dependents

are

stored

in

the

Sequential

dependent

part

of

the

area

data

set

in

chronological

sequence,

and

processed

by

the

IMS

utilities,

to

read

or

delete

them,

in

the

same

sequence.

The

main

situations

where

you

might

consider

using

Fast

Path

DEDBs

are:

v

Where

you

have

very

high

volumes

of

data

to

store.

The

DEDB

can

be

spread

over

up

to

2048

VSAM

ESDS

data

sets,

each

with

a

maximum

capacity

of

4GB.

However

not

all

this

space

is

available

for

application

data

as

some

minimal

space

is

needed

for

IMS

and

VSAM

overhead

and

free

space.

v

Where

you

have

a

small

to

medium

database

that

needs

extremely

fast

access.

you

could

use

the

DEDB

VSO

option

and

have

the

data

held

in

an

z/OS

dataspace,

making

a

major

reduction

in

the

physical

I/O

associated

with

the

database.

v

If

you

needed

a

database

with

very

high

availability.

The

use

of

multiple

area

data

sets,

the

ability

to

reorganize

online

and

the

DEDBs

tolerance

to

I/O

errors

mean

the

database

can

be

kept

available

for

extended

periods.

v

Where

an

application

needs

to

record

large

amounts

of

data

very

quickly

(for

example

journaling

details

of

online

financial

transactions)

but

does

not

require

to

update

this

data,

except

at

specified

times

(for

example,

an

overnight

process),

then

a

DEDB

with

a

sequential

dependent

segment

could

provide

the

solution.

The

principal

disadvantages

of

DEDBs

are:

v

This

method

is

more

complicated

than

other

IMS

access

methods.

Consequently,

it

requires

a

higher

degree

of

support

both

for

initial

setup

and

running.

v

The

person

designing

the

application

must

understand

the

restrictions

and

special

features

of

DEDBs

and

design

the

application

accordingly

v

The

DEDBs

are

only

available

for

applications

running

against

an

IMS

control

region

(MPP,

IFP,

BMP

and

CICS

applications).

There

is

no

batch

support

except

indirectly

via

the

IMS

supplied

utilities

to

extract

the

data.

v

Fast

Path

DEDBs

do

not

support

logical

relationships

or

secondary

indexes,

so

these

functions

must

be

implemented

in

the

application

Related

Reading:

v

For

more

details

on

using

DEDBs,

together

with

samples

of

their

use,

see

the

ITSO

publication

IMS

Fast

Path

Solutions

Guide.

v

The

features

of

DEDBs

are

described

in

detail

in

chapters

on

designing

a

Fast

Path

database

in

IMS

Version

9:

Administration

Guide:

Database

Manager.

v

The

utilities

used

with

DEDB

are

described

in

IMS

Version

9:

Utilities

Reference:

Database

and

Transaction

Manager

and

the

randomizer

and

other

Fast

Path

exits

are

in

IMS

Version

9:

Customization

Guide.

GSAM

A

z/OS

sequential

file

being

used

as

an

interface

to

or

from

an

IMS

application

can

be

defined

to

IMS

as

a

GSAM

database.

However,

the

normal

concepts

of

hierarchical

structures

do

not

apply

to

GSAM,

as

it

just

contains

the

normal

data

records,

with

no

IMS

information.

These

files

can

be

z/OS

sequential

files,

or

VSAM

ESDSs.

Before

or

after

the

IMS

application

processes

them,

other

applications

can

process

them

using

the

normal

BSAM,

QSAM

and

VSAM

access

methods.

IBM

Confidential

Chapter

6.

Implementing

the

IMS

Database

Model

65

When

using

GSAM

for

sequential

input

and

output

files,

IMS

will

control

the

physical

access

and

position

of

those

files.

This

is

necessary

for

the

repositioning

of

such

files

in

case

of

program

restart.

When

using

GSAM,

IMS

will,

at

restart

time,

reposition

the

GSAM

files

in

synchronization

with

the

database

contents

in

your

application

program’s

working

storage.

To

control

this,

the

application

program

should

use

the

restart

(XRST)

and

checkpoint

(CHKP)

calls.

These

calls

will

be

discussed

in

“Using

Batch

Checkpoint/Restart”

on

page

192.

Note

that

IMS

can

not

re-position

VSAM

ESDS

files

on

restart.

There

are

also

some

other

restrictions

on

restarting,

detailed

in

the

chapter,

“Designing

Full-Function

Databases”

in

the

IMS

Version

9:

Administration

Guide:

Database

Manager.

Whenever

you

want

your

program

to

be

restartable,

you

should

use

GSAM

for

its

sequential

input

and

output

files.

There

are

two

reasons

why

you

should

want

to

do

this.

The

first

is

to

save

time

if

a

program

rerun

is

required

in

case

of

program

system

failure.

This

is

normally

only

done

for

long-running

update

programs

(one

or

more

hours).

The

other

reason

stems

from

a

planned

online

usage

of

the

databases.

HSAM

and

HISAM

The

two

Hierarchical

Sequential

(HS)

databases,

HSAM

and

HISAM,

use

the

sequential

method

of

accessing

data.

All

database

records

and

all

segments

within

each

database

record

are

physically

adjacent

in

storage.

Unlike

HSAM,

however,

each

HISAM

database

record

is

indexed,

allowing

direct

access

to

a

database

record.

HSAM

and

HISAM

have

now

been

superseded

by

the

HD

access

methods.

The

HD

access

methods

have

a

number

of

features

that

would

almost

always

make

them

a

better

choice.

The

HSAM

access

method

will

not

allow

updates

to

a

database

after

it

was

initially

loaded

and

the

database

can

only

be

read

sequentially.

HSAM

was

used

in

the

past

to

process

operating

system

sequential

files,

but

GSAM

is

now

a

better

choice.

The

HISAM

access

method

offers

similar

functionality

to

HIDAM,

but

has

poorer

internal

space

management

than

the

HD

access

methods

that

would

normally

result

in

more

I/O

to

retrieve

data,

and

the

need

to

reorganize

the

databases

much

more

frequently.

A

simple

HSAM

(SHSAM)

database

is

an

HSAM

database

containing

only

one

type

of

segment,

a

root

segment.

Similarly,

a

simple

HISAM

(SHISAM)

database

is

a

HISAM

database

containing

only

one

type

of

segment,

a

root

segment.

Related

Reading:

For

additional

details

about

the

HS

access

methods,

see

the

IMS

Version

9:

Administration

Guide:

Database

Manager.

Physical

Segment

Design

After

you

decide

what

access

method

(or

database

type)

you

want

to

use

for

a

particular

application,

you

need

to

design

the

segments

that

will

be

in

that

database.

When

designing

segments,

the

physical

parameters

are

important.

The

following

sections

discuss

these

details.

Segment

Length

IMS

will

use

the

segment

length

as

defined

in

the

DBD

to

store

each

segment.

If

you

have

left

free

space

at

the

end

of

the

segment

for

future

use,

that

space

will

be

IBM

Confidential

66

IMS:

An

Introduction

to

IMS

|
|
|
|
|

|
|
|

physically

hold

space

on

DASD

unless

you

have

compressed

the

segment.

If

the

application

is

likely

to

have

additional

requirements

later,

it

can

be

easier

to

make

use

of

this

free

space

than

to

increase

the

segment

length

later.

You

have

to

balance

the

cost

of

making

the

change

to

the

databases

and

programs

against

the

cost

of

wasted

DASD

space.

Number

of

Occurrences

Per

Segment

Per

Parent

Try

to

avoid

long

twin

chains,

that

is,

many

occurrences

of

a

particular

segment

type

under

one

parent.

Chain

lengths

should

be

estimated

in

terms

of

blocks

needed

to

store

each

such

segment.

Location

of

Segments

in

the

Hierarchy

Try

to

locate

the

segments

most

often

used

together

with

the

root

segment

into

one

control

interval/block.

The

segments

are

initially

physically

stored

in

hierarchical

sequence,

so

the

most

frequently

used

segments

should

be

on

the

left

of

the

structure

(low

segment

codes).

Average

Database

Record

Size

The

average

database

record

is

calculated

by

the

total

bytes

of

all

segments

under

the

root

segment.

Small

segments

with

more

twins

than

larger

segments

with

fewer

twins,

although

having

almost

the

same

number

of

bytes,

results

in

better

performance

and

space

usage.

Operating

System

Access

Methods

To

underpin

the

IMS

access

methods,

IMS

uses

two

operating

system

access

methods

to

store

the

data

on

disk

storage,

and

move

the

data

between

the

disk

storage

and

the

buffers

in

the

IMS

address

space.

These

are:

Virtual

Sequential

Access

Method

(VSAM)

Two

of

the

available

VSAM

access

methods

are

used,

Key

Sequenced

Data

Sets

(KSDS)

for

Index

databases,

and

Entry

Sequenced

Data

Sets

(ESDS)

form

the

primary

data

sets

for

HDAM,

HIDAM,

etc.

The

data

sets

are

defined

using

the

VSAM

Access

Method

Services

(AMS)

utility

program.

Overflow

Sequential

Access

Method

(OSAM)

This

access

method

is

unique

to

IMS

and

is

delivered

as

part

of

the

IMS

product.

It

consists

of

a

series

of

channel

programs

that

IMS

executes

to

use

the

standard

operating

system

channel

I/O

interface.

The

data

sets

are

defined

using

JCL

statements.

As

far

as

the

operating

system

is

concerned,

an

OSAM

data

set

is

described

as

a

physical

sequential

data

set

(DSORG=PS).

For

more

information

about

these

operating

system

access

methods,

see

“VSAM

or

OSAM”

on

page

68.

There

are

two

types

of

data

sets

defined

using

these

access

methods:

Indexed

sequential

data

sets

These

are

all

defined

and

accessed

as

VSAM

KSDSs,

and

are

used

to

implement

primary

and

secondary

index

databases.

These

databases

are

processed

using

the

standard

record

level

instructions

of

VSAM.

A

catalogue

listing

(VSAM

LISTCAT)

will

show

all

current

details

of

the

files.

They

are

susceptible

to

the

normal

performance

degradation

of

VSAM

KSDSs

from

CI/CS

splits

caused

by

insert/delete

activity.

They

can,

if

necessary,

be

processed

using

AMS

utilities

such

as

REPRO.

IBM

Confidential

Chapter

6.

Implementing

the

IMS

Database

Model

67

Sequential

data

sets

These

are

defined

and

accessed

either

as

VSAM

ESDSs

or

using

OSAM.

It

is

important

to

note

that,

while

these

data

sets

appear

as

sequential

data

sets

to

the

operating

system,

IMS

accesses

them

randomly.

The

data

sets

do

not

contain

records

as

such.

IMS

always

processes

them

at

the

CI

(VSAM)

or

block

(OSAM)

level.

The

internal

structure

within

each

CI/block

is

arranged

as

described

in

“IMS

Hierarchic

Access

Methods”

on

page

53.

Interpreting

catalogue

listings

of

these

files

as

if

they

were

sequential

files

can,

at

times,

be

misleading.

In

addition

to

using

VSAM

or

OSAM,

IMS

data

sets

can

be

managed

by

Data

Facility

Storage

Management

Subsystem

(DFSMS).

For

more

information,

see

“IMS

and

System

Managed

Storage”

on

page

69.

VSAM

or

OSAM

While

most

physical

databases

are

implemented

over

a

single

VSAM

ESDS

or

OSAM

data

set,

IMS

provides

facilities

to

spread

an

HDAM

or

HIDAM

physical

database

over

up

to

nine

additional

data

sets

(multiple

data

set

groups).

The

is

facility

is

restricted

as,

with

the

current

release

of

IMS,

the

1st,

primary

data

set

group,

that

is

always

defined,

must

contain

the

root

segments,

and

can

contain

any

dependent

segment

type.

The

other

(secondary)

data

set

groups

can

each

contain

any

dependent

(non-root)

segment

type.

However,

each

dependent

segment

type

can

only

be

defined

in

one

data

set

group.

This

is,

aside

from

performance

implications,

transparent

to

applications.

If

the

database

needs

to

be

reorganized,

then

all

data

sets

that

make

up

the

physical

database

have

to

be

reorganized

at

the

same

time.

The

reasons

why

you

may

wish

to

use

secondary

data

set

groups

are:

v

To

separate

little

used

segments

from

the

main

data

set,

to

leave

more

space

for

frequently

used

segments.

This

will

increase

the

chance

the

all

regularly

accessed

segments

are

in

the

same

block

with

the

root,

and

enhance

performance.

For

example,

you

might

have

a

segment

type

that

has

a

new

occurrence

inserted

each

month,

say

month

end

audit

totals.

This

is

only

rarely

accessed

after

insertion.

Placing

in

this

segment

type

in

a

secondary

data

set

group,

while

imposing

an

overhead

on

the

program

that

inserted

it,

could

improve

performance

of

all

other

programs

as

there

is

an

increased

chance

segments

they

access

are

in

the

same

block

as

the

root,

and

more

database

records

can

be

packed

into

one

CI/block.

v

If

you

have

a

database

with

one

very

large

segment

type,

and

a

number

of

other

small

segment

types

than,

as

described

above,

this

can

result

in

unusable

space

as

IMS

space

management

only

regards

a

CI/block

within

a

data

set

as

having

freespace

if

it

can

accommodate

the

largest

segment

type

stored

in

that

data

set.

Putting

this

large

segment

type

in

a

secondary

data

set

group

means

that

the

other

data

set

groups

will

now

only

be

regarded

as

full

if

they

could

not

contain

the

second

largest

segment

type.

v

You

can

specify

different

freespace

parameters

on

the

different

data

set

groups,

so

you

could

place

non-volatile

segment

types

in

a

data

set

group

with

little

free

space,

to

increase

packing

in

a

CI/block,

and

consequently

the

chances

of

having

several

segments

a

program

is

retrieving

in

the

same

block.

Volatile

segment

types

(that

is,

frequent

insert/delete)

could

be

placed

in

a

data

set

group

with

a

large

freespace

specification,

allowing

segments

to

be

inserted

near

related

segments.

v

For

very

large

databases,

you

may

be

approaching

the

structural

limit

of

the

data

set

access

method

(4

GB

of

data).

If

you

have

one

or

two

segment

types

that

IBM

Confidential

68

IMS:

An

Introduction

to

IMS

occur

very

frequently,

the

each

of

these

segment

types

could

be

placed

in

one

or

more

secondary

data

set

groups

to

provide

more

space.

But

in

this

case,

see

also

the

additional

features

of

OSAM

below,

and

also

look

closely

at

DEDBs,

which

can

be

spread

over

many

more

data

sets.

When

performing

space

calculations,

you

need

to

be

aware

that,

in

addition

to

the

overhead

for

IMS

control

information

(pointers,

etc.),

VSAM

data

sets

will

also

contain

a

suffix

area

at

the

end

of

the

CI

that

contains

VSAM

control

information.

This

makes

the

space

available

in

the

CI

for

IMS

data

slightly

less

than

the

VSAM

CI

size.

The

choice

between

OSAM

and

VSAM

ESDS

for

the

primary

database

data

sets

will

depend,

to

some

extent,

on

whether

your

site

already

uses

VSAM

and

whether

you

need

to

make

use

of

the

additional

features

described

below.

The

choice

between

VSAM

ESDS

and

OSAM

is

not

final,

as

a

database

can

be

changed

from

one

access

method

to

the

other

by

unloading

the

database,

changing

and

regenerating

the

DBD,

then

re-loading

the

database.

As

the

OSAM

access

method

is

specific

to

IMS,

it

has

been

optimized

for

use

by

IMS.

Reasons

you

may

want

to

use

OSAM

are:

v

Sequential

Buffering

(SB).

With

this

feature,

IMS

will

detect

when

an

application

is

processing

data

sequentially

and

pre-fetch

blocks

it

expects

the

application

to

request

from

DASD,

so

they

will

already

be

in

the

buffers

in

the

IMS

address

space

when

the

application

requests

segments

in

the

block.

This

is

manually

activated

for

specific

IMS

databases/programs.

It

can

appreciably

decrease

run

times

for

applications

processing

databases

sequentially.

It

is

similar

to

the

sequential

prefetch

available

with

some

DASD

controllers,

but

has

the

advantage

that

the

data

if

fetched

into

the

address

space

buffer

in

main

memory,

rather

than

the

DASD

controller

cache

at

the

other

end

of

the

channel

Related

Reading:

See

the

“Full-Function

DB

Design

Considerations”

chapter

in

IMS

Version

9:

Administration

Guide:

Database

Manager

for

details

on

sequential

buffering.

v

The

structural

limit

on

the

amount

of

data

that

IMS

can

store

in

a

VSAM

ESDS

is

4GB

of

data.

OSAM

can

process

a

data

set

up

to

8GB

in

size.

v

Overall,

OSAM

is

regarded

as

more

efficient

as

it

is

more

efficient,

buffering,

shorter

instruction

path.

IMS

and

System

Managed

Storage

Most

of

the

IMS

data

sets

can

be

managed

by

System

Managed

Storage

(SMS).

The

only

concern

would

be

the

online

data

sets

(OLDS).

If

they

should

get

migrated

(not

very

likely

in

most

installations),

they

might

be

recalled

with

different

attributes.

Related

Reading:

For

more

information

about

the

data

sets

that

IMS

uses

for

logging

events,

see

Chapter

25,

“IMS

Logging,”

on

page

257.

OLDS

data

sets

must

be

allocated

in

contiguous

space.

It

could

also

be

possible

for

both

the

primary

and

secondary

OLDS

data

sets

to

be

on

the

same

volume.

This

is

a

major

problem

if

that

volume

becomes

unreadable.

You

should

use

management

classes

to

avoid

this.

Write

ahead

data

sets

(WADS)

have

very

high

write

rate

and

are

very

sensitive

to

slow

response.

These

data

sets

should

be

placed

with

some

care.

SMS

may

not

provide

a

good

place

to

allocate

them.

IBM

Confidential

Chapter

6.

Implementing

the

IMS

Database

Model

69

If

any

OLDS,

recovery

log

data

sets

(RLDS)

or

system

log

data

sets

(SLDS)

or

image

copy

data

sets

are

SMS

managed,

the

CATDS

parameter

must

be

set

for

the

RECON.

This

will

tell

DBRC

to

use

the

system

catalog

to

find

data

sets

and

not

be

concerned

if

they

are

not

on

the

same

volumes

which

they

were

originally

allocated.

IMS

Checkpoints

A

database

management

system,

such

as

IMS,

provides

facilities

to

keep

all

the

application

data

stored

in

the

databases

in

a

consistent

state.

This

discussion

is

principally

concerned

with

keeping

the

application

data

consistent,

from

an

applications

point

of

view.

It

relies

on

the

application

using

the

facilities

provided

by

IMS.

However,

the

facilities

to

consistently

update

the

database

also

ensure

that

all

internal

IMS

information

(pointers,

free

space

elements,

etc.)

are

kept

consistent,

though

this

is

transparent

to

the

application

program.

An

application

program

might

make

updates

to

several

IMS

databases.

If

a

problem

is

encountered

part

of

the

way

through

these

updates,

either

the

program

fails,

or

application

logic

dictates

it

cannot

continue

with

the

processing,

then

it

will

need

to

restore

the

data

in

the

databases

to

the

state

when

it

started

updating

them.

For

example,

a

program

adds

a

detail

to

the

order,

in

the

order

database,

and

then

needs

to

update

the

parts

database

to

reduce

the

quantity

of

the

part

available

for

ordering.

If

the

program

updates

the

order

database,

but

then

fails

before

updating

the

parts

database,

the

order

is

recorded,

but

the

quantity

of

the

part

is

still

shown

as

available

for

ordering

on

the

parts

database.

The

update

to

the

order

database

and

the

update

to

the

parts

database

make

up

a

single

unit

of

work

(UOW).

For

the

application

data

to

be

consistent,

either

all

the

updates

in

a

unit

of

work

must

be

written

to

the

database

successfully

(committed)

or

none

of

the

updates

in

the

UOW

must

be

committed.

To

maintain

database

consistency,

IMS

uses

the

concept

of

the

application

checkpoint.

You

should

not

confuse

the

application

checkpoint,

which

applies

to

the

single

execution

of

an

application

program,

with

the

system

checkpoints

IMS

subsystems

take.

System

checkpoints

are

taken

to

allow

the

IMS

subsystem

to

recover

from

a

failure

of

the

complete

IMS

subsystem.

The

application

checkpoint

indicates

to

IMS

the

end

of

the

applications

unit

of

work

and

causes

IMS

to

commit

all

updates

made

in

that

UOW.

An

application’s

UOW

commences

when

the

application

program

starts

running.

By

default,

IMS

takes

an

application

checkpoint,

and

commits

all

updates

when

the

application

terminates

normally.

You

can

also

explicitly

request

a

checkpoint,

using

the

CHKP

function

of

the

DL/I

API.

The

CHKP

call

is

also

taken

as

starting

another

UOW.

If

an

application

program

terminates

abnormally,

then

all

database

changes

are

backed

out

to

the

last

commit

point

(start

of

program

if

application

checkpoints

are

not

being

used

or

last

CHKP

call

if

they

are).

The

application

can

also

explicitly

back

out

all

updates

within

the

current

UOW

by

using

the

ROLB,

ROLL

or

ROLS

functions

of

the

DL/I

API

(the

difference

between

the

calls

relate

to

action

taken

by

the

Transaction

Manager

component,

if

applicable,

and

whether

the

application

regains

control

after

the

call).

Related

Reading:

See

the

IMS

Version

9:

Application

Programming:

Database

Manager

(under

“maintaining

database

integrity”)

for

complete

descriptions

of

the

functions

mentioned

in

the

previous

paragraph.

For

long

running

batch

and

BMP

application

programs,

you

should

issue

explicit

checkpoint

calls

at

regular

intervals.

As

the

programs

read

database

records,

details

of

these

database

records

(internal

IMS

addresses)

are

stored

by

the

IMS

IBM

Confidential

70

IMS:

An

Introduction

to

IMS

|
|
|
|
|
|
|
|
|
|
|

subsystem

until

the

application

reaches

a

commit

point

(issues

a

CHKP

or

terminates).

This

is

done

to

prevent

other

application

programs

updating

these

database

records

while

the

application

is

working

with

them.

These

details

are

stored

in

an

internal

buffer

in

the

IMS

address

space.

Failure

to

issues

regular

checkpoints

can

cause

the

following

problems:

v

The

IMS

address

space

has

insufficient

storage

to

contain

all

the

buffers

needed

to

contain

these

details,

resulting

in

the

application

program

being

terminated

v

If

the

application

fails,

or

issues

a

ROLL,

ROLB

or

ROLS

call,

IMS

will

have

to

back

out

all

the

updates

performed

by

the

application.

If

it

has

been

running

for

a

long

time

without

checkpointing,

it

may

well

take

the

same

time

to

back

out

all

the

updates

as

it

took

to

apply

them.

Equally,

if

you

then

correct

the

problem

and

re-start

the

program,

it

will

take

the

same

time

again

to

re-process

the

updates.

v

For

BMPs,

other

applications

processing

the

databases

by

the

same

IMS

control

region

might

be

prevented

from

accessing

these

database

records.

This

can

cause

severe

response-time

problems

if

the

other

applications

are

being

used

by

online

users.

For

Batch

jobs,

you

can

encounter

similar

problems

if

block

level

data

sharing

is

being

used.

Also,

the

IMS

ENQ/DEQ

block

supply

might

become

exhausted,

which

results

in

a

U0775

abend

of

all

of

the

application

programs

that

are

running

at

the

time

of

the

abend.

Long

running

programs

should

issue

checkpoints

based

on

the

number

of

database

calls

made.

As

a

rule

of

thumb,

initially

issue

batch

checkpoints

at

about

every

500

database

calls.

You

do

not

want

to

checkpoint

too

frequently,

as

there

is

an

overhead

in

writing

out

all

updates

and

your

application

re-positioning

itself

in

all

the

IMS

databases

after

the

CHKP

call.

IMS

loses

the

position

in

the

databases

after

a

CHKP

call,

so

such

a

call

must

be

followed

up

with

a

GU

call

to

the

last

record

retrieved

in

databases

where

such

positioning

is

important

to

the

application

logic.

Obviously

you

cannot

CHKP

more

frequently

than

the

number

of

calls

in

one

UOW.

As

you

might

need

to

tune

the

checkpoint

frequency,

IBM

recommends

that

you

code

the

program

so

it

can

be

easily

changed.

It

is

best

to

code

it

in

the

program

as

a

variable,

possibly

input

as

a

parameter

at

run

time.

The

functions

described

in

the

previous

paragraphs

are

referred

to

as

basic

checkpoint.

For

applications

running

in

Batch

and

BMP

address

spaces,

there

is

also

extended

checkpoint

functionality

available.

This

is

referred

to

as

symbolic

checkpointing.

Symbolic

checkpointing

provides

the

following

additional

facilities

that

enable

application

programs

running

in

batch

or

BMP

address

spaces

to

be

re-started:

v

The

XRST

function

call

is

made

at

the

start

of

the

program

and

indicates

to

IMS

that

the

application

is

using

symbolic

checkpointing

v

The

CHKP

function

is

extended

to

allow

the

application

to

pass

up

to

seven

areas

of

program

storage

to

IMS.

These

areas

are

saved

by

IMS

and

returned

to

the

program

if

it

is

restarted.

This

can

be

used

for

any

variables,

(for

example,

accumulated

totals,

parameters)

that

the

application

would

need

to

resume

processing

v

Each

CHKP

call

is

identified

by

an

ID

that

is

generated

by

the

application

program.

This

ID

is

displayed

in

an

IMS

message

output

to

the

operating

system

log

when

the

checkpoint

is

successfully

complete.

While

a

good

programming

practice

would

be

to

ensure

this

ID

is

unique,

nothing

in

IMS

enforces

this

practice.

v

If

the

program

fails,

after

correcting

the

problem,

it

can

be

restarted

from

either

the

last

or

any

previous

successful

checkpoint

in

that

run.

IMS

will

re-position

the

databases

(including

non-VSAM

sequential

files

accessed

as

GSAM)

to

the

IBM

Confidential

Chapter

6.

Implementing

the

IMS

Database

Model

71

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

position

they

were

at

when

the

checkpoint

was

taken.

When

the

XRST

call

is

made

on

re-start,

the

program

will

receive

the

ID

of

the

checkpoint

it

is

re-starting

from,

together

with

any

user

areas

passed

to

IMS

when

that

CHKP

call

was

issued

Related

Reading:

Full

details

of

symbolic

checkpointing,

along

with

various

restrictions

on

what

can

be

done,

are

in

the

chapter

on

maintaining

database

integrity

in

IMS

Version

9:

Application

Programming:

Database

Manager.

Locking

The

other

main

facility

a

Database

Management

System

(as

distinct

from

the

use

of

a

database)

provides,

is

the

ability

for

more

than

one

application

to

simultaneously

access

the

database

for

update,

while

preserving

database

integrity.

This

prevents

situations

such

as

in

the

following

example:

Application

A

reads

a

record.

While

it

is

processing

it

(waiting

for

a

user

to

respond

at

a

terminal),

application

B

reads

the

same

record.

While

application

B

is

processing

the

record,

application

A

writes

back

the

updated

record.

The

user

of

application

B

now

responds,

and

application

B

writes

back

the

updated

record,

overwriting

the

update

to

the

record

made

by

application

A.

The

mechanism

used

to

prevent

this

is

to

lock

(enqueue)

the

database

segments/records

until

the

application

has

finished

processing

them

successfully,

that

is

reached

the

end

of

a

unit

of

work.

While

this

discussion

is

mainly

concerned

with

ensuring

application

data

is

updated

consistently,

the

mechanisms

used

by

IMS

also

ensure

that

IMS’s

internal

information

in

the

databases

(pointers,

and

so

forth)

remains

consistent.

One

problem

that

can

occur

from

this

enqueueing

of

database

segments,

is

a

deadlock

between

two

application

programs.

For

example,

application

A

reads

database

record

1.

While

A

is

doing

other

processing,

application

B

reads

database

record

2,

then

tries

to

read

database

record

1,

and

is

suspended

waiting

for

it,

as

it

is

enqueued

by

application

A.

Application

A

now

attempts

to

read

database

record

2,

and

is

suspended,

as

it

is

enqueued

by

application

B.

Both

applications

are

now

suspended

waiting

for

a

record

enqueued

by

the

other

—

a

deadlock.

IMS

detects

this,

and

will

abnormally

terminate

(abend)

the

application

it

assesses

has

done

the

least

work,

backing

out

its

updates

to

the

last

commit

point.

The

mechanism

IMS

uses

to

detect

the

deadlock

depends

on

what

method

of

data

sharing

is

being

used

(see

below).

This

is

either

direct

detection

of

the

deadlock

from

the

details

enqueued,

or

by

timeout;

that

is,

terminating

a

task

after

a

(parameter

specified)

period

of

waiting

for

a

database

record.

If

the

application

is

accessing

DB2

tables,

DB2

also

detects

deadlocks

by

timeouts

and

will

instruct

IMS

to

abend

the

program.

The

abend

code

issued

is

the

same

as

for

an

IMS

database

deadlock.

What

IMS

cannot

detect

is

a

deadlock

between

two

applications

where

the

two

different

resources

the

applications

are

trying

to

get

are

being

managed

by

two

separate

resource

managers.

This

is

most

common

with

CICS

applications

using

IMS/DB

databases.

For

example,

CICS

task

A

reads,

and

enqueues

a

database

record.

CICS

task

B

then

issues

a

CICS

ENQ

for

a

resource,

for

example

to

serialize

on

the

use

of

a

TDQ.

CICS

task

B

then

attempts

to

read

the

database

record

held

by

task

A,

and

is

suspended,

waiting

for

it.

CICS

task

A

then

attempts

to

serialize

on

the

resource

held

by

task

B

and

is

suspended.

We

now

have

a

deadlock

between

task

A

and

B.

But

neither

IMS

or

CICS

is

aware

of

the

problem,

as

both

can

only

see

the

half

of

the

deadlock

they

are

managing.

Unless

IMS

was

using

one

of

the

data

sharing

techniques

that

timed

out

application

IBM

Confidential

72

IMS:

An

Introduction

to

IMS

that

wait

for

the

database,

or

CICS

was

set

up

to

abend

tasks

after

a

very

short

time

suspended,

this

deadlock

would

have

to

be

resolved

manually.

The

person

designing

an

application

that

uses

IMS

databases

needs

to

be

aware

of

the

potential

problems

with

database

deadlocks,

and

design

the

application

to

avoid

them.

If

the

application

also

locks

resources

managed

by

another

product,

they

also

need

to

be

aware

of

the

potential

for

a

deadlock

developing

between

the

IMS

database

records

and

the

resources

managed

by

the

other

product.

Unfortunately,

deadlocks

often

only

occur

when

the

application

processes

very

large

volumes,

as

they

often

require

very

precise

timing

to

occur.

This

means

that

they

are

often

not

detected

during

testing

with

small

volumes.

IMS

supports

three

methods

of

sharing

data

between

a

number

of

application

tasks:

Program

Isolation

(PI)

This

can

be

used

where

all

applications

are

accessing

the

IMS

databases

via

a

single

IMS

control

region.

IMS

maintains

tables

of

all

database

records

enqueued

by

the

tasks

in

buffers

in

the

control

region

address

space.

This

provides

the

lowest

level

of

granularity

for

the

locking,

and

the

minimum

chance

of

a

deadlock

occurring.

Deadlocks

are

resolved

by

IMS

checking

the

tables

of

database

records

enqueued

to

ensure

there

is

not

a

deadlock

situation,

and

abending

one

of

the

tasks

if

there

is.

Block

level

data

sharing

This

allows

any

IMS

control

region

or

batch

address

space

running

on

an

OS/390

system

to

share

access

to

the

same

databases.

It

uses

a

separate

feature,

the

Internal

Resource

Lock

Manager

(IRLM).

This

is

delivered

as

part

of

the

IMS

product,

but

needs

to

be

separately

installed.

It

runs

in

its

own

address

space

in

the

OS/390

system

and

maintains

tables

of

the

locks

in

this

address

space.

With

block

level

data

sharing

IMS

locks

the

databases

for

the

application

at

the

block

level.

This

locking

is

at

a

higher

level

than

with

program

isolation

(that

is,

all

database

records

in

a

block

are

locked).

Because

of

this

coarser

level

of

locking,

there

is

an

increased

risk

of

deadlocks

and

contention

between

tasks

for

database

records.

Deadlocks

are

resolved

by

a

timeout

limit

specified

to

the

IRLM.

If

the

disk

storage

the

databases

are

on

is

shared

between

two

OS/390

systems,

it

is

also

possible

to

share

the

databases

between

IMS

applications

running

on

the

two

OS/390

images,

by

running

an

IRLM

address

space

on

each

of

the

two

OS/390

images.

The

IRLMs

communicate

using

VTAM

but

maintain

lock

tables

in

each

IRLM

address

space.

IRLM

is

also

used

as

the

lock

manager

for

DB2

but,

because

of

the

different

tuning

requirements,

you

should

use

separate

IRLM

address

spaces

for

DB2

and

IMS.

Sysplex

data

sharing

Where

a

number

of

OS/390

systems

are

connected

together

in

a

sysplex,

with

databases

on

DASD

shared

by

the

sysplex,

it

is

possible

for

IMS

control

regions

and

batch

jobs

to

run

on

any

of

these

OS/390

images

and

share

access

to

the

databases.

To

do

this,

an

IRLM

address

space,

running

version

2

of

IRLM,

must

be

running

on

each

OS/390

image

the

IMS

address

spaces

are

running

on.

The

IRLMs

perform

the

locking

at

block

level,

as

in

the

previous

case.

However,

instead

of

holding

details

of

the

locks

in

the

IRLM

address

space,

the

lock

tables

are

stored

in

shared

structures

in

the

sysplex

coupling

facility.

Deadlocks

are

resolved

by

a

timeout

limit

specified

to

IRLM.

Related

Reading:

For

further

details

on

data

sharing,

see:

v

Chapter

8,

“Data

Sharing,”

on

page

83

IBM

Confidential

Chapter

6.

Implementing

the

IMS

Database

Model

73

v

Chapter

30,

“Introduction

to

Parallel

Sysplex,”

on

page

315

v

The

chapter

on

administering

a

data

sharing

environment

in

IMS

Version

9:

Administration

Guide:

System

IBM

Confidential

74

IMS:

An

Introduction

to

IMS

Chapter

7.

Choosing

the

Correct

Database

Type

Some

database

types

will

provide

a

better

solution

to

your

business

needs

than

others.

This

chpater

discuss

how

to

choose

the

best

type

of

database

for

your

applications.

The

following

sections

are

covered

in

this

chapter:

v

“Applications

Suitable

for

Full-Function

Databases”

v

“Applications

Suitable

for

HSAM

and

HISAM”

on

page

77

v

“Applications

Suitable

for

Fast

Path

Databases”

on

page

77

Applications

Suitable

for

Full-Function

Databases

The

following

sections

discuss

the

advantages

and

disadvantages

of

the

different

types

of

full-function

databases.

When

to

Choose

HDAM

HDAM

is

recognized,

in

practice,

to

be

the

most

efficient

storage

organization

of

an

IMS

database.

It

should

be

considered

first.

After

looking

at

all

the

required

access

to

the

database,

if

there

are

not

requirements

to

process

a

large

section

of

the

database

in

key

sequence,

then

HDAM

should

be

chosen.

If

sequential

access

of

the

root

keys

is

required,

the

process

can

retrieve

the

data

in

physical

sequence

and

sort

the

output.

The

primary

advantages

of

HDAM

are:

v

Fast

direct

access

(no

index

accesses)

with

few

I/O

operations

v

Single

data

associated

control

blocks

v

Small

working

set

in

main

storage

for

IMS

v

Good

physical

sequential

access

Some

considerations

of

using

HDAM

are:

v

You

need

a

randomizing

module.

v

Sequential

access

in

root

key

order

is

not

possible

if

the

physical

sequence

of

database

records

in

storage

is

not

the

same

as

the

root

key

sequence.

This

is

dependent

on

the

randomizing

module

and

root

key

characteristics.

v

If

the

database

exceeds

the

space

in

the

RAA

(root

addressable

area),

it

will

extend

into

overflow.

After

it

is

in

overflow,

the

performance

of

the

access

to

these

segments

can

increase

drastically.

v

To

increase

the

space

of

the

database,

a

DBDGEN

is

required

to

increase

the

number

of

blocks

in

the

RAA.

This

will

also

require

an

ACBGEN

to

rebuild

the

online

ACBs

for

use

in

the

online

system.

This

will

require

that

you

take

the

database

offline

(making

it

unavailable)

to

complete

and

coordinate

the

change.

For

more

information

about

DBDGEN

and

ACBGEN,

see

“Generating

IMS

Control

Blocks”

on

page

158.

In

many

cases,

the

disadvantages

for

HDAM

do

not

apply

or

can

be

circumvented.

The

effort

needed

to

circumvent

should

be

weighed

against

the

savings

in

terms

of

main

storage

and

CPU

usage.

There

is

no

doubt,

however,

that

an

application

with

only

HDAM

databases

is

the

most

compact

one.

Some

possible

solutions

for

the

previously

mentioned

HDAM

disadvantages

are:

IBM

Confidential

©

Copyright

IBM

Corp.

2004

75

|
|
|
|
|
|

v

The

IMS

provides

a

general

randomizing

module,

DFSHDC40,

which

can

be

used

for

any

key

range

v

If

heavy

sequential

processing

is

required

and

a

randomizing

module

which

maintains

key

sequence

cannot

be

designed,

then

sort

techniques

can

be

used:

–

If

the

program

is

non-input

driven,

as

is

the

case

with

many

report

programs,

simple

get-next

processing

presents

all

the

database

records

in

physical

sequential

order.

The

output

could

then

be

sorted

in

the

desired

order.

Also,

in

many

instances,

only

certain

selected

segments

are

required.

So

the

output

file

of

the

extract

can

be

a

fairly

small

file

–

If

there

are

input

transactions

which

would

normally

be

sorted

in

root

key

sequence.

This

can

be

readily

done

with

an

E61

sort

exit

routine

which

passes

each

root

key

to

the

randomizing

module

for

address

calculation

and

then

sorts

on

the

generated

addresses

plus

the

root

key

instead

of

the

root

key

itself

v

A

secondary

index

could

be

built

with

the

root

key

as

index

search

argument.

The

cost

of

this

should

be

weighed

against

the

cost

of

sorting

as

in

2

above.

The

secondary

index

provides

full

generic

key

search

capability,

however.

A

secondary

index

on

the

root

segment

should

never

be

used

to

process

the

whole

database,

as

this

will

cost

a

lot

more

I/Os

than

to

process

the

database

in

physical

sequence.

When

to

Choose

HIDAM

Overall,

only

choose

HIDAM

if

there

are

requirements

to

regularly

process

the

database

in

root

segment

key

sequence.

If

there

are

also

requirements

for

fast

random

access

to

roots

(from

online

systems),

look

at

alternatives

for

the

sequential

access,

such

as

unload/sort

or

secondary

indexes.

HIDAM

is

the

most

common

type

of

database

organization.

It

has

the

advantages

of

space

usage

like

HDAM

but

also

keeps

the

root

keys

available

in

sequence.

These

days,

with

the

speed

of

DASD

the

extra

read

of

the

primary

index

database

can

be

incurred

without

much

overhead.

The

most

effective

way

to

do

this

is

to

specify

specific

buffer

pools

for

use

by

the

primary

index

database,

thus

reducing

the

actual

IO

to

use

the

index

pointer

segments.

HIDAM

does

not

need

to

be

monitored

as

closely

as

HDAM.

When

to

Choose

PHDAM

or

PHIDAM

The

reasons

for

choosing

PHDAM

or

PHIDAM

are

the

same

as

described

in

“When

to

Choose

HDAM”

on

page

75

and

“When

to

Choose

HIDAM.”

The

differences

are

the

size

of

the

data

store

and

some

administrative

considerations.

You

might

not

need

to

change

any

of

your

application

programs

when

you

migrate

HDAM

or

PHDAM

databases

to

HALDBs,

but

there

might

be

exceptions.

Exceptions

include

the

initial

loading

of

logically-related

databases

and

the

processing

of

secondary

indexes

as

databases.

You

might

also

want

to

change

applications

to

take

advantage

of

some

HALDB

capabilities.

These

capabilities

include

processing

partitions

in

parallel,

processing

individual

partitions,

and

handling

unavailable

partitions.

Related

Reading:

For

more

complete

information

about

HALDBs,

see

the

following

publications:

v

IMS

Version

9:

Administration

Guide:

Database

Manager

IBM

Confidential

76

IMS:

An

Introduction

to

IMS

v

The

Complete

IMS

HALDB

Guide

All

You

Need

to

Know

to

Manage

HALDBs

Applications

Suitable

for

HSAM

and

HISAM

HISAM

is

not

a

very

efficient

database

organization.

All

HISAM

databases

can

easily

be

converted

to

HIDAM.

The

application

should

receive

significant

performance

improvements

as

a

result.

The

only

situation

where

HISAM

might

be

desirable

over

a

HIDAM

database

is

when

it

is

a

root-segment-only

database.

Even

so,

segments

are

not

deleted

and

free

space

reclaimed

after

a

segment

is

deleted

until

the

next

database

reorganization.

Applications

Suitable

for

Fast

Path

Databases

The

application

area

that

the

DEDB

was

originally

designed—the

management

of

customer

accounts

in

a

retail

bank—is

an

ideal

candidate

for

that

database

implementation,

but

it

is

far

from

the

only

one,

and

some

of

functions

of

the

DEDB,

notably

the

virtual

storage

option

(VSO),

extend

the

application

areas

that

you

should

consider

using

a

DEDB.

Many

users

have

not

realized

the

dramatic

operational

and

performance

benefits

available

with

DEDBs

and

have,

for

various

reasons,

not

familiarized

themselves

with

that

database

implementation.

In

one

example,

a

customer

who

preferred

to

use

only

DB2

for

new

databases

was

convinced

to

use

a

DEDB

with

a

saving

of

some

65%

in

the

processor

requirements

for

that

very

large

application.

Initially,

it

might

seem

daunting

to

introduce

a

DEDB

to

an

organization

where

the

users

are

unfamiliar

with

that

technology,

but

practical

experience

has

shown

that

user

education

is

really

a

small,

easily

contained

issue,

and

the

benefits

of

the

DEDB

for

well-suited

applications,

greatly

outweigh

the

additional

effort

for

the

introduction

of

this

type

of

database.

The

examples

in

the

following

list

are

drawn

from

many

industries

and

show

that,

especially

with

VSO,

the

DEDB

is

very

effective.

Account

database:

retail

bank

This

application

exploits

the

characteristic

effectiveness

of

the

sequential

dependent

to

collect

transactions

for

reprocessing

(posting)

at

the

end

of

the

business

day.

The

low

cost

of

deletion

of

the

sequential

dependent

reduces

the

overheads

for

very

large

numbers

of

transactions.

The

DEDB

also

allows

near-continuous

operation

and

portioning

of

the

data

to

ensure

manageability

of

the

large

databases

involved.

Access

to

the

account

by

account

number

requires

only

one

I/O

and

almost

all

processing

can

be

done,

with

one

read

I/O

and

one

write

I/O

because

you

can

practically

ignore

the

I/Os

for

the

sequential

dependents.

One

disadvantage

is

that

the

DEDB

requires

all

access

to

the

account

be

through

the

account

number

(because

Fast

Path

does

not

support

secondary

indexes),

so

a

second

database

is

necessary

to

access

the

account

record

from

another

key.

This

would

be

the

credit

card

database

mentioned

below,

and

so

access

via

the

credit

card

would

require

one

I/O

to

the

credit

card

database

and

one

to

the

account

database.

Credit

card

database:

retail

bank

To

provide

access

to

an

account

DEDB

from

a

credit

card

number,

a

cross-reference

database

is

required

and

must

be

maintained

manually

(unlike

a

secondary

index,

which

is

maintained

by

IMS).

This

is

usually

a

IBM

Confidential

Chapter

7.

Choosing

the

Correct

Database

Type

77

root-only

database

with

little

data

in

each

segment:

primarily

the

relevant

account

number

to

which

the

credit

card

transactions

are

to

be

posted,

and

the

status

of

the

card

itself.

Teller

control

database:

retail

bank

Teller

transaction

journals

can

be

readily

kept

as

sequential

dependents,

provided

they

are

not

usually

required

for

online

access.

If

online

access

is

necessary,

then

a

direct

dependent

segment

would

be

more

suitable.

Account

database:

utility

company

A

utility

company

(telephone,

electricity,

gas,

or

water)

requires

very

similar

processing

to

that

for

a

retail

bank

and

a

similar

data

structure

is

very

suitable.

All

the

remarks

above

for

the

banking

application

are

relevant,

though

there

is

one

interesting

difference.

In

the

case

of

a

telephone

utility,

there

is

a

need

to

see

a

meter

database

that

is

similar

to

a

credit

card

database

for

the

banking

environment.

Meter

database:

utility

company

This

database

provides

a

cross

reference

from

a

meter

identifier

to

the

account

that

is

to

be

billed

for

usage

recorded

by

that

meter.

Because

meter

readings

are

input

and

processed

in

batches

that

tend

to

be

quite

predictable,

then

it

could

be

very

effective

to

exploit

this

predictability:

to

put

the

meter

data

into

areas

that

correspond

to

the

batches

of

data

that

are

processed

in

one

BMP

execution

and

to

switch

an

area

into

VSO

prior

to

each

batch

run

and

out

of

VSO

afterwards.

Audit

and

history

database

This

database

illustrates

a

good

use

of

the

sequential

dependent

segment

type

to

provide

a

historical

journal

of

activities.

For

a

non-shared

DEDB,

the

sequential

dependents

will

be

in

absolute

time

sequence,

and

if

the

DEDB

is

shared,

then

the

segments

can

be

readily

sorted

into

time

sequence.

Status

report

database

This

database

was

designed

to

hold

a

few

tens

of

lines

of

report

data

for

each

of

several

thousand

destinations.

Each

report

was

generated

daily,

and

access

was

required

to

each

report

for

typically

three

days

before

it

could

be

purged.

Access

to

the

reports

was

occasional

and

a

high

percentage

of

the

data

was

accessed

either

once

or

not

at

all.

By

using

the

sequential

dependent

to

store

each

report,

the

detail

lines

of

each

report

were

kept

in

the

same

or

adjacent

CIs

(as

they

were

inserted

within

one

unit

of

work),

so

that

online

access

to

them

was

quite

efficient.

As

each

report

was

generated,

a

summary

was

placed

in

the

report

summary

segment

so

that

it

could

be

accessed

at

the

same

time

as

the

root

segment.

Bet

status

database:

gambling

system

This

database

is

designed

to

support

an

online

totalizer

system

where

the

total

of

all

bets

placed

on

a

given

horse

is

required

to

be

kept

up

to

date

with

very

high

concurrency,

and

sometimes

there

are

high

transaction

rates

against

a

few

records

for

a

relatively

short

period.

Here,

the

judicious

use

of

VSO

can

allow

records

that

are

currently

active

to

be

held

in

VSO,

while

less

active

records

will

stay

on

DASD.

Note

that

there

is

an

option

to

restrict

this

database

to

a

root-only

design,

obeying

the

constraints

of

the

old

main

storage

database,

and

thus

allowing

the

use

of

FLD

calls

that

can

reduce

the

scope

and

duration

of

data

locking.

This

should

substantially

increase

the

level

of

maximum

concurrency

that

can

be

achieved.

IBM

Confidential

78

IMS:

An

Introduction

to

IMS

|
|
|

The

following

sections

discuss

the

different

requirements

that

should

be

considered

while

evaluating

whether

a

DEDB

is

likely

to

be

the

correct

database

type

for

a

particular

application.

Very

Large

Databases

The

structure

of

the

DEDB

was

designed

to

facilitate

handling

of

very

large

databases

by

implementing

each

database

as

1-240

areas

(pre-IMS

Version

8),

each

of

which

can

be

as

large

as

4

GB.

This

provides

an

effective

mechanism

for

processing

and

managing

large

databases

as

multiple

units.

As

of

IMS

Version

8,

DEDBs

can

have

up

to

2048

areas.

The

areas

are

relatively

independent

of

each

other

—

and

for

batch-style

processing,

multiple

areas

can

easily

be

processed

in

parallel,

which

dramatically

reduces

run

times

for

such

things

as

overnight

update

and

report

runs

(executing

as

bumps),

image

copy

jobs,

and

similar

tasks

that

involve

processing

entire

databases.

If

the

area

breakup

can

be

in

processing

units,

then

individual

areas

can

be

processed

independently.

For

example,

if

an

area

is

dedicated

to

one

subsidiary

within

a

conglomerate

business,

then

the

processing

for

that

subsidiary

can

be

optimized

and

performed

independently

of

other

subsidiaries.

The

algorithm

by

which

data

records

are

assigned

to

area

is

entirely

under

the

user

control,

so

data

and

application

requirements

can

readily

exploit

the

area

structures

by

using

separate

areas

for

groupings

of

data

that

have

different

characteristics

(and

so

require

different

space

definitions

for

optimal

performance)

or

are

processed

on

different

schedules.

For

example,

separate

areas

could

be

used

for

records

representing

different

business

units,

or

different

regions

for

which

processing

is

done

on

different

cycles.

The

high

performance

characteristics

of

the

DEDB,

discussed

below,

are

particularly

important

for

large

databases,

as

in

many

instances,

the

sheer

size

of

a

database

may

impose

a

requirement

for

high

performance,

particularly

in

batch

or

“whole

of

database”

processing.

High

Availability

Requirements

The

requirement

for

extended

outages

for

planned

maintenance

is

dramatically

reduced

because

the

implementation

of

a

DEDB

is

designed

so

that

almost

all

maintenance,

such

as

image

copying

or

database

reorganization,

can

be

performed

while

the

database

is

online.

During

a

database

reorganization,

only

a

small

part

of

the

data,

one

unit

of

work

(UOW),

which

might

typically

be

a

few

tens

of

control

Intervals,

is

locked

at

any

particular

time.

Thus,

online

processing

can

generally

proceed

with

minimal

impact

during

a

reorganization.

Additionally,

the

scheduling

of

a

PSB

to

access

the

DEDB

does

not

depend

on

the

availability

of

all

areas,

so

even

when

one

area

is

not

available

for

access,

say

a

database

recovery

is

in

progress,

then

all

other

areas

are

accessible

and

transaction

and

BMP

scheduling

can

occur.

In

one

customer’s

retail

banking

DEDB,

20

areas

located

on

20

separate

DASD

device

were

used,

so

that

even

if

a

single

area

or

the

DASD

device

on

which

it

was

located

were

unavailable,

95%

of

the

data

should

still

be

accessible.

The

DL/I

programming

interface

to

the

DEDB

provides

for

an

application

that

attempts

to

accesses

data

in

an

area

that

is

currently

not

available

to

be

given

the

same

DL/I

status

code

as

for

an

I/O

error,

which

now

generalizes

the

meaning

of

that

status

code

to

be:

“The

data

you

requested

is

temporarily

not

available”.

This

IBM

Confidential

Chapter

7.

Choosing

the

Correct

Database

Type

79

can

be

meaningfully

handled

by

most

existing

programs.

The

net

result

of

this

is

that,

when

one

area

of

database

is

unavailable,

processing

for

other

areas

can

proceed

normally,

which

is

in

contrast

with

an

IMS

full-function

database,

where

unavailability

of

any

part

of

the

database

precludes

all

scheduling.

Another

availability

feature

for

DEDBs

is

the

ability

to

have

multiple

copies

of

the

VSAM

data

sets

that

contain

the

data

for

one

area.

These

data

sets

are

called

area

data

sets

(ADS).

Installations

can

create

as

many

as

seven

copies

(multiple

area

data

sets,

MADS)

of

each

ADS,

making

the

data

more

available

to

application

programs.

Each

copy

of

an

ADS

contains

exactly

the

same

user

data.

Fast

Path

maintains

data

integrity

by

keeping

identical

data

in

the

copies

during

application

processing.

Highly

Active

Databases

If

the

Virtual

Storage

Option

(VSO)

of

a

non-shared

DEDB

(local

to

one

IMS)

is

exploited

for

one

or

more

areas,

then

all

records

in

those

areas

are

held

in

virtual

storage

during

database

processing.

Updates

are

logged

for

recoverability

and

written

to

DASD

periodically

in

an

asychronous

process.

If

the

DEDB

is

participating

in

Parallel

Sysplex

data

sharing,

then

all

database

updates

are

written

to

structure

in

the

coupling

facility

to

be

shared

with

other

IMSs.

These

mechanisms

avoid

I/O

for

most

database

accesses.

Limited

Data

Lifetime

A

user

can

define

that

one

segment

within

a

DEDB

is

stored

in

a

form

called

the

sequential

dependent

segment.

This

is

managed

by

IMS

in

a

very

different

way

from

other

data

segments

in

the

DEDB

(where

the

storage

mechanisms

are

rather

similar

to

those

used

in

a

full-function

database).

The

data

entry

segment

type

is

designed

to

optimize

the

interim

storage

and

retrieval

of

data

(as

the

name

suggests)

for

which

only

a

short

lifetime

is

normal

before

the

data

is

reprocessed

by

some

form

of

batch

processing.

The

sequential

dependent

data

storage

mechanism

is

therefore

ideally

suited

to

data

entry

style

applications

where

data

may

be

inserted

progressively

over

a

period,

is

not

accessed

heavily

by

online

transactions,

and

is

extracted

for

reprocessing

in

bulk

at

intervals,

and

deleted

in

bulk

at

some

time

after

that.

This

suits

such

applications

as

the

maintenance

of

an

audit

trail

or

the

collection

of

transactions

for

batch

reprocessing,

sometimes

involving

very

high

rates

of

data

insertion

into

the

database.

Extreme

Performance

Levels

There

are

several

different

aspects

of

the

DEDB

that

are

designed

to

minimize

the

number

of

I/Os

necessary

for

data

access

and

update,

to

minimize

the

path

length

of

instructions

used

for

a

DEDB

activity,

and

to

ensure

parallelism

between

multiple

nearly

simultaneous

applications.

These

improve

the

performance

of

online

and

BMP

processing,

thus

allowing

either

higher

workloads

on

any

given

processor,

or

reduced

processing

costs

for

a

given

application

workload.

This

capacity

to

handle

extreme

workloads

has

been

amply

demonstrated

by

various

Fast

Path

benchmarks

showing

the

capability

to

exceed

11,000

transactions

per

second.

More

recent

work

has

far

exceeded

even

that

performance

level.

Note

that

these

benchmarks

were

achieved

on

processors

that

are

quite

small

by

today’s

standards.

Reduced

I/O

Usage

The

space

search

and

usage

algorithms

for

the

root

and

direct

dependent

segment

data

in

a

DEDB

are

markedly

simpler

than

other

database

implementations,

while

IBM

Confidential

80

IMS:

An

Introduction

to

IMS

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

usually

providing

good

locality

of

data,

thus

reducing

the

number

of

I/Os

required

for

a

given

process

compared

to

say

a

full-function

database

implementation.

If

the

sequential

dependent

segment

type

is

used,

the

total

number

of

I/Os

required

for

insertion

of

data

and

deletion

is

substantially

less

than

for

other

segment

types

for

the

typical

insert-retrieve-delete

sequence

of

processing.

When

DEDB

database

control

intervals

are

written

as

the

result

of

add/update/delete

calls,

the

I/Os

are

asynchronous

to

the

transaction

or

BMP

unit

of

work.

The

I/Os

are

done

after

the

sync

point

is

complete

—

which

results

in

improved

transaction

response

times,

and

improved

BMP

elapsed

times.

If

the

high

speed

sequential

processing

(HSSP)

functions

of

the

DEDB

are

employed,

many

of

the

Read

I/Os

to

access

data

are

also

done

asychronously,

which

can

again

greatly

reduce

BMP

elapsed

times.

DEDB

updates

are

logged

in

a

slightly

different

manner

from

full-function

database

updates.

During

each

Sync

interval

(an

online

transaction

or

BMP

Checkpoint),

changed

data

is

written

to

the

database

only

after

the

sync

point

processing

has

committed

the

changes.

There

is

no

requirement

for

“before”

image

data

to

be

logged

as

would

happen

for

full-function

database

updates,

thus

substantially

reducing

the

volumes

of

log

data

and

thus

reducing

the

total

I/O

workload.

CPU

Utilization

Since

the

DEDB

implementation

uses

simpler

algorithms

for

most

functions

than

does

full-function

implementation,

the

CPU

utilization

for

similar

processing

workloads

is

typically

approximately

one

half

that

of

full-function.

It

is

also

notable

that

almost

all

processing

for

an

online

transaction,

or

for

a

BMP,

takes

place

under

the

TCB

of

the

region

processing

that

transaction

or

BMP,

thus

allowing

a

very

high

degree

of

transaction

parallelism.

All

the

mechanisms

mentioned

above

to

reduce

I/Os

have

a

secondary

effect

that

the

CPU

utilization

to

perform

those

I/Os

is

similarly

reduced.

Summary

of

When

to

Choose

DEDB

The

art

of

knowing

when

to

use

a

DEDB

depends

on

understanding

the

differences

between

DEDBs

and

other

database

types.

The

following

list

describes

some

reasons

and

considerations

for

choosing

DEDBs.

Advantages

of

areas

Most

Fast

Path

commands

and

utilities

operate

on

an

area

level,

so

they

do

not

affect

the

whole

database

at

once

(unlike

a

full-function

database).

For

example,

you

can

recover

one

area

of

a

DEDB

while

the

rest

of

it

is

in

use.

Another

reason

you

might

want

to

use

areas

is

to

spread

the

I/O

load

across

several

devices

(and

hopefully

several

physical

paths

in

the

system

I/O

configuration).

When

to

use

VSO

Use

VSO

for

your

most

frequently

used

databases

or

those

for

which

fast

access

is

crucial.

It

is

also

good

for

data

you

update

frequently,

even

if

several

applications

want

to

update

the

same

field

at

the

same

time.

These

considerations

also

apply

to

shared

VSO.

IBM

Confidential

Chapter

7.

Choosing

the

Correct

Database

Type

81

When

to

use

MADS

Use

MADS

to

ensure

that

I/O

errors

do

not

affect

a

database.

Normally

two

copies

of

each

area

is

sufficient,

but

you

can

have

up

to

seven

copies

if

you

need

to.

Using

MADS

is

costly

because

you

have

several

copies

of

the

data.

There

is

also

a

cost

at

execution

time

because

IMS

has

to

update

several

copies

of

the

database

simultaneously.

The

transactions

using

the

DEDB

do

not

notice

the

extra

I/O

because

the

output

threads

handle

it

asynchronously.

You

should

use

MADS

only

when

you

can

justify

the

extra

DASD

cost.

When

to

use

HSSP

Use

HSSP

for

only

those

programs

that

conform

to

its

restrictions

because

you

get

better

performance.

Consider

using

the

option

to

let

HSSP

take

an

image

copy

while

it

is

running.

This

will

save

you

time

if

you

would

normally

take

an

image

copy

after

your

program

finishes.

HSSP

knows

not

to

log

updates

for

a

database

it

is

copying.

When

to

use

SDEPs

You

would

typically

use

SDEPs

when

you

want

to

insert

data

quickly,

but

do

not

need

to

read

it

again

until

later.

For

example

you

might

want

to

use

SDEPs

to

hold

audit

records

describing

sensitive

actions

the

user

takes.

You

would

not

use

SDEPs

to

hold

data

for

a

long

time.

IBM

Confidential

82

IMS:

An

Introduction

to

IMS

Chapter

8.

Data

Sharing

An

IMS

system

includes

a

set

of

databases

that

are

potentially

available

to

all

the

declared

application

programs.

Access

to

an

individual

database

is

a

characteristic

defined

in

a

program’s

PSB.

Data

sharing

support

makes

it

possible

for

application

programs

in

separate

IMSs

to

have

concurrent

access

to

the

same

set

of

databases.

To

ensure

that

database

changes

at

the

segment

level

originating

from

one

program

are

fully

committed

before

other

programs

can

access

that

segment’s

data,

IMSs

use

lock

management.

IMS

systems

can

share

data

in

a

sysplex

environment

and

in

a

nonsysplex

environment.

v

Sysplex

data

sharing

is

data

sharing

between

IMS

systems

on

different

operating

systems.

A

coupling

facility

is

used

by

IRLM

to

control

access

to

databases.

Related

Reading

For

more

information

about

IMS

and

running

in

a

sysplex

environment,

see

Chapter

30,

“Introduction

to

Parallel

Sysplex,”

on

page

315.

v

Nonsysplex

data

sharing

is

data

sharing

between

IMS

systems

on

a

single

operating

system

image.

A

coupling

facility

can

be

used,

but

is

not

required.

With

data

sharing,

two

levels

of

control

are

possible:

v

With

database-level

sharing,

an

entire

database

is

locked

while

an

application

program

is

making

updates.

Locking

prevents

concurrent

database

access

and

scheduling

of

application

programs

that

might

jeopardize

database

integrity.

v

With

block-level

sharing,

you

can

use

a

global

block-locking

scheme

to

maintain

database

integrity

during

concurrent

access

of

a

database.

The

blocks

are

locked

instead

of

the

entire

database.

Multiple

application

programs

can

update

a

database

at

the

same

time

if

they

are

updating

different

blocks.

Some

differences

exist

in

support

for

data

sharing

configurations.

Generally,

a

complete

database

is

regarded

as

a

data

resource.

When

invoked

within

an

IMS

online

system,

or

as

a

batch

IMS

system,

the

data

resource

must

be

available

for

an

individual

application

program

to

process.

The

resource

is

not

available

if,

for

example,

a

data

resource

is

used

exclusively

by

one

IMS,

is

flagged

as

needing

recovery,

or

backup

procedures

are

in

process.

For

DEDBs,

the

data

resource

is

further

divided;

each

individual

area

is

considered

a

unit

of

data

resource.

When

this

chapter

refers

to

“database”,

it

is

equivalent

to

a

DEDB

area

unless

otherwise

noted.

Here

are

some

of

the

restrictions

that

apply

to

data

sharing:

v

Batch

IMS

support

excludes

use

of

MSDBs

and

DEDBs.

v

Only

IMS

online

systems

that

use

Fast

Path

can

share

DEDBs.

v

Data

sharing

support

excludes

MSDBs

and

GSAM

databases.

Related

Reading

For

more

information

about

the

concepts

of

IMS

data

sharing,

see

IMS

Version

9:

Administration

Guide:

System.

For

information

about

operating

an

IMS

data

sharing

environment,

see

IMS

Version

9:

Operations

Guide.

The

following

sections

are

covered

in

this

chapter:

v

“DBRC

and

Data

Sharing”

on

page

84

v

“How

Applications

Share

Data”

on

page

84

IBM

Confidential

©

Copyright

IBM

Corp.

2004

83

DBRC

and

Data

Sharing

Concurrent

access

to

databases

by

systems

in

one

or

more

operating

systems

is

controlled

with

a

common

(shared)

Database

Recovery

Control

(DBRC)

RECON

data

set.

IMSs

perform

an

automatic

sign-on

to

DBRC,

and

this

action

ensures

that

DBRC

knows

which

IMSs

and

utilities

are

currently

participating

in

shared

access.

Subsequently,

a

system’s

eligibility

to

be

authorized

for

access

to

a

database

depends

on

the

declared

degree

of

sharing

permitted

and

other

status

indicators

in

the

RECON

data

set.

To

maintain

data

integrity,

status

indicators

in

the

RECON

data

set

control

concurrent

access

and

recovery

actions

for

the

databases.

This

common

RECON

data

set

is

required

in

a

data

sharing

IMSplex

because

a

given

database

must

have

a

DMB

number

that

uniquely

identifies

it

to

all

the

sharing

subsystems.

The

DMB

number

that

DBRC

records

in

its

RECON

data

set

is

related

to

the

order

in

which

databases

are

registered

to

DBRC.

Using

multiple

RECON

data

sets

can

result

in

the

same

DMB

number

existing

in

each

RECON

data

set

for

different

databases.

This

condition

can

result

in

damage

to

databases.

Databases

that

are

to

take

part

in

data

sharing

must

be

registered

in

RECON.

Each

registered

database

has

a

current

status

that

reflects

whether

it

can

take

part

in

sharing

and

the

scope

of

the

sharing.

The

concept

of

scope

combines

several

ideas:

v

The

type

of

access--read

or

update

v

Whether

more

than

one

access

can

occur

within

the

database

simultaneously

v

Whether

an

IMS

needing

access

is

in

the

same

or

a

different

operating

system

Related

Reading

For

more

information

about

DBRC,

see

Chapter

26,

“Database

Recovery

Control

(DBRC),”

on

page

263.

How

Applications

Share

Data

To

understand

data

sharing,

you

must

understand

how

applications

and

IMSs

share

data.

The

processing

options

for

an

application

program

are

declared

in

the

PSB

and

express

the

intent

of

the

program

regarding

data

access

and

alteration.

They

are

specified

with

the

PROCOPT

keyword

as

part

of

the

group

of

statements

that

make

up

the

PCB

for

a

particular

database

access.

The

PCB

declaration

implies

a

processing

intent.

If

the

application

program

is

to

insert,

delete,

replace,

or

perform

a

combination

of

these

actions,

the

application

program

is

said

to

have

update

access.

An

online

program

having

exclusive

access,

specified

as

PROCOPT=E,

is

interpreted

as

having

update

access.

Programs

that

need

access

to

a

database

but

do

not

update

the

data

can

do

so

in

two

ways.

They

can

access

the

data

with

the

assurance

that

any

pending

changes

have

been

committed

by

the

program

that

instigated

the

change;

this

is

termed

read

access

(PROCOPT=G).

Alternatively,

they

can

read

uncommitted

data,

if

the

program

does

not

specify

protection

of

data

status.

This

is

termed

read-only

access

(PROCOPT=GO).

Related

Reading

For

more

information

about

PROCOPT

values,

see

IMS

Version

9:

Utilities

Reference:

System.

IBM

Confidential

84

IMS:

An

Introduction

to

IMS

Chapter

9.

The

Database

Reorganization

Process

In

this

chapter,

we

provide

an

overview

of

the

database

reorganization

tasks

that

will

need

to

be

performed

by

the

IMS

database

administrator

function.

We

start

with

general

background

information

regarding

IMS

database

reorganization,

then

look

in

more

detail

at

reorganizing

HD

databases.

As

of

IMS

Version

9,

you

can

reorganize

HALDB

databases

without

taking

them

offline.

For

more

information,

see

“Online

Reorganization”

on

page

97.

Specifically,

this

chapter:

v

Introduces

the

function

of

database

reorganization

in

an

IMS

environment.

It

is

a

first-time

general

introduction

into

the

requirements

for,

and

the

process

of,

IMS

database

reorganization.

v

Gives

a

formal

description

of

the

available

IMS

utilities

for

reorganizing

HD

databases.

v

Introduces

the

use

of

the

utilities

for

particular

situations.

It

describes

what

needs

to

be

run

to

reorganize

an

HD

database

with

and

without

logical

relationships

or

secondary

indexes.

It

also

looks

at

partial

reorganization

of

HD

databases.

v

Finally,

there

is

a

short

discussion

on

initial

loading

of

databases

with

logical

relationships

and

secondary

indexes,

because

this

also

requires

the

reorganization

utilities

to

build

the

logical

relationships

and

secondary

indexes

The

following

sections

are

covered

in

this

chapter:

v

“Purpose

of

Reorganization”

v

“When

to

Reorganize”

on

page

86

v

“Overview

of

the

Reorganization

Process”

on

page

88

v

“Reorganization

Utilities”

on

page

99

Purpose

of

Reorganization

Reorganization

is

the

process

of

changing

the

physical

storage

and/or

structure

of

a

database

to

better

achieve

the

application’s

performance

requirements.

We

distinguish

between

the

following

two

types:

physical

reorganization,

to

optimize

the

physical

storage

of

the

database;

and

restructuring,

to

alter

the

database

structure.

The

most

common

reasons

a

database

will

need

reorganizing

are:

v

To

reclaim

and

consolidate

free

space

that

has

become

fragmented

due

to

repeated

insertion

and

deletion

of

segments

v

To

optimize

the

physical

storage

of

the

database

segments

for

maximum

performance

(get

dependent

segments

that

are

in

distant

blocks,

increasing

physical

I/O,

back

in

the

same

block

as

the

parent

and/or

root).

This

situation

is

normally

the

result

of

high

update

activity

on

the

database

v

To

alter

the

structure

of

the

database,

change

the

size

of

the

database

data

sets,

alter

the

HDAM

root

addressable

area,

add

or

delete

segment

types

The

first

two

reasons

would

be

described

as

reorganization,

the

last

one

as

restructuring.

The

need

for

reorganization

is

always

due

to

change,

either

setting

up

a

new

database,

amending

the

structure

of

the

database

as

application

requirements

change,

or

as

a

result

of

update

activity

against

the

database.

If

you

do

not

update

a

database,

then

once

you

have

gotten

it

to

an

optimum

state

for

performance,

there

is

no

further

need

to

reorganize

it.

IBM

Confidential

©

Copyright

IBM

Corp.

2004

85

Reorganizing

and

restructuring

the

databases

is

only

part

of

the

process

of

tuning

and

monitoring

access

to

IMS

databases.

There

are

also

many

things

that

can

be

done

to

tune

the

database

manager

component

in

the

IMS

subsystem

and

the

applications

accessing

of

the

databases.

This

is

covered

in

detail

in

chapters

11

and

12

of

the

ITSO

publication

IMS

Version

5

Performance

Guide.

When

to

Reorganize

There

are

no

fixed

rules

about

when

to

reorganize.

There

are

two

approaches

to

deciding

when

to

reorganize,

reactive

and

proactive.

You

will

probably

do

a

mixture

of

both.

When

you

initially

install

the

application

and

set

up

the

databases,

a

lot

of

the

reorganization

will

be

done

reactively,

as

performance

and

space

problems

manifest

themselves

(while

you

can

reduce

this

by

careful

analysis

of

the

databases

and

application

access

to

them,

there

will

normally

be

things

that

only

come

to

light

after

implementation).

As

you

develop

a

history

of

the

behavior

of

the

application

and

the

databases,

the

scheduling

of

reorganization

should

become

more

proactive.

Reactive

scheduling

of

reorganization

will

normally

be

a

result

of

perceived

problems

with

the

performance

of

the

application,

or

problems

with

shortage

of

freespace

in

the

database.

Where

there

are

perceived

application

performance

problems,

you

need

to

monitor

closely

what

the

application

is

doing.

The

initial

thing

to

look

at

is,

what

the

average

and

maximum

online

response

times

and

batch

run

times

are.

Are

they

excessive

for

the

amount

of

work

the

application

is

doing?

The

ITSO

publication

IMS

Version

5

Performance

Guide,

SG24-4637

covers

in

great

detail

monitoring

and

investigating

performance

of

IMS

application

and

subsystems.

If

there

are

performance

problems,

then

go

through

the

process

described

in

the

document

to

monitor

the

performance

and

identify

where

the

problems

are.

Only

once

you

have

gone

through

the

procedures

detailed

in

this

document

and

identified

potential

problems

with

the

databases

should

you

start

to

look

at

reorganizing

the

database.

Do

not

look

only

at

the

total

time

that

the

application

program

takes

for

database

processing,

but

also

look

at

the

amount

of

database

calls

it

is

processing.

For

example,

if

an

online

application

is

taking

10

seconds

for

database

processing,

but

is

reading

3-4000

database

segments,

then

there

may

be

little

room

for

database

tuning.

However,

you

may

want

to

look

more

closely

at

why

(and

whether)

the

application

really

needs

to

read

all

these

segments.

The

solution

to

performance

problems

is

normally

an

interactive

process

involving

the

database

administrator,

application

support

function,

and

the

operating

system

support

function,

as

all

three

control

areas

that

affect

performance.

When

you

encounter

problems

due

to

shortage

of

space

in

database

data

sets,

there

is

little

you

can

do

but

schedule

a

database

reorganization

to

increase

the

database

size.

However,

you

should

then

pursue

the

growth

rate

with

the

application

support

function

(this

is

where

it

is

useful

to

have

a

history

of

the

volume

of

the

application

data

stored

in

the

database

over

time).

Questions

to

ask

are

whether

growth

will

continue

at

the

current

rate,

or

at

a

different

rate,

and

whether

this

data

all

needs

to

be

online.

Remember

there

are

finite

architectural

limits

to

the

size

of

the

databases

which

vary

depending

on

the

IMS

and

operating

system

access

methods.

The

proactive

approach

to

scheduling

database

reorganization

relies

on

regular

monitoring

of

the

databases.

Some

products

for

monitoring

the

databases

are

covered

in

more

detail

in

“Monitoring

the

Database”

on

page

88.

In

addition,

you

should

maintain

a

history

of

the

monitoring

information

you

collect,

so

you

can

IBM

Confidential

86

IMS:

An

Introduction

to

IMS

analyze

this

for

trends

and

schedule

database

reorganization

and

restructuring

before

any

problems

occur.

When

you

decide

to

make

a

change

to

a

database,

only

change

one

thing

at

a

time,

if

possible,

and

then

monitor

application

performance

before

and

after

the

change

so

you

can

see

what

effect

this

one

change

had.

The

main

things

you

will

be

doing

when

you

look

at

the

monitoring

data

will

be

to

try

to

minimize

the

physical

I/O

for

each

database

access,

and

optimize

the

free

space

available

in

the

database

so

it

is

not

excessive,

but

sufficient

for

normal

update

access

on

the

databases.

The

physical

I/O

from

the

disk

storage

into

the

buffers

in

the

IMS

subsystem

is

the

major

component

of

the

elapsed

time

for

database

access.

You

will

want

to

minimize

this

by:

v

Making

the

best

use

of

buffers

in

the

IMS

subsystem;

the

more

requests

for

database

access

you

satisfy

from

the

buffers,

the

fewer

physical

I/Os

are

necessary.

This

is

covered

in

the

IMS

Version

5

Performance

Guide,

SG24-4637

v

Minimizing

the

number

of

physical

I/Os

when

a

segment

does

have

to

be

retrieved

from

disk.

For

example,

trying

to

place

as

many

dependents

as

possible

in

the

same

block/CI

as

its

parent,

ensuring

HDAM

root

segments

are

in

the

same

block/CI

as

the

RAP.

This

is

where

database

reorganization

and

restructuring

is

used

While

there

are

no

fixed

guidelines

for

when

to

reorganize

an

IMS

database,

the

following

guidelines

were

used

successfully

with

a

medium-sized

commercial

application

using

IMS

HD

databases

stored

in

VSAM

files.

You

may

wish

to

use

them

as

a

starting

point

for

scheduling

database

reorganization

and,

when

you

have

monitored

the

effects

of

the

reorganization,

adjust

these

parameters

accordingly.

HD

databases

(HDAM

and

HIDAM)

in

general

v

Less

than

50%

of

database

records

have

all

segments

making

up

the

record

(root

and

dependents)

in

the

same

block/CI

v

Limit

your

freespace

to

less

than

20%.

You

way

want

to

increase

this

limit

if

you

have

volatile

data

or

infrequent

windows

for

reorganization

HDAM

databases

only

v

Put

less

than

75%

of

root

segments

in

the

root

addressable

area

(RAA).

Recalculate

the

RAA

(as

described

in

Chapter

6,

“Implementing

the

IMS

Database

Model,”

on

page

51).

Reorganize

the

database

if

calculation

of

RAA

showed

it

needed

to

be

larger,

then

restructure

at

same

time.

v

Less

than

50%

of

root

anchor

points

(RAPs)

point

to

root

segments

in

the

same

block/CI.

That

is,

the

RAP

points

to

a

root

that

has

been

placed

in

another

block/CI

because

there

is

not

room

in

this

block/CI.

This

causes

two

I/Os,

one

to

the

RAP

block,

and

one

to

the

block

that

the

root

is

in,

instead

of

one

I/O.

VSAM

or

OSAM

file

Put

the

file

in

secondary

extents.

You

may

wish

to

resize

the

file,

if

this

is

caused

by

growth.

VSAM

KSDS

v

When

your

VSAM

KSDS

(index)

has

CA

splits

or

more

than

15

CI

splits.

v

When

your

VSAM

KSDS

(index)

has

less

than

20%

free

space

(as

IMS

manages

freespace

in

VSAM

ESDS,

this

only

applies

to

a

KSDS)

For

DEDB

databases,

reorganize

when

there

are

lots

of

database

segments

in

the

independent

overflow

(IOVF)

portion

of

the

DEDB

area.

IBM

Confidential

Chapter

9.

The

Database

Reorganization

Process

87

|
|

Monitoring

the

Database

Monitor

your

databases

in

order

to

determine

when

they

might

need

reorganizing.

The

database

monitoring

divides

in

to

two

categories.

Monitoring

program

and

subsystem

access

to

the

databases,

and

monitoring

the

structure,

space

usage

and

pointer

chains

in

the

actual

database

data

sets.

The

principle

tools

provided

by

IMS

that

are

used

to

monitor

database

access

are:

v

The

IMS

monitor,

to

gather

details

of

buffer

usage

and

database

calls

over

a

specified

time

period

in

an

IMS

subsystem.

v

The

//DFSSTAT

DD

statement,

used

in

batch

JCL

to

provide

a

summary

of

buffer

usage

and

database

calls.

As

there

is

very

little

overhead

in

including

this

statement

(the

details

printed

to

the

DD

at

region

termination

are

accumulated

by

the

IMS

region

controller

whether

they

are

output

or

not),

it

is

normally

worthwhile

putting

this

in

all

batch

jobs.

v

Running

the

DB

monitor

on

a

batch

job,

to

collect

similar

details

to

the

IMS

monitor

in

an

online

system.

As

there

is

an

overhead

on

running

this,

it

would

normally

only

be

turned

on

when

specific

problems

are

being

investigated

Related

Reading:

There

are

a

number

of

products

available

to

let

you

monitor

the

databases

and

the

data

sets

in

which

they

are

stored.

For

more

information

about

these

products,

click

on

the

“IMS

Tools”

link

on

the

IMS

Web

site

at

www.ibm.com/ims.

For

information

about

monitoring

program

access

to

the

database,

see

IMS

Performance

Guide.

Overview

of

the

Reorganization

Process

The

database

reorganization

process

can

vary

from

very

simple

to

very

complex,

depending

on

the

databases

involved.

If

the

databases

involved

do

not

have

IMS

logical

relationships

or

secondary

indexes,

then

the

process

is

very

simple.

When

logical

relationships

and

secondary

indexes

are

involved

the

process

becomes

more

involved.

There

are

three

types

of

reorganization:

v

“Offline

Reorganization”

v

“Online

Reorganization”

on

page

97

v

“Fast

Path

Reorganization”

on

page

97

Offline

Reorganization

The

offline

process,

in

its

simplest

form,

is

to

unload

the

database,

delete

and

redefine

the

physical

data

set,

and

then

reload

it.

If

the

database

is

not

involved

in

any

logical

relationships

and

does

not

have

any

secondary

indexes,

then

that

is

the

complete

process.

Database

reorganization

of

HD

databases

would

normally

take

the

following

steps

if

both

logical

relationships

and

secondary

indexes

are

involved:

1.

Back

up

the

databases

(both

the

data

and,

if

you

are

changing

them,

the

appropriate

control

blocks,

for

example,

DBDSs)

so

you

have

a

fallback

point

if

there

are

any

problems

during

the

reorganization.

See

Chapter

10,

“The

Database

Recovery

Process,”

on

page

101

for

more

information.

2.

Unload

the

existing

database

data

sets

to

sequential

files

using

the

IMS

utilities.

The

process

in

discussed

in

“Database

Unload

Process”

on

page

89.

3.

Delete

the

database

data

sets.

If

you

are

making

any

changes

to

the

definitions

of

the

database

data

sets,

make

them

now,

remembering

to

save

the

old

definitions

as

a

fallback.

IBM

Confidential

88

IMS:

An

Introduction

to

IMS

4.

Redefine

the

database

data

sets.

5.

This

step

is

only

necessary

if

you

are

making

any

changes

to

the

database

structure

by

altering

the

DBD.

Make

the

changes

to

the

DBD

and

reassemble

it

by

running

the

DBDGEN

utility.

Then

run

the

ACBGEN

utility

with

DBD=

parameter

to

ensure

all

appropriate

control

blocks

are

regenerated.

It

cannot

be

overemphasized

that

you

must

make

sure

all

programs/utilities

use

the

new

versions

of

the

control

blocks

if

you

change

the

DBD;

otherwise,

database

corruption

will

result.

6.

Run

the

IMS

utilities

to

reload

the

database.

If

you

have

altered

the

DBD,

the

utility,

and

any

subsequent

programs/utilities,

should

use

the

new

DBD.

7.

If

the

database

has

secondary

indexes,

or

participates

in

logical

relationships,

then

you

will

need

to

run

additional

utilities

to

rebuild

these

connections.

These

connections

(unless

using

symbolic

pointers)

rely

on

the

database

segments

relative

position

in

the

database,

which

has

been

altered

by

the

reorganization.

The

utilities

will

determine

the

new

positions

and

amend

the

direct

pointers

in

the

indexes

and

logically

related

databases.

8.

If

your

databases

are

registered

with

DBRC

(and

they

should

be

registered),

then

you

will

need

to

take

an

image

copy

of

the

reorganized

databases.

This

is

for

the

same

reason

as

above.

IMS

database

forward

recovery,

using

changes

recorded

in

IMS

logs,

relies

on

the

position

of

the

segments

relative

to

the

start

of

the

data

set,

which

is

altered

by

the

reorganization.

You

need

to

take

the

image

copies

to

establish

a

new

base

from

which

the

databases

can

be

rolled

forward.

Database

Unload

Process

The

unload

processing

for

HD

databases

is

very

simple.

The

HD

unload

utility

will

unload

the

main

database

and

the

primary

index

data

set

if

the

database

is

HIDAM.

The

output

of

the

utility

is

a

sequential

data

set

which

is

input

to

the

HD

reload

utility.

If

the

database

is

a

HIDAM

database,

then

the

primary

index

database

must

also

be

present.

The

utility

can

only

unload

a

single

database

at

a

time.

If

there

are

logically

related

databases

which

are

to

be

reorganized

at

the

same

time

then

the

step

should

be

executed

once

for

each

database.

Figure

23

shows

a

diagram

of

the

utility.

Figure

23.

Database

Unload

Processing

IBM

Confidential

Chapter

9.

The

Database

Reorganization

Process

89

There

are

some

considerations

to

be

kept

in

mind

when

planning

for

the

unload

process:

v

IBM

highly

recommends

that

you

make

an

image

copy

of

the

database

before

attempting

to

reorganize

it.

v

The

database

is

allocated

by

the

DD

name(s)

in

the

DBD.

Dynamic

allocation

cannot

be

used;

the

database

DD

card(s)

must

be

present.

v

If

a

HIDAM

database

is

being

unloaded,

the

primary

index

database

DD

statement

must

also

be

present.

v

The

utility

will

check

with

DBRC

for

database

registration.

If

the

database

is

registered,

then

the

utility

will

request

RD

access

authorization.

It

will

be

allowed

to

authorize

the

database

even

if

the

PROHIBIT

AUTH

flag

is

set

on.

v

If

the

database

is

being

reorganized

to

change

the

structure

of

the

database,

then

the

old

DBD

definition

should

be

used.

v

Regardless

of

how

many

database

data

set

groups

the

database

is

divided

into,

there

is

only

one

output

data

set.

v

The

reload

utility

can

only

unload

one

database

per

job

step.

To

unload

multiple

databases,

you

must

use

multiple

job

steps.

Defining

Databases

If

the

access

method

used

for

the

database

is

VSAM,

then

an

IDCAMS

job

step

is

required

to

delete

and

redefine

the

VSAM

cluster.

The

reload

utility

will

fail

if

the

data

sets

are

not

empty.

If

OSAM

is

used,

the

a

DISP=OLD

can

be

used

to

overwrite

the

data

set.

However,

if

the

database

is

on

more

than

a

single

DASD

volume,

IBM

highly

recommends

that

you

delete

the

data

set

and

redefine

it

(IEFBR14)

to

ensure

that

the

correct

end-of-file

marker

is

placed.

Database

Reload

Process

The

reload

processing

can

be

more

complex

then

the

unload

processing.

If

the

database

is

does

not

have

any

secondary

indexes

and

is

not

involved

in

a

logical

relationship,

then

the

database

can

simply

be

reloaded.

The

reloading

of

the

database

itself

is

the

same.

However,

there

are

additional

utility

programs

that

need

to

be

run

before

and

after

the

database

is

reorganized

to

rebuild

logical

relationships

and

secondary

indexes

so

they

reflect

the

new

physical

positions

of

the

segments

in

the

reorganized

database.

Until

all

this

processing

is

complete,

the

logical

relationships

and

secondary

indexes

are

not

usable.

If

you

attempt

to

use

them

before

completing

this

process,

the

applications

will

fail

with

IMS

abend

codes

indicating

that

there

are

invalid

IMS

pointers.

The

following

sections

discuss

each

combination

of

reload

processing

required.

They

are:

v

“Reload

Only”

v

“Reload

With

Secondary

Indexes”

on

page

91

v

“Reload

With

Logical

Relationships”

on

page

93

v

“Reload

With

Logical

Relationships

and

Secondary

indexes”

on

page

94

Reload

Only:

The

reload

processing

for

a

HD

database

without

any

logical

relationships

or

secondary

indexes

is

shown

in

Figure

24

on

page

91.

IBM

Confidential

90

IMS:

An

Introduction

to

IMS

There

are

some

considerations

to

be

kept

in

mind:

v

The

database

is

allocated

by

the

DD

name(s)

in

the

DBD.

Dynamic

allocation

cannot

be

used;

the

database

DD

statement(s)

must

be

present.

v

If

a

HIDAM

database

is

being

reloaded,

the

primary

index

database

DD

card

must

also

be

present.

v

The

utility

will

check

with

DBRC

for

database

registration.

If

the

database

is

registered,

then

the

utility

will

request

EX

access

authorization.

It

will

be

allowed

to

authorize

the

database

even

if

the

PROHIBIT

AUTH

flag

is

set

on.

v

If

the

database

is

being

reorganized

to

change

the

structure

of

the

database,

then

the

new

DBD

definition

should

be

used.

v

Regardless

of

how

many

database

data

set

groups

the

database

is

divided

into,

there

is

only

one

input

data

set.

v

The

reload

utility

can

only

reload

one

database

per

job

step.

To

reload

multiple

databases

you

must

use

multiple

job

steps.

v

The

DFSURWF1

DD

statement

can

be

specified

as

DUMMY.

Reload

With

Secondary

Indexes:

The

reload

processing

for

an

HD

database

but

with

secondary

indexes

requires

the

use

of

the

prereorganization

utility.

It

is

used

to

define

which

databases

are

involved

in

the

secondary

index

relationship.

A

control

file

is

created

with

this

information

and

passed

to

the

subsequent

utilities.

The

HISAM

unload

utility

will

read

the

DFSURIDX

data

set

which

contains

the

unload

secondary

index

segments

and

creates

load

files

for

each

secondary

index.

The

secondary

index

database

themselves

can

be

empty.

The

HISAM

reload

utility

can

reload

all

the

secondary

index

database

unloaded

by

the

HISAM

unload

utility

in

one

JOB

step.

Figure

25

on

page

92

illustrates

the

reload

process

when

secondary

indexes

are

involved.

Figure

24.

Overview

of

Database

Reload

Only

Process

IBM

Confidential

Chapter

9.

The

Database

Reorganization

Process

91

There

are

some

considerations

to

be

kept

in

mind:

v

The

database

is

allocated

by

the

DD

name(s)

in

the

DBD.

Dynamic

allocation

cannot

be

used,

the

database

DD

statement(s)

must

be

present.

v

If

a

HIDAM

database

is

being

reloaded,

the

primary

index

database

DD

card

must

also

be

present.

v

The

utility

will

check

with

DBRC

for

database

registration.

If

the

database

is

registered,

then

the

utility

will

request

EX

access

authorization.

It

will

be

allowed

to

authorize

the

database

even

if

the

PROHIBIT

AUTH

flag

is

set

on.

Figure

25.

Overview

of

Reload

Processing

With

Secondary

indexes

IBM

Confidential

92

IMS:

An

Introduction

to

IMS

v

If

the

database

is

being

reorganized

to

change

the

structure

of

the

database,

then

the

new

DBD

definition

should

be

used.

v

Regardless

of

how

many

database

data

set

groups

the

database

is

divided

into,

there

is

only

one

input

data

set.

v

The

reload

utility

can

only

reload

one

database

per

job

step.

To

reload

multiple

databases,

you

must

use

multiple

job

steps.

v

The

DFSURWF1

DD

statement

can

be

specified

as

DUMMY,

but

it

must

be

present.

Reload

With

Logical

Relationships:

The

reload

processing

for

a

HD

database

but

with

logical

relationships

requires

the

use

of

the

prereorganization

utility.

It

is

used

to

define

which

databases

are

involved

in

the

logical

relationship.

A

control

file

is

created

with

this

information

and

passed

to

the

subsequent

utilities.

If

all

the

databases

logically

related

to

each

other

are

being

reloaded

then

the

DBIL

option

on

the

control

card

should

be

used.

These

will

reset

all

the

pointers

and

logical

parent

counters.

If

not

then

the

DBR

option

should

be

used.

All

databases

involved

in

the

logical

relationships

should

normally

be

reloaded.

The

DFSURWF1

work

files

from

all

steps

should

be

passed

to

the

prefix

update

utility

as

illustrated

in

Figure

26

on

page

94.

The

HISAM

unload

utility

will

read

the

DFSURIDX

data

set,

which

contains

the

unload

secondary

index

segments

and

creates

load

files

for

each

secondary

index.

The

secondary

index

database

themselves

can

be

empty.

The

prefix

resolution

utility

will

extract

the

RBAs

from

the

required

segments

and

sort

them.

This

file

will

be

passed

the

prefix

update

utility

to

update

the

database

segment

prefixes.

IBM

Confidential

Chapter

9.

The

Database

Reorganization

Process

93

There

are

some

considerations

to

be

kept

in

mind:

v

The

database

is

allocated

by

the

DD

name(s)

in

the

DBD.

Dynamic

allocation

cannot

be

used,

the

database

DD

statement(s)

must

be

present.

v

If

a

HIDAM

database

is

being

reloaded,

the

primary

index

database

DD

card

must

also

be

present.

v

The

utility

will

check

with

DBRC

for

database

registration.

If

the

database

is

registered

then

the

utility

will

request

EX

access

authorization.

It

will

be

allowed

to

authorize

the

database

even

if

the

PROHIBIT

AUTH

flag

is

set

on.

v

If

the

database

is

being

reorganized

to

change

the

structure

of

the

database,

then

the

new

DBD

definition

should

be

used.

v

The

reload

utility

can

only

reload

one

database

per

job

step.

To

reload

multiple

databases,

you

must

use

multiple

job

steps.

v

The

DFSURWF1

DD

statement

must

be

present.

v

The

prefix

update

utility

will

acquire

EX

access

to

the

databases

being

updated.

v

The

IMAGE

COPY

NEEDED

flag

will

be

set

on

by

the

reload

utility.

Reload

With

Logical

Relationships

and

Secondary

indexes:

The

reload

processing

for

both

secondary

indexes

and

logical

relationships

is

a

combination

of

Figure

26.

Overview

of

Database

Reload

Process

When

Logical

Relationships

Exist

IBM

Confidential

94

IMS:

An

Introduction

to

IMS

both

the

individual

reload

processes

described

in

“Reload

Only”

on

page

90,

“Reload

With

Secondary

Indexes”

on

page

91,

and

“Reload

With

Logical

Relationships”

on

page

93.

The

reload

processing

for

a

HD

database

but

with

secondary

indexes

and

logical

relationships

requires

the

use

of

the

prereorganization

utility.

It

is

used

to

define

which

databases

are

involved

in

the

relationships.

A

control

file

is

created

with

this

information

and

passed

to

the

subsequent

utilities.

The

prefix

resolution

utility

will

extract

the

RBAs

from

the

required

segments

and

sort

them.

This

file

will

be

passed

the

prefix

update

utility

to

update

the

database

segment

prefixes.

It

will

also

create

a

file

with

the

secondary

index

information

to

be

passed

the

HISAM

unload

utility.

The

HISAM

unload

utility

will

read

the

DFSURIDX

data

set

which

contains

the

unload

secondary

index

segments

and

creates

load

files

for

each

secondary

index.

The

secondary

index

database

themselves

can

be

empty.

The

HISAM

reload

utility

can

reload

all

the

secondary

index

database

unloaded

by

the

HISAM

unload

utility

in

one

JOB

step.

Figure

27

on

page

96

illustrates

the

reload

process.

IBM

Confidential

Chapter

9.

The

Database

Reorganization

Process

95

There

are

some

considerations

to

be

kept

in

mind:

Figure

27.

Overview

of

the

Database

Reload

Process

When

Secondary

Indexes

and

Logical

Relationships

Exist

IBM

Confidential

96

IMS:

An

Introduction

to

IMS

v

The

database

is

allocated

by

the

DD

name(s)

in

the

DBD.

Dynamic

allocation

cannot

be

used,

the

database

DD

statement(s)

must

be

present.

v

If

a

HIDAM

database

is

being

reloaded,

the

primary

index

database

DD

card

must

also

be

present.

v

The

utility

will

check

with

DBRC

for

database

registration.

If

the

database

is

registered

then

the

utility

will

request

EX

access

authorization.

It

will

be

allowed

to

authorize

the

database

even

if

the

PROHIBIT

AUTH

flag

is

set

on.

v

If

the

database

is

being

reorganized

to

change

the

structure

of

the

database,

then

the

new

DBD

definition

should

be

used

v

The

reload

utility

can

only

reload

one

database

per

job

step.

To

reload

multiple

databases

you

must

use

multiple

job

steps.

v

The

DFSURWF1

DD

statement

must

be

present.

v

The

prefix

update

utility

will

acquire

EX

access

to

the

databases

being

updated.

v

The

IMAGE

COPY

NEEDED

flag

will

be

set

on

by

the

reload

utility.

Fast

Path

Reorganization

The

process

for

reorganizing

a

Fast

Path

DEDB

can

be

appreciably

different.

If

you

are

only

reorganizing

to

reclaim

fragmented

free

space

and/or

get

the

best

placement

of

the

segments

for

performance

(that

is,

DBD/data

set

definitions

not

being

changed),

then

you

can

run

the

high

speed

DEDB

direct

reorganization

utility

DBFUHDR0.

This

can

be

run

without

making

the

database

unavailable

(that

is,

no

service

outage).

See

IMS

Version

9:

Utilities

Reference:

Database

and

Transaction

Manager

for

further

details.

If

you

are

reorganizing

a

DEDB

to

alter

the

structure,

then

you

need

to

have

your

own

user-written

programs

to

unload

and

reload

the

database

data

set

at

the

appropriate

points,

or

use

the

DEDB

unload/reload

utility

programs

from

the

separately

priced

IMS

Database

Tools

(DBT)

V2,

5685-093.

You

also

need

to

run

the

DEDB

initialization

utility,

provided

with

the

IMS

base

product,

immediately

prior

to

reloading

the

database.

However,

as

the

DEDB

does

not

support

secondary

indexes

and

logical

relationships,

you

do

not

have

to

worry

about

running

further

utilities

after

the

database

is

reloaded.

More

information

about

the

database

reorganization

process,

and

what

steps

you

have

to

take

to

alter

specific

attributes

of

the

structure

of

the

database

are

in

the

chapter

on

monitoring

and

tuning

the

databases

in

IMS

Version

9:

Administration

Guide:

Database

Manager.

Online

Reorganization

With

offline

reorganization,

the

database

is

unavailable

during

the

reorganization

process.

With

online

reorganization,

which

is

available

only

for

HALDB

databases,

most

of

the

database

remains

available

for

updates

during

the

reorganization

process.

The

HALDB

Online

Reorganization

function

provides

non-disruptive

reorganization

of

HALDB

PHDAM

and

PHIDAM

partitions.

Online

Reorganization

reduces

the

planned

data

outage

time,

which

is

the

largest

amount

of

time

that

data

is

generally

unavailable.

The

online

reorganization

of

a

HALDB

PHDAM

or

PHIDAM

partition,

upon

command

initiation,

will

run

in

the

DLISAS

address

space.

The

dual

data

set,

IBM

Confidential

Chapter

9.

The

Database

Reorganization

Process

97

cursor-based,

reorganization

function

is

performed

non-disruptively.

That

is,

concurrent

IMS

updates

are

allowed

while

small

amounts

of

data

are

moved

and

reorganized.

Online

reorganization

has

extended

the

data

definition

and

data

set

naming

convention

established

for

HALDB.

Multiple

data

set

groups

in

a

HALDB

database

use

the

characters

A-through-J

in

the

DDNAMEs

and

data

set

names

of

the

supported

ten

data

set

groups,

and

the

primary

index

for

a

PHIDAM

database

uses

the

character

X

in

these

names.

This

has

been

expanded

by

implementing

the

characters

M-through-V

and

Y

for

an

alternate

(or

paired)

set

of

data

sets.

Before

online

reorganization

starts,

there

is

a

single

active

set

of

data

sets

for

the

HALDB

partition:

either

the

A-through-J

and

X

set,

or

the

M-through-V

and

Y

set.

The

data

sets

in

the

other

(inactive)

set

contain

no

useful

information

and

one

or

more

of

these

data

sets

need

not

even

exist

before

the

reorganization

is

started.

Ownership

of

the

online

reorganization

is

established

during

initialization

and

is

recorded

in

the

partition

database

record

in

the

RECON

data

set.

After

ownership

of

an

online

reorganization

is

established,

no

other

IMS

subsystems

are

allowed

to

obtain

ownership.

Ownership

can

be

released

by

this

IMS

prior

to

the

end

of

initialization

or

prior

to

the

completion

of

the

online

reorganization;

then

another

IMS

can

obtain

ownership

and

finish

the

online

reorganization.

When

the

entire

initialization

process

(including

the

validation

or

possible

automatic

creation

of

the

output

data

sets)

is

complete,

the

active

set

of

data

sets

is

treated

as

the

input

set,

and

the

inactive

set

becomes

the

output

set.

At

the

end

of

this

initialization

process,

the

online

reorganization

of

the

HALDB

partition

is

recorded

in

the

RECON

data

set

with

line

(ONLINE

REORG

ACTIVE=YES)

that

shows

a

cursor-active

status.

When

the

cursor-active

status

is

recorded,

and

until

this

reorganization

completes

or

until

a

batch

reorganization

reload

is

done,

the

HALDB

partition

is

comprised

of

both

the

A-through-J

and

X

set

of

data

sets

and

the

M-through-V

and

Y

set

of

data

sets.

During

this

time,

the

HALDB

partition

cannot

be

accessed

unless

both

sets

of

data

sets

are

physically

available.

Database

records

are

then

copied

from

the

input

to

the

output

data

sets

in

multiple

units

of

reorganization.

During

the

reorganization,

IMS

application

programs

can

make

database

changes

to

the

parts

of

the

input

data

sets

that

have

not

yet

been

copied

to

the

output

data

sets

and

to

parts

of

the

output

data

sets

to

which

data

have

already

been

copied.

Figure

28

on

page

99

illustrates

the

conceptual

relationship

between

the

database

records

in

the

input

and

output

data

sets

at

a

point

during

the

reorganization.

IBM

Confidential

98

IMS:

An

Introduction

to

IMS

Related

Reading:

For

complete

information

about

HALDB

Online

Reorganization,

see

the

IMS

Version

9:

HALDB

Online

Reorganization

Guide

and

Reference.

Reorganization

Utilities

The

IMS

utilities

available

for

database

reorganization

are

described

in

IMS

Version

9:

Administration

Guide:

Database

Manager

and

IMS

Version

9:

Utilities

Reference:

Database

and

Transaction

Manager.

The

following

sections

briefly

describe

these

utilities.

The

reorganization

utilities

can

be

classified

into

three

groups,

based

on

the

type

of

reorganization

you

plan

to

perform:

v

“Partial

Reorganization”

v

“Reorganization

Using

the

Utility

Control

Facility”

on

page

100

v

“Reorganization

Without

the

Utility

Control

Facility”

on

page

100

Partial

Reorganization

If

you

are

reorganizing

an

HD

database,

you

can

reorganize

parts

of

it

rather

than

the

whole

database.

You

would

need

to

reorganize

parts,

rather

than

all

of

it,

for

two

reasons:

v

Only

parts

of

it

need

to

be

reorganized.

v

By

reorganizing

only

parts

of

it,

you

can

break

the

amount

of

time

it

takes

to

do

a

total

reorganization

into

smaller

pieces.

The

utilities

that

perform

a

partial

reorganization

are:

v

The

Database

Surveyor

utility,

which

helps

you

determine

which

parts

of

your

database

to

reorganize.

v

The

Partial

Database

Reorganization

utility,

which

does

the

actual

reorganization.

Note:

The

Partial

Reorganization,

Prefix

Resolution

and

Prefix

Update

utilities

do

not

apply

to

HALDBs.

Figure

28.

Relationship

Between

DB

Records

in

the

Input

and

Output

Data

Sets

at

a

Point

During

Reorganization

IBM

Confidential

Chapter

9.

The

Database

Reorganization

Process

99

|
|

Reorganization

Using

the

Utility

Control

Facility

Reorganization

can

be

done

using

a

single

program,

called

the

Utility

Control

Facility

(UCF),

or

by

using

various

combinations

of

utilities.

When

UCF

is

used,

it

acts

as

a

controller,

determining

which

of

the

various

reorganization

utilities

needs

to

be

run

and

then

running

them.

UCF:

v

Reduces

the

number

of

JCL

statements

you

must

create.

v

Eliminates

the

need

to

sequence

the

running

of

the

various

utilities.

v

Allows

you

to

stop

and

then

later

restart

a

job.

v

Reduces

the

number

of

decisions

operations

people

must

make.

Note:

The

only

reorganization

utilities

that

cannot

be

run

under

the

control

of

UCF

are

the

Database

Surveyor

utility

and

the

Partial

Database

Reorganization

utility.

Also,

UCF

does

not

support

HALDBs.

Reorganization

Without

the

Utility

Control

Facility

When

you

do

not

use

UCF,

reorganization

of

the

database

is

done

using

a

combination

of

utilities.

Which

utilities

you

need

to

use,

and

how

many,

depends

on

the

type

of

database

and

whether

it

uses

logical

relationships

or

secondary

indexes.

If

your

database

does

not

use

logical

relationships

or

secondary

indexes,

you

simply

run

the

appropriate

unload

and

reload

utilities,

which

are

as

follows:

v

For

HISAM

databases,

the

HISAM

Reorganization

Unload

utility

and

the

HISAM

Reorganization

Reload

utility

v

For

HIDAM

index

databases

(if

reorganized

separately

from

the

HIDAM

database),

the

HISAM

Reorganization

Unload

utility

and

the

HISAM

Reorganization

Reload

utility

v

For

SHISAM,

HDAM,

and

HIDAM

databases,

the

HD

Reorganization

Unload

utility

and

the

HD

Reorganization

Reload

utility

If

your

database

does

use

logical

relationships

or

secondary

indexes,

you

need

to

run

the

HD

Reorganization

Unload

and

Reload

utilities

(even

if

it

is

a

HISAM

database).

In

addition,

you

must

run

a

variety

of

other

utilities

to

collect,

sort,

and

restore

pointer

information

from

a

segment’s

prefix.

Remember,

when

a

database

is

reorganized,

the

location

of

segments

changes.

If

logical

relationships

or

secondary

indexes

are

used,

update

prefixes

to

reflect

new

segment

locations.

The

various

utilities

involved

in

updating

segment

prefixes

are:

v

Database

Prereorganization

utility

v

Database

Scan

utility

v

Database

Prefix

Resolution

utility

v

Database

Prefix

Update

utility

IBM

Confidential

100

IMS:

An

Introduction

to

IMS

|
|
|

Chapter

10.

The

Database

Recovery

Process

The

following

sections

provide

an

overview

of

the

backup

and

recovery

tasks

that

are

part

of

administering

IMS

databases.

They

give

a

general

background

on

IMS

database

backup

and

recovery

concepts

and

then

discuss

additional

details

of

the

processes

involved.

This

chapter

discusses:

v

“When

Recovery

is

Needed”

v

“Overview

of

the

Database

Recovery

Process”

v

“IMS

Backup

and

Recovery

Utilities”

on

page

102

When

Recovery

is

Needed

Database

recovery

is

normally

on

done

when

there

has

been

a

failure

of

some

sort.

Most

of

the

time

it

is

done

as

a

result

of

a

system,

hardware,

or

application

failure.

However,

it

can

be

used

to

return

a

database

to

a

point-in-time

to

recover

out

of

application

logic

failures.

In

general,

a

database

may

need

to

be

recovered

under

the

following

circumstances:

v

A

DLI

batch

update

job

fails

after

making

at

least

one

database

update.

v

A

failure

has

occurred

on

a

physical

DASD

device.

v

A

failure

has

occurred

in

a

database

recovery

utility.

v

A

failure

of

dynamic

backout

or

batch

backout

utility

has

occurred.

v

An

IMS

online

system

failure

and

emergency

restart

has

not

been

completed.

Overview

of

the

Database

Recovery

Process

Database

recovery,

in

its

simplest

form,

is

the

restoration

of

a

database

after

its

(partial)

destruction

due

to

some

failure.

In

order

to

facilitate

this

process,

some

forward

planning

needs

to

be

done.

Periodically,

a

copy

of

the

data

in

the

database

is

saved.

This

copy

is

normally

referred

to

as

a

backup

or

image

copy.

These

image

copies

can

reside

on

DASD

or

cartridges.

Though

this

process

can

be

done

anytime,

it

is

normally

done

when

there

is

no

other

database

activity

at

the

same

time.

This

creates

a

complete

backup.

There

are

other

strategies

for

taking

a

database

backup,

but

they

will

not

be

discussed

in

this

book.

In

addition

to

taking

an

image

copy

of

the

database(s),

all

changes

made

to

the

data

in

the

database

can

be

logged

and

saved,

at

least

until

the

next

image

copy.

These

changes

are

contained

in

data

sets

called

log

data

sets.

This

provides

a

complete

recovery

environment

so

that

no

data

is

lost

in

the

event

of

a

system

or

application

failure.

There

is

an

IMS

facility

called

database

recovery

control

(DBRC)

that

provides

database

integrity

and

can

be

used

to

help

ensure

that

there

is

always

a

recovery

process

available.

Using

DBRC

to

control

database

backup

and

recovery

is

not

mandatory,

but

is

highly

recommended.

IBM

Confidential

©

Copyright

IBM

Corp.

2004

101

Related

Reading:

For

more

information

about

DBRC,

see

Chapter

26,

“Database

Recovery

Control

(DBRC),”

on

page

263.

The

following

sections

discuss

other

aspects

of

the

recovery

process:

v

“Online

Programs

and

Recovery”

v

“DL/I

Batch

Programs

and

Recovery”

Online

Programs

and

Recovery

IMS

online

transactions

use

dynamic

backout

to

“undo”

updates

done

in

any

incomplete

unit

of

work.

Abending

online

programs

are

automatically

backed

out

by

the

online

system

using

the

log

records.

In

addition,

if

the

system

should

fail

while

an

application

program

is

active,

any

updates

made

by

that

program

will

be

automatically

backed

out

when

the

system

is

restarted.

If

the

program

was

a

BMP,

the

updates

are

automatically

backed

out

to

its

most

recent

checkpoint.

Because

of

this

automatic

backout,

the

recovery

of

individual

databases

will

not

be

needed.

At

IMS

restart

time,

if

the

emergency

restart

cannot

complete

the

backout

for

any

individual

transactions,

then

the

databases

affect

by

those

updates

are

stopped,

and

DBRC

is

requested

to

set

the

recovery

needed

flag

to

ensure

that

a

correct

recovery

is

completed

before

the

database

is

opened

for

more

updates.

In

the

case

of

dynamic

backout

failure,

a

batch

backout

or

database

recovery

needs

to

be

performed,

depending

on

the

reason

for

the

backout

failure.

DL/I

Batch

Programs

and

Recovery

DLI

Batch

update

programs

can

make

use

of

dynamic

backout

like

BMP,

provided

the

following

JCL

changes

are

done:

v

The

BKO=Y

parameter

is

set

in

the

EXEC

statement

v

A

DASD

log

data

set

is

provided

in

the

IEFRDER

DD

statement

v

A

ROLB

Call

is

issued

in

the

program

code

for

non-system

abends

The

dynamic

backout

will

then

back

out

the

updates

to

the

last

checkpoint

found

on

the

log

data

set.

IMS

Backup

and

Recovery

Utilities

IMS

provides

utilities

for

recovering

a

database.

They

are:

“Database

Image

Copy

Utility”

on

page

104

The

Database

Image

Copy

utility

is

used

to

create

image

copies

of

databases.

“Database

Image

Copy

2

Utility”

on

page

105

The

Database

Image

Copy

2

utility

is

used

to

take

image

copies

of

IMS

databases

by

using

the

concurrent

copy

function

of

the

Data

Facility

Storage

Management

Subsystem

(DFSMS).

Online

Database

Image

Copy

Utility

The

Online

Database

Image

Copy

utility

is

used

to

create

an

as-is

image

copy

of

the

database

while

it

is

being

updated

by

the

online

system.

“Database

Change

Accumulation

Utility”

on

page

106

The

Database

change

accumulation

utility

is

used

to

accumulate

database

changes

from

DL/I

log

tapes

since

the

last

complete

image

copy.

IBM

Confidential

102

IMS:

An

Introduction

to

IMS

|
|
|

“Database

Recovery

Utility”

on

page

107

The

Database

recovery

utility

is

used

to

restore

the

database,

using

a

prior

database

image

copy

and

the

accumulated

changes

from

DL/I

log

tapes.

“Database

Batch

Backout

Utility”

on

page

108

The

Database

backout

utility

is

used

to

remove

changes

made

to

databases

by

a

specific

application

program.

Another

utility

program,

the

system

log

recovery

utility

(DFSULTRO),

is

used

to

close

a

log

data

set

in

the

event

of

an

operating

system

or

hardware

failure,

thus

enabling

use

of

the

log

by

the

four

principal

programs

of

the

recovery

system.

For

those

databases

which

consist

of

multiple

data

sets,

recovery

is

done

by

individual

data

set.

To

recover

a

complete

database

composed

of

multiple

data

sets,

database

recovery

must

be

performed

for

each

of

its

component

data

sets.

Figure

29

illustrates

the

relationship

between

the

backup

and

recovery

utilities.

Figure

29.

Overview

of

the

Recovery

Utilities

IBM

Confidential

Chapter

10.

The

Database

Recovery

Process

103

Database

Image

Copy

Utility

The

database

image

copy

utility

(DFSUDMP0)

creates

a

copy

of

the

data

sets

within

the

databases.

the

output

data

sets

is

called

an

IMAGE

COPY.

It

is

a

sequential

data

set

and

can

only

be

used

as

input

to

the

database

Recovery

utility.

The

IMAGE

copy

utility

does

not

use

DLI

to

process

the

database.

Track

I/O

is

used.

There

is

no

internal

checking

to

determine

if

all

the

IMS

internal

pointer

are

correct.

There

are

tools

available

to

run

as

part

of

the

image

copy

utility

to

do

this

checking.

IBM

recommends

that

at

least

periodic

checking

of

these

internal

pointers

is

done.

There

can

be

no

changes

to

the

DBD

when

this

databases

is

recovered

using

the

IMS

recovery

utility.

In

order

to

make

changes

to

the

DBD,

a

database

reorganization

is

needed

to

implement

those

changes.

Multiple

databases

and

data

sets

can

be

copied

with

one

execution

of

the

image

copy

utility.

All

data

sets

of

a

database

should

be

copied

at

the

same

time.

In

our

subset,

we

presume

that

all

database

data

sets

are

dumped

at

the

same

time,

that

is,

no

intervening

database

processing.

The

Database

Recovery

Control

(DBRC)

function

of

IMS

can

be

used

to

generate

the

JCL

to

run

this

utility

if

required.

Related

Reading:

For

more

information

about

DBRC,

see

Chapter

26,

“Database

Recovery

Control

(DBRC),”

on

page

263.

A

flow

diagram

of

the

database

image

copy

utility

is

shown

in

Figure

30.

Figure

30.

Inputs

and

Outputs

for

the

Image

Copy

Utility

IBM

Confidential

104

IMS:

An

Introduction

to

IMS

Database

Image

Copy

2

Utility

The

Database

Image

Copy

2

utility

(DFSUDMT0)

is

very

similar

to

the

Database

Image

Copy

utility

(DFSUDMP0).

DFSUDMT0

has

several

advantages,

however,

in

that

it

can

take

image

copies

with

databases

being

unavailable

for

a

very

short

time.

The

Database

Image

Copy

2

can

also

take

fuzzy

KSDS

copies,

something

that

Batch

Image

Copy

cannot

do.

The

Database

Image

Copy

2

utility

takes

image

copies

of

IMS

databases

by

using

the

concurrent

copy

function

of

the

Data

Facility

Storage

Management

Subsystem

(DFSMS).

The

concurrent

copy

function

of

DFSMS

is

a

hardware

and

software

solution

that

allows

you

to

back

up

a

database

or

any

collection

of

data

at

a

point

in

time

and

with

minimum

down

time

for

the

database.

The

database

is

unavailable

only

long

enough

for

DFSMS

to

initialize

a

concurrent

copy

session

for

the

data,

which

is

a

very

small

fraction

of

the

time

that

the

complete

backup

will

take.

Related

Reading:

For

more

information

on

DFSMS,

see

DFSMS

V1R5

DFSMSdss

Storage

Administration

Guide,

or

DFSMS

V1R5

DFSMSdss

Storage

Administration

Reference.

The

functional

differences

between

the

two

image

copy

utilities

are:

v

The

data

sets

to

be

copied

must

reside

on

a

subsystem

that

supports

DFSMS

concurrent

copy.

DBRC

is

required

for

this

utility.

For

fuzzy

KSDS

copies,

the

database

define

cluster

must

specify

BWO(TYPIMS)

and

the

KSDS

data

sets

must

be

managed

by

SMS.

v

An

Image

copy

created

by

the

utility

is

in

DFSMS

dump

format,

rather

than

standard

batch

image

copy

format.

The

copy

is

registered

with

DBRC

as

an

SMSNOCIC

or

SMSCIC

image

copy,

depending

on

the

parameters

specified

when

the

image

copy

was

taken.

v

Up

to

four

copies

of

a

data

set

can

be

created.

Only

the

primary

and

secondary

(first

and

second)

copies

are

recorded

in

the

RECON

data

set.

Related

Reading:

For

more

information

about

the

Database

Image

Copy

2

utility,

see

IMS

Version

9:

Utilities

Reference:

Database

and

Transaction

Manager.

A

flow

diagram

of

the

Database

Image

Copy

2

utility

is

shown

in

Figure

31

on

page

106.

IBM

Confidential

Chapter

10.

The

Database

Recovery

Process

105

Database

Change

Accumulation

Utility

The

function

of

the

Database

Change

Accumulation

utility

(DFSUCUM0)

is

to

create

a

sequential

data

set

that

contains

only

that

database

log

records

from

all

the

log

data

sets

which

are

necessary

for

recovery.

This

accumulation

log

data

set

is

to

be

used

by

the

database

recovery

utility.

This

accumulation

is

done

by

sorting

only

the

required

log

records

in

physical

record

within

data

set

sequence.

This

provides

efficient

database

recovery

whenever

needed.

The

number

of

log

data

sets

which

need

to

be

kept

will

be

significantly

reduced.

The

change

accumulation

utility

can

be

run

independently

of

DL/I

application

programs.

The

new

output

database

recovery

utility.

IBM

highly

recommends

that

you

use

DBRC

to

create

the

JCL

for

each

execution

of

this

utility.

DBRC

will

ensure

that

a

complete

set

of

log

data

sets

is

used

to

create

the

change

accumulation

data

set.

The

logs

records

must

be

supplied

to

in

the

correct

sequence.

A

flow

diagram

of

the

change

accumulation

utility

is

shown

in

Figure

32

on

page

107.

Figure

31.

Inputs

and

Outputs

for

the

Database

Image

Copy

2

Utility

IBM

Confidential

106

IMS:

An

Introduction

to

IMS

|

|
|
|

The

input

to

the

database

change

accumulation

utility

consists

of:

v

All

log

data

sets

created

since

either

the

last

image

copy

utility

execution

or

the

last

execution

of

this

utility.

v

The

previous

change

accumulation

data

set.

This

would

be

the

output

from

the

last

execution

of

this

utility.

The

first

change

accumulation

run

after

a

new

image

copy

must

not

include

any

old

change

accumulation

data

set,

that

is,

those

created

during

the

previous

period.

v

An

optional

control

statement

(ID).

Output

from

the

database

change

accumulation

utility

consists

of

a

new

change

accumulation

data

set.

This

is

a

sequential

data

set

containing

the

combined

database

records

for

all

database

data

sets.

Database

Recovery

Utility

The

database

recovery

utility

(DFSURDB0)

will

restore

a

database

data

set.

This

utility

does

not

provide

a

means

of

recovery

from

application

logic

errors:

it

is

the

user’s

responsibility

to

ensure

the

logical

integrity

of

the

data

in

the

database.

Unlike

the

image

copy

utility,

the

recovery

utility

recovers

one

database

data

set

per

job

step.

Thus

to

recover

multiple

data

sets

for

a

database

the

utility

must

be

run

once

for

each

data

set.

It

is

highly

recommended

that

DBRC

be

used

to

create

each

execution

of

this

utility.

DBRC

will

ensure

that

all

the

correct

inputs

are

supplied.

The

recovery

utility

can

be

run

in

a

number

of

ways

depending

on

what

input

is

required.

Generally

the

main

input

to

the

recovery

utility

is

the

image

copy

data

set.

Other

input

can

consist

of

any

log

data

sets

or

change

accumulation

data

sets

Figure

32.

Inputs

and

Outputs

for

the

Change

Accumulation

Utility

IBM

Confidential

Chapter

10.

The

Database

Recovery

Process

107

which

might

be

needed.

The

utility

can

be

run

with

only

the

log

information

as

input,

in

this

case

the

database

already

existing

would

be

used.

A

flow

diagram

is

shown

in

Figure

33.

The

input

to

the

recovery

utility

consists

of

an

image

copy

data

set

and,

optionally,

an

accumulated

change

data

set

and

any

log

data

sets

not

included

in

the

change

accumulation

data

set.

The

database

recovery

utility

program

is

executed

in

a

DL/I

batch

region.

It

will

allocate

the

database

in

exclusive

mode

so

that

there

can

be

no

other

database

activity

at

the

time.

Database

Batch

Backout

Utility

Batch

backout,

in

it

simplest

form,

is

the

reading

of

log

data

set

(or

sets)

to

back

out

all

database

updates.

This

is

done

by

using

the

“before

image

data”

in

the

log

record

to

re-update

the

database

segments.

It

has

the

effect

of

undoing

the

previous

updates.

Note:

The

Database

Batch

Backout

utility

only

supports

full-function

databases.

The

database

backout

utility

removes

changes

in

the

database

which

were

made

by

a

specific

failing

program.

The

following

limitations

apply:

v

The

log

data

set

of

the

failing

program

must

be

on

DASD.

v

No

other

update

programs

should

have

been

executed

against

the

same

database

(s)

between

the

time

of

the

failure

and

the

backout.

Figure

33.

Inputs

and

Outputs

of

the

Database

Recovery

Utility

IBM

Confidential

108

IMS:

An

Introduction

to

IMS

The

program

operates

as

a

normal

DL/I

batch

job.

It

uses

the

PSB

used

by

the

program

whose

effects

are

to

be

backed

out.

All

databases

updated

by

the

program

must

be

available

to

the

backout

utility.

Figure

34

illustrates

the

inputs

and

outputs

for

the

Batch

Backout

utility.

A

log

data

set

is

created

during

the

backout

process.

This

data

set,

preceded

by

the

log

data

set

produced

for

the

failing

job,

must

be

included

in

the

next

change

accumulation

run,

as

any

other

log

data

set.

This

data

set

must

not

be

used

as

input

to

any

subsequent

backout

attempt.

Usage

Notes

for

the

Batch

Backout

Utility

Keep

the

following

items

in

mind

when

using

the

Batch

Backout

utility:

v

If

checkpoint/restart

is

not

used,

then

backout

always

backs

out

all

the

database

changes

of

the

program.

v

If

checkpoint/

restart

is

used

(program

uses

XRST

and

CHKP-ID

calls),

then

backout

will

only

do

backout

if

the

specified

CHKP-ID

is

found

on

the

log

data

set

during

read

forward.

If

no

CHKP-ID

is

specified,

then

the

last

one

on

the

log

data

set

is

used

(the

first

one

encountered

during

read

backward).

v

If,

when

using

checkpoint/restart,

you

want

to

be

able

to

completely

back

out

a

job

(steps),

you

must

issue

a

CHKP

call

immediately

after

the

XRST

call,

that

is,

before

any

real

database

activity.

The

CHKP-ID

of

this

call

can

then

be

used

for

a

full

backout

operation.

v

To

run

batch

backout

for

a

DLI

batch

which

had

completed

successfully,

the

DBRC=“C”

parameter

must

be

added

to

the

EXEC

PARM

keyword.

Figure

34.

Inputs

and

Outputs

for

the

Batch

Backout

Utility

IBM

Confidential

Chapter

10.

The

Database

Recovery

Process

109

IBM

Confidential

110

IMS:

An

Introduction

to

IMS

Part

3.

IMS

Transaction

Manager

Chapter

11.

Overview

of

IMS

TM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 113

Functions

of

IMS

TM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 113

IMS

TM

and

the

Network

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 113

Advanced

Program-to-Program

Communication

(APPC)

.

.

.

.

.

.

.

. 114

Open

Transaction

Manager

Access

(OTMA)

.

.

.

.

.

.

.

.

.

.

.

.

. 114

IMS

TM

Messages

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 116

Connections

to

Other

IMS

and

CICS

Subsystems

.

.

.

.

.

.

.

.

.

.

.

. 116

Multiple

Systems

Coupling

(MSC)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 116

Intersystem

Communications

(ISC)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 117

MSC

Versus

ISC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 117

Chapter

12.

IMS

TM

Control

Region

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 119

IMS

Messages

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 119

Multiple

and

Single

Segment

Messages

.

.

.

.

.

.

.

.

.

.

.

.

.

. 119

IMS

Transaction

Flow

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 120

Chapter

13.

How

IMS

TM

Processes

Input

.

.

.

.

.

.

.

.

.

.

.

.

. 123

Input

Message

Types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 123

Terminal

Types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 124

Input

Message

Origin

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 124

Terminal

Input

Destination

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 124

Message

Queueing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 125

Queue

Size

and

Performance

Considerations

.

.

.

.

.

.

.

.

.

.

.

. 127

Multiple

Message

Queues

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 127

Shared

Queues

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 127

Fast

Path

Transactions

and

Message

Queues

.

.

.

.

.

.

.

.

.

.

.

. 128

APPC

Driven

Transactions

and

Message

Queues

.

.

.

.

.

.

.

.

.

. 128

OTMA

Driven

Transactions

and

Message

Queues

.

.

.

.

.

.

.

.

.

. 128

Message

Scheduling

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 128

Transaction

Scheduling

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 130

Scheduling

Conditions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 130

Scheduling

in

a

Dependent

Region

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 130

Parallel

Scheduling

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 132

Priority

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 132

Database

Processing

Intent

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 133

Chapter

14.

Fast

Path

Transactions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 135

Fast

Path

Exclusive

Transactions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 135

Fast

Path

Potential

Transactions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 135

Chapter

15.

The

Master

Terminal

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 137

The

Primary

Master

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 138

The

Secondary

Master

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 139

Using

the

z/OS

Console

as

the

Master

Terminal

.

.

.

.

.

.

.

.

.

.

.

. 139

Extended

MCS/EMCS

Console

Support

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 139

Chapter

16.

Application

Program

Processing

for

IMS

TM

.

.

.

.

.

.

. 141

Flow

of

Message

Processing

Programs

(MPPs)

.

.

.

.

.

.

.

.

.

.

.

. 141

Role

of

the

PSB

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 142

DL/I

Message

Calls

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 142

Program

Isolation

and

Dynamic

Logging

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 143

Internal

Resource

Lock

Manager

(IRLM)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 144

Abnormal

Application

Program

Termination

.

.

.

.

.

.

.

.

.

.

.

.

.

. 144

IBM

Confidential

©

Copyright

IBM

Corp.

2004

111

Conversational

Processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 145

Output

Message

Processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 145

Logging,

Checkpointing,

and

Restarting

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 145

Message

Switching

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 146

IBM

Confidential

112

IMS:

An

Introduction

to

IMS

Chapter

11.

Overview

of

IMS

TM

IMS

TM

provides

a

high-performance

transaction

processing

environment

for

database

management

systems,

such

as

IMS

DB

and

DB2

UDB

for

z/OS.

IMS

TM

can

be

ordered

and

installed

with

or

without

IMS

DB.

The

following

sections

are

covered

in

this

chapter:

v

“Functions

of

IMS

TM”

v

“IMS

TM

and

the

Network”

v

“IMS

TM

Messages”

on

page

116

v

“Connections

to

Other

IMS

and

CICS

Subsystems”

on

page

116

Functions

of

IMS

TM

IMS

TM

provides

solutions

for

cooperative

processing,

distributed

database

processing,

and

continuous

operation.

IMS

TM:

v

Enhances

system

management.

v

Simplifies

network

administration.

v

Manages

and

secures

the

IMS

TM

terminal

network.

v

Routes

messages

from

terminal

to

terminal,

from

application

to

application,

and

between

application

programs

and

terminals.

v

Queues

input

and

output

messages,

and

schedules

messages

by

associating

programs

with

the

transactions

they

are

to

process.

v

Participates

in

distributive

processing

scenarios

where

other

programs

(such

as

WebSphere

Application

Studio)

have

a

need

to

access

IMS.

IMS

TM

and

the

Network

IMS

TM

interacts

with:

v

IBM

Systems

Network

Architecture

(SNA)

network,

as

currently

implemented

by

the

Communication

Server

for

z/OS,

which

includes

the

functions

of

VTAM.

IMS

TM

interacts

directly

with

the

Communication

Server

for

z/OS.

v

Applications

that

use

the

z/OS

Advanced

Program-to-Program

Communication

(APPC)

protocol.

Related

Reading:

For

more

information

about

IMS’s

support

for

APPC,

see

“Advanced

Program-to-Program

Communication

(APPC)”

on

page

114.

v

Networks

that

use

Transmission

Control

Protocol/

Internet

Protocol

(TCP/IP).

Access

by

using

TCP/IP

is

achieved

by

way

of

a

separate

z/OS

address

space.

This

address

space

uses

IMS’s

Open

Transaction

Manager

Access

(OTMA)

protocol.

The

other

address

space

can

be

another

program

product

such

as

IBM’s

Websphere

MQ

or

IMS

Connect.

Related

Reading:

For

more

information

about

OTMA,

see

“Open

Transaction

Manager

Access

(OTMA)”

on

page

114.

For

further

details

on

the

options

available

for

accessing

IMS

by

using

TCP/IP,

see:

–

Chapter

30,

“Introduction

to

Parallel

Sysplex,”

on

page

315

–

IMS

Version

9:

Open

Transaction

Manager

Access

Guide

and

Reference

–

IMS

Connect

Guide

and

Reference

IBM

Confidential

©

Copyright

IBM

Corp.

2004

113

Advanced

Program-to-Program

Communication

(APPC)

As

mentioned

in

“Advanced

Program-to-Program

Communications

(APPC)”

on

page

24,

APPC/IMS

support

for

Logical

Unit

type

6.2

supports

the

formats

and

protocols

for

program-to-program

communication.

APPC/VTAM

is

part

of

the

Communication

Server

for

z/OS.

It

facilitates

the

implementation

of

APPC/IMS

support.

In

addition,

APPC/MVS

works

with

APPC/VTAM

to

implement

APPC/IMS

functions

and

communication

services

in

a

z/OS

environment.

APPC/IMS

takes

advantage

of

this

structure

and

uses

APPC/MVS

to

communicate

with

LU

6.2

devices.

Therefore,

all

VTAM

LU

6.2

devices

supported

by

APPC/MVS

can

access

IMS

using

LU

6.2

protocols

to

initiate

IMS

application

programs,

or

conversely

be

initiated

by

IMS.

APPC/IMS

provides

compatibility

with

non-LU

6.2

device

types

by

providing

a

device-independent

API.

This

allows

an

application

program

to

work

with

all

device

types

(LU

6.2

and

non-LU

6.2)

without

any

new

or

changed

application

programs.

IMS

supports

APPC

conversations

in

two

scenarios:

Implicit

In

this

case,

IMS

supports

only

a

subset

of

the

APPC

functions,

but

enables

an

APPC

incoming

message

to

trigger

any

standard

IMS

application

that

is

already

defined

in

the

normal

manner

to

IMS,

and

uses

the

standard

IMS

message

queue

facilities,

to

schedule

the

transaction

into

any

appropriate

dependent

region.

Explicit

In

this

case,

the

full

set

of

CPI

Communications

(CPI-C)

command

verbs

can

be

used

and

the

IMS

application

is

written

specifically

to

cater

only

for

APPC

triggered

transactions.

The

standard

IMS

message

queues

are

not

used

in

this

case,

and

the

IMS

control

region

only

helps

create

the

APPC

conversation

directly

between

the

APPC

client

and

the

IMS

dependent

region

to

service

this

request.

The

IMS

control

region

takes

no

further

part,

regardless

of

how

much

time

the

conversation

might

use

while

active.

Open

Transaction

Manager

Access

(OTMA)

OTMA

provides

an

open

interface

to

IMS

TM

customers.

With

OTMA,

a

z/OS

or

TCP/IP

application

program

can

send

a

transaction

or

command

to

IMS

without

using

SNA

or

VTAM.

Many

programs

can

connect

to

IMS

TM

using

OTMA:

middleware

software,

gateway

programs,

database,

and

applications

written

by

IMS

customers.

Each

of

the

programs

or

applications

that

communicate

with

IMS

using

OTMA

are

considered

OTMA

clients.

The

OTMA

interface

itself

is

very

flexible.

An

OTMA

client,

an

application

program

of

the

client,

or

both,

can

use

OTMA

in

many

different

ways.

The

execution

of

some

transactions

can

involve

complex

“handshaking”

between

IMS

and

the

client

program;

some

transactions

can

simply

use

the

basic

protocol.

The

following

list

illustrates

the

ways

that

OTMA

can

be

used

to

process

an

IMS

transaction:

Commit-then-send

For

commit-then-send

(CM0),

IMS

processes

the

transaction

and

commits

the

data

before

sending

a

response

to

the

OTMA

client.

Input

and

output

messages

are

recoverable.

IBM

Confidential

114

IMS:

An

Introduction

to

IMS

|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|

Send-then-commit

For

send-then-commit

(CM1),

IMS

processes

the

transaction

and

sends

the

response

to

the

OTMA

client

before

committing

the

data.

Input

and

output

messages

are

non-recoverable.

If

the

application

program

uses

send-then-commit,

you

must

also

decide

which

synchronization

level,

or

“synclevel”

to

use.

There

are

three

choices:

v

None

-

Output

is

sent

and

no

response

from

the

client

is

requested.

Data

is

committed

if

send

is

successful.

Data

is

backed

out

if

the

send

fails.

v

Confirm

-

Output

is

sent

and

response

from

the

client

is

requested.

The

OTMA

client

must

respond

with

an

ACK

or

NACK.

Data

is

committed

if

ACK

is

received.

Data

is

backed

out

if

NACK

is

received.

v

Syncpt

-

Output

is

sent,

and

response

from

the

client

is

requested.

Use

synclevel=syncpt

to

coordinate

commit

processing

through

RRS.

The

OTMA

client

must

respond

with

an

ACK

or

NACK.

Data

is

committed

if

ACK

is

received

and

RRS

commit

is

received.

Data

is

backed

out

if

NACK

is

received

or

RRS

abort

is

received.

An

application

can

decide,

for

example,

that

inquiry

transactions

should

use

synclevel=none

because

there

are

no

database

updates

and

that

update

transactions

should

use

synclevel=confirm.

The

OTMA

resynchronization

interface

ensures

that

there

are

no

duplicate

CM0

input

and

output

messages

by

using

a

unique

recoverable

sequence

number

in

every

CM0

message.

The

client

can

optionally

initiate

this

during

connection

time.

WebSphere

MQ

is

the

primary

program

that

exploits

this

OTMA

interface

extensively.

A

WebSphere

MQ

application

program

can

send

a

persistent

message

to

IMS

to

take

advantage

of

the

resynchronization

benefit.

However,

sending

a

WebSphere

MQ

non-persistent

CM0

message

to

IMS

bypasses

the

resynchronization

service.

Table

2

can

be

used

to

help

you

decide

which

method

is

appropriate

for

your

application.

Table

2.

OTMA

Processing

Options

Type

of

Processing

Commit-then-send

(CM0)

Send-then-commit

(CM1)

Conversational

transactions

Not

supported

Supported

Fast

Path

transactions

Not

supported

Supported

Remote

MCS

transactions

Supported

Supported

Shared

queues

Supported

in

IMS

V7

and

above

Supported

in

IMS

V8

and

above

Recoverable

output

Supported

Not

supported

Synchronized

Tpipes

Supported

Not

supported

Program-to-program

switch

Supported

Supported.

However,

if

more

than

one

program-to-program

switch

is

performed,

only

one

program

processes

as

send-then-commit.

The

other

program

processes

as

commit-then-send.

IBM

Confidential

Chapter

11.

Overview

of

IMS

TM

115

|
|
|
|

|
|

|
|

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|

||

|||

|||

|||

|||

||
|
|
|

|||

|||

|||
|
|
|
|
|
|
|

IMS

TM

Messages

The

network

inputs

and

outputs

to

IMS

Transaction

Manager

take

the

form

of

messages

that

are

input

or

output,

to

or

from

IMS

and

the

physical

terminals

(or

application

programs)

on

the

network

(referred

to

as

destinations).

These

messages

are

processed

asynchronously

(that

is,

IMS

will

not

always

send

a

reply

immediately,

or

ever,

when

it

receives

a

message,

and

unsolicited

messages

might

also

be

sent

from

IMS).

The

messages

can

be

of

four

types:

v

Transactions.

The

data

in

these

messages

is

passed

to

IMS

application

programs

for

processing

v

Messages

to

go

to

another

logical

destination

(for

example,

network

terminals)

v

Commands

for

IMS

to

process.

v

Messages

for

APPC/IMS

to

process.

Because

IMS

uses

an

asynchronous

protocol

for

messages

and

APPC

uses

synchronous

protocols

(that

is,

it

always

expects

a

reply

when

a

message

is

sent),

the

IMS

TM

interface

for

APPC

has

to

perform

special

processing

to

accommodate

this.

If

IMS

is

not

able

to

process

an

input

message

immediately,

or

cannot

send

an

output

message

immediately,

then

the

message

is

stored

on

a

message

queue

external

to

the

IMS

system.

IMS

will

not

normally

delete

the

message

from

the

message

queue

until

it

has

received

confirmation

that

an

application

has

processed

the

message

or

that

the

message

has

reached

its

destination.

Connections

to

Other

IMS

and

CICS

Subsystems

IMS

has

special

protocols

for

connecting

to

other

IMS

systems,

such

as

Multiple

Systems

Coupling

(MSC),

and

to

other

CICS

and

IMS

systems,

such

as

Intersystem

Communication

(ISC),

that

allows

work

to

be

routed

to

and

from

the

other

systems

for

processing.

The

MSC

connections

can

be

through

the

network

to

other

IMS

systems

on

the

same

or

other

z/OS

systems,

by

using

channel-to-channel

connections

to

the

same

or

another

channel

attached

z/OS

system

or

by

using

cross

memory

services

to

another

IMS

subsystem

on

the

same

z/OS

system.

The

ISC

links

to

other

CICS

or

IMS

systems

is

provided

over

the

network

by

using

VTAM’s

LU

6.1

protocol.

Multiple

Systems

Coupling

(MSC)

MSC

is

a

part

of

the

IMS

Transaction

Manager

that

provides

the

ability

to

connect

geographically

dispersed

IMSs.

MSC

enables

programs

and

operators

of

one

IMS

to

access

programs

and

operators

of

the

connected

IMSs.

Communication

can

occur

between

two

or

more

(up

to

2036)

IMSs

running

on

any

supported

combination

of

operating

systems.

MSC

permits

you

to

distribute

processing

loads

and

databases.

Transactions

entered

in

one

IMS

system

can

be

passed

to

another

IMS

system

for

processing

and

the

results

returned

to

the

initiating

terminal.

Terminal

operators

are

unaware

of

these

activities;

their

view

of

the

processing

is

the

same

as

that

presented

by

interaction

with

a

single

system.

IBM

Confidential

116

IMS:

An

Introduction

to

IMS

|

MSC

only

supports

connecting

one

IMS

to

one

other

IMS.

MSC

supports

transaction

routing

between

the

participating

IMSs

by

options

specified

in

the

IMS

system

definition

process.

The

IMS

system

where

the

transaction

is

entered

by

the

terminal

user

is

referred

to

as

the

front-end

system.

The

IMS

system

where

the

transaction

is

processed

is

referred

to

as

the

back-end

system.

The

transaction

is

entered

in

the

front-end

system,

and

based

on

the

definitions

in

the

IMS

stage

1

definition,

the

transaction

is

sent

to

the

back-end

system.

When

the

transaction

reaches

the

back-end

system,

all

standard

IMS

scheduling

techniques

apply.

After

processing,

the

results

are

sent

back

to

the

front-end

system,

which

then

returns

the

results

to

the

terminal

user,

who

was

unaware

that

any

of

this

occurred.

Intersystem

Communications

(ISC)

ISC

is

also

part

of

the

IMS

Transaction

Manager

and

is

another

way

to

connect

multiple

subsystems.

ISC

is

more

flexible

than

MSC,

in

that

ISC

supports

the

following

connections:

v

IMS-to-IMS

v

IMS-to-CICS

v

IMS-to-user-written

VTAM

program

The

transaction

routing

specification

for

ISC

is

contained

in

the

application

program,

instead

of

in

the

IMS

system

definition

as

in

MSC.

ISC

links

between

IMS

and

CICS

use

the

standard

LU

6.1

protocol

available

within

the

network.

They

can

use

standard

VTAM

connections

or

direct

connections.

As

defined

under

SNA,

ISC

is

an

LU

6.1

session

that:

v

Connects

different

subsystems

to

communicate

at

the

application

level.

v

Provides

distributed

transaction

processing

permitting

a

terminal

user

or

application

in

one

subsystem

to

communicate

with

a

terminal

or

application

in

a

different

subsystem

and,

optionally,

to

receive

a

reply.

In

some

cases,

the

application

is

user

written;

in

other

cases,

the

subsystem

itself

acts

as

an

application.

v

Provides

distributed

services.

Therefore,

an

application

in

one

subsystem

can

use

a

service

(such

as

a

message

queue

or

database)

in

a

different

subsystem.

SNA

makes

communication

possible

between

unlike

subsystems

and

includes

SNA-defined

session

control

protocols,

data

flow

control

protocols,

and

routing

parameters.

MSC

Versus

ISC

As

mentioned

in

“Multiple

Systems

Coupling

(MSC)”

on

page

116

and

“Intersystem

Communications

(ISC),”

both

MSC

and

ISC

enable

a

user

to:

v

Route

transactions

v

Distribute

transaction

processing

v

Grow

beyond

the

capacity

of

one

IMS

system

Both

ISC

and

MSC

take

advantage

of

the

parallel

session

support

VTAM

provides.

Some

key

differences

exist,

however.

Table

3

on

page

118

shows

the

major

functions

of

MSC

and

ISC

and

shows

the

differences

in

support.

IBM

Confidential

Chapter

11.

Overview

of

IMS

TM

117

Table

3.

Comparing

MSC

and

ISC

Functions

MSC

Functions

ISC

Functions

MSC

connects

multiple

IMS

systems

only

to

each

other.

These

IMS

systems

can

all

reside

in

one

processor,

or

they

can

reside

in

different

processors.

ISC

can

connect

either

like

or

unlike

subsystems,

as

long

as

the

connected

subsystems

both

implement

ISC.

Thus,

a

user

can

couple

an

IMS

subsystem

to:

v

Another

IMS

subsystem

v

A

CICS

subsystem

v

A

user-written

subsystem

Communication

in

the

MSC

environment

is

subsystem-to-subsystem.

Communication

is

between

application

programs

in

the

two

subsystems.

The

subsystems

themselves

are

session

partners,

supporting

logical

flows

between

the

applications.

Processing

is

transparent

to

the

user.

That

is,

to

the

user,

MSC

processing

appears

as

if

it

is

occurring

in

a

single

system.

Message

routing

requires

involvement

by

the

terminal

user

or

the

application

to

determine

the

message

destination

because

ISC

supports

coupling

of

unlike

subsystems.

Specified

routing

parameters

can

be

overridden,

modified,

or

deleted

by

Message

Format

Service

(MFS).

When

not

using

the

MSC-directed

routing

capability,

the

terminal

operator

or

application

program

does

not

need

to

know

routing

information.

Routing

is

automatic

based

on

system

definition

parameters.

ISC

provides

a

unique

message-switching

capability

that

permits

message

routing

to

occur

without

involvement

of

a

user

application.

MSC

supports

the

steps

of

a

conversation

to

be

distributed

over

multiple

IMS

subsystems,

transparent

to

both

the

source

terminal

operator

and

to

each

conversational

step

(application).

ISC

supports

the

use

of

MFS

in

an

IMS

subsystem

to

assist

in

the

routing

and

formatting

of

messages

between

subsystems.

MSC

does

not

support

the

use

of

the

Fast

Path

Expedited

Message

Handler

(EMH).

ISC

supports

the

use

of

Fast

Path

Expedited

Message

Handler

(EMH)

between

IMS

subsystems.

IBM

Confidential

118

IMS:

An

Introduction

to

IMS

Chapter

12.

IMS

TM

Control

Region

The

IMS

TM

control

region

is

a

z/OS

address

space

that

can

be

initiated

through

an

z/OS

START

command

or

by

submitting

JCL.

The

terminals,

databases,

message

queues,

and

logs

are

all

attached

to

this

region.

A

type

2

supervisor

call

routine

is

used

for

switching

control

information,

messages,

and

database

data

to

the

dependent

regions

and

back.

The

control

region

normally

runs

as

a

system

task

and

uses

z/OS

access

methods

for

terminal

and

database

access.

The

following

sections

are

covered

in

this

chapter:

v

“IMS

Messages”

v

“IMS

Transaction

Flow”

on

page

120

IMS

Messages

The

goal

of

IMS

TM

is

to

perform

online

transaction

processing.

This

consists

of:

1.

Receiving

a

request

for

work

to

be

done.

The

request

is

entered

at

a

remote

terminal.

It

is

usually

made

up

of

a

transaction

code,

which

identifies

to

IMS

the

kind

of

work

to

be

done

and

some

data

that

is

to

be

used

in

doing

the

work.

2.

Initiating

and

controlling

a

specific

program

that

will

use

the

data

in

the

request

to

do

the

work

the

remote

operator

asked

to

be

done,

and

to

prepare

some

data

for

the

remote

operator

in

response

to

the

request

for

work

(for

example,

acknowledgment

of

work

done

or

answer

a

query).

3.

Transmission

of

the

data

prepared

by

the

program

back

to

the

terminal

originally

requesting

the

work.

The

above

sequence

is

the

simplest

form

of

a

transaction.

It

involves

two

messages:

an

input

message

from

the

remote

operator

requesting

that

work

be

done,

and

an

output

message

to

the

remote

operator

containing

results

or

acknowledgment

of

the

work

done.

Multiple

and

Single

Segment

Messages

A

message,

in

the

most

general

sense,

is

a

sequence

of

transmitted

symbols.

In

the

context

of

IMS,

this

is

called

a

transmission.

A

transmission

may

have

one

or

more

messages,

and

a

message

may

have

one

or

more

segments.

A

segment

is

defined

by

an

end-of-segment

(EOS)

symbol,

a

message

is

defined

by

an

end-of-message

(EOM)

symbol

and

a

transmission

is

defined

by

an

end-of-data

(EOD)

symbol.

The

valid

combinations

of

the

conditions

represented

by

EOS,

EOM,

and

EOD

can

be

found

in

Table

4.

Table

4.

Valid

Combinations

of

the

EOS,

EOM,

and

EOD

Symbols

Condition

Represents

EOS

End

of

segment

EOM

End

of

segment

/

end

of

message

EOD

End

of

segment

/

end

of

message

/

end

of

data

The

relationship

between

transmission,

message

and

segment

is

shown

in

Figure

35

on

page

120.

IBM

Confidential

©

Copyright

IBM

Corp.

2004

119

The

character

values

or

conditions

that

represent

the

end

of

segment

and

the

end

of

the

message

(or

both)

depend

on

the

terminal

type.

For

3270

terminals,

the

physical

terminal

input

will

always

be

a

single

segment

message

and

transmission.

The

EOS,

EOM,

and

EOD

condition

will

all

be

set

after

the

enter

or

program

function

key

is

pressed

and

the

data

is

transmitted.

On

the

output

side,

a

message

can

be

divided

into

multiple

segments.

Also

an

application

program

can

send

different

messages

to

different

terminals,

that

is,

a

message

to

a

printer

terminal

and

a

message

to

the

input

display

terminal.

Each

segment

requires

a

separate

insert

call

by

the

application

program.

The

format

of

a

message

segment

as

presented

to

or

received

from

an

application

program

is

shown

in

Figure

36,

where:

LL

Total

length

of

the

segment

in

bytes,

including

the

LL

and

ZZ

fields.

ZZ

IMS

system

field

DATA

Application

data,

including

the

transaction

code

LL

ZZ

Data

2

bytes

2

bytes

n

bytes

IMS

Transaction

Flow

Once

the

control

region

is

started,

it

will

start

the

system

dependent

regions

(DLISAS

and

DBRC).

The

MPR

and

BMP

regions

can

be

started

by:

v

IMS

jobs

v

JOB

submission

v

Automated

operations

commands

The

general

flow

of

a

message

from

a

message

processing

program

(MPP)

is

shown

in

Figure

37

on

page

121.

The

intent

of

this

figure

is

to

give

a

general

flow

of

the

message

through

the

system

and

not

a

complete

detailed

description.

Figure

35.

Transmission,

Message,

and

Segment

Relationships

Figure

36.

Format

of

a

Message

Segment

IBM

Confidential

120

IMS:

An

Introduction

to

IMS

A

further

description

of

Figure

37

follows:

1.

The

input

data

from

the

terminal

is

read

by

the

data

communication

modules.

After

editing

by

message

format

service

(MFS),

and

verifying

that

the

user

is

allowed

to

execute

this

transaction,

this

input

data

is

put

in

the

IMS

Message

Queues.

These

are

sequenced

by

destination,

which

could

be

either

transaction

code

(TRAN)

or

logical

terminal

(LTERM).

In

the

case

of

input

messages,

this

would

be

the

TRAN.

2.

The

scheduling

modules

will

determine

which

MPP

is

available

to

process

this

transaction,

based

on

a

number

of

system

and

user

specified

considerations,

and

will

then

retrieve

the

message

from

the

IMS

message

queues,

and

start

the

processing

of

a

transaction

in

the

MPP.

3.

Upon

request

from

an

MPP

or

BMP,

the

DL/I

modules

pass

a

message

or

database

segment

to

or

from

the

MPP/BMP.

Note:

In

z/OS,

the

DL/I

modules,

control

blocks,

and

pools

reside

in

the

common

storage

area

(CSA

or

ECSA)

and

the

control

region

is

not

needed

for

most

DB

processing

(the

exception

being

Fast

Path).

4.

Once

the

MPP

has

finished

processing,

the

message

output

from

the

MPP

is

also

put

into

the

IMS

Message

Queues,

in

this

case,

queued

against

the

logical

terminal

(LTERM).

Figure

37.

The

IMS

Control

Region,

Its

Control,

and

Data

(Message)

Flow

IBM

Confidential

Chapter

12.

IMS

TM

Control

Region

121

5.

The

communication

modules

retrieve

the

message

from

the

message

queues,

and

send

it

to

the

output

terminal.

MFS

is

used

to

edit

the

screen

and

printer

output.

6.

All

changes

to

the

message

queues

and

the

databases

are

recorded

on

the

logs.

In

addition,

checkpoints

for

system

(emergency)

restart

and

statistical

information

are

logged.

Notes:

a.

The

physical

logging

modules

run

as

a

separate

task

and

use

z/OS

ESTAE

for

maximum

integrity.

b.

The

checkpoint

identification

and

log

information

are

recorded

in

the

restart

and

RECON

data

sets.

7.

Program

Isolation

locking

assures

database

integrity

when

two

or

more

MPPs

or

BMPs

update

the

same

database.

It

also

backs

out

database

changes

made

by

failing

programs.

This

is

done

by

maintaining

a

short-term,

dynamic

log

of

the

old

database

element

images.

IRLM

is

an

optional

replacement

for

PI

locking.

IRLM

is

required,

however,

if

IMS

is

participating

in

data

sharing.

IBM

Confidential

122

IMS:

An

Introduction

to

IMS

Chapter

13.

How

IMS

TM

Processes

Input

IMS

can

accept

input

messages

from

a

variety

of

sources.

Originally,

all

input

was

from

3270

type

terminals.

The

following

sections

are

covered

in

this

chapter:

v

“Input

Message

Types”

v

“Terminal

Types”

on

page

124

v

“Input

Message

Origin”

on

page

124

v

“Terminal

Input

Destination”

on

page

124

v

“Message

Queueing”

on

page

125

v

“Message

Scheduling”

on

page

128

v

“Transaction

Scheduling”

on

page

130

See

Figure

38

while

reading

the

sections

listed

above.

Input

Message

Types

When

IMS

reads

data

from

a

terminal

that

has

come

from

the

telecommunication

access

method,

IMS

first

checks

the

type

of

input

data.

Input

from

terminals

can

consist

of

three

types

of

messages:

An

input

transaction

message

This

message

is

routed

to

an

application

program

for

processing

with

the

first

1-to-8

bytes

of

the

message

identifying

the

transaction

code.

A

message

switch

This

message

is

routed

to

another

terminal,

with

the

first

1-to-8

bytes

used

Figure

38.

Input

Message

Processing

IBM

Confidential

©

Copyright

IBM

Corp.

2004

123

as

the

name

of

the

destination

logical

terminal

(LTERM).

The

LTERM

can

be

a

USERID

if

the

Extended

Terminal

Option

(ETO)

is

used.

A

command

A

command

is

processed

by

IMS

itself.

Terminal

Types

There

are

two

basic

types

of

terminals

that

can

connect

to

IMS.

They

are:

Static

The

terminal

is

specifically

defined

in

the

IMS

system

definition,

and

this

determines

what

physical

terminal

name

(NODE

NAME),

and

logical

terminal

name

(LTERM)

is

available

for

use.

Dynamic

The

terminal

is

not

statically

defined

in

the

IMS

system

definition.

IMS

can

create

a

dynamic

terminal

definition.

This

requires

either

the

IMS

Extended

Terminal

Option

(ETO),

a

separately

ordered

feature

of

IMS

or

other

third-party

vendor

products.

Dynamic

terminals

have

not

been

previously

defined

to

IMS

—

their

definitions

are

generated

by

ETO

when

the

user

logs

on/

signs

on.

If

a

terminal

user

attempts

to

connect

to

IMS

using

a

terminal

that

is

defined

to

IMS

as

static,

then

the

user

will

use

the

defined

NODE

NAME

/

LTERM

name

combination.

If

a

terminal

user

attempts

to

connect

to

IMS

using

a

terminal

that

is

not

defined

to

IMS

as

static,

and

dynamic

terminal

support

is

available,

then

the

dynamic

terminal

product

(such

as

ETO)

will

be

used

to

determine

what

the

LTERM

name

is;

and

whether

it

is

based

on

the

user’s

USERID,

the

NODE

NAME,

or

some

other

value.

If

a

terminal

user

attempts

to

connect

to

IMS

using

a

terminal

that

is

not

defined

to

IMS

as

static,

and

dynamic

terminal

support

is

not

enabled,

then

the

user

will

be

unable

to

logon

to

IMS.

Input

Message

Origin

IMS

maintains

the

name

of

the

terminal

or

user

from

which

an

input

message

is

received.

When

a

message

is

passed

to

an

application

program,

this

is

also

made

available

to

that

program,

via

its

program

communication

block

(PCB).

This

origin

is

the

logical

terminal

name

(LTERM).

The

LTERM

name

may

be

specific

to

the

user,

or

may

be

specific

to

the

physical

location,

depending

on

how

the

IMS

system

is

defined.

See

“Terminal

Types.”

Terminal

Input

Destination

The

destination

of

the

terminal

input

is

dependent

upon

the

type

of

input.

An

input

command

goes

directly

to

the

IMS

command

processor

modules,

while

a

message

switch

or

a

transaction

are

stored

on

the

message

queue.

When

a

3270-based

message

is

received

by

IMS,

the

message

input

is

first

processed

by

message

format

service

(MFS),

except

when

input

is

from

previously

cleared

or

unformatted

screen.

MFS

provides

an

extensive

format

service

for

both

input

and

output

messages.

It

is

discussed

in

detail

in

Chapter

20,

“The

IMS

Message

Format

Service,”

on

page

207.

IBM

Confidential

124

IMS:

An

Introduction

to

IMS

When

the

input

message

is

enqueued

to

its

destination

in

the

message

queue,

the

input

processing

is

completed.

If

more

that

one

LTERM

is

defined

or

assigned

to

a

physical

terminal,

they

are

maintained

in

a

historical

chain:

the

oldest

defined

or

assigned

first.

Any

input

from

the

physical

terminal

is

considered

to

have

originated

at

the

first

logical

terminal

of

the

chain.

If,

for

some

reason

(such

as

security

or

a

stopped

LTERM),

the

first

logical

terminal

is

not

allowed

to

enter

the

message,

all

logical

terminals

on

the

input

chain

are

interrogated

in

a

chain

sequence

for

their

ability

to

enter

the

message.

The

first

appropriate

LTERM

found

is

used

as

message

origin.

If

no

LTERM

can

be

used,

the

message

is

rejected

with

an

error

message.

Message

Queueing

All

full-function

input

and

output

messages

in

IMS

are

queued

in

message

queues.

See

Figure

39

on

page

126.

For

Fast

Path

transactions,

see

“Fast

Path

Transactions

and

Message

Queues”

on

page

128.

IBM

Confidential

Chapter

13.

How

IMS

TM

Processes

Input

125

The

use

of

message

queues

allows

input

processing,

output

processing,

command

processing,

and

application

program

processing

to

be

performed

asychronously,

to

a

large

extent.

This

means,

for

example,

that

the

input

processing

of

message

A

can

be

done

in

parallel

with

the

database

processing

for

message

B

and

the

output

processing

for

message

C.

Messages

A,

B,

and

C

can

be

different

occurrences

of

the

same

or

different

message

types

and/or

transaction

codes.

Messages

in

the

IMS

message

queues

are

stored

by

destination,

priority,

and

the

time

of

arrival

in

IMS.

A

destination

can

be:

v

A

message

processing

program

(MPP),

which

is

for

transaction

input.

Ordering

is

by

transaction

code.

v

A

logical

terminal

(LTERM),

which

is

for

a

message

switch,

command

responses,

and

output

generated

by

application

programs.

The

message

queue

buffers

are

maintained

in

main

storage

(defined

by

the

MSQUEUE

macro)

unless

shared

queues

are

used.

If

the

memory-based

message

Figure

39.

Overview

of

the

Message

Queuing

Process

IBM

Confidential

126

IMS:

An

Introduction

to

IMS

|
|

queue

buffers

become

full,

messages

are

then

stored

on

the

message

queue

data

sets

on

DASD.

The

queue

blocks

in

main

storage

and

on

direct

access

storage

are

reusable.

As

far

as

possible

messages

are

stored

in

the

message

queue

buffers,

to

minimize

the

number

of

I/O

operations

required

during

processing.

Queue

Size

and

Performance

Considerations

Messages

in

the

IMS

message

queue

are

primarily

held

in

buffers

in

main

storage.

However,

when

messages

are

added

to

the

queues

faster

than

IMS

can

process

these

messages,

the

message

queue

buffers

can

fill.

In

this

situation,

any

new

messages

are

written

to

the

message

queue

data

sets.

The

performance

of

these

data

sets

then

becomes

very

important.

The

data

sets

should

be

on

a

DASD

volume

with

fast

response

times,

and

the

data

sets

should

be

appropriately

sized

to

ensure

that

there

is

always

space

available.

Multiple

Message

Queues

The

IMS

Queue

Manager

supports

concurrent

I/O

operations

to

its

message

queue

data

sets,

allowing

the

IMS

message

queue

to

be

distributed

across

multiple

physical

queue

data

sets.

This

enhancement

supports

the

long

and

short

message

queue

data

sets.

This

function

is

activated

when

more

than

one

DD

statement

per

message

queue

data

set

is

provided.

You

can

supply

up

to

ten

DD

statements

for

each

queue

data

set.

These

DD

statements

can

be

allocated

on

different

device

types,

but

LRECL

and

BLKSIZE

must

be

the

same

for

all

the

data

sets

of

a

single

queue.

IBM

strongly

recommends

that

multiple

queue

data

sets

be

used,

so

that

in

an

emergency

situation,

the

IMS

systems

performance

will

not

degrade

while

trying

to

handle

a

large

volume

of

messages

going

to

and

from

the

message

queue

data

sets.

Related

Reading:

See

the

IMS

Version

9:

Installation

Volume

1:

Installation

Verification

and

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring

for

further

detailed

guidelines

for

selecting

message

queue

parameters

such

as

block

sizes,

QPOOL

size,

queue

data

set

allocation

and

so

forth.

Shared

Queues

IMS

provides

the

facility

for

multiple

IMS

systems

in

a

sysplex

to

share

a

single

set

of

message

queues.

This

function

is

known

as

IMS

shared

queues

and

the

messages

are

held

in

structures

in

a

coupling

facility.

All

the

IMS

subsystems

in

the

sysplex

share

a

common

set

of

queues

for

all

non-command

messages

(that

is,

input,

output,

message

switch,

and

Fast

Path

messages).

A

message

that

is

placed

on

a

shared

queue

can

be

processed

by

any

of

several

IMS

subsystems

in

the

share

queues

group

as

long

as

the

IMS

has

the

resources

to

process

the

message.

The

shared-queues

function

is

optional

and

you

can

continue

to

process

with

the

non-sysplex

message

queue

buffers

and

message

queue

data

sets.

The

benefits

in

using

shared

queues

enables

automatic

workload

balancing

across

all

IMS

subsystems

in

a

Sysplex.

New

IMS

subsystems

can

be

dynamically

added

to

the

Sysplex,

and

share

the

queues

as

workload

increases,

allowing

in

incremental

growth

in

capacity

The

use

of

shared

queues

can

also

provide

increased

reliability

and

failure

isolation:

if

one

IMS

subsystem

in

the

Sysplex

fails,

any

of

the

remaining

IMS

subsystems

can

process

the

work

that

is

waiting

in

the

shared

queues.

IBM

Confidential

Chapter

13.

How

IMS

TM

Processes

Input

127

|
|
|
|

Related

Reading:

For

more

information

about

IMS

and

shared

queues

in

a

sysplex

environment,

see

Chapter

30,

“Introduction

to

Parallel

Sysplex,”

on

page

315.

Fast

Path

Transactions

and

Message

Queues

Fast

Path

transactions

do

not

use

the

standard

IMS

message

queues.

Fast

Path

transactions

are

scheduled

by

a

separate

function

within

the

IMS

transaction

manager,

called

the

Expedited

Message

Handler

(EMH).

For

further

scheduling

information,

see

Chapter

14,

“Fast

Path

Transactions,”

on

page

135.

APPC

Driven

Transactions

and

Message

Queues

There

are

two

types

of

APPC

transactions,

implicit

and

explicit.

With

implicit

APPC

transactions,

IMS

receives

a

transaction

request

via

APPC.

This

transaction

is

placed

onto

the

IMS

message

queues

in

the

same

way

as

a

3270-generated

transaction.

The

message

is

passed

to

an

MPP

for

processing,

and

the

response

is

routed

back

to

the

originating

APPC

partner.

The

MPP

program

uses

the

DL/I

interface

to

receive

the

message

from

the

message

queue,

and

put

the

response

back

onto

the

message

queue.

With

explicit

APPC

transactions,

IMS

schedules

a

program

into

an

MPR

(message

processing

region).

This

program

uses

APPC

verbs

to

communicate

with

the

APPC

partner

program

to

process

the

transaction.

The

standard

IMS

messages

queues

are

not

used

for

explicit

APPC

transactions.

OTMA

Driven

Transactions

and

Message

Queues

OTMA

allows

IMS

to

receive

a

message

through

a

different

communications

protocol

(for

example,

TCP/IP

sockets,

MQ,

remote

procedure

calls,

IMS

Connect,

and

so

forth).

The

message

is

received

by

IMS,

and

it

placed

into

the

IMS

message

queue

for

processing

in

the

usual

manner.

The

response

message

is

passed

back

to

the

originator

through

OTMA.

Message

Scheduling

Scheduling

is

the

loading

of

the

appropriate

program

into

a

message

processing

region.

IMS

can

then

pass

messages

stored

on

the

IMS

message

queue

to

this

program

when

it

issues

the

Get

Unique

(GU)

IOPCB

call.

For

more

information

about

application

calls,

see

Chapter

17,

“Application

Programming

Overview,”

on

page

149.

Once

an

input

message

is

available

in

the

message

queue,

it

is

eligible

for

scheduling.

Scheduling

is

the

routing

of

a

message

in

the

input

queue

to

its

corresponding

application

program

in

the

message

processing

region.

See

Figure

40

on

page

129.

IBM

Confidential

128

IMS:

An

Introduction

to

IMS

The

linkage

between

an

input

message

(defined

by

its

transaction

code)

and

an

application

program

(defined

by

its

name)

is

established

at

system

definition

time.

Multiple

transaction

codes

can

be

linked

to

a

single

application

program,

but

only

one

application

program

can

be

linked

to

a

given

transaction

code.

The

class

in

which

a

transaction

code

with

run

is

defined

in

two

ways:

v

On

the

APPLCTN

macro

v

On

the

MSGTYPE

parameter

of

the

TRANSACT

macro

If

the

class

is

specified

on

the

APPLCTN

macro,

it

need

not

be

defined

on

the

TRANSACT

macro.

If

it

is

specified

on

both,

then

the

class

on

the

TRANSACT

macro

will

override

the

APPLCTN

macro

specification.

Figure

41

illustrates

the

definition

of

a

transaction.

Notice

the

following

about

these

transaction

definitions:

v

Transaction

DFSIVP1

has

the

class

defined

as

the

third

parameter

on

the

MSGTYPE

parameter

on

the

TRANSACT

macro.

v

Transaction

DFSIVP2

has

the

class

defined

on

the

APPLCTN

macro.

v

Both

transactions

are

assigned

to

class

1.

Figure

40.

Message

Scheduling

APPLCTN

PSB=DFSIVP1,PGMTYPE=TP

TRANSACT

CODE=IVTNO,MODE=SNGL,

X

MSGTYPE=(SNGLSEG,NONRESPONSE,1)

APPLCTN

PSB=DFSIVP2,PGMTYPE=(TP,1)

TRANSACT

CODE=IVTNO2,MODE=SNGL,

X

MSGTYPE=(SNGLSEG,NONRESPONSE)

Figure

41.

Sample

APPLCTN

Macro

Transaction

Definition

in

IMS

Stage

1

Input

IBM

Confidential

Chapter

13.

How

IMS

TM

Processes

Input

129

Transaction

Scheduling

The

transaction

scheduling

algorithm

can

be

a

very

sophisticated

algorithm,

as

it

needs

to

make

use

of

all

the

IMS

and

system

resources

in

the

most

efficient

manner

possible.

However,

most

users

do

not

need

to

use

the

power

of

the

scheduling

algorithms,

as

the

resources

available

in

IMS

today

(such

as

the

number

of

message

processing

regions)

are

much

greater

than

when

these

algorithms

were

designed

several

decades

ago.

There

are

a

few

parameters

on

the

transaction

definition

which

will

affect

the

scheduling

options.

These

are:

PROCLIM

PARMLIM

MAXRGN

PRTY

Scheduling

Conditions

The

following

conditions

must

be

met

for

a

successful

scheduling:

v

An

MPR

region

must

be

available.

Actually,

the

termination

of

a

prior

transaction

running

in

an

MPR

region

triggers

the

scheduling

process.

v

There

must

be

a

transaction

input

message

in

the

queue.

v

The

transaction

and

its

program

are

not

in

a

stopped

state.

v

Enough

buffer

pool

storage

is

available

to

load

the

program

specification

block

(PSB)

and

the

referenced

database

control

blocks

if

not

already

in

main

storage.

v

The

database

processing

intent

does

not

conflict

with

an

already

active

application

program

(a

BMP

for

instance).

Processing

intent

is

discussed

in

more

detail

in

“Database

Processing

Intent”

on

page

133.

If

the

first

transaction

code

with

a

ready

input

message

does

not

meet

all

the

above

conditions,

the

next

available

input

transaction

is

interrogated,

and

so

forth.

If

no

message

can

be

scheduled,

the

scheduling

process

is

stopped

until

another

input

message

is

enqueued.

If

the

scheduling

is

successful,

the

IMS

routines

in

the

dependent

region

load

the

corresponding

MPP

and

pass

control

to

it.

Scheduling

in

a

Dependent

Region

The

IMS

scheduler

will

assign

the

application

transaction

processing

to

a

dependent

MPR.

The

number

of

MPRs

available

to

an

IMS

system

is

999

dependent

regions.

The

transactions

are

assigned

to

classes.

The

maximum

number

of

transactions

classes

is

set

at

system

generation

time

by

the

MAXCLAS

parameter

of

the

IMSCTRL

macro.

Class

Processing

Each

dependent

MPR

can

run

up

to

four

transaction

classes.

The

order

in

which

they

are

specified

is

a

priority

sequence.

That

means

that

the

transaction

class

named

first

is

the

highest

and

the

one

named

last

is

the

lowest.

Each

MPR

can

have

a

different

sequence

of

the

same

or

different

transaction

combinations.

The

classes

are

named

on

the

PROC

statement

of

the

JCL

running

the

MPR.

Figure

42

on

page

131

shows

an

example

of

the

MPR

JCL.

The

MPR

can

be

run

as

a

JOB

or

a

started

task.

IBM

Confidential

130

IMS:

An

Introduction

to

IMS

The

classes

which

the

MPR

runs

can

be

changed

while

the

MPR

is

running.

This

is

done

through

and

/ASSIGN

command.

When

the

/ASSIGN

command

is

executed,

only

those

classes

specified

on

the

command

will

be

available

to

that

MPR.

The

changes

will

be

maintained

until

the

MPR

is

restarted,

at

which

time

the

values

on

the

PROC

statement

will

be

used

again.

Figure

43

illustrates

an

example

of

an

/ASSIGN

command.

Again

the

order

of

classes

on

the

command

is

the

priority

sequence

of

those

classes.

To

list

the

classes

assigned

to

an

MPR

the

/DISPLAY

ALL

command

can

be

used.

Figure

44

shows

the

/DISPLAY

ACTIVE

command

and

the

output.

Note

the

following

from

the

information

from

Figure

44:

v

There

are

two

MPRs.

v

The

MPR

named

SJIMSYM1

run

classes

1,

4,

6,

and

9.

v

The

MPR

named

SJIMSYM2

runs

classes

2,

3,

5,

1.

v

Class

1

has

the

highest

priority

in

MPR

SJIMSYM1

and

the

lowest

in

MPR

SJIMSYM2.

//IVP6TM11

EXEC

PROC=DFSMPR,TIME=(1440),

//

AGN=BMP01,

AGN

NAME

//

NBA=6,

//

OBA=5,

//

SOUT=’*’,

SYSOUT

CLASS

//

CL1=001,

TRANSACTION

CLASS

1

//

CL2=006,

TRANSACTION

CLASS

2

//

CL3=013,

TRANSACTION

CLASS

3

//

CL4=000,

TRANSACTION

CLASS

4

//

TLIM=10,

MPR

TERMINATION

LIMIT

//

SOD=,

SPIN-OFF

DUMP

CLASS

//

IMSID=IMSY,

IMSID

OF

IMS

CONTROL

REGION

//

PREINIT=DC,

PROCLIB

DFSINTXX

MEMBER

//

PWFI=N

PSEUDO=WFI

//*

Figure

42.

Example

of

MPR

PROC

Statement

/ASSIGN

CLASS

1

4

6

9

TO

REGION

1

Figure

43.

Example

of

/ASSIGN

CLASS

Command

/DIS

ACTIVE

REGID

JOBNAME

TYPE

TRAN/STEP

PROGRAM

STATUS

CLASS

IMSY

1

SJIMSYM1

TP

WAITING

1,

4,

6,

9

IMSY

2

SJIMSYM2

TP

WAITING

2,

3,

5,

1

IMSY

BATCHREG

BMP

NONE

IMSY

FPRGN

FP

NONE

IMSY

DBTRGN

DBT

NONE

IMSY

SJIMSYDB

DBRC

IMSY

SJIMSYDL

DLS

IMSY

VTAM

ACB

OPEN

-LOGONS

DISABLED

IMSY

IMSLU=N/A.N/A

APPC

STATUS=DISABLED

IMSY

OTMA

GROUP=IMSCGRP

STATUS=ACTIVE

IMSY

APPLID=SCSIM6YA

GRSNAME=

STATUS=DISABLED

IMSY

LINE

ACTIVE-IN

-

1

ACTIV-OUT

-

0

IMSY

NODE

ACTIVE-IN

-

0

ACTIV-OUT

-

0

IMSY

99298/155826

IMSY

Figure

44.

Example

of

/DISPLAY

ACTIVE

Command

IBM

Confidential

Chapter

13.

How

IMS

TM

Processes

Input

131

|

|
|
|

When

an

MPR

is

looking

to

find

the

a

transaction

to

schedule,

it

will

use

the

following

criteria:

1.

The

highest

priority

transaction

ready

in

the

highest

priority

class

2.

Any

other

transaction

in

the

highest

priority

class

3.

The

highest

priority

transaction

ready

in

the

second

highest

priority

class

4.

Any

other

transaction

in

the

second

priority

class

This

sequence

of

priorities

will

be

used

for

all

the

available

classes

for

this

MPR.

Note:

If

a

transaction

has

a

class

for

which

there

are

no

MPRs

currently

allowed

to

run

that

class,

the

transaction

will

not

be

scheduled

and

will

remain

on

the

input

queue.

PROCLIM

Processing

IMS

also

tries

to

increase

throughput

of

the

MPR

by

processing

more

than

one

message

for

the

same

transaction.

This

is

to

make

use

of

the

fact

that

the

program

has

already

been

loaded

into

the

MPR’s

storage,

and

the

PSB

and

DBD

control

blocks

also

have

been

loaded.

This

will

increase

the

throughput

of

the

number

of

messages

processed

by

this

MPR,

as

it

will

avoid

some

of

the

overhead

with

reloading

the

program

and

control

blocks.

At

the

completion

of

the

transaction,

IMS

with

check

the

PROCLIM

value

on

the

TRANSACT

macro

for

this

transaction.

The

MPR

will

process

the

number

of

messages

allowed

in

the

first

value

of

this

keyword

before

looking

to

see

what

other

transactions

are

available

to

be

scheduled.

This

means

the

MPR

can

process

more

transactions

without

having

to

go

through

the

scheduling

logic

for

each

transaction.

Parallel

Scheduling

A

transaction

will

only

process

in

one

MPR

at

a

time

unless

parallel

processing

is

specified.

To

allow

more

than

one

MPR

to

schedule

a

transaction

type

at

a

time,

code

the

SCHDTYP

parameter

on

the

APPLCTN

macro.

For

example:

APPLCTN

PSB=DFSIVP1,PGMTYPE=(TP,1),SCHDTYP=PARALLEL

Unless

there

are

application

restrictions

on

processing

the

message

in

strict

first-in,

first-out

sequence,

parallel

scheduling

should

be

applied

to

all

transactions.

This

will

allow

IMS

to

make

the

best

use

of

IMS

resources

while

providing

the

best

possible

response

time

to

individual

transactions.

The

PARMLIM

parameter

on

the

TRANSACT

macro

will

determine

when

a

transaction

will

be

scheduled

in

another

region.

When

the

number

of

messages

on

the

queue

for

this

transaction

exceeds

the

value

on

the

PARLIM,

another

region

will

be

used.

The

MAXRGN

parameter

is

used

to

restrict

the

number

of

MPRs

which

can

process

a

transaction

at

any

one

time.

This

is

done

to

avoid

the

situation

of

all

the

MPRs

being

tied

up

by

a

single

transaction

type.

Priority

The

PRTY

parameter

on

the

TRANSACT

macro

sets

the

priority

of

a

transaction.

This

is

how

to

differentiate

one

transaction

from

another

if

they

run

in

the

same

transaction

class.

A

transaction

of

a

higher

priority

will

be

scheduled

before

a

lower

priority

one.

However

an

MPR

will

process

a

transaction

in

a

higher

class

(for

this

MPR,

see

“Scheduling

in

a

Dependent

Region”

on

page

130

for

more

details)

before

a

transaction

in

a

lower

class

regardless

of

the

priority.

A

transaction

priority

IBM

Confidential

132

IMS:

An

Introduction

to

IMS

will

increase

once

the

number

of

transactions

on

the

message

queue

exceed

the

value

set

on

the

third

value

of

the

PRTY

keyword.

It

will

increase

to

the

value

set

on

the

second

parameter

of

the

PRTY

keyword.

This

has

the

effect

of

trying

to

avoid

a

long

queue

on

any

single

transaction

code

by

giving

it

a

higher

priority.

Another

factor

in

transaction

scheduling

is

the

PROCLIM

value.

This

is

discussed

in

“PROCLIM

Processing”

on

page

132.

Database

Processing

Intent

A

factor

that

significantly

influences

the

scheduling

process

is

the

intent

of

an

application

program

toward

the

databases

it

uses.

Intent

is

determined

by

examining

the

intent

last

associated

with

the

PSB

to

be

scheduled.

At

initial

selection,

this

process

involves

bringing

the

intent

list

into

the

control

region.

The

location

of

the

intent

list

is

maintained

in

the

PSB

directory.

If

the

analysis

of

the

intent

list

indicates

a

conflict

in

database

usage

with

a

currently

active

program

in

MPP

or

BMP

region,

the

scheduling

process

will

select

another

transaction

and

try

again.

The

database

intent

of

a

program

as

scheduling

time

is

determined

via

the

PROCOPT=

parameters

in

the

PCB.

An

conflicting

situation

during

scheduling

will

only

occur

if

a

segment

type

is

declared

exclusive

use

(PROCOPT=E)

by

the

program

being

scheduled

and

a

already

active

program

references

the

segment

in

its

PSB

(any

PROCOPT),

or

vice

versa.

Scheduling

a

BMP

A

BMP

is

initiated

in

a

standard

z/OS

address

space

via

any

regular

job

submission

facility.

This

could

be

from

either:

v

TSO

and

SUBMITing

the

job

v

Some

job

scheduling

system

However,

during

its

initialization

the

IMS

scheduler

in

the

control

region

is

invoked

to

assure

the

availability

of

the

database

resources

for

the

BMP.

Shared

Queues

Scheduling

of

transactions

in

a

shared-queues

environment

is

similar

to

those

in

a

non-shared

queues

environment.

All

the

checks,

however,

are

across

all

the

IMS

systems

in

the

shared-queues

environment,

and

obviously,

there

are

extra

considerations

as

well.

Related

Reading:

For

further

information

on

scheduling

shared

queues,

see:

v

IMS

in

the

Parallel

Sysplex:

Volume

I:

Reviewing

the

IMSplex

Technology

v

IMS

in

the

Parallel

Sysplex:

Volume

II:

Planning

the

IMSplex

v

IMS

in

the

Parallel

Sysplex:

Volume

III:

IMSplex

Implementation

and

Operations

IBM

Confidential

Chapter

13.

How

IMS

TM

Processes

Input

133

|
|

IBM

Confidential

134

IMS:

An

Introduction

to

IMS

Chapter

14.

Fast

Path

Transactions

Apart

from

standard

IMS

transactions,

there

are

two

types

of

Fast

Path

online

transactions.

They

are:

v

“Fast

Path

Exclusive

Transactions”

v

“Fast

Path

Potential

Transactions”

Fast

Path

Exclusive

Transactions

Fast

Path

schedules

input

messages

by

associating

them

with

a

load

balancing

group.

A

load

balancing

group

(BALG)

is

a

group

of

Fast

Path

input

messages

that

are

ready

for

balanced

processing

by

one

or

more

copies

of

a

Fast

Path

program.

One

LBG

exists

for

each

unique

Fast

Path

message-driven

application

program.

The

messages

for

each

LBG

are

processed

by

the

same

Fast

Path

program.

The

EMH

controls

Fast

Path

messages

by:

v

Managing

the

complete

execution

of

a

message

on

a

first-in-first-out

basis.

v

Retaining

the

messages

that

are

received

in

the

control

program’s

storage

without

using

auxiliary

storage

or

I/O

operations.

v

Supporting

multiple

copies

of

programs

for

parallel

scheduling.

v

Requiring

that

programs

operate

in

a

wait-for-input

mode.

Fast

Path

Potential

Transactions

Fast

Path

potential

transactions

are

a

mixture

of

standard

IMS

full-function

and

Fast

Path

exclusive

transactions.

The

same

transaction

code

can

be

used

to

trigger

either

a

full-function,

or

a

Fast

Path

transaction,

with

an

exit

used

to

determine

whether

this

instance

of

the

transaction

will

be

full-function,

or

Fast

Path.

IBM

Confidential

©

Copyright

IBM

Corp.

2004

135

IBM

Confidential

136

IMS:

An

Introduction

to

IMS

Chapter

15.

The

Master

Terminal

The

mission

of

the

Master

Terminal

Operator

(MTO)

is

to

monitor

and

manage

an

individual

IMS.

As

IMSs

are

joined

together

into

sharing

groups

(sharing

databases,

resources,

or

message

queues),

system

management

becomes

more

complex.

Prior

to

IMS

Version

8,

the

IMS

systems

in

sharing

groups

had

to

be

managed

individually.

IMS

Version

8

introduced

system

management

enhancements

so

that

a

single

IMS

or

multiple

IMS

systems

could

be

monitored

and

managed

from

a

single

point

of

control.

You

can

issue

commands

and

receive

responses

from

one,

many,

or

all

of

the

IMSs

in

the

group

from

this

single

point

of

control.

For

more

information

about

these

enhancements,

see

Chapter

31,

“IMSplexes,”

on

page

337.

The

master

terminal

operator

(MTO)

has

the

following

responsibilities:

v

Responsibility

for

running

IMS

The

MTO

starts

and

shuts

down

dependent

regions

and

manages

the

system

log.

v

Knowledge

of

the

ongoing

status

of

the

IMS

subsystem

The

MTO

continuously

monitors

processing

and

detects

any

error

situations.

v

Control

over

contents

of

the

system

and

network

The

MTO

can

control

the

network,

connect

other

IMS

systems,

and

perform

other

prearranged

tasks.

v

Privileged

commands

In

addition

to

routine

work,

the

MTO

responds

to

error

conditions,

changes

the

scheduling

algorithm,

alters

passwords,

and

reconfigures

the

system

as

necessary.

Table

5

shows

the

actions

usually

performed

by

the

MTO

and

the

commands

usually

reserved

for

the

MTO’s

use.

Table

5.

Master

Terminal

Operator

Actions

and

Associated

Commands

Activity

IMS

Command

Activate

IMS

(cold

start)

/ERESTART

COLDSYS

Start

a

message

region

/START

REGION

IMSMSG1

Start

communications

lines

/START

LINE

ALL

Display

message

queues

/DISPLAY

Start

another

message

region

/START

REGION

IMSMSG3

Prepare

for

VTAM

communication

/START

DC

Initiate

static

VTAM

sessions

/OPNDST

NODE

ALL

Initiate

dynamic

VTAM

sessions

/OPNDST

NODE

nodename

Send

a

message

to

terminals

/BROADCAST

Shut

down

VTAM

terminals

and

IMS

/CHECKPOINT

FREEZE

QUIESCE

Restart

IMS

(warm

start)

/NRESTART

When

the

IMS

system

is

generated,

the

IMS

master

terminal

MUST

be

included,

and

consists

of

two

components:

v

Primary

master

IBM

Confidential

©

Copyright

IBM

Corp.

2004

137

v

Secondary

master

All

messages

are

routed

to

both

the

primary

and

secondary

master

terminals.

Special

MFS

support

is

used

for

the

master

terminal.

The

following

sections

of

this

chapter

discuss

the

tasks

of

monitoring

and

managing

an

individual

IMS

using

the

MTO.

The

sections

are:

v

“The

Primary

Master”

v

“The

Secondary

Master”

on

page

139

v

“Using

the

z/OS

Console

as

the

Master

Terminal”

on

page

139

v

“Extended

MCS/EMCS

Console

Support”

on

page

139

The

Primary

Master

Traditionally,

the

primary

master

was

a

3270

display

terminal

of

1920

characters

(24

lines

by

80

columns).

A

sample

traditional

IMS

master

terminal

is

shown

in

Figure

45.

The

display

screen

of

the

master

terminal

is

divided

into

four

areas.

They

are

the:

Message

area

The

message

area

is

for

IMS

command

output

(except

/DISPLAY

and

/RDISPLAY),

message

switch

output

that

uses

a

message

output

descriptor

name

beginning

with

DFSMO

(see

MFS),

and

IMS

system

messages.

Display

area

The

display

area

is

for

/DISPLAY

and

/RDISPLAY

command

output.

Warning

message

area

The

warning

message

area

is

for

the

following

warning

messages:

v

MASTER

LINES

WAITING

v

MASTER

WAITING

v

DISPLAY

LINES

WAITING

v

USER

MESSAGE

WAITING

To

display

these

messages

or

lines,

press

PA1.

An

IMS

password

can

also

be

entered

in

this

area

after

the

“PASSWORD”

literal.

User

input

area

The

user

input

area

is

for

operator

input.

03/04/01

14:49:48

IMSC

DFS249

14:43:46

NO

INPUT

MESSAGE

CREATED

DFS994I

COLD

START

COMPLETED

DFS0653I

PROCECTED

CONVERSATION

PROCESSING

WITH

RRS/MVS

ENABLED

DFS2360I

14:29:28

XCF

GROUP

JOINED

SUCCESSFULLY.

--

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

PASSWORD:

-

Figure

45.

Master

Terminal

Screen

IBM

Confidential

138

IMS:

An

Introduction

to

IMS

Program

function

key

11

or

PA2

requests

the

next

output

message

and

program

function

key

12

requests

the

Copy

function

if

it

is

a

remote

terminal.

The

Secondary

Master

Traditionally,

the

secondary

master

was

a

3270

printer

terminal.

This

usage

has

also

been

phased

out

in

many

sites,

who

now

have

the

secondary

master

defined

as

spooled

devices

to

IMS,

in

effect

writing

the

messages

to

physical

data

sets.

In

this

way,

the

secondary

master

can

be

used

as

an

online

log

of

events

within

IMS.

To

accomplish

this,

the

definitions

in

Figure

46

needs

to

be

put

into

the

IMS

Stage

1

system

definition.

These

definitions

need

to

follow

the

COMM

macro

and

before

any

VTAM

terminal

definitions.

To

complete

the

definitions,

code

SPL1

and

SPL2

DD

statements

in

the

IMS

control

region

JCL.

The

data

sets

should

be

allocated

with

the

following

DCB

information:

DCB=(RECFM=VB,LRECL=1404,BLKSIZE=1414)

Using

the

z/OS

Console

as

the

Master

Terminal

IMS

always

has

a

communications

path

with

the

z/OS

system

console.

The

write-to-operator

(WTO)

and

write-to-operator-with-reply

(WTOR)

facilities

are

used

for

this.

Whenever

the

IMS

control

region

is

active,

there

is

an

outstanding

message

requesting

reply

on

the

z/OS

system

console.

This

can

be

used

to

enter

commands

for

the

control

region.

All

functions

available

to

the

IMS

master

terminal

are

available

to

the

system

console.

The

system

console

and

master

terminal

can

be

used

concurrently,

to

control

the

system.

Usually,

however,

the

system

console’s

primary

purpose

is

as

a

backup

to

the

master

terminal.

The

system

console

is

defined

as

IMS

line

number

one

by

default.

Extended

MCS/EMCS

Console

Support

IMS

can

be

also

communicated

with

using

the

MCS/EMCS

console

support.

Any

z/OS

console

can

issue

a

command

directly

to

IMS,

using

either

a

command

recognition

character

(CRC)

as

defined

at

IMS

startup,

or

using

the

4-character

IMS

ID

to

be

able

to

issue

commands.

This

interface

has

the

option

of

using

RACF

or

exit

routines

for

command

security.

For

further

details,

see

Chapter

24,

“IMS

Security,”

on

page

253.

*

LINEGRP

DDNAME=(SPL1,SPL2),UNITYPE=SPOOL

LINE

BUFSIZE=1420

TERMINAL

FEAT=AUTOSCH

NAME

(SEC,SECONDARY)

Figure

46.

Sample

JCL

for

the

Secondary

Master

Spool

IBM

Confidential

Chapter

15.

The

Master

Terminal

139

IBM

Confidential

140

IMS:

An

Introduction

to

IMS

Chapter

16.

Application

Program

Processing

for

IMS

TM

Once

an

application

program

is

scheduled

in

a

dependent

region,

it

is

loaded

into

that

region

by

IMS.

The

following

sections

are

covered

in

this

chapter:

v

“Flow

of

Message

Processing

Programs

(MPPs)”

v

“Role

of

the

PSB”

on

page

142

v

“DL/I

Message

Calls”

on

page

142

v

“Program

Isolation

and

Dynamic

Logging”

on

page

143

v

“Internal

Resource

Lock

Manager

(IRLM)”

on

page

144

v

“Abnormal

Application

Program

Termination”

on

page

144

v

“Conversational

Processing”

on

page

145

v

“Output

Message

Processing”

on

page

145

v

“Logging,

Checkpointing,

and

Restarting”

on

page

145

v

“Message

Switching”

on

page

146

Flow

of

Message

Processing

Programs

(MPPs)

The

scheduled

program

in

the

MPR

is

given

control

after

it

is

loaded.

The

normal

processing

steps

of

an

MPP

are

described

in

the

list

that

follows

Figure

47

on

page

142.

IBM

Confidential

©

Copyright

IBM

Corp.

2004

141

1.

Retrieve

the

input

message

by

using

a

DL/I

message

call.

2.

Check

the

input

message

for

syntax

errors.

3.

Process

the

input

message,

requesting

necessary

IMS

database

accesses.

4.

Send

output

to

the

originating

and/or

other

(for

example,

printer)

logical

terminals

by

using

DL/I

message

calls.

5.

Retrieve

the

next

input

message

or

terminate.

Role

of

the

PSB

The

program

specification

block

(PSB)

for

an

MPP

or

a

BMP

contains,

one

or

more

PCBs

for

logical

terminal

linkage,

in

addition

to

database

PCBs.

The

very

first

PCB

always

identifies

the

originating

logical

terminal

(IOPCB).

This

PCB

must

be

referenced

in

the

get

unique

(GU)

and

get

next

(GN)

message

calls.

It

must

also

be

used

when

inserting

output

messages

to

that

LTERM.

In

addition,

one

or

more

alternate

output

PCBs

can

be

defined.

Their

LTERM

destinations

can

be

defined

in

the

PCBs

or

set

dynamically

with

change

destination

calls.

DL/I

Message

Calls

The

same

DL/I

language

interface

that

is

used

for

the

access

of

databases

is

used

to

access

the

message

queues.

The

principal

DL/I

message

call

function

codes

are:

Figure

47.

Overview

of

Basic

Flow

Through

a

MPP

or

BMP

Address

Space

IBM

Confidential

142

IMS:

An

Introduction

to

IMS

GU

(get

unique)

This

call

must

be

used

to

retrieve

the

first,

or

only,

segment

of

the

input

message.

GN

(get

next)

This

call

must

be

used

to

retrieve

second

and

subsequent

message

segments.

ISRT

(insert)

This

call

must

be

used

to

insert

an

output

message

segment

into

the

output

message

queue.

Note:

These

output

message(s)

will

not

be

sent

until

the

MPP

terminates

or

requests

another

input

message

by

using

a

get

unique

call.

CHNG

(change

destination)

This

call

can

be

used

to

set

the

output

destination

for

subsequent

insert

calls.

Program

Isolation

and

Dynamic

Logging

When

processing

DL/I

database

calls,

the

IMS

program

isolation

function

will

ensure

database

integrity.

With

program

isolation,

all

activity

(database

modifications

and

message

creation)

of

an

application

program

is

isolated

from

any

other

application

programs

running

in

the

system

until

an

application

program

commits,

by

reaching

a

synchronization

point,

the

data

it

has

modified

or

created.

This

ensures

that

only

committed

data

can

be

used

by

concurrent

application

programs.

A

synchronization

point

is

established

with

a

get

unique

call

for

a

new

input

message

(single

mode)

and/or

a

checkpoint

call

(BMP

only),

or

program

normal

termination

(GOBACK

or

RETURN).

Program

isolation

allows

two

or

more

application

programs

to

concurrently

execute

with

common

data

segment

types

even

when

processing

intent

is

segment

update,

add,

or

delete.

This

is

done

by

a

dynamic

enqueue/dequeue

routine

which

enqueues

the

affected

database

elements

(segments,

pointers,

free

space

elements,

etc.)

between

synchronization

points.

At

the

same

time,

the

dynamic

log

modules

log

the

prior

database

record

images

between

those

synchronization

points.

This

makes

it

possible

to

dynamically

back

out

the

effects

of

an

application

program

that

terminates

abnormally,

without

affecting

the

integrity

of

the

databases

controlled

by

IMS.

It

does

not

affect

the

activity

of

other

application

program(s)

running

concurrently

in

the

system.

With

program

isolation

and

dynamic

backout,

it

is

possible

to

provide

database

segment

occurrence

level

control

to

application

programs.

A

means

is

provided

for

resolving

possible

deadlock

situations

in

a

manner

transparent

to

the

application

program.

One

example

of

a

deadlock

occurs

in

the

following

sequence

of

events:

1.

Program

A

updates

database

element

X.

2.

Program

B

updates

database

element

Y.

3.

Program

A

requests

Y

and

must

wait

for

the

synchronization

point

of

program

B.

4.

Program

B

in

turn

requests

X

and

must

wait

for

the

synchronization

point

of

program

A.

IBM

Confidential

Chapter

16.

Application

Program

Processing

for

IMS

TM

143

A

deadlock

has

now

occurred:

both

programs

are

waiting

for

each

other’s

synchronization

point.

The

dynamic

enqueue/dequeue

routines

of

IMS

intercept

possible

deadlocks

during

enqueue

processing

(in

the

above

example,

during

enqueue

processing

of

event

4).

When

a

deadlock

situation

is

detected,

IMS

abnormally

terminates

(pseudo

abends)

one

of

the

application

programs

involved

in

the

deadlock.

The

activity

of

the

terminated

program

is

dynamically

backed

out

to

a

previous

synchronization

point.

Its

held

resources

are

freed.

This

allows

the

other

program

to

process

to

completion.

The

transaction

that

was

being

processed

by

the

abnormal

terminated

program

is

saved.

The

application

program

is

an

MPP,

it

is

rescheduled.

For

a

BMP

region,

the

job

must

be

restarted.

This

process

is

transparent

to

application

programs

and

terminal

operators.

There

are

two

situations

where

the

enqueue/dequeue

routines

of

program

isolation

are

not

used

in

processing

a

database

call:

v

If

PROCOPT=GO

(read

only)

is

specified

for

the

referenced

segment

(s)

of

the

call.

v

If

PROCOPT=E

(exclusive)

is

specified

for

the

referenced

segment

(s)

in

the

call.

Notice

that

possible

conflicts

with

exclusive

extent

are

resolved

during

scheduling

time

and,

as

such,

cannot

occur

at

call

time.

Notes:

1.

With

the

GO

option,

a

program

can

retrieve

data

which

has

been

altered

or

modified

by

another

program

still

active

in

another

region,

and

database

changes

made

by

that

program

are

subject

to

being

backed

out.

2.

Exclusive

intent

may

be

required

for

long-running

BMP

programs

that

do

not

issue

checkpoint

calls.

Otherwise,

an

excessively

large

enqueue/dequeue

table

in

main

storage

may

result.

3.

Even

when

PROCOPT=E

is

specified,

dynamic

logging

will

be

done

for

database

changes.

The

ultimate

way

to

limit

the

length

of

the

dynamic

log

chain

in

a

BMP

is

by

using

the

XRST/CHKP

calls.

The

chain

is

deleted

at

each

CHKP

call

because

it

constitutes

a

synchronization

point.

4.

If

one

MPP

and

one

BMP

are

involved

in

a

deadlock

situation,

the

MPP

will

be

subject

to

the

abnormal

termination,

backout,

and

reschedule

process.

Internal

Resource

Lock

Manager

(IRLM)

When

IMS

is

involved

in

a

data-sharing

environment

with

other

IMS

systems,

IRLM

is

used

instead

of

program

isolation

for

lock

management.

See

“Internal

Resource

Lock

Manager

(IRLM)”

on

page

21

for

further

details.

Abnormal

Application

Program

Termination

When

a

message

or

batch-message

processing

application

program

is

abnormally

terminated

for

other

reasons

than

deadlock

resolution,

internal

commands

are

issued

to

prevent

rescheduling.

These

commands

are

the

equivalent

of

a

/STOP

command.

They

prevent

continued

use

of

the

program

and

the

transaction

code

in

process

at

the

time

of

abnormal

termination.

The

master

terminal

operator

can

restart

either

or

both

stopped

resources.

At

the

time

abnormal

termination

occurs,

a

message

is

issued

to

the

master

terminal

and

to

the

input

terminal

that

identifies

the

application

program,

transaction

code,

and

input

terminal.

It

also

contains

the

system

and

user

completion

codes.

In

IBM

Confidential

144

IMS:

An

Introduction

to

IMS

|
|

addition,

the

first

segment

of

the

input

transaction,

in

process

by

the

application

at

abnormal

termination,

is

displayed

on

the

master

terminal.

The

database

changes

of

a

failing

program

are

dynamically

backed-out.

Also,

any

of

its

output

messages

that

were

inserted

in

the

message

queue

since

the

last

synchronization

point

are

cancelled.

Conversational

Processing

A

transaction

code

can

be

defined

as

belonging

to

a

conversational

transaction

during

IMS

system

definition.

If

so,

an

application

program

that

processes

that

transaction,

can

interrelate

messages

from

a

given

terminal.

The

vehicle

to

accomplish

this

is

the

scratch

pad

area

(SPA).

A

unique

scratch

pad

area

is

created

for

each

physical

terminal

which

starts

a

conversational

transaction.

Each

time

an

input

message

is

entered

from

a

physical

terminal

in

conversational

mode,

its

SPA

is

presented

to

the

application

program

as

the

first

message

segment

(the

actual

input

being

the

second

segment).

Before

terminating

or

retrieving

another

message

(from

another

terminal),

the

program

must

return

the

SPA

to

the

control

region

with

a

message

ISRT

call.

The

first

time

a

SPA

is

presented

to

the

application

program

when

a

conversational

transaction

is

started

from

a

terminal,

IMS

will

format

the

SPA

with

binary

zero’s

(X'00').

If

the

program

wants

to

terminate

the

conversation,

it

can

indicate

this

by

inserting

a

blank

transaction

code

into

the

SPA.

Output

Message

Processing

As

soon

as

an

application

reaches

a

synchronization

point,

its

output

messages

in

the

message

queue

become

eligible

for

output

processing.

A

synchronization

point

is

reached

whenever

the

application

program

terminates

or

requests

a

new

message/SPA

from

the

input

queue

via

a

GU

call.

In

general,

output

messages

are

processed

by

the

Message

Format

Service

(MFS)

before

they

are

transmitted

via

the

telecommunications

access

method.

Different

output

queues

can

exist

for

a

given

LTERM,

depending

on

the

message

origin.

They

are,

in

transmission

priority:

1.

Response

messages,

that

is,

messages

generated

as

a

direct

response

(same

PCB)

to

an

input

message

from

this

terminal.

2.

Command

responses.

3.

Alternate

output

messages,

messages

generated

via

an

alternate

PCB.

Logging,

Checkpointing,

and

Restarting

To

ensure

the

integrity

of

its

databases

and

message

processing,

IMS

uses

logging

and

checkpoint/restart

processing.

In

case

of

system

failure,

either

software

or

hardware,

IMS

can

be

restarted.

This

restart

includes

the

repositioning

of

users’

terminals,

transactions,

and

databases.

Related

Reading:

For

further

information

on

IMS

logging

facilities,

see

Chapter

25,

“IMS

Logging,”

on

page

257.

At

regular

intervals

during

IMS

execution,

checkpoints

are

written

to

the

logs.

This

limits

the

amount

of

reprocessing

required

in

the

case

of

an

emergency

restart.

A

IBM

Confidential

Chapter

16.

Application

Program

Processing

for

IMS

TM

145

checkpoint

is

taken

after

a

specified

number

of

log

records

are

written

to

the

log

tape

after

a

checkpoint

command.

A

special

checkpoint

command

is

available

to

stop

IMS

in

an

orderly

manner.

A

special

disk

restart

data

set

is

used

to

record

the

checkpoint

identification

and

log

tape

volume

serial

numbers.

This

restart

data

set

(IMS.RDS)

is

used

during

restart

for

the

selection

of

the

correct

restart

checkpoint

and

restart

logs.

Message

Switching

A

message

switch

is

when

a

user

wishes

to

send

a

message

to

another

user.

The

basic

format

of

a

message

switch

is

the

destination

LTERM

name

followed

by

a

blank

and

the

message

text.

A

program-to-program

switch

or

program-to-program

message

switch

is

a

program

that

is

already

executing

that

requests

a

new

transaction

be

put

on

the

IMS

message

queues

for

standard

scheduling

and

execution.

This

second

transaction

can:

v

Continue

the

processing

of

the

first

transaction

(which,

in

this

case,

has

probably

terminated),

and

respond

(if

required)

to

the

originating

terminal,

which

is

probably

still

waiting

for

a

response.

v

Be

a

second

transaction,

purely

an

offshoot

from

the

first,

without

any

relationship

or

communications

with

the

originating

terminal.

In

this

case,

the

original

transaction

must

respond

to

the

terminal,

if

required.

IBM

Confidential

146

IMS:

An

Introduction

to

IMS

|
|
|

|
|
|

|

|
|
|

|
|
|

Part

4.

IMS

Application

Development

Chapter

17.

Application

Programming

Overview

.

.

.

.

.

.

.

.

.

.

. 149

Java

Programs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 149

Program

Structure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 149

Entry

to

the

Application

Program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 151

PCB

Mask

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 151

Calls

to

IMS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 155

Status

Code

Processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 156

Termination

of

the

Application

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 156

IMS

Setup

for

Applications

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 156

IMS

Control

Blocks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 157

Generating

IMS

Control

Blocks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 158

IMS

Database

Application

Programming

Interface

.

.

.

.

.

.

.

.

.

.

. 160

IMS

Application

Calls

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 161

IMS/DB2

Resource

Translate

Table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 161

IMS

System

Service

Calls

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 162

Chapter

18.

Application

Programming

for

the

IMS

Database

Manager

165

Introduction

to

Database

Processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 165

Application

Programming

Interfaces

to

IMS

.

.

.

.

.

.

.

.

.

.

.

.

. 166

Handling

Status

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 169

Sample

Presentation

of

a

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 169

Processing

Against

a

Single

Database

Structure

.

.

.

.

.

.

.

.

.

.

.

. 170

DL/I

Positioning

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 170

Retrieving

Segments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 171

Updating

Segments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 174

Calls

with

Command

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 176

Database

Positioning

After

DL/I

Calls

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 178

Using

Multiple

PCBs

for

One

Database

.

.

.

.

.

.

.

.

.

.

.

.

.

. 179

Processing

GSAM

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 179

Language

Specific

Programming

Considerations

.

.

.

.

.

.

.

.

.

.

.

. 180

COBOL

Programming

Considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 180

Java

Programming

Considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 182

PL/I

Programming

Considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 182

Processing

Databases

with

Logical

Relationships

.

.

.

.

.

.

.

.

.

.

.

. 184

Accessing

a

Logical

Child

in

a

Physical

Database

.

.

.

.

.

.

.

.

.

. 184

Accessing

Segments

in

a

Logical

Database

.

.

.

.

.

.

.

.

.

.

.

.

. 184

Processing

Databases

with

Secondary

Indexes

.

.

.

.

.

.

.

.

.

.

.

. 185

Accessing

Segments

by

Using

a

Secondary

Index

.

.

.

.

.

.

.

.

.

. 185

Creating

Secondary

Indexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 187

Loading

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 187

Overview

of

Loading

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 187

Loading

a

Database

with

Logical

Relationships

.

.

.

.

.

.

.

.

.

.

. 188

Loading

a

Database

with

Secondary

Indexes

.

.

.

.

.

.

.

.

.

.

.

. 189

Using

Batch

Checkpoint/Restart

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 192

Using

the

Restart

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 192

Using

the

Checkpoint

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 194

Chapter

19.

Application

Programming

for

the

IMS

Transaction

Manager

197

Application

Program

Processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 197

Role

of

the

PSB

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 199

DL/I

Message

Calls

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 199

Conversational

Processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 199

Output

Message

Processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 200

IBM

Confidential

©

Copyright

IBM

Corp.

2004

147

Application

Program

Termination

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 200

Logging

and

Checkpoint/Restart

Processing

.

.

.

.

.

.

.

.

.

.

.

.

. 201

Transaction

Manager

Application

Design

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 201

Online

Transaction

Processing

Concepts

.

.

.

.

.

.

.

.

.

.

.

.

.

. 202

Online

Program

Design

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 204

Basic

Screen

Design

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 205

Chapter

20.

The

IMS

Message

Format

Service

.

.

.

.

.

.

.

.

.

.

.

. 207

Overview

of

MFS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 207

MFS

and

3270

Devices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 209

Relationships

between

MFS

Control

Blocks

.

.

.

.

.

.

.

.

.

.

.

.

.

. 209

MFS

Control

Block

Chaining

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 210

Linkage

Between

Device

Fields

and

Message

Fields

.

.

.

.

.

.

.

.

. 210

Linkage

Between

Logical

Pages

and

Device

Pages

.

.

.

.

.

.

.

.

.

. 211

Message

Description

Linkage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 212

3270

Device

Considerations

Relative

to

Control

Block

Linkage

.

.

.

.

.

. 212

MFS

Functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 213

Input

Message

Formatting

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 213

Output

Message

Formatting

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 214

MFS

Formats

Supplied

by

IBM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 218

MFS

Control

Statements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 218

Definition

Statement

for

Message

Formats

.

.

.

.

.

.

.

.

.

.

.

.

. 218

Definition

Statement

for

Device

Formats

.

.

.

.

.

.

.

.

.

.

.

.

.

. 219

Compiler

Statement

Definitions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 219

Relationships

Between

Source

Statements

and

Control

Blocks

.

.

.

.

.

. 219

Generating

MFS

Control

Blocks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 220

Steps

for

Generating

MFS

Control

Blocks

.

.

.

.

.

.

.

.

.

.

.

.

. 220

Maintaining

the

MFS

Library

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 221

Chapter

21.

Application

Programming

in

IMS

Java

.

.

.

.

.

.

.

.

.

. 223

Environments

that

Support

IMS

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 223

IMS

Environment

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 223

WebSphere

Application

Server

for

z/OS

Environment

Overview

.

.

.

.

. 224

CICS

Environment

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 224

DB2

UDB

for

z/OS

Environment

Overview

.

.

.

.

.

.

.

.

.

.

.

.

. 224

Describing

an

IMS

Database

to

IMS

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

. 224

Accessing

an

IMS

Database

with

IMS

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

. 226

Using

JDBC

to

Access

an

IMS

Database

.

.

.

.

.

.

.

.

.

.

.

.

.

. 227

IBM

Confidential

148

IMS:

An

Introduction

to

IMS

Chapter

17.

Application

Programming

Overview

This

chapter

explains

the

basics

for

any

programming

running

in

an

IMS

environment.

IMS

programs

(online

and

batch)

have

a

different

structure

than

non-IMS

programs

(see

“Program

Structure”).

An

IMS

program

is

always

called

as

a

subroutine

of

the

IMS

region

controller.

It

also

has

to

have

a

program

specification

block

(PSB)

associated

with

it.

The

PSB

provides

and

interface

from

the

program

to

IMS

services

which

the

program

needs

to

make

use

of.

These

services

can

be:

v

Sending

or

receiving

messages

from

online

user

terminals

v

Accessing

database

records

v

Issuing

IMS

commands

v

Issuing

IMS

service

(checkpoint

or

sync)

calls

The

IMS

services

available

to

any

program

are

determined

by

the

IMS

environment

in

which

the

application

is

running.

The

following

sections

are

covered

in

this

chapter:

v

“Java

Programs”

v

“Program

Structure”

v

“IMS

Setup

for

Applications”

on

page

156

v

“IMS

Database

Application

Programming

Interface”

on

page

160

v

“IMS

Application

Calls”

on

page

161

v

“IMS/DB2

Resource

Translate

Table”

on

page

161

v

“IMS

System

Service

Calls”

on

page

162

Java

Programs

IMS

Java

application

support

(hereafter

called

IMS

Java)

allows

you

to

write

Java

application

programs

that

access

IMS

databases

from

IMS,

IBM

WebSphere

Application

Server

for

z/OS

and

OS/390,

IBM

CICS

Transaction

Server

for

z/OS,

or

IBM

DB2

Universal

Database™

for

z/OS

stored

procedures.

Related

Reading:

For

more

information

about

IMS

Java

application

programs,

see

Chapter

21,

“Application

Programming

in

IMS

Java,”

on

page

223.

Program

Structure

During

initialization,

both

the

application

program

and

its

associated

PSB

are

loaded

from

their

respective

libraries

by

the

IMS

system.

The

IMS

modules

interpret

and

execute

database

CALL

requests

issued

by

the

program.

These

modules

may

reside

in

the

same

or

different

z/OS

address

spaces

depending

on

the

environment

in

which

the

application

program

is

executing.

Application

programs

executing

in

an

online

transaction

environment

are

executed

in

a

dependent

region

called

the

message

processing

region

(MPR)

or

Fast

Path

region

(IFP).

The

programs

are

often

called

message

processing

programs

(MPP).

The

IMS

modules

that

execute

online

services

will

run

in

the

control

region

while

the

full-function

database

services

will

run

in

the

DLI

separate

address

space

(DLISAS).

The

association

of

the

application

program

and

the

PSB

is

defined

at

IMS

system

generation

time

via

the

APPLTN

and

TRANSACTION

macros.

IBM

Confidential

©

Copyright

IBM

Corp.

2004

149

|
|
|
|
|
|
|

Batch

application

programs

can

execute

in

two

different

types

of

regions.

v

Application

programs

which

need

to

make

use

of

message

processing

services

or

databases

being

used

by

online

systems

are

executed

in

a

batch

message

processing

region

(BMP).

v

Application

programs

which

can

execute

without

messages

services

execute

in

a

DLI

batch

region.

For

both

these

types

of

batch

application

programs,

the

association

of

the

application

program

to

the

PSB

is

done

on

the

PARM

keyword

on

the

EXEC

statement.

The

application

program

interfaces

with

IMS

by

using

the

following

program

elements:

v

An

ENTRY

statement

specifying

the

PCBs

utilized

by

the

program

(see

“Entry

to

the

Application

Program”

on

page

151)

v

A

PCB-mask

which

corresponds

to

the

information

maintained

in

the

pre-constructed

PCB

and

which

receives

return

information

from

IMS

(see

“PCB

Mask”

on

page

151)

v

An

I/O

area

for

passing

data

segments

to

and

from

the

databases

v

Calls

to

DL/I

specifying

processing

functions

(see

“Calls

to

IMS”

on

page

155)

v

Status

code

processing

(see

“Status

Code

Processing”

on

page

156)

v

A

termination

statement

(see

“Termination

of

the

Application”

on

page

156)

The

PCB

mask(s)

and

I/O

areas

are

described

in

the

program’s

data

declaration

portion.

Program

entry,

calls

to

IMS

processing,

and

program

termination

are

described

in

the

program’s

procedural

portion.

Calls

to

IMS,

processing

statements,

and

program

termination

can

reference

PCB

mask(s)

and/or

I/O

areas.

In

addition,

IMS

can

reference

these

data

areas.

Figure

48

on

page

151

illustrates

how

these

elements

are

functionally

structured

in

a

program

and

how

they

relate

to

IMS.

The

individual

program

elements

mentioned

in

the

previous

list,

are

discussed

in

the

sections

that

follow

Figure

48

on

page

151.

IBM

Confidential

150

IMS:

An

Introduction

to

IMS

Entry

to

the

Application

Program

Referring

to

Figure

48,

when

the

operating

system

gives

control

to

the

IMS

control

facility,

the

IMS

control

program

eventually

passes

control

to

the

application

program

(through

the

entry

point

as

defined

below).

At

entry,

all

the

PCB-names

used

by

the

application

program

are

specified.

The

order

of

the

PCB-names

in

the

entry

statement

must

be

the

same

as

in

the

PSB

for

this

application

program.

The

sequence

of

PCBs

in

the

linkage

section

or

declaration

portion

of

the

application

program

need

not

be

the

same

as

in

the

entry

statement.

Notes:

1.

Batch

DL/I

programs

cannot

be

passed

parameter

information

using

the

PARM

field

from

the

EXEC

statement.

2.

TP

PCBs

must

proceed

database

PCBs

in

the

PSB.

PCB

Mask

A

mask

or

skeleton

database

PCB

structure

is

used

by

the

application

program

to

access

data

from

a

TP

or

database

PCB.

One

PCB

is

required

for

each

view

of

a

database

or

online

service.

The

program

views

a

hierarchical

data

structure

by

using

this

mask.

Figure

48.

Structure

of

an

IMS

Application

Program

IBM

Confidential

Chapter

17.

Application

Programming

Overview

151

|

|
|
|
|

One

PCB

is

required

for

each

data

structure.

An

example

of

a

database

PCB

mask

is

shown

in

Figure

50

on

page

153

and

explained

in

the

text

that

follows

the

figure.

An

example

of

an

TP

PCB

mask

is

shown

in

Figure

52

on

page

155.

As

the

PCB

does

not

actually

reside

in

the

application

program,

care

must

be

taken

to

define

the

PCB

mask

as

an

assembler

dsect,

a

COBOL

linkage

section

entry,

or

a

PL/I

based

variable.

The

PCB

provides

specific

areas

used

by

IMS

to

inform

the

application

program

of

the

results

of

its

calls.

At

execution

time,

all

PCB

entries

are

controlled

by

IMS.

Access

to

the

PCB

entries

by

the

application

program

is

for

read-only

purposes.

The

PCB

masks

for

an

TP

PCB

and

a

database

PCB

are

different.

An

example

of

both

are

shown

in

Figure

49.

Database

PCB

Mask

Figure

50

on

page

153

shows

an

example

of

a

DLI

program’s

PCB

mask,

which

defines

the

PCB

area

used

by

IMS

to

return

the

results

of

the

call.

Figure

49.

Application

PCB

Structure

IBM

Confidential

152

IMS:

An

Introduction

to

IMS

The

following

items

comprise

a

PCB

for

a

hierarchical

data

structure

from

a

database:

Name

of

the

PCB

This

is

the

name

of

the

area

which

refers

to

the

entire

structure

of

PCB

fields.

It

is

used

in

program

statements.

This

name

is

not

a

field

in

the

PCB.

It

is

the

01

level

name

in

the

COBOL

mask

inFigure

50.

Name

of

the

database

This

is

the

first

field

in

the

PCB

and

provides

the

DBD

name

from

the

library

of

database

descriptions

associated

with

a

particular

database.

It

contains

character

data

and

is

eight

bytes

long.

Segment

hierarchy

level

indicator

IMS

uses

this

area

to

identify

the

level

number

of

the

last

segment

encountered

which

satisfied

a

level

of

the

call.

When

a

retrieve

is

successfully

completed,

the

level

number

of

the

retrieved

segment

is

placed

here.

If

the

retrieve

is

unsuccessful,

the

level

number

returned

is

that

of

the

last

segment

that

satisfied

the

search

criteria

along

the

path

from

the

root

(the

root

segment

level

being

‘01’)

to

the

desired

segment.

If

the

call

is

completely

unsatisfied,

the

level

returned

is

‘00’.

This

field

contains

character

data:

it

is

two

bytes

long

and

is

a

right-justified

numeric

value.

DL/I

status

code

A

status

code

indicating

the

results

of

the

DL/I

call

is

placed

in

this

field

and

remains

here

until

another

DL/I

call

uses

this

PCB.

This

field

contains

two

bytes

of

character

data.

When

a

successful

call

is

executed,

DL/I

sets

this

field

to

blanks

or

to

an

informative

status

indication.

A

complete

list

of

DL/I

status

codes

can

be

found

in

the

IMS

Version

9:

Messages

and

Codes,

Volume

1.

DL/I

processing

options

This

area

contains

a

character

code

which

tells

DL/I

the

“processing

intent”

of

the

program

against

this

database

(that

is,

the

kinds

of

calls

that

may

be

used

by

the

program

for

processing

data

in

this

database).

This

field

is

four

bytes

long.

It

is

left-justified.

It

does

not

change

from

call

to

call.

It

gives

the

default

value

coded

in

the

PCB

PROCOPT

parameter,

although

this

value

may

be

different

for

each

segment.

DL/I

will

not

allow

the

application

to

change

this

field,

nor

any

other

field

in

the

PCB.

Reserved

area

for

IMS

IMS

uses

this

area

for

its

own

internal

linkage

related

to

an

application

program.

This

field

is

one

fullword

(4

bytes),

binary.

Segment

name

feedback

area

IMS

fills

this

area

with

the

name

of

the

last

segment

encountered

which

satisfied

a

level

of

the

call.

When

a

retrieve

call

is

successful,

the

name

of

the

retrieved

segment

is

placed

here.

If

a

retrieve

is

unsuccessful,

the

name

01

PCBNAME.

02

DBD-NAME

PICTURE

X(8).

02

SEG-LEVEL

PICTURE

XX.

02

STATUS-CODE

PICTURE

XX.

02

PROC-OPTIONS

PICTURE

XXXX.

02

RESERVED-DLI

PICTURE

S9(5).

02

SEG-NAME

PICTURE

X(8).

02

LENGTH-FB-KEY

PICTURE

S9(5).

02

NUMB-SENS-SEGS

PICTURE

S9(5).

02

KEY-FB-AREA

PICTURE

X(n).

Figure

50.

Example

of

a

Database

Application

PCB

Mask

IBM

Confidential

Chapter

17.

Application

Programming

Overview

153

returned

is

that

of

the

last

segment,

along

the

path

to

the

desired

segment,

that

satisfied

the

search

criteria.

This

field

contains

eight

bytes

of

character

data.

This

field

may

be

useful

in

GN

calls.

If

the

status

code

is

‘AI’

(data

management

open

error),

the

DD

name

of

the

related

data

set

is

returned

in

this

area.

Length

of

key

feedback

area

This

entry

specifies

the

current

active

length

of

the

key

feedback

area

described

below.

This

field

is

one

fullword

(4

bytes),

binary.

Number

of

sensitive

segments

This

entry

specifies

the

number

of

segment

types

in

the

database

to

which

the

application

program

is

sensitive.

This

would

represent

a

count

of

the

number

of

segments

in

the

logical

data

structure

viewed

through

this

PCB.

This

field

is

one

fullword

(4

bytes),

binary.

Key

feedback

area

IMS

places

in

this

area

the

concatenated

key

of

the

last

segment

encountered

which

satisfied

a

level

of

the

call.

When

a

retrieve

is

successful,

the

key

of

the

requested

segment

and

the

key

field

of

each

segment

along

the

path

to

the

requested

segment

are

concatenated

and

placed

in

this

area.

The

key

fields

are

positioned

from

left

to

right,

beginning

with

the

root

segment

key

and

following

the

hierarchical

path.

When

a

retrieve

is

unsuccessful,

the

keys

of

all

segments

along

the

path

to

the

requested

segment,

for

which

the

search

was

successful,

are

placed

in

this

area.

Segments

without

sequence

fields

are

not

represented

in

this

area.

Note:

This

area

is

never

cleared,

so

it

should

not

be

used

after

a

completely

unsuccessful

call.

It

will

contain

information

from

a

previous

call.

See

Figure

51

for

an

illustration

of

concatenated

keys.

TP

PCB

Mask

Figure

52

on

page

155

shows

an

example

of

an

online

program’s

PCB

mask,

which

defines

the

PCB

area

used

by

IMS

to

return

the

results

of

the

call.

Figure

51.

Examples

of

Concatenated

Keys

IBM

Confidential

154

IMS:

An

Introduction

to

IMS

Calls

to

IMS

Actual

processing

of

IMS

messages,

commands,

databases

and

services

are

accomplished

using

a

set

of

input/output

functional

call

requests.

A

call

request

is

composed

of

a

CALL

statement

with

an

argument

list.

The

argument

list

will

vary

depending

on

the

type

of

call

to

be

made.The

argument

list

will

consists

of

the

following

parameters:

v

Function

call

v

PCB

name

v

I/O

area

v

Segment

search

argument

(SAA)

(database

calls

only)

Table

6

shows

a

brief

explanation

of

the

argument

list

items.

The

argument

list

items

for

database

processing

are

discussed

in

more

detail

in

Chapter

18,

“Application

Programming

for

the

IMS

Database

Manager,”

on

page

165.

The

online

services

and

commands

argument

list

items

are

discussed

in

more

detail

in

Chapter

19,

“Application

Programming

for

the

IMS

Transaction

Manager,”

on

page

197.

Table

6.

IMS

Call

Argument

List

Application

Component

Description

Function

Identifies

the

DL/I

function

to

be

performed.

This

argument

is

the

name

of

the

four

character

field

which

describes

I/O

operation.

The

DL/I

functions

are

described

in

the

individual

chapters

PCB

name

The

name

of

the

database

program

communication

block

(PCB).

It

is

the

name

of

the

PCB

within

the

PSB

that

identifies

which

specific

data

structure

the

application

program

wishes

to

process.

The

PCB

is

defined

in

more

detail

in

“PCB

Mask”

on

page

151

I/O

area

The

name

of

a

I/O

work

area.

This

is

an

area

of

the

application

program

into

which

DL/I

puts

a

requested

segment,

or

from

which

DL/I

takes

a

designed

segment.

If

this

a

common

area

is

used

to

process

multiple

calls

it

must

be

long

enough

to

hold

the

longest

path

of

segments

to

be

processed

SSA1...SSAn

The

names

of

the

Segment

Search

Arguments

(SSAs).

These

are

optional

depending

on

the

type

of

call

issued.

Used

only

used

for

database

calls.

The

SSA

provides

information

to

define

the

segment

to

be

retrieved

or

written.

01

PCBNAME.

02

DBD-NAME

PICTURE

X(8).

02

SEG-LEVEL

PICTURE

XX.

02

STATUS-CODE

PICTURE

XX.

02

PROC-OPTIONS

PICTURE

XXXX.

02

RESERVED-DLI

PICTURE

S9(5).

02

SEG-NAME

PICTURE

X(8).

02

LENGTH-FB-KEY

PICTURE

S9(5).

02

NUMB-SENS-SEGS

PICTURE

S9(5).

02

KEY-FB-AREA

PICTURE

X(n).

Figure

52.

Example

of

an

Online

Application

PCB

Mask

IBM

Confidential

Chapter

17.

Application

Programming

Overview

155

Status

Code

Processing

After

each

IMS

call,

a

two-byte

status

code

is

returned

in

the

PCB

which

is

used

for

that

call.

There

are

three

categories

of

status

codes:

v

The

blank

status

code,

indicating

a

successful

call

v

Exceptional

conditions

and

warning

status

codes

from

an

application

point

of

view

v

Error

status

codes,

specifying

an

error

condition

in

the

application

program

and/or

IMS

The

grouping

of

status

codes

in

the

above

categories

is

somewhat

installation

dependent.

This

book,

however,

will

give

a

basic

recommendation

after

each

specific

call

function

discussion.

It

is

also

recommended

that

you

use

a

standard

procedure

for

status

code

checking

and

the

handling

of

error

status

code.

The

first

two

categories

should

be

handled

by

the

application

program

after

each

single

call.

Figure

53

gives

an

example

using

COBOL.

Notice

that

it

is

more

convenient

to

directly

test

the

regular

exceptions

in-line

instead

of

branching

to

a

status

code

check

routine.

In

this

way,

you

clearly

see

the

processing

of

conditions

that

you

wish

to

handle

from

an

application

point

of

view,

leaving

the

real

error

situations

to

central

status

code

error

routine.

Termination

of

the

Application

At

the

end

of

the

processing

of

the

application

program,

control

must

be

returned

to

the

IMS

control

program.

The

following

list

shows

examples

of

the

termination

statements.

Language

Return

Statement

Java

return;

COBOL

GOBACK.

PL/I

RETURN;

ASSEMBLER

RETURN(14,12),RC=0

Warning:

Returning

to

IMS

causes

storage

that

was

occupied

by

your

program

to

be

released

because

IMS

links

to

your

application

program.

Therefore

you

should

close

all

non-DL/I

data

sets

for

COBOL

and

Assembler

before

return,

to

prevent

abnormal

termination

during

close

processing

by

z/OS.

PL/I

automatically

causes

all

files

to

be

closed

upon

return.

IMS

Setup

for

Applications

Before

you

can

run

an

application

program

under

IMS,

control

blocks

must

be

defined

and

generated.

The

following

sections

cover

this

topic.

v

“IMS

Control

Blocks”

on

page

157

v

“Generating

IMS

Control

Blocks”

on

page

158

CALL

‘CBLTDLI’

USING

....

IF

PCB-STATUS

EQ

‘GE’

PERFORM

PRINT-NOT-FOUND.

IF

PCB

STATUS

NE

‘bb’

PERFORM

STATUS-ERROR.

everything

okay,

proceed...

Figure

53.

Example

of

a

COBOL

Application

Program

Testing

Status

Codes

IBM

Confidential

156

IMS:

An

Introduction

to

IMS

IMS

Control

Blocks

A

program

specification

block

generation

(PSBGEN)

must

be

performed

to

create

the

program

specification

block

(PSB)

for

the

application

program

before

the

program

can

be

run.

The

PSB

contains

one

PCB

for

each

DL/I

database

(logical

or

physical)

the

application

program

will

access.

The

PCBs

specify

which

segments

the

program

will

use

and

the

kind

of

access

(retrieve,

update,

insert,

delete)

the

program

is

authorized

to.

The

PSBs

are

maintained

in

one

or

more

IMS

system

libraries

called

a

PSBLIB

library.

All

IMS

databases

require

a

database

descriptor

block

(DBD)

created

to

have

access

to

any

IMS

databases.

The

details

of

these

control

blocks

are

describe

in

“Generating

IMS

Control

Blocks”

on

page

158.

The

database

DBD

is

assembled

into

a

system

library

called

a

DBDLIB.

The

IMS

system

needs

to

combine

and

expand

the

PSB

and

DBD

control

blocks

into

an

internal

format

called

access

control

blocks

(ACBs).

The

Application

Control

Blocks

Maintenance

Utility

is

used

to

create

the

ACBs.

In

a

batch

DLI

environment,

the

ACB

blocks

are

either

built

dynamically

at

step

initialization

time

(as

specified

in

the

DLIBATCH

procedure)

or

the

ACB

blocks

are

built

by

running

the

ACB

maintenance

utility

(as

specified

in

the

DBBBATCH

procedure).

In

an

online

environment,

the

ACB

blocks

need

to

be

created

before

an

application

can

be

scheduled

and

run.

The

ACB

utility

is

run

offline

and

the

resulting

control

blocks

are

placed

in

an

ACB

library.

The

IMS

system

needs

to

access

these

control

blocks

(DBDs

and

PSBs)

in

order

to

define

the

applications

use

of

the

varies

IMS

resources

required.

Depending

on

which

environment

the

application

program

is

executed

in

will

determine

how

IMS

accesses

those

control

blocks.

See

Figure

54

on

page

159

to

see

a

overview

of

the

processing.

The

Transaction

Processing

(TP)

PCB

Besides

the

default

TP

PCB,

that

does

not

require

PCB

statement,

additional

PCBs

can

be

coded.

These

PCBs

are

used

to

insert

output

messages

to:

v

LTERMs

other

than

the

LTERM

which

originated

the

input

message.

A

typical

use

of

an

alternate

PCB

is

to

send

output

to

a

3270

printer

terminal.

v

A

non-conversational

transaction.

v

Another

USERID.

The

destination

of

the

output

LTERM

can

be

set

in

two

ways:

v

During

PSBGEN

by

specifying

the

LTERM/TRANNAME

in

a

alternate

PCB.

v

Dynamically

by

the

MPP

during

execution,

by

using

a

change

call

against

a

modifiable

alternate

PCB.

The

method

used

depends

on

the

PCB

statement.

The

PCB

Statement:

This

is

the

only

statement

required

to

generate

an

alternate

PCB

(multiple

occurrences

are

allowed).

Its

format

is:

PCB

TYPE=TP,LTERM=name,MODIFY=YES

The

following

list

describes

the

possible

parameters.

Keyword

Description

TYPE=TP

Required

for

all

alternate

PCBs.

IBM

Confidential

Chapter

17.

Application

Programming

Overview

157

|
|
|
|
|
|

LTERM=name

Specifies

this

PCB

is

pointing

at

a

known

LTERM

defined

in

the

IMS

system.

The

name

is

optional.

MODIFY=YES

If

the

modify

is

specified

then

the

LTERM

name

may

be

changed

by

a

CHANGE

call

within

the

application

program.

Note:

If

MODIFY=YES

is

specified,

the

MPP

must

specify

a

valid

alternate

output

LTERM

with

a

change

call

before

inserting

any

message

via

this

PCB.

The

Database

PCB

The

DB

PCB

for

an

MPP

or

BPP

can

be

simple

or

complex.

As

compared

to

the

TP

PCB,

two

additional

processing

intent

options

can

be

specified

with

the

PROCOPT=

keyword

of

the

PCB

and/or

SENSEG

statement.

Here’s

an

example

of

a

simple

database

PCB:

PCB

TYPE=DB,

DBDNAME=EXCEPTA,

PROCOPT=A,

KEYLEN=24

SENSEG

NAME=QB01,

PARENT=0

In

the

previous

example:

TYPE=DB

Required

for

all

DB

PCBs

DBDNAME=name

Specifies

the

database

that

this

PCB

is

pointing

to

PROCOPT=

Processing

options

KEYLENGTH=

The

length

of

the

concatenated

keys

for

this

database

SENSEG

the

SENSEG

statement

with

the

database

PCB

statement

to

define

a

hierarchically

related

set

of

data

segments

Related

Reading:

For

more

information

about

generating

these

control

blocks,

see

the

IMS

Version

9:

Utilities

Reference:

System.

Generating

IMS

Control

Blocks

In

addition

to

database

PCBs,

a

PSB

for

MPPs

or

BMPs

contains

one

or

more

data

communication

PCBs.

The

order

of

the

PCBs

in

the

PSB

must

be:

1.

Data

communication

PCBs

2.

Database

PCBs

3.

GSAM

PCBs

(not

allowed

for

MPPs)

One

data

communication

PCB

is

always

automatically

included

by

IMS

at

the

beginning

of

each

PSB

of

an

MPP

or

BMP.

This

default

data

communication

PSB

is

used

to

insert

output

messages

back

to

the

originating

LTERM

or

USERID.

IBM

Confidential

158

IMS:

An

Introduction

to

IMS

|
|
|

|

|
|
|
|
|
|

|

|
|

|
|

|
|

|
|

|
|
|

|
|

Note:

One

data

communication

PCB

is

always

automatically

included

by

IMS

at

the

beginning

of

each

PSB

of

an

MPP

or

BMP.

This

default

data

communication

PSB

is

used

to

insert

output

messages

back

to

the

originating

LTERM

or

USERID.

Note:

Multiple

BUILD

statements

can

be

coded

for

both

DBDs

and

PSBs,

but

the

ones

for

DBDs

must

be

first.

Generating

PSBs

The

PSBGEN

statement

is

basically

the

same

as

for

a

database

PCB.

The

IOEROPN=

parameter

must

be

omitted,

the

COMPAT=YES

parameter

is

ignored.

Figure

54.

IMS

Control

Block

Generation

and

Usage

IBM

Confidential

Chapter

17.

Application

Programming

Overview

159

Generating

ACBs

Before

PSBs

and

DBDs

can

be

used

by

the

control

region,

they

must

be

expanded

to

an

internal

control

block

format.

This

expansion

is

done

by

the

application

control

block

generation

(ACBGEN)

utility.

The

expended

control

blocks

are

maintained

in

the

IMS.

ACBLIB.

This

is

a

standard

z/OS

partitioned

data

set.

JCL

Requirements.

An

ACBGEN

procedure

is

placed

in

IMS.PROCLIB

during

IMS

system

definition.

Note:

Multiple

BUILD

statements

can

be

coded

for

both

DBDs

and

PSBs,

but

the

ones

for

DBDs

must

be

first.

Additional

Application

Processing

Intent

Options

The

PROCOPT=

keyword

is

extended

with

two

additional

processing

intent

options,

“O”

AND

“E”.

Their

meanings

are:

O

Read

only:

no

dynamic

enqueue

is

done

by

program

isolation

for

calls

against

this

database.

Can

be

specified

with

only

the

G

intent

option,

as

GO

or

GOP.

This

option

is

only

valid

for

the

PCB

statement.

CAUTION:

If

the

‘O’

option

(read-only)

is

used

for

a

PCB,

IMS

does

not

check

the

ownership

of

the

segments

returned.

This

means

that

the

read-only

user

might

get

a

segment

that

had

been

updated

by

another

user.

If

the

updating

user

should

then

abnormal

terminate,

and

he

backed

out,

the

read-only

user

would

have

a

segment

that

did

not

(and

never

did)

exist

in

the

database.

Therefore,

the

‘O’

option

user

should

not

perform

updates

based

on

data

read

with

that

option.

An

ABEND

can

occur

with

PROCOPT=GO

if

another

program

updates

pointers

when

this

program

is

following

the

pointers.

Pointers

are

updated

during

insert,

delete

and

backout

functions.

E

Forces

exclusive

use

of

this

database

or

segment

by

the

MPP/BMP.

No

other

program

which

references

this

database/segment

will

be

scheduled

in

parallel.

No

dynamic

enqueue

by

program

isolation

is

done,

but

dynamic

logging

of

database

updates

will

be

done.

E

can

be

specified

with

G,

I,

D,

B,

and

A.

IMS

Database

Application

Programming

Interface

IMS

provides

a

standard

set

of

functions

to

allow

applications

to

access

and

manipulate

data

managed

by

the

IMS

Database

Manager.

These

functions

also

allow

applications

to

access

and

process

messages

managed

by

the

IMS

Transaction

Manager

and

to

perform

certain

system

functions.

Calls

to

these

functions

can

be

made

in

a

number

of

ways:

v

A

language

specific

call

interface.

There

is

one

for

each

programming

language

that

IMS

applications

can

be

written

in.

v

A

language

independent

call

interface

for

applications

written

in

any

language

that

supports

IBM’s

language

environment

product.

v

The

application

interface

block

(AIB)

call

interface.

v

For

CICS

applications

that

access

IMS

databases,

the

application

can

use

the

CICS

command

level

interface

to

provide

IMS

DB

support.

v

REXX

EXECs

can

invoke

IMS

functions

by

using

the

IMS

adaptor

for

REXX

IBM

Confidential

160

IMS:

An

Introduction

to

IMS

IMS

Application

Calls

The

following

list

describes

the

calls

that

IMS

applications

can

use.

Get

Unique

(GU)

The

GU

(get

unique)

call

is

used

to

retrieve

a

specific

segment

or

path

of

segments

from

a

database.

At

the

same

time

it

establishes

a

position

in

a

database

from

which

additional

segments

can

be

processed

in

a

forward

direction.

Get

Next

(GN)

The

GN

(get

next)

call

is

used

to

retrieve

the

next

or

path

of

segments

from

the

database.

The

get

next

call

normally

moves

forward

in

the

hierarchy

of

a

database

from

the

current

position.

It

can

be

modified

to

start

at

an

earlier

position

than

current

position

in

the

database

through

a

command

code,

but

its

normal

function

is

to

move

forward

from

a

given

segment

to

the

next

desired

segment

in

a

database.

Hold

Form

of

Get

Calls

GHU

(get

hold

unique),

or

GHN

(get

hold

next),

indicates

the

intent

of

the

user

to

issue

a

subsequent

delete

or

replace

call.

A

get

hold

call

must

be

issued

to

retrieve

the

segment

before

issuing

a

delete

or

replace

call.

Insert

(ISRT)

The

ISRT

(insert)

call

is

used

to

insert

a

segment

or

a

path

of

segments

into

a

database.

It

is

used

to

initially

load

segments

in

databases,

and

to

add

segments

in

existing

databases.

To

control

where

occurrences

of

a

segment

type

are

inserted

into

a

database,

the

user

normally

defines

a

unique

sequence

field

in

each

segment.

When

a

unique

sequence

field

is

defined

in

a

root

segment

type,

the

sequence

field

of

each

occurrence

of

the

root

segment

type

must

contain

a

unique

value.

When

defined

for

a

dependent

segment

type,

the

sequence

field

of

each

occurrence

under

a

given

physical

parent

must

contain

a

unique

value.

If

no

sequence

field

is

defined,

a

new

occurrence

is

inserted

after

the

last

existing

one.

Delete

(DLET)

The

DLET

(delete)

call

is

used

to

delete

a

segment

from

a

database.

When

a

segment

is

deleted

from

a

DL/I

database,

its

physical

dependents,

if

any

are

also

deleted.

Replace

(REPL)

The

REPL

(replace)

call

is

used

to

replace

the

data

in

the

data

portion

of

a

segment

or

path

of

segments

in

a

database.

Sequence

fields

cannot

be

changed

with

a

replace

call.

System

Service

Calls

In

addition

to

the

functions

above,

used

to

manipulate

the

data,

there

are

a

number

of

system

service

calls

provided

to

allow

the

application

to

make

use

of

other

facilities

provided

by

IMS.

These

system

service

calls

are

described

in

Table

7

on

page

162

and

Table

8

on

page

163.

IMS/DB2

Resource

Translate

Table

When

an

IMS

transaction

accesses

DB2,

the

plan

name

used

is,

by

default,

the

same

as

the

PSB/APPLCTN

name.

It

is,

however,

possible

to

set

up

a

translation

table,

the

RTT,

that

translates

an

APPLCTN

to

a

different

DB2

plan

name.

IBM

Confidential

Chapter

17.

Application

Programming

Overview

161

This

is

described

in

the

DB2

(not

IMS)

documentation

for

attaching

DB2

to

IMS.

See

Defining

DB2

Plans

for

IMS

Applications

in

DB2

for

z/OS

Installation

Guide.

It

is

simply

a

table

of

macros,

associating

APPLCTN

macros

with

DB2

plan

names.

This

is

assembled

in

a

CSECT

(with

the

name

the

same

as

the

label

of

the

1st

macro

in

the

table).

This

must

then

be

placed

in

an

APF

authorized

library

in

the

IMS.SDFSRESL

concatenation

of

the

IMS

control

region.

The

RTT

is

pointed

to

in

the

PROCLIB

member

that

defines

the

DB2

attachment.

If

the

RTT

parameter

is

null,

the

RTT

is

not

used.

The

re-assembled

table

will

be

picked

up

the

next

time

IMS

is

stopped/started

or

when

a

stop

(/STO

SUBSYS

xxxx)

and

restart

(/STA

SUBSYS

xxxx)

of

the

DB2

connection.

IMS

System

Service

Calls

Table

7

and

Table

8

on

page

163

contain

summaries

of

the

IMS

system

service

calls

that

application

programs

can

use

in

the

DB

and

TM

environments.

Related

Reading:

For

complete

information

about

the

IMS

system

service

calls,

see:

v

IMS

Version

9:

Application

Programming:

Database

Manager

v

IMS

Version

9:

Application

Programming:

Transaction

Manager

Table

7.

Summary

of

IMS

DB

System

Service

Calls

Function

Code

Meaning

and

Use

Options

Valid

for

CHKP

(Basic)

Basic

checkpoint;

prepares

for

recovery

None

DB

batch,

TM

batch,

BMP,

MPP,

IFP

CHKP

(Symbolic)

Symbolic

checkpoint;

prepares

for

recovery

Specifies

up

to

seven

program

areas

to

be

saved

DB

batch,

TM

batch,

BMP

GMSG

Retrieves

a

message

from

the

AO

exit

routine

Waits

for

an

AOI

message

when

none

is

available

DB/DC

and

DCCTL

(BMP,

MPP,

IFP),

DB/DC

and

DBCTL

(DRA

thread),

DBCTL

(BMP

non-message

driven),

ODBA

GSCD1

on

page

163

Gets

address

of

system

contents

directory

None

DB

Batch,

TM

Batch

ICMD

Issues

an

IMS

command

and

retrieves

the

first

command

response

segment

None

DB/DC

and

DCCTL

(BMP,

MPP,

IFP),

DB/DC

and

DBCTL

(DRA

thread),

DBCTL

(BMP

non-message

driven),

ODBA

INIT

Initialize;

application

receives

data

availability

and

deadlock

occurrence

status

codes

Checks

each

PCB

database

for

data

availability

DB

batch,

TM

batch,

BMP,

MPP,

IFP,

DBCTL,

ODBA

INQY

Inquiry;

returns

information

and

status

codes

about

I/O

or

alternate

PCB

destination

type,

location,

and

session

status

Checks

each

PCB

database

for

data

availability;

returns

information

and

status

codes

about

the

current

execution

environment

DB

batch,

TM

batch,

BMP,

MPP,

IFP,

ODBA

LOG�4

on

page

163

Log;

writes

a

message

to

the

system

log

None

DB

batch,

TM

batch,

BMP,

MPP,

IFP,

DBCTL,

ODBA

PCB�4

on

page

163

Specifies

and

schedules

another

PSB

None

CICS

(DBCTL

or

DB/DC)

IBM

Confidential

162

IMS:

An

Introduction

to

IMS

Table

7.

Summary

of

IMS

DB

System

Service

Calls

(continued)

Function

Code

Meaning

and

Use

Options

Valid

for

RCMD

Retrieves

the

second

and

subsequent

command

response

segments

resulting

from

an

ICMD

call

None

DB/DC

and

DCCTL

(BMP,

MPP,

IFP),

DB/DC

and

DBCTL

(DRA

thread),

DBCTL

(BMP

non-message

driven),

ODBA

ROLB

Roll

back;

eliminates

database

updates

Returns

last

message

to

i/o

area

DB

batch,

TM

batch,

BMP,

MPP,

IFP

ROLL

Roll;

eliminates

database

updates;

abend

None

DB

batch,

TM

batch,

BMP,

MPP,

IFP

ROLS

Roll

back

to

SETS;

backs

out

database

changes

to

SETS

points

Issues

call

using

name

of

DB

PCB

or

i/o

PCB

DB

batch,

TM

batch,

BMP,

MPP,

IFP,

DBCTL,

ODBA

SETS/SETU

Set

a

backout

point;

establishes

as

many

as

nine

intermediate

backout

points

Cancels

all

existing

backout

points

DB

batch,

TM

batch,

BMP,

MPP,

IFP,

DBCTL,

ODBA

SNAP2

Collects

diagnostic

information

Choose

SNAP

options

DB

batch,

BMP,

MPP,

IFP,

CICS

(DCCTL),

ODBA

STAT3

Statistics;

retrieves

IMS

system

statistics

Choose

type

and

format

DB

batch,

BMP,

MPP,

IFP,

DBCTL,

ODBA

SYNC

Synchronization;

releases

locked

resources

Requests

commit-point

processing

BMP

TERM

Terminate;

releases

a

PSB

so

another

can

be

scheduled;

commit

database

changes

None

CICS

(DBCTL

or

DB/DC)

XRST

Extended

restart;

works

with

symbolic

checkpoint

to

restart

application

program

Specifies

up

to

seven

areas

to

be

saved

DB

batch,

TM

batch,

BMP

Note:

1.

GSCD

is

a

Product-sensitive

programming

interface.

2.

SNAP

is

a

Product-sensitive

programming

interface.

3.

STAT

is

a

Product-sensitive

programming

interface.

4.

�

indicates

a

blank.

All

calls

must

be

four

characters.

Table

8.

Summary

of

IMS

TM

System

Service

Calls

Function

Code

Meaning

and

Use

Options

Valid

Usage

APSB

Allocate

PSB.

Allocates

a

PSB

for

use

in

CPI-C

driven

application

programs.

None

MPP

CHKP

(Basic)

Basic

checkpoint.

For

recovery

purposes.

None

batch,

BMP,

MPP

CHKP

(Symbolic)

Symbolic

checkpoint.

For

recovery

purposes.

Can

specify

seven

program

areas

to

be

saved.

batch,

BMP

DPSB

Deallocate

PSB.

Frees

a

PSB

in

use

by

a

CPI-C

driven

application

program.

None

MPP

IBM

Confidential

Chapter

17.

Application

Programming

Overview

163

Table

8.

Summary

of

IMS

TM

System

Service

Calls

(continued)

Function

Code

Meaning

and

Use

Options

Valid

Usage

GMSG

Retrieve

a

message

from

the

AO

exit

routine.

Can

wait

for

an

AOI

message

when

none

is

available.

DB/DC

and

DCCTL(BMP,

MPP,

IFP),

DB/DC

and

DBCTL(DRA

thread),

DBCTL(BMP

non-message

driven)

GSCD

1

Get

the

address

of

the

system

contents

directory.

None

batch

ICMD

Issue

an

IMS

command

and

retrieve

the

first

command

response

segment.

None

DB/DC

and

DCCTL(BMP,

MPP,

IFP),

DB/DC

and

DBCTL(DRA

thread),

DBCTL(BMP

non-message

driven)

INIT

Application

receives

data

availability

status

codes.

Checks

each

PCB

for

data

availability.

batch,

BMP,

MPP,

IFP

INQY

Inquiry.

Retrieves

information

about

output

destinations,

session

status,

execution

environment,

and

the

PCB

address.

None

batch,

BMP,

MPP,

IFP

LOG�

2

Log.

Write

a

message

to

the

system

log.

None

batch,

BMP,

MPP,

IFP

RCMD

Retrieve

the

second

and

subsequent

command

response

segments

resulting

from

an

ICMD

call.

None

DB/DC

and

DCCTL(BMP,

MPP,

IFP),

DB/DC

and

DBCTL(DRA

thread),

DBCTL(BMP

non-message

driven)

ROLB

Rollback.

Backs

out

messages

sent

by

the

application

program.

Call

returns

last

message

to

i/o

area.

batch,

BMP,

MPP,

IFP

ROLL

Roll.

Backs

out

output

messages

and

terminates

the

conversation.

None

batch,

BMP,

MPP

ROLS

Returns

message

queue

positions

to

sync

points

set

by

the

SETS

or

SETU

call.

Issues

call

with

i/o

PCB

or

aib

batch,

BMP,

MPP,

IFP

SETS

Sets

intermediate

sync

(backout)

points.

Cancels

all

existing

backout

points.

Can

establish

up

to

9

backout

points.

batch,

BMP,

MPP,

IFP

SETU

Sets

intermediate

sync

(backout)

points.

Cancels

all

existing

backout

points.

Can

establish

up

to

9

backout

points.

batch,

BMP,

MPP,

IFP

SYNC

Synchronization

Request

commit

point

processing.

BMP

XRST

Restart.

Works

with

symbolic

CHKP

to

restart

application

program

failure.

Can

specify

up

to

7

areas

to

be

saved.

batch,

BMP

Note:

1.

GSCD

is

a

Product-sensitive

programming

interface.

2.

�

indicates

a

blank.

All

calls

must

be

four

characters.

IBM

Confidential

164

IMS:

An

Introduction

to

IMS

Chapter

18.

Application

Programming

for

the

IMS

Database

Manager

There

are

two

ways

that

application

programs

can

interact

with

IMS

DB:

v

Traditional

applications

can

use

the

DL/I

database

call

interface.

v

Java

applications

can

use

IMS

Java’s

implementation

of

JDBC

or

the

IMS

Java

hierarchical

interface,

which

is

a

set

of

classes

that

you

can

use

in

Java

that

are

similar

to

DL/I

calls.

This

chapter

discusses

the

DL/I

database

call

interface.

See

Chapter

21,

“Application

Programming

in

IMS

Java,”

on

page

223

for

information

about

how

Java

applications

call

IMS.

The

following

sections

are

covered

in

this

chapter:

v

“Introduction

to

Database

Processing”

v

“Processing

Against

a

Single

Database

Structure”

on

page

170

v

“Processing

Databases

with

Logical

Relationships”

on

page

184

v

“Processing

Databases

with

Secondary

Indexes”

on

page

185

v

“Language

Specific

Programming

Considerations”

on

page

180

v

“Processing

Databases

with

Logical

Relationships”

on

page

184

v

“Processing

Databases

with

Secondary

Indexes”

on

page

185

v

“Loading

Databases”

on

page

187

v

“Using

Batch

Checkpoint/Restart”

on

page

192

Introduction

to

Database

Processing

In

general,

database

processing

is

transaction

oriented.

An

application

program

accesses

one

or

more

database

records

for

each

transaction

it

processes.

There

are

two

basic

types

of

DL/I

application

programs:

v

The

direct

access

program

v

The

sequential

access

program

A

direct

access

program

accesses,

for

every

input

transaction,

some

segments

in

one

or

more

database

records.

These

accesses

are

based

on

database

record

and

segment

identification.

This

identification

is

essentially

derived

from

the

transaction

input.

Normally

it

is

the

root-key

value

an

additional

(key)

field

values

of

dependent

segments.

For

more

complex

transactions,

segments

could

be

accessed

in

several

DL/I

databases

concurrently.

A

sequential

application

program

accesses

sequentially

selected

segments

of

all

of

a

consecutive

subset

of

a

particular

database.

The

sequence

is

usually

determined

by

the

key

of

the

root-segment.

A

sequential

program

can

also

access

other

databases,

but

those

accesses

are

direct,

unless

the

root-keys

of

both

databases

are

the

same.

A

DL/I

application

program

normally

processes

only

particular

segments

of

the

DL/I

databases.

The

portion

that

a

given

program

processes

is

called

an

application

data

structure.

This

application

data

structure

is

defined

in

the

program

specification

block

(PSB).

There

is

one

PSB

defined

for

each

application

program

type.

An

application

data

structure

always

consists

of

one

or

more

hierarchical

data

structures,

each

of

which

is

derived

from

a

DL/I

physical

or

logical

database.

IBM

Confidential

©

Copyright

IBM

Corp.

2004

165

|

|

|
|
|

|
|
|

Application

Programming

Interfaces

to

IMS

During

initialization,

both

the

application

program

and

its

associated

PSB

are

loaded

from

their

respective

libraries

by

the

IMS

batch

system

The

DL/I

modules,

which

reside

together

with

the

application

program

in

one

region,

interpret

and

execute

database

CALL

requests

issued

by

the

program.

Calls

to

DL/I

A

call

request

is

composed

of

a

CALL

statement

with

an

argument

list.

The

argument

list

specifies

the

processing

function

to

be

performed,

the

hierarchic

path

to

the

segment

to

be

accessed,

and

the

segment

occurrence

of

that

segment.

One

segment

may

be

operated

upon

with

a

single

DL/I

call.

However,

a

single

call

never

will

return

more

than

one

occurrence

of

one

segment

type.

The

arguments

contained

within

any

DL/I

call

request

have

been

defined

in

“Calls

to

IMS”

on

page

155.

The

following

is

a

sample

for

a

basic

CALL

statement

for

COBAL:

CALL

“CBLTDLI”

USING

function,PCB-name,I/O

Area,

SSA1,...SSAn.

Table

9

describes

some

of

the

components

of

the

CALL

statement.

Here

you

will

find

the

basic

DL/I

call

functions

to

request

DL/I

database

services.

Table

9.

DL/I

Function

Descriptions

RSF

(request

service

function?)

DL/I

Call

Function

GET

UNIQUE

’GUbb’

GET

NEXT

’GNbb’

GET

HOLD

UNIQUE

’GHUb’

GET

HOLD

NEXT

’GHNb’

INSERT

’ISRT’

DELETE

’DLET’

REPLACE

’REPL’

Note:

b

stands

for

blank.

Each

CALL

function

is

always

4

characters.

Table

10

constitutes

the

various

categories

of

segment

access

types.

Table

10.

Segment

Access

Segment

Access

DL/I

Call

Function

Retrieve

a

segment

GUbb,

GNbb,

GHUb,

GHNb

Replace

(update)

a

segment

REPL

Delete

a

segment

DLET

Insert

(add)

a

segment

ISRT

In

addition

to

the

above

database

calls,

there

are

the

system

service

calls.

These

are

used

for

requesting

systems

services

such

as

checkpoint/restart.

All

of

the

above

calls

and

some

basic

system

service

calls

will

be

discussed

in

detail

in

the

following

sections.

IBM

Confidential

166

IMS:

An

Introduction

to

IMS

Segment

Search

Arguments

(SSAs)

For

each

segment

accessed

in

a

hierarchical

path,

one

SSA

can

be

provided.

The

purpose

of

the

SSA

is

to

identify

by

segment

name

and,

optionally

by

field

value,

the

segment

to

be

accessed.

The

basic

function

of

the

SSA

permits

the

application

program

to

apply

three

different

kinds

of

logic

to

a

call:

v

Narrow

the

field

of

search

to

a

particular

segment

type,

or

to

a

particular

segment-occurrence.

v

Request

that

either

one

segment

or

a

path

of

segments

be

processed.

v

Alter

DL/I’s

position

in

the

database

for

subsequent

call.

Segment

Search

Argument

(SSA)

names

represent

the

fourth

(fifth

for

PL/I)

through

last

arguments

(SSA1

through

SSAn)

in

the

call

statement.

There

can

be

0

or

1

SSA

per

level,

and,

since

DL/I

permits

a

maximum

of

15

levels

per

database,

a

call

may

contain

from

0

to

15

SSA

names.

In

our

subset,

an

SSA

consists

of

one,

two

or

three

elements:

The

segment

name,

command

code(s)

and

a

qualification

statement,

as

shown

in

Table

11.

Table

12

on

page

168

shows

the

values

of

the

relational

operators

described

in

Table

11.

Table

11.

Segment

Name,

Command

Code,

and

Qualifications

Operator

Description

Segment

name

The

segment

name

must

be

eight

bytes

long,

left-justified

with

trailing

blanks

required.

This

is

the

name

of

the

segment

as

defined

in

a

physical

and/or

logical

DBD

referenced

in

the

PCB

for

this

application

program.

Command

codes

The

command

code

are

optional.

They

provide

functional

variations

to

be

applied

to

the

call

for

that

segment

type.

An

asterisk

(*)

following

the

segment

name

indicates

the

presence

of

one

or

more

command

codes.

A

blank

or

a

left

parenthesis

is

the

ending

delimiter

for

command

codes.

Blank

is

use

when

no

qualification

statement

exists

Qualification

statement

The

presence

of

a

qualification

statement

is

indicated

by

a

left

parenthesis

following

the

segment

name

or,

if

present,

command

codes.

The

qualification

statement

consists

of

a

field

name,

a

relational-operator,

and

a

comparative-value.

Begin

qualification

character

The

Left

parenthesis,

“(“,

indicates

the

beginning

of

a

qualification

statement.

If

the

SSA

is

unqualified,

the

eight-byte

segment

name

or

if

used,

the

command

codes,

should

be

followed

by

a

blank.

Field

name

The

field

name

is

the

name

of

a

field

which

appears

in

the

description

of

the

specified

segment

type

in

the

DBD.

The

name

is

up

to

eight

characters

long,

left-justified

with

trailing

blanks

as

required.

The

named

field

may

be

either

the

key

field

or

any

data

field

within

a

segment.

The

field

name

issued

for

searching

the

database,

and

must

have

been

defined

in

the

physical

DBD.

Relational

operator

The

relational

operator

is

a

set

of

two

characters

which

express

the

manner

in

which

the

contents

of

the

field,

referred

to

by

the

field

name,

is

to

be

tested

against

the

comparative-value.

See

XREF

TAB

13

for

a

list

of

the

values.

IBM

Confidential

Chapter

18.

Application

Programming

for

the

IMS

Database

Manager

167

Table

11.

Segment

Name,

Command

Code,

and

Qualifications

(continued)

Operator

Description

Comparative

value

The

comparative

value

is

the

value

against

which

the

contents

of

the

field,

referred

to

by

the

field

name,

is

to

be

tested.

The

length

of

this

field

must

be

equal

to

the

length

of

the

named

field

in

the

segment

of

the

database.

That

is,

it

includes

leading

or

trailing

blanks

(for

alphameric)

or

zeros

(usually

needed

for

numeric

fields)

as

required.

A

collating

sequence,

not

an

arithmetic,

compare

is

performed.

End

qualification

character

The

right

parenthesis,

“)”,

indicates

the

end

of

the

qualification

statement.

Table

12.

Relational

Operator

Values

Operator

Meaning

b=

or

’EQ’

Must

be

equal

to

>=

or

’GE’

Must

be

greater

than

or

equal

to

<=

or

’LE’

Must

be

less

than

or

equal

to

’b>’

or

’GT’

Must

be

greater

than

’b<’

or

’LT’

Must

be

less

than

’<>’

or

’NE’

Must

be

not

equal

to

Note:

In

Table

12,

the

lowercase

b

represents

a

blank

character.

Qualification

Just

as

calls

are

“qualified”

by

the

presence

of

an

SSA,

SSAs

are

categorized

as

either

“qualified”

or

“unqualified”,

depending

on

the

presence

of

absence

of

a

qualification

statement.

Command

codes

may

be

included

in

or

omitted

from

either

qualified

or

unqualified

SSAs.

In

its

simplest

form,

the

SSA

is

unqualified

and

consists

only

of

the

name

of

a

specific

segment

type

as

defined

in

the

DBD.

In

this

form,

the

SSA

provides

DL/I

with

enough

information

to

define

the

segment

type

desired

by

the

call.

For

example:

SEGNAMEbb

last

character

blank

to

unqualified.

Qualified

SSAs

(optional)

contain

a

qualification

statement

composed

of

three

parts:

v

A

field

name

defined

in

the

DBD

v

A

relational

operator

v

A

comparative

value

DL/I

uses

the

information

in

the

qualification

statement

to

test

the

value

of

the

segment’s

key

or

data

fields

within

the

database,

and

thus

to

determine

whether

the

segment

meets

the

user’s

specifications.

Using

this

approach.

DL/I

performs

the

database

segment

searching.

The

program

need

process

only

those

segments

that

precisely

meet

some

logical

criteria.

For

example:

SEGNAMEb

(fieldxxx>=value)

The

qualification

statement

test

is

terminated

either

when

the

test

is

satisfied

by

an

occurrence

of

the

segment

type,

or

when

it

is

determined

that

the

request

cannot

be

satisfied.

IBM

Confidential

168

IMS:

An

Introduction

to

IMS

Command

Codes

Both

unqualified

and

qualified

SSAs

may

contain

one

or

more

optional

command

codes

which

specify

functional

variations

applicable

to

the

call

function

or

the

segment

qualification.

The

command

codes

are

discussed

in

detail

later

in

this

chapter.

General

characteristics

of

segment

search

arguments:

v

An

SSA

may

consist

of

the

segment

name

only

(unqualified).

It

may

optionally

also

include

one

or

more

command

codes

and

a

qualification

statement.

v

SSAs

following

the

first

SSA

must

proceed

down

the

hierarchical

path.

Not

all

SSAs

in

the

hierarchical

path

need

be

specified.

That

is,

there

may

be

missing

levels

in

the

path.

DL/I

will

provide,

internally,

SSAs

for

missing

levels

according

to

the

rules

given

later

in

this

chapter.

However,

it

is

strongly

recommended

to

always

include

SSAs

for

every

segment

level.

Examples

of

SSAs

will

be

given

with

the

sample

calls

at

each

DL/I

call

discussion

in

“Handling

Status

Codes.”

Handling

Status

Codes

After

each

DL/I

call,

a

two-byte

status

code

is

returned

in

the

PCB

which

is

used

for

that

call.

There

are

three

categories

of

status

codes:

v

The

blank

status

code,

indicating

a

successful

call

v

Exceptional

conditions

and

warning

status

codes

from

an

application

point

of

view

v

Error

status

codes,

specifying

an

error

condition

in

the

application

program

and/or

DL/I

The

grouping

of

status

codes

in

the

above

categories

is

somewhat

installation

dependent.

We

will,

however,

give

a

basic

recommendation

after

each

specific

call

function

discussion.

It

is

also

recommended

that

you

use

a

standard

procedure

for

status

code

checking

and

the

handling

of

error

status

code.

The

first

two

categories

should

be

handled

by

the

application

program

after

each

single

call.

Figure

55

gives

an

example

using

COBOL.

Notice

that

it

is

more

convenient

to

directly

test

the

regular

exceptions

in-line

instead

of

branching

to

a

status

code

check

routine.

In

this

way,

you

clearly

see

the

processing

of

conditions

that

you

wish

to

handle

from

an

application

point

of

view,

leaving

the

real

error

situations

to

central

status

code

error

routine.

A

detailed

discussion

of

the

error

status

codes

and

their

handling

will

be

presented

later

in

this

chapter.

Sample

Presentation

of

a

Call

DL/I

calls

will

be

introduced

in

the

following

sections.

For

each

call

we

will

give

samples.

These

samples

will

be

in

a

standard

format,

as

shown

in

Figure

56

on

page

170.

CALL

‘CBLTDLI’

USING

....

IF

PCB-STATUS

EQ

‘GE’

PERFORM

PRINT-NOT-FOUND.

IF

PCB

STATUS

NE

‘bb’

PERFORM

STATUS-ERROR.

everything

okay,

proceed...

Figure

55.

Evaluating

Status

Codes

IBM

Confidential

Chapter

18.

Application

Programming

for

the

IMS

Database

Manager

169

All

the

calls

in

the

samples

are

presented

in

COBOL

format.

The

coding

of

a

call

in

PI/I

or

Assembler

will

be

presented

later.

Each

call

example

contains

three

sections:

1.

The

first

section

presents

the

essential

elements

of

working

storage

as

needed

for

the

call.

2.

The

second

part,

the

processing

section,

contains

the

call

itself.

Note

that

the

PCB-NAME

parameter

should

see

the

selected

PCB

defined

in

the

Linkage

Section.

Sometimes

we

will

add

some

processing

function

description

before

and/or

after

the

call,

in

order

to

show

the

call

in

its

right

context.

3.

The

third

section

contains

the

status

codes

and

their

interpretation,

which

can

be

expected

after

the

call.

The

last

category

of

status

code,

labeled

“other:

error

situation,”

would

normally

be

handled

by

a

status

code

error

routine.

A

discussion

of

those

error

status

codes

with

the

presentation

of

such

a

routine

is

later

in

this

chapter.

Processing

Against

a

Single

Database

Structure

This

section

discusses

processing

a

single

database

record.

A

database

record

is

a

root

segment

and

all

of

its

physically

dependent

child

segments.

DL/I

Positioning

To

satisfy

a

call,

DL/I

relies

on

two

sources

of

segment

identification:

v

The

established

position

in

the

database

as

set

by

the

previous

call

against

the

PCB.

v

The

segment

search

arguments

as

provided

with

the

call.

The

database

position

is

the

knowledge

of

DL/I

of

the

location

of

the

last

segment

retrieved

and

all

segments

above

it

in

the

hierarchy.

This

position

is

maintained

by

DL/I

as

an

extension

of,

and

reflected

in,

the

PCB.

When

an

application

program

has

multiple

PCBs

for

a

single

database,

these

positions

are

maintained

independently.

For

each

PCB,

the

position

is

represented

by

the

concatenated

key

of

the

hierarchical

path

from

the

root

segment

down

to

the

lowest

level

segment

accessed.

It

also

includes

the

positions

of

non-keyed

segments.

77

GU-FUNC

PICTURE

XXXX

VALUE

‘GUbb’

01

SSA001-GU-SE1PART.

02

SSA001-BEGIN

PICTURE

...

02

...

02

...

01

IOAREA

PICTURE

X(256).

--

CALL

‘CBLTDLI’

USING

GU-FUNC,PCB-NAME,IOAREA,SSA001-GU-SE1PART.

--

STATUS

CODES:

bb:

succesfull

call

--:

exceptional

but

correct

condition

other:

error

condition

Figure

56.

Sample

Call

Presentation

IBM

Confidential

170

IMS:

An

Introduction

to

IMS

If

no

current

position

exists

in

the

database,

then

the

assumed

current

position

is

the

start

of

the

database.

This

is

the

first

physical

database

record

in

the

database.

With

HDAM

this

is

not

necessarily

the

root-segment

with

the

lowest

key

value.

Retrieving

Segments

There

are

two

basic

ways

to

retrieve

a

segment:

v

Retrieve

a

specific

segment

by

using

a

GU

type

call

v

Retrieve

the

next

segment

in

hierarchy

by

using

a

GN

type

call

If

you

know

the

specific

key

value

of

the

segment

you

want

to

retrieve,

then

the

GU

call

will

allow

to

retrieve

only

the

required

segment.

If

you

don’t

know

the

key

value

or

don’t

care

then

the

GN

call

will

retrieve

the

next

available

segment

which

meets

your

requirements.

The

Get

Unique

(GU)

Call

The

basic

get

unique

(GU)

call,

function

code

“GUbb”

normally

retrieves

one

segment

in

a

hierarchical

path.

The

segment

retrieved

is

identified

by

an

SSA

for

each

level

in

the

hierarchical

path

down

to

and

including

the

requested

segment.

Each

should

contain

at

least

the

segment

name.

The

SSA

for

the

root-segment

should

provide

the

root-key

value.

To

retrieve

more

then

one

segment

in

the

path,

see

“D

Command

Code”

on

page

176.

Figure

57

shows

an

example

of

the

get

unique

call.

The

main

use

of

the

GU

call

is

to

position

yourself

to

a

database

record

and

obtain

(a

path

of)

segment

(s).

Typically,

the

GU

call

is

used

only

once

for

each

database

record

you

wish

to

access.

Additional

segments

within

the

database

record

would

then

be

retrieved

by

means

of

get

next

calls

(see

“The

Get

Next

(GN)

Call”

on

page

172).

The

GU

call

can

also

be

used

for

retrieving

a

dependent

segment,

by

adding

additional

SSAs

to

the

call.

For

example,

if

you

add

a

second

SSA

which

specifies

the

stock

location,

you

would

retrieve

a

STOCK

segment

below

the

identified

part.

If

the

SSA

did

not

provide

a

stock

location

number,

this

would

be

the

first

STOCK

segment

for

this

part.

77

GU-FUNC

PICTURE

XXXX

VALUE

‘GUbb’

01

SSA001-GU-SE1PART.

02

SSA001-BEGIN

PICTURE

x(19)

VALUE

‘SE1PARTb(FE1PGPNRb=’.

02

SSA001-FE1PGPNR

PICTURE

X(8).

02

SS1001-END

PICTURE

X

VALUE

‘)’.

01

IOAREA

PICTURE

X(256).

--

MOVE

PART-NUMBER

TO

SSA001-FE1PGPNR.

CALL

‘CBLTDLI’

USING

GU-FUNC,PCB-NAME,IOAREA,SSA001-GU-SE1PART.

--

STATUS

CODES:

bb:

succesfull

call

GE:

exceptional

but

correct

condition

other:

error

condition

Figure

57.

Basic

Get

Unique

Call

IBM

Confidential

Chapter

18.

Application

Programming

for

the

IMS

Database

Manager

171

The

Get

Next

(GN)

Call

The

get

next

(GN)

call,

function

code

‘GNbb’,

retrieves

the

next

segment

in

the

hierarchy

as

defined

in

the

PCB.

To

determine

this

next

segment,

DL/I

relies

on

the

previously

established

position.

The

Unqualified

Get

Next

Call

Figure

58

shows

a

get

next

call

with

no

SSAs

at

all

that

will,

if

repeated,

return

the

segments

in

the

database

in

hierarchical

sequence.

Only

those

segments

are

returned

to

which

the

program

is

defined

sensitive

in

its

PCB.

If

the

call

in

Figure

58

was

issued

after

the

get

unique

call

in

Figure

57

on

page

171,

then

it

would

retrieve

the

first

STOCK

segment

for

this

part

(if

one

existed).

Subsequent

calls

would

retrieve

all

other

STOCK,

PURCHASE

ORDER,

and

DESCRIPTION

segments

for

this

part.

After

this,

the

next

part

would

be

retrieved

and

its

dependent

segments,

etc.,

until

the

end

of

the

database

is

reached.

Special

status

codes

will

be

returned

whenever

a

different

segment

type

at

the

same

level

or

a

higher

level

is

returned.

No

special

status

code

is

returned

when

a

different

segment

at

a

lower

level

is

returned.

You

can

check

for

reaching

a

lower

level

segment

type

in

the

segment

level

indicator

in

the

PCB.

Remember,

only

those

segments

to

which

the

program

is

sensitive

via

its

PCB

are

available

to

you.

Although

the

unqualified

GN

call

illustrated

in

Figure

58

might

be

efficient,

especially

for

report

programs,

you

should

use

a

qualified

GN

call

whenever

possible.

The

Qualified

Get

Next

Call

This

qualified

GN

call

should

at

least

identify

the

segment

you

want

to

retrieve.

In

doing

so,

you

will

achieve

a

greater

independence

toward

possible

database

structure

changes

in

the

future.

Figure

59

on

page

173

shows

an

example

of

a

qualified

GN

call.

If

you

supply

only

the

segment

name

in

the

SSA,

then

you

will

retrieve

all

segments

of

that

type

from

all

database

records

with

subsequent

get

next

calls.

77

GN-FUNC

PICTURE

XXXX

VALUE

‘GNbb’

01

IOAREA

PICTURE

X(256).

--

CALL

‘CBLTDLI’

USING

GN-FUNC,PCB-NAME,IOAREA.

--

STATUS

CODES:

bb:

if

previous

call

retrieved

a

PART,

then

a

STOCK

segment

will

be

be

retrieved

GK:

a

segment

is

returned

in

IOAREA,

but

it

is

a

different

type

at

the

SAME

level,

for

instance,

a

PURCHASE

ORDER

segment

after

the

last

STOCK

segment.

GA:

segment

returned

is

IOAREA,

but

it

is

of

a

higher

level

than

the

last

one,

that

is,

a

new

PART

segment

GB:

possible

end

of

database

reached,

no

segment

returned

other:

error

condition

Figure

58.

Unqualified

Get

Next

Call

IBM

Confidential

172

IMS:

An

Introduction

to

IMS

Repetition

of

the

above

GN

call

will

retrieve

all

subsequent

PURCHASE

ORDER

segments

of

the

database,

until

the

end

of

the

database

is

reached.

To

limit

this

to

a

specific

part,

you

could

add

a

fully

qualified

SSA

for

the

PART

segment.

This

would

be

the

same

SSA

as

used

in

Figure

57

on

page

171.

An

example

of

a

qualified

get

next

call

with

a

qualified

SSA

is

shown

in

Figure

60.

This

fully

qualified

get

next

call

should

be

primarily

used.

It

always

clearly

identifies

the

hierarchical

path

and

the

segment

you

want

to

retrieve.

The

Get

Hold

Calls

To

change

the

contents

of

a

segment

in

a

database

through

a

replace

or

delete

call,

the

program

must

first

obtain

the

segment.

It

then

changes

the

segment’s

contents

and

requests

DL/I

to

replace

the

segment

in

the

database

or

to

delete

it

from

the

database.

This

is

done

by

using

the

get

hold

calls.

These

function

codes

are

like

the

standard

get

function,

except

the

letter

‘H’

immediately

follows

the

letter

‘G’

in

the

code

(that

is,

GHU,

GHN).

The

get

hold

calls

function

exactly

as

the

corresponding

get

calls

for

the

user.

For

DL/I

they

indicate

a

possible

subsequent

replace

or

delete

call.

77

GN-FUNC

PICTURE

XXXX

VALUE

‘GNbb’

01

SSA002-GN-SE1PPUR

PICTURE

X(9)

VALUE

‘SE1PPURbb’

01

IOAREA

PICTURE

X(256).

--

MOVE

PART-NUMBER

TO

SSA001-FE1PGPNR.

CALL

‘CBLTDLI’

USING

GN-FUNC,PCB-NAME,IOAREA,SSA002-GN-SE1PPUR.

--

STATUS

CODES:

bb:

next

PURCHACE

ORDER

has

been

move

to

the

IOAREA

GB:

end

of

database

reached,

no

segment

returned

other:

error

condition

Figure

59.

Qualified

Get

Next

Call

77

GN-FUNC

PICTURE

XXXX

VALUE

‘GNbb’

01

SSA001-GU-SE1PART.

02

SSA001-BEGIN

PICTURE

x(19)

VALUE

‘SE1PARTb(FE1PGPNRb=’.

02

SSA001-FE1PGPNR

PICTURE

X(8).

02

SS1001-END

PICTURE

X

VALUE

‘)’.

01

SSA002-GN-SE1PPUR

PICTURE

X(9)

VALUE

‘SE1PPURb’.

01

IOAREA

PICTURE

X(256).

--

CALL

‘CBLTDLI’

USING

GN-FUNC,PCB-NAME,IOAREA,SSA001-GU-SE1PART

SSA002-GN-SE1PPUR.

--

STATUS

CODES:

bb:

next

PURCHASE

ORDER

segment

is

in

IOAREA

GE:

segment

not

found;

no

more

purchase

orders

for

this

part,

or

part

number

in

SSA001

does

not

exist

other:

error

condition

Figure

60.

Qualified

Get

Next

Call

with

Qualified

SSA

IBM

Confidential

Chapter

18.

Application

Programming

for

the

IMS

Database

Manager

173

After

DL/I

has

provided

the

requested

segment

to

the

user,

one

or

more

fields,

but

not

the

sequence

field,

in

the

segment

may

be

changed.

After

the

user

has

changed

the

segment

contents,

he

can

call

DL/I

to

return

the

segment

to,

or

delete

it

from

the

database.

If,

after

issuing

a

get

hold

call,

the

program

determines

that

it

is

not

necessary

to

change

or

delete

the

retrieved

segment,

the

program

may

proceed

with

other

processing,

and

the

“hold”

will

be

released

by

the

next

DL/I

call

against

the

same

PCB.

Updating

Segments

Segments

can

be

updated

by

application

programs

and

returned

to

DL/I

for

restoring

in

the

database,

with

the

replace

call,

function

code

REPL’

Two

conditions

must

be

met:

v

The

segment

must

first

be

retrieved

with

a

get

hold

call,

(GHU

or

GHN),

no

intervening

calls

are

allowed

referencing

the

same

PCB.

v

The

sequence

field

of

the

segment

cannot

be

changed.

This

can

only

be

done

with

combinations

of

delete

and

insert

calls

for

the

segment

and

all

its

dependents.

Figure

61

shows

an

example

of

a

combination

of

GHU

and

REPL

call.

Notice

that

the

replace

call

must

not

specify

a

SSA

for

the

segment

to

be

replaced.

If,

after

retrieving

a

segment

with

a

get

hold

call,

the

program

decides

not

to

update

the

segment,

it

need

not

issue

a

replace

call.

Instead

the

program

can

proceed

as

if

it

were

a

normal

get

call

without

the

hold.

Use

the

get

hold

call

whenever

there

is

a

reasonable

chance

(about

5%

or

more)

that

you

will

change

the

segment

because

there

is

only

a

very

small

performance

difference

between

the

get

and

the

get

hold

call.

Deleting

Segments

To

delete

the

occurrence

of

a

segment

from

a

database,

the

segment

must

first

be

obtained

by

issuing

a

get

hold

(GHU,

GHN)

call.

Once

the

segment

has

been

acquired,

the

DLET

call

may

be

issued.

77

GHU-FUNC

PICTURE

XXXX

VALUE

‘GHUb’.

77

REPL-FUNC

PICTURE

XXXX

VALUE

‘REPL’.

01

SSA001-GU-SE1PART.

02

SSA001-BEGIN

PICTURE

x(19)

VALUE

‘SE1PARTb(FE1PGPNRb=’.

02

SSA001-FE1PGPNR

PICTURE

X(8).

02

SS1001-END

PICTURE

X

VALUE

‘)’.

01

SSA002-GN-SE1PPUR

PICTURE

X(9)

VALUE

‘SE1PPURbb’.

01

IOAREA

PICTURE

X(256).

--

MOVE

PART-NUMBER

TO

SSA001-FE1PGPNR.

CALL

‘CBLTDLI’

USING

GU-FUNC,PCB-NAME,IOAREA,SSA001-GU-SE1PART

SSA002-GN-SE1PPUR.

the

retrieved

PURCHASE

ORDER

segment

can

now

be

changed

by

the

program

in

the

IOAREA.

CALL

‘CBLTDLI’

USING

REPL-FUNC,PCB-NAME,IOAREA.

--

STATUS

CODES:

bb:

segment

is

replaced

with

contents

in

the

IOAREA

other:

error

condition

Figure

61.

Basic

Replace

Call

IBM

Confidential

174

IMS:

An

Introduction

to

IMS

No

DL/I

calls

which

use

the

same

PCB

can

intervene

between

the

get

hold

call

and

the

DLET

call,

or

the

DLET

call

is

rejected.

Quite

often

a

program

may

want

to

process

a

segment

prior

to

deleting

it.

This

is

permitted

as

long

as

the

processing

does

not

involve

a

DL/I

call

which

refers

to

the

same

database

PCB

used

for

the

get

hold/delete

calls.

However,

other

PCBs

may

be

referred

to

between

the

get

hold

and

DLET

calls.

DL/I

is

advised

that

a

segment

is

to

be

deleted

when

the

user

issues

a

call

that

has

the

function

DLET.

The

deletion

of

a

parent,

in

effect,

deletes

all

the

segment

occurrences

beneath

that

parent,

whether

or

not

the

application

program

is

sensitive

to

those

segments.

If

the

segment

being

deleted

is

a

root

segment,

that

whole

database

record

is

deleted.

The

segment

to

be

deleted

must

still

be

in

the

IOAREA

of

the

delete

call

(with

which

no

SSA

is

used),

and

its

sequence

field

must

not

have

been

changed.

Figure

62

gives

an

example

of

a

DLET

call.

Inserting

Segments

Adding

new

segment

occurrences

to

a

database

is

done

with

the

insert

call,

function

code

‘ISRT’.

The

DL/I

insert

call

is

used

for

two

distinct

purposes:

It

is

used

initially

to

load

the

segments

during

creation

of

a

database.

It

is

also

used

to

add

new

occurrences

of

an

existing

segment

type

into

an

established

database.

The

processing

options

field

in

the

PCB

indicates

whether

the

database

is

being

added

to

or

loaded.

The

format

of

the

insert

call

is

identical

for

either

use.

When

loading

or

inserting,

the

last

SSA

must

specify

only

the

name

of

the

segment

being

inserted.

It

should

specify

only

the

segment

name,

not

the

sequence

field.

Thus

an

unqualified

SSA

is

always

required.

Up

to

a

level

to

be

inserted,

the

SSA

evaluation

and

positioning

for

an

insert

call

is

exactly

the

same

as

for

a

GU

call.

For

the

level

to

be

inserted,

the

value

of

the

sequence

field

in

the

segment

in

the

user

I/O

area

is

used

to

establish

the

insert

77

GHU-FUNC

PICTURE

XXXX

VALUE

‘GHUb’.

77

DLET-FUNC

PICTURE

XXXX

VALUE

‘DLET’.

01

SSA001-GU-SE1PART.

02

SSA001-BEGIN

PICTURE

x(19)

VALUE

‘SE1PARTb(FE1PGPNRb=’.

02

SSA001-FE1PGPNR

PICTURE

X(8).

02

SS1001-END

PICTURE

X

VALUE

‘)’.

01

SSA002-GN-SE1PPUR

PICTURE

X(9)

VALUE

‘SE1PPURbb’.

01

IOAREA

PICTURE

X(256).

--

MOVE

PART-NUMBER

TO

SSA001-FE1PGPNR.

CALL

‘CBLTDLI’

USING

GU-FUNC,PCB-NAME,IOAREA,SSA001-GU-SE1PART

SSA002-GN-SE1PPUR.

the

retrieved

PURCHASE

ORDER

segment

can

now

be

processed

by

the

program

in

the

IOAREA.

CALL

‘CBLTDLI’

USING

DLET-FUNC,PCB-NAME,IOAREA.

--

STATUS

CODES:

bb:

requested

purchase

order

segment

is

deleted

from

the

database;

all

its

dependents,

if

any,

are

deleted

also.

other:

error

condition

Figure

62.

Basic

Delete

Call

IBM

Confidential

Chapter

18.

Application

Programming

for

the

IMS

Database

Manager

175

position.

If

no

sequence

field

was

defined,

then

the

segment

is

inserted

at

the

end

of

the

physical

twin

chain.

If

multiple

non-unique

keys

are

allowed,

then

the

segment

is

inserted

after

existing

segments

with

the

same

key

value.

Figure

63

shows

an

example

of

an

ISRT

call.

The

status

codes

in

this

example

are

applicable

only

to

non-initial

load

inserts.

The

status

codes

at

initial

load

time

will

be

discussed

under

“Loading

Databases”

on

page

187.

Note:

There

is

no

need

to

check

the

existence

of

a

segment

in

the

database

with

a

preceding

retrieve

call.

DL/I

will

do

that

at

insert

time,

and

will

notify

you

with

an

II

or

GE

status

code.

Checking

previous

existence

is

only

relevant

if

the

segment

has

no

sequence

field.

Calls

with

Command

Codes

Both

unqualified

and

qualified

SSAs

may

contain

one

or

more

optional

command

codes

which

specify

functional

variations

applicable

to

either

the

call

function

or

the

segment

qualification.

Command

codes

in

an

SSA

are

always

prefixed

by

an

asterisk

(*),

which

immediately

follows

the

8

byte

segment

name.

Figure

64

illustrates

an

SSA

with

command

codes

D

and

P.

D

Command

Code

The

‘D’

command

code

is

the

one

most

widely

used.

It

requests

DL/I

to

issue

path

calls.

A

“path

call”

enables

a

hierarchical

path

of

segments

to

be

inserted

or

retrieved

with

one

call.

(A

“path”

was

defined

earlier

as

the

hierarchical

sequence

of

segments,

one

per

level,

leading

from

a

segment

at

one

level

to

a

particular

segment

at

a

lower

level.)

The

meaning

of

the

‘D’

command

code

is

as

follows:

77

ISRT-FUNC

PICTURE

XXXX

VALUE

‘ISRT’.

01

SSA001-GU-SE1PART.

02

SSA001-BEGIN

PICTURE

x(19)

VALUE

‘SE1PARTb(FE1PGPNRb=’.

02

SSA001-FE1PGPNR

PICTURE

X(8).

02

SS1001-END

PICTURE

X

VALUE

‘)’.

01

SSA002-GN-SE1PPUR

PICTURE

X(9)

VALUE

‘SE1PPURbb’.

01

IOAREA

PICTURE

X(256).

--

MOVE

PART-NUMBER

TO

SSA001-FE1PGPNR.

MOVE

PURCHASE-ORDER

TO

IOAREA.

CALL

‘CBLTDLI’

USING

ISRT-FUNC,PCB-NAME,IOAREA,SSA001-GU-SE1PART

SSA002-GN-SE1PPUR.

--

STATUS

CODES:

bb:

new

PURCHASE

ORDER

segment

is

inserted

in

database

II:

segment

to

insert

already

exists

in

database

GE:

segment

not

found;

the

requested

part

number

(that

is,

a

parent

of

the

segment

to

be

inserted)

is

not

in

the

database

other:

error

condition

Figure

63.

Basic

Insert

Call

01

SSA001-GU-SE1PART.

02

SSA001-BEGIN

PICTURE

x(19)

VALUE

‘SE1PARTb*DP(FE1PGPNRb=’.

02

SSA001-FE1PGPNR

PICTURE

X(8).

02

SS1001-END

PICTURE

X

VALUE

‘)’.

Figure

64.

Example

of

an

SSA

with

D

and

P

Command

Codes

IBM

Confidential

176

IMS:

An

Introduction

to

IMS

v

For

retrieval

calls,

multiple

segments

in

a

hierarchical

path

will

be

moved

to

the

I/C

area

with

a

single

call.

The

first

through

the

last

segment

retrieved

are

concatenated

in

the

user’s

I/C

area.

Intermediate

SSAs

may

be

present

with

or

without

the

‘D’

command

code.

If

without,

these

segments

are

not

moved

to

the

user’s

I/O

area.

The

segment

named

in

the

PCB

“segment

name

feedback

area”

is

the

lowest-level

segment

retrieved,

or

the

last

level

satisfied

in

the

call

in

case

of

a

non-found

condition.

Higher-level

segments

associated

with

SSAs

having

the

‘D’

command

code

will

have

been

placed

in

the

user’s

I/O

area

even

in

the

not-found

case.

The

‘D’

is

not

necessary

for

the

last

SSA

in

the

call,

since

the

segment

which

satisfies

the

last

level

is

always

moved

to

the

user’s

I/O

area.

A

processing

option

of

‘P’

must

be

specified

in

the

PSBGEN

for

any

segment

type

for

which

a

command

code

‘D’

will

be

used.

v

For

insert

calls,

the

‘D’

command

code

designates

the

first

segment

type

in

the

path

to

be

inserted.

The

SSAs

for

lower-level

segments

in

the

path

need

not

have

the

D

command

code

set,

that

is,

the

D

command

code

is

propagated

to

all

specified

lower

level

segments.

Figure

65

shows

an

example

of

a

path

call.

Figure

65

shows

a

common

usage

of

the

path

call.

Although

we

don’t

know

if

the

requested

part

has

a

separate

DESCRIPTION

segment

(SE1PGDSC),

we

retrieve

it

at

almost

no

additional

cost

if

there

is

one.

N

Command

Code

When

a

replace

call

follows

a

path

retrieve

call,

it

is

assumed

that

all

segments

previously

retrieved

with

the

path

call

are

being

replaced.

If

any

of

the

segments

have

not

been

changed,

and

therefore,

need

not

be

replaced,

the

‘N’

command

code

may

be

set

at

those

levels,

telling

DL/I

not

to

replace

the

segment

at

this

level

of

the

path.

The

status

codes

returned

are

the

same

as

for

a

replace

call.

F

Command

Code

This

command

code

allows

you

to

back

up

to

the

first

occurrence

of

a

segment

under

its

parent.

It

has

meaning

only

for

a

get

next

call.

A

get

unique

call

always

starts

with

the

first

occurrence.

Command

code

F

is

disregarded

for

the

root

segment.

77

GU-FUNC

PICTURE

XXXX

VALUE

‘GUbb’.

01

SSA004-GU-SE1PART.

02

SSA004-BEGIN

PICTURE

x(21)

VALUE

‘SE1PARTb*D(FE1PGPNRb=’.

02

SSA004-FE1PGPNR

PICTURE

X(8).

02

SS1004-END

PICTURE

X

VALUE

‘)’.

01

SSA005-GN-SE1PGDSC

PICTURE

X(9)

VALUE

‘SE1PGDSCb’.

01

IOAREA

PICTURE

X(256).

--

CALL

‘CBLTDLI’

USING

GU-FUNC,PCB-NAME,IOAREA,SSA004-GU-SE1PART

SSA004-GN-SE1PGDSC.

--

STATUS

CODES:

bb:

both

segments

(PART

and

DESCRIPTION)

have

been

placed

in

IOAREA

GE:

segment

not

found;

PART

segment

may

be

retrieved

in

IOAREA;

check

segment

name

and

level

indicator

in

PCB.

other:

error

condition

Figure

65.

Sample

Path

Retrieve

Call

IBM

Confidential

Chapter

18.

Application

Programming

for

the

IMS

Database

Manager

177

L

Command

Code

This

command

code

allows

you

to

retrieve

the

last

occurrence

of

a

segment

under

its

parent.

This

command

code

should

be

used

whenever

applicable.

Hyphen

(-)

Command

Code

The

hyphen

is

a

null

command

code.

It

s

purpose

is

to

simplify

the

maintenance

of

SSAs

using

command

codes.

Database

Positioning

After

DL/I

Calls

As

stated

before,

the

database

position

is

used

by

DL/I

to

satisfy

the

next

call

against

the

PCB.

The

segment

level,

segment

name

and

the

key

feedback

areas

of

the

PCB

are

used

to

present

the

database

position

to

the

application

program.

The

following

basic

rules

apply:

v

If

a

get

call

is

completely

satisfied,

current

position

in

the

database

is

reflected

in

the

PCB

key

feedback

area.

v

A

replace

call

does

not

change

current

position

in

the

database.

v

Database

position

after

a

successful

insert

call

is

immediately

after

the

inserted

segment.

v

Database

position

after

return

of

an

II

status

code

is

immediately

prior

to

the

duplicate

segment.

This

positioning

allows

the

duplicate

segment

to

be

retrieved

with

a

GN

call.

v

Database

position

after

a

successful

delete

call

is

immediately

after

all

dependents

of

the

deleted

segment.

If

no

dependents

existed,

database

position

is

immediately

after

the

deleted

segment.

v

Database

position

is

unchanged

by

an

unsuccessful

delete

call.

v

After

an

(partial)

unsuccessful

retrieve

call,

the

PCB

reflects

the

lowest

level

segment

which

satisfied

the

call.

The

segment

name

or

the

key

feed

back

length

should

be

used

to

determine

the

length

of

the

relevant

data

in

the

key

feedback

area.

Contents

of

the

key

feedback

area

beyond

the

length

value

must

not

be

used,

as

the

feedback

area

is

never

cleared

out

after

previous

calls.

If

the

level-one

(root)

SSA

cannot

be

satisfied,

the

segment

name

is

cleared

to

blank,

and

the

level

and

key

feedback

length

are

set

to

0.

In

considering

‘current

position

in

the

database’,

it

must

be

remembered

that

DL/I

must

first

establish

a

starting

position

to

be

used

in

satisfying

the

call.

This

starting

position

is

the

current

position

in

the

database

for

get

next

calls,

and

is

a

unique

position

normally

established

by

the

root

SSA

for

get

unique

calls.

The

following

are

clarifications

of

‘current

position

in

the

database’

for

special

situations:

v

If

no

current

position

exists

in

the

database,

then

the

assumed

current

position

is

the

start

of

the

database.

v

If

the

end

of

the

database

is

encountered,

then

the

assumed

current

position

to

be

used

by

the

next

call

is

the

start

of

the

database.

v

If

a

get

unique

call

is

unsatisfied

at

the

root

level,

then

the

current

position

is

such

that

the

next

segment

retrieved

would

be

the

first

root

segment

with

a

key

value

higher

than

the

one

of

the

unsuccessful

call,

except

when

end

of

the

database

was

reached

(see

above)

or

for

HDAM,

where

it

would

be

the

next

segment

in

physical

sequence.

IBM

Confidential

178

IMS:

An

Introduction

to

IMS

You

can

always

reestablish

your

database

positioning

with

a

GU

call

specifying

all

the

segment

key

values

in

the

hierarchical

path.

It

is

recommended

that

you

use

a

get

unique

call

after

each

not

found

condition.

Using

Multiple

PCBs

for

One

Database

Whenever

there

is

a

need

to

maintain

two

or

more

independent

positions

in

one

database,

you

should

use

different

PCBs.

This

avoids

the

reissue

of

get

unique

calls

to

switch

forward

and

backward

from

one

database

record

or

hierarchical

path

to

another.

There

are

on

restrictions

as

to

the

call

functions

available

in

these

multiple

PCBs.

However,

to

avoid

“position

confusion”

in

the

application

program,

you

should

not

apply

changes

via

two

PCBs

to

the

same

hierarchical

path.

For

simplicity

reasons

you

should

limit

the

updates

to

one

PCB

unless

this

would

cause

additional

calls.

System

Service

Calls

Besides

call

functions

for

manipulating

database

segments,

DL/I

provides

special

system

service

calls.

The

most

common

ones

are:

STATISTICS

(STAT)

This

call

is

used

to

obtain

various

statistics

from

DL/I.

CHECKPOINT

(CHPK)

CHPK

informs

DL/I

that

the

user

has

“checkpointed”

his

program

and

that

thus

may

be

restarted

at

this

point.

The

current

position

is

maintained

in

GSAM

databases.

For

all

other

databases,

you

must

reposition

yourself

after

each

checkpoint

call

with

a

get

unique

call.

RESTART

(XRST)

XRST

requests

DL/I

to

restore

checkpointed

user

areas

and

reposition

GSAM

database

for

sequential

processing

if

a

checkpoint

ID

for

restarting

has

been

supplied

by

the

call

or

in

the

JCL.

The

XRST

and

CHKP

calls

will

be

discussed

under

the

topic

“Using

Batch

Checkpoint/Restart”

on

page

192.

Processing

GSAM

Databases

All

accessing

to

GSAM

databases

is

done

via

DL/I

calls.

A

check

is

made

by

DL/

to

determine

whether

a

user

request

is

for

a

GSAM

database.

if

so,

control

is

passed

to

GSAM,

which

will

be

resident

in

the

user

region.

If

not,

control

is

passed

to

DL/I,

and

standard

hierarchical

processing

will

result.

Calls

to

be

used

for

GSAM

accessing

are:

CALL

‘CBLTDLI’

USING

call-func,pcb-name,ioarea.

Where:

call-func

Is

the

name

of

the

field

that

contains

the

call

function.

The

function

could

be:

OPEN

Open

the

GSAM

database

CLSE

Close

the

GSAM

database

GN

Retrieve

the

next

sequential

record

ISRT

Insert

a

new

logical

record

(at

end

of

database

only)

IBM

Confidential

Chapter

18.

Application

Programming

for

the

IMS

Database

Manager

179

The

open

and

close

call

are

optional

calls

to

be

used

to

explicitly

initiate

or

terminate

database

operations.

The

database

will

automatically

be

opened

by

the

issuance

of

the

first

processing

call

used

and

automatically

closed

at

“end-of-data”

or

at

program

termination.

Records

may

not

be

randomly

added

to

GSAM

data

sets.

The

data

set

may

be

extended

by

opening

in

the

load

mode,

with

DISP=MOD,

and

using

the

ISRT

function

code.

pcb-name

Is

the

name

of

the

GSAM

PCB

ioarea

Is

the

name

of

the

I/O

area

for

GN/ISRT

calls

Table

13

contains

the

status

codes

associated

with

processing

GSAM

databases.

Table

13.

Status

Codes

Associated

with

Processing

GSAM

Databases

Status

Code

Meaning

bb

Successful

call,

Proceed

GL

End

of

input

data

(Get

Next

only)

other

error

situation

Record

Formats

Records

may

be

fixed

or

variable

length,

blocked

or

unblocked.

Records

must

not

have

a

sequence

key.

The

record

in

the

IOAREA

includes

a

halfword

record

length

for

variable

length

records.

The

use

of

GSAM

data

sets

in

a

checkpoint/restart

environment

is

further

discussed

later

in

this

chapter.

Language

Specific

Programming

Considerations

The

next

few

sections

discuss

programming

considerations

that

are

unique

to

different

programming

languages.

v

“COBOL

Programming

Considerations”

v

“Java

Programming

Considerations”

on

page

182

v

“PL/I

Programming

Considerations”

on

page

182

COBOL

Programming

Considerations

There

are

a

few

considerations

that

apply

when

you

are

coding

DL/I

programs

in

COBOL.

See

Figure

66

on

page

181

for

this

discussion

as

the

numbers

between

parenthesis

in

the

text

below

see

the

corresponding

code

lines.

Specific

parameter

values

and

formats

are

explained

elsewhere

throughout

this

chapter

IBM

Confidential

180

IMS:

An

Introduction

to

IMS

v

The

DL/I

function

codes

(7)(,

IOAREA

(11),

and

Segment

Search

Arguments

(12)

should

be

defined

in

the

Working-Storage

Section

of

the

Data

Division.

Typically,

either

the

IOAREA

would

be

REDEFINED

to

provide

addressability

to

the

fields

of

each

segment,

or

separate

IOAREAs

would

be

defined

for

each

segment.

v

The

program

Communication

Blocks

(PCBS)

Should

be

defined

in

the

Linkage

Section

of

the

Data

Division

(18).

When

there

are

multiple

database

structures

(thus

multiple

PCBs)

in

a

program,

there

must

be

one

PCB

defined

in

the

Linkage

Section

for

each

PCB

in

the

PSB.

However,

these

PCBs

need

not

be

in

any

specific

order.

v

An

ENTRY

statement

(30)

should

be

coded

at

the

entry

to

your

program.

A

parameter

of

the

USING

clause

should

exist

for

each

database

structure

(PCB)

that

is

used

in

your

program.

The

order

of

PCBs

in

this

clause

must

be

the

same

as

specified

in

the

Program

Specification

Block

(PSB)

for

your

program.

ID

DIVISION.

000001

000002

ENVIRONMENT

DIVISION.

000003

000004

DATA

DIVISION.

000005

WORKING-STORAGE

SECTION.

000006

77

GU-FUNC

PIC

XXXX

VALUE

‘GU

‘.

000007

77

GN-FUNC

PIC

XXXX

VALUE

‘GN

‘.

000008

77

ERROPT

PIC

XXXX

VALUE

‘1

’.

000009

77

DERRID

PIC

X(8)

VALUE

‘DERROR01’.

000010

01

IOAREA

PIC

X(256)

VALUE

SPACES.

000011

01

SSA001-GU-SE1PART.

000012

02

SSA001-BEGIN

PIC

X(19)

VALUE

‘SE1PART

(FE1PGPNR

=’.

000013

02

SSA001-FE1PGPNR

PIC

X(8).

000014

02

SSA001-END

PIC

X

VALUE

‘)’.

000015

000016

LINKAGE

SECTION.

000017

01

D1PC.

000018

02

D1PCDBN

PIC

X(8).

000019

02

D1PCLEVL

PIC

99.

000020

02

D1PCSTAT

PIC

XX.

000021

02

D1PCPROC

PIC

XXXX.

000022

02

D1PCRESV

PIC

S9(5)

COMP.

000023

02

D1PCSEGN

PIC

X(8).

000024

02

D1PCKFBL

PIC

S9(5)

COMP.

000025

02

D1PCNSSG

PIC

S9(5)

COMP.

000026

02

D1PCKFBA

PIC

X(20).

000027

000028

PROCEDURE

DIVISION.

000029

ENTRY

‘DLITCBL’

USING

D1PC.

000030

:

000031

:

000032

CALL

‘CBLTDLI’

USING

GU-FUNC,

D1PC,

IOAREA,

000033

SSA001-GU-SE1PART.

000034

:

000035

CALL

‘CBLTDLI’

USING

GN-FUNC,

D1PC,

IOAREA.

000036

IF

D1PCSTAT

NOT

=

‘

‘,

000037

CALL

‘ERRRTN’

USING

D1PC,

DERRID,

IOAREA,

ERROPT.

000038

MOVE

+4

TO

RETURN-CODE.

000039

:

000040

CALL

DFSOAST

USING

D1PC.

000041

:

000043

:

000044

GOBACK.

000045

Figure

66.

Example

of

a

COBOL

Batch

Program

IBM

Confidential

Chapter

18.

Application

Programming

for

the

IMS

Database

Manager

181

v

Each

DL/I

CALL

statement

should

be

coded

as

in

statement

(33).

The

parameters

of

the

DL/I

call

are

explained

elsewhere

in

this

chapter,

and

differ

in

number

for

different

functions.

v

The

status

code

in

the

PCB

should

be

checked

after

each

call

(37).

The

status-code

error

routine

is

discussed

below

(38).

v

At

the

end

of

processing,

control

must

be

returned

to

DL/I

via

a

GOBACK

statement

(44).

Optionally,

you

can

set

the

COBOL

‘RETURN-CODE’

(39).

If

DL/I

detects

no

errors,

and

thus

does

not

set

the

return

code,

the

COBOL

‘RETURN-CODE’

value

will

be

passed

on

to

the

next

job

step.

Java

Programming

Considerations

The

basic

programming

considerations

for

Java

are

discussed

in

Chapter

21,

“Application

Programming

in

IMS

Java,”

on

page

223.

PL/I

Programming

Considerations

This

section

refers

to

Figure

67

on

page

183.

The

numbers

between

parenthesis

in

the

text

following

the

figure

see

the

corresponding

code

line.

IBM

Confidential

182

IMS:

An

Introduction

to

IMS

When

DL/I

invokes

your

PL/I

program

it

will

pass

the

addresses,

in

the

form

of

pointers,

to

each

PCB

required

for

execution.

These

will

be

passed

in

the

same

sequence

as

specified

in

PSB.

To

use

the

PCBs,

you

must

code

parameters

in

your

PROCEDURE

statement,

and

declare

them

to

have

the

attribute

POINTER.

In

the

example,

DC_PTR

and

DB_PTR

are

specified

in

the

PROCEDURE

statement

(6)

and

declared

POINTER

variables

(15

and

16).

These

pointer

variables

should

be

used

in

declaring

the

PCBs

as

BASED

structures

(18

and

21),

and

in

calling

DL/I(55).

The

format

of

the

PL/I

CALL

statement

to

invoke

DL/I

(55)

is:

CALL

PLITDLI

(parmcount,

function,

pcb-ptr,

io-area,ssal,...,ssan):

/*---*/0000001

/*

SAMPLE

PL/I

PROGRAM

*/0000002

/*--

*/0000003

PE2PROD:

0000005

PROCEDURE

(DC

PTR,DB_PTR)

OPTIONS

(MAIN);

0000006

/*

DECLARE

POINTERS

AND

PCBS.

*/0000008

DECLARE

0000010

PLITDLI

ENTRY,

/*

DL/I

WIlL

BE

CALLD*/

0000012

DFSOAST

ENTRY

OPTIONS

(ASSEMBLER

INTER),

/*

STATISTICS

PRINT

*/

0000013

DFSOAER

ENTRY

OPTIONS

(ASSEMBLER

INTER),

/*

STATUS

COOE

PRINT

*/

0000014

DC_PTR

POINTER,

/*

CHPAT

IN

PSB

*/

0000015

DB_PTR

POINTER,

/*

ORDER

DB

PCB

*/

0000016

01

ClPC

BASED

(DC_PTR),

/*

NOT

USED

IN

*/

0000018

02

DUMMY

CHAR

(32),

/*

BATCH

DL/I

*/

0000019

01

DlPC

BASED

(DB_PTR),

/*

PHASE

2

ORDER

DB

*/

0000021

02

DlPCDBDN

CHAR

(8),

/*

DBD

NAME

*/

0000022

02

DlPCLEVL

CHAR

(2),

/*

SEGMENT

LEVEL

*/

0000023

02

DlPCSTAT

CHAR

(2),

/*

STATUS

CODE

*/

0000024

02

DlPCPROC

CHAR

(4),

/*

PROCESSING

OPTN

*/

0000025

02

OlPCRESV

FIXED

BINARY(31),

/*

RESERVED

*/

0000026

02

DlPCSEGN

CHAR

(8),

/*

SEGMENT

NAME

*/

0000027

02

DlPCKFBL

FIXED

BINARY(31),

/*

KEY

FEEOBACK

LNG

*/

0000028

02

DlPCNSSG

FIXED

BINARY(3l),

/*

N0.

OF

SENSEGS

*/

0000029

02

DlPCKFBA

CHAR

(14);

/*

KEY

FEEDBACK

*/

0000030

/*

DECLARE

FUNCTION

COOES,

I/0

AREA,

CALL

ARG

LIST

LENGTHS

*/

0000032

DECLARE

0000034

IO_AREA

CHAR

(256)

/*

I/0

AREA

*/

0000036

GU_FUNC

STATIC

CHAR

(4)

INIT

t’GU’I,

/*

CALL

FUNCTION

*/

0000037

FOUR

STATIC

FIXED

BINARY

(31)

INIT

I4

),

/*

ARG

LIST

LENGTH

*/

0000038

ERROPT1

CHAR

(4)

INIT

(’0’)

STATIC,

/*

OPTN

FOR

DFSOAER

*/

0000039

ERROPT2

CHAR

(4)

INIT

(’2’)

STATIC,

/*

FINAL

OPTN:DFSOAER*/

0000040

DERRID

CHAR

(8)

INIT

(’DERFORO1’)

STATIC;

/*

ID

FOR

DFSOAER

*/

0000041

/*

DECLARE

SEGMENT

SEARCH

AFGUMENT

(SSA)

-

ORDER

SEGMENT.

*/

0000043

DECLARE

0000045

01

SSA007_GU_SE2OPDER,

0000047

02

SSA007_BEGIN

CHAR

(19)

INIT

(’SE2ORDER(FE2OGPEF

=’),

0000048

02

SSA007_FE2OG2EF

CHAR

(6),

0000049

02

SSA007_END

CHAR

(1)

INIT

(’1’);

0000050

/*

PROCESSING

PORTION

OF

THE

PROGRAM

*/

0000052

SSACO7_FE2OGREF

=

’XXXXXXX’;

/*

SET

SSA

VALUE

*/

0000054

CALL

PLITDLI

(FOUR,GU_FUNC,.DB_PTR,IO_AREA,

/*

THIS

CALL

WILL

*/

0000055

SSA007_GU_FE2ORDER);

/*

RETURN

’GE’

STAT

*/

0000056

IF

DlPCSTAT

--

’

’

THEN

/*

CALL

EROOR

PRINT

*/

0000057

CALL

DFSOAER

(DlFC,DERRID,IO_AREA,ERROPTl);

0000058

CALL

DFSOAER

(DlPC,DERRID,IO

AREA,ERROPT2);

/*

FINAL

CALL

TO

ERR*/

0000059

/*

RETURN

TO

CALLER.

*/

0000065

END

PE2PORD;

0000067

Figure

67.

Example

of

a

PL/I

Batch

Program

IBM

Confidential

Chapter

18.

Application

Programming

for

the

IMS

Database

Manager

183

Where:

parmcount

Is

the

number

of

arguments

in

this

call

following

this

argument.

It

must

have

the

attributes

FIXED

BINARY

(31).

See

(38).

function

Is

the

DL/I

function

code.

It

must

be

a

fixed

length

character

string

of

length

4.

pcb-ptr

is

a

pointer

variable

containing

the

address

of

the

PCB.

This

is

normally

the

name

of

one

of

the

parameters

passed

to

your

program

at

invocation.

io-area

Is

the

storage

in

your

program

into/from

which

DL/I

is

to

store/fetch

data.

It

can

be

a

major

structure,

a

connected

array,

a

fixed-length

character

string

(CHAR

(n)),

a

pointer

to

any

of

these

or

a

pointer

to

a

minor

structure.

It

cannot

be

the

name

of

a

minor

structure

of

a

character

string

with

the

attribute

VARYING.

ssa1...

Is

one

or

more

optional

segment

search

arguments.

Each

SSA

argument

must

be

one

of

the

same

PL/I

forms

allowed

for

io-areas,

described

above.

See

(47)

in

the

example.

Upon

completion

of

your

program,

you

should

return

either

via

a

RETURN

statement

or

by

executing

the

main

procedure

END

statement.

Processing

Databases

with

Logical

Relationships

Generally,

there

is

no

difference

between

the

processing

of

physical

databases

and

logical

databases:

all

call

functions

are

available

for

both.

Some

considerations

do

apply,

however,

when

accessing

a

logical

child

of

a

concatenated

segment.

Accessing

a

Logical

Child

in

a

Physical

Database

When

accessing

a

logical

child

in

a

physical

DBD,

you

should

remember

the

layout

of

the

logical

child.

It

always

consists

of

the

logical

parent

concatenated

key

(that

is,

all

the

consecutive

keys

from

the

root

segment

down

to

and

including

the

logical

parent)

plus

the

logical

child

itself:

the

intersection

data

(see

Figure

60

on

page

173).

This

is

especially

important

when

inserting

a

logical

child.

You

will

also

get

an

IX

status

code

when

you

try

to

insert

a

logical

child

and

its

logical

parent

does

not

exist

(except

at

initial

load

time).

This

will

typically

happen

when

you

forget

the

LPCK

in

front

of

the

LCHILD.

Note:

In

general,

physical

databases

should

not

be

used

when

processing

logical

relationships.

Accessing

Segments

in

a

Logical

Database

The

following

considerations

apply

for

each

call

function

when

accessing

segments

in

logical

DBDs.

Retrieve

Calls

These

calls

function

as

before

with

the

same

status

codes.

Remember,

however,

that

the

concatenated

segment

always

consists

of

the

logical

child

segment

plus,

optionally

(dependent

on

the

logical

DBD),

the

destination

parent

segment.

Replace

Calls

In

general,

these

calls

function

the

same

as

before.

When

replacing

a

concatenated

segment

you

may

replace

both

the

logical

child

segment

and

the

destination

parent.

Remember,

however,

that

you

never

can

change

a

sequence

field.

The

following

sequence

fields

can

occur

in

a

concatenated

segment:

v

Destination

parent

concatenated

key.

IBM

Confidential

184

IMS:

An

Introduction

to

IMS

v

Real

logical

child

sequence

field,

(that

is,

the

sequence

of

the

physical

twin

chain

as

defined

for

the

real

logical

child).

This

field

can

(partially)

overlap

the

logical

parent

concatenated

key.

v

Virtual

logical

child

sequence

field,

(that

is,

the

sequence

of

the

logical

twin

chain

as

defined

for

the

virtual

logical

child).

This

field

can

(partially)

overlap

the

physical

parent

concatenated

key.

v

The

key

of

the

destination

parent

itself.

If

any

of

the

above

fields

is

changed

during

a

replace

operation,

a

DA

status

code

will

be

returned,

and

no

data

will

be

changed

in

the

database.

Delete

Calls

In

general,

these

calls

function

the

same

as

before.

If,

however,

you

delete

a

concatenated

segment

(either

of

the

two

versions),

only

the

logical

child

and

its

physical

dependents

(that

is,

the

dependents

of

the

real

logical

child)

will

be

deleted.

the

destination

parent

can

be

deleted

only

via

its

physical

path.

In

other

words:

“The

delete

is

not

propagated

upwards

across

a

logical

relation.”

You

can

delete

only

those

dependents

of

concatenated

segments

which

are

real

dependents

of

the

logical

child.

Examples:

v

If

the

logical

DBD

of

Figure

13

on

page

47,

a

PART

segment

was

deleted,

the

associated

STOCK

and

DETAIL

segments

are

deleted,

too.

However,

the

associated

CUSTOMER

ORDER

and

SHIPMENT

segments

remain.

v

If

the

logical

DBD

of

Figure

13

on

page

47,

a

CUSTOMER

ORDER

segment

was

deleted,

the

associated

DETAIL

and

SHIPMENT

segments

are

deleted

too.

However,

the

associated

PART

and,

STOCK

segments

remain.

Notice

the

logical

child

(and

its

physical

dependents)

is

always

deleted

whenever

one

of

its

parents

is

deleted.

Insert

Calls

Whenever

you

insert

a

concatenated

segment,

the

destination

parent

must

already

exist

in

the

database.

You

can

provide

the

destination

parent

together

with

the

logical

child

in

the

IOAREA,

but

it

is

not

used.

Besides

the

normal

status

codes,

an

IX

status

code

is

returned

when

the

destination

parent

does

not

exist.

Processing

Databases

with

Secondary

Indexes

Access

segments

via

a

secondary

index

allows

a

program

to

process

segments

in

a

order

which

is

not

the

physical

sequence

of

the

database.

One

good

example

of

this

is

the

ORDER

segment.

To

process

an

order

when

only

the

Customer

order

number

is

known,

the

ORDER

segment

can

be

access

via

the

customer

order

number.

This

is

the

simplest

from

of

secondary

index.

Another

basic

use

for

a

secondary

index

is

to

provide

a

method

of

processing

a

subset

of

the

segments

in

a

database

without

having

to

read

the

entire

database.An

example

of

this

would

be

to

provide

a

secondary

index

on

a

Balance

owning

field

in

the

customer

database.

The

secondary

index

database

could

be

defined

to

only

contain

those

database

records

for

which

a

non-zero

balance

is

owning.

Accessing

Segments

by

Using

a

Secondary

Index

The

format

of

the

CALL

parameters

for

accessing

segments

via

a

secondary

index

are

identical

to

those

access

through

the

primary

path.

The

difference

is

in

the

PCB

coded

in

the

PSB.

The

second

PCB

in

the

PSB

in

Figure

68

on

page

186

shows

how

to

define

a

process

using

the

secondary

index.

IBM

Confidential

Chapter

18.

Application

Programming

for

the

IMS

Database

Manager

185

Retrieving

Segments

The

same

calls

are

used

as

before.

However,

the

index

search

field,

defined

by

an

XDFLD

statement

in

the

DBD

will

be

used

in

the

SSA

for

the

get

unique

of

the

root

segment.

It

defines

the

secondary

processing

sequence.

After

the

successful

completion

of

this

get

unique

call,

the

PCB

and

ICAREA

look

the

same

as

after

the

basic

GU

of

Figure

57

on

page

171,

except

that

the

key

feedback

area

now

starts

with

the

customer

name

field.

When

using

the

secondary

processing

sequence,

consecutive

get

next

calls

for

the

CUSTOMER

ORDER

segment

will

present

the

CUSTOMER

ORDER

segments

in

customer

name

sequence.

If

both

the

primary

and

the

secondary

processing

sequence

are

needed

in

one

program,

you

should

use

two

PCBs

as

shown

in

Figure

69.

Replacing

Segments

To

replace

segments

in

the

indexed

database

a

combination

of

get

hold

and

replace

calls

can

be

used

as

before.

Again,

no

sequence

fields

may

be

changed.

The

index

search

fields,

however,

can

be

changed.

If

an

index

search

field

is

changed,

DL/I

will

automatically

update

the

index

database

via

a

delete

old

and

insert

new

pointer

segment.

*

*

PSB

with

Secondary

index

PCB

*

PCB

TYPE=DB,PROCOPT=G,

DBDNAME=BE2CUST,,KEYLEN=6

PCB

TYPE=DB,PROCOPT=G,

DBDNAME=BE2CUST,,PROCSEQ=FE2CNAM,,KEYLEN=20

*

SENSEQ

NAME=SE2PSCUST

PSBGENG,LANG=COBOL,PSBNAME=SE2PCUST,CMPAT=YES

END

Figure

68.

Example

of

a

PSB

with

a

Secondary

Index

Defined

77

GU-FUNC

PICTURE

XXXX

VALUE

‘GUbb’

01

SSA002-GU-SE2PCUST.

02

SSA002-BEGIN

PICTURE

x(19)

VALUE

‘SE2PCUSTb(FE2PCNAMb=’.

02

SSA002-FE2PCNAM

PICTURE

X(20).

02

SS1002-END

PICTURE

X

VALUE

‘)’.

01

IOAREA

PICTURE

X(256).

--

MOVE

CUSTOMER-NAME

TO

SSA002-FE2PCNAM.

CALL

‘CBLTDLI’

USING

GU-FUNC,PCB-NAME,IOAREA,SSA002-GU-SE2PCUST.

--

STATUS

CODES:

bb:

succesfull

call

GE:

exceptional

but

correct

condition

other:

error

condition

Figure

69.

Example

of

a

Get

Unique

Call

Using

a

Secondary

Index

IBM

Confidential

186

IMS:

An

Introduction

to

IMS

Note:

When

using

a

secondary

processing

sequence,

this

could

result

in

the

later

re

accessing

of

a

database

record.

Deleting

Segments

When

using

a

secondary

processing

sequence,

you

cannot

delete

the

index

target

segment

(that

is,

the

root

segment).

If

you

have

a

need

to

do

so,

you

should

use

a

separate

PCB

with

a

primary

processing

sequence.

Inserting

Segments

Again,

when

using

a

secondary

processing

sequence,

you

cannot

insert

the

index

target

segment.

In

all

other

cases,

the

ISRT

call

will

function

as

before.

Creating

Secondary

Indexes

A

secondary

index

can

be

created

during

initial

load

of

the

indexed

database

or

later.

The

secondary

index

database

is

created

with

the

DL/I

reorganization

utilities.

No

application

program

requirements.

Loading

Databases

Loading

databases

with

information

has

some

considerations

for

the

application

program

and

the

PSB

used.

Overview

of

Loading

Databases

Basically

the

load

program

inserts

segments

into

the

database

from

some

kind

of

input.

It

builds

the

segments

and

inserts

them

in

the

database

in

hierarchical

order.

Quite

often

the

data

to

be

stored

in

the

database

already

exists

in

one

or

more

files,

but

merge

and

sort

operations

may

be

required

to

present

the

data

in

the

correct

sequence.

The

process

of

loading

database

is

different

than

updating

a

database

with

segments

already

in

the

it.

A

database

must

be

initialized

before

it

can

be

used

by

most

application

programs.

A

database

can

be

initialize

in

several

ways:

v

Data

reloaded

by

the

database

recovery

utility

v

Data

loaded

by

a

database

reload

utility

v

Data

loaded

by

a

program

with

the

PROCOPT

of

L

(full-function

only)

Once

the

database

is

initialize

it

will

remains

so

until

it

has

been

deleted

and

redefined.

Therefore

is

it

possible

to

have

an

empty

initialize

database.

A

database

which

is

not

empty

can

not

be

used

by

a

PSB

with

a

PROCOPT

of

L

nor

can

it

be

recovered

or

loaded

with

the

reload

utility.

If

the

database

has

no

secondary

indexes

or

logical

relationship,

then

the

load

process

is

very

straight

forward.

Any

program

with

a

PROCOPT

of

L

can

load

it.

Once

that

program

has

completed

and

close

the

database,

the

database

can

then

be

used

by

any

program

for

read

or

update.

The

loading

of

database

with

logical

relationships

and

secondary

indexes

are

discussed

next.

Loading

a

HDAM

Database

When

initially

loading

an

HDAM

database,

you

should

specify

PROCOPT=L

in

the

PCB.

There

is

no

need

for

DL/I

to

insert

the

database

records

in

root

key

order,

but

you

must

still

insert

the

segments

in

their

hierarchical

order.

IBM

Confidential

Chapter

18.

Application

Programming

for

the

IMS

Database

Manager

187

For

performance

reasons

it

is

advantageous

to

sort

the

database

records

into

sequence.

The

physical

sequence

should

be

the

ascending

sequence

of

the

block

and

root

anchor

point

values

as

generated

by

the

randomizing

algorithms.

This

can

be

achieved

by

using

a

tool

from

the

IMS/ESA

System

Utilities/Database

Tools

(WHAT

TOOL?

AN

IMS

UTILITY?).

This

tool

provides

a

sort

exit

routine,

which

gives

each

root

key

to

the

randomizing

module

for

address

conversion,

and

then

directs

SORT

to

sort

on

the

generated

address

+

root

key

value.

Status

Codes

for

Loading

Databases:

The

status

codes,

as

shown

in

Table

14,

can

be

expected

when

loading

basic

databases

after

the

ISRT

call:

Table

14.

Database

Load

Status

Codes

Returned

Status

Code

Explanation

bb

or

CK

Segment

is

inserted

in

database

LB

The

segment

already

exists

in

database

IC

The

key

field

of

the

segment

is

out

of

sequence

LD

No

parent

has

been

inserted

for

this

segment

in

the

database

other

Error

situation

Status

Codes

for

Error

Routines:

There

are

essentially

two

categories

of

error

status

codes:

those

caused

by

application

program

errors

and

those

caused

by

system

errors.

Sometimes,

however,

a

clear

split

cannot

be

made

immediately.

This

listing

is

not

complete,

but

does

contain

all

the

status

codes

you

should

expect

using

our

subset

of

DL/I.

You

should

see

the

DL/I

status

codes

in

the

IMS

Version

9:

Messages

and

Codes,

Volume

1

if

you

should

need

a

complete

listing

of

all

possible

status

codes.

Loading

a

HIDAM

Database

When

loading

a

HIDAM

database

initially,

you

must

specify

PROCPT=LS

in

the

PCB.

Also,

the

database

records

must

be

inserted

in

ascending

root

sequence,

and

the

segment

must

be

inserted

in

their

hierarchical

sequence.

Loading

a

Database

with

Logical

Relationships

To

establish

the

logical

relationships

during

initial

load

of

databases

with

logical

relationships,

DL/I

provides

a

set

of

utility

programs.

These

are

necessary

because

the

sequence

in

which

the

logical

parent

is

loaded

is

normally

not

the

same

as

the

sequence

in

which

the

logical

child

is

loaded.

To

cope

with

this,

DL/I

will

automatically

create

a

workflow

whenever

you

load

a

database

which

contains

the

necessary

information

to

update

the

pointers

in

the

prefixes

of

the

logically

related

segments.

Before

doing

so,

the

work

file

is

sorted

in

physical

database

sequence

with

the

prefix

resolution

utility

(DFSURG10).

This

utility

also

checks

for

missing

logical

parents.

Next,

the

segment

prefixes

are

updated

with

the

prefix

update

utility

(DFSURGPO).

After

this,

the

database

(s)

are

ready

to

use.

The

above

database

load,

prefix

resolution

and

update

should

be

preceded

by

the

Prereorganization

utility

(DFSURPRO).

This

utility

generates

a

control

data

set

to

be

used

by

database

load,

DFSURG10

and

DFSURGP).

Figure

70

on

page

189

illustrates

the

process.

IBM

Confidential

188

IMS:

An

Introduction

to

IMS

If

both

any

of

the

databases

involved

in

the

logical

relationship

also

has

secondary

indexes,

then

the

process

for

loading

a

database

with

secondary

indexes

must

be

used

as

well.

See

Figure

72

on

page

191

for

an

illustration

of

the

complete

process.

Notes:

1.

You

cannot

use

a

logical

DBD

when

initially

loading

a

database

(PROCOPT=L

(S)

in

the

PCB).

2.

You

must

load

all

database

involved

in

the

logical

relationship

and

pass

the

work

files

to

the

prefix

resolution

utility.

Loading

a

Database

with

Secondary

Indexes

To

load

a

database

which

has

secondary

indexes,

the

primary

database

must

be

uninitialized

as

shown

in

Figure

71

on

page

190.

IMS

will

extract

the

required

information

into

the

work

file

to

build

the

secondary

index

database(s).

Figure

70.

Overview

of

Loading

a

Database

that

has

Logical

Relationships

IBM

Confidential

Chapter

18.

Application

Programming

for

the

IMS

Database

Manager

189

|

|
|
|

Figure

72

on

page

191

illustrates

the

process

of

loading

a

database

that

has

logical

relationships

and

secondary

indexes.

Figure

71.

Overview

of

Loading

a

Database

that

has

Secondary

Indexes

IBM

Confidential

190

IMS:

An

Introduction

to

IMS

Figure

72.

Overview

of

Loading

a

Database

that

has

Logical

Relationships

and

Secondary

Indexes

IBM

Confidential

Chapter

18.

Application

Programming

for

the

IMS

Database

Manager

191

Using

Batch

Checkpoint/Restart

The

batch

checkpoint/restart

facility

of

DL/I

allows

long

running

programs

to

be

restarted

at

an

intermediate

point

in

case

of

failure.

At

regular

intervals

(CHKP

calls)

during

application

program

execution,

DL/I

saves

on

its

log

data

set,

designated

working

storage

areas

in

the

user’s

program,

the

position

of

GSAM

databases,

and

the

key

feedback

areas

of

non-GSAM

databases

For

each

checkpoint,

a

checkpoint

ID

(message

DFS681I)

will

be

written

to

the

z/OS

system

console

and

to

the

job

system

output.

At

restart,

the

restart

checkpoint

ID

is

supplied

in

the

PARM

field

of

the

EXEC

statement

of

the

job.

DL/I

will

then

reposition

the

GSAM

databases

and

restore

the

designated

program

areas.

This

is

accomplished

with

a

special

restart

call

(XRST)

which

must

be

the

very

first

DL/I

call

in

the

program.

At

initial

program

execution,

the

XRST

call

identifies

the

potential

program

areas

to

be

checkpointed

by

later

CHKP

calls.

To

utilize

the

checkpoint/restart

function

of

DL/I

for

batch

programs,

you

should

consider

the

following

guidelines:

v

All

the

data

sets

that

the

program

uses

must

be

DL/I

databases.

GSAM

should

be

used

for

sequential

input

and

output

files,

including

SYSIN

and

SYSOUT.

Any

other

file

cannot

be

repositioned

by

DL/I

and

can

result

in

duplicate

or

lost

output.

v

The

GSAM

output

data

sets

should

use

DISP=(NEW,KEEP,KEEP)

for

the

initial

run

and

DISP=(OLD,KEEP,KEEP)

at

restart

(s).

v

SYSOUT

should

not

be

used

directly.

The

output

should

be

written

to

a

GSAM

file

(as

in

2)

and

be

printed

with

the

additional

jobstep.

IEBGENER

can

be

used

for

this

purpose.

v

The

first

call

issued

to

DL/I

must

be

XRST

call.

Its

format

will

be

discussed

later.

v

The

frequency

of

the

checkpoint

call

is

your

choice.

A

basic

recommendation

is

on

checkpoint

for

every

50

to

500

update

transactions.

It

is

good

practice

to

program

for

an

easy

adjustment

of

this

frequency

factor.

v

After

each

checkpoint

call,

you

must

reposition

yourself

in

the

non-GSAM

databases

by

issuing

a

get

unique

call

for

each

of

those

databases.

Repositioning

of

GSAM

databases

is

done

by

DL/I,

and

you

should

proceed

with

a

get

next

(input)

or

an

insert

(output)

call.

The

following

sections

discuss

the

restart

call

(see

“Using

the

Restart

Call”)

and

the

checkpoint

call

(see

“Using

the

Checkpoint

Call”

on

page

194).

Using

the

Restart

Call

Upon

receiving

the

restart

call

(XRST),

DL/I

checks

whether

a

checkpoint

ID

has

been

supplied

in

the

PARM

field

of

the

EXEC

card

or

in

the

work

area

pointed

to

by

the

XRST

call.

If

no

ID

has

been

supplied,

a

flag

is

set

to

trigger

storing

of

repositioning

data

and

user

areas

on

subsequent

CHKP

calls

(that

is,

DL/I

assumes

that

this

is

the

initial

program

execution,

not

a

restart).

If

the

checkpoint

at

which

restart

is

to

occur

has

been

supplied,

the

IMS

batch

restart

routine

reads

backwards

on

the

log

defined

in

the

//IMSLOGR

DD

card

to

locate

the

checkpoint

records.

User

program

areas

are

restored.

The

GSAM

databases

active

at

the

checkpoint

are

repositioned

for

sequential

processing.

Key

feedback

information

is

provided

in

the

PCB

for

each

database

IBM

Confidential

192

IMS:

An

Introduction

to

IMS

active

at

the

checkpoint.

The

user

program

must

reposition

itself

on

all

non-GSAM

databases,

just

as

it

must

do

after

taking

a

checkpoint.

The

format

of

the

XRST

call

in

COBOL

is:

CALL

‘CBITDLI’

using

call-func,IOPCB-name,

I/O-area-len,work-area

[,1st-area-len,

1st

rea,...,nth-area-len,nth-area}.

The

format

of

the

XRST

call

in

PL/I

is:

CALL

PLITDLI

(parmcount,call-func,IOPCB-name.

I/O-area-len,work-ar

[,1st-area-len,1st-area,...,nth-area-len,nth-area]):

The

format

of

the

XRST

call

in

Assembler

is:

CALL

ASMTDLI,(call-func,IOPCB-name,I/O-area-len,work-area[,1st-area-len,

1st-area,...,nth-area-len,nth-rea]),

Where:

parmcount

Is

the

name

of

a

binary

fullword

field

containing

the

number

of

arguments

following.

PL/I

only.

call-func

Is

the

name

of

a

field

which

contains

the

call

function

‘XRST’.

IOPCB-name

Is

the

name

of

the

I/O

PCB

or

the

“dummy”

I/O

PCB

supplied

by

the

CMPAT

option

in

PSEGEN

(C1PCB

in

the

sample

programs).

I/O-area-len

Is

the

name

of

the

length

field

of

the

largest

I/O

area

used

by

the

user

program:

must

be

a

fullword.

work-area

Is

the

name

of

a

12-byte

work

area.

This

are

should

be

set

to

blanks

(X'40')

before

the

call

and

tested

on

return.

If

the

program

is

being

started

normally,

the

area

will

be

unchanged.

If

the

program

is

being

restarted

from

checkpoint,

the

ID

supplied

by

the

user

in

that

CHKP

call

and

restart

JCL

will

be

placed

in

the

first

8

bytes.

If

the

user

wishes

to

restart

from

a

checkpoint

using

the

method

other

than

IMS

Program

Restart,

he

may

use

the

XRST

call

to

reposition

GSAM

databases

by

placing

the

checkpoint

ID

in

this

area

before

issuing

the

call.

This

ID

is

the

8-byte

left-aligned,

user

supplied

ID.

1st-area-len

Is

the

name

of

a

field

which

contains

the

length

of

the

first

area

to

be

restored.

The

field

must

be

a

fullword.

1st-area

Is

the

name

of

the

first

area

to

be

restored.

nth-area-len

Is

the

name

of

a

field

which

contains

the

length

of

the

nth

area

to

be

restored

(max

n=7):

must

be

a

fullword.

nth-area

is

the

name

of

the

nth

area

to

be

restored

(max

n=7).

Notes:

1.

The

number

of

areas

specified

on

the

XRST

call

must

be

equal

to

the

maximum

specified

on

any

CHKP

call.

2.

The

lengths

of

the

areas

specified

on

the

XRST

call

must

equal

to

or

larger

than

the

lengths

of

the

corresponding

(in

sequential

order)

areas

of

any

CHKP

call.

IBM

Confidential

Chapter

18.

Application

Programming

for

the

IMS

Database

Manager

193

3.

The

XRST

call

is

issued

only

once

and

it

must

be

the

first

request

made

to

DL/I.

4.

The

only

correct

status

code

is

bb:

any

other

implies

an

error

condition.

5.

All

“area-len”

fields

in

PL/I

must

be

defined

as

substructures.

The

name

of

the

major

structure

should,

however,

be

specified

in

the

call.

Using

the

Checkpoint

Call

When

DL/I

receives

a

CHKP

call

from

a

program

which

initially

issued

a

XRST

call,

the

following

actions

are

taken:

v

All

database

buffers

modified

by

the

program

are

written

to

DASD.

v

A

log

record

is

written,

specifying

this

ID

to

the

OS/VS

system

console

and

job

sysout.

v

The

user-specified

areas

(for

example,

application

variables

and

control

tables)

are

recorded

on

the

DL/I

log

data

set.

They

should

be

specified

in

the

initial

XRST

call.

v

The

fully-qualified

key

of

the

last

segment

processed

by

the

program

on

each

DL/I

database

is

recorded

on

the

DL/I

log

data

set.

The

format

of

the

CKPT

call

in

COBOL

is:

CALL

‘OBLTDLI’

using

call-func,IOPCB-name,

I/O-area-len,I/O=area

[,1st-area-len,1st-area,...,nth-area-len,nth-area]).

The

format

of

the

CKPT

call

in

PL/I

is:

CALL

PLITDLI

[parmcount,

call-func,IOPCB-name,I/O-area-len,

I/O-area

[,1st-area-len,1st-area,...,nth-area-len,nth-area]):

The

format

of

the

CKPT

call

in

Assembler

is:

CALL

ASMTDLI,

(call-func,IOPCB-name,I/O-area-len,I/O-area

[,1st-area-len,1st-area,...,nth-area-len,nth-area]):

Where:

parmcount

Is

the

name

of

a

binary

fullword

field

containing

the

number

of

arguments

following.

PL/I

only.

call-func

Is

the

name

of

a

field

which

contains

the

call

function

‘CKPT’.

IOPCB-name

Is

the

name

of

the

I/O

PCB

or

the

dummy

I/O

PCB

in

batch.

I/O-area-len

Is

the

name

of

the

length

field

of

the

largest

I/O

area

used

by

the

application

program:

must

be

a

fullword.

I/O-area

Is

the

name

of

the

I/O

area.

The

I/O

area

must

contain

the

8

byte

checkpoint

ID.

This

is

used

for

operator

or

programmer

communication

and

should

consist

of

EBCDIC

characters.

In

PI/I,

this

parameter

should

be

specified

as

a

pointer

to

a

major

structure,

an

array,

or

a

character

string.

The

recommended

format

is

MMMMnnnn

where:

MMMM

Is

the

4-character

program

identification.

nnnn

Is

the

4-character

checkpoint

sequence

number,

incremented

at

each

CHKP

call.

IBM

Confidential

194

IMS:

An

Introduction

to

IMS

1st-area-len

(optional)

Is

the

name

of

a

field

that

contains

the

length

of

the

first

area

to

checkpoint:

must

be

a

fullword.

1st-area

(optional)

Is

the

name

of

the

first

area

to

checkpoint.

nth-area-len

(optional)

Is

the

name

of

the

field

that

contains

the

length

of

the

nth

area

to

checkpoint

(max

n=7):

must

be

a

fullword.

nth-area

(optional)

Is

the

name

of

the

nth

area

to

checkpoint

(max

n=7).

Notes:

1.

The

only

correct

status

code

in

batch

is

bb:

any

other

specifies

an

error

situation.

2.

Before

restarting

a

program

after

failure,

you

always

must

first

correct

the

failure

and

recover

your

databases.

You

must

reestablish

your

position

in

all

IMS

database

(except

GSAM)

after

return

from

the

checkpoint

(that

is,

issue

a

get

unique).

3.

All

“area-len”

fields

in

PL/I

must

be

defined

as

substructures

see

the

example

under

note

5

of

the

XRST

call.

4.

Because

the

log

tape

is

read

forward

during

restart,

the

checkpoint

ID

must

be

unique

for

each

checkpoint.

IBM

Confidential

Chapter

18.

Application

Programming

for

the

IMS

Database

Manager

195

IBM

Confidential

196

IMS:

An

Introduction

to

IMS

Chapter

19.

Application

Programming

for

the

IMS

Transaction

Manager

This

chapter,

which

deals

with

writing

application

programs

in

the

IMS

Transaction

Manager

environment,

is

divided

into

two

major

sections:

v

“Application

Program

Processing”

v

“Transaction

Manager

Application

Design”

on

page

201

Application

Program

Processing

Basically,

the

MPP

processing

can

be

divided

into

five

phases.

Figure

73

on

page

198

illustrates

these

phases

and

the

list

that

follows

Figure

73

on

page

198

describes

the

phases.

IBM

Confidential

©

Copyright

IBM

Corp.

2004

197

The

following

are

the

five

phases

of

the

flow

of

an

MPP:

1.

Initialization

Initialization

is

the

clearing

of

working

storage,

which

may

contain

data

left-over

by

the

processing

of

a

message

from

another

terminal.

2.

Retrieval

of

the

scratch

pad

area

(SPA)

and

input

message

The

application

issues

a

call

to

IMS

TM

to

retrieve

a

message

from

the

message

queue.

The

application

retrieves

the

SPA

first

if

the

transaction

is

conversational.

3.

Input

syntax

check

IMS

TM

checks

the

syntax

of

the

input

message.

All

checks

which

can

be

done

without

accessing

the

database,

including

a

consistency

check

with

the

status

of

the

conversation

as

maintained

in

the

SPA.

4.

Database

processing

Figure

73.

General

MPP

Structure

and

Flow

IBM

Confidential

198

IMS:

An

Introduction

to

IMS

|

|
|
|

Database

processing

is

performed

preferably

in

one

phase.

This

means

that

the

retrieval

of

a

database

segment

is

immediately

followed

by

its

update.

Compare

this

to

an

initial

retrieve

of

all

required

segments

followed

by

a

second

retrieve

and

then

update.

5.

Output

processing

The

output

message

is

built

and

inserted

together

with

the

SPA

(only

for

conversational

transactions).

After

finishing

the

processing

of

one

input

message,

the

program

should

go

back

to

step

1

and

request

a

new

input

message.

If

there

are

no

more

input

messages,

IMS

will

return

a

status

code

indicating

that.

At

that

time,

the

MPP

must

return

control

to

IMS.

Role

of

the

PSB

The

program

specification

block

(PSB)

for

an

MPP

or

a

BMP

contains,

besides

database

PCBs,

one

or

more

PCB

(s)

for

logical

terminal

linkage.

The

very

first

PCB

always

identifies

the

originating

logical

terminal.

This

PCB

must

be

referenced

in

the

get

unique

and

get

next

message

calls.

It

must

also

be

used

when

inserting

output

messages

to

that

LTERM.

In

addition,

one

or

more

alternate

output

PCBs

can

be

defined.

Their

LTERM

destinations

can

be

defined

in

the

PCBs

or

set

dynamically

with

change

destination

calls.

DL/I

Message

Calls

The

same

DL/I

language

interface

that

is

used

for

the

access

of

databases

is

used

to

access

the

message

queues.

The

principal

DL/I

message

calls

are:

GU

(get

unique)

This

call

must

be

used

to

retrieve

the

first,

or

only,

segment

of

the

input

message.

GN

(get

next)

This

call

must

be

used

to

retrieve

second

and

subsequent

message

segments.

ISRT

(insert)

This

call

must

be

used

to

insert

an

output

message

segment

into

the

output

message

queue.

Note:

these

output

message(s)

will

not

be

sent

until

the

MPP

terminates

or

requests

another

input

message

via

a

get

unique.

CHNG

(change

destination)

This

call

can

be

used

to

set

the

output

destination

for

subsequent

insert

calls.

For

a

detailed

description

of

the

DL/I

database

calls

and

guidelines

for

their

use,

see

Chapter

18,

“Application

Programming

for

the

IMS

Database

Manager,”

on

page

165.

Conversational

Processing

A

transaction

code

can

be

defined

as

belonging

to

a

conversational

transaction

during

IMS

system

definition.

If

so,

an

application

program

that

processes

that

transaction,

can

interrelate

messages

from

a

given

terminal.

The

vehicle

to

accomplish

this

is

the

scratch

pad

area

(SPA).

A

unique

SPA

is

created

for

each

physical

terminal

which

starts

a

conversational

transaction.

IBM

Confidential

Chapter

19.

Application

Programming

for

the

IMS

Transaction

Manager

199

Each

time

an

input

message

is

entered

from

a

physical

terminal

in

conversational

mode,

its

SPA

is

presented

to

the

application

program

as

the

first

message

segment

(the

actual

input

being

the

second

segment).

Before

terminating

or

retrieving

another

message

(from

another

terminal),

the

program

must

return

the

SPA

to

IMS

with

a

message

ISRT

call.

The

first

time

a

SPA

is

presented

to

the

application

program

when

a

conversational

transaction

is

started

from

a

terminal,

IMS

will

format

the

SPA

with

binary

zeroes

(X'00').

If

the

program

wishes

to

terminate

the

conversation,

it

can

indicate

this

by

inserting

the

SPA

with

a

blank

transaction

code.

Output

Message

Processing

As

soon

as

an

application

reaches

a

synchronization

point,

its

output

messages

in

the

message

queue

become

eligible

for

output

processing.

A

synchronization

point

is

reached

whenever

the

application

program

terminates

or

requests

a

new

message

from

the

input

queue

via

a

GU

call.

In

general,

output

messages

are

processed

by

message

format

service

before

they

are

transmitted

via

the

telecommunications

access

method.

Different

output

queues

can

exist

for

a

given

LTERM,

depending

on

the

message

origin.

They

are,

in

transmission

priority:

1.

Response

messages,

that

is,

messages

generated

as

a

direct

response

(same

PCB)

to

an

input

message

from

this

terminal.

2.

Command

responses.

3.

Alternate

output

messages,

messages

generated

via

an

alternate

PCB.

Application

Program

Termination

The

following

sections

discuss

terminating

your

application

program.

Normal

Termination

The

program

returns

control

to

IMS

TM

when

it

finishes

processing.

In

a

BMP,

DLI,

or

DBB

processing

region,

your

program

can

set

the

return

code

and

pass

it

to

the

next

step

in

the

job.

If

your

program

does

not

use

the

return

code

in

this

way,

it

is

a

good

idea

to

set

it

to

zero

as

a

programming

convention.

Restriction:

MPPs

cannot

pass

return

codes.

Abnormal

Termination

Upon

abnormal

termination

of

a

message

or

batch-message

processing

application

program

for

other

reasons

than

deadlock

resolution,

internal

commands

are

issued

to

prevent

rescheduling.

These

commands

are

the

equivalent

of

a

/STOP

command.

They

prevent

continued

use

of

the

program

and

the

transaction

code

in

process

at

the

time

of

abnormal

termination.

The

master

terminal

operator

can

restart

either

or

both

stopped

resources.

At

the

time

abnormal

termination

occurs,

a

message

is

used

to

the

master

terminal

and

to

the

input

terminal

that

identifies

the

application

program,

transaction

code,

and

input

terminal.

It

also

contains

the

system

and

user

completion

codes.

in

addition,

the

first

segment

of

the

input

transaction,

in

process

by

the

application

at

abnormal

termination,

is

displayed

on

the

master

terminal.

IBM

Confidential

200

IMS:

An

Introduction

to

IMS

The

database

changes

of

a

failing

program

are

dynamically

backed-out.

Also,

its

output

messages

inserted

in

the

message

queue

since

the

last

synchronization

point

are

cancelled.

Logging

and

Checkpoint/Restart

Processing

To

ensure

the

integrity

of

its

databases

and

message

processing

IMS

uses

logging

and

checkpoint/restart.

In

case

of

system

failure,

either

software

or

hardware,

IMS

can

be

restarted.

This

restart

includes

the

repositioning

of

users’

terminals,

transactions,

and

databases.

Logging

During

IMS

execution,

all

information

necessary

to

restart

the

system

in

the

event

of

hardware

or

software

failure,

is

recorded

on

a

online

log

data

sets

(OLDS).

The

following

critical

system

information

is

recorded

on

the

OLDS:

v

The

receipt

of

an

input

message

in

the

input

queue

v

The

start

of

an

MPP

or

BMP

v

The

receipt

of

a

message

by

the

MPP

for

processing

v

Before

and

after

images

of

database

updates

by

the

MPP

or

BMP

v

The

insert

of

a

message

into

the

queue

by

the

MPP

v

The

termination

of

an

MPP

or

BMP

v

The

successful

receipt

of

an

output

message

by

the

terminal

In

addition

to

the

above

logging,

all

previous

database

record

unchanged

data

is

written

to

the

log

data

set.

This

log

information

is

only

used

for

dynamic

back-out

processing

of

a

failing

MPP/BMP.

as

soon

as

the

MPP/BMP

reaches

a

synchronization

point,

the

dynamic

log

information

of

this

program

is

discarded.

Emergency

Restart

In

case

of

failure,

IMS

is

restarted

with

the

log

data

set

active

at

the

time

of

failure.

Restart

processing

will

back-out

the

database

changes

of

incomplete

MPPs

and

BMPs.

The

output

messages

inserted

by

these

incomplete

MPPs

will

be

deleted.

After

back-out,

the

input

messages

are

re-enqueued,

the

MPPs

restarted,

and

the

pending

output

messages

are

re-transmitted.

If

a

BMP

was

active

at

the

time

of

failure,

it

must

be

resubmitted

by

using

a

z/OS

job.

If

the

BMP

uses

the

XRST/CHKP

calls,

it

must

be

restarted

from

its

last

successful

checkpoint.

In

this

way,

missing

or

inconsistent

output

is

avoided.

Transaction

Manager

Application

Design

We

will

distinguish

between

the

following

areas

in

the

IMS

database/data

communication

design

process:

v

Program

design

v

Message

Format

Service

(MFS)

design

v

Database

design

In

“Online

Program

Design”

on

page

204,

we

will

concentrate

on

the

design

of

message

processing

programs

(MPPs).

The

MFS

design

will

discuss

the

3270

screen

layouts

and

operator

interaction.

IBM

Confidential

Chapter

19.

Application

Programming

for

the

IMS

Transaction

Manager

201

Although

we

will

cover

each

of

the

above

areas

in

separate

sections,

it

should

be

realized

that

they

are

largely

dependent

upon

each

other.

Therefore,

an

overall

system

design

must

be

performed

initially

and

an

overall

system

review

must

follow

the

design

phase

of

each

section

Online

Transaction

Processing

Concepts

In

an

IMS

online

environment,

one

can

view

a

transaction

from

three

different

points:

v

The

application,

that

is,

its

processing

characteristics

and

database

accesses.

v

The

terminal

user.

v

The

IMS

system.

Each

of

the

above

constitutes

a

set

of

characteristics.

These

characteristics

are

described

in

the

following

sections.

Application

Characteristics

From

an

application

point

of

view,

we

can

identify:

v

Data

collection

with

no

previous

database

access).

This

is

not

a

typical

IMS

application

but

can

be

part

of

an

IMS

application

system.

v

Update.

This

normally

involves

database

reference

and

the

subsequent

updating

of

the

database.

This

is

the

environment

of

most

IMS

applications.

In

typical

IMS

multi-application

environment,

the

above

characteristics

are

often

combined.

However,

a

single

transaction

normally

has

only

one

of

the

above

characteristics.

Terminal

User

Characteristics

From

the

terminal

user’s

point

of

view,

we

distinguish:

v

Single-interaction

transactions.

v

Multi-interaction

transactions.

The

single

interaction

transaction

does

not

impose

any

dependency

between

any

input

message

and

its

corresponding

output,

and

the

next

input

message.

The

multi-interaction

transaction

constitutes

a

dialogue

between

the

terminal

and

the

message

processing

program

(s).

Both

the

terminal

user

and

the

message

processing

rely

on

a

previous

interaction

for

the

interpretation/processing

of

a

subsequent

interaction.

IMS

Characteristics

From

the

IMS

system

point

of

view,

we

distinguish:

v

Non-response

transactions

v

Response

transactions

v

Conversational

transactions

These

IMS

transaction

characteristics

are

defined

for

each

transaction

during

IMS

system

definition.

With

non-response

transactions,

IMS

accepts

multiple

input

messages

(each

being

a

transaction)

from

a

terminal

without

a

need

for

the

terminal

to

first

accept

the

corresponding

output

message,

if

any.

These

non-response

transactions

will

not

be

further

considered

in

our

sample.

IBM

Confidential

202

IMS:

An

Introduction

to

IMS

With

response

transactions,

IMS

will

not

accept

further

transaction

input

from

the

terminal

before

the

corresponding

output

message

is

sent

and

interpreted

by

the

user.

Conversational

transactions

are

similar

to

response

transactions,

in

that

no

other

transactions

can

be

entered

from

the

terminal

until

the

terminal

is

out

of

conversational

mode.

With

response

mode,

the

terminal

is

locked

until

a

reply

is

received.

This

is

not

the

case

for

conversational

mode.

Another

difference

is

that

for

conversation

transactions,

IMS

provides

a

unique

scratch

pad

area

(SPA)

for

each

user

to

store

vital

information

across

successive

input

messages.

Transaction

Response

Time

Considerations

In

addition

to

the

above

characteristics,

the

transaction

response

time

is

often

an

important

factor

in

the

design

of

online

systems.

The

response

time

is

the

elapsed

time

between

the

entering

of

an

input

message

by

the

terminal

operator

and

the

receipt

of

the

corresponding

output

message

at

the

terminal.

Two

main

factors,

in

general,

constitute

the

response

time:

v

The

telecommunication

transmission

time,

which

is

dependent

on

such

factors

as:

–

Terminal

network

configuration

–

Data

communication

access

method

and

data

communication

line

procedure

–

Amount

of

data

transmitted,

both

input

and

output

–

Data

communication

line

utilization

v

The

internal

IMS

processing

time,

which

is

mainly

determined

by

the

MPP

service

time.

The

MPP

service

time

is

the

elapsed

time

required

for

the

processing

of

the

transaction

in

the

MPP

region.

Choosing

the

Correct

Characteristics

Each

transaction

in

IMS

can

and

should

be

categorized

by

one

characteristic

of

each

of

the

previously

discussed

three

sets.

Some

combinations

of

characteristics

are

more

likely

to

occur

than

others,

but

all

of

them

are

valid.

In

general,

it

is

the

designer’s

choice

as

to

which

combination

is

attributed

to

a

given

transaction.

Therefore,

it

is

essential

that

this

selection

of

characteristics

is

a

deliberate

part

of

the

design

process,

rather

than

determined

after

implementation.

Following

are

some

examples:

v

Assume

an

inquiry

for

the

customer

name

and

address

with

the

customer

number

as

input.

The

most

straightforward

way

to

implement

this

is

clearly

a

non-conversational

response-type

transaction.

v

The

entry

of

new

customer

orders

could

be

done

by

a

single

response

transaction.

The

order

number,

customer

number,

detail

information,

part

number,

quantity

etc.,

could

all

be

entered

at

the

same

time.

The

order

would

be

processed

completely

with

one

interaction.

This

is

most

efficient

for

the

system,

but

it

may

be

cumbersome

for

the

terminal

user

because

she

or

he

has

to

re-enter

the

complete

order

in

the

case

of

a

an

error.

Quite

often,

different

solutions

are

available

for

a

single

application.

Which

one

to

choose

should

be

based

on

a

trade-off

between

system

cost,

functions,

and

user

convenience.

The

following

sections

will

highlight

this

for

the

different

design

areas.

IBM

Confidential

Chapter

19.

Application

Programming

for

the

IMS

Transaction

Manager

203

|
|
|
|
|
|

Online

Program

Design

This

area

is

second

in

importance

to

database

design.

We

will

limit

the

discussion

of

this

broad

topic

to

the

typical

IMS

environment.

We

will

first

discuss

a

number

of

considerations

so

that

you

become

familiar

with

them.

Next,

we

will

discuss

the

design

of

the

two

online

sample

programs.

You

will

notice

that

some

discussions

are

quite

arbitrary

and

may

not

have

to

be

adjusted

for

your

own

environment.

Do

remember,

however,

that

our

prime

objective

is

to

make

you

aware

of

the

factors

which

influence

these

decisions.

Single

versus

Multiple

Passes

A

transaction

can

be

handled

with

one

interaction

or

pass,

or

with

two

or

more

passes

(a

pass

is

one

message

in

and

one

message

out).

Each

pass

bears

a

certain

cost

in

line

time

and

in

IMS

and

MPP

processing

time.

So,

in

general,

you

should

use

as

few

passes

as

possible.

Whenever

possible

you

should

use

the

current

output

screen

to

enter

the

next

input.

This

is

generally

easy

to

accomplish

for

inquiry

transactions,

where

the

lower

part

of

the

screen

can

be

used

for

input

and

the

upper

part

for

output.

(See

“Basic

Screen

Design”

on

page

205).

For

update

transactions,

the

choice

is

more

difficult.

The

basic

alternatives

are:

One-pass

update

After

input

validation,

the

database

updates

are

all

performed

in

the

same

pass.

This

is

the

most

efficient

way

from

the

system

point

of

view.

However,

correcting

errors

after

the

update

confirmation

is

received

on

the

terminal

requires

additional

passes

or

re-entering

of

data.

An

evaluation

n

of

the

expected

error

rate

is

required.

Two-pass

update

On

the

first

pass,

the

input

is

validated,

including

database

access.

A

status

message

is

sent

to

the

terminal.

If

the

terminal

operator

agrees,

the

database

will

be

updated

in

the

second

pass.

With

this

approach,

making

corrections

is

generally

much

simpler,

especially

when

a

scratch

pad

area

is

used.

However,

the

database

is

accessed

twice.

You

should

realize,

that,

except

for

the

SPA,

no

correlation

exists

between

successive

interactions

from

a

terminal.

So,

the

database

can

be

updated

by

somebody

else

and

the

MPP

may

process

a

message

for

another

terminal

between

two

successive

passes.

Multi-pass

update

In

this

case,

each

pass

does

a

partial

database

update.

The

status

of

the

database

and

screen

is

maintained

in

the

SPA.

This

approach

should

only

be

taken

for

complex

transactions.

Also,

remember

that

the

terminal

operator

experiences

response

times

for

each

interaction.

You

also

must

consider

the

impact

on

database

integrity.

IMS

will

only

back-out

the

database

changes

of

the

current

interaction

in

the

case

of

project

or

system

failure.

Notes:

1.

IMS

emergency

restart

with

a

complete

log

data

set

will

reposition

the

conversation.

The

terminal

operator

can

proceed

from

the

point

where

he

or

she

was

at

the

time

of

failure.

2.

When

a

conversational

application

program

terminates

abnormally,

only

the

last

interaction

is

backed

out.

The

application

must

reposition

the

conversation

after

correction.

For

complex

situations,

IMS

provides

an

abnormal

transaction

exit

routine.

This

is

not

covered

in

our

subset.

IBM

Confidential

204

IMS:

An

Introduction

to

IMS

Conversational

versus

Non-Conversational

Conversational

transactions

are

generally

more

expensive

in

terms

of

system

cost

than

non-conversational

ones.

However,

they

give

better

terminal

operator

service.

You

should

only

use

conversational

transactions

when

you

really

need

them.

Also,

with

the

proper

use

of

MFS,

the

terminal

operator

procedures

sometimes

can

be

enhanced

to

almost

the

level

of

conversational

processing.

Transaction

or

Program

Grouping

It

is

the

designer’s

choice

how

much

application

function

will

be

implemented

by

one

transaction

and/or

program.

The

following

considerations

apply:

v

Inquiry-only.

transactions

should

be

simple

transactions.

These

should

be

normally

implemented

as

non-conversational

transactions.

Also,

they

can

be

defined

as

“non-recoverable

inquiry-only””.

If

in

addition,

the

associated

MPPs

specify

PROCOPT=

GO

in

all

their

database

PCB’s,

no

dynamic

enqueue

and

logging

will

be

done

for

these

transactions.

v

Limited-function

MPPs

are

smaller

and

easier

to

maintain.

However,

a

very

large

number

of

MPPs

costs

more

in

terms

of

IMS

resources

(control

blocks

and

path

lengths).

v

Transactions

with

a

long

MPP

service

time

(many

database

accesses).

should

be

handled

by

separate

programs.

Note:

IMS

provides

a

program-to-program

message

switch

capability.

This

is

not

part

of

our

subset.

With

this

facility,

you

can

split

the

transaction

processing

in

two

(or

more)

phases.

The

first

(foreground)

MPP

does

the

checking

and

switches

a

message

(and,

optionally,

the

SPA)

to

a

(background)

MPP

in

a

lower

priority

partition

which

performs

the

lengthy

part

of

the

transaction

processing.

In

this

way

the

foreground

MPP

is

more

readily

available

for

servicing

other

terminals.

Also,

if

no

immediate

response

is

required

from

the

background

MPP

and

the

SPA

is

not

switched,

the

terminal

is

more

readily

available

for

entering

another

transaction.

Basic

Screen

Design

Generally,

a

screen

can

be

divided

into

five

areas,

top

to

bottom:

1.

Primary

output

area,

contains

general,

fixed

information

for

the

current

transaction.

The

fields

in

this

area

should

generally

be

protected.

2.

Detail

input/output

area,

used

to

enter

and/or

display

the

more

variable

part

of

the

transaction

data.

Accepted

fields

should

be

protected

(under

program

control):

fields

in

error

can

be

displayed

with

high

intensity

and

unprotected

to

allow

for

corrections.

3.

MPP

error

message

area.

In

general,

one

line

is

sufficient.

This

can

be

the

same

line

as

5

below.

4.

Primary

input,

that

is

requested

action

and/or

transaction

code

for

next

input,

and

primary

database

access

information.

5.

System

message

field,

used

by

IMS

to

display

system

messages

and

by

the

terminal

operator

to

enter

commands.

For

readability,

the

above

areas

should

be

separated

by

at

least

one

blank

line.

The

above

screen

layout

is

a

general

one,

and

should

be

evaluated

for

each

individual

application.

IBM

recommends

that

you

develop

a

general

screen

layout

and

set

of

formats

to

be

used

by

incidental

programs

and

programs

in

their

initial

test.

This

can

significantly

reduce

the

number

of

format

blocks

needed

and

maintenance.

In

any

case,

installation

standards

should

be

defined

for

a

multi-application

environment.

IBM

Confidential

Chapter

19.

Application

Programming

for

the

IMS

Transaction

Manager

205

MFS

Subset

Restrictions

1.

The

maximum

output

length

of

a

message

segment

is

1388

bytes:

this

is

related

to

our

long

message

record

length

of

1500

bytes.

2.

A

format

is

designated

for

one

screen

size.

This

can

be

later

changed

via

additional

MFS

statements

to

support

both

screens

and

other

devices

with

the

same

set

of

format

blocks.

A

1920

character

format

can

be

displayed

on

the

top

part

of

a

2560

or

3440

character

display,

and

480

character

format

can

be

displayed

on

the

top

of

a

960

character

display.

3.

A

segment

is

one

physical

page,

which

is

one

logical

page.

General

Screen

Layout

Guidelines

The

following

performance

guidelines

should

be

observed

when

making

screen

layouts:

v

Avoid

full-format

operations.

IMS

knows

what

format

is

on

the

screen.

So

if

the

format

for

the

current

output

is

the

same

as

the

one

on

the

screen,

IMS

need

not

retransmit

all

the

literals

and

unused

fields.

v

Avoid

unused

fields,

for

example,

undefined

areas

on

the

screen.

Use

the

attribute

byte

(non-displayed)

of

the

next

field

as

a

delimiter,

or

expand

a

literal

with

blanks.

Each

unused

field

causes

additional

control

characters

(5)

to

be

transmitted

across

the

line

during

a

full-format

operation.

Note:

This

has

to

be

weighed

against

user

convenience.

For

example,

our

sample

customer

name

inquiry

format

does

not

have

consecutive

fields

but

it

is

user

convenient.

Also,

this

application

rarely

needs

a

new

format

so

we

are

not

so

much

concerned

with

unused

fields.

Including

the

Transaction

Code

in

the

Format

IMS

requires

a

transaction

code

as

the

first

part

of

an

input

message.

With

MFS,

this

transaction

code

can

be

defined

as

a

literal.

In

doing

so,

the

terminal

operator

always

enters

data

on

a

preformatted

screen.

The

initial

format

is

retrieved

with

the

/FORMAT

command.

To

allow

for

multiple

transaction

codes

on

one

format,

part

of

the

transaction

code

can

be

defined

as

a

literal

in

the

MID.

The

rest

of

the

transaction

code

can

then

be

entered

via

a

DFLD.

This

method

is

very

convenient

for

the

terminal

operator

because

the

actual

transaction

codes

are

not

of

his

concern.

Any

example

of

such

a

procedure

is

shown

in

our

sample

customer

order

entry

application.

Miscellaneous

Design

Considerations

The

following

design

considerations

should

also

be

noted:

v

The

conversation

will

be

terminated

(insert

blank

transaction

code

in

SPA)

after

each

successful

order

entry.

This

is

transparent

to

the

terminal

operator,

because

the

output

format

is

linked

to

a

MID

which

contains

the

transaction

code,

so

the

operator

need

not

re-enter

it.

v

Each

output

message

should

contain

all

the

data

(except

the

MOD-defined

literals)

to

be

displayed.

You

should

never

rely

on

already

existing

data

on

the

screen,

because

a

clear

or

(re)

start

operation

may

have

destroyed

it.

v

Using

secondary

indexing

can

significantly

increase

the

accessibility

of

online

databases.

Therefore,

a

wider

use

of

this

facility

is

discussed

in

“Secondary

Indexing”

on

page

48.

IBM

Confidential

206

IMS:

An

Introduction

to

IMS

Chapter

20.

The

IMS

Message

Format

Service

The

chapter

contains

an

overview

of

the

Message

Format

Service

(MFS)

function

of

IMS.

MFS

describes

the

screen

input

and

output

interaction

with

IMS

online

programs.

The

sections

in

this

chapter

are:

v

“Overview

of

MFS”

v

“MFS

and

3270

Devices”

on

page

209

v

“Relationships

between

MFS

Control

Blocks”

on

page

209

v

“MFS

Functions”

on

page

213

v

“MFS

Control

Statements”

on

page

218

v

“Generating

MFS

Control

Blocks”

on

page

220

v

“Maintaining

the

MFS

Library”

on

page

221

Overview

of

MFS

Through

the

message

format

service

(MFS),

a

comprehensive

facility

is

provided

for

IMS

users

of

3270

and

other

terminals/devices.

MFS

allows

application

programmers

to

deal

with

simple

logical

messages

instead

of

device

dependent

data.

This

simplifies

application

development.

The

same

application

program

may

deal

with

different

device

types

using

a

single

set

of

editing

logic

while

device

input

and

output

are

varied

to

suit

a

specific

device.

The

presentation

of

data

on

the

device

or

operator

input

may

be

changed

without

changing

the

application

program.

Full

paging

capability

is

provided

for

display

devices.

This

allows

the

application

program

to

write

a

large

amount

of

data

that

will

be

divided

into

multiple

screens

for

display

on

the

terminal.

The

capability

to

page

forward

and

backward

to

different

screens

within

the

message

is

provided

for

the

terminal

operator.

The

conceptual

view

of

the

formatting

operations

for

messages

originating

from

or

going

to

an

MFS-supported

device

is

shown

in

Figure

74.

MFS

has

three

major

components:

v

MFS

Language

utility

v

MFS

pool

manager

v

MFS

editor

The

MFS

language

utility

is

executed

offline

to

generate

control

blocks

and

place

them

in

a

format

control

block

data

set

named

IMS.FORMAT.

The

control

blocks

describe

the

message

formatting

that

is

to

take

place

during

message

input

or

Figure

74.

Message

Formatting

Using

MFS

IBM

Confidential

©

Copyright

IBM

Corp.

2004

207

output

operations.

They

are

generated

according

to

a

set

of

utility

control

statements.

There

are

four

types

of

format

control

blocks:

v

Message

input

descriptor

(MID)

v

Message

output

descriptor

(MOD)

v

Device

input

format

(DIF)

v

Device

output

format

(DOF)

The

MID

and

MOD

blocks

relate

to

application

program

input

and

output

message

segment

formats,

and

the

DIF

and

DOF

blocks

relate

to

terminal

I/O

formats.

The

MID

and

DIF

blocks

control

the

formatting

of

input

messages,

while

the

MOD

and

DOF

blocks

control

output

message

formatting.

Notes:

1.

The

DIF

and

the

DOF

control

blocks

are

generated

as

a

result

of

the

format

(FMT)

statement.

2.

The

MID

and

the

MOD

are

generated

as

a

result

of

the

various

message

(MSG)

statements.

3.

The

initial

formatting

of

a

3270

display

is

done

by

issuing

the

/FORMAT

modname

command.

This

will

format

the

screen

with

the

specified

MOD,

as

if

a

null

message

was

sent.

Figure

75

on

page

209

provides

an

overview

of

the

MFS

operations.

IBM

Confidential

208

IMS:

An

Introduction

to

IMS

MFS

and

3270

Devices

The

IMS

Message

Format

Service

(MFS),

described

in

“Overview

of

MFS”

on

page

207,

is

always

used

to

format

data

transmitted

between

IMS

and

the

devices

of

the

3270

information

display

system.

MFS

provides

a

high

level

of

device

independence

for

the

application

programmers

and

a

means

for

the

application

system

designer

to

make

full

use

of

the

3270

device

capabilities

in

terminal

operations.

Although

our

subset

only

considers

the

3270

devices,

its

use

of

MFS

is

such

that

it

is

open-ended

to

the

use

of

other

MFS

supported

terminals

when

required.

Relationships

between

MFS

Control

Blocks

Several

levels

of

linkage

exist

between

MFS

control

blocks,

as

described

in

the

following

sections.

v

“MFS

Control

Block

Chaining”

on

page

210

v

“Linkage

Between

Device

Fields

and

Message

Fields”

on

page

210

v

“Linkage

Between

Logical

Pages

and

Device

Pages”

on

page

211

v

“Message

Description

Linkage”

on

page

212

v

“3270

Device

Considerations

Relative

to

Control

Block

Linkage”

on

page

212

Figure

75.

Overview

of

Message

Format

Service

Functions

IBM

Confidential

Chapter

20.

The

IMS

Message

Format

Service

209

|

|
|
|

MFS

Control

Block

Chaining

Figure

76

shows

the

highest-level

linkage,

that

of

chained

control

blocks.

Legend:

1.

This

linkage

must

exist

2.

If

the

linkage

does

not

exist,

device

input

data

from

3270

devices

is

not

processed

by

MFS.

It

is

always

used

in

our

subset.

3.

This

linkage

is

provided

for

application

program

convenience.

It

provides

a

MOD

name

to

be

used

by

IMS

if

the

application

program

does

not

provide

a

name

via

the

format

name

option

of

the

insert

call.

The

default

MOD,

DFSMO2,

will

be

used

if

none

is

specified

at

all,

or

if

the

input

is

a

message

switch

to

an

MFS-supported

terminal.

4.

The

user-provided

names

for

the

DOF

and

DIF

used

in

one

output/input

sequence

are

normally

the

same.

The

MFS

language

utility

alters

the

internal

name

for

the

DIF

to

allow

the

MFS

pool

manger

to

distinguish

between

the

DOF

and

DIF.

The

direction

of

the

linkage

allows

many

message

descriptions

to

use

the

same

device

format

if

desired.

One

common

device

format

can

be

used

for

several

application

programs

whose

output

and

input

message

formats,

as

seen

at

the

application

program

interface,

are

quite

different.

Linkage

Between

Device

Fields

and

Message

Fields

Figure

77

on

page

211

shows

the

second

level

of

linkage,

that

between

message

fields

and

device

fields.

The

arrows

show

the

direction

of

reference

in

the

MFS

language

utility

control

statements,

not

the

direction

of

data

flow.

Figure

76.

Chained

Control

Block

Linkage

IBM

Confidential

210

IMS:

An

Introduction

to

IMS

References

to

device

fields

by

message

fields

need

not

be

in

any

particular

sequence.

An

MFLD

need

not

see

any

DFLD,

in

which

case

it

simply

defines

space

in

the

application

program

segment

to

be

ignored

if

the

MFLD

is

for

output,

and

padded

if

the

MFLD

is

for

input.

Device

fields

need

not

be

referenced

by

message

fields,

in

which

case

they

are

established

on

the

device,

but

no

output

data

from

the

output

message

is

transmitted

to

them.

Device

input

data

is

ignored

if

the

DFLD

is

not

referenced

by

the

input

MFLD.

Linkage

Between

Logical

Pages

and

Device

Pages

Figure

78

shows

a

third

level

of

linkage,

one

which

exists

between

the

LPAGE

and

the

DPAGE.

The

LPAGE

in

the

MOD

must

see

a

DPAGE

in

the

DOF.

However,

all

DPAGEs

need

not

be

referred

to

from

a

given

MOD.

Figure

77.

Linkage

Between

Message

Fields

and

Device

Fields

Figure

78.

LPAGE

-

DPAGE

Linkage

IBM

Confidential

Chapter

20.

The

IMS

Message

Format

Service

211

|

|
|
|

Because

we

will

always

have

single

segment

input

in

our

subset,

the

defined

MFLDs

in

the

MID

can

refer

to

DFLDs

in

any

DPAGE.

But

input

data

for

any

given

input

message

from

the

device

is

limited

to

fields

defined

in

a

single

DPAGE.

Message

Description

Linkage

Figure

79

shows

a

fourth

level

of

linkage.

It

is

optionally

available

to

allow

selection

of

the

MID

based

on

which

MOD

LPAGE

is

displayed

when

input

data

is

received

from

the

device.

Legend:

1.

The

next

MID

name

provided

with

the

MSG

statement

is

used

if

no

name

is

provided

with

the

current

LPAGE.

2.

If

the

next

MID

name

is

provided

with

the

current

LPAGE,

input

will

be

processed

using

this

page.

3.

For

3270

devices,

all

MIDs

must

refer

to

the

same

DIF.

This

is

the

same

user-provided

name

used

to

refer

to

the

DOF

when

the

MOD

was

defined.

3270

Device

Considerations

Relative

to

Control

Block

Linkage

Since

output

to

3270

display

devices

establishes

fields

on

the

device

using

hardware

capabilities,

and

field

locations

cannot

be

changed

by

the

operator,

special

linkage

restrictions

exist.

Because

formatted

input

can

only

occur

from

a

screen

formatted

by

output,

the

LPAGE

and

physical

page

description

used

for

formatting

input

is

always

the

same

as

that

used

to

format

the

previous

output.

The

MFS

language

utility

enforces

this

restriction

by

ensuring

that

the

format

name

used

for

input

editing

is

the

same

as

the

format

name

used

for

the

previous

output

editing.

Furthermore,

if

the

DIF

corresponding

to

the

previous

DOF

cannot

be

fetched

during

online

processing,

an

error

message

is

sent

to

the

3270

display.

Figure

79.

Optional

Message

Description

Linkage

IBM

Confidential

212

IMS:

An

Introduction

to

IMS

|

|
|
|

MFS

Functions

The

following

sections

contain

a

description

of

the

basic

MFS

functions.

v

“Input

Message

Formatting”

v

“Output

Message

Formatting”

on

page

214

v

“MFS

Formats

Supplied

by

IBM”

on

page

218

Input

Message

Formatting

All

device

input

data

received

by

IMS

is

edited

before

being

passed

to

an

application

program.

The

editing

is

performed

by

either

IMS

basic

edit

or

MFS.

It

tells

how

the

use

of

MFS

is

determined

and

how,

when

MFS

is

used,

the

desired

message

format

is

established

based

on

the

contents

of

two

MFS

control

blocks

—

the

device

input

format

(DIF)

and

the

message

input

descriptor

(MID).

All

3270

devices

included

in

an

IMS

system

use

MFS.

The

3270s

always

operate

in

formatted

mode

except

when

first

powered

on,

after

the

CLEAR

key

has

been

pressed,

or

when

the

MOD

used

to

process

an

output

message

does

not

name

a

MID

to

be

used

for

the

next

input

data.

While

in

unformatted

mode,

you

can

still

enter

commands

and

transactions,

but

they

will

not

be

formatted

by

MFS.

Input

Data

Formatting

Using

MFS

Input

data

from

terminals

in

formatted

mode

is

formatted

based

on

the

contents

of

two

MFS

control

blocks,

the

MID

and

the

DIF.

The

MID

defines

how

the

data

should

be

formatted

for

presentation

to

the

application

program

and

points

to

the

DIF

associated

with

the

input

device.

See

Figure

80.

The

MID

contains

a

list

of

message

descriptor

fields

(MFLDs)

which

define

the

layout

of

the

input

segment

as

is

to

be

seen

by

an

application

program.

The

DIF

contains

a

list

of

device

descriptor

fields

(DFLDs)

which

define

what

data

is

to

be

expected

from

which

part

of

the

device

(that

is,

the

location

on

the

screen).

MFS

maps

the

data

of

the

DFLDs

into

the

corresponding

MFLDs.

The

application

program

is

largely

device

independent

because

different

physical

inputs

can

be

mapped

into

the

same

input

segment.

MFLD

statements

are

to

define:

Figure

80.

MFS

Input

Formatting

IBM

Confidential

Chapter

20.

The

IMS

Message

Format

Service

213

|

|
|
|

v

The

device

fields

(DFLDs)

defined

in

the

DIF

which

contents

will

be

included

in

the

message

presented

to

the

application

program.

v

Constants,

defined

as

literals

to

be

included

in

the

message:

a

common

use

of

literals

is

to

specify

the

transaction

code.

In

addition,

the

MFLD

statement

defines:

v

The

length

of

the

field

expected

by

the

application

program

v

Left

or

right

justification

and

the

fill

character

to

be

used

for

padding

the

data

received

from

the

device.

v

A

‘nodata’

literal

for

the

MFLD

if

the

corresponding

DFLD

does

not

contain

any

input

data.

It

should

be

noted

that

all

message

fields

as

defined

by

MFLD

statements

will

be

presented

to

the

application

program

in

our

subset.

Furthermore,

there

will

always

be

only

one

input

message

segment,

except

for

conversational

transaction,

in

which

case

the

first

segment

presented

to

the

program

is

the

SPA.

The

SPA

is

never

processed

by

MFS,

however.

Input

Message

Field

Attribute

Data

Sometimes

input

messages

are

simply

updated

by

an

application

program

and

returned

to

the

device.

In

such

a

case,

it

may

simplify

message

definition

layouts

in

the

MPP

if

the

attribute

data

bytes

are

defined

in

the

message

input

descriptor

as

well

as

the

message

output

descriptor.

Non-literal

input

message

fields

can

be

defined

to

allow

for

2

bytes

of

attribute

data.

When

a

field

is

so

defined,

MFS

will

reserve

the

first

2

bytes

of

the

field

for

attribute

data

to

be

filled

in

by

the

application

program

when

preparing

an

output

message.

In

this

way,

the

same

program

area

can

be

conveniently

used

for

both

input

and

output

messages.

When

attribute

space

is

specified,

the

specified

field

length

must

include

the

2

attribute

bytes.

IMS

Passwords

If

the

input

data

is

for

a

password

protected

transaction,

a

device

field

should

be

designated

for

the

password.

The

device

field

in

which

the

operator

keys

in

the

password

will

not

be

displayed

on

the

screen.

Output

Message

Formatting

All

output

messages

for

3270

devices

are

processed

by

MFS

in

a

way

similar

to

input.

Output

Data

Formatting

Using

MFS

All

MFS

output

formatting

is

based

on

the

contents

of

two

MFS

control

blocks

--

the

message

output

descriptor

(MOD)

and

the

device

output

format

(DOF).

See

Figure

81

on

page

215,

the

MOD

defines

output

message

content

and

optionally,

literal

data

to

be

considered

part

of

the

output

message.

Message

fields

((MFLDs)

refer

to

device

field

locations

via

device

field

(DFLD)

definitions

in

the

DOF.

The

DOF

specifies

the

use

of

hardware

features,

device

field

locations

and

attributes,

and

constant

data

considered

part

of

the

format.

IBM

Confidential

214

IMS:

An

Introduction

to

IMS

The

layout

of

the

output

message

segment

to

be

received

by

MFS

from

the

program

is

defined

by

a

list

of

MFLDs

in

the

MOD.

The

DOF

in

turn

contains

a

list

of

DFLDs

which

define

where

the

data

is

to

be

displayed/printed

on

the

output

device.

MFS

maps

the

data

of

the

MFLDs

into

the

corresponding

DFLDs.

All

fields

in

an

output

message

segment

must

be

defined

by

MFLD

statements.

Fields

can

be

truncated

or

omitted

by

two

methods.

The

first

method

is

to

insert

a

short

segment.

The

second

method

is

to

place

a

NULL

character

(X3f’)

in

the

field.

Fields

are

scanned

left

(including

the

attribute

bytes,

if

any)

to

right

for

NULL

character.

The

first

NULL

character

encountered

terminates

the

field.

If

the

first

character

of

a

field

is

a

NULL

character,

no

data

is

sent

to

the

screen

for

this

field.

This

means

that

if

the

field

is

protected

and

the

same

device

format

is

used,

the

old

data

remains

on

the

screen.

To

erase

the

old

data

of

a

protected

field,

the

application

program

must

send

X’403F’

to

that

field.

Positioning

of

all

fields

in

the

segment

remains

the

same

regardless

of

NULL

characters.

Truncated

fields

are

padded

with

a

program

tab

character

in

our

subset.

Furthermore,

we

always

specify

erase-unprotected-all

in

the

display

device

format.

This

erases

all

old

data

in

unprotected

fields

on

the

screen.

Notes:

1.

Device

control

characters

are

invalid

in

output

message

fields

under

MFS.

The

control

characters

HT,

CR,

LF,

NL,

and

BS

will

be

changed

to

null

characters

(X'CC').

All

other

nongraphic

characters

are

X'40'

through

X'FE'.

2.

With

MFS,

the

same

output

message

can

be

mapped

on

different

device

types

with

one

set

of

formats.

This

will

not

be

covered

in

our

subset.

The

formatting

discussed

will

cover

one

device

type

per

device

format,

not

a

mixture.

However,

the

mixture

can

be

implemented

later

by

changing

the

formats.

In

addition

to

MFLD

data,

constants

can

be

mapped

into

DFLDs.

These

constants

are

defined

as

literals

in

DFLD

or

MFLD

statements.

Multiple

Segment

Output

Messages

MFS

allows

mapping

of

one

or

more

output

segments

of

the

same

message

onto

a

single

or

multiple

output

screens.

In

our

subset,

we

will

limit

ourselves

to

a

one-to-one

relationship

between

output

message

segments

and

logical

output

pages.

Also

one

logical

output

page

is

one

physical

output

page

(one

screen).

Figure

81.

MFS

Output

Formatting

IBM

Confidential

Chapter

20.

The

IMS

Message

Format

Service

215

|

|
|
|

Logical

Paging

of

Output

Messages

Logical

paging

is

the

way

output

message

segments

are

grouped

for

formatting.

when

logical

paging

is

used,

an

output

message

descriptor

is

defined

with

one

or

more

LPAGE

statements.

Each

LPAGE

statement

relates

a

segment

produced

by

a

application

program

to

corresponding

device

page.

Using

logical

paging,

the

simplest

message

definition

consists

of

one

LPAGE

and

one

segment

description.

As

shown

in

Figure

82,

each

segment

produced

by

the

application

program

is

formatted

in

the

same

manner

using

the

corresponding

device

page.

With

the

definition

shown

in

Figure

82,

each

output

segment

inserted

by

the

MPP

will

be

displayed

with

the

same

and

only

defined

MOD/DOF

combination.

If

different

formats

are

required

for

different

output

segments,

one

LPAGE

and

SEG

statement

combination

is

required

for

each

different

format.

Each

LPAGE

can

link

to

a

different

DPAGE

if

desired.

This

would

not

be

required

if

only

defined

constants

and

MFLDs

differ

in

the

MOD.

The

selection

of

the

DPAGE

to

be

used

for

formatting

is

based

on

the

value

of

a

special

MFLD

in

the

output

segment.

This

value

is

set

by

the

MPP.

If

the

LPAGE

to

be

used

cannot

be

determined

from

the

segment,

the

last

defined

LPAGE

is

used.

See

also

the

description

of

the

COND

parameter

of

the

LPAGE

statement.

Each

LPAGE

can

refer

to

a

corresponding

DPAGE

with

unique

DFLDs

for

its

own

device

layout.

See

Figure

83.

Operator

Paging

of

Output

Messages

If

an

output

message

contains

multiple

pages,

the

operator

requests

the

next

one

with

the

program

access

key

1

(PA1).

If

PA1

is

pressed

after

the

last

page

is

received,

IMS

will

send

a

warning

message

in

our

subset.

If

PA1

is

then

pressed

again,

IMS

will

send

the

first

page

of

the

current

output

message

again.

Figure

82.

An

Output

Message

Definition

with

One

LPAGE

Figure

83.

An

Output

Message

Definition

with

Multiple

Pages

IBM

Confidential

216

IMS:

An

Introduction

to

IMS

The

operator

can

always

request

the

next

output

message

by

pressing

the

PA2

key.

Also,

in

our

subset,

when

the

operator

enters

data,

the

current

output

message

is

dequeued.

Output

Message

Literal

Fields

Output

message

fields

can

be

defined

to

contain

literal

data

specified

by

the

user

during

definition

of

the

MOD.

MFS

will

include

the

specified

literal

data

in

the

output

message

before

sending

the

message

to

the

device.

MFS

users

can

define

their

own

literal

field

or

select

a

literal

from

a

number

of

literals

provided

by

MFS.

The

MFS-provided

literals

are

referred

to

as

system

literals

and

include

various

date

formats,

a

time

stamp,

the

output

message

sequence

number,

the

logical

terminal

name,

and

the

number

of

the

logical

page.

Output

Device

Field

Attributes

Device

field

attributes

are

defined

in

DFLD

statements.

For

3270

display

devices,

specific

attributes

may

be

defined

in

the

ATTR=

keyword

of

the

DFLD

statement.

If

not,

default

attributes

will

be

assumed.

The

message

field

definition

(MFLD)

corresponding

to

the

device

field

(DFLD)

may

specify

that

the

application

program

can

dynamically

modify

the

device

field

attributes.

When

a

field

is

so

defined,

the

first

2

data

bytes

of

the

field

are

reserved

for

attribute

data.

Any

error

in

the

2-byte

specification

causes

the

entire

specification

to

be

ignored,

and

the

attributes

defined

or

defaulted

for

the

device

field

are

used.

Note:

The

two

attribute

bytes

should

not

be

included

in

the

length

specification

of

the

device

field

(DFLD)

in

the

DOF.

The

default

attributes

for

non-literal

3270

display

device

fields

are

alphabetic,

not-protected,

normal

display

intensity,

and

not-modified.

Literal

device

fields

have

forced

attributes

of

protected

and

not-modified

and

default

attributes

of

numeric

and

normal

display

intensity.

Numeric

protected

fields

provide

an

automatic

skip

function

on

display

terminals.

Cursor

Positioning

The

positioning

of

the

cursor

on

the

3270

display

device

is

done

in

either

of

two

ways:

v

The

DPAGE

statement

defines

the

default

cursor

position.

v

The

program

can

dynamically

set

the

cursor

to

the

beginning

of

a

field

via

its

attribute

byte.

System

Message

Field

(3270

Devices)

Output

formats

for

3270

display

devices

may

be

defined

to

include

a

system

message

field.

If

so

defined,

all

IMS

messages

except

DFS057

REQUESTED

FORMAT

BLOCK

NOT

AVAILABLE

are

not

sent

to

the

system

message

field

whenever

the

device

is

in

formatted

mode.

Providing

a

system

message

field

avoids

the

display

of

an

IMS

message

elsewhere

on

the

screen,

thereby

overlaying

the

screen

data.

When

MPS

sends

a

message

to

the

system

message

field,

it

activates

the

device

alarm

(if

any)

but

does

not

reset

modified

data

tags

(MDTs)

or

move

the

cursor.

Since

an

IMS

error

message

is

an

immediate

response

to

input,

MDTs

remain

as

they

were

at

entry

and

the

operator

merely

has

to

correct

the

portion

of

the

input

in

error.

IBM

Confidential

Chapter

20.

The

IMS

Message

Format

Service

217

In

our

subset

we

will

always

reserve

the

bottom

line

of

the

screen

for

the

system

message

field.

This

field

can

also

be

used

to

enter

commands,

for

example,

/FORMAT.

Printed

Page

Format

Control

The

3270

printer

devices

are

also

supported

via

MFS.

Three

basic

options

can

be

specified

in

the

DEV

statement

(PAGE=operand):

v

A

defined

fixed

number

of

lines

should

always

be

printed

for

each

page

(SPACE).

This

is

the

recommended

option

because

it

preserves

forms

positioning.

v

Only

lines

containing

data

should

be

printed.

Blank

lines

are

deleted

(FLOAT).

v

All

lines

defined

by

DFLDs

should

be

printed,

whether

or

not

the

DFLDs

contain

data

(DEFN).

MFS

Formats

Supplied

by

IBM

Several

formats

are

included

in

the

IMS.FORMAT

library

during

IMS

system

definition.

They

are

used

mainly

for

the

master

terminal,

and

for

system

commands

and

messages.

All

these

formats

start

with

the

characters

DFS.

One

of

the

most

interesting

in

our

subset

is

the

default

output

message

format.

This

format

is

used

for

broadcast

messages

from

the

master

terminal

and

application

program

output

messages

with

no

MOD

name

specified.

It

permits

two

segments

of

input,

each

being

a

line

on

the

screen.

DFSDF2

is

the

format

name,

DFSMO2

the

MOD

and

DFSMI2

the

MID

name.

When

the

master

terminal

format

is

used,

any

message

whose

MOD

name

begins

with

DFSMO

(except

DFSMO3)

is

displayed

in

the

message

area.

Any

message

whose

MOD

name

is

DFSDPO1

is

displayed

in

the

display

area.

Messages

with

other

MOD

names

cause

the

warning

message

USER

MESSAGE

WAITING

to

be

displayed

at

the

lower

portion

of

the

display

screen.

MFS

Control

Statements

This

section

describes

the

control

statements

used

by

the

MFS

language

utility.

There

are

two

major

categories

of

control

statements:

v

Definition

statements

are

used

to

define

message

formats

and

device

formats.

v

Compiler

statements

are

used

to

control

the

compilation

and

listings

of

the

definition

statements

The

definition

of

message

formats

and

device

formats

is

accomplished

with

separate

hierarchical

sets

of

definition

statements.

The

following

sections

list

some

of

the

components

of

these

statements.

v

“Definition

Statement

for

Message

Formats”

v

“Definition

Statement

for

Device

Formats”

on

page

219

v

“Compiler

Statement

Definitions”

on

page

219

v

“Relationships

Between

Source

Statements

and

Control

Blocks”

on

page

219

Definition

Statement

for

Message

Formats

The

statement

set

used

to

define

message

formats

consists

of

the

following

statements:

MSG

Identifies

the

beginning

of

a

message

definition.

LPAGE

Identifies

a

related

group

of

segment/field

definitions.

IBM

Confidential

218

IMS:

An

Introduction

to

IMS

PASSWORD

Identifies

a

field

to

be

used

as

an

IMS

password

SEG

Identifies

a

message

segment.

MFLD

Defines

a

message

field.

Iterative

processing

of

MFLD

statements

can

be

invoked

by

specifying

DO

and

ENDDO

statements.

To

accomplish

Iterative

processing,

the

DO

statement

is

placed

before

the

MFLD

statement

(or

statements)

and

the

ENDDO

after

the

MFLD

statement

(or

statements).

For

more

information

about

the

DO

and

ENDDO

statements,

see

“Compiler

Statement

Definitions.”

MSGEND

Identifies

the

end

of

a

message

definition.

Definition

Statement

for

Device

Formats

The

statement

set

used

to

define

message

formats

consists

of

the

following

statements:

FMT

Identifies

the

beginning

of

a

format

definition.

DEV

Identifies

the

device

type

and

operational

options.

DIV

Identifies

the

format

as

input,

output,

or

both.

DPAGE

Identifies

a

group

of

device

fields

corresponding

to

an

LPAGE

group

of

message

fields.

DFLD

Defines

a

device

field.

Iterative

processing

of

DFLD

statements

can

be

invoked

by

specifying

DO

and

ENDDO

statements.

To

accomplish

iterative

processing,

the

DO

statement

is

placed

before

the

DFLD

statement

(or

statements)

and

the

ENDDO

after

the

DFLD

statement

(or

statements).

For

more

information

about

the

DO

and

ENDDO

statements,

see

“Compiler

Statement

Definitions.”

FMTEND

Identifies

the

end

of

the

format

definition.

Compiler

Statement

Definitions

Compilation

statements

have

variable

functions.

The

most

common

ones

are:

DO

Requests

iterative

processing

of

MFLD

or

DFLD

definition

statements.

EJECT

Ejects

SYSPRINT

listing

to

the

next

page.

END

Defines

the

end

of

data

for

SYSIN

processing.

ENDDO

Terminates

iterative

processing

of

MFLD

or

DFLD.

PRINT

Controls

SYSPRINT

options.

SPACE

Skips

lines

on

the

SYSPRINT

listing.

TITLE

Provides

a

title

for

the

SYSPRINT

listing.

Compilation

statements

are

to

be

inserted

at

logical

points

in

the

sequence

of

control

statements.

For

example,

TITLE

could

be

placed

first,

and

EJECT

could

be

placed

before

each

MSG

or

FMT

statement.

Relationships

Between

Source

Statements

and

Control

Blocks

In

general,

the

following

relations

exists

between

the

MFS

source

statements

and

control

blocks:

v

One

MSG

statement

and

its

associated

LPAGE,

SEG,

and

MFLD

statements

generate

one

MID

or

MOD.

IBM

Confidential

Chapter

20.

The

IMS

Message

Format

Service

219

v

One

FMT

statement

and

its

associated

DEV,

DIV,

DPAGE

and

DFLD

statements

generate

one

DIF

and/or

DOF.

For

displays,

both

the

DIF

and

DOF

are

generated,

because

the

output

screen

is

used

for

input

too.

In

addition

the

MFS

utilities

will

establish

the

linkages

between

the

MID,

MOD,

DIF,

and

DOF.

These

are

the

result

of

the

symbolic

name

linkages

defined

in

the

source

statements.

Generating

MFS

Control

Blocks

MFS

control

blocks

are

generated

by

running

the

MFS

language

utility

program.

This

is

a

two-stage

process.

See

Figure

84.

The

sections

that

follow

the

figure

describe

this

process.

The

MFS

control

block

generated

can

be

executed

by

an

IMS

supplied

cataloged

procedure:

MFSUTL.

Multiple

formats

can

be

generated

with

one

execution.

In

general

you

would

process

a

complete

format

set,

that

is,

the

related

message

and

format

descriptions,

in

one

execution

of

MFSUTL.

Three

executions

of

MFSUTL

are

involved

to

process

the

three

sample

format

sets.

“Steps

for

Generating

MFS

Control

Blocks”

describes

the

three

steps

of

generating

MFS

control

blocks.

Steps

for

Generating

MFS

Control

Blocks

Generating

MFS

Control

Blocks

(Step

1)

Preprocessor

The

MFS

language

utility

preprocessor

generates

intermediate

text

blocks

(ITBs),

based

on

the

MFS

language

source

statement.

Definitions

of

the

MFS

language

utility

source

input

are

discussed

in

“MFS

Control

Statements”

on

page

218.

The

primary

function

of

the

preprocessor

is

to

Figure

84.

Overview

of

Process

for

Creating

MFS

Control

Blocks

IBM

Confidential

220

IMS:

An

Introduction

to

IMS

perform

syntax

and

relational

validity

checks

on

user

specifications

and

generate

ITBs.

The

ITBs

are

then

processed

by

phase

1

of

the

utility

to

generate

message

(MSG)

and

format

(FMT)

descriptors.

An

ITB

generated

for

each

MSG

or

FMT

description

can

be

re-used

by

the

same

or

another

format

set,

once

it

has

been

successfully

added

to

the

IMS.REFERAL

data

set.

Each

such

description

must

start

with

a

MSG

or

FMT

statement

and

end

with

a

MSGEND

or

FMTEND

statement.

Phase

1

The

preprocessor

invokes

phase

1

if

the

highest

return

code

generated

by

the

preprocessor

is

less

than

16.

Phase

1

places

the

newly

constructed

descriptors

on

the

SEQBLKS

data

set.

Each

member

processed

has

a

control

record

placed

on

the

SEQBLKS

data

set

identifying

the

member,

its

size,

and

the

date

and

time

of

creation.

This

control

record

is

followed

by

the

image

of

the

descriptor

as

constructed

by

phase

1.

Alternatively,

if

an

error

is

detected

during

descriptor

building,

an

error

control

record

is

placed

on

the

SEQBLKS

data

set

for

the

description

in

error,

identifying

the

member

in

error,

and

the

date

and

time

the

error

control

record

was

created.

In

addition,

phase

1

returns

a

completion

code

of

12

to

z/OS.

If

execution

of

step

2

is

forced,

phase

2

will

delete

descriptors

with

build

errors.

Generating

MFS

Control

Blocks

(Step

2)

Phase

2

Phase

2

receives

control

as

a

job

step

following

phase

1.

After

final

processing,

it

will

place

the

new

descriptors

into

the

IMS.FORMAT

library.

Phase

2

passes

a

completion

code

to

z/OS

for

step

2

based

on

all

the

descriptor

maintenance

to

IMS.FORMAT

for

a

given

execution

of

the

MFS

language

utility.

Generating

MFS

Control

Blocks

(Step

3)

In

our

subset,

we

will

always

execute

the

MFS

service

utility

after

MFS

control

block

generation.

This

utility

will

build

a

new

index

directory

block

which

will

eliminate

the

need

for

directory

search

operations

during

the

IMS

online

operation.

Maintaining

the

MFS

Library

The

IMS.FORMAT

and

IMS.REFERAL

libraries

are

standard,

z/OS

partitioned

data

sets.

Backup

and

restore

operations

can

be

done

with

the

proper

z/OS

utility

(IEBCOPY).

However,

care

must

be

taken

that

both

the

IMS.FORMAT

and

IMS.REFERAL

data

sets

are

dumped

and

restored

at

the

same

time.

IBM

Confidential

Chapter

20.

The

IMS

Message

Format

Service

221

IBM

Confidential

222

IMS:

An

Introduction

to

IMS

Chapter

21.

Application

Programming

in

IMS

Java

IMS

Java

application

programs

use

JDBC

or

IMS

Java

hierarchic

database

interface.

JDBC

is

the

SQL-based

standard

interface

for

data

access

in

the

Java

2

SDK

Standard

Edition

and

Enterprise

Edition.

IMS

Java’s

implementation

of

JDBC

supports

a

selected

subset

of

the

full

facilities

of

the

JDBC

2.0

API.

The

IMS

Java

hierarchic

database

interface

is

more

closely

related

to

the

standard

DL/I

database

call

interface

used

with

other

languages,

and

provides

a

lower-level

access

to

IMS

database

functions

than

the

JDBC

interface.

IMS

Java

provides

class

libraries

that

allow

you

to

easily

develop

applications

that

can

access

IMS’s

broad

range

of

database

types

and

options,

including:

v

Full-function

databases

v

High

Availability

Large

Databases

(HALDBs)

v

Fast

Path

Data

Entry

Databases

(DEDBs)

v

Logical

relationships

v

Secondary

indexes

IMS

Java

application

programs

can

be

message-driven

or

non-message-driven

and

can

handle

a

variety

of

message

processing:

v

Conversational

and

non-conversational

transactions

v

Multi-segment

and

single-segment

messages

v

Message

Formatting

Services

(MFS)

v

Alternate

PCB

program

switching

Regardless

of

what

environment

the

IMS

Java

application

runs

in,

it

accesses

the

IMS

databases

the

same

way.

The

following

sections

are

covered

in

this

chapter:

v

“Environments

that

Support

IMS

Java”

v

“Describing

an

IMS

Database

to

IMS

Java”

on

page

224

v

“Accessing

an

IMS

Database

with

IMS

Java”

on

page

226

Environments

that

Support

IMS

Java

The

following

sections

are

overviews

of

the

support

for

IMS

Java

application

programs

from

various

environments.

v

“IMS

Environment

Overview”

v

“WebSphere

Application

Server

for

z/OS

Environment

Overview”

on

page

224

v

“CICS

Environment

Overview”

on

page

224

v

“DB2

UDB

for

z/OS

Environment

Overview”

on

page

224

IMS

Environment

Overview

IMS

Java

application

programs

run

in

one

of

two

IMS

dependent

regions

that

provide

a

Java

Virtual

Machine

(JVM)

environment

for

the

Java

applications:

v

Java

Message

Processing

(JMP)

region

for

message-driven

Java

applications.

JMP

applications

process

input

messages

from

the

message

queue,

similar

to

Message

Processing

Programs

(MPPs),

in

a

DB/DC

environment.

v

Java

Batch

Processing

(JBP)

region

for

non-message-driven

Java

applications.

JBP

applications

run

in

an

online

batch

mode

and

do

not

process

input

IBM

Confidential

©

Copyright

IBM

Corp.

2004

223

messages,

similar

to

non-message-driven

Batch

Message

Processing

(BMP)

applications,

in

a

DBCTL

or

a

DB/DC

environment.

Restriction:

JBP

applications

cannot

be

message

driven.

Related

Reading:

v

For

guidance

information

on

designing

an

IMS

application,

see

the

IMS

Version

9:

Application

Programming:

Design

Guide.

v

For

information

on

configuring

JMP

and

JBP

regions,

see

the

IMS

Version

9:

IMS

Java

Guide

and

Reference

and

the

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

WebSphere

Application

Server

for

z/OS

Environment

Overview

You

can

write

Java

applications

(WebSphere

Application

Server

for

z/OS

Enterprise

Java

Beans

[EJBs])

that

run

on

a

WebSphere

Application

Server

for

z/OS

and

OS/390

J2EE

server

and

access

IMS

databases.

Related

Reading:

For

information

on

configuring

WebSphere

Application

Server

for

z/OS

to

run

Java

applications

that

access

IMS

databases,

see

IMS

Version

9:

IMS

Java

Guide

and

Reference.

CICS

Environment

Overview

You

can

write

IMS

Java

applications

that

run

on

CICS

Transaction

Server

for

z/OS

and

access

IMS

databases.

Related

Reading:

For

information

on

configuring

CICS

to

run

Java

applications

that

access

IMS

databases

and

for

information

on

developing

an

Java

application

that

runs

on

CICS

and

accesses

IMS

databases,

see

IMS

Version

9:

IMS

Java

Guide

and

Reference.

DB2

UDB

for

z/OS

Environment

Overview

You

can

write

DB2

UDB

for

z/OS

stored

procedures

that

access

IMS

databases.

Related

Reading:

For

information

on

configuring

DB2

UDB

for

z/OS

to

run

Java

applications

that

access

IMS

databases

and

developing

a

DB2

UDB

for

z/OS

stored

procedure

that

accesses

IMS

databases,

see

IMS

Version

9:

IMS

Java

Guide

and

Reference.

Describing

an

IMS

Database

to

IMS

Java

Processing

IMS

databases

with

an

IMS

Java

application

requires

that

you

describe

the

database

view

of

your

application’s

PSB

to

IMS

Java.

You

must

do

this

by

providing

the

name

of

a

metadata

class

when

establishing

the

JDBC

database

connection.

There

are

two

ways

you

can

prepare

the

metadata

class

for

an

application:

v

Provide

the

application

PSB

source

and

any

related

DBD

source

to

the

DLIModel

utility,

and

specify

the

generation

of

the

IMS

Java

metadata

class.

This

is

the

recommended

technique

and

is

described

in

this

chapter.

v

Code

the

metadata

class

manually.

This

is

described

further

in

the

IMS

Version

9:

IMS

Java

Guide

and

Reference.

You

can

use

the

DLIModel

utility

to:

IBM

Confidential

224

IMS:

An

Introduction

to

IMS

v

Create

IMS

Java

metadata

classes

to

describe

a

PSB’s

view

of

IMS

databases,

from

PSB

and

DBD

source.

v

Incorporate

additional

field

information

form

XMI

input

files

that

describe

COBOL

copybook

members.

v

Incorporate

additional

PCB,

segment,

and

field

information,

or

overrides

of

existing

information,

into

the

generated

class

from

user-prepared

input

control

statements.

v

Create

a

DLIModel

Java

Report

(designed

to

assist

Java

application

programmers),

which

describes

the

IMS

Java

view

of

the

PSB

and

its

databases.

v

Create

an

XMI

description

of

the

PSB

and

its

databases.

The

DLIModel

utility

can

process

most

types

of

PSBs

and

databases.

For

example,

IMS

Java

supports:

v

All

database

organizations

except

MSDB,

HSAM,

SHSAM,

and

GSAM

v

All

types

and

implementations

of

logical

relationships

v

Secondary

indexes

except

for

shared

secondary

indexes

v

Secondary

indexes

processed

as

stand-alone

databases

v

PSBs

that

specify

field-level

sensitivity

Figure

85

on

page

226

shows

the

inputs

and

outputs

of

the

DLIModel

utility.

The

actions

of

the

utility

are

directed

by

control

statements

that

you

supply.

PSB

and

DBD

source

members

are

read

from

their

PDS

or

PDSE

data

sets

and

parsed

by

the

utility

to

build

an

in-memory

object

model

of

the

database

structure

and

the

PSB’s

view

of

that

structure.

Multiple

PSBs

may

be

processed

in

a

single

run

of

the

utility.

IBM

Confidential

Chapter

21.

Application

Programming

in

IMS

Java

225

Related

Reading:

For

more

information

about

the

DLIModel

utility,

see

the

IMS

Version

9:

IMS

Java

Guide

and

Reference.

Accessing

an

IMS

Database

with

IMS

Java

IMS

Java

supports

two

styles

of

database

programming:

JDBC

JDBC

is

the

SQL-based

standard

interface

for

data

access

in

the

Java

2

SDK

Standard

Edition

and

Enterprise

Edition.

IMS

Java’s

implementation

of

JDBC

supports

a

selected

subset

of

the

full

facilities

of

the

JDBC

2.0

API.

This

is

the

recommended

style

where

sufficient

for

the

application.

Related

Reading:

For

more

information

about

using

the

JDBC

interface,

see

“Using

JDBC

to

Access

an

IMS

Database”

on

page

227.

IMS

Java

hierarchic

database

interface

The

IMS

Java

hierarchic

database

interface

is

more

closely

related

to

the

standard

DL/I

database

call

interface

used

with

other

languages,

and

provides

a

lower-level

access

to

IMS

database

functions

than

the

JDBC

interface.

Using

this

style

of

programming,

you

can

build

segment

search

arguments

(SSAs)

and

call

the

functions

of

the

DLIConnection

object

to

Figure

85.

DLIModel

Utility

Inputs

and

Outputs

IBM

Confidential

226

IMS:

An

Introduction

to

IMS

read,

insert,

update,

or

delete

segments.

With

this

style,

the

application

has

full

control

to

navigate

the

segment

hierarchy.

Related

Reading:

For

details

of

using

the

IMS

Java

hierarchic

database

interface,

see

the

IMS

Version

9:

IMS

Java

Guide

and

Reference.

Note:

Both

styles

require

that

you

first

describe

your

IMS

databases

to

the

IMS

Java

classes

through

a

metadata

class.

See

“Describing

an

IMS

Database

to

IMS

Java”

on

page

224

for

more

information

about

creating

a

metadata

class.

Recommendation:

Before

accessing

an

IMS

database,

you

should

have

a

basic

understanding

of

hierarchical

databases.

For

more

information

about

hierarchical

databases,

see

Chapter

5,

“Overview

of

the

IMS

Hierarchical

Database

Model,”

on

page

41.

Using

JDBC

to

Access

an

IMS

Database

The

following

sections

discuss

the

JDBC

access

method.

Comparing

Hierarchical

and

Relational

Databases

For

the

purpose

of

writing

JDBC

calls,

a

database

segment

definition

defines

the

fields

for

a

set

of

segment

instances

similar

to

the

way

a

relational

table

defines

columns

for

a

set

of

rows

in

a

table.

In

this

way,

segments

relate

to

tables,

and

fields

in

a

segment

relate

to

columns

in

a

table.

Therefore,

the

name

of

an

IMS

segment

from

the

summary

report

becomes

the

table

name

in

an

SQL

query,

and

the

name

of

a

field

becomes

the

column

name

in

the

query.

Writing

an

Application

that

Uses

JDBC

To

use

JDBC

to

read,

update,

insert,

and

delete

segment

instances,

an

application

must:

1.

Load

the

DLIDriver

and

retrieve

a

Connection

object

from

the

DriverManager.

This

step

is

highlighted

in

bold

text

in

Figure

86

on

page

228.

2.

Retrieve

a

Statement

or

PreparedStatement

object

from

the

Connection

and

execute

it.

3.

Iterate

the

ResultSet

returned

from

the

Statement

or

PreparedStatement

object

to

retrieve

specific

field

results.

IBM

Confidential

Chapter

21.

Application

Programming

in

IMS

Java

227

package

dealership.application;

import

com.ibm.ims.base.*;

import

com.ibm.ims.application.*;

import

com.ibm.ims.db.*;

import

java.sql.*;

public

class

IMSAuto

extends

IMSApplication

{

IMSMessageQueue

messageQueue

=

null;

InputMessage

inputMessage

=

null;

ModelOutput

modelOutput

=

null;

Connection

connection

=

null;

public

IMSAuto()

{

super();

}

public

static

void

main(String

args[]){

IMSAuto

imsauto

=

new

IMSAuto();

imsauto.begin();

}

public

void

doBegin()

throws

IMSException

{

messageQueue

=

new

IMSMessageQueue();

inputMessage

=

new

InputMessage();

modelOutput

=

new

ModelOutput();

try

{

Class.forName("com.ibm.ims.db.DLIDriver");

connection

=

DriverManager.getConnection

("jdbc:dli:dealership.application.DealerDatabaseView");

}

catch

(Exception

e){

reply("Connection

not

established");

}

while(messageQueue.getUniqueMessage(inputMessage))

{

if

(!inputMessage.getString("ModelTypeCode").trim().equals("")){

if

(getModelDetails(inputMessage,

modelOutput))

messageQueue.insertMessage(modelOutput);

}

else

{

reply("Invalid

Input");

}

IMSTransaction.getTransaction().commit();

}

}

public

void

reply(String

errmsg)

throws

IMSException{

ErrorMessage

errorMessage

=

new

ErrorMessage();

errorMessage.setString("MessageText",errmsg);

messageQueue.insertMessage(errorMessage);

}

}

Figure

86.

JDBC

Application

IBM

Confidential

228

IMS:

An

Introduction

to

IMS

Part

5.

IMS

System

Administration

Chapter

22.

The

IMS

System

Definition

Process

.

.

.

.

.

.

.

.

.

.

. 231

Overview

of

the

IMS

System

Definition

Process

.

.

.

.

.

.

.

.

.

.

.

. 231

Types

of

IMS

System

Definitions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 232

Stage

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 233

Stage

2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 234

JCLIN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 234

SMP/E

Maintenance

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 234

IMS

Security

Maintenance

Utility

Generation

.

.

.

.

.

.

.

.

.

.

.

. 235

IMS

System

Definition

Macros

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 235

The

Extended

Terminal

Option

(ETO)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 238

ETO

Terminology

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 238

ETO

Concepts

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 241

Administering

ETO

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 243

Chapter

23.

Customizing

IMS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 245

Chapter

24.

IMS

Security

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 253

History

of

IMS

Security

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 253

Security

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 254

Securing

Resources

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 254

Chapter

25.

IMS

Logging

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 257

Checkpoints

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 257

Database

Recovery

Control

(DBRC)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 257

IMS

Log

Components

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 257

IMS

Log

Buffers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 258

Online

Log

Data

Sets

(OLDS)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 258

Write-Ahead

Data

Sets

(WADS)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 260

System

Log

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 261

Recovery

Log

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 261

Chapter

26.

Database

Recovery

Control

(DBRC)

.

.

.

.

.

.

.

.

.

.

. 263

Overview

of

DBRC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 263

Using

DBRC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 264

DBRC

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 264

Communicating

with

DBRC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 265

Database

Authorization

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 265

Access

Intent

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 266

Overview

of

the

RECON

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 266

RECON

Records

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 267

Database

Related

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 268

IMS

Systems

and

the

RECON

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 268

Database

Names

in

the

RECON

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 269

Defining

and

Creating

the

RECON

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

. 269

Initializing

the

RECON

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 270

Allocating

RECON

Data

Sets

to

IMS

Systems

.

.

.

.

.

.

.

.

.

.

.

.

. 270

Placement

Considerations

for

the

RECON

Data

Sets

.

.

.

.

.

.

.

.

.

. 271

Maintaining

RECON

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 271

Backing

Up

the

RECON

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 271

Deleting

Inactive

Log

Records

from

the

RECON

.

.

.

.

.

.

.

.

.

.

. 272

Monitoring

the

RECON

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 272

Reorganizing

RECON

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 273

Recreating

RECON

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 274

IBM

Confidential

©

Copyright

IBM

Corp.

2004

229

PRILOG

Record

Size

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 274

Summary

of

Recommendations

for

RECON

Data

Sets

.

.

.

.

.

.

.

.

.

. 275

DBRC

Support

for

Remote

Site

Recovery

.

.

.

.

.

.

.

.

.

.

.

.

.

. 275

Chapter

27.

Controlling

IMS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 277

Monitoring

the

System

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 277

Processing

IMS

System

Log

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 277

Using

IMS

System

Log

Utilities

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 277

Using

the

IMS

Performance

Analyzer

for

z/OS

.

.

.

.

.

.

.

.

.

.

.

. 281

Choosing

Tools

for

Detailed

Monitoring

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 282

IMS

Monitor

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 282

//DFSSTAT

Reports

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 283

GTF

Trace

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 284

z/OS

Component

Trace

(CTRACE)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 284

Obtaining

Program

Isolation

and

Lock

Traces

.

.

.

.

.

.

.

.

.

.

.

. 284

Trace

Facility

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 286

Executing

Recovery-Related

Functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 286

Using

DBRC

Commands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 286

Dumping

the

Message

Queues

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 287

Recovering

the

Message

Queues

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 287

Archiving

the

OLDS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 287

Making

Databases

Recoverable

or

Nonrecoverable

.

.

.

.

.

.

.

.

.

. 288

Running

Recovery-Related

Utilities

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 288

Modifying

and

Controlling

System

Resources

.

.

.

.

.

.

.

.

.

.

.

.

. 288

List

of

Commands

with

Similar

Functions

for

Multiple

Resources

.

.

.

.

. 288

Modifying

Dependent

Regions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 291

Modifying

Telecommunication

Lines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 291

Modifying

Terminals

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 291

Modifying

Transactions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 292

Modifying

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 292

Modifying

ISC

Users

(Subpools)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 292

Modifying

ETO

Users

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 293

Modifying

MSC

Resources

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 293

Modifying

Security

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 293

Modifying

Conversations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 293

Modifying

Subsystems

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 294

Gathering

Performance-Related

Data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 294

DB

Monitor

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 294

IMS

Monitor

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 295

Controlling

Data

Sharing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 296

Monitoring

the

System

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 296

Controlling

Data

Sharing

Using

DBRC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 300

Controlling

Log

Data

Set

Characteristics

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 301

Controlling

the

Online

Log

Data

Set

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 301

Controlling

the

Write-Ahead

Data

Set

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 304

Controlling

the

System

Log

Data

Set

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 305

Controlling

the

RECON

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 305

Connecting

and

Disconnecting

Subsystems

.

.

.

.

.

.

.

.

.

.

.

.

.

. 306

Chapter

28.

IMS

System

Recovery

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 307

Overview

of

Extended

Recovery

Facility

(XRF)

.

.

.

.

.

.

.

.

.

.

.

.

. 308

Overview

of

Remote

Site

Recovery

(RSR)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 308

Comparison

of

XRF

and

RSR

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 309

Chapter

29.

IBM

IMS

Tools

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 311

IBM

Confidential

230

IMS:

An

Introduction

to

IMS

Chapter

22.

The

IMS

System

Definition

Process

The

IMS

system

definition

process:

v

Is

used

to

define

the

IMS

resources:

–

At

installation

time.

–

When

maintenance

is

applied.

–

When

standard

application

definition

changes

are

required.

v

Assumes

a

working

knowledge

of

SMP/E.

SMP/E

is

required

for

installation

and

is

used

as

part

of

the

IMS

system

definition

process.

v

Is

evolving

to

be

more

dynamic

(versus

static)

over

time.

Extended

Terminal

Option

(ETO),

a

separately-priced

feature

of

IMS

TM,

is

the

first

IMS

offering

for

defining

resources

dynamically

(without

requiring

you

to

shut

down

IMS).

With

ETO,

you

can

dynamically

add

or

delete

VTAM

terminals

and

users

to

your

IMS

outside

of

IMS

the

system

definition

process.

For

more

information

about

ETO,

see

“The

Extended

Terminal

Option

(ETO)”

on

page

238.

The

following

sections

are

covered

in

this

chapter:

v

“Overview

of

the

IMS

System

Definition

Process”

v

“IMS

System

Definition

Macros”

on

page

235

v

“The

Extended

Terminal

Option

(ETO)”

on

page

238

Overview

of

the

IMS

System

Definition

Process

The

IMS

system

definition

process

is

made

up

of

many

steps.

Some

steps

only

occur

for

certain

types

of

IMS

definitions

(see

“Types

of

IMS

System

Definitions”

on

page

232).

Some

of

the

steps

involved

in

IMS

system

definition

are:

v

You

modify

or

tailor

IMS-supplied

macros

and

procedures

(see

“IMS

System

Definition

Macros”

on

page

235)

v

Stage1

assembly

(see

“Stage

1”

on

page

233)

v

Stage2

assembly,

including

the

optional

building

of

MFS

default

formats

and

PROCLIB

updates

(see

“Stage

2”

on

page

234)

v

JCLIN

(see

“JCLIN”

on

page

234)

v

Use

the

SMP/E

APPLY

command

to

process

any

maintenance

that

has

not

been

processed

using

the

SMP/E

ACCEPT

command

(see

“SMP/E

Maintenance”

on

page

234)

v

“IMS

Security

Maintenance

Utility

Generation”

on

page

235

For

on

overview

of

the

Stage1

and

Stage2

components

of

the

system

definition

process,

please

see

Figure

87

on

page

232.

IBM

Confidential

©

Copyright

IBM

Corp.

2004

231

|

|

|

|

|

|
|

|

|
|
|
|
|

|
|
|

Types

of

IMS

System

Definitions

There

are

7

different

levels

of

IMS

system

definitions,

as

documented

in

Table

15.

Table

15.

Types

of

IMS

System

Definitions

IMSCTRL

option

When

used

Comments

BATCH

Only

for

the

batch

environment.

Generates

modules

and

procedures

needed

to

build

a

complete

batch

IMS

system.

Figure

87.

Overview

of

the

Two

Stages

of

System

Definition

Processing

IBM

Confidential

232

IMS:

An

Introduction

to

IMS

Table

15.

Types

of

IMS

System

Definitions

(continued)

IMSCTRL

option

When

used

Comments

MSVERIFY

Only

appropriate

for

MSC.

Builds

control

blocks

for

the

MSC

Verification

utility.

MODBLKS

Used

when

online

changes

to

the

IMS

system

is

required

(such

as

programs,

transactions,

and

database

definitions).

Generates

control

blocks

members

for

resources

to

be

added

online

(for

example,

APPLCTN,

DATABASE,

TRANSACT,

and

RTCODE

macros).

CTLBLKS

Used

to

rebuild

the

existing

IMS

nucleus

and

to

create

communications

definitions.

Generates

modules

for

all

IMS

control

blocks

(for

example,

TERMINAL

and

LINE

macros).

This

type

of

system

definition

includes

MODBLKS

and

MSVERIFY.

NUCLEUS

Used

when

performing

major

maintenance

that

affects

the

contents

of

the

IMS

nucleus

or

when

a

new

nucleus

with

a

new

suffix

is

required.

Generates

an

IMS

nucleus

for

the

control

region.

This

type

of

system

definition

includes

CTLBLKS.

ON-LINE

Major

update,

or

initial

system

definition.

Often

required

for

maintenance.

Builds

all

the

modules

and

procedures

needed

for

the

online

IMS

environment.

This

type

of

system

definition

includes

NUCLEUS.

ALL

Typical

initial

system

definition,

usually

needed

at

maintenance

time.

Builds

most

IMS

modules

and

procedures.

Includes

BATCH

and

ON-LINE

options.

After

your

initial

system

definition

the

ON-LINE,

CTLBLKS,

and

NUCLEUS

types

of

system

definition

can

be

used

to

implement

changes.

These

system

definitions

require

a

cold

start

of

the

IMS

online

system

to

take

effect.

However,

for

certain

changes

to

your

IMS

system,

you

can

take

advantage

of

the

online

change

method

using

the

MODBLKS

system

definition.

The

changes

are

made

active

during

the

execution

of

the

online

system

and

do

not

require

a

restart

operation.

Related

Reading:

For

all

the

details

about

the

different

types

of

system

definition

and

what

they

are

used

for,

see

“Using

the

Macro

Table”

in

the

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

Stage

1

The

IMS

Stage1

job

uses

the

assembler,

with

the

input

being

the

IMS

macros,

as

discussed

in

“IMS

System

Definition

Macros”

on

page

235.

Other

references

are

to

the

IMS

distribution

macro

libraries

(IMS.ADFSMAC)

The

output

of

the

IMS

Stage

1

includes:

v

Standard

assembler

listing

output

with

any

appropriate

error

messages.

v

IMS

Stage

2

input

JCL,

also

used

for

JCLIN.

The

output

from

Stage

1

is

then

used

as

the

JCL

to

run

the

Stage

2

of

the

system

definition

process.

Depending

on

the

Stage

1

definitions

within

the

IMSGEN

macro,

the

Stage

2

can

be

divided

up

into

a

single

job

with

multiple

steps,

or

many

jobs

with

fewer

steps.

This

depends

on

how

your

site

prefers

to

run

this

process.

IBM

Confidential

Chapter

22.

The

IMS

System

Definition

Process

233

Stage

2

will

do

all

the

module

assembling

and

binding

as

required

to

build

all

the

necessary

load

modules,

depending

on

what

type

of

system

definition

is

being

run.

Stage

2

As

for

the

Stage

2,

these

steps

will

all

refer

to

the

IMS

distribution

macro

library

(IMS.ADFSMAC)

at

assembly

time,

and

distribution

load

library

(IMS.ADFSLOAD)

at

bind

time.

The

output

of

the

IMS

system

definition

process

includes:

v

Executable

load

modules

in

data

sets

IMS.SDFSRESL,

IMS.MODBLKS

v

IMS

Options

definitions

in

data

set

IMS.OPTIONS.

v

Assembled

object

code

for

use

in

later

system

definition

steps

in

data

sets

IMS.OBJDSET.

v

Optionally

create

the

runtime

IMS.

PROCLIB

data

set.

See

“IMS.PROCLIB

Update.”

v

Optionally

create

the

runtime

IMS

default

MFS

screens

in

data

sets

IMS.FORMAT,

IMS.TFORMAT,

IMS.REFERAL.

See

“Building

MFS

Default

Formats.”

IMS.PROCLIB

Update

A

parameter

in

the

IMS

Stage1

macro

IMSGEN

(PROCLIB=YES/NO)

determines

whether

or

not

the

IMS.PROCLIB

data

set

is

to

be

populated

by

this

system

definition,

or

not.

The

IMS.PROCLIB

library

contains

IMS

started

tasks

and

JCL

procedures,

as

well

as

the

IMS.PROCLIB

members

required

by

IMS

and

IMS

utilities

to

provide

options.

Building

MFS

Default

Formats

A

parameter

in

the

IMS

Stage1

macro

IMSGEN

(MFSDFMT=YES/NO)

determines

whether

or

not

the

default

message

format

screens

are

built

as

part

of

Stage

2

of

the

system

definition

process.

JCLIN

JCLIN

is

a

an

SMP/E

process

that

tells

SMP/E

how

to

assemble

and

bind

modules.

As

the

IMS

Stage

2

actually

assembles

and

binds

the

IMS

modules

based

on

the

definitions

for

that

particular

system

(and

is

run

outside

of

SMP/E

control),

the

system

definition

Stage

2

input

JCL

must

be

used

as

input

to

the

JCLIN

process,

so

that

SMP/E

will

know

how

to

manage

any

maintenance

added

to

the

system

following

this

IMS

system

definition.

JCLIN

should

be

run

following

any

IMS

system

definition,

to

ensure

that

SMP/E

is

always

synchronized

with

the

updated

IMS.

SMP/E

Maintenance

All

IMS

system

definitions

use

the

IMS

SMP/E

distribution

libraries

and

the

IMS

Stage

1

macros

as

input.

As

a

result,

any

SMP/E

maintenance

(SYSMODs

-

PTFs,

APARs

or

USERMODs)

that

were

processed

using

the

SMP/E

APPLY

command

(but

not

processed

using

the

SMP/E

ACCEPT

command)

prior

to

an

IMS

system

definition,

might

be

regressed

as

a

result

of

that

IMS

system

definition,

depending

on

the

type

of

IMS

system

definition,

and

the

impact

of

the

SYSMOD.

IBM

Confidential

234

IMS:

An

Introduction

to

IMS

|
|
|
|
|

Recommendation:

Any

maintenance

that

has

been

processed

using

the

SMP/E

APPLY

command,

but

not

processed

using

the

SMP/E

ACCEPT

command,

should

be

reprocessed

(using

both

commands)

following

an

IMS

system

definition,

unless

further

investigations

have

shown

specific

cases

where

this

is

not

necessary.

Related

Reading:

For

more

information

about

performing

SMP/E

maintenance

on

IMS,

see

Chapter

8,

“IMS

Service

Considerations”

in

the

IMS

Version

9:

Installation

Volume

1:

Installation

Verification.

IMS

Security

Maintenance

Utility

Generation

For

security

beyond

that

provided

by

default

terminal

security,

you

can

use

the

various

security

options

specified

with

the

Security

Maintenance

utility

(SMU).

The

utility

is

executed

offline

after

completion

of

IMS

Stage

2

processing

for

system

definition.

Its

output

is

a

set

of

secured-resource

tables

placed

on

the

MATRIX

data

set.

The

tables

are

loaded

at

system

initialization

time,

and,

for

certain

options,

work

with

exit

routines

and/or

RACF

during

online

execution

to

provide

resource

protection.

Requirement:

The

SMU

generation

must

ALWAYS

be

run

after

any

system

definition.

If

the

SMU

generation

is

not

run

after

an

IMS

system

definition,

IMS

might

not

start.

Related

Reading:

For

further

details,

see

v

The

IMS

Version

9:

Utilities

Reference:

System.

v

The

IMS

Version

9:

Administration

Guide:

System.

v

The

IMS

Security

Guide

redbook.

Note:

IMS

Version

9

is

the

last

version

of

IMS

to

support

the

SMU.

IMS

System

Definition

Macros

As

these

change

from

release

to

release

of

IMS,

please

see

the

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring

for

details

of

the

various

macros.

They

have

been

summarized

here

very

briefly:

APPLCTN

The

APPLCTN

macro

allows

you

to

define

the

program

resource

requirements

for

application

programs

that

run

under

the

control

of

the

IMS

DB/DC

environment,

as

well

as

for

applications

that

access

databases

through

DBCTL.

An

APPLCTN

macro

combined

with

one

or

more

TRANSACT

macros

defines

the

scheduling

and

resource

requirements

for

an

application

program.

Using

the

APPLCTN

macro,

you

only

describe

programs

that

operate

in

message

processing

regions,

Fast

Path

message-driven

program

regions,

batch

message

processing

regions,

or

CCTL

threads.

You

do

use

the

APPLCTN

macro

to

describe

application

programs

that

operate

in

batch

processing

regions.

When

defining

an

IMS

data

communication

system,

at

least

one

APPLCTN

macro

is

required.

BUFFPOOLS

The

BUFPOOLS

macro

statement

is

used

to

specify

default

storage

buffer

pool

sizes

for

the

DB/DC

and

DBCTL

environments.

The

sizes

specified

are

used

unless

otherwise

expressly

stated

for

that

buffer

or

pool

at

control

program

execution

time

for

an

online

system.

COMM

The

COMM

macro

is

used

to

specify

general

communication

requirements

IBM

Confidential

Chapter

22.

The

IMS

System

Definition

Process

235

|
|
|
|

that

are

not

associated

with

any

particular

terminal

type.

COMM

is

always

required

for

terminal

types

supported

by

VTAM.

It

can

also

be

required

to

specify

additional

system

options,

such

as

support

for

MFS

on

the

master

terminal.

CONFIG

The

CONFIG

macro

statement

provides

the

configuration

for

a

switched

3275

terminal.

Because

the

configuration

provided

by

CONFIG

is

referenced

when

the

named

3275

dials

into

IMS,

differently

configured

3275s

can

use

the

same

communication

line.

All

CONFIG

macro

statements

must

be

between

the

LINEGRP

macro

and

the

LINE

macros.

LINE

macros

can

refer

to

named

CONFIG

macros

defined

previously

in

this

line

group

or

in

previously

defined

line

groups.

CTLUNIT

The

CTLUNIT

macro

statement

specifies

2848,

2972,

and

3271

control

unit

characteristics.

CTLUNIT

is

valid

only

for

3270

remote

line

groups.

DATABASE

The

DATABASE

macro

statement

is

used

to

define

the

set

of

physical

databases

that

IMS

is

to

manage.

One

DATABASE

macro

instruction

must

be

specified

for

each

HSAM,

HISAM,

HDAM,

or

PHDAM

database.

Two

DATABASE

macro

instructions

are

required

for

each

HIDAM

or

PHIDAM

database:

one

for

the

INDEX

DBD

and

one

for

the

HIDAM

or

PHIDAM

DBD.

One

DATABASE

macro

instruction

must

be

included

for

each

secondary

index

database

that

refers

to

any

database

defined

to

the

online

system.

For

Fast

Path,

a

DATABASE

macro

statement

must

be

included

for

each

Main

Storage

Database

(MSDB)

and

Data

Entry

Database

(DEDB)

to

be

processed.

FPCTRL

The

FPCTRL

macro

statement

defines

the

IMS

Fast

Path

options

of

the

IMS

control

program,

and

the

DBCTL

environment.

It

is

ignored

when

the

IMSCTRL

statement

specifies

that

only

a

BATCH

or

MSVERIFY

system

definition

is

to

be

performed.

IDLIST

The

IDLIST

macro

statement

is

used

to

create

a

terminal

security

list

for

switched

3275s.

IMSCTF

The

IMSCTF

macro

statement

defines

parameters

to

IMS,

and

to

the

DBCTL

environment.

IMSCTRL

The

IMSCTRL

macro

statement

describes

the

basic

IMS

control

program

options,

the

z/OS

system

configuration

under

which

IMS

is

to

execute,

and

the

type

of

IMS

system

definition

to

be

performed.

The

IMSCTRL

macro

instruction

must

be

the

first

statement

of

the

system

definition

control

statements.

IMSGEN

IMSGEN

specifies

the

assembler

and

binder

data

sets

and

options,

and

the

system

definition

output

options

and

features.

The

IMSGEN

must

be

the

last

IMS

system

definition

macro,

and

it

must

be

followed

by

an

assembler

END

statement.

LINE

The

LINE

macro

statement

describes

both

switched

and

nonswitched

communication

lines.

IBM

Confidential

236

IMS:

An

Introduction

to

IMS

LINEGRP

The

LINEGRP

macro

statement

defines

the

beginning

of

a

set

of

macro

instructions

that

describe

the

user’s

telecommunications

system.

MSGQUEUE

This

macro

defines

the

characteristics

of

the

three

message

queue

data

sets

(QBLKS,

SHMSG,

and

LGMSG).

The

information

you

specify

in

this

macro

is

also

used

in

a

shared-queues

environment.

The

MSGQUEUE

macro

is

required

for

all

DB/DC

and

DCCTL

systems.

MSLINK

The

MSLINK

macro

statement

defines

a

logical

link

to

another

system.

MSNAME

The

MSNAME

macro

statement

provides

a

name

for

the

remote

and

local

system

identifications

that

it

represents.

MSPLINK

The

MSPLINK

macro

statement

defines

a

physical

MSC

link.

NAME

The

NAME

macro

statement

defines

a

logical

terminal

name

(LTERM)

associated

with

a

physical

terminal.

Preparation

of

the

NAME

macro

can

be

required

for

each

of

the

following

macros:

TERMINAL,

SUBPOOL,

MSNAME.

POOL

The

POOL

macro

statement

describes

a

pool

of

logical

terminals

that

are

to

be

associated

with

a

set

of

switched

communication

lines.

RTCODE

The

RTCODE

macro

statement

is

used

one

or

more

times

with

the

APPLCTN

macro

statement

that

defines

an

IMS

Fast

Path

application

program.

It

specifies

the

routing

codes

that

identify

the

program

named

in

the

preceding

APPLCTN

macro

statement.

A

TRANSACT

macro

statement

that

specifies

an

IMS

Fast

Path-exclusive

transaction

builds

an

internal

RTCODE

macro

statement

with

a

routing

code

identical

to

the

transaction

code.

SECURITY

The

SECURITY

macro

statement

lets

you

specify

optional

security

features

to

be

in

effect

during

IMS

execution

unless

they

are

overridden

during

system

initialization.

STATION

The

STATION

macro

statement

describes

the

physical

and

logical

characteristics

of

the

System/3

or

System/7.

SUBPOOL

The

SUBPOOL

macro

statement,

when

used

in

a

VTAM

macro

set,

is

a

delimiter

between

groups

of

NAME

macro

statements

to

create

LU

6.1

LTERM

subpools.

When

used

in

a

switched

communication

device

macro

set,

the

SUBPOOL

macro

defines

a

set

of

logical

terminals.

TERMINAL

The

TERMINAL

macro

statement

defines

physical

and

logical

characteristics

of

VTAM

nodes

and

non-VTAM

communication

terminals.

TRANSACT

The

TRANSACT

macro

statement

is

used

one

or

more

times

with

each

APPLCTN

macro

statement

to

identify

transactions

as

IMS

exclusive,

IMS

Fast

Path

potential,

or

IMS

Fast

Path

exclusive.

It

specifies

the

transaction

IBM

Confidential

Chapter

22.

The

IMS

System

Definition

Process

237

codes

that

cause

the

application

program

named

in

the

preceding

APPLCTN

macro

to

be

scheduled

for

execution

in

an

IMS

message

processing

region.

It

also

provides

the

IMS

control

program

with

information

that

influences

the

application

program

scheduling

algorithm.

TYPE

The

TYPE

macro

statement

defines

the

beginning

of

a

set

of

communication

terminals

and

logical

terminal

description

macro

statements

which

include

TERMINAL

and

NAME.

The

TYPE

macro

statement

begins

a

description

of

one

set,

that

contains

one

or

more

terminals

of

the

same

type.

TYPE

defines

terminals

attached

to

IMS

through

VTAM.

It

is

equivalent

to

the

LINEGRP/LINE

macro

set

used

to

define

terminals

attached

to

IMS

by

means

other

than

VTAM.

VTAMPOOL

The

VTAMPOOL

macro,

required

for

parallel

session

support,

begins

the

definition

of

the

LU

6.1

LTERM

subpools.

The

Extended

Terminal

Option

(ETO)

The

IMS

Extended

Terminal

Option

(ETO)

allows

you

to

add

VTAM

terminals

and

users

to

your

IMS

without

predefining

them

during

system

definition.

ETO

is

separately

priced

feature

of

the

IMS

Transaction

Manager

(TM)

and

provides

additional

features

such

as

output

security,

automatic

logoff,

and

automatic

signoff.

By

installing

ETO,

you

can

achieve

each

of

the

following:

v

Improved

system

availability

by

reducing

scheduled

down

time

associated

with

adding

or

deleting

VTAM

terminals.

v

Faster

system

availability

to

users,

because

they

can

establish

an

IMS

session

from

any

VTAM

terminal

in

the

network.

v

Improved

IMS

security

by

relating

output

messages

to

users,

rather

than

to

terminals.

v

Reduced

number

of

macros

required

to

define

the

terminal

network.

This

reduces

system

definition

time

and

storage

requirements.

v

Reduced

checkpoint

and

restart

time.

For

ETO

terminals

and

user

structures,

resources

are

not

allocated

until

they

are

actually

required;

similarly,

when

they

are

no

longer

required,

they

are

deleted.

v

Reduced

number

of

skilled

system

programmer

resources

that

are

required

for

maintaining

static

terminal

definitions.

ETO

Terminology

The

following

sections

describe

the

terms

that

have

ETO-specific

meanings.

These

meanings

are

important

for

understanding

and

administering

ETO.

Terminals

A

terminal

is

a

physical

VTAM

logical

unit

(LU)

that

establishes

a

session

with

IMS.

A

physical

terminal

is

represented

using

a

control

block.

When

terminals

are

not

built

by

ETO

but

are

defined

at

system

definition,

they

are

called

static

terminals.

A

static

terminal

can

be

a

VTAM

node.

When

messages

are

sent

to

a

static

terminal

they

are

queued

to

a

logical

terminal

(LTERM)

message

queue,

where

they

await

retrieval

by

the

recipient.

When

a

terminal

is

not

defined

at

system

definition

and

ETO

builds

a

terminal,

that

terminal

is

called

a

dynamic

terminal,

or

an

ETO

terminal.

For

dynamic

terminals,

the

logical

terminal

(LTERM)

is

known

as

a

dynamic

user

message

queue,

LTERM

IBM

Confidential

238

IMS:

An

Introduction

to

IMS

associates

the

messages

with

the

user,

rather

than

with

the

physical

terminal.

Associating

messages

with

the

users

provides

more

security

for

these

users,

because

they

can

access

their

messages

only

when

they

sign

on

using

their

unique

user

ID.

In

addition,

all

users

in

the

network

can

access

their

messages

from

any

physical

terminal,

instead

of

being

restricted

to

using

a

particular

physical

terminal.

Dynamic

User

An

ETO

dynamic

user

is

a

user

who

signs

on

to

a

dynamic

terminal

and

who

has

a

unique

identification

(user

ID)

that

IMS

uses

for

delivering

messages.

The

user

is

usually

associated

with

a

person

but

can

also

be

associated

with

another

entity,

such

as

a

printer.

Terminal

Structure

A

terminal

structure

is

a

control

block

that

represents

a

specific

terminal

that

is

known

to

IMS.

A

terminal

structure

is

created

when

the

individual

terminal

logs

on

to

IMS.

It

is

deleted

when

the

terminal

logs

off

with

no

remaining

associated

activity

(such

as

status

that

must

be

retained

for

the

next

connection

to

IMS).

User

Structure

A

user

structure

is

a

set

of

control

blocks,

including

a

user

block

and

one

or

more

LTERM

blocks.

The

message

queues

are

associated

with

the

dynamic

user,

as

opposed

to

the

physical

terminal,

and

they

are

queued

to

the

user

ID.

The

dynamic

user

structure

connects

to

the

physical

terminal

only

when

the

user

signs

on.

This

provides

a

secure

environment,

because

different

users

accessing

the

same

terminal

cannot

receive

each

other’s

messages.

IMS

creates

a

user

structure

when

either

of

the

following

events

take

place:

v

A

dynamic

user

signs

on

to

IMS

v

Output

messages

that

are

destined

for

a

dynamic

user

are

sent

to

the

user,

but

the

user

has

not

signed

on

to

IMS.

Usually,

a

user

structure

represents

a

person

who

uses

IMS.

The

user

structure

name

is

usually

the

same

as

the

user

ID.

A

user

structure

can

also

represent

a

logical

destination,

such

as

a

printer.

In

this

case,

the

user

structure

name

can

be

the

same

as

or

different

from

the

LTERM

name

that

your

installation

uses

in

its

application

programs

and

its

exit

routines.

For

example,

you

can

assign

the

same

name

to

a

user

structure

for

a

printer

that

you

assign

to

its

LTERM

destination

node

name.

However,

output

is

then

queued

according

to

the

terminal,

and

not

to

the

user.

Figure

21

and

Figure

22

show

the

differences

between

static

resources

and

ETO

dynamic

resources.

IBM

Confidential

Chapter

22.

The

IMS

System

Definition

Process

239

Descriptors

A

descriptor

provides

information

to

IMS

when

IMS

builds

a

dynamic

resource

for

a

logon

or

a

sign-on.

IMS

stores

the

descriptors

in

two

IMS.PROCLIB

members,

DFSDSCMx

and

DFSDSCTy.

Related

Reading:

For

more

information

about

these

PROCLIB

members,

see

the

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

The

next

few

sections

describe

the

four

types

of

descriptors:

v

Logon

descriptors

v

User

descriptors

v

MSC

descriptors

v

MFS

device

descriptors

Logon

Descriptors:

A

logon

descriptor

is

a

skeleton

that

IMS

uses

to

build

an

ETO

dynamic

terminal.

It

provides

information

regarding

a

terminal’s

physical

characteristics.

IMS

uses

logon

descriptors

in

conjunction

with

exit

routines

to

create

terminal

structures.

Figure

88.

Static

Resources

Figure

89.

ETO

Dynamic

Resources

IBM

Confidential

240

IMS:

An

Introduction

to

IMS

There

are

three

types

of

logon

descriptors:

Generic

A

generic

logon

descriptor

provides

characteristics

for

all

terminals

of

a

particular

type.

For

example,

all

SCS

printers

might

share

a

single

generic

descriptor.

Similarly,

all

3270

terminals

might

share

a

generic

descriptor.

Group

A

group

logon

descriptor

provides

characteristics

for

a

collection

of

terminals,

each

of

which

has

compatible

hardware

characteristics

and

is

defined

to

IMS

in

the

same

manner.

The

actual

characteristics

for

these

terminals

are

usually

identical,

but

they

can

differ.

IMS

uses

the

group

descriptor

to

derive

their

characteristics.

Specific

A

specific

logon

descriptor

provides

characteristics

for

a

single

terminal,

and

these

characteristics

apply

only

to

that

terminal.

In

this

case,

the

descriptor

name

matches

the

name

of

the

terminal

that

it

describes.

Recommendation:

Although

you

might

need

to

use

specific

logon

descriptors

during

the

actual

migration

to

ETO,

use

generic

or

group

logon

descriptors

after

you

have

migrated

to

ETO;

these

kinds

of

descriptors

ease

network

administration.

User

Descriptor:

A

user

descriptor

is

a

skeleton

from

which

a

user

structure

is

built.

A

user

descriptor

can

provide

user

options

and

queue

names.

MSC

Descriptor:

An

MSC

descriptor

is

used

to

create

a

remote

LTERM,

which

is

an

LTERM

that

does

not

exist

on

the

local

IMS.

The

physical

terminal

definition

(either

static

or

dynamic)

for

the

remote

LTERM

is

in

the

remote

IMS.

Each

MSC

descriptor

for

a

remote

LTERM

is

loaded

during

IMS

initialization

and

tells

IMS

which

MSC

link

to

use

for

output

destined

for

that

remote

LTERM.

Related

Reading:

For

more

information

about

MSC,

see

“Intersystem

Communications

(ISC)”

on

page

117.

MFS

Device

Descriptor:

MFS

device

descriptors

allow

you

to

add

new

device

characteristics

for

MFS

formatting

without

requiring

an

IMS

system

definition.

The

MFSDCT

utility

(DFSUTB00)

uses

MFS

device

descriptors

to

update

default

formats

in

the

MFS

library.

IMS

also

uses

MFS

device

descriptors

to

update

the

MFS

device

characteristics

table.

IMS

loads

this

table

only

during

initialization;

therefore,

updates

are

not

effective

until

the

next

IMS

initialization.

ETO

Concepts

The

following

sections

describe

important

ETO

concepts.

When

Structures

Are

Created

Structures

are

created

in

the

following

situations:

v

Logon

v

Sign-on

v

Output

is

queued

to

your

LTERM

v

/ASSIGN

command

is

used

to

assign

an

LTERM

to

a

non-existent

user

v

/ASSIGN

command

is

used

to

assign

a

non-existent

LTERM

to

a

user

v

/CHANGE

USER

user

AUTOLOGON

command

is

directed

to

a

non-existent

user

IBM

Confidential

Chapter

22.

The

IMS

System

Definition

Process

241

In

all

cases,

IMS

searches

for

an

existing

structure

(terminal

or

user)

before

creating

a

new

one.

IMS

creates

and

deletes

user

structures

in

the

sequence

described

in

the

following

list.

This

sequence

applies

only

to

terminal

logon

and

logoff

and

to

user

sign-on

and

sign-off.

When

asynchronous

output

is

queued

to

a

user,

IMS

creates

the

user

structure,

as

needed.

1.

When

you

establish

a

session

between

IMS

and

an

undefined

terminal,

IMS

selects

a

logon

descriptor.

2.

Using

the

information

in

the

logon

descriptor,

the

customization

defaults,

and

VTAM

information,

IMS

builds

an

IMS

terminal

control

block

(called

a

VTAM

terminal

control

block

-

VTCB)

that

describes

the

new

terminal.

3.

When

you

sign

on,

if

a

user

structure

does

not

exist,

IMS

builds

one,

using

information

from

a

user

descriptor

that

it

selects,

and

then

connects

this

user

structure

to

the

terminal

structure.

4.

IMS

deletes

terminal

or

user

structures

when

they

are

no

longer

needed

to

maintain

sessions.

User

structures

are

typically

deleted

when

you

sign

off,

if

no

special

status

needs

to

be

maintained

and

if

no

messages

remain

queued.

IMS

deletes

terminal

structures

when

no

terminal

status

exists

(such

as

trace

mode),

no

user

is

signed

on,

and

the

terminal

is

idle.

If

you

are

using

Resource

Manager

and

a

resource

structure,

IMS

normally

maintains

status

in

the

resource

structure

instead

of

the

local

control

blocks.

Therefore,

IMS

deletes

the

structures.

Related

Reading:

For

more

information

about

the

Resource

Manager,

see

“Resource

Manager”

on

page

339

or

the

IMS

Version

9:

Common

Service

Layer

Guide

and

Reference.

For

more

information

about

how

IMS

manages

terminal

and

user

structures,

see

the

IMS

Version

9:

Administration

Guide:

Transaction

Manager.

Descriptors

and

Exit

Routines

The

main

purpose

of

ETO

is

to

dynamically

define

terminals

to

IMS.

Using

descriptors

and

exit

routines,

you

can

assign

characteristics

to

these

dynamic

terminals

and

assign

user

structures

to

be

associated

with

those

terminals.

A

descriptor

provides

the

basic

information

for

the

dynamic

terminal.

An

exit

routine

completes

or

changes

this

information.

Two

methods

of

using

descriptors

and

exit

routines

are:

v

You

can

use

many

descriptors

and

code

little

or

no

processing

logic

in

exit

routines.

v

You

can

use

few

descriptors

and

code

exit

routines

to

perform

much

of

the

processing.

How

Descriptors

are

Created

and

Used

All

descriptors

are

created

during

IMS

initialization,

prior

to

IMS

startup.

You

must

specify

that

you

want

ETO

support

and

ensure

that

the

ETO

initialization

exit

routine

(DFSINTX0)

does

not

disable

ETO

support.

During

IMS

initialization,

IMS

reads

and

validates

all

ETO

descriptors.

IMS

initialization

then

continues,

and

the

descriptors

remain

in

storage

for

the

duration

of

IMS

execution.

Any

changes

you

make

to

descriptors

become

effective

after

the

next

initialization

of

IMS.

IMS

uses

descriptors

to

create

both

terminal

and

user

structures.

IMS

rebuilds

structures

during

an

IMS

restart,

if

appropriate.

For

example,

if

messages

are

IBM

Confidential

242

IMS:

An

Introduction

to

IMS

queued

for

a

structure

and

IMS

shuts

down,

the

structures

are

rebuilt

when

IMS

restarts.

IMS

rebuilds

these

structures

to

be

the

same

as

they

were

before

the

IMS

restart.

IMS

does

not

use

the

descriptors

or

exit

routines

to

rebuild

these

structures.

Therefore,

any

changes

you

make

to

descriptors

are

only

reflected

in

new

structures

that

are

built

after

IMS

restart,

and

the

changes

are

not

reflected

in

structures

that

are

rebuilt

during

IMS

restart.

Example:

USERA

signs

on

using

descriptor

DESCA

which

specifies

ASOT=20.

USERA

starts

an

IMS

conversation,

and

then

IMS

abnormally

terminates.

The

system

programmer

changes

DESCA

to

ASOT=10.

After

the

IMS

restart,

USERB

signs

on

using

DESCA.

USERA

was

rebuilt

during

the

IMS

restart.

USERA

still

has

ASOT=20,

and

USERB

has

ASOT=10.

Administering

ETO

The

tasks

involved

in

administering

ETO

are

as

follows:

v

Planning

for

ETO

v

Coding

ETO

descriptors

v

Coding

ETO

exit

routines

v

Specifying

system

definition

parameters

for

ETO

v

Starting

ETO

v

Signing

on

and

queue

LTERM

allocation

v

Implementing

ETO

printer

support

v

Assigning

output

v

Tuning

ETO

for

performance

Related

Reading:

For

more

information

about

administering

ETO,

see

the

IMS

Version

9:

Administration

Guide:

Transaction

Manager.

IBM

Confidential

Chapter

22.

The

IMS

System

Definition

Process

243

IBM

Confidential

244

IMS:

An

Introduction

to

IMS

Chapter

23.

Customizing

IMS

Customizing

IMS

is

the

process

whereby

you

tailor

IMS

functions

to

fit

the

specific

needs

of

your

installation.

Some

customization

is

required

before

you

can

use

IMS,

but

most

is

optional.

If

you

elect

not

to

do

optional

customization

on

a

specific

IMS

function,

that

function

then

works

according

to

IBM-provided

defaults.

If

IMS

is

new

to

your

installation,

you

initially

might

want

to

do

a

minimum

amount

of

optional

customization.

You

can

use

IMS

and

you

can

do

additional

customization

when

performance

or

IMS

capabilities

indicate

the

need

to

do

so.

There

are

a

number

of

ways

for

you

to

customize

IMS.

IMS

provides:

v

Initialization

values

you

can

change.

v

Macros

you

can

use.

v

Procedures

you

can

change.

v

Exits

(places

in

its

logic

flow)

for

which

you

can

write

exit

routines

to

perform

special

processing.

IMS

calls

exit

routines

at

various

points

and

allows

you

to

control

how

IMS

performs

its

work.

One

example

of

customizing

might

be

to

interrogate

an

in-flight

message

(in

an

MSC

environment)

to

determine

if

it

originated

from

a

test

or

production

system.

If

it

came

from

a

test

system,

you

might

want

to

route

that

message

to

an

application

that

collects

data

about

the

test

system.

If

the

message

originated

from

a

production

system,

you

probably

would

not

want

to

change

its

destination.

To

perform

the

interrogation

of

the

message,

you

would

code

a

TM

and

MSC

Message

Routing

and

Control

User

Exit

routine.

If

you

name

this

routine

DFSMSCE0,

place

it

in

the

IMS.SDFSRESL

library,

and

bind

it

to

that

library

(or

a

concatenated

library),

IMS

will

call

your

exit

routine

when

IMS

receives

the

message.

When

your

exit

routine

is

done

with

its

processing,

the

exit

routine

returns

control

to

IMS

and

then

IMS

resumes

processing

the

message

to

either

the

original

destination

or

the

test

application.

Certain

exit

routines

are

required

and

others

are

optional.

Some

IBM-supplied

exit

routines

can

be

used

as

is

and

some

require

modification

before

using.

Some

of

the

functions

you

can

perform

using

exit

routines

are:

v

To

edit

messages

v

To

check

security

v

To

edit

transaction

code

input,

message

switching

input,

and

physical

terminal

input

and

output

v

To

perform

additional

application

clean-up

v

To

initialize

dependent

regions

v

To

control

the

number

of

buffers

the

RECON

data

sets

use

v

To

keep

track

of

segments

that

have

been

updated

Table

16

on

page

246,

Table

17

on

page

246,

and

Table

18

on

page

250

list

most

of

IMS’s

exits

and

briefly

describe

what

the

exits

can

be

used

for.

Related

Reading:

For

all

the

details

pertaining

to

all

the

IMS

exits,

see

the

IMS

Version

9:

Customization

Guide.

IBM

Confidential

©

Copyright

IBM

Corp.

2004

245

|
|

|
|
|
|
|
|

|

|

|

|

|
|
|

|
|

Table

16.

IMS

DB

Exit

Routines

and

Their

Uses

Exit

Name

Exit

Use

Description

Data

Capture

Exit

Routine

Receives

control

whenever

a

segment,

for

which

the

exit

routine

is

defined,

is

updated.

Possible

use

is

to

enable

replication

of

that

data

to

a

relational

DB2

database.

Data

Conversion

User

Exit

Routine

(DFSDBUX1)

Receives

control

at

the

beginning

of

a

DL/I

call

and

at

the

end

of

the

call.

In

the

exit

routine,

you

can

modify

segment

search

arguments,

the

key

feedback

area,

the

I/O

area,

and

the

status

code.

Data

Entry

Database

Randomizing

Routine

(DBFHDC40/

DBFHDC44)

Required

for

placing

root

segments

in

or

retrieving

them

from

a

DEDB.

Data

Entry

Database

Resource

Name

Hash

Routine

(DBFLHSH0)

Is

used

with

the

Internal

Resource

Lock

Manager

(IRLM)

and

enables

IMS

and

DBCTL

to

maintain

and

retrieve

information

about

the

control

intervals

(CIs)

used

by

sharing

subsystems.

Data

Entry

Database

Sequential

Dependent

Scan

Utility

Exit

Routine

(DBFUMSE1)

Allows

you

to

copy

and

process

a

subset

of

the

number

of

segments

that

the

utility

scans

at

a

particular

time.

HALDB

Partition

Selection

Exit

Routine

(DFSPSE00)

Used

to

select

partitions

by

some

criteria

other

than

high

key.

HDAM

and

PHDAM

Randomizing

Routines

(DFSHDC40)

Required

routine

for

HDAM

and

PHDAM

access

methods

for

placing

root

segments

in,

or

retrieving

them

from,

HDAM

or

PHDAM

databases.

Secondary

Index

Database

Maintenance

Exit

Routine

Used

to

selectively

suppress

secondary

indexing.

Segment

Edit/Compression

Exit

Routine

(DFSCMPX0)

Used

to

compress

and

expand

segments

of

data.

Sequential

Buffering

Initialization

Exit

Routine

(DFSSBUX0)

Used

to

dynamically

control

the

use

of

Sequential

Buffering

(SB)

for

online

and

batch

IMS

subsystems,

as

well

as

DBCTL.

Table

17.

IMS

TM

Exits

and

Their

Uses

Exit

Name

Exit

Use

Description

Build

Security

Environment

Exit

Routine

(DFSBSEX0)

Tell

IMS

whether

or

not

to

build

the

RACF

or

equivalent

security

environment

in

an

IMS

dependent

region

for

an

application

that

has

received

its

input

message

from

neither

OTMA

nor

an

LU

6.2

device.

Conversational

Abnormal

Termination

Exit

Routine

(DFSCONE0)

Used

to

clean

up,

if

required,

when

a

conversation

is

prematurely

terminated.

Fast

Path

Input

Edit/Routing

Exit

Routine

(DBFHAGU0)

Used

to

determine

the

eligibility

of

an

incoming

message

for

Fast

Path

processing.

Front-End

Switch

Exit

Routine

(DFSFEBJ0)

Allows

you

to

keep

the

input

terminal

in

response

mode

while

it

is

waiting

for

the

reply

from

the

processing

system

for

messages

entered

in

an

IMS

system

by

a

front-end

switchable

VTAM

node

and

processed

in

another

system

(such

as

IMS

or

CICS).

IBM

Confidential

246

IMS:

An

Introduction

to

IMS

Table

17.

IMS

TM

Exits

and

Their

Uses

(continued)

Exit

Name

Exit

Use

Description

Global

Physical

Terminal

(Input)

Edit

Routine

(DFSGPIX0)

Message

segments

are

passed

one

at

a

time

to

this

edit

routine

so

that

the

routine

can

process

the

segments

in

one

of

the

following

ways:

v

Accept

the

segment

and

release

it

for

further

editing

by

the

IMS

Basic

Edit

routine.

v

Modify

the

segment

(for

example,

change

the

transaction

code

or

reformat

the

message

text)

and

release

it

for

further

editing

by

the

IMS

Basic

Edit

routine.

v

Cancel

the

segment.

v

Cancel

the

message

and

request

that

IMS

send

a

corresponding

message

to

the

terminal

operator.

v

Cancel

the

message

and

request

that

IMS

send

a

specific

message

from

the

User

Message

Table

to

the

terminal

operator.

Greeting

Messages

Exit

Routine

(DFSGMSG0)

Allows

you

to

tailor

how

IMS

handles

messages

issued

during

the

logon

and

signon

process.

IMS

Adapter

for

REXX

Exit

Routine

(DFSREXXU)

Has

the

ability

to:

v

Override

the

exec

name

to

be

executed.

This

name

defaults

to

the

IMS

program

name.

v

Choose

not

to

execute

any

exec

and

have

the

IMS

adapter

for

REXX

return

to

IMS.

v

Issue

DL/I

calls

using

the

AIB

interface

as

part

of

its

logic

in

determining

what

exec

to

execute.

v

Set

REXX

variables

(through

IRXEXCOM)

before

the

exec

is

started.

v

Extract

REXX

variables

(through

IRXEXCOM)

after

the

exec

ends.

v

Change

the

initial

default

IMSRXTRC

tracing

level.

Initialization

Exit

Routine

(DFSINTX0)

Used

to

create

two

user

data

areas

that

can

be

used

by

some

of

your

installation’s

exit

routines.

Input

Message

Field

Edit

Routine

(DFSME000)

Used

to

perform

common

editing

functions

such

as

numeric

validation

or

conversion

of

blanks

to

numeric

zeros.

Input

Message

Segment

Edit

Routine

(DFSME127)

Used

to

perform

common

editing

functions

such

as

numeric

validation

or

conversion

of

blanks

to

numeric

zeros

Logoff

Exit

Routine

(DFSLGFX0)

Used

to

perform

processing

that

complements

the

Logon

exit

routine

(DFSLGNX0)

Logon

Exit

Routine

(DFSLGNX0)

Enables

you

to

control

the

way

logons

are

processed.

LU

6.2

Edit

Exit

Routine

(DFSLUEE0)

Enables

you

to

edit

input

and

output

LU

6.2

messages

for

IMS-managed

LU

6.2

conversations.

Message

Control/Error

Exit

Routine

(DFSCMUX0)

Used

to

control

transactions,

responses,

and

message

switches

that

are

in

error.

Message

Switching

(Input)

Edit

Routine

(DFSCNTE0)

Similar

to

the

Transaction

Code

(Input)

Edit

and

is

capable

of

message

switching.

Non-Discardable

Messages

Exit

Routine

(DFSNDMX0)

Used

to

tell

IMS

what

to

do

with

the

input

message

associated

with

an

abended

application

program.

IBM

Confidential

Chapter

23.

Customizing

IMS

247

Table

17.

IMS

TM

Exits

and

Their

Uses

(continued)

Exit

Name

Exit

Use

Description

OTMA

Destination

Resolution

Exit

Routine

(DFSYDRU0)

Used

to

determine

and

change

the

final

destination

of

OTMA

member

names

or

Tpipe

names

that

are

used

for

OTMA

asynchronous

output

messages.

OTMA

Input/Output

Edit

Exit

Routine

(DFSYIOE0)

Used

to

modify

or

cancel

OTMA

input

and

output

messages.

OTMA

Prerouting

Exit

Routine

(DFSYPRX0)

Used

to

determine

whether

an

asynchronous

output

message

needs

to

be

routed

to

an

OTMA

destination

or

a

non-OTMA

destination.

Output

Creation

Exit

Routine

(DFSINSX0)

Used

to

validate

both

an

unknown

destination

for

a

message

and

the

creation

of

an

unknown

user.

Physical

Terminal

(Input)

Edit

Routine

(DFSPIXT0)

Message

segments

are

passed

one

at

a

time

to

the

Physical

Terminal

Input

edit

routine,

and

the

edit

routine

can

handle

them

in

one

of

the

following

ways:

v

Accept

the

segment

and

release

it

for

further

editing

by

the

IMS

basic

edit

routine.

v

Modify

the

segment

and

release

it

for

further

editing

by

the

IMS

basic

edit

routine.

v

Cancel

the

segment.

v

Cancel

the

message

and

request

that

the

terminal

operator

be

notified

accordingly.

v

Cancel

the

message

and

request

that

a

specific

message

from

the

User

Message

Table

be

sent

to

the

terminal

operator.

Physical

Terminal

(Output)

Edit

Routine

(DFSCTTO0)

Used

to

edit

output

messages

immediately

before

they

are

sent

to

a

terminal.

Queue

Space

Notification

Exit

Routine

(DFSQSPC0/DFSQSSP0)

This

exit

routine

is

activated

when

a

logical

record

is

assigned

to

or

released

from

a

message

queue

data

set.

This

routine

causes

a

message

to

be

issued

when

one

of

following

occurs:

v

The

number

of

records

currently

in

use

exceeds

upper

threshold

percentage

value

of

the

maximum

number

assignable

before

initiation

of

automatic

shutdown.

v

The

number

of

records

currently

in

use

falls

below

the

lower

threshold

percentage

value

of

the

same

maximum.

Security

Reverification

Exit

Routine

(DFSCTSE0)

Used

to

reevaluate

transaction

authorization

checking

on

the

DL/I

CHNG

Call.

Shared

Printer

Exit

Routine

(DFSSIML0)

Used

to

decide

whether

a

terminal

that

is

unavailable

can

be

automatically

acquired

by

IMS

or

an

AOI

application

program.

Sign-On

Exit

Routine

(DFSSGNX0)

Used

for

sign-on

processing

if

ETO=Y

is

specified.

Signoff

Exit

Routine

(DFSSGFX0)

Used

for

sign-off

processing.

Sign

On/Off

Security

Exit

Routine

(DFSCSGN0)

Used

to

verify

a

user’s

ID

and

password.

This

exit

routine

can

conflict

with

the

Sign-On

exit

routine

(DFSSGNX0).

Time-Controlled

Operations

(TCO)

Exit

Routine

(DFSTXIT0)

Used

to

insert

messages

that

are

the

commands,

transactions,

and

message

switches

that

you

specify

in

the

time

schedule

requests

and

message

sets

that

make

up

a

script

member.

IBM

Confidential

248

IMS:

An

Introduction

to

IMS

Table

17.

IMS

TM

Exits

and

Their

Uses

(continued)

Exit

Name

Exit

Use

Description

TM

and

MSC

Message

Routing

and

Control

User

Exit

Routine

(DFSMSCE0)

Used

to:

v

Provide

maximum

routing

control

for

TM

and

MSC

messages.

v

Ease

TM

and

MSC

coding

and

maintenance

requirements,

and

reduce

the

number

of

exit

modules.

v

Support

a

consistent

set

of

routing

capabilities

across

all

of

the

exit

entry

points

(or

functions).

v

Provide

a

common

parameter

list

interface

and

linkage

interface

to

the

various

entry

points

(or

functions).

v

Provide

the

ability

to

append

an

optional

user

prefix

segment

to

TM

and

MSC

messages

which

TM

and

MSC

user

exit

routines

can

use

to

communicate

and

control

user-customized

routing

needs.

v

Logs

routing

errors

and

footprints

in

the

message

to

indicate

those

exit

routines

that

reroute

the

message.

Transaction

Authorization

Exit

Routine

(DFSCTRN0)

Works

with

the

Security

Reverification

exit

routine

(DFSCTSE0)

and

the

Sign

On/Off

Security

exit

routine

(DFSCSGN0)

to

check

an

individual

user

ID

for

authority

to

use

a

transaction.

Transaction

Code

(Input)

Edit

Routine

(DFSCSMB0)

Used

to

edit

input

messages

before

they

are

enqueued

for

scheduling.

Type

1

Automated

Operator

Exit

Routine

(DFSAOUE0)

This

AO

exit

routine

is

called

continuously

for

system

messages

destined

for

the

master

terminal,

operator-entered

commands,

and

command

responses.

Use

it

to:

v

Ignore

selected

segments

or

an

entire

message.

v

Send

a

copy

of

a

system

message,

command,

or

command

response

to

an

alternate

destination.

v

Send

a

new

message

to

an

alternate

destination

for

a

system

message,

command,

or

command

response.

v

Change

a

system

message.

v

Change

a

system

message

and

send

a

copy

to

an

alternate

destination.

v

Change

a

copy

of

a

command

or

command

response

and

send

the

copy

to

an

alternate

destination.

v

Delete

a

system

message.

v

Delete

a

system

message

and

send

a

copy

to

an

alternate

destination.

v

Request

the

edited

command

buffer

(when

the

input

is

a

command).

2972/2980

Input

Edit

Routine

(DFS29800)

Required

to

perform

terminal-related

functions

inherent

in

the

design

of

the

2972/2980

General

Banking

Terminal

system.

4701

Transaction

Input

Edit

Routine

(DFS36010)

Appends

a

blank

and

the

eight-byte

node

name

to

a

transaction

input

message.

IBM

Confidential

Chapter

23.

Customizing

IMS

249

Table

18.

IMS

System

Exits

and

Their

Uses

Exit

Name

Exit

Use

Description

Application

Group

Name

(AGN)

Exit

Routine

(DFSISIS0)

Provides

users

without

RACF

a

mechanism

for

checking

authorization

to

IMS

application

group

names

(AGNs).

Recommendation:

Use

the

Resource

Access

Security

Exit

Routine

(DFSRAS00)

instead

of

this

exit

routine

for

AGNs.

Buffer

Size

Specification

Facility

(DSPBUFFS)

Allows

you

to

control

the

number

of

buffers

used

for

RECON

data

sets

when

either

the

local

shared

resource

(LSR)

or

the

nonshared

resource

(NSR)

buffering

option

is

used.

Command

Authorization

Exit

Routine

(DFSCCMD0)

Used

to

verify

that

a

command

is

valid

from

a

particular

origin.

DBRC

Command

Authorization

Exit

Routine

(DSPDCAX0)

Used

in

conjunction

with

RACF

or

another

security

product

to

determine

the

success

or

failure

of

DBRC

command

authorization.

Dependent

Region

Preinitialization

Routines

Dependent

Region

Preinitialization

routines

enable

you

to

perform

any

application-unique

dependent

region

initialization.

Dump

Override

Table

(DFSFDOT0)

Used

to

either

force

or

suppress

dumps

for

specified

abends.

ESAF

Indoubt

Notification

Exit

Routine

(DFSFIDN0)

Used

to

resolve

in-doubt

work

before

restarting

a

failed

IMS.

IMS

Command

Language

Modification

Facility

(DFSCKWD0)

Used

to

modify

the

command

keyword

table.

Large

SYSGEN

Sort/Split

Input

Exit

Routine

(DFSSS050)

Enables

you

to

alter

the

resource

data

for

user-generated

resources.

Large

SYSGEN

Sort/Split

Output

Exit

Routine

(DFSSS060)

Enables

you

to

alter

the

resource

data

for

user-generated

resources.

Log

Archive

Exit

Routine

Used

to

produce

an

edited

subset

of

the

complete

IMS

log.

Log

Filter

Exit

Routine

(DFSFTFX0)

Allows

you

to

control

the

amount

of

log

data

sent

to

an

RSR

tracking

subsystem,

by

acting

as

a

filter.

Logger

Exit

Routine

(DFSFLGX0)

Used

to

process

log

data

for

recovery

purposes.

Partner

Product

Exit

Routine

(DFSPPUE0)

Used

to

initialize

products

that

run

with

IMS.

RECON

I/O

Exit

Routine

(DSPCEXT0)

Tracks

changes

to

the

RECON

data

set,

which

you

can

log

in

a

journal.

Resource

Access

Security

Exit

Routine

(DFSRAS00)

Used

to

authorize

IMS

resources

such

as

transactions,

PSBs,

or

output

LTERM

names.

Recommendation:

Use

this

exit

routine

instead

of

the

Application

Group

Name

Exit

Routine

(DFSISIS0)

for

AGNs.

SCI

Registration

Exit

Routine

(DSPSCIX0)

Used

by

DBRC

to

perform

an

authorization

check

before

allowing

a

potential

SCI

client

to

register

with

SCI.

System

Definition

Preprocessor

Exit

Routine

(Input

Phase)

(DFSPRE60)

Used

to

alter,

insert,

or

delete

data

from

stage

1

input

before

the

Preprocessor

record

scan

occurs.

System

Definition

Preprocessor

Exit

Routine

(Name

Check

Complete)

(DFSPRE70)

Used

to

build

tables

that

contain

resource

names

that

have

been

cross-checked.

IBM

Confidential

250

IMS:

An

Introduction

to

IMS

Table

18.

IMS

System

Exits

and

Their

Uses

(continued)

Exit

Name

Exit

Use

Description

Type

2

Automated

Operator

Exit

Routine

(DFSAOE00)

Used

to:

v

Modify

the

text

of

IMS

system

messages.

v

Delete

IMS

system

messages.

v

Direct

any

message,

command,

or

command

response

to

an

Automated

Operator

(AO)

application.

v

Start

a

BMP

job

(for

example,

an

AO

application).

User

Message

Table

(DFSCMTU0)

Used

to

create

your

own

messages

and

list

them

in

your

own

message

table.

IBM

Confidential

Chapter

23.

Customizing

IMS

251

IBM

Confidential

252

IMS:

An

Introduction

to

IMS

Chapter

24.

IMS

Security

This

chapter

covers

some

of

the

issues

regarding

IMS

security.

Related

Reading

For

more

information

about

IMS

security,

see:

v

Chapter

4,

“Establishing

IMS

Security”,

in

the

IMS

Version

9:

Administration

Guide:

System

v

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring

v

IMS

Security

Guide

v

z/OS

V1R4

Security

Server

RACF

Security

Administrator’s

Guide

The

following

sections

are

covered

in

this

chapter:

v

“History

of

IMS

Security”

v

“Security

Overview”

on

page

254

v

“Securing

Resources”

on

page

254

History

of

IMS

Security

When

IMS

was

developed,

security

products

like

the

Resource

Access

Control

Facility

(RACF),

had

not

been

developed,

or

were

not

in

use

by

most

installations.

It

was

common

during

this

period

to

have

each

subsystem

implement

its

own

security.

Therefore,

the

IMS

product

offered

some

basic

levels

of

protection

for

IMS

resources.

These

internal

IMS

security

facilities

(for

example,

the

Security

Maintenance

Utility

or

SMU)

are

available

for

protecting

many

IMS

resource

types

and

are

used

by

some

IMS

installations

today.

Recommendation:

IBM

recommends

that

you

implement

security

using

only

RACF

or

an

equivalent

security

product

because

IMS

Version

9

is

the

last

version

of

IMS

to

support

the

SMU.

With

the

development

and

introduction

of

security

products,

like

RACF,

more

and

more

installations

have

implemented

security

for

IMS

resources

using

security

products.

Two

advantages

of

using

a

security

product

for

securing

access

to

resources

are:

v

One

product

can

be

used

to

implement

the

security

requirements

for

multiple

subsystems,

such

as

IMS,

CICS,

and

other

subsystems.

v

All

of

the

security

information

can

be

kept

and

maintained

in

one

place,

like

the

RACF

database.

One

centralized

database

repository

containing

all

the

installations’

security

specifications

eliminates,

or

significantly

minimizes,

the

problems

inherent

with

using

individual

products’

security

functions,

namely:

–

Duplicating

and

distributing

security

information

among

several

subsystems,

and

–

Coordinating

the

security

enforcement

functions

implemented

in

multiple

products

RACF

offers

a

wide

range

of

security

choices

to

the

installation.

For

example,

RACF

contained

new

security

features,

such

as

user

identification

(userid)

and

verification

based

security,

which

is

not

available

through

IMS

internally

provided

SMU

security.

IBM

Confidential

©

Copyright

IBM

Corp.

2004

253

Security

Overview

When

you

initiate

security

safeguards,

you

must

balance

requirements

between

those

responsible

for

the

security

of

resources

and

those

users

who

legitimately

need

access

to

those

resources.

Because

an

individual

assigned

to

resource

security

is

held

responsible

for

resources

that

might

be

compromised,

that

person

should

not

allow

easy

access

to

dominate

protection

measures.

On

the

other

hand,

users

performing

their

assigned

tasks

need

convenient

access

to

the

resources.

The

users

and

the

security

specialist

should

work

out

a

balanced

approach

between

the

ease

of

resource

access

and

the

complexity

of

protecting

that

resource.

In

an

IMS

system,

you

should

consider

various

facets

of

the

security

implementation:

v

The

resource

name.

For

example,

a

user

might

be

allowed

access

to

the

Part

database

but

not

to

the

Customer

Order

database.

v

Level

of

access:

what

the

user

can

do

to

the

resource.

For

example,

a

user

might

be

allowed

to

read

a

file

but

not

to

update

it.

IMS

provides

a

system

definition

macro

(the

SECURITY

macro)

that

allows

the

installation

to

code

all

of

the

security

specifications

on

one

macro.

The

SECURITY

macro

is

used

to

specify

security

options

for

IMS

internally

provided

SMU

security,

RACF

security,

an

installation

provided

security

exit

routine,

or

any

combination

of

these

facilities.

IMS

provides

ample

flexibility

in

allowing

the

installation

to

secure

any

type

of

resource.

Before

you

decide

what

security

facilities

to

use

in

designing

a

secure

IMS

system,

you

should

know

which

resources

within

the

system

need

protection.

In

other

words,

you

should

decide

what

to

protect

before

you

decide

how

to

protect

it.

Securing

Resources

Table

19

lists

the:

v

Resources

you

can

protect

v

Valid

security

options

for

that

resource

v

Facilities

available

to

protect

that

resource

v

Applicable

environments

Table

19.

Resources

and

the

Facilities

to

Protect

Them

Resources

Security

Options/Type

of

Protection

Facilities

Valid

Environments

Command

Default

terminal

security

System

definition

DB/DC,

DCCTL

LTERM

security1

SMU

DB/DC,

DCCTL

Password

security1

SMU

DB/DC,

DCCTL

Transaction

command

security

SMU

DB/DC,

DCCTL

Input

access

security

RACF

DB/DC,

DCCTL

IMSplex

command

security

RACF

DB/DC,

DCCTL

DBRC

command

authorization3

RACF

or

exit

routine

DB/DC,

DCCTL

IBM

Confidential

254

IMS:

An

Introduction

to

IMS

|
|

|
|

|
|

Table

19.

Resources

and

the

Facilities

to

Protect

Them

(continued)

Resources

Security

Options/Type

of

Protection

Facilities

Valid

Environments

Database

Segment

sensitivity

PSBGEN

RACF

DB/DC,

DCCTL,

DBCTL

Field

sensitivity

PSBGEN

RACF

DB/DC,

DCCTL,

DBCTL

Password

security

(for

/LOCK,

/UNLOCK

commands)

SMU

or

RACF

DB/DC,

DCCTL,

DBCTL

Dependent

region

Application

group

name

(AGN)

security

SMU

and

exit

routine

or

SMU

and

RACF

DB/DC,

DCCTL,

DBCTL

APSB

security

RACF

DB/DC,

DCCTL,

DBCTL

Resource

Access

Security

(RAS)

RACF

DB/DC,

DCCTL,

DBCTL

IMS

online

system

(control

region)

Extended

resource

protection

(using

APPL

resource

class)

RACF

DB/DC,

DCCTL,

DBCTL

LTERM1

Password

security

(for

/IAM,

/LOCK,

/UNLOCK

commands)

SMU

or

RACF

DB/DC,

DCCTL

AGN

security

SMU

and

exit

routine

or

SMU

and

RACF

DB/DC,

DCCTL

RAS

security

RACF

DB/DC,

DCCTL

LU

6.2

inbound

and

IMS-managed

outbound

conversations

Allocate

verification

security

RACF

and

exit

routine

DB/DC,

DCCTL

Input

access

security

RACF

and

exit

routine

DB/DC,

DCCTL

Online

application

program

Password

security

(for

/IAM,

/LOCK,

/UNLOCK

commands)

SMU

or

RACF

DB/DC,

DCCTL

Extended

resource

protection

(using

APPL

keyword)

RACF

DB/DC,

DCCTL

PSB

AGN

security

SMU

and

exit

routine

or

SMU

and

RACF

DB/DC,

DCCTL,

DBCTL

RAS

RACF

DB/DC,

DCCTL,

DBCTL

APSB

security

RACF2

DB/DC,

DCCTL

PTERM1

Signon

verification

security

SMU

and

Exit

Routine

or

RACF

and

Exit

Routine

DB/DC,

DCCTL

Terminal-user

security

RACF

DB/DC,

DCCTL

Password

security

(for

/IAM,

/LOCK,

/UNLOCK

commands)

SMU

or

RACF

DB/DC,

DCCTL

System

data

set

OS

password

protection

OS/390

DB/DC,

DCCTL,

DBCTL

Data

set

protection

(VSAM)

(using

PERMIT,

RDEFINE

classes)

RACF

DB/DC,

DCCTL

Terminals

defined

with

ETO

Signon

verification

security

RACF

and

Exit

Routine

DB/DC,

DCCTL

Input

access

security

RACF

and

Exit

Routine

DB/DC,

DCCTL

IBM

Confidential

Chapter

24.

IMS

Security

255

Table

19.

Resources

and

the

Facilities

to

Protect

Them

(continued)

Resources

Security

Options/Type

of

Protection

Facilities

Valid

Environments

Transaction

LTERM

security1

SMU

DB/DC,

DCCTL

AGN

security

SMU

and

exit

routine

or

SMU

and

RACF

DB/DC,

DCCTL

Input

access

security

RACF

DB/DC,

DCCTL

RAS

RACF

DB/DC,

DCCTL

Password

security1

(for

/LOCK,

/UNLOCK

commands)

SMU

or

RACF

DB/DC,

DCCTL

Type

1

Automated

Operator

Interface

(AOI)

applications

Transaction

command

security

SMU

or

RACF

and

Command

Authorization

exit

routine

DB/DC,

DCCTL

Type

2

AOI

applications

Transaction

command

security

RACF

and

Command

Authorization

exit

routine

DB/DC,

DCCTL

Notes:

1.

Static

terminals

only.

Not

applicable

to

ETO-defined

terminals.

2.

Using

RACF

to

secure

APSBs

applies

to

CPI-C

driven

applications

only.

3.

DBRC

Command

Authorization

is

an

additional

command

security

option

for

DBRC

commands

only.

DBRC

commands

are

also

subject

to

any

other

command

security

options

active

in

the

IMS

system.

IBM

Confidential

256

IMS:

An

Introduction

to

IMS

Chapter

25.

IMS

Logging

During

IMS

execution,

all

information

necessary

to

restart

the

system

in

the

event

of

hardware

or

software

failure

is

recorded

on

a

system

log

data

set.

The

following

critical

system

information

is

recorded

on

the

logs:

v

The

receipt

of

an

input

message

in

the

input

queue

v

The

start

of

an

MPP

or

BMP

v

The

receipt

of

a

message

by

the

MPP

for

processing

v

Before

and

after

images

of

data

base

updates

by

the

MPP

or

BMP

v

The

insert

of

a

message

into

the

queue

by

the

MPP

v

The

termination

of

an

MPP

or

BMP

v

The

successful

receipt

of

an

output

message

by

the

terminal

The

following

sections

are

covered

in

this

chapter:

v

“Checkpoints”

v

“Database

Recovery

Control

(DBRC)”

v

“IMS

Log

Components”

Checkpoints

At

regular

intervals

during

IMS

execution,

checkpoints

are

written

to

the

log

without

having

to

wait

to

do

any

physical

I/O.

A

checkpoint

is

taken

after

a

specified

number

of

log

records

are

written

to

the

log

since

the

previous

checkpoint,

or

after

a

checkpoint

command.

Special

checkpoint

commands

are

available

to

stop

IMS

in

an

orderly

manner.

Database

Recovery

Control

(DBRC)

DBRC

is

an

integral

part

of

IMS

logging

and,

as

time

moves

on,

DBRC

is

becoming

a

prominent

part

of

IMS’s

daily

operation.

DBRC

keeps

information

about

all

of

IMS’s

logging

activities

in

the

recovery

control

(RECON)

data

sets.

Related

Reading:

For

more

information

about

DBRC,

see

Chapter

26,

“Database

Recovery

Control

(DBRC),”

on

page

263

and

the

IMS

Version

9:

DBRC

Guide

and

Reference.

IMS

Log

Components

The

IMS

logs

are

made

up

of

a

number

of

components,

which

are

described

in

the

following

sections:

v

“IMS

Log

Buffers”

on

page

258

v

“Online

Log

Data

Sets

(OLDS)”

on

page

258

v

“Write-Ahead

Data

Sets

(WADS)”

on

page

260

v

“System

Log

Data

Sets”

on

page

261

v

“Recovery

Log

Data

Sets”

on

page

261

IBM

Confidential

©

Copyright

IBM

Corp.

2004

257

IMS

Log

Buffers

The

log

buffers

are

used

for

IMS

to

write

any

information

required

to

be

logged,

without

having

to

do

any

real

I/O.

Whenever

a

log

buffer

is

full,

the

complete

log

buffer

is

scheduled

to

be

written

out

to

the

OLDS

as

a

background,

asynchronous

task.

In

a

busy

system,

IMS

will

generally

chain

these

log

buffer

writes

together.

Should

any

application

or

system

function

require

a

log

record

to

be

externalized

(that

is,

IMS

believes

that

for

recoverability,

this

log

record

must

be

physically

written

to

DASD

before

proceeding),

then

the

WADS

data

set

is

used.

See

“Write-Ahead

Data

Sets

(WADS)”

on

page

260.

The

OLDS

buffers

are

used

in

such

a

manner

as

to

keep

available

as

long

as

possible

the

log

records

that

may

be

needed

for

dynamic

backout.

If

a

needed

log

record

is

no

longer

available

in

storage,

one

of

the

OLDS

buffers

will

be

used

for

reading

the

appropriate

blocks

from

the

OLDS.

The

number

of

log

buffers

is

an

IMS

start-up

parameter,

and

the

maximum

is

999.

The

size

of

each

log

buffer

is

dependent

on

the

actual

blocksize

of

the

physical

OLDS.

The

IMS

log

buffers

now

reside

in

extended

private

storage,

however,

there

is

a

log

buffer

prefix

that

still

exists

in

ECSA.

Online

Log

Data

Sets

(OLDS)

The

OLDS

are

the

data

sets

which

contain

all

the

log

records

required

for

restart

and

recovery.

These

data

sets

must

be

pre-allocated

(but

need

not

be

pre-formatted)

on

DASD

and

will

hold

the

log

records

until

they

are

archived.

The

OLDS

is

written

by

BSAM.

OSAM

is

used

to

read

the

OLDS

for

dynamic

backout

The

OLDS

are

made

up

of

multiple

data

sets

which

are

used

in

a

wrap

around

manner.

At

least

3

data

sets

must

be

allocated

for

the

OLDS

to

allow

IMS

to

start,

while

an

upper

limit

of

100

is

supported.

Only

complete

log

buffers

are

written

to

the

OLDS,

to

enhance

performance.

Should

any

incomplete

buffers

need

to

be

written

out,

they

are

written

to

the

WADS.

The

only

exceptions

to

this

are

at

IMS

shutdown,

or

in

degraded

logging

mode,

when

the

WADS

are

unavailable,

then

the

WADS

writes

will

be

done

to

the

OLDS.

All

OLDS

should

be

dynamically

allocated,

by

using

the

DFSMDA

macro,

and

not

hardcoded

in

the

IMS

control

region

JCL.

Dual

Logging

of

OLDS

Dual

logging

can

also

be

optionally

implemented,

with

a

primary

and

secondary

data

set

for

each

defined

OLDS.

v

A

primary

and

secondary

data

set

will

be

matched

and,

therefore,

the

pair

should

have

the

same

space

allocation.

Because

an

OLDS

pair

will

contain

the

same

data,

extra

space

allocated

to

one

will

not

be

used

in

the

other.

v

Secondary

extent

allocation

cannot

be

used

v

OLDS

can

be

allocated

on

different

supported

DASD

v

All

OLDS

must

have

the

same

blocksize,

and

be

a

multiple

of

2Kb

(2048

bytes).

the

maximum

allowable

blocksize

is

30kb.

IBM

Confidential

258

IMS:

An

Introduction

to

IMS

Dynamic

Backout

In

addition

to

the

above

logging,

all

previous

database

record

images

are

written

to

the

OLDS,

and

can

also

be

used

for

dynamic

back-out

processing

of

a

failing

MPP

or

BMP.

As

soon

as

the

MPP

or

BMP

reaches

a

synchronization

point,

the

dynamic

log

information

of

this

program

is

discarded.

Archiving

The

current

OLDS

(both

primary

and

secondary)

is

closed

and

the

next

OLDS

is

used

whenever

one

of

the

following

situations

occurs:

v

OLDS

becomes

full

v

I/O

error

occurs

v

MTO

command

is

entered

to

force

a

log

switch

(such

as

/SWI

OLDS)

v

MTO

command

is

issued

to

close

a

database

(such

as

/DBR

DB)

without

specifying

the

NOFEOV

parameter

DBRC

is

automatically

notified

that

a

new

OLDS

is

being

used.

When

this

occurs,

IMS

can

automatically

submit

the

archive

job

to

IMS

Log

Archive

utility

by

using

an

IMS

startup

parameter

(ARC=).

IMS

can

define

whether

the

log

archive

process

will

occur

with

every

log

switch,

or

every

second

log

switch,

and

the

DBRC

skeletal

JCL

that

controls

the

archiving,

can

be

defined

to

also

create

1

or

2

System

Log

data

sets,

and

0,

1

or

2

Recovery

Log

Data

sets.

After

the

last

allocated

OLDS

has

been

used,

the

first

OLDS

will

again

be

used

in

a

wrap

around

fashion,

as

long

as

it

has

been

archived.

The

IMS

log

archive

JCL

is

in

DBRC

skeletal

JCL,

and

can

be

tailored

to

create

the

required

SLDS,

and

optionally

dual

SLDS,

1

or

2

RLDS

data

sets,

and

any

user

data

sets.

Figure

90

shows

the

data

sets

for

the

Log

Archive

utility.

Related

Reading:

For

the

details

of

the

IMS

Log

Archive

utility,

see

the

IMS

Version

9:

Utilities

Reference:

System.

Figure

90.

Inputs

and

Outputs

of

the

IMS

Log

Archive

Utility

IBM

Confidential

Chapter

25.

IMS

Logging

259

OLDS

I/O

Errors

In

the

case

of

a

write

error,

the

subject

OLDS

(or

pair

of

OLDS)

will

be

put

into

a

stopped

status

and

will

not

be

used

again.

This

is

equivalent

to

a

user

issuing

the

command

/STO

OLDS.

If

using

dual

OLDS,

then

the

data

set

without

error

will

be

used

for

IMS

archives.

If

data

set

errors

result

in

only

a

single

OLDS

remaining,

a

/CHE

FREEZE

command

is

internally

scheduled

by

IMS.

If

an

error

occurs

on

the

very

last

OLDS,

IMS

will

abend

with

a

U0618.

Information

is

kept

in

the

RECON

data

set

about

the

OLDS

for

each

IMS

system.

The

data

in

the

RECON

indicates

whether

an

OLDS

contains

active

log

data

which

must

be

archived,

or

whether

it

is

available

for

use.

Lack

of

OLDS

IMS

issues

messages

when

it

is

running

out

of

OLDS.

During

the

use

of

the

last

available

OLDS,

IMS

will

indicate

that

no

spare

OLDS

are

available

When

all

the

OLDS

are

full,

and

the

archives

have

not

successfully

completed,

then

IMS

will

stop,

and

have

to

wait

until

at

least

1

OLDS

has

been

archived.

The

only

thing

IMS

will

do

is

repeatedly

issue

messages

to

indicate

that

it

is

has

run

out

of

OLDS,

and

is

waiting.

Write-Ahead

Data

Sets

(WADS)

The

WADS

is

a

small

direct

access

data

set

which

contains

a

copy

of

committed

log

records

which

are

in

OLDS

buffers,

but

have

not

yet

been

written

to

the

OLDS.

When

IMS

processing

requires

writing

of

a

partially

filled

OLDS

buffer,

a

portion

of

the

buffer

is

written

to

the

WADS.

If

IMS

or

the

system

fails,

the

log

data

in

the

WADS

is

used

to

terminate

the

OLDS,

which

can

be

done

as

part

of

an

Emergency

Restart,

or

as

an

option

on

the

IMS

Log

Recovery

Utility.

The

WADS

space

is

continually

reused

after

the

appropriate

log

data

has

been

written

to

the

OLDS.

This

data

set

is

required

for

all

IMS

systems,

and

must

be

pre-allocated

and

formatted

at

IMS

start-up

when

first

used.

In

addition,

the

WADS

provide

extremely

high

performance.

This

is

achieved

primarily

through

the

physical

design

of

the

WADS.

Each

WADS

track

is

divided

into

2080

byte

blocks

with

a

1

byte

key.

Each

block

has

the

same

key

(key

value

=

0).

This

was

done

for

efficiency

on

conventional

rotational

DASD,

and

is

still

valid

for

newer

types

of

DASD.

All

WADS

should

be

dynamically

allocated

by

using

the

DFSMDA

macro,

and

not

hardcoded

in

the

control

region

JCL.

All

the

WADS

must

be

on

the

same

device

type

and

have

the

same

space

allocation.

IBM

Confidential

260

IMS:

An

Introduction

to

IMS

Dual

WADS

Dual

WADS

is

supported

to

provide

backup

in

the

event

of

a

read

error

while

terminating

the

OLDS

from

the

WADS.

The

primary

and

secondary

WADS

will

contain

the

same

data.

Single

or

Dual

WADS

logging

is

determined

from

an

IMS

start-up

parameter.

Redundant

WADS

Regardless

of

whether

there

are

single

or

dual

WADS,

there

can

be

up

to

10

WADS

defined

to

any

IMS.

(WADS0,

WADS1,....,

WADS9).

WADS0

(and

WADS1

if

running

dual

WADS)

are

active,

and

the

rest

remain

as

spares

in

case

any

active

WADS

has

an

I/O

error.

The

next

spare

will

then

replace

the

one

with

the

error.

System

Log

Data

Sets

The

SLDS

is

created

by

the

IMS

log

archive

utility,

possibly

after

every

OLDS

switch.

It

is

usually

placed

on

TAPE

or

CARTIDGE,

but

can

reside

on

DASD.

The

SLDS

can

contain

the

data

from

one

or

more

OLDS

data

sets.

The

SLDS

can

also

be

used

as

input

to

all

IMS

log

utilities,

and

IMS

restart.

Information

about

SLDS

is

maintained

by

DBRC

in

the

RECON

data

set.

Calls

to

DBRC

are

made

by

the

Archive

Utility

identifying

the

OLDS

being

archived

and

the

SLDS

being

created.

OLDS

that

have

been

archived

are

then

available

for

reuse

by

IMS.

Dual

SLDSs

Dual

archiving

to

2

SLDS

data

sets

(primary

and

secondary)

is

supported.

When

archiving

to

TAPE

or

CARTRIGE,

the

user

can

also

force

the

primary

and

secondary

volumes

to

contain

the

same

data

by

specifying

the

number

of

log

blocks

per

volume.

When

this

number

is

reached,

a

force-end-of-volume

(FEOV)

will

occur

on

both

the

primary

and

secondary

SLDS.

In

this

way,

both

primary

and

secondary

SLDS

are

identical

and

interchangeable

should

a

subsequent

I/O

error

occur

on

one

of

them.

The

user

can

also

specify

which

records

are

copied

from

the

OLDS

to

the

SLDS.

Generally,

the

SLDS

should

contain

all

the

log

records

from

the

OLDS,

but

if

the

user

wants

to

omit

types

of

log

records

from

the

SLDS,

these

can

be

specified

within

the

log

archive

utility.

The

SLDS

must

always

contain

those

log

records

required

for

database

recovery,

batch

backout

or

system

recovery.

The

blocksize

of

the

SLDS

is

independent

of

the

OLDS

blocksize,

and

can

be

specified

to

maximize

space

on

the

SLDS

device

type.

Recovery

Log

Data

Sets

When

the

IMS

log

archive

utility

is

run,

the

user

can

request

creation

of

an

output

data

set

that

contains

all

of

the

log

records

needed

for

database

recovery.

This

is

the

RLDS

and

is

also

known

to

DBRC.

The

RLDS

is

preferred

by

many

instillations.

All

database

recoveries

and

change

accumulation

jobs

will

always

use

the

RLDS

if

one

exists,

and

this

can

considerably

speed

up

any

of

these

processes

because

the

only

contents

of

these

data

sets

are

IBM

Confidential

Chapter

25.

IMS

Logging

261

database

recovery

log

records.

All

other

IMS

TM,

application

scheduling

and

checkpoint

log

records

are

not

included

on

the

RLDSs.

The

RLDS

is

optional,

and

you

can

also

have

dual

copies

of

this,

in

a

similar

way

to

the

SLDS.

IBM

Confidential

262

IMS:

An

Introduction

to

IMS

Chapter

26.

Database

Recovery

Control

(DBRC)

DBRC

includes

the

IMS

functions

that:

v

Ensure

IMS

system

and

database

integrity.

v

Control

log

and

database

recovery.

v

Control

access

to

databases

by

various

IMS

subsystems

sharing

those

databases.

DBRC

is

responsible

for:

v

Controlling

logs

for

an

online

IMS.

v

Recording

database

recovery

information.

v

Verifying

that

database

utilities

have

the

correct

input.

v

Preventing

or

allowing

use

of

a

database

(authorization).

v

Optionally,

generating

JCL

for

some

of

the

database

utilities.

Related

Reading:

This

chapter

contains

an

overview

of

DBRC.

For

all

the

details

associated

with

DBRC,

see

IMS

Version

9:

DBRC

Guide

and

Reference.

The

following

sections

are

covered

in

this

chapter:

v

“Overview

of

DBRC”

v

“Using

DBRC”

on

page

264

v

“Overview

of

the

RECON

Data

Sets”

on

page

266

v

“Defining

and

Creating

the

RECON

Data

Sets”

on

page

269

v

“Initializing

the

RECON

Data

Sets”

on

page

270

v

“Allocating

RECON

Data

Sets

to

IMS

Systems”

on

page

270

v

“Placement

Considerations

for

the

RECON

Data

Sets”

on

page

271

v

“Maintaining

RECON

Data

Sets”

on

page

271

v

“Reorganizing

RECON

Data

Sets”

on

page

273

v

“Recreating

RECON

Data

Sets”

on

page

274

v

“PRILOG

Record

Size”

on

page

274

v

“Summary

of

Recommendations

for

RECON

Data

Sets”

on

page

275

v

“DBRC

Support

for

Remote

Site

Recovery”

on

page

275

Overview

of

DBRC

DBRC

records

information

in

a

set

of

VSAM

data

sets

called

the

recovery

control

(RECON)

data

sets

(see

“Overview

of

the

RECON

Data

Sets”

on

page

266).

IMS

records

the

following

information

in

the

RECON

data

sets:

v

Log

data

set

information

v

Database

data

set

information

v

Event

information,

such

as:

–

Allocation

of

a

database

–

Update

of

a

database

–

Image

copy

of

a

database

–

Abend

of

a

subsystem

–

Recovery

of

a

database

IBM

Confidential

©

Copyright

IBM

Corp.

2004

263

–

Reorganization

of

a

database

–

Archive

of

a

OLDS

data

set

Using

DBRC

The

aspects

pertaining

to

DBRC

usage

are

discussed

in

the

following

sections:

v

“DBRC

Options”

v

“Communicating

with

DBRC”

on

page

265

v

“Database

Authorization”

on

page

265

v

“Access

Intent”

on

page

266

DBRC

Options

The

first

option

is

whether

the

DBRC

function

is

active

in

address

spaces

executing

IMS

and

the

second

option

is

whether

databases

must

be

registered

in

the

RECON

data

set.

1.

DBRC

is

always

active

in

an

IMS

control

region

(DBCTL,

DCCTL,

or

DB/DC).

This

cannot

be

overridden.

For

batch

and

utility

regions,

module

DFSIDEF0

can

be

used

to

specify

whether

or

not

DBRC

is

active.

In

DFSIDEF0,

you

can

set

DBRC=

to

YES,

NO,

or

FORCE.

YES

|

NO

This

sets

the

default

for

DBRC

usage

for

batch

execution,

it

can

be

overridden

at

execution

time

on

the

DBRC

EXEC

parm

(unless,

of

course,

you

defined

DBRC=FORCE).

FORCE

This

forces

DBRC

usage

in

all

other

address

spaces.

It

cannot

be

overridden

in

the

JCL.

Any

job

attempting

to

run

with

DBRC=N

abends.

There

are

also

YES,NO

options,

but

these

are

only

valid

for

a

Batch

IMSGEN,

not

a

DBCTL

IMSGEN,

for

DBCTL

you

must

have

DBRC

support

generated

(even

if

its

not

forced

for

batch).

A

BMP

does

not

have

a

DBRC

execution

parameter.

DBRC

is

always

active

in

the

IMS

control

region

that

the

BMP

connects

to.

The

above

parameters

control

whether

DBRC

is

active

in

an

address

space.

The

level

of

functions

available

is

controlled

by

information

in

the

RECON.

2.

The

FORCER/NOFORCER

(force

registration

or

not)

option

in

the

RECON

header

controls

whether

or

not

databases

must

be

registered

in

the

RECON.

v

If

NOFORCER

is

specified,

databases

might,

or

might

not

be

registered

in

the

RECON.

If

a

database

is

not

registered

in

the

RECON

and

DBRC

is

active,

you

get

a

warning

message

each

time

the

database

is

opened.

v

If

FORCER

is

specified,

then,

if

DBRC

is

active

in

the

address

space,

all

databases

must

be

registered

in

the

RECON.

If

the

database

is

not

registered,

DBRC

rejects

authorization

and

the

job

abends

(in

DBCTL

environments,

the

PSB

fails

to

schedule,

but

the

DBCTL

region

stays

up).

When

running

with

DBRC=N,

there

is

an

incomplete

record

of

updates,

which

is

useless

for

recovery

purposes.

If

a

database

is

registered

in

the

RECON

and

you

run

a

job

with

DBRC=N,

the

next

time

you

run

a

job

with

DBRC=Y

a

warning

message

is

issued

flagging

the

fact

the

database

has

been

accessed

outside

of

DBRC

control.

You

might

want

to

take

an

image

copy

at

that

point.

IBM

Confidential

264

IMS:

An

Introduction

to

IMS

|
|
|

|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|

|
|
|

|
|
|
|

|
|

|
|
|
|

Communicating

with

DBRC

Use

DBRC

commands

or

DBRC

API

requests

to

obtain

services

from

DBRC.

The

following

sections

discuss

these

commands

and

requests

in

more

detail.

DBRC

Commands

Use

DBRC

batch

and

online

commands

to:

v

Add

to,

change,

and

delete

information

in

the

RECON

data

sets

v

Generate

the

JCL

and

the

control

statements

necessary

to

run

the

various

IMS

utilities

used

in

database

recovery

The

following

is

a

list

of

the

DBRC

batch

commands:

v

BACKUP.RECON

v

CHANGE

v

DELETE

v

GENJCL

v

INIT

v

LIST

v

NOTIFY

v

RESET.GSG

These

batch

commands

are

issued

to

DBRC

by

including

them

in

the

JCL

job

that

runs

the

Database

Recovery

Control

utility

(DSPURX00).

A

variation

of

some

of

the

DBRC

batch

commands

can

be

issued

online

using

the

/RMxxxxxx

command

(for

example,

/RMCHANGE.RECON).

Although

most

of

the

command

examples

in

this

book

feature

the

DBRC

batch

commands,

the

online

version

(where

appropriate)

of

the

example

command

can

be

used

instead.

Related

Reading:

For

more

information

about

the

DBRC

commands,

see

the

chapter

titled

“DBRC

Commands”

in

the

IMS

Version

9:

DBRC

Guide

and

Reference.

DBRC

Application

Programming

Interface

(API)

Use

DBRC

API

requests

to:

v

Start

and

stop

DBRC

v

Query

information

from

the

RECON

The

following

is

a

list

of

the

DBRC

API

requests:

v

STARTDBRC

v

QUERY

v

RELBUF

v

STOPDBRC

Related

Reading:

For

more

information

about

the

DBRC

application

programming

interface

and

the

API

requests,

see

the

chapter

titled

“Using

the

DBRC

API”

in

the

IMS

Version

9:

DBRC

Guide

and

Reference.

Database

Authorization

A

DBRC

sharing

environment

introduces

the

concept

of

database

authorization.

This

process

determines

if

an

online

IMS

or

batch

IMS

can

have

access

to

the

requested

databases.

DBRC

authorizes

or

refuses

to

authorize

access

to

the

databases

depending

on

the

current

authorizations

and

the

access

intent

of

the

IMS

system.

IBM

Confidential

Chapter

26.

Database

Recovery

Control

(DBRC)

265

Access

Intent

Access

intent

is

determined

by

DBRC

when

IMS

tries

to

allocate

a

database:

v

For

a

batch

job,

DBRC

uses

the

processing

option

(PROCOPT)

of

the

PSB

for

each

database

to

determine

the

access

intent.

If

the

PSB

has

multiple

PCBs

for

the

same

database,

the

highest

intent

for

that

database

is

used.

v

For

an

IMS

TM

online

system,

the

ACCESS

parameter

of

the

DATABASE

macro

sets

the

access

intent.

This

access

intent

can

be

changed

by

issuing

a

/STA

DB

command.

There

are

four

processing

intent

attributes.

These

attributes

are

listed

below

in

reverse

order,

from

the

highest

access

intent

(the

most

restrictive)

to

the

lowest

(the

least

restrictive):

EX

(exclusive)

The

IMS

system

requires

exclusive

access

of

the

database

and

no

sharing

is

allowed

regardless

of

the

share

options

registered

in

DBRC.

v

PROCOPT

of

L

or

xE

(batch)

(where

x

=

A,D,G,I,D)

v

ACCESS

of

Ex

(online)

UP

(update)

The

IMS

system

can

update

the

database.

Even

if

no

updates

actually

take

place,

the

database

is

held

in

update

mode.

Any

logs

created

with

actual

changes

during

this

process

are

required

for

recovery

or

change

accumulation.

v

PROCOPT

of

A,I,R,D

(batch)

v

ACCESS

of

UP

(online)

RD

(read

with

integrity)

The

IMS

system

only

reads

the

database,

but

it

also

checks

any

enqueue

or

lock

held

by

other

IMS

systems.

It

waits

for

the

lock

to

be

released

before

processing.

v

PROCOPT

of

G

(batch)

v

ACCESS

of

RD

(online)

RO

(read

without

integrity)

The

IMS

system

only

reads

the

database

and

it

does

not

check

for

any

lock

or

enqueue

held

by

other

IMS

systems.

v

PROCOPT

of

GO

(batch)

v

ACCESS

of

GO

(online)

Overview

of

the

RECON

Data

Sets

The

RECON

data

set

is

the

most

important

data

set

for

the

operation

of

DBRC

and

data

sharing.

The

RECON

data

set

holds

all

resource

information

and

event

tracking

information

that

is

used

by

IMS.

The

RECON

data

set

can

consist

of

one,

two,

or

three

data

sets:

1.

The

original

data

set

2.

The

copy

of

the

original

data

set

3.

The

spare

data

set

The

original

data

set

and

the

copy

are

a

pair

of

VSAM

clusters

that

work

as

a

pair

to

record

information.

One

is

a

duplicate

of

the

other.

A

third

RECON

can

be

used

IBM

Confidential

266

IMS:

An

Introduction

to

IMS

|
|
|

|
|

as

a

spare.

IMS

normally

works

with

two

active

RECON

data

sets.

If

one

becomes

unavailable,

the

spare

will

be

activated

if

it

is

available.

Important:

The

best

solution,

from

an

availability

point

of

view,

is

to

use

all

three

data

sets.

This

is

strongly

recommended.

Using

three

data

sets

for

the

RECON

causes

DBRC

to

use

them

in

the

following

way:

v

The

first

data

set

is

known

as

copy1.

It

contains

the

current

information.

DBRC

always

reads

from

this

data

set

and

when

some

change

has

to

be

applied,

the

change

is

written

first

to

this

data

set.

v

The

second

data

set

is

known

as

copy2.

It

contains

the

same

information

as

the

copy1

data

set.

All

changes

to

the

RECON

data

sets

are

applied

to

this

copy2

only

after

the

copy1

has

been

updated.

v

The

third

data

set

(the

spare)

is

used

in

the

following

cases:

–

A

physical

I/O

error

occurs

on

either

copy1

or

copy2.

–

DBRC

finds,

when

logically

opening

the

copy1

RECON

data

set,

that

a

spare

RECON

has

became

available,

and

that

no

copy2

RECON

data

set

is

currently

in

use.

–

The

following

command

is

executed:

CHANGE.RECON

REPLACE(RECONn)

When

the

third

RECON

data

set

is

used,

the

remaining

valid

data

set

is

copied

to

the

spare.

When

the

copy

is

finished

the

spare

becomes

whichever

of

the

data

sets

was

lost,

missing,

or

in

error.

Note:

From

the

RECON

point

of

view,

the

copy1

and

the

copy2

data

sets

are

normally

identified

by

a

1

or

a

2

in

a

field

of

the

RECON

header

information.

RECON

Records

The

individual

records

in

the

RECON

contain

the

information

pertaining

to

the

various

items

that

DBRC

keeps

track

of.

The

following

section

(“Types

of

RECON

Records”)

briefly

introduces

the

records

kept

in

the

RECON.

Related

Reading:

For

complete

information

about

the

RECON

records,

see

the

IMS

Version

9:

DBRC

Guide

and

Reference.

Types

of

RECON

Records

There

are

six

general

types

of

RECON

records:

Control

records

Control

records

are

used

for

controlling

the

RECON

data

set

and

the

default

values

used

by

DBRC.

This

class

of

records

includes

the

RECON

header

record

and

header

extension

record.

Log

records

Log

records

are

used

for

tracking

the

log

data

sets

used

by

all

subsystems.

This

class

of

records

includes:

v

Primary

Recovery

Log

(PRILOG)

and

Secondary

Recovery

Log

(SECLOG)

records

(including

interim

log

records)

that

describe

a

recovery

log

data

set

(RLDS)

created

by

an

IMS

TM

system,

a

CICS

online

system,

a

batch

DLI

job,

or

the

Log

Archive

utility

(DFSUARC0).

v

Log

Allocation

(LOGALL)

record

that

lists

the

DBDSs

for

which

database

change

records

have

been

written

to

a

particular

log.

v

Primary

OLDS

(PRIOLD)

and

Secondary

OLDS

(SECOLD)

records

(including

interim

OLDS

records)

that

describe

the

IMS

TM

online

data

sets

(OLDS)

that

are

defined

for

use.

IBM

Confidential

Chapter

26.

Database

Recovery

Control

(DBRC)

267

|
|

|
|
|
|

|
|

|
|
|

v

Primary

System

Log

(PRISLDS)

and

Secondary

System

Log

(SECSLDS)

records

(including

interim

SLDS

records)

that

describe

a

system

log

SLDS

created

by

an

IMS

TM

system.

Change

accumulation

records

Change

accumulation

records

are

used

for

tracking

information

about

change

accumulation

groups.

This

class

of

records

includes

change

accumulation

group,

execution,

and

data

set

records.

DBDS

group

records

Database

data

set

group

(DBDSGRP)

records

are

used

to

define

the

members

of

a

DBDS

group.

The

only

record

type

in

this

class

is

a

DBDS

group

record.

Subsystem

records

Subsystem

record

contains

information

about

the

subsystem

and

related

recovery

information

including:

v

Subsystem

name

and

type

(online

or

batch)

v

IRLM

identification

v

Abnormal-end

flag

and

the

recovery-process

start

flag

v

List

of

authorized

databases

v

Time

stamp

that

correlates

the

subsystem

entry

with

the

appropriate

log

records

Database

records

Database

records

are

used

to

track

the

state

of

databases,

DBDSs,

and

resources

required

for

recovery

of

DBDSs.

This

class

of

records

includes:

v

Database

record

(IMS,

HALDB,

or

PARTition)

v

Area

authorization

record

v

DBDS

record

(non-Fast

Path

or

Fast

Path)

v

Allocation

record

v

Image

copy

record

v

Reorganization

record

v

Recovery

record

Database

Related

Information

A

database

and

its

associated

data

sets

should

only

be

defined

in

one

RECON

data

set.

The

fundamental

principle

behind

the

RECON

data

set

is

to

store

all

recovery-related

information

for

a

database

in

one

place.

It

is

not

possible

to

use

multiple

RECON

data

sets

in

the

recovery

processing

for

the

same

database.

IMS

Systems

and

the

RECON

An

IMS

system

can

only

be

connected

to

one

set

of

RECON

data

sets.

All

databases

that

are

accessed

by

IMS

TM

systems

under

the

control

of

DBRC

must

be

registered

in

the

RECON

referenced

by

the

online

IMS

system

only

if

the

RECON

has

the

FORCER

option

set

on.

All

batch

IMS

systems

that

access

any

database

accessed

by

the

online

IMS

system

should

reference

the

same

RECONs

that

are

referenced

by

the

online

IMS

system.

IBM

Confidential

268

IMS:

An

Introduction

to

IMS

|
|
|

|
|
|

|

|

|

|

|
|

Database

Names

in

the

RECON

The

database

names

(DBD

names)

defined

in

one

RECON

data

set

must

all

be

unique.

The

database

records,

stored

in

the

RECON

data

set,

are

registered

with

a

key

based

on

the

DBD

name.

Therefore,

DBRC

cannot

be

used

to

control

both

test

and

production

databases,

using

the

same

RECON

data

sets,

unless

some

naming

convention

is

adopted.

As

a

general

rule,

more

than

one

set

of

RECON

data

sets

are

necessary

if

all

the

following

conditions

are

true:

v

Multiple

versions

of

the

same

database

exist

(for

example,

test

and

production).

v

The

same

DBD

name

is

used

for

the

different

versions

of

the

database.

v

More

than

one

version

of

the

databases

can

be

used,

but

only

one

can

be

registered

to

DBRC

in

the

RECON

data

set.

The

other

versions

are

treated

as

not

registered

(unless

FORCER

has

been

set

in

the

RECON).

The

application

of

the

previous

rules

usually

results

in

the

need

for

at

least

two

different

sets

of

RECON

data

sets:

one

shared

between

the

production

systems

and

one

for

the

test

systems.

Note:

On

the

INIT.DBDS

command,

which

is

used

to

create

the

database

data

set

record

in

the

RECON,

you

must

supply

the

database

data

set

name

(DSN).

When

IMS

opens

the

database,

DBRC

checks

the

DSN

against

the

name

that

is

registered

in

the

RECON.

If

this

name

does

not

match,

DBRC

treats

this

database

as

if

it

was

not

registered.

In

this

case,

the

test

database

(with

a

DSN

different

than

the

production

database,

even

if

with

the

same

DBD

name)

and

data

set

name,

can

coexist

with

the

production

environment,

but

not

under

the

control

of

the

DBRC.

Defining

and

Creating

the

RECON

Data

Sets

The

RECON

data

sets

are

VSAM

KSDSs.

They

must

be

created

by

using

the

VSAM

AMS

utilities.

The

same

record

size

and

CI

size

must

be

used

for

all

the

RECON

data

sets.

The

RECON

data

sets

should

be

given

different

FREESPACE

values

so

that

CA

and

CI

splits

do

not

occur

at

the

same

time

for

both

active

RECON

data

sets.

For

availability,

all

three

data

sets

should

have

different

space

allocation

specifications.

The

spare

data

set

should

be

at

least

as

large

as

the

largest

RECON

data

set.

Figure

91

on

page

270

shows

an

example

of

a

RECON

data

set

definition.

IBM

Confidential

Chapter

26.

Database

Recovery

Control

(DBRC)

269

Initializing

the

RECON

Data

Sets

After

the

RECON

data

sets

are

created,

they

must

be

initialized

by

using

the

INIT.RECON

command

(issued

with

the

DBRC

Recovery

Control

utility).

This

causes

the

RECON

header

records

to

be

written

in

both

current

RECON

data

sets.

The

RECON

header

records

must

be

the

first

records

written

to

the

RECON

data

sets

because

they

identify

the

RECON

data

sets

to

DBRC.

Allocating

RECON

Data

Sets

to

IMS

Systems

There

are

two

methods

to

allocate

the

RECON

data

set

to

an

IMS

system:

v

Point

to

the

RECON

data

sets

by

inserting

the

DD

statements

in

the

start-up

JCL

for

the

various

IMS

systems.

v

Use

dynamic

allocation.

If

a

DD

statement

is

specified

for

RECON,

DBRC

does

not

use

dynamic

allocation.

Otherwise,

DBRC

uses

dynamic

allocation.

Recommendation:

With

multiple

IMS

systems

sharing

the

same

databases

and

RECON

data

sets,

use

dynamic

allocation

for

both

the

RECON

data

sets

and

the

associated

databases.

This

ensures

that:

v

The

correct

and

current

RECON

data

sets

are

used.

v

The

correct

RECON

data

sets

are

associated

with

the

correct

set

of

databases.

Dynamic

allocation

also

makes

the

recovery

of

a

failed

RECON

data

set

easier

because

DBRC

dynamically

de-allocates

a

RECON

data

set

if

a

problem

is

encountered

with

it.

To

establish

dynamic

allocation,

a

special

member

that

names

the

RECON

data

sets

must

be

added

to

IMS.SDFSRESL

or

to

an

authorized

library

that

is

concatenated

to

IMS.SDFSRESL.

This

is

done

using

the

IMS

DFSMDA

macro.

DELETE

STIMS220.RECONB

SET

LASTCC=0

DEFINE

CLUSTER

(NAME(STIMS220.RECONB)

-

VOLUMES

(SBV0l0)

-

INDEXED

-

KEYS

(24

0)

-

CYLINDERS

C5

2)

-

RECORDSIZE

(128

32600)

-

SPANNED

-

FREESPACE

(30

80)

-

CISZ(4096)

-

NOREUSE

-

NERAS

SPEED

REPL

IMBD

-

UNORDERED

-

SHAREOPTIONS

(3

3))

-

INDEX

(NAME(STIMS220.RECONB.INDEX))

-

DATA

(NAME(STIMS220.RECONB.DATA))

Figure

91.

Example

of

a

RECON

Data

Set

Definition

IBM

Confidential

270

IMS:

An

Introduction

to

IMS

Figure

92

shows

an

example

of

the

required

macros

for

dynamic

allocation

of

the

RECON

data

sets.

RECON

data

sets

are

always

dynamically

allocated

with

DISP=SHR

specified.

When

using

multiple

RECON

data

sets

(for

example,

test

and

production),

be

sure

that

each

IMS

uses

the

correct

RECON

data

set

group.

This

can

be

done

by

altering

the

SYSLMOD

DD

statement

in

the

IMSDALOC

procedure

to

place

the

dynamic

allocation

parameter

lists

for

the

various

RECON

data

set

groups

in

different

IMS.SDFSRESL

libraries.

The

appropriate

IMS.SDFSRESL

or

concatenated

IMS.SDFSRESL

libraries

must

be

included

for

each

IMS

start-up

JCL.

Important:

When

multiple

IMSs

running

on

different

processors

are

accessing

the

same

RECON

data

set,

the

dynamic

allocation

parameter

lists

must

be

kept

synchronized

in

the

IMS.SDFSRESL

libraries

being

used

by

the

different

processors.

This

does

not

happen

automatically.

Also,

using

dynamic

allocation

in

some

IMS

systems

and

JCL

allocation

in

others

is

not

recommended.

Placement

Considerations

for

the

RECON

Data

Sets

The

placement

of

the

RECON

data

sets

in

the

DASD

configuration

is

very

important.

The

primary

rule

is

to

configure

for

availability

(or

put

another

way,

to

isolate

possible

failures).

This

means,

for

example,

to

place

all

three

RECON

data

sets

on:

v

Different

volumes

v

Different

control

units

v

Different

channels

v

Different

channel

directors

Maintaining

RECON

Data

Sets

There

are

several

procedures

and

commands

that

can

be

used

to

maintain

the

RECON

data

set.

Backing

Up

the

RECON

Operational

procedures

should

be

set

up

to

ensure

that

regular

backups

of

the

RECON

data

set

are

taken.

These

backups

should

be

performed

using

the

DBRC

BACKUP.RECON

DBRC

utility

command.

The

command

includes

a

reserve

mechanism

to

ensure

that

no

updating

of

the

RECON

takes

place

during

the

backup.

If

possible,

the

backup

should

be

taken

when

there

are

no

IMS

systems

active.

//DYNALL

JOB..

//STEP

EXEC

IMSDALOC

//SYSIN

DD

*

DFSMDA

TYPE=INITIAL

DFSMDA

TYPE=RECON,DSNAME=PROD.RECON0l,

DDNAME=RECON1

DFSMDA

TYPE=RECON,DSNAME=PROD.RECON02,

DDNAME=RECON2

DFSMDA

TYPE=RECON,DSNAME=PROD.RECON03,

DDNAME=RECON3

Figure

92.

Example

JCL

for

Allocating

RECON

Data

Sets

Dynamically

IBM

Confidential

Chapter

26.

Database

Recovery

Control

(DBRC)

271

|
|
|
|
|

The

backup

copy

is

created

from

the

copy1

RECON

data

set.

The

command

to

create

the

backup

copy

invokes

the

AMS

REPRO

command,

with

its

normal

defaults

and

restrictions.

For

instance,

the

data

set

that

is

receiving

the

backup

copy

must

be

empty.

Deleting

Inactive

Log

Records

from

the

RECON

When

DBRC

becomes

aware

that

an

image

copy

has

been

taken

of

a

database

data

set

(DBDS),

DBRC

automatically

deletes,

reuses,

or

updates

the

records

in

the

RECON

that

are

associated

with

that

particular

DBDS.

After

this

automatic

processing,

certain

log

records

are

considered

inactive,

but

are

not

deleted

from

the

RECON.

A

log

is

considered

inactive

when

the

following

conditions

are

all

true:

v

The

log

volume

does

not

contain

any

DBDS

change

records

that

are

more

recent

than

the

oldest

image

copy

data

set

known

to

DBRC.

This

check

is

performed

on

a

DBDS

basis.

v

The

log

volume

was

not

opened

in

the

last

24

hours.

v

The

log

has

either

been

terminated

(nonzero

stop

time)

or

has

the

ERROR

flag

in

the

PRILOG

and

SECLOG

record

set

on.

The

only

recovery-related

records

in

the

RECON

that

are

not

automatically

deleted

are

the

log

records

(for

example,

the

PRILOG

and

LOGALL

records).

These

records

can

be

deleted

using

the

DELETE.LOG

INACTIVE

command.

This

command

can

be

added

to

the

job

that

takes

a

backup

of

the

RECON

data

set.

Monitoring

the

RECON

In

addition

to

the

regular

backups,

you

should

monitor

the

status

of

the

individual

RECON

data

sets

on

a

regular

basis.

There

are

two

ways

to

do

this:

using

the

LIST.RECON

STATUS

command

and

using

the

DBRC

Query

request.

Monitoring

the

RECON

with

the

LIST.RECON

STATUS

Command

Regular

use

should

be

made

of

the

LIST.RECON

STATUS

command

to

monitor

the

status

of

the

individual

RECON

data

sets.

Using

theLIST.RECON

command

produces

a

formatted

display

of

the

contents

of

RECON.

The

copy1

RECON

data

set

is

used

as

a

source.

DBRC

ensures

that

the

second

RECON

data

set

contains

the

same

information

as

the

first

RECON

data

set.

The

optional

parameter

STATUS

can

be

used

to

request

the

RECON

header

record

information

and

the

status

of

all

RECON

data

sets.

The

use

of

this

parameter

suppresses

the

listing

of

the

other

records.

Issue

this

command

two

or

three

times

a

day

during

the

execution

of

an

online

system

to

ensure

that

no

problems

have

been

encountered

with

these

data

sets.

Monitoring

the

RECON

with

the

DBRC

Query

Request

Use

the

DBRC

API

Query

request

(DSPAPI

FUNC=QUERY)

along

with

the

TYPE

parameter

to

retrieve

the

following

types

of

information

from

the

RECON:

v

Backout

(TYPE=BACKOUT)

v

Database

(TYPE=DB).

This

variation

of

QUERY

returns

database

registration

and

status

information

for:

–

Full-function

databases

IBM

Confidential

272

IMS:

An

Introduction

to

IMS

|
|
|
|
|

–

Fast

Path

databases

–

HALDB

databases

–

DBDS

or

area

information

and

supporting

recovery-related

information

for

each

DBDS

or

area

(allocation,

image

copy,

recovery,

and

reorganization)

v

Group

and

member

information

for

the

following

group

types:

–

Change

Accumulation

(TYPE=CAGROUP).

CA

execution

information

can

also

be

returned.

–

DBDS

(TYPE=DBDSGROUP)

–

Database

(TYPE=DBGROUP)

–

Recovery

(TYPE=RECOVGROUP)

–

Global

Service

Group

(TYPE=GSGROUP)

v

Log,

recovery

and

system

log

data

set

(TYPE=LOG).

v

Online

log

data

set

(TYPE=OLDS).

v

RECON

status

(TYPE=RECON).

This

variation

of

the

Query

request

returns

RECON

header

information,

as

well

as

the

status

of

the

RECON

configuration.

v

Subsystem

(TYPE=SUBSYS).

Reorganizing

RECON

Data

Sets

Because

all

current

levels

of

VSAM

support

CI

reclaim

(and

DBRC

does

not

turn

it

off),

the

requirement

to

reorganize

RECONs

to

reclaim

space

has

diminished.

For

instance,

when

all

the

records

in

a

CI

have

been

erased,

the

CI

is

returned

to

the

free

CI

pool

in

the

CA.

Some

users

have

decided

to

perform

a

monthly

reorganization.

A

plan

for

reorganizing

the

RECON

data

sets

to

reclaim

this

space

on

a

regular

basis

must

be

considered.

The

RECON

data

sets

can

be

reorganized

while

the

IMS

online

systems

are

active.

The

RECON

data

sets

can

be

reorganized

easily

and

quickly

with

the

use

of

a

few

DBRC

and

AMS

commands.

The

AMS

REPRO

command

copies

one

RECON

data

set

to

another,

reorganizing

it

during

the

process.

This

command,

combined

with

a

DELETE

and

a

DEFINE

of

the

RECON

data

sets,

is

enough

to

complete

a

reorganization.

Additional

information

to

consider

when

designing

the

RECON

reorganization

procedures,

related

to

the

IMS

TM

status,

are

as

follows:

v

If

the

online

system

is

active,

a

reorganization

of

the

RECON

data

sets

should

be

scheduled:

–

During

a

period

of

low

RECON

activity.

–

When

no

batch,

DL/I

or

DBB

jobs

or

utilities

are

running.

A

LIST.RECON

STATUS

command

must

be

issued

from

each

online

system

that

uses

the

RECON

data

sets,

after

the

CHANGE.RECON

REPLACE

command

is

issued,

in

order

to

de-allocate

the

RECON

before

deleting

and

defining

it

again.

v

If

the

online

system

is

not

active,

a

reorganization

of

the

RECON

data

sets

should

be

scheduled:

–

After

the

RECON

has

been

backed

up

(using

the

BACKUP.RECON

command).

–

When

no

subsystems

are

allocating

the

RECON

data

sets.

IBM

Confidential

Chapter

26.

Database

Recovery

Control

(DBRC)

273

Recreating

RECON

Data

Sets

The

RECON

data

sets

may

need

to

be

recreated,

for

instance:

v

In

a

disaster

recovery

site

v

After

the

loss

of

all

the

RECON

data

sets

when

no

current

backup

is

available

Recreating

the

RECON

can

be

a

long

and

slow

process.

When

designing

procedures

to

handle

this

process,

there

are

two

basic

alternatives:

v

Restore

the

RECON

from

the

last

backup

(if

available)

and

update

it

to

the

current

status

required

v

Recreate

and

re

initialize

the

RECON

data

sets

Both

of

these

procedures

have

advantages

and

disadvantages.

Which

alternative

is

best

suited

for

an

installation

depends

on:

v

The

time

frame

in

which

the

system

must

be

recovered

and

available

v

The

point

in

time

to

which

it

is

acceptable

to

recover

v

The

type

of

processing

environment

(24-hour

online

availability

or

batch)

PRILOG

Record

Size

One

PRILOG

record

is

created

for

each

instance

of

IMS.

This

record

must

contain

all

the

information

about

the

log

data

sets

created

during

the

life

of

this

IMS.

The

record

size

can

be

large

if

spanned

records

are

used;

however,

the

following

limitations

should

be

considered

before

using

spanned

records:

v

The

maximum

size

of

a

record

to

be

used

by

the

VSAM

REPRO

command

is

32,760

bytes

if

the

output

is

a

non-VSAM

data

set.

v

RECON

backup

and

transfer

to

off-site

storage

is

normally

performed

with

a

sequential

data

set.

v

PRILOG

records

are

only

deleted

when

every

RLDS

and

SLDS

data

set

within

that

record

is

no

longer

required.

This

is

a

problem

only

for

those

installations

which

have

a

high

volume

of

log

data

sets

and

the

requirement

for

a

continuous

operation

environment.

Use

the

following

formula

to

calculate

the

size

of

the

maximum

required

PRILOG

record.

S

=

52

+

(120

D)

+

(32

V)

Where:

S

The

size

for

the

PRILOG/PRISLDS

record

(in

bytes)

52

The

required

prefix

of

the

PRILOG

record

120

The

required

number

of

bytes

for

each

SLDS/RLDS

entry

D

The

number

of

SLDS/RLDS

data

sets

created

from

archive

for

this

execution

of

the

subsystem

32

The

required

number

of

bytes

for

each

volume

that

contain

SLDS/RLDS

data

sets

V

The

number

of

volumes

that

can

contain

SLDS/RLDS

data

sets

The

following

are

two

examples

of

calculating

the

PRILOG

record

size.

IBM

Confidential

274

IMS:

An

Introduction

to

IMS

Example

1:

For

the

first

example,

assume

that

an

installation

has

the

following

characteristics:

v

An

online

IMS

is

running

for

23

hours

a

day.

v

The

IMS

fills

up

an

OLDS

every

30

minutes.

v

Each

OLDS

is

archived

to

one

RLDS

and

one

SLDS.

v

There

are

2

volumes

that

can

contain

RLDS

or

SLDS

data

sets.

v

There

are

46

RLDS

and

46

SLDS

data

sets

each

day.

Using

the

formula

discussed

in

“PRILOG

Record

Size”

on

page

274,

the

size

of

the

PRILOG

record

for

this

example

is:

S

=

52

+

(80

D)

+

(14

V)

=

52

+

(80

92)

+

(14

2)

=

52

+

(7360)

+

(28)

S

=

7440

This

is

well

under

the

maximum

size,

so

there

is

no

problem

with

this

subsystem.

Example

2:

For

the

second

example,

assume

that

the

environment

changes

to

allow

the

IMS

to

run

24

hours

a

day

for

6

days

before

being

stopped.

There

are

48

RLDS

and

48

SLDS

data

sets

each

day,

and

a

total

of

576

for

the

6

days.

The

calculation

now

looks

like

this:

S

=

52

+

(80

D)

+

(14

V)

=

52

+

(80

576)

+

(14

2)

=

52

+

(46,080)

+

(28)

S

=

46,160

This

is

now

over

the

suggested

maximum

record

size.

One

solution

is

to

switch

to

archiving

after

two

OLDS

are

full.

This

reduces

the

number

of

RLDS

and

SLDS

data

sets

by

half.

This

brings

the

PRILOG

record

size

well

below

the

maximum

size.

Summary

of

Recommendations

for

RECON

Data

Sets

Keep

the

following

recommendations

in

mind

when

planning

for

your

RECON

data

sets:

v

Use

three

RECON

data

sets:

two

current

and

one

spare.

v

Define

the

three

RECON

data

sets

with

different

space

allocations.

v

Separate

the

RECON

data

sets

(for

example,

put

them

on

different

devices

and

channels).

v

Use

dynamic

allocation.

v

Do

not

mix

dynamic

allocation

and

JCL

allocation.

v

Define

the

RECON

data

sets

for

availability,

but

keep

performance

implications

in

mind.

DBRC

Support

for

Remote

Site

Recovery

DBRC

assists

you

in

the

installation

of

IMS

DB

and

IMS

TM,

as

well

as

with

the

definition

and

management

of

IMS

components,

in

the

Remote

Site

Recovery

(RSR)

complex.

In

support

of

RSR,

DBRC

provides:

v

Commands

to

define,

update,

and

display

the

status

of

the

RSR

complex.

The

RECON

contains

the

definition

of

an

RSR

complex.

You

define

the

elements

of

the

RSR

complex

with

DBRC

commands,

and

you

can

modify

and

display

the

RSR

complex

definition

with

other

DBRC

commands.

IBM

Confidential

Chapter

26.

Database

Recovery

Control

(DBRC)

275

v

Services

that

are

used

by

an

active

IMS

to

identify

the

tracking

IMS

and

the

databases

covered

by

RSR.

An

active

IMS

obtains

the

identity

of

its

tracking

IMS

from

DBRC.

As

databases

are

updated

by

the

active

IMS,

DBRC

tells

the

database

component

whether

the

database

is

covered

by

RSR.

And

the

active

IMS

sends

its

log

data

to

the

tracking

IMS.

v

Services

used

by

a

tracking

IMS

to

record

information

about

log

data

that

is

received

from

an

active

IMS.

As

logs

are

received

and

stored

at

the

tracking

site,

DBRC

records

the

receipt

of

the

log

data.

When

begin-update

records

are

received

for

registered

databases,

DBRC

records

the

database

update.

v

Tracking

IMS

database

support:

–

Two

types

of

tracking

(called

shadowing):

DB

level

tracking

(DBTRACK)

or

Recovery

level

tracking

(RCVTRACK).

–

Maintains

log

data

set

information

for

online

forward

recovery.

–

Records

which

database

change

records

have

actually

been

applied

to

the

covered

databases.

v

Services

to

assist

in

the

takeover

process

During

a

remote

takeover,

DBRC

changes

the

state

of

the

registered

databases

at

the

new

active

site

to

indicate

that

they

are

now

the

master

databases.

Related

Reading:

See

the

IMS

Version

9:

Administration

Guide:

System

and

the

IMS

Version

9:

Operations

Guide

for

more

information

on

RSR.

IBM

Confidential

276

IMS:

An

Introduction

to

IMS

Chapter

27.

Controlling

IMS

Controlling

IMS

consists

of

many

tasks.

These

tasks

are

discussed

in

the

following

sections:

v

“Monitoring

the

System”

v

“Processing

IMS

System

Log

Information”

v

“Choosing

Tools

for

Detailed

Monitoring”

on

page

282

v

“Executing

Recovery-Related

Functions”

on

page

286

v

“Modifying

and

Controlling

System

Resources”

on

page

288

v

“Gathering

Performance-Related

Data”

on

page

294

v

“Controlling

Data

Sharing”

on

page

296

v

“Controlling

Log

Data

Set

Characteristics”

on

page

301

v

“Connecting

and

Disconnecting

Subsystems”

on

page

306

Related

Reading:

For

more

detailed

information

on

the

above

topics,

see

the

IMS

Version

9:

Operations

Guide.

Monitoring

the

System

You

need

to

monitor

the

status

of

the

system

on

a

regular

schedule

to

gather

problem

determination

and

performance

information.

For

example,

to

determine

if

you

should

start

an

extra

message

region,

you

might

monitor

the

status

of

the

queues

during

peak

load.

You

can

determine

the

current

status

of

the

system

by

issuing

/DISPLAY

commands,

specifying

the

appropriate

keywords.

You

can

monitor

the

status

of

the

IRLM

by

using

the

z/OS

MODIFY

irlmproc,STATUS

command.

You

can

use

the

/TRACE

command

to

help

diagnose

system

operation

problems.

This

command

turns

on

or

off

various

IMS

traces,

which

record

use

of

IMS

control

blocks,

message

queue

and

I/O

line

buffers,

and

save

area

sets.

IMS

records

trace

information

on

the

IMS

log

unless

you

request

that

the

traces

be

recorded

on

an

external

trace

data

set.

See

“Trace

Facility”

on

page

286

for

more

information.

You

can

also

use

/TRACE

to

trace

locking

activities

and

to

start

and

stop

the

IMS

Monitor

(see

“IMS

Monitor”

on

page

282).

Related

Reading:

For

more

information

on

monitoring,

see

the

IMS

Version

9:

Administration

Guide:

Database

Manager.

Processing

IMS

System

Log

Information

The

system

log

data

sets

are

a

basic

source

for

statistics

about

the

processing

performed

by

the

online

system.

Individual

log

record

types

contain

data

that

can

be

analyzed

in

many

ways.

For

example,

you

can

select

and

format

all

activity

pertaining

to

a

specified

user

ID

or

about

IMS

pools.

Using

IMS

System

Log

Utilities

IMS

provides

several

utilities

to

assist

with

extracting

log

records

from

the

system

log.

These

utilities

also

assist

with

reducing

and

merging

data

that

is

spread

across

several

log

data

sets.

The

sections

that

follow

describe

several

of

these

utilities.

IBM

Confidential

©

Copyright

IBM

Corp.

2004

277

File

Select

and

Formatting

Print

Program

If

you

want

to

examine

message

segments

or

database

change

activity

in

detail,

you

can

use

the

IMS

File

Select

and

Formatting

Print

Program

(DFSERA10).

This

utility

prints

the

contents

of

log

records

contained

in

the

OLDS,

SLDS,

or

the

CQS

log

stream.

Each

log

record

is

presented

as

one

or

more

segments

of

32

bytes.

The

printed

output

gives

each

segment

in

both

character

and

hexadecimal

formats.

You

can

specify

selection

criteria

for

a

subset

of

the

records

rather

than

printing

all

records.

You

can

also

specify

a

starting

record

number

and

the

number

of

records

to

process.

You

can

use

an

exit

routine

to

customize

the

selection

and

formatting

of

the

log

records.

Although

you

can

use

the

File

Select

and

Formatting

Print

Program

to

copy

entire

input

logs,

you

can

more

conveniently

use

the

Log

Archive

utility

(DFSUARC0).

You

use

one

or

more

SLDSs

as

input

and

specify

a

user

data

set

as

output.

Also,

you

need

to

specify

DBRC=NO

in

the

EXEC

statement

to

prevent

DBRC

from

making

entries

in

the

RECON

data

set

about

your

backup

log.

Making

backup

copies

of

the

system

log

data

sets

can

be

useful

to

obtain

an

alternative

input

source

for

statistics

and

other

monitoring

activities

occurring

in

parallel

with

production

use

of

the

system

log.

Fast

Path

Log

Analysis

Utility

Use

the

Fast

Path

(FP)

Log

Analysis

utility

(DBFULTA0)

to

prepare

statistical

reports

for

Fast

Path,

based

on

data

recorded

on

the

IMS

system

log.

This

utility

is

an

offline

utility

and

produces

three

data

sets,

one

of

which

contains

six

formatted

reports:

v

Detail

Listing

of

Exception

Transactions

v

Summary

of

Exception

Detail

by

Transaction

Code

for

IFP

Regions

v

Overall

Summary

of

Transit

Times

by

Transaction

Code

for

IFP

Regions

v

Overall

Summary

of

Resource

Usage

and

Contentions

for

All

Transaction

Codes

and

PSBs

v

Summary

of

Region

Occupancy

for

IFP

Regions

by

PST

v

Summary

of

VSO

Activity

v

Recapitulation

of

the

Analysis

These

reports

are

useful

for

system

installation,

tuning,

and

trouble

shooting.

This

utility

is

not

related

to

the

IMS

Monitor

or

the

Log

Transaction

Analysis

utility.

Log

Transaction

Analysis

Utility

In

an

IMS

DB/DC

or

DCCTL

environment,

you

can

collect

information

about

individual

transactions,

based

on

records

on

the

system

log,

using

the

Log

Transaction

Analysis

utility

(DFSILTA0).

Many

events

are

tabulated

in

the

Log

Analysis

report

produced

by

this

utility

including

total

response

time,

time

on

the

input

queue,

processing

time,

and

time

on

the

output

queue.

You

can

select

a

start

time

for

the

report

tabulation;

analysis

begins

at

the

first

checkpoint

after

the

start

time.

To

control

how

much

transaction

activity

is

tabulated,

you

can

specify

an

interval

(in

minutes)

of

elapsed

time

from

the

start

time

before

the

utility

ends

the

tabulation,

or

you

can

relate

the

activity

reported

to

a

number

of

IMS

checkpoints.

IBM

Confidential

278

IMS:

An

Introduction

to

IMS

|
|
|
|
|

|

|

|

|
|

|

|

|

|
|

You

can

retitle

a

Log

Analysis

report

or

change

the

sequence

in

which

the

detailed

transaction

lines

are

printed.

You

can

sort

by

transaction

code

or

by

any

of

the

fields

in

the

report.

You

can

also

suppress

printing

so

that

the

output

is

stored

on

a

DASD

data

set.

Using

this

utility,

you

can

create

an

output

data

set,

in

system

log

format,

that

is

a

copy

of

all

or

part

of

the

input

system

logs.

By

having

a

copy

of

the

system

log,

you

can

monitor

system

activity

without

impacting

the

use

of

the

OLDS

for

recovery.

The

Statistical

Analysis

Utility

In

an

IMS

DB/DC

or

DCCTL

environment,

you

can

produce

several

summary

reports

using

the

IMS

Statistical

Analysis

utility

(DFSISTS0).

You

can

use

these

reports

to

obtain

actual

transaction

loads

and

response

times

for

the

system.

The

statistics

produced

are

dependent

on

the

input

system

log

data

sets.

The

following

set

of

reports

is

produced:

v

Telecommunication

line

and

terminal

(distributed

traffic

over

24-hour

day)

v

Transaction

(distributed

activity

over

24-hour

day)

v

Transaction

response

v

Messages

queued

but

not

sent

(listing

by

destination

and

by

transaction

code)

v

Program-to-program

messages

(listing

by

destination

and

by

transaction

code)

v

Application

accounting

v

IMS

accounting

Knowledge-Based

Log

Analysis

IMS

Version

9

provides

enhanced

log-formatting

routines

that

help

you

examine

and

display

data

from

IMS

log

data

sets:

v

The

Knowledge-Based

Formatting

Print

routine

(DFSKBLAK)

provides

a

clear,

simple

description

of

each

event

represented

by

a

log

record,

including

the

meaning

of

the

various

fields

and

flags.

It

does

not

display

null

fields.

v

The

Knowledge-Based

Summary

Formatting

Print

routine

(DFSKBLAS)

prints

and

displays

the

header

and

description

of

a

log

record,

but

not

the

record

itself.

This

information

can

be

useful

when

you

need

to

have

a

general

understanding

of

the

log

records

associated

with

a

particular

resource.

v

The

Knowledge-Based

Basic

Formatting

Print

routine

(DFSKBLA3)

is

similar

in

function

to

the

Record

Format

and

Print

Module

(DFSERA30),

but

its

output

also

provides

a

brief

description

of

the

log

record

identifier

(or

log

record

type).

This

information

can

be

useful

if

you

are

unfamiliar

with

the

record

types

present

in

an

IMS

log.

The

Knowledge-Based

Basic

Formatting

Print

routine

also

interprets

the

prefix

fields

for

the

IMS

type

X'01'

and

type

X'03'

log

records.

With

knowledge-based

log

analysis,

IMS

Version

9

provides

the

following

new

functions

for

log

analysis

and

diagnosis:

Knowledge-Based

Log

Record

Analysis

The

enhanced

log

formatting

routines

perform

basic

knowledge-based

log

record

analysis

by

returning

all

meaningful

log

records

that

contain

the

indicated

search

criteria.

The

search

criteria

can

include:

a

specific

unit

of

work

(UOW),

recovery

token,

LTERM

name,

node

name,

transaction

name,

or

program

name.

When

you

use

dynamic

search,

the

knowledge-based

log

analysis

enhances

the

search

to

include

criteria

that

you

did

not

explicitly

request,

but

that

was

“discovered”

during

the

search

process.

DL/I

Trace

Analysis

The

enhanced

log

formatting

routines

perform

an

analysis

on

the

log

records

produced

by

IMS

as

result

of

the

/TRACE

SET

ON

TABLE

xxxx

IBM

Confidential

Chapter

27.

Controlling

IMS

279

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

|
|
|

OPTION

LOG

(ID

of

X'67FA')

command.

Using

supplied

search

criteria,

the

knowledge-based

log

analysis

extracts

only

those

entries

of

interest.

MSC

Trace

Analysis

The

enhanced

log

formatting

routines

use

IMS

MSC

log

records

to

measure

the

overall

performance

of

each

link

defined

in

the

system.

You

can

specify

either

of

the

following

types

of

analysis:

Detail

The

Detail

Selection

routine

(DFSKBST0)

produces

a

report

that

contains

the

individual

response

times

in

milliseconds

of

every

send

data

and

receive

data

for

each

MSC

link

that

is

traced.

Summary

The

Summary

Selection

routine

(DFSKMSCD)

produces

a

report

that

contains

the

average

response

time

in

milliseconds

of

the

total

number

of

send

data

and

receive

data

values

for

each

link

trace.

The

enhanced

log

formatting

routines

produce

formatted

output

only

if

the

IMS

input

logs

contain

X'6701'

records

generated

using

the

/TRACE

SET

ON

LINKlink#

command.

IRLM

Lock

Trace

Analysis

The

enhanced

log

formatting

routines

create

several

output

reports

for

IRLM

lock

traces,

including

one

based

on

“wait

time

order”.

This

particular

report

lists

databases

in

order

of

the

total

lock

wait

time

during

the

trace.

You

can

save

the

report

to

a

data

set,

which

you

can

then

sort

using

either

the

knowledge-based

log

analysis

ISPF

tools

or

an

editor’s

SORT

command.

The

IRLM

Lock

Trace

Analysis

panel

provides

some

pre-defined

sort

options,

such

as

Sorted

by

Database

Name

and

Sorted

by

RBA.

DBCTL

Transaction

Analysis

The

enhanced

log

formatting

routines

perform

the

functions

of

both

the

Log

Transaction

Analysis

utility

(DFSILTA0)

and

the

Fast

Path

Log

Analysis

utility

(DBFULTA0).

The

enhanced

log

formatting

routines

also

perform

a

sort

of

the

data.

The

DBCTL

Transaction

Analysis

uses

the

X'07'

and

X'5937'

log

records

orthe

X'5938'

log

record

to

gather

statistics.

IMS

Record

User

Data

Scrub

The

enhanced

log

formatting

routines

perform

a

scan

of

all

of

the

IMS

logs.

The

routines

delete

those

record

parts

that

might

contain

sensitive

or

confidential

customer

business

transaction

information.

The

deletion

does

not

compromise

the

integrity

or

the

content

of

the

vital

IMS

system

data.

This

scrub

is

useful

when

you

must

send

IMS

log

data

to

an

outside

organization

for

analysis.

Statistics

Log

Record

Analysis

The

enhanced

log

formatting

routines

call

a

routine

(DFSKBST0)

to

produce

output

that

is

a

verbal

description

and

interpretation

for

all

of

the

fields

contained

in

the

X'45'

log

record,

including

its

subcodes.

You

must

use

the

/CHECKPOINT

STATISTICS

command

to

ensure

that

the

X'45'

log

record

contains

the

information

required

for

this

enhanced

formatting.

IMS

Log

Content

Summary

and

IMS

System

Configuration

Overview

The

enhanced

log

formatting

routines

creates

a

summary

of

the

log

data

sets’

content,

characteristics

of

the

IMS

system

that

produced

the

log

data

(when

statistical

log

records

are

present),

and

some

statistical

information

related

to

transactions,

programs,

and

databases.

The

KBLA

Log

Summary

function

also

includes

the

following

information:

v

Input

IMS

logs

used

for

the

utility

execution

v

IMSID

IBM

Confidential

280

IMS:

An

Introduction

to

IMS

|
|

|
|
|
|

||
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|

|

v

First

and

last

LSN

(log

sequence

number)

in

the

log

v

Time

stamp

(UTC)

and

local

time

of

the

first

and

last

log

record

v

Difference

between

UTC

and

local

time

(HHMM

format)

v

Elapsed

time

on

selected

logs

v

Total

number

of

log

records

in

the

log

data

set

v

Presence

of

internal

trace

record,

system

restarts,

dump

log

record,

and

system

checkpoint

v

Number

of

log

records

present

for

each

record

ID

v

Programs

running

during

the

period

covered

by

the

log

v

Transactions

running

during

the

period

covered

by

the

log

v

Databases

accessed

during

the

period

covered

by

the

log

Related

Reading:

For

detailed

information

about

the

KBLA

routines

and

utilities,

see

the

IMS

Version

9:

Utilities

Reference:

System.

Using

the

IMS

Performance

Analyzer

for

z/OS

The

IMS

Performance

Analyzer

(IMS

PA),

program

number

5697-B89,

gives

you

the

information

you

need

to

increase

your

IMS

system

performance.

IMS

PA

provides

more

than

30

reports

that

can

help

optimize

IMS

system

and

application

performance.

Specifically,

IMS

PA:

v

Offers

an

ISPF

CUA®-compliant

user

interface

to

build,

maintain,

and

submit

report

requests

v

Provides

revised,

enhanced,

and

new

reports

v

Supports

IMS

Versions

7,

8,

and

9

from

a

single

load

library

v

Allows

the

optional

use

of

GDDM®

for

selected

graphical

reports

v

Saves

selected

report

data

for

reporting

using

PC

tools

v

Requires

no

dependency

on

GPAR

IMS

PA

produces

a

comprehensive

set

of

reports

(from

management

summaries

to

detailed

program

traces),

organized

by

level

of

detail

and

area

of

analysis,

to

meet

a

broad

range

of

IMS

system

analysis

objectives,

such

as:

v

System

performance

evaluation.

IMS

PA

features

help

you

monitor

and

evaluate

IMS

system

performance

on

a

daily

basis.

Management

level

summary

reports

express

key

values

in

terms

of

rates,

ratios,

and

percentages.

These

reports

help

you

use

IMS

PA

for

trend

analysis,

comparative

analysis

of

systems,

and

evaluation

of

a

system

against

installation

standards.

IMS

PA’s

fast

and

efficient

processing

of

monitor

output

data

lets

you

produce

long

and

frequent

traces

to

obtain

an

accurate

view

of

your

IMS

system.

v

System

tuning.

Reports

that

help

you

enhance

IMS

system

performance

through

system

tuning

are

a

key

feature

of

IMS

PA.

Monitor

output

is

summarized

and

categorized

to

help

you

rapidly

identify

problem

areas.

Detailed

analysis

reports

help

you

investigate

and

evaluate

these

problem

areas

and

also

the

effect

of

changes

to

the

system.

v

Application

and

program

evaluation.

IMS

PA

reports

program

activity

in

message

processing

or

batch

regions.

IMS

PA

can

be

a

valuable

tool

for

evaluating

existing

applications

and

programs

and

validating

whether

new

applications

and

programs

conform

to

installation

standards.

Program

activity

reports

and

program

traces

add

greatly

to

system

documentation.

IBM

Confidential

Chapter

27.

Controlling

IMS

281

|

|

|

|

|

|
|

|

|

|

|

|
|

IMS

PA

produces

alphanumerically

collated

report

items

in

terms

of

ratios,

rates,

and

percentages

to

facilitate

comparison

of

results

without

additional

computations.

Schedules

in

progress,

including

wait-for-input

(WFI)

and

BMPs,

are

reported.

Reports

on

IMS

batch

programs

are

also

provided.

IMS

PA

is

a

functional

replacement

for

IMS/VS

Performance

Analysis

Reporting

(IMSPARS)

and

IMS

Monitor

Summary

and

System

Analysis

Program

(IMSASAP).

Related

Reading:

IBM

also

offers

a

number

of

other

IMS

database

productivity

tools.

IMS

Tools

is

a

set

of

database

performance

enhancements

for

your

IMS

environment.

These

tools

can

help

you

automate

and

speed

up

your

IMS

utility

operations.

They

can

also

assist

you

in

analyzing,

managing,

recovering,

and

repairing

your

IMS

databases.

You

can

learn

more

about

these

tools

on

the

DB2

and

IMS

Tool

Web

site

at

http://www.ibm.com/software/data/db2imstools/.

Choosing

Tools

for

Detailed

Monitoring

Many

of

the

monitoring

tools

you

can

use

to

collect

detailed

data

are

also

used

for

general

diagnostics.

The

principal

tool

provided

by

IMS

is

the

IMS

Monitor,

which

allows

you

to

monitor

online

subsystems.

For

a

stand-alone

IMS

DB

batch

system

driven

by

an

SLDS,

use

the

Database

Batch

Monitor.

You

can

also

use

IMS

PA,

program

isolation

and

lock

traces,

and

the

external

trace

facility.

For

information

about

IMS

PA,

see

“Using

the

IMS

Performance

Analyzer

for

z/OS”

on

page

281.

IMS

Monitor

The

IMS

Monitor

collects

data

while

the

online

IMS

subsystem

is

running.

It

gathers

information

for

all

dispatch

events

and

places

it

(in

the

form

of

IMS

Monitor

records)

on

a

sequential

data

set.

You

use

the

IMSMON

DD

statement

in

the

IMS

control

region

JCL

to

specify

the

IMS

Monitor

data

set.

IMS

adds

data

to

this

data

set

when

you

activate

the

Monitor

using

the

/TRACE

command.

The

IMS

MTO

can

start

and

stop

the

Monitor

to

obtain

snapshots

of

the

system

at

any

time.

But,

remember

that

the

IMS

Monitor

adds

to

system

overhead

and

generates

considerable

amounts

of

data.

Controlling

Monitor

Output

Plan

to

run

the

IMS

Monitor

for

short

intervals

and

to

control

its

operation

carefully.

Shorter

intervals

also

prevent

the

overall

averaging

of

statistics,

so

that

problems

within

the

system

can

be

more

readily

identified.

The

IMS

Monitor’s

output

can

be

constrained

by:

v

Type

of

activity

monitored

v

Database

or

partition

or

area

v

Dependent

region

v

Time

interval

IMS

Monitor

Output

Data

Sets

The

IMS

Monitor

output

can

be

either

a

tape

or

a

DASD

data

set.

Using

DASD

eliminates

the

need

to

have

a

tape

drive

allocated

to

the

online

system.

If

you

want

to

use

the

Monitor

frequently,

you

might

find

that

permanently

allocated

space

for

a

DASD

data

set

is

convenient.

One

technique

is

to

code

DISP=SHR

on

the

IMSMON

DD

statement

so

that

the

reports

can

be

generated

as

each

Monitor

run

is

completed.

IBM

Confidential

282

IMS:

An

Introduction

to

IMS

You

must

coordinate

the

report

generation

with

the

operator

because

each

activation

of

the

monitor

writes

over

existing

data.

Although

this

does

not

occur

for

tape

data

sets,

new

volumes

must

be

mounted.

The

volume

is

rewound,

and

a

mount

request

is

issued

each

time

you

start

the

IMS

Monitor.

Recommendations:

v

Do

not

catalog

IMS

Monitor

data

sets.

The

IMS

Monitor

can

produce

multiple

output

volumes

while

IMS

is

running

if

the

data

sets

are

not

cataloged.

If

you

want

to

have

IMS

dynamically

allocate

the

IMS

Monitor

data

set,

do

not

include

the

IMSMON

DD

statement

in

the

IMS

control

region

JCL.

v

Allow

IMS

to

dynamically

allocate

IMS

Monitor

tape

data

sets.

A

tape

drive

is

not

permanently

reserved

for

the

control

region

for

dynamically

allocated

data

sets.

Related

Reading:

For

details

of

how

to

specify

dynamic

allocation

for

the

IMS

Monitor

data

set,

see

the

IMS

Version

9:

Utilities

Reference:

System.

Selecting

Monitor

Traces

After

monitor

requirements

have

been

established,

you

might

be

able

to

restrict

the

scope

of

the

IMS

Monitor

activity.

Restricting

the

scope

has

the

advantage

of

reducing

the

impact

of

the

IMS

Monitor

on

system

throughput.

However,

you

should

not

compromise

the

collection

of

useful

data.

You

can

control

what

specific

types

of

events

are

traced

by

using

specific

keywords

on

the

/TRACE

command.

For

example,

you

can

monitor

line

activity,

scheduling

and

termination

events,

activity

between

application

programs

and

message

queues,

activity

between

application

programs

and

databases,

or

all

activity.

You

can

also

limit

monitoring

to:

v

Particular

databases,

partitions,

or

areas

v

Particular

dependent

regions

v

A

specified

interval

of

time

Obtaining

IMS

Monitor

Reports

You

can

obtain

reports

based

on

the

IMS

Monitor’s

output

by

using

the

IMS

Performance

Analyzer

(IMS

PA)

or

the

IMS

Monitor

Report

Print

utility

(DFSUTR20).

For

information

on

IMS

PA,

see

“Using

the

IMS

Performance

Analyzer

for

z/OS”

on

page

281.

The

IMS

Monitor

Report

Print

utility

summarizes

and

formats

the

raw

data

produced

by

IMS

and

presents

the

information

in

a

series

of

reports.

You

can

suppress

the

reports

pertaining

to

DL/I

calls

and

tabulated

frequency

distributions.

The

duration

of

the

monitored

events

is

determined

by

the

entries

for

start

and

stop

of

the

IMS

Monitor.

You

cannot

select

a

different

time

period

for

reporting,

because

many

of

the

timed

events

are

not

captured

continuously:

only

when

the

IMS

Monitor

is

started

and

stopped.

For

this

reason,

you

should

ensure

that

the

IMS

Monitor

is

stopped

before

taking

any

action

to

stop

the

IMS

control

region.

Related

Reading:

For

a

description

of

the

JCL

requirements

and

utility

control

statements,

see

the

IMS

Version

9:

Utilities

Reference:

System.

//DFSSTAT

Reports

The

//DFSSTAT

reports

give

you

the

number

of

database

and

data

communications

calls

issued

by

an

application

program

and

describe

the

buffering

activity.

These

reports

are

described

in

the

IMS

Version

9:

Utilities

Reference:

System.

IBM

Confidential

Chapter

27.

Controlling

IMS

283

GTF

Trace

You

can

use

the

z/OS

Generalized

Trace

Facility

(GTF)

to

record

a

wide

range

of

system-level

events.

The

trace

activity

is

controlled

from

the

z/OS

system

console

using

the

MODIFY

command.

Output

is

spooled

to

a

sequential

data

set

that

is

used

by

a

generalized

formatting

utility.

You

can

write

exit

routines

that

are

called

by

the

formatting

utility

to

edit

the

trace

records

and

present

the

data

as

desired.

z/OS

Component

Trace

(CTRACE)

IRLM

2.1

uses

the

z/OS

component

trace

(CTRACE)

facility

to

trace

IRLM

activity.

Because

the

trace

output

is

in

z/OS

CTRACE

format,

you

can

use

IPCS

CTRACE

format,

merge,

and

locate

routines

to

process

the

buffer

data.

Use

the

z/OS

TRACE

CT

command

to

start,

stop,

or

modify

an

IRLM

diagnostic

trace.

This

command

can

be

entered

only

from

the

z/OS

master

console.

Entering

the

commands

requires

an

appropriate

level

of

z/OS

authority.

IRLM

does

not

support

all

the

options

available

on

the

command.

You

can

also

start

the

IRLM

tracing

by

placing

TRACE=YES

in

the

IRLM

procedure.

Related

Reading:

For

information

on

the

TRACE

CT

command

for

IRLM,

see

the

IMS

Version

9:

Command

Reference.

For

complete

information

on

the

command,

see

z/OS

MVS

System

Commands.

See

“Tracing

IRLM

Activity”

on

page

296

for

more

information

on

IRLM

traces.

Obtaining

Program

Isolation

and

Lock

Traces

In

an

IMS

DB/DC

or

DBCTL

environment,

you

can

detect

contention

for

a

database

segment

by

examining

the

output

produced

by

the

Program

Isolation

Trace

Report

utility

(DFSPIRP0).

To

get

the

source

data

for

the

utility,

issue

the

/TRACE

SET

ON

PI

OPTION

ALL

command.

To

stop

gathering

source

data,

issue

the

/TRACE

SET

OFF

PI

command.

A

control

statement

for

the

utility

can

select

a

start

or

stop

time

relative

to

a

specified

date.

Tracing

the

program

isolation

function

can

create

additional

log

records.

These

records

contain

the

enqueue

or

dequeue

requests

issued

by

the

program

isolation

function

between

sync

points

as

a

result

of

database

updates,

checkpoint,

and

message

handling

events.

The

Program

Isolation

Trace

Report

utility

only

reports

those

events

that

required

wait

time.

The

report

identifies

the

data

management

block

(DMB)

name,

database

control

block

(DCB)

number,

relative

byte

address

(RBA),

program

specification

block

(PSB)

name,

and

transaction

code.

The

utility

sorts

all

activity

by

RBA

number

(shown

as

ID

in

the

report).

The

report

lists

elapsed

times

for

enqueues

that

required

a

wait

(during

the

trace

interval)

and

totals

the

number

of

enqueues

for

each

ID,

DCB,

and

DMB.

The

requesting

PSB

or

transaction

is

considered

the

holding

PSB

or

transaction

of

the

next

enqueue

waiting

for

the

same

segment.

A

sample

report

is

illustrated

in

Figure

93

on

page

285.

In

this

report,

no

elapsed

wait

time

is

recorded

for

Fast

Path.

Related

Reading:

For

details

of

how

to

run

the

report

utility,

see

the

IMS

Version

9:

Utilities

Reference:

Database

and

Transaction

Manager.

IBM

Confidential

284

IMS:

An

Introduction

to

IMS

You

can

use

the

File

Select

and

Formatting

Print

utility

to

select

and

print

trace

table

and

PI

entries

in

the

log

records

in

the

following

ways:

v

Specify

an

OPTION

statement

with

the

PRINT

parameter

and

COND=E

and

EXITR=DFSERA40

keyword

parameters.

The

output

is

a

report

containing

the

program

isolation

(PI)

trace

records

formatted

in

sequential

order.

Related

Reading:

For

an

example

of

this

report

and

an

explanation

of

the

headings,

see

the

IMS

Version

9:

Utilities

Reference:

System.

v

Select

only

the

log

records

that

contain

the

trace

using

the

IMS

Trace

Table

Record

Format

and

Print

Module

(DFSERA60).

Specify

an

OPTION

statement

with

the

PRINT

parameter

and

COND=E

and

EXITR=DFSERA60

keyword

parameters.

The

output

is

a

report

containing

the

PI

trace

entries,

the

DL/I

trace

entries,

and

the

lock

trace

entries

formatted

to

show

these

entries

in

sequential

order.

For

an

explanation

of

the

headings,

see

an

assembly

listing

of

the

macro

IDLIVSAM

TRACENT.

You

can

use

a

Program

Isolation

Trace

Record

Format

and

Print

Module

output

report

to

find

out

more

information:

v

The

level

of

control

(LEV)

column

shows

read

only,

share,

exclusive

control,

and

single

update

activity.

v

The

return

code

(RC)

column

shows

return

codes

from

DFSFXC10

or

the

IRLM.

You

can

determine

whether

the

caller

had

to

wait

for

the

requested

resource,

or

if

the

transaction

caused

a

deadlock

situation.

v

The

PST

post

code

(PC)

column

shows

the

cause

of

the

wait.

If

the

entry

is

X'60',

a

deadlock

occurred.

You

can

reduce

the

number

of

records

examined

by

specifying

an

additional

OPTION

statement

to

the

File

Select

and

Formatting

Print

utility

so

that

only

records

confirming

deadlock

are

printed.

P

R

O

G

R

A

M

I

S

O

L

A

T

I

O

N

T

R

A

C

E

R

E

P

O

R

T

PAGE

1

DATE:

08/10/03

TIME:

16:36

TO

16:37

DCB

REQUESTING

ELAPSED

HOLDING

ID

TOTAL

DCB

TOTAL

DMB

TOTAL

DMB

NAME

NUM

ID

TRAN

AND

PSB

NAMES

TIME

TIME

TRAN

AND

PSB

NAMES

ENQ’S

ENQ’S

ENQ’S

TABLEDBQ

1

0022D020

DE1Q

PROGDE1Q

16:36:54

0:00.061

DE2Q

PROGDE2Q

1

003BE00C

DE2Q

PROGDE2Q

16:36:51

0:00.027

DE1Q

PROGDE1Q

1

007D901C

DE2Q

PROGDE2Q

16:36:34

0:00.036

DE1Q

PROGDE1Q

1

008EF014

DE2Q

PROGDE2Q

16:36:49

0:00.038

DE1Q

PROGDE1Q

1

0090401C

DE1Q

PROGDE1Q

16:36:50

0:00.072

DE2Q

PROGDE2Q

1

00A06010

DE2Q

PROGDE2Q

16:36:38

0:00.046

DE1Q

PROGDE1Q

1

00A1401C

DE1Q

PROGDE1Q

16:36:50

0:00.008

DE2Q

PROGDE2Q

1

7

7

TABLEDBR

1

002A901C

DE2R

PROGDE2R

16:36:40

0:00.034

DE1R

PROGDE1R

1

0045801C

DE2R

PROGDE2R

16:36:41

0:00.043

DE1R

PROGDE1R

1

0072F024

DE1R

PROGDE1R

16:36:30

0:00.053

DE2R

PROGDE2R

Figure

93.

Sample

Program

Isolation

Trace

Report

IBM

Confidential

Chapter

27.

Controlling

IMS

285

IMS

automatically

resolves

deadlock

situations

by

using

dynamic

backout.

But

the

detection

of

deadlocks

is

important

so

you

can

modify

your

application

design

to

prevent

future

deadlocks.

The

advantage

of

the

PI

trace

records

report

is

that

it

shows

where

contention

for

a

particular

segment

or

range

of

segments

occurs.

The

report

also

shows

which

transactions

are

competing

within

a

database.

It

also

shows

high

wait

times

that

might

explain

a

delay

in

response

time.

One

way

to

handle

the

segment

contention

might

be

change

the

database

design

to

separate

some

of

the

fields

into

an

additional

segment

type.

Trace

Facility

You

can

use

the

IMS

Trace

facility

to

write

IMS

trace

tables

internally

or

to

an

external

trace

data

set.

IMS

can

write

this

external

trace

data

set

to

either

DASD

or

tape:

v

DASD

data

sets

can

be

allocated

by

JCL

or

can

be

dynamically

allocated.

v

Tape

data

sets

must

be

dynamically

allocated.

Related

Reading:

For

information

on

how

to

use

the

DFSMDA

macro

to

create

the

dynamic

allocation

members,

see

the

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

You

can

also

write

the

trace

tables

to

the

OLDS,

but

this

could

adversely

affect

OLDS

performance.

The

external

trace

data

sets

are

independent

of

the

OLDS,

so

you

can

write

trace

tables

to

the

external

trace

data

sets

even

if

the

OLDS

is

unavailable.

To

display

the

status

of

traces,

use

the

/DISPLAY

TRACE

command.

This

command

can

be

used

to

determine

the

status

of

the

IMS

traces

in

effect

and

the

status

of

any

external

trace

data

sets

in

use.

Related

Reading:

v

See

the

IMS

Version

9:

Diagnosis

Guide

and

Reference

for

information

about:

–

When

and

why

trace

tables

are

used

–

The

DFS2867A

message

when

using

external

tracing

to

OLDS

v

See

the

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring

for

information

about

defining

and

setting

up

trace

facilities.

Executing

Recovery-Related

Functions

While

IMS

is

running,

an

IMS

system

programmer

or

operator

might

need

to

execute

functions

relating

to

the

recoverability

of

the

system.

These

tasks

include:

v

“Using

DBRC

Commands”

v

“Dumping

the

Message

Queues”

on

page

287

v

“Recovering

the

Message

Queues”

on

page

287

v

“Archiving

the

OLDS”

on

page

287

v

“Making

Databases

Recoverable

or

Nonrecoverable”

on

page

288

v

“Running

Recovery-Related

Utilities”

on

page

288

Using

DBRC

Commands

You

can

use

the

/RMxxxxxx

commands

to

use

DBRC

functions.

IBM

Confidential

286

IMS:

An

Introduction

to

IMS

Recommendation:

Allow

operators

to

use

the

/RMLIST

and

/RMGENJCL

commands

Restrict

the

use

of

/RMCHANGE,

/RMDELETE,

and

/RMNOTIFY

commands,

because

they

update

the

RECON

data

set.

Related

Reading:

For

information

on

using

DBRC

commands

in

a

data-sharing

environment,

see

“Online

DBRC

Commands”

on

page

300.

Dumping

the

Message

Queues

If

you

want

to

save

the

message

queues

in

a

nonshared-queues

environment,

use

the

/CHECKPOINT

SNAPQ

command.

This

command

dumps

the

message

queues

to

the

log

without

terminating

the

online

system.

Recommendation:

Schedule

the

/CHECKPOINT

SNAPQ

regularly

because

it

shortens

the

time

required

for

emergency

restart

if

a

problem

occurs

on

the

message

queue

data

sets.

Consider

the

following

intervals:

v

Whenever

the

OLDS

is

switched

v

Once

each

hour

v

Once

each

shift

v

Twice

each

day

(midnight

and

noon)

v

Once

each

day

For

a

shared-queues

environment,

use

the

/CQCHKPT

SHAREDQ

command

to

dump

the

shared

queues.

Recovering

the

Message

Queues

In

a

non-shared-queues

environment,

you

can

recover

the

message

queues

during

an

IMS

restart

if

the

previous

shutdown

included

the

DUMPQ

or

the

SNAPQ

keyword.

Specify

the

BUILDQ

keyword

on

the

/NRESTART

or

/ERESTART

command

to

restore

the

messages

to

the

message

queue

data

sets

from

the

IMS

log.

Specify

the

FORMAT

keyword

on

the

/NRE

or

/ERE

command

if

you

also

want

to

reinitialize

the

message

queue

data

sets.

In

order

to

use

the

/NRE

BUILDQ

command,

the

system

must

be

shut

down

using

a

/CHECKPOINT

DUMPQ

|

PURGE

command.

To

use

the

/ERE

BUILDQ

command,

you

need

only

a

prior

/CHECKPOINT

SNAPQ

command.

Restriction:

If

a

/NRE

BUILDQ

or

/ERE

BUILDQ

command

fails

and

you

cold

start

IMS,

messages

are

lost

and

are

not

processed.

You

can

use

the

Queue

Control

Facility

(QCF)

program

product

(5697-E99)

to

select

messages

from

the

OLDS

(or

SLDS)

and

reinsert

them

into

the

IMS

message

queues

after

an

IMS

cold

start.

Related

Reading:

See

IMS

Queue

Control

Facility

for

z/OS

and

the

IMS

Version

9:

Diagnosis

Guide

and

Reference

for

more

information

about

QCF.

For

a

shared-queues

environment,

CQS

automatically

rebuilds

the

message

queues

if

the

coupling

facility

fails.

You

can

also

use

the

SETXCF

START,REBUILD

command

to

rebuild

the

queues

manually.

Archiving

the

OLDS

As

mentioned

in

“Archiving”

on

page

259,

you

should

archive

the

OLDS

to

an

SLDS

at

regular

intervals.

If

you

are

not

using

automatic

archiving,

the

MTO

should

use

IBM

Confidential

Chapter

27.

Controlling

IMS

287

the

DBRC

GENJCL

command

at

regular

intervals

to

generate

the

JCL

for

the

Log

Archive

utility,

and

should

execute

the

utility.

Making

Databases

Recoverable

or

Nonrecoverable

You

can

change

recoverable

full-function

databases

and

DEDBs

to

nonrecoverable

(after

deleting

recovery-related

records

from

the

RECON

data

set)

by

using

the

CHANGE.DB

NONRECOV

command.

You

can

change

to

recoverable

again

by

using

the

CHANGE.DB

RECOVABL

command.

Use

the

LIST.DB

command

to

display

whether

a

database

is

recoverable.

Running

Recovery-Related

Utilities

Depending

on

your

recovery

strategy,

the

MTO

might

be

responsible

for

executing

various

recovery-related

utilities

at

regular

intervals.

These

could

include:

v

Database

Image

Copy

utility

(DFSUDMP0)

v

Database

Image

Copy

2

Utility

(DFSUDMT0)

v

Online

Database

Image

Copy

utility

(DFSUICP0)

v

Database

Change

Accumulation

utility

(DFSUCUM0)

The

MTO

should

also

run

these

utilities

when

a

database

changes

from

nonrecoverable

to

recoverable.

Related

Reading:

For

complete

information

about

these

utilities,

see

the

IMS

Version

9:

Utilities

Reference:

Database

and

Transaction

Manager.

Modifying

and

Controlling

System

Resources

You

establish

the

initial

settings

of

IMS

resources

during

IMS

system

definition.

The

MTO,

and

other

operators

authorized

to

do

so,

can

change

various

system

resources

using

IMS

commands.

You

can

use

many

IMS

commands

to

perform

similar

control

functions

for

different

types

of

resources.

“List

of

Commands

with

Similar

Functions

for

Multiple

Resources”

shows

the

relationship

between

these

commands

and

resources.

The

tables

in

“List

of

Commands

with

Similar

Functions

for

Multiple

Resources”

provide

answers

to

a

series

of

specific

questions.

For

example,

after

a

command

is

issued,

can

a

resource:

v

Receive

input?

v

Send

output?

v

Perform

output

message

queueing?

Related

Reading:

For

details

of

these

commands,

see

the

IMS

Version

9:

Command

Reference.

List

of

Commands

with

Similar

Functions

for

Multiple

Resources

The

following

tables

show

what

IMS

commands

affect

certain

resources.

The

resources

are:

v

Telecommunication

Line,

Physical

Terminal,

or

Node

(Table

20)

v

Logical

Terminal

(Table

21)

v

Logical

Link

(Table

22)

v

Logical

Link

Path

(Table

23)

v

Transaction

(Table

24)

IBM

Confidential

288

IMS:

An

Introduction

to

IMS

v

Transaction

Class

(Table

25)

v

Program

(Table

26)

v

Database

(Table

27)

v

Subsystem

(Table

28)

Telecommunication

Line,

Physical

Terminal,

or

Node

Table

20.

IMS

Commands

That

Affect

Telecommunications

Line,

Physical

Terminal,

or

Node

Resources

IMS

Command

Resource:

Telecommunications

Line,

Physical

Terminal,

or

Node

Receive

Input

Send

Output

Output

Message

Queuing

/ASSIGN

Y

Y

Y

/LOCK

N

N

Y

/MONITOR

Y

N

Y

/PSTOP

N

N

Y

/PURGE

N

Y

Y

/RSTART

Y

Y

Y

/START

Y

Y

Y

/STOP

N

N

Y

/UNLOCK

Y

Y

Note:

/MONITOR,

/PSTOP,

/PURGE,

and

/RSTART

refer

to

the

telecommunication

line

or

physical

terminal,

not

to

the

node.

Logical

Terminal

Table

21.

IMS

Commands

That

Affect

Logical

Terminal

Resources

IMS

Command

Resource:

Logical

Terminal

Receive

Input

Send

Output

Queuing

from

Other

Terminals

User

/ASSIGN

Y

Y

Y

Y

/LOCK

N

N

N

/PSTOP

N

N

Y

/PURGE

N

Y

N

/RSTART

Y

/START

Y

Y

Y

Y

/STOP

N

N

N

Y

/UNLOCK

Y

Y

Logical

Link

Table

22.

IMS

Commands

That

Affect

Logical

Link

Resources

IMS

Command

Resource:

Logical

Link

Receive

Input

Receive

Output

/PSTOP

N

N

IBM

Confidential

Chapter

27.

Controlling

IMS

289

Table

22.

IMS

Commands

That

Affect

Logical

Link

Resources

(continued)

IMS

Command

Resource:

Logical

Link

Receive

Input

Receive

Output

/RSTART

Y

Y

Logical

Link

Path

Table

23.

IMS

Commands

That

Affect

Logical

Link

Path

Resources

IMS

Command

Resource:

Logical

Link

Path

Queue

Primary

Requests

Not

Continuing

Conversation

Transmit

Queue

Message

to

Partner

Systems

/ASSIGN

Y

Y

/PURGE

N

Y

/START

Y

Y

/STOP

N

N

Transaction

Table

24.

IMS

Commands

That

Affect

Transaction

Resources

IMS

Command

Resource:

Transaction

Message

Scheduling

by

Transaction

Message

Queuing

by

Transaction

/ASSIGN

Y

Y

/LOCK

N

Y

/MSASSIGN

Y

/PSTOP

N

Y

/PURGE

Y

N

/START

Y

Y

/STOP

N

N

/UNLOCK

Y

Y

Transaction

Class

Table

25.

IMS

Commands

That

Affect

Transaction

Class

Resources

IMS

Command

Resource:

Transaction

Class

Transaction

Scheduling

by

Class

/ASSIGN

Y

/MSASSIGN

Y

/START

Y

/STOP

N

IBM

Confidential

290

IMS:

An

Introduction

to

IMS

Program

Table

26.

IMS

Commands

That

Affect

Program

Resources

IMS

Command

Resource:

Program

Execute

/ASSIGN

Y

/LOCK

N

/START

Y

/STOP

N

/UNLOCK

Y

Database

Table

27.

IMS

Commands

That

Affect

Database

Resources

IMS

Command

Resource:

Database

Use

/ASSIGN

Y

/START

Y

/STOP

N

/UNLOCK

Y

Subsystem

Table

28.

IMS

Commands

That

Affect

Subsystem

Resources

IMS

Command

Resource:

Subsystem

Attach

/ASSIGN

Y

/START

Y

/STOP

Y

You

can

also

use

other

commands

to

affect

the

operating

state

of

specific

resources,

as

described

in

the

following

sections.

Related

Reading:

For

more

information

about

using

IMS

commands,

see

the

IMS

Version

9:

Command

Reference.

Modifying

Dependent

Regions

Use

the

/ASSIGN

command

to

modify

the

assignment

of

classes

to

regions.

Do

this

to

adjust

the

processing

load

among

message

regions.

Modifying

Telecommunication

Lines

Use

the

/DEQUEUE

command

to

discard

response-mode

output

messages

before

you

enter

an

/RSTART

LINE

command.

Modifying

Terminals

Use

the

/ASSIGN

LTERM

command

to

modify

the

assignment

of

logical

terminals

to

physical

terminals

or

nodes.

The

new

assignment

remains

in

effect

until

the

next

cold

start

or

until

you

issue

another

/ASSIGN

command.

IBM

Confidential

Chapter

27.

Controlling

IMS

291

Use

the

/DEQUEUE

command

to

discard

response-mode

output

so

that

the

/RSTART

command

can

reset

terminal

response

mode.

Use

the

/COMPT

command

for

VTAM

terminals

(nodes)

to

notify

IMS

that

a

terminal

component

is

operable

or

inoperable.

IMS

provides

a

VTAM

I/O

Timeout

facility

to

detect

VTAM

hung

nodes

and

determine

what

action,

if

any,

should

be

taken.

Use

the

/TRACE

command

to

start

and

stop

the

VTAM

I/O

Timeout

facility.

Use

the

/IDLE

command

to

deactivate

a

node

and

the

/ACTIVATE

command

to

activate

a

node.

Use

the

/DISPLAY

command

to

display

all

nodes

that

have

I/O

outstanding

for

a

time

period

greater

than

that

specified

during

system

definition.

Modifying

Transactions

Use

the

/ASSIGN

command

to

reassign

the

scheduling

priorities

established

for

transactions

during

system

definition.

The

new

assignments

remain

in

effect

until

the

next

cold

start

or

until

you

issue

another

/ASSIGN

command.

In

a

shared-queues

environment,

you

can

use

the

/ASSIGN

command

to

control

which

IMS

subsystems

can

run

certain

types

of

transactions

by

assigning

transactions

to

particular

classes.

Example:

You

can

define

TRANA

to

class

4

on

IMSA

and

to

class

255

on

IMSB

and

IMSC,

so

that

only

IMSA

can

run

TRANA.

If

IMSA

fails,

you

can

reassign

TRANA

on

either

IMSB

or

IMSC

to

a

class

that

these

IMS

subsystems

can

run.

Recommendation:

Do

not

use

the

/STOP

TRANSACTION

command

to

control

which

IMS

subsystems

can

run

certain

types

of

transactions.

Modifying

Databases

Use

the

/DBDUMP

command

to

stop

online

update

access

to

a

database.

This

lets

you

produce

an

offline

dump

of

the

database.

Use

the

/DBRECOVERY

command

to

stop

all

online

access

to

a

database.

Use

it

to

recover

a

database

offline.

Normally,

IMS

switches

to

using

the

next

OLDS

when

you

enter

the

/DBDUMP

or

/DBRECOVERY

command.

This

switch

does

not

occur

if

you

specify

the

NOFEOV

keyword

on

either

command.

Specify

the

GLOBAL

keyword

on

the

/DBDUMP

or

/DBRECOVERY

command

to

have

the

command

apply

to

all

subsystems

sharing

the

database.

The

IRLM

must

be

active

if

you

use

this

keyword.

The

default

is

LOCAL,

which

specifies

that

the

command

applies

only

to

the

subsystem

on

which

you

enter

the

command.

Note:

IMS

must

be

restarted

after

issuing

a

command

with

the

GLOBAL

keyword.

Modifying

ISC

Users

(Subpools)

Use

the

/ASSIGN

command

to

change

the

assignment

of

a

static

LTERM

to

an

ISC

user

(also

called

a

subpool).

The

new

assignment

remains

in

effect

until

the

next

cold

start

or

until

you

issue

another

/ASSIGN

command.

IBM

Confidential

292

IMS:

An

Introduction

to

IMS

|

Modifying

ETO

Users

For

dynamic

user

IDs,

use

the

/ASSIGN

command

to

change

the

assignment

of

a

user

ID

to

another

user

or

to

an

LTERM.

The

new

assignment

remains

in

effect

until

the

next

cold

start

or

until

you

issue

another

/ASSIGN

command.

Use

the

/DISPLAY

USER

DEADQ

command

to

list

all

message

queues

that

are

eligible

for

dead

letter

status.

Use

the

/ASSIGN

command

to

assign

a

dead

letter

queue

to

another

user

ID.

Use

the

/DEQUEUE

command

to

discard

a

dead

letter

queue.

In

a

shared-queues

environment,

use

the

/DISPLAY

QCNT

MSGAGE

command

to

determine

which

messages,

if

any,

are

eligible

for

dead

letter

status.

Modifying

MSC

Resources

Use

the

/MSVERIFY

command

to

verify

the

consistency

of

MSC

system

identifications

(SYSIDs)

and

logical

link

paths

(MSNAMEs)

across

two

systems.

You

can

use

the

/MSASSIGN

command

to

change

the

assignment

of

MSNAMEs

and

SYSIDs

to

logical

links.

All

changes

made

by

an

/MSASSIGN

command

remain

in

effect

until

the

next

cold

start

or

until

you

issue

another

/MSASSIGN

command.

After

using

the

/MSASSIGN

command,

you

should

use

the

/MSVERIFY

command

to

ensure

that

the

assignment

produced

a

valid

configuration.

Modifying

Security

Options

Use

the

/CHANGE

command

to

update

a

current

password

with

a

new

password.

The

current

password

must

be

known

to

IMS.

Restriction:

IMS

does

not

allow

different

user

IDs

to

have

the

same

passwords.

Use

the

/MODIFY

PREPARE

RACF

and

/MODIFY

COMMIT

commands

to

reinitialize

RACF

information

if

you

are

not

using

a

RACF

data

space.

If

you

are

using

a

RACF

data

space,

use

the

RACF

SETROPTS

RACLIST

command

rather

than

the

IMS

/MODIFY

command.

Use

the

/DELETE

command

to

delete

terminal

or

password

security

for

the

specified

system

resource.

Use

the

/SECURE

APPC

command

to

control

the

RACF

security

level

for

input

from

LU

6.2

devices.

Use

the

/DISPLAY

APPC

command

to

show

the

security

level

that

is

currently

in

effect.

When

IMS

starts,

the

default

is

full

security.

Use

the

/SECURE

OTMA

command

to

control

the

RACF

security

level

for

input

from

OTMA

clients.

Use

the

/DISPLAY

OTMA

command

to

show

the

security

level

that

is

currently

in

effect.

When

IMS

starts,

the

default

is

full

security.

Modifying

Conversations

Use

the

/DISPLAY

CONV

command

to

show

the

status

of

all

conversations,

held

or

active.

You

can

terminate

a

conversation

if

necessary

with

the

/EXIT

command,

but

you

should

only

do

this

after

warning

the

end

user.

IBM

Confidential

Chapter

27.

Controlling

IMS

293

Modifying

Subsystems

Use

the

/CHANGE

command

to

delete

an

invalid

network

identifier

(NID).

If

you

need

to

disconnect

from

a

specific

subsystem,

use

the

/STOP

command.

If

the

/STOP

command

does

not

work,

use

the

z/OS

MODIFY

command.

Gathering

Performance-Related

Data

IMS

provides

the

DB

Monitor

and

the

IMS

Monitor,

which

gather

and

format

IMS

performance-related

data

and

record

this

data

on

a

statistics

log.

The

DB

Monitor

is

available

to

IMS

batch

systems.

It

can

monitor

the

activity

between

application

programs

and

databases.

For

more

information

about

the

DB

Monitor,

see

“DB

Monitor.”

The

IMS

Monitor

is

available

to

IMS

online

systems;

In

addition

to

performing

all

of

the

functions

of

the

DB

Monitor,

the

IMS

Monitor

can

track

and

record

information

about

activities

occurring

in

the

IMS

control

region

and

data

communication

activities.

For

more

information

about

the

IMS

Monitor,

see

“IMS

Monitor”

on

page

295.

IMS

uses

the

statistics

produced

by

each

monitor

to

generate

reports.

The

report

programs

run

offline

and

print

reports

that

summarize

and

categorize

IMS

activities.

Related

Reading:

For

additional

information

about

the

monitor

report

programs,

see:

v

IMS

Version

9:

Utilities

Reference:

Database

and

Transaction

Manager

v

IMS

Version

9:

Utilities

Reference:

System

DB

Monitor

The

DB

Monitor

records

performance

data

during

execution

of

an

IMS

DB

batch

system.

The

DB

Monitor

can

be

active

during

the

entire

execution

of

an

IMS

batch

job,

or

you

can

stop

and

restart

it

from

the

system

console.

Activating

and

Controlling

the

Monitor

To

activate

the

DB

Monitor,

specify

MON=Y

in

the

PROC

statement

of

the

batch

job.

When

you

submit

the

job,

IMS

uses

parameter

substitution

to

update

the

PARM

field

of

the

EXEC

statement

with

a

Y

in

the

appropriate

position.

To

stop

the

DB

monitor,

the

system

console

operator

can

use

the

MODIFY

jobname,STOP

command.

Message

DFS2215A

displays

on

the

system

console

when

the

Monitor

is

inactive.

To

reactivate

the

DB

monitor,

the

console

operator

can

use

the

MODIFY

jobname,START

command.

Message

DFS2216A

displays

on

the

console

when

the

monitor

is

active

again.

Logging

the

Data

IMS

records

the

data

produced

by

the

DB

Monitor

on

either

the

OLDS

or

a

separate

DB

monitor

log.

Use

the

//IMSMON

DD

statement

in

the

batch

procedure

to

control

where

the

data

is

logged:

v

To

store

the

monitor

records

on

the

OLDS,

either

include

a

//IMSMON

DD

DUMMY

statement

or

omit

the

//IMSMON

DD

statement

entirely.

IBM

Confidential

294

IMS:

An

Introduction

to

IMS

v

To

store

the

monitor

records

on

a

separate

DB

Monitor

log,

include

a

valid

//IMSMON

DD

statement.

If,

for

any

reason,

IMS

cannot

open

the

DB

Monitor

log

data

set

specified

on

the

//IMSMON

DD

statement,

IMS

displays

message

DFS2217I

on

the

system

console.

Batch

execution

continues,

but

the

Monitor

is

inactive.

If

the

DB

Monitor

log

device

encounters

I/O

errors,

IMS

displays

message

DFS2219I

on

the

system

console.

Batch

execution

continues,

but

the

Monitor

is

inactive.

If

you

want

to

stop

the

Monitor

and

force

an

end-of-volume

for

the

DB

Monitor

log,

use

the

MODIFY

jobname,STOPEOV

command.

When

you

use

the

STOPEOV

keyword,

the

batch

region

does

not

continue

executing

until

the

z/OS

mount

request

for

a

new

data

set

is

satisfied.

Modify

Command

Errors

If

you

enter

an

incorrect

job

name

on

the

MODIFY

command,

z/OS

issues

an

error

message.

If

you

make

some

other

error

while

entering

the

MODIFY

command,

IMS

issues

message

DFS2218I,

followed

by

either

message

DFS2215A

or

message

DFS2216A.

IMS

Monitor

The

IMS

Monitor

records

performance-related

data

during

execution

of

the

IMS

online

subsystem.

When

a

significant

event

occurs

within

IMS

while

the

monitor

is

active,

IMS

passes

relevant

data

to

it.

The

monitor

formats

a

record

describing

the

event,

including

the

time

stamps,

and

logs

the

event.

Activating

and

Controlling

If

you

create

a

DFSDCMON

member

in

the

IMS.SDFSRESL

data

set,

you

do

not

need

a

DD

statement

in

the

IMS,

DBC,

or

DCC

procedures

for

the

Monitor

because

IMS

dynamically

allocates

and

deallocates

the

monitor

data

set.

Otherwise,

to

activate

the

IMS

Monitor,

you

must

include

a

DD

statement

(using

IMSMON

as

the

data

set

name)

in

the

IMS,

DBC,

or

DCC

procedures

to

specify

the

IMS

Monitor

log

data

set.

When

you

include

this

DD

statement,

the

IMS

Monitor

becomes

available.

If

the

monitor

is

available

but

inactive,

processor

usage

is

unaffected.

To

start

and

stop

the

IMS

Monitor,

use

the

/TRACE

command.

Using

the

Trace

Command

In

addition

to

starting

and

stopping

the

IMS

Monitor,

you

can

specify

the

types

of

events

to

be

monitored

using

the

/TRACE

command.

You

can

use

the

/TRACE

command

to

monitor

some

or

all

of

the

following:

v

Telecommunication

line

and

logical

link

activity

v

Scheduling

and

termination

events

v

Activity

between

application

programs

and

message

queues

v

Activity

between

application

programs

and

databases

(full

function

and

Fast

Path)

You

can

also

use

the

/TRACE

command

to

limit

the

monitoring

to:

v

Particular

databases,

partitions,

or

areas

v

Particular

dependent

regions

v

A

particular

interval

of

time

IBM

Confidential

Chapter

27.

Controlling

IMS

295

Logging

the

Data

If

the

IMS

Monitor

log

data

set

is

on

tape,

IMS

issues

a

tape

mount

request

each

time

you

start

the

monitor,

and

IMS

rewinds

the

tape

each

time

you

stop

the

Monitor.

If

the

IMS

Monitor

log

data

set

is

on

DASD,

IMS

uses

the

same

data

set

each

time

you

start

the

monitor.

Therefore,

you

should

process

the

log

after

you

stop

the

monitor

before

restarting

it.

Recommendation:

Start

the

IMS

Monitor

and

allow

it

to

run

for

a

period

of

time,

and

then

stop

it

to

write

a

“snapshot”

of

current

activity

on

the

IMS

Monitor

log.

You

must

stop

the

IMS

Monitor

before

you

take

a

shutdown

checkpoint

in

order

for

the

report

program

to

produce

usable

output.

I/O

Errors

If

a

permanent

I/O

error

occurs

on

the

IMS

monitor

log

data

set,

IMS

stops

the

Monitor

and

issues

message

DFS2202.

In

this

situation,

you

cannot

restart

the

Monitor

until

you

restart

IMS

because

IMS

does

not

close

the

IMS

Monitor

log

data

set

until

you

shut

down

IMS.

If

the

problem

that

caused

the

error

has

not

been

corrected

when

you

restart

IMS,

you

should

specify

a

different

volume

or

unit

for

the

new

execution.

Tracing

IRLM

Activity

The

IMS

Monitor

does

not

collect

IRLM

trace

activity.

IRLM

uses

the

z/OS

component

trace

(CTRACE)

facility.

Use

the

TRACE

CT

command

to

run

the

following

types

of

sublevel

traces:

DBM

Trace

interactions

with

the

identified

DBMS.

EXP

Trace

any

exception

condition.

INT

Trace

member

and

group

events

other

than

normal

locking

activity.

SLM

Trace

interactions

with

the

z/OS

locking

component.

XCF

Trace

all

interactions

with

the

z/OS

cross-system

coupling

services.

XIT

Trace

only

asynchronous

interactions

with

the

z/OS

locking

component.

Related

Reading:

For

a

complete

description

of

the

z/OS

TRACE

CT

command

for

IRLM,

see

the

IMS

Version

9:

Command

Reference.

Controlling

Data

Sharing

Controlling

data

sharing

involves:

v

“Monitoring

the

System”

v

“Controlling

Data

Sharing

Using

DBRC”

on

page

300

Monitoring

the

System

To

monitor

data

sharing,

you

obtain

information

on

the

status

of

the

following:

IRLM,

IMS

subsystems

and

databases,

the

RECON

data

set,

and

coupling

facility

structures.

Obtaining

the

Status

of

IRLM

Activity

To

display

the

status

of

an

IRLM

on

either

your

system

or

on

another

connected

system,

enter

the

following

z/OS

command:

MODIFY

irlmproc,STATUS,irlmx

IBM

Confidential

296

IMS:

An

Introduction

to

IMS

where

irlmproc

is

the

name

of

the

procedure

that

you

used

to

start

the

IRLM,

and

irlmx

is

the

name

of

the

IRLM

whose

status

you

want

to

display.

This

command

gives:

v

The

IMS

IDs

of

IMS

subsystems

using

this

IRLM.

v

The

number

of

locks

that

are

held

and

waiting

for

each

subsystem

on

this

IRLM.

v

Identification

of

this

IRLM:

its

subsystem

name

and

IRLM

number.

You

can

use

the

ALLD

keyword

to

display

the

names

and

status

of

every

IMS

identified

to

an

IRLM

in

a

data-sharing

group.

Or,

you

can

use

the

ALLI

keyword

to

display

the

names

and

status

of

every

IRLM

in

a

data-sharing

group.

You

can

also

trace

IRLM

activity.

See

“Tracing

IRLM

Activity”

on

page

296.

Related

Reading:

For

a

complete

description

of

the

commands

for

the

IRLM,

see

the

IMS

Version

9:

Command

Reference.

Displaying

Components

and

Resources

Monitoring

components

and

resources

in

a

data-sharing

environment

requires

the

same

kinds

of

procedures

as

in

a

non-sharing

environment.

For

information

about

monitoring,

see

“Monitoring

the

System”

on

page

277.

Table

29

lists

keywords

for

the

/DISPLAY

command

that

you

can

use

to

obtain

information

about

various

IMS

resources.

Table

29.

/DISPLAY

Command

Keywords

That

Provide

Information

about

IMS

Resources

Resources

/DISPLAY

Command

Keywords

Active

control

regions

ACTIVE

REGION

Active

jobs

ACTIVE

Programs,

transactions,

and

conversations

CONVERSATION

PROGRAM

PSB

STATUS

PROGRAM

STATUS

TRANSACTION

SYSID

TRANSACTION

TRANSACTION

Databases

DATABASE

AREA

STATUS

DATABASE

Terminals,

lines,

links,

and

nodes

ACTIVE

DC

ASSIGNMENT

LINE

ASSIGNMENT

LINK

ASSIGNMENT

NODE

LINE

LINK

LTERM

MASTER

MSNAME

NODE

PTERM

STATUS

LINE

STATUS

LINK

STATUS

LTERM

STATUS

MSNAME

STATUS

NODE

STATUS

PTERM

IBM

Confidential

Chapter

27.

Controlling

IMS

297

Table

29.

/DISPLAY

Command

Keywords

That

Provide

Information

about

IMS

Resources

(continued)

Resources

/DISPLAY

Command

Keywords

External

subsystems

and

connections

to

external

subsystems

CCTL

OASN

SUBSYS

SUBSYS

VTAM

TIMEOVER

For

example,

you

can

use

the

/DISPLAY

DATABASE

command

after

you

enter

a

/START

DATABASE

command

to

determine

whether

the

database

is

started.

Related

Reading:

For

detailed

information

about

the

/DISPLAY

command,

see

the

IMS

Version

9:

Command

Reference.

Monitoring

Structures

on

a

Coupling

Facility

The

following

z/OS

operator

commands

are

especially

useful

in

monitoring

structure

activity:

v

DISPLAY

XCF,STRUCTURE

v

DISPLAY

XCF,STRUCTURE,STRNAME=

These

commands

let

you

look

at

structures

on

a

coupling

facility

to

determine

resource

status

and,

for

failures,

gather

information

for

problem

determination.

Related

Reading:

For

detailed

information

on

these

commands,

see

z/OS:

MVS

System

Commands.

DISPLAY

XCF,STRUCTURE

Command:

Use

this

command

to

display

the

status

of

structures

defined

in

your

active

policy.

Example:

Figure

94

shows

an

example

of

output

from

this

command.

Observe

the

following

in

Figure

94:

STRNAME

Is

the

name

of

a

structure.

ALLOCATION

TIME

Is

a

timestamp

indicating

when

the

structure

was

allocated

in

the

coupling

facility.

IXC359I

11.09.26

DISPLAY

XCF

376

STRNAME

ALLOCATION

TIME

STATUS

CF01

02/17/96

17:03:49

ALLOCATED

CF02

--

--

NOT

ALLOCATED

CF03

--

--

NOT

ALLOCATED

CF04

--

--

NOT

ALLOCATED

OSAMSESXI

02/17/96

17:02:54

ALLOCATED

REBUILDING

REBUILD

PHASE:

QUIESCE

VSAMSESXI

02/17/96

17:03:03

ALLOCATED

Figure

94.

Output

from

a

DISPLAY

XCF,STRUCTURE

Command

IBM

Confidential

298

IMS:

An

Introduction

to

IMS

STATUS

Is

the

current

status

of

the

structure.

A

structure

can

be

in

a

number

of

different

states,

such

as

ALLOCATED,

NOT

ALLOCATED,

or

ALLOCATED

REBUILDING.

The

displayed

information

can

help

you

determine

whether

the

appropriate

IRLM,

OSAM,

VSAM,

shared

MSGQ,

and

shared

EMHQ

structures

have

been

defined

and

allocated.

If

not,

check

that

the

structure

names

on

your

CFNAMES

control

statement

match

the

structure

names

that

are

displayed.

If

they

do

not

match,

change

the

names

in

either

the

coupling

facility

resource

manager

(CFRM)

policy

or

the

CFNAMES

control

statement.

In

Figure

94

on

page

298,

six

structures

are

defined

(CF01-CF04,

OSAMSESXI,

and

VSAMSESXI).

Three

of

the

structures

are

allocated

(CF01,

OSAMSESXI,

and

VSAMSESXI).

The

status

of

the

OSAM

structure

is

that

it

is

currently

being

rebuilt

after

a

structure

failure.

DISPLAY

XCF,STRUCTURE,STRNAME=

Command:

Use

the

DISPLAY

XCF,STRUCTURE,STRNAME=

command

to

display

detailed

information

about

a

specific

structure.

The

three

structures

of

importance

to

IMS

are

the

IRLM,

OSAM,

VSAM,

shared

MSGQ,

and

shared

EMHQ

structures.

Example:

Figure

95

shows

an

example

of

output

from

this

command,

specifying

an

OSAM

structure

named

OSAMSESXI.

There

are

three

parts

to

the

output.

v

The

first

part

shows

the

status

of

the

structure

and

information

about

the

active

policy.

IXC360I

17.30.46

DISPLAY

XCF

677

STRNAME:

OSAMSESXI

STATUS:

ALLOCATED

POLICY

SIZE

:

2048

K

PREFERENCE

LIST:

CF02

CF01

EXCLUSION

LIST

IS

EMPTY

ACTIVE

STRUCTURE

ALLOCATION

TIME:

02/17/96

17:02:54

CFNAME

:

CF02

COUPLING

FACILITY:

ND02...

PARTITION:

0

CPCID:

00

ACTUAL

SIZE

:

2048

K

STORAGE

INCREMENT

SIZE:

256

K

VERSION

:

A8DAC970

15774B04

DISPOSITION

:

DELETE

ACCESS

TIME

:

0

MAX

CONNECTIONS:

32

#

CONNECTIONS

:

5

CONNECTION

NAME

ID

VERSION

SYSNAME

JOBNAME

ASID

STATE

--

DLI11

04

00040001

MVS1

DLI11

0031

ACTIVE

DLI12

05

00050001

MVS1

DLI12

0033

ACTIVE

IMS1

01

00010013

MVS1

DLIOCSA8

0036

ACTIVE

IMS2

02

00020012

MVS2

DLIOCSB8

0035

ACTIVE

IMS3

03

00030011

MVS3

DLIOCSC8

0038

ACTIVE

Figure

95.

Output

for

DISPLAY

XCF,STRUCTURE,STRNAME=

Command

IBM

Confidential

Chapter

27.

Controlling

IMS

299

v

The

second

part

of

the

output

shows

more

detailed

status

information

for

the

structure.

v

The

third

part

of

the

output

shows

which

z/OS

systems

are

connected

to

the

structure

and

gives

information

about

each

use.

Controlling

Data

Sharing

Using

DBRC

DBRC

allows

you

to

control

access

to

data

by

IMS

subsystems

that

participate

in

data

sharing.

Using

DBRC,

you

can

modify,

initiate,

and

delete

the

current

status

indicators

in

the

RECON

data

set

to

change:

v

The

access

intent

of

online

IMS

subsystems

v

The

share

level

of

registered

databases

Your

data

sharing

environment

depends

on

the

status

of

the

databases

and

subsystems

indicated

in

the

RECON

data

set.

You

can

modify

the

access

intent

indicator

using

a

form

of

the

/START

command.

For

a

description

of

this

command,

see

“Changing

Database

Access

Intent”

on

page

301.

You

can

modify

the

share

level

indicator

using

a

form

of

one

of

the

DBRC

online

change

commands,

/RMCHANGE.

Online

DBRC

Commands

The

/RMCHANGE

command

is

one

of

a

set

of

IMS

commands

that

control

DBRC

utility

functions;

IMS

responds

to

them

by

issuing

corresponding

commands

directly

to

DBRC.

Table

30

shows

these

commands

and

their

recommended

uses.

Related

Reading:

For

full

descriptions

of

these

commands

and

their

functions,

see

the

IMS

Version

9:

DBRC

Guide

and

Reference.

Table

30.

DBRC

Commands

and

Functions

Command

Recommended

Use

/RMCHANGE

Alter

a

database

sharing

level

Prevent

other

subsystem

authorization

Set

or

remove

backout-required

status

/RMDELETE

Remove

database

record

and

associated

status

Delete

subsystem

with

unauthorized

databases

Remove

area

data

set

(ADS)

record

and

associated

status

/RMGENJCL

Generate

online

recovery

jobs

/RMINIT

Register

a

new

database

Start

control

of

an

area

data

set

/RMLIST

Obtain

recovery

and

authorization

information

for

a

database

or

ADS

/RMNOTIFY

Reset

a

system

status

Example:

If

you

want

to

change

the

share

level

of

a

registered

database

(named

ORDERDB)

from

intraprocessor

block-level

data

sharing

(share-level

2)

to

interprocessor

block-level

data

sharing

(share-level

3)

to

allow

data

sharing

with

another

IMS

subsystem

in

another

processor,

enter:

/RMCHANGE

DBRC=’DB

DBD(ORDERDB)

SHARELVL(3)’

DBRC

replies

with

its

corresponding

command

input

(CHANGE.DB

DBD(ORDERDB)

SHARELVL(3))

and

a

series

of

DBRC

messages.

IBM

Confidential

300

IMS:

An

Introduction

to

IMS

Do

not

enter

the

/RMCHANGE,

/RMDELETE,

or

any

command

that

alters

the

status

of

database

records

in

the

RECON

data

set

while

a

job

accesses

the

database.

Stop

the

database

using

a

/DBRECOVERY

GLOBAL

command

before

modifying

any

RECON

record

for

that

database.

Otherwise,

IMS

rejects

the

command

with

an

error.

Denial

of

Authorization

If,

in

a

data

sharing

environment,

DBRC

is

responding

to

authorization

requests

but

fails

to

obtain

authorization

for

a

program:

v

You

receive

message

DFS047A

identifying

the

database.

v

IMS

schedules

the

program’s

PSB

without

database

access.

IMS

abnormally

terminates

a

BMP

or

MPP

with

abend

U3303

only

if

it

tries

to

access

the

database.

v

IMS

abnormally

terminates

batch

and

utility

regions

with

abend

U0047.

Changing

Database

Access

Intent

Use

the

following

command

to

change

the

access

intent

that

you

declare

during

system

definition:

/START

DATABASE

dbx

ACCESS=xx,

where

dbx

is

the

database

name

and

xx

is

the

new

access

intent.

Values

for

xx

are:

EX

Exclusive

use

UP

Update

access

RD

Read

access

RO

Read-only

access

This

command

is

local;

it

affects

only

the

subsystem

on

which

you

enter

it.

The

GLOBAL

keyword

is

not

valid

with

the

ACCESS=

keyword.

If

you

need

to

change

the

access

level

for

a

shared

database

across

the

sysplex,

you

must

enter

this

command

on

each

subsystem

that

shares

the

database.

In

order

to

change

the

access

intent

for

a

DEDB,

you

must

stop

all

PSBs

that

access

any

of

the

areas

in

the

DEDB.

You

might

also

have

to

stop

regions

that

have

wait-for-input

(WFI)

transactions

scheduled

for

the

DEDB.

Controlling

Log

Data

Set

Characteristics

From

time

to

time,

you

need

to

tune

and

modify

log

data

set

characteristics,

for

example,

in

the

following

circumstances:

v

After

monitoring

v

After

changing

your

requirements

for

system

availability,

integrity,

or

operator

handling

For

summaries

of

actions

required

for

changing

log

data

set

design,

see:

v

“Controlling

the

Online

Log

Data

Set”

v

“Controlling

the

Write-Ahead

Data

Set”

on

page

304

v

“Controlling

the

System

Log

Data

Set”

on

page

305

v

“Controlling

the

RECON

Data

Sets”

on

page

305

Controlling

the

Online

Log

Data

Set

Because

you

can

restart

IMS

(warm

start

or

emergency

restart)

with

all

input

on

SLDS,

you

can

reallocate

the

OLDSs

between

a

shutdown

(or

failure)

and

a

subsequent

restart.

To

restart

IMS

using

SLDSs

as

input,

you

must

delete

the

PRIOLDS

and

SECOLDS

records

from

the

RECON

data

sets.

IBM

Confidential

Chapter

27.

Controlling

IMS

301

Table

31

lists

the

actions

required

to

change

OLDS

characteristics.

Table

31.

Changing

OLDS

Characteristics

Modification

Actions

Required

BLKSIZE1

1.

Shut

down

IMS.

2.

Archive

all

OLDSs.

3.

Delete

PRIOLDS

and

SECOLDS

records

from

the

RECON

data

sets,

using

the

DELETE.LOG

command.

4.

Scratch

all

OLDSs.

5.

Reallocate

OLDSs

with

the

new

BLKSIZE.

6.

Verify

WADS

space

allocation.

7.

Restart

IMS

(from

SLDS).

Single

to

Dual2

1.

Shut

down

IMS.

2.

Archive

all

OLDSs.

3.

Allocate

dual

OLDSs.

4.

Delete

the

OLDS

records

from

the

RECON

data

sets,

using

the

DELETE.LOG

command.

The

primary

OLDS

records

will

be

deleted.

5.

Change

OLDSDEF

specification

to

dual.

6.

Change

IMS

startup

procedure

(OLDS

DD

statements),

if

required.

7.

Compile

DFSMDA

macros,

if

required.

8.

Modify

operating

procedures.

9.

Restart

IMS.

Dual

to

Single2

1.

Shut

down

IMS.

2.

Archive

all

OLDSs.

3.

Delete

OLDS

record

from

the

RECON

data

sets,

using

the

DELETE.LOG

command.

The

primary

and

secondary

OLDS

records

will

be

deleted.

4.

Delete

secondary

OLDSs.

5.

Change

IMS

startup

procedure.

6.

Modify

operating

procedures.

7.

Restart

IMS.

BUFNO3

1.

Shut

down

IMS.

2.

Change

the

OLDSDEF

specification

for

BUFNO.

3.

Verify

CSA

size.

4.

Verify

WADS

space

allocation.

5.

Restart

IMS.

Space,

Location,

or

Allocation4

1.

Shut

down

IMS.

2.

Archive

all

OLDSs.

3.

Delete

PRIOLDS

and

SECOLDS

records

in

the

RECON

data

sets,

using

the

DELETE.LOG

command.

4.

Scratch

and

reallocate

OLDSs.

5.

Restart

IMS

(from

SLDS).

Notes:

1.

Changing

OLDS

Block

Size:

Changing

OLDS

block

size

affects

WADS

space

allocation.

For

information

on

how

to

calculate

WADS

space

requirements,

see

IBM

Confidential

302

IMS:

An

Introduction

to

IMS

the

IMS

Version

9:

Installation

Volume

1:

Installation

Verification.

To

change

WADS

space

allocation,

see

Table

32

on

page

304.

All

OLDSs

must

have

the

same

block

size.

2.

Changing

the

Mode:

You

must

change

your

OLDSDEF

specification

in

the

DFSVSMxx

member

in

IMS.PROCLIB.

IMS

initialization

requires

that

at

least

three

pairs

of

OLDSs

be

available.

You

must

also

reconsider

data

set

placement.

When

changing

from

single

to

dual

OLDS,

each

data

set

in

a

pair

of

OLDSs

must

have

the

same

space

allocation

(number

of

blocks).

Changing

the

mode

from

single

to

dual

or

from

dual

to

single

requires

changes

in

the

following

operating

procedures:

v

Skeletal

JCL

for

archive

(ARCHJCL

member)

v

Skeletal

JCL

for

log

recovery

(LOGCLJCL

member)

v

Batch

JCL

for

Log

Recovery

utility

v

Batch

backout

JCL

for

online

transactions

and

BMPs

If

you

warm

start

the

IMS

subsystem

after

changing

from

single

to

dual

OLDSs,

the

/DISPLAY

OLDS

command

does

not

show

the

secondary

OLDSs

as

IN

USE

until

they

have

been

archived

once.

The

command

does,

however,

show

dual

OLDS

logging.

3.

Changing

the

Number

of

OLDS

Buffers:

Change

BUFNO

by

changing

the

OLDSDEF

specification

for

BUFNO

in

the

DFSVSMxx

member

in

IMS.PROCLIB.

When

you

modify

BUFNO,

you

should

consider

also

modifying

the

region

size

for

the

VSAM

common

segment

area

(CSA).

The

amount

of

storage

fixed

for

OLDS

buffers

is

[BUFNO

*

BUFFERSIZE].

WADS

space

is

also

affected

by

BUFNO.

To

change

WADS

space

allocation,

see

Table

32

on

page

304..

Related

Reading:

For

information

on

how

to

calculate

WADS

space

requirements,

see

the

IMS

Version

9:

Installation

Volume

1:

Installation

Verification.

4.

Changing

Space,

Location,

or

Allocation:

For

the

recommended

method

of

changing

the

space

or

location

of

your

OLDS,

or

for

reallocating

an

OLDS

on

the

same

volume

and

with

the

same

space,

follow

the

procedure

for

changing

the

BLKSIZE

in

note

1

above.

You

can

modify

space,

location,

or

allocation

without

shutting

down

IMS

in

a

non-XRF

environment

by

using

the

following

procedure:

a.

/STOP

OLDS

nn

b.

Archive

all

OLDSs.

c.

Delete

PRIOLDS

and

SECOLDS

records

in

the

RECON

data

sets,

using

the

DELETE.LOG

command.

d.

Scratch

and

reallocate

OLDSs.

e.

/START

OLDS

nn

Using

Newly

Initialized

Volumes

for

OLDS

If

a

newly

initialized

(or

reinitialized,

but

unformatted)

volume

is

to

contain

an

OLDS,

you

must

format

either

the

volume

or

the

space

occupied

by

the

OLDS

before

the

online

system

uses

it.

If

you

do

not

format

the

volume,

or

if

the

block

size

of

the

new

OLDS

data

set

is

not

the

same

as

the

existing

OLDS

data

set,

you

can

expect

severe

performance

degradation

and

excessive

device

and

channel

usage

until

IMS

completely

fills

the

OLDS

once.

This

problem

is

especially

noticeable

during

emergency

restart

and

during

XRF

tracking

and

takeover.

IBM

Confidential

Chapter

27.

Controlling

IMS

303

You

can

use

any

of

the

following

techniques

for

formatting

a

volume

for

an

OLDS:

v

Copy

an

existing

OLDS

(of

the

same

size)

into

the

new

OLDS.

v

Copy

an

existing

volume

into

the

new

volume,

scratch

the

volume

table

of

contents

(VTOC),

and

allocate

the

new

OLDS.

v

Use

another

IMS

subsystem

to

fill

the

OLDS

(turn

on

all

traces

to

the

log

and

issue

checkpoint

commands

until

the

OLDS

fills).

v

Write

a

program

that

either

writes

at

least

one

byte

of

data

into

each

track

on

the

volume

or

fills

the

OLDS

with

maximum

logical

record

length

(LRECL)

blocks.

Controlling

the

Write-Ahead

Data

Set

Table

32

lists

the

actions

required

to

change

WADS

characteristics.

Table

32.

Changing

WADS

Characteristics

Modification

Actions

Required

Single

to

Dual1

1.

Shut

down

IMS.

2.

Allocate

new

WADS.

3.

Define

a

DFSMDA

member.

4.

Add

DD

statement

in

IMS

JCL,

if

necessary.

5.

Code

WADS=D

in

IMS

JCL.

6.

Modify

operating

procedures.

7.

Restart

IMS

with

FORMAT

WADS

keywords.

Dual

to

Single1

1.

Shut

down

IMS.

2.

Code

WADS=S

in

IMS

JCL.

3.

Delete

DFSMDA

member.

4.

Remove

DD

statement

in

IMS

JCL,

if

necessary.

5.

Modify

operating

procedures.

6.

Restart

IMS.

Adding

Spare

1.

Allocate

a

spare

WADS.

2.

Update

WADSDEF

specification

in

the

DFSVSMxx

member

of

IMS.PROCLIB.

3.

Define

DFSMDA

member.

4.

Add

DD

statement

in

IMS

JCL,

if

necessary.

5.

Modify

operating

procedures.

6.

/START

WADS

n

(or

wait

until

IMS

restart).

Removing

Spare

1.

/STOP

WADS

n

(and

wait

for

dynamic

deallocation).

2.

Scratch

spare

WADS.

3.

Update

WADSDEF

statement

in

the

DFSVSMxx

member

of

IMS.PROCLIB.

4.

Remove

DD

statement

in

IMS

JCL.

5.

Modify

operating

procedures.

Space,

Location,

or

Allocation2

1.

Shut

down

IMS.

2.

Scratch

and

reallocate

WADSs.

3.

Restart

IMS

with

FORMAT

WADS

keywords.

IBM

Confidential

304

IMS:

An

Introduction

to

IMS

Table

32.

Changing

WADS

Characteristics

(continued)

Modification

Actions

Required

Notes:

1.

Changing

the

Mode:

WADS

can

be

dynamically

allocated

and

deallocated.

To

reflect

the

new

mode

for

WADSs,

you

must

update

the

following:

v

Skeletal

JCL

for

the

Log

Recovery

utility

(LOGCLJCL

member).

v

IMS

startup

procedure

(WADS=

execution

parameter).

v

All

recovery

procedures

implemented

to

recover

WADS

errors

or

to

close

unclosed

OLDSs

using

WADS.

2.

Changing

the

Space,

Location,

or

Allocation:

All

WADS

must

have

the

same

space

allocation

(number

of

tracks)

and

be

on

the

same

type

of

device.

Controlling

the

System

Log

Data

Set

Converting

from

single

to

dual

SLDSs

requires

modification

in

the

skeletal

JCL

(ARCHJCL

member)

and

in

all

your

operational

procedures

using

SLDSs.

In

the

operational

procedures,

consider

using

the

secondary

SLDS

when

you

experience

errors

in

the

primary

one.

No

modification

is

required

for

online

processing

because

IMS

dynamically

allocates

SLDSs.

Changing

the

BLKSIZE

requires

modification

in

the

skeletal

JCL

(ARCHJCL

member).

All

SLDSs

required

for

online

processing

must

have

the

same

BLKSIZE.

Controlling

the

RECON

Data

Sets

Table

33

lists

the

actions

required

to

change

RECON

data

set

characteristics.

Table

33.

Changing

RECON

Data

Set

Characteristics

Modification

Actions

Required

Adding

Spare1

1.

Define

a

spare

RECON

data

set.

2.

Compile

DFSMDA

macro

for

the

spare

data

set

or

add

DD

statement

in

IMS

JCL

and

batch

JCL

if

you

do

not

use

dynamic

allocation.

Removing

Spare

1.

Delete

cluster.

2.

Delete

DFSMDA

member

in

IMS.SDFSRESL

or

remove

DD

statement

from

IMS

JCL

and

batch

JCL

if

you

do

not

use

dynamic

allocation.

Replacing

Active

Recommendation:

Stop

all

IMS

subsystems

and

batch

jobs

accessing

the

RECON

data

sets.

1.

Define

a

spare

data

set

with

new

space

or

allocate

a

spare

data

set

at

a

new

location.

2.

CHANGE.RECON

REPLACE

(RECONn)

3.

Define

a

new

spare

data

set.

4.

Continue

normal

processing.

Single

to

Dual

Recommendation:

Stop

all

IMS

subsystems

and

batch

jobs

accessing

the

RECON

data

sets.

1.

Define

a

spare

RECON

data

set.

2.

CHANGE.RECON

DUAL

3.

Define

a

new

spare.

4.

Continue

normal

processing.

IBM

Confidential

Chapter

27.

Controlling

IMS

305

Table

33.

Changing

RECON

Data

Set

Characteristics

(continued)

Modification

Actions

Required

Note:

1.

Adding

a

Spare

RECON

Data

Set:

The

spare

data

set

must

be

in

VSAM

CREATE

mode.

Recommendation:

For

both

online

and

batch,

use

dynamic

allocation

for

RECON

data

sets,

and

run

with

at

least

three

RECON

data

sets.

Connecting

and

Disconnecting

Subsystems

Before

an

IMS

subsystem

can

access

databases

in

an

external

subsystem,

(another

program

executing

in

an

z/OS

address

space),

such

as

DB2,

you

must

connect

the

IMS

subsystem

to

this

other

subsystem.

IMS

can

only

connect

to

another

subsystem

if

that

subsystem

is

identified

in

the

subsystem

member

in

IMS.PROCLIB.

Specify

the

subsystem

member

name

in

the

SSM

EXEC

parameter.

When

specified

to

and

accessed

by

IMS,

the

subsystem

member

name

cannot

be

changed

without

stopping

IMS.

Related

Reading:

For

information

on

the

SSM

EXEC

parameter,

see

the

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

Connections

between

an

IMS

subsystem

and

another

subsystem

can

occur

with

or

without

operator

intervention,

and

without

regard

to

which

subsystem

is

available

first.

v

Automatic

connection:

When

the

SSM

EXEC

parameter

is

specified,

IMS

will

automatically

establish

the

connection

when

it

processes

the

parameter.

v

Operator-controlled

connection:

When

the

SSM

EXEC

parameter

is

not

specified,

the

connection

will

be

established

when

the

/START

SUBSYS

SSM

command

is

entered.

The

/START

SUBSYS

SSM

command

specifies

the

subsystem

member

in

IMS.PROCLIB

that

IMS

will

use

in

connecting

to

subsystems.

Disconnecting

IMS

from

another

subsystem

is

initiated

with

the

/STOP

SUBSYS

command,

and

normally

completes

without

operator

intervention.

IMS

will

quiesce

all

dependent

region

external

subsystem

activity

prior

to

stopping

the

subsystem.

IBM

Confidential

306

IMS:

An

Introduction

to

IMS

Chapter

28.

IMS

System

Recovery

IMS

has

many

features

that

provide

high

availability

and

complete

recovery

of

the

IMS

system

in

all

operating

environments.

The

major

features

are:

v

Extended

Recovery

Facility

(XRF)

v

Remote

Site

Recovery

(RSR)

v

IMS

running

in

a

parallel

sysplex

environment

and

using

shared

queues,

shared

data,

or

both

The

following

sections

in

this

chapter

discuss

XRF

and

RSR.

For

more

information

about

IMS

in

a

parallel

sysplex

environment,

see

Part

6,

“IMS

in

a

Parallel

Sysplex

Environment,”

on

page

313.

XRF

and

RSR

are

two

features

of

IMS

that

can,

optionally,

be

used

to

increase

the

availability

of

IMS

systems

and

the

data

in

IMS

databases.

Both

rely

on

duplicating

IMS

subsystems

and

data

on

another

z/OS

system.

The

first

of

these

is

the

Extended

Recovery

Facility

(XRF).

The

XRF

functions

are

delivered

as

an

integral

part

of

the

IMS

program

product.

It

is

intended

to

provide

increased

availability

for

IMS

subsystems.

There

is

an

overhead,

both

in

machine

usage

and

support,

in

using

XRF.

However,

if

you

have

an

application

that

can

only

tolerate

minimal

outages,

then

you

might

consider

using

XRF.

The

second

of

these

features

is

Remote

Site

Recovery

(RSR).

RSR

is

a

separately

priced

component

available

with

IMS.

It

provides

similar

facilities

to

XRF,

but

with

some

differences.

Both

features

rely

on

having

another

IMS

subsystem,

situated

on

another

z/OS

system,

that

tracks

the

update

activity

of

the

primary

IMS

subsystem

(only

one

for

XRF,

one

or

more

for

RSR)

to

provide

a

backup.

The

differences

between

the

two

features

is

discussed

in

“Comparison

of

XRF

and

RSR”

on

page

309,

but

to

summarize:

v

XRF

is

suitable

for

situations

where

you

have

a

single

IMS

DB/DC

system

that

requires

very

high

system

availability

(greater

that

99.5%).

However,

the

second

z/OS

containing

the

tracking

IMS

system

must

be

channel

attached

to

the

z/OS

system

that

the

first

IMS

is

running

on.

v

RSR

is

suitable

for

situations

where

you

have

one

or

more

IMS

subsystems,

running

in

a

number

of

address

spaces

on

a

single

z/OS

system,

where

you

wish

to

minimize

data

loss

in

a

failure

situation,

but

can

tolerate

outages

of

approximately

one

hour.

RSR

uses

network

connections

between

the

two

z/OS

systems,

so

there

are

no

restrictions

on

the

distance

separating

them.

The

following

sections

discuss

XRF

and

RSR

in

more

detail.

v

“Overview

of

Extended

Recovery

Facility

(XRF)”

on

page

308

v

“Overview

of

Remote

Site

Recovery

(RSR)”

on

page

308

v

“Comparison

of

XRF

and

RSR”

on

page

309

IBM

Confidential

©

Copyright

IBM

Corp.

2004

307

Overview

of

Extended

Recovery

Facility

(XRF)

XRF

works

by

having

a

second,

alternate,

IMS

running.

The

alternate

IMS

runs

on

a

separate

z/OS

image

that

preferably

is

on

a

physically

separate

machine.

The

alternate

IMS

tracks

the

work

of

the

active

IMS

system

by

using

the

IMS

log

data

sets.

XRF

gives

you

the

ability

to

perform

hardware

maintenance

and

maintenance

on

other

system

software

products

without

interrupting

the

availability

of

the

IMS

application.

The

principal

drawbacks

of

XRF

are:

v

It

will

not

protect

against

application

errors.

If

the

outage

is

caused

by

an

application

error,

the

same

application

message

may

be

re-presented

on

the

alternate

IMS

and

cause

it

to

fail.

v

It

will

not,

in

itself,

protect

against

network

outages.

You

will

have

to

plan

for

this

separately.

v

XRF

does

not

support

DB2

databases.

However,

if

you

are

designing

an

application

of

this

sort,

it

would

be

better

to

use

IMS

databases,

particularly

the

Data

Entry

Database

(DEDB).

The

DEDB

has

provisions

for

performing

most

database

maintenance

with

the

databases

remaining

available.

It

will

also

automatically

maintain

multiple

copies

of

the

data

sets

containing

the

data

to

guard

against

media

failure.

v

Some

maintenance

to

the

IMS

software

requires

it

to

be

applied

to

both

the

active

and

standby

IMS

systems

at

the

same

time.

Although

XRF

can

prevent

most

unplanned

and

planned

outages,

it

cannot

keep

the

IMS

system

available

indefinitely.

You

will

eventually

need

planned

outages

for

software

maintenance

and

upgrades

and

some

changes

to

the

IMS

configuration.

IMS

systems

running

with

XRF

have

achieved

continuous

availability

for

years.

Overview

of

Remote

Site

Recovery

(RSR)

RSR

is

a

separately

priced

feature

available

with

IMS.

It

provides

similar

facilities

to

XRF,

but

with

some

differences.

RSR

can

track

details

of

IMS

full-function

databases,

Fast

Path

DEDBs,

IMS

TM

message

queues

and

the

current

IMS

TM

telecommunication

network,

all

on

an

alternate

machine.

This

machine

is

connected

to

the

machine

with

the

active

systems

on

by

a

network

connection

using

the

VTAM

APPC

protocol.

The

VTAM

connection

is

between

separate

transport

manager

subsystems

(TMS)

on

the

active

and

tracking

machines.

The

transport

manager

subsystem

on

the

active

machine

collects

all

log

data

from

all

IMS

systems

(DB/DC,

DCCTL,

DBCTL

and

batch)

that

are

defined

for

RSR

tracking

and

sends

this

data

across

to

the

tracking

machine.

The

TMS

on

the

tracking

machine

receives

this

data

and

passes

it

to

a

single

IMS

DB/DC

region.

This

processes

the

data

and

logs

it

using

normal

IMS

logging.

Depending

on

what

level

of

tracking

has

been

requested,

the

IMS

region

may

also

apply

the

updates

to

the

IMS

databases.

If

there

are

any

interruptions

to

the

network

connection,

RSR

will

note

the

gaps

in

the

logging

and

perform

catch

up

processing

when

the

link

is

re-established.

The

IMS

system

on

the

tracking

machine

normally

can

only

process

input

from

the

TMS.

It

only

becomes

a

fully

functioning

system

if

it

has

to

take

over.

IBM

Confidential

308

IMS:

An

Introduction

to

IMS

Not

all

databases

are

tracked.

You

define

the

databases

that

are

to

be

tracked

by

specifying

this

when

you

define

them

to

DBRC.

Related

Reading:

For

more

information

about

RSR,

see

IMS

Version

9:

Administration

Guide:

System.

Comparison

of

XRF

and

RSR

Table

34

gives

a

comparison

of

the

features

of

XRF

and

RSR.

Table

34.

Comparison

on

XRF

and

RSR

Features

XRF

RSR

Uses

same

physical

log

data

sets

and

database

data

sets

for

active

IMS

and

alternate

IMS.

Uses

completely

separate

log

data

sets

and

database

data

sets.

Active

and

alternate

IMSs

must

be

within

the

distance

restrictions

of

the

channel-to-channel

connection

between

them.

Active

and

tracking

systems

are

connected

by

network.

Only

limit

on

separation

is

network

response.

Active

IMS

and

alternate

IMS

must

use

IMS

TM.

Active

IMS

can

be

any

system

updating

IMS

resources

DB/DC,

TM

only,

DB

only,

or

batch.

The

tracking

IMS

must

be

DB/DC.

One-to-one

relationship

between

active

IMS

and

alternate

IMS.

One

tracking

IMS

tracks

many

active

IMSs.

All

committed

updates

recorded

on

alternate

IMS.

Possible

for

gap

in

data

at

tracking

IMS

after

unplanned

takeover.

Switching

to

or

from

alternate

IMS

comparatively

simple.

Takeovers

more

complex

than

XRF.

Switch

to

alternate

IMS

in

order

of

one

minute.

Switch

to

alternate

can

take

an

hour

or

more.

IBM

Confidential

Chapter

28.

IMS

System

Recovery

309

IBM

Confidential

310

IMS:

An

Introduction

to

IMS

Chapter

29.

IBM

IMS

Tools

This

chapter

will

be

filled

in

when

we

get

closer

to

the

IMS

V9

GA

in

order

to

have

the

most

recent

information.

IBM

Confidential

©

Copyright

IBM

Corp.

2004

311

IBM

Confidential

312

IMS:

An

Introduction

to

IMS

Part

6.

IMS

in

a

Parallel

Sysplex

Environment

Chapter

30.

Introduction

to

Parallel

Sysplex

.

.

.

.

.

.

.

.

.

.

.

.

. 315

Goals

of

a

Sysplex

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 316

IMS

and

the

Sysplex

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 316

IMS

DB

and

the

Sysplex

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 316

Dependent

Regions

and

Grouped

IMSs

in

a

Sysplex

.

.

.

.

.

.

.

.

. 317

Fast

Database

Recovery

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 319

Summary

of

IMS

DB

and

the

Sysplex

Environment

.

.

.

.

.

.

.

.

.

. 320

IMS

TM

and

the

Sysplex

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 320

Distributing

Transaction

Workload

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 320

Distributing

Transactions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 326

Summary

of

IMS

TM

and

the

Sysplex

Environment

.

.

.

.

.

.

.

.

.

. 329

Other

Advantages

of

Running

IMS

TM

in

a

Sysplex

Environment

.

.

.

.

.

. 329

Rapid

Network

Reconnect

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 329

Sysplex

Failure

Recovery

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 332

Chapter

31.

IMSplexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 337

Components

of

an

IMSplex

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 337

Common

Queue

Server

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 337

Common

Service

Layer

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 338

Requirements

for

an

IMSplex

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 339

Operating

an

IMSplex

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 340

IBM

Confidential

©

Copyright

IBM

Corp.

2004

313

||

IBM

Confidential

314

IMS:

An

Introduction

to

IMS

Chapter

30.

Introduction

to

Parallel

Sysplex

In

1990,

the

sysplex

was

announced

as

the

strategic

direction

for

large

systems

computing

environments

and

described

it

as

“...

a

collection

of

z/OS

systems

that

cooperate,

using

certain

hardware

and

software

products,

to

process

work”.

The

term

sysplex

is

derived

from

the

words

SYStems

comPLEX.

At

the

time

of

this

first

announcement,

and

for

several

years

thereafter,

there

was

no

Parallel

Sysplex—only

a

base

sysplex.

The

base

sysplex

provided

improvements

in

inter-processor

communications

between

systems

and

any

subsystems

wishing

to

exploit

those

services,

but

no

data

sharing

services.

The

Parallel

Sysplex

was

introduced

later

in

the

1990s

and

added

hardware

and

software

components

to

provide

for

sysplex

data

sharing.

In

this

context,

data

sharing

means

the

ability

for

sysplex

member

systems

and

subsystems

to

store

data

into,

and

retrieve

data

from,

a

common

area.

In

short,

a

Parallel

Sysplex

can

have

multiple

central

processor

complexes

(CPCs)

and

multiple

applications

(like

IMS)

that

can

directly

share

the

workload.

Although

the

Parallel

Sysplex

environment

is

complex,

it

basically

consists

of

three

elements:

v

Two

z/OS

components:

cross-system

coupling

facility

(XCF)

and

cross-system

extended

services

(XES)

v

One

hardware

component

called

the

coupling

facility

(CF)

Since

Version

5,

each

release

of

IMS

adds

more

features

that

are

based

on

Parallel

Sysplex

technology.

Most

of

these

features

are

discussed

in

the

following

sections

of

this

chapter.

v

Data

sharing

v

Shared

queues

v

VTAM

Generic

Resources

v

VTAM

multi-node

persistent

sessions

v

Automatic

restart

management

v

Sysplex

communications

v

Operations

manager

and

single

point

of

control

v

Resource

Manager

and

sysplex

terminal

management

v

Coordinated

global

online

change

v

Automatic

RECON

loss

notification

Future

releases

of

IMS

will

continue

to

exploit

the

Parallel

Sysplex

environment.

This

book

uses

the

term

sysplex

as

being

synonymous

with

Parallel

Sysplex.

Related

Reading:

For

a

further

discussion

of

IMS

in

a

sysplex

environment,

see:

v

“Goals

of

a

Sysplex

Environment”

on

page

316

v

“IMS

and

the

Sysplex

Environment”

on

page

316

v

“IMS

DB

and

the

Sysplex

Environment”

on

page

316

v

“IMS

TM

and

the

Sysplex

Environment”

on

page

320

v

“Other

Advantages

of

Running

IMS

TM

in

a

Sysplex

Environment”

on

page

329

v

Chapter

31,

“IMSplexes,”

on

page

337

v

IMS

Version

9:

Administration

Guide:

System

IBM

Confidential

©

Copyright

IBM

Corp.

2004

315

For

a

detailed

discussion

of

IMS

in

a

sysplex

environment,

see:

v

IMS

in

the

Parallel

Sysplex:

Volume

I:

Reviewing

the

IMSplex

Technology

v

IMS

in

the

Parallel

Sysplex:

Volume

II:

Planning

the

IMSplex

v

IMS

in

the

Parallel

Sysplex:

Volume

III:

IMSplex

Implementation

and

Operations

Goals

of

a

Sysplex

Environment

The

goals

of

a

sysplex

environment

are:

v

High

availability

v

Capacity

v

Workload

balancing

High

availability

means

that

the

end

user

has

access

to

the

facilities

and

resources

needed

to

perform

some

business

function

when

it

is

needed.

Parallel

Sysplex

allows

you

to

have

multiple

IMS

systems

that

can

do

the

same

work.

These

systems

are

called

clones

(meaning

each

IMS

system

definition

is

the

same).

The

clones

must

have

access

to

the

same

data

and

the

capability

to

process

the

same

transactions

or

work

requests.

High

availability

requires

that

you

survive

both

planned

outages,

such

as

upgrades,

and

unplanned

outages,

such

as

abends.

Even

with

clones,

you

need

the

capability

to

quickly

restore

any

failed

system.

Adequate

capacity

means

that

the

servers

have

the

resources

to

satisfy

all

of

the

work

requests

from

its

end

users

within

the

needed

time

frame.

Parallel

Sysplex

allows

you

to

meet

capacity

needs

by

easily

adding

and

deleting

cloned

IMS

systems.

When

you

change

your

configuration

in

this

way,

you

can

route

the

work

to

the

systems

that

can

handle

it.

Workload

balancing

is

the

spreading

of

work

across

the

systems

that

can

do

it

and

spreading

that

work

appropriately.

Parallel

Sysplex

provides

capabilities

to

automatically

balance

workloads.

Proper

balancing

allows

you

to

more

easily

handle

unexpected

peaks

in

workloads.

For

balancing

to

work

best,

it

must

be

able

to

dynamically

adjust

to

changes

in

the

workload

and

changes

in

your

hardware

and

software

configurations.

IMS

and

other

products,

when

used

in

a

Parallel

Sysplex,

provide

the

facilities

to

increase

availability,

enhance

capacity,

and

more

easily

balance

workloads.

IMS

and

the

Sysplex

Environment

Use

the

following

procedure

to

enable

IMS

to

make

the

most

of

the

sysplex

environment:

1.

Implement

data

sharing

among

multiple

IMS

DBs

within

the

sysplex.

For

more

information

on

this

topic,

see

“IMS

DB

and

the

Sysplex

Environment.”

2.

Distribute

the

transaction

workload

of

multiple

IMS

TMs

within

the

sysplex.

This

involves

distributing

connections

and

transactions.

For

more

information

on

this

topic,

see

“IMS

TM

and

the

Sysplex

Environment”

on

page

320.

IMS

DB

and

the

Sysplex

Environment

The

foundation

in

using

Parallel

Sysplex

with

IMS

is

the

implementation

of

data

sharing

by

the

Database

Manager.

Data

sharing

allows

multiple

IMS

subsystems

to

access

and

update

the

same

IMS

databases.

IBM

Confidential

316

IMS:

An

Introduction

to

IMS

|

|
|

|
|

|
|
|

Block-level

data

sharing

means

that

each

IMS

server

has

the

authority

to

access

and

update

all

shared

data.

As

many

as

255

IMS

subsystems

on

up

to

32

logical

partitions

(LPARs)

or

processors

can

share

IMS

databases.

Each

IMS

has

full

capability

to

access

and

update

with

integrity.

Figure

96

shows

a

data

sharing

configuration

with

four

IMS

systems

running

on

four

z/OS

images

sharing

the

same

set

of

IMS

databases.

Each

IMS

system

has

its

own

database

buffer

pools.

Each

IMS

reads

and

updates

the

databases.

To

support

the

integrity

requirements,

IMS

utilizes

structures

in

coupling

facilities.

A

lock

structure

is

used

to

hold

locking

information

that

is

shared

by

the

lock

managers

(IRLMs)

used

by

the

IMS

systems.

Information

about

database

blocks

and

their

locations

in

the

buffer

pools

is

stored

in

cache

structures.

These

locks

are

used

to

maintain

the

integrity

of

the

buffer

pools

when

an

IMS

updates

a

block.

There

are

no

restrictions

on

what

IMS

data

can

be

shared.

If

you

are

using

MSDBs,

they

must

be

converted

to

DEDBs.

IMS

does

not

force

data

affinities

on

an

installation

because

all

IMS

data

can

be

shared.

A

data

affinity

occurs

when

some

data,

such

as

a

database,

is

not

shared.

Its

access

can

only

occur

from

one

system.

Without

data

affinities,

a

transaction

or

batch

process

is

capable

of

running

on

any

system.

It

does

not

have

to

be

routed

to

a

particular

IMS

because

that

is

the

only

one

with

access

to

the

data.

Dependent

Regions

and

Grouped

IMSs

in

a

Sysplex

Outside

of

the

sysplex

environment,

a

dependent

region

runs

with

only

one

control

region.

You

do

not

move

a

dependent

region

from

one

IMS

to

another.

With

Parallel

Figure

96.

Example

of

a

Data

Sharing

Configuration

with

IMS

DC/DB,

DBCTL,

and

IMS

Batch

Jobs

IBM

Confidential

Chapter

30.

Introduction

to

Parallel

Sysplex

317

Sysplex

you

might

want

this

ability,

especially

for

BMPs.

Use

the

IMSID

parameter

in

the

dependent

region

to

specify

to

which

control

region

the

dependent

region

will

connect.

Each

IMS

has

a

unique

IMSID.

This

makes

the

movement

of

a

dependent

region,

such

as

a

BMP,

difficult.

It

seems

we

have

to

change

the

JCL

to

specify

a

different

IMSID

before

we

can

move

the

dependent

region.

In

the

example

shown

in

Figure

97,

we

want

to

execute

dependent

region

BMPY

(that

has

IMSID=IMS2

specified)

on

z/OS3

where

IMS3

is

running.

This

will

not

work.

z/OS

fails

because

BMPY

is

associated

with

IMS2

(IMSID=IMS2)

and

we

can’t

dynamically

change

the

IMSID

that

is

specified

in

BMPY.

But,

there

is

a

solution.

The

IMSGROUP

parameter

allows

IMS

to

be

known

by

both

its

IMSID

and

its

IMSGROUP

name.

All

the

IMSs

must

have

unique

Musics,

but

they

may

have

the

same

IMSGROUP

name.

They

register

this

group

name

using

z/OS

token

services

and

their

own

unique

IMSID.

The

BMP

has

an

IMSID

equal

to

the

IMSGROUP

name.

The

BMP

uses

token

services

to

see

if

there

is

an

IMSID

using

the“

IMS”

as

an

IMSGROUP

parameter.

In

the

example

shown

in

Figure

97,

BMPY

finds

that

it

is

running

on

the

same

z/OS

with

IMS3.

It

would

connect

to

IMS3.

In

this

way,

if

IMS2

is

not

running

or

that

system

is

very

busy,

the

BMP

could

be

routed

to

any

z/OS

that

has

any

IMS

in

the

group.

The

Program

Restart

Facility

(5655-E14)

may

be

used

to

easily

restart

a

failed

BMP

on

another

IMS

system.

This

further

extends

the

capabilities

to

use

BMPs

with

Parallel

Sysplex.

Figure

97.

Moving

a

Dependent

Region

Between

IMSs

Figure

98.

Example

of

a

Dependent

Region

Running

with

A

Different

Control

Region

IBM

Confidential

318

IMS:

An

Introduction

to

IMS

|

|
|
|

Fast

Database

Recovery

Fast

Database

Recovery

(FDBR)

can

be

used

to

greatly

reduce

the

effect

of

the

failure

of

an

IMS

system

on

data

availability

to

other

IMS

systems.

If

an

IMS

system

fails,

the

update

locks

are

retained.

They

must

be

kept

until

the

inflight

work

of

the

failed

system

is

backed

out.

Without

FDBR,

this

is

done

during

emergency

restart.

Locked

records

cannot

be

accessed

by

other

IMS

systems.

These

systems

do

not

wait

for

the

release

of

the

locks.

Instead,

their

applications

get

a

lock

reject

condition

when

they

ask

for

a

lock

that

is

retained

for

the

failed

system.

This

lock

reject

condition

typically

causes

an

application

abend.

So,

the

failure

of

one

IMS

system

affects

the

other

IMS

systems.

They

do

not

have

access

to

some

data

until

the

inflight

transactions

are

cleaned

up.

FDBR

is

the

solution

for

the

locked

records

problem.

FDBR

is

an

independent

region.

It

runs

in

its

own

address

space.

An

FDBR

region

tracks

one

IMS

control

region.

For

maximum

effectiveness,

the

tracking

FDBR

region

should

run

on

a

different

operating

system

than

where

the

tracked

IMS

is

running.

Figure

99

illustrates

a

potential

FDBR

configuration.

In

Figure

99,

IMS

A

and

its

FDBR

run

on

different

systems.

IMS

B

and

its

FDBR

run

on

different

systems.

If

SYSTEM

A

or

IMS

A

fails,

FDBR

A

backs

out

all

of

the

inflight

work

from

IMS

A.

It

also

releases

the

retained

locks

held

for

the

inflight

work

of

IMS

A.

This

allows

IMS

B

to

access

all

of

the

IMS

data.

Figure

99.

Sample

FDBR

Configuration

IBM

Confidential

Chapter

30.

Introduction

to

Parallel

Sysplex

319

|

|
|
|

Tracking

is

accomplished

by

implementing

either

one

of

the

following

methods:

1.

An

FDBR

and

its

IMS

system

join

the

same

XCF

group

as

the

IMS

that

is

being

tracked.

This

allows

FDBR

to

be

immediately

aware

when

the

tracked

IMS’s

address

space

or

z/OS

terminates.

2.

FDBR

continually

reads

the

tracked

IMS’s

log

(OLDS).

If

IMS

abends,

its

ESTAE

routine

writes

a

failure

log

record

(type

X'06').

FDBR

can

read

this

log

record

before

IMS’s

address

space

terminates.

When

either

of

these

tracking

methods

makes

FDBR

aware

of

the

IMS

failure,

FDBR

restores

the

databases

to

the

last

point

of

consistency.

For

full-function

databases,

this

means

it

backs

out

inflight

units

of

work.

For

DEDBs,

this

means

that

it

invokes

redo

processing

for

incomplete

output

threads.

These

are

the

same

actions

that

emergency

restart

would

have

done.

When

these

actions

are

complete,

FDBR

releases

the

locks

held

by

the

failed

IMS,

emulating

what

emergency

restart

would

have

done.

FDBR

is

much

quicker

than

emergency

restart.

FDBR

does

not

have

to

wait

for

the

restart

of

IMS.

It

does

not

have

to

wait

for

the

loading

of

the

IMS

modules.

It

does

not

have

to

wait

for

the

reading

of

the

log

except

for

the

last

few

records.

FDBR

is

much

quicker

because

it

eliminates

many

of

the

potential

lock

rejects

and

application

abends

on

the

surviving

IMSs.

Summary

of

IMS

DB

and

the

Sysplex

Environment

Higher

availability

is

provided

by

the

data

sharing

configuration.

It

allows

work

that

might

otherwise

have

to

wait

for

the

restart

of

a

failed

IMS

to

run

on

a

surviving

IMS.

FDBR

reduces

the

impact

of

the

failure

by

monitoring

an

active

IMS

and

performing

dynamic

backout

or

DEDB

redo

processing

(or

both)

sooner

than

an

IMS

emergency

restart

would

do.

Work

can

run

on

any

IMSs

in

the

sysplex

data

sharing

group

because

multiple

IMSs

have

access

the

same

data.

Up

to

32

processors

can

be

used

to

provide

maximum

capacity.

If

every

IMS

can

access

all

the

data,

then

every

IMS

can

process

any

of

the

work.

This

allows

an

installation

to

create

IMS

clones.

In

fact,

a

single

system

definition

can

be

used

for

all

the

IMSs.

Cloning

allows

you

to

distribute

the

work

to

the

systems

that

have

the

capacity

to

handle

it.

IMS

TM

and

the

Sysplex

Environment

After

data

sharing

is

in

place,

the

next

logical

step

in

using

Parallel

Sysplex

with

IMS

Transaction

Manager

is

the

distribution

of

connections.

For

VTAM,

connections

are

sessions.

For

TCP/IP,

they

are

socket

connections.

Distributing

connections

is

one

of

the

methods

for

distributing

the

workload

across

multiple

IMSs

and

multiple

processors.

This

is

static

distribution.

That

is,

after

a

user

is

connected

to

an

IMS,

the

user

remains

connected

until

the

connection

is

broken.

Another

connection

is

required

to

use

this

method

for

distributing

the

workload

to

another

IMS.

Distributing

Transaction

Workload

There

are

several

ways

to

distribute

the

transaction

workload.

Two

basic

techniques

are:

v

Distribute

the

logons

so

that

not

all

users

are

logged

on

to

the

same

IMS.

Whichever

IMS

they

are

logged

on

to

is

the

one

that

processes

the

transaction.

IBM

Confidential

320

IMS:

An

Introduction

to

IMS

|

|
|
|

|
|
|

|
|
|
|
|
|
|

v

Distribute

the

transactions

between

IMSs

after

a

transaction

has

been

received

from

the

network.

There

is

a

combination

whereby

users’

logons

are

distributed

and

the

transaction

submitted

by

these

users

are

also

distributed

after

they

are

entered.

It

does

not

matter

where

the

transaction

is

processed

if

you

are

data

sharing.

Distributing

Logons

Manually

The

earliest

approach

to

distributing

logons

was

to

tell

the

end

user

which

IMS

to

log

on

to.

There

are

several

problems

with

this

technique:

v

Balancing

the

logons

becomes

an

administrative

responsibility

which

must

be

monitored

continuously

as

users

come

and

go.

v

As

new

IMSs

join

the

group,

either

no

users

log

on

to

that

IMS

(because

they

do

not

know

about

it),

or

the

administrator

must

reassign

users

to

the

new

IMSs.

v

If

an

IMS

fails,

users

have

to

be

instructed

either

to

wait

for

it

to

restart

or

to

log

on

to

another

IMS.

After

a

user

knows

of

another

IMS,

the

user

might

decide

arbitrarily

to

log

on

to

it

instead

of

his

primary

IMS,

defeating

the

balancing

goal.

Distributing

Logons

Automatically

Distributing

logons

can

be

done

automatically

using

several

techniques.

For

SNA

networks,

VTAM

Generic

Resources

can

be

used

to

dynamically

route

a

logon

request

to

an

active

IMS.

The

IMS

is

chosen

based

on

Workload

Manager

(WLM)

information

or

the

number

of

users

currently

logged

on.

This

capability

is

available

with

IMS

Version

6

and

later

releases.

Prior

to

IMS

Version

6,

logons

could

be

distributed

automatically

using

a

VTAM

USERVAR

exit.

This

exit

can

be

used

to

direct

the

logon

request

to

one

of

several

IMSs

in

the

group.

Although

this

method

is

still

supported,

IBM

recommends

using

VTAM

Generic

Resources.

For

TCP/IP,

connection

distribution

can

be

accomplished

using

such

tools

as

DNS/WLM,

IND,

or

the

Sysplex

Distributor.

The

following

sections

discuss

these

possibilities.

VTAM

USERVAR

Exit:

USERVAR

is

a

VTAM

capability

that

can

change

the

value

specified

for

the

VTAM

application

name

in

a

logon

request.

USERVAR

support

includes

an

optional

exit

routine.

The

exit

routine

can

choose

from

multiple

application

names.

So,

a

USERVAR

exit

routine

can

be

used

to

route

a

logon

to

any

IMS

that

it

knows

about.

But,

it

might

not

know

of

configuration

changes

or

of

the

availability

of

any

particular

IMS

in

the

group.

For

example

(see

Figure

100

on

page

322),

if

IMS1

fails,

the

exit

routine

might

continue

to

route

logons

to

IMS1.

Similarly,

if

IMS4

is

added

to

the

configuration,

the

exit

routine

might

not

route

any

logons

to

it.

A

sophisticated

routine

might

be

able

to

modify

its

decisions,

but

there

is

no

automatic

notification

to

the

routine

of

changes

in

the

configuration.

IBM

Confidential

Chapter

30.

Introduction

to

Parallel

Sysplex

321

|
|
|
|

VTAM

Generic

Resources:

VTAM

Generic

Resources

(VGR)

is

a

service

provided

by

VTAM

in

a

Parallel

Sysplex.

It

minimizes

the

knowledge

that

an

end

user

needs

to

log

on

to

one

of

several

like

instances

of

an

application,

such

as

IMS.

Each

instance

of

an

application,

joins

a

Generic

Resource

Group

by

specifying

both

the

group

name

and

its

specific

VTAM

application

name.

End

users

specify

the

group

name

when

logging

on.

VTAM

selects

a

member

of

the

group

for

the

session.

Generic

Resource

Groups

are

dynamic.

When

a

new

IMS

opens

its

VTAM

ACB,

it

joins

the

group

and

is

a

candidate

for

subsequent

logons.

When

an

IMS

terminates,

it

is

removed

from

the

group.

It

is

then

no

longer

a

candidate

for

logons.

Information

about

the

members

of

a

group

is

kept

in

a

coupling

facility

structure

(see

Figure

101

on

page

323).

Figure

100.

Example

of

VTAM

USERVAR

Exit

Routing

IMS

Logons

IBM

Confidential

322

IMS:

An

Introduction

to

IMS

|

|
|
|

APPC/IMS

can

use

VGR,

but

this

does

not

require

direct

IMS

support.

Instead,

this

support

is

provided

by

APPC/MVS.

There

are

many

benefits

of

VGR

over

other

techniques

for

distributing

logon

requests.

Some

of

these

benefits

are:

Availability

VTAM

knows

by

looking

in

the

CF

structure

which

IMSs

are

active.

It

routes

requests

only

to

active

IMSs.

If

an

IMS

fails,

its

users

can

immediately

log

on

again

using

the

same

generic

name.

They

will

be

connected

to

one

of

the

active

IMSs.

Capacity

If

another

IMS

is

needed

to

handle

the

workload,

it

immediately

becomes

eligible

for

user

logons.

User

procedures

do

not

have

to

be

modified.

Workload

Balancing

VTAM

attempts

to

balance

logons

across

the

available

IMSs.

It

has

two

ways

of

doing

this.

v

If

Workload

Manager

(WLM)

goal

mode

is

used,

VGR

routes

a

logon

to

the

system

with

the

most

available

capacity.

v

If

WLM

goal

mode

is

not

used,

VGR

attempts

to

balance

the

number

of

logons

for

each

IMS

system.

You

can

implement

a

VGR

user

exit

routine

to

override

the

VGR

decision.

Figure

101.

VTAM

Generic

Resources

Distributing

Logons

In

a

Sysplex

IBM

Confidential

Chapter

30.

Introduction

to

Parallel

Sysplex

323

|

|
|
|

Web

and

TCP/IP

Connections

to

IMS

Many

installations

access

their

IMS

systems

using

TCP/IP.

This

includes

connections

from

the

Web.

Web

servers

can

use

many

different

ways

of

connecting

to

IMS.

The

most

typical

connections

are:

APPC

If

the

Web

server

sends

requests

to

z/OS

using

APPC

protocols,

then

the

connections

to

IMS

can

be

distributed

using

APPC/MVS

support

for

VTAM

Generic

Resources.

TCP/IP

Telnet

TN3270

allows

3270

users

to

use

TCP/IP

protocols.

The

end

user

is

a

TN3270

client.

The

TN3270

client

communicates

with

a

TN3270

server

using

TCP/IP.

The

TN3270

server

uses

LU2

(3270)

protocols

to

communicate

with

IMS

through

VTAM.

VGR

can

be

used

with

TN3270

servers

to

provide

connection

balancing.

TCP/IP

Sockets

If

the

Web

server

uses

sockets,

the

server

can

communicate

with

IMS

Connect

for

z/OS,

which

communicates

with

IMS.

IMS

Connect

executes

in

its

own

address

space.

It

communicates

with

its

client,

in

this

case

the

Web

server,

using

TCP/IP

socket

protocols.

It

communicates

with

IMS

using

the

IMS

Open

Transaction

Manager

Access

(OTMA)

protocol.

OTMA

uses

z/OS

Cross

System

Coupling

Facility

(XCF),

which

allows

programs

running

in

different

address

spaces,

possibly

on

different

z/OS

images

in

the

Parallel

Sysplex,

to

send

and

receive

messages

from

each

other.

The

distribution

of

connections

from

Web

servers

to

IMS

Connect

must

be

done

with

TCP/IP

socket

protocols.

Domain

Name

Server/Workload

Manager

(DNS/WLM)

can

be

used

in

conjunction

with

TN3270

to

distribute

the

connections

requests

across

multiple

TN3270

servers

in

the

Parallel

Sysplex.

The

TN3270

client

request

goes

to

one

DNS/WLM,

which

then

uses

the

WLM

to

decide

which

TN3270

server

should

get

the

connection

request.

After

the

DNS/WLM

chooses

a

TN3270

server,

it

is

no

longer

involved

(communications

goes

directly

between

the

TN3270

client

and

the

TN3270

server).

The

TN3270

server

can

then

use

VTAM

Generic

Resources

to

distribute

sessions

across

the

IMS

members.

VGR

will

always

use

a

local

IMS

if

one

is

available.

A

local

IMS

is

an

IMS

that

is

using

the

VTAM

that

the

TN3270

server

is

using.

However,

if

the

TN3270

server

is

on

an

z/OS

image

without

an

IMS,

VGR

can

send

the

logon

request

to

an

available

IMS

on

any

z/OS.

Figure

102

on

page

325

is

an

illustration

of

Telnet

3270

use.

The

diagram

shows

four

systems.

The

system

in

the

upper

portion

of

Figure

102

on

page

325,

there

is

a

DNS/WLM,

a

TN3270

Server,

and

an

IMS.

The

other

three

systems

in

the

Parallel

Sysplex

have

second

copies

of

these.

The

second

DNS/WLM

in

the

diagram

is

a

backup

for

the

first

(in

case

the

first

one

fails).

IBM

Confidential

324

IMS:

An

Introduction

to

IMS

While

the

configuration

illustrated

in

Figure

102

provides

good

connection

balancing,

it

is

fairly

expensive

(in

CPU

usage)

to

establish

and

terminate

the

connection.

So,

this

is

not

a

good

configuration

for

connections

that

are

short

term.

The

Interactive

Network

Dispatcher

(IND)

can

be

used

to

distribute

connection

requests

from

a

Web

server

to

one

of

several

IMS

Connect

address

spaces

in

the

Parallel

Sysplex.

IND

is

much

more

efficient

than

DNS/WLM

at

handling

connection

requests,

but

requires

a

separate

hardware

box

(such

as

a

2216

router)

and

so

can

be

more

expensive.

IMS

Connect

then

sends

work

to

one

of

several

IMSs

using

XCF

services

and

IMS

OTMA.

This

is

illustrated

in

Figure

103.

In

Figure

103,

both

IMSs

can

be

reached

through

either

IMS

Connect.

Exit

routines

in

IMS

Connect

can

be

used

to

choose

to

which

IMS

the

request

will

be

sent.

These

routines

may

have

available

to

them

information

about

which

IMSs

are

currently

active.

The

network

dispatching

function

of

IND

is

included

in

WebSphere

Edge

Server.

There

are

WebSphere

Edge

Servers

for

LINUX,

AIX®,

Windows®,

and

Sun

Solaris.

A

better

product

for

both

long

and

short

connections

is

the

Sysplex

Distributor.

It

is

software

that

runs

on

the

host

system

and

distributes

sockets

across

multiple

target

systems.

Like

DNS/WLM,

a

backup

Sysplex

Distributor

can

be

running

on

another

z/OS

in

the

sysplex.

In

the

case

illustrated

in

Figure

104

on

page

326,

there

are

multiple

instances

of

IMS

Connect.

Inputs

go

through

the

Sysplex

Distributor.

Responses

do

not

go

Figure

102.

TN3270

Client

Connecting

to

IMS

Figure

103.

IND

Connecting

to

Multiple

IMSs

via

IMS

Connect

IBM

Confidential

Chapter

30.

Introduction

to

Parallel

Sysplex

325

through

the

Sysplex

Distributor.

In

Figure

104,

the

responses

go

directly

from

IMS

Connect

to

the

Web

Server.

Distributing

Transactions

After

the

connections

are

distributed

within

the

sysplex,

the

next

step

in

using

Parallel

Sysplex

with

IMS

Transaction

Manager

is

the

distribution

of

transactions.

This

involves

processing

a

transaction

on

a

system

other

than

the

one

that

initially

received

the

input

message

The

techniques

used

to

distribute

connections

from

users

across

IMS

systems

might

not

balance

the

workload.

Several

things

can

cause

this:

v

A

large

batch

workload

on

one

system

might

overload

it.

Users

who

are

already

connected

to

that

system

remain

connected

to

it.

Their

response

times

could

be

affected

by

this

overload.

v

The

volumes

of

inputs

from

connected

users

might

vary.

This

could

result

in

peak

loads

on

one

system

while

another

system

has

a

lull

in

inputs.

v

Other

factors

could

also

cause

unbalanced

workloads

across

the

systems.

The

techniques

to

address

this

imbalance

involve

distributing

transactions

to

other

IMS

TM

systems.

When

you

distribute

transactions,

an

input

transaction

can

be

routed

from

one

IMS

to

another

for

processing.

There

are

two

methods

of

doing

this

in

IMS.

Multiple

Systems

Coupling

(MSC)

With

MSC,

multiple

IMS

systems

are

connected

by

communication

links.

An

IMS

system

may

send

a

message

across

one

of

these

links

to

another

IMS.

The

receiving

system

processes

the

transaction

and

sends

its

reply

to

the

original

system.

The

original

system

sends

the

reply

to

the

user.

IMS

Shared

Message

Queues

With

shared

queues,

IMS

systems

share

one

set

of

message

queues.

They

are

stored

in

list

structures

in

coupling

facilities.

Any

IMS

system

can

process

a

transaction

because

the

queues

are

available

to

all

the

IMS

systems.

Those

with

more

processing

capacity

tend

to

process

more

transactions.

With

either

of

these

implementations,

a

user

can

be

connected

to

any

system

and

have

an

input

message

processed

on

another

IMS

system.

There

are

some

limitations

for

APPC

and

OTMA

connections.

In

some

cases,

input

messages

from

these

connections

must

be

processed

by

the

system

where

the

connection

exists.

Figure

104.

Web

Connections

to

IMS

Using

the

Sysplex

Distributor

and

IMS

Connect

IBM

Confidential

326

IMS:

An

Introduction

to

IMS

|
|
|
|

Routing

Messages

with

MSC

As

illustrated

in

Figure

105,

MSC

is

comprised

of

VTAM

sessions

between

multiple

IMS

systems.

When

an

IMS

transaction

is

received

by

any

IMS,

its

definitions

determine

where

that

transaction

is

to

execute.

The

transaction

might

be

processed

locally

(on

the

IMS

system

that

receives

the

transaction).

However,

the

transaction

might

be

processed

remotely

(on

another

system).

If

the

transaction

is

defined

to

run

remotely,

the

IMS

system

that

receives

the

message

sends

it

to

the

remote

system.

MSC

can

be

used

to

distribute

transactions

across

multiple

IMSs.

The

definitions

are

static.

An

IMS

makes

its

decision

about

whether

or

not

to

process

a

transaction

based

on

the

transaction

code.

This

decision

is

not

dynamic.

Decisions

are

not

based

on

workloads.

It

is

relatively

difficult

to

add

a

new

IMS

system

to

the

complex.

A

new

IMS

system

requires

changes

in

the

definitions

for

the

other

existing

IMS

systems.

MSC

definitions

can

be

used

to

distribute

the

workload,

but

they

do

not

balance

the

workload.

A

link

failure

or

an

IMS

failure

can

mean

that

a

transaction

cannot

be

processed

until

the

failure

is

corrected.

MSC

users

can

include

MSC

exit

routines

to

override

the

definitions

of

where

transactions

are

processed.

This

adds

some

dynamic

capabilities

to

MSC

routing.

The

IMS

Workload

Router

(product

number

5697-B87)

provides

a

set

of

these

exit

routines.

The

Workload

Router

(WLR)

uses

MSC

Directed

Routing

to

distribute

transactions

across

multiple

IMSs

without

regard

to

how

they

have

been

defined.

For

example,

if

TRANA

is

received

at

IMS1,

it

can

be

processed

on

IMS1,

IMS2,

or

IMS3.

The

WLR

can

be

directed

to

process

a

certain

percentage

of

transactions

locally

and

to

send

others

to

remote

IMSs.

This

provides

some

workload

balancing

capability.

Figure

105.

VTAM

Sessions

of

3

IMSs

Connected

to

Each

Other

Using

MSC

IBM

Confidential

Chapter

30.

Introduction

to

Parallel

Sysplex

327

Related

Reading:

For

more

information

about

the

IMS

Workload

Router

product,

see

the

IBM

IMS

Workload

Router

for

z/OS

User’s

Guide.

Distributing

Transactions

Using

Shared

Message

Queues

IMS

TM

is

a

queue-driven

system.

Transaction

input

messages

can

be

received

from

terminals

or

programs.

Output

messages

can

be

sent

to

terminals

or

programs.

All

of

these

messages

are

placed

in

message

queues.

In

conventional

(non-shared

queues)

systems,

each

IMS

has

its

own

set

of

queues

(see

Figure

106).

These

queues

are

accessible

only

by

the

IMS

system

that

owns

them.

When

MSC

is

used,

one

IMS

sends

a

message

from

its

queues

to

another

IMS

system,

which

places

the

message

in

its

queues.

In

any

case,

a

message

may

be

processed

only

by

the

IMS

system

on

whose

queues

it

resides.

With

shared

queues,

the

message

queues

are

moved

to

list

structures

in

coupling

facilities

where

they

are

available

to

any

IMS

in

the

shared

queues

group

(see

Figure

107).

A

terminal

is

connected

to

one

IMS

system.

Input

messages

from

the

terminal

are

placed

in

the

shared

queues.

They

are

accessible

from

any

IMS

using

those

queues.

This

means

that

another

IMS

system,

not

the

one

to

which

the

terminal

is

connected,

can

process

the

input

message.

All

messages

(input

and

output)

go

into

the

shared

queues.

IMS

subsystems

register

interest

in

specific

queues,

such

as

the

queue

for

transaction

TRANA

or

for

terminal

TERMX.

IMS

systems

register

interest

for

queues

it

can

process.

This

includes

the

queues

for

the

terminals

connected

to

it

and

the

transactions

which

are

defined

to

it.

Figure

106.

A

Single

IMS

with

a

Single

Message

Queue

Figure

107.

Two

IMSs

Accessing

One

Message

Queue

on

a

Coupling

Facility

IBM

Confidential

328

IMS:

An

Introduction

to

IMS

When

there

is

work

on

a

registered

queue,

the

IMS

systems

that

have

registered

interest

in

the

queue

are

notified.

When

an

IMS

has

the

resources

available

to

process

the

transaction,

such

as

an

available

dependent

region,

it

attempts

to

read

a

message

from

the

shared

queue.

If

it

receives

a

message,

it

processes

it

and

puts

the

response

back

on

a

shared

queue.

Multiple

IMSs

can

attempt

to

retrieve

messages

from

a

queue,

but

only

one

will

receive

an

individual

message.

Terminal

output

messages

are

retrieved

from

the

queue

by

the

IMS

to

which

the

terminal

is

connected.

This

IMS

sends

the

output

message

to

the

terminal.

Only

those

IMS

systems

with

available

resources

will

ask

for

and

process

the

transaction

because

any

IMS

can

process

a

shared

queues

message.

This

tends

to

distribute

the

workload

to

the

systems

best

able

to

handle

it.

Those

systems

with

the

most

free

resources

will

ask

for

work

most

frequently.

So,

by

using

shared

queues,

the

application

workload

is

balanced

dynamically.

If

there

is

any

processing

capacity

available

anywhere

in

the

shared

queues

group,

queued

transactions

will

be

scheduled

and

processed.

The

user

is

not

forced

to

wait

because

a

single

IMS

is

overloaded.

Shared

queues

can

also

be

used

in

conjunction

with

connection

balancing

provided

by

VTAM

Generic

Resources

or

one

of

the

techniques

used

for

TCP/IP.

Summary

of

IMS

TM

and

the

Sysplex

Environment

In

a

Parallel

Sysplex,

you

can

take

advantage

of

multiple

capabilities:

v

VTAM

Generic

Resources

provides

connection

balancing

for

SNA

sessions.

It

improves

availability

for

users

connected

via

VTAM

and

makes

it

easy

to

add

new

systems

without

changing

user

logon

procedures.

v

The

various

TCP/IP

distributors

provides

connection

balancing

for

users

of

TCP/IP.

They

provide

improved

availability

for

these

users

and

make

it

easy

to

add

capacity

for

systems

with

these

users.

v

The

IMS

Workload

Router

provides

workload

balancing

capabilities

for

users

of

conventional

queuing.

v

Shared

queues

provides

dynamic

workload

balancing

by

allowing

an

IMS

system

with

available

capacity

to

process

any

transaction

in

the

shared

queues

group.

Shared

queues

provides

availability

benefits

by

allowing

any

active

IMS

to

process

transactions

when

another

IMS

fails.

Capacity

is

easily

added

because

no

modifications

have

to

be

made

to

the

previously

existing

IMS

systems.

Other

Advantages

of

Running

IMS

TM

in

a

Sysplex

Environment

The

next

few

sections

discuss

additional

functions

available

with

IMS

that

take

advantage

of

the

sysplex

environment.

These

sections

are:

v

“Rapid

Network

Reconnect”

v

“Sysplex

Failure

Recovery”

on

page

332

Rapid

Network

Reconnect

Rapid

Network

Reconnect

(RNR)

is

IMS’s

support

for

VTAM

persistent

sessions

for

non-XRF

systems.

RNR

can

provide

great

benefits

for

some

environments,

but

it

is

not

appropriate

for

all

environments.

RNR

is

optional.

IBM

Confidential

Chapter

30.

Introduction

to

Parallel

Sysplex

329

|
|
|

VTAM

persistent

session

support

eliminates

session

cleanup

and

restart

when

a

host

failure

occurs.

There

are

two

kinds

on

persistent

session

support.

v

Single

node

persistent

sessions

(SNPS)

provide

support

only

for

IMS

failures.

With

SNPS,

the

VTAM

instance

must

not

fail.

v

Multinode

persistent

sessions

(MNPS)

provide

support

for

all

types

of

host

failures.

These

include

failures

of

IMS,

VTAM,

z/OS,

or

the

processor.

With

persistent

sessions,

end

users

do

not

lose

their

sessions

for

the

supported

failures.

In

fact,

they

remain

logged

on.

Even

though

their

IMS

system

fails,

their

sessions

are

not

terminated.

This

means

that

the

unbind

traffic

does

not

flow

through

the

network

when

the

failure

occurs.

Secondly,

when

their

IMS

system

is

restarted,

their

sessions

do

not

have

to

be

reestablished

and

the

bind

traffic

does

not

flow.

For

LU

types

that

typically

have

human

users,

such

as

SLUTYPE2

and

SLUTYPE1

(CONSOLE),

sign-on

is

required.

For

LU

types

that

typically

are

programmable,

such

as

SLUTYPEP,

or

do

not

have

direct

human

users,

such

as

LU1

(PRINTER1),

sign-on

is

not

required.

Single

Node

Persistent

Sessions

When

using

RNR

with

SNPS,

only

outages

due

to

IMS

abends

are

supported.

The

VTAM

used

by

this

IMS

must

not

fail.

The

scenario

illustrated

in

Figure

108

shows

how

SNPS

works.

The

numbers

in

Figure

108

refer

to

the

descriptions

in

the

list

that

follows

the

figure.

1.

When

a

session

is

established,

session

data

is

stored

in

an

z/OS

data

space

associated

with

the

VTAM

address

space.

2.

If

the

IMS

system

abends

but

VTAM

does

not,

the

session

stays

active

and

the

session

data

remains.

3.

When

the

IMS

is

restarted,

the

users’

sessions

are

given

to

the

restarted

IMS.

The

users

have

remained

logged

on

even

though

their

IMS

system

had

failed.

Multinode

Persistent

Sessions

With

MNPS,

the

session

data

is

stored

in

a

CF

structure

where

it

is

available

to

other

systems

in

the

sysplex.

All

types

of

failures

are

supported

with

MNPS.

As

with

SNPS

support,

when

IMS

restarted,

the

users

are

automatically

reconnected

in

a

“logged

on”

state.

When

using

RNR

with

MNPS,

all

outages

of

the

IMS,

VTAM,

or

processor

are

supported.

Figure

108.

An

SNPS

Example

Scenario

Where

a

Logon

is

Not

Terminated

When

Its

IMS

Fails

IBM

Confidential

330

IMS:

An

Introduction

to

IMS

|

|
|
|

The

scenario

illustrated

in

Figure

109

shows

how

MNPS

works.

The

numbers

in

Figure

109

refer

to

the

descriptions

in

the

list

that

follows

the

figure.

1.

When

a

session

is

established,

session

data

is

stored

in

a

coupling

facility

structure.

2.

CPC

A

fails

and

IMSA

also

fails

because

it

is

running

on

CPCA.

The

session

data

is

not

lost,

however,

because

it

is

on

the

coupling

facility.

Another

VTAM

in

the

sysplex

detects

the

error

and

the

session

survives

the

failure

of

CPCA.

3.

IMSA

is

restarted

on

another

processor

(CPCB)

in

the

sysplex.

4.

When

IMSA

is

restarted

on

CPCB,

the

users

sessions

are

given

to

the

restarted

IMS.

These

users

have

remained

logged

on

even

though

their

IMS

system

failed.

Benefits

of

Rapid

Network

Reconnect

The

benefit

of

RNR

is

the

maintenance

of

the

sessions

when

IMS

fails.

Most

of

this

benefit

is

the

elimination

of

the

time

required

to

terminate

and

reestablish

the

sessions.

This

eliminates

the

bind

and

unbind

traffic

which

would

otherwise

flow

through

the

network.

This

traffic

can

be

time

consuming.

Service

to

the

end

users

is

reestablished

more

quickly.

Of

course,

the

IMS

system

has

to

be

restarted.

When

using

RNR,

the

end

user

does

not

have

the

option

of

logging

on

to

another

IMS

in

the

Parallel

Sysplex.

The

value

of

RNR

depends

on

how

quickly

IMS

is

restarted.

If

the

restart

is

slow,

there

is

not

much

benefit.

If

the

restart

is

quick,

the

benefit

can

be

substantial.

However,

if

another

system

with

the

same

capabilities

is

available,

the

users

would

get

quicker

restoration

of

service

by

logging

onto

it.

This

means

that

RNR

probably

will

not

be

used

for

IMS

systems

with

clones.

Figure

109.

An

MNPS

Example

Scenario

Where

a

Logon

is

Not

Terminated

When

Its

IMS

Fails

IBM

Confidential

Chapter

30.

Introduction

to

Parallel

Sysplex

331

|

|
|
|

Persistent

session

support

for

IMS

users

of

APPC

(LU

6.2)

is

provided

by

APPC/MVS,

not

IMS.

With

APPC,

the

sessions

are

persistent,

but

the

conversations

are

not.

Sysplex

Failure

Recovery

Parallel

Sysplex

adds

more

components

to

a

system.

These

include

clones

of

systems

and

subsystems

and

new

components

such

as

coupling

facilities

and

CF

links.

Even

though

you

might

have

another

component

available

to

do

your

work

when

one

component

fails,

you

want

to

restore

the

sysplex

to

full

robustness

as

soon

as

possible.

Recoveries

from

most

failures

in

a

sysplex

can

be

automated.

Advantages

of

Having

Multiple

Servers

The

main

advantage

in

a

sysplex

is

that

you

have

multiple

copies

of

your

servers.

When

one

fails,

another

is

available

to

do

its

work.

This

applies

to

subsystems,

processors,

and

coupling

facilities.

v

If

IMS

fails,

other

IMS

instances

are

available.

You

can

use

the

routing

and

balancing

capabilities

to

distribute

the

work

to

the

active

IMS

systems.

v

If

a

processor

or

LPAR

fails,

Automatic

Restart

Management

(ARM)

can

be

used

to

restart

failed

subsystems

on

surviving

processors

or

LPARs.

v

If

a

coupling

facility

fails,

there

are

two

ways

of

surviving

the

loss:

–

You

can

rebuild

the

CF

structures

on

another

CF.

–

You

can

use

multiple

copies

of

the

structures.

Recovery

Using

Automatic

Restart

Management

(ARM)

When

IMS

fails,

you

need

to

restart

it

as

quickly

as

possible.

Even

though

other

IMS

systems

might

be

available

to

do

work,

the

failed

IMS

might

have

inflight

or

indoubt

work

that

needs

to

be

resolved.

This

resolution

releases

locks

on

database

resources

and

releases

DBRC

authorizations.

This

allows

new

work

to

have

access

to

all

of

the

data.

ARM

can

be

used

to

provide

rapid

restarts

of

IMS.

ARM

is

a

sysplex

capability

that

allows

an

automatic

restart

of

subsystems

like

IMS,

DB2,

CICS,

and

IRLM.

If

the

subsystem

abends,

the

restart

is

on

the

same

z/OS

instance

(LPAR).

If

the

z/OS

(LPAR)

fails,

the

restart

is

on

another

z/OS

in

the

sysplex.

Figure

110

illustrates

the

actions

of

ARM

when

an

IMS

abends.

In

Figure

110,

IMS

is

restarted

on

the

same

z/OS

system.

This

IMS

was

providing

DBCTL

services

to

a

CICS

and

was

using

a

DB2

subsystem.

You

must

restart

IMS

Figure

110.

ARM

Restarting

an

IMS

that

Abended

IBM

Confidential

332

IMS:

An

Introduction

to

IMS

|

|
|
|

on

the

same

z/OS

so

that

services

between

these

subsystems

can

be

restored.

For

example,

indoubt

threads

must

be

resolved.

In

the

case

of

an

z/OS

or

processor

failure,

IMS

will

be

restarted

on

another

candidate

z/OS

(see

Figure

111).

The

z/OS

is

chosen

according

to

a

user

defined

ARM

policy.

Subsystems

that

must

remain

together

can

be

restarted

as

a

group

on

the

same

z/OS.

In

the

example

illustrated

in

Figure

111,

an

IMS

subsystem

is

using

DB2

for

database

services.

A

CICS

AOR

(Application

Owning

Region)

is

using

the

same

DB2

and

the

IMS

for

database

services.

When

the

z/OS

system

fails,

the

IMS,

the

DB2,

and

the

CICS

AOR

must

be

moved

together,

but

the

CICS

TOR

(Terminal

Owning

Region)

can

be

restarted

on

another

z/OS

in

the

sysplex

because

CICS

AORs

and

TORs

can

communicate

with

other

z/OS

systems.

For

ARM

to

restart

subsystems,

it

must

be

active

in

the

sysplex.

ARM

is

controlled

by

a

policy

that

the

user

defines.

The

policy

is

stored

in

an

ARM

couple

data

set.

The

policy

is

used

to

group

subsystems

for

restart

together.

It

also

controls

whether

or

not

a

subsystem

will

be

restarted.

For

example,

an

installation

might

not

want

to

restart

test

subsystems.

ARM

only

restarts

subsystems

that

register

with

ARM.

This

is

done

when

they

initialize.

IMS

has

a

parameter

(ARMRST)

that

controls

whether

or

not

IMS

registers

with

ARM.

ARMRST=Y

is

the

default.

IMS

has

full

ARM

support.

ARM

can

be

used

to

restart

IMS

control

regions,

Common

Queue

Server

regions,

Fast

Database

Recovery

regions,

Common

Service

Layer

components,

and

IRLMs.

ARM

does

not

directly

restart

IMS

dependent

regions.

These

are

typically

started

by

automation

when

the

control

region

is

started.

ARMWRAP

is

a

program

that

registers

an

address

space

for

ARM

restarts.

In

is

used

for

a

step

in

a

job.

If

the

following

step

fails,

ARM

will

restart

the

job.

IMS

Connect

does

not

register

with

ARM.

ARMWRAP

can

be

used

to

get

ARM

support

for

IMS

Connect.

Figure

111.

ARM

Restarting

IMS,

CICS,

and

DB2

After

a

z/OS

Failure

IBM

Confidential

Chapter

30.

Introduction

to

Parallel

Sysplex

333

|

|
|
|

|
|
|
|
|

Recovery

After

Coupling

Facility

Failures

Much

of

the

sysplex

support

is

provided

through

the

use

of

coupling

facility

structures.

If

a

CF

is

lost,

it

is

important

to

have

access

to

structures

elsewhere.

If

a

CF

survives,

but

you

lose

all

of

the

links

from

a

processor

to

the

CF,

you

need

to

resolve

the

problem.

This

can

be

treated

like

the

loss

of

the

CF

itself.

You

can

either

rebuild

its

structures

on

CFs

that

have

connectivity

to

the

processors

that

require

it

or

you

can

use

duplicate

structures.

Recovery

Using

Structure

Rebuild:

Some

structures

can

be

rebuilt

automatically

when

either

a

CF

failure

or

a

CF

link

failure

occurs.

These

include

IRLM

lock

structures,

OSAM

and

VSAM

cache

structures,

and

IMS

shared

queues

structures.

The

following

example

will

use

a

IRLM

lock

structure.

Figure

112

shows

an

IRLM

structure

on

CF1

before

a

CF

failure.

Figure

113

on

page

335

shows

a

scenario

where

CF1

(on

which

the

IRLM

structure

resides)

fails.

When

the

CF

fails,

the

system

automatically

recognizes

the

loss

and

rebuilds

the

lock

structure

on

another

CF

(CF2).

Each

IRLM

retains

the

information

necessary

to

restore

its

lock

information

in

the

structure.

The

IRLMs

together

rebuild

the

lock

structure

on

another

CF.

Data

sharing

is

resumed.

Similar

rebuild

and

recovery

occurs

for

OSAM,

VSAM,

and

shared

queue

structures.

Figure

112.

Three

IMSs

on

Three

z/OSs

Sharing

One

IRLM

Structure

on

a

Coupling

Facility

IBM

Confidential

334

IMS:

An

Introduction

to

IMS

In

Figure

114,

the

CF

does

not

fail.

Instead,

the

connectivity

between

one

of

the

processors

and

the

CF

fails.

This

case

is

treated

the

same

as

the

loss

of

the

CF.

That

is,

the

system

automatically

rebuilds

the

structure

on

another

CF.

All

processors

have

connectivity

to

this

CF.

This

means

that

data

sharing

can

continue.

Similar

rebuild

and

recovery

occurs

for

OSAM,

VSAM,

and

shared

queue

structures.

Recovery

Using

Structure

Duplexing:

Fast

Path

shared

VSO

does

not

rebuild

its

cache

structures.

Instead,

it

relies

on

a

duplicate

copy

to

provide

failure

survival.

The

duplicate

copy

can

be

created

in

either

of

two

ways.

v

Fast

Path

can

build

two

structures.

This

is

user-managed

duplexing.

v

By

using

appropriate

hardware

prerequisites,

you

can

have

the

system

build

duplexed

structures.

This

is

system-managed

duplexing.

System-managed

duplexing

is

also

available

for

IRLM

lock

structures

and

shared-queues

structures.

Figure

115

on

page

336

shows

a

duplexed

DEDB

VSO

structure

on

two

coupling

facilities

that

are

being

shared

by

three

IMSs.

Figure

113.

IRLM

Structure

on

Failed

Coupling

Facility

is

Rebuilt

on

Another

Coupling

Facility

Figure

114.

IRLM

Structure

Rebuilt

on

Another

Coupling

Facility

After

a

Connectivity

Failure

IBM

Confidential

Chapter

30.

Introduction

to

Parallel

Sysplex

335

|

|
|
|

|

|
|
|

If

a

CF

is

lost

(as

shown

in

Figure

116),

then

a

duplicate

structure

on

another

CF

is

used.

With

system-managed

duplexing,

a

duplicate

is

immediately

built

if

another

CF

is

available.

If

another

CF

is

not

available,

a

duplicate

structure

is

built

when

another

CF

becomes

available.

Similarly,

if

connectivity

to

a

CF

is

lost,

then

the

use

of

its

structure

is

discontinued.

The

duplicate

structure

on

another

CF

is

used

instead.

Figure

115.

Shared

VSO

Structure

Duplexed

on

Two

Coupling

Facilities

Figure

116.

System-Managed

Duplicate

Shared

VSO

Structure

is

Used

After

a

Coupling

Facility

Failure

IBM

Confidential

336

IMS:

An

Introduction

to

IMS

|

|
|
|

Chapter

31.

IMSplexes

This

chapter

introduces

and

discusses

an

IMSplex,

which

is

defined

in

the

following

paragraph.

Definition:

An

IMSplex

is

one

or

more

IMS

address

spaces

(control,

manager,

or

server)

that

work

together

as

a

unit.

Typically

(but

not

always),

these

address

spaces:

v

Share

either

databases

or

resources

or

message

queues

(or

any

combination)

v

Run

in

a

z/OS

Parallel

Sysplex

environment

v

Include

an

IMS

Common

Service

Layer

(CSL)

-

see

“Common

Service

Layer”

on

page

338

The

address

spaces

that

can

participate

in

the

IMSplex

are:

v

Control

region

address

spaces

v

IMS

manager

address

spaces

(OM,

RM,

SCI)

v

IMS

server

address

spaces

(Common

Queue

Server

-

CQS)

An

IMSplex

provides

you

with

the

ability

to

manage

multiple

IMS

systems

as

if

they

were

one

system

(a

single-system

perspective).

An

IMSplex

can

exist

in

a

non-sysplex

environment

or

can

consist

of

multiple

IMS

subsystems

(in

sharing

groups)

in

a

sysplex

environment.

Related

Reading:

v

For

complete

details

about

setting

up

a

sysplex,

see

z/OS

MVS

Setting

Up

a

Sysplex.

v

For

the

details

of

IMSplex

components,

see

the

IMS

Version

9:

Common

Service

Layer

Guide

and

Reference.

This

chapter

discusses

an

IMSplex

with

a

CSL

included.

The

following

sections

are

covered

in

this

chapter:

v

“Components

of

an

IMSplex”

v

“Requirements

for

an

IMSplex”

on

page

339

v

“Operating

an

IMSplex”

on

page

340

Components

of

an

IMSplex

The

following

sections

discuss

the

components

of

an

IMSplex:

v

“Common

Queue

Server”

v

“Common

Service

Layer”

on

page

338

Common

Queue

Server

Common

Queue

Server

(CQS)

is

a

generalized

server

(delivered

with

IMS)

that

manages

data

objects

on

a

coupling

facility

list

structure,

such

as

a

queue

structure

or

a

resource

structure,

on

behalf

of

multiple

clients.

CQS

receives,

maintains,

and

distributes

data

objects

from

shared

queues

on

behalf

of

multiple

clients.

Each

client

has

its

own

CQS

access

the

data

objects

on

the

coupling

facility

list

structure.

IMS

is

one

example

of

a

CQS

client

that

uses

CQS

to

manage

both

its

shared

queues

and

shared

resources.

Related

Reading:

For

complete

information

about

CQS,

see

“Common

Queue

Server

(CQS)

Address

Space”

on

page

14.

IBM

Confidential

©

Copyright

IBM

Corp.

2004

337

|
|

|

|
|

|
|

|
|

Common

Service

Layer

The

CSL

is

an

IMS

feature

that

provides

the

infrastructure

for

improving

IMS

systems

management.

The

CSL

is

made

up

of

three

IMS

address

spaces.

They

are:

v

The

Operations

Manager

(OM)

v

The

Resource

Manager

(RM)

v

The

Structured

Call

Interface

(SCI)

The

CSL

components

and

IMS

subsystems

in

an

IMSplex

can

be

called

IMSplex

components.

Related

Reading:

For

complete

information

about

CSLs,

see

the

IMS

Version

9:

Common

Service

Layer

Guide

and

Reference.

Figure

117

illustrates

a

sample

IMSplex

configuration

that

includes

the

CSL,

a

single

point

of

control

(SPOC),

and

automated

procedures.

v

The

OS

image

includes

address

spaces

for

OM,

SCI,

RM,

an

IMS

control

region,

and

IMS

CQS.

v

The

OS

image

shares

a

coupling

facility

and

databases.

v

A

SPOC

application,

an

automation

application,

a

master

terminal,

and

an

end-user

terminal

all

access

the

z/OS

image.

Figure

117.

Sample

IMSplex

Configuration

with

a

CSL

IBM

Confidential

338

IMS:

An

Introduction

to

IMS

Operations

Manager

The

Operations

Manager

(OM)

controls

the

operations

of

an

IMSplex.

OM

provides

an

application

programming

interface

(the

OM

API)

through

which

commands

can

be

issued

and

responses

received.

With

a

single

point

of

control

(SPOC)

interface,

you

can

submit

commands

to

OM.

The

SPOC

interfaces

include

the

TSO

SPOC,

the

REXX

SPOC

API,

and

the

IMS

Control

Center.

You

can

also

write

your

own

application

to

submit

commands.

Specifically,

OM

can:

v

Route

IMS

commands

to

IMSplex

members

registered

for

the

command.

v

Consolidate

command

responses

from

individual

IMSplex

members

into

a

single

response

and

provides

that

response

to

the

originator

of

the

command.

v

Provide

an

API

for

automated

operator

commands.

v

Provide

a

general

use

interface

to

register

commands

to

support

any

command-processing

client.

v

Provide

user

exits

for

command

and

response

edit

and

command

security.

One

OM

must

be

defined

in

the

IMSplex

to

use

OM

functions.

Each

z/OS

image

can

have

more

than

one

OM.

If

multiple

OMs

are

defined

in

the

IMSplex,

any

OM

defined

can

perform

work

from

any

z/OS

image

in

the

IMSplex.

Resource

Manager

The

Resource

Manager

(RM)

is

the

component

of

the

CSL

that

manages

global

resources

and

coordinates

IMSplex-wide

processes

on

behalf

of

its

clients.

IMS

is

an

example

of

one

such

client.

IMS

uses

RM

to:

v

Manage

the

following

resources:

transactions,

LTERMs,

MSNAMEs,

nodes,

users,

user

IDs,

and

APPC

descriptor

names

v

Ensure

that

a

resource

that

is

defined

as

a

transaction,

LTERM,

or

msname

is

defined

as

the

same

resource

type

for

all

the

IMSs

in

the

IMSplex

v

Coordinate

IMSplex-wide

processes,

such

as

performing

global

online

changes

RM

uses

the

Common

Queue

Server

(CQS)

to

maintain

global

resource

information

in

a

resource

structure.

A

resource

structure

is

actually

a

coupling

facility

list

structure

that

all

CQSs

in

the

IMSplex

can

access.

Structured

Call

Interface

The

Structured

Call

Interface

(SCI)

is

the

component

of

the

CSL

that

provides

the

communication

between

IMSplex

components,

whether

they

are

on

one

z/OS

image

or

multiple

z/OS

images.

Requirements

for

an

IMSplex

The

minimum

configuration

for

an

IMSplex

is

an

IMS

control

region

and

one

set

of

CSL

components

(an

OM,

an

RM,

and

an

SCI)

in

one

z/OS

image

and

another

(one

or

more)

z/OS

image

(forming

the

sysplex)

with

a

single

SCI

and

a

single

IMS.

Figure

118

on

page

340

illustrates

a

similar

configuration:

one

z/OS

image

with

an

IMS

and

one

each

of

the

CSL

components

and

two

other

z/OS

images

each

with

a

single

IMS

and

a

single

SCI.

IBM

Confidential

Chapter

31.

IMSplexes

339

All

IMSs

in

an

IMSplex

must

have

a

unique

IMSID.

A

single

point

of

control

(SPOC)

application

is

required

if

you

want

to

use

certain

CSL

functions

(for

example,

performing

a

global

online

change).

Restriction:

The

maximum

configuration

for

an

IMSplex

is

32

control

regions,

32

CQSs,

and

a

maximum

of

1023

total

system

address

spaces.

Operating

an

IMSplex

Operating

an

IMSplex

differs

from

operating

a

single

IMS.

The

individual

IMS

subsystems

in

an

IMSplex

must

be

defined

and

set

up

individually;

however,

once

this

up-front

work

is

done,

they

can

be

operated

as

a

group

(the

IMSplex).

In

general,

you

operate

an

IMSplex

by

issuing

commands

through

the

Operations

Manager

and

analyzing

the

responses

to

those

commands.

You

cannot

issue

commands

directly

to

OM,

however.

OM

has

an

application

programming

interface

(API)

that

is

designed

to

accept

commands

from

and

pass

command

responses

to

an

application

program.

The

IMS

TSO

SPOC

application

and

the

IMS

Control

Center

are

examples

of

such

application

programs.

The

IMS

Control

Center

(which

supports

IMS

Version

8

and

above

and

is

part

of

the

DB2

Universal

Database

(UDB)

Control

Center),

is

another

application

program

that

accesses

the

OM

API.

With

the

IMS

Control

Center,

you

can

manage

your

IMSplex

using

a

graphical

interface.

The

IMS

Control

Center

uses

the

SPOC

functions

of

the

OM

API.

For

more

information

about

the

IMS

Control

Center,

go

to

www.ibm.com/ims

and

link

to

the

IMS

Control

Center

page.

You

can

design

an

application

program

that

allows

an

operator

to

enter

the

commands

and

view

the

responses

or

you

can

design

an

automated

operator

program

that

will

issue

commands

and

make

decisions

based

on

the

responses.

The

commands

that

are

issued

are

the

same

in

both

instances.

The

differences

are:

v

The

automated

application

program

must

anticipate

what

the

responses

to

the

commands

will

be

and

have

logic

to

deal

with

those

responses.

v

The

operator

(issuing

commands

through

an

application)

must

have

procedures

to

follow.

Recommendation:

When

designing

the

automated

operator

programs

or

creating

operator

procedures,

keep

in

mind

that

there

might

be

IMSplex-wide

ramifications

Figure

118.

Minimum

CSL

Configuration

for

an

IMSplex

IBM

Confidential

340

IMS:

An

Introduction

to

IMS

|
|
|
|
|
|

|
|
|
|

|
|

|
|

for

some

actions.

For

example,

if

you

tell

an

operator

(or

code

your

AOP)

to

shut

down

a

particular

SCI

for

a

particular

reason,

the

IMSs

that

used

that

particular

SCI

can

no

longer

communicate

with

the

IMSplex

after

that

SCI

is

shut

down.

This

might

not

be

the

solution

you

were

hoping

for,

so

plan

accordingly.

The

following

list

briefly

cover

the

operations

of

the

IMSplex:

Starting

or

restarting

an

IMSplex

Start

an

IMSplex

in

the

following

manner:

1.

Start

the

CSL

components

that

will

be

local

to

the

IMS

control

region

with

a

z/OS

START

command.

2.

Start

the

local

IMS

control

region

with

the

appropriate

parameters

specified

on

the

appropriate

PROCLIB

members.

3.

Start

the

other

individual

IMSplex

components

(other

IMSs,

SCIs,

OMs,

and

RMs).

An

IMSplex

or

its

components

can

be

restarted

(after

a

failure

or

shutdown)

by

either

manually

starting

the

individual

components

(with

a

z/OS

START

command)

or

by

using

the

z/OS

Automatic

Restart

Manager

(ARM).

If

ARM

is

to

be

used

for

restart

purposes,

it

is

specified

on

the

IMSplex

components’

startup

procedures

or

in

their

individual

initialization

PROCLIB

members.

Querying

statistics

from

an

IMSplex

Any

IMSplex

member

(for

example,

an

Automated

Operations

Program

-

AOP)

can

query

statistics

about

the

components

of

a

CSL

using

a

CSLZQRY

request.

Shutting

down

an

IMSplex

Shutting

down

an

IMSplex

is

accomplished

in

two

basic

steps:

1.

Shutting

down

the

IMS

components

that

participate

in

that

IMSplex

(issuing

a

/CHE

FREEZE

or

similar

command

to

the

individual

IMSs)

2.

Shutting

down

the

CSL

and

its

components.

IBM

Confidential

Chapter

31.

IMSplexes

341

IBM

Confidential

342

IMS:

An

Introduction

to

IMS

Part

7.

Appendixes

IBM

Confidential

©

Copyright

IBM

Corp.

2004

343

IBM

Confidential

344

IMS:

An

Introduction

to

IMS

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

IBM

Confidential

©

Copyright

IBM

Corp.

2004

345

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Corporation

J46A/G4

555

Bailey

Avenue

San

Jose,

CA

95141-1003

U.S.A.

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

information

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

the

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurement

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements

or

other

publicly

available

sources.

IBM

has

not

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

All

statements

regarding

IBM’s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

This

information

is

for

planning

purposes

only.

The

information

herein

is

subject

to

change

before

the

products

described

become

available.

This

information

contains

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

contains

sample

application

programs

in

source

language,

which

illustrates

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM,

for

the

purposes

of

developing,

using,

marketing

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

IBM’s

application

programming

interfaces.

IBM

Confidential

346

IMS:

An

Introduction

to

IMS

Each

copy

or

any

portion

of

these

sample

programs

or

any

derivative

work,

must

include

a

copyright

notice

as

follows:

©

(your

company

name)

(year).

Portions

of

this

code

are

derived

from

IBM

Corp.

Sample

Programs.

©

Copyright

IBM

Corp.

_enter

the

year

or

years_.

All

rights

reserved.

If

you

are

viewing

this

information

softcopy,

the

photographs

and

color

illustrations

may

not

appear.

Trademarks

The

following

terms

are

trademarks

of

the

IBM

Corporation

in

the

United

States

or

other

countries

or

both:

AIX

CICS

DataPropagator

DB2

DB2

Universal

Database

DFSMS/dss

DFSMS

IBM

IMS

IMS/ESA

MVS

OS/390

Parallel

Sysplex

RAA

RACF

SAA

System/360

VTAM

WebSphere

WebSphere

MQ

z/OS

Java

and

all

Java-based

trademarks

and

logos

are

trademarks

of

Sun

Microsystems,

Inc.,

in

the

United

States,

other

countries,

or

both.

Other

company,

product,

and

service

names

may

be

the

trademarks

or

service

marks

of

others.

Product

Names

In

this

book,

the

licensed

program

“DB2

Universal

Database

for

z/OS”

is

referred

to

as

“DB2”.

IBM

Confidential

Notices

347

|

|
|

IBM

Confidential

348

IMS:

An

Introduction

to

IMS

Bibliography

This

bibliography

includes

all

the

publications

cited

in

this

book,

including

the

publications

in

the

IMS

library.

v

DB2

for

z/OS

Installation

Guide,

GC26-9936

v

DFSMS/MVS

V1R5

DFSMSdss

Storage

Administration

Guide,

SC26-4930-04

v

DFSMS/MVS

V1R5

DFSMSdss

Storage

Administration

Reference,

SC26-4929-04.

v

IBM

IMS

Workload

Router

for

z/OS

User’s

Guide,

SC26-8945

v

IBM

Systems

Journal:

IMS

celebrates

thirty

years

as

an

IBM

product,

ISBN

G321-5693

v

IMS

Fast

Path

Solutions

Guide,

SG24-4301

v

IMS

in

the

Parallel

Sysplex:

Volume

I:

Reviewing

the

IMSplex

Technology,

SG24-6908

v

IMS

in

the

Parallel

Sysplex:

Volume

II:

Planning

the

IMSplex,

SG24-6928

v

IMS

in

the

Parallel

Sysplex:

Volume

III:

IMSplex

Implementation

and

Operations,

SG24-6929

v

IMS

Connect

Guide

and

Reference,

SC18-7260

v

IMS

Fast

Path

Solutions

Guide,

SG24-4301

v

IMS

Performance

Guide,

SG24-4637

v

IMS

Primer,

SG24-5352

v

IMS

Queue

Control

Facility

for

z/OS,

SC26-9685

v

IMS

Security

Guide,

SG24-5363

v

IMS

Version

7

Release

Planning

Guide,

GC26-9437

v

MS

Version

8

Release

Planning

Guide,

GC27-1305

v

The

Complete

IMS

HALDB

Guide

All

You

Need

to

Know

to

Manage

HALDBs,

SG24-6945

v

z/OS

MVS

Setting

Up

a

Sysplex,

SA22-7625

v

z/OS

MVS

System

Commands,

SA22-7627

v

z/OS

V1R4

Security

Server

RACF

Security

Administrator’s

Guide,

SA22-7683

IMS

Version

9

Library

ZES1-2330

ADB

IMS

Version

9:

Administration

Guide:

Database

Manager

ZES1-2331

AS

IMS

Version

9:

Administration

Guide:

System

ZES1-2332

ATM

IMS

Version

9:

Administration

Guide:

Transaction

Manager

ZES1-2333

APDB

IMS

Version

9:

Application

Programming:

Database

Manager

ZES1-2334

APDG

IMS

Version

9:

Application

Programming:

Design

Guide

ZES1-2335

APCICS

IMS

Version

9:

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

ZES1-2336

APTM

IMS

Version

9:

Application

Programming:

Transaction

Manager

ZES1-2337

BPE

IMS

Version

9:

Base

Primitive

Environment

Guide

and

Reference

ZES1-2338

CR

IMS

Version

9:

Command

Reference

ZES1-2339

CQS

IMS

Version

9:

Common

Queue

Server

Guide

and

Reference

ZES1-2340

CSL

IMS

Version

9:

Common

Service

Layer

Guide

and

Reference

ZES1-2341

CG

IMS

Version

9:

Customization

Guide

ZES1-2342

DBRC

IMS

Version

9:

DBRC

Guide

and

Reference

ZES1-2343

DGR

IMS

Version

9:

Diagnosis

Guide

and

Reference

ZES1-2344

FAST

IMS

Version

9:

Failure

Analysis

Structure

Tables

(FAST)

for

Dump

Analysis

ZES1-2346

OLR

IMS

Version

9:

HALDB

Online

Reorganization

Guide

and

Reference

ZES1-2347

JGR

IMS

Version

9:

IMS

Java

Guide

and

Reference

ZES1-2348

IIV

IMS

Version

9:

Installation

Volume

1:

Installation

Verification

ZES1-2349

ISDT

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring

ZES1-2350

INTRO

IMS

Version

9:

An

Introduction

to

IMS

ZES1-2351

MIG

IMS

Version

9:

Master

Index

and

Glossary

ZES1-2352

MC1

IMS

Version

9:

Messages

and

Codes,

Volume

1

ZES1-2353

MC2

IMS

Version

9:

Messages

and

Codes,

Volume

2

IBM

Confidential

©

Copyright

IBM

Corp.

2004

349

ZES1-2354

OTMA

IMS

Version

9:

Open

Transaction

Manager

Access

Guide

and

Reference

ZES1-2355

OG

IMS

Version

9:

Operations

Guide

GC17-7831

RPG

IMS

Version

9:

Release

Planning

Guide

ZES1-2358

URDBTM

IMS

Version

9:

Utilities

Reference:

Database

and

Transaction

Manager

ZES1-2359

URS

IMS

Version

9:

Utilities

Reference:

System

Supplementary

Publications

GC17-7825

LPS

IMS

Version

9:

Licensed

Program

Specifications

ZES1-2357

SOC

IMS

Version

9:

Summary

of

Operator

Commands

Publication

Collections

LK3T-7213

CD

IMS

Version

9

Softcopy

Library

LK3T-7144

CD

IMS

Favorites

LBOF-7789

Hardcopy

and

CD

Licensed

Bill

of

Forms

(LBOF):

IMS

Version

9

Hardcopy

and

Softcopy

Library

SBOF-7790

Hardcopy

Unlicensed

Bill

of

Forms

(SBOF):

IMS

Version

9

Unlicensed

Hardcopy

Library

SK2T-6700

CD

OS/390

Collection

SK3T-4270

CD

z/OS

Software

Products

Collection

SK3T-4271

DVD

z/OS

and

Software

Products

DVD

Collection

Accessibility

Titles

Cited

in

this

Book

SA22-7787

z/OS

V1R1.0

TSO

Primer

SA22-7794

z/OS

V1R1.0

TSO/E

User’s

Guide

SC34-4822

z/OS

V1R1.0

ISPF

User’s

Guide,

Volume

1

IBM

Confidential

350

IMS:

An

Introduction

to

IMS

Index

Special

characters
//DFSSTAT

reports

283

/ACTIVATE

command

292

/ASSIGN

command

291,

292

ETO

293

terminals

291

/CHANGE

command

293,

294

/COMPT

command

292

/DBDUMP

command

292

/DBRECOVERY

command
stopping

database

access

292

/DEQUEUE

command

291,

293

/DISPLAY

command
CONV

293

terminals

292

/ERESTART

command
message

queue

recovery

287

/IDLE

command

292

/MSASSIGN

command

293

/MSVERIFY

command

293

/NRESTART

command
message

queue

recovery

287

/TRACE

command

277,

284,

295

IMS

Monitor

282,

295

VTAM

I/O

Timeout

facility

291

A
ACTIVATE

(/ACTIVATE)

command

292

address

spaces
use

of

11

application

callable

interface
DL/I

4

application

programming
reporting

283

application

programs
message

driven

223

non-message

driven

223

ASSIGN

(/ASSIGN)

command

291,

292

ETO

293

terminals

291

automatic

restart

of

IMS
introduction

to

29

B
buffers

reporting

283

BUILDQ

keyword

287

C
CHANGE

(/CHANGE)

command

293,

294

CICS
overview

224

cold

start

of

IMS
introduction

to

29

commands
effect

on

resources

288

for

multiple

resources

288

Common

Queue

Server

(CQS)
introduction

to

14

Common

Service

Layer

(CSL)
introduction

to

15

COMPT

(/COMPT)

command

292

Connection

object

227

control

region
introduction

to

11

conversation

status

293

coupling

facility
monitoring

structures

298

CTRACE

284,

296

D
Data

Language/Interface

(DL/I)
introduction

to

4

data

sharing
controlling

296

DBRC

300

commands

300

in

relation

to

DBRC

84

introduction

to

83

resources,

monitoring

297

database
accessing

306

effect

of

commands

on

291

recovery

288

stopping

access

to

292

Database

Change

Accumulation

utility

(DFSUCUM0)
introduction

to

106

Database

Image

Copy

2

utility

(DFSUDMT0)
introduction

to

105

Database

Image

Copy

utility

(DFSUDMP0)
introduction

to

104

database

models,

hierarchical

41

database

recovery

process
overview

of

101

Database

Recovery

utility

(DFSURDB0)
introduction

to

107

database

reorganization
introduction

to

85

process,

overview

of

88

database

types
choosing

Fast

Path

77

choosing

full-function

75

HDAM

75

HIDAM

76

HISAM

77

HSAM

77

PHDAM

76

PHIDAM

76

introduction

to

51

DB

Monitor
performance

gathering

294

IBM

Confidential

©

Copyright

IBM

Corp.

2004

351

DB

Monitor

(continued)
using

294

DB2

UDB

for

z/OS

environment
overview

224

DBDUMP

(/DBDUMP)

command

292

DBRC
region

14

DBRC

(Database

Recovery

Control)
data

sharing

300

commands

300

DBRECOVERY

(/DBRECOVERY)

command
stopping

database

access

292

dead

letter

queue

293

definition,

system
introduction

to

28

dependent

region
introduction

to

14

dependent

regions
adjusting

processing

load

291

DEQUEUE

(/DEQUEUE)

command

291,

293

DFSERA10

(File

Select

and

Formatting

Print

program)

278

DFSILTA0

278

DFSIRP0

(Program

Isolation

Trace

Report

utility)

284

DFSISTS0

(Statistical

Analysis

utility)

279

DFSSTAT

(//DFSSTAT)

reports

283

DFSUCUM0

(Database

Change

Accumulation

utility)
introduction

to

106

DFSUDMP0

(Database

Image

Copy

utility)
introduction

to

104

DFSUDMT0

(Database

Image

Copy

2

utility)
introduction

to

105

DFSURDB0

(Database

Recovery

utility)
introduction

to

107

DISPLAY

(/DISPLAY)

command
CONV

293

terminals

292

DL/I

separate

address

space
introduction

to

14

DLIDriver
loading

227

dump
message

queues

287

E
emergency

restart

of

IMS
introduction

to

29

ERESTART

(/ERESTART)

command
message

queue

recovery

287

error
I/O

IMS

Monitor

296

ETO
user

assignments

293

events
system-level

tracing

284

F
fields

columns,

compared

to

41

File

Select

and

Formatting

Print

program

(DFSERA10)

278

formatting
OLDS

303

G
GTF

(Generalized

Trace

Facility)

trace

284

H
hierarchical

database
JDBC,

using

227

relational

database,

compared

to

41

SQL

queries

227

hierarchical

database

model
overview

of

41

hierarchical

databases
types

introduction

to

53

I
IDLE

(/IDLE)

command

292

IMS
accessing

with

TCP/IP

7

automatic

restart

29

callable

interface

for

applications

4

cold

start

29

Common

Queue

Server

(CQS),

introduction

to

14

Common

Service

Layer

(CSL),

introduction

to

15

control

region,

introduction

to

11

DBRC

region,

introduction

to

14

dependent

region,

introduction

to

14

DLISAS

region,

introduction

to

14

emergency

restart

29

event

logging,

introduction

to

31

history

of
history

of

IMS

3

Installation

Verification

Program

(IVP),

introduction

to

27

installation,

introduction

to

27

interfaces

to

7

normal

restart

29

Operations

Manager

(OM),

introduction

to

16

overview

of

4

relationship

to

Parallel

Sysplex

9

relationship

to

z/OS

8

Resource

Manager

(RM),

introduction

to

16

security,

introduction

to

28

shutting

down,

introduction

to

33

starting

29

structure

of

11

Structured

Call

Interface

(SCI),

introduction

to

16

subsystem
connecting

306

system

definition,

introduction

to

28

IBM

Confidential

352

IMS:

An

Introduction

to

IMS

IMS

(continued)
system

services,

introduction

to

7

tools
IMS

Performance

Analyzer

281

utilities,

introduction

to

31

IMS

database

types
introduction

to

51

IMS

databases
accessing

226

IMS

environment
overview

223

restrictions

224

IMS

Java

hierarchic

database

interface
explanation

226

IMS

Monitor

282

activating

295

I/O

errors

296

log

296

performance

gathering

294

report

283

using

295

IMS

Performance

Analyzer

281

IMSplex
typical

configuration

338

index

databases
introduction

to

48

introduction

to
accessing

IMS

7

DL/I

4

IMS

4

IMS

DB

4

IMS

DB/DC

4

IMS

system

services

7

IMS

TM

4

IRLM

(internal

resource

lock

manager)
monitoring

296

tracing

284,

296

ISC

(Intersystem

Communication)
users,

assigning

292

J
JBP

(Java

batch

processing)
definition

223

JDBC
classes

227

explanation

226

field

names

227

JMP

(Java

message

processing)
definition

223

L
log

controlling

the

characteristics

of

301

IMS

Monitor

296

records
printing

278

reports

279

system

utilities

277

Log

Transaction

Analysis

utility

(DFSILTA0)

278

logging

of

IMS

events
introduction

to

31

logical

link

path
effect

of

commands

on

290

verifying

consistency

293

logical

relationships
introduction

to

45

logical

terminal
effect

of

commands

on

289

LTERM
static

user

assignment

292

M
message

queues
using

Queue

Control

Facility

287

message

queues
dumping

287

recovery

287

monitoring
IMS

Monitor

282

IRLM

activity

296

structure

298

system

296

MSASSIGN

(/MSASSIGN)

command

293

MSC

(multisystem

communications)
assignment

293

MSNNAME
verifying

consistency

293

MSVERIFY

(/MSVERIFY)

command

293

N
network

ID,

deleting

294

normal

restart

of

IMS
introduction

to

29

NRESTART

(/NRESTART)

command
message

queue

recovery

287

O
OLDS

(online

log

data

set)
archiving

287

buffer,

changing

301

changing

characteristics

of

301

location,

changing

301

mode,

changing

301

newly

initialized

volumes

303

volume,

formatting

303

Operations

Manager

(OM)
introduction

to

16

P
Parallel

Sysplex
relationship

to

IMS

9

password

293

IBM

Confidential

Index

353

performance
evaluating

281

gathering

data

294

PI

keyword

284

PreparedStatement

object

227

processing

load
adjusting

291

Program

Isolation

Trace

Report

utility

(DFSRIRP0)

284

Q
QCF

287

Queue

Control

Facility

287

R
RACF

data

space
reinitializing

293

RECON

data

set
adding

or

spare

305

changing

the

characteristics

of

305

replacing

active

305

recovery
database

making

recoverable

288

executing

related

functions

286

message

queues

287

utilities

288

region
assignment

291

class

291

report
//DFSSTAT

283

evaluating

system

performance

281

IMS

Monitor

283

Statistical

Analysis

utility

279

system

tuning

281

resource
modifying

288

monitoring

in

data

sharing

environment

297

Resource

Manager

(RM)
introduction

to

16

ResultSet
iterating

227

S
secodary

indexes
introduction

to

48

security
modifying

293

security

and

IMS
introduction

to

28

segment
description

41

instance
row,

compared

to

41

shutting

down

IMS
introduction

to

33

SLDS

(system

log

data

set)
changing

the

characteristics

of

305

starting

IMS
introduction

to

29

Statement

object
retrieving

227

Statistical

Analysis

utility

279

stored

procedures

224

Structured

Call

Interface

(SCI)
introduction

to

16

subsystems
connecting

or

disconnecting

306

effect

of

commands

on

291

system

definition
introduction

to

28

T
TCP/IP,

accessing

IMS

7

terminal
administering

291

assigning

291

tools
IMS

Monitor

282

IMS

Performance

Analyzer

281

TRACE

(/TRACE)

command

277,

284

IMS

Monitor

282,

295

VTAM

I/O

Timeout

facility

291

TRACE

CT

command

284,

296

trace

facility

286

tracing

286

CTRACE,

using

284,

296

GTF

trace

284

program

isolation

and

lock

284

transactions
assignment

292

effect

of

commands

on

290

priorities

292

tuning
report

281

U
user

ISC,LTERM

assignment

292

utilities
introduction

to

31

utility
recovery

288

V
VTAM

(Virtual

Telecommunications

Access

Method)
VTAM

I/O

Timeout

facility

291

W
WADS

(write-ahead

data

set)
adding

or

removing

spare

304

characteristics
changing

304

IBM

Confidential

354

IMS:

An

Introduction

to

IMS

WADS

(write-ahead

data

set)

(continued)
location

changing

304

mode
changing

304

WebSphere

Application

Server

for

z/OS

environment
EJB

224

overview

224

Z
z/OS

relationship

to

IMS

8

IBM

Confidential

Index

355

IBM

Confidential

356

IMS:

An

Introduction

to

IMS

����

Program

Number:

5655-J38

IBM

Confidential

Printed

in

USA

ZES1-2350-01

Spine

information:

���

IMS

An

Introduction

to

IMS

Version

9

	Contents
	Figures
	Tables
	Foreward
	About This Book
	Who Uses IMS
	Overview of This Book
	How to Send Your Comments

	Summary of Changes
	Changes to the Current Edition of this Book for IMS Version 9
	Library Changes for IMS Version 9
	New and Revised Titles
	Terminology Changes
	Accessibility Enhancements

	Part 1. Overview of IMS
	Chapter 1. Introduction to IMS
	History of IMS
	Beginnings at NASA
	IMS as a Database Management System
	The DL/I Callable Interface
	IMS as a Transaction Manager

	Overview of the IMS Product
	IMS Database Manager
	IMS Transaction Manager
	IMS System Services
	Accessing IMS
	How IMS Relates to z/OS

	Chapter 2. IMS and z/OS
	Structure of IMS Subsystems
	IMS Control Region
	IMS Separate Address Spaces
	Application Dependent Regions
	Batch Application Address Space
	Internal Resource Lock Manager (IRLM)

	Running an IMS System
	Running Multiple IMS Systems
	Running Multiple IMS Systems on One z/OS Image
	Running Multiple IMS Systems on Multiple z/OS Images

	How IMS Uses z/OS Services
	Transmission Control Protocol/Internet Protocol (TCP/IP)
	Advanced Program-to-Program Communications (APPC)
	Resource Access Control Facility (RACF)
	Resource Recovery Services (RRS)
	Parallel Sysplex

	Chapter 3. Setting Up and Running IMS
	Installing IMS
	IMS Installation Verification Program (IVP)

	Defining an IMS System
	Defining IMS Security
	IMS Startup
	Types of IMS System Starts
	Starting IMS-Associated Regions

	IMS Logging
	IMS Utilities
	IMS Recovery
	IMS Shutdown

	Part 2. IMS Database Manager
	Chapter 4. Overview of IMS DB
	Functions of the IMS Database Manager
	Implementation of IMS Databases
	Full-Function Databases
	Fast Path Databases
	Data in IMS and DB2

	Chapter 5. Overview of the IMS Hierarchical Database Model
	Basic Segment Types
	Sequence Fields and Access Paths
	Logical Relationships
	Secondary Indexing

	Chapter 6. Implementing the IMS Database Model
	Segments, Records, and Pointers
	IMS Hierarchic Access Methods
	HDAM
	HIDAM
	PHDAM and PHIDAM
	Index Databases
	DEDB
	GSAM
	HSAM and HISAM

	Physical Segment Design
	Segment Length
	Number of Occurrences Per Segment Per Parent
	Location of Segments in the Hierarchy
	Average Database Record Size

	Operating System Access Methods
	VSAM or OSAM
	IMS and System Managed Storage

	IMS Checkpoints
	Locking

	Chapter 7. Choosing the Correct Database Type
	Applications Suitable for Full-Function Databases
	When to Choose HDAM
	When to Choose HIDAM
	When to Choose PHDAM or PHIDAM

	Applications Suitable for HSAM and HISAM
	Applications Suitable for Fast Path Databases
	Very Large Databases
	High Availability Requirements
	Highly Active Databases
	Limited Data Lifetime
	Extreme Performance Levels
	Reduced I/O Usage
	CPU Utilization
	Summary of When to Choose DEDB

	Chapter 8. Data Sharing
	DBRC and Data Sharing
	How Applications Share Data

	Chapter 9. The Database Reorganization Process
	Purpose of Reorganization
	When to Reorganize
	Monitoring the Database

	Overview of the Reorganization Process
	Offline Reorganization
	Fast Path Reorganization
	Online Reorganization

	Reorganization Utilities
	Partial Reorganization
	Reorganization Using the Utility Control Facility
	Reorganization Without the Utility Control Facility

	Chapter 10. The Database Recovery Process
	When Recovery is Needed
	Overview of the Database Recovery Process
	Online Programs and Recovery
	DL/I Batch Programs and Recovery

	IMS Backup and Recovery Utilities
	Database Image Copy Utility
	Database Image Copy 2 Utility
	Database Change Accumulation Utility
	Database Recovery Utility
	Database Batch Backout Utility

	Part 3. IMS Transaction Manager
	Chapter 11. Overview of IMS TM
	Functions of IMS TM
	IMS TM and the Network
	Advanced Program-to-Program Communication (APPC)
	Open Transaction Manager Access (OTMA)

	IMS TM Messages
	Connections to Other IMS and CICS Subsystems
	Multiple Systems Coupling (MSC)
	Intersystem Communications (ISC)
	MSC Versus ISC

	Chapter 12. IMS TM Control Region
	IMS Messages
	Multiple and Single Segment Messages

	IMS Transaction Flow

	Chapter 13. How IMS TM Processes Input
	Input Message Types
	Terminal Types
	Input Message Origin
	Terminal Input Destination
	Message Queueing
	Queue Size and Performance Considerations
	Multiple Message Queues
	Shared Queues
	Fast Path Transactions and Message Queues
	APPC Driven Transactions and Message Queues
	OTMA Driven Transactions and Message Queues

	Message Scheduling
	Transaction Scheduling
	Scheduling Conditions
	Scheduling in a Dependent Region
	Parallel Scheduling
	Priority
	Database Processing Intent

	Chapter 14. Fast Path Transactions
	Fast Path Exclusive Transactions
	Fast Path Potential Transactions

	Chapter 15. The Master Terminal
	The Primary Master
	The Secondary Master
	Using the z/OS Console as the Master Terminal
	Extended MCS/EMCS Console Support

	Chapter 16. Application Program Processing for IMS TM
	Flow of Message Processing Programs (MPPs)
	Role of the PSB
	DL/I Message Calls
	Program Isolation and Dynamic Logging
	Internal Resource Lock Manager (IRLM)
	Abnormal Application Program Termination
	Conversational Processing
	Output Message Processing
	Logging, Checkpointing, and Restarting
	Message Switching

	Part 4. IMS Application Development
	Chapter 17. Application Programming Overview
	Java Programs
	Program Structure
	Entry to the Application Program
	PCB Mask
	Calls to IMS
	Status Code Processing
	Termination of the Application

	IMS Setup for Applications
	IMS Control Blocks
	Generating IMS Control Blocks

	IMS Database Application Programming Interface
	IMS Application Calls
	IMS/DB2 Resource Translate Table
	IMS System Service Calls

	Chapter 18. Application Programming for the IMS Database Manager
	Introduction to Database Processing
	Application Programming Interfaces to IMS
	Handling Status Codes
	Sample Presentation of a Call

	Processing Against a Single Database Structure
	DL/I Positioning
	Retrieving Segments
	Updating Segments
	Calls with Command Codes
	Database Positioning After DL/I Calls
	Using Multiple PCBs for One Database
	Processing GSAM Databases

	Language Specific Programming Considerations
	COBOL Programming Considerations
	Java Programming Considerations
	PL/I Programming Considerations

	Processing Databases with Logical Relationships
	Accessing a Logical Child in a Physical Database
	Accessing Segments in a Logical Database

	Processing Databases with Secondary Indexes
	Accessing Segments by Using a Secondary Index
	Creating Secondary Indexes

	Loading Databases
	Overview of Loading Databases
	Loading a Database with Logical Relationships
	Loading a Database with Secondary Indexes

	Using Batch Checkpoint/Restart
	Using the Restart Call
	Using the Checkpoint Call

	Chapter 19. Application Programming for the IMS Transaction Manager
	Application Program Processing
	Role of the PSB
	DL/I Message Calls
	Conversational Processing
	Output Message Processing
	Application Program Termination
	Logging and Checkpoint/Restart Processing

	Transaction Manager Application Design
	Online Transaction Processing Concepts
	Online Program Design
	Basic Screen Design

	Chapter 20. The IMS Message Format Service
	Overview of MFS
	MFS and 3270 Devices
	Relationships between MFS Control Blocks
	MFS Control Block Chaining
	Linkage Between Device Fields and Message Fields
	Linkage Between Logical Pages and Device Pages
	Message Description Linkage
	3270 Device Considerations Relative to Control Block Linkage

	MFS Functions
	Input Message Formatting
	Output Message Formatting
	MFS Formats Supplied by IBM

	MFS Control Statements
	Definition Statement for Message Formats
	Definition Statement for Device Formats
	Compiler Statement Definitions
	Relationships Between Source Statements and Control Blocks

	Generating MFS Control Blocks
	Steps for Generating MFS Control Blocks

	Maintaining the MFS Library

	Chapter 21. Application Programming in IMS Java
	Environments that Support IMS Java
	IMS Environment Overview
	WebSphere Application Server for z/OS Environment Overview
	CICS Environment Overview
	DB2 UDB for z/OS Environment Overview

	Describing an IMS Database to IMS Java
	Accessing an IMS Database with IMS Java
	Using JDBC to Access an IMS Database

	Part 5. IMS System Administration
	Chapter 22. The IMS System Definition Process
	Overview of the IMS System Definition Process
	Types of IMS System Definitions
	Stage 1
	Stage 2
	JCLIN
	SMP/E Maintenance
	IMS Security Maintenance Utility Generation

	IMS System Definition Macros
	The Extended Terminal Option (ETO)
	ETO Terminology
	ETO Concepts
	Administering ETO

	Chapter 23. Customizing IMS
	Chapter 24. IMS Security
	History of IMS Security
	Security Overview
	Securing Resources

	Chapter 25. IMS Logging
	Checkpoints
	Database Recovery Control (DBRC)
	IMS Log Components
	IMS Log Buffers
	Online Log Data Sets (OLDS)
	Write-Ahead Data Sets (WADS)
	System Log Data Sets
	Recovery Log Data Sets

	Chapter 26. Database Recovery Control (DBRC)
	Overview of DBRC
	Using DBRC
	DBRC Options
	Communicating with DBRC
	Database Authorization
	Access Intent

	Overview of the RECON Data Sets
	RECON Records
	Database Related Information
	IMS Systems and the RECON
	Database Names in the RECON

	Defining and Creating the RECON Data Sets
	Initializing the RECON Data Sets
	Allocating RECON Data Sets to IMS Systems
	Placement Considerations for the RECON Data Sets
	Maintaining RECON Data Sets
	Backing Up the RECON
	Deleting Inactive Log Records from the RECON
	Monitoring the RECON

	Reorganizing RECON Data Sets
	Recreating RECON Data Sets
	PRILOG Record Size
	Summary of Recommendations for RECON Data Sets
	DBRC Support for Remote Site Recovery

	Chapter 27. Controlling IMS
	Monitoring the System
	Processing IMS System Log Information
	Using IMS System Log Utilities
	Using the IMS Performance Analyzer for z/OS

	Choosing Tools for Detailed Monitoring
	IMS Monitor
	//DFSSTAT Reports
	GTF Trace
	z/OS Component Trace (CTRACE)
	Obtaining Program Isolation and Lock Traces
	Trace Facility

	Executing Recovery-Related Functions
	Using DBRC Commands
	Dumping the Message Queues
	Recovering the Message Queues
	Archiving the OLDS
	Making Databases Recoverable or Nonrecoverable
	Running Recovery-Related Utilities

	Modifying and Controlling System Resources
	List of Commands with Similar Functions for Multiple Resources
	Modifying Dependent Regions
	Modifying Telecommunication Lines
	Modifying Terminals
	Modifying Transactions
	Modifying Databases
	Modifying ISC Users (Subpools)
	Modifying ETO Users
	Modifying MSC Resources
	Modifying Security Options
	Modifying Conversations
	Modifying Subsystems

	Gathering Performance-Related Data
	DB Monitor
	IMS Monitor

	Controlling Data Sharing
	Monitoring the System
	Controlling Data Sharing Using DBRC

	Controlling Log Data Set Characteristics
	Controlling the Online Log Data Set
	Controlling the Write-Ahead Data Set
	Controlling the System Log Data Set
	Controlling the RECON Data Sets

	Connecting and Disconnecting Subsystems

	Chapter 28. IMS System Recovery
	Overview of Extended Recovery Facility (XRF)
	Overview of Remote Site Recovery (RSR)
	Comparison of XRF and RSR

	Chapter 29. IBM IMS Tools
	Part 6. IMS in a Parallel Sysplex Environment
	Chapter 30. Introduction to Parallel Sysplex
	Goals of a Sysplex Environment
	IMS and the Sysplex Environment
	IMS DB and the Sysplex Environment
	Dependent Regions and Grouped IMSs in a Sysplex
	Fast Database Recovery
	Summary of IMS DB and the Sysplex Environment

	IMS TM and the Sysplex Environment
	Distributing Transaction Workload
	Distributing Transactions
	Summary of IMS TM and the Sysplex Environment

	Other Advantages of Running IMS TM in a Sysplex Environment
	Rapid Network Reconnect
	Sysplex Failure Recovery

	Chapter 31. IMSplexes
	Components of an IMSplex
	Common Queue Server
	Common Service Layer

	Requirements for an IMSplex
	Operating an IMSplex

	Part 7. Appendixes
	Notices
	Trademarks
	Product Names

	Bibliography
	IMS Version 9 Library

	Index

