
IMS

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

Version

9

ZES1-2335-00IBM

Confidential

���

IMS

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

Version

9

ZES1-2335-00IBM

Confidential

���

Note

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

general

information

under

“Notices”

on

page

111.

Quality

Partnership

Program

(QPP)

Edition

(December

2003)

(Softcopy

Only0

This

QPP

edition

applies

to

Version

9

of

IMS

(product

number

5655-J38)

and

to

all

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

©

Copyright

International

Business

Machines

Corporation

1974,

2003.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

IBM

Confidential

Contents

Figures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ix

Tables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xi

About

This

Book

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xiii

Summary

of

Contents

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xiii

Prerequisite

Knowledge

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xiii

How

to

Use

This

Book

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xiii

How

to

Read

Syntax

Diagrams

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xiv

Example

Syntax

Diagram

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xvi

How

to

Send

Your

Comments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xvi

Change

Indicators

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xvii

Summary

of

Changes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xix

Changes

to

This

Book

for

IMS

Version

9

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xix

Library

Changes

for

IMS

Version

9

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xix

New

and

Revised

Titles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xix

Terminology

Changes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xix

Accessibility

Enhancements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xix

Chapter

1.

How

EXEC

DLI

Application

Programs

Work

with

IMS

.

.

.

.

.

. 1

Getting

Started

with

EXEC

DLI

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

A

Sample

Hierarchy

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 2

Chapter

2.

Defining

Application

Program

Elements

to

IMS

.

.

.

.

.

.

.

. 5

Specifying

an

Application

Interface

Block

(AIB)

.

.

.

.

.

.

.

.

.

.

.

.

. 5

AIB

Mask

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 5

CICS

Restrictions

with

AIB

support

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 6

Specifying

the

DL/I

Interface

Block

(DIB)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 6

Defining

a

Key

Feedback

Area

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 9

Defining

I/O

Areas

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 9

COBOL

I/O

Area

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 10

PL/I

I/O

Area

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 10

Assembler

Language

I/O

Area

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 10

Chapter

3.

Writing

an

Application

Program

.

.

.

.

.

.

.

.

.

.

.

.

. 11

Programming

Guidelines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

Coding

a

Program

in

Assembler

Language

.

.

.

.

.

.

.

.

.

.

.

.

. 12

Coding

a

Program

in

COBOL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 16

Coding

a

Program

in

PL/I

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

Coding

a

Program

in

C

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 23

Preparing

Your

EXEC

DLI

Program

for

Execution

.

.

.

.

.

.

.

.

.

.

.

. 29

Translator

Options

Required

for

EXEC

DLI

.

.

.

.

.

.

.

.

.

.

.

.

. 29

Compiler

Options

Required

for

EXEC

DLI

.

.

.

.

.

.

.

.

.

.

.

.

.

. 29

Linkage

Editor

Options

Required

for

EXEC

DLI

.

.

.

.

.

.

.

.

.

.

.

. 29

Chapter

4.

EXEC

DLI

Commands

for

an

Application

Program

.

.

.

.

.

. 31

Using

the

I/O

PCB,

PSB,

and

PCB

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 31

I/O

PCB

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 31

Alternate

PCB

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 31

DB

PCB

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 31

GSAM

PCB

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 31

Format

of

a

PSB

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 32

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

iii

PCB

Summary

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 32

Specifying

an

EXEC

DLI

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

Summary

of

EXEC

DLI

Commands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

EXEC

DLI

Commands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 34

DLET

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 36

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 36

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 36

GN

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 37

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 37

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 38

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 41

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 41

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 42

GNP

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 42

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 42

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 43

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 46

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 46

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 47

GU

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 47

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 47

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 52

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 52

Restriction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

ISRT

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 54

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 55

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 57

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 58

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 58

POS

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 59

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 59

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 59

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 60

Restriction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 60

REPL

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 60

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 61

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 61

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 62

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 63

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 64

RETRIEVE

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 64

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 65

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 65

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 65

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 66

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 66

SCHD

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 66

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 66

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 66

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 67

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 67

IBM

Confidential

iv

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

TERM

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 67

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 67

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 67

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 67

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 68

System

Service

Commands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 68

ACCEPT

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 69

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 69

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 69

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 69

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 69

CHKP

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 69

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 69

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 69

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 70

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 70

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 70

DEQ

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 70

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 71

Option

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 71

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 71

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 71

Restriction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 71

LOAD

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 71

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 72

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 72

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 72

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 72

LOG

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 72

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

Restriction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

QUERY

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 74

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 74

REFRESH

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 74

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 74

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 74

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 74

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 74

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 75

ROLB

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 75

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 75

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 75

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 75

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 75

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 75

ROLL

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 76

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 76

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 76

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 76

IBM

Confidential

Contents

v

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 76

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 76

ROLS

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 77

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 77

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 77

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 77

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 77

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 78

SETS

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 78

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 78

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 78

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

SETU

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 80

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 80

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 80

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 80

STAT

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 80

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 81

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 81

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 81

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 81

SYMCHKP

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 81

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 81

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 82

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 82

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 83

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 83

XRST

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 83

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 83

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 83

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 84

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 85

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 85

Chapter

5.

Recovering

Databases

and

Maintaining

Database

Integrity

.

.

. 87

Issuing

Checkpoints

in

a

Batch

or

BMP

Program

.

.

.

.

.

.

.

.

.

.

.

. 87

Issuing

the

CHKP

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 87

Issuing

the

SYMCHKP

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 88

Restarting

Your

Program

and

Checking

for

Position

.

.

.

.

.

.

.

.

.

.

. 88

Backing

Out

Database

Updates

Dynamically:

The

ROLL

and

ROLB

Commands

88

Using

Intermediate

Backout

Points:

The

SETS

and

ROLS

Commands

.

.

.

. 88

SETS

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 89

ROLS

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 89

Chapter

6.

Processing

Fast

Path

Databases

.

.

.

.

.

.

.

.

.

.

.

.

. 91

Processing

DEDBs

with

Subset

Pointers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 91

Before

You

Use

Subset

Pointers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 93

Designating

Subset

Pointers

You

Want

to

Use

.

.

.

.

.

.

.

.

.

.

.

. 94

Using

Subset

Pointers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 94

Subset

Pointer

Status

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 101

The

POS

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 101

Locating

a

Specific

Sequential

Dependent

.

.

.

.

.

.

.

.

.

.

.

.

. 102

IBM

Confidential

vi

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

Locating

the

Last

Inserted

Sequential

Dependent

Segment

.

.

.

.

.

.

. 102

Identifying

Free

Space

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 103

The

P

Processing

Option

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 103

Chapter

7.

Comparing

Command-Level

and

Call-Level

Programs

.

.

.

. 105

Chapter

8.

Data

Availability

Enhancements

.

.

.

.

.

.

.

.

.

.

.

.

. 109

Accepting

Database

Availability

Status

Codes

.

.

.

.

.

.

.

.

.

.

.

.

. 109

Obtaining

Information

about

Database

Availability

.

.

.

.

.

.

.

.

.

.

.

. 109

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

Programming

Interface

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 113

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 113

Product

Names

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 114

Bibliography

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 115

IMS

Version

9

Library

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 115

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 117

IBM

Confidential

Contents

vii

IBM

Confidential

viii

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

Figures

1.

The

Structure

of

a

Command-Level

Batch

or

BMP

Program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

2.

Medical

Hierarchy

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 2

3.

General

Format

of

a

PSB

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 32

4.

Processing

a

Long

Chain

of

Segment

Occurrences

with

Subset

Pointers

.

.

.

.

.

.

.

.

.

. 92

5.

Examples

of

Setting

Multiple

Subset

Pointers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 92

6.

More

Examples

of

Setting

Subset

Pointers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 93

7.

How

Subset

Pointers

Divide

a

Chain

into

Subsets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 93

8.

Processing

Performed

for

the

Sample

Passbook

Example

when

the

Passbook

is

Unavailable

95

9.

Processing

Performed

for

the

Sample

Passbook

Example

when

the

Passbook

is

Available

95

10.

Retrieving

the

First

Segment

in

a

Chain

of

Segments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 96

11.

Moving

the

Subset

Pointer

to

the

Next

Segment

after

Your

Current

Position

.

.

.

.

.

.

.

.

. 98

12.

Unconditionally

Setting

the

Subset

Pointer

to

Your

Current

Position

.

.

.

.

.

.

.

.

.

.

.

. 99

13.

Conditionally

Setting

the

Subset

Pointer

to

Your

Current

Position

.

.

.

.

.

.

.

.

.

.

.

.

. 100

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

ix

IBM

Confidential

x

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

Tables

1.

How

to

Read

Syntax

Diagrams

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xiv

2.

PATIENT

Segment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

3.

ILLNESS

Segment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

4.

TREATMNT

Segment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

5.

BILLING

Segment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

6.

PAYMENT

Segment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

7.

HOUSEHOLD

Segment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

8.

Summary

of

PCB

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 32

9.

Summary

of

EXEC

DLI

Commands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

10.

DL/I

Calls

Available

to

IMS

and

CICS

Command-Level

Application

Programs

.

.

.

.

.

.

.

. 105

11.

Comparing

Call-Level

and

Command-Level

Programs:

Commands

and

Calls

.

.

.

.

.

.

.

. 105

12.

Comparing

Call-Level

and

Command-Level

Programs:

Command

Codes

and

Options

.

.

.

.

. 106

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

xi

IBM

Confidential

xii

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

About

This

Book

This

book

is

for

CICS®

application

programmers

whose

programs

use

EXEC

DLI

commands

in

an

IMS™

environment.

This

book

lists

and

describes

the

EXEC

DLI

commands,

and

explains

the

procedures

for

writing

application

programs.

For

information

on

using

databases

(such

as,

position

in

the

database,

using

multiple

positioning,

and

using

secondary

indexing

and

logical

relationships),

see

IMS

Version

9:

Application

Programming:

Database

Manager.

This

softcopy

book

is

available

only

in

PDF

and

BookManager

formats.

This

book

is

available

on

the

IMS

Version

9

Licensed

Product

Kit

(LK3T-7213).

To

get

the

most

current

versions

of

the

PDF

and

BookManager®

formats,

go

to

the

IMS

Web

site

at

www.ibm.com/ims

and

link

to

the

Library

page.

Summary

of

Contents

This

book

explains

the

basics

of

writing

the

DL/I

part

of

your

application

program

with

EXEC

DLI

commands.

It

also

contains

reference

information

about

the

parts

of

an

IMS

command-level

application

program

such

as

EXEC

DLI

commands,

system

service

calls,

qualification

statements,

EXEC

DLI

options,

the

DIB

(DL/I

Interface

Block),

I/O

areas,

and

status

codes.

These

chapters

are

for

experienced

programmers

who

understand

IMS

application

programming

and

need

only

to

look

up

a

fact

such

as

the

meaning

of

a

particular

status

code.

If

you

are

one

of

those

programmers,

you

may

also

want

to

have

IMS/ESA

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

Summary

on

hand

Prerequisite

Knowledge

IBM®

offers

a

wide

variety

of

classroom

and

self-study

courses

to

help

you

learn

IMS.

For

a

complete

list,

see

the

IMS

home

page

on

the

World

Wide

Web

at:

www.ibm.com/ims

This

book

assumes

you

are

a

CICS

programmer

familiar

with

the

functions,

facilities,

hardware,

and

software

described

in

CICS/ESA

CICS

Family

General

Information

and

from

the

Library

page

of

the

IMS

home

page

on

the

Web:

www.ibm.com/ims.

This

book

also

assumes

that,

if

you

plan

to

write

a

CICS

program,

you

are

familiar

with

the

principles

covered

in

CICS/ESA

Application

Programming

Guide

and

in

other

CICS

documentation.

How

to

Use

This

Book

This

book

is

one

of

several

books

documenting

the

IMS

application

programming

task.

The

complete

package

of

application

programming

materials

is

as

follows:

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

xiii

v

IMS

Version

9:

Application

Programming:

Design

Guide

(APDG),

is

the

introductory

application

programming

book

and

is

also

the

place

to

find

information

common

to

all

of

the

application

programming

environments.

v

IMS

Version

9:

Application

Programming:

Database

Manager

(APDB)

describes

how

to

write

an

application

program

to

process

a

database

using

DL/I

calls.

This

book

applies

to

both

IMS

and

CICS

environments.

v

IMS

Version

9:

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

(APCICS)

describes

how

to

write

an

application

program

to

process

the

database

using

EXEC

DLI

commands.

v

IMS

Version

9:

Application

Programming:

Transaction

Manager

(APTM)

describes

how

to

write

an

application

program

to

process

messages

using

DC

calls.

For

definitions

of

terms

used

in

this

manual

and

references

to

related

information

in

other

manuals,

see

the

IMS

Version

9:

Master

Index

and

Glossary.

How

to

Read

Syntax

Diagrams

Each

syntax

diagram

in

this

book

begins

with

a

double

right

arrow

and

ends

with

a

right

and

left

arrow

pair.

Lines

that

begin

with

a

single

right

arrow

are

continuation

lines.

You

read

a

syntax

diagram

from

left

to

right

and

from

top

to

bottom,

following

the

direction

of

the

arrows.

Conventions

used

in

syntax

diagrams

are

described

in

Table

1:

Table

1.

How

to

Read

Syntax

Diagrams

Convention

Meaning

��

A

B

C

��

You

must

specify

values

A,

B,

and

C.

Required

values

are

shown

on

the

main

path

of

a

syntax

diagram.

��

A

��

You

have

the

option

to

specify

value

A.

Optional

values

are

shown

below

the

main

path

of

a

syntax

diagram.

��

A

B

C

��

You

must

specify

value

A,

B,

or

C.

IBM

Confidential

xiv

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

Table

1.

How

to

Read

Syntax

Diagrams

(continued)

Convention

Meaning

��

A

B

C

��

You

have

the

option

to

specify

A,

B,

C,

or

none

of

these

values.

��

A

B

C

��

You

have

the

option

to

specify

A,

B,

C,

or

none

of

these

values.

If

you

don’t

specify

a

value,

A

is

the

default.

��

�

,

A

B

C

��

You

have

the

option

to

specify

one,

more

than

one,

or

none

of

the

values

A,

B,

or

C.

Any

required

separator

for

multiple

or

repeated

values

(in

this

example,

the

comma)

is

shown

on

the

arrow.

��

�

,

A

��

You

have

the

option

to

specify

value

A

multiple

times.

The

separator

in

this

example

is

optional.

��

Name

��

Name:

A

B

Sometimes

a

diagram

must

be

split

into

fragments.

The

syntax

fragment

is

shown

separately

from

the

main

syntax

diagram,

but

the

contents

of

the

fragment

should

be

read

as

if

they

are

on

the

main

path

of

the

diagram.

Punctuation

marks

and

numbers

Enter

punctuation

marks

(slashes,

commas,

periods,

parentheses,

quotation

marks,

equal

signs)

and

numbers

exactly

as

shown.

Uppercase

values

Keywords,

their

allowable

synonyms,

and

reserved

parameters,

appear

in

uppercase

letters

for

z/OS.

Enter

these

values

exactly

as

shown.

Lowercase

values

without

italics

Keywords,

their

allowable

synonyms,

and

reserved

parameters,

appear

in

lowercase

letters

for

UNIX.

Enter

these

values

exactly

as

shown.

Lowercase

values

in

italics

(for

example,

name)

Supply

your

own

text

or

value

in

place

of

the

name

variable.

�

A

�

symbol

indicates

one

blank

position.

Other

conventions

include

the

following:

IBM

Confidential

About

This

Book

xv

v

When

entering

commands,

separate

parameters

and

keywords

by

at

least

one

blank

if

there

is

no

intervening

punctuation.

v

Footnotes

are

shown

by

a

number

in

parentheses,

for

example,

(1).

v

Parameters

with

number

values

end

with

the

symbol

#.

v

Parameters

that

are

names

end

with

’name’.

v

Parameters

that

can

be

generic

end

with

the

symbol

*.

Example

Syntax

Diagram

Here

is

an

example

syntax

diagram

that

describes

the

hello

command.

��

hello

Name

Greeting

��

Name:

�

,

(1)

name

Greeting:

(2)

,

your_greeting

Notes:

1 You

can

code

up

to

three

names.

2 Compose

and

add

your

own

greeting

(for

example,

how

are

you?).

According

to

the

syntax

diagram,

these

are

all

valid

versions

of

the

hello

command:

hello

hello

name

hello

name,

name

hello

name,

name,

name

hello,

your_greeting

hello

name,

your_greeting

hello

name,

name,

your_greeting

hello

name,

name,

name,

your_greeting

The

space

before

the

name

value

is

significant.

If

you

do

not

code

name,

you

must

still

code

the

comma

before

your_greeting.

How

to

Send

Your

Comments

Your

feedback

is

important

in

helping

us

provide

the

most

accurate

information

and

highest

quality

information.

If

you

have

any

comments

about

this

book

or

any

other

IMS

documentation,

you

can

do

one

of

the

following:

v

Go

to

the

IMS

home

page

at:

http://www.ibm.com/ims.

There

you

will

find

an

online

feedback

page

where

you

can

enter

and

submit

comments.

v

Send

your

comments

by

e-mail

to

imspubs@us.ibm.com.

Be

sure

to

include

the

name

of

the

book,

the

part

number

of

the

book,

the

version

of

IMS,

and,

if

applicable,

the

specific

location

of

the

text

you

are

commenting

on

(for

example,

a

page

number

or

table

number).

IBM

Confidential

xvi

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

Change

Indicators

Technical

changes

are

indicated

in

this

publication

by

a

vertical

bar

(|)

to

the

left

of

the

changed

text.

IBM

Confidential

About

This

Book

xvii

IBM

Confidential

xviii

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

Summary

of

Changes

Changes

to

This

Book

for

IMS

Version

9

This

edition

is

a

draft

version

of

this

book

intended

for

use

during

the

Quality

Partnership

Program

(QPP).

Contents

of

this

book

are

preliminary

and

are

under

development.

This

book

contains

IMS

Version

9

technical

and

editorial

changes.

The

parts

of

this

book

have

been

removed.

Library

Changes

for

IMS

Version

9

Changes

to

the

IMS

Library

for

IMS

Version

9

include

the

addition

of

new

titles,

the

change

of

one

title,

and

a

major

terminology

change.

New

and

Revised

Titles

The

following

list

details

the

major

changes

to

the

IMS

Version

9

library:

v

IMS

Version

9:

HALDB

Online

Reorganization

Guide

and

Reference

The

library

includes

a

new

book:

IMS

Version

9:

HALDB

Online

Reorganization

Guide

and

Reference.

This

book

is

available

only

in

PDF

and

BookManager

formats.

v

IMS

Version

9:

An

Introduction

to

IMS

The

library

includes

a

new

book:

IMS

Version

9:

An

Introduction

to

IMS.

v

The

book

formerly

titled

IMS

Version

8:

IMS

Java

User’s

Guide

is

now

titled

IMS

Version

9:

IMS

Java

Guide

and

Reference.

Terminology

Changes

IMS

Version

9

introduces

new

terminology

for

IMS

commands:

type-1

command

A

command,

generally

preceded

by

a

leading

slash

character,

that

can

be

entered

from

any

valid

IMS

command

source.

In

IMS

Version

8,

these

commands

were

called

classic

commands.

type-2

command

A

command

that

is

entered

only

through

the

OM

API.

Type-2

commands

are

more

flexible

and

can

have

a

broader

scope

than

type-1

commands.

In

IMS

Version

8,

these

commands

were

called

IMSplex

commands

or

enhanced

commands.

Accessibility

Enhancements

Accessibility

features

help

a

user

who

has

a

physical

disability,

such

as

restricted

mobility

or

limited

vision,

to

use

software

products.

The

major

accessibility

features

in

z/OS

products,

including

IMS,

enable

users

to:

v

Use

assistive

technologies

such

as

screen

readers

and

screen

magnifier

software

v

Operate

specific

or

equivalent

features

using

only

the

keyboard

v

Customize

display

attributes

such

as

color,

contrast,

and

font

size

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

xix

User

Assistive

Technologies

Assistive

technology

products,

such

as

screen

readers,

function

with

the

IMS

user

interfaces.

Consult

the

documentation

of

the

assistive

technology

products

for

specific

information

when

you

use

assistive

technology

to

access

these

interfaces.

Accessible

Documentation

Online

documentation

for

IMS

Version

9

is

available

in

BookManager

format,

which

is

an

accessible

format.

All

BookManager

functions

can

be

accessed

by

using

a

keyboard

or

keyboard

shortcut

keys.

BookManager

also

allows

you

to

use

screen

readers

and

other

assistive

technologies.

The

BookManager

READ/MVS

product

is

included

with

the

z/OS

base

product,

and

the

BookManager

Softcopy

Reader

(for

workstations)

is

available

on

the

IMS

Licensed

Product

Kit

(CD),

which

you

can

download

from

the

Web

at

www.ibm.com.

Keyboard

Navigation

of

the

User

Interface

Users

can

access

IMS

user

interfaces

using

TSO/E

or

ISPF.

Refer

to

the

z/OS

V1R1.0

TSO/E

Primer,

the

z/OS

V1R1.0

TSO/E

User’s

Guide,

and

the

z/OS

V1R1.0

ISPF

User’s

Guide,

Volume

1.

These

guides

describe

how

to

navigate

each

interface,

including

the

use

of

keyboard

shortcuts

or

function

keys

(PF

keys).

Each

guide

includes

the

default

settings

for

the

PF

keys

and

explains

how

to

modify

their

functions.

IBM

Confidential

xx

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

Chapter

1.

How

EXEC

DLI

Application

Programs

Work

with

IMS

This

chapter

describes

the

components

of

your

CICS

program.

It

also

describes

the

sample

hierarchy

used

in

the

examples.

Your

EXEC

DLI

application

uses

EXEC

DLI

commands

to

read

and

update

DL/I

databases.

These

applications

can

execute

as

pure

batch,

as

a

BMP

running

with

DBCTL

or

DB/DC,

or

as

an

online

CICS

program

using

DBCTL.

Your

EXEC

DLI

program

can

also

issue

system

service

commands

when

using

DBCTL.

IMS

DB/DC

can

provide

the

same

services

as

DBCTL.

Getting

Started

with

EXEC

DLI

Figure

1

shows

the

main

elements

of

programs

that

use

EXEC

DLI

commands

to

access

DL/I

databases.

The

main

differences

between

a

CICS

program

and

a

command-level

batch

or

BMP

program

(represented

by

Figure

1)

are

that

you

do

not

schedule

a

PSB

for

a

batch

program,

and

that

you

do

not

issue

checkpoints

for

a

CICS

program.

The

numbers

on

the

left

of

the

figure

correspond

to

the

notes

that

follow.

Notes

to

Figure

1:

�1�I/O

areas.

DL/I

passes

segments

to

and

from

the

program

in

the

I/O

areas.

You

may

use

a

separate

I/O

area

for

each

segment.

�2�Key

feedback

area.

DL/I

passes,

on

request,

the

concatenated

key

of

the

lowest-level

segment

retrieved

to

the

key

feedback

area.

Figure

1.

The

Structure

of

a

Command-Level

Batch

or

BMP

Program

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

1

�3�DL/I

Interface

Block

(DIB).

DL/I

and

CICS

place

the

results

of

each

command

in

the

DIB.

The

DIB

contains

most

of

the

same

information

returned

in

the

DB

PCB

for

programs

using

the

call-level

interface.

Note:

The

horizontal

line

between

�3�

and

�4�

represents

the

end

of

the

declarations

section

and

the

start

of

the

executable

code

section

of

the

program.

�4�Program

entry.

Control

is

passed

to

your

program

during

program

entry.

�5�Issue

EXEC

DLI

commands.

Commands

read

and

update

information

in

the

database.

�6�Check

the

status

code.

To

find

out

the

results

of

each

command

you

issue,

you

should

check

the

status

code

in

the

DIB

after

issuing

an

EXEC

DLI

command

for

database

processing

and

after

issuing

a

checkpoint

command.

�7�Issue

checkpoint.

Issue

checkpoints

as

needed

to

establish

places

from

which

to

restart.

Issuing

a

checkpoint

commits

database

changes

and

releases

resources.

�8�Terminate.

This

returns

control

to

the

operating

system,

commits

database

changes,

and

releases

resources.

Requirement:

CICS/ESA®

Version

4,

or

later,

and

CICS

Transaction

Server

run

with

this

version

of

IMS.

Unless

a

distinction

needs

to

made,

all

supported

versions

are

referred

to

as

CICS.

A

Sample

Hierarchy

Many

of

the

examples

use

the

medical

hierarchy

shown

in

the

following

graphic.

The

database

contains

information

that

a

medical

clinic

might

keep

about

its

patients.

To

understand

the

examples,

you

should

be

familiar

with

the

hierarchy

and

the

segments

it

contains.

The

tables

that

follow

show

the

layouts

of

each

segment

in

the

hierarchy.

The

segment’s

field

contents

are

in

the

first

row

of

each

table.

The

number

below

each

field

contents

is

the

length

in

bytes

that

has

been

defined

for

that

field.

v

PATIENT

Segment

Table

2

on

page

3

shows

the

PATIENT

segment.

It

has

three

fields:

–

The

patient’s

number

(PATNO)

–

The

patient’s

name

(NAME)

–

The

patient’s

address

(ADDR)

Figure

2.

Medical

Hierarchy

Getting

Started

with

EXEC

DLI IBM

Confidential

2

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

PATIENT

has

a

unique

key

field:

PATNO.

PATIENT

segments

are

stored

in

ascending

order

of

their

patient

numbers.

The

lowest

patient

number

in

the

database

is

00001

and

the

highest

is

10500.

Table

2.

PATIENT

Segment

Field

Contents

PATNO

NAME

ADDR

Bytes

5

10

30

v

ILLNESS

Segment

Table

3

shows

the

ILLNESS

segment.

It

has

two

fields:

–

The

date

when

the

patient

came

to

the

clinic

with

the

illness

(ILLDATE)

–

The

name

of

the

illness

(ILLNAME)

The

key

field

is

ILLDATE.

Because

it

is

possible

for

a

patient

to

come

to

the

clinic

with

more

than

one

illness

on

the

same

date,

this

key

field

is

non

unique,

that

is,

there

may

be

more

than

one

ILLNESS

segment

with

the

same

(an

equal)

key

field

value.

Usually

during

installation,

the

database

administrator

(DBA)

decides

the

order

in

which

to

place

the

database

segments

with

equal

or

no

keys.

The

DBA

can

use

the

RULES

keyword

of

the

SEGM

statement

of

the

DBD

to

specify

the

order

of

the

segments.

For

segments

with

equal

keys

or

no

keys,

RULES

determines

where

the

segment

is

inserted.

Where

RULES=LAST,

ILLNESS

segments

that

have

equal

keys

are

stored

on

a

first-in

first-out

basis

among

those

with

equal

keys.

ILLNESS

segments

with

unique

keys

are

stored

in

ascending

order

on

the

date

field,

regardless

of

RULES.

ILLDATE

is

specified

in

the

format

YYYYMMDD.

Table

3.

ILLNESS

Segment

Field

Contents

ILLDATE

ILLNAME

Bytes

8

10

v

TREATMNT

Segment

Table

4

shows

the

TREATMNT

segment.

It

contains

four

fields:

–

The

date

of

the

treatment

(DATE)

–

The

medicine

that

was

given

to

the

patient

(MEDICINE)

–

The

quantity

of

the

medicine

that

the

patient

received

(QUANTITY)

–

The

name

of

the

doctor

who

prescribed

the

treatment

(DOCTOR)

The

TREATMNT

segment’s

key

field

is

DATE.

Because

a

patient

may

receive

more

than

one

treatment

on

the

same

date,

DATE

is

a

non

unique

key

field.

TREATMNT,

like

ILLNESS,

has

been

specified

as

having

RULES=LAST.

TREATMNT

segments

are

also

stored

on

a

first-in-first-out

basis.

DATE

is

specified

in

the

same

format

as

ILLDATE—YYYYMMDD.

Table

4.

TREATMNT

Segment

Field

Contents

DATE

MEDICINE

QUANTITY

DOCTOR

Bytes

8

10

4

10

A

Sample

HierarchyIBM

Confidential

Chapter

1.

How

EXEC

DLI

Application

Programs

Work

with

IMS

3

v

BILLING

Segment

Table

5

shows

the

BILLING

segment.

It

has

only

one

field—the

amount

of

the

current

bill.

BILLING

has

no

key

field.

Table

5.

BILLING

Segment

Field

Contents

BILLING

Bytes

6

v

PAYMENT

Segment

Table

6

shows

the

PAYMENT

segment.

It

has

only

one

field—

the

amount

of

payments

for

the

month.

The

PAYMENT

segment

has

no

key

field.

Table

6.

PAYMENT

Segment

Field

Contents

PAYMENT

Bytes

6

v

HOUSHOLD

Segment

Table

7

shows

the

HOUSHOLD

segment.

It

contains

two

fields:

–

The

names

of

the

members

of

the

patient’s

household

(RELNAME)

–

How

each

member

of

the

household

is

related

to

the

patient

(RELATN)

The

HOUSEHOLD

segment’s

key

field

is

RELNAME.

Table

7.

HOUSEHOLD

Segment

Field

Contents

RELNAME

RELATN

Bytes

10

8

A

Sample

Hierarchy IBM

Confidential

4

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

Chapter

2.

Defining

Application

Program

Elements

to

IMS

This

chapter

provides

information

on

the

following:

v

“Specifying

an

Application

Interface

Block

(AIB)”

v

“Specifying

the

DL/I

Interface

Block

(DIB)”

on

page

6

v

“Defining

a

Key

Feedback

Area”

on

page

9

v

“Defining

I/O

Areas”

on

page

9

Specifying

an

Application

Interface

Block

(AIB)

EXEC

DLI

commands

can

use

the

AIB

interface.

For

example,

using

the

AIB

interface,

the

format

for

the

GU

command

would

be

EXEC

DLI

GU

AIB(aib),

instead

of

EXEC

DLI

GU

USING

PCB(n)

using

the

PCB

format.

With

CICS

Transaction

Server

1.1

or

later,

the

following

EXEC

DLI

commands

are

supported

in

the

AIB

format

(as

well

as

the

PCB

format):

v

GU

v

GN

v

GNP

v

ISRT

v

DLET

v

REPL

v

STAT

v

POS

v

QUERY

v

REFRESH

v

ACCEPT

v

LOG

v

DEQ

v

SETS

v

ROLS

With

CICS

Transaction

Server

1.1

or

later,

and

IMS/ESA®

Version

5,

the

following

AIB-only

commands

are

supported

by

using

the

EXEC

DLI

interface:

ICMD,

RCMD

and

GMSG.

The

CICS

EDF

(execution

diagnostic

facility)

debugging

transaction

supports

AIB

EXEC

DLI

requests,

just

as

it

handles

PCB

type

requests.

AIB

Mask

The

AIB

mask

must

be

supplied

by

the

application

and

referenced

in

the

EXEC

call

instead

of

the

PCB

number

(for

example,

EXEC

DLI

GU

AIB(aib)).

The

DIBSTAT

field

is

set

with

a

valid

STATUS

code

when

AIBRETRN

=

X’00000000’

or

x’00000900’.

Applications

should

test

AIBRETRN

for

any

other

values

and

respond

accordingly.

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

5

CICS

Restrictions

with

AIB

support

Restrictions

due

to

function

shipping

include:

v

The

AIBLEN

field

must

be

between

128

and

256

bytes.

128

is

recommended.

v

LIST=NO

must

not

be

specified

on

any

PCBs

in

the

PSB.

Specifying

the

DL/I

Interface

Block

(DIB)

Each

time

your

program

executes

a

DL/I

command,

DL/I

returns

a

status

code

and

other

information

to

your

program

through

the

DL/I

interface

block

(DIB),

which

is

a

subset

of

IMS

PCB.

Your

program

should

check

the

status

code

to

make

sure

the

command

executed

successfully.

Each

program’s

working

storage

contains

its

own

DIB.

The

contents

of

the

DIB

reflect

the

status

of

the

last

DL/I

command

executed

in

that

program.

If

the

information

in

your

program’s

DIB

is

required

by

another

program

used

by

your

transaction,

you

must

pass

the

information

to

that

program.

To

access

fields

in

the

DIB,

use

labels

that

are

automatically

generated

in

your

program

by

the

translator.

Restriction:

These

labels

are

reserved;

you

must

not

redefine

them.

In

your

COBOL,

PL/I,

assembler,

and

C

programs,

some

variable

names

are

mandatory.

For

a

COBOL

program:

DIBVER

PICTURE

X(2)

DIBSTAT

PICTURE

X(2)

DIBSEGM

PICTURE

X(8)

DIBSEGLV

PICTURE

X(2)

DIBKFBL

PICTURE

S9(4)

COMPUTATIONAL

DIBDBDNM

PICTURE

X(8)

DIBDBORG

PICTURE

X(8)

DIBVER

CHAR(2)

DIBSTAT

CHAR(2)

DIBSEGM

CHAR(8)

DIBSEGLV

CHAR(2)

DIBKFBL

FIXED

BINARY

(15,0)

DIBDBDNM

CHAR(8)

DIBDBORG

CHAR(8)

For

an

assembler

language

program:

DIBVER

CL2

DIBSTAT

CL2

DIBSEGM

CL8

DIBSEGLV

CL2

DIBKFBL

H

DIBDBDNM

CL8

DIBDBORG

CL8

For

a

C

program:

unsigned

char

dibver

{2}

;

unsigned

char

dibstat

{2}

;

unsigned

char

dibsegm

{8}

;

unsigned

char

dibfic01

;

unsigned

char

dibfic02

;

unsigned

char

dibseglv

{2}

;

Specifying

an

Application

Interface

Block

(AIB) IBM

Confidential

6

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

signed

short

int

dibkfbl

;

unsigned

char

dibdbdnm

{8}

;

unsigned

char

dibdborg

{8}

;

unsigned

char

dibfic03

{6}

;

The

following

notes

explain

the

contents

of

each

variable

name.

The

name

in

parenthesis

is

the

label

used

to

access

the

contents.

1.

Translator

Version

(DIBVER)

This

is

the

version

of

the

DIB

format

your

program

is

using.

(DIBVER

is

used

for

documentation

and

problem

determination.)

2.

Status

Code

(DIBSTAT)

DL/I

places

a

2-character

status

code

in

this

field

after

executing

each

DL/I

command.

This

code

describes

the

results

of

the

command.

After

processing

a

DL/I

command,

DL/I

returns

control

to

your

program

at

the

next

sequential

instruction

following

the

command.

The

first

thing

your

program

should

do

after

each

command

is

to

test

the

status

code

field

and

take

appropriate

action.

If

the

command

was

completely

successful,

this

field

contains

blanks.

Following

are

the

status

codes

that

can

be

returned

to

this

field

(they

are

the

only

status

codes

returned

to

your

program):

b�b�

(Blanks)

The

command

was

completely

successful.

BA

For

GU,

GN,

GNP,

DLET,

REPL,

and

ISRT

commands.

Data

was

unavailable.

BC

For

DLET,

REPL,

and

ISRT

commands.

A

deadlock

was

detected.

FH

For

GU,

GN,

GNP,

DLET,

REPL,

ISRT,

POS,

CHKP,

and

SYMCHKP

commands.

The

DEDB

was

inaccessible.

FW

For

GU,

GN,

GNP,

DLET,

REPL,

ISRT,

and

POS

commands.

More

buffer

space

is

required

than

normally

allowed.

GA

For

unqualified

GN

and

GNP

commands.

DL/I

returned

a

segment,

but

the

segment

is

at

a

higher

level

in

the

hierarchy

than

the

last

segment

that

was

returned.

GB

For

GN

commands.

DL/I

reached

the

end

of

the

database

trying

to

satisfy

your

GN

command

and

did

not

return

a

segment

to

your

program’s

I/O

area.

GD

For

ISRT

commands.

The

program

issued

an

ISRT

command

that

did

not

have

SEGMENT

options

for

all

levels

above

that

of

the

segment

being

inserted.

GE

For

GU,

GN,

GNP,

ISRT,

and

STAT

commands.

DL/I

was

unable

to

find

the

segment

you

requested,

or

one

or

more

of

the

parents

of

the

segment

you

are

trying

to

insert.

GG

For

Get

commands.

DL/I

returns

a

GG

status

code

to

a

program

with

a

processing

option

of

GOT

or

GON

when

the

segment

that

the

program

is

trying

to

retrieve

contains

an

invalid

pointer.

GK

For

unqualified

GN

and

GNP

commands.

DL/I

returned

a

segment

that

satisfies

an

unqualified

GN

or

GNP

request,

but

the

segment

is

of

a

different

segment

type

(but

at

the

same

level)

than

the

last

segment

returned.

II

For

ISRT

commands.

The

segment

you

are

trying

to

insert

already

exists

in

the

database.

This

code

can

also

be

returned

if

you

have

not

established

a

path

for

the

segment

before

trying

to

insert

it.

The

Specifying

the

DL/I

Interface

Block

(DIB)IBM

Confidential

Chapter

2.

Defining

Application

Program

Elements

to

IMS

7

segment

you

are

trying

to

insert

might

match

a

segment

with

the

same

key

in

another

hierarchy

or

database

record.

LB

For

load

programs

only

after

issuing

a

LOAD

command.

The

segment

you

are

trying

to

load

already

exists

in

the

database.

DL/I

returns

this

status

code

only

for

segments

with

key

fields.

NI

For

ISRT

and

REPL

commands.

The

segment

you

are

trying

to

insert

or

replace

requires

a

duplicate

entry

to

be

inserted

in

a

secondary

index

that

does

not

allow

duplicate

entries.

This

status

code

is

returned

for

batch

programs

that

write

log

records

to

direct

access

storage.

If

a

CICS

program

that

does

not

log

to

disk

encounters

this

condition,

the

program

(transaction)

is

abnormally

terminated.

TG

For

TERM

commands.

The

program

tried

to

terminate

a

PSB

when

one

was

not

scheduled.

The

status

codes

listed

above

indicate

exceptional

conditions,

and

are

the

only

status

codes

returned

to

your

program.

All

other

status

codes

indicate

error

conditions

and

cause

your

transaction

or

batch

program

to

abnormally

terminate.

If

you

want

to

pass

control

to

an

error

routine

from

your

CICS

program,

you

can

use

the

CICS

HANDLE

ABEND

command;

the

last

2

bytes

of

the

abend

code

are

the

IMS

status

code

that

caused

the

abnormal

termination.

For

more

information

on

the

HANDLE

ABEND

command,

see

the

application

programming

reference

manual

for

your

version

of

CICS.

Batch

BMP

programs

abend

with

abend

1041.

3.

Segment

Name

(DIBSEGM)

This

is

the

name

of

the

lowest-level

segment

successfully

accessed.

When

a

retrieval

is

successful,

this

field

contains

the

name

of

the

retrieved

segment.

If

the

retrieval

is

unsuccessful,

this

field

contains

the

last

segment,

along

the

path

to

the

requested

segment,

that

satisfies

the

command.

After

issuing

an

XRST

command,

this

field

is

either

set

to

blanks

(indicating

a

successful

normal

start),

or

a

checkpoint

ID

(indicating

the

checkpoint

ID

from

which

the

program

was

restarted).

You

should

test

this

field

after

issuing

any

of

the

following

commands:

v

GN

v

GNP

v

GU

v

ISRT

v

LOAD

v

RETRIEVE

v

XRST

4.

Segment

Level

Number

(DIBSEGLV)

This

is

the

hierarchic

level

of

the

lowest-level

segment

retrieved.

When

IMS

DB

retrieves

the

segment

you

have

requested,

IMS

DB

places,

in

character

format,

the

level

number

of

that

segment

in

this

field.

If

you

are

issuing

a

path

command,

IMS

DB

places

the

number

of

the

lowest-level

segment

retrieved.

If

IMS

DB

is

unable

to

find

the

segment

you

have

requested,

it

gives

the

level

number

of

the

last

segment

it

encountered

that

satisfied

your

command.

This

is

the

lowest

segment

on

the

last

path

that

IMS

DB

encountered

while

searching

for

the

segment

you

requested.

You

should

test

this

field

after

issuing

any

of

the

following

commands:

v

GN

Specifying

the

DL/I

Interface

Block

(DIB) IBM

Confidential

8

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

v

GNP

v

GU

v

ISRT

v

LOAD

v

RETRIEVE

5.

Key

Feedback

Length

(DIBKFBL)

This

is

a

halfword

field

that

contains

the

length

of

the

concatenated

key

when

you

use

the

KEYFEEDBACK

option

with

get

commands.

If

your

key

feedback

area

is

not

long

enough

to

contain

the

concatenated

key,

the

key

is

truncated,

and

this

area

indicates

the

actual

length

of

the

full

concatenated

key.

6.

Database

Description

Name

(DIBDBDNM)

This

is

the

fullword

field

that

contains

the

name

of

the

DBD.

The

DBD

is

the

DL/I

control

block

that

contains

all

information

used

to

describe

a

database.

The

DIBDBDNM

field

is

returned

only

on

a

QUERY

command.

7.

Database

Organization

(DIBDBORG)

This

is

the

fullword

field

that

names

the

type

of

database

organization

(HDAM,

HIDAM,

HISAM,

HSAM,

GSAM,

SHSAM,

INDEX,

or

DEDB)

padded

to

the

right

with

blanks.

The

DIBDBORG

field

is

returned

only

on

a

QUERY

command.

Defining

a

Key

Feedback

Area

To

retrieve

the

concatenated

key

of

a

segment,

you

must

define

an

area

into

which

the

key

is

placed.

The

concatenated

key

returned

is

that

of

the

lowest-level

segment

retrieved.

(The

segment

retrieved

is

indicated

in

the

DIB

by

the

DIBSEGM

and

DIBSEGLV

fields.)

Specify

the

name

of

the

area

using

the

KEYFEEDBACK

option

on

a

GET

command.

A

concatenated

key

is

made

up

of

the

key

of

a

segment,

plus

the

keys

for

all

of

its

parents.

For

example,

say

you

requested

the

concatenated

key

of

the

ILLNESS

segment

for

January

2,

1988,

for

patient

number

05142.

The

following

would

be

returned

to

your

key

feedback

field:

0514219880102

This

number

includes

the

key

field

of

the

ILLNESS

segment,

ILLDATE,

concatenated

to

the

key

field

of

the

PATIENT

segment,

PATNO.

If

you

define

an

area

that

is

not

long

enough

to

contain

the

entire

concatenated

key,

the

key

is

truncated.

Defining

I/O

Areas

You

use

I/O

areas

to

pass

segments

back

and

forth

between

your

program

and

the

database.

What

an

I/O

area

contains

depends

on

the

kind

of

command

you

are

issuing:

v

When

you

retrieve

a

segment,

DL/I

places

the

segment

you

requested

in

the

I/O

area.

v

When

you

add

a

new

segment,

you

build

the

new

segment

in

the

I/O

area

before

issuing

an

ISRT

command.

v

Before

you

modify

a

segment,

you

first

retrieve

the

segment

into

the

then

issue

the

DLET

or

REPL

command.

Specifying

the

DL/I

Interface

Block

(DIB)IBM

Confidential

Chapter

2.

Defining

Application

Program

Elements

to

IMS

9

Restriction:

The

I/O

area

must

be

long

enough

to

contain

the

longest

segment

you

retrieve

from

or

add

to

the

database.

(Otherwise,

you

might

experience

storage

overlap.)

If

you

are

retrieving,

adding,

or

replacing

multiple

segments

in

one

command,

you

must

define

an

I/O

area

for

each

segment.

As

an

example

of

what

a

segment

looks

like

in

your

I/O

area,

say

that

you

retrieved

the

ILLNESS

segment

for

Robert

James,

who

came

to

the

clinic

on

March

3,

1988.

He

was

treated

for

strep

throat.

The

data

returned

to

your

I/O

area

would

look

like

this:

19880303STREPTHROA

The

language

coding

formats

are

described

in

this

section.

COBOL

I/O

Area

The

I/O

area

in

a

COBOL

program

should

be

defined

as

a

01

level

working

storage

entry.

You

can

further

define

the

area

with

02

entries.

IDENTIFICATION

DIVISION.

...
DATA

DIVISION.

WORKING-STORAGE

SECTION.

01

INPUT-AREA.

02

KEY

PICTURE

X(6).

02

FIELD

PICTURE

X(84).

PL/I

I/O

Area

In

PL/I,

the

name

for

the

I/O

area

used

in

the

DL/I

call

can

be

the

name

of

a

fixed-length

character

string,

a

major

structure,

a

connected

array,

or

an

adjustable

character

string.

Restriction:

The

PL/I

I/O

area

cannot

be

the

name

of

a

minor

structure

or

a

character

string

with

the

attribute

VARYING.

If

you

want

to

define

it

as

a

minor

structure,

you

can

use

a

pointer

to

the

minor

structure

as

the

parameter.

Your

program

should

define

the

I/O

area

as

a

fixed-length

character

string

and

pass

the

name

of

that

string,

or

define

it

in

one

of

the

other

ways

described

previously

and

then

pass

the

pointer

variable

that

points

to

that

definition.

If

you

want

to

use

substructures

or

elements

of

an

array,

use

the

DEFINED

or

BASED

attribute.

DECLARE

1

INPUT_AREA,

2

KEY

CHAR(6),

2

FIELD

CHAR(84);

Assembler

Language

I/O

Area

The

I/O

area

in

an

assembler

language

program

is

formatted

as

follows:

IOAREA

DS

0CL90

KEY

DS

CL6

FIELD

DS

CL84

Defining

I/O

Areas IBM

Confidential

10

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

Chapter

3.

Writing

an

Application

Program

This

chapter

provides

programming

guidelines

and

information

on

preparing

programs

for

execution

using

EXEC

DLI

commands.

It

also

contains

skeleton

programs

in

assembler

language,

COBOL,

PL/I,

C,

and

C++.

In

this

chapter:

v

“Programming

Guidelines”

v

“Preparing

Your

EXEC

DLI

Program

for

Execution”

on

page

29

Programming

Guidelines

This

description

provides

some

guidelines

for

writing

efficient

and

error-free

programs

The

number,

type,

and

sequence

of

the

DL/I

requests

your

program

issues

affect

the

efficiency

of

your

program.

A

program

that

is

poorly

designed

runs

if

it

is

coded

correctly.

The

suggestions

that

follow

can

help

you

develop

the

most

efficient

design

possible

for

your

application

program.

Inefficiently

designed

programs

can

adversely

affect

performance

and

are

hard

to

change.

Being

aware

of

how

certain

combinations

of

commands

or

calls

affects

performance

helps

you

to

avoid

these

problems

and

design

a

more

efficient

program.

After

you

have

a

general

sequence

of

calls

mapped

out

for

your

program,

use

these

guidelines

to

improve

the

sequence.

Usually

an

efficient

sequence

of

requests

causes

efficient

internal

DL/I

processing.

v

Use

the

simplest

call.

Qualify

your

requests

to

narrow

the

search

for

DL/I,

but

do

not

use

more

qualification

than

required.

v

Use

the

request

or

sequence

of

requests

that

gives

DL/I

the

shortest

path

to

the

segment

you

want.

v

Use

the

fewest

number

of

requests

possible

in

your

program.

Each

DL/I

request

your

program

issues

uses

system

time

and

resources.

You

may

be

able

to

eliminate

unnecessary

calls

by:

–

Using

path

requests

if

you

are

replacing,

retrieving,

or

inserting

more

than

one

segment

in

the

same

path.

If

you

are

using

more

than

one

request

to

do

this,

you

are

issuing

unnecessary

requests.

–

Changing

the

sequence

so

that

your

program

saves

the

segment

in

a

separate

I/O

area,

and

then

gets

it

from

that

I/O

area

the

second

time

it

needs

the

segment.

If

your

program

retrieves

the

same

segment

more

than

once

during

program

execution,

you

are

issuing

an

unnecessary

request.

–

Anticipating

and

eliminating

needless

and

nonproductive

requests,

such

as

requests

that

result

in

GB,

GE,

and

II

status

codes.

For

example,

if

you

are

issuing

GNs

for

a

particular

segment

type

and

you

know

how

many

occurrences

of

that

segment

type

exist,

do

not

issue

the

GN

that

results

in

a

GE

status

code.

You

can

keep

track

of

the

number

of

occurrences

your

program

retrieves,

and

then

continue

with

other

processing

when

you

know

you

have

retrieved

all

the

occurrences

of

that

segment

type.

–

Issuing

an

insert

request

with

a

qualification

for

each

parent

instead

of

issuing

Get

requests

for

the

parents

to

make

sure

that

they

exist.

When

you

are

inserting

segments,

you

cannot

insert

dependents

unless

the

parents

exist.

If

DL/I

returns

a

GE

status

code,

at

least

one

of

the

parents

does

not

exist.

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

11

|

|

|

v

Keep

the

main

section

of

the

program

logic

together.

For

example,

branch

to

conditional

routines,

such

as

error

and

print

routines,

in

other

parts

of

the

program,

instead

of

having

to

branch

around

them

to

continue

normal

processing.

v

Use

call

sequences

that

make

good

use

of

the

physical

placement

of

the

data.

Access

segments

in

hierarchic

sequence

as

much

as

possible.

Avoid

moving

backward

in

the

hierarchy.

v

Process

database

records

in

order

of

the

key

field

of

the

root

segments.

(For

HDAM

databases,

this

order

depends

on

the

randomizing

routine

that

is

used.

Check

with

your

DBA

for

this

information.)

v

Try

to

avoid

constructing

the

logic

of

the

program

and

the

structure

of

commands

or

calls

in

a

way

that

depends

heavily

on

the

database

structure.

Depending

on

the

current

structure

of

the

hierarchy

reduces

the

program’s

flexibility.

Coding

a

Program

in

Assembler

Language

The

following

sample

is

a

CICS

online

program

that

is

written

in

assembler

language.

It

shows

how

the

different

parts

of

a

command-level

program

fit

together

and

how

the

EXEC

DLI

commands

are

coded.

Except

for

a

few

commands,

this

program

applies

to

batch,

BMP,

and

CICS

programs.

Differences

are

highlighted

in

the

notes

that

follow.

The

numbers

to

the

right

of

the

sample

code

refer

to

those

notes.

*ASM

XOPTS(CICS,DLI)

*

�1�

R2

EQU

2

R3

EQU

3

R4

EQU

4

R11

EQU

11

R12

EQU

12

R13

EQU

13

DFHEISTG

DSECT

SEGKEYA

DS

CL4

SEGKEYB

DS

CL4

�2�

SEGKEYC

DS

CL4

SEGKEY1

DS

CL4

SEGKEY2

DS

CL4

CONKEYB

DS

CL8

SEGNAME

DS

CL8

SEGLEN

DS

H

PCBNUM

DS

H

AREAA

DS

CL80

AREAB

DS

CL80

�3�

AREAC

DS

CL80

AREAG

DS

CL250

AREASTAT

DS

CL360

*

COPY

MAPSET

*

*

INITIALIZATION

*

HANDLE

ERROR

CONDITIONS

IN

ERROR

ROUTINE

�4�

*

HANDLE

ABENDS

(DLI

ERROR

STATUS

CODES)

IN

ABEND

ROUTINE

*

RECEIVE

INPUT

MESSAGE

*

SAMPLE

DFHEIENT

CODEREG=(R2,R3),DATAREG=(R13,R12),EIBREG=R11

�5�

*

EXEC

CICS

HANDLE

CONDITION

ERROR(ERRORS)

�6�

*

EXEC

CICS

HANDLE

ABEND

LABEL(ABENDS)

�6�

*

EXEC

CICS

RECEIVE

MAP

(’SAMPMAP’)

MAPSET(’MAPSET’)

�6�

Programming

Guidelines IBM

Confidential

12

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

|
|
|

|
|
|

*

ANALYZE

INPUT

MESSAGE

AND

PERFORM

NON-DLI

PROCESSING

*

*

SCHEDULE

PSB

NAMED

’SAMPLE1’

*

EXEC

DLI

SCHD

PSB(SAMPLE1)

�7�

BAL

R4,TESTDIB

CHECK

STATUS

*

*

RETRIEVE

ROOT

SEGMENT

AND

ALL

ITS

DEPENDENTS

*

MVC

SEGKEYA,=C’A300’

�8�

EXEC

DLI

GU

USING

PCB(1)

SEGMENT(SEGA)

INTO(AREAA)

X

SEGLENGTH(80)

WHERE(KEYA=SEGKEYA)

FIELDLENGTH(4)

BAL

R4,TESTDIB

CHECK

STATUS

GNPLOOP

EQU

*

EXEC

DLI

GNP

USING

PCB(1)

INTO(AREAG)

SEGLENGTH(250)

CLC

DIBSTAT,=C’GE’

LOOK

FOR

END

�9�

BE

LOOPDONE

DONE

AT

’GE’

BAL

R4,TESTDIB

CHECK

STATUS

B

GNPLOOP

LOOPDONE

EQU

*

*

*

INSERT

NEW

ROOT

SEGMENT

*

MVC

AREAA,=CL80’DATA

FOR

NEW

SEGMENT

INCLUDING

KEY’

EXEC

DLI

ISRT

USING

PCB(1)

SEGMENT(SEGA)

FROM(AREAA)

X

SEGLENGTH(80)

BAL

R4,TESTDIB

CHECK

STATUS

*

*

RETRIEVE

3

SEGMENTS

IN

PATH

AND

REPLACE

THEM

*

MVC

SEGKEYA,=C’A200’

MVC

SEGKEYB,=C’B240’

MVC

SEGKEYC,=C’C241’

EXEC

DLI

GU

USING

PCB(1)

X

SEGMENT(SEGA)

WHERE(KEYA=SEGKEYA)

X�10�

FIELDLENGTH(4)

X

INTO(AREAA)

X

SEGLENGTH(80)

X

SEGMENT(SEGB)

WHERE(KEYB=SEGKEYB)

FIELDLENGTH(4)

X

INTO(AREAB)

X

SEGLENGTH(80)

X

SEGMENT(SEGC)

WHERE(KEYC=SEGKEYC)

FIELDLENGTH(4)

X

INTO(AREAC)

X

SEGLENGTH(80)

BAL

R4,TESTDIB

*

UPDATE

FIELDS

IN

THE

3

SEGMENTS

EXEC

DLI

REPL

USING

PCB(1)

X

SEGMENT(SEGA)

FROM(AREAA)

SEGLENGTH(80)

X

SEGMENT(SEGB)

FROM(AREAB)

SEGLENGTH(80)

X

SEGMENT(SEGC)

FROM(AREAC)

SEGLENGTH(80)

BAL

R4,TESTDIB

CHECK

STATUS

*

*

INSERT

NEW

SEGMENT

USING

CONCATENATED

KEY

TO

QUALIFY

PARENT

*

MVC

AREAC,=CL80’DATA

FOR

NEW

SEGMENT

INCLUDING

KEY’

MVC

CONKEYB,=C’A200B240’

EXEC

DLI

ISRT

USING

PCB(1)

X

Coding

a

Program

in

Assembler

LanguageIBM

Confidential

Chapter

3.

Writing

an

Application

Program

13

SEGMENT(SEGB)

KEYS(CONKEYB)

KEYLENGTH(8)

X

SEGMENT(SEGC)

FROM(AREAC)

SEGLENGTH(80)

BAL

R4,TESTDIB

CHECK

STATUS

*

*

RETRIEVE

SEGMENT

DIRECTLY

USING

CONCATENATED

KEY

*

AND

THEN

DELETE

IT

AND

ITS

DEPENDENTS

*

MVC

CONKEYB,=C’A200B230’

EXEC

DLI

GU

USING

PCB(1)

X

SEGMENT(SEGB)

X

KEYS(CONKEYB)

KEYLENGTH(8)

X

INTO(AREAB)

SEGLENGTH(80)

BAL

R4,TESTDIB

CHECK

STATUS

EXEC

DLI

DLET

USING

PCB(1)

X

SEGMENT(SEGB)

SEGLENGTH(80)

FROM(AREAB)

BAL

R4,TESTDIB

CHECK

STATUS

*

*

RETRIEVE

SEGMENT

BY

QUALIFYING

PARENT

WITH

CONCATENATED

KEY,

*

OBJECT

SEGMENT

WITH

WHERE

OPTION

USING

A

LITERAL,

*

AND

THEN

SET

PARENTAGE

*

*

USE

VARIABLES

FOR

PCB

INDEX,

SEGMENT

NAME,

AND

SEGMENT

LENGTH

*

MVC

CONKEYB,=C’A200B230’

MVC

SEGNAME,=CL8’SEGA’

MVC

SEGLEN,=H’80’

MVC

PCBNUM,=H’1’

EXEC

DLI

GU

USING

PCB(PCBNUM)

X

SEGMENT((SEGNAME))

X

KEYS(CONKEYB)

KEYLENGTH(8)

SETPARENT

X

SEGMENT(SEGC)

INTO(AREAC)

SEGLENGTH(SEGLEN)

X

WHERE(KEYC=’C520’)

BAL

R4,TESTDIB

CHECK

STATUS

*

*

RETRIEVE

DATABASE

STATISTICS

*

EXEC

DLI

STAT

USING

PCB(1)

INTO(AREASTAT)

X

VSAM

FORMATTED

LENGTH(360)

BAL

R4,TESTDIB

CHECK

STATUS

*

*

RETRIEVE

ROOT

SEGMENT

USING

BOOLEAN

OPERATORS

*

MVC

SEGKEY1,=C’A050’

MVC

SEGKEY2,=C’A150’

EXEC

DLI

GU

USING

PCB(1)

SEGMENT(SEGA)

INTO(AREAA)

X

SEGLENGTH(80)

FIELDLENGTH(4,4,4,4)

X

WHERE(KEYA

>

SEGKEY1

AND

KEYA

<

SEGKEY2

KEYA

>

’A275’

AND

KEYA

<

’A350’)

BAL

R4,TESTDIB

CHECK

STATUS

*

*

TERMINATE

PSB

WHEN

DLI

PROCESSING

IS

COMPLETED

*

EXEC

DLI

TERM

�11�

*

*

SEND

OUTPUT

MESSAGE

Coding

a

Program

in

Assembler

Language IBM

Confidential

14

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

*

EXEC

CICS

SEND

MAP(’SAMPMAP’)

MAPSET(’MAPSET’)

�6�

EXEC

CICS

WAIT

TERMINAL

*

*

COMPLETE

TRANSACTION

AND

RETURN

TO

CICS

*

EXEC

CICS

RETURN

�12�

*

*

CHECK

STATUS

IN

DIB

*

TESTDIB

EQU

*

CLC

DIBSTAT,=C’

’

IS

STATUS

BLANK

�13�

BER

R4

YES

-

RETURN

*

HANDLE

DLI

STATUS

CODES

REPRESENTING

EXCEPTIONAL

CONDITIONS

*

BR

R4

RETURN

ERRORS

EQU

*

*

HANDLE

ERROR

CONDITIONS

*

ABENDS

EQU

*

*

HANDLE

ABENDS

INCLUDING

DLI

ERROR

STATUS

CODES

*

END

Notes

to

the

sample

assembler

code:

�1�For

a

CICS

online

program

containing

EXEC

DLI

commands,

you

must

specify

the

DLI

and

CICS

options.

For

a

batch

or

BMP

program

containing

EXEC

DLI,

you

must

specify

only

the

DLI

option.

�2�For

reentrancy,

define

each

of

the

areas

the

program

uses—I/O

areas,

key

feedback

areas,

and

segment

name

areas

in

DFHEISTG.

�3�Define

an

I/O

area

for

each

segment

you

retrieve,

add,

or

replace

(in

a

single

command).

�4�For

a

batch

or

BMP

program

containing

EXEC

DLI,

you

must

save

registers

on

entry

and

restore

registers

on

exit

according

to

z/OS™

register-saving

conventions.

�5�In

a

batch

or

BMP

program,

a

DFHEIENT

saves

the

registers

on

entry.

Do

not

specify

the

EIBREG

parameter

in

a

batch

program.

�6�Do

not

code

EXEC

CICS

commands

in

a

batch

or

BMP

program.

�7�In

a

CICS

online

program,

use

the

SCHD

PSB

command

to

obtain

a

PSB

for

the

use

of

your

program.

Do

not

schedule

a

PSB

in

a

batch

or

BMP

program.

�8�This

GU

command

retrieves

the

first

occurrence

of

SEGA

with

a

key

of

A300.

You

do

not

have

to

provide

the

KEYLENGTH

or

SEGLENGTH

options

in

an

assembler

language

program.

�9�This

GNP

command

retrieves

all

dependents

under

segment

SEGA.

The

GE

status

code

indicates

that

no

more

dependents

exist.

�10�This

GU

command

is

an

example

of

a

path

command.

Use

a

separate

I/O

area

for

each

segment

you

retrieve.

�11�In

a

CICS

online

program,

the

TERM

command

terminates

the

PSB

scheduled

earlier.

You

do

not

terminate

the

PSB

in

a

batch

or

BMP

program.

�12�For

a

batch

or

BMP

program,

code

DFHEIRET

with

an

optional

RCREG

parameter

instead

of

EXEC

CICS

RETURN.

The

RCREG

parameter

identifies

a

register

containing

the

return

code.

�13�After

issuing

each

command,

you

should

check

the

status

code

in

the

DIB.

Coding

a

Program

in

Assembler

LanguageIBM

Confidential

Chapter

3.

Writing

an

Application

Program

15

Coding

a

Program

in

COBOL

The

following

sample

program

is

written

in

COBOL.

It

shows

how

the

different

parts

of

a

command-level

program

fit

together,

and

how

the

EXEC

DLI

commands

are

coded.

The

sample

program

applies

to

the

COBOL

V4

compiler

(5734-CB2),

the

OS/VS

COBOL

compiler

(5740-CB1),

IBM

COBOL

for

z/OS

&

VM

(5688-197),

and

the

VS

COBOL

II

compiler

(5668-958

and

5668-940).

Except

for

a

few

commands,

this

program

applies

to

batch,

BMP,

and

CICS

programs.

Differences

are

highlighted

in

the

notes

that

follow.

The

numbers

to

the

right

of

the

sample

code

refer

to

those

notes.

CBL

LIB,APOST,XOPTS(CICS,DLI)

IDENTIFICATION

DIVISION.

PROGRAM-ID.

SAMPLE.

�1�

ENVIRONMENT

DIVISION.

CONFIGURATION

SECTION.

.*

SOURCE-COMPUTER.

IBM-370.

.*

OBJECT-COMPUTER.

IBM-370.

DATA

DIVISION.

WORKING-STORAGE

SECTION.

77

SEGKEYA

PIC

X(4).

77

SEGKEYB

PIC

X(4).

�2�

77

SEGKEYC

PIC

X(4).

77

SEGKEY1

PIC

X(4).

77

SEGKEY2

PIC

X(4).

77

SEGKEY3

PIC

X(4).

77

SEGKEY4

PIC

X(4).

77

CONKEYB

PIC

X(8).

77

SEGNAME

PIC

X(8).

77

SEGLEN

COMP

PIC

S9(4).

77

PCBNUM

COMP

PIC

S9(4).

01

AREAA

PIC

X(80).

*

DEFINE

SEGMENT

I/O

AREA

01

AREAB

PIC

X(80).

01

AREAC

PIC

X(80).

�3�

01

AREAG

PIC

X(250).

01

AREASTAT

PIC

X(360).

*

COPY

MAPSET.

PROCEDURE

DIVISION.

*

*

*

INITIALIZATION

*

HANDLE

ERROR

CONDITIONS

IN

ERROR

ROUTINE

*

HANDLE

ABENDS

(DLI

ERROR

STATUS

CODES)

IN

ABEND

ROUTINE

*

RECEIVE

INPUT

MESSAGE

*

*

EXEC

CICS

HANDLE

CONDITION

ERROR(ERRORS)

END-EXEC.

�4�

*

EXEC

CICS

HANDLE

ABEND

LABEL(ABENDS)

END-EXEC.

�4�

*

EXEC

CICS

RECEIVE

MAP

(’SAMPMAP’)

MAPSET(’MAPSET’)

END-EXEC.

�4�

*

ANALYZE

INPUT

MESSAGE

AND

PERFORM

NON-DLI

PROCESSING

*

*

*

SCHEDULE

PSB

NAMED

’SAMPLE1’

*

*

EXEC

DLI

SCHD

PSB(SAMPLE1)

END-EXEC.

PERFORM

TEST-DIB

THRU

OK.

�5�

*

*

*

RETRIEVE

ROOT

SEGMENT

AND

ALL

ITS

DEPENDENTS

*

*

MOVE

’A300’

TO

SEGKEYA.

Coding

a

Program

in

COBOL IBM

Confidential

16

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

EXEC

DLI

GU

USING

PCB(1)

SEGMENT(SEGA)

INTO(AREAA)

SEGLENGTH(80)

WHERE(KEYA=SEGKEYA)

�6�

FIELDLENGTH(4)

END-EXEC.

PERFORM

TEST-DIB

THRU

OK.

GNPLOOP.

EXEC

DLI

GNP

USING

PCB(1)

INTO(AREAG)

SEGLENGTH(250)

END-EXEC.

IF

DIBSTAT

EQUAL

TO

’GE’

THEN

GO

TO

LOOPDONE.

PERFORM

TEST-DIB

THRU

OK.

GO

TO

GNPLOOP.

LOOPDONE.

*

*

*

INSERT

NEW

ROOT

SEGMENT

*

*

MOVE

’DATA

FOR

NEW

SEGMENT

INCLUDING

KEY’

TO

AREAA.

EXEC

DLI

ISRT

USING

PCB(1)

SEGMENT(SEGA)

FROM(AREAA)

SEGLENGTH(80)

END-EXEC.

PERFORM

TEST-DIB

THRU

OK.

*

*

*

RETRIEVE

3

SEGMENTS

IN

PATH

AND

REPLACE

THEM

*

*

MOVE

’A200’

TO

SEGKEYA.

MOVE

’B240’

TO

SEGKEYB.

MOVE

’C241’

TO

SEGKEYC.

EXEC

DLI

GU

USING

PCB(1)

SEGMENT(SEGA)

WHERE(KEYA=SEGKEYA)

FIELDLENGTH(4)

�7�

INTO(AREAA)

SEGLENGTH(80)

SEGMENT(SEGB)

WHERE(KEYB=SEGKEYB)

FIELDLENGTH(4)

INTO(AREAB)

SEGLENGTH(80)

SEGMENT(SEGC)

WHERE(KEYC=SEGKEYC)

FIELDLENGTH(4)

INTO(AREAC)

SEGLENGTH(80)

END-EXEC.

PERFORM

TEST-DIB

THRU

OK.

*

UPDATE

FIELDS

IN

THE

3

SEGMENTS

EXEC

DLI

REPL

USING

PCB(1)

SEGMENT(SEGA)

FROM(AREAA)

SEGLENGTH(80)

SEGMENT(SEGB)

FROM(AREAB)

SEGLENGTH(80)

SEGMENT(SEGC)

FROM(AREAC)

SEGLENGTH(80)

END-EXEC.

PERFORM

TEST-DIB

THRU

OK.

*

*

*

INSERT

NEW

SEGMENT

USING

CONCATENATED

KEY

TO

QUALIFY

PARENT

*

*

MOVE

’DATA

FOR

NEW

SEGMENT

INCLUDING

KEY’

TO

AREAC.

MOVE

’A200B240’

TO

CONKEYB.

EXEC

DLI

ISRT

USING

PCB(1)

SEGMENT(SEGB)

KEYS(CONKEYB)

KEYLENGTH(8)

SEGMENT(SEGC)

FROM(AREAC)

SEGLENGTH(80)

END-EXEC.

PERFORM

TEST-DIB

THRU

OK.

*

*

*

RETRIEVE

SEGMENT

DIRECTLY

USING

CONCATENATED

KEY

*

AND

THEN

DELETE

IT

AND

ITS

DEPENDENTS

*

*

MOVE

’A200B230’

TO

CONKEYB.

Coding

a

Program

in

COBOLIBM

Confidential

Chapter

3.

Writing

an

Application

Program

17

EXEC

DLI

GU

USING

PCB(1)

SEGMENT(SEGB)

KEYS(CONKEYB)

KEYLENGTH(8)

INTO(AREAB)

SEGLENGTH(80)

END-EXEC.

PERFORM

TEST-DIB

THRU

OK.

EXEC

DLI

DLET

USING

PCB(1)

SEGMENT(SEGB)

SEGLENGTH(80)

FROM(AREAB)

END-EXEC.

PERFORM

TEST-DIB

THRU

OK.

*

*

*

RETRIEVE

SEGMENT

BY

QUALIFYING

PARENT

WITH

CONCATENATED

KEY,

*

OBJECT

SEGMENT

WITH

WHERE

OPTION,

*

AND

THEN

SET

PARENTAGE

*

*

USE

VARIABLES

FOR

PCB

INDEX,

SEGMENT

NAME,

AND

SEGMENT

LENGTH

*

*

MOVE

’A200B230’

TO

CONKEYB.

MOVE

’C520’

TO

SEGKEYC.

MOVE

’SEGA’

TO

SEGNAME.

MOVE

80

TO

SEGLEN.

MOVE

1

TO

PCBNUM.

EXEC

DLI

GU

USING

PCB(PCBNUM)

SEGMENT((SEGNAME))

KEYS(CONKEYB)

KEYLENGTH(8)

SETPARENT

SEGMENT(SEGC)

INTO(AREAC)

SEGLENGTH(SEGLEN)

WHERE(KEYC=SEGKEYC)

FIELDLENGTH(4)

END-EXEC.

PERFORM

TEST-DIB

THRU

OK.

*

*

*

RETRIEVE

DATABASE

STATISTICS

*

*

EXEC

DLI

STAT

USING

PCB(1)

INTO(AREASTAT)

VSAM

FORMATTED

LENGTH(360)

END-EXEC.

PERFORM

TEST-DIB

THRU

OK.

*

*

*

RETRIEVE

ROOT

SEGMENT

USING

BOOLEAN

OPERATORS

*

*

MOVE

’A050’

TO

SEGKEY1.

MOVE

’A150’

TO

SEGKEY2.

MOVE

’A275’

TO

SEGKEY3.

MOVE

’A350’

TO

SEGKEY4.

EXEC

DLI

GU

USING

PCB(1)

SEGMENT(SEGA)

INTO(AREAA)

SEGLENGTH(80)

FIELDLENGTH(4,4,4,4)

WHERE(KEYA

>

SEGKEY1

AND

KEYA

<

SEGKEY2

OR

KEYA

>

SEGKEY3

AND

KEYA

<

SEGKEY4)

END-EXEC.

PERFORM

TEST-DIB

THRU

OK.

*

*

*

TERMINATE

PSB

WHEN

DLI

PROCESSING

IS

COMPLETED

*

*

EXEC

DLI

TERM

END-EXEC.

�8�

*

*

*

*

SEND

OUTPUT

MESSAGE

*

*

EXEC

CICS

SEND

MAP(’SAMPMAP’)

MAPSET(’MAPSET’)

END-EXEC.

EXEC

CICS

WAIT

TERMINAL

END-EXEC.

*

Coding

a

Program

in

COBOL IBM

Confidential

18

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

*

*

COMPLETE

TRANSACTION

AND

RETURN

TO

CICS

*

*

EXEC

CICS

RETURN

END-EXEC.

*

*

*

CHECK

STATUS

IN

DIB

*

*

TEST-DIB.

IF

DIBSTAT

EQUAL

TO

’

’

THEN

GO

TO

OK.

OK.

�9�

ERRORS.

*

HANDLE

ERROR

CONDITIONS

ABENDS.

*

HANDLE

ABENDS

INCLUDING

DLI

ERROR

STATUS

CODES

Notes

to

the

sample

COBOL

code:

�1�For

a

CICS

online

program

containing

EXEC

DLI

commands,

you

must

specify

the

DLI

and

CICS

options.

For

a

batch

or

BMP

program

containing

EXEC

DLI,

you

must

specify

only

the

DLI

option.

�2�

Define

each

of

the

areas

the

program

uses—I/O

areas,

key

feedback

areas,

and

segment

name

areas—as

77-

or

01-level

working

storage

entries.

�3�Define

an

I/O

area

for

each

segment

you

retrieve,

add,

or

replace

(in

a

single

command).

�4�Do

not

code

EXEC

CICS

commands

in

a

batch

or

BMP

program.

�5�For

CICS

online

programs,

you

use

a

SCHD

PSB

command

to

obtain

a

PSB.

You

do

not

schedule

a

PSB

in

a

batch

or

BMP

program.

�6�This

GU

command

retrieves

the

first

occurrence

of

SEGA

with

a

key

of

A300.

KEYLENGTH

and

SEGLENGTH

are

optional

for

IBM

COBOL

for

z/OS

&

VM

(and

VS

COBOL

II).

For

COBOL

V4

and

OS/VS

COBOL,

KEYLENGTH

and

SEGLENGTH

are

required.

�7�This

GU

command

is

an

example

of

a

path

command.

You

must

use

a

separate

I/O

area

for

each

segment

you

retrieve.

�8�For

a

CICS

online

program,

the

TERM

command

terminates

the

PSB

scheduled

earlier.

You

do

not

terminate

the

PSB

in

a

batch

or

BMP

program.

�9�After

issuing

each

command,

you

should

check

the

status

code

in

the

DIB.

Coding

a

Program

in

PL/I

The

following

sample

program

is

written

in

PL/I.

It

shows

how

the

different

parts

of

a

command-level

program

fit

together

and

how

the

EXEC

DLI

commands

are

coded.

Except

for

a

few

commands,

this

program

applies

to

batch,

BMP,

and

CICS

programs.

Differences

are

highlighted

in

the

notes

that

follow.

The

numbers

to

the

right

of

the

program

refer

to

those

notes.

*PROCESS

INCLUDE,GN,XOPTS(CICS,DLI);

�1�

SAMPLE:

PROCEDURE

OPTIONS(MAIN);

DCL

SEGKEYA

CHAR

(4);

DCL

SEGKEYB

CHAR

(4);

�2�

DCL

SEGKEYC

CHAR

(4);

DCL

SEGKEY1

CHAR

(4);

DCL

SEGKEY2

CHAR

(4);

DCL

SEGKEY3

CHAR

(4);

DCL

SEGKEY4

CHAR

(4);

DCL

CONKEYB

CHAR

(8);

Coding

a

Program

in

COBOLIBM

Confidential

Chapter

3.

Writing

an

Application

Program

19

|
|
|

DCL

SEGNAME

CHAR

(8);

DCL

PCBNUM

FIXED

BIN

(15);

DCL

AREAA

CHAR

(80);

/*

DEFINE

SEGMENT

I/O

AREA

*/

DCL

AREAB

CHAR

(80);

DCL

AREAC

CHAR

(80);

�3�

DCL

AREAG

CHAR

(250);

DCL

AREASTAT

CHAR

(360);

%INCLUDE

MAPSET

/*

*/

/*

*/

/*

**

*/

/*

INITIALIZATION

*/

/*

HANDLE

ERROR

CONDITIONS

IN

ERROR

ROUTINE

*/

/*

HANDLE

ABENDS

(DLI

ERROR

STATUS

CODES)

IN

ABEND

PROGRAM

*/

/*

RECEIVE

INPUT

MESSAGE

*/

/*

**

*/

/*

*/

EXEC

CICS

HANDLE

CONDITION

ERROR(ERRORS);

�4�

/*

*/

EXEC

CICS

HANDLE

ABEND

PROGRAM(’ABENDS’);

�4�

/*

*/

EXEC

CICS

RECEIVE

MAP

(’SAMPMAP’)

MAPSET(’MAPSET’);

�4�

/*

ANALYZE

INPUT

MESSAGE

AND

PERFORM

NON-DLI

PROCESSING

*/

/*

*/

/*

**

*/

/*

SCHEDULE

PSB

NAMED

’SAMPLE1’

*/

/*

**

*/

/*

*/

EXEC

DLI

SCHD

PSB(SAMPLE1);

CALL

TEST_DIB;

�5�

/*

*/

/*

RETRIEVE

ROOT

SEGMENT

AND

ALL

ITS

DEPENDENTS

*/

/*

*/

/*

*/

SEGKEYA

=

’A300’;

EXEC

DLI

GU

USING

PCB(1)

SEGMENT(SEGA)

INTO(AREAA)

WHERE(KEYA=SEGKEYA);

�6�

CALL

TEST_DIB;

GNPLOOP:

EXEC

DLI

GNP

USING

PCB(1)

INTO(AREAG);

�7�

IF

DIBSTAT

=

’GE’

THEN

GO

TO

LOOPDONE;

CALL

TEST_DIB;

GO

TO

GNPLOOP;

LOOPDONE:

/*

*/

/*

**

*/

/*

INSERT

NEW

ROOT

SEGMENT

*/

/*

**

*/

/*

*/

AREAA

=

’DATA

FOR

NEW

SEGMENT

INCLUDING

KEY’;

EXEC

DLI

ISRT

USING

PCB(1)

SEGMENT(SEGA)

FROM(AREAA);

CALL

TEST_DIB;

/*

*/

/*

*/

/*

RETRIEVE

3

SEGMENTS

IN

PATH

AND

REPLACE

THEM

*/

/*

*/

/*

*/

SEGKEYA

=

’A200’;

SEGKEYB

=

’B240’;

SEGKEYC

=

’C241’;

EXEC

DLI

GU

USING

PCB(1)

SEGMENT(SEGA)

WHERE(KEYA=SEGKEYA)

�8�

INTO(AREAA)

SEGMENT(SEGB)

WHERE(KEYB=SEGKEYB)

INTO(AREAB)

Coding

a

Program

in

PL/I IBM

Confidential

20

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

SEGMENT(SEGC)

WHERE(KEYC=SEGKEYC)

INTO(AREAC);

CALL

TEST_DIB;

/*

UPDATE

FIELDS

IN

THE

3

SEGMENTS

*/

EXEC

DLI

REPL

USING

PCB(1)

SEGMENT(SEGA)

FROM(AREAA)

SEGMENT(SEGB)

FROM(AREAB)

SEGMENT(SEGC)

FROM(AREAC);

CALL

TEST_DIB;

/*

*/

/*

*/

/*

INSERT

NEW

SEGMENT

USING

CONCATENATED

KEY

TO

QUALIFY

PARENT

*/

/*

*/

/*

*/

AREAC

=

’DATA

FOR

NEW

SEGMENT

INCLUDING

KEY’;

CONKEYB

=

’A200B240’;

EXEC

DLI

ISRT

USING

PCB(1)

SEGMENT(SEGB)

KEYS(CONKEYB)

SEGMENT(SEGC)

FROM(AREAC);

CALL

TEST_DIB;

/*

*/

/*

**

*/

/*

RETRIEVE

SEGMENT

DIRECTLY

USING

CONCATENATED

KEY

*/

/*

AND

THEN

DELETE

IT

AND

ITS

DEPENDENTS

*/

/*

**

*/

/*

*/

CONKEYB

=

’A200B230’;

EXEC

DLI

GU

USING

PCB(1)

SEGMENT(SEGB)

KEYS(CONKEYB)

INTO(AREAB);

CALL

TEST_DIB;

EXEC

DLI

DLET

USING

PCB(1)

SEGMENT(SEGB)

FROM(AREAB);

CALL

TEST_DIB;

/*

*/

/*

*/

/*

RETRIEVE

SEGMENT

BY

QUALIFYING

PARENT

WITH

CONCATENATED

KEY,

*/

/*

OBJECT

SEGMENT

WITH

WHERE

OPTION

*/

/*

AND

THEN

SET

PARENTAGE

*/

/*

*/

/*

USE

VARIABLES

FOR

PCB

INDEX,

SEGMENT

NAME

*/

/*

*/

/*

*/

CONKEYB

=

’A200B230’;

SEGNAME

=

’SEGA’;

SEGKEYC

=

’C520’;

PCBNUM

=

1;

EXEC

DLI

GU

USING

PCB(PCBNUM)

SEGMENT((SEGNAME))

KEYS(CONKEYB)

SETPARENT

SEGMENT(SEGC)

INTO(AREAC)

WHERE(KEYC=SEGKEYC);

CALL

TEST_DIB;

/*

*/

/*

*/

/*

RETRIEVE

DATABASE

STATISTICS

*/

/*

*/

/*

*/

EXEC

DLI

STAT

USING

PCB(1)

INTO(AREASTAT)

VSAM

FORMATTED;

CALL

TEST_DIB;

/*

*/

/*

**

*/

/*

RETRIEVE

ROOT

SEGMENT

USING

BOOLEAN

OPERATORS

*/

/*

**

*/

/*

*/

SEGKEY1

=

’A050’;

Coding

a

Program

in

PL/IIBM

Confidential

Chapter

3.

Writing

an

Application

Program

21

SEGKEY2

=

’A150’;

SEGKEY3

=

’A275’;

SEGKEY4

=

’A350’;

EXEC

DLI

GU

USING

PCB(1)

SEGMENT(SEGA)

INTO(AREAA)

WHERE(KEYA

&Ar;

SEGKEY1

AND

KEYA

&Al;

SEGKEY2

OR

KEYA

&Ar;

SEGKEY3

AND

KEYA

&Al;

SEGKEY4);

CALL

TEST_DIB;

/*

*/

/*

*/

/*

TERMINATE

PSB

WHEN

DLI

PROCESSING

IS

COMPLETED

*/

/*

*/

/*

*/

EXEC

DLI

TERM;

�9�

/*

*/

/*

*/

/*

SEND

OUTPUT

MESSAGE

*/

/*

*/

/*

*/

EXEC

CICS

SEND

MAP(’SAMPMAP’)

MAPSET(’MAPSET’);

�4�

EXEC

CICS

WAIT

TERMINAL;

/*

*/

/*

*/

/*

COMPLETE

TRANSACTION

AND

RETURN

TO

CICS

*/

/*

*/

/*

*/

EXEC

CICS

RETURN;

�4�

/*

*/

/*

**

*/

/*

CHECK

STATUS

IN

DIB

*/

/*

**

*/

/*

*/

TEST_DIB:

PROCEDURE;

IF

DIBSTAT

=

’

’

RETURN;

�10�

/*

HANDLE

DLI

STATUS

CODES

REPRESENTING

EXCEPTIONAL

CONDITIONS

*/

/*

*/

OK:

END

TEST_DB;

ERRORS:

/*

HANDLE

ERROR

CONDITIONS

*/

/*

*/

END

SAMPLE;

Notes

to

the

sample

PL/I

code:

�1�For

a

CICS

online

program

containing

EXEC

DLI

commands,

you

must

specify

the

DLI

and

CICS

options.

For

a

batch

or

BMP

program

containing

EXEC

DLI,

you

must

specify

only

the

DLI

option.

�2�Define,

in

automatic

storage,

each

of

the

areas;

I/O

areas,

key

feedback

areas,

and

segment

name

areas.

�3�Define

an

I/O

area

for

each

segment

you

retrieve,

add,

or

replace

in

a

single

command.

�4�Do

not

code

EXEC

CICS

commands

in

a

batch

or

BMP

program.

�5�For

CICS

online

programs,

you

use

a

SCHD

PSB

command

to

obtain

a

PSB.

You

do

not

schedule

a

PSB

in

a

batch

or

BMP

program.

�6�This

GU

command

retrieves

the

first

occurrence

of

SEGA

with

a

key

of

A300.

Notice

that

you

do

not

need

to

include

the

KEYLENGTH

and

SEGLENGTH

options.

�7�This

GNP

command

retrieves

all

dependents

under

segment

SEGA.

The

GE

status

code

indicates

that

no

more

dependents

exist.

Coding

a

Program

in

PL/I IBM

Confidential

22

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

�8�This

GU

command

is

an

example

of

a

path

command.

You

must

use

a

separate

I/O

area

for

each

segment

you

retrieve.

�9�For

a

CICS

online

program,

the

TERM

command

terminates

the

PSB

scheduled

earlier.

You

do

not

terminate

the

PSB

in

a

batch

or

BMP

program.

�10�After

issuing

each

command,

you

should

check

the

status

code

in

the

DIB.

Coding

a

Program

in

C

The

following

sample

program

is

written

in

C.

It

shows

how

the

different

parts

of

a

command-level

program

fit

together

and

how

the

EXEC

DLI

commands

are

coded.

Except

for

a

few

commands,

this

program

applies

to

batch,

BMP,

and

CICS

programs.

Differences

are

highlighted

in

the

notes

that

follow.

The

numbers

to

the

right

of

the

program

refer

to

those

notes.

#include

<

string.h>

�1�

#include

<

stdio.h

>

�2�

char

DIVIDER[120]

=

"---\

--";

char

BLANK[120]

=

"

\

\0";

char

BLAN2[110]

=

"

\

\0";

char

SCHED[120]

=

"Schedule

PSB(PC3COCHD)

"

�3�

char

GN1[120]

=

"GN

using

PCB(2)

Segment(SE2ORDER)

check

dibstat

\

is

blank";

char

GNP1[120]

=

"GNP

using

PCB(2)

check

dibstat

=

GK

or

blank

\

(or

GE

for

last

GNP)";

char

GU1[120]

=

"GU

using

PCB(2)

Segment(SE2ORDER)

where(\

FE2OGREF=000000’’)

check

dibstat

blank";

char

GU2[120]

=

"GU

using

PCB(2)

Segment(SE2ORDER)

where(\

FE2OGREF=000999’’)

check

dibstat

blank";

char

REP1[120]

=

"REPLACE

using

PCB(2)

Segment(SE2ORDER)

check

\

dibstat

is

blank";

char

DEL1[120]

=

"DELETE

using

PCB(2)

Segment(SE2ORDER)

check

\

dibstat

is

blank";

char

INS1[120]

=

"INSERT

using

PCB(2)

Segment(SE2ORDER)

where\

(FE2OGREF=’’000999’’)

check

dibstat

is

blank";

char

TERM[120]

=

"TERM

-

check

dibstat

is

blank";

char

STAT[120]

=

"STAT

USING

PCB(2)

VSAM

FORMATTED";

char

DATAB[6]

=

"000999";

char

DATAC[114]

=

"

REGRUN

TEST

INSERT

NO1.";

char

START[120]

=

"PROGXIV

STARTING";

char

OKMSG[120]

=

"PROGXIV

COMPLETE";

int

TLINE

=

120;

int

L11

=

11;

int

L360

=

11;

struct

{

char

NEWSEGB[6];

char

NEWSEGC[54];

}

NEWSEG;

char

OUTLINE[120];

�4�

struct

{

char

OUTLINA[9];

char

OUTLINB[111];

}

OUTLIN2;

struct

{

char

OUTLINX[9];

char

OUTLINY[6];

char

OUTLINZ[105];

}

OUTLIN3;

char

GUIOA[60];

char

GNIOA[60];

Coding

a

Program

in

PL/IIBM

Confidential

Chapter

3.

Writing

an

Application

Program

23

struct

{

char

ISRT1[6];

char

ISRT2[54];

}

ISRTIOA;

struct

{

char

REPLIO1[6];

char

REPLIO2[54];

}

REPLIOA;

struct

{

char

DLET1[6];

char

DLET2[54];

}

DLETIOA;

struct

{

char

STATA1[120];

char

STATA2[120];

char

STATA3[120];

}

STATAREA;

struct

{

char

DHPART[2];

char

RETCODE[2]

}

DHABCODE;

main()

{

EXEC

CICS

ADDRESS

EIB(dfheiptr);

�5�

strcpy(OUTLINE,DIVIDER);

SENDLINE();

strcpy(OUTLINE,START);

SENDLINE();

/*

*/

/*

SCHEDULE

PSB

*/

/*

*/

strcpy(OUTLINE,SCHED);

SENDLINE();

EXEC

DLI

SCHEDULE

PSB(PC3COCHD);

�6�

SENDSTAT();

TESTDIB();

/*

*/

/*

ISSUE

GU

REQUEST

*/

/*

*/

strcpy(OUTLINE,GU1);

SENDLINE();

EXEC

DLI

GET

UNIQUE

USING

PCB(2)

�7�

SEGMENT(SE2ORDER)

WHERE(FE2OGREF>="000000")

INTO(&GUIOA)

SEGLENGTH(60);

strcpy(OUTLIN2.OUTLINA,"SE2ORDER=");

strcpy(OUTLIN2.OUTLINB,GUIOA);

SENDLIN2();

SENDSTAT();

TESTDIB();

/*

*/

/*

ISSUE

GNP

REQUEST

*/

/*

*/

do

{

strcpy(OUTLINE,GNP1);

SENDLINE();

EXEC

DLI

GET

NEXT

IN

PARENT

USING

PCB(2)

�8�

INTO(&GNIOA)

SEGLENGTH(60);

strcpy(OUTLIN2.OUTLINA,"SEGMENT=");

strcpy(OUTLIN2.OUTLINB,GNIOA);

SENDLIN2();

SENDSTAT();

if

(strncmp(dibptr->dibstat,"GE",2)

!=

0)

�9�

TESTDIB();

}

while

(strncmp(dibptr->dibstat,"GE",2)

!=

0);

/*

*/

Coding

a

Program

in

C IBM

Confidential

24

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

/*

ISSUE

GN

REQUEST

*/

/*

*/

strcpy(OUTLINE,GN1);

SENDLINE();

EXEC

DLI

GET

NEXT

USING

PCB(2)

SEGMENT(SE2ORDER)

�10�

INTO(&GNIOA)

SEGLENGTH(60);

strcpy(OUTLIN2.OUTLINA,"SE2ORDER=");

strcpy(OUTLIN2.OUTLINB,GNIOA);

SENDLIN2();

SENDSTAT();

TESTDIB();

/*

*/

/*

INSERT

SEGMENT

*/

/*

*/

strcpy(OUTLINE,INS1);

SENDLINE();

strcpy(NEWSEG.NEWSEGB,DATAB);

�11�

strcpy(NEWSEG.NEWSEGC,DATAC);

strcpy(ISRTIOA.ISRT1,NEWSEG.NEWSEGB);

strcpy(ISRTIOA.ISRT2,NEWSEG.NEWSEGC);

strcpy(OUTLIN3.OUTLINX,"ISRT

SEG=");

strcpy(OUTLIN3.OUTLINY,ISRTIOA.ISRT1);

strcpy(OUTLIN3.OUTLINZ,ISRTIOA.ISRT2);

SENDLIN3();

EXEC

DLI

ISRT

USING

PCB(2)

SEGMENT(SE2ORDER)

FROM(&ISRTIOA)

SEGLENGTH(60);

SENDSTAT();

if

(strncmp(dibptr->dibstat,"II",2)

==

0)

strncpy(dibptr->dibstat,"

",2);

TESTDIB();

/*

*/

/*

ISSUE

GN

REQUEST

*/

/*

*/

strcpy(OUTLINE,GN1);

SENDLINE();

EXEC

DLI

GET

NEXT

USING

PCB(2)

�12�

SEGMENT(SE2ORDER)

INTO(&GNIOA)

SEGLENGTH(60);

strcpy(OUTLIN2.OUTLINA,"SE2ORDER=");

strcpy(OUTLIN2.OUTLINB,GNIOA);

SENDLIN2();

SENDSTAT();

TESTDIB();

/*

*/

/*

GET

INSERTED

SEGMENT

TO

BE

REPLACED

*/

/*

*/

strcpy(OUTLINE,GU2);

SENDLINE();

EXEC

DLI

GET

UNIQUE

USING

PCB(2)

�13�

SEGMENT(SE2ORDER)

WHERE(FE2OGREF="000999")

INTO(&ISRTIOA)

SEGLENGTH(60);

strcpy(OUTLIN3.OUTLINX,"ISRT

SEG=");

strcpy(OUTLIN3.OUTLINY,ISRTIOA.ISRT1);

strcpy(OUTLIN3.OUTLINZ,ISRTIOA.ISRT2);

SENDLIN3();

SENDSTAT();

TESTDIB();

/*

*/

/*

REPLACE

SEGMENT

*/

/*

*/

strcpy(OUTLINE,REP1);

SENDLINE();

strcpy(REPLIOA.REPLIO1,DATAB);

�14�

strcpy(REPLIOA.REPLIO2,"REGRUN

REPLACED

SEGMENT

NO1.");

Coding

a

Program

in

CIBM

Confidential

Chapter

3.

Writing

an

Application

Program

25

strcpy(OUTLIN3.OUTLINX,"REPL

SEG=");

strcpy(OUTLIN3.OUTLINY,REPLIOA.REPLIO1);

strcpy(OUTLIN3.OUTLINZ,REPLIOA.REPLIO2);

SENDLIN3();

EXEC

DLI

REPLACE

USING

PCB(2)

SEGMENT(SE2ORDER)

FROM(&REPLIOA)

SEGLENGTH(60);

SENDSTAT();

TESTDIB();

/*

*/

/*

ISSUE

GN

REQUEST

*/

/*

*/

strcpy(OUTLINE,GN1);

SENDLINE();

EXEC

DLI

GET

NEXT

USING

PCB(2)

�15�

SEGMENT(SE2ORDER)

INTO(&GNIOA)

SEGLENGTH(60);

strcpy(OUTLIN2.OUTLINA,"SE2ORDER=");

strcpy(OUTLIN2.OUTLINB,GNIOA);

SENDLIN2();

SENDSTAT();

TESTDIB();

/*

*/

/*

GET

REPLACED

SEGMENT

*/

/*

*/

strcpy(OUTLINE,GU2);

SENDLINE();

EXEC

DLI

GET

UNIQUE

USING

PCB(2)

�16�

SEGMENT(SE2ORDER)

WHERE(FE2OGREF="000999")

INTO(&REPLIOA)

SEGLENGTH(60);

strcpy(OUTLIN3.OUTLINX,"REPL

SEG=");

strcpy(OUTLIN3.OUTLINY,REPLIOA.REPLIO1);

strcpy(OUTLIN3.OUTLINZ,REPLIOA.REPLIO2);

SENDLIN3();

SENDSTAT();

TESTDIB();

/*

*/

/*

ISSUE

DELETE

REQUEST

*/

/*

*/

strcpy(OUTLINE,DEL1);

SENDLINE();

strcpy(DLETIOA.DLET1,REPLIOA.REPLIO1);

�17�

strcpy(DLETIOA.DLET2,REPLIOA.REPLIO2);

strcpy(OUTLIN3.OUTLINX,"DLET

SEG=");

strcpy(OUTLIN3.OUTLINY,DLETIOA.DLET1);

strcpy(OUTLIN3.OUTLINZ,DLETIOA.DLET2);

SENDLIN3();

EXEC

DLI

DELETE

USING

PCB(2)

SEGMENT(SE2ORDER)

FROM(&DLETIOA)

SEGLENGTH(60);

SENDSTAT();

TESTDIB();

/*

*/

/*

ISSUE

STAT

REQUEST

*/

/*

*/

strcpy(OUTLINE,STAT);

SENDLINE();

EXEC

DLI

STAT

USING

PCB(2)

�18�

VSAM

FORMATTED

INTO(&STATAREA);

SENDSTT2();

TESTDIB();

/*

*/

/*

ISSUE

TERM

REQUEST

*/

/*

*/

strcpy(OUTLINE,TERM);

Coding

a

Program

in

C IBM

Confidential

26

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

SENDLINE();

EXEC

DLI

TERM;

�19�

SENDSTAT();

TESTDIB();

strcpy(OUTLINE,DIVIDER);

SENDLINE();

SENDOK();

/*

*/

/*

RETURN

TO

CICS

*/

/*

*/

EXEC

CICS

RETURN;

}

/*

*/

/*

*/

/*

*/

SENDLINE()

{

EXEC

CICS

SEND

FROM(OUTLINE)

LENGTH(120);

�20�

EXEC

CICS

WRITEQ

TD

QUEUE("PRIM")

FROM(OUTLINE)

LENGTH(TLINE);

strcpy(OUTLINE,BLANK);

return;

}

SENDLIN2()

{

EXEC

CICS

SEND

FROM(OUTLIN2)

LENGTH(120);

EXEC

CICS

WRITEQ

TD

QUEUE("PRIM")

FROM(OUTLIN2)

LENGTH(TLINE);

strcpy(OUTLIN2.OUTLINA,BLANK,9);

strcpy(OUTLIN2.OUTLINB,BLANK,111);

return;

}

SENDLIN3()

{

EXEC

CICS

SEND

FROM(OUTLIN3)

LENGTH(120);

EXEC

CICS

WRITEQ

TD

QUEUE("PRIM")

FROM(OUTLIN3)

LENGTH(TLINE);

strcpy(OUTLIN3.OUTLINX,BLANK,9);

strcpy(OUTLIN3.OUTLINY,BLANK,6);

strcpy(OUTLIN3.OUTLINZ,BLANK,105);

return;

}

SENDSTAT()

{

strncpy(OUTLIN2.OUTLINA,BLANK,9);

strncpy(OUTLIN2.OUTLINB,BLAN2,110);

strcpy(OUTLIN2.OUTLINA,"

DIBSTAT=");

strcpy(OUTLIN2.OUTLINB,dibptr->dibstat);

EXEC

CICS

SEND

FROM(OUTLIN2)

LENGTH(11);

EXEC

CICS

WRITEQ

TD

QUEUE("PRIM")

FROM(OUTLIN2)

LENGTH(L11);

strcpy(OUTLINE,DIVIDER);

SENDLINE();

return;

}

SENDSTT2()

{

strncpy(OUTLIN2.OUTLINA,BLANK,9);

strncpy(OUTLIN2.OUTLINB,BLAN2,110);

strcpy(OUTLIN2.OUTLINA,"

DIBSTAT=");

strcpy(OUTLIN2.OUTLINB,dibptr->dibstat);

EXEC

CICS

SEND

FROM(STATAREA)

LENGTH(360);

EXEC

CICS

WRITEQ

TD

QUEUE("PRIM")

FROM(STATAREA)

LENGTH(L360);

return;

}

Coding

a

Program

in

CIBM

Confidential

Chapter

3.

Writing

an

Application

Program

27

SENDOK()

{

EXEC

CICS

SEND

FROM(OKMSG)

LENGTH(120);

EXEC

CICS

WRITEQ

TD

QUEUE("PRIM")

FROM(OKMSG)

LENGTH(TLINE);

return;

}

TESTDIB()

�21�

{

if

(strncmp(dibptr->dibstat,"

",2)

==

0)

return;

else

if

(strncmp(dibptr->dibstat,"GK",2)

==

0)

return;

else

if

(strncmp(dibptr->dibstat,"GB",2)

==

0)

return;

else

if

(strncmp(dibptr->dibstat,"GE",2)

==

0)

return;

else

{

EXEC

CICS

ABEND

ABCODE("PETE");

�22�

EXEC

CICS

RETURN;

}

return;

}

Notes

to

the

sample

C

code:

�1�You

must

include

a

standard

header

file

string.h

to

gain

access

to

string

manipulation

facilities.

�2�You

must

include

standard

header

file

stdio.h

to

gain

access

to

standard

I/O

library

routings.

�3�Define

DL/I

messages.

�4�Define

the

I/O

areas.

�5�Program

start.

�6�Define

PSB

PC3COCHD.

�7�Issue

the

first

command.

Retrieves

the

first

occurrence

of

segment

SE2ORDER

and

puts

it

into

array

OUTLIN2.

�8�Issue

the

GNP

command

to

get

the

next

segment

and

put

it

into

array

OUTLIN2.

�9�GE

status

codes

indicate

no

more

segments

to

get.

�10�Get

next

segment

SE2ORDER

and

put

it

into

the

array

OUTLIN2.

�11�Insert

segment

into

array

OUTLIN3.

�12�Issue

GN

to

retrieve

next

segment

and

put

it

into

array

OUTLIN2.

�13�Get

next

segment

that

will

be

replaced

and

put

it

into

OUTLIN3.

�14�Replace

the

segment

and

put

it

into

array

OUTLIN3.

�15�Get

next

segment

and

put

it

into

array

OUTLIN2.

�16�Get

the

replaced

segment

and

put

it

into

array

OUTLIN3.

�17�Issue

DELETE

command

after

putting

content

of

segment

into

array

OUTLIN3.

�18�Issue

STAT

REQUEST

command.

�19�Issue

TERM

command.

�20�Output

processing.

�21�Check

return

code.

�22�Do

not

code

EXEC

CICS

commands

in

a

batch

or

BMP

program.

Coding

a

Program

in

C IBM

Confidential

28

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

Preparing

Your

EXEC

DLI

Program

for

Execution

The

steps

for

preparing

your

program

for

execution

are

as

follows:

1.

Run

the

CICS

command

language

translator

to

translate

the

EXEC

DLI

and

EXEC

CICS

commands.

COBOL,

PL/I,

and

assembler

language

programs

have

separate

translators.

2.

Compile

your

program.

3.

Link-edit:

v

An

online

program

with

the

appropriate

CICS

interface

module

v

A

batch

or

BMP

program

with

the

IMS

interface

module.

You

can

use

CICS-supplied

procedures

to

translate,

compile,

and

link-edit

your

program.

The

procedure

you

use

depends

on

the

type

of

program

(batch,

BMP,

or

CICS

online)

and

the

language

it

is

written

in

(COBOL,

PL/I,

or

assembler

language).

Translator

Options

Required

for

EXEC

DLI

Even

when

you

use

the

CICS-supplied

procedures

for

preparing

your

program,

you

must

supply

certain

translator

options.

For

a

CICS

online

program

containing

EXEC

DLI

commands,

you

must

specify

the

DLI

and

CICS

options.

For

a

batch

or

BMP

program

containing

EXEC

DLI

commands,

you

must

specify

the

DLI

option.

You

can

also

specify

the

options

on

the

EXEC

job

control

statement

that

invokes

the

translator;

if

you

use

both

methods,

the

CBL

and

*PROCESS

statement

overrides

those

in

the

EXEC

statement.

For

more

information

on

the

translator

options,

see

CICS/ESA

Application

Programming

Guide.

You

must

ensure

that

the

translator

options

you

use

in

a

COBOL

program

do

not

conflict

with

the

COBOL

compiler

options.

When

you

translate

an

IBM

COBOL

for

z/OS

&

VM

program,

you

must

use

the

COBOL

for

z/OS

&

VM

translator

option.

Similarly,

when

you

translate

a

VS

COBOL

II

program,

you

must

use

the

COBOL

II

translator

option.

Compiler

Options

Required

for

EXEC

DLI

If

you

want

to

compile

your

batch

COBOL

program

with

COBOL

for

z/OS

&

VM

and

then

execute

it

AMODE(31)

on

z/OS,

you

must

use

the

compiler

option

RENT.

If

you

want

to

compile

your

batch

COBOL

program

with

VS

COBOL

II

and

then

execute

it

AMODE(31)

on

z/OS,

you

must

use

the

compiler

options

RES

and

RENT.

For

information

on

which

compiler

options

should

be

used

for

a

CICS

program,

see

CICS

Application

Programming

Reference.

Linkage

Editor

Options

Required

for

EXEC

DLI

If

the

compiler

being

used

supports

it,

you

can

link

a

program

written

with

EXEC

commands

as

AMODE(31)

RMODE(ANY).

Preparing

your

Program

for

ExecutionIBM

Confidential

Chapter

3.

Writing

an

Application

Program

29

Preparing

your

Program

for

Execution IBM

Confidential

30

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

Chapter

4.

EXEC

DLI

Commands

for

an

Application

Program

This

chapter

explains

the

I/O

PCB,

PSB,

and

PCB.

It

also

lists

and

describes

the

EXEC

DLI

commands.

For

each

command,

a

syntax

diagram

is

provided,

along

with

information

on

options,

restrictions,

usage,

and

examples

illustrating

that

usage.

Using

the

I/O

PCB,

PSB,

and

PCB

A

PSB

used

in

a

DBCTL

environment

can

contain

any

of

the

following

PCB

types:

v

I/O

PCB

v

Alternate

PCBs

v

DB

PCBs

v

GSAM

PCBs

I/O

PCB

In

a

DBCTL

environment,

an

I/O

PCB

is

needed

to

issue

DBCTL

service

requests.

Unlike

the

other

types

of

PCB,

it

is

not

defined

with

PSB

generation,

but

if

the

application

program

is

using

an

I/O

PCB,

this

has

to

be

indicated

in

the

PSB

scheduling

request.

Alternate

PCB

An

alternate

PCB

defines

a

logical

terminal

and

can

be

used

instead

of

the

I/O

PCB

when

it

is

necessary

to

direct

a

response

to

a

terminal.

Alternate

PCBs

appear

in

PSBs

used

in

a

CICS-DBCTL

environment,

but

are

used

only

in

an

IMS

DC

environment.

CICS

applications

using

DBCTL

cannot

successfully

issue

commands

that

specify

an

alternate

PCB,

an

MSDB

PCB,

or

a

GSAM

PCB.

However,

a

PSB

that

contains

PCBs

of

these

types

can

be

scheduled

successfully

in

a

CICS-DBCTL

environment.

Alternate

PCBs

are

included

in

the

PCB

address

list

returned

to

a

call

level

application

program.

In

an

EXEC

DLI

application

program,

the

existence

of

alternate

PCBs

in

the

PSB

affects

the

PCB

number

used

in

the

PCB

keyword.

DB

PCB

A

database

PCB

(DB

PCB)

is

the

PCB

that

defines

an

application

program’s

interface

to

a

database.

One

DB

PCB

is

needed

for

each

database

view

used

by

the

application

program.

It

can

be

a

full-function

PCB,

a

DEDB

PCB,

or

an

MSDB

PCB.

GSAM

PCB

A

GSAM

PCB

defines

an

application

program’s

interface

for

GSAM

operations.

When

using

DBCTL,

a

CICS

program

receives,

by

default,

a

DB

PCB

as

the

first

PCB

in

the

parameter

list

passed

to

it

after

scheduling.

However,

when

your

application

program

can

handle

an

I/O

PCB,

you

indicate

this

using

the

SYSSERVE

keyword

on

the

SCHD

command.

The

I/O

PCB

is

then

the

first

PCB

in

the

parameter

address

list

passed

back

to

your

application

program.

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

31

Format

of

a

PSB

The

format

of

a

PSB

is

shown

in

Figure

3.

Each

PSB

must

contain

at

least

one

PCB.

The

I/O

PCB

must

be

addressable

in

order

to

issue

a

system

service

command.

An

alternate

PCB

is

used

only

for

IMS

online

programs,

which

can

run

only

with

the

Transaction

Manager.

Alternate

PCBs

can

be

present

even

though

your

program

does

not

run

under

the

Transaction

Manager.

A

DB

PCB

can

be

a

full-function

PCB,

a

DEDB

PCB,

or

an

MSDB

PCB.

PCB

Summary

This

chapter

summarizes

the

information

concerning

I/O

PCBs

and

alternate

PCBs

in

various

types

of

application

programs.

Recommendation:

You

should

read

this

chapter

if

you

intend

to

issue

system

service

requests.

DB

Batch

Programs

Alternate

PCBs

are

always

included

in

the

list

of

PCBs

supplied

to

the

program

by

DL/I

irrespective

of

whether

you

have

specified

CMPAT=Y.

The

I/O

PCB

is

returned

depending

on

the

CMPAT

option.

If

you

specify

CMPAT=Y,

the

PCB

list

contains

the

address

of

the

I/O

PCB,

followed

by

the

addresses

of

any

alternate

PCBs,

followed

by

the

addresses

of

any

DB

PCBs.

If

you

do

not

specify

CMPAT=Y,

the

PCB

list

contains

the

addresses

of

any

alternate

PCBs

followed

by

the

addresses

of

the

DB

PCBs.

BMPs,

MPPs,

and

IFPs

I/O

PCBs

and

alternate

PCBs

are

always

passed

to

BMP

programs.

I/O

PCBs

and

alternate

PCBs

are

also

always

passed

to

MPPs

and

to

IFP

application

programs.

The

PCB

list

contains

the

address

of

the

I/O

PCB,

followed

by

the

addresses

of

any

alternate

PCBs,

followed

by

the

addresses

of

the

DB

PCBs.

CICS

Programs

with

DBCTL

The

first

PCB

always

refers

to

the

first

DB

PCB

whether

you

specify

the

SYSSERVE

keyword.

Table

8

summarizes

the

I/O

PCB

and

alternate

PCB

information.

The

first

column

lists

different

DB

environments,

the

second

and

third

column

specify

if

the

I/O

PCB

or

alternate

PCB,

respectively,

is

valid

in

the

specified

environment.

Table

8.

Summary

of

PCB

Information

Environment

EXEC

DLI

I/O

PCB

count

included

in

PCB(n)

Alternate

PCB

count

included

in

PCB(n)

CICS

DBCTL1

No

No

[IOPCB]

[Alternate

PCB

...

Alternate

PCB]

[DBPCB

...

DBPCB]

[GSAMPCB

...

GSAMPCB]

Figure

3.

General

Format

of

a

PSB

I/O

PCB,

PSB,

and

PCB IBM

Confidential

32

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

Table

8.

Summary

of

PCB

Information

(continued)

Environment

EXEC

DLI

I/O

PCB

count

included

in

PCB(n)

Alternate

PCB

count

included

in

PCB(n)

CICS

DBCTL2

No

No

BMP

Yes

Yes

Batch3

No

Yes

Batch4

Yes

Yes

Notes:

1.

SCHD

command

issued

without

the

SYSSERVE

option.

2.

SCHD

command

issued

with

the

SYSSERVE

option

for

a

CICS

DBCTL

command

or

for

a

function-shipped

command

which

is

satisfied

by

a

remote

CICS

system

using

DBCTL.

3.

CMPAT=N

specified

on

the

PSBGEN

statement.

4.

CMPAT=Y

specified

on

the

PSBGEN

statement.

Specifying

an

EXEC

DLI

Command

The

following

descriptions

illustrates

the

general

syntax

of

the

EXEC

DLI

commands

and

the

information

supplied

by

each

parameter

and

variable.

Table

9

provides

a

summary

of

the

commands

available

to

batch,

BMP,

and

online

programs.

The

examples

in

this

chapter

use

the

PL/I

delimiter.

Code

the

commands

in

free

form:

Where

keywords,

operands,

and

parameters

are

shown

separated

by

commas,

no

blanks

can

appear

immediately

before

or

after

the

comma.

Where

keywords,

operands,

and

parameters

are

shown

separated

by

blanks,

you

can

include

as

many

blanks

as

you

wish.

The

format

of

the

commands

is

the

same

for

users

of

COBOL,

PL/I,

assembler

language,

C/370™,

and

C++/370.

Summary

of

EXEC

DLI

Commands

A

summary

of

all

the

EXEC

DLI

commands

is

provided

in

Table

9.

The

table

lists

the

EXEC

DLI

commands

and

specifies

if

they

are

valid

in

the

Batch,

Batch-Oriented

BMP,

or

CICS

with

DBCTL

environment.

Table

9.

Summary

of

EXEC

DLI

Commands

Request

Type

Program

Characteristics

Batch

Batch-

Oriented

BMP

CICS

with

DBCTL1

ACCEPT

command4

Yes

Yes

Yes

CHKP

command4

Yes

Yes

No

DEQ

command4

Yes

Yes

Yes

DLET

command

4

Yes

Yes

Yes

Get

commands

(GU,

GHU,

GN,

GHN,

GNP,

GHNP)4

Yes

Yes

Yes

GMSG

command5

No

Yes

Yes

ICMD

command5

No

Yes

Yes

I/O

PCB,

PSB,

and

PCBIBM

Confidential

Chapter

4.

EXEC

DLI

Commands

for

an

Application

Program

33

Table

9.

Summary

of

EXEC

DLI

Commands

(continued)

Request

Type

Program

Characteristics

Batch

Batch-

Oriented

BMP

CICS

with

DBCTL1

ISRT

command4

Yes

Yes

Yes

LOAD

command

Yes

No

No

LOG

command4

Yes

Yes

Yes

POS

command4

No

Yes

Yes

QUERY

command4

Yes

Yes

Yes

RCMD

command5

No

Yes

Yes

REFRESH

command4

Yes

Yes

Yes

REPL

command4

Yes

Yes

Yes

RETRIEVE

command

Yes

Yes

No

ROLB

command

Yes

Yes

No

ROLL

command

Yes

Yes

No

ROLS

command2,4

Yes

Yes

Yes

SCHD

command

No

No

Yes

SETS

command2,4

Yes

Yes

Yes

SETU

command

Yes

Yes

No

STAT

command3,4

Yes

Yes

Yes

SYMCHKP

command

Yes

Yes

No

TERM

command

No

No

Yes

XRST

command

Yes

Yes

No

Notes:

1.

In

a

CICS

remote

DL/I

environment,

commands

in

the

CICS

with

DBCTL

column

are

supported

if

you

are

shipping

a

function

to

a

remote

CICS

that

uses

DBCTL.

2.

ROLS

and

SETS

commands

are

not

valid

when

the

PSB

contains

a

DEDB.

3.

STAT

is

a

Product-sensitive

programming

interface.

4.

Are

supported

in

the

AIB

format.

5.

Are

described

in

the

AOI

documentation

within

the

IMS/ESA

Operations

Guide.

EXEC

DLI

Commands

The

following

commands

are

the

only

ones

allowed

for

EXEC

DLI.

They

can

be

used

to

read

and

update

DL/I

databases

with

a

batch

program,

a

BMP

(running

DBCTL

or

DB/DC),

or

a

CICS

program

using

DBCTL.

The

EXEC

DLI

commands

and

the

pages

they

are

found

on

are

as

follows:

v

“DLET

Command”

on

page

35

v

“GN

Command”

on

page

37

v

“GNP

Command”

on

page

42

v

“GU

Command”

on

page

47

v

“ISRT

Command”

on

page

53

v

“POS

Command”

on

page

59

v

“REPL

Command”

on

page

60

Summary

of

EXEC

DLI

Commands IBM

Confidential

34

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

v

“RETRIEVE

Command”

on

page

64

v

“SCHD

Command”

on

page

66

v

“TERM

Command”

on

page

67

v

“ACCEPT

Command”

on

page

69

v

“CHKP

Command”

on

page

69

v

“DEQ

Command”

on

page

70

v

“LOAD

Command”

on

page

71

v

“LOG

Command”

on

page

72

v

“QUERY

Command”

on

page

73

v

“REFRESH

Command”

on

page

74

v

“ROLB

Command”

on

page

75

v

“ROLL

Command”

on

page

76

v

“ROLS

Command”

on

page

77

v

“SETS

Command”

on

page

78

v

“SETU

Command”

on

page

79

v

“STAT

Command”

on

page

80

v

“SYMCHKP

Command”

on

page

81

v

“XRST

Command”

on

page

83

The

examples

included

with

each

command

refer

to

the

“A

Sample

Hierarchy”

on

page

2.

DLET

Command

The

Delete

(DLET)

command

is

used

to

remove

a

segment

and

its

dependents

from

the

database.

Format

��

EXEC

DLI

DLET

USING

PCB(expression)

VARIABLE

�

�

SEGMENT(name)

SEGMENT((area))

SEGLENGTH(expression)

FROM(area)

�

�

SETZERO(data_value)

��

Options

USING

PCB(expression)

Specifies

the

DB

PCB

you

want

to

use

for

the

command.

Its

argument

can

be

any

expression

that

converts

to

the

integer

data

type;

you

can

specify

either

a

number

or

a

reference

to

a

halfword

in

your

program

containing

a

number.

VARIABLE

Indicates

that

a

segment

is

variable-length.

SEGMENT(name)

Qualifies

the

command,

specifying

the

name

of

the

segment

type

you

want

to

retrieve,

insert,

delete,

or

replace.

EXEC

DLI

CommandsIBM

Confidential

Chapter

4.

EXEC

DLI

Commands

for

an

Application

Program

35

SEGMENT((area))

Is

a

reference

to

an

area

in

your

program

containing

the

name

of

the

segment

type.

You

can

specify

an

area

instead

of

specifying

the

name

of

the

segment

in

the

command.

SEGLENGTH(expression)

Specifies

the

length

of

the

I/O

area

into

which

the

segment

is

retrieved.

Its

argument

can

be

any

expression

that

converts

to

the

integer

data

type;

you

can

specify

either

a

number

or

a

reference

to

a

halfword

in

your

program

containing

a

number.

(It

is

required

in

COBOL

programs

for

any

SEGMENT

level

that

specifies

the

INTO

or

FROM

option.)

Requirement:

The

value

specified

for

SEGLENGTH

must

be

greater

than

or

equal

to

the

length

of

the

longest

segment

that

can

be

processed

by

this

call.

FROM(area)

Specifies

an

area

containing

the

segment

to

be

added,

replaced,

or

deleted.

Use

FROM

to

insert

one

or

more

segments

with

one

command.

SETZERO(data_value)

Specifies

setting

a

subset

pointer

to

zero.

Usage

You

use

the

DLET

command

to

delete

a

segment

and

its

dependents

from

the

database.

You

must

first

retrieve

segments

you

want

to

delete,

just

as

if

you

were

replacing

segments,

The

DLET

command

deletes

the

retrieved

segment

and

its

dependents,

if

any,

from

the

database.

Example

“Evelyn

Parker

has

moved

away

from

this

area.

Her

patient

number

is

10450.

Delete

her

record

from

the

database.”

Explanation

You

want

to

delete

all

the

information

about

Evelyn

Parker

from

the

database.

To

do

this,

you

must

delete

the

PATIENT

segment.

When

you

do

this,

DL/I

deletes

all

the

dependents

of

that

segment.

This

is

exactly

what

you

want

DL/I

to

do—there

is

no

reason

to

keep

such

segments

as

ILLNESS

and

TREATMNT

for

Evelyn

Parker

if

she

is

no

longer

one

of

the

clinic’s

patients.

Before

you

can

delete

the

patient

segment,

you

have

to

retrieve

it:

EXEC

DLI

GU

SEGMENT(PATIENT)

INTO(PATAREA)

WHERE

(PATNO=PATNO1);

To

delete

this

patient’s

database

record,

you

issue

a

DLET

command

and

use

the

FROM

option

to

give

the

name

of

the

I/O

area

that

contains

the

segment

you

want

deleted:

EXEC

DLI

DLET

SEGMENT(PATIENT)

FROM(PATAREA);

When

you

issue

this

command,

the

PATIENT

segment,

and

its

dependents—the

ILLNESS,

TREATMNT,

BILLING,

PAYMENT,

and

HOUSHOLD

segments—are

deleted.

Restrictions

You

cannot

issue

any

commands

using

the

same

PCB

between

the

retrieval

command

and

the

DLET

command,

and

you

can

issue

only

one

DLET

command

for

each

GET

command.

DLET

Command IBM

Confidential

36

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

GN

Command

The

GN

command

is

used

to

retrieve

segments

sequentially.

Format

��

EXEC

DLI

GET

NEXT

GN

USING

PCB(expression)

�

�

KEYFEEDBACK(area)

FEEDBACKLEN(expression)

(1)

INTO(area)

�

�

<A>

��

<A>

For

each

parent

segment

(optional):

VARIABLE

FIRST

LAST

CURRENT

SEGMENT(name)

SEGMENT((area))

SEGLENGTH(expression)

�

�

OFFSET(expression)

(2)

INTO(area)

LOCKED

LOCKCLASS(class)

�

�

MOVENEXT(data_value)

GETFIRST(data_value)

SET(data_value)

�

�

SETCOND(data_value)

SETZERO(data_value)

SETPARENT

�

�

WHERE(qualification

statement)

(3)

FIELDLENGTH(expression)

�

�

KEYS(area)

(4)

KEYLENGTH(expression)

For

the

object

segment

(optional):

VARIABLE

FIRST

LAST

SEGMENT(name)

SEGMENT((area))

SEGLENGTH(expression)

�

�

OFFSET(expression)

INTO(area)

LOCKED

LOCKCLASS(class)

�

GN

CommandIBM

Confidential

Chapter

4.

EXEC

DLI

Commands

for

an

Application

Program

37

�

MOVENEXT(data_value)

GETFIRST(data_value)

SET(data_value)

�

�

SETCOND(data_value)

SETZERO(data_value)

�

�

WHERE(qualification

statement)

(3)

FIELDLENGTH(expression)

�

�

KEYS(area)

(4)

KEYLENGTH(expression)

Notes:

1 If

you

leave

out

the

SEGMENT

option,

specify

the

INTO

option

as

shown.

2 Specify

INTO

on

parent

segments

for

a

path

command.

3 If

you

use

multiple

qualification

statements,

specify

a

length

for

each,

using

FIELDLENGTH.

For

example:

FIELDLENGTH(24,8)

4 You

can

use

either

the

KEYS

option

or

the

WHERE

option,

but

not

both

on

one

segment

level.

Options

USING

PCB(expression)

Specifies

the

DB

PCB

you

want

to

use

for

the

command.

Its

argument

can

be

any

expression

that

converts

to

the

integer

data

type;

you

can

specify

either

a

number

or

a

reference

to

a

halfword

in

your

program

containing

a

number.

KEYFEEDBACK(area)

Specifies

an

area

into

which

the

concatenated

key

for

the

segment

is

placed.

If

the

area

is

not

long

enough,

the

key

is

truncated.

FEEDBACKLEN(expression)

Specifies

the

length

of

the

key

feedback

area

into

which

you

want

the

concatenated

key

retrieved.

Its

argument

can

be

any

expression

that

converts

to

the

integer

data

type;

you

can

specify

either

a

number

or

a

reference

to

a

halfword

in

your

program

containing

a

number.

(It

is

required

in

COBOL

programs

and

optional

in

PL/I

and

assembler

language

programs.)

INTO(area)

Specifies

an

area

into

which

the

segment

is

read.

VARIABLE

Indicates

that

a

segment

is

variable-length.

FIRST

Specifies

that

you

want

to

retrieve

the

first

segment

occurrence

of

a

segment

type,

or

that

you

want

to

insert

a

segment

as

the

first

occurrence.

LAST

Specifies

that

you

want

to

retrieve

the

last

segment

occurrence

of

a

segment

type,

or

that

you

want

to

insert

a

segment

as

the

last

segment

occurrence.

GN

Command IBM

Confidential

38

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

CURRENT

Qualifies

the

command,

and

specifies

that

you

want

to

use

your

current

position

at

this

level

and

above

as

qualification

for

this

segment.

SEGMENT(name),

SEGMENT((area))

Qualifies

the

command,

specifying

the

name

of

the

segment

type

or

the

area

of

your

program

containing

the

name

of

the

segment

type

that

you

want

to

retrieve.

You

can

have

as

many

levels

of

qualification

for

a

GN

command

as

there

are

levels

in

the

database’s

hierarchy.

Using

fully

qualified

commands

with

the

WHERE

or

KEYS

option

clearly

identifies

the

hierarchic

path

and

the

segment

you

want,

and

is

useful

in

documenting

the

command.

However,

you

do

not

need

to

qualify

a

GN

command,

because

you

can

specify

a

GN

command

without

the

SEGMENT

option.

Once

you

have

established

position

in

the

database

record,

issuing

a

GN

command

without

a

SEGMENT

option

retrieves

the

next

segment

occurrence

in

sequential

order.

If

you

specify

a

SEGMENT

option

without

a

KEYS

or

WHERE

option,

IMS

DB

retrieves

the

first

occurrence

of

that

segment

type

it

encounters

by

searching

forward

from

current

position.

With

an

unqualified

GN

command,

the

segment

type

you

retrieve

might

not

be

the

one

you

expected,

so

you

should

specify

an

I/O

area

large

enough

to

contain

the

largest

segment

your

program

has

access

to.

(After

successfully

issuing

a

retrieval

command,

you

can

find

out

from

the

DIB

the

segment

type

retrieved.)

If

you

fully

qualify

your

command

with

a

WHERE

or

KEYS

option,

you

would

retrieve

the

next

segment

in

sequential

order,

as

described

by

the

options.

Including

the

WHERE

or

KEYS

options

for

parent

segments

defines

the

segment

occurrences

that

are

to

be

part

of

the

path

to

the

segment

you

want

retrieved.

Omitting

the

SEGMENT

option

for

a

level,

or

including

only

the

SEGMENT

option

without

a

WHERE

option,

indicates

that

any

path

to

the

option

satisfies

the

command.

DL/I

uses

only

the

qualified

parent

segments

and

the

lowest-level

SEGMENT

option

to

satisfy

the

command.

DL/I

does

not

assume

a

qualification

for

the

missing

level.

SEGLENGTH(expression)

Specifies

the

length

of

the

I/O

area

into

which

the

segment

is

retrieved.

Its

argument

can

be

any

expression

that

converts

to

the

integer

data

type;

you

can

specify

either

a

number

or

a

reference

to

a

halfword

in

your

program

containing

a

number.

(It

is

required

in

COBOL

programs

for

any

SEGMENT

level

that

specifies

the

INTO

or

FROM

option.)

Requirement:

The

value

specified

for

SEGLENGTH

must

be

greater

than

or

equal

to

the

length

of

the

longest

segment

that

can

be

processed

by

this

call.

OFFSET(expression)

Specifies

the

offset

to

the

destination

parent.

It

can

be

any

expression

that

converts

to

the

integer

data

type;

you

can

specify

either

a

number

or

a

reference

to

a

halfword

in

your

program

containing

a

number.

Use

OFFSET

when

you

process

concatenated

segments

in

logical

relationships.

OFFSET

is

required

whenever

the

destination

parent

is

a

variable-length

segment.

LOCKED

Specifies

that

you

want

to

retrieve

a

segment

for

the

exclusive

use

of

your

program,

until

a

checkpoint

or

sync

point

is

reached.

This

option

performs

the

GN

CommandIBM

Confidential

Chapter

4.

EXEC

DLI

Commands

for

an

Application

Program

39

same

function

as

the

Q

command

code,

and

it

applies

to

both

and

full

function.

A

1-byte

alphabetic

character

of

’A’

is

automatically

appended

as

the

class

for

the

Q

command

code.

LOCKCLASS(class)

Specifies

that

you

want

to

retrieve

a

segment

for

the

exclusive

use

of

your

program

until

a

DEQ

command

is

issued

or

until

a

checkpoint

or

sync

point

is

reached.

(DEQ

commands

are

not

supported

for

Fast

Path.)

Class

is

a

1-byte

alphabetic

character

(B-J),

representing

the

lock

class

of

the

retrieved

segment.

For

full

function

code,

the

LOCKCLASS

option

followed

by

a

letter

(B-J)

designates

the

class

of

the

lock

for

the

segment.

An

example

is

LOCKCLASS(’B’).

If

LOCKCLASS

is

not

followed

by

a

letter

in

the

range

B

to

J,

then

EXECDLI

sets

a

status

code

of

GL

and

initiates

an

ABENDU1041.

Fast

Path

does

not

support

LOCKCLASS

but,

for

consistency

between

full

function

and

Fast

Path,

you

must

specify

LOCKCLASS(’x’)),

where

x

is

a

letter

in

the

range

B

to

J.

An

example

is

LOCKCLASS(’B’).

If

LOCKCLASS

is

not

followed

by

a

letter

in

the

range

B

to

J,

then

EXECDLI

sets

a

status

code

of

GL

and

initiates

an

ABENDU1041.

MOVENEXT(data_value)

Specifies

a

subset

pointer

to

be

moved

to

the

next

segment

occurrence

after

your

current

segment.

GETFIRST(data_value)

Specifies

that

you

want

the

search

to

start

with

the

first

segment

occurrence

in

a

subset.

SET(data_value)

Specifies

unconditionally

setting

a

subset

pointer

to

the

current

segment.

SETCOND(data_value)

Specifies

conditionally

setting

a

subset

pointer

to

the

current

segment.

SETZERO(data_value)

Specifies

setting

a

subset

pointer

to

zero.

SETPARENT

Sets

parentage

at

the

level

you

want.

FIELDLENGTH(expression)

Specifies

the

length

of

the

field

value

in

a

WHERE

option.

KEYLENGTH(expression)

Specifies

the

length

of

the

concatenated

key

when

you

use

the

KEYS

option.

It

can

be

any

expression

in

the

host

language

that

converts

to

the

integer

data

type;

if

it

is

a

variable,

it

must

be

declared

as

a

binary

halfword

value.

For

IBM

COBOL

for

z/OS

&

VM

(or

VS

COBOL

II),

PL/I,

or

assembler

language,

KEYLENGTH

is

optional.

For

COBOL

programs

that

are

not

compiled

with

the

IBM

COBOL

for

z/OS

&

VM

(or

the

VS

COBOL

II)

compiler,

you

must

specify

KEYLENGTH

with

the

KEYS

option.

KEYS(area)

Qualifies

the

command

with

the

segment’s

concatenated

key.

You

can

use

either

KEYS

or

WHERE

for

a

segment

level,

but

not

both.

“Area”

specifies

an

area

in

your

program

containing

the

segment’s

concatenated

key.

WHERE(qualification

statement)

Qualifies

the

command,

specifying

the

segment

occurrence.

Its

argument

is

one

GN

Command IBM

Confidential

40

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

or

more

qualification

statements,

each

of

which

compares

the

value

of

a

field

in

a

segment

to

a

value

you

supply.

Each

qualification

statement

consists

of:

v

The

name

of

a

field

in

a

segment

v

The

relational

operator,

which

indicates

how

you

want

the

two

values

compared

v

The

name

of

a

data

area

in

your

program

containing

the

value

that

is

compared

against

the

value

of

the

field

Usage

Use

the

GN

command

to

sequentially

retrieve

segments

from

the

database.

Each

time

you

issue

a

GN

command,

IMS

DB

retrieves

the

next

segment,

as

described

by

the

options

you

include

in

the

command.

Before

issuing

a

GN

command,

you

should

establish

position

in

the

database

record

by

issuing

a

GU

command.

You

do

not

have

to

use

a

segment

option

with

a

GN

command.

However,

you

should

qualify

your

GN

commands

as

much

as

possible

with

the

KEYS

or

WHERE

options

after

the

SEGMENT

option.

Examples

Example

1

“We

need

a

list

of

all

patients

who

have

been

to

this

clinic.”

Explanation:

To

answer

this

request,

your

program

would

issue

a

command

qualified

with

the

segment

name

PATIENT

until

DL/I

returned

a

GB

status

code

to

the

program.

(GB

means

that

DL/I

reached

the

end

of

the

database

before

being

able

to

satisfy

your

command.).

This

command

looks

like

this:

EXEC

DLI

GN

SEGMENT(PATIENT)

INTO(PATAREA);

Each

time

your

program

issued

this

command,

the

current

position

moves

forward

to

the

next

database

record.

Example

2

“What

are

the

names

of

the

patients

we

have

seen

since

the

beginning

of

this

month?”

Explanation:

A

GN

command

that

includes

one

or

more

WHERE

or

KEYS

options

retrieves

the

next

occurrence

of

the

specified

segment

type

that

satisfies

the

command.

To

answer

this

request,

the

program

issues

the

following

GN

command

until

DL/I

returned

a

GB

status

code.

The

example

shows

the

command

you

use

at

the

end

of

April,

1988

(assuming

ILLDATE1

contains

198804010):

EXEC

DLI

GN

SEGMENT(PATIENT)

INTO(PATAREA)

SEGMENT(ILLNESS)

INTO(ILLAREA)

WHERE(ILLDATE>=ILLDATE1);

Example

3

EXEC

DLI

GN

INTO(PATAREA);

Explanation:

If

you

just

retrieved

the

PATIENT

segment

for

patient

04124

and

then

issued

this

command,

you

retrieve

the

first

ILLNESS

segment

for

patient

04124.

GN

CommandIBM

Confidential

Chapter

4.

EXEC

DLI

Commands

for

an

Application

Program

41

Restrictions

With

an

unqualified

GN

command,

the

retrieved

segment

type

might

not

be

the

one

expected.

Therefore,

specify

an

I/O

area

large

enough

to

contain

the

largest

segment

accessible

to

your

program.

Use

either

the

KEYS

option

or

the

WHERE

option,

but

not

both

on

one

segment

level.

GNP

Command

The

Get

Next

in

Parent

(GNP)

command

is

used

to

retrieve

dependent

segments

sequentially.

Format

��

EXEC

DLI

GET

NEXT

IN

PARENT

GNP

USING

PCB(expression)

�

�

KEYFEEDBACK(area)

FEEDBACKLEN(expression)

(1)

INTO(area)

�

�

<A>

��

<A>

For

each

parent

segment

(optional):

VARIABLE

FIRST

LAST

CURRENT

SEGMENT(name)

SEGMENT((area))

SEGLENGTH(expression)

�

�

OFFSET(expression)

(2)

INTO(area)

LOCKED

LOCKCLASS(class)

�

�

MOVENEXT(data_value)

GETFIRST(data_value)

SET(data_value)

�

�

SETCOND(data_value)

SETZERO(data_value)

SETPARENT

�

�

WHERE(qualification

statement)

(3)

FIELDLENGTH(expression)

�

�

KEYS(area)

(4)

KEYLENGTH(expression)

GN

Command IBM

Confidential

42

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

For

the

object

segment

(optional):

VARIABLE

FIRST

LAST

SEGMENT(name)

SEGMENT((area))

SEGLENGTH(expression)

�

�

OFFSET(expression)

INTO(area)

LOCKED

LOCKCLASS(class)

�

�

MOVENEXT(data_value)

GETFIRST(data_value)

SET(data_value)

�

�

SETCOND(data_value)

SETZERO(data_value)

�

�

WHERE(qualification

statement)

(3)

FIELDLENGTH(expression)

�

�

KEYS(area)

(4)

KEYLENGTH(expression)

Notes:

1 If

you

leave

out

the

SEGMENT

option,

specify

the

INTO

option

as

shown.

2 Specify

INTO

on

parent

segments

for

a

path

command.

3 If

you

use

multiple

qualification

statements,

specify

a

length

for

each,

using

FIELDLENGTH.

For

example:

FIELDLENGTH(24,8)

4 You

can

use

either

the

KEYS

option

or

the

WHERE

option,

but

not

both

on

one

segment

level.

Options

You

can

qualify

your

GNP

command

by

using

SEGMENT

and

WHERE

options.

If

you

do

not

qualify

your

command,

IMS

DB

retrieves

the

next

sequential

segment

under

the

established

parent.

If

you

include

a

SEGMENT

option,

IMS

DB

retrieves

the

first

occurrence

of

that

segment

type

that

it

finds

by

searching

forward

under

the

established

parent.

You

can

have

as

many

levels

of

qualification

for

a

GNP

command

as

there

are

levels

in

the

database’s

hierarchy.

However,

you

should

not

qualify

your

command

in

a

way

that

causes

DL/I

to

move

off

of

the

segment

type

you

have

established

as

a

parent

for

the

command.

USING

PCB(expression)

Specifies

the

DB

PCB

you

want

to

use

for

the

command.

Its

argument

can

be

any

expression

that

converts

to

the

integer

data

type;

you

can

specify

either

a

number

or

a

reference

to

a

halfword

in

your

program

containing

a

number.

KEYFEEDBACK(area)

Specifies

an

area

into

which

the

concatenated

key

for

the

segment

is

placed.

If

the

area

is

not

long

enough,

the

key

is

truncated.

Use

this

to

retrieve

a

segment’s

concatenated

key.

GNP

CommandIBM

Confidential

Chapter

4.

EXEC

DLI

Commands

for

an

Application

Program

43

FEEDBACKLEN(expression)

Specifies

the

length

of

the

key

feedback

area

into

which

you

want

the

concatenated

key

retrieved.

Its

argument

can

be

any

expression

that

converts

to

the

integer

data

type;

you

can

specify

either

a

number

or

a

reference

to

a

halfword

in

your

program

containing

a

number.

(It

is

required

in

COBOL

programs

and

optional

in

PL/I

and

assembler

language

programs.)

INTO(area)

Specifies

an

area

into

which

the

segment

is

read.

Use

this

to

retrieve

one

or

more

segments

with

one

command.

VARIABLE

Indicates

that

a

segment

is

variable-length.

FIRST

Specifies

that

you

want

to

retrieve

the

first

segment

occurrence

of

a

segment

type,

or

that

you

want

to

insert

a

segment

as

the

first

occurrence.

Use

this

to

retrieve

the

first

segment

occurrence

of

a

segment

type.

LAST

Specifies

that

you

want

to

retrieve

the

last

segment

occurrence

of

a

segment

type,

or

that

you

want

to

insert

a

segment

as

the

last

segment

occurrence.

Use

this

to

retrieve

the

last

segment

occurrence

of

a

segment

type.

CURRENT

Qualifies

the

command,

and

specifies

that

you

want

to

use

your

current

position

at

this

level

and

above

as

qualification

for

this

segment.

Use

this

to

retrieve

a

segment

based

on

your

current

position.

SEGLENGTH(expression)

Specifies

the

length

of

the

I/O

area

into

which

the

segment

is

retrieved.

Its

argument

can

be

any

expression

that

converts

to

the

integer

data

type;

you

can

specify

either

a

number

or

a

reference

to

a

halfword

in

your

program

containing

a

number.

(SEGLENGTH

is

required

in

COBOL

programs

for

any

SEGMENT

level

that

specifies

the

INTO

or

FROM

option.)

Requirement:

The

value

specified

for

SEGLENGTH

must

be

greater

than

or

equal

to

the

length

of

the

longest

segment

that

can

be

processed

by

this

call.

OFFSET(expression)

Specifies

the

offset

to

the

destination

parent.

The

argument

can

be

any

expression

that

converts

to

the

integer

data

type;

you

can

specify

either

a

number

or

a

reference

to

a

halfword

in

your

program

containing

a

number.

Use

OFFSET

when

you

process

concatenated

segments

in

logical

relationships.

OFFSET

is

required

whenever

the

destination

parent

is

a

variable-length

segment.

LOCKED

Specifies

that

you

want

to

retrieve

a

segment

for

the

exclusive

use

of

your

program,

until

a

checkpoint

or

sync

point

is

reached.

Use

this

to

reserve

a

segment

for

the

exclusive

use

of

your

program.

This

option

performs

the

same

function

as

the

Q

command

code,

and

it

applies

to

both

Fast

Path

and

full

function.

A

1-byte

alphabetic

character

of

’A’

is

automatically

appended

as

the

class

for

the

Q

command

code.

LOCKCLASS(class)

Specifies

that

you

want

to

retrieve

a

segment

for

the

exclusive

use

of

your

program

until

a

DEQ

command

is

issued

or

until

a

checkpoint

or

sync

point

is

reached.

(DEQ

commands

are

not

supported

for

Fast

Path.)

Class

is

a

1-byte

alphabetic

character

(B-J),

representing

the

lock

class

of

the

retrieved

segment.

GNP

Command IBM

Confidential

44

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

For

full

function

code,

the

LOCKCLASS

option

followed

by

a

letter

(B-J)

designates

the

class

of

the

lock

for

the

segment.

An

example

is

LOCKCLASS(’B’).

If

LOCKCLASS

is

not

followed

by

a

letter

in

the

range

B

to

J,

then

EXECDLI

sets

a

status

code

of

GL

and

initiates

an

ABENDU1041.

Fast

Path

does

not

support

LOCKCLASS

but,

for

consistency

between

full

function

and

Fast

Path,

you

must

specify

LOCKCLASS(’x’)),

where

x

is

a

letter

in

the

range

B

to

J.

An

example

is

LOCKCLASS(’B’).

If

LOCKCLASS

is

not

followed

by

a

letter

in

the

range

B

to

J,

then

EXECDLI

sets

a

status

code

of

GL

and

initiates

an

ABENDU1041.

MOVENEXT(data_value)

Specifies

a

subset

pointer

to

be

moved

to

the

next

segment

occurrence

after

your

current

segment.

GETFIRST(data_value)

Specifies

that

you

want

the

search

to

start

with

the

first

segment

occurrence

in

a

subset.

SET(data_value)

Specifies

unconditionally

setting

a

subset

pointer

to

the

current

segment.

SETCOND(data_value)

Specifies

conditionally

setting

a

subset

pointer

to

the

current

segment.

SETZERO(data_value)

Specifies

setting

a

subset

pointer

to

zero.

SETPARENT

Sets

parentage

at

the

level

you

want.

WHERE(qualification

statement)

Qualifies

the

command,

specifying

the

segment

occurrence.

Its

argument

is

one

or

more

qualification

statements,

each

of

which

compares

the

value

of

a

field

in

a

segment

to

a

value

you

supply.

Each

qualification

statement

consists

of:

v

The

name

of

a

field

in

a

segment

v

The

relational

operator,

which

indicates

how

you

want

the

two

values

compared

v

The

name

of

a

data

area

in

your

program

containing

the

value

that

is

compared

against

the

value

of

the

field

FIELDLENGTH(expression)

Specifies

the

length

of

the

field

value

in

a

WHERE

option.

KEYS(area)

Qualifies

the

command

with

the

segment’s

concatenated

key.

You

can

use

either

KEYS

or

WHERE

for

a

segment

level,

but

not

both.

“Area”

specifies

an

area

in

your

program

containing

the

segment’s

concatenated

key.

KEYLENGTH(expression)

Specifies

the

length

of

the

concatenated

key

when

you

use

the

KEYS

option.

It

can

be

any

expression

in

the

host

language

that

converts

to

the

integer

data

type;

if

it

is

a

variable,

it

must

be

declared

as

a

binary

halfword

value.

For

IBM

COBOL

for

z/OS

&

VM

(or

VS

COBOL

II),

PL/I,

or

assembler

language,

KEYLENGTH

is

optional.

For

COBOL

programs

that

are

not

compiled

with

the

IBM

COBOL

for

z/OS

&

VM

(or

VS

COBOL

II)

compiler,

you

must

specify

KEYLENGTH

with

the

KEYS

option.

GNP

CommandIBM

Confidential

Chapter

4.

EXEC

DLI

Commands

for

an

Application

Program

45

SEGMENT(name),

SEGMENT((area))

Qualifies

the

command,

specifying

the

name

of

the

segment

type

or

the

area

in

your

program

containing

the

name

of

the

segment

type

that

you

want

to

retrieve,

insert,

delete,

or

replace.

You

can

have

as

many

levels

of

qualification

for

a

GNP

command

as

there

are

levels

in

the

database’s

hierarchy.

Using

fully

qualified

commands

with

the

WHERE

or

KEYS

option

clearly

identifies

the

hierarchic

path

and

the

segment

you

want,

and

is

useful

in

documenting

the

command.

However,

you

do

not

need

to

qualify

a

GNP

command

at

all,

because

you

can

specify

a

GNP

command

without

the

SEGMENT

option.

Once

you

have

established

position

in

the

database

record,

issuing

a

GNP

command

without

a

SEGMENT

option

retrieves

the

next

segment

occurrence

in

sequential

order.

If

you

specify

a

SEGMENT

option

without

a

KEYS

or

WHERE

option,

IMS

DB

retrieves

the

first

occurrence

of

that

segment

type

it

encounters

by

searching

forward

from

current

position.

With

an

unqualified

GNP

command,

the

segment

type

you

retrieve

might

not

be

the

one

you

expected,

so

you

should

specify

an

I/O

area

large

enough

to

contain

the

largest

segment

your

program

has

access

to.

(After

successfully

issuing

a

retrieval

command,

you

can

find

out

from

DIB

the

segment

type

retrieved.)

If

you

fully

qualify

your

command

with

a

WHERE

or

KEYS

option,

you

would

retrieve

the

next

segment

in

sequential

order,

as

described

by

the

options.

Including

the

WHERE

or

KEYS

options

for

parent

segments

defines

the

segment

occurrences

that

are

to

be

part

of

the

path

to

the

segment

you

want

retrieved.

Omitting

the

SEGMENT

option

for

a

level,

or

including

only

the

SEGMENT

option

without

a

WHERE

option,

indicates

that

any

path

to

the

option

satisfies

the

command.

DL/I

uses

only

the

qualified

parent

segments

and

the

lowest-level

SEGMENT

option

to

satisfy

the

command.

DL/I

does

not

assume

a

qualification

for

the

missing

level.

Usage

The

Get

Next

in

Parent

(GNP)

command

makes

it

possible

to

limit

the

search

for

a

segment;

you

can

retrieve

only

the

dependents

of

a

particular

parent.

You

must

have

established

parentage

before

issuing

a

GNP

command.

Examples

Example

1

“We

need

the

complete

record

for

Kate

Bailey.

Her

patient

number

is

09080.”

Explanation:

To

satisfy

this

request,

you

want

only

to

retrieve

the

dependent

segments

of

the

patient

whose

patient

number

is

09080;

you

do

not

want

to

retrieve

all

the

dependents

of

each

patient.

To

do

this,

use

the

GU

command

to

establish

your

position

and

parentage

on

the

PATIENT

segment

for

Kate

Bailey.

Then

continue

to

issue

a

GNP

without

SEGMENT

or

WHERE

options

until

DL/I

returns

all

the

dependents

of

that

PATIENT

segment.

(A

GE

status

code

indicates

that

you

have

retrieved

all

the

dependent

segments.)

To

answer

this

request,

your

program

can

issue

these

commands:

EXEC

DLI

GU

SEGMENT(PATIENT)

INTO(PATAREA)

WHERE

(PATNO=PATNO1);

EXEC

DLI

GNP

INTO(ILLAREA);

GNP

Command IBM

Confidential

46

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

A

GNP

command

without

SEGMENT

or

WHERE

options

retrieves

the

first

dependent

segment

occurrence

under

the

current

parent.

If

your

current

position

is

already

on

a

dependent

of

the

current

parent,

this

command

retrieves

the

next

segment

occurrence

under

the

parent.

With

an

unqualified

GNP

command,

the

segment

type

you

retrieve

might

not

be

the

one

you

expected,

so

you

should

specify

an

I/O

area

large

enough

to

contain

the

largest

segment

your

program

has

access

to.

(After

successfully

issuing

a

GNP

command,

you

can

find

out

from

the

DIB

the

segment

type

retrieved.)

Example

2

“Which

doctors

have

been

prescribing

acetaminophen

for

headaches?”

Explanation:

A

GNP

command

with

only

a

SEGMENT

option

sequentially

retrieves

the

dependent

segments

of

the

segment

type

you

have

specified

under

the

established

parent.

Suppose

that

for

this

example,

the

key

of

ILLNESS

is

ILLNAME,

and

the

key

of

TREATMNT

is

MEDICINE.

You

want

to

retrieve

each

TREATMNT

segment

where

the

treatment

was

acetaminophen.

The

name

of

the

doctor

who

prescribed

the

treatment

is

part

of

the

TREATMNT

segment.

(Assume

that

data

area

ILLNAME1

contains

HEADACHE,

and

MEDIC1

contains

ACETAMINOP.)

To

answer

this

request,

you

can

issue

these

commands:

EXEC

DLI

GN

SEGMENT(ILLNESS)

WHERE

(ILLNAME=ILLNAME1);

EXEC

DLI

GNP

SEGMENT(TREATMNT)

WHERE

(MEDICINE=MEDIC1);

To

process

this,

your

program

continues

issuing

the

GNP

command

until

DL/I

returned

a

GE

(not

found)

status

code,

then

your

program

retrieves

the

next

headache

segment

and

retrieves

the

TREATMNT

segments

for

it.

Your

program

does

this

until

there

were

no

more

ILLNESS

segments

where

the

ILLNAME

was

headache.

Restrictions

The

GNP

command

has

the

following

restrictions:

v

You

must

have

established

parentage

before

issuing

this

command.

v

You

cannot

qualify

your

GNP

command

in

a

way

that

causes

DL/I

to

move

off

of

the

segment

type

you

have

established

as

the

parent

for

the

command.

v

You

can

retrieve

only

the

dependents

of

a

particular

parent.

GU

Command

The

Get

Unique

(GU)

command

is

used

to

directly

retrieve

specific

segments,

and

to

establish

a

starting

position

in

the

database

for

sequential

processing.

Format

��

EXEC

DLI

GET

UNIQUE

GU

USING

PCB(expression)

�

�

KEYFEEDBACK(area)

FEEDBACKLEN(expression)

INTO(area)

<A>

�

GNP

CommandIBM

Confidential

Chapter

4.

EXEC

DLI

Commands

for

an

Application

Program

47

�

��

<A>:

VARIABLE

LAST

SEGMENT(name)

SEGMENT((area))

SEGLENGTH(expression)

�

�

OFFSET(expression)

(1)

INTO(area)

LOCKED

LOCKCLASS(class)

�

�

MOVENEXT(data_value)

GETFIRST(data_value)

SET(data_value)

�

�

SETCOND(data_value)

SETZERO(data_value)

SETPARENT

�

�

WHERE(qualification

statement)

(2)

FIELDLENGTH(expression)

�

�

KEYS(area)

(3)

KEYLENGTH(expression)

:

VARIABLE

LAST

SEGMENT(name)

SEGMENT((area))

SEGLENGTH(expression)

�

�

OFFSET(expression)

INTO(area)

LOCKED

LOCKCLASS(class)

�

�

MOVENEXT(data_value)

GETFIRST(data_value)

SET(data_value)

�

�

SETCOND(data_value)

SETZERO(data_value)

�

�

WHERE(qualification

statement)

(2)

FIELDLENGTH(expression)

�

�

KEYS(area)

(3)

KEYLENGTH(expression)

Notes:

1 Specify

INTO

on

parent

segments

for

a

path

command.

GU

Command IBM

Confidential

48

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

2 If

you

use

multiple

qualification

statements,

specify

a

length

for

each,

using

FIELDLENGTH.

For

example:

FIELDLENGTH(24,8)

3 You

can

use

either

the

KEYS

option

or

the

WHERE

option,

but

not

both

on

one

segment

level.

Options

USING

PCB(expression)

Specifies

the

DB

PCB

you

want

to

use

for

the

command.

Its

argument

can

be

any

expression

that

converts

to

the

integer

data

type;

you

can

specify

either

a

number

or

a

reference

to

a

halfword

in

your

program

containing

a

number.

KEYFEEDBACK(area)

Specifies

an

area

into

which

the

concatenated

key

for

the

segment

is

placed.

If

the

area

is

not

long

enough,

the

key

is

truncated.

FEEDBACKLEN(expression)

Specifies

the

length

of

the

key

feedback

area

into

which

you

want

the

concatenated

key

retrieved.

Its

argument

can

be

any

expression

that

converts

to

the

integer

data

type;

you

can

specify

either

a

number

or

a

reference

to

a

halfword

in

your

program

containing

a

number.

(It

is

required

in

COBOL

programs

and

optional

in

PL/I

and

assembler

language

programs.)

INTO(area)

Specifies

an

area

into

which

the

segment

is

read.

VARIABLE

Indicates

that

a

segment

is

variable-length.

LAST

Specifies

that

you

want

to

retrieve

the

last

segment

occurrence

of

a

segment

type,

or

that

you

want

to

insert

a

segment

as

the

last

segment

occurrence.

SEGMENT(name),

SEGMENT((area))

Qualifies

the

command,

specifying

the

name

of

the

segment

type

or

the

area

in

your

program

containing

the

name

of

the

segment

type

that

you

want

to

retrieve,

insert,

delete,

or

replace.

To

retrieve

the

first

occurrence

of

a

segment

type,

you

need

only

specify

the

SEGMENT

option.

You

can

specify

as

many

levels

of

qualification

as

there

are

hierarchic

levels

defined

by

the

PCB

you

are

using.

To

establish

position

at

the

beginning

of

the

database,

issue

a

GU

command

with

a

SEGMENT

option

that

names

the

root

segment

type.

If

you

leave

out

SEGMENT

options

for

one

or

more

hierarchic

levels,

DL/I

assumes

a

segment

qualification

for

that

level.

The

qualification

that

DL/I

assumes

depends

on

your

current

position.

v

If

DL/I

has

a

position

established

at

the

missing

level,

DL/I

uses

the

segment

on

which

position

is

established.

v

If

DL/I

does

not

have

a

position

established

at

the

missing

level,

DL/I

uses

the

first

occurrence

at

that

level.

v

If

DL/I

moves

forward

from

a

position

established

at

a

higher

level,

DL/I

uses

the

first

occurrence

at

the

missing

level

that

falls

within

the

new

path.

v

If

you

leave

out

a

SEGMENT

option

for

the

root

level,

and

DL/I

has

position

established

on

a

root,

DL/I

does

not

move

from

that

root

when

trying

to

satisfy

the

command.

You

can

have

as

many

levels

of

qualification

for

a

GU

command

as

there

are

levels

in

the

database’s

hierarchy.

Using

fully

qualified

commands

with

the

GU

CommandIBM

Confidential

Chapter

4.

EXEC

DLI

Commands

for

an

Application

Program

49

WHERE

or

KEYS

option

clearly

identifies

the

hierarchic

path

and

the

segment

you

want,

and

is

useful

in

documenting

the

command.

However,

you

do

not

need

to

qualify

a

GU

command

at

all,

because

you

can

specify

a

GU

command

without

the

SEGMENT

option.

If

you

specify

a

SEGMENT

option

without

a

KEYS

or

WHERE

option,

IMS

DB

retrieves

the

first

occurrence

of

that

segment

type

it

encounters

by

searching

forward

from

current

position.

With

an

unqualified

GU

command,

the

segment

type

you

retrieve

might

not

be

the

one

you

expected,

so

you

should

specify

an

I/O

area

large

enough

to

contain

the

largest

segment

your

program

has

access

to.

(After

successfully

issuing

a

retrieval

command,

you

can

find

out

from

DIB

the

segment

type

retrieved.)

If

you

fully

qualify

your

command

with

a

WHERE

or

KEYS

option,

you

would

retrieve

the

next

segment

in

sequential

order,

as

described

by

the

options.

Including

the

WHERE

or

KEYS

options

for

parent

segments

defines

the

segment

occurrences

that

are

to

be

part

of

the

path

to

the

segment

you

want

retrieved.

Omitting

the

SEGMENT

option

for

a

level,

or

including

only

the

SEGMENT

option

without

a

WHERE

option,

indicates

that

any

path

to

the

option

satisfies

the

command.

DL/I

uses

only

the

qualified

parent

segments

and

the

lowest-level

SEGMENT

option

to

satisfy

the

command.

DL/I

does

not

assume

a

qualification

for

the

missing

level.

SEGLENGTH(expression)

Specifies

the

length

of

the

I/O

area

into

which

the

segment

is

retrieved.

Its

argument

can

be

any

expression

that

converts

to

the

integer

data

type;

you

can

specify

either

a

number

or

a

reference

to

a

halfword

in

your

program

containing

a

number.

(SEGLENGTH

is

required

in

COBOL

programs

for

any

SEGMENT

level

that

specifies

the

INTO

or

FROM

option.)

Requirement:

The

value

specified

for

SEGLENGTH

must

be

greater

than

or

equal

to

the

length

of

the

longest

segment

that

can

be

processed

by

this

call.

OFFSET(expression)

Specifies

the

offset

to

the

destination

parent.

The

argument

can

be

any

expression

that

converts

to

the

integer

data

type;

you

can

specify

either

a

number

or

a

reference

to

a

halfword

in

your

program

containing

a

number.

Use

OFFSET

when

you

process

concatenated

segments

in

logical

relationships.

OFFSET

is

required

whenever

the

destination

parent

is

a

variable-length

segment.

LOCKED

Specifies

that

you

want

to

retrieve

a

segment

for

the

exclusive

use

of

your

program,

until

a

checkpoint

or

sync

point

is

reached.

This

option

performs

the

same

function

as

the

Q

command

code.

It

applies

to

both

Fast

Path

and

full

function.

A

1-byte

alphabetic

character

of

’A’

is

automatically

appended

as

the

class

for

the

Q

command

code.

LOCKCLASS(class)

Specifies

that

you

want

to

retrieve

a

segment

for

the

exclusive

use

of

your

program

until

a

DEQ

command

is

issued

or

until

a

checkpoint

or

sync

point

is

reached.

(DEQ

commands

are

not

supported

for

Fast

Path.)

Class

is

a

1-byte

alphabetic

character

(B-J),

representing

the

lock

class

of

the

retrieved

segment.

For

full

function

code,

the

LOCKCLASS

option

followed

by

a

letter

(B-J)

designates

the

class

of

the

lock

for

the

segment.

An

example

is

LOCKCLASS(’B’).

If

LOCKCLASS

is

not

followed

by

a

letter

in

the

range

B

to

J,

then

EXECDLI

sets

a

status

code

of

GL

and

initiates

an

ABENDU1041.

Fast

Path

does

not

support

LOCKCLASS

but,

for

consistency

between

full

function

and

Fast

Path,

you

must

specify

LOCKCLASS(’x’)),

where

x

is

a

letter

in

the

GU

Command IBM

Confidential

50

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

range

B

to

J.

An

example

is

LOCKCLASS(’B’).

If

LOCKCLASS

is

not

followed

by

a

letter

in

the

range

B

to

J,

then

EXECDLI

sets

a

status

code

of

GL

and

initiates

an

ABENDU1041.

MOVENEXT(data_value)

Specifies

a

subset

pointer

to

be

moved

to

the

next

segment

occurrence

after

your

current

segment.

GETFIRST(data_value)

Specifies

that

you

want

the

search

to

start

with

the

first

segment

occurrence

in

a

subset.

SET(data_value)

Specifies

unconditionally

setting

a

subset

pointer

to

the

current

segment.

SETCOND(data_value)

Specifies

conditionally

setting

a

subset

pointer

to

the

current

segment.

SETZERO(data_value)

Specifies

setting

a

subset

pointer

to

zero.

SETPARENT

Sets

parentage

at

the

level

you

want.

FIELDLENGTH(expression)

Specifies

the

length

of

the

field

value

in

a

WHERE

option.

KEYLENGTH(expression)

Specifies

the

length

of

the

concatenated

key

when

you

use

the

KEYS

option.

The

argument

can

be

any

expression

in

the

host

language

that

converts

to

the

integer

data

type;

a

variable

must

be

declared

as

a

binary

halfword

value.

For

IBM

COBOL

for

z/OS

&

VM

(or

VS

COBOL

II),

PL/I,

or

assembler

language,

KEYLENGTH

is

optional.

For

COBOL

programs

that

are

not

compiled

with

the

IBM

COBOL

for

z/OS

&

VM

(or

VS

COBOL

II)

compiler,

you

must

specify

KEYLENGTH

with

the

KEYS

option.

WHERE(qualification

statement)

Use

WHERE

to

further

qualify

your

GU

commands

after

using

SEGMENT.

If

you

fully

qualify

a

GU

command,

you

can

retrieve

a

segment

regardless

of

your

position

in

the

database

record.

KEYS(area)

Use

KEYS

to

further

qualify

your

GU

commands

and

specify

the

segment

occurrence

by

using

its

concatenated

key.

If

you

specify

a

SEGMENT

option

without

a

KEYS

or

WHERE

option,

IMS

DB

retrieves

the

first

occurrence

of

that

segment

type

it

encounters

by

searching

forward

from

current

position.

With

an

unqualified

GU

command,

the

segment

type

you

retrieve

might

not

be

the

one

you

expected,

so

you

should

specify

an

I/O

area

large

enough

to

contain

the

largest

segment

your

program

has

access

to.

(After

successfully

issuing

a

retrieval

command,

you

can

find

out

from

DIB

the

segment

type

retrieved.)

If

you

fully

qualify

your

command

with

a

WHERE

or

KEYS

option,

you

would

retrieve

the

next

segment

in

sequential

order,

as

described

by

the

options.

Including

the

WHERE

or

KEYS

options

for

parent

segments

defines

the

segment

occurrences

that

are

to

be

part

of

the

path

to

the

segment

you

want

retrieved.

Leaving

the

SEGMENT

option

out

for

a

level,

or

including

only

the

SEGMENT

option

without

a

WHERE

option,

indicates

that

any

path

to

the

option

satisfies

the

command.

DL/I

uses

only

the

qualified

parent

segments

and

GU

CommandIBM

Confidential

Chapter

4.

EXEC

DLI

Commands

for

an

Application

Program

51

the

lowest

level

SEGMENT

option

to

satisfy

the

command.

DL/I

does

not

assume

a

qualification

for

the

missing

level.

Usage

Use

the

GU

command

to

retrieve

specific

segments

from

the

database,

or

to

establish

a

position

in

the

database

for

sequential

processing.

You

must

at

least

specify

the

SEGMENT

option

with

a

GU

command

to

indicate

the

segment

type

you

want

to

retrieve.

(IMS

DB

retrieves

the

first

occurrence

of

the

segment

you

named

in

the

SEGMENT

argument.)

When

you

need

to

retrieve

a

specific

occurrence

of

a

segment

type,

you

can

further

qualify

the

command

by

using

the

WHERE

or

KEYS

option

after

the

SEGMENT

option.

You

probably

want

to

further

qualify

your

GU

commands

with

the

WHERE

or

KEYS

option,

and

specify

a

specific

occurrence

of

a

segment

type.

If

you

fully

qualify

a

GU

command,

you

can

retrieve

a

segment

regardless

of

your

position

in

the

database

record.

Examples

Example

1

“What

illness

was

Robert

James

here

for

most

recently?

Was

he

given

any

medication

on

that

day

for

that

illness?

His

patient

number

is

05136.”

Explanation:

This

example

requests

two

pieces

of

information.

To

answer

the

first

part

of

the

request

and

retrieve

the

most

recent

ILLNESS

segment,

issue

this

GU

command

(assuming

that

PATNO1

contains

05163):

EXEC

DLI

GU

SEGMENT(PATIENT)

WHERE(PATNO=PATNO1)

SEGMENT(ILLNESS)

INTO(AREA);

Once

you

had

retrieved

the

ILLNESS

segment

with

the

date

of

the

patient’s

most

recent

visit

to

the

clinic,

you

can

issue

another

command

to

find

out

whether

he

was

treated

during

that

visit.

If

the

date

of

his

most

recent

visit

was

January

5,

1988,

you

can

issue

the

following

command

to

find

out

whether

or

not

he

was

treated

on

that

day

for

that

illness

(assuming

PATNO1

contains

05163,

and

DATE1

contains

19880105):

EXEC

DLI

GU

SEGMENT(PATIENT)

WHERE(PATNO=PATNO1)

SEGMENT(ILLNESS)

WHERE(ILLDATE=DATE1)

SEGMENT(TREATMNT)

INTO(TRTAREA)

WHERE(DATE=DATE1);

Example

2

“What

is

Joan

Carter

currently

being

treated

for?

Her

patient

number

is

10320.”

EXEC

DLI

GU

SEGMENT(PATIENT)

WHERE(PATNO=PATNO1)

SEGMENT(ILLNESS)

INTO(ILLAREA);

Explanation:

In

this

example

you

want

the

ILLNESS

segment

for

the

patient

whose

patient

number

is

10320.

GU

Command IBM

Confidential

52

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

Example

3

EXEC

DLI

GU

SEGMENT(PATIENT)

SEGMENT(ILLNESS)

SEGMENT(TREATMNT)

INTO(AREA);

Explanation:

This

example

retrieves

the

first

TREATMNT

segment

and

specifies

the

three

levels

of

qualification.

Restriction

You

must

at

least

specify

the

SEGMENT

option

to

indicate

the

segment

type

you

want

to

retrieve.

ISRT

Command

The

Insert

(ISRT)

command

is

used

to

add

one

or

more

segments

to

the

database.

GU

CommandIBM

Confidential

Chapter

4.

EXEC

DLI

Commands

for

an

Application

Program

53

Format

��

EXEC

DLI

INSERT

ISRT

USING

PCB(expression)

<A>

��

<A>

For

each

parent

segment

(optional):

VARIABLE

FIRST

LAST

CURRENT

SEGMENT(name)

SEGMENT((area))

SEGLENGTH(expression)

�

�

(1)

FROM(area)

MOVENEXT(data_value)

GETFIRST(data_value)

�

�

SET(data_value)

SETCOND(data_value)

SETZERO(data_value)

�

�

WHERE(qualification

statement)

(2)

FIELDLENGTH(expression)

�

�

KEYS(area)

(3)

KEYLENGTH(expression)

For

the

object

segment

(required):

VARIABLE

FIRST

LAST

SEGLENGTH(expression)

OFFSET(expression)

�

�

MOVENEXT(data_value)

GETFIRST(data_value)

SET(data_value)

�

�

SETCOND(data_value)

SETZERO(data_value)

SEGMENT(name)

SEGMENT((area))

�

�

FROM(area)

Notes:

1 Specify

FROM

on

parent

segments

for

a

path

command.

2 If

you

use

multiple

qualification

statements,

specify

a

length

for

each,

using

FIELDLENGTH.

For

example:

FIELDLENGTH(24,8)

3 You

can

use

either

the

Keys

option

or

the

Where

option,

but

not

both

on

one

segment

level.

ISRT

Command IBM

Confidential

54

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

Options

USING

PCB(expression)

Specifies

the

DB

PCB

you

want

to

use

for

the

command.

Its

argument

can

be

any

expression

that

converts

to

the

integer

data

type;

you

can

specify

either

a

number

or

a

reference

to

a

halfword

in

your

program

containing

a

number.

VARIABLE

Indicates

that

a

segment

is

variable-length.

FIRST

Specifies

that

you

want

to

retrieve

the

first

segment

occurrence

of

a

segment

type,

or

that

you

want

to

insert

a

segment

as

the

first

occurrence.

Use

FIRST

to

insert

a

segment

as

a

first

occurrence

of

a

segment

type.

LAST

Specifies

that

you

want

to

retrieve

the

last

segment

occurrence

of

a

segment

type,

or

that

you

want

to

insert

a

segment

as

the

last

segment

occurrence.

Use

LAST

to

insert

a

segment

as

the

last

occurrence

of

a

segment

type.

CURRENT

Qualifies

the

command,

and

specifies

that

you

want

to

use

your

current

position

at

this

level

and

above

as

qualification

for

this

segment.

Use

CURRENT

to

insert

a

segment

based

on

your

current

position.

SEGMENT(name),

SEGMENT((area))

Qualifies

the

command,

specifying

the

name

of

the

segment

type

or

the

area

in

the

program

containing

the

name

of

the

segment

type

that

you

want

to

retrieve,

insert,

delete,

or

replace.

You

must

include

at

least

a

SEGMENT

option

for

each

segment

you

want

to

add

to

the

database.

Unless

ISRT

is

a

path

command,

the

lowest

level

SEGMENT

option

specifies

the

segment

being

inserted.

You

cannot

use

a

WHERE

or

KEYS

option

for

this

level.

If

a

segment

has

a

unique

key,

DL/I

inserts

the

segment

in

its

key

sequence.

(If

the

segment

does

not

have

a

key,

or

has

a

nonunique

key,

DL/I

inserts

it

according

to

the

value

specified

for

the

RULES

parameter

during

DBDGEN.

If

you

specify

a

SEGMENT

option

for

only

the

lowest

level

segment,

and

do

not

qualify

the

parent

segments

with

SEGMENT,

WHERE,

or

KEYS

options,

you

must

make

sure

that

the

current

position

is

at

the

correct

place

in

the

database

to

insert

the

segment.

The

SEGMENT

option

that

DL/I

assumes

depends

on

your

current

position

in

the

database

record:

v

If

DL/I

has

a

position

established

at

the

missing

level,

DL/I

uses

the

segment

on

which

position

is

established.

v

If

DL/I

does

not

have

a

position

established

at

the

missing

level,

DL/I

uses

the

first

occurrence

at

that

level.

v

If

DL/I

moves

forward

from

a

position

established

at

a

higher

level,

DL/I

uses

the

first

occurrence

at

the

missing

level

that

falls

within

the

new

path.

v

If

you

leave

out

a

SEGMENT

option

for

the

root

level,

and

DL/I

has

position

established

on

a

root,

DL/I

does

not

move

from

that

root

when

trying

to

satisfy

the

command.

It

is

good

practice

to

always

provide

qualifications

for

higher

levels

to

establish

the

position

of

the

segment

being

inserted.

If

you

are

inserting

a

root

segment,

you

need

only

specify

a

SEGMENT

option.

DL/I

determines

the

correct

place

for

its

insertion

in

the

database

by

the

key

ISRT

CommandIBM

Confidential

Chapter

4.

EXEC

DLI

Commands

for

an

Application

Program

55

taken

from

the

I/O

area.

If

the

segment

you

are

inserting

is

not

a

root

segment,

but

you

have

just

inserted

its

immediate

parent,

the

segment

can

be

inserted

as

soon

as

it

is

built

in

the

I/O

area

just

by

using

a

SEGMENT

option

for

it

in

the

ISRT

command.

You

need

not

code

the

parent

level

segments

to

establish

your

position.

When

you

specify

multiple

parent

segments,

you

can

mix

segments

with

and

without

the

WHERE

option.

If

you

include

only

SEGMENT

options

on

parent

segments,

DL/I

uses

the

first

occurrence

of

each

segment

type

to

satisfy

the

command.

SEGLENGTH(expression)

Specifies

the

length

of

the

I/O

area

from

which

the

segment

is

obtained.

Its

argument

can

be

any

expression

that

converts

to

the

integer

data

type;

you

can

specify

either

a

number

or

a

reference

to

a

halfword

in

your

program

containing

a

number.

(It

is

required

in

COBOL

programs

for

any

SEGMENT

level

that

specifies

the

INTO

or

FROM

option.)

Requirement:

The

value

specified

for

SEGLENGTH

must

be

greater

than

or

equal

to

the

length

of

the

longest

segment

that

can

be

processed

by

this

call.

FROM(area)

Specifies

an

area

containing

the

segment

to

be

added,

replaced,

or

deleted.

Use

FROM

to

insert

one

or

more

segments

with

one

command.

MOVENEXT(data_value)

Specifies

a

subset

pointer

to

be

moved

to

the

next

segment

occurrence

after

your

current

segment.

GETFIRST(data_value)

Specifies

that

you

want

the

search

to

start

with

the

first

segment

occurrence

in

a

subset.

SET(data_value)

Specifies

unconditionally

setting

a

subset

pointer

to

the

current

segment.

SETCOND(data_value)

Specifies

conditionally

setting

a

subset

pointer

to

the

current

segment.

SETZERO(data_value)

Specifies

setting

a

subset

pointer

to

zero.

WHERE(qualification

statement)

Qualifies

the

command,

specifying

the

segment

occurrence.

Its

argument

is

one

or

more

qualification

statements,

each

of

which

compares

the

value

of

a

field

in

a

segment

to

a

value

you

supply.

Each

qualification

statement

consists

of:

v

The

name

of

a

field

in

a

segment

v

The

relational

operator,

which

indicates

how

you

want

the

two

values

compared

v

The

name

of

a

data

area

in

your

program

containing

the

value

that

is

compared

against

the

value

of

the

field

WHERE

establishes

position

on

the

parents

of

a

segment

when

you

are

inserting

that

segment.

You

can

do

this

by

specifying

a

qualification

of

WHERE

or

KEYS

for

the

higher

level

SEGMENT

options.

When

you

specify

multiple

parent

segments,

you

can

mix

segments

with

and

without

the

WHERE

option.

If

you

include

only

SEGMENT

options

on

parent

segments,

DL/I

uses

the

first

occurrence

of

each

segment

type

to

satisfy

the

command.

ISRT

Command IBM

Confidential

56

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

FIELDLENGTH(expression)

Specifies

the

length

of

the

field

value

in

a

WHERE

option.

KEYS(area)

Qualifies

the

command

with

the

segment’s

concatenated

key.

You

can

use

either

KEYS

or

WHERE

for

a

segment

level,

but

not

both.

KEYs

can

be

used

to

qualify

a

parent

segment.

Instead

of

using

WHERE,

you

can

specify

KEYS

and

use

the

concatenated

key

of

the

segment

as

qualification.

You

can

use

the

KEYS

option

once

for

each

command,

immediately

after

the

highest

level

SEGMENT

option.

“Area”

specifies

an

area

in

your

program

containing

the

segment’s

concatenated

key.

KEYLENGTH(expression)

Specifies

the

length

of

the

concatenated

key

when

you

use

the

KEYS

option.

It

can

be

any

expression

in

the

host

language

that

converts

to

the

integer

data

type;

if

it

is

a

variable,

it

must

be

declared

as

a

binary

halfword

value.

For

IBM

COBOL

for

MBS

&

VM

(or

VS

COBOL

II),

PL/I,

or

assembler

language,

KEYLENGTH

is

optional.

For

COBOL

programs

that

are

not

compiled

with

the

IBM

COBOL

for

MBS

&

VM

(or

VS

COBOL

II)

compiler,

you

must

specify

KEYLENGTH

with

the

KEYS

option.

Usage

To

add

new

segments

to

an

existing

database,

use

the

ISRT

command.

When

you

issue

the

ISRT

command,

DL/I

takes

the

data

from

the

I/O

area

you

have

named

in

the

FROM

option

and

adds

the

segment

to

the

database.

(The

initial

loading

of

a

database

requires

using

the

LOAD

command,

instead

of

the

ISRT

command.)

You

can

use

ISRT

to

add

new

occurrences

of

an

existing

segment

type

to

a

HIDAM,

HISAM,

or

HDAM

database.

For

an

HSAM

database,

you

can

add

new

segments

only

by

reprocessing

the

whole

database

or

by

adding

the

new

segments

to

the

end

of

the

database.

Before

you

can

issue

the

ISRT

command

to

add

a

segment

to

the

database,

your

program

must

build

the

segment

to

be

inserted

in

an

I/O

area.

If

the

segment

has

a

key,

you

must

place

the

correct

key

in

the

correct

location

in

the

I/O

area.

If

field

sensitivity

is

used,

the

fields

must

be

in

the

order

defined

by

the

PSB

for

the

application’s

view

of

the

segment.

If

you

are

adding

a

root

segment

occurrence,

DL/I

places

it

in

the

correct

sequence

in

the

database

by

using

the

key

you

supply

in

the

I/O

area.

If

the

segment

you

are

inserting

is

not

a

root,

but

you

have

just

inserted

its

parent,

you

can

insert

the

child

segment

by

issuing

an

insert

request

qualified

with

only

the

segment

name.

You

must

build

the

new

segment

in

your

I/O

area

before

you

issue

the

ISRT

request.

You

also

qualify

insert

requests

with

the

segment

name

when

you

add

a

new

root

segment

occurrence.

When

you

are

adding

new

segment

occurrences

to

an

existing

database,

the

segment

type

must

have

been

defined

in

the

DBD.

You

can

add

new

segment

occurrences

directly

or

sequentially

after

you

have

built

them

in

the

program’s

I/O

area.

If

the

segment

type

you

are

inserting

has

a

unique

key

field,

the

location

where

DL/I

adds

the

new

segment

occurrence

depends

on

the

value

of

its

key

field.

If

the

segment

does

not

have

a

key

field,

or

if

the

key

is

not

unique,

you

can

control

ISRT

CommandIBM

Confidential

Chapter

4.

EXEC

DLI

Commands

for

an

Application

Program

57

where

the

new

segment

occurrence

is

added

by

specifying

either

the

FIRST,

LAST,

or

HERE

insert

rule.

Specify

the

rules

on

the

RULES

parameter

of

the

SEGM

statement

for

the

database.

Examples

Example

1

“Add

information

to

the

record

for

Chris

Edwards

about

his

visit

to

the

clinic

on

February

1,

1993.

His

patient

number

is

02345.

He

had

a

sore

throat.”

Explanation:

First,

build

the

ILLNESS

segment

in

your

program’s

I/O

area.

Your

I/O

area

for

the

ILLNESS

segment

looks

like

this:

19930201SORETHROAT

Use

the

command

to

add

this

new

segment

occurrence

to

the

database

is:

EXEC

DLI

ISRT

SEGMENT(PATIENT)

WHERE

(PATNO=PATNO1)

SEGMENT(ILLNESS)

FROM(ILLAREA);

Example

2

“Add

information

about

the

treatment

to

the

record

for

Chris

Edwards,

and

add

information

about

the

illness.”

Explanation:

You

build

the

TREATMNT

segment

in

a

segment

I/O

area.

The

TREATMNT

segment

includes

the

date,

the

medication,

amount

of

medication,

and

the

doctor’s

name:

19930201MYOCINb�b�b�0001TRIEBb�b�b�b�b�&b�

The

following

command

adds

both

the

ILLNESS

segment

and

the

TREATMNT

segment

to

the

database:

EXEC

DLI

ISRT

SEGMENT(PATIENT)

WHERE

(PATNO=PATNO1)

SEGMENT(ILLNESS)

FROM(ILLAREA)

SEGMENT(TREATMNT)

FROM(TRETAREA);

Example

3

EXEC

DLI

ISRT

SEGMENT(ILLNESS)

KEYS(CONKEY)

SEGMENT(TREATMNT)

FROM(TRETAREA);

Explanation:

Using

this

command

is

the

same

as

having

a

WHERE

option

qualified

on

the

key

field

for

the

ILLNESS

and

PATIENT

segments.

Restrictions

The

following

restrictions

apply

to

the

ISRT

command:

v

You

cannot

issue

the

ISRT

command

until

you

have

built

a

new

segment

in

the

I/O

area.

v

You

must

specify

at

least

one

SEGMENT

option

for

each

segment

being

added

to

the

database.

v

When

inserting

a

segment,

you

must

have

position

established

on

the

parents

of

the

segment.

v

If

you

specify

a

SEGMENT

option

for

only

the

lowest

level

segment,

and

do

not

qualify

the

parent

segments

with

SEGMENT,

WHERE,

or

KEYS

options,

be

sure

that

current

position

is

at

the

correct

place

in

the

database

to

insert

the

segment.

ISRT

Command IBM

Confidential

58

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

v

If

you

use

a

FROM

option

for

a

segment,

you

cannot

qualify

the

segment

by

using

the

WHERE

or

KEYS

option;

DL/I

uses

the

key

field

value

specified

in

the

I/O

area

as

qualification.

v

You

must

use

a

separate

I/O

area

for

each

segment

type

you

want

to

add.

v

You

cannot

mix

SEGMENT

options

with

and

without

the

FROM

option.

When

you

use

a

FROM

option

for

a

parent

segment,

you

must

use

a

FROM

option

for

each

dependent

segment.

(You

can

begin

the

path

at

any

level,

but

you

must

not

leave

out

any

levels.)

v

You

can

only

use

the

FIRST

option

with

segments

that

have

either

no

keys

or

have

a

nonunique

key

with

HERE

specified

on

the

RULES

operand

of

the

SEGM

statement

in

the

DBD.

v

You

can

only

use

the

LAST

option

when

the

segment

has

no

key

or

a

nonunique

key,

and

the

INSERT

rule

for

the

segment

is

either

FIRST

or

HERE.

POS

Command

The

Position

(POS)

command

retrieves

the

location

of

either

a

dependent

or

the

segment.

Format

Options

USING

PCB(n)

Specifies

the

DB

PCB

you

want

to

use

for

the

command.

Its

argument

can

be

any

expression

that

converts

to

the

integer

data

type;

you

can

specify

either

a

number

or

a

reference

to

a

halfword

in

your

program

containing

a

number.

INTO(data_area)

Specifies

an

area

into

which

the

segment

is

read.

KEYFEEDBACK(area)

Specifies

an

area

into

which

the

concatenated

key

for

the

segment

is

placed.

If

the

area

is

not

long

enough,

the

key

is

truncated.

FEEDBACKLEN(expression)

Specifies

the

length

of

the

key

feedback

area

into

which

you

want

the

concatenated

key

retrieved.

Its

argument

can

be

any

expression

that

converts

to

the

integer

data

type;

you

can

specify

either

a

number

or

a

reference

to

a

halfword

in

your

program

containing

a

number.

(FEEDBACKLEN

is

required

in

COBOL

programs

and

optional

in

PL/I

and

assembler

language

programs.)

SEGMENT(name)

Qualifies

the

command,

specifying

the

name

of

the

segment

type

you

want

to

retrieve,

insert,

delete,

or

replace.

��

EXEC

DLI

POSITION

POS

USING

PCB(n)

INTO(data_area)

�

�

KEYFEEDBACK(area)

FEEDBACKLEN(expression)

SEGMENT(name)

SEGMENT((area))

�

�

WHERE(qualification_statement)

FIELDLENGTH(expression)

��

ISRT

CommandIBM

Confidential

Chapter

4.

EXEC

DLI

Commands

for

an

Application

Program

59

SEGMENT((area))

Is

a

reference

to

an

area

in

your

program

containing

the

name

of

the

segment

type.

You

can

specify

an

area

instead

of

specifying

the

name

of

the

segment

in

the

command.

WHERE(qualification

statement)

Qualifies

the

command,

specifying

the

segment

occurrence.

Its

argument

is

one

or

more

qualification

statements,

each

of

which

compares

the

value

of

a

field

in

a

segment

to

a

value

you

supply.

FIELDLENGTH(expression)

Specifies

the

length

of

the

field

value

in

a

WHERE

option.

Usage

Use

the

POS

command

to:

v

Retrieve

the

location

of

a

specific

sequential

dependent

segment,

including

the

last

one

inserted

v

Determine

the

amount

of

unused

space

within

each

DEDB

area

If

the

area

specified

by

the

POS

command

is

unavailable,

the

I/O

area

is

unchanged

and

an

FH

status

code

is

returned.

Restriction

The

POS

command

is

for

DEDBs

only.

REPL

Command

The

Replace

(REPL)

command

is

used

to

replace

a

segment,

usually

to

change

the

values

of

one

or

more

of

its

fields.

POS

Command IBM

Confidential

60

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

Format

Options

USING

PCB(expression)

Specifies

the

DB

PCB

you

want

to

use

for

the

command.

Its

argument

can

be

any

expression

that

converts

to

the

integer

data

type;

you

can

specify

either

a

number

or

a

reference

to

a

halfword

in

your

program

containing

a

number.

VARIABLE

Indicates

that

a

segment

is

variable-length.

SEGMENT(name)

Qualifies

the

command,

specifying

the

name

of

the

segment

type

you

want

to

retrieve,

insert,

delete,

or

replace.

SEGMENT((area))

Is

a

reference

to

an

area

in

your

program

containing

the

name

of

the

segment

type.

You

can

specify

an

area

instead

of

specifying

the

name

of

the

segment

in

the

command.

SEGLENGTH(expression)

Specifies

the

length

of

the

I/O

area

from

which

the

segment

is

obtained.

Its

argument

can

be

any

expression

that

converts

to

the

integer

data

type;

you

can

specify

either

a

number

or

a

reference

to

a

halfword

in

your

program

containing

a

number.

(It

is

required

in

COBOL

programs

for

any

SEGMENT

level

that

specifies

the

INTO

or

FROM

option.)

Requirement:

The

value

specified

for

SEGLENGTH

must

be

greater

than

or

equal

to

the

length

of

the

longest

segment

that

can

be

processed

by

this

call.

��

EXEC

DLI

REPLACE

REPL

USING

PCB(expression)

<A>

��

<A>

For

each

parent

segment

(optional):

VARIABLE

SEGMENT(name)

SEGMENT((area))

SEGLENGTH(expression)

�

�

OFFSET(expression)

FROM(area)

MOVENEXT(data_value)

�

�

SET(data_value)

SETCOND(data_value)

SETZERO(data_value)

For

the

object

segment

(required):

VARIABLE

SEGMENT(name)

SEGMENT((area))

SEGLENGTH(expression)

�

�

OFFSET(expression)

FROM(area)

MOVENEXT(data_value)

�

�

SET(data_value)

SETCOND(data_value)

SETZERO(data_value)

REPL

CommandIBM

Confidential

Chapter

4.

EXEC

DLI

Commands

for

an

Application

Program

61

OFFSET(expression)

Specifies

the

offset

to

the

destination

parent.

It

can

be

any

expression

that

converts

to

the

integer

data

type;

you

can

specify

either

a

number

or

a

reference

to

a

halfword

in

your

program

containing

a

number.

You

use

OFFSET

when

you

process

concatenated

segments

in

logical

relationships.

It

is

required

whenever

the

destination

parent

is

a

variable

length

segment.

FROM(area)

Specifies

an

I/O

area

containing

the

segment

to

be

added,

replaced

or

deleted.

You

can

replace

more

than

the

segment

by

including

the

FROM

option

after

the

corresponding

SEGMENT

option

for

each

segment

you

want

to

replace.

Including

FROM

options

for

one

or

more

parent

segments

is

called

a

path

command.

The

argument

following

FROM

identifies

an

I/O

area

that

you

have

defined

in

your

program.

You

must

use

a

separate

I/O

area

for

each

segment

type

you

want

to

replace.

MOVENEXT(data_value)

Specifies

a

subset

pointer

to

be

moved

to

the

next

segment

occurrence

after

your

current

segment.

SET(data_value)

Specifies

unconditionally

setting

a

subset

pointer

to

the

current

segment.

SETCOND(data_value)

Specifies

conditionally

setting

a

subset

pointer

to

the

current

segment.

SETZERO(data_value)

Specifies

setting

a

subset

pointer

to

zero.

Usage

You

must

qualify

the

REPL

command

with

at

least

one

SEGMENT

and

FROM

option,

which

together

indicate

the

retrieved

segments

you

want

replaced.

If

the

Get

command

that

preceded

the

REPL

command

was

a

path

command,

and

you

do

not

want

to

replace

all

of

the

retrieved

segments

or

the

PSB

does

not

have

replace

sensitivity

for

all

of

the

retrieved

segments,

you

can

indicate

which

of

the

segments

are

not

to

be

replaced

by

omitting

the

SEGMENT

option.

If

your

program

attempts

to

do

a

path

replace

of

a

segment

where

it

does

not

have

replace

sensitivity,

the

data

for

the

segment

in

the

I/O

area

for

the

REPL

command

must

be

the

same

as

the

segment

returned

on

the

preceding

GET

command.

If

the

data

changes

in

this

situation,

the

transaction

is

abended

and

no

data

is

changed

as

a

result

of

the

Replace

command.

Notice

that

the

rules

for

a

REPL

path

command

differ

from

the

rules

for

an

ISRT

path

command.

You

cannot

skip

segment

levels

to

be

inserted

with

an

ISRT

command,

as

you

can

with

a

REPL

command.

To

update

information

in

a

segment,

you

can

use

the

REPL

command.

The

REPL

command

replaces

data

in

a

segment

with

data

you

supply

in

your

application

program.

First,

you

must

retrieve

the

segment

into

an

I/O

area.

You

then

modify

the

information

in

the

I/O

area

and

replace

the

segment

with

the

REPL

command.

For

your

program

to

successfully

replace

a

segment,

that

segment

must

already

have

been

defined

as

replace-sensitive

in

the

PCB

by

specifying

PROCOPT=A

or

PROCOPT=R

on

the

SENSEG

statement

in

the

PCB.

REPL

Command IBM

Confidential

62

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

You

cannot

issue

any

commands

using

the

same

PCB

between

a

Get

command

and

the

REPL

command,

and

you

can

issue

only

one

REPL

command

for

each

Get

command.

Examples

Example

1

EXEC

DLI

GU

SEGMENT(PATIENT)

INTO(PATAREA);

EXEC

DLI

REPL

SEGMENT(PATIENT)

FROM(PATAREA);

Explanation:

This

example

shows

that

you

cannot

issue

any

commands

using

the

same

PCB

between

the

Get

command

and

the

REPL

command,

and

you

can

issue

only

one

REPL

command

for

each

Get

command.

If

you

issue

this

commands

and

wanted

to

modify

information

in

the

segment

again,

you

must

first

reissue

the

GU

command,

before

reissuing

the

REPL

command.

Example

2

“We

have

received

a

payment

for

$65.00

from

a

patient

whose

ID

is

08642.

Update

the

patient’s

billing

record

and

payment

record

with

this

information,

and

print

a

current

bill

for

the

patient.”

Explanation:

The

four

parts

to

satisfying

this

processing

request

are:

1.

Retrieve

the

BILLING

and

PAYMENT

segments

for

the

patient.

2.

Calculate

the

new

values

for

these

segments

by

subtracting

$65.00

from

the

value

in

the

BILLING

segment,

and

adding

$65.00

to

the

value

in

the

PAYMENT

segment.

3.

Replace

the

values

in

the

BILLING

and

PAYMENT

segments

with

the

new

values.

4.

Print

a

bill

for

the

patient,

showing

the

patient’s

name,

number,

address,

the

current

amount

of

the

bill,

and

the

amount

of

the

payments

to

date.

To

retrieve

the

BILLING

and

PAYMENT

segments,

issue

a

GU

command.

Because

you

also

need

the

PATIENT

segment

when

you

print

the

bill,

you

can

include

INTO

following

the

SEGMENT

options

for

the

PATIENT

segment

and

for

the

BILLING

segment:

EXEC

DLI

GU

SEGMENT(PATIENT)

INTO(PATAREA)

WHERE

(PATNO=PATNO1)

SEGMENT(BILLING)

INTO(BILLAREA)

SEGMENT(PAYMENT)

INTO(PAYAREA);

After

you

have

calculated

the

current

bill

and

payment,

you

can

print

the

bill,

then

replace

the

billing

and

payment

segments

in

the

database.

Before

issuing

the

REPL

command,

you

must

change

the

segments

in

the

I/O

area.

Because

you

have

not

changed

the

PATIENT

segment,

you

do

not

need

to

replace

it

when

you

replace

the

BILLING

and

PAYMENT

segments.

To

indicate

to

DL/I

that

you

do

not

want

to

replace

the

PATIENT

segment,

you

do

not

specify

the

SEGMENT

option

for

the

PATIENT

segment

in

the

REPL

command.

EXEC

DLI

REPL

SEGMENT(BILLING)

FROM(BILLAREA)

SEGMENT(PAYMENT)

FROM(PAYAREA);

This

command

tells

DL/I

to

replace

the

BILLING

and

PAYMENT

segments,

but

not

to

replace

the

PATIENT

segment.

REPL

CommandIBM

Confidential

Chapter

4.

EXEC

DLI

Commands

for

an

Application

Program

63

These

two

examples

are

called

path

commands.

You

use

a

path

REPL

command

to

replace

more

than

one

segment

with

one

command.

Example

3

“Steve

Arons,

patient

number

10250,

has

moved

to

a

new

address

in

this

town.

His

new

address

is

4638

Brooks

Drive,

Lakeside,

California.

Update

the

database

with

his

new

address.”

Explanation:

You

need

to

retrieve

the

PATIENT

segment

for

Steve

Arons

and

replace

the

address

portion

of

the

segment.

To

retrieve

the

PATIENT

segment,

you

can

use

this

GU

command

(assuming

PATNO1

contains

10250):

EXEC

DLI

GU

SEGMENT(PATIENT)

INTO(PATAREA)

WHERE

(PATNO=PATNO1);

Since

you

are

not

replacing

the

first

two

fields

of

the

PATIENT

segment

(PATNO

and

NAME),

you

do

not

have

to

change

them

in

the

I/O

area.

Place

the

new

address

in

the

I/O

area

following

the

PATNO

and

NAME

fields.

Then

you

issue

the

following

REPL

command:

EXEC

DLI

REPL

SEGMENT(PATIENT)

FROM(PATAREA);

Example

4

EXEC

DLI

GU

SEGMENT(PATIENT)

INTO(PATAREA)

WHERE

(PATNO=PATNO1)

SEGMENT(ILLNESS)

INTO(ILLAREA)

SEGMENT(TREATMNT)

INTO(TRETAREA);

EXEC

DLI

REPL

SEGMENT(PATIENT)

FROM(PATAREA)

SEGMENT(TREATMNT)

FROM(TRETAREA);

Explanation:

This

example

assumes

that

you

want

to

replace

the

PATIENT

and

TREATMNT

segments

for

patient

number

10401,

but

you

do

not

want

to

change

the

ILLNESS

segment.

To

do

this

issue

this

command

(assuming

PATNO1

contains

10401).

Restrictions

The

following

restrictions

apply

to

the

REPL

command:

v

You

cannot

issue

any

commands

using

the

same

PCB

between

the

Get

command

and

the

REPL

command.

v

You

can

issue

only

one

REPL

command

for

each

Get

command.

v

To

modify

information

in

a

segment,

you

must

first

reissue

the

GU

command

before

reissuing

the

REPL

command.

v

You

must

qualify

the

REPL

command

with

at

least

one

SEGMENT

option

and

one

FROM

option.

v

If

you

use

a

FROM

option

for

a

segment,

you

cannot

qualify

the

segment

by

using

the

WHERE

or

KEYS

option;

DL/I

uses

the

key

field

value

specified

in

the

I/O

area

as

qualification.

RETRIEVE

Command

Use

the

RETRIEVE

command

to

determine

current

position

in

the

database

in

batch

and

BMP

programs.

REPL

Command IBM

Confidential

64

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

Format

Options

USING

PCB(expression)

Specifies

the

DB

PCB

you

want

to

use

for

the

command.

Its

argument

can

be

any

expression

that

converts

to

the

integer

data

type;

you

can

specify

either

a

number

or

a

reference

to

a

halfword

in

your

program

containing

a

number.

expression

specifies

the

PCB

for

which

you

want

to

retrieve

the

concatenated

key.

It

can

be

any

expression

in

the

host

language

that

converts

to

the

integer

data

type.

You

can

specify

either

a

number

or

a

reference

to

a

halfword

containing

a

number.

The

value

must

be

a

positive

integer

not

greater

than

the

number

of

PCBs

generated

for

the

PSB.

The

first

PCB

in

the

list,

the

I/O

PCB,

is

1.

The

first

DB

PCB

in

the

list

is

2,

the

second

is

3,

and

so

forth.

KEYFEEDBACK(area)

Specifies

an

area

into

which

the

concatenated

key

for

the

segment

is

placed.

If

the

area

is

not

long

enough,

the

key

is

truncated.

FEEDBACKLEN(expression)

Specifies

the

length

of

the

key

feedback

area

into

which

you

want

the

concatenated

key

retrieved.

Its

argument

can

be

any

expression

that

converts

to

the

integer

data

type;

you

can

specify

either

a

number

or

a

reference

to

a

halfword

in

your

program

containing

a

number.

(It

is

required

in

COBOL

programs

and

optional

in

PL/I

and

assembler

language

programs.)

expression

is

the

length

of

the

key

feedback

I/O

area.

It

can

be

any

expression

in

the

host

language

that

converts

to

integer

data

type;

you

can

specify

either

a

number

or

a

reference

to

a

halfword

containing

a

number.

For

IBM

COBOL

for

z/OS

&

VM

(or

VS

COBOL

II),

PL/I,

or

assembler

language,

FEEDBACKLEN

is

optional.

For

COBOL

programs

that

are

not

compiled

with

the

IBM

COBOL

for

z/OS

&

VM

(or

VS

COBOL

II)

compiler,

you

must

specify

FEEDBACKLEN

with

the

KEYFEEDBACK

option.

Usage

If

your

program

issues

symbolic

checkpoint

commands

it

must

also

issue

the

extended

RESTART

(XRST)

command

or

the

RETRIEVE

command.

The

RETRIEVE

command

is

issued

once,

at

the

start

of

your

program.

You

can

use

the

RETRIEVE

command

to

start

your

program

normally,

or

to

restart

it

in

case

of

an

abnormal

termination.

You

can

use

the

RETRIEVE

command

from

a

specific

checkpoint

id

or

a

time/date

stamp.

Because

the

RETRIEVE

command

attempts

to

reposition

the

database,

your

program

also

needs

to

check

for

correct

position.

After

issuing

the

RETRIEVE

command,

the

segment

type

and

level

on

which

the

position

is

established

is

returned

to

the

DIBSEGM

and

DIBSEGLV

fields

in

the

DIB.

The

value

in

DIBKFBL

is

set

to

the

actual

length

of

the

concatenated

key.

The

DIBSTAT

field

contains

the

value

returned

from

the

GU

repositioning,

not

the

XRST

command.

��

EXEC

DLI

RETRIEVE

USING

PCB(expression)

KEYFEEDBACK(area)

�

�

FEEDBACKLEN(expression)

��

RETRIEVE

CommandIBM

Confidential

Chapter

4.

EXEC

DLI

Commands

for

an

Application

Program

65

The

RESTART

command

attempts

to

reposition

DL/I

databases

by

issuing

an

internal

GU

qualified

with

the

concatenated

key.

It

is

your

responsibility

to

verify

that

your

position

in

the

database

from

the

GU

repositioning

is

the

correct

position

for

the

checkpoint

ID

used

in

the

XRST

command.

You

can

use

the

RETRIEVE

command

to

retrieve

the

concatenated

key

used

with

the

GU

repositioning,

and

determine

your

current

position

in

all

the

PCBs

your

program

accesses.

Examples

EXEC

DLI

RETRIEVE

USING

PCB(2)

KEYFEEDBACK(KEYAREA);

EXEC

DLI

RETRIEVE

USING

PCB(5)

KEYFEEDBACK(KEYAREA);

Explanation

These

RETRIEVE

commands

retrieve

the

concatenated

key

for

the

first

and

fourth

DB

PCBs.

(The

first

PCB

in

the

list

is

the

I/O

PCB,

so

the

first

DB

PCB

is

the

second

one

in

the

list.)

After

issuing

the

first

RETRIEVE

command,

you

can

determine

your

position

in

the

first

DB

PCB

by

examining

the

concatenated

key

in

KEYAREA,

and

the

values

returned

in

the

DIBSEGM

and

DIBSEGLV

fields

in

the

DIB.

After

issuing

the

second

RETRIEVE

command,

you

can

determine

your

position

in

the

fourth

DB

PCB

by

examining

the

same

fields.

Restrictions

The

following

restrictions

apply

to

the

RETRIEVE

command:

v

You

cannot

use

this

command

in

a

CICS

program.

v

To

use

this

command,

you

must

first

define

an

I/O

PCB

for

your

program.

v

You

cannot

reestablish

position

in

the

midst

of

nonunique

keys

or

nonkeyed

segments.

v

You

cannot

use

this

command

unless

the

system

log

is

stored

on

direct

access

storage

and

dynamic

backout

has

been

specified.

You

must

also

specify

BKO=Y

in

the

parm

field

of

your

JCL

when

you

execute

the

program.

SCHD

Command

The

Schedule

(SCHD)

command

is

used

to

schedule

a

PSB

in

a

CICS

online

program.

For

information

on

the

I/O

PCB,

see

“Using

the

I/O

PCB,

PSB,

and

PCB”

on

page

31.

Format

Options

PSB(name)

Specifies

the

name

of

the

PSB

available

to

your

application

program

that

you

want

to

schedule

with

the

SCHD

command.

PSB((area))

Specifies

an

8-byte

data

area

in

your

program

that

contains

the

name

of

the

PSB

available

to

your

program

that

you

want

to

schedule

with

the

SCHD

command.

��

EXEC

DLI

SCHEDULE

SCHD

PSB(name)

PSB((area))

SYSSERVE

NODHABEND

��

RETRIEVE

Command IBM

Confidential

66

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

SYSSERVE

Specifies

that

the

application

program

can

handle

an

I/O

PCB

and

might

issue

a

system

service

request

in

the

logical

unit

of

work

(LUW).

NODHABEND

Specifies

that

a

CICS

transaction

does

not

fail

with

a

DHxx

abend.

Should

a

schedule

fail

under

EXEC

DLI,

a

status

code

might

be

returned

in

the

DIB,

causing

a

CICS

transaction

to

fail

with

a

DHxx

abend.

This

option

prevents

this.

Following

an

unsuccessful

SCHD

command,

the

control,

as

well

as

the

status

code

in

the

DIB

are

passed

back

to

the

application

program,

which

can

then

take

the

appropriate

action.

Usage

Before

you

can

access

DL/I

databases

from

a

CICS

program,

you

must

notify

DL/I

that

your

program

will

be

accessing

a

database

by

scheduling

a

PSB.

Do

this

by

issuing

the

SCHD

command.

When

you

no

longer

plan

to

use

a

PSB,

or

you

want

to

schedule

a

subsequent

PSB

(one

or

more),

you

must

terminate

the

previous

PSB

with

the

TERM

command.

(For

more

information

on

the

I/O

PCB

and

PSB,

see

“Using

the

I/O

PCB,

PSB,

and

PCB”

on

page

31)

The

SCHD

command

can

be

specified

two

ways

(see

“Examples”).

Examples

EXEC

DLI

SCHD

PSB(psbname)SYSSERVE;

EXEC

DLI

SCHD

PSB((AREA));

Explanation

These

examples

show

two

ways

to

schedule

a

PSB

in

a

CICS

program.

TERM

Command

The

Terminate

(TERM)

command

is

used

to

terminate

a

PSB

in

a

CICS

online

program.

Format

Options

No

options

are

allowed

with

the

TERM

command.

Usage

If

you

want

to

use

a

PSB

other

than

the

one

already

scheduled,

use

the

TERM

command

to

release

the

PSB.

When

you

issue

the

TERM

command,

all

database

changes

are

committed

and

cannot

be

backed

out.

Because

returning

to

CICS

also

terminates

the

PSB

and

commits

changes,

you

need

not

use

the

TERM

command

unless

you

want

to

schedule

another

PSB,

or

commit

database

changes

before

returning

to

CICS.

��

EXEC

DLI

TERMINATE

TERM

��

SCHD

CommandIBM

Confidential

Chapter

4.

EXEC

DLI

Commands

for

an

Application

Program

67

No

options

are

allowed

with

the

TERM

command.

If

your

program

subsequently

needs

a

PSB

that

has

terminated,

it

must

reschedule

that

PSB

by

issuing

another

SCHD

command.

In

most

applications,

you

do

not

need

to

use

the

TERM

command.

Example

EXEC

DLI

TERM

Explanation

This

example

shows

how

to

terminate

a

PSB

with

the

TERM

command.

System

Service

Commands

The

following

system

service

commands

require

that

you

first

issue

the

SCHD

command

with

the

SYSSERVE

keyword:

v

“ACCEPT

Command”

on

page

69

v

“DEQ

Command”

on

page

70

v

“LOG

Command”

on

page

72

v

“QUERY

Command”

on

page

73

v

“REFRESH

Command”

on

page

74

v

“ROLS

Command”

on

page

77

v

“SETS

Command”

on

page

78

v

“SETU

Command”

on

page

79

v

“STAT

Command”

on

page

80

The

following

system

service

commands

are

valid

in

batch

or

BMP

without

first

issuing

the

SCHD

command

with

the

SYSSERVE

keyword:

v

“CHKP

Command”

on

page

69

v

“ROLB

Command”

on

page

75

v

“ROLL

Command”

on

page

76

v

“SYMCHKP

Command”

on

page

81

v

“XRST

Command”

on

page

83

The

following

system

service

commands

are

valid

in

an

online

CICS

program

using

DBCTL:

v

ACCEPT

v

DEQ

v

LOG

v

QUERY

v

REFRESH

v

ROLS

v

SETS

v

STAT

To

issue

system

service

commands,

the

input/output

PCB

(I/O

PCB)

is

required.

For

detailed

information

on

the

I/O

PCB,

as

well

as

the

PSB,

and

PCB,

see

“Using

the

I/O

PCB,

PSB,

and

PCB”

on

page

31.

TERM

Command IBM

Confidential

68

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

ACCEPT

Command

The

Accept

(ACCEPT)

command

is

used

to

tell

IMS

to

return

a

status

code

to

your

program,

rather

than

abend

the

transaction.

Format

Options

STATUSGROUP('A')

Informs

IMS

that

the

application

is

prepared

to

accept

status

codes

regarding

unavailability.

IMS

then

returns

a

status

code

instead

of

pseudoabending

if

a

call

issued

later

requires

access

to

unavailable

data.

This

is

a

required

option.

STATUSGROUP('B')

Informs

IMS

that

the

application

is

prepared

to

accept

status

codes

regarding

unavailability

and

deadlock

occurrence.

IMS

returns

a

status

code

instead

of

pseudoabending

if

a

call

issued

later

requires

access

to

unavailable

data

or

deadlock

occurrence.

Usage

Use

the

ACCEPT

command

to

tell

IMS

to

return

a

status

code

instead

of

abending

the

program.

These

status

codes

result

because

PSB

scheduling

completed

without

all

of

the

referenced

databases

being

available.

Example

EXEC

DLI

ACCEPT

STATUSGROUP('A');

This

example

shows

how

to

specify

the

ACCEPT

command.

CHKP

Command

The

Checkpoint

(CHKP)

command

is

used

to

issue

a

basic

checkpoint

and

to

end

a

logical

unit

of

work.

You

cannot

use

this

command

in

a

CICS

program.

Format

Options

ID(area)

Contains

the

checkpoint

ID.

Specifies

the

name

of

an

area

in

your

program

containing

the

checkpoint

ID.

The

area

pointed

to

is

eight

bytes.

If

you

are

using

PL/I,

specify

this

option

as

a

pointer

to

a

major

structure,

an

array,

or

a

character

string.

��

EXEC

DLI

ACCEPT

STATUSGROUP('A')

ACCEPT

STATUSGROUP('B')

��

��

EXEC

DLI

CHECKPOINT

CHKP

ID(area)

ID(’literal’)

��

ACCEPT

CommandIBM

Confidential

Chapter

4.

EXEC

DLI

Commands

for

an

Application

Program

69

ID('literal')

'literal'

is

an

8-byte

checkpoint

ID,

enclosed

in

quotation

marks.

In

CHKP

commands

the

area

pointed

to

is

8

bytes

long.

Usage

The

two

kinds

of

commands

that

allow

you

to

make

checkpoints

are:

the

CHKP,

or

basic

Checkpoint

command,

and

the

SYMCHKP,

or

Symbolic

Checkpoint

command.

Batch

programs

can

use

either

the

symbolic

or

the

basic

command.

Both

checkpoint

commands

make

it

possible

for

you

to

commit

your

program’s

changes

to

the

database

and

to

establish

places

from

which

the

program

can

be

restarted,

should

it

terminate

abnormally.

You

must

not

use

the

CHKPT=EOV

parameter

on

any

DD

statement

to

take

an

IMS

checkpoint.

Both

commands

cause

a

loss

of

database

position

at

the

time

the

command

is

issued.

Position

must

be

reestablished

by

a

GU

command

or

other

method

of

establishing

position.

It

is

not

possible

to

re-establish

position

in

the

midst

of

nonunique

keys

or

nonkeyed

segments.

You

can

issue

the

basic

CHKP

command

to

commit

your

program’s

changes

to

the

database

and

establish

places

from

which

your

program

can

be

restarted.

When

you

issue

a

basic

CHKP

command,

you

must

provide

the

code

for

restarting

your

program.

When

you

issue

a

CHKP

command,

you

specify

the

ID

for

the

checkpoint.

You

can

supply

either

the

name

of

a

data

area

in

your

program

that

contains

the

ID,

or

you

can

supply

the

actual

ID,

enclosed

in

single

quotes.

See

“Examples.”

Examples

EXEC

DLI

CHKP

ID(chkpid);

EXEC

DLI

CHKP

ID('CHKP0007');

Explanation

These

examples

show

how

to

specify

the

CHKP

command.

Restrictions

The

following

restrictions

apply

to

the

CHKP

command:

v

You

cannot

use

this

command

in

a

CICS

program.

v

You

must

first

define

an

I/O

PCB

for

your

program

before

you

can

use

the

CHKP

command.

v

You

cannot

reestablish

position

in

the

midst

of

nonunique

keys

or

nonkeyed

segments.

DEQ

Command

The

Dequeue

(DEQ)

command

is

used

to

release

a

segment

that

is

retrieved

with

the

LOCKCLASS

option.

CHKP

Command IBM

Confidential

70

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

Format

Option

LOCKCLASS(data_value)

Specifies

that

you

want

to

release

the

lock

that

is

being

held

as

the

result

of

an

earlier

GU,

GN,

or

GNP

command

that

had

a

LOCKCLASS

option

with

the

same

data_value.

Data_value

must

be

a

1-byte

alphabetic

character

in

the

range

of

B

to

J.

For

full

function,

specify

the

LOCKCLASS

option

followed

by

the

lock

class

of

that

segment

(for

example,

LOCKCLASS(’B’)).

If

the

option

is

not

followed

by

a

letter

(B-J),

EXECDLI

sets

a

status

code

of

GL

and

initiates

an

ABENDU1041.

DEQ

commands

are

not

supported

for

Fast

Path.

Usage

Use

the

DEQ

command

to

release

locks

on

segments

that

were

retrieved

using

the

LOCKCLASS

option.

Using

LOCKCLASS

on

Get

commands

allows

you

to

reserve

segments

for

exclusive

use

by

your

transaction.

No

other

transaction

is

allowed

to

update

these

reserved

segments

until

either

your

transaction

reaches

a

sync

point

or

the

DEQ

command

has

been

issued,

thereby

releasing

the

locks

on

these

reserved

segments.

The

LOCKCLASS

option

lets

your

application

program

leave

these

segments

and

retrieve

them

later

without

any

changes

having

been

added.

Example

Your

program

can

use

the

LOCKCLASS

option

as

follows:

EXEC

DLI

DEQ

LOCKCLASS(data_value)

EXEC

DLI

GU

SEGMENT(PARTX)

SEGMENT(ITEM1)

LOCKCLASS('B')

INTO(PTAREA1);

EXEC

DLI

GU

SEGMENT(PARTX)

SEGMENT(ITEM2)

LOCKCLASS('C')

INTO(PTAREA2);

EXEC

DLI

DEQ

LOCKCLASS('B');

Explanation

This

example

shows

the

format

of

the

DEQ

command,

where

data_value

is

a

1-byte

alphabetic

character

in

the

range

B

to

J.

The

DEQ

command

releases

the

lock

that

was

gotten

and

held

with

a

LOCKCLASS

of

’B’

for

the

PARTX

segment

as

a

result

of

the

first

GU.

The

lock

that

was

gotten

with

a

LOCKCLASS

of

’C’

on

the

PARTX

segment

during

the

second

GU

remains

held.

Restriction

The

following

restriction

applies

to

the

DEQ

command:

v

To

use

this

command

you

must

first

define

an

I/O

PCB

for

your

program.

LOAD

Command

The

Load

(LOAD)

command

is

used

to

add

a

segment

sequentially

while

loading

the

database.

��

EXEC

DLI

DEQ

LOCKCLASS(data_value)

��

DEQ

CommandIBM

Confidential

Chapter

4.

EXEC

DLI

Commands

for

an

Application

Program

71

Format

Options

USING

PCB(expression)

Specifies

the

DB

PCB

you

want

to

use.

Its

argument

can

be

any

expression

that

converts

to

the

integer

data

type;

you

can

specify

either

a

number

or

a

reference

to

a

halfword

in

your

program

containing

a

number.

VARIABLE

Indicates

that

a

segment

is

variable-length.

SEGMENT(name)

Specifies

the

name

of

the

segment

type

you

want

to

retrieve,

insert,

delete,

or

replace.

SEGMENT((area))

A

reference

to

an

area

in

your

program

containing

the

name

of

the

segment

type.

You

can

specify

an

area

instead

of

the

name

of

the

segment

in

the

command.

SEGLENGTH(expression)

Specifies

the

length

of

the

I/O

area

from

which

the

segment

is

obtained.

Its

argument

can

be

any

expression

that

converts

to

the

integer

data

type;

you

can

specify

either

a

number

or

a

reference

to

a

halfword

in

your

program

containing

a

number.

(SEGLENGTH

is

required

in

COBOL

programs

for

any

SEGMENT

level

that

specifies

the

INTO

or

FROM

option.)

Requirement:

The

value

specified

for

SEGLENGTH

must

be

greater

than

or

equal

to

the

length

of

the

longest

segment

that

can

be

processed

by

this

call.

FROM(area)

Specifies

an

area

containing

the

segment

to

be

added,

replaced,

or

deleted.

Usage

The

LOAD

command

is

used

for

database

load

programs,

which

are

described

in

IMS

Version

9:

Administration

Guide:

Database

Manager.

Example

EXEC

DLI

LOAD

SEGMENT(ILLNESS)

FROM(ILLAREA);

LOG

Command

The

Log

(LOG)

command

is

used

to

write

information

to

the

system

log.

��

EXEC

DLI

LOAD

USING

PCB(expression)

VARIABLE

�

�

SEGMENT(name)

SEGMENT((area))

SEGLENGTH(expression)

FROM(area)

��

LOAD

Command IBM

Confidential

72

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

Format

Options

FROM(area)

Specifies

an

area

containing

the

segment

to

be

added,

replaced,

or

deleted.

LENGTH(expression)

Specifies

the

length

of

an

area.

Usage

You

use

the

LOG

command

to

write

information

to

the

system

log.

For

detailed

information

on

this

command,

see

IMS

Version

9:

Application

Programming:

Design

Guide.

Example

EXEC

DLI

LOG

FROM(ILLAREA)

LENGTH(18);

Restriction

The

following

restriction

applies

to

the

LOG

command:

v

To

use

this

command

you

must

first

define

an

I/O

PCB

for

your

program.

QUERY

Command

The

Query

(QUERY)

command

obtains

status

code

and

other

information

in

the

DL/I

interface

block

(DIB),

which

is

a

subset

of

the

IMS

PCB.

Format

Options

USING

PCB(expression)

is

required.

No

other

options

are

allowed

with

the

QUERY

command.

Usage

For

full-function

databases,

the

DIB

should

contain

NA,

NU,

TH

or

blanks.

For

an

explanation

of

the

codes,

see

IMS

Version

9:

Messages

and

Codes,

Volume

1.

Use

the

QUERY

command

after

scheduling

the

PSB

but

before

making

the

database

call.

If

the

program

has

already

issued

a

call

using

the

DB

PCB,

you

then

use

the

REFRESH

command

to

update

the

information

in

the

DIB.

��

EXEC

DLI

LOG

FROM(area)

LENGTH(expression)

��

��

EXEC

DLI

QUERY

USING

PCB(expression)

��

LOG

CommandIBM

Confidential

Chapter

4.

EXEC

DLI

Commands

for

an

Application

Program

73

Examples

Example

1

EXEC

DLI

QUERY

USING

PCB(expression);

Explanation:

This

example

shows

how

to

specify

the

QUERY

command.

In

this

example,

(n)

specifies

the

PCB.

Example

2

EXEC

DLI

REFRESH

DBQUERY;

Explanation:

If

your

program

has

already

issued

a

call

using

the

DB

PCB

name,

use

the

REFRESH

command

to

update

the

information

in

the

DIB.

The

REFRESH

command

updates

all

DB

PCBs.

You

can

issue

it

only

one

time.

Restrictions

The

following

restrictions

apply

to

the

QUERY

command:

v

To

use

this

command

you

must

first

define

an

I/O

PCB

for

your

program.

v

You

cannot

reestablish

position

in

the

midst

of

nonunique

keys

or

nonkeyed

segments.

REFRESH

Command

The

Refresh

(REFRESH)

command

is

used

to

obtain

the

most

recent

information

from

the

DIB

for

the

most

recently

issued

command.

Format

Options

DBQUERY

is

required.

Other

options

are

not

allowed

with

the

REFRESH

command.

Usage

The

REFRESH

command

is

used

with

the

QUERY

command.

The

QUERY

command

is

used

after

scheduling

the

PSB

but

before

making

the

first

database

call.

If

the

program

has

already

issued

a

call

using

the

DB

PCB,

use

the

REFRESH

command

to

update

the

information

in

the

DIB.

The

REFRESH

command

updates

all

DB

PCBs.

It

can

be

issued

only

once.

Example

EXEC

DLI

REFRESH

DBQUERY;

Explanation

This

example

shows

how

to

specify

the

REFRESH

command.

��

EXEC

DLI

REFRESH

DBQUERY

��

QUERY

Command IBM

Confidential

74

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

Restrictions

The

following

restrictions

apply

to

the

REFRESH

command:

v

To

use

this

command,

you

must

first

define

an

I/O

PCB

for

your

program.

v

You

cannot

reestablish

position

in

the

midst

of

nonunique

keys

or

nonkeyed

segments.

v

You

can

issue

this

command

only

one

time.

ROLB

Command

The

Roll

Back

(ROLB)

command

is

used

to

dynamically

back

out

changes

and

return

control

to

your

program.

You

cannot

use

this

command

in

a

CICS

program.

Format

Options

No

options

are

allowed

with

the

ROLB

command.

Usage

When

a

batch

or

BMP

program

determines

that

some

of

its

processing

is

invalid,

two

commands

make

it

possible

for

the

program

to

remove

the

effects

of

its

inaccurate

processing.

These

are

the

rollback

commands,

ROLL

(see

“ROLL

Command”

on

page

76)

and

ROLB.

The

ROLB

command

is

valid

in

batch

programs

when

the

system

log

is

stored

on

direct

access

storage

and

dynamic

backout

has

been

specified

through

the

use

of

the

BKO

execution

parameter.

Issuing

the

ROLB

causes

IMS

DB

to

back

out

any

changes

your

program

has

made

to

the

database

since

its

last

checkpoint,

or

since

the

beginning

of

the

program

if

your

program

has

not

issued

a

checkpoint.

When

you

issue

a

ROLB

command,

IMS

DB

returns

control

to

your

program

after

backing

out

the

changes,

so

that

your

program

can

continue

processing

with

the

next

statement

after

the

ROLB

command.

Example

EXEC

DLI

ROLB;

Explanation

This

example

shows

how

to

dynamically

back

out

changes

and

return

control

to

your

program

with

the

ROLB

command.

Restrictions

The

following

restrictions

apply

to

the

ROLB

command:

v

You

cannot

use

this

command

in

a

CICS

program.

v

You

must

first

define

an

I/O

PCB

for

your

program

before

you

can

use

this

command.

��

EXEC

DLI

ROLB

��

REFRESH

CommandIBM

Confidential

Chapter

4.

EXEC

DLI

Commands

for

an

Application

Program

75

v

You

cannot

reestablish

position

in

the

midst

of

nonunique

keys

or

nonkeyed

segments.

v

You

cannot

use

this

command

when

the

system

log

is

stored

on

direct

access

storage

and

dynamic

backout

has

not

been

specified.

ROLL

Command

The

Roll

(ROLL)

command

is

used

to

dynamically

back

out

changes.

You

cannot

use

this

command

in

a

CICS

program

Format

Options

No

options

are

allowed

with

the

ROLL

command.

Usage

When

a

batch

program

determines

that

some

of

its

processing

is

invalid,

two

commands

make

it

possible

for

the

program

to

remove

the

effects

of

its

inaccurate

processing.

These

are

the

rollback

commands,

ROLL

and

ROLB

(see

“ROLB

Command”

on

page

75).

You

can

use

ROLL

in

batch

programs.

Issuing

the

ROLL

causes

CICS

and

DL/I

to

back

out

any

changes

your

program

has

made

to

the

database

since

its

last

checkpoint,

or

since

the

beginning

of

the

program

provided

your

program

has

not

issued

a

checkpoint.

When

you

issue

a

ROLL

command,

DL/I

terminates

your

program

after

backing

out

the

updates.

Example

EXEC

DLI

ROLL;

Explanation

This

example

shows

how

to

dynamically

back

out

changes

with

the

ROLL

command.

If

you

use

the

ROLL

command,

IMS

terminates

the

program

with

user

abend

code

U0778.

This

type

of

abnormal

termination

does

not

produce

a

storage

dump.

Restrictions

The

following

restrictions

apply

to

the

ROLL

command:

v

You

cannot

use

this

command

in

a

CICS

program.

v

You

must

first

define

an

I/O

PCB

for

your

program

before

you

can

use

this

command.

v

You

cannot

reestablish

position

in

the

midst

of

nonunique

keys

or

nonkeyed

segments.

v

You

cannot

use

this

command

when

the

system

log

is

stored

on

direct

access

storage

and

dynamic

backout

has

been

specified.

You

must

also

specify

BKO=Y

in

the

parm

field

of

your

JCL

when

you

execute

the

program.

��

EXEC

DLI

ROLL

��

ROLB

Command IBM

Confidential

76

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

ROLS

Command

The

Roll

Back

to

SETS

or

SETU

(ROLS)

command

is

used

to

back

out

to

a

processing

point

set

by

an

earlier

SETS

command.

Format

Options

USING

PCB(expression)

Specifies

the

DB

PCB

you

want

to

use.

Its

argument

can

be

any

expression

that

converts

to

the

integer

data

type;

you

can

specify

either

a

number

or

a

reference

to

a

halfword

in

your

program

containing

a

number.

TOKEN(token)

A

4-byte

token

associated

with

the

current

processing

point.

If

you

specify

both

TOKEN

and

AREA,

the

ROLS

command

backs

out

to

the

SETS

or

SETU

you

specified.

AREA(data_area)

The

name

of

the

area

to

be

restored

to

the

program

when

a

ROLS

command

is

issued.

The

first

2

bytes

of

the

data-area

field

contain

the

length

of

the

data-area,

including

the

length

itself.

The

second

2

bytes

must

be

set

to

X'0000'.

If

you

specify

both

TOKEN

and

AREA,

the

ROLS

command

backs

out

to

the

SETS

you

specified.

The

ROLS

call

has

two

formats:

with

TOKEN

and

AREA

(for

IOPCB

only)

and

without

TOKEN

and

AREA

(for

IOPCB

or

DBPCB).

Usage

Use

the

SETS

and

ROLS

commands

to

define

multiple

points

at

which

to

preserve

the

state

of

DL/I

full-function

databases

and

to

return

to

these

points

later.

(For

example,

you

can

use

them

so

your

program

can

handle

situations

that

can

occur

when

PSB

scheduling

completes

without

all

of

the

referenced

DL/I

databases

being

available.)

Use

of

the

SETS

and

ROLS

commands

apply

only

to

DL/I

full-function

databases.

This

means

that

if

a

logical

unit

of

work

(LUW)

is

updating

types

of

recoverable

resources

other

than

full-function

databases,

for

example,

VSAM

files,

the

SETS

and

ROLS

requests

have

no

effect

on

the

non-DL/I

resources.

The

backout

points

are

not

CICS

commit

points;

they

are

intermediate

backout

points

that

apply

only

to

DBCTL

resources.

It

is

up

to

you

to

ensure

the

consistency

of

all

the

resources

involved.

You

can

use

the

ROLS

command

to

backout

to

the

state

all

full-function

databases

were

in

before

either

a

specific

SETS

or

SETU

request

or

the

most

recent

commit

point.

Examples

Example

1

EXEC

DLI

ROLS

TOKEN(token1)

AREA(data_area)

��

EXEC

DLI

ROLS

USING

PCB(expression)

TOKEN(token)

AREA(data_area)

��

ROLS

CommandIBM

Confidential

Chapter

4.

EXEC

DLI

Commands

for

an

Application

Program

77

Explanation:

In

this

example

(for

IOPCB

only),

backout

takes

place

to

the

corresponding

TOKEN,

as

specified

by

a

prior

SETS

call,

and

control

returns

to

the

application.

Example

2

EXEC

DLI

ROLS

USING

PCB(PCB5)

Explanation:

In

this

example,

for

IOPCB

or

DBPCB,

backout

takes

place

to

the

prior

sync

point

and

the

application

is

pseudo-abended

with

a

U3033,

status

code.

Control

does

not

return

to

the

application.

In

this

example,

PCB5

is

the

number

of

a

DB

PCB

that

has

received

a

'data

unavailable'

status

code.

This

command

results

in

the

same

action

that

would

have

occurred

had

the

program

not

issued

an

ACCEPT

STATUSGROUPA

command.

(See

Chapter

8,

“Data

Availability

Enhancements,”

on

page

109.)

Example

3

EXEC

DLI

ROLS

Explanation:

In

this

example,

for

IOPCB

or

DBPCB,

backout

takes

place

to

the

prior

sync

point

and

the

application

is

pseudo-abended

with

a

U3033,

provided

the

previous

reference

to

that

PCB

gave

an

unavailable

status

code.

Control

does

not

return

to

the

application.

Restrictions

The

following

restrictions

apply

to

the

ROLS

command:

v

To

use

this

command

you

must

first

define

an

I/O

PCB

for

your

program.

v

You

cannot

reestablish

position

in

the

midst

of

nonunique

keys

or

nonkeyed

segments.

v

You

cannot

use

this

command

when

the

system

log

is

stored

on

direct

access

storage

and

dynamic

backout

has

been

specified.

You

must

also

specify

BKO=Y

in

the

parm

field

of

your

JCL

when

you

execute

the

program.

SETS

Command

The

Set

a

Backout

Point

(SETS)

command

is

used

to

define

points

in

your

application

at

which

to

preserve

the

state

of

the

DL/I

databases

before

initiating

a

set

of

DL/I

requests

to

perform

a

function.

Your

application

can

issue

a

ROLS

command

later

if

it

cannot

complete

the

function.

Format

Options

TOKEN(mytoken)

A

4-byte

token

associated

with

the

current

processing

point.

AREA(data_area)

The

name

of

the

area

to

be

restored

to

the

program

when

a

SETS

command

is

��

EXEC

DLI

SETS

TOKEN(mytoken)

AREA(data_area)

��

ROLS

Command IBM

Confidential

78

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

issued.

The

first

2

bytes

of

the

data-area

field

contain

the

length

of

the

data-area,

including

the

length

itself.

The

second

2

bytes

must

be

set

to

X'0000'.

Usage

You

can

use

the

SETS

command

to

define

multiple

points

at

which

to

preserve

the

state

of

the

DL/I

databases

and

to

return

to

these

points

later.

For

example,

you

can

use

the

SETS

command

to

allow

your

program

to

handle

situations

that

can

occur

when

PSB

scheduling

completed

without

all

of

the

referenced

DL/I

databases

being

available.

The

SETS

command

applies

only

to

DL/I

full-function

databases.

If

a

logical

unit

of

work

(LUW)

is

updating

types

of

recoverable

resources

other

than

full-function

databases,

for

example

VSAM

files,

the

SETS

command

has

no

effect

on

the

non-DL/I

resources.

The

backout

points

are

not

CICS

commit

points;

they

are

intermediate

backout

points

that

apply

only

to

DBCTL

resources.

It

is

up

to

you

to

ensure

the

consistency

of

all

the

resources

involved.

Example

EXEC

DLI

SETS

TOKEN(mytoken)

AREA(data_area)

Explanation

This

example

shows

how

to

specify

the

SETS

command.

Restrictions

The

following

restrictions

apply

to

the

SETS

command:

v

To

use

this

command

you

must

first

define

an

I/O

PCB

for

your

program.

v

You

cannot

reestablish

position

in

the

midst

of

nonunique

keys

or

nonkeyed

segments.

v

In

batch,

you

can

only

use

this

command

when

the

system

log

is

stored

on

direct

access

storage

and

dynamic

backout

has

been

specified.

You

must

also

specify

BKO=Y

in

the

parm

field

of

your

JCL

when

you

execute

the

program.

v

It

is

rejected

when

the

PSB

contains

a

DEDB

or

MSDB

PCB,

or

when

the

call

is

made

to

a

DB2®

database.

v

It

is

valid,

but

not

functional,

if

unsupported

PCBs

exist

in

the

PSB

or

if

the

program

uses

an

external

subsystem.

SETU

Command

The

Set

a

Backout

Point

Unconditionally

(SETU)

command

is

identical

to

the

SETS

command

except

that

it

does

not

get

rejected

if

unsupported

PCBs

are

in

the

PSB

or

if

the

program

uses

an

external

subsystem.

Format

��

EXEC

DLI

SETU

TOKEN(mytoken)

AREA(data_area)

��

SETS

CommandIBM

Confidential

Chapter

4.

EXEC

DLI

Commands

for

an

Application

Program

79

Options

TOKEN(mytoken)

A

4-byte

token

associated

with

the

current

processing

point.

AREA(data_area)

The

name

of

the

area

to

be

restored

to

the

program

when

a

SETU

command

is

issued.

The

first

2

bytes

of

the

data-area

field

contain

the

length

of

the

data-area,

including

the

length

itself.

The

second

2

bytes

must

be

set

to

X'0000'.

Usage

You

can

use

the

SETU

command

to

define

multiple

points

at

which

to

preserve

the

state

of

the

DL/I

databases

and

to

return

to

these

points

later.

For

example,

you

can

use

the

SETU

command

to

allow

your

program

to

handle

situations

that

can

occur

when

PSB

scheduling

completed

without

all

of

the

referenced

DL/I

databases

being

available.

The

SETU

command

applies

only

to

DL/I

full-function

data

bases.

If

a

logical

unit

of

work

(LUW)

is

updating

types

of

recoverable

resources

other

than

full-function

databases,

such

as

VSAM

files,

the

SETU

command

has

no

effect

on

the

non-DL/I

resources.

The

backout

points

are

not

CICS

commit

points;

they

are

intermediate

backout

points

that

apply

only

to

DBCTL

resources.

It

is

up

to

you

to

ensure

the

consistency

of

all

the

resources

involved.

Example

EXEC

DLI

SETU

TOKEN(mytoken)

AREA(data_area)

Explanation

This

example

shows

how

to

specify

the

SETU

command.

Restrictions

The

following

restrictions

apply

to

the

SETU

command:

v

You

cannot

use

this

command

in

a

CICS

program.

v

To

use

this

command

you

must

first

define

an

I/O

PCB

for

your

program.

v

You

cannot

reestablish

position

in

the

midst

of

nonunique

keys

or

nonkeyed

segments.

v

You

cannot

use

this

command

when

the

system

log

is

stored

on

direct

access

storage

and

dynamic

backout

has

been

specified.

You

must

also

specify

BKO=Y

in

the

parm

field

of

your

JCL

when

you

execute

the

program.

STAT

Command

This

section

contains

programming

interface

information.

The

Statistics

(STAT)

command

is

used

to

obtain

IMS

database

statistics

that

you

can

use

in

debugging

your

program.

SETU

Command IBM

Confidential

80

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

Format

Options

USING

PCB(expression)

Specifies

the

DB

PCB

you

want

to

use.

Its

argument

can

be

any

expression

that

converts

to

the

integer

data

type;

you

can

specify

either

a

number

or

a

reference

to

a

halfword

in

your

program

containing

a

number.

INTO(area)

Specifies

an

area

into

which

the

data

is

read.

LENGTH(expression)

Specifies

the

length

of

an

area.

VSAM/NONVSAM

Specifies

database

type.

FORMATTED/UNFORMATTED/SUMMARY

Specifies

type

of

output.

Usage

The

STAT

command

is

described

in

IMS

Version

9:

Application

Programming:

Design

Guide.

Examples

For

examples

of

the

STAT

command,

see

IMS

Version

9:

Application

Programming:

Database

Manager.

SYMCHKP

Command

The

Symbolic

Checkpoint

(SYMCHKP)

command

is

used

to

issue

a

symbolic

checkpoint

and

to

end

a

logical

unit

of

work.

Format

��

EXEC

DLI

STATISTICS

STAT

USING

PCB(expression)

INTO(area)

�

�

LENGTH(expression)

VSAM

NONVSAM

FORMATTED

UNFORMATTED

SUMMARY

��

��

EXEC

DLI

SYMCHKP

ID(chkpid)

ID('literal')

�

�

�

AREA#(area#)LENGTH#(expression#)

��

STAT

CommandIBM

Confidential

Chapter

4.

EXEC

DLI

Commands

for

an

Application

Program

81

Options

ID(chkpid)

Is

the

name

of

an

8-byte

area

in

your

program

containing

the

checkpoint

ID.

If

you

are

using

PL/I,

specify

this

parameter

as

a

pointer

to

a

major

structure,

an

array,

or

a

character

string.

ID('literal')

Is

the

8-byte

checkpoint

ID,

enclosed

in

quotation

marks.

AREA#(area#)

Specifies

the

areas

in

your

program

you

want

IMS

to

checkpoint.

You

do

not

need

to

specify

any

area

to

checkpoint;

however,

you

cannot

specify

more

than

seven

areas.

If

you

specify

more

than

one

area,

you

must

include

all

intervening

areas.

For

example,

if

you

specify

AREA3,

you

must

also

specify

AREA1

and

AREA2.

The

areas

you

specify

using

the

SYMCHKP

command

must

be

the

same

and

in

the

areas

specified

in

the

XRST

command.

LENGTH#(expression#)

Can

be

any

expression

in

the

host

language

that

converts

to

the

integer

data

type;

you

can

specify

either

a

number

or

a

reference

to

a

halfword

containing

a

number.

For

IBM

COBOL

for

z/OS

&

VM

(or

VS

COBOL

II),

PL/I,

or

assembler

language

programs,

LENGTH1

to

LENGTH7

are

optional.

For

COBOL

programs

that

are

not

compiled

with

the

IBM

COBOL

for

z/OS

&

VM

(or

VS

COBOL

II)

compiler,

LENGTHx

(where

x

is

1

to

7)

is

required

for

each

AREAx

(where

x

is

1

to

7)

that

you

specify.

Usage

The

two

kinds

of

commands

that

allow

you

to

make

checkpoints

are:

the

CHKP,

or

basic

Checkpoint

command,

and

the

SYMCHKP,

or

Symbolic

Checkpoint

command.

Batch

programs

can

use

either

the

symbolic

or

the

basic

command.

Both

checkpoint

commands

make

it

possible

for

you

to

commit

your

program’s

changes

to

the

database

and

to

establish

places

from

which

the

program

can

be

restarted,

should

it

terminate

abnormally.

You

must

not

use

the

CHKPT=EOV

parameter

on

any

DD

statement

to

take

an

IMS

checkpoint.

Refer

to

IMS

Version

9:

Application

Programming:

Design

Guidefor

an

explanation

of

when

and

why

you

should

issue

checkpoints

in

your

program.

Both

commands

cause

a

loss

of

database

position

at

the

time

the

command

is

issued.

Position

must

be

reestablished

by

a

GU

command

or

other

method

of

establishing

position.

In

addition

to

committing

your

program’s

changes

to

the

database

and

establishing

places

from

which

your

program

can

be

restarted,

the

Symbolic

Checkpoint

command:

v

Works

with

the

Extended

Restart

(XRST)

command

to

restart

your

program

if

it

terminates

abnormally.

v

Can

save

as

many

as

seven

data

areas

in

your

program,

which

are

restored

when

your

program

is

restarted.

You

can

save

variables,

counters,

and

status

information.

SYMCHKP

Command IBM

Confidential

82

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

Example

EXEC

DLI

SYMCHKP

ID(chkpid)

AREA1(area1)

LENGTH1(expression1)

...

AREA7(area7)

LENGTH7(expression7)

Explanation

This

example

shows

how

to

issue

a

symbolic

checkpoint

and

to

end

a

logical

unit

of

work

with

a

SYMPCHKP

command.

Restrictions

The

following

restrictions

apply

to

the

SYMCHKP

command:

v

If

you

issue

this

command,

you

must

also

issue

the

XRST

command.

v

You

cannot

use

this

command

in

a

CICS

program.

v

To

use

the

SYMCHKP

command

you

must

first

define

an

I/O

PCB

for

your

program.

v

You

cannot

reestablish

position

in

the

midst

of

nonunique

keys

or

nonkeyed

segments.

v

The

areas

you

specify

using

the

SYMCHKP

command

must

be

the

same,

and

in

the

same

order,

as

the

areas

specified

in

the

XRST

command.

v

If

you

specify

more

than

one

area,

you

must

specify

all

intervening

areas.

For

example,

if

you

specify

AREA3,

you

must

also

specify

AREA1

and

AREA2.

v

When

specifying

expression1

with

a

COBOL

program

that

is

not

compiled

with

the

IBM

COBOL

for

z/OS

&

VM

(or

the

VS

COBOL

II)

compiler,

LENGTHx

(where

x

is

1

to

7)

is

required

for

each

AREAx

(where

x

is

1

to

7)

that

you

specify.

XRST

Command

The

Extended

Restart

(XRST)

command

is

used

to

issue

an

extended

restart,

and

to

perform

a

normal

start

or

an

extended

restart

from

a

checkpoint

ID

or

time/date

stamp.

If

you

use

Symbolic

Checkpoint

commands

in

your

program,

you

must

use

the

XRST

command.

Format

Options

MAXLENGTH(expression)

Specifies

the

length

of

an

area

from

which

a

program

is

restarted.

This

parameter

is

the

longest

segment

in

the

PSB,

or

of

all

the

segments

in

a

path,

if

��

EXEC

DLI

XRST

MAXLENGTH(expression)

ID(chkpid)

ID('literal')

�

�

�

AREA#(area#)LENGTH#(expression#)

��

SYMCHKP

CommandIBM

Confidential

Chapter

4.

EXEC

DLI

Commands

for

an

Application

Program

83

you

use

path

commands

in

your

program.

It

can

be

any

expression

in

the

host

language

that

converts

to

the

integer

data

type.

You

can

specify

either

a

number

or

a

reference

to

a

halfword

containing

a

number.

MAXLENGTH

is

not

required,

and

defaults

to

512

bytes.

ID(chkpid)

ID('literal')

This

parameter

is

either

the

name

of

a

30-byte

area

in

your

program

or

a

30-byte

checkpoint

ID,

enclosed

in

quotes.

This

parameter

is

optional;

you

can

specify

a

checkpoint

ID

or

a

time/date

stamp

in

the

parm

field

of

your

JCL

instead.

If

you

specify

both,

IMS

uses

the

value

in

the

parm

field

of

the

EXEC

statement.

If

you

are

starting

your

program

normally,

do

not

specify

a

checkpoint

ID,

or

ensure

that

the

field

pointed

to

by

the

chkpid

contains

blanks.

If

your

program

is

restarted

and

the

CKPTID=

value

in

the

PARM

field

of

the

EXEC

statement

is

not

used,

then

the

rightmost

bytes

beyond

the

checkpoint

ID

being

used

in

the

I/O

area

must

be

set

to

blanks.

You

can

issue

a

XRST

command

after

supplying

a

time/date

stamp

of

IIIIDDDHHMMSST,

or

from

a

specific

checkpoint

in

your

program

by

supplying

a

checkpoint

ID.

IIIIDDD

is

the

region

ID

and

day;

HHMMSST

is

the

actual

time

in

hours,

minutes,

seconds,

and

tenths

of

seconds.

The

system

message

DFS0540I

supplies

the

checkpoint

ID

and

time/date

stamp.

If

you

are

using

PL/I,

specify

chkpid

as

a

pointer

to

a

major

structure,

an

array,

or

a

character

string.

AREA#(area#)

Area#

specifies

the

first

area

in

your

program

you

want

to

restore.

You

can

specify

up

to

seven

areas.

You

are

not

required

to

specify

any

areas;

however,

if

you

specify

more

than

one

area,

you

must

include

all

intervening

areas.

For

example,

if

you

specify

AREA3,

you

must

also

specify

AREA1,

and

AREA2.

The

areas

you

specify

on

the

XRST

command

must

be

the

same—and

in

the

same

order—as

the

areas

you

specify

on

the

SYMCHKP

command.

When

you

restart

the

program,

only

the

areas

you

specified

in

the

SYMCHKP

command

are

restored.

LENGTH#(expression#)

Specifies

the

length

of

an

area

from

which

a

program

is

restarted.

Its

argument

can

be

any

expression

in

the

host

language

that

converts

to

the

integer

data

type;

you

can

specify

either

a

number

or

a

reference

to

a

halfword

containing

a

number.

For

IBM

COBOL

for

z/OS

&

VM

(or

VS

COBOL

II),

PL/I,

or

assembler

language

programs

LENGTH1

to

LENGTH7

are

optional.

For

COBOL

programs

that

are

not

complied

with

the

IBM

COBOL

for

z/OS

&

VM

(or

VS

COBOL

II)

compiler,

LENGTHx

(where

x

is

1

to

7)

is

required

for

each

AREAx

(where

x

is

1

to

7)

that

you

specify.

Each

qualification

statement

consists

of:

v

The

name

of

a

field

in

a

segment

v

The

relational

operator,

which

indicates

how

you

want

the

two

values

compared

v

The

name

of

a

data

area

in

your

program

containing

the

value

that

is

compared

against

the

value

of

the

field

Usage

If

your

programs

issues

Symbolic

Checkpoint

commands

it

must

also

issue

the

Extended

Restart

(XRST)

command.

The

XRST

is

issued

once,

at

the

start

of

your

program.

You

can

use

the

XRST

command

to

start

your

program

normally,

or

to

extend

restart

it

in

case

of

an

abnormal

termination.

XRST

Command IBM

Confidential

84

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

You

can

extend

restart

your

program

from

a

specific

checkpoint

ID,

or

a

time/date

stamp.

Because

the

XRST

attempts

to

reposition

the

database,

your

program

also

needs

to

check

for

correct

position.

After

issuing

the

XRST

command,

you

should

test

the

DIBSEGM

field

in

the

DIB.

After

a

normal

start,

the

DIBSEGM

field

should

contain

blanks.

At

the

completion

of

an

Extended

Restart,

the

DIBSEGM

field

will

contain

a

checkpoint

ID.

Normally,

XRST

will

return

the

8-byte

symbolic

checkpoint

ID,

followed

by

4

blanks.

If

the

8-byte

ID

consists

of

all

blanks,

then

XRST

will

return

the

14-byte

timestamp

ID.

The

only

successful

status

code

for

an

XRST

command

is

a

blank

status

code.

If

DL/I

detects

any

error

while

processing

the

XRST

command,

your

program

abends.

Example

EXEC

DLI

XRST

MAXLENGTH(expression)

ID(chkpid)

AREA1(area1)

LENGTH1(expression1)

...

AREA7(area7)

LENGTH7(expression7)

Explanation

This

example

shows

how

to

specify

the

XRST

command.

Restrictions

The

following

restrictions

apply

to

the

XRST

command:

v

You

cannot

use

this

command

in

a

CICS

program.

v

To

use

this

command

you

must

first

define

an

I/O

PCB

for

your

program.

v

You

cannot

reestablish

position

in

the

midst

of

nonunique

keys

or

nonkeyed

segments.

v

You

cannot

use

this

command

unless

the

system

log

is

stored

on

direct

access

storage

and

dynamic

backout

has

been

specified.

You

must

also

specify

BKO=Y

in

the

parm

field

of

your

JCL

when

you

execute

the

program.

XRST

CommandIBM

Confidential

Chapter

4.

EXEC

DLI

Commands

for

an

Application

Program

85

XRST

Command IBM

Confidential

86

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

Chapter

5.

Recovering

Databases

and

Maintaining

Database

Integrity

This

chapter

describes

the

commands

you

can

use

to

help

recover

data

accessed

by

your

program

and

maintain

data

integrity:

v

The

Basic

Checkpoint

command,

CHKP,

which

you

can

use

to

issue

checkpoints

from

a

batch

or

BMP

program

v

The

Symbolic

Checkpoint

command,

SYMCHKP,

which

you

can

use

to

issue

checkpoints

from

a

batch

or

BMP

program

and

to

specify

data

areas

that

can

be

restored

when

you

restart

your

program

v

The

Extended

Restart

command,

XRST,

which

you

can

use

along

with

symbolic

checkpoints

to

start

or

restart

your

batch

or

BMP

program

v

The

rollback

commands,

ROLL

and

ROLB,

which

you

can

use

to

dynamically

back

out

database

changes

from

a

batch

or

BMP

program

v

The

managing-backout-points

commands,

SETS

and

ROLS,

which

you

can

use

to

set

multiple

backout

points

and

then

return

to

these

points

later

v

The

Dequeue

command,

DEQ,

which

releases

previously

reserved

segments

To

use

any

of

the

commands,

you

must

have

defined

an

I/O

PCB

for

your

program,

except

for

the

DEDB

DEQ

calls,

which

are

issued

against

a

DEDB

PCB.

Issuing

Checkpoints

in

a

Batch

or

BMP

Program

The

two

kinds

of

commands

that

allow

you

to

make

checkpoints

are:

the

CHKP,

or

Basic

Checkpoint

command,

and

the

SYMCHKP,

or

Symbolic

Checkpoint

command.

Batch

programs

can

use

either

the

Symbolic

Checkpoint

or

the

Basic

Checkpoint

command.

Both

checkpoint

commands

make

it

possible

for

you

to

commit

your

program’s

changes

to

the

database

and

to

establish

places

from

which

the

batch

or

BMP

program

can

be

restarted,

in

cases

of

abnormal

termination.

Requirement:

You

must

not

use

the

CHKPT=EOV

parameter

on

any

DD

statement

to

take

an

IMS

checkpoint.

Because

both

checkpoint

commands

cause

a

loss

of

database

position

at

the

time

the

command

is

issued,

you

must

reestablish

position

with

a

GU

command

or

other

methods.

You

cannot

reestablish

position

in

the

midst

of

nonunique

keys

or

nonkeyed

segments.

Issuing

the

CHKP

Command

When

you

issue

a

CHKP

command,

you

must

provide

the

code

for

restarting

your

program

and

you

must

specify

the

ID

for

the

checkpoint.

You

can

supply

either

the

name

of

a

data

area

in

your

program

that

contains

the

ID,

or

you

can

supply

the

actual

ID,

enclosed

in

single

quotes.

For

example,

either

of

the

following

commands

is

valid:

EXEC

DLI

CHKP

ID(chkpid);

EXEC

DLI

CHKP

ID('CHKP0007');

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

87

Issuing

the

SYMCHKP

Command

The

SYMCHKP

command

in

batch

and

BMP

programs:

v

Works

with

the

Extended

Restart

(XRST)

command

to

restart

your

program

if

it

terminates

abnormally.

which

are

restored

when

your

program

is

restarted.

You

can

save

variables,

counters,

and

status

information.

For

examples

of

how

to

specify

the

SYMCHKP

command,

see

“SYMCHKP

Command”

on

page

81.

Restarting

Your

Program

and

Checking

for

Position

Programs

that

issue

Symbolic

Checkpoint

commands

must

also

issue

the

Extended

Restart

(XRST)

command.

You

must

issue

XRST

once,

as

the

first

command

in

the

program.

You

can

use

the

XRST

command

to

start

your

program

normally,

or

to

restart

it

in

case

of

an

abnormal

termination.

You

can

restart

your

program

from

one

of

the

following:

v

A

specific

checkpoint

ID

v

A

time/date

stamp

Because

the

XRST

command

attempts

to

reposition

the

database,

your

program

also

needs

to

check

for

correct

position.

Backing

Out

Database

Updates

Dynamically:

The

ROLL

and

ROLB

Commands

When

a

batch

program

determines

that

some

of

its

processing

is

invalid,

the

ROLL

and

ROLB

commands

make

it

possible

for

the

program

to

remove

the

effects

of

its

inaccurate

processing.

You

can

use

both

ROLL

and

ROLB

in

batch

programs.

You

can

only

use

the

ROLB

command

in

batch

programs

if

the

system

log

is

stored

on

direct

access

storage

and

if

you

have

specified

BKO=Y

in

the

parm

field

of

your

JCL.

Issuing

either

of

these

commands

causes

DL/I

to

back

out

any

changes

your

program

has

made

to

the

database

since

its

last

checkpoint,

or

since

the

beginning

of

the

program

if

your

program

has

not

issued

a

checkpoint.

Using

Intermediate

Backout

Points:

The

SETS

and

ROLS

Commands

Use

the

SETS

and

ROLS

commands

to

define

multiple

points

at

which

to

preserve

the

state

of

DL/I

full-function

databases

and

to

return

to

these

points

later.

(For

example,

you

can

use

them

to

allow

your

program

to

handle

situations

that

can

occur

when

PSB

scheduling

complete

without

all

of

the

referenced

DL/I

databases

being

available.)

The

SETS

and

ROLS

commands

apply

only

to

DL/I

full-function

databases.

Therefore,

if

a

logical

unit

of

work

(LUW)

is

updating

recoverable

resources

other

than

full-function

databases

(VSAM

files,

for

example),

the

SETS

and

ROLS

requests

have

no

effect

on

the

non-DL/I

resources.

The

backout

points

are

not

CICS

commit

points;

they

are

intermediate

backout

points

that

apply

only

to

DBCTL

resources.

Your

program

must

ensure

the

consistency

of

all

the

resources

involved.

Issuing

Checkpoints IBM

Confidential

88

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

SETS

Command

Before

initiating

a

set

of

DL/I

requests

to

perform

a

function,

you

can

use

a

SETS

command

to

define

points

in

your

application

at

which

to

preserve

the

state

of

DL/I

databases.

Your

application

can

issue

a

ROLS

command

later

if

it

cannot

complete

the

function.

ROLS

Command

You

can

use

the

ROLS

command

to

back

out

to

the

state

all

full-function

databases

were

in

before

either

a

specific

SETS

request

or

the

most

recent

commit

point.

Intermediate

Backout

PointsIBM

Confidential

Chapter

5.

Recovering

Databases

and

Maintaining

Database

Integrity

89

Intermediate

Backout

Points IBM

Confidential

90

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

Chapter

6.

Processing

Fast

Path

Databases

Using

EXEC

DLI

commands

under

DBCTL,

a

CICS

program

or

a

batch-oriented

BMP

can

access

DEDBs.

Parameters

allow

your

program

to

use

facilities

of

the

DEDBs

such

as

subset

pointers.

A

DEDB

contains

a

root

segment

and

as

many

as

127

types

of

dependent

segment.

One

of

these

types

can

be

a

sequential

dependent;

the

other

126

are

direct

dependents.

Sequential

dependent

segments

are

stored

in

chronological

order.

Direct

dependent

segments

are

stored

hierarchically.

DEDBs

provide

high

data

availability.

Each

DEDB

can

be

partitioned,

or

divided

into

multiple

“areas.”

Each

area

contains

a

different

set

of

database

records.

In

addition,

you

can

make

up

to

seven

copies

of

each

area

data

set.

If

an

error

exists

in

one

copy

of

an

area,

application

programs

can

access

the

data

by

using

another

copy

of

that

area.

This

is

transparent

to

the

application

program.

When

an

error

occurs

to

data

in

a

DEDB,

IMS

does

not

stop

the

database.

It

makes

the

data

in

error

unavailable,

but

continues

to

schedule

and

process

application

programs.

Programs

that

do

not

need

the

data

in

error

are

unaffected.

DEDBs

can

be

shared

among

application

programs

in

separate

IMS

systems.

Sharing

DEDBs

is

virtually

the

same

as

sharing

full-function

databases,

and

most

of

the

same

rules

apply.

IMS

systems

can

share

DEDBs

at

the

area

level

(instead

of

at

the

database

level

as

with

full-function

databases),

or

at

the

block

level.

Processing

DEDBs

with

Subset

Pointers

Subset

pointers

and

the

options

you

use

with

them

are

optimization

tools

that

significantly

improve

the

efficiency

of

your

program

when

you

need

to

process

long

segment

chains.

Subset

pointers

divide

a

chain

of

segment

occurrences

under

the

same

parent

into

two

or

more

groups,

or

subsets.

You

can

define

as

many

as

eight

subset

pointers

for

any

segment

type.

You

then

define

the

subset

pointers

from

within

an

application

program

(see

“Using

Subset

Pointers”

on

page

94).

Each

subset

pointer

points

to

the

start

of

a

new

subset.

For

example,

in

Figure

4

on

page

92

suppose

you

defined

one

subset

pointer

that

divided

the

last

three

segment

occurrences

from

the

first

four.

Your

program

can

then

refer

to

that

subset

pointer

through

options,

and

directly

retrieve

the

last

three

segment

occurrences.

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

91

You

can

use

subset

pointers

at

any

level

of

the

database

hierarchy,

except

at

the

root

level.

Subset

pointers

used

for

the

root

level

are

ignored.

Figure

5

and

Figure

6

on

page

93

show

some

of

the

ways

you

can

set

subset

pointers.

Subset

pointers

are

independent

of

one

another,

which

means

that

you

can

set

one

or

more

pointers

to

any

segment

in

the

chain.

For

example,

you

can

set

more

than

one

subset

pointer

to

a

segment,

as

shown

in

Figure

5.

Alternatively,

you

can

define

a

one-to-one

relationship

between

the

pointers

and

the

segments,

as

shown

in

Figure

6

where

each

segment

occurrence

has

one

subset

pointer.

Figure

4.

Processing

a

Long

Chain

of

Segment

Occurrences

with

Subset

Pointers

Figure

5.

Examples

of

Setting

Multiple

Subset

Pointers

Processing

DEDBs

with

Subset

Pointers IBM

Confidential

92

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

Figure

7

on

page

93

shows

how

the

use

of

subset

pointers

divides

a

chain

of

segment

occurrences

under

the

same

parent

into

subsets.

Each

subset

ends

with

the

last

segment

in

the

entire

chain.

For

example,

the

last

segment

in

the

subset

defined

by

subset

pointer

1

is

B7.

Before

You

Use

Subset

Pointers

For

your

program

to

use

subset

pointers,

the

pointers

must

be

defined

in

the

DBD

for

the

DEDB,

and

in

your

program’s

PSB:

v

In

the

DBD,

you

specify

the

number

of

pointers

for

a

segment

chain.

You

can

specify

as

many

as

eight

pointers

for

any

segment

chain.

v

In

the

PSB,

you

specify

which

pointers

your

program

uses;

you

define

this

on

the

SENSEG

statement.

(Each

pointer

is

defined

as

an

integer

from

1

to

8.)

You

also

specify

on

the

SENSEG

statement

whether

your

program

can

set

the

pointers

it

Figure

6.

More

Examples

of

Setting

Subset

Pointers

Figure

7.

How

Subset

Pointers

Divide

a

Chain

into

Subsets

Processing

DEDBs

with

Subset

PointersIBM

Confidential

Chapter

6.

Processing

Fast

Path

Databases

93

uses.

If

your

program

has

read-only

sensitivity,

it

cannot

set

pointers,

but

can

only

retrieve

segments

using

subset

pointers

already

set.

If

your

program

has

update

sensitivity,

it

can

update

subset

pointers

by

using

the

SET,

SETCOND,

MOVENEXT,

and

SETZERO

options.

After

the

pointers

are

defined

in

the

DBD

and

the

PSB,

an

application

program

can

set

the

pointers

to

segments

in

a

chain.

When

an

application

program

finishes

executing,

the

subset

pointers

used

by

that

program

remain

as

they

were

set

by

the

program

and

are

not

reset.

Designating

Subset

Pointers

You

Want

to

Use

To

use

subset

pointers

in

your

program,

you

must

know

the

numbers

for

the

pointers

as

they

were

defined

in

the

PSB.

Then,

when

you

use

the

subset

pointer

options,

you

specify

the

number

for

each

subset

pointer

you

want

to

use

immediately

after

the

option;

for

example,

you

would

use

P3

to

indicate

that

you

want

to

retrieve

the

first

segment

occurrence

in

the

subset

defined

by

subset

pointer

3.

No

default

exists,

so

if

you

do

not

include

a

number

between

1

and

8,

IMS

considers

your

qualification

statement

invalid

and

returns

an

AJ

status

code

to

your

program.

Using

Subset

Pointers

To

take

advantage

of

subsets,

application

programs

use

five

options.

GETFIRST

Allows

you

to

retrieve

the

first

segment

in

a

subset.

SETZERO

Sets

a

subset

pointer

to

zero.

MOVENEXT

Sets

a

subset

pointer

to

the

segment

following

the

current

segment.

Current

position

is

at

the

current

segment.

SET

Unconditionally

sets

a

subset

pointer

to

the

current

segment.

Current

position

is

at

the

current

segment.

SETCOND

Conditionally

sets

a

subset

pointer

to

the

current

segment.

Current

position

is

at

the

current

segment.

Our

Sample

Application

The

examples

in

this

chapter

are

based

on

a

sample

application,

the

recording

of

banking

transactions

for

a

passbook

account.

The

transactions

are

written

to

a

database

as

either

posted

or

unposted,

depending

on

whether

they

were

posted

to

the

customer’s

passbook.

For

example,

when

Bob

Emery

does

business

with

the

bank,

but

forgets

to

bring

in

his

passbook,

an

application

program

writes

the

transactions

to

the

database

as

unposted.

The

application

program

sets

a

subset

pointer

to

the

first

unposted

transaction,

so

it

can

be

easily

accessed

later.

The

next

time

Bob

remembers

to

bring

in

his

passbook,

a

program

posts

the

transactions.

The

program

can

directly

retrieve

the

first

unposted

transaction

using

the

subset

pointer

that

was

previously

set.

After

the

program

has

posted

the

transactions,

it

sets

the

subset

pointer

to

zero;

an

application

program

that

subsequently

updates

the

database

can

determine

that

no

unposted

transactions

exist.

Figure

9

on

page

95

summarizes

the

processing

performed

when

the

passbook

is

unavailable

and

when

it

is

available.

Processing

DEDBs

with

Subset

Pointers IBM

Confidential

94

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

When

the

passbook

is

available,

an

application

program

adds

the

unposted

transactions

to

the

database,

setting

subset

pointer

1

to

the

first

unposted

transaction.

When

the

passbook

is

available,

an

application

program

retrieves

the

first

unposted

transaction

using

the

program,

then

posts

all

unposted

transactions,

setting

subset

pointer

1

to

zero.

Retrieving

the

First

Segment

in

the

Subset

with

the

GETFIRST

Option

To

retrieve

the

first

segment

occurrence

in

the

subset,

your

program

issues

a

Get

command

with

the

GETFIRST

option.

The

GETFIRST

option

does

not

set

or

move

the

pointer,

but

indicates

to

IMS

that

you

want

to

establish

position

on

the

first

Figure

8.

Processing

Performed

for

the

Sample

Passbook

Example

when

the

Passbook

is

Unavailable

Figure

9.

Processing

Performed

for

the

Sample

Passbook

Example

when

the

Passbook

is

Available

Processing

DEDBs

with

Subset

PointersIBM

Confidential

Chapter

6.

Processing

Fast

Path

Databases

95

1
1
1

1
1
1

segment

occurrence

in

the

subset.

The

GETFIRST

option

is

like

the

FIRST

option,

except

that

the

GETFIRST

option

applies

to

the

subset

instead

of

to

the

entire

segment

chain.

Using

the

passbook

account

example

described

earlier,

say

that

Bob

Emery

visits

the

bank,

bringing

his

passbook,

and

you

want

to

post

all

the

unposted

transactions.

Because

subset

pointer

1

was

previously

set

to

the

first

unposted

transaction,

your

program

can

use

the

following

command

to

retrieve

that

transaction:

EXEC

DLI

GU

SEGMENT(A)

WHERE(AKEY

=

’A1’)

SEGMENT(B)

INTO(BAREA)

GETFIRST(’1’);

As

shown

by

Figure

10,

this

command

retrieves

segment

B5.

To

continue

processing

segments

in

the

chain,

you

can

issue

Get

Next

commands,

as

you

would

if

you

were

not

using

subset

pointers.

If

the

subset

does

not

exist

(subset

pointer

1

has

been

set

to

zero),

IMS

returns

a

GE

status

code,

and

your

position

in

the

database

immediately

follows

the

last

segment

in

the

chain.

Using

the

passbook

example,

the

GE

status

code

indicates

that

no

unposted

transactions

exist.

You

can

specify

only

one

GETFIRST

option

per

qualification

statement;

if

you

use

more

than

one

GETFIRST

in

a

qualification

statement,

IMS

returns

an

AJ

status

code

to

your

program.

The

rules

for

using

the

GETFIRST

option

are:

1.

You

can

use

GETFIRST

with

all

options

except:

v

FIRST

v

LOCKCLASS

v

LOCKED

2.

Other

options

take

effect

after

the

GETFIRST

option

has,

and

position

has

been

established

on

the

first

segment

in

the

subset.

3.

If

you

use

GETFIRST

with

LAST,

the

last

segment

in

the

segment

chain

is

retrieved.

Figure

10.

Retrieving

the

First

Segment

in

a

Chain

of

Segments

Processing

DEDBs

with

Subset

Pointers IBM

Confidential

96

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

4.

If

the

subset

pointer

specified

with

GETFIRST

is

not

set,

IMS

returns

a

GE

status

code,

not

the

last

segment

in

the

segment

chain.

See

“Setting

the

Subset

Pointers

with

the

SETZERO,

MOVENEXT,

SET,

and

SETCOND

Options”

5.

Do

not

use

GETFIRST

with

FIRST.

This

causes

you

to

receive

an

AJ

status

code.

6.

GETFIRST

overrides

all

insert

rules,

including

LAST.

Setting

the

Subset

Pointers

with

the

SETZERO,

MOVENEXT,

SET,

and

SETCOND

Options

The

SETZERO,

MOVENEXT,

SET,

and

SETCOND

options

allow

you

to

redefine

subsets

by

modifying

the

subset

pointers.

Before

your

program

can

set

a

subset

pointer,

it

must

establish

a

position

in

the

database.

A

command

must

be

fully

satisfied

before

a

subset

pointer

is

set.

The

segment

a

pointer

is

set

to

depends

on

your

current

position

at

the

completion

of

the

command.

If

a

command

to

retrieve

a

segment

is

not

completely

satisfied,

and

a

position

is

not

established,

the

subset

pointers

remain

as

they

were

before

the

command

was

issued.

v

Setting

the

subset

pointer

to

zero:

SETZERO

The

SETZERO

option

sets

the

value

of

the

subset

pointer

to

zero.

After

your

program

issues

a

command

with

the

SETZERO

option,

the

pointer

is

no

longer

set

to

a

segment;

the

subset

defined

by

that

pointer

no

longer

exists.

(IMS

returns

a

status

code

of

GE

to

your

program

if

you

try

to

use

a

subset

pointer

having

a

value

of

zero.)

Using

the

passbook

example

described

earlier,

say

that

you

used

the

GETFIRST

option

to

retrieve

the

first

unposted

transaction.

You

would

then

process

the

chain

of

segments,

posting

the

transactions.

After

posting

the

transactions

and

inserting

any

new

ones

into

the

chain,

you

would

use

the

SETZERO

option

to

set

the

subset

pointer

to

zero

as

shown

in

the

following

command:

EXEC

DLI

ISRT

SEGMENT(A)

WHERE(AKEY

=

’A1’)

SEGMENT(B)

FROM(BAREA)

SETZERO(’1’);

After

this

command,

subset

pointer

1

would

be

set

to

zero,

indicating

to

a

program

updating

the

database

later

on

that

no

unposted

transactions

exist.

v

Moving

the

subset

pointer

forward

to

the

next

segment

after

your

current

position:

MOVENEXT

To

move

the

subset

pointer

forward

to

the

next

segment

after

your

current

position,

your

program

issues

a

command

with

the

MOVENEXT

option.

Using

the

passbook

account

example

described

earlier,

say

that

you

wanted

to

post

some

of

the

transactions,

but

not

all,

and

that

you

wanted

the

subset

pointer

to

be

set

to

the

first

unposted

transaction.

The

following

command

sets

subset

pointer

1

to

segment

B6,

as

shown

in

Figure

11

on

page

98.

EXEC

DLI

GU

SEGMENT(A)

WHERE(AKEY

=

’A1’)

SEGMENT(B)

INTO(BAREA)

GETFIRST(’1’)

MOVENEXT(’1’);

If

the

current

segment

is

the

last

in

the

chain,

and

you

use

a

MOVENEXT

option,

IMS

sets

the

pointer

to

zero.

Processing

DEDBs

with

Subset

PointersIBM

Confidential

Chapter

6.

Processing

Fast

Path

Databases

97

v

Setting

the

subset

pointer

unconditionally:

SET

You

use

the

SET

option

to

set

a

subset

pointer.

The

SET

option

sets

a

subset

pointer

unconditionally,

regardless

of

whether

or

not

it

is

already

set.

When

your

program

issues

a

command

that

includes

the

SET

option,

IMS

sets

the

pointer

to

your

current

position.

For

example,

to

retrieve

the

first

B

segment

occurrence

in

the

subset

defined

by

subset

pointer

1,

and

to

reset

pointer

1

at

the

next

B

segment

occurrence,

you

would

issue

the

following

commands:

EXEC

DLI

GU

SEGMENT(A)

WHERE(AKEY

=

’A1’)

SEGMENT(B)

INTO(BAREA)

GETFIRST(’1’);

EXEC

DLI

GN

SEGMENT(B)

INTO(BAREA)

SET(’1’);

After

you

have

issued

these

commands,

instead

of

pointing

to

segment

B5,

subset

pointer

1

points

to

segment

B6,

as

shown

in

Figure

12

on

page

99.

Figure

11.

Moving

the

Subset

Pointer

to

the

Next

Segment

after

Your

Current

Position

Processing

DEDBs

with

Subset

Pointers IBM

Confidential

98

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

v

Setting

the

subset

pointer

conditionally:

SETCOND

Your

program

uses

the

SETCOND

option

to

conditionally

set

the

subset

pointer.

The

SETCOND

option

is

similar

to

the

SET

option;

the

only

difference

is

that,

with

the

SETCOND

option,

IMS

updates

the

subset

pointer

only

if

the

subset

pointer

is

not

already

set

to

a

segment.

Using

the

passbook

example,

say

that

Bob

Emery

visits

the

bank

and

forgets

to

bring

his

passbook;

you

add

the

unposted

transactions

to

the

database.

You

want

to

set

the

pointer

to

the

first

unposted

transaction,

so

later,

when

you

post

the

transactions,

you

can

immediately

access

the

first

one.

The

following

command

sets

the

subset

pointer

to

the

transaction

you

are

inserting,

if

it

is

the

first

unposted

one:

EXEC

DLI

ISRT

SEGMENT(A)

WHERE(AKEY

=

’A1’)

SEGMENT(B)

FROM(BAREA)

SETCOND(’1’);

Figure

12.

Unconditionally

Setting

the

Subset

Pointer

to

Your

Current

Position

Processing

DEDBs

with

Subset

PointersIBM

Confidential

Chapter

6.

Processing

Fast

Path

Databases

99

As

shown

by

Figure

13,

this

command

sets

subset

pointer

1

to

segment

B5.

If

unposted

transactions

already

existed,

the

subset

pointer

is

not

changed.

Inserting

Segments

in

a

Subset

When

you

use

the

GETFIRST

option

to

insert

an

unkeyed

segment

in

a

subset,

the

new

segment

is

inserted

before

the

first

segment

occurrence

in

the

subset.

However,

the

subset

pointer

is

not

automatically

set

to

the

new

segment

occurrence.

For

example,

the

following

command

inserts

a

new

B

segment

occurrence

in

front

of

segment

B5,

but

does

not

set

subset

pointer

1

to

point

to

the

new

B

segment

occurrence:

EXEC

DLI

ISRT

SEGMENT(A)

WHERE(AKEY

=

’A1’)

SEGMENT(B)

FROM(BAREA)

GETFIRST(’1’);

To

set

subset

pointer

1

to

the

new

segment,

you

use

the

SET

option

along

with

the

GETFIRST

option,

as

shown

in

the

following

example:

EXEC

DLI

ISRT

SEGMENT(A)

WHERE(AKEY

=

’A1’)

SEGMENT(B)

FROM(BAREA)

GETFIRST(’1’)

SET

(’1’);

If

the

subset

does

not

exist

(subset

pointer

1

has

been

set

to

zero),

the

segment

is

added

to

the

end

of

the

segment

chain.

Figure

13.

Conditionally

Setting

the

Subset

Pointer

to

Your

Current

Position

Processing

DEDBs

with

Subset

Pointers IBM

Confidential

100

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

Deleting

the

Segment

Pointed

to

By

a

Subset

Pointer

If

you

delete

the

segment

pointed

to

by

a

subset

pointer,

the

subset

pointer

points

to

the

next

segment

occurrence

in

the

chain.

If

the

segment

you

delete

is

the

last

in

the

chain,

the

subset

pointer

is

set

to

zero.

Combining

Options

You

can

use

the

SET,

MOVENEXT,

and

SETCOND

options

with

other

options,

and

you

can

combine

subset

pointer

options

with

each

other,

provided

they

do

not

conflict.

For

example,

you

can

use

GETFIRST

and

SET

together,

but

you

cannot

use

SET

and

SETZERO

together

because

their

functions

conflict.

If

you

combine

options

that

conflict,

IMS

returns

an

AJ

status

code

to

your

program.

You

can

use

one

GETFIRST

option

per

qualification

statement,

and

one

update

option

(SETZERO,

MOVENEXT,

SET,

or

SETCOND)

for

each

subset

pointer.

Subset

Pointer

Status

Codes

If

you

make

an

error

in

a

qualification

statement

that

contains

subset

pointer

options,

IMS

can

return

these

status

codes

to

your

program:

AJ

The

qualification

statement

used

a

GETFIRST,

SET,

SETZERO,

SETCOND,

or

MOVENEXT

option

for

a

segment

for

which

there

are

no

subset

pointers

defined

in

the

DBD.

The

subset

options

included

in

the

qualification

statement

are

in

conflict;

for

example,

if

one

qualification

statement

contained

a

SET

option

and

a

SETZERO

option

for

the

same

subset

pointer,

IMS

would

return

an

AJ

status

code.

S

means

to

set

the

pointer

to

current

position;

Z

means

to

set

the

pointer

to

zero.

You

cannot

use

these

options

together

in

one

qualification

statement.

The

qualification

statement

included

more

than

one

GETFIRST

option.

The

pointer

number

following

a

subset

pointer

option

is

invalid.

You

either

did

not

include

a

number,

or

included

an

invalid

character.

The

number

following

the

option

must

be

between

1

and

8,

inclusive.

AM

The

subset

pointer

referenced

in

the

qualification

statement

was

not

specified

in

the

program’s

PSB.

For

example,

if

your

program’s

PSB

specifies

that

your

program

can

use

subset

pointers

1

and

4,

and

your

qualification

statement

referenced

subset

pointer

5,

IMS

would

return

an

AM

status

code

to

your

program.

Your

program

tried

to

use

an

option

that

updates

the

pointer

(SET,

SETCOND,

or

MOVENEXT)

but

the

program’s

PSB

did

not

specify

pointer

update

sensitivity.

The

POS

Command

You

can

use

the

POS

command

(only

with

DEDBs)

to

do

the

following:

v

Retrieve

the

location

of

a

specific

sequential

dependent

segment,

or

retrieves

the

location

of

the

last

inserted

sequential

dependent

segment.

v

Tell

you

the

amount

of

unused

space

within

each

DEDB

area.

For

example,

you

can

use

the

position

information

that

IMS

returns

for

a

POS

command

to

scan

or

delete

the

sequential

dependent

segments

for

a

particular

time

period.

For

the

syntax

of

the

POS

command,

see

“POS

Command”

on

page

59.

If

the

area

the

POS

command

specifies

is

unavailable,

the

I/O

area

is

unchanged

and

the

status

code

FH

is

returned.

Processing

DEDBs

with

Subset

PointersIBM

Confidential

Chapter

6.

Processing

Fast

Path

Databases

101

Locating

a

Specific

Sequential

Dependent

When

you

have

position

on

a

particular

root

segment,

you

can

retrieve

the

position

information

and

the

area

name

of

a

specific

sequential

dependent

of

that

root.

If

you

have

a

position

established

on

a

sequential

dependent

segment,

the

search

starts

from

that

position.

IMS

returns

the

position

information

for

the

first

sequential

dependent

segment

that

satisfies

the

command.

To

retrieve

this

information,

you

issue

a

POS

command

with

a

qualification

statement

containing

the

segment

name

of

the

sequential

dependent.

The

current

position

after

this

kind

of

POS

command

is

in

the

same

place

that

it

is

after

a

GNP

command.

After

a

successful

POS

command,

the

I/O

area

contains:

LL

A

2-byte

field

giving

the

total

length

of

the

data

in

the

I/O

area,

in

binary.

Area

Name

An

8-byte

field

giving

the

ddname

from

the

AREA

statement.

Position

An

8-byte

field

containing

the

position

information

for

the

requested

segment.

If

the

sequential

dependent

segment

that

is

the

target

of

the

POS

command

is

inserted

in

the

same

synchronization

interval,

no

position

information

is

returned.

Bytes

11-18

contain

X'FF';

other

fields

contain

normal

data.

Unused

CIs

A

4-byte

field

containing

the

number

of

unused

CIs

in

the

sequential

dependent

part.

Unused

CIs

A

4-byte

field

containing

the

number

of

unused

CIs

in

the

independent

overflow

part.

Locating

the

Last

Inserted

Sequential

Dependent

Segment

You

can

also

retrieve

the

position

information

for

the

most

recently

inserted

sequential

dependent

segment

of

a

given

root

segment.

To

do

this,

you

issue

a

POS

command

with

a

qualification

statement

containing

the

root

segment

as

the

segment

name.

The

current

position

after

this

type

of

command

follows

the

same

rules

as

position

after

a

GU.

After

a

successful

command,

the

I/O

area

contains:

LL

A

2-byte

field

containing

the

total

length

of

the

data

in

the

I/O

area,

in

binary.

Area

Name

An

8-byte

field

giving

the

ddname

from

the

AREA

statement.

Position

An

8-byte

field

containing

the

position

information

for

the

most

recently

inserted

sequential

dependent

segment.

This

field

contains

zeros

provided

no

sequential

dependent

for

this

root

exist.

Unused

CIs

A

4-byte

field

containing

the

number

of

unused

CIs

in

the

sequential

dependent

part.

Unused

CIs

A

4-byte

field

containing

the

number

of

unused

CIs

in

the

independent

overflow

part.

The

POS

Command IBM

Confidential

102

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

Identifying

Free

Space

To

retrieve

the

area

name

and

the

next

available

position

within

the

sequential

dependent

part

from

all

online

areas,

you

can

issue

an

unqualified

POS

command.

This

type

of

command

also

retrieves

the

unused

space

in

the

independent

overflow

and

sequential

dependent

parts.

After

a

successful

unqualified

POS

command,

the

I/O

area

contains

the

length

(LL),

followed

by

as

many

entries

as

there

are

areas

within

the

database.

Each

entry

contains

the

second

through

the

fifth

fields

shown

below:

LL

A

2-byte

field

containing

the

total

length

of

the

data

in

the

I/O

area,

in

binary.

The

length

includes

the

2

bytes

for

the

LL

field,

plus

24

bytes

for

each

entry.

Area

Name

An

8-byte

field

giving

the

ddname

from

the

AREA

statement.

Position

An

8-byte

field

giving

the

next

available

position

within

the

sequential

dependent

part.

Unused

CIs

A

4-byte

field

containing

the

number

of

unused

CIs

in

the

sequential

dependent

part.

Unused

CIs

A

4-byte

field

containing

the

number

of

unused

CIs

in

the

independent

overflow

part.

The

P

Processing

Option

If

the

P

processing

option

has

been

specified

(with

the

PROCOPT

parameter)

in

the

PCB

for

your

program,

a

GC

status

code

is

returned

to

your

program

whenever

a

command

to

retrieve

or

insert

a

segment

causes

a

Unit

of

Work

(UOW)

boundary

to

be

crossed.

Although

crossing

the

UOW

boundary

probably

has

no

particular

significance

for

your

program,

the

GC

status

code

indicates

that

this

is

a

good

time

to

issue

a

CHKP

command.

The

advantages

of

doing

this

are:

v

Your

position

in

the

database

is

kept.

Issuing

a

CHKP

normally

causes

position

in

the

database

to

be

lost,

and

the

application

program

has

to

reestablish

position

before

it

can

resume

processing.

v

Commit

points

occur

at

regular

intervals.

When

a

GC

status

code

is

returned,

no

data

is

retrieved

or

inserted.

In

your

program,

you

can

either:

v

Issue

a

CHKP

command,

and

resume

database

processing

by

reissuing

the

command

that

caused

the

GC

status

code.

v

Ignore

the

GC

status

code

and

resume

database

processing

by

reissuing

the

command

that

caused

the

status

code.

The

POS

CommandIBM

Confidential

Chapter

6.

Processing

Fast

Path

Databases

103

The

POS

Command IBM

Confidential

104

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

Chapter

7.

Comparing

Command-Level

and

Call-Level

Programs

This

chapter

summarizes

some

of

the

differences

between

command-

and

call-level

programs.

If

you

are

already

familiar

with

DL/I

calls,

but

not

with

EXEC

DLI

commands,

this

section

will

help

you

understand

the

commands

and

options

you

can

use

to

perform

the

tasks

that

you

performed

using

calls.

Table

10

provides

a

quick

reference

for

using

DL/I

calls

in

a

Batch,

Batch-Oriented

BMP,

or

CICS

with

DBCTL

environment.

Table

10.

DL/I

Calls

Available

to

IMS

and

CICS

Command-Level

Application

Programs

Request

Type

Program

Characteristics

Batch

Batch-

Oriented

BMP

CICS

with

DBCTL1

CHKP

call

(symbolic)

Yes

Yes

No

CHKP

call

(basic)

Yes

Yes

No

GSCD

call2

Yes

No

No

INIT

call

Yes

Yes

Yes

ISRT

call

(initial

load)

Yes

No

No

ISRT

call

Yes

Yes

Yes

LOG

call

Yes

Yes

Yes

SCHD

call

No

No

Yes

ROLB

call

Yes

Yes

No

ROLL

call

Yes

Yes

No

ROLS

call

(Roll

Back

to

SETS)3

Yes

Yes

Yes

ROLS

call

(Roll

Back

to

Commit)

Yes

Yes

Yes

SETS

call3

Yes

Yes

Yes

STAT

call4

Yes

Yes

Yes

TERM

call

No

No

Yes

XRST

call

Yes

Yes

No

Notes:

1.

In

a

CICS

remote

DL/I

environment,

CALLs

in

the

CICS-DBCTL

column

are

supported

if

you

are

shipping

a

function

to

a

remote

CICS

that

uses

DBCTL.

2.

GSCD

is

a

Product-sensitive

programming

interface.

3.

SETS

and

ROLS

calls

are

not

valid

when

the

PSB

contains

a

DEDB.

4.

STAT

is

a

Product-sensitive

programming

interface.

Table

11

compares

EXEC

DLI

commands

with

DL/I

calls

and

explains

what

the

commands

do.

For

example,

in

a

command-level

program,

you

use

the

LOAD

command

instead

of

the

ISRT

call

to

initially

load

a

database.

Table

11.

Comparing

Call-Level

and

Command-Level

Programs:

Commands

and

Calls

Call-Level

Command-Level

Allows

you

to...

INIT

call

ACCEPT

command

Initialize

for

data

availability

status

codes.

CHKP

call

(basic)

CHKP

command

Issue

a

basic

checkpoint.

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

105

Table

11.

Comparing

Call-Level

and

Command-Level

Programs:

Commands

and

Calls

(continued)

Call-Level

Command-Level

Allows

you

to...

DEQ

call

DEQ

command

Release

segments

retrieved

using

LOCKCLASS

option

or

Q

command

code.

DLET

call

DLET

command

Delete

segments

from

a

database.

GU,

GN,

and

GNP

calls

GU,

GN,

and

GNP

commands1

Retrieve

segments

from

a

database.

GHU,

GHN,

and

GHNP

calls1

GU,

GN,

and

GNP

commands1

Retrieve

segments

from

a

database

for

updating.

GSCD

call

GSCD

call2

Retrieve

system

addresses.

ISRT

call

ISRT

command

Add

segments

to

a

database.

ISRT

call

LOAD

command

Initially

load

a

database.

LOG

call

LOG

command

Write

a

message

to

the

system

log.

POS

call

POS

command

Retrieve

positioning

or

space

usage

or

positioning

and

space

usage

in

a

DEDB

area.

INIT

call

ACCEPT

command

Initialize

for

data

availability

status.

INIT

call

QUERY

command

Obtain

information

of

initial

data

availability.

INIT

call

REFRESH

command

Availability

information

after

using

a

PCB.

REPL

call

REPL

command

Replace

segments

in

a

database.

XRST

call

RETRIEVE

command

Issue

an

extended

restart.

ROLL

or

ROLB

call

ROLL

or

ROLB

command

Dynamically

back

out

changes.

ROLS

call

ROLS

command

Back

out

to

a

previously

set

backout

point.

PCB

call

SCHD

command

Schedule

a

PSB.

SETS

call

SETS

command

Set

a

backout

point.

SETU

call

SETU

command

Set

a

backout

point

even

if

unsupported

PCBs

(like

DEDBs

or

MSDBs)

are

present.

STAT

call3

STAT

command

Obtain

system

and

buffer

pool

statistics.

CHKP

call

(extended)

SYMCHKP

command

Issue

a

symbolic

checkpoint.

TERM

call

TERM

command

Terminate

a

PSB.

XRST

call

XRST

command

Issue

an

extended

restart.

Notes:

1.

Get

commands

are

just

like

Get

Hold

calls,

and

the

performance

of

Get

commands

and

Get

calls

is

the

same.

2.

You

can

use

the

GSCD

call

in

a

batch

command-level

program.

GSCD

is

a

Product-sensitive

programming

interface.

3.

STAT

is

a

Product-sensitive

programming

interface.

Table

12

compares

the

options

you

use

with

EXEC

DLI

commands

with

the

command

codes

you

use

with

DL/I

calls.

For

example,

the

LOCKED

option

performs

the

same

function

as

a

Q

command

code.

Table

12.

Comparing

Call-Level

and

Command-Level

Programs:

Command

Codes

and

Options

Call-

Level

Command-Level

Allows

You

to...

C

KEYS

option

Use

the

concatenated

key

of

a

segment

to

identify

the

segment.

Comparing

Command-Level

and

Call-Level

Programs IBM

Confidential

106

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

Table

12.

Comparing

Call-Level

and

Command-Level

Programs:

Command

Codes

and

Options

(continued)

Call-

Level

Command-Level

Allows

You

to...

D

INTO

or

FROM

specified

on

segment

level

to

be

retrieved

or

inserted.

Retrieve

or

insert

a

sequence

of

segments

in

a

hierarchic

path

using

only

one

request,

instead

of

having

to

use

a

separate

request

for

each

segment.

(Path

call

or

command).

F

FIRST

option

Back

up

to

the

first

occurrence

of

a

segment

under

its

parent

when

searching

for

a

particular

segment

occurrence.

Disregarded

for

a

root

segment.

L

LAST

option

Retrieve

the

last

occurrence

of

a

segment

under

its

parent.

M

MOVENEXT

option

Set

a

subset

pointer

to

the

segment

following

the

current

segment.

N

Leave

out

the

SEGMENT

option

for

segments

you

do

not

want

replaced.

Designate

segments

you

do

not

want

replaced,

when

replacing

segments

after

a

get

hold

request.

Usually

used

when

replacing

a

path

of

segments.

P

SETPARENT

Set

parentage

at

a

higher

level

than

what

it

usually

is

(the

lowest

hierarchic

level

of

the

request).

Q

LOCKCLASS,

LOCKED

Reserve

a

segment

so

that

other

programs

are

not

able

to

update

it

until

you

have

finished

processing

it.

R

GETFIRST

option

Retrieve

the

first

segment

in

a

subset.

S

SET

option

Unconditionally

set

a

subset

pointer

to

the

current

segment.

U

No

equivalent

for

command

level

programs.

Limit

the

search

for

a

segment

to

the

dependents

of

the

segment

occurrence

on

which

position

is

established.

V

CURRENT

option

Use

the

current

position

at

this

hierarchic

level

and

above

as

qualification

for

the

segment.

W

SETCOND

option

Conditionally

set

a

subset

pointer

to

the

current

segment.

Z

SETZERO

option

Set

a

subset

pointer

to

zero.

–

No

command-level

equivalent.

Null.

Use

an

SSA

in

command

code

format

without

specifying

the

command

code.

Can

be

replaced

during

execution

with

the

command

codes

you

want.

Comparing

Command-Level

and

Call-Level

ProgramsIBM

Confidential

Chapter

7.

Comparing

Command-Level

and

Call-Level

Programs

107

Comparing

Command-Level

and

Call-Level

Programs IBM

Confidential

108

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

Chapter

8.

Data

Availability

Enhancements

Your

program

might

fail

when

it

receives

a

status

code

indicating

that

a

DL/I

full-function

database

is

unavailable.

To

avoid

this,

you

can

use

data

availability

enhancements.

After

a

PSB

has

been

scheduled

in

DBCTL,

your

application

program

can

issue

requests

to

indicate

to

IMS

that

the

program

can

handle

data

availability

status

codes

and

to

obtain

information

about

the

availability

of

each

database.

Accepting

Database

Availability

Status

Codes

These

status

codes

occur

because

PSB

scheduling

was

completed

without

all

of

the

referenced

databases

being

available.

Use

ACCEPT

to

tell

DBCTL

to

return

a

status

code

instead

of

abending

the

program:

EXEC

DLI

ACCEPT

STATUSGROUP('A');

Obtaining

Information

about

Database

Availability

You

can

put

data

availability

status

codes

into

each

of

the

DB

PCBs

under

the

following

conditions:

v

In

a

CICS

DBCTL

environment,

by

using

the

PSB

scheduling

request

command,

SCHD.

v

In

a

Batch

or

BMP

environment,

at

initialization

time.

You

can

obtain

the

data

availability

status

codes

within

the

DL/I

interface

block

(DIB)

by

using

the

following

QUERY

command:

EXEC

DLI

QUERY

USING

PCB(n);

n

specifies

the

PCB.

The

QUERY

command

is

used

after

scheduling

the

PSB

but

before

making

the

first

database

call.

If

the

program

has

already

issued

a

call

using

a

DB

PCB,

then

the

QUERY

command

must

follow

the

REFRESH

command:

EXEC

DLI

REFRESH

DBQUERY

The

REFRESH

command

updates

the

information

in

the

DIB.

You

can

only

issue

this

command

one

time.

For

full-function

databases,

the

DIBSTAT

should

contain

NA,

NU,

TH,

or

blanks.

For

MSDBs

and

DEDBs,

the

DIBSTAT

always

contains

blanks.

If

a

CICS

command

language

translator

has

been

used

to

translate

the

EXEC

DLI

commands,

then,

in

addition

to

data

availability

status,

the

DBDNAME

will

be

returned

in

the

DIB

field

DIBDBDNM.

Also,

the

name

of

the

database

organization

will

be

returned

in

the

DIB

field

DIBDBORG.

For

an

explanation

of

the

codes,

see

IMS

Version

9:

Messages

and

Codes,

Volume

1.

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

109

IBM

Confidential

110

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

111

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Corporation

J46A/G4

555

Bailey

Avenue

San

Jose,

CA

95141-1003

U.S.A.

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

information

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

the

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurement

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements

or

other

publicly

available

sources.

IBM

has

not

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

All

statements

regarding

IBM’s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

This

information

is

for

planning

purposes

only.

The

information

herein

is

subject

to

change

before

the

products

described

become

available.

This

information

contains

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

contains

sample

application

programs

in

source

language,

which

illustrates

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM,

for

the

purposes

of

developing,

using,

marketing

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

IBM’s

application

programming

interfaces.

IBM

Confidential

112

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

Each

copy

or

any

portion

of

these

sample

programs

or

any

derivative

work,

must

include

a

copyright

notice

as

follows:

©

(your

company

name)

(year).

Portions

of

this

code

are

derived

from

IBM

Corp.

Sample

Programs.

©

Copyright

IBM

Corp.

_enter

the

year

or

years_.

All

rights

reserved.

If

you

are

viewing

this

information

softcopy,

the

photographs

and

color

illustrations

may

not

appear.

Programming

Interface

Information

This

book

is

intended

to

help

the

application

programmer

write

IMS

application

programs.

This

book

primarily

documents

General-use

Programming

Interface

and

Associated

Guidance

Information

provided

by

IMS.

General-use

programming

interfaces

allow

the

customer

to

write

programs

that

obtain

the

services

of

IMS.

However,

this

book

also

documents

Product-sensitive

Programming

Interface

and

Associated

Guidance

Information

provided

by

IMS.

Product-sensitive

programming

interfaces

allow

the

customer

installation

to

perform

tasks

such

as

diagnosing,

modifying,

monitoring,

repairing,

tailoring,

or

tuning

of

IMS.

Use

of

such

interfaces

creates

dependencies

on

the

detailed

design

or

implementation

of

the

IBM

software

product.

Product-sensitive

programming

interfaces

should

be

used

only

for

these

specialized

purposes.

Because

of

their

dependencies

on

detailed

design

and

implementation,

it

is

to

be

expected

that

programs

written

to

such

interfaces

may

need

to

be

changed

to

run

with

new

product

releases

or

versions,

or

as

a

result

of

service.

Product-sensitive

Programming

Interface

and

Associated

Guidance

Information

is

identified

where

it

occurs,

either

by

an

introductory

statement

to

a

chapter

or

section

or

by

the

following

marking:

Product-sensitive

programming

interface

Product-sensitive

Programming

Interface

and

Associated

Guidance

Information.

End

of

Product-sensitive

programming

interface

Trademarks

The

following

terms

are

trademarks

of

the

IBM

Corporation

in

the

United

States

or

other

countries

or

both:

BookManager

IBM

C/370

IMS

CICS

IMS/ESA

CICS/ESA

MVS

CICS/MVS

MVS/ESA

DB2

z/OS

IBM

Confidential

Notices

113

Java™

and

all

Java-based

trademarks

and

logos

are

trademarks

or

registered

trademarks

of

Sun

Microsystems,

Inc.,

in

the

United

States,

other

countries,

or

both.

Other

company,

product,

and

service

names

may

be

trademarks

or

service

marks

of

others.

Product

Names

In

this

book,

the

licensed

programs

have

shortened

names:

v

“COBOL

for

MVS

&

VM”

is

referred

to

as

“COBOL”.

v

“DB2

for

MVS”

is

referred

to

as

“DB2”.

v

“CICS

for

MVS”

is

referred

to

as

“CICS”.

v

“CICS

Transaction

Server

for

OS/390

and

z/OS”

is

referred

to

as

“CICS”.

IBM

Confidential

114

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

Bibliography

This

bibliography

includes

all

the

publications

cited

in

this

book,

including

the

publications

in

the

IMS

library.

CICS/ESA

Version

4.1

Application

Programming

Guide,

SC33-1169

CICS/ESA

Version

4.1

Application

Programming

Reference,

SC33-1170

CICS

Family:

CICS

TS

for

z/OS

Communications

from

CICS

on

System/390,

SC34-6031

CICS

Transaction

Server

for

z/OS

V2R2

CICS

Application

Programming

Guide,

SC34-5993

CICS

TS

for

z/OS

V2R2

CICS

Application

Programming

Reference,

SC34-5994

IMS

Version

9

Library

ZES1-2330

ADB

IMS

Version

9:

Administration

Guide:

Database

Manager

ZES1-2331

AS

IMS

Version

9:

Administration

Guide:

System

ZES1-2332

ATM

IMS

Version

9:

Administration

Guide:

Transaction

Manager

ZES1-2333

APDB

IMS

Version

9:

Application

Programming:

Database

Manager

ZES1-2334

APDG

IMS

Version

9:

Application

Programming:

Design

Guide

ZES1-2335

APCICS

IMS

Version

9:

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

ZES1-2336

APTM

IMS

Version

9:

Application

Programming:

Transaction

Manager

ZES1-2337

BPE

IMS

Version

9:

Base

Primitive

Environment

Guide

and

Reference

ZES1-2356

CR

IMS

Version

9:

Command

Reference

ZES1-2338

CQS

IMS

Version

9:

Common

Queue

Server

Guide

and

Reference

ZES1-2339

CSL

IMS

Version

9:

Common

Service

Layer

Guide

and

Reference

ZES1-2340

CG

IMS

Version

9:

Customization

Guide

ZES1-2341

DBRC

IMS

Version

9:

DBRC

Guide

and

Reference

ZES1-2342

DGR

IMS

Version

9:

Diagnosis

Guide

and

Reference

ZES1-2343

FAST

IMS

Version

9:

Failure

Analysis

Structure

Tables

(FAST)

for

Dump

Analysis

ZES1-2345

OLR

IMS

Version

9:

HALDB

Online

Reorganization

Guide

and

Reference

ZES1-2346

JGR

IMS

Version

9:

IMS

Java

Guide

and

Reference

ZES1-2347

IIV

IMS

Version

9:

Installation

Volume

1:

Installation

Verification

ZES1-2348

ISDT

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring

ZES1-2349

INTRO

IMS

Version

9:

An

Introduction

to

IMS

ZES1-2351

MIG

IMS

Version

9:

Master

Index

and

Glossary

ZES1-2352

MC1

IMS

Version

9:

Messages

and

Codes,

Volume

1

ZES1-2353

MC2

IMS

Version

9:

Messages

and

Codes,

Volume

2

ZES1-2354

OTMA

IMS

Version

9:

Open

Transaction

Manager

Access

Guide

and

Reference

ZES1-2355

OG

IMS

Version

9:

Operations

Guide

GC17-7831

RPG

IMS

Version

9:

Release

Planning

Guide

ZES1-2359

URDBTM

IMS

Version

9:

Utilities

Reference:

Database

and

Transaction

Manager

ZES1-2360

URS

IMS

Version

9:

Utilities

Reference:

System

Supplementary

Publications

GC17-7825

LPS

IMS

Version

9:

Licensed

Program

Specifications

ZES1-2357

SOC

IMS

Version

9:

Summary

of

Operator

Commands

Publication

Collections

LK3T-7213

CD

IMS

Version

9

Softcopy

Library

LK3T-7144

CD

IMS

Favorites

LBOF-7789

Hardcopy

and

CD

Licensed

Bill

of

Forms

(LBOF):

IMS

Version

9

Hardcopy

and

Softcopy

Library

SBOF-7790

Hardcopy

Unlicensed

Bill

of

Forms

(SBOF):

IMS

Version

9

Unlicensed

Hardcopy

Library

SK2T-6700

CD

OS/390

Collection

SK3T-4270

CD

z/OS

Software

Products

Collection

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

115

|
|
|

|
|

|
|

Publication

Collections

SK3T-4271

DVD

z/OS

and

Software

Products

DVD

Collection

Accessibility

Titles

Cited

in

this

Book

SA22-7787

z/OS

V1R1.0

TSO

Primer

SA22-7794

z/OS

V1R1.0

TSO/E

User’s

Guide

SC34-4822

z/OS

V1R1.0

ISPF

User’s

Guide,

Volume

1

IBM

Confidential

116

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

Index

A
abend,

avoiding

an

69

abnormal

termination

8

ACCEPT

command
description

69

examples

69

format

69

options

69

usage

69

adding
a

segment

sequentially

71

segments

to

a

database

53

adjustable

character

string

10

AIB

(Application

Interface

Block)
AIB

mask

5

restrictions

6

supported

commands

5

AJ

status

code

101

allowed

commands,

EXEC

DLI

34

alternate

PCB

31

AM

status

code

101

AMODE(31)

29

application

programs,

IFP

32

array,

connected

10

assembler

language
DL/I

command-level

sample

12

I/O

area

10

assembler

language

program
DIB

fields

6

variable

names,

mandatory

6

automatic

storage

22

avoiding

an

abend

69

B
BA

status

code

7

backing

out
database

changes

88

backing

out

changes

dynamically

75,

76

backout

point
intermediate

88

setting

78

unconditionally

setting

79

basic

checkpoint
issuing

69,

87

batch

programs
issuing

checkpoints

87

batch

programs,

command-level

samples
assembler

12

C

23

COBOL

16

PL/I

19

BC

status

code

7

BILLING

segment

4

BKO

execution

parameter

75

BMP

(batch

message

processing)

programs
issuing

checkpoints

87

BMP

(batch

message

processing)

programs

(continued)
PCBs

32

C
C

code

standard

header

file

28

C

program
DIB

fields

6

DL/I

command-level

sample

23

variable

names,

mandatory

6

call-level

programs
comparing

with

command-level

programs
command

codes

and

options

106

commands

and

calls

105

DL/I

calls

available

to

IMS

and

CICS

command-level

105

changing

the

values

of

a

segment’s

fields

60

character

string
adjustable

10

fixed-length

10

checkpoint

(CHKP)
EXEC

DLI

command
basic

87

current

position

87

issuing

2,

69

symbolic

EXEC

DLI

command,

description

88

CHKP

(Checkpoint)

command
description

69,

87

examples

70

format

69

options

69

restrictions

70

usage

70

CHKPT=EOV

parameter

70

CICS
command

language

translator

29

HANDLE

ABEND

command

8

Transaction

Server

2

CMPAT

option

32

COBOL
DL/I

command-level

sample

16

I/O

area

10

II

translator

29

program
DIB

fields

6

variable

names,

mandatory

6

V4

19

command

language

translator,

CICS

29

command-level

programs
comparing

with

call-level

programs
command

codes

and

options

106

commands

and

calls

105

DIB

(DL/I

interface

block)

6

DL/I

calls

available

to

IMS

and

CICS

105

I/O

area,

defining

9

key

feedback

area,

defining

9

preparing

EXEC

DL/I

program

for

execution

29

sample

assembler

language

12

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

117

command-level

programs

(continued)
sample

C

23

sample

COBOL

16

sample

PL/I

19

status

codes,

checking

7

syntax

of

EXEC

DLI

commands

33

commands
EXEC

DLI
ACCEPT

69

CHKP

69

DEQ

70

DLET

35

GN

37

GNP

42

GU

47

ISRT

53

LOAD

71

LOG

72

POS

59

QUERY

73

REFRESH

74

REPL

60

RETRIEVE

64

ROLB

75

ROLL

76

ROLS

77

SCHD

66

SETS

78

SETU

79

STAT

80

summary

33

SYMCHKP

81

TERM

67

XRST

83

SCHD

PSB

22

symbolic

checkpoint

81,

83

system

service

68

commands

allowed,

EXEC

DLI

34

commit

database

changes

2

committing

your

program’s

changes

to

a

database

87

comparing

EXEC

DLI
commands

with

DL/I

calls

105

options

with

command

codes

106

compiler,

COBOL

16

compiling,

options

with

EXEC

DLI

29

concatenated

key,

segment

9

connected

array

10

crossing

a

unit

of

work

(UOW)

boundary

when

processing

DEDBs

103

current

position

in

the

database,

determining

the

64

D
data

availability

enhancements

109

data

entry

database
See

DEDB

(data

entry

database)

database
administrator

3

availability
obtaining

information

109

status

codes,

accepting

109

database

(continued)
changes,

committing

2

description

name

field,

DIB

(DL/I

interface

block)

9

example,

medical

hierarchy

2

organization

field,

DIB

(DL/I

interface

block)

9

processing,

Fast

Path

91

recovering

87

types

9

database

integrity
maintaining

87

database

recovery,

planning

for
backing

out

database

changes

88

checkpoints,

CHKP

command

87

checkpoints,

taking

88

restarting

your

program,

XRST

command

88

DB

PCB
definition

31

specifying

77

DBA

3

DBCTL

facilities
ACCEPT

command

109

data

availability

109

QUERY

command

109

REFRESH

command

109

ROLS

command

89

SETS

command

89

DEDB

(data

entry

database)
processing

overview

91

POS

command

101

subset

pointers

91

defining

application

program

elements

to

IMS
AIB

5

DIB

6

I/O

area

9

key

feedback

area

9

dependent

segment,

retrieving
sequentially

42

the

location

of

a

59

DEQ

(Dequeue)

command
description

70

examples

71

format

71

options

71

restrictions

71

usage

71

determining

the

current

position

in

the

database

64

DFHEIENT

15

DFHEIRET

15

DFHEISTG

15

DIB

(DL/I

interface

block)
accessing

information

6

database

description

name

field

9

database

organization

field

9

fields

6

information,

obtaining

the

most

recent

74

key

feedback

length

field

9

label

restriction

6

labels

6

segment

level

field

8

segment

name

field

8

IBM

Confidential

118

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

DIB

(DL/I

interface

block)

(continued)
status

code

field

7

structure

6

translator

version

7

differences

between

CICS

and

command-level

batch

or

BMP

programs

1

direct

dependent

segments,

in

DEDBs

91

DL/I

databases,

read

and

update

1

DL/I

interface

block
See

DIB

(DL/I

interface

block)

DLET

(Delete)

command
description

35

example

36

format

35

options

35

restrictions

36

usage

36

DLI

option

29

dynamic

backout

88

dynamically

backing

out

changes

75,

76

E
efficient

program

design

11

EIBREG

parameter

15

ending

a

logical

unit

of

work

69,

81

establishing

a

starting

position

in

a

database

47

examples
ACCEPT

command

69

CHKP

(Checkpoint)

command

70

DEQ

(Dequeue)

command

71

DLET

(Delete)

command

36

GN

(Get

Next)

command

41

GNP

(Get

Next

in

Parent)

command

46

GU

(Get

Unique)

command

52

ISRT

(Insert)

command

58

LOAD

command

72

LOG

command

73

QUERY

command

74

REFRESH

command

74

REPL

(Replace)

command

63

RETRIEVE

command

66

ROLB

command

75

ROLL

command

76

SCHD

(Schedule)

command

67

SETS

command

79

SETU

command

80

STAT

command

81

SYMCHKP

(Symbolic

Checkpoint)

command

83

TERM

(Terminate)

command

68

XRST

(Extended

Restart)

command

85

EXEC

DLI
allowable

commands

34

commands
ACCEPT

69

CHKP

69

DEQ

70

DLET

35

GN

37

GNP

42

GU

47

EXEC

DLI

(continued)
commands

(continued)
ISRT

53

LOAD

71

LOG

72

POS

59

QUERY

73

REFRESH

74

REPL

60

RETRIEVE

64

ROLB

75

ROLL

76

ROLS

77

SCHD

66

SETS

78

SETU

79

STAT

80

SYMCHKP

81

TERM

67

XRST

83

compiler

options,

required

29

linkage

editor

options,

required

29

options,

using

with

subset

pointers

94

preparing

program

for

execution

29

program

summary

33

syntax

of

commands

33

translator

options,

required

29

execution

diagnostic

facility

5

extended

restart,

issuing

an

83

F
Fast

Path
database,

processing

91

subset

pointers

with

DEDBs

91

FH

status

code

7

fields
changing

the

values

of

a

segment’s

60

in

DIB

6

FIRST

insert

rule

57

fixed-length

character

string

10

formats
ACCEPT

command

69

CHKP

(Checkpoint)

command

69

DEQ

(Dequeue)

command

71

DLET

(Delete)

command

35

GN

(Get

Next)

command

37

GNP

(Get

Next

in

Parent)

command

42

GU

(Get

Unique)

command

47

ISRT

(Insert)

command

54

LOAD

command

72

LOG

command

73

POS

command

59

PSB

32

QUERY

command

73

REFRESH

command

74

REPL

(Replace)

command

61

RETRIEVE

command

65

ROLB

command

75

ROLL

command

76

ROLS

command

77

IBM

Confidential

Index

119

formats

(continued)
SCHD

(Schedule)

command

66

SETS

command

78

SETU

command

79

STAT

command

81

SYMCHKP

(Symbolic

Checkpoint)

command

81

TERM

(Terminate)

command

67

XRST

(Extended

Restart)

command

83

free

space,

identifying

103

FW

status

code

7

G
GA

status

code

7

GB

status

code

7

GC

status

code

103

GD

status

code

7

GE

status

code

7,

22,

28

general

programming

guidelines

11

GETFIRST

option
examples

95

retrieving

first

segment

in

subset

95

getting

IMS

database

statistics

80

GG

status

code

7

GK

status

code

7

GN

(Get

Next)

command
description

37

examples

41

format

37

options

38

restrictions

42

usage

41

GNP

(Get

Next

in

Parent)

command
description

42

examples

46

format

42

options

43

restrictions

47

usage

46

GSAM

database

9

GSAM

PCB

31

GU

(Get

Unique)

command
description

47

examples

52

format

47

options

49

restrictions

53

usage

52

guidelines,

general

programming

11

H
HANDLE

ABEND

command,

CICS

8

HDAM

database

9

HERE

insert

rule

57

HIDAM

database

9

hierarchical

database

example,

medical

2

HISAM

database

9

HOUSHOLD

segment

4

HSAM

database

9

I
I/O

area
assembler

language

10

COBOL

10

coding

10

command-level

program

9

DL/I

1

PL/I

10

restriction

10

symbolic

CHKP

88

XRST

88

I/O

PCB

(input/output

PCB)

31

IBM

COBOL

for

MVS

&

VM

19

IFP

application

programs

32

II

status

code

7

ILLNESS

segment

3

IMS

database

statistics,

obtaining

80

INDEX

database

9

interface

block,

DL/I

2

intermediate

backout

points

88

ISRT

(Insert)

command
description

53

examples

58

format

54

insert

rules

57

options

55

restrictions

58

usage

57

issuing
a

basic

checkpoint

69

an

extended

restart

83

checkpoints

in

batch

or

BMP

programs

87

K
key

feedback

area
command-level

program

9

length

field

in

DIB

9

keyword,

SYSSERVE

68

L
LAST

insert

rule

57

last

inserted

sequential

dependent

segment,

retrieving

the

location

of

the

59

LB

status

code

8

level

number

field

in

DIB

8

link

editing,

EXEC

DLI

29

linkage

editor

options

with

EXEC

DLI

29

LOAD

command
description

71

examples

72

format

72

options

72

usage

72

locating
a

specific

sequential

dependent

102

last

inserted

sequential

dependent

102

location

of

a

dependent

segment,

retrieving

the

59

LOCKCLASS

option

70

IBM

Confidential

120

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

LOG

command
description

72

examples

73

format

73

options

73

restrictions

73

usage

73

logical

unit

of

work,

ending

69,

81

M
maintaining

database

integrity

87

major

structure

10

medical

database

example
description

2

segments

2

minor

structure

10

MOVENEXT

option
examples

97

use

when

moving

subset

pointer

forward

97

moving

subset

pointer

forward

97

MPPs

32

N
NI

status

code

8

O
obtaining

IMS

database

statistics

80

recent

information

from

the

DIB

74

status

code

73

online

programs,

command-level

samples
assembler

12

C

23

COBOL

16

PL/I

19

options
ACCEPT

command

69

CHKP

(Checkpoint)

command

69

CMPAT

32

DEQ

(Dequeue)

command

71

DLET

(Delete)

command

35

GN

(Get

Next)

command

38

GNP

(Get

Next

in

Parent)

command

43

GU

(Get

Unique)

command

49

ISRT

(Insert)

command

55

LOAD

command

72

LOCKCLASS

70

LOG

command

73

POS

command

59

QUERY

command

73

REFRESH

command

74

REPL

(Replace)

command

61

RETRIEVE

command

65

ROLB

command

75

ROLL

command

76

ROLS

command

77

SCHD

(Schedule)

command

66

SETS

command

78

options

(continued)
SETU

command

80

STAT

command

81

SYMCHKP

(Symbolic

Checkpoint)

command

82

TERM

(Terminate)

command

67

XRST

(Extended

Restart)

command

83

options

for

subset

pointers
GETFIRST

95

MOVENEXT

97

SET

98

SETCOND

99

SETZERO

97

OS/VS

COBOL

19

overlap,

storage

10

overrides,

PROCESS

statement

29

P
P

processing

option

103

parameters
BKO

execution

75

CHKPT=EOV

70

EIBREG

15

RCREG

15

RULES

55,

58

path

command

63

PATIENT

segment

2

PAYMENT

segment

4

PCB

(program

communication

block)
alternate

31

in

application

programs,

summary

32

types

31

PL/I
DL/I

command-level

sample

19

I/O

area

10

program
variable

names,

mandatory

6

pointers,

subset
DBD,

defining

94

description

91

GETFIRST

option

95

MOVENEXT

option

97

preparation

for

using

93

PSB,

defining

94

sample

application

94

SET

option

98

SETCOND

option

99

SETZERO

option

97

status

codes

101

POS

command
description

59

EXEC

DLI

command

format

59

format

59

free

space,

identifying

103

locating

a

specific

sequential

dependent

102

locating

the

last

inserted

sequential

dependent

102

options

59

usage

60

using

with

DEDBs

101

POS

command

restriction

60

position

in

the

database,

determining

the

current

64

IBM

Confidential

Index

121

preparing

programs
for

EXEC

DLI

11

for

EXEC

DLI

execution

29

PROCESS

statement

overrides

29

processing
DEDBs

91

Fast

Path,

P

(position)

option

103

program
design

efficiency

11

entry

2

programming

guidelines,

general

11

programs
BMP

32

PSB
in

a

CICS

online

program
scheduling

a

66

terminating

a

67

PSB

(program

specification

block)
format

32

Q
QUERY

command
description

73

example

73

format

73

options

73

restrictions

74

usage

73

R
RCREG

15

recovering

databases

87

recovery

EXEC

DLI

commands
basic

CHKP

87

SYMCHKP

88

XRST

88

reentrance

15

REFRESH

command

109

description

74

example

74

format

74

options

74

restrictions

75

usage

74

releasing
a

segment

70

resources

2

removing

a

segment

and

its

dependents

35

REPL

(Replace)

command
description

60

examples

63

format

61

options

61

restrictions

64

usage

62

replacing

a

segment

60

resetting

a

subset

pointer

98

resources,

releasing

2

restarting

your

program,

with

EXEC

DLI

XRST

command

88

restrictions
AIB

6

CHKP

(Checkpoint)

command

70

DEQ

(Dequeue)

command

71

DIB

label

6

DLET

(Delete)

command

36

GN

(Get

Next)

command

42

GNP

(Get

Next

in

Parent)

command

47

GU

(Get

Unique)

command

53

I/O

area

10

I/O

area,

PL/I

10

ISRT

(Insert)

command

58

LOG

command

73

POS

command

60

QUERY

command

74

REFRESH

command

75

REPL

(Replace)

command

64

RETRIEVE

command

66

ROLB

command

75

ROLL

command

76

ROLS

command

77,

78

SETS

command

79

SETU

command

80

SYMCHKP

(Symbolic

Checkpoint)

command

83

XRST

(Extended

Restart)

command

85

RETRIEVE

command
description

64

examples

66

format

65

options

65

restrictions

66

usage

65

retrieving
dependent

segments

sequentially

42

segments

sequentially

37

specific

segments

47

the

location

of

a

dependent

segment

59

the

location

of

the

last

inserted

sequential

dependent

segment

59

returning

a

status

code

69

ROLB

(Rollback)

command
description

75

examples

75

format

75

options

75

restrictions

75

usage

75

ROLL

command
description

76

examples

76

format

76

options

76

restrictions

76

usage

76

ROLS

command

89

description

77

examples

77

format

77

options

77

IBM

Confidential

122

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

ROLS

command

(continued)
restrictions

78

usage

77

RULES

parameter

55,

58

RULES=

57

S
sample

programs
command-level

assembler

language

12

C

23

COBOL

16

PL/I

19

SCHD

(Schedule)

command
description

66

examples

67

format

66

options

66

usage

67

SCHD

PSB

command

15,

22

scheduling

a

PSB

in

a

CICS

online

program

66

segment
adding

one

sequentially

71

and

its

dependents,

removing

35

concatenated

key

9

level

number

field

8

name

field,

DIB

(DL/I

interface

block)

8

releasing

a

70

replacing

60

segments
adding

to

a

database

53

in

medical

database

example

2

retrieving

sequentially

37

retrieving

specific

47

sequential

dependent

segments
free

space,

identifying

103

in

DEDBs

91

locating

a

specific

dependent

102

locating

the

last

inserted

dependent

102

POS

command

101

retrieving

the

location

of

the

last

one

inserted

59

sequentially

retrieving
dependent

segments

42

segments

37

SET

option
examples

98

resetting

a

subset

pointer

98

SETCOND

option
examples

99

setting

a

subset

pointer

conditionally

99

SETS

command
description

78

example

79

format

78

options

78

restrictions

79

usage

79

setting

a

backout

point
DL/I

78

unconditionally

79

setting

a

subset

pointer
conditionally

99

to

zero

97

SETU

command
description

79

example

80

format

79

options

80

restrictions

80

usage

80

SETZERO

option
examples

97

setting

a

subset

pointer

to

zero

97

SHSAM

database

9

specific

segments,

retrieving

47

specifying

the

DB

PCB

77

standard

header

file,

C

code

28

starting

position

in

a

database,

establishing

a

47

STAT

command
description

80

examples

81

format

81

options

81

usage

81

status

code,

returning

a

69

status

codes
BA

7

BC

7

checking

in

a

command-level

program

7

FH

7

field

in

DIB

7

FW

7

GA

7

GB

7

GD

7

GE

7,

22,

28

GG

7

GK

7

II

7

LB

8

NI

8

obtaining

73

processing

option

P

103

subset

pointers

101

TG

8

storage

overlap

10

structure
major

10

minor

10

subset

pointers
DBD,

defining

94

description

91

GETFIRST

option

95

MOVENEXT

option

97

preparation

for

using

93

PSB,

defining

94

sample

application

94

SET

option

98

SETCOND

option

99

SETZERO

option

97

status

codes

101

IBM

Confidential

Index

123

summary,

EXEC

DLI

commands

33

symbolic

checkpoint
commands

83

restart

88

XRST

88

SYMCHKP

(Symbolic

Checkpoint)

command
current

position

82

description

81,

88

examples

83

format

81

options

82

restrictions

83

usage

82

syntax

of

EXEC

DLI

commands

33

SYSSERVE

keyword

68

system

log,

writing

information

to

the

72

system

service
ACCEPT

69

CHKP

69

command

68

DEQ

70

LOAD

71

LOG

72

QUERY

73

REFRESH

74

ROLB

75

ROLL

76

ROLS

77

SETS

78

SETU

79

STAT

80

SYMCHKP

81

XRST

83

T
TERM

(Terminate)

command
description

67

examples

68

format

67

options

67

usage

67

terminating

a

PSB

in

a

CICS

online

program

67

termination,

abnormal

8

TG

status

code

8

Transaction

Manager

32

Transaction

Server,

CICS

5

translating,

EXEC

DLI

program

29

translator
COBOL

II

29

MVS

&

VM

29

options

required

for

EXEC

DLI

29

version,

DIB

(DL/I

interface

block)

7

TREATMNT

segment

3

U
unconditionally

setting

a

backout

point

79

unit

of

work,

ending

a

logical

69

usage
ACCEPT

command

69

usage

(continued)
CHKP

(Checkpoint)

command

70

DEQ

(Dequeue)

command

71

DLET

(Delete)

command

36

GN

(Get

Next)

command

41

GNP

(Get

Next

in

Parent)

command

46

GU

(Get

Unique)

command

52

ISRT

(Insert)

command

57

LOAD

command

72

LOG

command

73

POS

command

60

QUERY

command

73

REFRESH

command

74

REPL

(Replace)

command

62

RETRIEVE

command

65

ROLB

command

75

ROLL

command

76

ROLS

command

77

SCHD

(Schedule)

command

67

SETS

command

79

SETU

command

80

STAT

command

81

SYMCHKP

(Symbolic

Checkpoint)

command

82

TERM

(Terminate)

command

67

XRST

(Extended

Restart)

command

84

V
variable

names,

mandatory

6

VS

COBOL

II

19

W
writing

information

to

the

system

log

72

X
XRST

(Extended

Restart)

command
description

83

examples

85

format

83

options

83

restrictions

85

usage

84

Z
z/OS

&

VM

29

z/OS

&

VM

translator

29

IBM

Confidential

124

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

����

Program

Number:

5655-J38

IBM

Confidential

Printed

in

USA

ZES1-2335-00

Sp
in
e

in
fo
rm
at
io
n:

 �
�

�

IM
S

Ap
pl

ic
at

io
n

Pr
og

ra
m

m
in

g:

E
X

EC

D
LI

Co
m

m
an

ds

fo
r

C
IC

S

an
d

IM
S

Ve
rs

io
n

9

	Contents
	Figures
	Tables
	About This Book
	Summary of Contents
	Prerequisite Knowledge
	How to Use This Book
	How to Read Syntax Diagrams
	Example Syntax Diagram

	How to Send Your Comments
	Change Indicators

	Summary of Changes
	Changes to This Book for IMS Version 9
	Library Changes for IMS Version 9
	New and Revised Titles
	Terminology Changes
	Accessibility Enhancements
	User Assistive Technologies
	Accessible Documentation
	Keyboard Navigation of the User Interface

	Chapter 1. How EXEC DLI Application Programs Work with IMS
	Getting Started with EXEC DLI
	A Sample Hierarchy

	Chapter 2. Defining Application Program Elements to IMS
	Specifying an Application Interface Block (AIB)
	AIB Mask
	CICS Restrictions with AIB support

	Specifying the DL/I Interface Block (DIB)
	Defining a Key Feedback Area
	Defining I/O Areas
	COBOL I/O Area
	PL/I I/O Area
	Assembler Language I/O Area

	Chapter 3. Writing an Application Program
	Programming Guidelines
	Coding a Program in Assembler Language
	Coding a Program in COBOL
	Coding a Program in PL/I
	Coding a Program in C

	Preparing Your EXEC DLI Program for Execution
	Translator Options Required for EXEC DLI
	Compiler Options Required for EXEC DLI
	Linkage Editor Options Required for EXEC DLI

	Chapter 4. EXEC DLI Commands for an Application Program
	Using the I/O PCB, PSB, and PCB
	I/O PCB
	Alternate PCB
	DB PCB
	GSAM PCB
	Format of a PSB
	PCB Summary
	DB Batch Programs
	BMPs, MPPs, and IFPs
	CICS Programs with DBCTL

	Specifying an EXEC DLI Command
	Summary of EXEC DLI Commands
	EXEC DLI Commands
	DLET Command
	Format
	Options
	Usage
	Example
	Explanation

	Restrictions

	GN Command
	Format
	Options
	Usage
	Examples
	Example 1
	Example 2
	Example 3

	Restrictions

	GNP Command
	Format
	Options
	Usage
	Examples
	Example 1
	Example 2

	Restrictions

	GU Command
	Format
	Options
	Usage
	Examples
	Example 1
	Example 2
	Example 3

	Restriction

	ISRT Command
	Format
	Options
	Usage
	Examples
	Example 1
	Example 2
	Example 3

	Restrictions

	POS Command
	Format
	Options
	Usage
	Restriction

	REPL Command
	Format
	Options
	Usage
	Examples
	Example 1
	Example 2
	Example 3
	Example 4

	Restrictions

	RETRIEVE Command
	Format
	Options
	Usage
	Examples
	Explanation

	Restrictions

	SCHD Command
	Format
	Options
	Usage
	Examples
	Explanation

	TERM Command
	Format
	Options
	Usage
	Example
	Explanation

	System Service Commands
	ACCEPT Command
	Format
	Options
	Usage
	Example

	CHKP Command
	Format
	Options
	Usage
	Examples
	Explanation

	Restrictions

	DEQ Command
	Format
	Option
	Usage
	Example
	Explanation

	Restriction

	LOAD Command
	Format
	Options
	Usage
	Example

	LOG Command
	Format
	Options
	Usage
	Example
	Restriction

	QUERY Command
	Format
	Options
	Usage
	Examples
	Example 1
	Example 2

	Restrictions

	REFRESH Command
	Format
	Options
	Usage
	Example
	Explanation

	Restrictions

	ROLB Command
	Format
	Options
	Usage
	Example
	Explanation

	Restrictions

	ROLL Command
	Format
	Options
	Usage
	Example
	Explanation

	Restrictions

	ROLS Command
	Format
	Options
	Usage
	Examples
	Example 1
	Example 2
	Example 3

	Restrictions

	SETS Command
	Format
	Options
	Usage
	Example
	Explanation

	Restrictions

	SETU Command
	Format
	Options
	Usage
	Example
	Explanation

	Restrictions

	STAT Command
	Format
	Options
	Usage
	Examples

	SYMCHKP Command
	Format
	Options
	Usage
	Example
	Explanation

	Restrictions

	XRST Command
	Format
	Options
	Usage
	Example
	Explanation

	Restrictions

	Chapter 5. Recovering Databases and Maintaining Database Integrity
	Issuing Checkpoints in a Batch or BMP Program
	Issuing the CHKP Command
	Issuing the SYMCHKP Command

	Restarting Your Program and Checking for Position
	Backing Out Database Updates Dynamically: The ROLL and ROLB Commands
	Using Intermediate Backout Points: The SETS and ROLS Commands
	SETS Command
	ROLS Command

	Chapter 6. Processing Fast Path Databases
	Processing DEDBs with Subset Pointers
	Before You Use Subset Pointers
	Designating Subset Pointers You Want to Use
	Using Subset Pointers
	Our Sample Application
	Retrieving the First Segment in the Subset with the GETFIRST Option
	Setting the Subset Pointers with the SETZERO, MOVENEXT, SET, and SETCOND Options
	Inserting Segments in a Subset
	Deleting the Segment Pointed to By a Subset Pointer
	Combining Options

	Subset Pointer Status Codes

	The POS Command
	Locating a Specific Sequential Dependent
	Locating the Last Inserted Sequential Dependent Segment
	Identifying Free Space
	The P Processing Option

	Chapter 7. Comparing Command-Level and Call-Level Programs
	Chapter 8. Data Availability Enhancements
	Accepting Database Availability Status Codes
	Obtaining Information about Database Availability

	Notices
	Programming Interface Information
	Trademarks
	Product Names

	Bibliography
	IMS Version 9 Library

	Index

