IMS

Application Programming: EXEC DLI
Commands for CICS and IMS

Version 9

<|lI!

333333333333

IMS

Application Programming: EXEC DLI
Commands for CICS and IMS

Version 9

<|lI!

333333333333

IBM Confidential

Note
Before using this information and the product it supports, be sure to read the general information under[‘Notices” on page)

Quality Partnership Program (QPP) Edition (December 2003) (Softcopy Only0

This QPP edition applies to Version 9 of IMS (product number 5655-J38) and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1974, 2003. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

IBM Confidential

Contents

Figures.
Tables .

About This Book

Summary of Contents

Prerequisite Knowledge

How to Use This Book . .

How to Read Syntax Diagrams .
Example Syntax Diagram .

How to Send Your Comments

Change Indicators

Summary of Changes . .
Changes to This Book for IMS Versron 9
Library Changes for IMS Version 9

New and Revised Titles

Terminology Changes

Accessibility Enhancements .

Chapter 1. How EXEC DLI Application Programs Work with IMS.

Getting Started with EXEC DLI
A Sample Hierarchy

Chapter 2. Defining Application Program Elements to IMS .
Specifying an Application Interface Block (AIB)
AIB Mask Co
CICS Restrictions Wlth AIB support
Specifying the DL/I Interface Block (DIB) .
Defining a Key Feedback Area
Defining 1/0 Areas .
COBOL I/O Area .
PL/I /O Area. .
Assembler Language I/O Area .

Chapter 3. Writing an Application Program
Programming Guidelines
Coding a Program in Assembler Language
Coding a Program in COBOL
Coding a Program in PL/I .
Coding a Program in C.. . .
Preparing Your EXEC DLI Program for Execut|on .
Translator Options Required for EXEC DLI
Compiler Options Required for EXEC DLI .
Linkage Editor Options Required for EXEC DLI .

Chapter 4. EXEC DLI Commands for an Applrcatlon Program
Using the I/O PCB, PSB, and PCB .o
I/O PCB Coe
Alternate PCB .
DB PCB . .
GSAM PCB .
Format of a PSB .

© Copyright IBM Corp. 1974, 2003

. Xi

. Xili
. Xiii
. Xiii
. Xiii
. Xiv
. XVi
. XVi

. Xvii

. XiX
. XiX
. XiX
. XiX
. XiX
. XiX

N B

IBM Confidential

PCB Summary oo o s .32
Specifying an EXEC DLI Command33
Summary of EXEC DLI Commands33
EXECDLICommands« .«34
DLETCommand35

Format.3

Options.3

Usage36

Example36

Restrictions36
GNCommand3

Format. 3T

Options.38

Usage s s

Examples.

Restrictions 0000042
GNP Command 42

Format. 42

Options.43

Usageo s b6

Examples.46

Restrictions e 4aT
GUCommando

Format. LA

Options.9

Usageo oo oo B2

Examples. .. .52

Restricton .53
ISRT Command .53

Format.5

Options.5b

Usageo hT

Examples. .. .58

Restrictons .58
POS Command.5

Format. ..5

Options. uh9

Usage060

Restricton .60
REPL Command60

Format.01

Options.061

Usage62

Examples.63

Restrictons .64
RETRIEVE Command .64

Format. .65

Options.65

Usage065

Examples.66

Restrictions .66
SCHDCommand66

Format. .66

Options.6066

Usagek

Examples. ..67

Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential

TERM Command .
Format .
Options.

Usage .
Example

System Service Comma

ACCEPT Command .
Format .
Options.

Usage .
Example .

CHKP Command .
Format .
Options.

Usage .
Examples .
Restrictions .

DEQ Command

Format .
Option .
Usage .

Example
Restriction

LOAD Command .
Format .
Options.

Usage .
Example

LOG Command.
Format .
Options.

Usage .
Example
Restriction

QUERY Command
Format .
Options.

Usage .
Examples .
Restrictions .

REFRESH Command
Format .
Options.

Usage .
Example
Restrictions . .

ROLB Command .
Format .
Options.

Usage .
Example
Restrictions .

ROLL Command
Format .
Options.

Usage .

. 67
. 67
. 67
. 67
. 68
. 68
. 69
. 69
. 69
. 69
. 69
. 69
. 69
. 69
. 70
. 70
. 70
. 70
.71
.71
.71
.71
.71
.71
.72
.72
.72
.72
.72
. 73
. 73
. 73
. 73
. 73
. 73
. 73
. 73
. 73
.74
.74
.74
.74
.74
.74
. 74
. 75
. 75
. 75
. 75
. 75
. 75
. 75
. 76
. 76
. 76
. 76

Contents

\Y

IBM Confidential

Example176
Restrictons .76
ROLS Command T7
Format.
Options. LT
Usage oo e e e e e e e e T
Examples. L L L. LT
Restrictons .78
SETSCommand .. .78
Format. .. .18
Options.T18
Usageo T9
Example L0009
Restrictions ..179
SETU Command ... T19
Format.79
Options.80
Usage80
Example80
Restrictions80
STATCommand ...80
Format.8
Options.8
Usage 3
Examples.8
SYMCHKP Command8
Format., 08
Options., 82
Usageo, 82
Example83
Restrictions .83
XRST Command .83
Format. .. .83
Options.83
Usage84
Example85
Restrictons .85

Chapter 5. Recovering Databases and Maintaining Database Integrity . . . 87
Issuing Checkpoints in a Batch or BMP Program87
Issuing the CHKP Command.87
Issuing the SYMCHKP Command . . . e88
Restarting Your Program and Checking for Posmon . . 88
Backing Out Database Updates Dynamically: The ROLL and ROLB Commands 88
Using Intermediate Backout Points: The SETS and ROLS Commands 88
SETS Command .. .89
ROLS Command .. .89

Chapter 6. Processing Fast Path Databases91
Processing DEDBs with Subset Pointers91
Before You Use Subset Pointers . . . N K
Designating Subset Pointers You Want to Use e, 7
Using Subset Pointers .9%
Subset Pointer Status Codes 101
The POS Command . . . e 0k
Locanng21Specﬁm:SequenUaIDependent e 02

Vi Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential

Locating the Last Inserted Sequential Dependent Segment .
Identifying Free Space
The P Processing Option.

Chapter 7. Comparing Command-Level and Call-Level Programs

Chapter 8. Data Availability Enhancements .
Accepting Database Availability Status Codes .
Obtaining Information about Database Availability.

Notices .
Programming Interface Information .
Trademarks.

Product Names

Bibliography . .
IMS Version 9 Library .

Index .

Contents

. 102
. 103
. 103

. 105

. 109
. 109
. 109

111
. 113
. 113
. 114

. 115
. 115

. 117

Vii

IBM Confidential

Viii Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential

Figures

©CoNO WD

The Structure of a Command-Level Batch or BMP Program

Medical Hierarchy .

General Format of a PSB. .

Processing a Long Chain of Segment Occurrences Wlth Subset Pomters .

Examples of Setting Multiple Subset Pointers

More Examples of Setting Subset Pointers

How Subset Pointers Divide a Chain into Subsets

Processing Performed for the Sample Passbook Example When the Passbook is Unavallable
Processing Performed for the Sample Passbook Example when the Passbook is Available
Retrieving the First Segment in a Chain of Segments .

Moving the Subset Pointer to the Next Segment after Your Current Posrtron .
Unconditionally Setting the Subset Pointer to Your Current Position .

Conditionally Setting the Subset Pointer to Your Current Position.

© Copyright IBM Corp. 1974, 2003

. 32
.92
. 92
. 93
. 93

95
95

. 96
. 98

. 99

. 100

IBM Confidential

X Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential

Tables

How to Read Syntax Diagrams

PATIENT Segment.

ILLNESS Segment

TREATMNT Segment

BILLING Segment.

PAYMENT Segment .

HOUSEHOLD Segment.

Summary of PCB Information .

Summary of EXEC DLI Commands . .
10. DL/I Calls Available to IMS and CICS Command Level Appl|cat|on Programs .
11. Comparing Call-Level and Command-Level Programs: Commands and Calls .

©CoNO WD

12. Comparing Call-Level and Command-Level Programs: Command Codes and Options .

© Copyright IBM Corp. 1974, 2003

Xi

IBM Confidential

Xii Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential

About This Book

This book is for CICS® application programmers whose programs use EXEC DLI
commands in an IMS™ environment. This book lists and describes the EXEC DLI
commands, and explains the procedures for writing application programs. For
information on using databases (such as, position in the database, using multiple
positioning, and using secondary indexing and logical relationships), see
[Version 9: Application Programming: Database Manager|

This softcopy book is available only in PDF and BookManager formats. This book is
available on the IMS Version 9 Licensed Product Kit (LK3T-7213). To get the most
current versions of the PDF and BookManager® formats, go to the IMS Web site at
www.ibm.com/ims and link to the Library page.

Summary of Contents

This book explains the basics of writing the DL/I part of your application program
with EXEC DLI commands. It also contains reference information about the parts of
an IMS command-level application program such as EXEC DLI commands, system
service calls, qualification statements, EXEC DLI options, the DIB (DL/I Interface
Block), I/O areas, and status codes. These chapters are for experienced
programmers who understand IMS application programming and need only to look
up a fact such as the meaning of a particular status code. If you are one of those
programmers, you may also want to have IMS/ESA Application Programming:
EXEC DLI Commands for CICS and IMS Summary on hand

Prerequisite Knowledge

IBM® offers a wide variety of classroom and self-study courses to help you learn
IMS. For a complete list, see the IMS home page on the World Wide Web at:
www.ibm.com/ims

This book assumes you are a CICS programmer familiar with the functions,
facilities, hardware, and software described in CICS/ESA CICS Family General
Information and from the Library page of the IMS home page on the Web:
www.ibm.com/ims.

This book also assumes that, if you plan to write a CICS program, you are familiar
with the principles covered in CICS/ESA Application Programming Guide and in
other CICS documentation.

How to Use This Book

This book is one of several books documenting the IMS application programming
task. The complete package of application programming materials is as follows:

© Copyright IBM Corp. 1974, 2003 Xiii

IBM Confidential

APDG

APDB APCICS APTM

[IMS Version 9: Application Programming: Design Guide| (APDG), is the
introductory application programming book and is also the place to find
information common to all of the application programming environments.

[IMS Version 9: Application Programming: Database Manager| (APDB) describes
how to write an application program to process a database using DL/I calls. This
book applies to both IMS and CICS environments.

+ [IMS Version 9: Application Programming: EXEC DLI Commands for CICS and|
IMS| (APCICS) describes how to write an application program to process the
database using EXEC DLI commands.

[IMS Version 9: Application Programming: Transaction Manager] (APTM) describes
how to write an application program to process messages using DC calls.

For definitions of terms used in this manual and references to related information in
other manuals, see the [IMS Version 9: Master Index and Glossary|

How to Read Syntax Diagrams

Each syntax diagram in this book begins with a double right arrow and ends with a
right and left arrow pair. Lines that begin with a single right arrow are continuation
lines. You read a syntax diagram from left to right and from top to bottom, following
the direction of the arrows.

Conventions used in syntax diagrams are described in[Table 1}

Table 1. How to Read Syntax Diagrams

Convention Meaning

You must specify values A, B, and C.
Required values are shown on the main path
of a syntax diagram.

»»—A—B—~C

\4
A

You have the option to specify value A.
Optional values are shown below the main
|_/._| path of a syntax diagram.

\
\

\4
A

You must specify value A, B, or C.

v
4

b=

A\
A

Xiv Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential

Table 1. How to Read Syntax Diagrams (continued)

Convention Meaning
You have the option to specify A, B, C, or
> »«| none of these values.
Iy
B
L
You have the option to specify A, B, C, or
A none of these values. If you don't specify a
> »«| Vvalue, A is the default.
B
L

You have the option to specify one, more
than one, or none of the values A, B, or C.
Any required separator for multiple or
repeated values (in this example, the
comma) is shown on the arrow.

v
4
<

A\

A

You have the option to specify value A
multiple times. The separator in this example
is optional.

»—I Name i »><
Name:

| A |

I N |

Sometimes a diagram must be split into
fragments. The syntax fragment is shown
separately from the main syntax diagram, but
the contents of the fragment should be read
as if they are on the main path of the
diagram.

Punctuation marks and numbers

Enter punctuation marks (slashes, commas,
periods, parentheses, quotation marks, equal
signs) and numbers exactly as shown.

Uppercase values

Keywords, their allowable synonyms, and
reserved parameters, appear in uppercase
letters for z/OS. Enter these values exactly
as shown.

Lowercase values without italics

Keywords, their allowable synonyms, and
reserved parameters, appear in lowercase
letters for UNIX. Enter these values exactly
as shown.

Lowercase values in italics (for example,
name)

Supply your own text or value in place of the
name variable.

b

A b symbol indicates one blank position.

Other conventions include the following:

About This Book XV

IBM Confidential

* When entering commands, separate parameters and keywords by at least one
blank if there is no intervening punctuation.

* Footnotes are shown by a number in parentheses, for example, (1).
» Parameters with number values end with the symbol #.

« Parameters that are names end with 'name’.

» Parameters that can be generic end with the symbol *.

Example Syntax Diagram

Here is an example syntax diagram that describes the hello command.

»»—hello
L‘ Name ’J LI Greeting ’J

Name:

[

—"-name |

v
A

Greeting:

(2)
—,—vyour_greeting |

Notes:
1 You can code up to three names.

2 Compose and add your own greeting (for example, how are you?).

According to the syntax diagram, these are all valid versions of the hello command:

hello

hello name

hello name, name

hello name, name, name

hello, your_greeting

hello name, your_greeting

hello name, name, your_greeting
hello name, name, name, your_greeting

The space before the name value is significant. If you do not code name, you must
still code the comma before your_greeting.

How to Send Your Comments

XVi

Your feedback is important in helping us provide the most accurate information and
highest quality information. If you have any comments about this book or any other
IMS documentation, you can do one of the following:

* Go to the IMS home page at: http://www.ibm.com/ims. There you will find an
online feedback page where you can enter and submit comments.

* Send your comments by e-mail to imspubs@us.ibm.com. Be sure to include the
name of the book, the part number of the book, the version of IMS, and, if
applicable, the specific location of the text you are commenting on (for example,
a page number or table number).

Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential

Change Indicators

Technical changes are indicated in this publication by a vertical bar (]) to the left of
the changed text.

About This Book ~ XVIii

IBM Confidential

XViii Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential

Summary of Changes

Changes to This Book for IMS Version 9

This edition is a draft version of this book intended for use during the Quality
Partnership Program (QPP). Contents of this book are preliminary and are under
development.

This book contains IMS Version 9 technical and editorial changes.

The parts of this book have been removed.

Library Changes for IMS Version 9

Changes to the IMS Library for IMS Version 9 include the addition of new titles, the
change of one title, and a major terminology change.

New and Revised Titles

The following list details the major changes to the IMS Version 9 library:

« |IMS Version 9: HALDB Online Reorganization Guide and Reference]
The library includes a new book:|IMS Version 9: HALDB Online Reorganization|
[Guide and Reference] This book is available only in PDF and BookManager
formats.

+ [IMS Version 9: An Introduction to IMS|
The library includes a new book: [IMS Version 9: An Introduction to IMS]

* The book formerly titled IMS Version 8: IMS Java User’s Guide is now titled
[Version 9: IMS Java Guide and Referencel

Terminology Changes
IMS Version 9 introduces new terminology for IMS commands:

type-1 command
A command, generally preceded by a leading slash character, that can be
entered from any valid IMS command source. In IMS Version 8, these
commands were called classic commands.

type-2 command
A command that is entered only through the OM API. Type-2 commands
are more flexible and can have a broader scope than type-1 commands. In
IMS Version 8, these commands were called IMSplex commands or
enhanced commands.

Accessibility Enhancements

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products. The major accessibility features
in z/OS products, including IMS, enable users to:

» Use assistive technologies such as screen readers and screen magnifier
software

» Operate specific or equivalent features using only the keyboard
» Customize display attributes such as color, contrast, and font size

© Copyright IBM Corp. 1974, 2003 XiX

IBM Confidential

User Assistive Technologies
Assistive technology products, such as screen readers, function with the IMS user

interfaces. Consult the documentation of the assistive technology products for
specific information when you use assistive technology to access these interfaces.

Accessible Documentation
Online documentation for IMS Version 9 is available in BookManager format, which

is an accessible format. All BookManager functions can be accessed by using a
keyboard or keyboard shortcut keys. BookManager also allows you to use screen
readers and other assistive technologies. The BookManager READ/MVS product is
included with the z/OS base product, and the BookManager Softcopy Reader (for
workstations) is available on the IMS Licensed Product Kit (CD), which you can
download from the Web at www.ibm.com.

Keyboard Navigation of the User Interface
Users can access IMS user interfaces using TSO/E or ISPF. Refer to the z/0S

V1R1.0 TSO/E Primer, the z/OS V1R1.0 TSO/E User’s Guide, and the z/OS
V1R1.0 ISPF User’s Guide, Volume 1. These guides describe how to navigate each
interface, including the use of keyboard shortcuts or function keys (PF keys). Each
guide includes the default settings for the PF keys and explains how to modify their
functions.

XX Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential

Chapter 1. How EXEC DLI Application Programs Work with
IMS

This chapter describes the components of your CICS program. It also describes the
sample hierarchy used in the examples.

Your EXEC DLI application uses EXEC DLI commands to read and update DL/I
databases. These applications can execute as pure batch, as a BMP running with
DBCTL or DB/DC, or as an online CICS program using DBCTL. Your EXEC DLI
program can also issue system service commands when using DBCTL.

IMS DB/DC can provide the same services as DBCTL.

Getting Started with EXEC DLI

shows the main elements of programs that use EXEC DLI commands to
access DL/l databases. The main differences between a CICS program and a
command-level batch or BMP program (represented by are that you do
not schedule a PSB for a batch program, and that you do not issue checkpoints for
a CICS program. The numbers on the left of the figure correspond to the notes that
follow.

1. 1/O Area

‘ Segment to and from the database ‘
1/0 Area

‘ Segment to and from the database ‘

2. Key Feedback Area

‘ Concatenated key of segment retrieved ‘
3. DL/I Interface Block (DIB)

‘ Information returned from DL/I ‘

4. Program Entry

5. Issue EXEC DLI CMDs for DB processing

Retrieve
Replace
Delete
Insert

6. Check the status Code in the DIB

7. Issue checkpoint

8. Termination

Figure 1. The Structure of a Command-Level Batch or BMP Program

Notes to

I/O areas. DL/I passes segments to and from the program in the I/O areas.
You may use a separate 1/0O area for each segment.

H Key feedback area. DL/ passes, on request, the concatenated key of the
lowest-level segment retrieved to the key feedback area.

© Copyright IBM Corp. 1974, 2003 1

Getting Started with EXEC DLI IBM Confidential

E] DL/l Interface Block (DIB). DL/I and CICS place the results of each
command in the DIB. The DIB contains most of the same information returned in
the DB PCB for programs using the call-level interface.

Note: The horizontal line between [E] and [J represents the end of the
declarations section and the start of the executable code section of the
program.

I Program entry. Control is passed to your program during program entry.

H Issue EXEC DLI commands. Commands read and update information in the

database.

[Check the status code. To find out the results of each command you issue,

you should check the status code in the DIB after issuing an EXEC DLI

command for database processing and after issuing a checkpoint command.

Issue checkpoint. Issue checkpoints as needed to establish places from

which to restart. Issuing a checkpoint commits database changes and releases

resources.

B Terminate. This returns control to the operating system, commits database

changes, and releases resources.

Requirement: CICS/ESA® Version 4, or later, and CICS Transaction Server run
with this version of IMS. Unless a distinction needs to made, all supported versions
are referred to as CICS.

A Sample Hierarchy

Many of the examples use the medical hierarchy shown in the following graphic.
The database contains information that a medical clinic might keep about its
patients. To understand the examples, you should be familiar with the hierarchy and
the segments it contains.

PATIENT

ILLNESS BILLING HOUSHOLD

TREATMNT PAYMENT

Figure 2. Medical Hierarchy

The tables that follow show the layouts of each segment in the hierarchy. The
segment’s field contents are in the first row of each table. The number below each
field contents is the length in bytes that has been defined for that field.

* PATIENT Segment
[Table 2 on page 3| shows the PATIENT segment.
It has three fields:
— The patient’'s number (PATNO)
— The patient’'s name (NAME)
— The patient’s address (ADDR)

2 Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential

A Sample Hierarchy

PATIENT has a unique key field: PATNO. PATIENT segments are stored in
ascending order of their patient numbers. The lowest patient number in the
database is 00001 and the highest is 10500.

Table 2. PATIENT Segment

Field Contents PATNO NAME ADDR

Bytes 5 10 30

* ILLNESS Segment

shows the ILLNESS segment.

It has two fields:
— The date when the patient came to the clinic with the illness (ILLDATE)
— The name of the iliness (ILLNAME)

The key field is ILLDATE. Because it is possible for a patient to come to the
clinic with more than one illness on the same date, this key field is non unique,
that is, there may be more than one ILLNESS segment with the same (an equal)
key field value.

Usually during installation, the database administrator (DBA) decides the order in
which to place the database segments with equal or no keys. The DBA can use
the RULES keyword of the SEGM statement of the DBD to specify the order of
the segments.

For segments with equal keys or no keys, RULES determines where the
segment is inserted. Where RULES=LAST, ILLNESS segments that have equal
keys are stored on a first-in first-out basis among those with equal keys.
ILLNESS segments with unique keys are stored in ascending order on the date
field, regardless of RULES. ILLDATE is specified in the format YYYYMMDD.

Table 3. ILLNESS Segment

Field Contents

ILLDATE

ILLNAME

Bytes

8

10

* TREATMNT Segment
shows the TREATMNT segment.
It contains four fields:

The date of the treatment (DATE)
The medicine that was given to the patient (MEDICINE)
The quantity of the medicine that the patient received (QUANTITY)
The name of the doctor who prescribed the treatment (DOCTOR)

The TREATMNT segment’s key field is DATE. Because a patient may receive
more than one treatment on the same date, DATE is a non unique key field.
TREATMNT, like ILLNESS, has been specified as having RULES=LAST.
TREATMNT segments are also stored on a first-in-first-out basis. DATE is
specified in the same format as ILLDATE—YYYYMMDD.

Table 4. TREATMNT Segment

Field Contents

DATE

MEDICINE

QUANTITY

DOCTOR

Bytes

8

10

4

10

Chapter 1. How EXEC DLI Application Programs Work with IMS

A Sample Hierarchy IBM Confidential

* BILLING Segment

shows the BILLING segment. It has only one field—the amount of the
current bill. BILLING has no key field.

Table 5. BILLING Segment
Field Contents BILLING
Bytes 6

* PAYMENT Segment

shows the PAYMENT segment. It has only one field— the amount of
payments for the month. The PAYMENT segment has no key field.

Table 6. PAYMENT Segment
Field Contents PAYMENT
Bytes 6

* HOUSHOLD Segment
shows the HOUSHOLD segment.
It contains two fields:
— The names of the members of the patient’'s household (RELNAME)
— How each member of the household is related to the patient (RELATN)

The HOUSEHOLD segment’s key field is RELNAME.

Table 7. HOUSEHOLD Segment
Field Contents RELNAME RELATN

Bytes 10 8

4 Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential

Chapter 2. Defining Application Program Elements to IMS

This chapter provides information on the following:

+ [‘Specifying an Application Interface Block (AIB)’|

« ['Specifying the DL/I Interface Block (DIB)” on page 6|
« ['Defining a Key Feedback Area” on page 9|

« ['Defining I/O Areas” on page 9|

Specifying an Application Interface Block (AIB)

EXEC DLI commands can use the AIB interface. For example, using the AIB
interface, the format for the GU command would be EXEC DLI GU AIB(aib), instead
of EXEC DLI GU USING PCB(n) using the PCB format.

With CICS Transaction Server 1.1 or later, the following EXEC DLI commands are
supported in the AIB format (as well as the PCB format):

- GU
- GN

- GNP

. ISRT

. DLET

- REPL

.« STAT

.« POS

« QUERY

« REFRESH
« ACCEPT
. LOG

- DEQ

. SETS

- ROLS

With CICS Transaction Server 1.1 or later, and IMS/ESA® Version 5, the following
AlIB-only commands are supported by using the EXEC DLI interface: ICMD, RCMD
and GMSG.

The CICS EDF (execution diagnostic facility) debugging transaction supports AIB
EXEC DLI requests, just as it handles PCB type requests.

AlIB Mask

The AIB mask must be supplied by the application and referenced in the EXEC call
instead of the PCB number (for example, EXEC DLI GU AIB(aib)).

The DIBSTAT field is set with a valid STATUS code when AIBRETRN =

X’00000000’ or x’00000900’. Applications should test AIBRETRN for any other
values and respond accordingly.

© Copyright IBM Corp. 1974, 2003 5

Specifying an Application Interface Block (AIB)

CICS Restrictions with AIB support

Restrictions due to function shipping include:

IBM Confidential

* The AIBLEN field must be between 128 and 256 bytes. 128 is recommended.

e LIST=NO must not be specified on any PCBs in the PSB.

Specifying the

DL/l Interface Block (DIB)

Each time your program executes a DL/ command, DL/I returns a status code and
other information to your program through the DL/l interface block (DIB), which is a
subset of IMS PCB. Your program should check the status code to make sure the

command executed successfully.

Each program’s working storage contains its own DIB. The contents of the DIB
reflect the status of the last DL/I command executed in that program. If the
information in your program’s DIB is required by another program used by your

transaction, you must pass the information to that program.

To access fields in the DIB, use labels that are automatically generated in your

program by the translator.

Restriction: These labels are reserved; you must not redefine them.

In your COBOL, PL/I, assembler, and C programs, some variable names are

mandatory.

For a COBOL program:

DIBVER PICTURE X(2)
DIBSTAT PICTURE X(2)
DIBSEGM PICTURE X(8)
DIBSEGLV PICTURE X(2)

DIBKFBL PICTURE S9(4) COMPUTATIONAL

DIBDBDNM PICTURE X(8)
DIBDBORG PICTURE X(8)

DIBVER CHAR(2)

DIBSTAT CHAR(2)

DIBSEGM CHAR(8)

DIBSEGLV CHAR(2)

DIBKFBL FIXED BINARY (15,0)
DIBDBDNM CHAR(8)

DIBDBORG CHAR(8)

For an assembler language program:

DIBVER CL2
DIBSTAT CL2
DIBSEGM CL8
DIBSEGLV CL2
DIBKFBL H
DIBDBDNM CL8
DIBDBORG CL8

For a C program:

unsigned char dibver {2}
unsigned char dibstat {2}
unsigned char dibsegm {8}
unsigned char dibfic0l
unsigned char dibfic02 ;
unsigned char dibseglv {2}

6 Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential

Specifying the DL/l Interface Block (DIB)

signed short int dibkfbl 5

unsigned char dibdbdnm {8}
unsigned char dibdborg {8}
unsigned char dibfic03 {6} ;

The following notes explain the contents of each variable name. The name in
parenthesis is the label used to access the contents.

1. Translator Version (DIBVER)

This is the version of the DIB format your program is using. (DIBVER is used for
documentation and problem determination.)

2. Status Code (DIBSTAT)

DL/l places a 2-character status code in this field after executing each DL/I
command. This code describes the results of the command.

After processing a DL/I command, DL/I returns control to your program at the
next sequential instruction following the command. The first thing your program
should do after each command is to test the status code field and take
appropriate action. If the command was completely successful, this field
contains blanks.

Following are the status codes that can be returned to this field (they are the
only status codes returned to your program):

bbbb (Blanks) The command was completely successful.
BA For GU, GN, GNP, DLET, REPL, and ISRT commands. Data was unavailable.
BC For DLET, REPL, and ISRT commands. A deadlock was detected.

FH For GU, GN, GNP, DLET, REPL, ISRT, POS, CHKP, and SYMCHKP commands.
The DEDB was inaccessible.

FwW For GU, GN, GNP, DLET, REPL, ISRT, and POS commands. More buffer space
is required than normally allowed.

GA For unqualified GN and GNP commands. DL/I returned a segment, but the
segment is at a higher level in the hierarchy than the last segment that
was returned.

GB For GN commands. DL/l reached the end of the database trying to
satisfy your GN command and did not return a segment to your
program’s I/O area.

GD For ISRT commands. The program issued an ISRT command that did
not have SEGMENT options for all levels above that of the segment
being inserted.

GE For GU, GN, GNP, ISRT, and STAT commands. DL/l was unable to find the
segment you requested, or one or more of the parents of the segment
you are trying to insert.

GG For Get commands. DL/I returns a GG status code to a program with a
processing option of GOT or GON when the segment that the program
is trying to retrieve contains an invalid pointer.

GK For unqualified GN and GNP commands. DL/I returned a segment that
satisfies an unqualified GN or GNP request, but the segment is of a
different segment type (but at the same level) than the last segment
returned.

Il For ISRT commands. The segment you are trying to insert already exists
in the database. This code can also be returned if you have not
established a path for the segment before trying to insert it. The

Chapter 2. Defining Application Program Elements to IMS 7

Specifying the DL/l Interface Block (DIB) IBM Confidential

segment you are trying to insert might match a segment with the same
key in another hierarchy or database record.

LB For load programs only after issuing a LOAD command. The segment
you are trying to load already exists in the database. DL/I returns this
status code only for segments with key fields.

NI For ISRT and REPL commands. The segment you are trying to insert or
replace requires a duplicate entry to be inserted in a secondary index
that does not allow duplicate entries. This status code is returned for
batch programs that write log records to direct access storage. If a
CICS program that does not log to disk encounters this condition, the
program (transaction) is abnormally terminated.

TG For TERM commands. The program tried to terminate a PSB when one
was not scheduled.

The status codes listed above indicate exceptional conditions, and are the only
status codes returned to your program. All other status codes indicate error
conditions and cause your transaction or batch program to abnormally
terminate. If you want to pass control to an error routine from your CICS
program, you can use the CICS HANDLE ABEND command; the last 2 bytes of the
abend code are the IMS status code that caused the abnormal termination. For
more information on the HANDLE ABEND command, see the application
programming reference manual for your version of CICS. Batch BMP programs
abend with abend 1041.

3. Segment Name (DIBSEGM)

This is the name of the lowest-level segment successfully accessed. When a
retrieval is successful, this field contains the name of the retrieved segment. If
the retrieval is unsuccessful, this field contains the last segment, along the path
to the requested segment, that satisfies the command.

After issuing an XRST command, this field is either set to blanks (indicating a
successful normal start), or a checkpoint ID (indicating the checkpoint ID from
which the program was restarted).

You should test this field after issuing any of the following commands:
* GN
* GNP
« GU
* ISRT
 LOAD
* RETRIEVE
e XRST
4. Segment Level Number (DIBSEGLYV)

This is the hierarchic level of the lowest-level segment retrieved. When IMS DB
retrieves the segment you have requested, IMS DB places, in character format,
the level number of that segment in this field. If you are issuing a path
command, IMS DB places the number of the lowest-level segment retrieved. If
IMS DB is unable to find the segment you have requested, it gives the level
number of the last segment it encountered that satisfied your command. This is
the lowest segment on the last path that IMS DB encountered while searching
for the segment you requested.

You should test this field after issuing any of the following commands:
« GN

8 Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential Specifying the DL/l Interface Block (DIB)

« GNP
« GU
* ISRT
* LOAD
* RETRIEVE
5. Key Feedback Length (DIBKFBL)

This is a halfword field that contains the length of the concatenated key when
you use the KEYFEEDBACK option with get commands. If your key feedback
area is not long enough to contain the concatenated key, the key is truncated,
and this area indicates the actual length of the full concatenated key.

6. Database Description Name (DIBDBDNM)

This is the fullword field that contains the name of the DBD. The DBD is the
DL/I control block that contains all information used to describe a database. The
DIBDBDNM field is returned only on a QUERY command.

7. Database Organization (DIBDBORG)

This is the fullword field that names the type of database organization (HDAM,
HIDAM, HISAM, HSAM, GSAM, SHSAM, INDEX, or DEDB) padded to the right
with blanks. The DIBDBORG field is returned only on a QUERY command.

Defining a Key Feedback Area

To retrieve the concatenated key of a segment, you must define an area into which
the key is placed. The concatenated key returned is that of the lowest-level
segment retrieved. (The segment retrieved is indicated in the DIB by the DIBSEGM
and DIBSEGLYV fields.)

Specify the name of the area using the KEYFEEDBACK option on a GET
command.

A concatenated key is made up of the key of a segment, plus the keys for all of its
parents. For example, say you requested the concatenated key of the ILLNESS
segment for January 2, 1988, for patient number 05142. The following would be
returned to your key feedback field:

0514219880102

This number includes the key field of the ILLNESS segment, ILLDATE,
concatenated to the key field of the PATIENT segment, PATNO.

If you define an area that is not long enough to contain the entire concatenated key,
the key is truncated.

Defining I/O Areas

You use I/O areas to pass segments back and forth between your program and the
database. What an 1/O area contains depends on the kind of command you are
issuing:

* When you retrieve a segment, DL/I places the segment you requested in the 1/O
area.

* When you add a new segment, you build the new segment in the I/O area before
issuing an ISRT command.

» Before you modify a segment, you first retrieve the segment into the then issue
the DLET or REPL command.

Chapter 2. Defining Application Program Elements to IMS 9

Defining 1/0O Areas IBM Confidential

Restriction: The 1/0O area must be long enough to contain the longest segment you
retrieve from or add to the database. (Otherwise, you might experience storage
overlap.) If you are retrieving, adding, or replacing multiple segments in one
command, you must define an 1/O area for each segment.

As an example of what a segment looks like in your 1/O area, say that you retrieved
the ILLNESS segment for Robert James, who came to the clinic on March 3, 1988.
He was treated for strep throat. The data returned to your 1/O area would look like
this:

19880303STREPTHROA

The language coding formats are described in this section.

COBOL I/O Area

The 1/O area in a COBOL program should be defined as a 01 level working storage
entry. You can further define the area with 02 entries.

IDENTIFICATION DIVISION.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 INPUT-AREA.

02 KEY PICTURE X(6).

02 FIELD PICTURE X(84).

PL/I I/O Area

In PL/I, the name for the I/O area used in the DL/I call can be the name of a
fixed-length character string, a major structure, a connected array, or an adjustable
character string. Restriction: The PL/I /O area cannot be the name of a minor
structure or a character string with the attribute VARYING. If you want to define it as
a minor structure, you can use a pointer to the minor structure as the parameter.

Your program should define the 1/O area as a fixed-length character string and pass
the name of that string, or define it in one of the other ways described previously
and then pass the pointer variable that points to that definition. If you want to use
substructures or elements of an array, use the DEFINED or BASED attribute.
DECLARE 1 INPUT_AREA,

2 KEY CHAR(6),
2 FIELD CHAR(84);

Assembler Language I/O Area

The 1/O area in an assembler language program is formatted as follows:

IOAREA DS 0OCL90
KEY DS CL6
FIELD DS (L84

10 Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential

Chapter 3. Writing an Application Program

This chapter provides programming guidelines and information on preparing
programs for execution using EXEC DLI commands. It also contains skeleton
programs in assembler language, COBOL, PL/I, C, and C++.

In this chapter:
+ ['‘Programming Guidelines’|
« ['Preparing Your EXEC DLI Program for Execution” on page 29|

Programming Guidelines

This description provides some guidelines for writing efficient and error-free
programs

The number, type, and sequence of the DL/I requests your program issues affect
the efficiency of your program. A program that is poorly designed runs if it is coded
correctly. The suggestions that follow can help you develop the most efficient design
possible for your application program. Inefficiently designed programs can adversely
affect performance and are hard to change. Being aware of how certain
combinations of commands or calls affects performance helps you to avoid these
problems and design a more efficient program.

After you have a general sequence of calls mapped out for your program, use these
guidelines to improve the sequence. Usually an efficient sequence of requests
causes efficient internal DL/I processing.

* Use the simplest call. Qualify your requests to narrow the search for DL/I, but do
not use more qualification than required.

* Use the request or sequence of requests that gives DL/I the shortest path to the
segment you want.

» Use the fewest number of requests possible in your program. Each DL/l request
your program issues uses system time and resources. You may be able to
eliminate unnecessary calls by:

— Using path requests if you are replacing, retrieving, or inserting more than one
segment in the same path. If you are using more than one request to do this,
you are issuing unnecessary requests.

— Changing the sequence so that your program saves the segment in a
separate 1/0 area, and then gets it from that I/O area the second time it needs
the segment. If your program retrieves the same segment more than once
during program execution, you are issuing an unnecessary request.

— Anticipating and eliminating needless and nonproductive requests, such as
requests that result in GB, GE, and |l status codes. For example, if you are
issuing GNs for a particular segment type and you know how many
occurrences of that segment type exist, do not issue the GN that results in a
GE status code. You can keep track of the number of occurrences your
program retrieves, and then continue with other processing when you know
you have retrieved all the occurrences of that segment type.

— Issuing an insert request with a qualification for each parent instead of issuing
Get requests for the parents to make sure that they exist. When you are
inserting segments, you cannot insert dependents unless the parents exist. If
DL/I returns a GE status code, at least one of the parents does not exist.

© Copyright IBM Corp. 1974, 2003 11

Programming Guidelines IBM Confidential

Keep the main section of the program logic together. For example, branch to
conditional routines, such as error and print routines, in other parts of the
program, instead of having to branch around them to continue normal
processing.

Use call sequences that make good use of the physical placement of the data.
Access segments in hierarchic sequence as much as possible. Avoid moving
backward in the hierarchy.

Process database records in order of the key field of the root segments. (For
HDAM databases, this order depends on the randomizing routine that is used.
Check with your DBA for this information.)

Try to avoid constructing the logic of the program and the structure of commands
or calls in a way that depends heavily on the database structure. Depending on
the current structure of the hierarchy reduces the program’s flexibility.

Coding a Program in Assembler Language

The following sample is a CICS online program that is written in assembler
language. It shows how the different parts of a command-level program fit together
and how the EXEC DLI commands are coded.

Except for a few commands, this program applies to batch, BMP, and CICS
programs. Differences are highlighted in the notes that follow. The numbers to the
right of the sample code refer to those notes.

*ASM XOPTS(CICS,DLI)

* 1]
R2 EQU 2
R3 EQU 3
R4 EQU 4
R11 EQU 11
R12 EQU 12
R13 EQU 13

DFHEISTG DSECT

SEGKEYA DS CL4

SEGKEYB DS CL4 2]
SEGKEYC DS CL4

SEGKEYL DS CL4

SEGKEY2 DS CL4

CONKEYB DS CL8

SEGNAME DS CL8

SEGLEN DS H

PCBNUM DS H

AREAA DS CL8O

AREAB DS CL80
AREAC DS CL80O

AREAG DS CL250

AREASTAT DS CL360

*
*

COPY MAPSET

B R R e e e R R S T S T e S T e ST e e s L e s L et

*
*
*
*

INITIALIZATION

HANDLE ERROR CONDITIONS IN ERROR ROUTINE n
HANDLE ABENDS (DLI ERROR STATUS CODES) IN ABEND ROUTINE

RECEIVE INPUT MESSAGE

kkhkhkkhkhkhhhhkhhhhhhrhhhkrhhhrrhrrhrrhrrhhrxx khkhkhkhkkhkhhhhhhhhhhhhhhhkrrkrrkkx

*

SAMPLE ~ DFHEIENT CODEREG=(R2,R3),DATAREG=(R13,R12),EIBREG=R11

*

EXEC CICS HANDLE CONDITION ERROR(ERRORS)

EXEC CICS HANDLE ABEND LABEL(ABENDS)

EXEC CICS RECEIVE MAP ('SAMPMAP') MAPSET('MAPSET')

12 Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential

Coding a Program in Assembler Language

* ANALYZE INPUT MESSAGE AND PERFORM NON-DLI PROCESSING
*
khkkhkhkkkhkhkhkkhhhhhhhkhhhhhhhdhhhdhdhhdhhdhhhhhhhhhhhhhhhkhhhhkhhhhkhhkhkhkhkkhhxkx
* SCHEDULE PSB NAMED 'SAMPLE1'
dhkkhkhkkhkhkhhkhhhhhhhhhhhhhhdhdhhdhdhdhhdhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhkkkkxkx
*

EXEC DLI SCHD PSB(SAMPLE1)

BAL R4, TESTDIB CHECK STATUS
*
khkkhkhkkhkhkhkhkkhhhhhhhkhhhhkhhdhdhhdhdhdhhdhhdhhhhhhhhhhhhhhhhhhhkhhhhkhhkhhkkhhxkx
* RETRIEVE ROOT SEGMENT AND ALL ITS DEPENDENTS
dhkkhkhkkhkhkhhkhkhhhkhhhhhhhhhhdhdhdhdhdhdhhdhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhkkkkxkx
*

MVC SEGKEYA,=C'A300'

EXEC DLI GU USING PCB(1) SEGMENT(SEGA) INTO(AREAA)

SEGLENGTH(80) WHERE (KEYA=SEGKEYA) FIELDLENGTH(4)

BAL R4,TESTDIB CHECK STATUS
GNPLOOP EQU *

EXEC DLI GNP USING PCB(1) INTO(AREAG) SEGLENGTH(250)

CLC DIBSTAT,=C'GE' LOOK FOR END
BE LOOPDONE DONE AT 'GE'
BAL R4,TESTDIB CHECK STATUS
B GNPLOOP

LOOPDONE EQU =

*
e e ok e e o
* INSERT NEW ROOT SEGMENT
O Ry
*

MVC AREAA,=CL80'DATA FOR NEW SEGMENT INCLUDING KEY'

EXEC DLI ISRT USING PCB(1) SEGMENT(SEGA) FROM(AREAA)

SEGLENGTH(80)

BAL R4,TESTDIB CHECK STATUS
*
Fod AR AR KRR KRR KRR AR AR AR AR K AR R AR AR KRR ARk Rk

* RETRIEVE 3 SEGMENTS IN PATH AND REPLACE THEM

MVC SEGKEYA,=C'A200'
MVC SEGKEYB,=C'B240'
MVC SEGKEYC,=C'C241'
EXEC DLI GU USING PCB(1)
SEGMENT (SEGA) WHERE (KEYA=SEGKEYA)
FIELDLENGTH(4)
INTO (AREAA)
SEGLENGTH(80)
SEGMENT (SEGB) WHERE (KEYB=SEGKEYB) FIELDLENGTH(4)
INTO (AREAB)
SEGLENGTH(80)
SEGMENT (SEGC) WHERE (KEYC=SEGKEYC) FIELDLENGTH(4)
INTO (AREAC)
SEGLENGTH(80)
BAL R4,TESTDIB
* UPDATE FIELDS IN THE 3 SEGMENTS
EXEC DLI REPL USING PCB(1)
SEGMENT (SEGA) FROM(AREAA) SEGLENGTH(80)
SEGMENT (SEGB) FROM(AREAB) SEGLENGTH(80)
SEGMENT (SEGC) FROM(AREAC) SEGLENGTH(80)
BAL R4,TESTDIB CHECK STATUS
*
B R
« INSERT NEW SEGMENT USING CONCATENATED KEY TO QUALIFY PARENT
AR A AR A A A A A A A A A A A A A A A A A A AR ARk hhhhhhhhhhhhhdhdhdhdhdhdhdhdhdhdhdhdkdxsk
*
MVC AREAC,=CL80'DATA FOR NEW SEGMENT INCLUDING KEY'
MVC CONKEYB,=C'A200B240"
EXEC DLI ISRT USING PCB(1)

Chapter 3. Writing an Application Program

=
B

DX > X XX XX XX XX X X X

>< > X<

13

Coding a Program in Assembler Language IBM Confidential

SEGMENT (SEGB) KEYS(CONKEYB) KEYLENGTH(8) X
SEGMENT (SEGC) FROM(AREAC) SEGLENGTH(80)
BAL R4,TESTDIB CHECK STATUS

*

S S oo ook o ek oo e ek e e o
* RETRIEVE SEGMENT DIRECTLY USING CONCATENATED KEY

* AND THEN DELETE IT AND ITS DEPENDENTS

EE R R R R R R R R R R R R R R o R R R S R R R R R S S S
*

MVC CONKEYB,=C'A200B230'

EXEC DLI GU USING PCB(1) X
SEGMENT (SEGB) X
KEYS(CONKEYB) KEYLENGTH(8) X
INTO(AREAB) SEGLENGTH(80)

BAL R4,TESTDIB CHECK STATUS

EXEC DLI DLET USING PCB(1) X
SEGMENT (SEGB) SEGLENGTH(80) FROM(AREAB)

BAL R4,TESTDIB CHECK STATUS

*

S ok o ko ke ok ko ok ko ok oo ko ok ke ok ok ek ok ook ok ek ok ok ko
RETRIEVE SEGMENT BY QUALIFYING PARENT WITH CONCATENATED KEY,
OBJECT SEGMENT WITH WHERE OPTION USING A LITERAL,

AND THEN SET PARENTAGE

* %k ok %X X

USE VARIABLES FOR PCB INDEX, SEGMENT NAME, AND SEGMENT LENGTH

e e S oo ok o e R e o
*

MVC CONKEYB,=C'A200B230'

MVC SEGNAME,=CL8'SEGA'

MVC SEGLEN,=H'80'

MVC PCBNUM,=H'1'

EXEC DLI GU USING PCB(PCBNUM) X
SEGMENT ((SEGNAME)) X
KEYS (CONKEYB) KEYLENGTH(8) SETPARENT X
SEGMENT (SEGC) INTO(AREAC) SEGLENGTH(SEGLEN) X
WHERE (KEYC="'C520")
BAL R4,TESTDIB CHECK STATUS
*
kkhkkkkhkkhkhkkhkhkhkkhhkhkkhhkhkhhkhhkhkhhkhhkkhhkkhhkhkhkkhhkhkkhhkkhhkhkhhkhkhkkhhkhkhkkhkhkkhkhkkhkkhkk*
* RETRIEVE DATABASE STATISTICS
kkhkkkkhkkhkkhkkhkhkkhhkkkhkkhkhkkhhkhkhhkhhkkhhkkhhkhkhkkhkhkhkkhhkkhhkhkhkkhkhkkhhkhkkhkkhkhkkhkhkkhkkkk*x
*
EXEC DLI STAT USING PCB(1) INTO(AREASTAT) X
VSAM FORMATTED LENGTH(360)
BAL R4,TESTDIB CHECK STATUS
*
khhkkhhkhkhkhhkhhhhdhhhhhhhhhhdhhhhdrhdrhdhhhhhdrhdrhhhhhhdrhkdrhdrhrhhxk
* RETRIEVE ROOT SEGMENT USING BOOLEAN OPERATORS
khhkkkhhkhkkhhkhhhhdhhdhhhhhhhdhhhhhdrhhrhhhhhhdrhdrhhhdhhdrhdrhdrhrhhrk
*
MVC SEGKEY1,=C'A050"
MVC SEGKEY2,=C'A150'
EXEC DLI GU USING PCB(1) SEGMENT(SEGA) INTO(AREAA) X
SEGLENGTH(80) FIELDLENGTH(4,4,4,4) X
WHERE (KEYA > SEGKEY1 AND KEYA < SEGKEY2
KEYA > 'A275' AND KEYA < 'A350')
BAL R4,TESTDIB CHECK STATUS
*
KRR KRR R AR A A R A AR A R A A R A AR AR A F A h A h Ak hhkhhhkhhkhhhhdhhhkhhhkhdhhdrhdxhhrhhxkx
* TERMINATE PSB WHEN DLI PROCESSING IS COMPLETED
khhkkhhhkhkkhhhhhhdrhdhhhhhhhdhhhhddhhrhhhhhhdrhdrhhhhhhdrhdrhdrhrhhxk
*
EXEC DLI TERM

*
R R R R Rk R R R ok Rk o o o o R R R R R R R R R R

* SEND OUTPUT MESSAGE

EE R R R R R R R R R R R R R R R R R o R e R R R R R R R R R

14 Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential Coding a Program in Assembler Language

EXEC CICS SEND MAP('SAMPMAP') MAPSET('MAPSET') a
EXEC CICS WAIT TERMINAL

*
R R R o o o e T T R T T T e T Lt T

* COMPLETE TRANSACTION AND RETURN TO CICS

B e e o T T T T e T T T s T Lt s Lt

EXEC CICS RETURN

Jeok k& KKk kK oKk K KKk Kk Kk ek kK Kk kK Kk kK Kk kK Kk kK Kk Ak kAR kA AR F A AR T I h kT hr T T T r*

* CHECK STATUS IN DIB

B R R R R R R R R R R R R R R kR R o R R R R R R R e

*

TESTDIB EQU =

CLC DIBSTAT,=C' ' IS STATUS BLANK
BER R4 YES - RETURN
HANDLE DLI STATUS CODES REPRESENTING EXCEPTIONAL CONDITIONS
BR R4 RETURN

ERRORS EQU =

* HANDLE ERROR CONDITIONS

*

ABENDS EQU *

* HANDLE ABENDS INCLUDING DLI ERROR STATUS CODES

*
END

Notes to the sample assembler code:

For a CICS online program containing EXEC DLI commands, you must
specify the DLI and CICS options. For a batch or BMP program containing
EXEC DLI, you must specify only the DLI option.

H For reentrancy, define each of the areas the program uses—I/O areas, key
feedback areas, and segment name areas in DFHEISTG.

Define an I/O area for each segment you retrieve, add, or replace (in a
single command).

A For a batch or BMP program containing EXEC DLI, you must save registers
on entry and restore registers on exit according to z/OS™ register-saving
conventions.

H In a batch or BMP program, a DFHEIENT saves the registers on entry. Do
not specify the EIBREG parameter in a batch program.
A Do not code EXEC CICS commands in a batch or BMP program.

In a CICS online program, use the SCHD PSB command to obtain a PSB for
the use of your program. Do not schedule a PSB in a batch or BMP program.

H This GU command retrieves the first occurrence of SEGA with a key of A300.
You do not have to provide the KEYLENGTH or SEGLENGTH options in an
assembler language program.

E] This GNP command retrieves all dependents under segment SEGA. The GE
status code indicates that no more dependents exist.

[X] This GU command is an example of a path command. Use a separate /0
area for each segment you retrieve.

In a CICS online program, the TERM command terminates the PSB
scheduled earlier. You do not terminate the PSB in a batch or BMP program.

For a batch or BMP program, code DFHEIRET with an optional RCREG
parameter instead of EXEC CICS RETURN. The RCREG parameter identifies a
register containing the return code.

[EE] After issuing each command, you should check the status code in the DIB.

Chapter 3. Writing an Application Program 15

Coding a Program in COBOL

Coding a Program in COBOL

The following sample program is written in COBOL. It shows how the different parts
of a command-level program fit together, and how the EXEC DLI commands are
coded. The sample program applies to the COBOL V4 compiler (5734-CB2), the
OS/VS COBOL compiler (5740-CB1), IBM COBOL for z/OS & VM (5688-197), and

the VS

COBOL Il compiler (5668-958 and 5668-940).

IBM Confidential

Except for a few commands, this program applies to batch, BMP, and CICS
programs. Differences are highlighted in the notes that follow. The numbers to the

right of
CBL LIB

* %k Sk X X X ok %

* Ok Sk X X X

* Ok ok X X

the sample code refer to those notes.

,APOST,XOPTS(CICS,DLI) IDENTIFICATION DIVISION.
PROGRAM-ID. SAMPLE.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. IBM-370.

OBJECT-COMPUTER. IBM-370.

DATA DIVISION.

WORKING-STORAGE SECTION.

77 SEGKEYA PIC X(4).

77 SEGKEYB PIC X(4).

77 SEGKEYC PIC X(4).

77 SEGKEY1 PIC X(4).

77 SEGKEY2 PIC X(4).

77 SEGKEY3 PIC X(4).

77 SEGKEY4 PIC X(4).

77 CONKEYB PIC X(8).

77 SEGNAME PIC X(8).

77 SEGLEN COMP PIC S9(4).
77 PCBNUM COMP PIC S9(4).
01 AREAA PIC X(80).

DEFINE SEGMENT I/0 AREA

01 AREAB PIC X(80).

01 AREAC PIC X(80).

01 AREAG PIC X(250).

01 AREASTAT PIC X(360).

COPY MAPSET.
PROCEDURE DIVISION.

B R R R R T R T R R S R R S R R R L R R R R R L L L e

INITIALIZATION

HANDLE ERROR CONDITIONS IN ERROR ROUTINE

HANDLE ABENDS (DLI ERROR STATUS CODES) IN ABEND ROUTINE
RECEIVE INPUT MESSAGE

B e e R e R R S T R T R R R R R S R R R L R L R S R L e

EXEC CICS HANDLE CONDITION ERROR(ERRORS) END-EXEC.
EXEC CICS HANDLE ABEND LABEL(ABENDS) END-EXEC.

EXEC CICS RECEIVE MAP ('SAMPMAP') MAPSET('MAPSET') END-EXEC.
ANALYZE INPUT MESSAGE AND PERFORM NON-DLI PROCESSING

B e R T T R R R R R S R R S L R R R R R e L R L e

SCHEDULE PSB NAMED 'SAMPLE1'

KAAKKAKAKAIIAI IR A A A A A A A A bk b hhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhdrhhkrrxx

EXEC DLI SCHD PSB(SAMPLE1) END-EXEC.
PERFORM TEST-DIB THRU OK.

B e R T T R R R R R R R R S L R R R R R L R L e

RETRIEVE ROOT SEGMENT AND ALL ITS DEPENDENTS

R e kkhkhkhkhkkhkhkhkhhhhhhhhhhhhhhhhhkrhkrrxx

MOVE 'A300' TO SEGKEYA.

16 Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential Coding a Program in COBOL

EXEC DLI GU USING PCB(1) SEGMENT(SEGA) INTO(AREAA)
SEGLENGTH(80) WHERE(KEYA=SEGKEYA) 6|
FIELDLENGTH(4)

END-EXEC.

PERFORM TEST-DIB THRU OK.

GNPLOOP.

EXEC DLI GNP USING PCB(1) INTO(AREAG) SEGLENGTH(250)

END-EXEC.

IF DIBSTAT EQUAL TO 'GE' THEN GO TO LOOPDONE.

PERFORM TEST-DIB THRU OK.

GO TO GNPLOOP.

LOOPDONE.

B e e R R T R T T R R T R R S L R S R R R L e L L L L e

INSERT NEW ROOT SEGMENT

R R R e e R R R T R S T e e S R R S L R S R R R L e e L 2t Lt L

* Ok X X

MOVE 'DATA FOR NEW SEGMENT INCLUDING KEY' TO AREAA.

EXEC DLI ISRT USING PCB(1) SEGMENT(SEGA) FROM(AREAA)
SEGLENGTH(80) END-EXEC.

PERFORM TEST-DIB THRU OK.

KAAKA KA KKK A IR A I A A A A A A Ak hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkxxk

RETRIEVE 3 SEGMENTS IN PATH AND REPLACE THEM

R o o o o o o R R S R R R R R R R R Rk Rk

* Ok kX X

MOVE 'A200' TO SEGKEYA.
MOVE 'B240' TO SEGKEYB.
MOVE 'C241' TO SEGKEYC.
EXEC DLI GU USING PCB(1)
SEGMENT (SEGA) WHERE (KEYA=SEGKEYA) FIELDLENGTH(4)
INTO (AREAA)
SEGLENGTH(80)
SEGMENT (SEGB) WHERE (KEYB=SEGKEYB) FIELDLENGTH(4)
INTO (AREAB)
SEGLENGTH(80)
SEGMENT (SEGC) WHERE (KEYC=SEGKEYC) FIELDLENGTH(4)
INTO (AREAC)
SEGLENGTH(80)
END-EXEC.
PERFORM TEST-DIB THRU OK.
% UPDATE FIELDS IN THE 3 SEGMENTS
EXEC DLI REPL USING PCB(1)
SEGMENT (SEGA) FROM(AREAA) SEGLENGTH(80)
SEGMENT (SEGB) FROM(AREAB) SEGLENGTH(80)
SEGMENT (SEGC) FROM(AREAC) SEGLENGTH(80)
END-EXEC.
PERFORM TEST-DIB THRU OK.

R e e R T R S R R R R R R T T R R R R T L L

INSERT NEW SEGMENT USING CONCATENATED KEY TO QUALIFY PARENT

R e e T T R S R R S T R R R R R R e R L

* %k ok X X

MOVE 'DATA FOR NEW SEGMENT INCLUDING KEY' TO AREAC.
MOVE 'A200B240' TO CONKEYB.
EXEC DLI ISRT USING PCB(1)
SEGMENT (SEGB) KEYS(CONKEYB) KEYLENGTH(8)
SEGMENT (SEGC) FROM(AREAC) SEGLENGTH(80)
END-EXEC.
PERFORM TEST-DIB THRU OK.

R R R R e R R R R R S T R R R R R R T L

RETRIEVE SEGMENT DIRECTLY USING CONCATENATED KEY
AND THEN DELETE IT AND ITS DEPENDENTS

R o o o o o R S R R R R R R R R Rk ks

* Ok X X X X

MOVE 'A200B230' TO CONKEYB.

Chapter 3. Writing an Application Program

17

Coding a Program in COBOL IBM Confidential

EXEC DLI GU USING PCB(1)
SEGMENT (SEGB)
KEYS (CONKEYB) KEYLENGTH(8)
INTO(AREAB) SEGLENGTH(80)
END-EXEC.
PERFORM TEST-DIB THRU OK.
EXEC DLI DLET USING PCB(1)
SEGMENT (SEGB) SEGLENGTH(80) FROM(AREAB) END-EXEC.
PERFORM TEST-DIB THRU OK.
*
K AR R AR A A A A A A A A A A A IR AR KA KKk hhhhhhhhhhhhhhhhhdhhdhdhdhdhdhdhkhdhdhdhdkdxdx%x
RETRIEVE SEGMENT BY QUALIFYING PARENT WITH CONCATENATED KEY,
OBJECT SEGMENT WITH WHERE OPTION,
AND THEN SET PARENTAGE

*

USE VARIABLES FOR PCB INDEX, SEGMENT NAME, AND SEGMENT LENGTH

B e e R R T R R R R R R R R L R R R L R L L

* % X X ok

MOVE 'A200B230' TO CONKEYB.
MOVE 'C520' TO SEGKEYC.
MOVE 'SEGA' TO SEGNAME.
MOVE 80 TO SEGLEN.
MOVE 1 TO PCBNUM.
EXEC DLI GU USING PCB(PCBNUM)
SEGMENT ((SEGNAME))
KEYS (CONKEYB) KEYLENGTH(8) SETPARENT
SEGMENT (SEGC) INTO(AREAC) SEGLENGTH(SEGLEN)
WHERE (KEYC=SEGKEYC) FIELDLENGTH(4) END-EXEC.
PERFORM TEST-DIB THRU OK.

B e e R R T R T R R e R R R R L R R R R R L

RETRIEVE DATABASE STATISTICS

B R R T T R R R R e S R R S L R R R R R L L e

* ok Sk X X

EXEC DLI STAT USING PCB(1) INTO(AREASTAT)
VSAM FORMATTED LENGTH(360) END-EXEC.
PERFORM TEST-DIB THRU OK.

R o R R e R R R R R R R R R R R R Rk

RETRIEVE ROOT SEGMENT USING BOOLEAN OPERATORS

R R R R R R S R R S S R R S T R R R R Rt T

* %k X X X

MOVE 'A050' TO SEGKEYI.

MOVE 'A150' TO SEGKEY2.

MOVE 'A275' TO SEGKEY3.

MOVE 'A350' TO SEGKEY4.

EXEC DLI GU USING PCB(1) SEGMENT(SEGA) INTO(AREAA)
SEGLENGTH(80) FIELDLENGTH(4,4,4,4)
WHERE (KEYA > SEGKEY1 AND KEYA < SEGKEY2 OR

KEYA > SEGKEY3 AND KEYA < SEGKEY4)
END-EXEC.
PERFORM TEST-DIB THRU OK.
*
K OAKAKA KA K ARk hhhhhhhhhhhhhhhhkhhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhxdhx*x

TERMINATE PSB WHEN DLI PROCESSING IS COMPLETED

*

* kkkkKk% Xk khkhhhhkhhhhhhhhhhhkhhkhk%k XKk hhhhkhhhhhhhhhhhhhdhhdhdhdhhdhdhkdxsk
*
EXEC DLI TERM END-EXEC. 8]
*
* khkkkhkhkhkhkhkhkhkhkhkhkhhkhhhhkhkhkhhkhkhkhkhkhkhkhkhhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhdx
K ORI h A hhhhhkhhhhhhhhhhhhhhhhhhhhhhkhhkhkhkhkhkhkhkhkhkhkhkhkkkhkdxh*dx
* SEND OUTPUT MESSAGE

*

...... B TS TS AT OSSOSO S SO ST OSSR OSSR RIS R AR RIS I AR AT

EXEC CICS SEND MAP('SAMPMAP') MAPSET('MAPSET') END-EXEC.
EXEC CICS WAIT TERMINAL END-EXEC.

18 Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential

Coding a Program in COBOL

R R R R e R R S S R R R T R R R R et R L Tt S

COMPLETE TRANSACTION AND RETURN TO CICS

R e R R R R S R R R T R R R R R R T T L

* %k X X

EXEC CICS RETURN END-EXEC.

B e e R R T R R T R R S R R S L R R R R S R L R L

CHECK STATUS IN DIB

KAAKAKR KKK KIIAAIAAI A A A A A A A b bk hhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhrrxx

* Ok Sk X X

TEST-DIB.
IF DIBSTAT EQUAL TO ' ' THEN GO TO OK.
OK. B
ERRORS.
* HANDLE ERROR CONDITIONS
ABENDS.
* HANDLE ABENDS INCLUDING DLI ERROR STATUS CODES

Notes to the sample COBOL code:

For a CICS online program containing EXEC DLI commands, you must
specify the DLI and CICS options. For a batch or BMP program containing
EXEC DLI, you must specify only the DLI option.

H Define each of the areas the program uses—I/O areas, key feedback areas,
and segment name areas—as 77- or 01-level working storage entries.

Define an 1/0 area for each segment you retrieve, add, or replace (in a
single command).

A Do not code EXEC CICS commands in a batch or BMP program.

H For CICS online programs, you use a SCHD PSB command to obtain a PSB.
You do not schedule a PSB in a batch or BMP program.

[This GU command retrieves the first occurrence of SEGA with a key of A300.
KEYLENGTH and SEGLENGTH are optional for IBM COBOL for z/OS & VM
(and VS COBOL Il). For COBOL V4 and OS/VS COBOL, KEYLENGTH and
SEGLENGTH are required.

[This GU command is an example of a path command. You must use a
separate 1/O area for each segment you retrieve.

H For a CICS online program, the TERM command terminates the PSB
scheduled earlier. You do not terminate the PSB in a batch or BMP program.

E] After issuing each command, you should check the status code in the DIB.

Coding a Program in PL/I

The following sample program is written in PL/I. It shows how the different parts of
a command-level program fit together and how the EXEC DLI commands are
coded.

Except for a few commands, this program applies to batch, BMP, and CICS
programs. Differences are highlighted in the notes that follow. The numbers to the
right of the program refer to those notes.

*PROCESS INCLUDE,GN,XOPTS(CICS,DLI);

SAMPLE: PROCEDURE OPTIONS(MAIN);

DCL SEGKEYA CHAR (4);

DCL SEGKEYB CHAR (4); 2]
DCL SEGKEYC CHAR (4);

DCL SEGKEY1 CHAR (4);

DCL SEGKEY2 CHAR (4);

DCL SEGKEY3 CHAR (4);

DCL SEGKEY4 CHAR (4);

DCL CONKEYB CHAR (8);

Chapter 3. Writing an Application Program 19

Coding a Program in PL/I IBM Confidential

DCL SEGNAME CHAR (8);
DCL PCBNUM FIXED BIN (15);
DCL AREAA CHAR (80);
/* DEFINE SEGMENT 1/0 AREA */
DCL AREAB CHAR (80);
DCL AREAC CHAR (80);
DCL AREAG CHAR (250);
DCL AREASTAT CHAR (360);
%INCLUDE MAPSET
/* */
/* */
/* EE R R R S R R R R R R R R R R R R R R R R R RS R R R R R R R R R R R R R R R R R R R */
/* INITIALIZATION */
/* HANDLE ERROR CONDITIONS IN ERROR ROUTINE */
/* HANDLE ABENDS (DLI ERROR STATUS CODES) IN ABEND PROGRAM */
/* RECEIVE INPUT MESSAGE */
/* khkkhkkkkhkkkhkkhkkhhkkhhkkhhkkhhkkhhkkhhkhhhkhhhhhkhhhkkhhkkhhhkhkkhkhhkkhkhkkhhkkhkkkx%x */
/* */
EXEC CICS HANDLE CONDITION ERROR(ERRORS); 4]
/* */
EXEC CICS HANDLE ABEND PROGRAM('ABENDS'); 4]
/* */
EXEC CICS RECEIVE MAP ('SAMPMAP') MAPSET('MAPSET'); 4]
/* ANALYZE INPUT MESSAGE AND PERFORM NON-DLI PROCESSING */
/* */
/* KhAKARA KRR I A I A kA A kA A h Ak h Ak hhhddhhdhh bk dhhddhdhhhhhhhdhdhrdrrdxx */
/* SCHEDULE PSB NAMED 'SAMPLE1' */
/* Khhkkhkhkhkhhhhhhdrhhhhhhhhhdrhdrhhhhhhdhhhhrdrhhrhdhhhhhdrhhrhdhxd */
/* */
EXEC DLI SCHD PSB(SAMPLE1);
CALL TEST_DIB; B
/* KhAA kA kA hhhhdrhkhhhhkhhhkhkdhhkddhhdhhhkhdhhdhhdhdhhdhhhhdrhdxhdhxikx */
/* RETRIEVE ROOT SEGMENT AND ALL ITS DEPENDENTS */
/* KAhkkhkkkhkhkhhhhhhdrhhkhhhhhhhdrhdrhhhdhhdhhhdhrhdhdrhhhhhhdrhdhrhhxdk */
/* */
SEGKEYA = 'A300';
EXEC DLI GU USING PCB(1) SEGMENT(SEGA) INTO(AREAA)
WHERE (KEYA=SEGKEYA) ; 6
CALL TEST_DIB;
GNPLOOP:
EXEC DLI GNP USING PCB(1) INTO(AREAG);
IF DIBSTAT = 'GE' THEN GO TO LOOPDONE;
CALL TEST_DIB;
GO TO GNPLOOP;
LOOPDONE :
/* */
/* khkkhkkkhkkhkkhhkkhhkkhkkhkhkkhhkhkkhhkkhhkkhhkkhkhkhhhkkhkhkkhhkkhkhkhkhkkhkhkkhhkkhkkhkkhkkhkk* */
/* INSERT NEW ROOT SEGMENT */
/* khkkhkkkkhkkhhkkhhkkhkkhkhkkhhkhkkhhkkkhhkkhhkkhhkkhhhkkhhkkhhkkhkkkhkkhkhkkhhkkhkkkkkkx*x */
/* */
AREAA = 'DATA FOR NEW SEGMENT INCLUDING KEY';
EXEC DLI ISRT USING PCB(1) SEGMENT(SEGA) FROM(AREAA);
CALL TEST_DIB;
/* */
/* khkkhkkkkhkhkhhhkhhhdrhhkrhhhhhhhrhdhrsk khkhkkkkhkhkkhhhhhhkdhrhhrhdhhhrhhhhikx */
/* RETRIEVE 3 SEGMENTS IN PATH AND REPLACE THEM */
/* Khhkhkhkhhkhkhhhhhhdrhhkhhhhdhhdhrhdhrhhhhhhdhhhdhrhhhdhhhdhhhhhdrhhrhhrdhk */
/* */
SEGKEYA = 'A200';
SEGKEYB = 'B240';
SEGKEYC = 'C241';
EXEC DLI GU USING PCB(1)
SEGMENT (SEGA) WHERE (KEYA=SEGKEYA) B
INTO(AREAA)
SEGMENT (SEGB) WHERE (KEYB=SEGKEYB)
INTO(AREAB)

20 Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential Coding a Program in PL/I

SEGMENT (SEGC) WHERE (KEYC=SEGKEYC)
INTO (AREAC) ;

CALL TEST DIB;
/* UPDATE FIELDS IN THE 3 SEGMENTS */
EXEC DLI REPL USING PCB(1)

SEGMENT (SEGA) FROM(AREAA)

SEGMENT (SEGB) FROM(AREAB)

SEGMENT (SEGC) FROM(AREAC) 3
CALL TEST_DIB;
/* */
/* AR KA A A A A A A A AAKAKI ARk hhkhhhhhhhhhhhhhhk* PR R R R R R R R R R R S */
/* INSERT NEW SEGMENT USING CONCATENATED KEY TO QUALIFY PARENT =/
/* khhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhhkhhhhhhhhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhhkhkhhkhkhkhhkdkd*k */
/% */
AREAC = 'DATA FOR NEW SEGMENT INCLUDING KEY';
CONKEYB = 'A200B240';
EXEC DLI ISRT USING PCB(1)

SEGMENT (SEGB) KEYS (CONKEYB)

SEGMENT (SEGC) FROM(AREAC) ;
CALL TEST_DIB;

/* */
[F wkkkkkkkkkkkkkkhkkkk kR k ko Rk ok hkhkkhkkhkkhkkkkkhkkhkkkkkhk kK k[
/* RETRIEVE SEGMENT DIRECTLY USING CONCATENATED KEY */
/* AND THEN DELETE IT AND ITS DEPENDENTS */
[F wkkkkkkkkkkkkkkkkkkk Rk ok hk Rk ko hkkkkkkkkhkkkkkkkkkkkkkkkkhkkK K/
/* */

CONKEYB = 'A200B230';
EXEC DLI GU USING PCB(1)
SEGMENT (SEGB)
KEYS (CONKEYB)
INTO (AREAB) ;
CALL TEST_DIB;
EXEC DLI DLET USING PCB(1)
SEGMENT (SEGB) FROM(AREAB) 3
CALL TEST_DIB;

/* */
[* Fkkkkkkk ok kokk R 2 A R s R R RS R R R */

/* RETRIEVE SEGMENT BY QUALIFYING PARENT WITH CONCATENATED KEY, */
/* OBJECT SEGMENT WITH WHERE OPTION */
/* AND THEN SET PARENTAGE */
/* */
/* USE VARIABLES FOR PCB INDEX, SEGMENT NAME */
R R TRy
/% */
CONKEYB = 'A200B230';
SEGNAME = 'SEGA';
SEGKEYC = 'C520';
PCBNUM = 1;
EXEC DLI GU USING PCB(PCBNUM)

SEGMENT ((SEGNAME))

KEYS (CONKEYB) SETPARENT
SEGMENT (SEGC) INTO(AREAC)

WHERE (KEYC=SEGKEYC) ;
CALL TEST_DIB;
/% */
R R R R L TS S T e
/* RETRIEVE DATABASE STATISTICS */
I R R R T L SR LR LTy
/* */
EXEC DLI STAT USING PCB(1) INTO(AREASTAT) VSAM FORMATTED;
CALL TEST_DIB;
/% */
[® Fkdx kK k Ak Kok Rk Rk R KRRk A R R s LI T
/* RETRIEVE ROOT SEGMENT USING BOOLEAN OPERATORS */
[F Ekkkkkkkkkkkkkkkkkkk Rk ok h ok h ko hkkhkkhkkkkkkkkkkkkkkkkkkkhk kK K/
/* */
SEGKEY1 = 'A050';

Chapter 3. Writing an Application Program 21

Coding a Program in PL/I IBM Confidential

SEGKEY2 = 'Al50';
SEGKEY3 = 'A275';
SEGKEY4 = 'A350';

EXEC DLI GU USING PCB(1) SEGMENT(SEGA) INTO(AREAA)
WHERE (KEYA &Ar; SEGKEY1 AND KEYA &A1l; SEGKEY2 OR
KEYA &Ar; SEGKEY3 AND KEYA &A1; SEGKEY4);
CALL TEST_DIB;

/* */
/* KA A A A A A A A A A A A A A ARk hhhhhhhhhhhhhdhhhdhdhdhhdhdhkhdhdhdhkhdkdxx */
/* TERMINATE PSB WHEN DLI PROCESSING IS COMPLETED */
/* R AR A A A A A A A A A A A KA KA IRk hhhhhhhhhhhhhhhdhdhdhdhdhdhdhdhdhdhdhdxdx%x */
/* */
EXEC DLI TERM;
/* */
/* R AR A A A A A A A A A A A A KI IR KRR KNIk hhhhhhhhhhhhhhhdhdhdhdhdhdhdhdhdhdhkhdxdx*x */
/* SEND OUTPUT MESSAGE */
/* khhkkkhhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhhhhhhkhhhkhkhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhkhkhdhkdkd*k */
/* */
EXEC CICS SEND MAP('SAMPMAP') MAPSET('MAPSET'); 4]
EXEC CICS WAIT TERMINAL;
/* */
/* R AR A A A A A A A A A A KA KA IR KR KNIk hhhhhhhhhhhhhhhdhdhdhdhdhdhdhdhdhdhdhdxdx%x */
/* COMPLETE TRANSACTION AND RETURN TO CICS */
/* khhkkkhhkkhkhkhhkhkhkhkhkhhkhkhkhkhkhkhhhkhhhhhhkhkhhhkhkhhkhkhkhkhkhkhkhkhkhkhhhhhhhhkhdhdhdhdkd*k */
/* */
EXEC CICS RETURN; 4]
/* */
/* khhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhhhkhhhhhhhhhhhhhhhhhddhdhddhhdhdhdhhdhhhhhhhhhhxx */
/* CHECK STATUS IN DIB */
/* KhkhkkhkhkhkAkrhkhkrhkhkhkhkhkhkhhhkhhhhhhhhhhhhhhdhhhdkhhdhdhhdhdhdhhhhhhhhhdkhkhkxx */
/* */

TEST _DIB: PROCEDURE;
IF DIBSTAT = ' ' RETURN;
/* HANDLE DLI STATUS CODES REPRESENTING EXCEPTIONAL CONDITIONS */
/* */

0K:

END TEST DB;

ERRORS :
/* HANDLE ERROR CONDITIONS */
/* */

END SAMPLE;

Notes to the sample PL/I code:

For a CICS online program containing EXEC DLI commands, you must
specify the DLI and CICS options. For a batch or BMP program containing
EXEC DLI, you must specify only the DLI option.

H Define, in automatic storage, each of the areas; I/O areas, key feedback
areas, and segment name areas.

Define an 1/0O area for each segment you retrieve, add, or replace in a single
command.

I Do not code EXEC CICS commands in a batch or BMP program.

H For CICS online programs, you use a SCHD PSB command to obtain a PSB.
You do not schedule a PSB in a batch or BMP program.

[This GU command retrieves the first occurrence of SEGA with a key of A300.
Notice that you do not need to include the KEYLENGTH and SEGLENGTH
options.

[This GNP command retrieves all dependents under segment SEGA. The GE
status code indicates that no more dependents exist.

22 Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential

Coding a Program in PL/I

E This GU command is an example of a path command. You must use a
separate 1/0O area for each segment you retrieve.

E For a CICS online program, the TERM command terminates the PSB

scheduled earlier. You do not terminate the PSB in a batch or BMP program.

[X] After issuing each command, you should check the status code in the DIB.

Coding a Program in C

The following sample program is written in C. It shows how the different parts of a
command-level program fit together and how the EXEC DLI commands are coded.

Except for a few commands, this program applies to batch, BMP, and CICS

programs. Differences are highlighted in the notes that follow. The numbers to the

right of the program refer to those notes.

#include < string.h> l]
#include < stdio.h > 2]
char DIVIDER[120] = "--mmmmmmmmmm oo oo \
char BLANK[120] =" \
\0";
char BLAN2[110] =" \
\OII.

char SCHED[120] = "Schedule PSB(PC3COCHD) "

char GN1[120] = "GN using PCB(2) Segment(SE20RDER) check dibstat \
is blank";

char GNP1[120] = "GNP using PCB(2) check dibstat = GK or blank \
(or GE for last GNP)";

char GU1[120] = "GU using PCB(2) Segment(SE20RDER) where(\
FE20GREF=000000"'") check dibstat blank";

char GU2[120] = "GU using PCB(2) Segment(SE20RDER) where(\
FE20GREF=000999' ') check dibstat blank";

char REP1[120] = "REPLACE using PCB(2) Segment(SE20RDER) check \
dibstat is blank";

char DEL1[120] = "DELETE using PCB(2) Segment(SE20RDER) check \
dibstat is blank";

char INS1[120] = "INSERT using PCB(2) Segment(SE20RDER) where\

(FE20GREF="'000999'"') check dibstat is blank";
char TERM[120] "TERM - check dibstat is blank";
char STAT[120] "STAT USING PCB(2) VSAM FORMATTED";
char DATAB[6] "000999";
char DATAC[114] " REGRUN TEST INSERT NO1.";
char START[120] "PROGXIV STARTING";
char O0KMSG[120] "PROGXIV COMPLETE";
int TLINE = 120;
int L11 = 11;
int L360 = 11;
struct {
char NEWSEGB[6];

char NEWSEGC[54];
} NEWSEG;
char OUTLINE[120]; 4]
struct {
char OUTLINA[9];
char OUTLINB[111];
} OUTLINZ;
struct {
char OUTLINX[9];
char OUTLINY[6];
char OUTLINZ[105];
} OUTLIN3;
char GUIOA[60];
char GNIOA[60];

Chapter 3. Writing an Application Program

23

Coding a Program in C IBM Confidential

struct {
char ISRT1[6];
char ISRT2[54];

} ISRTIOA;

struct {
char REPLIO1[6];
char REPLIO2[54];

} REPLIOA;

struct {
char DLET1[6];
char DLET2[54];

} DLETIOA;

struct {
char STATA1[120];
char STATA2[120];
char STATA3[120];

} STATAREA;

struct {
char DHPART[2];
char RETCODE[2]

} DHABCODE;

main()
{
EXEC CICS ADDRESS EIB(dfheiptr); E’
strcpy (OUTLINE,DIVIDER);
SENDLINE();
strcpy (OUTLINE,START) ;
SENDLINE();
/* */
/* SCHEDULE PSB */
/* */
strcpy (OUTLINE,SCHED) ;
SENDLINE();
EXEC DLI SCHEDULE PSB(PC3COCHD); a
SENDSTAT() ;
TESTDIB();
/* */
/* ISSUE GU REQUEST */
/* */
strcpy (OUTLINE,GUL);
SENDLINE();
EXEC DLI GET UNIQUE USING PCB(2)
SEGMENT (SE20RDER)
WHERE (FE20GREF>="000000")
INTO(&GUIOA) SEGLENGTH(60)
strcpy (OUTLIN2.OUTLINA, "SE20RDER=") ;
strcpy (OUTLIN2.OUTLINB,GUIOA);
SENDLIN2();
SENDSTAT() ;
TESTDIB();
/* */
/* ISSUE GNP REQUEST */
/* */
do {
strcpy (OUTLINE,GNPL) ;
SENDLINE();
EXEC DLI GET NEXT IN PARENT USING PCB(2) [’
INTO(&GNIOA) SEGLENGTH(60);
strcpy (OUTLIN2.OUTLINA, "SEGMENT=");
strcpy (OUTLIN2.OUTLINB,GNIOA);
SENDLIN2();
SENDSTAT() ;
if (strncmp(dibptr->dibstat,"GE",2) != 0) B
TESTDIB();
} while (strncmp(dibptr->dibstat,"GE",2) != 0);
/* */

24 Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential

/* ISSUE GN REQUEST

/*

/*

strcpy (OUTLINE,GN1);
SENDLINE();
EXEC DLI GET NEXT USING PCB(2)

SEGMENT (SE20RDER)

INTO(&GNIOA) SEGLENGTH(60);
strcpy (OUTLIN2.OUTLINA, "SE20RDER=");
strcpy (OUTLIN2.OUTLINB,GNIOA);
SENDLIN2();

SENDSTAT() ;
TESTDIB();

/* INSERT SEGMENT

/*

/*

strcpy (OUTLINE,INS1);
SENDLINE();
strcpy (NEWSEG.NEWSEGB, DATAB) ;
strcpy (NEWSEG.NEWSEGC,DATAC) ;
strcpy (ISRTIOA.ISRT1,NEWSEG.NEWSEGB) ;
strcpy (ISRTIOA.ISRT2, ,NEWSEG.NEWSEGC) 3
strcpy (OUTLIN3.OUTLINX,"ISRT SEG=");
strcpy (OUTLIN3.QUTLINY,ISRTIOA.ISRT1);
strcpy (OUTLIN3.OUTLINZ,ISRTIOA.ISRT2);
SENDLIN3();
EXEC DLI ISRT USING PCB(2)
SEGMENT (SE20RDER)
FROM(&ISRTIOA) SEGLENGTH(60);
SENDSTAT() ;
if (strncmp(dibptr->dibstat,"II",2) == 0)
strncpy(dibptr->dibstat," ",2);
TESTDIB();

/* ISSUE GN REQUEST

/*

/*

strcpy (OUTLINE,GN1);
SENDLINE();
EXEC DLI GET NEXT USING PCB(2)

SEGMENT (SE20RDER)

INTO(&GNIOA) SEGLENGTH(60);
strcpy (OUTLIN2.OUTLINA, "SE20RDER=");
strcpy (OUTLIN2.OUTLINB,GNIOA);
SENDLIN2();

SENDSTAT() ;
TESTDIB();
*/

/* GET INSERTED SEGMENT TO BE REPLACED */

/*

/*

*
/
strcpy (OUTLINE,GU2) ;
SENDLINE();
EXEC DLI GET UNIQUE USING PCB(2)
SEGMENT (SE20RDER)
WHERE (FE20GREF="000999")
INTO(&ISRTIOA) SEGLENGTH(60);
strcpy (OUTLIN3.OUTLINX,"ISRT SEG=");
strcpy (OUTLIN3.OUTLINY,ISRTIOA.ISRT1);
strcpy (OUTLIN3.OUTLINZ,ISRTIOA.ISRT2);
SENDLIN3();
SENDSTAT() ;
TESTDIB() ;

/* REPLACE SEGMENT

/*

strcpy (OUTLINE,REP1);
SENDLINE();
strcpy (REPLIOA.REPLIO1,DATAB);

strcpy (REPLIOA.REPLIO2,"REGRUN REPLACED SEGMENT NO1.");

Coding a Program in C

*/
*/

*/
*/
*/

*/
*/
*/

*/
*/
*/

Chapter 3. Writing an Application Program

25

Coding a Program in C IBM Confidential

strcpy (OUTLIN3.OUTLINX, "REPL SEG=");
strcpy (OUTLIN3.OUTLINY,REPLIOA.REPLIO1);
strcpy (OUTLIN3.OUTLINZ ,REPLIOA.REPLI02);
SENDLIN3();
EXEC DLI REPLACE USING PCB(2)

SEGMENT (SE20RDER)

FROM(&REPLIOA) SEGLENGTH(60);
SENDSTAT() ;

TESTDIB();
/* */
/* ISSUE GN REQUEST */
/* */
strcpy (OUTLINE,GN1) ;
SENDLINE();
EXEC DLI GET NEXT USING PCB(2) 15 |
SEGMENT (SE20RDER)

INTO(&GNIOA) SEGLENGTH(60);
strcpy (OUTLIN2.OUTLINA, "SE20RDER=");
strcpy (OUTLIN2.OUTLINB,GNIOA);
SENDLIN2();

SENDSTAT() ;

TESTDIB();
/* */
/* GET REPLACED SEGMENT */
/% */
strcpy (OUTLINE,GU2) ;
SENDLINE();
EXEC DLI GET UNIQUE USING PCB(2) 16|
SEGMENT (SE20RDER)

WHERE (FE20GREF="000999")

INTO(&REPLIOA) SEGLENGTH(60);
strcpy (OUTLIN3.OUTLINX, "REPL SEG=");
strcpy (OUTLIN3.OUTLINY,REPLIOA.REPLIO1);
strcpy (OUTLIN3.OUTLINZ,REPLIOA.REPLI02);
SENDLIN3();

SENDSTAT()

TESTDIB();
/% */
/* ISSUE DELETE REQUEST */
/* */

strcpy (OUTLINE,DELL);
SENDLINE();
strcpy (DLETIOA.DLET1,REPLIOA.REPLIOL);
strcpy (DLETIOA.DLET2,REPLIOA.REPLIO2);
strcpy (OUTLIN3.OUTLINX, "DLET SEG=");
strcpy (OUTLIN3.OUTLINY,DLETIOA.DLET1);
strcpy (OUTLIN3.OUTLINZ ,DLETIOA.DLET2);
SENDLIN3();
EXEC DLI DELETE USING PCB(2)

SEGMENT (SE20RDER)

FROM(&DLETIOA) SEGLENGTH(60);
SENDSTAT() ;

TESTDIB();
/* */
/* ISSUE STAT REQUEST */
/* */

strcpy (OUTLINE,STAT);

SENDLINE();

EXEC DLI STAT USING PCB(2) [!’
VSAM FORMATTED
INTO(&STATAREA) ;

SENDSTT2() ;

TESTDIB();
/% */
/* ISSUE TERM REQUEST */
/* */

strcpy (OUTLINE, TERM) ;

26 Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential

{

{

/*
/*
/*

/*
/*
/*

Coding a Program in C

SENDLINE();
EXEC DLI TERM;
SENDSTAT() ;
TESTDIB() ;
strcpy (OUTLINE,DIVIDER);
SENDLINE();
SENDOK() 3
*/

RETURN TO CICS */

*/
EXEC CICS RETURN;

*/
*/
*/

SENDLINE()

{

}

EXEC CICS SEND FROM(OUTLINE) LENGTH(120);

EXEC CICS WRITEQ TD QUEUE("PRIM") FROM(OUTLINE) LENGTH(TLINE);
strcpy (OUTLINE,BLANK) ;

return;

SENDLIN2()

}

EXEC CICS SEND FROM(OUTLIN2) LENGTH(120);

EXEC CICS WRITEQ TD QUEUE("PRIM") FROM(OUTLIN2) LENGTH(TLINE);
strcpy (OUTLIN2.OUTLINA,BLANK,9);

strcpy (OUTLIN2.OUTLINB,BLANK,111);

return;

SENDLIN3()

}

EXEC CICS SEND FROM(OUTLIN3) LENGTH(120);

EXEC CICS WRITEQ TD QUEUE("PRIM") FROM(OUTLIN3) LENGTH(TLINE);
strcpy (OUTLIN3.OUTLINX,BLANK,9);

strcpy (OUTLIN3.OUTLINY,BLANK,6);

strcpy (OUTLIN3.OUTLINZ,BLANK,105);

return;

SENDSTAT()

{

}

strncpy (OUTLIN2.OUTLINA,BLANK,9);

strncpy (OUTLIN2.OUTLINB,BLAN2,110);

strcpy (OUTLIN2.OUTLINA," DIBSTAT=");

strcpy (OUTLIN2.OUTLINB,dibptr->dibstat);

EXEC CICS SEND FROM(OUTLIN2) LENGTH(11);

EXEC CICS WRITEQ TD QUEUE("PRIM") FROM(OUTLIN2) LENGTH(L11);
strcpy (OUTLINE,DIVIDER);

SENDLINE();

return;

SENDSTT2()

{

strncpy (OUTLIN2.OUTLINA,BLANK,9);

strncpy (OUTLIN2.OUTLINB,BLAN2,110);

strcpy (OUTLIN2.OUTLINA," DIBSTAT=");

strcpy (OUTLIN2.OUTLINB,dibptr->dibstat);

EXEC CICS SEND FROM(STATAREA) LENGTH(360);

EXEC CICS WRITEQ TD QUEUE("PRIM") FROM(STATAREA)
LENGTH(L360) ;

return;

Chapter 3. Writing an Application Program

27

Coding a Program in C IBM Confidential

SENDOK ()
{
EXEC CICS SEND FROM(OKMSG) LENGTH(120);
EXEC CICS WRITEQ TD QUEUE("PRIM") FROM(OKMSG) LENGTH(TLINE);

return;
1
TESTDIB()
{
if (strncmp(dibptr->dibstat," ",2) == 0)
return;
else if (strncmp(dibptr->dibstat,"GK",2) == 0)
return;
else if (strncmp(dibptr->dibstat,"GB",2) == 0)
return;
else if (strncmp(dibptr->dibstat,"GE",2) == 0)
return;
else
EXEC CICS ABEND ABCODE("PETE"); 22]

EXEC CICS RETURN;
}

return;

}

Notes to the sample C code:

You must include a standard header file string.h to gain access to string
manipulation facilities.

H You must include standard header file stdio.h to gain access to standard 1/0
library routings.

Define DL/I messages.
A Define the 1/0 areas.

H Program start.

A Define PSB PC3COCHD.

Issue the first command. Retrieves the first occurrence of segment
SE20RDER and puts it into array OUTLIN2.

H Issue the GNP command to get the next segment and put it into array
OUTLINZ.

E] GE status codes indicate no more segments to get.

Get next segment SE20RDER and put it into the array OUTLIN2.
Insert segment into array OUTLIN3.

Issue GN to retrieve next segment and put it into array OUTLINZ2.
Get next segment that will be replaced and put it into OUTLIN3.
Replace the segment and put it into array OUTLIN3.

Get next segment and put it into array OUTLINZ2.

Get the replaced segment and put it into array OUTLIN3.

Issue DELETE command after putting content of segment into array
OUTLINS.

Issue STAT REQUEST command.

Issue TERM command.

X Output processing.

Check return code.

[EF Do not code EXEC CICS commands in a batch or BMP program.

28 Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential Preparing your Program for Execution

Preparing Your EXEC DLI Program for Execution

The steps for preparing your program for execution are as follows:

1. Run the CICS command language translator to translate the EXEC DLI and
EXEC CICS commands. COBOL, PL/I, and assembler language programs have
separate translators.

2. Compile your program.

3. Link-edit:
* An online program with the appropriate CICS interface module
* A batch or BMP program with the IMS interface module.

You can use CICS-supplied procedures to translate, compile, and link-edit your
program. The procedure you use depends on the type of program (batch, BMP, or
CICS online) and the language it is written in (COBOL, PL/I, or assembler
language).

Translator Options Required for EXEC DLI

Even when you use the CICS-supplied procedures for preparing your program, you
must supply certain translator options.

For a CICS online program containing EXEC DLI commands, you must specify the
DLI and CICS options. For a batch or BMP program containing EXEC DLI
commands, you must specify the DLI option.

You can also specify the options on the EXEC job control statement that invokes
the translator; if you use both methods, the CBL and *PROCESS statement
overrides those in the EXEC statement. For more information on the translator
options, see CICS/ESA Application Programming Guide.

You must ensure that the translator options you use in a COBOL program do not
conflict with the COBOL compiler options. When you translate an IBM COBOL for
z/OS & VM program, you must use the COBOL for z/OS & VM translator option.
Similarly, when you translate a VS COBOL Il program, you must use the COBOL I
translator option.

Compiler Options Required for EXEC DLI

If you want to compile your batch COBOL program with COBOL for z/OS & VM and
then execute it AMODE(31) on z/OS, you must use the compiler option RENT. If
you want to compile your batch COBOL program with VS COBOL Il and then
execute it AMODE(31) on z/OS, you must use the compiler options RES and RENT.
For information on which compiler options should be used for a CICS program, see
CICS Application Programming Reference.

Linkage Editor Options Required for EXEC DLI

If the compiler being used supports it, you can link a program written with EXEC
commands as AMODE(31) RMODE(ANY).

Chapter 3. Writing an Application Program 29

Preparing your Program for Execution IBM Confidential

30 Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential

Chapter 4. EXEC DLI Commands for an Application Program

This chapter explains the I/O PCB, PSB, and PCB. It also lists and describes the
EXEC DLI commands. For each command, a syntax diagram is provided, along
with information on options, restrictions, usage, and examples illustrating that
usage.

Using the I/O PCB, PSB, and PCB

A PSB used in a DBCTL environment can contain any of the following PCB types:
* |/O PCB

» Alternate PCBs

- DB PCBs

* GSAM PCBs

/O PCB

In a DBCTL environment, an I/O PCB is needed to issue DBCTL service requests.
Unlike the other types of PCB, it is not defined with PSB generation, but if the
application program is using an 1/0 PCB, this has to be indicated in the PSB
scheduling request.

Alternate PCB

An alternate PCB defines a logical terminal and can be used instead of the I/O PCB
when it is necessary to direct a response to a terminal. Alternate PCBs appear in
PSBs used in a CICS-DBCTL environment, but are used only in an IMS DC
environment. CICS applications using DBCTL cannot successfully issue commands
that specify an alternate PCB, an MSDB PCB, or a GSAM PCB. However, a PSB
that contains PCBs of these types can be scheduled successfully in a CICS-DBCTL
environment.

Alternate PCBs are included in the PCB address list returned to a call level
application program. In an EXEC DLI application program, the existence of alternate
PCBs in the PSB affects the PCB number used in the PCB keyword.

DB PCB
A database PCB (DB PCB) is the PCB that defines an application program’s
interface to a database. One DB PCB is needed for each database view used by
the application program. It can be a full-function PCB, a DEDB PCB, or an MSDB
PCB.

GSAM PCB

A GSAM PCB defines an application program'’s interface for GSAM operations.

When using DBCTL, a CICS program receives, by default, a DB PCB as the first
PCB in the parameter list passed to it after scheduling. However, when your
application program can handle an 1/0O PCB, you indicate this using the SYSSERVE
keyword on the SCHD command. The 1/O PCB is then the first PCB in the parameter
address list passed back to your application program.

© Copyright IBM Corp. 1974, 2003 31

I/O PCB, PSB, and PCB IBM Confidential

Format of a PSB
The format of a PSB is shown in

[10PCB]

[Alternate PCB ... Alternate PCB]
[DBPCB ... DBPCB]

[GSAMPCB ... GSAMPCB]

Figure 3. General Format of a PSB

Each PSB must contain at least one PCB. The 1/0 PCB must be addressable in
order to issue a system service command. An alternate PCB is used only for IMS
online programs, which can run only with the Transaction Manager. Alternate PCBs
can be present even though your program does not run under the Transaction
Manager. A DB PCB can be a full-function PCB, a DEDB PCB, or an MSDB PCB.

PCB Summary

This chapter summarizes the information concerning 1/0 PCBs and alternate PCBs
in various types of application programs.

Recommendation: You should read this chapter if you intend to issue system
service requests.

DB Batch Programs
Alternate PCBs are always included in the list of PCBs supplied to the program by

DL/l irrespective of whether you have specified CMPAT=Y. The I/O PCB is returned
depending on the CMPAT option.

If you specify CMPAT=Y, the PCB list contains the address of the 1/0 PCB, followed
by the addresses of any alternate PCBs, followed by the addresses of any DB
PCBs.

If you do not specify CMPAT=Y, the PCB list contains the addresses of any
alternate PCBs followed by the addresses of the DB PCBs.

BMPs, MPPs, and IFPs
I/O PCBs and alternate PCBs are always passed to BMP programs. I/O PCBs and

alternate PCBs are also always passed to MPPs and to IFP application programs.

The PCB list contains the address of the I/O PCB, followed by the addresses of any
alternate PCBs, followed by the addresses of the DB PCBs.

CICS Programs with DBCTL
The first PCB always refers to the first DB PCB whether you specify the

SYSSERVE keyword.

summarizes the 1/0 PCB and alternate PCB information. The first column
lists different DB environments, the second and third column specify if the /O PCB
or alternate PCB, respectively, is valid in the specified environment.

Table 8. Summary of PCB Information

EXEC DLI

I/0 PCB count included in Alternate PCB count
Environment PCB(n) included in PCB(n)
cics pecTLE No No

32 Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential

I/O PCB, PSB, and PCB

Table 8. Summary of PCB Information (continued)

EXEC DLI

I/O PCB count included in Alternate PCB count
Environment PCB(n) included in PCB(n)
cics pecTIE No No
BMP Yes Yes
BatchB No Yes
Batch#l Yes Yes

Notes:
1. SCHD command issued without the SYSSERVE option.

2. SCHD command issued with the SYSSERVE option for a CICS DBCTL command or for
a function-shipped command which is satisfied by a remote CICS system using DBCTL.

3. CMPAT=N specified on the PSBGEN statement.
4. CMPAT=Y specified on the PSBGEN statement.

Specifying an EXEC DLI Command

The following descriptions illustrates the general syntax of the EXEC DLI
commands and the information supplied by each parameter and variable.
provides a summary of the commands available to batch, BMP, and online
programs.

The examples in this chapter use the PL/I delimiter.

Code the commands in free form: Where keywords, operands, and parameters are
shown separated by commas, no blanks can appear immediately before or after the
comma. Where keywords, operands, and parameters are shown separated by
blanks, you can include as many blanks as you wish.

The format of the commands is the same for users of COBOL, PL/I, assembler
language, C/370™, and C++/370.

Summary of EXEC DLI Commands

A summary of all the EXEC DLI commands is provided in The table lists
the EXEC DLI commands and specifies if they are valid in the Batch,
Batch-Oriented BMP, or CICS with DBCTL environment.

Table 9. Summary of EXEC DLI Commands

Program Characteristics

Batch- Oriented CICS with
Request Type Batch BMP DBCTLE
ACCEPT command® Yes Yes Yes
CHKP command® Yes Yes No
DEQ command® Yes Yes Yes
DLET command & Yes Yes Yes
Get commands (GU, GHU, GN, GHN, GNP, GHNP)EI Yes Yes Yes
GMSG command® No Yes Yes
ICMD command® No Yes Yes

Chapter 4. EXEC DLI Commands for an Application Program 33

Summary of EXEC DLI Commands IBM Confidential

Table 9. Summary of EXEC DLI Commands (continued)

Program Characteristics

Batch- Oriented CICS with
Request Type Batch BMP pBCTLH
ISRT command4 Yes Yes Yes
LOAD command Yes No No
LOG command® Yes Yes Yes
POS command@ No Yes Yes
QUERY command? Yes Yes Yes
RCMD command® No Yes Yes
REFRESH command® Yes Yes Yes
REPL command? Yes Yes Yes
RETRIEVE command Yes Yes No
ROLB command Yes Yes No
ROLL command Yes Yes No
ROLS command28 Yes Yes Yes
SCHD command No No Yes
SETS commandZ8 Yes Yes Yes
SETU command Yes Yes No
STAT commandZB Yes Yes Yes
SYMCHKP command Yes Yes No
TERM command No No Yes
XRST command Yes Yes No

Notes:

1. In a CICS remote DL/I environment, commands in the CICS with DBCTL column are supported if you are shipping
a function to a remote CICS that uses DBCTL.

ROLS and SETS commands are not valid when the PSB contains a DEDB.
STAT is a Product-sensitive programming interface.

Are supported in the AIB format.

Are described in the AOI documentation within the IMS/ESA Operations Guide.

a k> wDn

EXEC DLI Commands

The following commands are the only ones allowed for EXEC DLI. They can be
used to read and update DL/I databases with a batch program, a BMP (running
DBCTL or DB/DC), or a CICS program using DBCTL.

The EXEC DLI commands and the pages they are found on are as follows:
+ ['DLET Command” on page 35|

+ ['GN Command” on page 37|

+ ['GNP Command” on page 42|

+ ['GU Command” on page 47|

+ [ISRT Command” on page 53|

+ ['POS Command” on page 59|

+ ['REPL Command” on page 60|

34 Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential

EXEC DLI Commands

['RETRIEVE Command” on page 64|
['SCHD Command” on page 66|

[TERM Command” on page 67|

« [YACCEPT Command” on page 69|

* |'CHKP Command” on page E|

+ |'DEQ Command” on page 70|

+ ['LOAD Command” on page 71|

+ ['LOG Command” on page 72|

+ ['QUERY Command” on page 73|

* ['REFRESH Command” on page 74{
+ ['ROLB Command” on page 75|

+ 'ROLL Command” on page 76|

+ ['ROLS Command” on page 77|
[‘SETS Command” on page 78|
[‘SETU Command” on page 79
[*STAT Command” on page 80
[‘SYMCHKP Command” on page 81|
[*XRST Command” on page 83|

The examples included with each command refer to the ‘A Sample Hierarchy” on|

DLET Command

Format

Options

The Delete (DLET) command is used to remove a segment and its dependents from
the database.

»»—EXEC—DLI—DLET

v

|—USING. PCB(expression)—| |—VARIABLE—|

v

>—|:S EGMENT (name) FROM(area)

SEGMENT ((area))—I l—S EGLENGTH (expr‘ession)—|

|—SETZERO(daifa_value)—|

USING PCB(expression)
Specifies the DB PCB you want to use for the command. Its argument can be
any expression that converts to the integer data type; you can specify either a
number or a reference to a halfword in your program containing a humber.

VARIABLE
Indicates that a segment is variable-length.

SEGMENT(name)
Qualifies the command, specifying the name of the segment type you want to
retrieve, insert, delete, or replace.

Chapter 4. EXEC DLI Commands for an Application Program 35

DLET Command IBM Confidential

SEGMENT((area))
Is a reference to an area in your program containing the name of the segment
type. You can specify an area instead of specifying the name of the segment in
the command.

SEGLENGTH(expression)
Specifies the length of the 1/0O area into which the segment is retrieved. Its
argument can be any expression that converts to the integer data type; you can
specify either a number or a reference to a halfword in your program containing
a number. (It is required in COBOL programs for any SEGMENT level that
specifies the INTO or FROM option.)

Requirement: The value specified for SEGLENGTH must be greater than or
equal to the length of the longest segment that can be processed by this call.

FROM(area)
Specifies an area containing the segment to be added, replaced, or deleted.
Use FROM to insert one or more segments with one command.

SETZERO(data_value)
Specifies setting a subset pointer to zero.

Usage
You use the DLET command to delete a segment and its dependents from the
database. You must first retrieve segments you want to delete, just as if you were
replacing segments, The DLET command deletes the retrieved segment and its
dependents, if any, from the database.

Example

“Evelyn Parker has moved away from this area. Her patient number is 10450.
Delete her record from the database.”

Explanation

You want to delete all the information about Evelyn Parker from the database. To do
this, you must delete the PATIENT segment. When you do this, DL/l deletes all the
dependents of that segment. This is exactly what you want DL/l to do—there is no
reason to keep such segments as ILLNESS and TREATMNT for Evelyn Parker if
she is no longer one of the clinic’s patients.

Before you can delete the patient segment, you have to retrieve it:

EXEC DLI GU
SEGMENT (PATIENT) INTO(PATAREA) WHERE (PATNO=PATNO1);

To delete this patient’'s database record, you issue a DLET command and use the
FROM option to give the name of the I/O area that contains the segment you want
deleted:

EXEC DLI DLET SEGMENT(PATIENT) FROM(PATAREA);

When you issue this command, the PATIENT segment, and its dependents—the
ILLNESS, TREATMNT, BILLING, PAYMENT, and HOUSHOLD segments—are
deleted.

Restrictions

You cannot issue any commands using the same PCB between the retrieval
command and the DLET command, and you can issue only one DLET command for
each GET command.

36 Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential

GN Command

GN Command

Format

The GN command is used to retrieve segments sequentially.

»»—FEXEC—DLI GET NEXT >

I—GNQ |—USING PCB(expression)—|

(1)

»
>

v

INTO(area)
|—KEYFEEDBACK(ar‘ea) |_ _| |
FEEDBACKLEN (expression)

EECEET

A\
A

<A> For each parent segment (optional):

|—VARIABLE—| EFIRST— i:SEGMENT(name)i‘ |—SEGLENG.TH(expr‘ession)—|
))

LAST— SEGMENT ((area
CURRENT-
|—OFFSET(expression)—| L (2) i:LOCKED

INTO(area)

LOCKCLASS(class)—

v
v

|—MOVENEXT (data_value)—| |—G ETFIRST (dai,‘a_value)—| l—S ET(data_val ue)—|

». »

|—SETCOND(data_value)—| |—SETZERO(data_value)—| |—SETPARENT—|

|—NHERE(quaZification statement) L |
(3)

FIELDLENGTH (expression)

\

|—KEYS(area) L |
(4)

KEYLENGTH (expression)

 For the object segment (optional):

|—VARIABLE—| i:FIRST;‘ i:SEGMENT(name)i‘ |—SEGLENGTH(expr‘ession)—|
)

LAST SEGMENT ((area

»

|—OFFSET(expr‘ession)J |—INTO(area)J i:LOCKED
LOCKCLASS(class)—

Chapter 4. EXEC DLI Commands for an Application Program 37

GN Command IBM Confidential

\
4

|—MOVENEXT(dat‘a_value)—| |—GETFIRST(data_value)—| |—SET(datfa_value)—|

». »

l—S ETCOND (data_value)—| l—S ETZERO (data_value)—|

|—WHERE(quaZifz'catz'on statement) L
(3)

FIELDLENGTH(expression)

\

|—KEYS(area) L | !
(4)

KEYLENGTH (expression)

Notes:
1 If you leave out the SEGMENT option, specify the INTO option as shown.
2 Specify INTO on parent segments for a path command.

3 If you use multiple qualification statements, specify a length for each, using
FIELDLENGTH. For example: FIELDLENGTH(24,8)

4 You can use either the KEYS option or the WHERE option, but not both on
one segment level.

Options

USING PCB(expression)
Specifies the DB PCB you want to use for the command. Its argument can be
any expression that converts to the integer data type; you can specify either a
number or a reference to a halfword in your program containing a number.

KEYFEEDBACK((area)
Specifies an area into which the concatenated key for the segment is placed. If
the area is not long enough, the key is truncated.

FEEDBACKLEN(expression)
Specifies the length of the key feedback area into which you want the
concatenated key retrieved. Its argument can be any expression that converts
to the integer data type; you can specify either a number or a reference to a
halfword in your program containing a number. (It is required in COBOL
programs and optional in PL/I and assembler language programs.)

INTO(area)
Specifies an area into which the segment is read.

VARIABLE
Indicates that a segment is variable-length.

FIRST
Specifies that you want to retrieve the first segment occurrence of a segment
type, or that you want to insert a segment as the first occurrence.

LAST
Specifies that you want to retrieve the last segment occurrence of a segment
type, or that you want to insert a segment as the last segment occurrence.

38 Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential GN Command

CURRENT
Qualifies the command, and specifies that you want to use your current position
at this level and above as qualification for this segment.

SEGMENT(name), SEGMENT((area))
Qualifies the command, specifying the name of the segment type or the area of
your program containing the name of the segment type that you want to
retrieve.

You can have as many levels of qualification for a GN command as there are
levels in the database’s hierarchy. Using fully qualified commands with the
WHERE or KEYS option clearly identifies the hierarchic path and the segment
you want, and is useful in documenting the command. However, you do not
need to qualify a GN command, because you can specify a GN command without
the SEGMENT option.

Once you have established position in the database record, issuing a GN
command without a SEGMENT option retrieves the next segment occurrence in
sequential order.

If you specify a SEGMENT option without a KEYS or WHERE option, IMS DB
retrieves the first occurrence of that segment type it encounters by searching
forward from current position. With an unqualified GN command, the segment
type you retrieve might not be the one you expected, so you should specify an
I/O area large enough to contain the largest segment your program has access
to. (After successfully issuing a retrieval command, you can find out from the
DIB the segment type retrieved.)

If you fully qualify your command with a WHERE or KEYS option, you would
retrieve the next segment in sequential order, as described by the options.

Including the WHERE or KEYS options for parent segments defines the
segment occurrences that are to be part of the path to the segment you want
retrieved. Omitting the SEGMENT option for a level, or including only the
SEGMENT option without a WHERE option, indicates that any path to the
option satisfies the command. DL/l uses only the qualified parent segments and
the lowest-level SEGMENT option to satisfy the command. DL/l does not
assume a qualification for the missing level.

SEGLENGTH(expression)
Specifies the length of the 1/0 area into which the segment is retrieved. Its
argument can be any expression that converts to the integer data type; you can
specify either a number or a reference to a halfword in your program containing
a number. (It is required in COBOL programs for any SEGMENT level that
specifies the INTO or FROM option.)

Requirement: The value specified for SEGLENGTH must be greater than or
equal to the length of the longest segment that can be processed by this call.

OFFSET(expression)
Specifies the offset to the destination parent. It can be any expression that
converts to the integer data type; you can specify either a number or a
reference to a halfword in your program containing a number. Use OFFSET
when you process concatenated segments in logical relationships. OFFSET is
required whenever the destination parent is a variable-length segment.

LOCKED
Specifies that you want to retrieve a segment for the exclusive use of your
program, until a checkpoint or sync point is reached. This option performs the

Chapter 4. EXEC DLI Commands for an Application Program 39

GN Command IBM Confidential

same function as the Q command code, and it applies to both and full function.
A 1-byte alphabetic character of 'A’ is automatically appended as the class for
the Q command code.

LOCKCLASS(class)
Specifies that you want to retrieve a segment for the exclusive use of your
program until a DEQ command is issued or until a checkpoint or sync point is
reached. (DEQ commands are not supported for Fast Path.) Class is a 1-byte
alphabetic character (B-J), representing the lock class of the retrieved segment.

For full function code, the LOCKCLASS option followed by a letter (B-J)
designates the class of the lock for the segment. An example is
LOCKCLASS('B'). If LOCKCLASS is not followed by a letter in the range B to J, then
EXECDLI sets a status code of GL and initiates an ABENDU1041.

Fast Path does not support LOCKCLASS but, for consistency between full function
and Fast Path, you must specify LOCKCLASS('x')), where x is a letter in the
range B to J. An example is LOCKCLASS('B"). If LOCKCLASS is not followed by a
letter in the range B to J, then EXECDLI sets a status code of GL and initiates
an ABENDU1041.

MOVENEXT(data_value)
Specifies a subset pointer to be moved to the next segment occurrence after
your current segment.

GETFIRST(data_value)
Specifies that you want the search to start with the first segment occurrence in
a subset.

SET(data value)
Specifies unconditionally setting a subset pointer to the current segment.

SETCOND(data_value)
Specifies conditionally setting a subset pointer to the current segment.

SETZERO(data_value)
Specifies setting a subset pointer to zero.

SETPARENT
Sets parentage at the level you want.

FIELDLENGTH(expression)
Specifies the length of the field value in a WHERE option.

KEYLENGTH(expression)
Specifies the length of the concatenated key when you use the KEYS option. It
can be any expression in the host language that converts to the integer data
type; if it is a variable, it must be declared as a binary halfword value. For IBM
COBOL for z/OS & VM (or VS COBOL II), PL/I, or assembler language,
KEYLENGTH is optional. For COBOL programs that are not compiled with the
IBM COBOL for z/0S & VM (or the VS COBOL Il) compiler, you must specify
KEYLENGTH with the KEYS option.

KEYS(area)
Qualifies the command with the segment’s concatenated key. You can use
either KEYS or WHERE for a segment level, but not both.

“Area” specifies an area in your program containing the segment’s
concatenated key.

WHERE(qualification statement)
Qualifies the command, specifying the segment occurrence. Its argument is one

40 Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential GN Command

or more qualification statements, each of which compares the value of a field in
a segment to a value you supply. Each qualification statement consists of:

* The name of a field in a segment

* The relational operator, which indicates how you want the two values
compared

* The name of a data area in your program containing the value that is
compared against the value of the field

Usage

Use the GN command to sequentially retrieve segments from the database. Each
time you issue a GN command, IMS DB retrieves the next segment, as described by
the options you include in the command. Before issuing a GN command, you should
establish position in the database record by issuing a GU command.

You do not have to use a segment option with a GN command. However, you should
qualify your GN commands as much as possible with the KEYS or WHERE options
after the SEGMENT option.

Examples

Example 1
“We need a list of all patients who have been to this clinic.”

Explanation: To answer this request, your program would issue a command
qualified with the segment name PATIENT until DL/I returned a GB status code to
the program. (GB means that DL/l reached the end of the database before being
able to satisfy your command.). This command looks like this:

EXEC DLI GN
SEGMENT (PATIENT) INTO(PATAREA);

Each time your program issued this command, the current position moves forward
to the next database record.

Example 2
“What are the names of the patients we have seen since the beginning of this
month?”

Explanation: A GN command that includes one or more WHERE or KEYS options
retrieves the next occurrence of the specified segment type that satisfies the
command. To answer this request, the program issues the following GN command
until DL/I returned a GB status code. The example shows the command you use at
the end of April, 1988 (assuming ILLDATE1 contains 198804010):

EXEC DLI GN

SEGMENT (PATIENT) INTO(PATAREA)
SEGMENT (ILLNESS) INTO(ILLAREA) WHERE(ILLDATE>=ILLDATEL);

Example 3
EXEC DLI GN INTO(PATAREA);

Explanation: If you just retrieved the PATIENT segment for patient 04124 and

then issued this command, you retrieve the first ILLNESS segment for patient
04124.

Chapter 4. EXEC DLI Commands for an Application Program 41

GN Command IBM Confidential

Restrictions

With an unqualified GN command, the retrieved segment type might not be the one
expected. Therefore, specify an 1/0O area large enough to contain the largest
segment accessible to your program.

Use either the KEYS option or the WHERE option, but not both on one segment
level.

GNP Command

The Get Next in Parent (GNP) command is used to retrieve dependent segments

sequentially.
Format
»»—EXEC—DLI GET NEXT IN PARENT | |_ _| >
GNP USING PCB(expression)
(1)
> B | INTO(area) >
KEYFEEDBACK (area)

|—FEEDBACKLEN(expression)—|

EELEET

Y
A

<A> For each parent segment (optional):

LvarinsLe] |EFIRST— i:SEGMENT(name)ﬂ l—SEGLENGTH(expression)—l
))

LAST—] SEGMENT ((area
CURRENT-
|—OFFSET(expression)—| L (2) i:LOCKED

INTO(area)

LOCKCLASS(class)—

\
v

|—MOVENEXT(dat‘a_value)—| |—GETFIRST(data_value)—| |—SET(dai,‘a_value)—|

|—SETCOND(data_vaZue)—| I—SETZERO(dmfa_value)—| |—SETPARENT—|

(3)

|—WHERE(quaZifz'cation statement) L |

FIELDLENGTH (expression)

\

|—KEYS(area) L |
(4)

KEYLENGTH (expression)

42 Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential

Options

GNP Command

 For the object segment (optional):

|—VARIABLE—| i:FIRSj i:SEGMENT(name)ﬂ |—SEGLENGTH(expr'ession)—|
))

LAST SEGMENT((area

\
4

|—OFFSET(expr'ession)—| |—INTO(area)—| i:LOCKED
LOCKCLASS (class)—

\

v

|—MOVENEXT(data_value)—| |—GETFIRST(data_value)—| I—SET(data_value)—|

\

v

l—S ETCOND (data_val ue)—| |—S ETZERO (data_value)—|

». »

I—NHERE(quaZification statement) L |
(3)

FIELDLENGTH (expression)

\

|—KEYS(area) L |
(4)

KEYLENGTH (expression)

Notes:
1 If you leave out the SEGMENT option, specify the INTO option as shown.
2 Specify INTO on parent segments for a path command.

3 If you use multiple qualification statements, specify a length for each, using
FIELDLENGTH. For example: FIELDLENGTH(24,8)

4 You can use either the KEYS option or the WHERE option, but not both on
one segment level.

You can qualify your GNP command by using SEGMENT and WHERE options.

If you do not qualify your command, IMS DB retrieves the next sequential segment
under the established parent. If you include a SEGMENT option, IMS DB retrieves
the first occurrence of that segment type that it finds by searching forward under the
established parent.

You can have as many levels of qualification for a GNP command as there are levels
in the database’s hierarchy. However, you should not qualify your command in a
way that causes DL/l to move off of the segment type you have established as a
parent for the command.

USING PCB(expression)
Specifies the DB PCB you want to use for the command. Its argument can be
any expression that converts to the integer data type; you can specify either a
number or a reference to a halfword in your program containing a humber.

KEYFEEDBACK((area)
Specifies an area into which the concatenated key for the segment is placed. If
the area is not long enough, the key is truncated. Use this to retrieve a
segment’s concatenated key.

Chapter 4. EXEC DLI Commands for an Application Program 43

GNP Command IBM Confidential

FEEDBACKLEN(expression)
Specifies the length of the key feedback area into which you want the
concatenated key retrieved. Its argument can be any expression that converts
to the integer data type; you can specify either a number or a reference to a
halfword in your program containing a number. (It is required in COBOL
programs and optional in PL/I and assembler language programs.)

INTO(area)
Specifies an area into which the segment is read. Use this to retrieve one or
more segments with one command.

VARIABLE
Indicates that a segment is variable-length.

FIRST
Specifies that you want to retrieve the first segment occurrence of a segment
type, or that you want to insert a segment as the first occurrence. Use this to
retrieve the first segment occurrence of a segment type.

LAST
Specifies that you want to retrieve the last segment occurrence of a segment
type, or that you want to insert a segment as the last segment occurrence. Use
this to retrieve the last segment occurrence of a segment type.

CURRENT
Qualifies the command, and specifies that you want to use your current position
at this level and above as qualification for this segment. Use this to retrieve a
segment based on your current position.

SEGLENGTH(expression)
Specifies the length of the 1/0O area into which the segment is retrieved. Its
argument can be any expression that converts to the integer data type; you can
specify either a number or a reference to a halfword in your program containing
a number. (SEGLENGTH is required in COBOL programs for any SEGMENT
level that specifies the INTO or FROM option.)

Requirement: The value specified for SEGLENGTH must be greater than or
equal to the length of the longest segment that can be processed by this call.

OFFSET(expression)
Specifies the offset to the destination parent. The argument can be any
expression that converts to the integer data type; you can specify either a
number or a reference to a halfword in your program containing a number. Use
OFFSET when you process concatenated segments in logical relationships.
OFFSET is required whenever the destination parent is a variable-length
segment.

LOCKED
Specifies that you want to retrieve a segment for the exclusive use of your
program, until a checkpoint or sync point is reached. Use this to reserve a
segment for the exclusive use of your program. This option performs the same
function as the Q command code, and it applies to both Fast Path and full
function. A 1-byte alphabetic character of 'A’ is automatically appended as the
class for the Q command code.

LOCKCLASS(class)
Specifies that you want to retrieve a segment for the exclusive use of your
program until a DEQ command is issued or until a checkpoint or sync point is
reached. (DEQ commands are not supported for Fast Path.) Class is a 1-byte
alphabetic character (B-J), representing the lock class of the retrieved segment.

44 Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential

GNP Command

For full function code, the LOCKCLASS option followed by a letter (B-J)
designates the class of the lock for the segment. An example is
LOCKCLASS('B'). If LOCKCLASS is not followed by a letter in the range B to J, then
EXECDLI sets a status code of GL and initiates an ABENDU1041.

Fast Path does not support LOCKCLASS but, for consistency between full function
and Fast Path, you must specify LOCKCLASS('x')), where x is a letter in the
range B to J. An example is LOCKCLASS('B"). If LOCKCLASS is not followed by a
letter in the range B to J, then EXECDLI sets a status code of GL and initiates
an ABENDU1041.

MOVENEXT(data_value)
Specifies a subset pointer to be moved to the next segment occurrence after
your current segment.

GETFIRST(data_value)
Specifies that you want the search to start with the first segment occurrence in
a subset.

SET(data_value)
Specifies unconditionally setting a subset pointer to the current segment.

SETCOND(data_value)
Specifies conditionally setting a subset pointer to the current segment.

SETZERO(data_value)
Specifies setting a subset pointer to zero.

SETPARENT
Sets parentage at the level you want.

WHERE(qualification statement)
Qualifies the command, specifying the segment occurrence. Its argument is one
or more qualification statements, each of which compares the value of a field in
a segment to a value you supply. Each qualification statement consists of:

* The name of a field in a segment

* The relational operator, which indicates how you want the two values
compared

* The name of a data area in your program containing the value that is
compared against the value of the field

FIELDLENGTH(expression)
Specifies the length of the field value in a WHERE option.

KEYS(area)
Qualifies the command with the segment’s concatenated key. You can use
either KEYS or WHERE for a segment level, but not both.

“Area” specifies an area in your program containing the segment’s
concatenated key.

KEYLENGTH(expression)
Specifies the length of the concatenated key when you use the KEYS option. It
can be any expression in the host language that converts to the integer data
type; if it is a variable, it must be declared as a binary halfword value. For IBM
COBOL for z/0S & VM (or VS COBOL Il), PL/I, or assembler language,
KEYLENGTH is optional. For COBOL programs that are not compiled with the
IBM COBOL for z/OS & VM (or VS COBOL Il) compiler, you must specify
KEYLENGTH with the KEYS option.

Chapter 4. EXEC DLI Commands for an Application Program 45

GNP Command IBM Confidential

SEGMENT(name), SEGMENT((area))
Qualifies the command, specifying the name of the segment type or the area in
your program containing the name of the segment type that you want to
retrieve, insert, delete, or replace.

You can have as many levels of qualification for a GNP command as there are
levels in the database’s hierarchy. Using fully qualified commands with the
WHERE or KEYS option clearly identifies the hierarchic path and the segment
you want, and is useful in documenting the command. However, you do not
need to qualify a GNP command at all, because you can specify a GNP command
without the SEGMENT option.

Once you have established position in the database record, issuing a GNP
command without a SEGMENT option retrieves the next segment occurrence in
sequential order.

If you specify a SEGMENT option without a KEYS or WHERE option, IMS DB
retrieves the first occurrence of that segment type it encounters by searching
forward from current position. With an unqualified GNP command, the segment
type you retrieve might not be the one you expected, so you should specify an
I/O area large enough to contain the largest segment your program has access
to. (After successfully issuing a retrieval command, you can find out from DIB
the segment type retrieved.)

If you fully qualify your command with a WHERE or KEYS option, you would
retrieve the next segment in sequential order, as described by the options.

Including the WHERE or KEYS options for parent segments defines the
segment occurrences that are to be part of the path to the segment you want
retrieved. Omitting the SEGMENT option for a level, or including only the
SEGMENT option without a WHERE option, indicates that any path to the
option satisfies the command. DL/l uses only the qualified parent segments and
the lowest-level SEGMENT option to satisfy the command. DL/I does not
assume a qualification for the missing level.

Usage
The Get Next in Parent (GNP) command makes it possible to limit the search for a
segment; you can retrieve only the dependents of a particular parent. You must
have established parentage before issuing a GNP command.

Examples

Example 1
“We need the complete record for Kate Bailey. Her patient number is 09080.”

Explanation: To satisfy this request, you want only to retrieve the dependent
segments of the patient whose patient number is 09080; you do not want to retrieve
all the dependents of each patient. To do this, use the GU command to establish
your position and parentage on the PATIENT segment for Kate Bailey. Then
continue to issue a GNP without SEGMENT or WHERE options until DL/I returns all
the dependents of that PATIENT segment. (A GE status code indicates that you
have retrieved all the dependent segments.) To answer this request, your program
can issue these commands:
EXEC DLI GU

SEGMENT (PATIENT) INTO(PATAREA)

WHERE (PATNO=PATNO1) ;

EXEC DLI GNP
INTO(ILLAREA);

46 Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential

Restrictions

GNP Command

A GNP command without SEGMENT or WHERE options retrieves the first dependent
segment occurrence under the current parent. If your current position is already on
a dependent of the current parent, this command retrieves the next segment
occurrence under the parent.

With an unqualified GNP command, the segment type you retrieve might not be the
one you expected, so you should specify an I/O area large enough to contain the
largest segment your program has access to. (After successfully issuing a GNP
command, you can find out from the DIB the segment type retrieved.)

Example 2
“Which doctors have been prescribing acetaminophen for headaches?”

Explanation: A GNP command with only a SEGMENT option sequentially retrieves
the dependent segments of the segment type you have specified under the
established parent. Suppose that for this example, the key of ILLNESS is ILLNAME,
and the key of TREATMNT is MEDICINE. You want to retrieve each TREATMNT
segment where the treatment was acetaminophen. The name of the doctor who
prescribed the treatment is part of the TREATMNT segment. (Assume that data
area ILLNAME1 contains HEADACHE, and MEDIC1 contains ACETAMINOP.) To
answer this request, you can issue these commands:
EXEC DLI GN

SEGMENT (ILLNESS) WHERE (ILLNAME=ILLNAME1);

EXEC DLI GNP
SEGMENT (TREATMNT) WHERE (MEDICINE=MEDIC1);

To process this, your program continues issuing the GNP command until DL/I
returned a GE (not found) status code, then your program retrieves the next
headache segment and retrieves the TREATMNT segments for it. Your program
does this until there were no more ILLNESS segments where the ILLNAME was
headache.

The GNP command has the following restrictions:
* You must have established parentage before issuing this command.

* You cannot qualify your GNP command in a way that causes DL/l to move off of
the segment type you have established as the parent for the command.

* You can retrieve only the dependents of a particular parent.

GU Command

Format

The Get Unique (GU) command is used to directly retrieve specific segments, and to
establish a starting position in the database for sequential processing.

v

>>—EXEC—DLI—|:GET UNIQUE
GUg |—USING PCB(expression)—|

| INTO(area) >

g

l—KEYFEEDBACK(area)
|—FEEDBACKLEN(expr'ession)—|

Chapter 4. EXEC DLI Commands for an Application Program 47

GU Command IBM Confidential

EEL

v
A

<A>:
I—VARIABLE—| |—LAST—| tSEGMENT(name)ﬂ |—SEG.LENGTH(expression)—|
SEGMENT ((area))
|—OFFS.ET(expr'ession)—| L (1) i:LOCKED—
INTO(area) LOCKCLASS (class)—

> »

|—MOVENEXT(data_value)—| |—GETFIRST(data_value)—| |—SET(data_value)—|

\
v

l—S ETCOND(data_val ue)—| I—S ETZERO (dat‘a_value)—| |—S ETPARENT—|

\
v

|—WHERE(quaZificmfion statement) L
(2)
FIELDLENGTH (expression)

- |
|—KEYS(ar‘ea) |

L 3)

KEYLENGTH(expression)
:
I—VARIABLE—| |—LAST—| |:SEGMENT(name)ﬂ l—SEGLENGTH(expression)—l

SEGMENT ((area))

\
\/

|—OFFSET(expr'ession)—| |—INTO(area)—| i:LOCKED
LOCKCLASS (class)—

\
4

|—MOVENEXT(dat‘a_value)—| |—GETFIRST(dmfa_value)—| |—SET(dai,‘a_value)—|

». >

l—S ETCOND (data_value)—| l—S ETZERO (data_value)—|

> »

|—WHERE(quaZifz'cation statement) L
(2)

FIELDLENGTH (expression)

|—KEYS(area) L
(3)

KEYLENGTH (expression)

Notes:

1 Specify INTO on parent segments for a path command.

48 Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential

Options

GU Command

2 If you use multiple qualification statements, specify a length for each, using
FIELDLENGTH. For example: FIELDLENGTH(24,8)

3 You can use either the KEYS option or the WHERE option, but not both on
one segment level.

USING PCB(expression)
Specifies the DB PCB you want to use for the command. Its argument can be
any expression that converts to the integer data type; you can specify either a
number or a reference to a halfword in your program containing a number.

KEYFEEDBACK (area)
Specifies an area into which the concatenated key for the segment is placed. If
the area is not long enough, the key is truncated.

FEEDBACKLEN(expression)
Specifies the length of the key feedback area into which you want the
concatenated key retrieved. Its argument can be any expression that converts
to the integer data type; you can specify either a number or a reference to a
halfword in your program containing a number. (It is required in COBOL
programs and optional in PL/I and assembler language programs.)

INTO(area)
Specifies an area into which the segment is read.

VARIABLE
Indicates that a segment is variable-length.

LAST
Specifies that you want to retrieve the last segment occurrence of a segment
type, or that you want to insert a segment as the last segment occurrence.

SEGMENT(name), SEGMENT((area))
Qualifies the command, specifying the name of the segment type or the area in
your program containing the name of the segment type that you want to
retrieve, insert, delete, or replace.

To retrieve the first occurrence of a segment type, you need only specify the
SEGMENT option. You can specify as many levels of qualification as there are
hierarchic levels defined by the PCB you are using.

To establish position at the beginning of the database, issue a GU command with
a SEGMENT option that names the root segment type.

If you leave out SEGMENT options for one or more hierarchic levels, DL/I
assumes a segment qualification for that level. The qualification that DL/I
assumes depends on your current position.

» If DL/I has a position established at the missing level, DL/I uses the segment
on which position is established.

« If DL/I does not have a position established at the missing level, DL/l uses
the first occurrence at that level.

« If DL/I moves forward from a position established at a higher level, DL/I uses
the first occurrence at the missing level that falls within the new path.

* If you leave out a SEGMENT option for the root level, and DL/I has position
established on a root, DL/I does not move from that root when trying to
satisfy the command.

You can have as many levels of qualification for a GU command as there are
levels in the database’s hierarchy. Using fully qualified commands with the

Chapter 4. EXEC DLI Commands for an Application Program 49

GU Command IBM Confidential

WHERE or KEYS option clearly identifies the hierarchic path and the
segment you want, and is useful in documenting the command. However,
you do not need to qualify a GU command at all, because you can specify a
GU command without the SEGMENT option.

If you specify a SEGMENT option without a KEYS or WHERE option, IMS
DB retrieves the first occurrence of that segment type it encounters by
searching forward from current position. With an unqualified GU command, the
segment type you retrieve might not be the one you expected, so you should
specify an 1/O area large enough to contain the largest segment your
program has access to. (After successfully issuing a retrieval command, you
can find out from DIB the segment type retrieved.)

If you fully qualify your command with a WHERE or KEYS option, you would
retrieve the next segment in sequential order, as described by the options.

Including the WHERE or KEYS options for parent segments defines the
segment occurrences that are to be part of the path to the segment you want
retrieved. Omitting the SEGMENT option for a level, or including only the
SEGMENT option without a WHERE option, indicates that any path to the
option satisfies the command. DL/l uses only the qualified parent segments
and the lowest-level SEGMENT option to satisfy the command. DL/l does not
assume a qualification for the missing level.

SEGLENGTH(expression)
Specifies the length of the 1/0O area into which the segment is retrieved. Its
argument can be any expression that converts to the integer data type; you can
specify either a number or a reference to a halfword in your program containing
a number. (SEGLENGTH is required in COBOL programs for any SEGMENT
level that specifies the INTO or FROM option.)

Requirement: The value specified for SEGLENGTH must be greater than or
equal to the length of the longest segment that can be processed by this call.

OFFSET(expression)
Specifies the offset to the destination parent. The argument can be any
expression that converts to the integer data type; you can specify either a
number or a reference to a halfword in your program containing a number. Use
OFFSET when you process concatenated segments in logical relationships.
OFFSET is required whenever the destination parent is a variable-length
segment.

LOCKED
Specifies that you want to retrieve a segment for the exclusive use of your
program, until a checkpoint or sync point is reached. This option performs the
same function as the Q command code. It applies to both Fast Path and full
function. A 1-byte alphabetic character of 'A’ is automatically appended as the
class for the Q command code.

LOCKCLASS(class)
Specifies that you want to retrieve a segment for the exclusive use of your
program until a DEQ command is issued or until a checkpoint or sync point is
reached. (DEQ commands are not supported for Fast Path.) Class is a 1-byte
alphabetic character (B-J), representing the lock class of the retrieved segment.

For full function code, the LOCKCLASS option followed by a letter (B-J)
designates the class of the lock for the segment. An example is
LOCKCLASS('B'). If LOCKCLASS is not followed by a letter in the range B to J, then
EXECDLI sets a status code of GL and initiates an ABENDU1041.

Fast Path does not support LOCKCLASS but, for consistency between full function
and Fast Path, you must specify LOCKCLASS('x')), where x is a letter in the

50 Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential

GU Command

range B to J. An example is LOCKCLASS('B"'). If LOCKCLASS is not followed by a
letter in the range B to J, then EXECDLI sets a status code of GL and initiates
an ABENDU1041.

MOVENEXT(data_value)
Specifies a subset pointer to be moved to the next segment occurrence after
your current segment.

GETFIRST(data_value)
Specifies that you want the search to start with the first segment occurrence in
a subset.

SET(data_value)
Specifies unconditionally setting a subset pointer to the current segment.

SETCOND(data_value)
Specifies conditionally setting a subset pointer to the current segment.

SETZERO(data_value)
Specifies setting a subset pointer to zero.

SETPARENT
Sets parentage at the level you want.

FIELDLENGTH(expression)
Specifies the length of the field value in a WHERE option.

KEYLENGTH(expression)
Specifies the length of the concatenated key when you use the KEYS option.
The argument can be any expression in the host language that converts to the
integer data type; a variable must be declared as a binary halfword value. For
IBM COBOL for z/OS & VM (or VS COBOL lI), PL/I, or assembler language,
KEYLENGTH is optional. For COBOL programs that are not compiled with the
IBM COBOL for z/OS & VM (or VS COBOL Il) compiler, you must specify
KEYLENGTH with the KEYS option.

WHERE(qualification statement)
Use WHERE to further qualify your GU commands after using SEGMENT. If you
fully qualify a GU command, you can retrieve a segment regardless of your
position in the database record.

KEYS(area)
Use KEYS to further qualify your GU commands and specify the segment
occurrence by using its concatenated key.

If you specify a SEGMENT option without a KEYS or WHERE option, IMS DB
retrieves the first occurrence of that segment type it encounters by searching
forward from current position. With an unqualified GU command, the segment
type you retrieve might not be the one you expected, so you should specify an
I/O area large enough to contain the largest segment your program has access
to. (After successfully issuing a retrieval command, you can find out from DIB
the segment type retrieved.)

If you fully qualify your command with a WHERE or KEYS option, you would
retrieve the next segment in sequential order, as described by the options.

Including the WHERE or KEYS options for parent segments defines the
segment occurrences that are to be part of the path to the segment you want
retrieved. Leaving the SEGMENT option out for a level, or including only the
SEGMENT option without a WHERE option, indicates that any path to the
option satisfies the command. DL/l uses only the qualified parent segments and

Chapter 4. EXEC DLI Commands for an Application Program 51

GU Command IBM Confidential

the lowest level SEGMENT option to satisfy the command. DL/l does not
assume a qualification for the missing level.

Usage

Use the GU command to retrieve specific segments from the database, or to
establish a position in the database for sequential processing.

You must at least specify the SEGMENT option with a GU command to indicate the
segment type you want to retrieve. (IMS DB retrieves the first occurrence of the
segment you named in the SEGMENT argument.)

When you need to retrieve a specific occurrence of a segment type, you can further
qualify the command by using the WHERE or KEYS option after the SEGMENT
option.

You probably want to further qualify your GU commands with the WHERE or KEYS
option, and specify a specific occurrence of a segment type. If you fully qualify a GU
command, you can retrieve a segment regardless of your position in the database
record.

Examples

Example 1
“What illness was Robert James here for most recently? Was he given any
medication on that day for that illness? His patient number is 05136.”

Explanation: This example requests two pieces of information. To answer the first
part of the request and retrieve the most recent ILLNESS segment, issue this GU
command (assuming that PATNO1 contains 05163):

EXEC DLI GU

SEGMENT (PATIENT) WHERE(PATNO=PATNO1)
SEGMENT (ILLNESS) INTO(AREA);

Once you had retrieved the ILLNESS segment with the date of the patient’s most
recent visit to the clinic, you can issue another command to find out whether he
was treated during that visit. If the date of his most recent visit was January 5,
1988, you can issue the following command to find out whether or not he was
treated on that day for that illness (assuming PATNO1 contains 05163, and DATE1
contains 19880105):
EXEC DLI GU

SEGMENT (PATIENT) WHERE(PATNO=PATNO1)

SEGMENT (ILLNESS) WHERE(ILLDATE=DATEL)
SEGMENT (TREATMNT) INTO(TRTAREA) WHERE(DATE=DATE1);

Example 2
“What is Joan Carter currently being treated for? Her patient number is 10320.”

EXEC DLI GU
SEGMENT (PATIENT) WHERE (PATNO=PATNO1)
SEGMENT (ILLNESS) INTO(ILLAREA);

Explanation: In this example you want the ILLNESS segment for the patient
whose patient number is 10320.

52 Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential GU Command

Example 3

EXEC DLI GU
SEGMENT (PATIENT)
SEGMENT (ILLNESS)
SEGMENT (TREATMNT) INTO(AREA);

Explanation: This example retrieves the first TREATMNT segment and specifies
the three levels of qualification.

Restriction

You must at least specify the SEGMENT option to indicate the segment type you
want to retrieve.

ISRT Command

The Insert (ISRT) command is used to add one or more segments to the database.

Chapter 4. EXEC DLI Commands for an Application Program 53

ISRT Command

Format

IBM Confidential

»»—EXEC—DLI INSERT | |—><
|:ISRTJ I—USING PCB(expression)—| L‘ <A> ’J !

<A> For each parent segment (optional):

I—VARIABLE—| |EFIRST— i:SEGMENT(name)i‘ |—SEG.LENGTH(expr‘ession)—|

»

LAST— SEGMENT ((area))
CURRENT-

». »

(1) |—MOVENEXT(data_value)—| |—GETFIRST(data_value)—|

LFROM(ar‘ea)

l—S ET (data_value)—| l—S ETCOND (data_val ue)—| |—S ETZERO (data_value)—|

> »

|—WHERE(quaZifz'cation statement) L
(2)

FIELDLENGTH (expression)

\

|—KEYS(ar‘ea) L
(3)

KEYLENGTH (expression)

 For the object segment (required):

I—VARIABLEJ i:FIRSj |—SEGLENGTH(expression)J |—OFFSET(expression)J
LAST

> »

|—MOVENEXT(data_value)—| |—GETFIRST(data_value)—| |—SET(data_value)—|

»

Yy

|—S ETCOND (data_value)—| l—S ETZERO (data_value)—| i:S EGMENT (name)
SEGMENT ((area))

Yy

|—FROM(ar‘ea)J

Notes:
1 Specify FROM on parent segments for a path command.

2 If you use multiple qualification statements, specify a length for each, using
FIELDLENGTH. For example: FIELDLENGTH(24,8)

3 You can use either the Keys option or the Where option, but not both on one
segment level.

54 Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential

Options

ISRT Command

USING PCB(expression)
Specifies the DB PCB you want to use for the command. Its argument can be
any expression that converts to the integer data type; you can specify either a
number or a reference to a halfword in your program containing a number.

VARIABLE
Indicates that a segment is variable-length.

FIRST
Specifies that you want to retrieve the first segment occurrence of a segment
type, or that you want to insert a segment as the first occurrence. Use FIRST to
insert a segment as a first occurrence of a segment type.

LAST
Specifies that you want to retrieve the last segment occurrence of a segment
type, or that you want to insert a segment as the last segment occurrence. Use
LAST to insert a segment as the last occurrence of a segment type.

CURRENT
Qualifies the command, and specifies that you want to use your current position
at this level and above as qualification for this segment. Use CURRENT to
insert a segment based on your current position.

SEGMENT(name), SEGMENT((area))
Qualifies the command, specifying the name of the segment type or the area in
the program containing the name of the segment type that you want to retrieve,
insert, delete, or replace.

You must include at least a SEGMENT option for each segment you want to
add to the database. Unless ISRT is a path command, the lowest level
SEGMENT option specifies the segment being inserted. You cannot use a
WHERE or KEYS option for this level.

If a segment has a unique key, DL/I inserts the segment in its key sequence. (If
the segment does not have a key, or has a nonunique key, DL/l inserts it
according to the value specified for the RULES parameter during DBDGEN.

If you specify a SEGMENT option for only the lowest level segment, and do not
qualify the parent segments with SEGMENT, WHERE, or KEYS options, you
must make sure that the current position is at the correct place in the database
to insert the segment. The SEGMENT option that DL/l assumes depends on
your current position in the database record:

» If DL/I has a position established at the missing level, DL/I uses the segment
on which position is established.

» |f DL/I does not have a position established at the missing level, DL/l uses
the first occurrence at that level.

» If DL/I moves forward from a position established at a higher level, DL/I uses
the first occurrence at the missing level that falls within the new path.

» If you leave out a SEGMENT option for the root level, and DL/I has position
established on a root, DL/I does not move from that root when trying to
satisfy the command.

It is good practice to always provide qualifications for higher levels to establish
the position of the segment being inserted.

If you are inserting a root segment, you need only specify a SEGMENT option.
DL/l determines the correct place for its insertion in the database by the key

Chapter 4. EXEC DLI Commands for an Application Program 55

ISRT Command IBM Confidential

taken from the 1/O area. If the segment you are inserting is not a root segment,
but you have just inserted its immediate parent, the segment can be inserted as
soon as it is built in the I/O area just by using a SEGMENT option for it in the
ISRT command. You need not code the parent level segments to establish your
position.

When you specify multiple parent segments, you can mix segments with and
without the WHERE option. If you include only SEGMENT options on parent
segments, DL/l uses the first occurrence of each segment type to satisfy the
command.

SEGLENGTH(expression)
Specifies the length of the 1/O area from which the segment is obtained. Its
argument can be any expression that converts to the integer data type; you can
specify either a number or a reference to a halfword in your program containing
a number. (It is required in COBOL programs for any SEGMENT level that
specifies the INTO or FROM option.)

Requirement: The value specified for SEGLENGTH must be greater than or
equal to the length of the longest segment that can be processed by this call.

FROM(area)
Specifies an area containing the segment to be added, replaced, or deleted.
Use FROM to insert one or more segments with one command.

MOVENEXT(data_value)
Specifies a subset pointer to be moved to the next segment occurrence after
your current segment.

GETFIRST(data_value)
Specifies that you want the search to start with the first segment occurrence in
a subset.

SET(data_value)
Specifies unconditionally setting a subset pointer to the current segment.

SETCOND(data_value)
Specifies conditionally setting a subset pointer to the current segment.

SETZERO(data_value)
Specifies setting a subset pointer to zero.

WHERE(qualification statement)
Qualifies the command, specifying the segment occurrence. Its argument is one
or more qualification statements, each of which compares the value of a field in
a segment to a value you supply. Each qualification statement consists of:

* The name of a field in a segment
* The relational operator, which indicates how you want the two values
compared

* The name of a data area in your program containing the value that is
compared against the value of the field

WHERE establishes position on the parents of a segment when you are
inserting that segment. You can do this by specifying a qualification of WHERE
or KEYS for the higher level SEGMENT options.

When you specify multiple parent segments, you can mix segments with and
without the WHERE option. If you include only SEGMENT options on parent
segments, DL/l uses the first occurrence of each segment type to satisfy the
command.

56 Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential ISRT Command

FIELDLENGTH(expression)
Specifies the length of the field value in a WHERE option.

KEYS(area)
Qualifies the command with the segment’s concatenated key. You can use
either KEYS or WHERE for a segment level, but not both.

KEYs can be used to qualify a parent segment. Instead of using WHERE, you
can specify KEYS and use the concatenated key of the segment as
qualification. You can use the KEYS option once for each command,
immediately after the highest level SEGMENT option.

“Area” specifies an area in your program containing the segment’s
concatenated key.

KEYLENGTH(expression)
Specifies the length of the concatenated key when you use the KEYS option. It
can be any expression in the host language that converts to the integer data
type; if it is a variable, it must be declared as a binary halfword value. For IBM
COBOL for MBS & VM (or VS COBOL II), PL/I, or assembler language,
KEYLENGTH is optional. For COBOL programs that are not compiled with the
IBM COBOL for MBS & VM (or VS COBOL Il) compiler, you must specify
KEYLENGTH with the KEYS option.

Usage
To add new segments to an existing database, use the ISRT command. When you
issue the ISRT command, DL/I takes the data from the 1/0O area you have named in
the FROM option and adds the segment to the database. (The initial loading of a
database requires using the LOAD command, instead of the ISRT command.)

You can use ISRT to add new occurrences of an existing segment type to a HIDAM,
HISAM, or HDAM database. For an HSAM database, you can add new segments
only by reprocessing the whole database or by adding the new segments to the end
of the database.

Before you can issue the ISRT command to add a segment to the database, your
program must build the segment to be inserted in an I/O area. If the segment has a
key, you must place the correct key in the correct location in the 1/O area. If field
sensitivity is used, the fields must be in the order defined by the PSB for the
application’s view of the segment.

If you are adding a root segment occurrence, DL/I places it in the correct sequence
in the database by using the key you supply in the 1/O area. If the segment you are
inserting is not a root, but you have just inserted its parent, you can insert the child
segment by issuing an insert request qualified with only the segment name. You
must build the new segment in your 1/O area before you issue the ISRT request.
You also qualify insert requests with the segment name when you add a new root
segment occurrence. When you are adding hew segment occurrences to an
existing database, the segment type must have been defined in the DBD. You can
add new segment occurrences directly or sequentially after you have built them in
the program’s 1/O area.

If the segment type you are inserting has a unique key field, the location where DL/I

adds the new segment occurrence depends on the value of its key field. If the
segment does not have a key field, or if the key is not unique, you can control

Chapter 4. EXEC DLI Commands for an Application Program 57

ISRT Command IBM Confidential

where the new segment occurrence is added by specifying either the FIRST, LAST,
or HERE insert rule. Specify the rules on the RULES parameter of the SEGM
statement for the database.

Examples

Example 1
“Add information to the record for Chris Edwards about his visit to the clinic on

February 1, 1993. His patient number is 02345. He had a sore throat.”

Explanation: First, build the ILLNESS segment in your program’s 1/O area. Your
I/O area for the ILLNESS segment looks like this:

19930201SORETHROAT

Use the command to add this new segment occurrence to the database is:

EXEC DLI ISRT
SEGMENT (PATIENT) WHERE (PATNO=PATNO1)
SEGMENT (ILLNESS) FROM(ILLAREA);

Example 2
“Add information about the treatment to the record for Chris Edwards, and add
information about the illness.”

Explanation: You build the TREATMNT segment in a segment I/O area. The
TREATMNT segment includes the date, the medication, amount of medication, and
the doctor’'s name:

19930201MYOCINbbbbbHOOO1TRIEBbbbbbbbbbb&bD

The following command adds both the ILLNESS segment and the TREATMNT
segment to the database:

EXEC DLI ISRT
SEGMENT (PATIENT) WHERE (PATNO=PATNO1)
SEGMENT (ILLNESS) FROM(ILLAREA)
SEGMENT (TREATMNT) FROM(TRETAREA) ;

Example 3

EXEC DLI ISRT
SEGMENT (ILLNESS) KEYS(CONKEY)
SEGMENT (TREATMNT) FROM(TRETAREA) ;

Explanation: Using this command is the same as having a WHERE option
qualified on the key field for the ILLNESS and PATIENT segments.

Restrictions
The following restrictions apply to the ISRT command:

* You cannot issue the ISRT command until you have built a new segment in the
I/O area.

* You must specify at least one SEGMENT option for each segment being added
to the database.

* When inserting a segment, you must have position established on the parents of
the segment.

» If you specify a SEGMENT option for only the lowest level segment, and do not
qualify the parent segments with SEGMENT, WHERE, or KEYS options, be sure
that current position is at the correct place in the database to insert the segment.

58 Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential

ISRT Command

» If you use a FROM option for a segment, you cannot qualify the segment by
using the WHERE or KEYS option; DL/l uses the key field value specified in the
I/O area as qualification.

* You must use a separate /O area for each segment type you want to add.

* You cannot mix SEGMENT options with and without the FROM option. When you
use a FROM option for a parent segment, you must use a FROM option for each
dependent segment. (You can begin the path at any level, but you must not leave
out any levels.)

* You can only use the FIRST option with segments that have either no keys or

have a nonunique key with HERE specified on the RULES operand of the SEGM
statement in the DBD.

* You can only use the LAST option when the segment has no key or a nonunique
key, and the INSERT rule for the segment is either FIRST or HERE.

POS Command

Format

Options

The Position (POS) command retrieves the location of either a dependent or the
segment.

v

»—EXEC—DLI—[POSITION USING PCB(n)—INTO(data_area)
POS

»
>

I—KEYFEEDBACK(SEGMENT (name)

area) |_ _| | i:
FEEDBACKLEN (expression) SEGMENT ((area))

» »<
>

i:NHERE(quaZ ification_statement)—
FIELDLENGTH (expression)

USING PCB(n)
Specifies the DB PCB you want to use for the command. Its argument can be
any expression that converts to the integer data type; you can specify either a
number or a reference to a halfword in your program containing a humber.

INTO(data_area)
Specifies an area into which the segment is read.

KEYFEEDBACK (area)
Specifies an area into which the concatenated key for the segment is placed. If
the area is not long enough, the key is truncated.

FEEDBACKLEN(expression)
Specifies the length of the key feedback area into which you want the
concatenated key retrieved. Its argument can be any expression that converts
to the integer data type; you can specify either a number or a reference to a
halfword in your program containing a number. (FEEDBACKLEN is required in
COBOL programs and optional in PL/I and assembler language programs.)

SEGMENT(name)
Qualifies the command, specifying the name of the segment type you want to
retrieve, insert, delete, or replace.

Chapter 4. EXEC DLI Commands for an Application Program 59

POS Command IBM Confidential

SEGMENT((area))
Is a reference to an area in your program containing the name of the segment
type. You can specify an area instead of specifying the name of the segment in
the command.

WHERE(qualification statement)
Qualifies the command, specifying the segment occurrence. Its argument is one
or more qualification statements, each of which compares the value of a field in
a segment to a value you supply.

FIELDLENGTH(expression)
Specifies the length of the field value in a WHERE option.

Usage
Use the POS command to:

» Retrieve the location of a specific sequential dependent segment, including the
last one inserted

» Determine the amount of unused space within each DEDB area

If the area specified by the POS command is unavailable, the 1/0 area is unchanged
and an FH status code is returned.

Restriction
The POS command is for DEDBs only.

REPL Command

The Replace (REPL) command is used to replace a segment, usually to change the
values of one or more of its fields.

60 Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential REPL Command

Format

»»—EXEC—DLI REPLACE | |—><
|—REPLJ |—USING PCB(expression)—| L‘ <pA> ’J !

<A> For each parent segment (optional):

|—VARIABLE—| i:S EGMENT (name)i‘ l—S EGLENGTH(express ion)—|
SEGMENT ((area))

> FROM(area) >
|—OFFSET(expr‘ession)—| |—MOVENEXT(data_value)—I

|—SET(data_value)—I |—SETCOND(dcnfa_value)—| |—SETZERO(data_value)—|

 For the object segment (required):

|—VARIABLE—| i:S EGMENT (name)i‘ l—S EGLENGTH (express ion)—|
SEGMENT ((area))

> FROM(area) >
|—OFFSET(expression)—| |—MOVENEXT(data_value)—I

|—SET(data_value)—I |—SETCOND(dcnfa_value)—| |—SETZERO(data_value)—|

Options

USING PCB(expression)
Specifies the DB PCB you want to use for the command. Its argument can be
any expression that converts to the integer data type; you can specify either a
number or a reference to a halfword in your program containing a number.

VARIABLE
Indicates that a segment is variable-length.

SEGMENT(name)
Qualifies the command, specifying the name of the segment type you want to
retrieve, insert, delete, or replace.

SEGMENT((area))
Is a reference to an area in your program containing the name of the segment
type. You can specify an area instead of specifying the name of the segment in
the command.

SEGLENGTH(expression)
Specifies the length of the 1/0O area from which the segment is obtained. Its
argument can be any expression that converts to the integer data type; you can
specify either a number or a reference to a halfword in your program containing
a number. (It is required in COBOL programs for any SEGMENT level that
specifies the INTO or FROM option.)

Requirement: The value specified for SEGLENGTH must be greater than or
equal to the length of the longest segment that can be processed by this call.

Chapter 4. EXEC DLI Commands for an Application Program 61

REPL Command IBM Confidential

OFFSET(expression)
Specifies the offset to the destination parent. It can be any expression that
converts to the integer data type; you can specify either a number or a
reference to a halfword in your program containing a number. You use OFFSET
when you process concatenated segments in logical relationships. It is required
whenever the destination parent is a variable length segment.

FROM(area)
Specifies an 1/0 area containing the segment to be added, replaced or deleted.
You can replace more than the segment by including the FROM option after the
corresponding SEGMENT option for each segment you want to replace.
Including FROM options for one or more parent segments is called a path
command.

The argument following FROM identifies an 1/0O area that you have defined in
your program. You must use a separate 1/O area for each segment type you
want to replace.

MOVENEXT(data_value)
Specifies a subset pointer to be moved to the next segment occurrence after
your current segment.

SET(data_value)
Specifies unconditionally setting a subset pointer to the current segment.

SETCOND(data_value)
Specifies conditionally setting a subset pointer to the current segment.

SETZERO(data_value)
Specifies setting a subset pointer to zero.

Usage

You must qualify the REPL command with at least one SEGMENT and FROM option,
which together indicate the retrieved segments you want replaced.

If the Get command that preceded the REPL command was a path command, and
you do not want to replace all of the retrieved segments or the PSB does not have
replace sensitivity for all of the retrieved segments, you can indicate which of the
segments are not to be replaced by omitting the SEGMENT option.

If your program attempts to do a path replace of a segment where it does not have
replace sensitivity, the data for the segment in the 1/0O area for the REPL command
must be the same as the segment returned on the preceding GET command. If the
data changes in this situation, the transaction is abended and no data is changed
as a result of the Replace command.

Notice that the rules for a REPL path command differ from the rules for an ISRT path
command. You cannot skip segment levels to be inserted with an ISRT command,
as you can with a REPL command.

To update information in a segment, you can use the REPL command. The REPL
command replaces data in a segment with data you supply in your application
program. First, you must retrieve the segment into an I/O area. You then modify the
information in the 1/0 area and replace the segment with the REPL command. For
your program to successfully replace a segment, that segment must already have
been defined as replace-sensitive in the PCB by specifying PROCOPT=A or
PROCOPT=R on the SENSEG statement in the PCB.

62 Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential

Examples

REPL Command

You cannot issue any commands using the same PCB between a Get command
and the REPL command, and you can issue only one REPL command for each Get
command.

Example 1

EXEC DLI GU SEGMENT(PATIENT) INTO(PATAREA);
EXEC DLI REPL SEGMENT(PATIENT) FROM(PATAREA);

Explanation: This example shows that you cannot issue any commands using the
same PCB between the Get command and the REPL command, and you can issue
only one REPL command for each Get command. If you issue this commands and
wanted to modify information in the segment again, you must first reissue the GU
command, before reissuing the REPL command.

Example 2

“We have received a payment for $65.00 from a patient whose ID is 08642. Update
the patient’s billing record and payment record with this information, and print a
current bill for the patient.”

Explanation: The four parts to satisfying this processing request are:
1. Retrieve the BILLING and PAYMENT segments for the patient.

2. Calculate the new values for these segments by subtracting $65.00 from the
value in the BILLING segment, and adding $65.00 to the value in the PAYMENT
segment.

3. Replace the values in the BILLING and PAYMENT segments with the new
values.

4. Print a bill for the patient, showing the patient's name, number, address, the
current amount of the bill, and the amount of the payments to date.

To retrieve the BILLING and PAYMENT segments, issue a GU command. Because
you also need the PATIENT segment when you print the bill, you can include INTO
following the SEGMENT options for the PATIENT segment and for the BILLING
segment:
EXEC DLI GU

SEGMENT (PATIENT) INTO(PATAREA) WHERE (PATNO=PATNO1)

SEGMENT (BILLING) INTO(BILLAREA)
SEGMENT (PAYMENT) INTO(PAYAREA);

After you have calculated the current bill and payment, you can print the bill, then
replace the billing and payment segments in the database. Before issuing the REPL
command, you must change the segments in the I/O area.

Because you have not changed the PATIENT segment, you do not need to replace
it when you replace the BILLING and PAYMENT segments. To indicate to DL/I that
you do not want to replace the PATIENT segment, you do not specify the
SEGMENT option for the PATIENT segment in the REPL command.

EXEC DLI REPL

SEGMENT (BILLING) FROM(BILLAREA)
SEGMENT (PAYMENT) FROM(PAYAREA) ;

This command tells DL/I to replace the BILLING and PAYMENT segments, but not
to replace the PATIENT segment.

Chapter 4. EXEC DLI Commands for an Application Program 63

REPL Command IBM Confidential

These two examples are called path commands. You use a path REPL command to
replace more than one segment with one command.

Example 3

“Steve Arons, patient number 10250, has moved to a new address in this town. His
new address is 4638 Brooks Drive, Lakeside, California. Update the database with
his new address.”

Explanation: You need to retrieve the PATIENT segment for Steve Arons and
replace the address portion of the segment. To retrieve the PATIENT segment, you
can use this GU command (assuming PATNO1 contains 10250):

EXEC DLI GU
SEGMENT (PATIENT) INTO(PATAREA) WHERE (PATNO=PATNO1);

Since you are not replacing the first two fields of the PATIENT segment (PATNO
and NAME), you do not have to change them in the I/O area. Place the new
address in the 1/0 area following the PATNO and NAME fields. Then you issue the
following REPL command:

EXEC DLI REPL
SEGMENT (PATIENT) FROM(PATAREA);

Example 4

EXEC DLI GU SEGMENT(PATIENT) INTO(PATAREA)
WHERE (PATNO=PATNO1)
SEGMENT (ILLNESS) INTO(ILLAREA)
SEGMENT (TREATMNT) INTO(TRETAREA);

EXEC DLI REPL SEGMENT(PATIENT) FROM(PATAREA)
SEGMENT (TREATMNT) FROM(TRETAREA) ;

Explanation: This example assumes that you want to replace the PATIENT and
TREATMNT segments for patient number 10401, but you do not want to change the
ILLNESS segment. To do this issue this command (assuming PATNO1 contains
10401).

Restrictions
The following restrictions apply to the REPL command:

* You cannot issue any commands using the same PCB between the Get
command and the REPL command.

* You can issue only one REPL command for each Get command.

* To modify information in a segment, you must first reissue the GU command
before reissuing the REPL command.

* You must qualify the REPL command with at least one SEGMENT option and one
FROM option.

» If you use a FROM option for a segment, you cannot qualify the segment by
using the WHERE or KEYS option; DL/l uses the key field value specified in the
I/O area as qualification.

RETRIEVE Command

Use the RETRIEVE command to determine current position in the database in batch
and BMP programs.

64 Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential RETRIEVE Command

Format

v

»»—EXEC—DLI—RETRIEVE—USING PCB(expression)—KEYFEEDBACK (area)

»— FEEDBACKLEN (expression) ><

Options

USING PCB(expression)
Specifies the DB PCB you want to use for the command. Its argument can be
any expression that converts to the integer data type; you can specify either a
number or a reference to a halfword in your program containing a humber.

expression specifies the PCB for which you want to retrieve the concatenated
key. It can be any expression in the host language that converts to the integer
data type. You can specify either a number or a reference to a halfword
containing a number. The value must be a positive integer not greater than the
number of PCBs generated for the PSB. The first PCB in the list, the 1/0 PCB,
is 1. The first DB PCB in the list is 2, the second is 3, and so forth.

KEYFEEDBACK((area)
Specifies an area into which the concatenated key for the segment is placed. If
the area is not long enough, the key is truncated.

FEEDBACKLEN(expression)
Specifies the length of the key feedback area into which you want the
concatenated key retrieved. Its argument can be any expression that converts
to the integer data type; you can specify either a number or a reference to a
halfword in your program containing a number. (It is required in COBOL
programs and optional in PL/I and assembler language programs.)

expression is the length of the key feedback 1/O area. It can be any expression
in the host language that converts to integer data type; you can specify either a
number or a reference to a halfword containing a number. For IBM COBOL for
z/OS & VM (or VS COBOL II), PL/I, or assembler language, FEEDBACKLEN is
optional. For COBOL programs that are not compiled with the IBM COBOL for
z/OS & VM (or VS COBOL IlI) compiler, you must specify FEEDBACKLEN with
the KEYFEEDBACK option.

Usage

If your program issues symbolic checkpoint commands it must also issue the
extended RESTART (XRST) command or the RETRIEVE command. The RETRIEVE
command is issued once, at the start of your program. You can use the RETRIEVE
command to start your program normally, or to restart it in case of an abnormal
termination.

You can use the RETRIEVE command from a specific checkpoint id or a time/date
stamp. Because the RETRIEVE command attempts to reposition the database, your
program also needs to check for correct position.

After issuing the RETRIEVE command, the segment type and level on which the
position is established is returned to the DIBSEGM and DIBSEGLYV fields in the
DIB. The value in DIBKFBL is set to the actual length of the concatenated key. The
DIBSTAT field contains the value returned from the GU repositioning, not the XRST
command.

Chapter 4. EXEC DLI Commands for an Application Program 65

RETRIEVE Command IBM Confidential

Examples

Restrictions

The RESTART command attempts to reposition DL/l databases by issuing an
internal GU qualified with the concatenated key. It is your responsibility to verify that
your position in the database from the GU repositioning is the correct position for the
checkpoint ID used in the XRST command. You can use the RETRIEVE command to
retrieve the concatenated key used with the GU repositioning, and determine your
current position in all the PCBs your program accesses.

EXEC DLI RETRIEVE USING PCB(2) KEYFEEDBACK(KEYAREA);
EXEC DLI RETRIEVE USING PCB(5) KEYFEEDBACK(KEYAREA);

Explanation

These RETRIEVE commands retrieve the concatenated key for the first and fourth DB
PCBs. (The first PCB in the list is the I/O PCB, so the first DB PCB is the second
one in the list.) After issuing the first RETRIEVE command, you can determine your
position in the first DB PCB by examining the concatenated key in KEYAREA, and
the values returned in the DIBSEGM and DIBSEGLYV fields in the DIB. After issuing
the second RETRIEVE command, you can determine your position in the fourth DB
PCB by examining the same fields.

The following restrictions apply to the RETRIEVE command:
* You cannot use this command in a CICS program.
* To use this command, you must first define an I/O PCB for your program.

* You cannot reestablish position in the midst of nhonunique keys or nonkeyed
segments.
* You cannot use this command unless the system log is stored on direct access

storage and dynamic backout has been specified. You must also specify BKO=Y
in the parm field of your JCL when you execute the program.

SCHD Command

Format

Options

on page 31,

The Schedule (SCHD) command is used to schedule a PSB in a CICS online
program. For information on the 1/0 PCB, see [‘Using the /O PCB, PSB, and PCB'|

»»—EXEC—DLI SCHEDULE PSB (name) <
—[SCHD——I—[PSB ((area))—| |—SYSSERV E—| |—NODHABEND—|

PSB(name)
Specifies the name of the PSB available to your application program that you
want to schedule with the SCHD command.

PSB((area))
Specifies an 8-byte data area in your program that contains the name of the
PSB available to your program that you want to schedule with the SCHD
command.

66 Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential SCHD Command

SYSSERVE
Specifies that the application program can handle an I1/O PCB and might issue
a system service request in the logical unit of work (LUW).

NODHABEND
Specifies that a CICS transaction does not fail with a DHxx abend.

Should a schedule fail under EXEC DLI, a status code might be returned in the
DIB, causing a CICS transaction to fail with a DHxx abend. This option prevents
this. Following an unsuccessful SCHD command, the control, as well as the
status code in the DIB are passed back to the application program, which can
then take the appropriate action.

Usage
Before you can access DL/l databases from a CICS program, you must notify DL/I
that your program will be accessing a database by scheduling a PSB. Do this by
issuing the SCHD command. When you no longer plan to use a PSB, or you want to
schedule a subsequent PSB (one or more), you must terminate the previous PSB
with the TERM command. (For more information on the 1/O PCB and PSB, see
tUsing the I/0 PCB, PSB, and PCB” on page 31)

The SCHD command can be specified two ways (see [Examples’).

Examples
EXEC DLI SCHD PSB(psbname)SYSSERVE;
EXEC DLI SCHD PSB((AREA));

Explanation
These examples show two ways to schedule a PSB in a CICS program.

TERM Command

The Terminate (TERM) command is used to terminate a PSB in a CICS online

program.
Format
»»—FEXEC—DLI——TERMINATE ><
_[TERM
Options
No options are allowed with the TERM command.
Usage

If you want to use a PSB other than the one already scheduled, use the TERM
command to release the PSB.

When you issue the TERM command, all database changes are committed and
cannot be backed out. Because returning to CICS also terminates the PSB and
commits changes, you need not use the TERM command unless you want to
schedule another PSB, or commit database changes before returning to CICS.

Chapter 4. EXEC DLI Commands for an Application Program 67

TERM Command IBM Confidential

No options are allowed with the TERM command. If your program subsequently
needs a PSB that has terminated, it must reschedule that PSB by issuing another
SCHD command.

In most applications, you do not need to use the TERM command.
Example
EXEC DLI TERM

Explanation
This example shows how to terminate a PSB with the TERM command.

System Service Commands
The following system service commands require that you first issue the SCHD
command with the SYSSERVE keyword:
« [YACCEPT Command” on page 69|
+ 'DEQ Command” on page 70|
+ ['LOG Command” on page 72|
+ [Y'OQUERY Command” on page 73|
+ ['REFRESH Command” on page 74
+ ['ROLS Command” on page 77|
+ ['SETS Command” on page 78|
['SETU Command” on page 79
+ ['STAT Command” on page 80|

The following system service commands are valid in batch or BMP without first
issuing the SCHD command with the SYSSERVE keyword:

 ['CHKP Command” on page 69|
+ ['ROLB Command” on page 75|
+ ['ROLL Command” on page 76|
+ ['SYMCHKP Command” on page 81|
« ['XRST Command” on page 83|

The following system service commands are valid in an online CICS program using
DBCTL:

- ACCEPT
« DEQ

- LOG

« QUERY

« REFRESH
- ROLS

. SETS

.« STAT

To issue system service commands, the input/output PCB (I/O PCB) is required. For
detailed information on the 1/0 PCB, as well as the PSB, and PCB, see [‘Using the

I/0 PCB, PSB, and PCB” on page 31|

68 Application Programming: EXEC DLI Commands for CICS and IMS

IBM Confidential ACCEPT Command

ACCEPT Command

The Accept (ACCEPT) command is used to tell IMS to return a status code to your
program, rather than abend the transaction.

Format
»»—EXEC—DLI ACCEPT STATUSGROUP('A') ><
ACCEPT STATUSGROUP('B')—'
Options
STATUSGROUP('A")
Informs IMS that the application is prepared to accept status codes regarding
unavailability. IMS then returns a status code instead of pseudoabending if a
call issued later requires access to unavailable data.
This is a required option.
STATUSGROUP('B")
Informs IMS that the application is prepared to accept status codes regarding
unavailability and deadlock occurrence. IMS returns a status code instead of
pseudoabending if a call issued later requires access to unavailable data or
deadlock occurrence.
Usage
Use the ACCEPT command to tell IMS to return a status code instead of abending
the program. These status codes result because PSB scheduling completed without
all of the referenced databases being available.
Example

EXEC DLI ACCEPT STATUSGROUP('A');

This example shows how to specify the ACCEPT command.

CHKP Command

The Checkpoint (CHKP) command is used to issue a basic checkpoint and to end a
logical unit of work. You cannot use this command in a CICS program.

Format

»»—EXEC—DLI CHECKPOINT ID(area) »><
|:CHKP4—|-—|:ID(’Ziteral’) —|

Options

ID(area)
Contains the checkpoint ID. Specifies the name of an area in your program
containing the checkpoint ID. The area pointed to is eight bytes. If you are
using PL/I, specify this option as a pointer to a major structure, an array, or a
character string.

Chapter 4. EXEC DLI Commands for an Application Program 69

CHKP Command

Usage

Examples

Restrictions

IBM Confidential

ID('literal")
'literal' is an 8-byte checkpoint ID, enclos